Science.gov

Sample records for 2-5a synthetase activity

  1. Neural control of glutamine synthetase activity in rat skeletal muscles.

    PubMed

    Feng, B; Konagaya, M; Konagaya, Y; Thomas, J W; Banner, C; Mill, J; Max, S R

    1990-05-01

    The mechanism of glutamine synthetase induction in rat skeletal muscle after denervation or limb immobilization was investigated. Adult male rats were subjected to midthigh section of the sciatic nerve. At 1, 2, and 5 h and 1, 2, and 7 days after denervation, rats were killed and denervated, and contralateral control soleus and plantaris muscles were excised, weighted, homogenized, and assayed for glutamine synthetase. Glutamine synthetase activity increased approximately twofold 1 h after denervation in both muscles. By 7 days postdenervation enzyme activity had increased to three times the control level in plantaris muscle and to four times the control level in soleus muscle. Increased enzyme activity after nerve section was associated with increased maximum velocity with no change in apparent Michaelis constant. Immunotitration with an antiglutamine synthetase antibody suggested that denervation caused an increase in the number of glutamine synthetase molecules in muscle. However, Northern-blot analysis revealed no increase in the steady-state level of glutamine synthetase mRNA after denervation. A mixing experiment failed to yield evidence for the presence of a soluble factor involved in regulating the activity of glutamine synthetase in denervated muscle. A combination of denervation and dexamethasone injections resulted in additive increases in glutamine synthetase. Thus the mechanism underlying increased glutamine synthetase after denervation appears to be posttranscriptional and is distinct from that of the glucocorticoid-mediated glutamine synthetase induction previously described by us. PMID:1970709

  2. Loss of (2'-5')oligoadenylate synthetase activity by production of antisense RNA results in lack of protection by interferon from viral infections

    SciTech Connect

    De Benedetti, A.; Pytel, B.A.; Baglioni, C.

    1987-02-01

    An expression vector was constructed that carries part of the human BK papovavirus with 0.5 kilobases of (2'-5')oligoadenylate (2-5A) synthetase cDNA inserted in inverted orientation downstream from the virion proteins (VP) promoter and the neomycin-resistance gene neo under the control of a simian virus 40 promoter. Cells transfected with this vector and selected for resistance to the neomycin derivative G418 synthesized RNA complementary to 2-5A synthetase mRNA. These cells lacked 2-5A synthetase activity, and the enzyme was not inducible by interferon. In contrast, 2-5A synthetase was induced in cells transfected with a control vector without the cDNA insert. Such cells were protected by interferon from RNA viruses, whereas cells lacking 2-5A synthetase were not protected from encephalomyocarditis virus, vesicular stomatitis virus, and Sindbis virus but were fully protected from influenza virus. These findings show that a high level of 2-5A synthetase is required for interferon-induced protection from the cytoplasmic RNA viruses tested.

  3. Clinical value of the determination of an interferon-induced enzyme activity: studies of the 2'5' oligoadenylate synthetase activity in peripheral blood lymphocytes of patients.

    PubMed

    Chousterman, S; Chousterman, M; Reinert, P; Thang, M N

    1983-01-01

    The 2'5' oligoadenylate synthetase (2'5' A synthetase) is one of the interferon-induced enzymes. The measurement of its activity may thus reveal the presence of interferon, which is one of the body's non-specific antiviral, antitumor, and immunoregulatory agents. We found a constant level of this enzyme activity (mean value: 0.31 units +/- 0.13 S. D.) when measured in the white blood cells of healthy subjects (104). The majority of the patients with viral (27/30), bacterial (13/16) and autoimmune (15/16) diseases showed a 2'5' A synthetase activity greater than 0.57 units (mean value of the control + S. D.). Conversely the 2'5' A synthetase activity level was normal or low in malignancies and in diseases depending on other aetiologies than those described above. Therefore this simple an rapid biochemical assay seems to be useful for clinical study of infectious and inflammatory diseases. PMID:6198003

  4. Changes in the activity levels of glutamine synthetase, glutaminase and glycogen synthetase in rats subjected to hypoxic stress

    NASA Astrophysics Data System (ADS)

    Vats, P.; Mukherjee, A. K.; Kumria, M. M. L.; Singh, S. N.; Patil, S. K. B.; Rangnathan, S.; Sridharan, K.

    Exposure to high altitude causes loss of body mass and alterations in metabolic processes, especially carbohydrate and protein metabolism. The present study was conducted to elucidate the role of glutamine synthetase, glutaminase and glycogen synthetase under conditions of chronic intermittent hypoxia. Four groups, each consisting of 12 male albino rats (Wistar strain), were exposed to a simulated altitude of 7620 m in a hypobaric chamber for 6 h per day for 1, 7, 14 and 21 days, respectively. Blood haemoglobin, blood glucose, protein levels in the liver, muscle and plasma, glycogen content, and glutaminase, glutamine synthetase and glycogen synthetase activities in liver and muscle were determined in all groups of exposed and in a group of unexposed animals. Food intake and changes in body mass were also monitored. There was a significant reduction in body mass (28-30%) in hypoxia-exposed groups as compared to controls, with a corresponding decrease in food intake. There was rise in blood haemoglobin and plasma protein in response to acclimatisation. Over a three-fold increase in liver glycogen content was observed following 1 day of hypoxic exposure (4.76+/-0.78 mg.g-1 wet tissue in normal unexposed rats; 15.82+/-2.30 mg.g-1 wet tissue in rats exposed to hypoxia for 1 day). This returned to normal in later stages of exposure. However, there was no change in glycogen synthetase activity except for a decrease in the 21-days hypoxia-exposed group. There was a slight increase in muscle glycogen content in the 1-day exposed group which declined significantly by 56.5, 50.6 and 42% following 7, 14, and 21 days of exposure, respectively. Muscle glycogen synthetase activity was also decreased following 21 days of exposure. There was an increase in glutaminase activity in the liver and muscle in the 7-, 14- and 21-day exposed groups. Glutamine synthetase activity was higher in the liver in 7- and 14-day exposed groups; this returned to normal following 21 days of exposure

  5. DOES IRON OR HEME CONTROL RAT HEPATIC DELTA-AMINOLEVULINIC ACID SYNTHETASE ACTIVITY

    EPA Science Inventory

    Disodium ethylenediamine tetraacetic acid and/or allylisopropylacetamide administration to rat pups did not evoke a premature induction of hepatic d-aminolevulinic acid synthetase. Administration of iron to adult rats did not alter d-aminolevulinic acid synthetase activity and ha...

  6. Regulation of β-Glucan Synthetase Activity by Auxin in Pea Stem Tissue

    PubMed Central

    Ray, Peter M.

    1973-01-01

    Treatment of pea stem segments with indoleacetic acid (IAA) causes within 1 hour a 2- to 4-fold increase in activity of particulate uridine diphosphoglucose-dependent β-glucan synthetase obtainable from the tissue. The IAA effect is observable in tissue from all parts of the elongation zone of the pea stem, and also in older tissue that is not capable of a cell enlargement response to IAA. A large increase in activity is caused by IAA only if synthetase activity in the isolated tissue has first been allowed to fall substantially below the intact plant level, and only if sucrose is supplied along with IAA. Treatment of tissue with sucrose alone after a period of sugar starvation causes a transient rise of synthetase activity. The decline in synthetase activity in absence of IAA, the rise caused by IAA, and the transient rise caused by sucrose are all strongly temperature-dependent. IAA and sucrose do not affect the activity of isolated synthetase particles. Synthetase activity in vivo is sensitive to as low as 0.1 μm IAA and is increased by IAA analogues that are active as auxins on elongation but not by nonauxin analogues. Activity begins to rise 10 to 15 minutes after exposure to IAA, which places this among the most rapid enzyme effects of a plant growth regulator heretofore demonstrated, and among the most rapid known metabolic effects of auxins. The effect is seen also with polysaccharide synthetase activity using uridine diphosphate-galactose or uridine diphosphate-xylose as substrates, and to a lesser extent with guanosine diphosphoglucose-dependent glucan synthetase activity. Glucan synthetase from IAA-treated tissue appears to have a higher affinity for uridine diphosphate-glucose than the control. PMID:16658379

  7. Regulation of active site coupling in glutamine-dependent NAD[superscript +] synthetase

    SciTech Connect

    LaRonde-LeBlanc, Nicole; Resto, Melissa; Gerratana, Barbara

    2009-05-21

    NAD{sup +} is an essential metabolite both as a cofactor in energy metabolism and redox homeostasis and as a regulator of cellular processes. In contrast to humans, Mycobacterium tuberculosis NAD{sup +} biosynthesis is absolutely dependent on the activity of a multifunctional glutamine-dependent NAD{sup +} synthetase, which catalyzes the ATP-dependent formation of NAD{sup +} at the synthetase domain using ammonia derived from L-glutamine in the glutaminase domain. Here we report the kinetics and structural characterization of M. tuberculosis NAD{sup +} synthetase. The kinetics data strongly suggest tightly coupled regulation of the catalytic activities. The structure, the first of a glutamine-dependent NAD{sup +} synthetase, reveals a homooctameric subunit organization suggesting a tight dependence of catalysis on the quaternary structure, a 40-{angstrom} intersubunit ammonia tunnel and structural elements that may be involved in the transfer of information between catalytic sites.

  8. Mutational Separation of Aminoacylation and Cytokine Activities of Human Tyrosyl-tRNA Synthetase

    PubMed Central

    Kapoor, Mili; Otero, Francella J.; Slike, Bonnie M.; Ewalt, Karla L.; Yang, Xiang-Lei

    2009-01-01

    SUMMARY Aminoacyl-tRNA synthetases are known for catalysis of aminoacylation. Significantly, some mammalian synthetases developed cytokine functions possibly linked to disease-causing mutations in tRNA synthetases. Not understood is how epitopes for cytokine signaling were introduced into catalytic scaffolds without disturbing aminoacylation. Here we investigate human tyrosyl-tRNA synthetase, where a catalytic-domain surface helix—next to the active site—was recruited for IL-8-like cytokine signaling. Taking advantage of our high-resolution structure, the reciprocal impact of rational mutations designed to disrupt aminoacylation or cytokine signaling was investigated with multiple assays. The collective analysis demonstrated a protective fine–structure separation of aminoacylation from cytokine activities within the conserved catalytic domain. As a consequence, disease-causing mutations affecting cell signaling can arise without disturbing aminoacylation. These results with TyrRS also predict the previously unknown binding conformation of IL-8-like CXC cytokines. PMID:19477417

  9. Mutational separation of aminoacylation and cytokine activities of human tyrosyl-tRNA synthetase.

    PubMed

    Kapoor, Mili; Otero, Francella J; Slike, Bonnie M; Ewalt, Karla L; Yang, Xiang-Lei

    2009-05-29

    Aminoacyl tRNA synthetases are known for catalysis of aminoacylation. Significantly, some mammalian synthetases developed cytokine functions possibly linked to disease-causing mutations in tRNA synthetases. Not understood is how epitopes for cytokine signaling were introduced into catalytic scaffolds without disturbing aminoacylation. Here we investigate human tyrosyl-tRNA synthetase, where a catalytic-domain surface helix, next to the active site, was recruited for interleukin-8-like cytokine signaling. Taking advantage of our high resolution structure, the reciprocal impact of rational mutations designed to disrupt aminoacylation or cytokine signaling was investigated with multiple assays. The collective analysis demonstrated a protective fine-structure separation of aminoacylation from cytokine activities within the conserved catalytic domain. As a consequence, disease-causing mutations affecting cell signaling can arise without disturbing aminoacylation. These results with TyrRS also predict the previously unknown binding conformation of interleukin-8-like CXC cytokines. PMID:19477417

  10. Gain-Of-Function Mutational Activation of Human TRNA Synthetase Procytokine

    SciTech Connect

    Yang, X.L.; Kapoor, M.; Otero, F.J.; Slike, B.M.; Tsuruta, H.; Frausto, R.; Bates, A.; Ewalt, K.L.; Cheresh, D.A.; Schimmel, P.; /Scripps Res. Inst. /SLAC, SSRL

    2009-04-30

    Disease-causing mutations occur in genes for aminoacyl tRNA synthetases. That some mutations are dominant suggests a gain of function. Native tRNA synthetases, such as tyrosyl-tRNA synthetase (TyrRS) and tryptophanyl-tRNA synthetase, catalyze aminoacylation and are also procytokines that are activated by natural fragmentation. In principle, however, gain-of-function phenotypes could arise from mutational activation of synthetase procytokines. From crystal structure analysis, we hypothesized that a steric block of a critical Glu-Leu-Arg (ELR) motif in full-length TyrRS suppresses the cytokine activity of a natural fragment. To test this hypothesis, we attempted to uncover ELR in the procytokine by mutating a conserved tyrosine (Y341) that tethers ELR. Site-specific proteolytic cleavage and small-angle X-ray scattering established subtle opening of the structure by the mutation. Strikingly, four different assays demonstrated mutational activation of cytokine functions. The results prove the possibilities for constitutive gain-of-function mutations in tRNA synthetases.

  11. Gain-of-function mutational activation of human tRNA synthetase procytokine.

    PubMed

    Yang, Xiang-Lei; Kapoor, Mili; Otero, Francella J; Slike, Bonnie M; Tsuruta, Hiro; Frausto, Ricardo; Bates, Alison; Ewalt, Karla L; Cheresh, David A; Schimmel, Paul

    2007-12-01

    Disease-causing mutations occur in genes for aminoacyl tRNA synthetases. That some mutations are dominant suggests a gain of function. Native tRNA synthetases, such as tyrosyl-tRNA synthetase (TyrRS) and tryptophanyl-tRNA synthetase, catalyze aminoacylation and are also procytokines that are activated by natural fragmentation. In principle, however, gain-of-function phenotypes could arise from mutational activation of synthetase procytokines. From crystal structure analysis, we hypothesized that a steric block of a critical Glu-Leu-Arg (ELR) motif in full-length TyrRS suppresses the cytokine activity of a natural fragment. To test this hypothesis, we attempted to uncover ELR in the procytokine by mutating a conserved tyrosine (Y341) that tethers ELR. Site-specific proteolytic cleavage and small-angle X-ray scattering established subtle opening of the structure by the mutation. Strikingly, four different assays demonstrated mutational activation of cytokine functions. The results prove the possibilities for constitutive gain-of-function mutations in tRNA synthetases. PMID:18096501

  12. Affinity labeling of (2'-5')-oligoadenylate-activated endonuclease with (/sup 32/P)-2', 5'A and its analogs

    SciTech Connect

    Saarma, M.Y.; Gordon, J.; Minks, M.A.

    1985-09-01

    This paper examines the role interferons play in the origin of the antiviral state of cells and in the inhibition of virus reproduction. Treatment of cells with interferon induces the synthesis of a whole series of proteins. For affinity labeling of 2', 5'A-dependent endoribonuclease, the authors synthesized P-32 labeled 2; 5'A by two methods. Results of the investigation show that the most probable candidate for 2', 5'A-dependent endoribonuclease is the protein with molecular weight 80,000. The role of the other two proteins is still unknown.

  13. Structural plasticity of an aminoacyl-tRNA synthetase active site

    PubMed Central

    Turner, James M.; Graziano, James; Spraggon, Glen; Schultz, Peter G.

    2006-01-01

    Recently, tRNA aminoacyl-tRNA synthetase pairs have been evolved that allow one to genetically encode a large array of unnatural amino acids in both prokaryotic and eukaryotic organisms. We have determined the crystal structures of two substrate-bound Methanococcus jannaschii tyrosyl aminoacyl-tRNA synthetases that charge the unnatural amino acids p-bromophenylalanine and 3-(2-naphthyl)alanine (NpAla). A comparison of these structures with the substrate-bound WT synthetase, as well as a mutant synthetase that charges p-acetylphenylalanine, shows that altered specificity is due to both side-chain and backbone rearrangements within the active site that modify hydrogen bonds and packing interactions with substrate, as well as disrupt the α8-helix, which spans the WT active site. The high degree of structural plasticity that is observed in these aminoacyl-tRNA synthetases is rarely found in other mutant enzymes with altered specificities and provides an explanation for the surprising adaptability of the genetic code to novel amino acids. PMID:16618920

  14. Activation of 2',5'-oligoadenylate synthetase activity on induction of HL-60 leukemia cell differentiation.

    PubMed Central

    Schwartz, E L; Nilson, L A

    1989-01-01

    A 27-fold increase in 2',5'-oligoadenylate synthetase activity, an enzyme associated with the antiproliferative actions of interferon (IFN), was observed after treatment of HL-60 human leukemia cells with dimethyl sulfoxide (DMSO), an inducer of granulocytic differentiation of the cells. Enzyme activity was elevated after 24 h of exposure to DMSO, was maximal at 48 hours, and declined thereafter. A comparable increase was observed after treatment with 1 U of alpha interferon (IFN-alpha) per ml or 8 U of beta interferon (IFN-beta) per ml. Elevated levels of expression of other IFN-inducible genes, including type I histocompatibility antigen (HLA-B) mRNA and 2',5'-oligoadenylate phosphodiesterase activity, were also observed with DMSO treatment. DMSO-treated HL-60 cells had an increased amount of a 1.8-kilobase mRNA for oligoadenylate [oligo(A)] synthetase when compared with that of control cells; both DMSO- and IFN-treated HL-60 cells also expressed 1.6-, 3.4-, and 4.3-kilobase mRNA. The increase in both oligo(A) synthetase activity and mRNA levels was inhibited by polyclonal antiserum to human IFN-alpha; however, no IFN-alpha mRNA could be detected in the cells. Antiserum to IFN-beta or gamma interferon (IFN-gamma) had no effect on oligo(A) synthetase expression or activity nor was there any detectable IFN-beta 1 or IFN-beta 2 mRNA in the cells. The anti-IFN-alpha serum did not block the elevation of HLA-B mRNA in DMSO-treated cells. These observations suggest that the increased expression of oligo(A) synthetase in DMSO-treated cells may be mediated by the release of an IFN-alpha-like factor; however, the levels of any IFN-alpha mRNA produced in the cells were extremely low. Images PMID:2476665

  15. A Bacterial Ortholog of Class II Lysyl-tRNA Synthetase Activates Lysine

    PubMed Central

    Ambrogelly, Alexandre; O’Donoghue, Patrick; Söll, Dieter; Moses, Sharath

    2010-01-01

    Aminoacyl-tRNA synthetases produce aminoacyl-tRNAs, essential substrates for accurate protein synthesis. Beyond their central role in translation some of these enzymes or their orthologs are recruited for alternative functions, not always related to their primary cellular role. We investigate here the enzymatic properties of GenX (also called PoxA and YjeA), an ortholog of bacterial class II lysyl-tRNA synthetase. GenX is present in most Gram-negative bacteria and is homologous to the catalytic core of lysyl-tRNA synthetase, but it lacks the amino terminal anticodon binding domain of the latter enzyme. We show that, in agreement with its well-conserved lysine binding site, GenX can activate in vitro L-lysine and lysine analogs, but does not acylate tRNALys or other cellular RNAs. PMID:20580719

  16. Control of 5-aminolaevulinate synthetase activity in Rhodopseudomonas spheroides. Binding of pyridoxal phosphate to 5-aminolaevulinate synthetase.

    PubMed Central

    Davies, R C; Neuberger, A

    1979-01-01

    1. Pyridoxal 5'-phosphate is a cofactor essential for the enzymic activity of aminolaevulinate synthetase from Rhodopseudomonas spheroides. It also aids activation of the low-activity enzyme by trisulphides such as cystine trisulphide, whereas inactivation of enzyme is facilitated by its absence. 2. The fluorescence spectrum of purified high-activity enzyme is that expected for a pyridoxal phosphate--Schiff base, but the firmly bound cofactor does not appear to be at the active centre. In dilute solutions of enzyme this grouping is inaccessible to nucleophiles such as glycine, hydroxylamine, borohydride and cyanide, at pH 7.4. 3. An active-centre Schiff base is formed between enzyne and added pyridoxal phosphate, which is accessible to nucleophiles. Concentrated solutions of this enzyme--Schiff base on treatment with glycine yield apo- and semi-apoenzyme, which can re-bind pyridoxal phosphate. 4. Two types of binding of pyridoxal phosphate are distinguishable in dilute solution of enzyme, but these become indistinguishable when concentrated solutions are treated with cofactor. A change occurs in the susceptibility towards borohydride of the fluorescence of the "structural" pyridoxal phosphate. 5. One or two molecules of cofactor are bound per subunit of mol. wt. 50 000 in semiapo- or holo-enzyme. The fluorescence of pyridoxamine phosphate covalently bound to enzyme also indicates one to two nmol of reducible Schiff base per 7000 units of activity in purified and partially purified samples of enzyme. 6. Cyanide does not convert high-activity into low-activity enzyme, but with the enzyme-pyridoxal phosphate complex it forms a yellow fluorescent derivative that is enzymically active. PMID:312102

  17. Gain-of-Function Mutational Activation of Human tRNA Synthetase Procytokine

    PubMed Central

    Yang, Xiang-Lei; Kapoor, Mili; Otero, Francella J.; Slike, Bonnie M.; Tsuruta, Hiro; Frausto, Ricardo; Bates, Alison; Ewalt, Karla L.; Cheresh, David A.; Schimmel, Paul

    2008-01-01

    Summary Disease-causing mutations occur in genes for aminoacyl tRNA synthetases. That some mutations are dominant suggests a gain-of-function. Native tRNA synthetases, like TyrRS and TrpRS, catalyze aminoacylation and are also procytokines that are activated by natural fragmentation. In principle, however, gain-of-function phenotypes could arise from mutational activation of synthetase procytokines. From crystal structure analysis we hypothesized that a steric block of a critical ELR motif in full-length TyrRS suppresses the cytokine activity of a natural fragment. To test this hypothesis, we attempted to uncover ELR in the procytokine by mutating a conserved tyrosine (Y341) that tethers ELR. Site-specific proteolytic cleavage and small angle X-ray scattering established subtle opening of the structure by the mutation. Strikingly, four different assays demonstrated mutational activation of cytokine functions. The results prove the possibilities for constitutive gain-of-function mutations in tRNA synthetases. PMID:18096501

  18. Phosphoribosyl pyrophosphate synthetase activity affects growth and riboflavin production in Ashbya gossypii

    PubMed Central

    Jiménez, Alberto; Santos, María A; Revuelta, José L

    2008-01-01

    Background Phosphoribosyl pyrophosphate (PRPP) is a central compound for cellular metabolism and may be considered as a link between carbon and nitrogen metabolism. PRPP is directly involved in the de novo and salvage biosynthesis of GTP, which is the immediate precursor of riboflavin. The industrial production of this vitamin using the fungus Ashbya gossypii is an important biotechnological process that is strongly influenced by substrate availability. Results Here we describe the characterization and manipulation of two genes of A. gossypii encoding PRPP synthetase (AGR371C and AGL080C). We show that the AGR371C and AGL080C gene products participate in PRPP synthesis and exhibit inhibition by ADP. We also observed a major contribution of AGL080C to total PRPP synthetase activity, which was confirmed by an evident growth defect of the Δagl080c strain. Moreover, we report the overexpression of wild-type and mutant deregulated isoforms of Agr371cp and Agl080cp that significantly enhanced the production of riboflavin in the engineered A. gossypii strains. Conclusion It is shown that alterations in PRPP synthetase activity have pleiotropic effects on the fungal growth pattern and that an increase in PRPP synthetase enzymatic activity can be used to enhance riboflavin production in A. gossypii. PMID:18782443

  19. Synthesis and activities of branched-chain aminoacyl-tRNA synthetases in threonine deaminase mutants of Escherichia coli.

    PubMed Central

    Williams, A L; Whitfield, S M; Williams, L S

    1978-01-01

    Valyl-, isoleucyl-, and leucyl-tRNA synthetase activities were examined in an Escherichia coli K-12 strain that possessed a deletion of three genes of the ilv gene cluster, ilvD, A, and C, and in a strain with the same deletion that also carried the lambdadilvCB bacteriophage. It was observed that the branched-chain tRNA synthetase activities of both strains were considerably less than those of the normal strain during growth in unrestricted medium. Furthermore, during an isoleucine limitation, there was a further reduction in isoleucyl-tRNA synthetase activity and an absence of the isoleucine-mediated derepression of valyl-tRNA synthetase formation in both of these mutants, as compared with the normal strain. In addition, it was observed that these branched-chain synthetase activities were reduced in steady-state cultures of several ilvA point mutants. However, upon the introduction of the ilv operon to these ilvA mutants by use of lambda bacteriophage, there was a specific increase in the branched-chain synthetase activities to levels comparable to those of the normal strain. These results support our previous findings that the stability and repression control of synthesis of these synthetases require some product(s) missing in the ilvDAC deletion strain and strongly suggest this component is some form of the ilvA gene product, threonine deaminase. PMID:348689

  20. Role of thymidylate synthetase activity in development of methotrexate cytotoxicity.

    PubMed Central

    Moran, R G; Mulkins, M; Heidelberger, C

    1979-01-01

    Methotrexate (MTX) inhibition of the growth of mouse or human leukemia cells in culture was partially prevented by either thymidine (dThd) or hypoxanthine. 5-Fluoro-2'-deoxyuridine (FdUrd) also decreased the growth-inhibitory potency of MTX in the presence of small concentrations of 5-formyltetrahydrofolate (citrovorum factor) and sufficient exogenous dThd to support the synthesis of thymidylate nucleotides by salvage mechanisms. In addition, citrovorum factor-induced reversal of MTX was several orders of magnitude more efficient in the presence of both FdUrd and dThd than in the presence of dThd alone or in the absence of both nucleosides. Likewise, the presence of FdUrd (3 microM) and dThd (5.6 microM) completely prevented the lethality of 0.3 mM MTX to L1210 cells in culture medium supplemented with micromolar concentrations of citrovorum factor. We propose that this protection against the cytotoxic effects of MTX by dThd, hypoxanthine, and FdUrd have a common biochemical mechanism--namely, inhibition of the de novo synthesis of thymidylate by either a direct [FdUrd; inhibition of thymidylate synthetase (thymidylate synthase; 5,10-methylenetetrahydrofolate:dUMP C-methyl-transferase, EC 2.1.1.45)] or indirect (dThd and hypoxanthine; feedback inhibition by anabolites on ribonucleotide reductase and deoxycytidylate deaminase) effect. The resultant decreased rate of loss of reduced folates due to de novo thymidylate synthesis would allow a higher degree of inhibition of dihydrofolate reductase to be endured without damage to the cell. PMID:160558

  1. Active site nanospace of aminoacyl tRNA synthetase: difference between the class I and class II synthetases.

    PubMed

    Dutta, Saheb; Choudhury, Kaberi; Banik, Sindrila Dutta; Nandi, Nilashis

    2014-03-01

    The present work is aimed at understanding the origin of the difference in the molecular organization of the active site nanospaces of the class I and class II aminoacyl tRNA synthetases (aaRSs) which are tunnel-like structures. The active site encloses the cognate amino acid (AA) and the adenosine triphosphate (ATP) to carry out aminoacylation reaction. Comparison of the structures of the active site of the class I and class II (aaRSs) shows that the nanodimensional tunnels are curved in opposite directions in the two classes. We investigated the origin of this difference using quantum mechanical computation of electrostatic potential (ESP) of substrates, surrounding residues and ions, using Atoms in Molecule (AIM) Theory and charge population analysis. We show that the difference is principally due to the variation in the spatial charge distribution of ATP in the two classes which correspond to extended and bent conformations of ATP. The present computation shows that the most feasible pathway for nucleophilic attack to alphaP is oppositely directed for class I and class II aaRSs. The available crystal structures show that the cognate AA is indeed located along the channel favorable for nucleophilic attack as predicted by the ESP analysis. It is also shown that the direction of the channel changes its orientation when the orientation of ATP is changed from extended to a bent like structure. We further used the AIM theory to confirm the direction of the approach of AA in each case and the results corroborate the results from the ESP analysis. The opposite curvatures of the active site nanospaces in class I and class II aaRSs are related with the influence of the charge distributions of the extended and bent conformations of ATP, respectively. The results of the computation of electrostatic potential by successive addition of active site residues show that their roles on the reaction are similar in both classes despite the difference in the organization of the

  2. A broadly applicable continuous spectrophotometric assay for measuring aminoacyl-tRNA synthetase activity.

    PubMed Central

    Lloyd, A J; Thomann, H U; Ibba, M; Söll, D

    1995-01-01

    We describe a convenient, simple and novel continuous spectrophotometric method for the determination of aminoacyl-tRNA synthetase activity. The assay relies upon the measurement of inorganic pyrophosphate generated in the first step of the aminoacylation of a tRNA. Pyrophosphate release is coupled to inorganic pyrophosphatase, to generate phosphate, which in turn is used as the substrate of purine nucleoside phosphorylase to catalyze the N-glycosidic cleavage of 2-amino 6-mercapto 7-methylpurine ribonucleoside. Of the reaction products, ribose 1-phosphate and 2-amino 6-mercapto 7-methylpurine, the latter has a high absorbance at 360 nm relative to the nucleoside and hence provides a spectrophotometric signal that can be continuously followed. The non-destructive nature of the spectrophotometric assay allowed the re-use of the tRNAs in question in successive experiments. The usefulness of this method was demonstrated for glutaminyl-tRNA synthetase (GlnRS) and tryptophanyl-tRNA synthetase. Initial velocities measured using this assay correlate closely with those assayed by quantitation of [3H]Gln-tRNA or [14C]Trp-tRNA formation respectively. In both cases amino acid transfer from the aminoacyl adenylate to the tRNA represents the rate determining step. In addition, aminoacyl adenylate formation by aspartyl-tRNA synthetase was followed and provided a more sensitive means of active site titration than existing techniques. Finally, this novel method was used to provide direct evidence for the cooperativity of tRNA and ATP binding to GlnRS. PMID:7659511

  3. Control of 5-aminolaevulinate synthetase activity in Rhodopseudomonas spheroides. The involvement of sulphur metabolism

    PubMed Central

    Neuberger, Albert; Sandy, John D.; Tait, George H.

    1973-01-01

    1. The `initial' 5-aminolaevulinate synthetase activity, that is the activity observed immediately after cell disruption, in extracts prepared from unharvested semianaerobically grown Rhodopseudomonas spheroides, was twice that observed under the same assay conditions in extracts prepared from harvested cells. 2. The effect of oxygenation of a culture on the `maximum' aminolaevulinate synthetase activity, that is the activity observed 1h after disruption of harvested cells, is markedly influenced by the contents of the growth medium. Oxygenation of organisms for 1h in the medium in which they have grown produces an 80–90% decrease in maximum activity, whereas similar treatment of organisms resuspended in fresh medium produces less than a 40% decrease. 3. This protective effect of fresh medium is absolutely dependent on the presence of sulphate. When cells are suspended in sulphate-deficient fresh medium, the maximum activity falls by 65–75% even without oxygenation. A high maximum activity is regenerated when sulphate is resupplied. 4. When organisms are oxygenated in the medium in which they have grown, the cellular contents of GSH+GSSG and cysteine+cystine fall very markedly and homolanthionine is formed. Both the fall in aminolaevulinate synthetase activity and the changes in sulphur metabolism are largely prevented by the addition of compounds which stimulate synthesis of cysteine de novo or inhibit the conversion of cysteine S into homocysteine S. 5. The maximum aminolaevulinate synthetase activity was directly proportional to the GSH+GSSG content of all cell preparations. In glutathione-depleted extracts the `low'-activity enzyme could be re-activated in vitro by the addition of GSH, GSSG, cysteine or cystine, whereas in extracts with a high glutathione content the `high'-activity enzyme was unaffected by these sulphur compounds. 6. The activation of low-activity enzyme with exogenous sulphur compounds was prevented by excluding air or by adding NADH

  4. The bifunctional active site of s-adenosylmethionine synthetase. Roles of the active site aspartates.

    PubMed

    Taylor, J C; Markham, G D

    1999-11-12

    S-Adenosylmethionine (AdoMet) synthetase catalyzes the biosynthesis of AdoMet in a unique enzymatic reaction. Initially the sulfur of methionine displaces the intact tripolyphosphate chain (PPP(i)) from ATP, and subsequently PPP(i) is hydrolyzed to PP(i) and P(i) before product release. The crystal structure of Escherichia coli AdoMet synthetase shows that the active site contains four aspartate residues. Aspartate residues Asp-16* and Asp-271 individually provide the sole protein ligand to one of the two required Mg(2+) ions (* denotes a residue from a second subunit); aspartates Asp-118 and Asp-238* are proposed to interact with methionine. Each aspartate has been changed to an uncharged asparagine, and the metal binding residues were also changed to alanine, to assess the roles of charge and ligation ability on catalytic efficiency. The resultant enzyme variants all structurally resemble the wild type enzyme as indicated by circular dichroism spectra and are tetramers. However, all have k(cat) reductions of approximately 10(3)-fold in AdoMet synthesis, whereas the MgATP and methionine K(m) values change by less than 3- and 8-fold, respectively. In the partial reaction of PPP(i) hydrolysis, mutants of the Mg(2+) binding residues have >700-fold reduced catalytic efficiency (k(cat)/K(m)), whereas the D118N and D238*N mutants are impaired less than 35-fold. The catalytic efficiency for PPP(i) hydrolysis by Mg(2+) site mutants is improved by AdoMet, like the wild type enzyme. In contrast AdoMet reduces the catalytic efficiency for PPP(i) hydrolysis by the D118N and D238*N mutants, indicating that the events involved in AdoMet activation are hindered in these methionyl binding site mutants. Ca(2+) uniquely activates the D271A mutant enzyme to 15% of the level of Mg(2+), in contrast to the approximately 1% Ca(2+) activation of the wild type enzyme. This indicates that the Asp-271 side chain size is a discriminator between the activating ability of Ca(2+) and the

  5. Bacterial expression of catalytically active fragments of the multifunctional enzyme enniatin synthetase.

    PubMed

    Haese, A; Pieper, R; von Ostrowski, T; Zocher, R

    1994-10-14

    Enniatin synthetase catalyzes the biosynthesis of N-methylated cyclohexadepsipeptides. The 347 kDa enzyme is encoded by the esyn1 gene of Fusarium scirpi and contains two domains (EA and EB) homologous to each other and to regions of other microbial peptide synthetases. Parts of the esyn1 gene were subcloned in frame to a small lacZ gene portion of Escherichia coli expression vectors. Overproduced recombinant proteins showed a high tendency towards inclusion body formation and could be only partially dissolved in 8 M urea or 6 M guanidine hydrochloride. After renaturation, a 121 kDa recombinant protein representing the N-terminal conserved domain EA of enniatin synthetase was shown to activate D-hydroxyisolvaleric acid via adenylation. Similarly, a 158 kDa recombinant protein comprising the C-terminal conserved domain EB catalyzed the activation of the substrate amino acid (e.g. L-valine). Moreover, this protein could be photolabeled with S-[methyl-14C]adenosyl-L-methionine, (AdoMet) indicating the presence of the methyltransferase. Both functions, L-valine activation and AdoMet binding, could be assigned to a 108 kDa recombinant protein encompassing the A and the M segment of domain EB. The fact that a 65 kDa recombinant protein representing the M portion could be photolabeled, indicated the localization of the methyltransferase in this region. Three deletion mutants of the 65 kDa protein were shown to be inactive with respect to UV-induced AdoMet labeling. PMID:7932733

  6. A human tRNA synthetase is a potent PARP1-activating effector target for resveratrol.

    PubMed

    Sajish, Mathew; Schimmel, Paul

    2015-03-19

    Resveratrol is reported to extend lifespan and provide cardio-neuro-protective, anti-diabetic, and anti-cancer effects by initiating a stress response that induces survival genes. Because human tyrosyl transfer-RNA (tRNA) synthetase (TyrRS) translocates to the nucleus under stress conditions, we considered the possibility that the tyrosine-like phenolic ring of resveratrol might fit into the active site pocket to effect a nuclear role. Here we present a 2.1 Å co-crystal structure of resveratrol bound to the active site of TyrRS. Resveratrol nullifies the catalytic activity and redirects TyrRS to a nuclear function, stimulating NAD(+)-dependent auto-poly-ADP-ribosylation of poly(ADP-ribose) polymerase 1 (PARP1). Downstream activation of key stress signalling pathways are causally connected to TyrRS-PARP1-NAD(+) collaboration. This collaboration is also demonstrated in the mouse, and is specifically blocked in vivo by a resveratrol-displacing tyrosyl adenylate analogue. In contrast to functionally diverse tRNA synthetase catalytic nulls created by alternative splicing events that ablate active sites, here a non-spliced TyrRS catalytic null reveals a new PARP1- and NAD(+)-dependent dimension to the physiological mechanism of resveratrol. PMID:25533949

  7. Hydrogen peroxide induces spawning in mollusks, with activation of prostaglandin endoperoxide synthetase.

    PubMed

    Morse, D E; Duncan, H; Hooker, N; Morse, A

    1977-04-15

    Addition of hydrogen peroxide to seawater causes synchronous spawning in gravid male and female abalones, and certain other mollusks as well. This effect is blocked by exposure of the animals to aspirin, an inhibitor of the enzyme catalyzing oxidative synthesis of prostaglandin endoperoxide. Hydrogen peroxide activates this enzymatic reaction in cell-free extracts prepared from abalone eggs (a very rich source of the prostaglandin endoperoxide synthetase); this effect appears to reveal a fundamental property of prostaglandin endoperoxide synthesis. Applicability of these findings to both mariculture and medical purposes is suggested. PMID:403609

  8. Chitin synthetase activity is bound to chitosomes and to the plasma membrane in protoplasts of Saccharomyces cerevisiae.

    PubMed

    Flores Martinez, A; Schwencke, J

    1988-12-22

    The sub-cellular distribution of chitin synthetase was studied in homogenates of Saccharomyces cerevisiae protoplasts. Use of a mild disruption method minimized rupture of vacuoles and ensuing contamination of subcellular fractions by vacuolar proteinases. After fractionation of whole or partially purified homogenates through an isopycnic sucrose gradient chitin synthetase activity was found to be distributed between two distinct particulate fractions with different buoyant density and particle diameter. When whole homogenates were used, about 52% of the chitin synthetase loaded was localized in a microvesicular population identified as chitosomes (diameter 40-110 nm; buoyant density (d) = 1.146 g/cm3). Another vesicular population containing 26% of the activity was identified as plasma membrane vesicles because of its large mean diameter (260 nm), its high buoyant density (d = 1.203 g/cm3) and by the presence of the vanadate-sensitive ATPase activity. Moreover, after surface labeling of protoplasts with 3H-concanavalin A, the label cosedimented with the presumed plasma membrane vesicles. There was a negligible cross-contamination of the chitosome fraction by yeast plasma membrane markers. In both the plasma membrane and the chitosome fractions, the chitin synthetase was stable and essentially zymogenic. Activation of the chitosome fraction produces microfibrils 100-250 nm in length. Our results support the idea that chitosomes do not originate by plasma membrane vesiculation but are defined sub-cellular organelles containing most of the chitin synthetase in protoplasts of Saccharomyces cerevisiae. PMID:2974729

  9. Measurement of Long-Chain Fatty Acyl-CoA Synthetase Activity.

    PubMed

    Füllekrug, Joachim; Poppelreuther, Margarete

    2016-01-01

    Long-chain fatty acyl-CoA synthetases (ACS) are a family of essential enzymes of lipid metabolism, activating fatty acids by thioesterification with coenzyme A. Fatty acyl-CoA molecules are then readily utilized for the biosynthesis of storage and membrane lipids, or for the generation of energy by ß-oxidation. Acyl-CoAs also function as transcriptional activators, allosteric inhibitors, or precursors for inflammatory mediators. Recent work suggests that ACS enzymes may drive cellular fatty acid uptake by metabolic trapping, and may also regulate the channeling of fatty acids towards specific metabolic pathways. The implication of ACS enzymes in widespread lipid associated diseases like type 2 diabetes has rekindled interest in this protein family. Here, we describe in detail how to measure long-chain fatty acyl-CoA synthetase activity by a straightforward radiometric assay. Cell lysates are incubated with ATP, coenzyme A, Mg(2+), and radiolabeled fatty acid bound to BSA. Differential phase partitioning of fatty acids and acyl-CoAs is exploited to quantify the amount of generated acyl-CoA by scintillation counting. The high sensitivity of this assay also allows the analysis of small samples like patient biopsies. PMID:26552674

  10. The bifunctional active site of S-adenosylmethionine synthetase. Roles of the basic residues.

    PubMed

    Taylor, J C; Markham, G D

    2000-02-11

    S-adenosylmethionine (AdoMet) synthetase catalyzes a unique two-step enzymatic reaction leading to formation of the primary biological alkylating agent. The crystal structure of Escherichia coli AdoMet synthetase shows that the active site, which lies between two subunits, contains four lysines and one histidine as basic residues. In order to test the proposed charge and hydrogen bonding roles in catalytic function, each lysine has been changed to an uncharged methionine or alanine, and the histidine has been altered to asparagine. The resultant enzyme variants are all tetramers like the wild type enzyme; however, circular dichroism spectra show reductions in helix content for the K245*M and K269M mutants. (The asterisk denotes that the residue is in the second subunit.) Four mutants have k(cat) reductions of approximately 10(3)-10(4)-fold in AdoMet synthesis; however, the k(cat) of K165*M variant is only reduced 2-fold. In each mutant, there is a smaller catalytic impairment in the partial reaction of tripolyphosphate hydrolysis. The K165*A enzyme has a 100-fold greater k(cat) for tripolyphosphate hydrolysis than the wild type enzyme, but this mutant is not activated by AdoMet in contrast to the wild type enzyme. The properties of these mutants require reassessment of the catalytic roles of these residues. PMID:10660564

  11. Neddylation requires glycyl-tRNA synthetase to protect activated E2.

    PubMed

    Mo, Zhongying; Zhang, Qian; Liu, Ze; Lauer, Janelle; Shi, Yi; Sun, Litao; Griffin, Patrick R; Yang, Xiang-Lei

    2016-08-01

    Neddylation is a post-translational modification that controls the cell cycle and proliferation by conjugating the ubiquitin-like protein NEDD8 to specific targets. Here we report that glycyl-tRNA synthetase (GlyRS), an essential enzyme in protein synthesis, also plays a critical role in neddylation. In human cells, knockdown of GlyRS, but not knockdown of a different tRNA synthetase, decreased the global level of neddylation and caused cell-cycle abnormality. This function of GlyRS is achieved through direct interactions with multiple components of the neddylation pathway, including NEDD8, E1, and E2 (Ubc12). Using various structural and functional approaches, we show that GlyRS binds the APPBP1 subunit of E1 and captures and protects activated E2 (NEDD8-conjugated Ubc12) before the activated E2 reaches a downstream target. Therefore, GlyRS functions as a chaperone that critically supports neddylation. This function is probably conserved in all eukaryotic GlyRS enzymes and may contribute to the strong association of GlyRS with cancer progression. PMID:27348078

  12. Does Lowering Glutamine Synthetase Activity in Nodules Modify Nitrogen Metabolism and Growth of Lotus japonicus?1

    PubMed Central

    Harrison, Judith; Pou de Crescenzo, Marie-Anne; Sené, Olivier; Hirel, Bertrand

    2003-01-01

    A cDNA encoding cytosolic glutamine synthetase (GS) from Lotus japonicus was fused in the antisense orientation relative to the nodule-specific LBC3 promoter of soybean (Glycine max) and introduced into L. japonicus via transformation with Agrobacterium tumefaciens. Among the 12 independent transformed lines into which the construct was introduced, some of them showed diminished levels of GS1 mRNA and lower levels of GS activity. Three of these lines were selected and their T1 progeny was further analyzed both for plant biomass production and carbon and nitrogen (N) metabolites content under symbiotic N-fixing conditions. Analysis of these plants revealed an increase in fresh weight in nodules, roots and shoots. The reduction in GS activity was found to correlate with an increase in amino acid content of the nodules, which was primarily due to an increase in asparagine content. Thus, this study supports the hypothesis that when GS becomes limiting, other enzymes (e.g. asparagine synthetase) that have the capacity to assimilate ammonium may be important in controlling the flux of reduced N in temperate legumes such as L. japonicus. Whether these alternative metabolic pathways are important in the control of plant biomass production still remains to be fully elucidated. PMID:12970491

  13. REGULATION OF RAT HEPATIC DELTA-AMINOLEVULINIC ACID SYNTHETASE AND HEME OXYGENASE ACTIVITIES: EVIDENCE FOR CONTROL BY HEME AND AGAINST MEDIATION BY PROSTHETIC IRON

    EPA Science Inventory

    The effects of in vivo administration of 6 compounds on the activity of delta-aminolevulinic acid (ALA) synthetase and heme oxygenase were determined. The order of decreasing potency in reducing ALA synthetase activity was heme, bilirubin, protoporphyrin IX, bilirubin dimethyl es...

  14. Characterization of Drosophila CMP-sialic acid synthetase activity reveals unusual enzymatic properties.

    PubMed

    Mertsalov, Ilya B; Novikov, Boris N; Scott, Hilary; Dangott, Lawrence; Panin, Vladislav M

    2016-07-01

    CMP-sialic acid synthetase (CSAS) is a key enzyme of the sialylation pathway. CSAS produces the activated sugar donor, CMP-sialic acid, which serves as a substrate for sialyltransferases to modify glycan termini with sialic acid. Unlike other animal CSASs that normally localize in the nucleus, Drosophila melanogaster CSAS (DmCSAS) localizes in the cell secretory compartment, predominantly in the Golgi, which suggests that this enzyme has properties distinct from those of its vertebrate counterparts. To test this hypothesis, we purified recombinant DmCSAS and characterized its activity in vitro Our experiments revealed several unique features of this enzyme. DmCSAS displays specificity for N-acetylneuraminic acid as a substrate, shows preference for lower pH and can function with a broad range of metal cofactors. When tested at a pH corresponding to the Golgi compartment, the enzyme showed significant activity with several metal cations, including Zn(2+), Fe(2+), Co(2+) and Mn(2+), whereas the activity with Mg(2+) was found to be low. Protein sequence analysis and site-specific mutagenesis identified an aspartic acid residue that is necessary for enzymatic activity and predicted to be involved in co-ordinating a metal cofactor. DmCSAS enzymatic activity was found to be essential in vivo for rescuing the phenotype of DmCSAS mutants. Finally, our experiments revealed a steep dependence of the enzymatic activity on temperature. Taken together, our results indicate that DmCSAS underwent evolutionary adaptation to pH and ionic environment different from that of counterpart synthetases in vertebrates. Our data also suggest that environmental temperatures can regulate Drosophila sialylation, thus modulating neural transmission. PMID:27114558

  15. Activity of interferon-dependent 2',5'-oligoadenylate synthetase in rat lymphoid cells under transformed environment conditions

    NASA Astrophysics Data System (ADS)

    Ostapchenko, L. I.; Mikhailik, I. V.; Prokopova, K. V.

    It is detected that interferon-dependent 2',5'-oligoadenylate synthetase is a sensitive index of immunocompetent cells functional state under transformed environment conditions. Microgravitation and ionising radiation induce increase of investigated enzyme activity in rat lymphocytes, which can be a result of lymphoid cells compensatory mechanisms starting in response to stress factors action. Administration of interferon inductors permits to stimulate the 2',5'-oligoadenylate synthetase, which enables one to correct pathological changes in the cells and to intensify adaptive reactions of immune systems.

  16. Prostaglandin endoperoxide synthetase and the activation of benzo(a)pyrene to reactive metabolites in vivo in guinea pigs

    SciTech Connect

    Garattini, E.; Coccia, P.; Romano, M.; Jiritano, L.; Noseda, A.; Salmona, M.

    1984-11-01

    The role of prostaglandin endoperoxide synthetase in the in vivo activation of benzo(a)pyrene to reactive metabolites capable of interacting irreversibly with cellular macromolecules was studied in guinea pig liver, lung, kidney, spleen, small intestine, colon, and brain. DNA and protein covalent binding experiments were made after systemic administration of acetylsalicylic acid (200 mg/kg) followed by radiolabeled benzo(a)pyrene (4 microgram/kg). Results are compared with a control situation in which the prostaglandin endoperoxide synthetase inhibitor (acetylsalicylic acid) was not administered. No decrease in the level of DNA or protein benzo(a)pyrene-derived covalent binding was observed in any of the tissues studied.

  17. Barley chloroplast glutamine synthetase activity is not affected by CO sub 2 -concentration

    SciTech Connect

    Avila, C.; Forde, B.; Wallsgrove, R. )

    1990-05-01

    It has been reported that when photorespiration is suppressed by raising the concentration of CO{sub 2}, the expression of the chloroplast glutamine synthetase (GS2) gene in pea leaves is reduced (Plant Cell, 1, 241). We have examined this effect in barley (Hordeum vulgare), and confirm that plants grown continuously in 0.8% CO{sub 2}, or transferred to such conditions after growth in air, appear to have a reduced GS2 mRNA abundance. However, we were unable to detect any significant difference in the extractable GS2 activity, or any change in amount of GS2 protein (judged by Western blots). Whatever controls are operating on gS2 mRNA expression in response to changes is external CO{sub 2}, they do not affect the activity or amount of the enzyme in barley.

  18. Seryl-tRNA synthetase from Escherichia coli: implication of its N-terminal domain in aminoacylation activity and specificity.

    PubMed Central

    Borel, F; Vincent, C; Leberman, R; Härtlein, M

    1994-01-01

    Escherichia coli seryl-tRNA synthetase (SerRS) a dimeric class II aminoacyl-tRNA synthetase with two structural domains charges specifically the five iso-acceptor tRNA(ser) as well as the tRNA(sec) (selC product) of E. coli. The N-terminal domain is a 60 A long arm-like coiled coil structure built of 2 long antiparallel a-h helices, whereas the C-terminal domain is a alpha-beta structure. A deletion of the N-terminal arm of the enzyme does not affect the amino acid activation step of the reaction, but reduces dramatically amino-acylation activity. The Kcat/Km value for the mutant enzyme is reduced by more than 4 orders of magnitude, with a nearly 30 fold increased Km value for tRNA(ser). An only slightly truncated mutant form (16 amino acids of the tip of the arm replaced by a glycine) has an intermediate aminoacylation activity. Both mutant synthetases have lost their specificity for tRNA(ser) and charge also non-cognate type 1 tRNA(s). Our results support the hypothesis that class II synthetases have evolved from an ancestral catalytic core enzyme by adding non-catalytic N-terminal or C-terminal tRNA binding (specificity) domains which act as determinants for cognate and anti-determinants for non-cognate tRNAs. Images PMID:8065908

  19. Active site coupling in Plasmodium falciparum GMP synthetase is triggered by domain rotation

    PubMed Central

    Ballut, Lionel; Violot, Sébastien; Shivakumaraswamy, Santosh; Thota, Lakshmi Prasoona; Sathya, Manu; Kunala, Jyothirmai; Dijkstra, Bauke W.; Terreux, Raphaël; Haser, Richard; Balaram, Hemalatha; Aghajari, Nushin

    2015-01-01

    GMP synthetase (GMPS), a key enzyme in the purine biosynthetic pathway performs catalysis through a coordinated process across two catalytic pockets for which the mechanism remains unclear. Crystal structures of Plasmodium falciparum GMPS in conjunction with mutational and enzyme kinetic studies reported here provide evidence that an 85° rotation of the GATase domain is required for ammonia channelling and thus for the catalytic activity of this two-domain enzyme. We suggest that conformational changes in helix 371–375 holding catalytic residues and in loop 376–401 along the rotation trajectory trigger the different steps of catalysis, and establish the central role of Glu374 in allostery and inter-domain crosstalk. These studies reveal the mechanism of domain rotation and inter-domain communication, providing a molecular framework for the function of all single polypeptide GMPSs and form a solid basis for rational drug design targeting this therapeutically important enzyme. PMID:26592566

  20. Large-scale filament formation inhibits the activity of CTP synthetase

    PubMed Central

    Barry, Rachael M; Bitbol, Anne-Florence; Lorestani, Alexander; Charles, Emeric J; Habrian, Chris H; Hansen, Jesse M; Li, Hsin-Jung; Baldwin, Enoch P; Wingreen, Ned S; Kollman, Justin M; Gitai, Zemer

    2014-01-01

    CTP Synthetase (CtpS) is a universally conserved and essential metabolic enzyme. While many enzymes form small oligomers, CtpS forms large-scale filamentous structures of unknown function in prokaryotes and eukaryotes. By simultaneously monitoring CtpS polymerization and enzymatic activity, we show that polymerization inhibits activity, and CtpS's product, CTP, induces assembly. To understand how assembly inhibits activity, we used electron microscopy to define the structure of CtpS polymers. This structure suggests that polymerization sterically hinders a conformational change necessary for CtpS activity. Structure-guided mutagenesis and mathematical modeling further indicate that coupling activity to polymerization promotes cooperative catalytic regulation. This previously uncharacterized regulatory mechanism is important for cellular function since a mutant that disrupts CtpS polymerization disrupts E. coli growth and metabolic regulation without reducing CTP levels. We propose that regulation by large-scale polymerization enables ultrasensitive control of enzymatic activity while storing an enzyme subpopulation in a conformationally restricted form that is readily activatable. DOI: http://dx.doi.org/10.7554/eLife.03638.001 PMID:25030911

  1. Activities of nitrate reductase and glutamine synthetase in rice seedlings during cyanide metabolism.

    PubMed

    Yu, Xiao-Zhang; Zhang, Fu-Zhong

    2012-07-30

    A study was conducted to investigate activities of nitrate reductase (NR) and glutamine synthetase (GS) in plants during cyanide metabolism. Young rice seedlings (Oryza sativa L. cv. XZX 45) were grown in the nutrient solutions containing KNO(3) or NH(4)Cl and treated with free cyanide (KCN). Cyanide in solutions and in plant materials was analyzed to estimate the phyto-assimilation potential. Activities of NR and GS in different parts of rice seedlings were assayed in vivo. Seedlings grown on NH(4)(+) showed significantly higher relative growth rate than those on NO(3)(-) (p<0.05) in the presence of exogenous cyanide. The metabolic rates of cyanide by seedlings were all positively correlated to the concentrations supplied. A negligible difference was observed between the two treatments with nitrate and ammonium (p>0.05). Enzymatic assays showed that cyanide (≥0.97mg CN L(-1)) impaired NR activity significantly in both roots and shoots (p<0.05). The effect of cyanide on GS activity in roots was more evident at 1.93mg CN L(-1), suggesting that NR activity was more susceptible to change from cyanide application than GS activity. The results observed here suggest that the exogenous cyanide, which to a certain level has a beneficial role in plant nutrition. PMID:22633925

  2. Glutamine synthetase activity and glutamate uptake in hippocampus and frontal cortex in portal hypertensive rats

    PubMed Central

    Acosta, Gabriela Beatriz; Fernández, María Alejandra; Roselló, Diego Martín; Tomaro, María Luján; Balestrasse, Karina; Lemberg, Abraham

    2009-01-01

    AIM: To study glutamine synthetase (GS) activity and glutamate uptake in the hippocampus and frontal cortex (FC) from rats with prehepatic portal vein hypertension. METHODS: Male Wistar rats were divided into sham-operated group and a portal hypertension (PH) group with a regulated stricture of the portal vein. Animals were sacrificed by decapitation 14 d after portal vein stricture. GS activity was determined in the hippocampus and FC. Specific uptake of radiolabeled L-glutamate was studied using synaptosome-enriched fractions that were freshly prepared from both brain areas. RESULTS: We observed that the activity of GS increased in the hippocampus of PH rats, as compared to control animals, and decreased in the FC. A significant decrease in glutamate uptake was found in both brain areas, and was more marked in the hippocampus. The decrease in glutamate uptake might have been caused by a deficient transport function, significantly and persistent increase in this excitatory neurotransmitter activity. CONCLUSION: The presence of moderate ammonia blood levels may add to the toxicity of excitotoxic glutamate in the brain, which causes alterations in brain function. Portal vein stricture that causes portal hypertension modifies the normal function in some brain regions. PMID:19533812

  3. Assessment of glutamine synthetase activity by [13N]ammonia uptake in living rat brain.

    PubMed

    Momosaki, Sotaro; Ito, Miwa; Tonomura, Misato; Abe, Kohji

    2015-01-01

    Glutamine synthetase (GS) plays an important role in glutamate neurotransmission or neurological disorder in the brain. [(13) N]Ammonia blood flow tracer has been reported to be metabolically trapped in the brain via the glutamate-glutamine pathway. The present study investigated the effect of an inhibitor of GS on [(13) N]ammonia uptake in order to clarify the feasibility of measuring GS activity in the living brain. l-Methionine sulfoximine (MSO), a selective GS inhibitor was microinjected into the ipsilateral striatum in rats. [(13) N]Ammonia uptake was quantified by autoradiography method as well as small animal positron emission tomography (PET) scans. The GS activity of the brain homogenate was assayed from the γ-glutamyl transferase reaction. Autoradiograms showed a decrease of [(13) N]ammonia radioactivity on the MSO-injected side compared with the saline-injected side of the striatum. This reduction could be detected with a small animal PET scanner. MSO had no effect on cerebral blood flow measured by uptake of [(15) O]H2 O. The reduction of [(13) N]ammonia uptake was closely related to the results of GS activity assay. These results indicated that [(13) N]ammonia may enable measurement of GS activity in the living brain. PMID:25196365

  4. Broad-spectrum antiviral and cytocidal activity of cyclopentenylcytosine, a carbocyclic nucleoside targeted at CTP synthetase.

    PubMed

    De Clercq, E; Murase, J; Marquez, V E

    1991-06-15

    Cyclopentenylcytosine (Ce-Cyd) is a broad-spectrum antiviral agent active against DNA viruses [herpes (cytomegalo), pox (vaccinia)], (+)RNA viruses [picorna (polio, Coxsackie, rhino), toga (Sindbis, Semliki forest), corona], (-)RNA viruses [orthomyxo (influenza), paramyxo (parainfluenza, measles), arena (Junin, Tacaribe), rhabdo (vesicular stomatitis)] and (+/-)RNA viruses (reo). Ce-Cyd is a more potent antiviral agent than its saturated counterpart, cyclopentylcytosine (carbodine, C-Cyd). Ce-Cyd also has potent cytocidal activity against a number of tumor cell lines. The putative target enzyme for both the antiviral and antitumor action of Ce-Cyd is assumed to be the CTP synthetase that converts UTP to CTP. In keeping with this hypothesis was the finding that the antiviral and cytocidal effects of Ce-Cyd are readily reversed by Cyd and, to a lesser extent, Urd, but not by other nucleosides such as dThd or dCyd. In contrast, pyrazofurin and 6-azauridine, two nucleoside analogues that are assumed to interfere with OMP decarboxylase, another enzyme involved in the biosynthesis of pyrimidine ribonucleotides, potentiate the cytocidal activity of Ce-Cyd. Ce-Cyd should be further pursued, as such and in combination with OMP decarboxylase inhibitors, for its therapeutic potential in the treatment of both viral and neoplastic diseases. PMID:1710119

  5. Overexpression of SIRT5 confirms its involvement in deacetylation and activation of carbamoyl phosphate synthetase 1.

    PubMed

    Ogura, Masahito; Nakamura, Yasuhiko; Tanaka, Daisuke; Zhuang, Xiaotong; Fujita, Yoshihito; Obara, Akio; Hamasaki, Akihiro; Hosokawa, Masaya; Inagaki, Nobuya

    2010-02-26

    SIR2 protein, an NAD-dependent deacetylase, is localized to nucleus and is involved in life span extension by calorie restriction in yeast. In mammals, among the seven SIR2 homologues (SIRT1-7), SIRT3, 4, and 5 are localized to mitochondria. As SIRT5 mRNA levels in liver are increased by fasting, the physiological role of SIRT5 was investigated in liver of SIRT5-overexpressing transgenic (SIRT5 Tg) mice. We identified carbamoyl phosphate synthetase 1 (CPS1), a key enzyme of the urea cycle that catalyzes condensation of ammonia with bicarbonate to form carbamoyl phosphate, as a target of SIRT5 by two-dimensional electrophoresis comparing mitochondrial proteins in livers of SIRT5 Tg and wild-type mice. CPS1 protein was more deacetylated and activated in liver of SIRT5 Tg mice than in wild-type. In addition, urea production was upregulated in hepatocytes of SIRT5 Tg mice. These results agree with those of a previous study using SIRT5 knockout (KO) mice. Because ammonia generated during fasting is toxic, SIRT5 protein might play a protective role by converting ammonia to non-toxic urea through deacetylation and activation of CPS1. PMID:20097174

  6. Methionine synthetase activity of human lymphocytes both replete in and depleted of vitamin B12.

    PubMed

    Hall, C A; Begley, J A; Chu, R C

    1986-10-01

    The activity of the enzyme methionine synthetase (MS) (methyltetrahydrofolate:homocysteine methyltransferase) (EC 2.1.1.13) was measured in human lymphocytes of various types and cobalamin (vitamin B12) status. Total and holo MS activity was low in unstimulated peripheral blood lymphocytes from persons with tissue deficiency of cobalamin, but not in cells from those with low serum cobalamin levels for other reasons. The MS activity of the lymphocyte was increased by treatment of the patients with vitamin B12. The number of lymphocytes was often low or low normal in the circulation of those deficient in cobalamin. Holo MS activity was low in an established line of human B cells, RPMI 6410 cells, depleted of cobalamin. The total and holo MS activity of both RPMI 6410 cells, replete or depleted, and lymphocytes stimulated in culture was increased by cobalamin in vitro; 222 nmol/L free cobalamin was roughly the equivalent of 0.22 nmol/L cobalamin bound to transcobalamin II. Both lymphocytes and RPMI 6410 cells required folate for growth and could meet these needs via methylfolate, homocysteine, and the cobalamin-dependent MS reaction. Depleted RPMI 6410 cells, however, used cobalamin in some way in addition to the provision of available folate from methylfolate. The consequences of the reduced MS activity in deficient cells could include a reduction in available folate with diminished capacity for clonal expansion of lymphocytes in reaction to infection and impairment of essential methylations including those of protein synthesis. The prompt induction of MS activity by cobalamin, especially in the in vitro model, suggests an effect of therapeutic vitamin B12 well in advance of the numerical increase in cells of the blood. PMID:3760673

  7. Aminolaevulinate synthetase of Micrococcus denitrificans. Purification and properties of the enzyme, and the effect of growth conditions on the enzyme activity in cells.

    PubMed

    Tait, G H

    1973-02-01

    1. 5-Aminolaevulinate synthetase was detected in extracts of the non-photosynthetic bacterium Micrococcus denitrificans. 2. Activity is high in cells grown anaerobically in a defined nitrate medium, but is low in cells grown in an iron-deficient medium, and in cells grown aerobically. 3. Aminolaevulinate synthetase was purified extensively; it has a molecular weight of about 68000; apparent K(m) values for glycine, succinyl-CoA and pyridoxal phosphate are 12mm, 10mum and 11mum respectively; 2mum-haemin and 14mum-protoporphyrin inhibit by 50%. 4. The low activity of aminolaevulinate synthetase in iron-deficient cells increases on adding iron salts to cells only under conditions where protein synthesis can occur. 5. In defined nitrate medium with a high Ca(2+) concentration anaerobic growth yield is higher, but aminolaevulinate synthetase activity is lower than in cells grown in the medium with a low Ca(2+) concentration. In medium made from AnalaR constituents, growth yield is low and aminolaevulinate synthetase activity is high even in the presence of high concentrations of Ca(2+); on adding Cu(2+) (0.1mum) to the medium growth yield and aminolaevulinate synthetase activity become the same as in non-AnalaR medium. 6. Cells incubated under conditions where protein synthesis does not occur but where electron transport does, lose their aminolaevulinate synthetase activity rapidly. 7. The activities of aminolaevulinate dehydratase and succinic thiokinase do not change under any of the conditions of growth examined. 8. The possible mechanisms controlling aminolaevulinate synthetase activity and the role of this enzyme in controlling the synthesis of haem in this organism are discussed. PMID:4722442

  8. Dynamics of the Active Sites of Dimeric Seryl tRNA Synthetase from Methanopyrus kandleri.

    PubMed

    Dutta, Saheb; Nandi, Nilashis

    2015-08-27

    Aminoacyl tRNA synthetases (aaRSs) carry out the first step of protein biosynthesis. Several aaRSs are multimeric, and coordination between the dynamics of active sites present in each monomer is a prerequisite for the fast and accurate aminoacylation. However, important lacunae of understanding exist concerning the conformational dynamics of multimeric aaRSs. Questions remained unanswered pertaining to the dynamics of the active site. Little is known concerning the conformational dynamics of the active sites in response to the substrate binding, reorganization of the catalytic residues around reactants, time-dependent changes at the reaction center, which are essential for facilitating the nucleophilic attack, and interactions at the interface of neighboring monomers. In the present work, we carried out all-atom molecular dynamics simulation of dimeric (mk)SerRS from Methanopyrus kandleri bound with tRNA using an explicit solvent system. Two dimeric states of seryl tRNA synthetase (open, substrate bound, and adenylate bound) and two monomeric states (open and substrate bound) are simulated with bound tRNA. The aim is to understand the conformational dynamics of (mk)SerRS during its reaction cycle. While the present results provide a clear dynamical perspective of the active sites of (mk)SerRS, they corroborate with the results from the time-averaged experimental data such as crystallographic and mutation analysis of methanogenic SerRS from M. kandleri and M. barkeri. It is observed from the present simulation that the motif 2 loop gates the active site and its Glu351 and Arg360 stabilizes ATP in a bent state favorable for nucleophilic attack. The flexibility of the walls of the active site gradually reduces near reaction center, which is a more organized region compared to the lid region. The motif 2 loop anchors Ser and ATP using Arg349 in a hydrogen bonded geometry crucial for nucleophilic attack and favorably influences the electrostatic potential at the

  9. Expression of rat liver S-adenosylmethionine synthetase in Escherichia coli results in two active oligomeric forms.

    PubMed Central

    Alvarez, L; Mingorance, J; Pajares, M A; Mato, J M

    1994-01-01

    A cDNA containing the complete coding sequence for rat liver S-adenosylmethionine synthetase was cloned into the prokaryotic expression vector pT7-7 and expressed in Escherichia coli BL21(DE3). A major additional band corresponding to a protein of 48 kDa was detected on SDS/PAGE after induction with isopropyl beta-D-thiogalactopyranoside. This protein was distributed in both the soluble and insoluble fractions and accounted for approx. 30% of the total bacterial protein. The soluble enzyme was fully active, as revealed by assays in vitro of S-adenosylmethionine synthetase activity. In addition, transformed bacteria exhibited highly increased levels of intracellular S-adenosylmethionine. Two active forms of the recombinant enzyme, with apparent molecular masses of 210 kDa and 110 kDa, were detected when cytosolic extracts of the transformed cells were fractionated by gel-filtration chromatography. It is concluded that the expressed S-adenosylmethionine synthetase polypeptide assemble as tetramers and dimers. Images Figure 1 PMID:8043003

  10. Glycyl-tRNA synthetase specifically binds to the poliovirus IRES to activate translation initiation

    PubMed Central

    Andreev, Dmitri E.; Hirnet, Juliane; Terenin, Ilya M.; Dmitriev, Sergey E.; Niepmann, Michael; Shatsky, Ivan N.

    2012-01-01

    Adaptation to the host cell environment to efficiently take-over the host cell's machinery is crucial in particular for small RNA viruses like picornaviruses that come with only small RNA genomes and replicate exclusively in the cytosol. Their Internal Ribosome Entry Site (IRES) elements are specific RNA structures that facilitate the 5′ end-independent internal initiation of translation both under normal conditions and when the cap-dependent host protein synthesis is shut-down in infected cells. A longstanding issue is which host factors play a major role in this internal initiation. Here, we show that the functionally most important domain V of the poliovirus IRES uses tRNAGly anticodon stem–loop mimicry to recruit glycyl-tRNA synthetase (GARS) to the apical part of domain V, adjacent to the binding site of the key initiation factor eIF4G. The binding of GARS promotes the accommodation of the initiation region of the IRES in the mRNA binding site of the ribosome, thereby greatly enhancing the activity of the IRES at the step of the 48S initiation complex formation. Moonlighting functions of GARS that may be additionally needed for other events of the virus–host cell interaction are discussed. PMID:22373920

  11. Resveratrol Prevents Retinal Dysfunction by Regulating Glutamate Transporters, Glutamine Synthetase Expression and Activity in Diabetic Retina.

    PubMed

    Zeng, Kaihong; Yang, Na; Wang, Duozi; Li, Suping; Ming, Jian; Wang, Jing; Yu, Xuemei; Song, Yi; Zhou, Xue; Yang, Yongtao

    2016-05-01

    This study investigated the effects of resveratrol (RSV) on retinal functions, glutamate transporters (GLAST) and glutamine synthetase (GS) expression in diabetic rats retina, and on glutamate uptake, GS activity, GLAST and GS expression in high glucose-cultured Müller cells. The electroretinogram was used to evaluate retinal functions. Müller cells cultures were prepared from 5- to 7-day-old Sprague-Dawley rats. The expression of GLAST and GS was examined by qRT-PCR, ELISA and western-blotting. Glutamate uptake was measured as (3)H-glutamate contents of the lysates. GS activity was assessed by a spectrophotometric assay. 1- to 7-month RSV administrations (5 and 10 mg/kg/day) significantly alleviated hyperglycemia and weight loss in diabetic rats. RSV administrations also significantly attenuated diabetes-induced decreases in amplitude of a-wave in rod response, decreases in amplitude of a-, and b-wave in cone and rod response and decreases in amplitude of OP2 in oscillatory potentials. 1- to 7-month RSV treatments also significantly inhibited diabetes-induced delay in OP2 implicit times in scotopic 3.0 OPS test. The down-regulated mRNA and protein expression of GLAST and GS in diabetic rats retina was prevented by RSV administrations. In high glucose-treated cultures, Müller cells' glutamate uptake, GS activity, GLAST and GS expression were decreased significantly compared with normal control cultures. RSV (10, 20, and 30 mmol/l) significantly inhibited the HG-induced decreases in glutamate uptake, GS activity, GLAST and GS expression (at least P < 0.05). These beneficial results suggest that RSV may be considered as a therapeutic option to prevent from diabetic retinopathy. PMID:26677078

  12. Fatty Acid Elongation Is Independent of Acyl-Coenzyme A Synthetase Activities in Leek and Brassica napus1

    PubMed Central

    Hlousek-Radojcic, Alenka; Evenson, Kimberly J.; Jaworski, Jan G.; Post-Beittenmiller, Dusty

    1998-01-01

    In both animal and plant acyl elongation systems, it has been proposed that fatty acids are first activated to acyl-coenzyme A (CoA) before their elongation, and that the ATP dependence of fatty acid elongation is evidence of acyl-CoA synthetase involvement. However, because CoA is not supplied in standard fatty acid elongation assays, it is not clear if CoA-dependent acyl-CoA synthetase activity can provide levels of acyl-CoAs necessary to support typical rates of fatty acid elongation. Therefore, we examined the role of acyl-CoA synthetase in providing the primer for acyl elongation in leek (Allium porrum L.) epidermal microsomes and Brassica napus L. cv Reston oil bodies. As presented here, fatty acid elongation was independent of CoA and proceeded at maximum rates with CoA-free preparations of malonyl-CoA. We also showed that stearic acid ([1-14C]18:0)-CoA was synthesized from [1-14C]18:0 in the presence of CoA-free malonyl-CoA or acetyl-CoA, and that [1-14C]18:0-CoA synthesis under these conditions was ATP dependent. Furthermore, the appearance of [1-14C]18:0 in the acyl-CoA fraction was simultaneous with its appearance in phosphatidylcholine. These data, together with the s of a previous study (A. Hlousek-Radojcic, H. Imai, J.G. Jaworski [1995] Plant J 8: 803–809) showing that exogenous [14C]acyl-CoAs are diluted by a relatively large endogenous pool before they are elongated, strongly indicated that acyl-CoA synthetase did not play a direct role in fatty acid elongation, and that phosphatidylcholine or another glycerolipid was a more likely source of elongation primers than acyl-CoAs.

  13. Viral Phosphodiesterases That Antagonize Double-Stranded RNA Signaling to RNase L by Degrading 2-5A

    PubMed Central

    2014-01-01

    The host interferon (IFN) antiviral response involves a myriad of diverse biochemical pathways that disrupt virus replication cycles at many different levels. As a result, viruses have acquired and evolved genes that antagonize the host antiviral proteins. IFNs inhibit viral infections in part through the 2′,5′-oligoadenylate (2-5A) synthetase (OAS)/RNase L pathway. OAS proteins are pathogen recognition receptors that exist at different basal levels in different cell types and that are IFN inducible. Upon activation by the pathogen-associated molecular pattern viral double-stranded RNA, certain OAS proteins synthesize 2-5A from ATP. 2-5A binds to the antiviral enzyme RNase L causing its dimerization and activation. Recently, disparate RNA viruses, group 2a betacoronaviruses, and group A rotaviruses, have been shown to produce proteins with 2′,5′-phosphodiesterase (PDE) activities that eliminate 2-5A thereby evading the antiviral activity of the OAS/RNase L pathway. These viral proteins are members of the eukaryotic-viral LigT-like group of 2H phosphoesterases, so named for the presence of 2 conserved catalytic histidine residues. Here, we will review the biochemistry, biology, and implications of viral and cellular 2′,5′-PDEs that degrade 2-5A. In addition, we discuss alternative viral and cellular strategies for limiting the activity of OAS/RNase L. PMID:24905202

  14. The active site loop of S-adenosylmethionine synthetase modulates catalytic efficiency.

    PubMed

    Taylor, John C; Takusagawa, Fusao; Markham, George D

    2002-07-30

    Crystallographic studies of Escherichia coli S-adenosylmethionine synthetase (ATP:L-methionine S-adenosyltransferase, MAT) have defined a flexible polypeptide loop that can gate access to the active site without contacting the substrates. The influence of the length and sequence of this active site loop on catalytic efficiency has been characterized in a mutant in which the E. coli MAT sequence (DRADPLEQ) has been replaced with the distinct sequence of the corresponding region of the otherwise highly homologous rat liver enzyme (HDLRNEEDV). Four additional mutants in which the entire DRADPLEQ sequence was replaced by five, six, seven, or eight glycines have been studied to unveil the effects of loop length and the influence of side chains. In all of the mutants, the maximal rate of S-adenosylmethionine formation (k(cat)) is diminished by more than 200-fold whereas the rate of hydrolysis of the tripolyphosphate intermediate is decreased by less than 3-fold. Thus, the function of the loop is localized to the first step in the overall reaction. The K(m) for methionine increases in all of the oligoglycine mutants, whereas the K(m) values for ATP are not substantially different. The k(cat) for the wild-type enzyme is decreased by increases in solution microviscosity with 55% of the maximal dependence. Thus, a diffusional event is coupled to the chemical step of AdoMet formation, which is known to be rate-limiting. The results indicate that a conformational change, possibly loop closure, is associated with AdoMet synthesis. The data integrate a previously discovered conformational change associated with PPP(i) binding to the E x AdoMet complex into the reaction sequence, reflecting a difference in protein conformation in the E x AdoMet x PPP(i) complex whether it is formed from the E x ATP x methionine complex or from binding of exogenous PPP(i). The temperature dependence of the k(cat) for S-adenosylmethionine formation shows that the removal of the side chains in the

  15. Rheb Protein Binds CAD (Carbamoyl-phosphate Synthetase 2, Aspartate Transcarbamoylase, and Dihydroorotase) Protein in a GTP- and Effector Domain-dependent Manner and Influences Its Cellular Localization and Carbamoyl-phosphate Synthetase (CPSase) Activity*

    PubMed Central

    Sato, Tatsuhiro; Akasu, Hitomi; Shimono, Wataru; Matsu, Chisa; Fujiwara, Yuki; Shibagaki, Yoshio; Heard, Jeffrey J.; Tamanoi, Fuyuhiko; Hattori, Seisuke

    2015-01-01

    Rheb small GTPases, which consist of Rheb1 and Rheb2 (also known as RhebL1) in mammalian cells, are unique members of the Ras superfamily and play central roles in regulating protein synthesis and cell growth by activating mTOR. To gain further insight into the function of Rheb, we carried out a search for Rheb-binding proteins and found that Rheb binds to CAD protein (carbamoyl-phosphate synthetase 2, aspartate transcarbamoylase, and dihydroorotase), a multifunctional enzyme required for the de novo synthesis of pyrimidine nucleotides. CAD binding is more pronounced with Rheb2 than with Rheb1. Rheb binds CAD in a GTP- and effector domain-dependent manner. The region of CAD where Rheb binds is located at the C-terminal region of the carbamoyl-phosphate synthetase domain and not in the dihydroorotase and aspartate transcarbamoylase domains. Rheb stimulated carbamoyl-phosphate synthetase activity of CAD in vitro. In addition, an elevated level of intracellular UTP pyrimidine nucleotide was observed in Tsc2-deficient cells, which was attenuated by knocking down of Rheb. Immunostaining analysis showed that expression of Rheb leads to increased accumulation of CAD on lysosomes. Both a farnesyltransferase inhibitor that blocks membrane association of Rheb and knockdown of Rheb mislocalized CAD. These results establish CAD as a downstream effector of Rheb and suggest a possible role of Rheb in regulating de novo pyrimidine nucleotide synthesis. PMID:25422319

  16. A WHEP Domain Regulates the Dynamic Structure and Activity of Caenorhabditis elegans Glycyl-tRNA Synthetase.

    PubMed

    Chang, Chih-Yao; Chien, Chin-I; Chang, Chia-Pei; Lin, Bo-Chun; Wang, Chien-Chia

    2016-08-01

    WHEP domains exist in certain eukaryotic aminoacyl-tRNA synthetases and play roles in tRNA or protein binding. We present evidence herein that cytoplasmic and mitochondrial forms of Caenorhabditis elegans glycyl-tRNA synthetase (CeGlyRS) are encoded by the same gene (CeGRS1) through alternative initiation of translation. The cytoplasmic form possessed an N-terminal WHEP domain, whereas its mitochondrial isoform possessed an extra N-terminal sequence consisting of an mitochondrial targeting signal and an appended domain. Cross-species complementation assays showed that CeGRS1 effectively rescued the cytoplasmic and mitochondrial defects of a yeast GRS1 knock-out strain. Although both forms of CeGlyRS efficiently charged the cytoplasmic tRNAs(Gly) of C. elegans, the mitochondrial form was much more efficient than its cytoplasmic counterpart in charging the mitochondrial tRNA(Gly) isoacceptor, which carries a defective TψC hairpin. Despite the WHEP domain per se lacking tRNA binding activity, deletion of this domain reduced the catalytic efficiency of the enzyme. Most interestingly, the deletion mutant possessed a higher thermal stability and a somewhat lower structural flexibility. Our study suggests a role for the WHEP domain as a regulator of the dynamic structure and activity of the enzyme. PMID:27298321

  17. The relationship between synthetic and editing functions of the active site of an aminoacyl-tRNA synthetase.

    PubMed Central

    Kim, H Y; Ghosh, G; Schulman, L H; Brunie, S; Jakubowski, H

    1993-01-01

    We have analyzed, by site-directed mutagenesis, the molecular basis of the editing function and its relation to the synthetic function of Escherichia coli methionyl-tRNA synthetase. The data obtained fit a model of the active site that partitions an amino acid substrate between synthetic and editing pathways. Hydrophobic and hydrogen bonding interactions direct the cognate substrate methionine through the synthetic pathway and prevent it from entering the editing pathway. Two hydrophobic interactions are proposed: between the side chain of Trp-305 and a methyl group of methionine and between the benzene ring of Tyr-15 and the beta- and gamma-CH2 groups of the substrate. An essential hydrogen bond forms between the OH of Tyr-15 and an electron pair of the sulfur atom of methionine. Consistent with these functions, side chains of Trp-305 and Tyr-15 are localized on opposite sides of the cavity forming a putative methionine binding pocket that is observed in the three-dimensional crystallographic structure of methionyl-tRNA synthetase. Enzymes W305A, Y15A, and Y15F have diminished ability to discriminate against homocysteine in the synthetic reaction, compared to the wild-type enzyme. At the same time, mutant enzymes have lost the ability to discriminate against methionine in the editing reaction and edited Met-AMP to a similar extent as Hcy-AMP. Interactions of residues Arg-233 and Asp-52 of methionyl-tRNA synthetase with the carboxyl and amino groups, respectively, of the substrate, which are essential for the synthetic function, were also essential for the editing function of the enzyme. Deacylation of Met-tRNA to S-methylhomocysteine thiolactone catalyzed by W305A, Y15A, and Y15F mutant enzymes was only slightly impaired relative to the wild-type enzyme. However, enzymes R233Q, R233A, and D52A did not deacylate Met-tRNA. The model also explains why the noncognate homocysteine is edited by methionyl-tRNA synthetase. PMID:8265588

  18. The active site of yeast aspartyl-tRNA synthetase: structural and functional aspects of the aminoacylation reaction.

    PubMed Central

    Cavarelli, J; Eriani, G; Rees, B; Ruff, M; Boeglin, M; Mitschler, A; Martin, F; Gangloff, J; Thierry, J C; Moras, D

    1994-01-01

    The crystal structures of the various complexes formed by yeast aspartyl-tRNA synthetase (AspRS) and its substrates provide snapshots of the active site corresponding to different steps of the aminoacylation reaction. Native crystals of the binary complex tRNA-AspRS were soaked in solutions containing the two other substrates, ATP (or its analog AMPPcP) and aspartic acid. When all substrates are present in the crystal, this leads to the formation of the aspartyl-adenylate and/or the aspartyl-tRNA. A class II-specific pathway for the aminoacylation reaction is proposed which explains the known functional differences between the two classes while preserving a common framework. Extended signature sequences characteristic of class II aaRS (motifs 2 and 3) constitute the basic functional unit. The ATP molecule adopts a bent conformation, stabilized by the invariant Arg531 of motif 3 and a magnesium ion coordinated to the pyrophosphate group and to two class-invariant acidic residues. The aspartic acid substrate is positioned by a class II invariant acidic residue, Asp342, interacting with the amino group and by amino acids conserved in the aspartyl synthetase family. The amino acids in contact with the substrates have been probed by site-directed mutagenesis for their functional implication. Images PMID:8313877

  19. A Multiple-Labeling Strategy for Nonribosomal Peptide Synthetases Using Active-Site-Directed Proteomic Probes for Adenylation Domains.

    PubMed

    Ishikawa, Fumihiro; Suzuki, Takehiro; Dohmae, Naoshi; Kakeya, Hideaki

    2015-12-01

    Genetic approaches have greatly contributed to our understanding of nonribosomal peptide biosynthetic machinery; however, proteomic investigations are limited. Here, we developed a highly sensitive detection strategy for multidomain nonribosomal peptide synthetases (NRPSs) by using a multiple-labeling technique with active-site-directed probes for adenylation domains. When applied to gramicidin S-producing and -nonproducing strains of Aneurinibacillus migulanus (DSM 5759 and DSM 2895, respectively), the multiple technique sensitively detected an active multidomain NRPS (GrsB) in lysates obtained from the organisms. This functional proteomics method revealed an unknown inactive precursor (or other inactive form) of GrsB in the nonproducing strain. This method provides a new option for the direct detection, functional analysis, and high-resolution identification of low-abundance active NRPS enzymes in native proteomic environments. PMID:26467472

  20. Structure Elucidation and Activity of Kolossin A, the D-/L-Pentadecapeptide Product of a Giant Nonribosomal Peptide Synthetase.

    PubMed

    Bode, Helge B; Brachmann, Alexander O; Jadhav, Kirtikumar B; Seyfarth, Lydia; Dauth, Christina; Fuchs, Sebastian W; Kaiser, Marcel; Waterfield, Nick R; Sack, Holger; Heinemann, Stefan H; Arndt, Hans-Dieter

    2015-08-24

    The largest continuous bacterial nonribosomal peptide synthetase discovered so far is described. It consists of 15 consecutive modules arising from an uninterrupted, fully functional gene in the entomopathogenic bacterium Photorhabdus luminescens. The identification of its cryptic biosynthesis product was achieved by using a combination of genome analysis, promoter exchange, isotopic labeling experiments, and total synthesis of a focused collection of peptide candidates. Although it belongs to the growing class of D-/ L-peptide natural products, the encoded metabolite kolossin A was found to be largely devoid of antibiotic activity and is likely involved in interspecies communication. A stereoisomer of this peculiar natural product displayed high activity against Trypanosoma brucei rhodesiense, a recalcitrant parasite that causes the deadly disease African sleeping sickness. PMID:26118790

  1. Activation of D-tyrosine by Bacillus stearothermophilus tyrosyl-tRNA synthetase: 2. Cooperative binding of ATP is limited to the initial turnover of the enzyme.

    PubMed

    Sheoran, Anita; First, Eric A

    2008-05-01

    The activation of D-tyrosine by tyrosyl-tRNA synthetase has been investigated using single and multiple turnover kinetic methods. In the presence of saturating concentrations of D-tyrosine, the activation reaction displays sigmoidal kinetics with respect to ATP concentration under single turnover conditions. In contrast, when the kinetics for the activation reaction are monitored using a steady-state (multiple turnover) pyrophosphate exchange assay, Michaelis-Menten kinetics are observed. Previous investigations indicated that activation of l-tyrosine by the K233A variant of Bacillus stearothermophilus tyrosyl-tRNA synthetase displays sigmoidal kinetics similar to those observed for activation of d-tyrosine by the wild-type enzyme. Kinetic analyses indicate that the sigmoidal behavior of the d-tyrosine activation reaction is not enhanced when Lys-233 is replaced by alanine. This supports the hypothesis that the mechanistic basis for the sigmoidal behavior is the same for both d-tyrosine activation by wild-type tyrosyl-tRNA synthetase and activation of l-tyrosine by the K233A variant. The observed sigmoidal behavior presents a paradox, as tyrosyl-tRNA synthetase displays an extreme form of negative cooperativity, known as "half-of-the-sites reactivity," with respect to tyrosine binding and tyrosyl-adenylate formation. We propose that the binding of D-tyrosine weakens the affinity with which ATP binds to the functional subunit in tyrosyl-tRNA synthetase. This allows ATP to bind initially to the nonfunctional subunit, inducing a conformational change in the enzyme that enhances the affinity of the functional subunit for ATP. The observation that sigmoidal kinetics are observed only under single turnover conditions suggests that this conformational change is stable over multiple rounds of catalysis. PMID:18319246

  2. Decreased glutamine synthetase, increased citrulline-nitric oxide cycle activities, and oxidative stress in different regions of brain in epilepsy rat model.

    PubMed

    Swamy, Mummedy; Yusof, Wan Roslina Wan; Sirajudeen, K N S; Mustapha, Zulkarnain; Govindasamy, Chandran

    2011-03-01

    To understand their role in epilepsy, the nitric oxide synthetase (NOS), argininosuccinate synthetase (AS), argininosuccinate lyase (AL), glutamine synthetase (GS), and arginase activities, along with the concentration of nitrate/nitrite (NOx), thiobarbituric acid reactive substances (TBARS), and total antioxidant status (TAS), were estimated in different regions of brain in rats subjected to experimental epilepsy induced by subcutaneous administration of kainic acid (KA). The short-term (acute) group animals were killed after 2 h and the long term (chronic) group animals were killed after 5 days of single injection of KA (15 mg/kg body weight). After decapitation of rats, the brain regions were separated and in their homogenates, the concentration of NOx, TBARS and TAS and the activities of NOS, AS, AL, arginase and glutamine synthetase were assayed by colorimetric methods. The results of the study demonstrated the increased activity of NOS and formation of NO in acute and chronic groups epilepsy. The activities of AS and AL were increased and indicate the effective recycling of citrulline to arginine. The activity of glutamine synthetase was decreased in acute and chronic groups of epilepsy compared to control group and indicate the modulation of its activity by NO in epilepsy. The activity of arginase was not changed in acute group; however it was decreased in chronic group and may favor increased production of NO in this condition. The concentration TBARS were increased and TAS decreased in acute and chronic groups of epilepsy and supports the oxidative stress in epilepsy. PMID:20960085

  3. Active JNK-dependent secretion of Drosophila Tyrosyl-tRNA synthetase by loser cells recruits haemocytes during cell competition.

    PubMed

    Casas-Tintó, Sergio; Lolo, Fidel-Nicolás; Moreno, Eduardo

    2015-01-01

    Cell competition is a process by which the slow dividing cells (losers) are recognized and eliminated from growing tissues. Loser cells are extruded from the epithelium and engulfed by the haemocytes, the Drosophila macrophages. However, how macrophages identify the dying loser cells is unclear. Here we show that apoptotic loser cells secrete Tyrosyl-tRNA synthetase (TyrRS), which is best known as a core component of the translational machinery. Secreted TyrRS is cleaved by matrix metalloproteinases generating MiniTyr and EMAP fragments. EMAP acts as a guiding cue for macrophage migration in the Drosophila larvae, as it attracts the haemocytes to the apoptotic loser cells. JNK signalling and Kish, a component of the secretory pathway, are autonomously required for the active secretion of TyrRS by the loser cells. Altogether, this mechanism guarantees effective removal of unfit cells from the growing tissue. PMID:26658841

  4. Leucyl-tRNA synthetase activates Vps34 in amino acid-sensing mTORC1 signaling

    PubMed Central

    Yoon, Mee-Sup; Son, Kook; Arauz, Edwin; Han, Jung Min; Kim, Sunghoon; Chen, Jie

    2016-01-01

    SUMMARY Amino acid availability activates signaling by the mammalian target of rapamycin (mTOR) complex 1, mTORC1, a master regulator of cell growth. The class III PI-3-kinase Vps34 mediates amino acid signaling to mTORC1 by regulating lysosomal translocation and activation of the phospholipase PLD1. Here we identify leucyl-tRNA synthetase (LRS) as a leucine sensor for the activation of Vps34-PLD1 upstream of mTORC1. LRS is necessary for amino acid-induced Vps34 activation, cellular PI(3)P level increase, PLD1 activation, and PLD1 lysosomal translocation. Leucine binding but not tRNA charging activity of LRS is required for this regulation. Moreover, LRS physically interacts with Vps34 in amino acid-stimulatable non-autophagic complexes. Finally, purified LRS protein activates Vps34 kinase in vitro in a leucine-dependent manner. Collectively, our findings provide compelling evidence for a direct role of LRS in amino acid activation of Vps34 via a non-canonical mechanism, and fill a gap in the amino acid-sensing mTORC1 signaling network. PMID:27477288

  5. Total Glutamine Synthetase Activity during Soybean Nodule Development Is Controlled at the Level of Transcription and Holoprotein Turnover.

    PubMed Central

    Temple, S. J.; Kunjibettu, S.; Roche, D.; Sengupta-Gopalan, C.

    1996-01-01

    Gln synthetase (GS) catalyzes the ATP-dependent condensation of ammonia with glutamate to yield Gln. In higher plants GS is an octameric enzyme and the subunits are encoded by members of a small multigene family. In soybeans (Glycine max), following the onset of N2 fixation there is a dramatic increase in GS activity in the root nodules. GS activity staining of native polyacrylamide gels containing nodule and root extracts showed a common band of activity (GSrs). The nodules also contained a slower-migrating, broad band of enzyme activity (GSns). The GSns activity band is a complex of many isozymes made up of different proportions of two kinds of GS subunits: GSr and GSn. Root nodules formed following inoculation with an Nif- strain of Bradyrhizobium japonicum showed the presence of GS isoenzymes (GSns1) with low enzyme activity, which migrated more slowly than GSns. Gsns1 is most likely made up predominantly of GSn subunits. Our data suggest that, whereas the class I GS genes encoding the GSr subunits are regulated by the availability of NH3, the class II GS genes coding for the GSn subunits are developmentally regulated. Furthermore, we have demonstrated that the GSns1 isozymes in the Nif- nodules are relatively more labile. Our overall conclusion is that GSns activity in soybean nodules is regulated by N2 fixation both at the level of transcription and at the level of holoprotein stability. PMID:12226474

  6. Acetate Activation in Methanosaeta thermophila: Characterization of the Key Enzymes Pyrophosphatase and Acetyl-CoA Synthetase

    PubMed Central

    Berger, Stefanie; Welte, Cornelia; Deppenmeier, Uwe

    2012-01-01

    The thermophilic methanogen Methanosaeta thermophila uses acetate as sole substrate for methanogenesis. It was proposed that the acetate activation reaction that is needed to feed acetate into the methanogenic pathway requires the hydrolysis of two ATP, whereas the acetate activation reaction in Methanosarcina sp. is known to require only one ATP. As these organisms live at the thermodynamic limit that sustains life, the acetate activation reaction in Mt. thermophila seems too costly and was thus reevaluated. It was found that of the putative acetate activation enzymes one gene encoding an AMP-forming acetyl-CoA synthetase was highly expressed. The corresponding enzyme was purified and characterized in detail. It catalyzed the ATP-dependent formation of acetyl-CoA, AMP, and pyrophosphate (PPi) and was only moderately inhibited by PPi. The breakdown of PPi was performed by a soluble pyrophosphatase. This enzyme was also purified and characterized. The pyrophosphatase hydrolyzed the major part of PPi (KM = 0.27 ± 0.05 mM) that was produced in the acetate activation reaction. Activity was not inhibited by nucleotides or PPi. However, it cannot be excluded that other PPi-dependent enzymes take advantage of the remaining PPi and contribute to the energy balance of the cell. PMID:22927778

  7. Tissue-specific changes of glutamine synthetase activity in oats after rhizosphere infestation by Pseudomonas syringae pv. tabaci. Final report

    SciTech Connect

    Knight, T.J.; Temple, S.; Sengupta-Gopalan, C.

    1996-05-15

    Oats (Avena sativa L. lodi) tolerant of rhizosphere infestation by Pseudomonas syringae pv. tabaci when challenged by the pathogen experience tissue-specific alterations of ammonia assimilatory capabilities. Altered ammonia assimilatory potentials between root and leaf tissue result from selective inactivation of glutamine synthetase (GS) by the toxin Tabtoxinine-B-lactam (TBL). Root GS is sensitive and leaf GSs are resistant to TBL inactivation. With prolonged challenge by the pathogen root GS activity decreases but leaf GS specific activity increase. Higher leaf GS activity is due to decreased rates of degradation rather than increased GS synthesis. Higher leaf GS activity and elevated levels of GS polypeptide appear to result from a limited interaction between GS and TBL leading to the accumulation of a less active but more stable GS holoenzyme. Tolerant challenged oats besides surviving rhizosphere infestation, experience enhanced growth. A strong correlation exists between leaf GS activity and whole plant fresh weight, suggesting that tissue-specific changes in ammonia assimilatory capability provides the plant a more efficient mechanism for uptake and utilization of nitrogen.

  8. Glutamine synthetase activity fuels nucleotide biosynthesis and supports growth of glutamine-restricted glioblastoma.

    PubMed

    Tardito, Saverio; Oudin, Anaïs; Ahmed, Shafiq U; Fack, Fred; Keunen, Olivier; Zheng, Liang; Miletic, Hrvoje; Sakariassen, Per Øystein; Weinstock, Adam; Wagner, Allon; Lindsay, Susan L; Hock, Andreas K; Barnett, Susan C; Ruppin, Eytan; Mørkve, Svein Harald; Lund-Johansen, Morten; Chalmers, Anthony J; Bjerkvig, Rolf; Niclou, Simone P; Gottlieb, Eyal

    2015-12-01

    L-Glutamine (Gln) functions physiologically to balance the carbon and nitrogen requirements of tissues. It has been proposed that in cancer cells undergoing aerobic glycolysis, accelerated anabolism is sustained by Gln-derived carbons, which replenish the tricarboxylic acid (TCA) cycle (anaplerosis). However, it is shown here that in glioblastoma (GBM) cells, almost half of the Gln-derived glutamate (Glu) is secreted and does not enter the TCA cycle, and that inhibiting glutaminolysis does not affect cell proliferation. Moreover, Gln-starved cells are not rescued by TCA cycle replenishment. Instead, the conversion of Glu to Gln by glutamine synthetase (GS; cataplerosis) confers Gln prototrophy, and fuels de novo purine biosynthesis. In both orthotopic GBM models and in patients, (13)C-glucose tracing showed that GS produces Gln from TCA-cycle-derived carbons. Finally, the Gln required for the growth of GBM tumours is contributed only marginally by the circulation, and is mainly either autonomously synthesized by GS-positive glioma cells, or supplied by astrocytes. PMID:26595383

  9. Regulation of glutamine synthetase II activity in Rhizobium meliloti 104A14.

    PubMed Central

    Shatters, R G; Somerville, J E; Kahn, M L

    1989-01-01

    Most rhizobia contain two glutamine synthetase (GS) enzymes: GSI, encoded by glnA, and GSII, encoded by glnII. We have found that WSU414, a Rhizobium meliloti 104A14 glutamine auxotroph derived from a glnA parental strain, is an ntrA mutant. The R. meliloti glnII promoter region contains DNA sequences similar to those found in front of other genes that require ntrA for their transcription. No GSII was found in the glnA ntrA mutant, and when a translational fusion of glnII to the Escherichia coli lacZ gene was introduced into WSU414, no beta-galactosidase was expressed. These results indicate that ntrA is required for glnII expression. The ntrA mutation did not prevent the expression of GSI. In free-living culture, the level of GSII and of the glnII-lacZ fusion protein was regulated by altering transcription in response to available nitrogen. No GSII protein was detected in alfalfa, pea, or soybean nodules when anti-GSII-specific antiserum was used. Images PMID:2570059

  10. Glutamine Synthetase activity fuels nucleotide biosynthesis and supports growth of glutamine-restricted glioblastoma

    PubMed Central

    Tardito, Saverio; Oudin, Anaïs; Ahmed, Shafiq U.; Fack, Fred; Keunen, Olivier; Zheng, Liang; Miletic, Hrvoje; Sakariassen, Per Øystein; Weinstock, Adam; Wagner, Allon; Lindsay, Susan L.; Hock, Andreas K.; Barnett, Susan C.; Ruppin, Eytan; Mørkve, Svein Harald; Lund-Johansen, Morten; Chalmers, Anthony J.; Bjerkvig, Rolf; Niclou, Simone P.; Gottlieb, Eyal

    2015-01-01

    L-Glutamine (Gln) functions physiologically to balance tissue requirements of carbon and nitrogen. It has been proposed that in cancer cells undergoing aerobic glycolysis, accelerated anabolism is sustained by Gln-derived carbons, which replenish the tricarboxylic acid (TCA) cycle (anaplerosis). However, it is shown here that in glioblastoma (GBM) cells, almost half of the Gln-derived glutamate (Glu) is secreted and does not enter the TCA cycle and, that inhibiting glutaminolysis does not affect proliferation. Moreover, Gln-starved cells are not rescued by TCA cycle replenishment. Instead, the conversion of Glu to Gln by Glutamine Synthetase (GS) (cataplerosis) confers Gln prototrophy, and fuels de novo purine biosynthesis. In both orthotopic GBM models and in patients, 13C-glucose tracing showed that GS produces Gln from TCA cycle-derived carbons. Finally, while it is contributed only marginally by the circulation, the Gln required for the growth of GBM tumours is either autonomously synthesized by GS-positive glioma cells, or supplied by astrocytes. PMID:26595383

  11. Intestinal acyl-CoA synthetase 5: activation of long chain fatty acids and behind.

    PubMed

    Klaus, Christina; Jeon, Min Kyung; Kaemmerer, Elke; Gassler, Nikolaus

    2013-11-14

    The intestinal mucosa is characterized by a high complexity in terms of structure and functions and allows for a controlled demarcation towards the gut lumen. On the one hand it is responsible for pulping and selective absorption of alimentary substances ensuring the immunological tolerance, on the other hand it prevents the penetration of micro-organisms as well as bacterial outgrowth. The continuous regeneration of surface epithelia along the crypt-villus-axis in the small intestine is crucial to assuring these various functions. The core phenomena of intestinal epithelia regeneration comprise cell proliferation, migration, differentiation, and apoptosis. These partly contrarily oriented processes are molecularly balanced through numerous interacting signaling pathways like Wnt/β-catenin, Notch and Hedgehog, and regulated by various modifying factors. One of these modifiers is acyl-CoA synthetase 5 (ACSL5). It plays a key role in de novo lipid synthesis, fatty acid degradation and membrane modifications, and regulates several intestinal processes, primarily through different variants of protein lipidation, e.g., palmitoylation. ACSL5 was shown to interact with proapoptotic molecules, and besides seems to inhibit proliferation along the crypt-villus-axis. Because of its proapoptotic and antiproliferative characteristics it could be of significant relevance for intestinal homeostasis, cellular disorder and tumor development. PMID:24259967

  12. Chlamydia trachomatis growth and development requires the activity of host Long-chain Acyl-CoA Synthetases (ACSLs)

    PubMed Central

    Recuero-Checa, Maria A.; Sharma, Manu; Lau, Constance; Watkins, Paul A.; Gaydos, Charlotte A.; Dean, Deborah

    2016-01-01

    The obligate-intracellular pathogen Chlamydia trachomatis (Ct) has undergone considerable genome reduction with consequent dependence on host biosynthetic pathways, metabolites and enzymes. Long-chain acyl-CoA synthetases (ACSLs) are key host-cell enzymes that convert fatty acids (FA) into acyl-CoA for use in metabolic pathways. Here, we show that the complete host ACSL family [ACSL1 and ACSL3–6] translocates into the Ct membrane-bound vacuole, termed inclusion, and remains associated with membranes of metabolically active forms of Ct throughout development. We discovered that three different pharmacologic inhibitors of ACSL activity independently impede Ct growth in a dose-dependent fashion. Using an FA competition assay, host ACSLs were found to activate Ct branched-chain FAs, suggesting that one function of the ACSLs is to activate Ct FAs and host FAs (recruited from the cytoplasm) within the inclusion. Because the ACSL inhibitors can deplete lipid droplets (LD), we used a cell line where LD synthesis was switched off to evaluate whether LD deficiency affects Ct growth. In these cells, we found no effect on growth or on translocation of ACSLs into the inclusion. Our findings support an essential role for ACSL activation of host-cell and bacterial FAs within the inclusion to promote Ct growth and development, independent of LDs. PMID:26988341

  13. Long-Chain Acyl CoA Synthetase 4A regulates Smad activity and dorsoventral patterning in the zebrafish embryo

    PubMed Central

    Miyares, Rosa Linda; Stein, Cornelia; Renisch, Björn; Anderson, Jennifer Lynn; Hammerschmidt, Matthias; Farber, Steven Arthur

    2013-01-01

    Summary Long-chain polyunsaturated fatty acids (LC-PUFA) and their metabolites are critical players in cell biology and embryonic development. Here we show that long-chain acyl CoA synthetase 4a (Acsl4a), an LC-PUFA activating enzyme, is essential for proper patterning of the zebrafish dorsoventral axis. Loss of Acsl4a results in dorsalized embryos due to attenuated Bmp signaling. We demonstrate that Acsl4a modulates the activity of Smad transcription factors, the downstream mediators of Bmp signaling. Acsl4a promotes the inhibition of p38 MAPK and the Akt-mediated inhibition of glycogen synthase kinase 3 (GSK3), critical inhibitors of Smad activity. Consequently, introduction of a constitutively active Akt can rescue the dorsalized phenotype of Acsl4a deficient embryos. Our results reveal a critical role for Acsl4a in modulating Bmp-Smad activity and provide a potential avenue for LC-PUFAs to influence a variety of developmental processes. PMID:24332754

  14. Modulating effects of acyl-CoA synthetase 5-derived mitochondrial Wnt2B palmitoylation on intestinal Wnt activity

    PubMed Central

    Klaus, Christina; Schneider, Ursula; Hedberg, Christian; Schütz, Anke K; Bernhagen, Jürgen; Waldmann, Herbert; Gassler, Nikolaus; Kaemmerer, Elke

    2014-01-01

    AIM: To investigate the role of acyl-CoA synthetase 5 (ACSL5) activity in Wnt signaling in intestinal surface epithelia. METHODS: Several cell lines were used to investigate the ACSL5-dependent expression and synthesis of Wnt2B, a mitochondrially expressed protein of the Wnt signaling family. Wnt activity was functionally assessed with a luciferase reporter assay. ACSL5-related biochemical Wnt2B modifications were investigated with a modified acyl-exchange assay. The findings from the cell culture models were verified using an Apcmin/+ mouse model as well as normal and neoplastic diseased human intestinal tissues. RESULTS: In the presence of ACSL5, Wnt2B was unable to translocate into the nucleus and was enriched in mitochondria, which was paralleled by a significant decrease in Wnt activity. ACSL5-dependent S-palmitoylation of Wnt2B was identified as a molecular reason for mitochondrial Wnt2B accumulation. In cell culture systems, a strong relation of ACSL5 expression, Wnt2B palmitoylation, and degree of malignancy were found. Using normal mucosa, the association of ACSL5 and Wnt2B was seen, but in intestinal neoplasias the mechanism was only rudimentarily observed. CONCLUSION: ACSL5 mediates antiproliferative activities via Wnt2B palmitoylation with diminished Wnt activity. The molecular pathway is probably relevant for intestinal homeostasis, overwhelmed by other pathways in carcinogenesis. PMID:25356045

  15. Thiophenecarboxamide Derivatives Activated by EthA Kill Mycobacterium tuberculosis by Inhibiting the CTP Synthetase PyrG.

    PubMed

    Mori, Giorgia; Chiarelli, Laurent R; Esposito, Marta; Makarov, Vadim; Bellinzoni, Marco; Hartkoorn, Ruben C; Degiacomi, Giulia; Boldrin, Francesca; Ekins, Sean; de Jesus Lopes Ribeiro, Ana Luisa; Marino, Leonardo B; Centárová, Ivana; Svetlíková, Zuzana; Blaško, Jaroslav; Kazakova, Elena; Lepioshkin, Alexander; Barilone, Nathalie; Zanoni, Giuseppe; Porta, Alessio; Fondi, Marco; Fani, Renato; Baulard, Alain R; Mikušová, Katarína; Alzari, Pedro M; Manganelli, Riccardo; de Carvalho, Luiz Pedro S; Riccardi, Giovanna; Cole, Stewart T; Pasca, Maria Rosalia

    2015-07-23

    To combat the emergence of drug-resistant strains of Mycobacterium tuberculosis, new antitubercular agents and novel drug targets are needed. Phenotypic screening of a library of 594 hit compounds uncovered two leads that were active against M. tuberculosis in its replicating, non-replicating, and intracellular states: compounds 7947882 (5-methyl-N-(4-nitrophenyl)thiophene-2-carboxamide) and 7904688 (3-phenyl-N-[(4-piperidin-1-ylphenyl)carbamothioyl]propanamide). Mutants resistant to both compounds harbored mutations in ethA (rv3854c), the gene encoding the monooxygenase EthA, and/or in pyrG (rv1699) coding for the CTP synthetase, PyrG. Biochemical investigations demonstrated that EthA is responsible for the activation of the compounds, and by mass spectrometry we identified the active metabolite of 7947882, which directly inhibits PyrG activity. Metabolomic studies revealed that pharmacological inhibition of PyrG strongly perturbs DNA and RNA biosynthesis, and other metabolic processes requiring nucleotides. Finally, the crystal structure of PyrG was solved, paving the way for rational drug design with this newly validated drug target. PMID:26097035

  16. Thiophenecarboxamide Derivatives Activated by EthA Kill Mycobacterium tuberculosis by Inhibiting the CTP Synthetase PyrG

    PubMed Central

    Mori, Giorgia; Chiarelli, Laurent R.; Esposito, Marta; Makarov, Vadim; Bellinzoni, Marco; Hartkoorn, Ruben C.; Degiacomi, Giulia; Boldrin, Francesca; Ekins, Sean; de Jesus Lopes Ribeiro, Ana Luisa; Marino, Leonardo B.; Centárová, Ivana; Svetlíková, Zuzana; Blaško, Jaroslav; Kazakova, Elena; Lepioshkin, Alexander; Barilone, Nathalie; Zanoni, Giuseppe; Porta, Alessio; Fondi, Marco; Fani, Renato; Baulard, Alain R.; Mikušová, Katarína; Alzari, Pedro M.; Manganelli, Riccardo; de Carvalho, Luiz Pedro S.; Riccardi, Giovanna; Cole, Stewart T.; Pasca, Maria Rosalia

    2015-01-01

    Summary To combat the emergence of drug-resistant strains of Mycobacterium tuberculosis, new antitubercular agents and novel drug targets are needed. Phenotypic screening of a library of 594 hit compounds uncovered two leads that were active against M. tuberculosis in its replicating, non-replicating, and intracellular states: compounds 7947882 (5-methyl-N-(4-nitrophenyl)thiophene-2-carboxamide) and 7904688 (3-phenyl-N-[(4-piperidin-1-ylphenyl)carbamothioyl]propanamide). Mutants resistant to both compounds harbored mutations in ethA (rv3854c), the gene encoding the monooxygenase EthA, and/or in pyrG (rv1699) coding for the CTP synthetase, PyrG. Biochemical investigations demonstrated that EthA is responsible for the activation of the compounds, and by mass spectrometry we identified the active metabolite of 7947882, which directly inhibits PyrG activity. Metabolomic studies revealed that pharmacological inhibition of PyrG strongly perturbs DNA and RNA biosynthesis, and other metabolic processes requiring nucleotides. Finally, the crystal structure of PyrG was solved, paving the way for rational drug design with this newly validated drug target. PMID:26097035

  17. The toxic effects of diethyl phthalate on the activity of glutamine synthetase in greater duckweed (Spirodela polyrhiza L.).

    PubMed

    Cheng, Tai-Sheng

    2012-11-15

    The toxic effects of diethyl phthalate (DEP), a potent allelochemical, on the enzyme activity and polypeptide accumulation of glutamine synthetase (GS) in greater duckweed were investigated. In our previous studies, DEP induced oxidative responses at concentrations from 0.5 to 2 mM in greater duckweed and the antioxidant enzymes played important roles in the defense strategy against DEP stress. In this study, DAB-H(2)O(2) and NBT stain for superoxide radicals (O(2)(·-)), lipid peroxidation, HSP70, and ammonia accumulation in DEP-treated duckweed tissues revealed adverse effect of DEP in plant growth. Biochemical analysis and physiological methods were combined to investigate GS activity and polypeptide accumulation under DEP-induced stress. The results showed that GS activity was reduced with the increasing concentration of DEP, indicative of enhanced toxic effect. Immunoblot analysis with chloroplast soluble fractions indicated that the chloroplastic GS (GS2) polypeptide from greater duckweed was degraded under DEP stress conditions. The response of GS2 to the DEP stress may be modulated by means of redox change in plant tissues, chloroplasts, and chloroplast lysates. The results suggest that DEP is toxic to the greater duckweed by inhibition of the GS isoenzymes in nitrogen assimilation and the GS2 plays important roles in the adaptation strategy against DEP toxicity. PMID:22975440

  18. Entamoeba lysyl-tRNA Synthetase Contains a Cytokine-Like Domain with Chemokine Activity towards Human Endothelial Cells

    PubMed Central

    Han, Jung Min; Kim, Sunghoon; Celada, Antonio; Ribas de Pouplana, Lluís

    2011-01-01

    Immunological pressure encountered by protozoan parasites drives the selection of strategies to modulate or avoid the immune responses of their hosts. Here we show that the parasite Entamoeba histolytica has evolved a chemokine that mimics the sequence, structure, and function of the human cytokine HsEMAPII (Homo sapiens endothelial monocyte activating polypeptide II). This Entamoeba EMAPII-like polypeptide (EELP) is translated as a domain attached to two different aminoacyl-tRNA synthetases (aaRS) that are overexpressed when parasites are exposed to inflammatory signals. EELP is dispensable for the tRNA aminoacylation activity of the enzymes that harbor it, and it is cleaved from them by Entamoeba proteases to generate a standalone cytokine. Isolated EELP acts as a chemoattractant for human cells, but its cell specificity is different from that of HsEMAPII. We show that cell specificity differences between HsEMAPII and EELP can be swapped by site directed mutagenesis of only two residues in the cytokines' signal sequence. Thus, Entamoeba has evolved a functional mimic of an aaRS-associated human cytokine with modified cell specificity. PMID:22140588

  19. Vertebrate Acyl CoA synthetase family member 4 (ACSF4-U26) is a β-alanine-activating enzyme homologous to bacterial non-ribosomal peptide synthetase.

    PubMed

    Drozak, Jakub; Veiga-da-Cunha, Maria; Kadziolka, Beata; Van Schaftingen, Emile

    2014-03-01

    Mammalian ACSF4-U26 (Acyl CoA synthetase family member 4), a protein of unknown function, comprises a putative adenylation domain (AMP-binding domain) similar to those of bacterial non-ribosomal peptide synthetases, a putative phosphopantetheine attachment site, and a C-terminal PQQDH (pyrroloquinoline quinone dehydrogenase)-related domain. Orthologues comprising these three domains are present in many eukaryotes including plants. Remarkably, the adenylation domain of plant ACSF4-U26 show greater identity with Ebony, the insect enzyme that ligates β-alanine to several amines, than with vertebrate or insect ACSF4-U26, and prediction of its specificity suggests that it activates β-alanine. In the presence of ATP, purified mouse recombinant ACSF4-U26 progressively formed a covalent bond with radiolabelled β-alanine. The bond was not formed in a point mutant lacking the phosphopantetheine attachment site. Competition experiments with various amino acids indicated that the reaction was almost specific for β-alanine, and a KM of ~ 5 μm was calculated for this reaction. The loaded enzyme was used to study the formation of a potential end product. Among the 20 standard amino acids, only cysteine stimulated unloading of the enzyme. This effect was mimicked by cysteamine and dithiothreitol, and was unaffected by absence of the PQQDH-related domain, suggesting that β-alanine transfer onto thiols is catalysed by the ACSF4-U26 adenylation domain, but is physiologically irrelevant. We conclude that ACSF4-U26 is a β-alanine-activating enzyme, and hypothesize that it is involved in a rare intracellular reaction, possibly an infrequent post-translational or post-transcriptional modification. PMID:24467666

  20. Peroxisome proliferator-activated receptor gamma 2 and acyl-CoA synthetase 5 polymorphisms influence diet response.

    PubMed

    Adamo, Kristi B; Dent, Robert; Langefeld, Carl D; Cox, Miranda; Williams, Kathryn; Carrick, Kevin M; Stuart, Joan S; Sundseth, Scott S; Harper, Mary-Ellen; McPherson, Ruth; Tesson, Frédérique

    2007-05-01

    Peroxisome proliferator-activated receptor gamma (PPARgamma) and its response gene, Acyl CoA synthetase 5 (ACSL5), which has an important role in fatty acid metabolism, may affect weight loss in response to caloric restriction. Therefore, we aimed to determine whether these genes were involved in the interindividual response to dietary treatment. Genotypic/phenotypic comparisons were made between selected obese women from the quintiles losing the most (diet responsive, n = 74) and the quintiles losing the least (diet-resistant, n = 67) weight in the first 6 weeks of a 900-kcal formula diet. Two common PPARgamma single nucleotide polymorphisms, Pro(12)Ala and C1431T, and eight polymorphisms across the ACSL5 gene were selected for single locus and haplotypic association analyses. The PPARgamma Pro(12)Ala single nucleotide polymorphism was associated with diet resistance (odds ratio = 3.48, 95% confidence interval = 1.41 to 8.56, p = 0.03), and the rs2419621, located in the 5'untranslated region of the ACSL5 gene, displayed the strongest association with diet response (odds ratio = 3.45, 95% confidence interval = 1.61 to 7.69, p = 0.001). Skeletal muscle ACSL5 mRNA expression was significantly lower in carriers of the wildtype compared with the variant rs2419621 allele (p = 0.03). Our results suggest a link between PPARgamma2 and ACSL5 genotype and diet responsiveness. PMID:17495181

  1. The mode of action and the structure of a herbicide in complex with its target: binding of activated hydantocidin to the feedback regulation site of adenylosuccinate synthetase.

    PubMed Central

    Fonné-Pfister, R; Chemla, P; Ward, E; Girardet, M; Kreuz, K E; Honzatko, R B; Fromm, H J; Schär, H P; Grütter, M G; Cowan-Jacob, S W

    1996-01-01

    (+)-Hydantocidin, a recently discovered natural spironucleoside with potent herbicidal activity, is shown to be a proherbicide that, after phosphorylation at the 5' position, inhibits adenylosuccinate synthetase, an enzyme involved in de novo purine synthesis. The mode of binding of hydantocidin 5'-monophosphate to the target enzyme was analyzed by determining the crystal structure of the enzyme-inhibitor complex at 2.6-A resolution. It was found that adenylosuccinate synthetase binds the phosphorylated compound in the same fashion as it does adenosine 5'-monophosphate, the natural feedback regulator of this enzyme. This work provides the first crystal structure of a herbicide-target complex reported to date. Images Fig. 4 Fig. 5 PMID:8790347

  2. A caffeyl-coenzyme A synthetase initiates caffeate activation prior to caffeate reduction in the acetogenic bacterium Acetobacterium woodii.

    PubMed

    Hess, Verena; Vitt, Stella; Müller, Volker

    2011-02-01

    The anaerobic acetogenic bacterium Acetobacterium woodii couples the reduction of caffeate with electrons derived from hydrogen to the synthesis of ATP by a chemiosmotic mechanism using sodium ions as coupling ions, but the enzymes involved remain to be established. Previously, the electron transfer flavoproteins EtfA and EtfB were found to be involved in caffeate respiration. By inverse PCR, we identified three genes upstream of etfA and etfB: carA, carB, and carC. carA encodes a potential coenzyme A (CoA) transferase, carB an acyl-CoA synthetase, and carC an acyl-CoA dehydrogenase. carA, -B, and -C are located together with etfA/carE and etfB/carD on one polycistronic message, indicating that CarA, CarB, and CarC are also part of the caffeate respiration pathway. The genetic data suggest an initial ATP-dependent activation of caffeate by CarB. To prove the proposed function of CarB, the protein was overproduced in Escherichia coli, and the recombinant protein was purified. Purified CarB activates caffeate to caffeyl-CoA in an ATP- and CoA-dependent reaction. The enzyme has broad pH and temperature optima and requires K(+) for activity. In addition to caffeate, it can use ρ-coumarate, ferulate, and cinnamate as substrates, with 50, 15, and 9%, respectively, of the activity obtained with caffeate. Expression of the car operon is induced not only by caffeate, ρ-coumarate, ferulate, and cinnamate but also by sinapate. There is no induction by ρ-hydroxybenzoate or syringate. PMID:21131487

  3. Phosphorylation of eukaryotic aminoacyl-tRNA synthetases

    SciTech Connect

    Pendergast, A.M.

    1986-01-01

    The phosphorylation of the highly purified aminoacyl-tRNA synthetase complex from rabbit reticulocytes was examined. The synthetase complex contained, in addition to eight aminoacyl-tRNA synthetases, three unidentified proteins and was free of endogenous protein kinase activity. Incubation of the complex with casein kinase I in the presence of ATP resulted in the phosphorylation of four synthetases, the glutamyl-, isoleucyl-, methionyl-, and lysyl-tRNA synthetases. Phosphorylation by casein kinase I altered binding to tRNA-Sepharose such that the phosphorylated complex eluted at 190 mM NaCl instead of the 275 mM salt observed for the nonphosphorylated form. Phosphorylation by casein kinase I resulted in a significant inhibition of aminoacylation with the four synthetases; the activities of the nonphosphorylated synthetases were unchanged. One of the unidentified proteins in the complex (M/sub r/ 37,000) was also an excellent substrate for casein kinase I. A comparison of the properties and two-dimensional phosphopeptide pattern of this protein with that of casein kinase I suggest that the 37,000 dalton protein in the synthetase complex is an inactive form of casein kinase I. Two other protein kinases were shown to phosphorylate aminoacyl-tRNA synthetases in the complex. The phosphorylation of threonyl-tRNA synthetase was also investigated. Five aminoacyl-tRNA synthetases in the high molecular weight complex were shown to be phosphorylated in rabbit reticulocytes following labeling with (/sup 32/P)orthophosphate.

  4. Subependymal giant cell astrocytoma: a lesion with activated mTOR pathway and constant expression of glutamine synthetase.

    PubMed

    Buccoliero, Anna Maria; Caporalini, Chiara; Giordano, Flavio; Mussa, Federico; Scagnet, Mirko; Moscardi, Selene; Baroni, Gianna; Genitori, Lorenzo; Taddei, Gian Luigi

    2016-01-01

    Subependymal giant-cell astrocytoma (SEGA) is a rare tumor associated with tuberous sclerosis complex (TSC). TSC mainly involves the central nervous system (CNS) where SEGA, subependymal nodules, and cortical tubers may be present. First studies suggested the astrocytic nature of SEGA while successive studies demonstrated the mixed glio-neuronal nature. There are similarities between TSC-associated CNS lesions and type IIb focal cortical dysplasia (FCD). In all these pathologies, mammalian target of rapamycin (mTOR) pathway activation has been demonstrated. Recent data evidenced that balloon cells in FCD IIb express glutamine synthetase (GS). GS is involved in the clearance of glutamate. Cells expressing GS might exert an antiepileptic role. We evaluated by immunohistochemistry the glial fibrillary acidic protein (GFAP), neurofilaments (NF), and GS expression and the mTOR status (mTOR and phosphorylated ribosomal protein S6) in 16 SEGAs and 2 cortical tubers. Our purpose was to emphasize the mixed nature of SEGA and to further investigate the similarities between TSC-related CNS lesions (in particular SEGA) and FCD IIb. We confirm the glio-neuronal nature and the common activation of the mTOR pathway in SEGAs. In addition, we report for the first time that these tumors, analogously to FCD IIb, commonly express GS. Notably, the expression of mTOR, phosphorylated ribosomal protein S6, and GS was restricted to gemistocytic-like GFAP-negative cells. GS expression and mTOR pathway activation were also documented in cortical tubers. Further studies are necessary to understand the significance of GS expression in SEGAs as well as in cortical tubers. PMID:27390104

  5. CMT2D neuropathy is linked to the neomorphic binding activity of glycyl-tRNA synthetase

    PubMed Central

    He, Weiwei; Bai, Ge; Zhou, Huihao; Wei, Na; White, Nicholas M.; Lauer, Janelle; Liu, Huaqing; Shi, Yi; Dumitru, Calin Dan; Lettieri, Karen; Shubayev, Veronica; Jordanova, Albena; Guergueltcheva, Velina; Griffin, Patrick R.; Burgess, Robert W.; Pfaff, Samuel L.; Yang, Xiang-Lei

    2015-01-01

    Summary Selective neuronal loss is a hallmark of neurodegenerative diseases, which counter-intuitively are often caused by mutations in widely-expressed genes1. Charcot-Marie-Tooth (CMT) diseases are the most common hereditary peripheral neuropathies, for which there are no effective therapies2,3. A subtype of the diseases—CMT2D—is caused by dominant mutations in GARS, encoding the ubiquitously expressed enzyme glycyl-tRNA synthetase (GlyRS). Despite the broad requirement of GlyRS for protein biosynthesis in all cells, mutations in this gene cause a selective degeneration of peripheral axons leading to deficits in distal motor function4. How mutations in GlyRS (GlyRSCMT2D) are linked to motor neuron vulnerability has remained elusive. Here we report that GlyRSCMT2D acquires a neomorphic binding activity that directly antagonizes an essential signaling pathway for motor neuron survival. We find that CMT2D mutations alter the conformation of GlyRS, enabling GlyRSCMT2D to bind the Neuropilin 1 (Nrp1) receptor. This aberrant interaction competitively interferes with the binding of the cognate ligand vascular endothelial growth factor (VEGF) to Nrp1. Genetic reduction of Nrp1 in mice worsens CMT2D symptoms, whereas enhanced expression of VEGF improves motor function. These findings link the selective pathology of CMT2D to the neomorphic binding activity of GlyRSCMT2D that antagonizes the VEGF/Nrp1 interaction, and indicate the VEGF/Nrp1 signaling axis is an actionable target for treating CMT2D. PMID:26503042

  6. Inhibition of nitrogen-fixing activity of the cyanobiont affects the localization of glutamine synthetase in hair cells of Azolla.

    PubMed

    Uheda, Eiji; Maejima, Kazuhiro

    2009-10-15

    In the Azolla-Anabaena association, the host plant Azolla efficiently incorporates and assimilates ammonium ions that are released from the nitrogen-fixing cyanobiont, probably via glutamine synthetase (GS; EC 6.3.1.2) in hair cells, which are specialized cells protruding into the leaf cavity. In order to clarify the regulatory mechanism underlying ammonium assimilation in the Azolla-Anabaena association, Azolla plants were grown under an argon environment (Ar), in which the nitrogen-fixing activity of the cyanobiont was inhibited specifically and completely. The localization of GS in hair cells was determined by immunoelectron microscopy and quantitative analysis of immunogold labeling. Azolla plants grew healthily under Ar when nitrogen sources, such as NO(3)(-) and NH(4)(+), were provided in the growth medium. Both the number of cyanobacterial cells per leaf and the heterocyst frequency of the plants under Ar were similar to those of plants in a nitrogen environment (N(2)). In hair cells of plants grown under Ar, regardless of the type of nitrogen source provided, only weak labeling of GS was observed in the cytoplasm and in chloroplasts. In contrast, in hair cells of plants grown under N(2), abundant labeling of GS was observed in both sites. These findings indicate that specific inhibition of the nitrogen-fixing activity of the cyanobiont affects the localization of GS isoenzymes. Ammonium fixed and released by the cyanobiont could stimulate GS synthesis in hair cells. Simultaneously, the abundant GS, probably GS1, in these cells, could assimilate ammonium rapidly. PMID:19464754

  7. Radioimmune assay of human platelet prostaglandin synthetase

    SciTech Connect

    Roth, G.J.; Machuga, E.T.

    1982-02-01

    Normal platelet function depends, in part, on platelet PG synthesis. PG synthetase (cyclo-oxygenase) catalyzes the first step in PG synthesis, the formation of PGH/sub 2/ from arachidonic acid. Inhibition of the enzyme by ASA results in an abnormality in the platelet release reaction. Patients with pparent congenital abnormalities in the enzyme have been described, and the effects have been referred to as ''aspirin-like'' defects of the platelet function. These patients lack platelet PG synthetase activity, but the actual content of PG synthetase protein in these individuals' platelets is unknown. Therefore an RIA for human platelet PG synthetase would provide new information, useful in assessing the aspirin-like defects of platelet function. An RIA for human platelet PG synthetase is described. The assay utilizes a rabbit antibody directed against the enzyme and (/sup 125/I)-labelled sheep PG synthetase as antigen. The human platelet enzyme is assayed by its ability to inhibit precipitation of the (/sup 125/I)antigen. The assay is sensitive to 1 ng of enzyme. By the immune assay, human platelets contain approximately 1200 ng of PG synethetase protein per 1.5 mg of platelet protein (approximately 10/sup 9/ platelets). This content corresponds to 10,000 enzyme molecules per platelet. The assay provides a rapid and convenient assay for the human platelet enzyme, and it can be applied to the assessment of patients with apparent platelet PG synthetase (cyclo-oxygenase) deficiency.

  8. Ricinus communis contains and acyl-CoA synthetase that preferentially activates ricinoleate to its CoA thioester

    Technology Transfer Automated Retrieval System (TEKTRAN)

    As part of our effort to identify enzymes that are critical for producing large amounts of ricinoleate in castor oil, we have isolated three cDNAs encoding acyl-CoA synthetase (ACS) in the castor plant. Analysis of the cDNA sequences reveals that two of them, designated RcACS 2 and RcACS 4, contain...

  9. Peroxynitrite-induced thymocyte apoptosis: the role of caspases and poly (ADP-ribose) synthetase (PARS) activation.

    PubMed Central

    Virág, L; Scott, G S; Cuzzocrea, S; Marmer, D; Salzman, A L; Szabó, C

    1998-01-01

    The mechanisms by which immature thymocyte apoptosis is induced during negative selection are poorly defined. Reports demonstrated that cross-linking of T-cell receptor leads to stromal cell activation, expression of inducible nitric oxide synthase (iNOS) and, subsequently, to thymocyte apoptosis. Therefore we examined, whether NO directly or indirectly, through peroxynitrite formation, causes thymocyte apoptosis. Immuno-histochemical detection of nitrotyrosine revealed in vivo peroxynitrite formation in the thymi of naive mice. Nitrotyrosine, the footprint of peroxynitrite, was predominantly found in the corticomedullary junction and the medulla of naive mice. In the thymi of mice deficient in the inducible isoform of nitric oxide synthase, considerably less nitrotyrosine was found. Exposure of thymocytes in vitro to low concentrations (10 microM) of peroxynitrite led to apoptosis, whereas higher concentrations (50 microM) resulted in intense cell death with the characteristics of necrosis. We also investigated the effect of poly (ADP-ribose) synthetase (PARS) inhibition on thymocyte apoptosis. Using the PARS inhibitor 3-aminobenzamide (3-AB), or thymocytes from PARS-deficient animals, we established that PARS determines the fate of thymocyte death. Suppression of cellular ATP levels, and the cellular necrosis in response to peroxynitrite were prevented by PARS inhibition. Therefore, in the absence of PARS, cells are diverted towards the pathway of apoptotic cell death. Similar results were obtained with H2O2 treatment, while apoptosis induced by non-oxidative stimuli such as dexamethasone or anti-FAS antibody was unaffected by PARS inhibition. In conclusion, we propose that peroxynitrite-induced apoptosis may play a role in the process of thymocyte negative selection. Furthermore, we propose that the physiological role of PARS cleavage by apopain during apoptosis may serve as an energy-conserving step, enabling the cell to complete the process of apoptosis

  10. Enhanced activity of acetyl CoA synthetase adsorbed on smart microgel: an implication for precursor biosynthesis.

    PubMed

    Dubey, Nidhi Chandrama; Tripathi, Bijay Prakash; Müller, Martin; Stamm, Manfred; Ionov, Leonid

    2015-01-28

    Acetyl coenzyme A (acetyl CoA) is an essential precursor molecule for synthesis of metabolites such as the polyketide-based drugs (tetracycline, mitharamycin, Zocor, etc.) fats, lipids, and cholesterol. Acetyl CoA synthetase (Acs) is one of the enzymes that catalyzes acetyl CoA synthesis, and this enzyme is essentially employed for continuous supply of the acetyl CoA for the production of these metabolites. To achieve reusable and a more robust entity of the enzyme, we carried out the immobilization of Acs on poly(N-isopropylacrylamide)-poly(ethylenimine) (PNIPAm-PEI) microgels via adsorption. Cationic PNIPAm-PEI microgel was synthesized by one-step graft copolymerization of NIPAm and N,N-methylene bis-acrylamide (MBA) from PEI. Adsorption studies of Acs on microgel indicated high binding of enzymes, with a maximum binding capacity of 286 μg/mg of microgel for Acs was achieved. The immobilized enzymes showed improved biocatalytic efficiency over free enzymes, beside this, the reaction parameters and circular dichroism (CD) spectroscopy studies indicated no significant changes in the enzyme structure after immobilization. This thoroughly characterized enzyme bioconjugate was further immobilized on an ultrathin membrane to assess the same reaction in flow through condition. Bioconjugate was covalently immobilized on a thin layer of preformed microgel support upon polyethylene terephthalate (PET) track etched membrane. The prepared membrane was used in a dead end filtration device to monitor the bioconversion efficiency and operational stability of cross-linked bioconjugate. The membrane reactor showed consistent operational stability and maintained >70% of initial activity after 7 consecutive operation cycles. PMID:25561344

  11. Glucocorticoid receptor-mediated induction of glutamine synthetase in skeletal muscle cells in vitro

    NASA Technical Reports Server (NTRS)

    Max, Stephen R.; Thomas, John W.; Banner, Carl; Vitkovic, Ljubisa; Konagaya, Masaaki

    1987-01-01

    The regulation by glucocorticoids of glutamine synthetase in L6 muscle cells in culture is studied. Glutamine synthetase activity was strikingly enhanced by dexamethasone. The dexamethasone-mediated induction of glutamine synthetase activity was blocked by RU38486, a glucocorticoid antagonist, indicating the involvement of intracellular glucocorticoid receptors in the induction process. RU38486 alone was without effect. Northern blot analysis revealed that dexamethasone-mediated enhancement of glutamine synthetase activity involves increased levels of glutamine synthetase mRNA. Glucocorticoids regulate the expression of glutamine synthetase mRNA in cultured muscle cells via interaction with intracellular receptors. Such regulation may be relevant to control of glutamine production by muscle.

  12. Long chain acyl-CoA synthetases and other acyl activating enzymes

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Proper synthesis and breakdown of molecules containing carboxylic acids is a vital part of metabolism in all living organisms. Given the relatively inert chemical nature of many carboxylic acids, activation is a necessary step prior to use in the various anabolic and catabolic pathways that utilize...

  13. Mg2+-free B. stearothermophilus Tryptophanyl-tRNA Synthetase Retains a Major Fraction of the Overall Rate Enhancement for Tryptophan Activation

    PubMed Central

    Weinreb, Violetta; Carter, Charles W.

    2010-01-01

    Few experimental data are available for rates of enzymatic phosphoryl-transfer reactions in the absence of the divalent metal ions associated with such reactions. Such data are of interest for amino acid activation by class Ic aminoacyl-tRNA synthetases, for which there is substantial evidence that binding energy of ATP may account for a major fraction of the overall rate enhancement, and it is crucial to know if these effects themselves depend on the divalent metal ion. We describe a nested, non-linear model for the sum of metal-free and metal-catalyzed activities and its use in determining metal-free enzyme activity jointly with transition-state metal binding affinity, by fitting observed values obtained from Mg2+-depleted assays with increasing [EDTA] at known [Mg2+]total. Tryptophan activation by B. stearothermophilus tryptophanyl-tRNA synthetase falls asymptotically to a plateau value five orders of magnitude below that observed for the Mg2+-supplemented enzyme at EDTA concentrations that reduce the free metal concentration to <1 pmolar. The fitted regression model parameters yield a relative rate acceleration of 9.3 × 104 attributable to the catalytic effect of Mg2+ and an enhanced (KE‡ = 1.15 × 10−7 M) transition-state binding of Mg2+. Factorial analysis indicates that 80% of the reduction in free energy of activation effected by TrpRS arises from protein-ligand interactions. PMID:18173270

  14. Relationship between plasma lipids and palmitoyl-CoA hydrolase and synthetase activities with peroxisomal proliferation in rats treated with fibrates.

    PubMed Central

    Alegret, M.; Ferrando, R.; Vázquez, M.; Adzet, T.; Merlos, M.; Laguna, J. C.

    1994-01-01

    1. The time-course of the effect of clofibrate (CFB), bezafibrate (BFB) and gemfibrozil (GFB) on lipid plasma levels and palmitoyl-CoA hydrolase and synthetase activities, as well as the correlations with the peroxisomal proliferation phenomenon have been studied in male Sprague-Dawley rats. 2. The administration of the three drugs caused a significant reduction in body weight gain, accompanied with a paradoxical increase in food intake in groups treated with BFB and GFB. 3. Drug treatment produced gross hepatomegaly and increase in peroxisomal beta-oxidation, and these parameters were strongly correlated. The order of potency was BFB > CFB > or = GFB. 4. Both plasma cholesterol (BFB approximately CFB > GFB) and triglyceride (BFB approximately GFB > CFB) levels were reduced in treated animals. There was an inverse correlation between these parameters and peroxisomal beta-oxidation, although the peroxisomal proliferation seemed to explain only a small part of the hypolipidemic effect observed. 5. Cytosolic and microsomal (but not mitochondrial) palmitoyl-CoA hydrolase activities were increased by the three drugs (BFB > CFB > GFB), probably by inducing the hydrolase I isoform, which is insensitive to inhibition by fibrates in vitro. The increased hydrolase activities were directly and strongly correlated with peroxisomal beta-oxidation. 6. Palmitoyl-CoA synthetase activity was also increased by the treatment with fibrates (BFB > CFB > GFB), probably as a consequence of the enhancement of hydrolase activities.(ABSTRACT TRUNCATED AT 250 WORDS) PMID:7915611

  15. Crystal Structure of Tryptophanyl-tRNA Synthetase Complexed with Adenosine-5′ Tetraphosphate: Evidence for Distributed Use of Catalytic Binding Energy in Amino Acid Activation by Class I Aminoacyl-tRNA Synthetases

    PubMed Central

    Retailleau, Pascal; Weinreb, Violetta; Hu, Mei; Carter, Charles W.

    2009-01-01

    Tryptophanyl-tRNA synthetase (TrpRS) is a functionally dimeric ligase, which specifically couples hydrolysis of ATP to AMP and pyrophosphate to the formation of an ester bond between tryptophan and the cognate tRNA. TrpRS from Bacillus stearothermophilus binds the ATP analogue, adenosine-5′ tetraphosphate, AQP, competitively with ATP during pyrophosphate exchange. Estimates of binding affinity from this competitive inhibition and from isothermal titration calorimetry show that AQP binds 200 times more tightly than ATP both under conditions of induced-fit, where binding is coupled to an unfavourable conformational change, and under exchange conditions, where there is no conformational change. These binding data provide an indirect experimental measurement of +3.0 kcal/mole for the conformational free energy change associated with induced-fit assembly of the active site. Thermodynamic parameters derived from the calorimetry reveal very modest enthalpic changes, consistent with binding driven largely by a favorable entropy change. The 2.5 Å structure of the TrpRS:AQP complex, determined de novo by X-ray crystallography, resembles that of the previously described, pre-transition state TrpRS:ATP complexes. The anticodon-binding domain untwists relative to the Rossmann-fold domain by 20% of the way toward the orientation observed for the Products complex. An unexpected tetraphosphate conformation allows the γ̃ and δ̃ phosphate groups to occupy positions equivalent to those occupied by the β̃ and γ̃ phosphates of ATP. The β-phosphate effects a 1.11 Å extension that relocates the α-phosphate toward the tryptophan carboxylate while the PPi mimic moves deeper into the KMSKS loop. This configuration improves interactions between enzyme and nucleotide significantly and uniformly in the adenosine and PPi binding subsites. A new hydrogen bond forms between S194 from the class I KMSKS signature sequence and the PPi mimic. These complementary thermodynamic and

  16. Dexamethasone regulates glutamine synthetase expression in rat skeletal muscles

    NASA Technical Reports Server (NTRS)

    Max, Stephen R.; Konagaya, Masaaki; Konagaya, Yoko; Thomas, John W.; Banner, Carl; Vitkovic, Ljubisa

    1986-01-01

    The regulation of glutamine synthetase by glucocorticoids in rat skeletal muscles was studied. Administration of dexamethasone strikingly enhanced glutamine synthetase activity in plantaris and soleus muscles. The dexamethasone-mediated induction of glutamine synthetase activity was blocked to a significant extent by orally administered RU38486, a glucocorticoid antagonist, indicating the involvement of intracellular glucocorticoid receptors in the induction. Northern blot analysis revealed that dexamethasone-mediated enhancement of glutamine synthetase activity involves dramatically increased levels of glutamine synthetase mRNA. The induction of glutamine synthetase was selective in that glutaminase activity of soleus and plantaris muscles was not increased by dexamethasone. Furthermore, dexamethasone treatment resulted in only a small increase in glutamine synthetase activity in the heart. Accordingly, there was only a slight change in glutamine synthetase mRNA level in this tissue. Thus, glucocorticoids regulate glutamine synthetase gene expression in rat muscles at the transcriptional level via interaction with intracellular glutamine production by muscle and to mechanisms underlying glucocorticoid-induced muscle atrophy.

  17. Conformational dynamics of the active site loop of S-adenosylmethionine synthetase illuminated by site-directed spin labeling.

    PubMed

    Taylor, John C; Markham, George D

    2003-07-15

    S-adenosylmethionine synthetase (ATP: L-methionine S-adenosyltransferase, methionine adenosyltransferase, a.k.a. MAT) is one of numerous enzymes that have a flexible polypeptide loop that moves to gate access to the active site in a motion that is closely coupled to catalysis. Crystallographic studies of this tetrameric enzyme have shown that the loop is closed in the absence of bound substrates. However, the loop must open to allow substrate binding and a variety of data indicate that the loop is closed during the catalytic steps. Previous kinetic studies indicate that during turnover loop motion occurs on a time scale of 10(-2)s, ca. 10-fold faster than chemical transformations and turnover. Site-directed spin labeling has been used to introduce nitroxide groups at two positions in the loop to illuminate how the motion of the loop is affected by substrate binding. The two loop mutants constructed, G105C and D107C, retain wild type levels of MAT activity; attachment of a methanethiosulfonate spin label to convert the cysteine to the "R1" residue reduced the k(cat) only for the labeled D107R1 form (7-fold). The K(m) value for methionine increased 2- to 4-fold for the cysteine mutants and 2- to 7-fold for the labeled proteins, whereas the K(m) for ATP was changed by at most 2-fold. EPR spectra for both labeled proteins are nearly identical and show the presence of two major spin label environments with rotational diffusion rates differing by approximately 10-fold; the slower rate is ca. 4-fold faster than the estimated protein rotational rate. The spectra are not altered by addition of substrates or products. At both positions the less mobile conformation constitutes ca. 65% of the total species, indicating an equilibrium that only slightly favors one form, that in which the label is more immobilized. The equilibrium constant that relates the two forms is comparable to the equilibrium constant of 1.5 for a conformational change that was previously deduced from the

  18. Organisation and sequence determination of glutamine-dependent carbamoyl phosphate synthetase II in Toxoplasma gondii.

    PubMed

    Fox, Barbara A; Bzik, David J

    2003-01-01

    Carbamoyl phosphate synthetase II encodes the first enzymic step of de novo pyrimidine biosynthesis. Carbamoyl phosphate synthetase II is essential for Toxoplasma gondii replication and virulence. In this study, we characterised the primary structure of a 28kb gene encoding Toxoplasma gondii carbamoyl phosphate synthetase II. The carbamoyl phosphate synthetase II gene was interrupted by 36 introns. The predicted protein encoded by the 37 carbamoyl phosphate synthetase II exons was a 1,687 amino acid polypeptide with an N-terminal glutamine amidotransferase domain fused with C-terminal carbamoyl phosphate synthetase domains. This bifunctional organisation of carbamoyl phosphate synthetase II is unique, so far, to protozoan parasites from the phylum Apicomplexa (Plasmodium, Babesia, Toxoplasma) or zoomastigina (Trypanosoma, Leishmania). Apicomplexan parasites possessed the largest carbamoyl phosphate synthetase II enzymes due to insertions in the glutamine amidotransferase and carbamoyl phosphate synthetase domains that were not present in the corresponding gene segments from bacteria, plants, fungi and mammals. The C-terminal allosteric regulatory domain, the carbamoyl phosphate synthetase linker domain and the oligomerisation domain were also distinct from the corresponding domains in other species. The novel C-terminal regulatory domain may explain the lack of activation of Toxoplasma gondii carbamoyl phosphate synthetase II by the allosteric effector 5-phosphoribosyl 1-pyrophosphate. Toxoplasma gondii growth in vitro was markedly inhibited by the glutamine antagonist acivicin, an inhibitor of glutamine amidotransferase activity typically associated with carbamoyl phosphate synthetase II, guanosine monophosphate synthetase, or CTP synthetase. PMID:12547350

  19. Transposon Mutagenesis of Probiotic Lactobacillus casei Identifies asnH, an Asparagine Synthetase Gene Involved in Its Immune-Activating Capacity

    PubMed Central

    Ito, Masahiro; Kim, Yun-Gi; Tsuji, Hirokazu; Takahashi, Takuya; Kiwaki, Mayumi; Nomoto, Koji; Danbara, Hirofumi; Okada, Nobuhiko

    2014-01-01

    Lactobacillus casei ATCC 27139 enhances host innate immunity, and the J1 phage-resistant mutants of this strain lose the activity. A transposon insertion mutant library of L. casei ATCC 27139 was constructed, and nine J1 phage-resistant mutants out of them were obtained. Cloning and sequencing analyses identified three independent genes that were disrupted by insertion of the transposon element: asnH, encoding asparagine synthetase, and dnaJ and dnaK, encoding the molecular chaperones DnaJ and DnaK, respectively. Using an in vivo mouse model of Listeria infection, only asnH mutant showed deficiency in their ability to enhance host innate immunity, and complementation of the mutation by introduction of the wild-type asnH in the mutant strain recovered the immuno-augmenting activity. AsnH protein exhibited asparagine synthetase activity when the lysozyme-treated cell wall extracts of L. casei ATCC 27139 was added as substrate. The asnH mutants lost the thick and rigid peptidoglycan features that are characteristic to the wild-type cells, indicating that AsnH of L. casei is involved in peptidoglycan biosynthesis. These results indicate that asnH is required for the construction of the peptidoglycan composition involved in the immune-activating capacity of L. casei ATCC 27139. PMID:24416179

  20. Mechanism of the reaction catalyzed by mandelate racemase. 2. Crystal structure of mandelate racemase at 2.5-A resolution: identification of the active site and possible catalytic residues.

    PubMed

    Neidhart, D J; Howell, P L; Petsko, G A; Powers, V M; Li, R S; Kenyon, G L; Gerlt, J A

    1991-09-24

    The crystal structure of mandelate racemase (MR) has been solved at 3.0-A resolution by multiple isomorphous replacement and subsequently refined against X-ray diffraction data to 2.5-A resolution by use of both molecular dynamics refinement (XPLOR) and restrained least-squares refinement (PROLSQ). The current crystallographic R-factor for this structure is 18.3%. MR is composed of two major structural domains and a third, smaller, C-terminal domain. The N-terminal domain has an alpha + beta topology consisting of a three-stranded antiparallel beta-sheet followed by an antiparallel four alpha-helix bundle. The central domain is a singly wound parallel alpha/beta-barrel composed of eight central strands of beta-sheet and seven alpha-helices. The C-terminal domain consists of an irregular L-shaped loop with several short sections of antiparallel beta-sheet and two short alpha-helices. This C-terminal domain partially covers the junction between the major domains and occupies a region of the central domain that is filled by an eight alpha-helix in all other known parallel alpha/beta-barrels except for the barrel domain in muconate lactonizing enzyme (MLE) [Goldman, A., Ollis, D. L., & Steitz, T. A. (1987) J. Mol. Biol. 194, 143] whose overall polypeptide fold and amino acid sequence are strikingly similar to those of MR [Neidhart, D. J., Kenyon, G. L., Gerlt, J. A., & Petsko, G. A. (1990) Nature 347, 692]. In addition, the crystal structure reveals that, like MLE, MR is tightly packed as an octamer of identical subunits. The active site of MR is located between the two major domains, at the C-terminal ends of the beta-strands in the alpha/beta-barrel domain. The catalytically essential divalent metal ion is ligated by three side-chain carboxyl groups contributed by residues of the central beta-sheet. A model of a productive substrate complex of MR has been constructed on the basis of difference Fourier analysis at 3.5-A resolution of a complex between MR and (R

  1. A naturally occurring nonapeptide functionally compensates for the CP1 domain of leucyl-tRNA synthetase to modulate aminoacylation activity.

    PubMed

    Tan, Min; Yan, Wei; Liu, Ru-Juan; Wang, Meng; Chen, Xin; Zhou, Xiao-Long; Wang, En-Duo

    2012-04-15

    aaRSs (aminoacyl-tRNA synthetases) establish the rules of the genetic code by catalysing the formation of aminoacyl-tRNA. The quality control for aminoacylation is achieved by editing activity, which is usually carried out by a discrete editing domain. For LeuRS (leucyl-tRNA synthetase), the CP1 (connective peptide 1) domain is the editing domain responsible for hydrolysing mischarged tRNA. The CP1 domain is universally present in LeuRSs, except MmLeuRS (Mycoplasma mobile LeuRS). The substitute of CP1 in MmLeuRS is a nonapeptide (MmLinker). In the present study, we show that the MmLinker, which is critical for the aminoacylation activity of MmLeuRS, could confer remarkable tRNA-charging activity on the inactive CP1-deleted LeuRS from Escherichia coli (EcLeuRS) and Aquifex aeolicus (AaLeuRS). Furthermore, CP1 from EcLeuRS could functionally compensate for the MmLinker and endow MmLeuRS with post-transfer editing capability. These investigations provide a mechanistic framework for the modular construction of aaRSs and their co-ordination to achieve catalytic efficiency and fidelity. These results also show that the pre-transfer editing function of LeuRS originates from its conserved synthetic domain and shed light on future study of the mechanism. PMID:22292813

  2. Pericentral activity of AFP enhancer E3 and glutamine synthetase upstream enhancer in the adult liver are regulated by β-catenin

    PubMed Central

    Clinkenbeard, Erica L.; Butler, James E.; Spear, Brett T.

    2015-01-01

    We previously showed that mouse alpha-fetoprotein enhancer E3 activity is highly restricted to pericentral hepatocytes in the adult liver. Here, using transgenic mice, we show that the upstream enhancer of the rat glutamine synthetase gene is also active specifically in pericentral regions. Activity of both enhancers is lost in the absence of β-catenin, a key regulator of zonal gene expression in the adult liver. Both enhancers contain a single highly conserved TCF/LEF binding site that is required for responsiveness to β-catenin. We also show that endogenous AFP mRNA levels in the perinatal liver are lower when β-catenin is reduced. These data identify the first distinct zonally-active regulatory regions required for β-catenin responsiveness in the adult liver and suggest that postnatal AFP repression and the establishment of zonal regulation are controlled, at least in part, by the same factors. PMID:22544812

  3. [Dependence of creatine kinase and glycogen synthetase activities of skeletal muscles on state of adenine nucleotide phosphorylation and cAMP metabolism].

    PubMed

    Iakovlev, N N; Chagovets, N R; Maksimova, L V

    1980-01-01

    Changes in the contents of adenine nucleotides, creatine phosphate, inorganic phosphate, creatine, glucose-6-phosphate and glycogen and the activity of adenylate cyclase, creatine kinase, glycogen phosphorylase 31:51-AMP-phosphodiesterase and glycogen synthetase in muscles and of blood catecholamines were studied in adult rats before loading, immediately after the cessation of the muscular activity, and at rest. Adenine nucleotides are established to play a regulatory role in catabolic and anabolic processes nucleotides are established to play a regulatory role in catabolic and anabolic processes related to the muscular activity. It is established that compensation and supercompensation of the working losses of muscular creatine phosphate and glycogen are due to activation of anabolic processes under conditions of higher phosphorylation of the adenylic system. PMID:6247797

  4. Structure and Activity of an Aminoacyl-tRNA Synthetase that Charges tRNA with Nitro-Tryptophan

    SciTech Connect

    Buddha,M.; Crane, B.

    2005-01-01

    The most divergent of two tryptophanyl tRNA synthetases (TrpRS II) found in Deinococcus radiodurans interacts with a nitric oxide synthase protein that produces 4-nitro-tryptophan (4-NRP). TrpRS II efficiently charges transfer RNATrp with 4-NRP and 5-hydroxy-tryptophan (5-HRP). The crystal structures of TrpRS II bound to tryptophan and 5-HRP reveal residue substitutions that accommodate modified indoles. A class of auxiliary bacterial TrpRSs conserve this capacity to charge tRNA with nonstandard amino acids.

  5. A non-radioactive assay for selenophosphate synthetase activity using recombinant pyruvate pyrophosphate dikinase from Thermus thermophilus HB8.

    PubMed

    Kamada, Saho; Okugochi, Takahiro; Asano, Kaori; Tobe, Ryuta; Mihara, Hisaaki; Nemoto, Michiko; Inagaki, Kenji; Tamura, Takashi

    2016-10-01

    Biosynthesis of selenocysteine-containing proteins requires monoselenophosphate, a selenium-donor intermediate generated by selenophosphate synthetase (Sephs). A non-radioactive assay was developed as an alternative to the standard [8-(14)C] AMP-quantifying assay. The product, AMP, was measured using a recombinant pyruvate pyrophosphate dikinase from Thermus thermophilus HB8. The KM and kcat for Sephs2-Sec60Cys were determined to be 26 μM and 0.352 min(-1), respectively. PMID:27405844

  6. The freshwater Amazonian stingray, Potamotrygon motoro, up-regulates glutamine synthetase activity and protein abundance, and accumulates glutamine when exposed to brackish (15 per thousand) water.

    PubMed

    Ip, Y K; Loong, A M; Ching, B; Tham, G H Y; Wong, W P; Chew, S F

    2009-12-01

    This study aimed to examine whether the stenohaline freshwater stingray, Potamotrygon motoro, which lacks a functional ornithine-urea cycle, would up-regulate glutamine synthetase (GS) activity and protein abundance, and accumulate glutamine during a progressive transfer from freshwater to brackish (15 per thousand) water with daily feeding. Our results revealed that, similar to other freshwater teleosts, P. motoro performed hyperosmotic regulation, with very low urea concentrations in plasma and tissues, in freshwater. In 15 per thousand water, it was non-ureotelic and non-ureoosmotic, acting mainly as an osmoconformer with its plasma osmolality, [Na+] and [Cl-] comparable to those of the external medium. There were significant increases in the content of several free amino acids (FAAs), including glutamate, glutamine and glycine, in muscle and liver, but not in plasma, indicating that FAAs could contribute in part to cell volume regulation. Furthermore, exposure of P. motoro to 15 per thousand water led to up-regulation of GS activity and protein abundance in both liver and muscle. Thus, our results indicate for the first time that, despite the inability to synthesize urea and the lack of functional carbamoyl phosphate synthetase III (CPS III) which uses glutamine as a substrate, P. motoro retained the capacity to up-regulate the activity and protein expression of GS in response to salinity stress. Potamotrygon motoro was not nitrogen (N) limited when exposed to 15 per thousand water with feeding, and there were no significant changes in the amination and deamination activities of hepatic glutamate dehydrogenase. In contrast, P. motoro became N limited when exposed to 10 per thousand water with fasting and could not survive well in 15 per thousand water without food. PMID:19915125

  7. Molecular characterization of N-acetylaspartylglutamate synthetase.

    PubMed

    Becker, Ivonne; Lodder, Julia; Gieselmann, Volkmar; Eckhardt, Matthias

    2010-09-17

    The dipeptide N-acetylaspartyl-glutamate (NAAG) is an abundant neuropeptide in the mammalian brain. Despite this fact, its physiological role is poorly understood. NAAG is synthesized by a NAAG synthetase catalyzing the ATP-dependent condensation of N-acetylaspartate and glutamate. In vitro NAAG synthetase activity has not been described, and the enzyme has not been purified. Using a bioinformatics approach we identified a putative dipeptide synthetase specifically expressed in the nervous system. Expression of the gene, which we named NAAGS (for NAAG synthetase) was sufficient to induce NAAG synthesis in primary astrocytes or CHO-K1 and HEK-293T cells when they coexpressed the NAA transporter NaDC3. Furthermore, coexpression of NAAGS and the recently identified N-acetylaspartate (NAA) synthase, Nat8l, in CHO-K1 or HEK-293T cells was sufficient to enable these cells to synthesize NAAG. Identity of the reaction product of NAAGS was confirmed by HPLC and electrospray ionization tandem mass spectrometry (ESI-MS). High expression levels of NAAGS were restricted to the brain, spinal cord, and testis. Taken together our results strongly suggest that the identified gene encodes a NAAG synthetase. Its identification will enable further studies to examine the role of this abundant neuropeptide in the vertebrate nervous system. PMID:20643647

  8. Human holocarboxylase synthetase with a start site at methionine-58 is the predominant nuclear variant of this protein and has catalytic activity

    SciTech Connect

    Bao, Baolong; Wijeratne, Subhashinee S.K.; Rodriguez-Melendez, Rocio; Zempleni, Janos

    2011-08-19

    Highlights: {yields} Unambiguous evidence is provided that methionine-58 serves as an in-frame alternative translation site for holocarboxylase synthetase (HLCS58). {yields} Full-length HLCS and HLCS58 enter the nucleus, but HLCS58 is the predominant variant. {yields} HLCS58 has biological activity as biotin protein ligase. -- Abstract: Holocarboxylase synthetase (HLCS) catalyzes the covalent binding of biotin to both carboxylases in extranuclear structures and histones in cell nuclei, thereby mediating important roles in intermediary metabolism, gene regulation, and genome stability. HLCS has three putative translational start sites (methionine-1, -7, and -58), but lacks a strong nuclear localization sequence that would explain its participation in epigenetic events in the cell nucleus. Recent evidence suggests that small quantities of HLCS with a start site in methionine-58 (HLCS58) might be able to enter the nuclear compartment. We generated the following novel insights into HLCS biology. First, we generated a novel HLCS fusion protein vector to demonstrate that methionine-58 is a functional translation start site in human cells. Second, we used confocal microscopy and western blots to demonstrate that HLCS58 enters the cell nucleus in meaningful quantities, and that full-length HLCS localizes predominantly in the cytoplasm but may also enter the nucleus. Third, we produced recombinant HLCS58 to demonstrate its biological activity toward catalyzing the biotinylation of both carboxylases and histones. Collectively, these observations are consistent with roles of HLCS58 and full-length HLCS in nuclear events. We conclude this report by proposing a novel role for HLCS in epigenetic events, mediated by physical interactions between HLCS and other chromatin proteins as part of a larger multiprotein complex that mediates gene repression.

  9. Identification of 2'-5'-Oligoadenylate Synthetase-Like Gene in Goose: Gene Structure, Expression Patterns, and Antiviral Activity Against Newcastle Disease Virus.

    PubMed

    Yang, Chao; Liu, Fei; Chen, Shun; Wang, Mingshu; Jia, Renyong; Zhu, Dekang; Liu, Mafeng; Sun, Kunfeng; Yang, Qiao; Wu, Ying; Chen, Xiaoyue; Cheng, Anchun

    2016-09-01

    2'-5'-oligoadenylate synthetase-like (OASL) is a kind of antiviral protein induced by interferons (IFNs), which plays an important role in the IFNs-mediated antiviral signaling pathway. In this study, we cloned and identified OASL in the Chinese goose for the first time. Goose 2'-5'-oligoadenylate synthetase-like (goOASL), including an ORF of 1527bp, encoding a protein of 508 amino acids. GoOASL protein contains 3 conserved motifs: nucleotidyltransferase (NTase) domain, 2'-5'-oligoadenylate synthetase (OAS) domain, and 2 ubiquitin-like (UBL) repeats. The tissue distribution profile of goOASL in 2-week-old gosling and adult goose were identified by Real-Time quantitative PCR, which revealed that the highest level of goOASL mRNA transcription was detected in the blood of adult goose and gosling. The mRNA transcription level of goOASL was upregulated in all tested tissues of duck Tembusu virus (DTMUV)-infected 3-day-old goslings, compared with control groups. Furthermore, using the stimulus Poly(I: C), ODN2006, R848, and lipopolysaccharide (LPS) as well as the viral pathogens DTMUV, H9N2 avian influenza virus (AIV), and gosling plague virus (GPV) to treat goose peripheral blood mononuclear cells (PBMCs) for 6 h, goOASL transcripts level was significantly upregulated in all treated groups. To further investigate the antiviral activity of goOASL, pcDNA3.1(+)-goOASL-His plasmid was constructed, and goOASL was expressed by the goose embryo fibroblast cells (GEFs) transfected with pcDNA3.1(+)-goOASL-His. Our research data suggested that Newcastle disease virus (NDV) replication (viral copies and viral titer) in GEFs was significantly reduced by the overexpression of goOASL protein. These data were meaningful for the antiviral immunity research of goose and shed light on the future prevention of NDV in fowl. PMID:27576097

  10. 8-Azido double-stranded RNA photoaffinity probes. Enzymatic synthesis, characterization, and biological properties of poly(I,8-azidoI).poly(C) and poly(I,8-azidoI).poly(C12U) with 2',5'-oligoadenylate synthetase and protein kinase.

    PubMed

    Li, S W; Moskow, J J; Suhadolnik, R J

    1990-04-01

    The technique of photoaffinity labeling has been applied to the double-stranded RNA (dsRNA)-dependent enzyme 2',5'-oligoadenylate (2-5A) synthetase to provide a means for the examination of RNA-protein interaction(s) in the dsRNA allosteric binding domain of this enzyme. The synthesis, characterization, and biological properties of the photoaffinity probe poly[( 32P]I,8-azidoI).poly(C) and its mismatched analog poly[( 32P]I,8-azidoI).poly(C12U), which mimic the parent molecules poly(I).poly(C) and poly(I).poly(C12U), are described. The efficacy of poly[( 32P]I,8-azidoI).poly(C) and poly[( 32P]I,8-azidoI).poly(C12U) as allosteric site-directed activators is demonstrated using highly purified 2-5A synthetase from rabbit reticulocyte lysates and from extracts of interferon-treated HeLa cells. The dsRNA photoprobes activate these two 2-5A synthetases. Saturation of 2-5A synthetase is observed at 6 x 10(-4) g/ml poly[( 32P]I,8-azidoI).poly(C) following photolysis for 20 s at 0 degrees C. The photoincorporation of poly[( 32P]I,8-azidoI).poly(C) is specific, as demonstrated by the prevention of photoincorporation by native poly(I).poly(C). DNA, poly(I), and poly(C) are not competitors of poly[( 32P]I,8-azidoI).poly(C). Following UV irradiation of 2-5A synthetase with poly[( 32P]I,8-azidoI).poly(C), the reaction mixture is treated with micrococcal nuclease to hydrolyze azido dsRNA that is not cross-linked to the enzyme. A radioactive band of 110 kDa (the same as that reported for native rabbit reticulocyte lysate 2-5A synthetase) is observed following sodium dodecyl sulfate-polyacrylamide gel electrophoresis and autoradiography. The specific photolabeling of the 2-5A synthetase suggests that the azido dsRNA is intrinsic to the allosteric binding domain. The utility of poly[( 32P]I,8-azidoI).poly(C) for the detection of dsRNA-dependent binding proteins and the isolation of peptides at or near the allosteric binding site is discussed. PMID:2318823

  11. Characterization of Cereulide Synthetase, a Toxin-Producing Macromolecular Machine

    PubMed Central

    Alonzo, Diego A.; Magarvey, Nathan A.; Schmeing, T. Martin

    2015-01-01

    Cereulide synthetase is a two-protein nonribosomal peptide synthetase system that produces a potent emetic toxin in virulent strains of Bacillus cereus. The toxin cereulide is a depsipeptide, as it consists of alternating aminoacyl and hydroxyacyl residues. The hydroxyacyl residues are derived from keto acid substrates, which cereulide synthetase selects and stereospecifically reduces with imbedded ketoreductase domains before incorporating them into the growing depsipeptide chain. We present an in vitro biochemical characterization of cereulide synthetase. We investigate the kinetics and side chain specificity of α-keto acid selection, evaluate the requirement of an MbtH-like protein for adenylation domain activity, assay the effectiveness of vinylsulfonamide inhibitors on ester-adding modules, perform NADPH turnover experiments and evaluate in vitro depsipeptide biosynthesis. This work also provides biochemical insight into depsipeptide-synthesizing nonribosomal peptide synthetases responsible for other bioactive molecules such as valinomycin, antimycin and kutzneride. PMID:26042597

  12. Structural separation of different extracellular activities in aminoacyl-tRNA synthetase-interacting multi-functional protein, p43/AIMP1

    SciTech Connect

    Han, Jung Min; Park, Sang Gyu; Lee, Yeonsook; Kim, Sunghoon . E-mail: sungkim@snu.ac.kr

    2006-03-31

    AIMP1 (previously known as p43) is first found as a factor associated with a macromolecular tRNA synthetase complex. However, it is also secreted and acts on diverse target cells such as endothelial cells, macrophages, and fibroblasts to control angiogenesis, inflammation, and dermal regeneration, respectively. We previously showed that AIMP1 induces the death of endothelial cell but proliferation of fibroblasts and activates macrophages. In this work, we found that elastase 2-cleaved AIMP1 retained its pro-apoptotic activity to endothelial cells but lost the growth-stimulatory activity to fibroblasts. To determine the functional domains responsible for each activity, we generated several deletion fragments of AIMP1 and compared the activities to the target cells. AIMP1 promoted endothelial cell death and caspase-3 activation through its 101-114 amino acid region, fibroblast proliferation through its 6-46 amino acid region, and endothelial migration through its 114-192 amino acid region as revealed by deletion mapping. Thus, this work revealed that AIMP1 uses different regions for its diverse extracellular activities.

  13. Nitrate reductase, nitrite reductase, glutamine synthetase, and glutamate synthase expression and activity in response to different nitrogen sources in nitrogen-starved wheat seedlings.

    PubMed

    Balotf, Sadegh; Kavoosi, Gholamreza; Kholdebarin, Bahman

    2016-03-01

    The objective of this study was to examine the expression and activity of nitrate reductase (NR, EC 1.7.1.1), nitrite reductase (NiR, EC 1.7.2.2), glutamine synthetase (GS, EC 6.3.1.2), and glutamate synthase (GOGAT, EC 1.4.7.1) in response to potassium nitrate, ammonium chloride, and ammonium nitrate in nitrogen-starved wheat seedlings. Plants were grown in standard nutrient solution for 17 days and then subjected to nitrogen starvation for 7 days. The starved plants were supplied with potassium nitrate ammonium nitrate and ammonium chloride (50 mM) for 4 days and the leaves were harvested. The relative expression of NR, NiR, GS, and GOGAT as well as the enzyme activities were investigated. Nitrogen starvation caused a significant decrease both in transcript levels and in NR, NiR, GS, and GOGAT activities. Potassium nitrate and ammonium nitrate treatments restored NR, NiR, GS, and GOGAT expressions and activities. Ammonium chloride increased only the expressions and activities of GS and GOGAT in a dose-dependent manner. The results of our study highlight the differential effects between the type and the amount of nitrogen salts on NR, NiR, GS, and GOGAT activities in wheat seedlings while potassium nitrate being more effective. PMID:25676153

  14. Comparative Biochemical and Immunological Studies of Bacterial Glutamine Synthetases

    PubMed Central

    Tronick, Steven R.; Ciardi, Joseph E.; Stadtman, E. R.

    1973-01-01

    Antisera prepared against adenylylated and unadenylylated Escherichia coli glutamine synthetase cross-reacted with the glutamine synthetases from a number of gram-negative bacteria and one gram-variable species as demonstrated by immunodiffusion and inhibition of enzyme activity. In contrast, the antisera did not cross-react with the glutamine synthetases from gram-positive bacteria (with one exception) nor with the synthetases of higher organisms. Modification of the various glutamine synthetases by covalent attachment of adenosine 5′-monophosphate (or other nucleotides) was tested for by determining whether or not snake venom phosphodiesterase altered catalytic activity in a manner similar to its effect on adenylylated E. coli glutamine synthetase. Only the activity of the glutamine synthetases from gram-negative bacteria grown with specific levels of nitrogen sources could be altered by snake venom phosphodiesterase. In addition, a relative order of antigenic homology between cross-reacting enzymes was suggested based on the patterns of spur formation in the immunodiffusion assay. Images PMID:4125585

  15. Identification of a residue crucial for the angiostatic activity of human mini tryptophanyl-tRNA synthetase by focusing on its molecular evolution

    PubMed Central

    Nakamoto, Terumasa; Miyanokoshi, Miki; Tanaka, Tomoaki; Wakasugi, Keisuke

    2016-01-01

    Human tryptophanyl-tRNA synthetase (TrpRS) exists in two forms: a full-length TrpRS and a mini TrpRS. We previously found that human mini, but not full-length, TrpRS is an angiostatic factor. Moreover, it was shown that the interaction between mini TrpRS and the extracellular domain of vascular endothelial (VE)-cadherin is crucial for its angiostatic activity. However, the molecular mechanism of the angiostatic activity of human mini TrpRS is only partly understood. In the present study, we investigated the effects of truncated (mini) form of TrpRS proteins from human, bovine, or zebrafish on vascular endothelial growth factor (VEGF)-stimulated chemotaxis of human umbilical vein endothelial cells (HUVECs). We show that both human and bovine mini TrpRSs inhibited VEGF-induced endothelial migration, whereas zebrafish mini TrpRS did not. Next, to identify residues crucial for the angiostatic activity of human mini TrpRS, we prepared several site-directed mutants based on amino acid sequence alignments among TrpRSs from various species and demonstrated that a human mini K153Q TrpRS mutant cannot inhibit VEGF-stimulated HUVEC migration and cannot bind to the extracellular domain of VE-cadherin. Taken together, we conclude that the Lys153 residue of human mini TrpRS is a VE-cadherin binding site and is therefore crucial for its angiostatic activity. PMID:27094087

  16. Antiviral activity of human oligoadenylate synthetases-like (OASL) is mediated by enhancing retinoic acid-inducible gene I (RIG-I) signaling

    PubMed Central

    Zhu, Jianzhong; Zhang, Yugen; Ghosh, Arundhati; Cuevas, Rolando A.; Forero, Adriana; Dhar, Jayeeta; Ibsen, Mikkel Søes; Schmid-Burgk, Jonathan Leo; Schmidt, Tobias; Ganapathiraju, Madhavi K.; Fujita, Takashi; Hartmann, Rune; Barik, Sailen; Hornung, Veit; Coyne, Carolyn B.; Sarkar, Saumendra N.

    2014-01-01

    SUMMARY Virus infection is sensed in the cytoplasm by retinoic acid-inducible gene I (RIG-I, also known as DDX58), which requires RNA and polyubiquitin binding to induce type I interferon (IFN), and activate cellular innate immunity. We show that the human IFN-inducible oligoadenylate synthetases-like (OASL) protein had antiviral activity and mediated RIG-I activation by mimicking polyubiquitin. Loss of OASL expression reduced RIG-I signaling and enhanced virus replication in human cells. Conversely, OASL expression suppressed replication of a number of viruses in a RIG-I-dependent manner and enhanced RIG-I-mediated IFN induction. OASL interacted and colocalized with RIG-I, and through its C-terminal ubiquitin-like domain specifically enhanced RIG-I signaling. Bone marrow derived macrophages from mice deficient for Oasl2 showed that among the two mouse orthologs of human OASL; Oasl2 is functionally similar to human OASL. Our findings show a mechanism by which human OASL contributes to host antiviral responses by enhancing RIG-I activation. PMID:24931123

  17. Genetics Home Reference: carbamoyl phosphate synthetase I deficiency

    MedlinePlus

    Skip to main content Your Guide to Understanding Genetic Conditions Enable Javascript for addthis links to activate. ... Conditions Genes Chromosomes & mtDNA Resources Help Me Understand Genetics Home Health Conditions carbamoyl phosphate synthetase I deficiency ...

  18. A Deoxynivalenol-Activated Methionyl-tRNA Synthetase Gene from Wheat Encodes a Nuclear Localized Protein and Protects Plants Against Fusarium Pathogens and Mycotoxins.

    PubMed

    Zuo, Dong-Yun; Yi, Shu-Yuan; Liu, Rong-Jing; Qu, Bo; Huang, Tao; He, Wei-Jie; Li, Cheng; Li, He-Ping; Liao, Yu-Cai

    2016-06-01

    Fusarium graminearum is the fungal pathogen that causes globally important diseases of cereals and produces mycotoxins such as deoxynivalenol (DON). Owing to the dearth of available sources of resistance to Fusarium pathogens, characterization of novel genes that confer resistance to mycotoxins and mycotoxin-producing fungi is vitally important for breeding resistant crop varieties. In this study, a wheat methionyl-tRNA synthetase (TaMetRS) gene was identified from suspension cell cultures treated with DON. It shares conserved aminoacylation catalytic and tRNA anticodon binding domains with human MetRS and with the only previously characterized plant MetRS, suggesting that it functions in aminoacylation in the cytoplasm. However, the TaMetRS comprises a typical nuclear localization signal and cellular localization studies with a TaMetRS::GFP fusion protein showed that TaMetRS is localized in the nucleus. Expression of TaMetRS was activated by DON treatment and by infection with a DON-producing F. graminearum strain in wheat spikes. No such activation was observed following infection with a non-DON-producing F. graminearum strain. Expression of TaMetRS in Arabidopsis plants conferred significant resistance to DON and F. graminearum. These results indicated that this DON-activated TaMetRS gene may encode a novel type of MetRS in plants that has a role in defense and detoxification. PMID:26882849

  19. Exposure to air, but not seawater, increases the glutamine content and the glutamine synthetase activity in the marsh clam Polymesoda expansa.

    PubMed

    Hiong, Kum C; Peh, Wendy Y X; Loong, Ai M; Wong, Wai P; Chew, Shit F; Ip, Yuen K

    2004-12-01

    ). Simultaneously, there were significant increases in glutamine synthetase activities in the adductor muscle (1.56-fold) and hepatopancreas (3.8-fold). This is the first report on the accumulation of glutamine associated with an upregulation of glutamine synthetase in a bivalve species in response to aerial exposure, and these results reveal that the evolution of glutamine synthesis as a means for detoxification of ammonia first occurred among invertebrates. PMID:15579556

  20. A facile reproducible radioimmunoassay of the mixed metabolites of prostaglandins E, suitable for measurement of relative differences of phospholipase/prostaglandin synthetase activity in vivo.

    PubMed

    Fretland, D J; Cammarata, P S

    1984-04-01

    A relatively simple, reproducible, radioimmunoassay for the mixed metabolites of prostaglandins E (U-PGE-M) in rat and human urine is described. Results of the assay of treated versus control urine extracts correlate well with differences expected from treatments known to alter in vivo phospholipase/prostaglandin synthetase activity. Cross-reactivity of heterogeneous metabolite antiserum with 5 available endogenous prostaglandins and a single metabolite was determined and showed little or no cross reaction. Sensitivity, within-assay precision, interassay reproducibility, and parallelism were also determined and found acceptable. Excretion rates of U-PGE-M by rats and humans were determined, and statistically significant differences could be shown, although absolute values were smaller than estimated absolute values obtained from mass-spectrometric measurements of single, purified metabolites. Normal human male excretion rates differed significantly from those of females. Injection of prostaglandin E1 caused a significant rise in U-PGE-M excretion in rats whereas aspirin and indomethacin caused it to fall. U-PGE-M excretion rates of spontaneous hypertensive rats were significantly less than rates of normotensive controls. Adrenalectomy resulted in excretion of significantly larger amounts of U-PGE-M than in normal or sham-operated controls. A screen of clinically active pharmacological agents and hormones gave results consistent with previously published reports. PMID:6427792

  1. Neuroprotection Promoted by Guanosine Depends on Glutamine Synthetase and Glutamate Transporters Activity in Hippocampal Slices Subjected to Oxygen/Glucose Deprivation.

    PubMed

    Dal-Cim, Tharine; Martins, Wagner C; Thomaz, Daniel T; Coelho, Victor; Poluceno, Gabriela Godoy; Lanznaster, Débora; Vandresen-Filho, Samuel; Tasca, Carla I

    2016-05-01

    Guanosine (GUO) has been shown to act as a neuroprotective agent against glutamatergic excitotoxicity by increasing glutamate uptake and decreasing its release. In this study, a putative effect of GUO action on glutamate transporters activity modulation was assessed in hippocampal slices subjected to oxygen and glucose deprivation (OGD), an in vitro model of brain ischemia. Slices subjected to OGD showed increased excitatory amino acids release (measured by D-[(3)H]aspartate release) that was prevented in the presence of GUO (100 µM). The glutamate transporter blockers, DL-TBOA (10 µM), DHK (100 µM, selective inhibitor of GLT-1), and sulfasalazine (SAS, 250 µM, Xc(-) system inhibitor) decreased OGD-induced D-aspartate release. Interestingly, DHK or DL-TBOA blocked the decrease in glutamate release induced by GUO, whereas SAS did not modify the GUO effect. GUO protected hippocampal slices from cellular damage by modulation of glutamate transporters, however selective blockade of GLT-1 or Xc- system only did not affect this protective action of GUO. OGD decreased hippocampal glutamine synthetase (GS) activity and GUO recovered GS activity to control levels without altering the kinetic parameters of GS activity, thus suggesting GUO does not directly interact with GS. Additionally, the pharmacological inhibition of GS activity with methionine sulfoximine abolished the effect of GUO in reducing D-aspartate release and cellular damage evoked by OGD. Altogether, results in hippocampal slices subjected to OGD show that GUO counteracts the release of excitatory amino acids, stimulates the activity of GS, and decreases the cellular damage by modulation of glutamate transporters activity. PMID:26858177

  2. Structural insight on the control of urea synthesis: identification of the binding site for N-acetyl-L-glutamate, the essential allosteric activator of mitochondrial carbamoyl phosphate synthetase.

    PubMed

    Pekkala, Satu; Martínez, Ana I; Barcelona, Belén; Gallego, José; Bendala, Elena; Yefimenko, Igor; Rubio, Vicente; Cervera, Javier

    2009-12-01

    NAG (N-acetyl-L-glutamate), the essential allosteric activator of the first urea cycle enzyme, CPSI (carbamoyl phosphate synthetase I), is a key regulator of this crucial cycle for ammonia detoxification in animals (including humans). Automated cavity searching and flexible docking have allowed identification of the NAG site in the crystal structure of human CPSI C-terminal domain. The site, a pocket lined by invariant residues and located between the central beta-sheet and two alpha-helices, opens at the beta-sheet C-edge and is roofed by a three-residue lid. It can tightly accommodate one extended NAG molecule having the delta-COO- at the pocket entry, the alpha-COO- and acetamido groups tightly hydrogen bonded to the pocket, and the terminal methyl of the acetamido substituent surrounded by hydrophobic residues. This binding mode is supported by the observation of reduced NAG affinity upon mutation of NAG-interacting residues of CPSI (recombinantly expressed using baculovirus/insect cells); by the fine-mapping of the N-chloroacetyl-L-glutamate photoaffinity labelling site of CPSI; and by previously established structure-activity relationships for NAG analogues. The location of the NAG site is identical to that of the weak bacterial CPS activator IMP (inosine monophosphate) in Escherichia coli CPS, indicating a common origin for these sites and excluding any relatedness to the binding site of the other bacterial CPS activator, ornithine. Our findings open the way to the identification of CPSI deficiency patients carrying NAG site mutations, and to the possibility of tailoring the activator to fit a given NAG site mutation, as exemplified here with N-acetyl-L(+/-)-beta-phenylglutamate for the W1410K CPSI mutation. PMID:19754428

  3. Increased Long Chain acyl-Coa Synthetase Activity and Fatty Acid Import Is Linked to Membrane Synthesis for Development of Picornavirus Replication Organelles

    PubMed Central

    Scott, Alison J.; Ford, Lauren A.; Pei, Zhengtong; Watkins, Paul A.; Ernst, Robert K.; Belov, George A.

    2013-01-01

    All positive strand (+RNA) viruses of eukaryotes replicate their genomes in association with membranes. The mechanisms of membrane remodeling in infected cells represent attractive targets for designing future therapeutics, but our understanding of this process is very limited. Elements of autophagy and/or the secretory pathway were proposed to be hijacked for building of picornavirus replication organelles. However, even closely related viruses differ significantly in their requirements for components of these pathways. We demonstrate here that infection with diverse picornaviruses rapidly activates import of long chain fatty acids. While in non-infected cells the imported fatty acids are channeled to lipid droplets, in infected cells the synthesis of neutral lipids is shut down and the fatty acids are utilized in highly up-regulated phosphatidylcholine synthesis. Thus the replication organelles are likely built from de novo synthesized membrane material, rather than from the remodeled pre-existing membranes. We show that activation of fatty acid import is linked to the up-regulation of cellular long chain acyl-CoA synthetase activity and identify the long chain acyl-CoA syntheatse3 (Acsl3) as a novel host factor required for polio replication. Poliovirus protein 2A is required to trigger the activation of import of fatty acids independent of its protease activity. Shift in fatty acid import preferences by infected cells results in synthesis of phosphatidylcholines different from those in uninfected cells, arguing that the viral replication organelles possess unique properties compared to the pre-existing membranes. Our data show how poliovirus can change the overall cellular membrane homeostasis by targeting one critical process. They explain earlier observations of increased phospholipid synthesis in infected cells and suggest a simple model of the structural development of the membranous scaffold of replication complexes of picorna-like viruses, that may be

  4. Rat long-chain acyl-CoA synthetase mRNA, protein, and activity vary in tissue distribution and in response to diet.

    PubMed

    Mashek, Douglas G; Li, Lei O; Coleman, Rosalind A

    2006-09-01

    Distinct isoforms of long-chain acyl-CoA synthetases (ACSLs) may partition fatty acids toward specific metabolic cellular pathways. For each of the five members of the rat ACSL family, we analyzed tissue mRNA distributions, and we correlated the mRNA, protein, and activity of ACSL1 and ACSL4 after fasting and refeeding a 69% sucrose diet. Not only did quantitative real-time PCR analyses reveal unique tissue expression patterns for each ACSL isoform, but expression varied markedly in different adipose depots. Fasting increased ACSL4 mRNA abundance in liver, muscle, and gonadal and inguinal adipose tissues, and refeeding decreased ACSL4 mRNA. A similar pattern was observed for ACSL1, but both fasting and refeeding decreased ACSL1 mRNA in gonadal adipose. Fasting also decreased ACSL3 and ACSL5 mRNAs in liver and ACSL6 mRNA in muscle. Surprisingly, in nearly every tissue measured, the effects of fasting and refeeding on the mRNA abundance of ACSL1 and ACSL4 were discordant with changes in protein abundance. These data suggest that the individual ACSL isoforms are distinctly regulated across tissues and show that mRNA expression may not provide useful information about isoform function. They further suggest that translational or posttranslational modifications are likely to contribute to the regulation of ACSL isoforms. PMID:16772660

  5. Rotavirus Controls Activation of the 2′-5′-Oligoadenylate Synthetase/RNase L Pathway Using at Least Two Distinct Mechanisms

    PubMed Central

    Sánchez-Tacuba, Liliana; Rojas, Margarito; Arias, Carlos F.

    2015-01-01

    ABSTRACT The innate immune response is the first line of defense of the host cell against a viral infection. In turn, viruses have evolved a wide variety of strategies to hide from, and to directly antagonize, the host innate immune pathways. One of these pathways is the 2′-5′-oligoadenylate synthetase (OAS)/RNase L pathway. OAS is activated by double-stranded RNA (dsRNA) to produce 2′-5′ oligoadenylates, which are the activators of RNase L; this enzyme degrades viral and cellular RNAs, restricting viral infection. It has been recently found that the carboxy-terminal domain (CTD) of rotavirus VP3 has a 2′-5′-phosphodiesterase (PDE) activity that is able to functionally substitute for the PDE activity of the mouse hepatitis virus ns2 protein. This particular phosphodiesterase cleaves the 2′-5′-phosphodiester bond of the oligoadenylates, antagonizing the OAS/RNase L pathway. However, whether this activity of VP3 is relevant during the replication cycle of rotavirus is not known. Here, we demonstrate that after rotavirus infection the OAS/RNase L complex becomes activated; however, the virus is able to control its activity using at least two distinct mechanisms. A virus-cell interaction that occurs during or before rotavirus endocytosis triggers a signal that prevents the early activation of RNase L, while later on the control is taken by the newly synthesized VP3. Cosilencing the expression of VP3 and RNase L in infected cells yields viral infectious particles at levels similar to those obtained in control infected cells, where no genes were silenced, suggesting that the capping activity of VP3 is not essential for the formation of infectious viral particles. IMPORTANCE Rotaviruses represent an important cause of severe gastroenteritis in the young of many animal species, including humans. In this work, we have found that the OAS/RNase L pathway is activated during rotavirus infection, but the virus uses two different strategies to prevent the

  6. Continuous spectrophotometric assay for aminoacyl-tRNA synthetases.

    PubMed

    Chang, G G; Pan, F; Lin, Y H; Wang, H Y

    1984-11-01

    A simple, continuous assay for aminoacyl-tRNA synthetases utilizing a commercially available pyrophosphate assay reagent kit was demonstrated. The method coupled aminoacyl-tRNA synthetase activity with pyrophosphate-dependent fructose-6-phosphate kinase, aldolase, triosephosphate isomerase, and glycerophosphate dehydrogenase. PPi formation was correlated with the oxidation of NADH, and was monitored continuously by the decrease of absorbance at 340 nm. PMID:6099060

  7. The 2′-5′-Oligoadenylate Synthetase 3 Enzyme Potently Synthesizes the 2′-5′-Oligoadenylates Required for RNase L Activation

    PubMed Central

    Ibsen, Mikkel Søes; Gad, Hans Henrik; Thavachelvam, Karthiga; Boesen, Thomas; Desprès, Philippe

    2014-01-01

    ABSTRACT The members of the oligoadenylate synthetase (OAS) family of proteins are antiviral restriction factors that target a wide range of RNA and DNA viruses. They function as intracellular double-stranded RNA (dsRNA) sensors that, upon binding to dsRNA, undergo a conformational change and are activated to synthesize 2′-5′-linked oligoadenylates (2-5As). 2-5As of sufficient length act as second messengers to activate RNase L and thereby restrict viral replication. We expressed human OAS3 using the baculovirus system and purified it to homogeneity. We show that recombinant OAS3 is activated at a substantially lower concentration of dsRNA than OAS1, making it a potent in vivo sensor of dsRNA. Moreover, we find that OAS3 synthesizes considerably longer 2-5As than previously reported, and that OAS3 can activate RNase L intracellularly. The combined high affinity for dsRNA and the capability to produce 2-5As of sufficient length to activate RNase L suggests that OAS3 is a potent activator of RNase L. In addition, we provide experimental evidence to support one active site of OAS3 located in the C-terminal OAS domain and generate a low-resolution structure of OAS3 using SAXS. IMPORTANCE We are the first to purify the OAS3 enzyme to homogeneity, which allowed us to characterize the mechanism utilized by OAS3 and identify the active site. We provide compelling evidence that OAS3 can produce 2′-5′-oligoadenylates of sufficient length to activate RNase L. This is contrary to what is described in the current literature but agrees with recent in vivo data showing that OAS3 harbors an antiviral activity requiring RNase L. Thus, our work redefines our understanding of the biological role of OAS3. Furthermore, we used a combination of mutagenesis and small-angle X-ray scattering to describe the active site and low-resolution structure of OAS3. PMID:25275129

  8. Glucocorticoid Receptor, C/EBP, HNF3, and Protein Kinase A Coordinately Activate the Glucocorticoid Response Unit of the Carbamoylphosphate Synthetase I Gene

    PubMed Central

    Christoffels, Vincent M.; Grange, Thierry; Kaestner, Klaus H.; Cole, Timothy J.; Darlington, Gretchen J.; Croniger, Colleen M.; Lamers, Wouter H.

    1998-01-01

    A single far-upstream enhancer is sufficient to confer hepatocyte-specific, glucocorticoid- and cyclic AMP-inducible periportal expression to the carbamoylphosphate synthetase I (CPS) gene. To identify the mechanism of hormone-dependent activation, the composition and function of the enhancer have been analyzed. DNase I protection and gel mobility shift assays revealed the presence of a cyclic AMP response element, a glucocorticoid response element (GRE), and several sites for the liver-enriched transcription factor families HNF3 and C/EBP. The in vivo relevance of the transcription factors interacting with the enhancer in the regulation of CPS expression in the liver was assessed by the analysis of knockout mice. A strong reduction of CPS mRNA levels was observed in glucocorticoid receptor- and C/EBPα-deficient mice, whereas the CPS mRNA was normally expressed in C/EBPβ knockout mice and in HNF3α and -γ double-knockout mice. (The role of HNFβ could not be assessed, because the corresponding knockout mice die at embryonic day 10). In hepatoma cells, most of the activity of the enhancer is contained within a 103-bp fragment, which depends for its activity on the simultaneous occupation of the GRE, HNF3, and C/EBP sites, thus meeting the requirement of a glucocorticoid response unit. In fibroblast-like CHO cells, on the other hand, the GRE in the CPS enhancer does not cooperate with the C/EBP and HNF3 elements in transactivation of the CPS promoter. In both hepatoma and CHO cells, stimulation of expression by cyclic AMP depends mainly on the integrity of the glucocorticoid pathway, demonstrating cross talk between this pathway and the cyclic AMP (protein kinase A) pathway. PMID:9774647

  9. FOXO1 activates glutamine synthetase gene in mouse skeletal muscles through a region downstream of 3'-UTR: possible contribution to ammonia detoxification.

    PubMed

    Kamei, Yasutomi; Hattori, Maki; Hatazawa, Yukino; Kasahara, Tomomi; Kanou, Masanobu; Kanai, Sayaka; Yuan, Xunmei; Suganami, Takayoshi; Lamers, Wouter H; Kitamura, Tadahiro; Ogawa, Yoshihiro

    2014-09-15

    Skeletal muscle is a reservoir of energy in the form of protein, which is degraded under catabolic conditions, resulting in the formation of amino acids and ammonia as a byproduct. The expression of FOXO1, a forkhead-type transcription factor, increases during starvation and exercise. In agreement, transgenic FOXO1-Tg mice that overexpress FOXO1 in skeletal muscle exhibit muscle atrophy. The aim of this study was to examine the role of FOXO1 in amino acid metabolism. The mRNA and protein expressions of glutamine synthetase (GS) were increased in skeletal muscle of FOXO1-Tg mice. Fasting induced FOXO1 and GS expression in wild-type mice but hardly increased GS expression in muscle-specific FOXO1 knockout (FOXO1-KO) mice. Activation of FOXO1 also increased GS mRNA and protein expression in C2C12 myoblasts. Using a transient transfection reporter assay, we observed that FOXO1 activated the GS reporter construct. Mutation of a putative FOXO1-binding consensus sequence in the downstream genomic region of GS decreased basal and FOXO1-dependent reporter activity significantly. A chromatin immunoprecipitation assay showed that FOXO1 was recruited to the 3' region of GS in C2C12 myoblasts. These results suggest that FOXO1 directly upregulates GS expression. GS is considered to mediate ammonia clearance in skeletal muscle. In agreement, an intravenous ammonia challenge increased blood ammonia concentrations to a twofold higher level in FOXO1-KO than in wild-type mice, demonstrating that the capacity for ammonia disposal correlated inversely with the expression of GS in muscle. These data indicate that FOXO1 plays a role in amino acid metabolism during protein degradation in skeletal muscle. PMID:25074987

  10. Phosphorylation of five aminoacyl-tRNA synthetases in reticulocytes and identification of the protein kinases phosphorylating threonyl-tRNA synthetase from rat liver

    SciTech Connect

    Pendergast, A.M.; Traugh, J.A.

    1986-05-01

    Five aminoacyl-tRNA synthetases in the high molecular weight complex were phosphorylated in rabbit reticulocytes following labeling with /sup 32/P. The five synthetases phosphorylated were the glutamyl-, glutaminyl-, lysyl-, aspartyl- and methionyl-tRNA synthetases. In addition, a 37,000 dalton protein, associated with the synthetase complex and tentatively identified as casein kinase I, was also phosphorylated in intact cells. Phosphoamino acid analysis of the proteins indicated all of the phosphate was on seryl residues. Incubation of reticulocytes with /sup 32/P in the presence of 8-bromo-cAMP and o, the 3-isobutyl-1-methylxanthine resulted in a six-fold increase in phosphorylation of the glutaminyl-tRNA synthetase, a two-fold increase in phosphorylation of the aspartyl-tRNA synthetase, and a 50 to 60% decrease in phosphorylation of the glutamyl-, methionyl- and lysyl-tRNA synthetases and the M/sub r/ 37,000 protein. When the site(s) on the glutaminyl-tRNA synthetase phosphorylated in response to 8-bromo-cAMP was analyzed by two-dimensional tryptic phosphopeptide mapping, a single phosphopeptide was observed which was identical to that obtained in vitro upon phosphorylation with the cAMP-dependent protein kinase. Also, the authors identify here, the protein kinases phosphorylating threonyl-tRNA synthetase from rat liver. They are protease activated kinase I, the cAMP-dependent protein kinase and protein kinase C.

  11. Cytosolic Glutamine Synthetase Gln1;2 Is the Main Isozyme Contributing to GS1 Activity and Can Be Up-Regulated to Relieve Ammonium Toxicity1[OPEN

    PubMed Central

    Pedersen, Carsten

    2016-01-01

    Cytosolic GS1 (Gln synthetase) is central for ammonium assimilation in plants. High ammonium treatment enhanced the expression of the GS1 isogene Gln-1;2 encoding a low-affinity high-capacity GS1 protein in Arabidopsis (Arabidopsis thaliana) shoots. Under the same conditions, the expression of the high-affinity low-capacity isoform Gln-1;1 was reduced. The expression of Gln-1;3 did not respond to ammonium treatment while Gln-1;4 and Gln-1;5 isogenes in all cases were expressed at a very low level. Gln-2 was highly expressed in shoots but only at a very low level in roots. To investigate the specific functions of the two isogenes Gln-1;1 and Gln-1;2 in shoots for ammonium detoxification, single and double knock-out mutants were grown under standard N supply or with high ammonium provision. Phenotypes of the single mutant gln1;1 were similar to the wild type, while growth of the gln1;2 single mutant and the gln1;1:gln1;2 double mutant was significantly impaired irrespective of N regime. GS1 activity was significantly reduced in both gln1;2 and gln1;1:gln1;2. Along with this, the ammonium content increased while that of Gln decreased, showing that Gln-1;2 was essential for ammonium assimilation and amino acid synthesis. We conclude that Gln-1;2 is the main isozyme contributing to shoot GS1 activity in vegetative growth stages and can be up-regulated to relieve ammonium toxicity. This reveals, to our knowledge, a novel shoot function of Gln-1;2 in Arabidopsis shoots. PMID:27231101

  12. Cytosolic Glutamine Synthetase Gln1;2 Is the Main Isozyme Contributing to GS1 Activity and Can Be Up-Regulated to Relieve Ammonium Toxicity.

    PubMed

    Guan, Miao; de Bang, Thomas C; Pedersen, Carsten; Schjoerring, Jan K

    2016-07-01

    Cytosolic GS1 (Gln synthetase) is central for ammonium assimilation in plants. High ammonium treatment enhanced the expression of the GS1 isogene Gln-1;2 encoding a low-affinity high-capacity GS1 protein in Arabidopsis (Arabidopsis thaliana) shoots. Under the same conditions, the expression of the high-affinity low-capacity isoform Gln-1;1 was reduced. The expression of Gln-1;3 did not respond to ammonium treatment while Gln-1;4 and Gln-1;5 isogenes in all cases were expressed at a very low level. Gln-2 was highly expressed in shoots but only at a very low level in roots. To investigate the specific functions of the two isogenes Gln-1;1 and Gln-1;2 in shoots for ammonium detoxification, single and double knock-out mutants were grown under standard N supply or with high ammonium provision. Phenotypes of the single mutant gln1;1 were similar to the wild type, while growth of the gln1;2 single mutant and the gln1;1:gln1;2 double mutant was significantly impaired irrespective of N regime. GS1 activity was significantly reduced in both gln1;2 and gln1;1:gln1;2 Along with this, the ammonium content increased while that of Gln decreased, showing that Gln-1;2 was essential for ammonium assimilation and amino acid synthesis. We conclude that Gln-1;2 is the main isozyme contributing to shoot GS1 activity in vegetative growth stages and can be up-regulated to relieve ammonium toxicity. This reveals, to our knowledge, a novel shoot function of Gln-1;2 in Arabidopsis shoots. PMID:27231101

  13. Accurate Detection of Adenylation Domain Functions in Nonribosomal Peptide Synthetases by an Enzyme-linked Immunosorbent Assay System Using Active Site-directed Probes for Adenylation Domains.

    PubMed

    Ishikawa, Fumihiro; Miyamoto, Kengo; Konno, Sho; Kasai, Shota; Kakeya, Hideaki

    2015-12-18

    A significant gap exists between protein engineering and enzymes used for the biosynthesis of natural products, largely because there is a paucity of strategies that rapidly detect active-site phenotypes of the enzymes with desired activities. Herein, we describe a proof-of-concept study of an enzyme-linked immunosorbent assay (ELISA) system for the adenylation (A) domains in nonribosomal peptide synthetases (NRPSs) using a combination of active site-directed probes coupled to a 5'-O-N-(aminoacyl)sulfamoyladenosine scaffold with a biotin functionality that immobilizes probe molecules onto a streptavidin-coated solid support. The recombinant NRPSs have a C-terminal His-tag motif that is targeted by an anti-6×His mouse antibody as the primary antibody and a horseradish peroxidase-linked goat antimouse antibody as the secondary antibody. These probes can selectively capture the cognate A domains by ligand-directed targeting. In addition, the ELISA technique detected A domains in the crude cell-free homogenates from the Escherichia coli expression systems. When coupled with a chromogenic substrate, the antibody-based ELISA technique can visualize probe-protein binding interactions, which provides accurate readouts of the A-domain functions in NRPS enzymes. To assess the ELISA-based engineering of the A domains of NRPSs, we reprogramed 2,3-dihydroxybenzoic acid (DHB)-activating enzyme EntE toward salicylic acid (Sal)-activating enzymes and investigated a correlation between binding properties for probe molecules and enzyme catalysts. We generated a mutant of EntE that displayed negligible loss in the kcat/Km value with the noncognate substrate Sal and a corresponding 48-fold decrease in the kcat/Km value with the cognate substrate DHB. The resulting 26-fold switch in substrate specificity was achieved by the replacement of a Ser residue in the active site of EntE with a Cys toward the nonribosomal codes of Sal-activating enzymes. Bringing a laboratory ELISA technique

  14. Extracellular 2'5'-oligoadenylate synthetase 2 mediates T-cell receptor CD3-ζ chain down-regulation via caspase-3 activation in oral cancer.

    PubMed

    Dar, Asif A; Pradhan, Trupti N; Kulkarni, Dakshayni P; Shah, Sagar U; Rao, Kanury V; Chaukar, Devendra A; D'Cruz, Anil K; Chiplunkar, Shubhada V

    2016-02-01

    Decreased expression of CD3-ζ chain, an adaptor protein associated with T-cell signalling, is well documented in patients with oral cancer, but the mechanistic justifications are fragmentary. Previous studies in patients with oral cancer have shown that decreased expression of CD3-ζ chain was associated with decreased responsiveness of T cells. Tumours are known to induce localized as well as systemic immune suppression. This study provides evidence that oral tumour-derived factors promote immune suppression by down-regulating CD3-ζ chain expression. 2'5'-Oligoadenylate synthetase 2 (OAS2) was identified by the proteomic approach and our results established a causative link between CD3-ζ chain down-regulation and OAS2 stimulation. The surrogate situation was established by over-expressing OAS2 in a HEK293 cell line and cell-free supernatant was collected. These supernatants when incubated with T cells resulted in down-regulation of CD3-ζ chain, which shows that the secreted OAS2 is capable of regulating CD3-ζ chain expression. Incubation of T cells with cell-free supernatants of oral tumours or recombinant human OAS2 (rh-OAS2) induced caspase-3 activation, which resulted in CD3-ζ chain down-regulation. Caspase-3 inhibition/down-regulation using pharmacological inhibitor or small interfering RNA restored down-regulated CD3-ζ chain expression in T cells induced by cell-free tumour supernatant or rh-OAS2. Collectively these results show that OAS2 leads to impairment in CD3-ζ chain expression, so offering an explanation that might be applicable to the CD3-ζ chain deficiency observed in cancer and diverse disease conditions. PMID:26595239

  15. Peptide Synthetase Gene in Trichoderma virens

    PubMed Central

    Wilhite, S. E.; Lumsden, R. D.; Straney, D. C.

    2001-01-01

    Trichoderma virens (synonym, Gliocladium virens), a deuteromycete fungus, suppresses soilborne plant diseases caused by a number of fungi and is used as a biocontrol agent. Several traits that may contribute to the antagonistic interactions of T. virens with disease-causing fungi involve the production of peptide metabolites (e.g., the antibiotic gliotoxin and siderophores used for iron acquisition). We cloned a 5,056-bp partial cDNA encoding a putative peptide synthetase (Psy1) from T. virens using conserved motifs found within the adenylate domain of peptide synthetases. Sequence similarities with conserved motifs of the adenylation domain, acyl transfer, and two condensation domains support identification of the Psy1 gene as a gene that encodes a peptide synthetase. Disruption of the native Psy1 gene through gene replacement was used to identify the function of this gene. Psy1 disruptants produced normal amounts of gliotoxin but grew poorly under low-iron conditions, suggesting that Psy1 plays a role in siderophore production. Psy1 disruptants cannot produce the major T. virens siderophore dimerum acid, a dipetide of acylated Nδ-hydroxyornithine. Biocontrol activity against damping-off diseases caused by Pythium ultimum and Rhizoctonia solani was not reduced by the Psy1 disruption, suggesting that iron competition through dimerum acid production does not contribute significantly to disease suppression activity under the conditions used. PMID:11679326

  16. Evolution of RNA-Protein Interactions: Non-Specific Binding Led to RNA Splicing Activity of Fungal Mitochondrial Tyrosyl-tRNA Synthetases

    PubMed Central

    Lamech, Lilian T.; Mallam, Anna L.; Lambowitz, Alan M.

    2014-01-01

    The Neurospora crassa mitochondrial tyrosyl-tRNA synthetase (mtTyrRS; CYT-18 protein) evolved a new function as a group I intron splicing factor by acquiring the ability to bind group I intron RNAs and stabilize their catalytically active RNA structure. Previous studies showed: (i) CYT-18 binds group I introns by using both its N-terminal catalytic domain and flexibly attached C-terminal anticodon-binding domain (CTD); and (ii) the catalytic domain binds group I introns specifically via multiple structural adaptations that occurred during or after the divergence of Peziomycotina and Saccharomycotina. However, the function of the CTD and how it contributed to the evolution of splicing activity have been unclear. Here, small angle X-ray scattering analysis of CYT-18 shows that both CTDs of the homodimeric protein extend outward from the catalytic domain, but move inward to bind opposite ends of a group I intron RNA. Biochemical assays show that the isolated CTD of CYT-18 binds RNAs non-specifically, possibly contributing to its interaction with the structurally different ends of the intron RNA. Finally, we find that the yeast mtTyrRS, which diverged from Pezizomycotina fungal mtTyrRSs prior to the evolution of splicing activity, binds group I intron and other RNAs non-specifically via its CTD, but lacks further adaptations needed for group I intron splicing. Our results suggest a scenario of constructive neutral (i.e., pre-adaptive) evolution in which an initial non-specific interaction between the CTD of an ancestral fungal mtTyrRS and a self-splicing group I intron was “fixed” by an intron RNA mutation that resulted in protein-dependent splicing. Once fixed, this interaction could be elaborated by further adaptive mutations in both the catalytic domain and CTD that enabled specific binding of group I introns. Our results highlight a role for non-specific RNA binding in the evolution of RNA-binding proteins. PMID:25536042

  17. Active site mutants of Escherichia coli dethiobiotin synthetase: effects of mutations on enzyme catalytic and structural properties.

    PubMed

    Yang, G; Sandalova, T; Lohman, K; Lindqvist, Y; Rendina, A R

    1997-04-22

    Five active site residues, Thr11, Glu12, Lys15, Lys37, and Ser41, implicated by the protein crystal structure studies of Escherichia coli DTBS, were mutated to determine their function in catalysis and substrate binding. Nine mutant enzymes, T11V, E12A, E12D, K15Q, K37L, K37Q, K37R, S41A, and S41C, were overproduced in an E. coli strain lacking a functional endogenous DTBS gene and purified to homogeneity. Replacement of Thr11 with valine resulted in a 24,000-fold increase in the Km(ATP) with little or no change in the Kd(ATP), KM(DAPA) and DTBS k(cat), suggesting an essential role for this residue in the steady-state affinity for ATP. The two Glu12 mutants showed essentially wild-type DTBS activity (slightly elevated k(cat)'s). Unlike wild-type DTBS, E12A had the same apparent KM(DAPA) at subsaturating and saturating ATP concentrations, indicating a possible role for Glu12 in the binding synergy between DAPA and ATP. The mutations in Lys15 and Lys37 resulted in loss of catalytic activity (0.01% and <0.9% of wild-type DTBS k(cat) for K15Q and the Lys37 mutant enzymes, respectively) and higher KM's for both DAPA (40-fold and >100-fold higher than wild-type for the K15Q and Lys37 mutant enzymes, respectively) and ATP (1800-fold and >10-fold higher than wild-type for K15Q and the K37 mutant enzymes, respectively). These results strongly suggest that Lys15 and Lys37 are crucial to both catalysis and substrate binding. S41A and S41C had essentially the same k(cat) as wild-type and had moderate increases in the DAPA and ATP KM and Kd (ATP) values. Replacement of Ser41 with cysteine resulted in larger effects than replacement with alanine. These data suggest that the H-bond between N7 of DAPA and the Ser41 side chain is not very important for catalysis. The catalytic behavior of these mutant enzymes was also studied by pulse-chase experiments which produced results consistent with the steady-state kinetic analyses. X-ray crystallographic studies of four mutant enzymes, S

  18. Benadrostin, new inhibitor of poly(ADP-ribose) synthetase, produced by actinomycetes. I. Taxonomy, production, isolation, physico-chemical properties and biological activities.

    PubMed

    Aoyagi, T; Yoshida, S; Harada, S; Okuyama, A; Nakayama, C; Yoshida, T; Hamada, M; Takeuchi, T; Umezawa, H

    1988-08-01

    Benadrostin, a new inhibitor of poly(ADP-ribose) synthetase was discovered in the fermentation broth of Streptomyces flavovirens MH499-O'F1. It was purified by chromatography followed by solvent extraction and then isolated as colorless prisms. Benadrostin has the molecular formula of C8H5NO4. It was competitive with the substrate, and the inhibition constant (Ki) was 34 microM. PMID:3139601

  19. 2-5A ligands--a new concept for the treatment of prostate cancer.

    PubMed

    Cramer, Hagen; Okicki, James R; Rho, Taikyun; Wang, Xinning; Silverman, Robert H; Heston, Warren D W

    2007-01-01

    Several potent prostate specific membrane antigen (PSMA) inhibitors have been described recently. We generated a PSMA-specific 2-5A ligand called RBI 1033 by linking 2-5A to the N-acetylaspartylglutamate (NAAG)-based inhibitor ZJ-24. We measured the inhibitory activity of RBI 1033 to the folate hydrolase activity of PSMA. Amazingly, we found that compared to ZJ-24 (IC50 = 53.9 nM), RBI 1033 was more than 10 times more potent (IC50 = 4.78 nM) as a folate hydrolase inhibitor, while SMCC 2-5A lacking the ZJ-24 part, did not show much activity (IC50 = 1974 nM). Also, RBI 1033's affinity to PSMA was found to be 10 times higher than ZJ-24 itself. PMID:18066809

  20. Inhibition of mammalian squalene synthetase activity by zaragozic acid A is a result of competitive inhibition followed by mechanism-based irreversible inactivation.

    PubMed

    Lindsey, S; Harwood, H J

    1995-04-21

    Squalene synthetase (SQS, EC 2.5.1.21) catalyzes the first committed step in the formation of cholesterol and thus represents an ideal site for selectively inhibiting sterol formation. Previous studies have demonstrated that the fungal metabolite, zaragozic acid A (ZGA-A), inhibits SQS activity by mimicking the substrate farnesyl pyrophosphate, the reaction intermediate presqualene pyrophosphate, or both, through a process that confers increased apparent potency in the presence of reduced enzyme concentrations, an observation consistent with either tight binding reversible competitive inhibition or mechanism-based irreversible inactivation. The studies outlined in this report provide multiple lines of evidence indicating that ZGA-A acts as a mechanism-based irreversible inactivator of SQS. 1) Inhibition of SQS by ZGA-A is dependent on the [SQS] present in the incubation reaction, and this inhibition is time-dependent and follows pseudo-first order reaction kinetics, exhibiting kobs values that range between 2 x 10(-4)/s and 23 x 10(-4)/s for [ZGA-A] within the log-linear range of the inhibition curve, and a bimolecular rate constant of 2.3 x 10(5) M-1s-1.2) SQS activity is titratable by ZGA-A, such that for each [ZGA-A] evaluated, inactivation exhibits a threshold [SQS] whereby enzyme activity at lower [SQS] is totally inhibited. 3) Time-dependent inactivation exhibits saturation kinetics with a Km for the process of 2.5 nM, which is approximately equal to the IC50 for SQS inhibition under these conditions, suggesting that inactivation results from selective modification of a functional group of the enzyme active center rather than from a nonspecific bimolecular reaction mechanism and that most, if not all of the inhibition results from irreversible inactivation. 4) Saturable, time-dependent inactivation occurs with similar inactivation kinetics for both the microsomal and trypsin-solubilized forms of the enzyme, indicating that irreversible inactivation by ZGA

  1. Assignment of the cysteinyl-tRNA synthetase gene (CARS) to 11p15. 5

    SciTech Connect

    Cruzen, M.E.; Bengtsson, U.; McMahon, J.; Wasmuth, J.J.; Arfin, S.M. )

    1993-03-01

    The attachment of each of the 20 naturally occurring amino acids to their cognate tRNA isoaccepting families is catalyzed by a specific aminoacyl-tRNA synthetase. The structural genes encoding 10 of these enzymes have been assigned to specific human chromosomes. The HARS, LARS, RARS, and TARS genes, encoding histidyl-, leucyl-, arginyl-, and threonyl-tRNA synthetases, respectively, are all located on chromosome 5( 1, 5, 7, 9, 14). The MARS (methionyl-tRNA synthetase), NARS (asparaginyl-tRNA synthetase), VARS (valyl-tRNA synthetase), and WARS (tryptophanyl-tRNA synthetase) genes have been assigned to chromosomes 12, 18, 6, and 14, respectively (3, 4, 6, 8). A gene originally identified as encoding glutaminyl-tRNA synthetase was mapped to chromosome 1q32-q42 (10). However, a recent study suggests that the product of this gene is, in fact, a multifunctional enzyme with both glutamyl- and prolyl-tRNA synthetase activities (2). The fact that 4 of the 10 aminoacyl-tRNA synthetase genes already mapped are located on chromosome 5 may be fortuitous but might also indicate an evolutionary or regulatory relatedness. It is therefore, of interest to map genes encoding other aminoacyl-tRNA synthetases to determine if additional examples of synteny exist. The recent isolation of cDNA and genomic DNA clones for human cysteinyl-tRNA synthetase has now enabled us to map the CARS gene to segment p15.5 on chromosome 11 by fluorescence in situ hybridization.

  2. Archaeal-type lysyl-tRNA synthetase in the Lyme disease spirochete Borrelia burgdorferi

    PubMed Central

    Ibba, Michael; Bono, James L.; Rosa, Patricia A.; Söll, Dieter

    1997-01-01

    Lysyl-tRNAs are essential for protein biosynthesis by ribosomal mRNA translation in all organisms. They are synthesized by lysyl-tRNA synthetases (EC 6.1.1.6), a group of enzymes composed of two unrelated families. In bacteria and eukarya, all known lysyl-tRNA synthetases are subclass IIc-type aminoacyl-tRNA synthetases, whereas some archaea have been shown to contain an unrelated class I-type lysyl-tRNA synthetase. Examination of the preliminary genomic sequence of the bacterial pathogen Borrelia burgdorferi, the causative agent of Lyme disease, indicated the presence of an open reading frame with over 55% similarity at the amino acid level to archaeal class I-type lysyl-tRNA synthetases. In contrast, no coding region with significant similarity to any class II-type lysyl-tRNA synthetase could be detected. Heterologous expression of this open reading frame in Escherichia coli led to the production of a protein with canonical lysyl-tRNA synthetase activity in vitro. Analysis of B. burgdorferi mRNA showed that the lysyl-tRNA synthetase-encoding gene is highly expressed, confirming that B. burgdorferi contains a functional class I-type lysyl-tRNA synthetase. The detection of an archaeal-type lysyl-tRNA synthetase in B. burgdorferi and other pathogenic spirochetes, but not to date elsewhere in bacteria or eukarya, indicates that the gene that encodes this enzyme has a common origin with its orthologue from the archaeal kingdom. This difference between the lysyl-tRNA synthetases of spirochetes and their hosts may be readily exploitable for the development of anti-spirochete therapeutics. PMID:9405621

  3. The microsomal dicarboxylyl-CoA synthetase.

    PubMed Central

    Vamecq, J; de Hoffmann, E; Van Hoof, F

    1985-01-01

    Dicarboxylic acids are products of the omega-oxidation of monocarboxylic acids. We demonstrate that in rat liver dicarboxylic acids (C5-C16) can be converted into their CoA esters by a dicarboxylyl-CoA synthetase. During this activation ATP, which cannot be replaced by GTP, is converted into AMP and PPi, both acting as feedback inhibitors of the reaction. Thermolabile at 37 degrees C, and optimally active at pH 6.5, dicarboxylyl-CoA synthetase displays the highest activity on dodecanedioic acid (2 micromol/min per g of liver). Cell-fractionation studies indicate that this enzyme belongs to the hepatic microsomal fraction. Investigations about the fate of dicarboxylyl-CoA esters disclosed the existence of an oxidase, which could be measured by monitoring the production of H2O2. In our assay conditions this H2O2 production is dependent on and closely follows the CoA consumption. It appears that the chain-length specificity of the handling of dicarboxylic acids by this catabolic pathway (activation to acyl-CoA and oxidation with H2O2 production) parallels the pattern of the degradation of exogenous dicarboxylic acids in vivo. PMID:4062873

  4. tRNA synthetase: tRNA Aminoacylation and beyond

    PubMed Central

    Pang, Yan Ling Joy; Poruri, Kiranmai; Martinis, Susan A.

    2014-01-01

    The aminoacyl-tRNA synthetases are prominently known for their classic function in the first step of protein synthesis, where they bear the responsibility of setting the genetic code. Each enzyme is exquisitely adapted to covalently link a single standard amino acid to its cognate set of tRNA isoacceptors. These ancient enzymes have evolved idiosyncratically to host alternate activities that go far beyond their aminoacylation role and impact a wide range of other metabolic pathways and cell signaling processes. The family of aminoacyl-tRNA synthetases have also been suggested as a remarkable scaffold to incorporate new domains that would drive evolution and the emergence of new organisms with more complex function. Because they are essential, the tRNA synthetases have served as pharmaceutical targets for drug and antibiotic development. The recent unfolding of novel important functions for this family of proteins offers new and promising pathways for therapeutic development to treat diverse human diseases. PMID:24706556

  5. Purification and comparison of two forms of S-adenosyl-L-methionine synthetase from rat liver.

    PubMed

    Cabrero, C; Puerta, J; Alemany, S

    1987-12-30

    Only two S-adenosyl-L-methionine synthetase forms exist in rat liver: high-Mr S-adenosyl-L-methionine synthetase and low-Mr S-adenosyl-L-methionine synthetase, which have been purified to apparent homogeneity as judged by sodium dodecyl sulfate/polyacrylamide gel electrophoresis. High-Mr S-adenosyl-L-methionine synthetase had an apparent molecular mass, determined by gel filtration, of 210 kDa and was a tetramer constituted by 48.5-kDa subunits, estimated by sodium dodecyl sulfate/polyacrylamide gel electrophoresis. The apparent molecular mass of low-Mr S-adenosyl-L-methionine synthetase, as estimated by gel filtration, was 110 kDa and was constituted by two subunits of 47 kDa. An antiserum against low-Mr S-adenosyl-L-methionine synthetase cross-reacted with the two forms. Reverse-phase HPLC runs of tryptic digestions of high-Mr and low-Mr S-adenosyl-L-methionine synthetase showed that the peptide maps of the two forms were very similar, if not identical. High-Mr S-adenosyl-L-methionine synthetase activity was inhibited by S-adenosyl-L-methionine and pyrophosphate. Depending on the dose used, S-adenosyl-L-methionine activated or inhibited low-Mr S-adenosyl-L-methionine synthetase and pyrophosphate had no effect on this form. The two synthetases showed a different specific activity at the physiological concentration of methionine. This report shows that even though the two forms are constructed of the same polypeptide chains, they are regulated in a different manner by methionine and by the products of the reaction. PMID:3121322

  6. Recurrent Isolated Neonatal Hemolytic Anemia: Think About Glutathione Synthetase Deficiency.

    PubMed

    Signolet, Isabelle; Chenouard, Rachel; Oca, Florine; Barth, Magalie; Reynier, Pascal; Denis, Marie-Christine; Simard, Gilles

    2016-09-01

    Hemolytic anemia (HA) of the newborn should be considered in cases of rapidly developing, severe, or persistent hyperbilirubinemia. Several causes of corpuscular hemolysis have been described, among which red blood cell enzyme defects are of particular concern. We report a rare case of red blood cell enzyme defect in a male infant, who presented during his first months of life with recurrent and isolated neonatal hemolysis. All main causes were ruled out. At 6.5 months of age, the patient presented with gastroenteritis requiring hospitalization; fortuitously, urine organic acid chromatography revealed a large peak of 5-oxoproline. Before the association between HA and 5-oxoprolinuria was noted, glutathione synthetase deficiency was suspected and confirmed by a low glutathione synthetase concentration and a collapse of glutathione synthetase activity in erythrocytes. Moreover, molecular diagnosis revealed 2 mutations in the glutathione synthetase gene: a previously reported missense mutation (c.[656A>G]; p.[Asp219Gly]) and a mutation not yet described in the binding site of the enzyme (c.[902T>C]; p.[Leu301Pro]). However, 15 days later, a control sample revealed no signs of 5-oxoprolinuria and the clinical history discovered administration of acetaminophen in the 48 hours before hospitalization. Thus, in this patient, acetaminophen exposure allowed the diagnosis of a mild form of glutathione synthetase deficiency, characterized by isolated HA. Early diagnosis is important because treatment with bicarbonate, vitamins C and E, and elimination of trigger factors are recommended to improve long-term outcomes. Glutathione synthetase deficiency should be screened for in cases of unexplained newborn HA. PMID:27581854

  7. Novel Reaction of Succinyl Coenzyme A (Succinyl-CoA) Synthetase: Activation of 3-Sulfinopropionate to 3-Sulfinopropionyl-CoA in Advenella mimigardefordensis Strain DPN7T during Degradation of 3,3′-Dithiodipropionic Acid ▿ †

    PubMed Central

    Schürmann, Marc; Wübbeler, Jan Hendrik; Grote, Jessica; Steinbüchel, Alexander

    2011-01-01

    The sucCD gene of Advenella mimigardefordensis strain DPN7T encodes a succinyl coenzyme A (succinyl-CoA) synthetase homologue (EC 6.2.1.4 or EC 6.2.1.5) that recognizes, in addition to succinate, the structural analogues 3-sulfinopropionate (3SP) and itaconate as substrates. Accumulation of 3SP during 3,3′-dithiodipropionic acid (DTDP) degradation was observed in Tn5::mob-induced mutants of A. mimigardefordensis strain DPN7T disrupted in sucCD and in the defined deletion mutant A. mimigardefordensis ΔsucCD. These mutants were impaired in growth with DTDP and 3SP as the sole carbon source. Hence, it was proposed that the succinyl-CoA synthetase homologue in A. mimigardefordensis strain DPN7T activates 3SP to the corresponding CoA-thioester (3SP-CoA). The putative genes coding for A. mimigardefordensis succinyl-CoA synthetase (SucCDAm) were cloned and heterologously expressed in Escherichia coli BL21(DE3)/pLysS. Purification and characterization of the enzyme confirmed its involvement during degradation of DTDP. 3SP, the cleavage product of DTDP, was converted into 3SP-CoA by the purified enzyme, as demonstrated by in vitro enzyme assays. The structure of 3SP-CoA was verified by using liquid chromatography-electrospray ionization-mass spectrometry. SucCDAm is Mg2+ or Mn2+ dependent and unspecific regarding ATP or GTP. In kinetic studies the enzyme showed highest enzyme activity and substrate affinity with succinate (Vmax = 9.85 ± 0.14 μmol min−1 mg−1, Km = 0.143 ± 0.001 mM). In comparison to succinate, activity with 3SP was only ca. 1.2% (Vmax = 0.12 ± 0.01 μmol min−1 mg−1) and the affinity was 6-fold lower (Km = 0.818 ± 0.046 mM). Based on the present results, we conclude that SucCDAm is physiologically associated with the citric acid cycle but is mandatory for the catabolic pathway of DTDP and its degradation intermediate 3SP. PMID:21515777

  8. SREBP2 Activation Induces Hepatic Long-chain Acyl-CoA Synthetase 1 (ACSL1) Expression in Vivo and in Vitro through a Sterol Regulatory Element (SRE) Motif of the ACSL1 C-promoter.

    PubMed

    Singh, Amar Bahadur; Kan, Chin Fung Kelvin; Dong, Bin; Liu, Jingwen

    2016-03-01

    Long-chain acyl-CoA synthetase 1 (ACSL1) plays a key role in fatty acid metabolism. To identify novel transcriptional modulators of ACSL1, we examined ACSL1 expression in liver tissues of hamsters fed a normal diet, a high fat diet, or a high cholesterol and high fat diet (HCHFD). Feeding hamsters HCHFD markedly reduced hepatic Acsl1 mRNA and protein levels as well as acyl-CoA synthetase activity. Decreases in Acsl1 expression strongly correlated with reductions in hepatic Srebp2 mRNA level and mature Srebp2 protein abundance. Conversely, administration of rosuvastatin (RSV) to hamsters increased hepatic Acsl1 expression. These new findings were reproduced in mice treated with RSV or fed the HCHFD. Furthermore, the RSV induction of acyl-CoA activity in mouse liver resulted in increases in plasma and hepatic cholesterol ester concentrations and reductions in free cholesterol amounts. Investigations on different ACSL1 transcript variants in HepG2 cells revealed that the mRNA expression of C-ACSL1 was specifically regulated by the sterol regulatory element (SRE)-binding protein (SREBP) pathway, and RSV treatment increased the C-ACSL1 abundance from a minor mRNA species to an abundant transcript. We analyzed 5'-flanking sequence of exon 1C of the human ACSL1 gene and identified one putative SRE site. By performing a promoter activity assay and DNA binding assays, we firmly demonstrated the key role of this SRE motif in SREBP2-mediated activation of C-ACSL1 gene transcription. Finally, we demonstrated that knockdown of endogenous SREBP2 in HepG2 cells lowered ACSL1 mRNA and protein levels. Altogether, this work discovered an unprecedented link between ACSL1 and SREBP2 via the specific regulation of the C-ACSL1 transcript. PMID:26728456

  9. Biosynthetic engineering of nonribosomal peptide synthetases.

    PubMed

    Kries, Hajo

    2016-09-01

    From the evolutionary melting pot of natural product synthetase genes, microorganisms elicit antibiotics, communication tools, and iron scavengers. Chemical biologists manipulate these genes to recreate similarly diverse and potent biological activities not on evolutionary time scales but within months. Enzyme engineering has progressed considerably in recent years and offers new screening, modelling, and design tools for natural product designers. Here, recent advances in enzyme engineering and their application to nonribosomal peptide synthetases are reviewed. Among the nonribosomal peptides that have been subjected to biosynthetic engineering are the antibiotics daptomycin, calcium-dependent antibiotic, and gramicidin S. With these peptides, incorporation of unnatural building blocks and modulation of bioactivities via various structural modifications have been successfully demonstrated. Natural product engineering on the biosynthetic level is not a reliable method yet. However, progress in the understanding and manipulation of biosynthetic pathways may enable the routine production of optimized peptide drugs in the near future. Copyright © 2016 European Peptide Society and John Wiley & Sons, Ltd. PMID:27465074

  10. Polyspecific pyrrolysyl-tRNA synthetases from directed evolution

    PubMed Central

    Guo, Li-Tao; Wang, Yane-Shih; Nakamura, Akiyoshi; Eiler, Daniel; Kavran, Jennifer M.; Wong, Margaret; Kiessling, Laura L.; Steitz, Thomas A.; O’Donoghue, Patrick; Söll, Dieter

    2014-01-01

    Pyrrolysyl-tRNA synthetase (PylRS) and its cognate tRNAPyl have emerged as ideal translation components for genetic code innovation. Variants of the enzyme facilitate the incorporation >100 noncanonical amino acids (ncAAs) into proteins. PylRS variants were previously selected to acylate Nε-acetyl-Lys (AcK) onto tRNAPyl. Here, we examine an Nε-acetyl-lysyl-tRNA synthetase (AcKRS), which is polyspecific (i.e., active with a broad range of ncAAs) and 30-fold more efficient with Phe derivatives than it is with AcK. Structural and biochemical data reveal the molecular basis of polyspecificity in AcKRS and in a PylRS variant [iodo-phenylalanyl-tRNA synthetase (IFRS)] that displays both enhanced activity and substrate promiscuity over a chemical library of 313 ncAAs. IFRS, a product of directed evolution, has distinct binding modes for different ncAAs. These data indicate that in vivo selections do not produce optimally specific tRNA synthetases and suggest that translation fidelity will become an increasingly dominant factor in expanding the genetic code far beyond 20 amino acids. PMID:25385624

  11. Polyspecific pyrrolysyl-tRNA synthetases from directed evolution.

    PubMed

    Guo, Li-Tao; Wang, Yane-Shih; Nakamura, Akiyoshi; Eiler, Daniel; Kavran, Jennifer M; Wong, Margaret; Kiessling, Laura L; Steitz, Thomas A; O'Donoghue, Patrick; Söll, Dieter

    2014-11-25

    Pyrrolysyl-tRNA synthetase (PylRS) and its cognate tRNA(Pyl) have emerged as ideal translation components for genetic code innovation. Variants of the enzyme facilitate the incorporation >100 noncanonical amino acids (ncAAs) into proteins. PylRS variants were previously selected to acylate N(ε)-acetyl-Lys (AcK) onto tRNA(Pyl). Here, we examine an N(ε)-acetyl-lysyl-tRNA synthetase (AcKRS), which is polyspecific (i.e., active with a broad range of ncAAs) and 30-fold more efficient with Phe derivatives than it is with AcK. Structural and biochemical data reveal the molecular basis of polyspecificity in AcKRS and in a PylRS variant [iodo-phenylalanyl-tRNA synthetase (IFRS)] that displays both enhanced activity and substrate promiscuity over a chemical library of 313 ncAAs. IFRS, a product of directed evolution, has distinct binding modes for different ncAAs. These data indicate that in vivo selections do not produce optimally specific tRNA synthetases and suggest that translation fidelity will become an increasingly dominant factor in expanding the genetic code far beyond 20 amino acids. PMID:25385624

  12. Genetic and Immunological Studies of Bacteriophage T4 Thymidylate Synthetase

    PubMed Central

    Krauss, S. W.; Stollar, B. D.; Friedkin, M.

    1973-01-01

    Thymidylate synthetase, which appears after infection of Escherichia coli with bacteriophage T4, has been partially purified. The phage enzyme is immunologically distinct from the host enzyme and has a molecular weight of 50,000 in comparison to 68,000 for the host enzyme. A system has been developed to characterize T4 td mutants previously known to have impaired expression of phage thymidylate synthetase. For this system, an E. coli host lacking thymidylate synthetase was isolated. Known genetic suppressors were transduced into this host. The resulting isogenic hosts were infected with phage T4 td mutants. The specific activities and amounts of cross-reacting material induced by several different types of phage mutants under conditions of suppression or non-suppression have been examined. The results show that the phage carries the structural gene specifying the thymidylate synthetase which appears after phage infection, and that the combination of plaque morphology, enzyme activity assays, and an assay for immunologically cross-reacting material provides a means for identifying true amber mutants of the phage gene. Images PMID:4575286

  13. Encapsulation of glutamine synthetase in mouse erythrocytes: a new procedure for ammonia detoxification.

    PubMed

    Kosenko, Elena A; Venediktova, Natalia I; Kudryavtsev, Andrey A; Ataullakhanov, Fazoil I; Kaminsky, Yury G; Felipo, Vicente; Montoliu, Carmina

    2008-12-01

    There are a number of pathological situations in which ammonia levels increase leading to hyperammonemia, which may cause neurological alterations and can lead to coma and death. Currently, there are no efficient treatments allowing rapid and sustained decrease of ammonia levels in these situations. A way to increase ammonia detoxification would be to increase its incorporation in glutamine by glutamine synthetase. The aim of this work was to develop a procedure to encapsulate glutamine synthetase in mouse erythrocytes and to assess whether administration of these erythrocytes containing glutamine synthetase (GS) reduce ammonia levels in hyperammonemic mice. The procedure developed allowed the encapsulation of 3 +/- 0.25 IU of GS / mL of erythrocytes with a 70% cell recovery. Most metabolites, including ATP, remained unaltered in glutamine synthetase-loaded erythrocytes (named ammocytes by us) compared with native erythrocytes. The glutamine synthetase-loaded ammocytes injected in mice survived and retained essentially all of their glutamine synthetase activity for at least 48 h in vivo. Injection of these ammocytes into hyperammonemic mice reduced ammonia levels in the blood by about 50%. The results reported indicate that ammocytes are able to keep their integrity, normal energy metabolism, the inserted glutamine synthetase activity, and can be useful to reduce ammonia levels in hyperammonemic situations. PMID:19088795

  14. Regulation of Glutamine Synthetase V. Partial Purification and Properties of Glutamine Synthetase from Bacillus licheniformis

    PubMed Central

    Hubbard, Jerry S.; Stadtman, E. R.

    1967-01-01

    The glutamine synthetase of Bacillus licheniformis has been obtained at about 15% purity. Sucrose gradient centrifugation gave a molecular weight value of approximately 612,000. Both l- and d-glutamate can be utilized as substrates in the biosynthetic reaction, although the l isomer was five times more active. The requirement for adenosine triphosphate (ATP) can be partially replaced by guanosine or inosine triphosphates, but not by cytidine or uridine triphosphates. The Mn++ was required for activity, and the requirement cannot be satisfied with Mg++. Maximal activity of the biosynthetic reaction was observed when ATP and Mn++ were present in equimolar amounts. An excess of either reactant gave less activity. However, other purine and pyrimidine nucleotides, when added in combination with ATP, can partially substitute for ATP in attaining the equimolar ratio of nucleotide to Mn++. A complex of ATP and Mn++ is the preferred form of substrate. The B. licheniformis enzyme catalyzes the glutamyl transfer reaction but at a much slower rate than the Escherichia coli glutamine synthetase. Either adenosine diphosphate (ADP) or ATP can activate the glutamotransferase, although ADP is more active. PMID:6051339

  15. The Nitrate-Inducible NAC Transcription Factor TaNAC2-5A Controls Nitrate Response and Increases Wheat Yield1[OPEN

    PubMed Central

    He, Xue; Qu, Baoyuan; Li, Wenjing; Zhao, Xueqiang; Teng, Wan; Ma, Wenying; Ren, Yongzhe; Li, Bin; Li, Zhensheng; Tong, Yiping

    2015-01-01

    Nitrate is a major nitrogen resource for cereal crops; thus, understanding nitrate signaling in cereal crops is valuable for engineering crops with improved nitrogen use efficiency. Although several regulators have been identified in nitrate sensing and signaling in Arabidopsis (Arabidopsis thaliana), the equivalent information in cereals is missing. Here, we isolated a nitrate-inducible and cereal-specific NAM, ATAF, and CUC (NAC) transcription factor, TaNAC2-5A, from wheat (Triticum aestivum). A chromatin immunoprecipitation assay showed that TaNAC2-5A could directly bind to the promoter regions of the genes encoding nitrate transporter and glutamine synthetase. Overexpression of TaNAC2-5A in wheat enhanced root growth and nitrate influx rate and, hence, increased the root’s ability to acquire nitrogen. Furthermore, we found that TaNAC2-5A-overexpressing transgenic wheat lines had higher grain yield and higher nitrogen accumulation in aerial parts and allocated more nitrogen in grains in a field experiment. These results suggest that TaNAC2-5A is involved in nitrate signaling and show that it is an exciting gene resource for breeding crops with more efficient use of fertilizer. PMID:26371233

  16. The MTCY428.08 Gene of Mycobacterium tuberculosis Codes for NAD+ Synthetase

    PubMed Central

    Cantoni, Rita; Branzoni, Manuela; Labò, Monica; Rizzi, Menico; Riccardi, Giovanna

    1998-01-01

    The product of the MTCY428.08 gene of Mycobacterium tuberculosis shows sequence homology with several NAD+ synthetases. The MTCY428.08 gene was cloned into the expression vectors pGEX-4T-1 and pET-15b. Expression in Escherichia coli led to overproduction of glutathione S-transferase fused and His6-tagged gene products, which were enzymatically assayed for NAD synthetase activity. Our results demonstrate that the MTCY428.08 gene of M. tuberculosis is the structural gene for NAD+ synthetase. PMID:9620974

  17. N-acetylaspartylglutamate synthetase II synthesizes N-acetylaspartylglutamylglutamate.

    PubMed

    Lodder-Gadaczek, Julia; Becker, Ivonne; Gieselmann, Volkmar; Wang-Eckhardt, Lihua; Eckhardt, Matthias

    2011-05-13

    N-Acetylaspartylglutamate (NAAG) is found at high concentrations in the vertebrate nervous system. NAAG is an agonist at group II metabotropic glutamate receptors. In addition to its role as a neuropeptide, a number of functions have been proposed for NAAG, including a role as a non-excitotoxic transport form of glutamate and a molecular water pump. We recently identified a NAAG synthetase (now renamed NAAG synthetase I, NAAGS-I), encoded by the ribosomal modification protein rimK-like family member B (Rimklb) gene, as a member of the ATP-grasp protein family. We show here that a structurally related protein, encoded by the ribosomal modification protein rimK-like family member A (Rimkla) gene, is another NAAG synthetase (NAAGS-II), which in addition, synthesizes the N-acetylated tripeptide N-acetylaspartylglutamylglutamate (NAAG(2)). In contrast, NAAG(2) synthetase activity was undetectable in cells expressing NAAGS-I. Furthermore, we demonstrate by mass spectrometry the presence of NAAG(2) in murine brain tissue and sciatic nerves. The highest concentrations of both, NAAG(2) and NAAG, were found in sciatic nerves, spinal cord, and the brain stem, in accordance with the expression level of NAAGS-II. To our knowledge the presence of NAAG(2) in the vertebrate nervous system has not been described before. The physiological role of NAAG(2), e.g. whether it acts as a neurotransmitter, remains to be determined. PMID:21454531

  18. Sequence, structural and evolutionary relationships between class 2 aminoacyl-tRNA synthetases.

    PubMed Central

    Cusack, S; Härtlein, M; Leberman, R

    1991-01-01

    Class 2 aminoacyl-tRNA synthetases, which include the enzymes for alanine, aspartic acid, asparagine, glycine, histidine, lysine, phenylalanine, proline, serine and threonine, are characterised by three distinct sequence motifs 1,2 and 3 (reference 1). The structural and evolutionary relatedness of these ten enzymes are examined using alignments of primary sequences from prokaryotic and eukaryotic sources and the known three dimensional structure of seryl-tRNA synthetase from E. coli. It is shown that motif 1 forms part of the dimer interface of seryl-tRNA synthetase and motifs 2 and 3 part of the putative active site. It is further shown that the seven alpha 2 dimeric synthetases can be subdivided into class 2a (proline, threonine, histidine and serine) and class 2b (aspartic acid, asparagine and lysine), each subclass sharing several important characteristic sequence motifs in addition to those characteristic of class 2 enzymes in general. The alpha 2 beta 2 tetrameric enzymes (for glycine and phenylalanine) show certain special features in common as well as some of the class 2b motifs. In the alanyl-tRNA synthetase only motif 3 and possibly motif 2 can be identified. The sequence alignments suggest that the catalytic domain of other class 2 synthetases should resemble the antiparallel domain found in seryl-tRNA synthetase. Predictions are made about the sequence location of certain important helices and beta-strands in this domain as well as suggestions concerning which residues are important in ATP and amino acid binding. Strong homologies are found in the N-terminal extensions of class 2b synthetases and in the C-terminal extensions of class 2a synthetases suggesting that these putative tRNA binding domains have been added at a later stage in evolution to the catalytic domain. Images PMID:1852601

  19. Altering the Enantioselectivity of Tyrosyl-tRNA Synthetase by Insertion of a Stereospecific Editing Domain.

    PubMed

    Richardson, Charles J; First, Eric A

    2016-03-15

    Translation of mRNAs by the ribosome is stereospecific, with only l-amino acids being incorporated into the nascent polypeptide chain. This stereospecificity results from the exclusion of d-amino acids at three steps during protein synthesis: (1) the aminoacylation of tRNA by aminoacyl-tRNA synthetases, (2) binding of aminoacyl-tRNAs to EF-Tu, and (3) recognition of aminoacyl-tRNAs by the ribosome. As a first step toward incorporating d-amino acids during protein synthesis, we have altered the enantioselectivity of tyrosyl-tRNA synthetase. This enzyme is unusual among aminoacyl-tRNA synthetases, as it can aminoacylate tRNA with d-tyrosine (albeit at a reduced rate compared to l-tyrosine). To change the enantioselectivity of tyrosyl-tRNA synthetase, we introduced the post-transfer editing domain from Pyrococcus horikoshii phenylalanyl-tRNA synthetase into the connective polypeptide 1 (CP1) domain of Geobacillus stearothermophilus tyrosyl-tRNA synthetase (henceforth designated TyrRS-FRSed). We show that the phenylalanyl-tRNA synthetase editing domain is stereospecific, hydrolyzing l-Tyr-tRNA(Tyr), but not d-Tyr-tRNA(Tyr). We further show that inserting the phenylalanyl-tRNA synthetase editing domain into the CP1 domain of tyrosyl-tRNA synthetase decreases the activity of the synthetic site in tyrosyl-tRNA synthetase. This decrease in activity is critical, as it prevents the rate of synthesis from overwhelming the ability of the editing domain to hydrolyze the l-Tyr-tRNA(Tyr) product. Overall, inserting the phenylalanyl-tRNA synthetase editing domain results in a 2-fold shift in the enantioselectivity of tyrosyl-tRNA synthetase toward the d-Tyr-tRNA(Tyr) product. When a 4-fold excess of d-tyrosine is used, approximately 40% of the tRNA(Tyr) is aminoacylated with d-tyrosine. PMID:26890980

  20. Induction of angiogenesis by a fragment of human tyrosyl-tRNA synthetase.

    PubMed

    Wakasugi, Keisuke; Slike, Bonnie M; Hood, John; Ewalt, Karla L; Cheresh, David A; Schimmel, Paul

    2002-06-01

    The first step of protein synthesis is catalyzed by aminoacyl-tRNA synthetases. In addition, certain mammalian tRNA synthetases link protein synthesis to cytokine signaling pathways. In particular, human tyrosyl-tRNA synthetase (TyrRS) can be split by proteolysis into two fragments having distinct cytokine activities. One of the TyrRS fragments (mini TyrRS) contains features identical to those in CXC chemokines (like interleukin-8) that also act as angiogenic factors. Here mini TyrRS (but not full-length TyrRS) is shown to stimulate chemotaxis of endothelial cells in vitro and stimulate angiogenesis in each of two in vivo animal models. The angiogenic activity of mini TyrRS can be opposed by anti-angiogenic chemokines like IP-10. Thus, a biological fragment of human tyrosyl-tRNA synthetase links protein synthesis to regulation of angiogenesis. PMID:11956181

  1. Kinetics profiling of gramicidin S synthetase A, a member of nonribosomal peptide synthetases.

    PubMed

    Sun, Xun; Li, Hao; Alfermann, Jonas; Mootz, Henning D; Yang, Haw

    2014-12-23

    Nonribosomal peptide synthetases (NRPS) incorporate assorted amino acid substrates into complex natural products. The substrate is activated via the formation of a reactive aminoacyl adenylate and is subsequently attached to the protein template via a thioester bond. The reactive nature of such intermediates, however, leads to side reactions that also break down the high-energy anhydride bond. The off-pathway kinetics or their relative weights compared to that of the on-pathway counterpart remains generally elusive. Here, we introduce multiplatform kinetics profiling to quantify the relative weights of on- and off-pathway reactions. Using the well-defined stoichiometry of thioester formation, we integrate a mass spectrometry (MS) kinetics assay, a high-performance liquid chromatography (HPLC) assay, and an ATP-pyrophosphate (PPi) exchange assay to map out a highly efficient on-pathway kinetics profile of the substrate activation and intermediate uploading (>98% relative weight) for wide-type gramicidin S synthetase A (GrsA) and a 87% rate profile for a cysteine-free GrsA mutant. Our kinetics profiling approach complements the existing enzyme-coupled byproduct-release assays, unraveling new mechanistic insights of substrate activation/channeling in NRPS enzymes. PMID:25437123

  2. Post-transcriptional regulation of S-adenosylmethionine synthetase from its stored mRNA in germinated wheat embryos.

    PubMed

    Mathur, M; Saluja, D; Sachar, R C

    1991-06-24

    About 2-3-fold stimulation of S-adenosylmethionine synthetase was witnessed in germinated wheat embryos (48 h). The enhancement of enzyme activity was significantly inhibited by cycloheximide and amino acid analogues. Simultaneous addition of corresponding amino acids alleviated the inhibitory effect of amino acid analogues. Conclusive proof for the de novo synthesis of S-adenosylmethionine synthetase was obtained by labelling this enzyme with [35SO4]2- in vivo. Thus de novo enzyme synthesis seemed necessary for the rise in activity of AdoMet synthetase in wheat embryos. Curiously, blocking of transcription with cordycepin failed to repress the de novo synthesis of AdoMet synthetase in germinated wheat embryos. We envisage the presence of stored mRNA for AdoMet synthetase in wheat embryos. Thus the regulation of this enzyme occurs at the post-transcriptional level. L-Methionine, which is one of the substrates of AdoMet synthetase, stimulated the enzyme activity (2-2.4-fold) over that observed in control germinated embryos. L-Methionine promotes increased de novo synthesis of AdoMet synthetase. Preincubation of enzyme fraction with L-Methionine failed to activate or stabilize the activity of AdoMet synthetase. Three isozymes of AdoMet synthetase were physically separated by DE-52 ion-exchange chromatography. One of the isozymes of AdoMet synthetase has been purified (1529-fold) to electrophoretic homogeneity by resorting to phenyl Sepharose and ATP Sepharose affinity chromatography. The purified enzyme catalyzed the synthesis of S-adenosylmethionine and also exhibited tripolyphosphatase activity. The reaction product of the purified enzyme was chemically and enzymatically characterized as S-adenosylmethionine. The molecular weight of the native enzyme is 174,000 and that of its subunit is 84,000 as determined on SDS-PAGE. Thus the native enzyme seems to be dimeric in nature. PMID:1648405

  3. Activation of the Nrf2 pathway, but decreased {gamma}-glutamylcysteine synthetase heavy subunit chain levels and caspase-3-dependent apoptosis during exposure of primary mouse hepatocytes to diphenylarsinic acid

    SciTech Connect

    Sumi, Daigo; Manji, Aiko; Shinkai, Yasuhiro; Toyama, Takashi; Kumagai, Yoshito

    2007-09-15

    Diphenylarsinic acid (DPAsV) is a degradation product of chemical warfare agents, over which there has been a public outcry in the Kamisu Area of Ibaraki Prefecture in Japan. In this study, we investigated the cytotoxicity of and cellular response to DPAsV in primary mouse hepatocytes. Exposure of the hepatocytes to DPAsV resulted in cell damage accompanied by cellular accumulation of DPAsV in a time-dependent manner. The cell death caused by DPAsV was attributable to apoptosis. DPAsV activated a basic leucine-zipper transcription factor Nrf2 as determined by the nuclear translocation of Nrf2, anti-oxidant response element (ARE)-dependent luciferase activity, and upregulation of downstream gene products. However, {gamma}-glutamylcysteine synthetase heavy subunit chain ({gamma}-GCS{sub H}), which is regulated by Nrf2, underwent cleavage by activated caspase-3 to a 17 kDa fragment, leading to a minimal level of constitutive {gamma}-GCS{sub H} expression 72 h following the exposure (25 {mu}M). Experiments with cycloheximide revealed that the DPAsV-mediated reduction in {gamma}-GCS{sub H} was due to a post-translational modification. The results suggest that DPAsV causes caspase-3-dependent cleavage of {gamma}-GCS{sub H} regardless of Nrf2 activation in primary mouse hepatocytes.

  4. Effect of the non-steroidal anti-inflammatory drugs on the acyl-CoA synthetase activity toward medium-chain, long-chain and polyunsaturated fatty acids in mitochondria of mouse liver and brain.

    PubMed

    Kasuya, Fumiyo; Kazuhiro, Misumi; Tatsuya, Hasegawa; Nakamoto, Kazuo; Tokuyama, Shogo; Masuyama, Teiichi

    2013-02-01

    Effect of eleven non-steroidal anti-inflammatory drugs on the acyl-CoA synthetase activities toward octanoic, palmitic, arachidonic and docosahexaenoic acids was evaluated in mouse liver and brain mitochondria. The drugs tested were aspirin, salicylic acid, diflunisal, mefenamic acid, indomethacin, etodolac, ibuprofen, ketoprofen, naproxen, loxoprofen, flurbiprofen. In mouse liver mitochondria, diflunisal and mefenamic acid exhibited the inhibitory activities not only for octanoic acid (IC(50) = 78.7 and 64.7 µM) and but also for palmitic acid (IC(50) = 236.5 and 284.4 µM), respectively. Aspirin was an inhibitor for the activation of octanoic acid only (IC(50) = 411.0 µM). In the brain, mefenamic acid and diflunisal inhibited strongly palmitoyl-CoA formation (IC(50) = 57.3 and 114.0 µM), respectively. The activation of docosahexaenoic acid in brain was sensitive to inhibition by diflunisal and mefenamic acid compared with liver. PMID:22299587

  5. Energetics of S-adenosylmethionine synthetase catalysis.

    PubMed

    McQueney, M S; Anderson, K S; Markham, G D

    2000-04-18

    S-adenosylmethionine synthetase (ATP:L-methionine S-adenosyltransferase) catalyzes the only known route of biosynthesis of the primary biological alkylating agent. The internal thermodynamics of the Escherichia coli S-adenosylmethionine (AdoMet) synthetase catalyzed formation of AdoMet, pyrophosphate (PP(i)), and phosphate (P(i)) from ATP, methionine, and water have been determined by a combination of pre-steady-state kinetics, solvent isotope incorporation, and equilibrium binding measurements in conjunction with computer modeling. These studies provided the rate constants for substrate binding, the two chemical interconversion steps [AdoMet formation and subsequent tripolyphosphate (PPP(i)) hydrolysis], and product release. The data demonstrate the presence of a kinetically significant isomerization of the E.AdoMet.PP(i).P(i) complex before product release. The free energy profile for the enzyme-catalyzed reaction under physiological conditions has been constructed using these experimental values and in vivo concentrations of substrates and products. The free energy profile reveals that the AdoMet formation reaction, which has an equilibrium constant of 10(4), does not have well-balanced transition state and ground state energies. In contrast, the subsequent PPP(i) hydrolytic reaction is energetically better balanced. The thermodynamic profile indicates the use of binding energies for catalysis of AdoMet formation and the necessity for subsequent PPP(i) hydrolysis to allow enzyme turnover. Crystallographic studies have shown that a mobile protein loop gates access to the active site. The present kinetic studies indicate that this loop movement is rapid with respect to k(cat) and with respect to substrate binding at physiological concentrations. The uniformly slow binding rates of 10(4)-10(5) M(-)(1) s(-)(1) for ligands with different structures suggest that loop movement may be an intrinsic property of the protein rather than being ligand induced. PMID:10757994

  6. Genetic validation of aminoacyl-tRNA synthetases as drug targets in Trypanosoma brucei.

    PubMed

    Kalidas, Savitha; Cestari, Igor; Monnerat, Severine; Li, Qiong; Regmi, Sandesh; Hasle, Nicholas; Labaied, Mehdi; Parsons, Marilyn; Stuart, Kenneth; Phillips, Margaret A

    2014-04-01

    Human African trypanosomiasis (HAT) is an important public health threat in sub-Saharan Africa. Current drugs are unsatisfactory, and new drugs are being sought. Few validated enzyme targets are available to support drug discovery efforts, so our goal was to obtain essentiality data on genes with proven utility as drug targets. Aminoacyl-tRNA synthetases (aaRSs) are known drug targets for bacterial and fungal pathogens and are required for protein synthesis. Here we survey the essentiality of eight Trypanosoma brucei aaRSs by RNA interference (RNAi) gene expression knockdown, covering an enzyme from each major aaRS class: valyl-tRNA synthetase (ValRS) (class Ia), tryptophanyl-tRNA synthetase (TrpRS-1) (class Ib), arginyl-tRNA synthetase (ArgRS) (class Ic), glutamyl-tRNA synthetase (GluRS) (class 1c), threonyl-tRNA synthetase (ThrRS) (class IIa), asparaginyl-tRNA synthetase (AsnRS) (class IIb), and phenylalanyl-tRNA synthetase (α and β) (PheRS) (class IIc). Knockdown of mRNA encoding these enzymes in T. brucei mammalian stage parasites showed that all were essential for parasite growth and survival in vitro. The reduced expression resulted in growth, morphological, cell cycle, and DNA content abnormalities. ThrRS was characterized in greater detail, showing that the purified recombinant enzyme displayed ThrRS activity and that the protein localized to both the cytosol and mitochondrion. Borrelidin, a known inhibitor of ThrRS, was an inhibitor of T. brucei ThrRS and showed antitrypanosomal activity. The data show that aaRSs are essential for T. brucei survival and are likely to be excellent targets for drug discovery efforts. PMID:24562907

  7. Effect of heat shock on poly(ADP-ribose) synthetase and DNA repair in Drosophila cells

    SciTech Connect

    Nolan, N.L.; Kidwell, W.R.

    1982-04-01

    Poly(ADP-ribose) synthetase, a chromatin-bound enzyme which attaches polyanionic chains of ADP-ribose to nuclear proteins, was found to be temperature sensitive in intact Drosophila melanogaster cells. The synthetase was completely inactivated by heat-shocking the cells at 37/sup 0/C for 5 min, a condition which had no appreciable effect on the subsequent growth of Drosophila cells at their physiological temperature. The heat-shock effect on synthetase was reversible; enzyme activity began to reappear about 2 hr post heat shock. During the 2-hr interval when poly(ADP-ribose) synthetase was absent, the cells were competent in repair of ..gamma..-ray-induced DNA strand breaks as shown by DNA sedimentation studies on alkaline sucrose gradients. It is thus concluded that poly(ADP-ribose) synthesis is unnecessary for repair of DNA strand breaks introduced by irradiation. The same conclusion was reached from the fact that two inhibitors of poly(ADP-ribose) synthetase 3-aminobenzamide and 5-methylnicotinamide, failed to block repair of ..gamma..-ray-induced DNA chain breaks even though both inhibitors reduced the amount of poly(ADP-ribose) synthesized in cells by 50-75%. Although it was found that the repair of DNA strand breaks is independent of poly(ADP-ribose) synthesis, irradiation does activate the synthetase in control cells, as shown by radioimmunoassay of poly(ADP-ribose) levels.

  8. Control of the Synthesis of Fatty-Acid Synthetase in Rat Liver by Insulin, Glucagon, and Adenosine 3′:5′ Cyclic Monophosphate

    PubMed Central

    Lakshmanan, M. R.; Nepokroeff, Carl M.; Porter, John W.

    1972-01-01

    The usual increase in the activity of liver fatty-acid synthetase that occurs on refeeding of a fat-free diet to previously fasted rats is abolished in diabetic animals. Insulin specifically restores this increase by enhancement of the rate of synthesis of fatty-acid synthetase. However, glucagon and cyclic AMP inhibit the increase in the activity of fatty-acid synthetase. Therefore, the concentration of fatty-acid synthetase in rat liver is under the control of the relative concentrations of insulin and glucagon. PMID:4345502

  9. Tyrosyl-tRNA synthetase: the first crystallization of a human mitochondrial aminoacyl-tRNA synthetase

    SciTech Connect

    Bonnefond, Luc; Frugier, Magali; Touzé, Elodie; Lorber, Bernard; Florentz, Catherine; Giegé, Richard Rudinger-Thirion, Joëlle; Sauter, Claude

    2007-04-01

    Crystals of human mitochondrial tyrosyl-tRNA synthetase lacking the C-terminal S4-like domain diffract to 2.7 Å resolution and are suitable for structure determination. Human mitochondrial tyrosyl-tRNA synthetase and a truncated version with its C-terminal S4-like domain deleted were purified and crystallized. Only the truncated version, which is active in tyrosine activation and Escherichia coli tRNA{sup Tyr} charging, yielded crystals suitable for structure determination. These tetragonal crystals, belonging to space group P4{sub 3}2{sub 1}2, were obtained in the presence of PEG 4000 as a crystallizing agent and diffracted X-rays to 2.7 Å resolution. Complete data sets could be collected and led to structure solution by molecular replacement.

  10. Diminished acyl-CoA synthetase isoform 4 activity in INS 832/13 cells reduces cellular epoxyeicosatrienoic acid levels and results in impaired glucose-stimulated insulin secretion.

    PubMed

    Klett, Eric L; Chen, Shufen; Edin, Matthew L; Li, Lei O; Ilkayeva, Olga; Zeldin, Darryl C; Newgard, Christopher B; Coleman, Rosalind A

    2013-07-26

    Glucose-stimulated insulin secretion (GSIS) in pancreatic beta-cells is potentiated by fatty acids (FA). The initial step in the metabolism of intracellular FA is the conversion to acyl-CoA by long chain acyl-CoA synthetases (Acsls). Because the predominantly expressed Acsl isoforms in INS 832/13 cells are Acsl4 and -5, we characterized the role of these Acsls in beta-cell function by using siRNA to knock down Acsl4 or Acsl5. Compared with control cells, an 80% suppression of Acsl4 decreased GSIS and FA-potentiated GSIS by 32 and 54%, respectively. Knockdown of Acsl5 did not alter GSIS. Acsl4 knockdown did not alter FA oxidation or long chain acyl-CoA levels. With Acsl4 knockdown, incubation with 17 mm glucose increased media epoxyeicosatrienoic acids (EETs) and reduced cell membrane levels of EETs. Further, exogenous EETs reduced GSIS in INS 832/13 cells, and in Acsl4 knockdown cells, an EET receptor antagonist partially rescued GSIS. These results strongly suggest that Acsl4 activates EETs to form EET-CoAs that are incorporated into glycerophospholipids, thereby sequestering EETs. Exposing INS 832/13 cells to arachidonate or linoleate reduced Acsl4 mRNA and protein expression and reduced GSIS. These data indicate that Acsl4 modulates GSIS by regulating the levels of unesterified EETs and that arachidonate controls the expression of its activator Acsl4. PMID:23766516

  11. Inactivation and dissociation of S-adenosylmethionine synthetase by modification of sulfhydryl groups and its possible occurrence in cirrhosis.

    PubMed

    Corrales, F; Cabrero, C; Pajares, M A; Ortiz, P; Martin-Duce, A; Mato, J M

    1990-02-01

    Catalytically active human and rat liver S-adenosylmethionine synthetase exists mainly in tetramer and dimer form. In liver biopsy samples from cirrhotic patients a marked reduction in total S-adenosylmethionine synthetase activity and a specific loss of the tetrameric form of the enzyme exist. We have investigated the possible role of sulfhydryl groups in maintaining the structure and activity of S-adenosylmethionine synthetase. Both forms of S-adenosylmethionine synthetase are rapidly inactivated by N-ethylmaleimide, and the loss of enzyme activity correlates with the incorporation of approximately 2 moles N-ethylmaleimide per mole of subunit. In addition, reaction with N-ethylmaleimide resulted in displacement of the tetramer-dimer equilibrium of the enzyme toward the dimer, but no monomer was detected under these conditions. A catalytically active monomeric S-adenosylmethionine synthetase was detected in the cytosolic extract from a liver biopsy sample from a cirrhotic patient, supporting our model for the structure of S-adenosylmethionine synthetase. Because treatment of S-adenosylmethionine synthetase with N-ethylmaleimide resembles the situation of this enzyme in cirrhotic patients, it is proposed that impaired protection of the enzyme from oxidizing agents caused by a decreased synthesis of glutathione can explain the diminished synthesis of S-adenosylmethionine in liver cirrhosis. PMID:2307400

  12. Neurospora crassa mutants deficient in asparagine synthetase.

    PubMed Central

    MacPhee, K G; Nelson, R E; Schuster, S M

    1983-01-01

    Neurospora crassa mutants deficient in asparagine synthetase were selected by using the procedure of inositol-less death. Complementation tests among the 100 mutants isolated suggested that their alterations were genetically allelic. Recombination analysis with strain S1007t, an asparagine auxotroph, indicated that the mutations were located near or within the asn gene on linkage group V. In vitro assays with a heterokaryon indicated that the mutation was dominant. Thermal instability of cell extracts from temperature-sensitive strains in an in vitro asparagine synthetase assay determined that the mutations were in the structural gene(s) for asparagine synthetase. PMID:6137480

  13. Dibenzylbutyrolactone lignans from Forsythia koreana fruits attenuate lipopolysaccharide-induced inducible nitric oxide synthetase and cyclooxygenase-2 expressions through activation of nuclear factor-κb and mitogen-activated protein kinase in RAW264.7 cells.

    PubMed

    Lee, Ji Yun; Cho, Bong Jae; Park, Tae Wook; Park, Byoung Eun; Kim, Soo Jung; Sim, Sang Soo; Kim, Chang Jong

    2010-01-01

    Previously, we reported that dibenzylbutyrolactone lignans (DBLLs) from the fruit of Forsythia koreana NAKAI (Oleaceae) has anti-inflammatory, antioxidant, and anti-asthmatic effects. In this study, to clarify the anti-inflammatory mechanisms of DBLL, we evaluated the effects of DBLLs on lipopolysaccharide-stimulated inducible nitric oxide synthetase (iNOS) and cyclooxygenase-2 (COX-2) expressions, nitric oxide (NO) and prostaglandin E(2) (PGE(2)) productions, nuclear factor-κB (NF-κB) and mitogen-activated protein kinase (MAPK) activations, inhibitor of κB (IκB) and inhibitor of κB kinase (IKK) phosphorylations in cytosolic proteins, and cytotoxicity in Raw264.7 cells. DBLLs potently suppressed both the enzyme expression and DNA-binding activity of NF-κB. Arctiin, arctigenin (1.0 µM) and matairesinol (10 µM) inhibited the expression of iNOS by 37.71±2.86%, 32.51±4.28%, and 27.44±2.65%, respectively, and arctiin, arctigenin (0.1 µM) and matairesinol (1.0 µM) inhibited COX-2 expression by 37.93±7.81%, 26.70±4.61% and 29.37±5.21%, respectively. The inhibitory effects of DBLLs on NO and PGE(2) productions were the same patterns as those seen for the reductions in iNOS and COX-2 expression, respectively. Arctiin, arctigenin (1.0 µM) and matairesinol (10 µM) significantly (p<0.05) inhibited NF-κB DNA binding by 44.85±6.67%, 44.16±6.61%, and 44.79±5.62%, respectively, and arctiin (0.1 µM) and arctigenin (1.0 µM) significantly (p<0.05) inhibited the phosphorylation of IκB by 20.58±3.86% and 25.99±6.18%, respectively. Furthermore, arctiin, matairesinol (1.0 µM) and arctigenin (10 µM) inhibited the phosphorylation of IKK by 38.80±6.64%, 38.33±6.65%, and 38.57±8.14%, respectively. In addition, DBLLs potently inhibited the lipopolysaccharide (LPS)-induced activation of MAPKs (SAPK/c-Jun NH(2)-terminal kinase (JNK), p38, and extracellular signal receptor-activated kinase (ERK)1/2). Overall, arctiin was the most effective; its effect was nearly

  14. Actinobacterial Acyl Coenzyme A Synthetases Involved in Steroid Side-Chain Catabolism

    PubMed Central

    Casabon, Israël; Swain, Kendra; Crowe, Adam M.

    2014-01-01

    Bacterial steroid catabolism is an important component of the global carbon cycle and has applications in drug synthesis. Pathways for this catabolism involve multiple acyl coenzyme A (CoA) synthetases, which activate alkanoate substituents for β-oxidation. The functions of these synthetases are poorly understood. We enzymatically characterized four distinct acyl-CoA synthetases from the cholate catabolic pathway of Rhodococcus jostii RHA1 and the cholesterol catabolic pathway of Mycobacterium tuberculosis. Phylogenetic analysis of 70 acyl-CoA synthetases predicted to be involved in steroid metabolism revealed that the characterized synthetases each represent an orthologous class with a distinct function in steroid side-chain degradation. The synthetases were specific for the length of alkanoate substituent. FadD19 from M. tuberculosis H37Rv (FadD19Mtb) transformed 3-oxo-4-cholesten-26-oate (kcat/Km = 0.33 × 105 ± 0.03 × 105 M−1 s−1) and represents orthologs that activate the C8 side chain of cholesterol. Both CasGRHA1 and FadD17Mtb are steroid-24-oyl-CoA synthetases. CasG and its orthologs activate the C5 side chain of cholate, while FadD17 and its orthologs appear to activate the C5 side chain of one or more cholesterol metabolites. CasIRHA1 is a steroid-22-oyl-CoA synthetase, representing orthologs that activate metabolites with a C3 side chain, which accumulate during cholate catabolism. CasI had similar apparent specificities for substrates with intact or extensively degraded steroid nuclei, exemplified by 3-oxo-23,24-bisnorchol-4-en-22-oate and 1β(2′-propanoate)-3aα-H-4α(3″-propanoate)-7aβ-methylhexahydro-5-indanone (kcat/Km = 2.4 × 105 ± 0.1 × 105 M−1 s−1 and 3.2 × 105 ± 0.3 × 105 M−1 s−1, respectively). Acyl-CoA synthetase classes involved in cholate catabolism were found in both Actinobacteria and Proteobacteria. Overall, this study provides insight into the physiological roles of acyl-CoA synthetases in steroid catabolism and

  15. Mapping of the active site of Escherichia coli methionyl-tRNA synthetase: Identification of amino acid residues labeled by periodate-oxidized tRNA sup fMet molecules having modified lengths at the 3 prime -acceptor end

    SciTech Connect

    Hountondji, C.; Schmitter, J.M.; Beauvallet, C.; Blanquet, S. )

    1990-09-04

    Initiator tRNA molecules modified at the 3{prime}-end and lacking either A{sub 76} (tRNA-C{sub 75}), the C{sub 75}-A{sub 76} (tRNA-C{sub 74}), the C{sub 74}-C{sub 75}-A{sub 76} (tRNA-A{sub 73}), or the A{sub 73}-C{sub 74}-C{sub 75}-A{sub 76} (tRNA-A{sub 72}) nucleotides were prepared stepwise by repeated periodate, lysine, and alkaline phosphatase treatments. When incubated with trypsin-modified methionyl-tRNA synthetase (MTS{sub T}), excess amounts of the dialdehyde derivative of each of these shortened tRNAs (tRNA-C{sub 75}ox, tRNA-A{sub 73}ox, and tRNA-A{sub 72}ox) abolished both the isotopic ({sup 32}P)PP{sub i}ATP exchange and the tRNA aminoacylation activities of the enzyme. In the presence of limiting concentrations of the various tRNAox species, the relative extents of inactivation of the enzyme were consistent with the formation of 1:1 complexes of the reacting tRNAs with the monomeric modified synthetase. Specificity of the labeling was further established by demonstrating that tRNA-C{sub 75}ox binds the enzyme with an equilibrium constant and stoichiometry values in good agreement with those for the binding of nonoxidized tRNA-C{sub 75}. The peptides of MTS{sub T} labeled with either tRNA-C{sub 75}ox or tRNA-C{sub 74}ox were identified. In a previous work all these peptides but one (peptide D) had been already found labeled upon MTS{sub T} incubation with ({sup 14}C)tRNA-A{sub 76}ox. According to the crystallographic structure of MTS{sub T}, the labeled residues K335, K61, K142, K147, and K149 are within a sphere of about 5.5-{angstrom} radius. The present results therefore argue for a marked flexibility of the 3{prime}-end of the enzyme-bound tRNA, enabling it to contact any of the identified reacting residues. Such a cluster of basic amino acids may reflect ionic requirements in the guiding of the negatively charged CCA arm of tRNA toward enzyme-bound methionyl-adenylate.

  16. Gene encoding plant asparagine synthetase

    DOEpatents

    Coruzzi, Gloria M.; Tsai, Fong-Ying

    1993-10-26

    The identification and cloning of the gene(s) for plant asparagine synthetase (AS), an important enzyme involved in the formation of asparagine, a major nitrogen transport compound of higher plants is described. Expression vectors constructed with the AS coding sequence may be utilized to produce plant AS; to engineer herbicide resistant plants, salt/drought tolerant plants or pathogen resistant plants; as a dominant selectable marker; or to select for novel herbicides or compounds useful as agents that synchronize plant cells in culture. The promoter for plant AS, which directs high levels of gene expression and is induced in an organ specific manner and by darkness, is also described. The AS promoter may be used to direct the expression of heterologous coding sequences in appropriate hosts.

  17. Structure of the prolyl-tRNA synthetase from the eukaryotic pathogen Giardia lamblia

    SciTech Connect

    Larson, Eric T.; Kim, Jessica E.; Napuli, Alberto J.; Verlinde, Christophe L. M. J.; Fan, Erkang; Zucker, Frank H.; Van Voorhis, Wesley C.; Buckner, Frederick S.; Hol, Wim G. J.; Merritt, Ethan A.

    2012-09-01

    The structure of Giardia prolyl-tRNA synthetase cocrystallized with proline and ATP shows evidence for half-of-the-sites activity, leading to a corresponding mixture of reaction substrates and product (prolyl-AMP) in the two active sites of the dimer. The genome of the human intestinal parasite Giardia lamblia contains only a single aminoacyl-tRNA synthetase gene for each amino acid. The Giardia prolyl-tRNA synthetase gene product was originally misidentified as a dual-specificity Pro/Cys enzyme, in part owing to its unexpectedly high off-target activation of cysteine, but is now believed to be a normal representative of the class of archaeal/eukaryotic prolyl-tRNA synthetases. The 2.2 Å resolution crystal structure of the G. lamblia enzyme presented here is thus the first structure determination of a prolyl-tRNA synthetase from a eukaryote. The relative occupancies of substrate (proline) and product (prolyl-AMP) in the active site are consistent with half-of-the-sites reactivity, as is the observed biphasic thermal denaturation curve for the protein in the presence of proline and MgATP. However, no corresponding induced asymmetry is evident in the structure of the protein. No thermal stabilization is observed in the presence of cysteine and ATP. The implied low affinity for the off-target activation product cysteinyl-AMP suggests that translational fidelity in Giardia is aided by the rapid release of misactivated cysteine.

  18. Phosphorylation of Human CTP Synthetase 1 by Protein Kinase A: IDENTIFICATION OF Thr455 AS A MAJOR SITE OF PHOSPHORYLATION*

    PubMed Central

    Choi, Mal-Gi; Carman, George M.

    2007-01-01

    CTP synthetase is an essential enzyme that generates the CTP required for the synthesis of nucleic acids and membrane phospholipids. In this work, we examined the phosphorylation of the human CTPS1-encoded CTP synthetase 1 by protein kinase A. CTP synthetase 1 was expressed and purified from a Saccharomyces cerevisiae ura7Δ ura8Δ double mutant that lacks CTP synthetase activity. Using purified CTP synthetase 1 as a substrate, protein kinase A activity was time- and dose-dependent. The phosphorylation, which primarily occurred on a threonine residue, was accompanied by a 50% decrease in CTP synthetase 1 activity. The synthetic peptide LGKRRTLFQT that contains the protein kinase A motif for Thr455 was a substrate for protein kinase A. A Thr455 to Ala (T455A) mutation in CTP synthetase 1 was constructed by site-directed mutagenesis and was expressed and purified from the S. cerevisiae ura7Δ ura8Δ mutant. The T455A mutation caused a 78% decrease in protein kinase A phosphorylation, and the loss of the phosphothreonine residue and a major phosphopeptide that were present in the purified wild type enzyme phosphorylated by protein kinase A. The CTP synthetase 1 activity of the T455A mutant enzyme was 2-fold higher than the wild type enzyme. In addition, the T455A mutation caused a 44% decrease in the amount of human CTP synthetase 1 that was phosphorylated in S. cerevisiae cells, and this was accompanied by a 2.5-fold increase in the cellular concentration of CTP and a 1.5-fold increase in the choline-dependent synthesis of phosphatidylcholine. PMID:17189248

  19. Light induces changes in activities of Na+/K+-ATPase, H+/K+-ATPase and glutamine synthetase in tissues involved directly or indirectly in light-enhanced calcification in the giant clam, Tridacna squamosa

    PubMed Central

    Ip, Yuen K.; Ching, Biyun; Hiong, Kum C.; Choo, Celine Y. L.; Boo, Mel V.; Wong, Wai P.; Chew, Shit F.

    2015-01-01

    The objective of this study was to determine the effects of 12 h of exposure to light, as compared with 12 h of exposure to darkness (control), on enzymatic activities of transporters involved in the transport of NH+4 or H+, and activities of enzymes involved in converting NH+4 to glutamate/glutamine in inner mantle, outer mantle, and ctenidia of the giant clam, Tridacna squamosa. Exposure to light resulted in a significant increase in the effectiveness of NH+4 in substitution for K+ to activate Na+/K+-ATPase (NKA), manifested as a significant increase in the Na+/NH+4-activated-NKA activity in the inner mantle. However, similar phenomena were not observed in the extensible outer mantle, which contained abundant symbiotic zooxanthellae. Hence, during light-enhanced calcification, H+ released from CaCO3 deposition could react with NH3 to form NH+4 in the extrapallial fluid, and NH+4 could probably be transported into the shell-facing inner mantle epithelium through NKA. Light also induced an increase in the activity of glutamine synthetase, which converts NH+4 and glutamate to glutamine, in the inner mantle. Taken together, these results explained observations reported elsewhere that light induced a significant increase in pH and a significant decrease in ammonia concentration in the extrapallial fluid, as well as a significant increase in the glutamine concentration in the inner mantle, of T. squamosa. Exposure of T. squamosa to light also led to a significant decrease in the N-ethylmaleimide (NEM)-sensitive-V-H+-ATPase (VATPase) in the inner mantle, and significant increases in the Na+/K+-activated-NKA, H+/NH+4-activated-H+/K+-ATPase, and NEM-sensitive-VATPase activities in ctenidia, indicating that light-enhanced calcification might perturb Na+ homeostasis and acid/base balance in the hemolymph, and might involve the active uptake of NH+4 from the environment. This is the first report on light having direct enhancing effects on activities of certain transporters

  20. Light induces changes in activities of Na(+)/K(+)-ATPase, H(+)/K(+)-ATPase and glutamine synthetase in tissues involved directly or indirectly in light-enhanced calcification in the giant clam, Tridacna squamosa.

    PubMed

    Ip, Yuen K; Ching, Biyun; Hiong, Kum C; Choo, Celine Y L; Boo, Mel V; Wong, Wai P; Chew, Shit F

    2015-01-01

    The objective of this study was to determine the effects of 12 h of exposure to light, as compared with 12 h of exposure to darkness (control), on enzymatic activities of transporters involved in the transport of NH(+) 4 or H(+), and activities of enzymes involved in converting NH(+) 4 to glutamate/glutamine in inner mantle, outer mantle, and ctenidia of the giant clam, Tridacna squamosa. Exposure to light resulted in a significant increase in the effectiveness of NH(+) 4 in substitution for K(+) to activate Na(+)/K(+)-ATPase (NKA), manifested as a significant increase in the Na(+)/NH(+) 4-activated-NKA activity in the inner mantle. However, similar phenomena were not observed in the extensible outer mantle, which contained abundant symbiotic zooxanthellae. Hence, during light-enhanced calcification, H(+) released from CaCO3 deposition could react with NH3 to form NH(+) 4 in the extrapallial fluid, and NH(+) 4 could probably be transported into the shell-facing inner mantle epithelium through NKA. Light also induced an increase in the activity of glutamine synthetase, which converts NH(+) 4 and glutamate to glutamine, in the inner mantle. Taken together, these results explained observations reported elsewhere that light induced a significant increase in pH and a significant decrease in ammonia concentration in the extrapallial fluid, as well as a significant increase in the glutamine concentration in the inner mantle, of T. squamosa. Exposure of T. squamosa to light also led to a significant decrease in the N-ethylmaleimide (NEM)-sensitive-V-H(+)-ATPase (VATPase) in the inner mantle, and significant increases in the Na(+)/K(+)-activated-NKA, H(+)/NH(+) 4-activated-H(+)/K(+)-ATPase, and NEM-sensitive-VATPase activities in ctenidia, indicating that light-enhanced calcification might perturb Na(+) homeostasis and acid/base balance in the hemolymph, and might involve the active uptake of NH(+) 4 from the environment. This is the first report on light having direct

  1. Cysteinyl-tRNA synthetase: determination of the last E. coli aminoacyl-tRNA synthetase primary structure.

    PubMed Central

    Eriani, G; Dirheimer, G; Gangloff, J

    1991-01-01

    The gene coding for E. coli cysteinyl-tRNA synthetase (cysS) was isolated by complementation of a strain deficient in cysteinyl-tRNA synthetase activity at high temperature (43 degrees C). Sequencing of a 2.1 kbp DNA fragment revealed an open reading frame of 1383 bp coding for a protein of 461 amino acid residues with a Mr of 52,280, a value in close agreement with that observed for the purified protein, which behaves as a monomer. The sequence of CysRS bears the canonical His-Ile- Gly -His (HIGH) and Lys-Met-Ser-Lys-Ser (KMSKS) motifs characteristic of the group of enzymes containing a Rossmann fold; furthermore, it shows striking homologies with MetRS (an homodimer of 677 residues) and to a lesser extent with Ile-, Leu-, and ValRS (monomers of 939, 860, and 951 residues respectively). With its monomeric state and smaller size, CysRS is probably more closely related to the primordial aminoacyl-tRNA synthetase from which all have diverged. Images PMID:2014166

  2. Alteration of the Bacillus subtilis glutamine synthetase results in overproduction of the enzyme.

    PubMed Central

    Dean, D R; Hoch, J A; Aronson, A I

    1977-01-01

    A mutational leading to glutamine auxotrophy was located near a 5-fluorouracil resistance marker in the citB-thyA region of the Bacillus subtilis chromosome. This mutation resulted in a glutamine synthetase with altered kinetic and feedback properties. The specific activity of manganese-stimulated glutamine synthetase activity in crude extracts was 18-fold higher, and the magnesium-stimulated activity was about 30% that of the wild type. Quantitation of the enzyme by precipitation with antibody prepared against pure enzyme confirmed the presence of high enzyme levels in the mutant. This mutation is very closely linked (recombination index of 0.03) to another glutamine auxotroph containing enzyme with altered electrophoretic and heat sensitivity properties. Mutations in the structural gene for glutamine synthetase may result not only in altered catalytic and regulatory properties but also in altered production of the enzyme. Images PMID:19424

  3. Inhibition of Pneumocystis carinii dihydropteroate synthetase by sulfa drugs.

    PubMed Central

    Merali, S; Zhang, Y; Sloan, D; Meshnick, S

    1990-01-01

    A new reversed-phase high-pressure liquid chromatography assay procedure for dihydropteroate synthetase (DHPS) that involves the elution of the enzyme incubation solution with a series of three solvents of decreasing polarity (ammonium phosphate buffer, 10% methanol, and 50% methanol) was designed. By this procedure DHPS was detected in Escherichia coli and Pneumocystis carinii with specific activities of 450 and 14 U/mg, respectively. A comparison of the effects of five sulfa drugs on P. carinii DHPS activity revealed that dapsone is the most potent of these drugs. PMID:2203302

  4. An example of non-conservation of oligomeric structure in prokaryotic aminoacyl-tRNA synthetases. Biochemical and structural properties of glycyl-tRNA synthetase from Thermus thermophilus.

    PubMed

    Mazauric, M H; Reinbolt, J; Lorber, B; Ebel, C; Keith, G; Giegé, R; Kern, D

    1996-11-01

    Glycyl-tRNA synthetase (Gly-tRNA synthetase) from Thermus thermophilus was purified to homogeneity and with high yield using a five-step purification procedure in amounts sufficient to solve its crystallographic structure [Logan, D.T., Mazauric, M.-H., Kern, D. & Moras, D. (1995) EMBO J. 14, 4156-4167]. Molecular-mass determinations of the native and denatured protein indicate an oligomeric structure of the alpha 2 type consistent with that found for eukaryotic Gly-tRNA synthetases (yeast and Bombyx mori), but different from that of Gly-tRNA synthetases from mesophilic prokaryotes (Escherichia coli and Bacillus brevis) which are alpha 2 beta 2 tetramers. N-terminal sequencing of the polypeptide chain reveals significant identity, reaching 50% with those of the eukaryotic enzymes (B. mori, Homo sapiens, yeast and Caenorhabditis elegans) but no significant identity was found with both alpha and beta chains of the prokaryotic enzymes (E. coli, Haemophilus influenzae and Coxiella burnetii) albeit the enzyme is deprived of the N-terminal extension characterizing eukaryotic synthetases. Thus, the thermophilic Gly-tRNA synthetase combines strong structural homologies of eukaryotic Gly-tRNA synthetases with a feature of prokaryotic synthetases. Heat-stability measurements show that this synthetase keeps its ATP-PPi exchange and aminoacylation activities up to 70 degrees C. Glycyladenylate strongly protects the enzyme against thermal inactivation at higher temperatures. Unexpectedly, tRNA(Gly) does not induce protection. Cross-aminoacylations reveal that the thermophilic Gly-tRNA synthetase charges heterologous E. coli tRNA(gly(GCC)) and tRNA(Gly(GCC)) and yeast tRNA(Gly(GCC)) as efficiently as T. thermophilus tRNA(Gly). All these aminoacylation reactions are characterized by similar activation energies as deduced from Arrhenius plots. Therefore, contrary to the E. coli and H. sapiens Gly-tRNA synthetases, the prokaryotic thermophilic enzyme does not possess a strict

  5. Isolation of the thymidylate synthetase gene (TMP1) by complementation in Saccharomyces cerevisiae

    SciTech Connect

    Taylor, G.R.; Barclay, B.J.; Storms, R.K.; Friesen, J.D.; Haynes, R.H.

    1982-04-01

    The structural gene (TMP1) for yeast thymidylate synthetase (thymidylate synthase; EC 2.1.1.45) was isolated from a chimeric plasmid bank by genetic complementation in Saccharomyces cerevisiae. Retransformation of the dTMP auxotroph GY712 and a temperature-sensitive mutant (cdc21) with purified plasmid (pTL1) yielded Tmp/sup +/ transformants at high frequency. In addition, the plasmid was tested for the ability to complement a bacterial thyA mutant that lacks functional thymidylate synthetase. Although it was not possible to select Thy/sup +/ transformants directly, it was found that all pTL1 transformants were phenotypically Thy/sup +/ after several generations of growth in nonselective conditions. Thus, yeast thymidylate synthetase is biologically active in Escherichia coli. Thymidylate synthetase was assayed in yeast cell lysates by high-pressure liquid chromatography to monitor the conversion of (6-/sup 3/H)dUMP to (6-/sup 3/H)dTMP. In protein extracts from the thymidylate auxotroph (tmpl-6) enzymatic conversion of dUMP to dTMP was barely detectable. Lysates of pTL1 transformants of this strain, however, had thymidylate synthetase activity that was comparable to that of the wild-type strain.

  6. Variations in the Localization of Acetyl-Coenzyme A Synthetase in Aerobic Yeast Cells

    PubMed Central

    Klein, Harold P.; Jahnke, Linda

    1971-01-01

    In cells of Saccharomyces cerevisiae growing aerobically for 24 hr, acetyl-coenzyme A synthetase [acetate: CoA ligase (AMP), EC 6.2.1.1] was localized principally in the microsomal fraction. On density gradients, the enzyme in such cells behaved as a low-density particle, readily separable from the soluble proteins. After 48 hr of incubation, the cells showed a bimodal distribution of enzyme, with most of the activity now sedimenting with the mitochondrial fraction and only a smaller amount with the microsomal fraction. By using density gradients, two forms of synthetase were obtained from these cells: one band denser and the other band less dense than the intact mitochondria. In all preparations containing synthetase activity, appreciable levels of phospholipids were also detected. Images PMID:4102333

  7. High Extracellular Levels of Mycobacterium tuberculosis Glutamine Synthetase and Superoxide Dismutase in Actively Growing Cultures Are Due to High Expression and Extracellular Stability Rather than to a Protein-Specific Export Mechanism

    PubMed Central

    Tullius, Michael V.; Harth, Günter; Horwitz, Marcus A.

    2001-01-01

    Glutamine synthetase (GS) and superoxide dismutase (SOD), large multimeric enzymes that are thought to play important roles in the pathogenicity of Mycobacterium tuberculosis, are among the bacterium's major culture filtrate proteins in actively growing cultures. Although these proteins lack a leader peptide, their presence in the extracellular medium during early stages of growth suggested that they might be actively secreted. To understand their mechanism of export, we cloned the homologous genes (glnA1 and sodA) from the rapid-growing, nonpathogenic Mycobacterium smegmatis, generated glnA1 and sodA mutants of M. smegmatis by allelic exchange, and quantitated expression and export of both mycobacterial and nonmycobacterial GSs and SODs in these mutants. We also quantitated expression and export of homologous and heterologous SODs from M. tuberculosis. When each of the genes was expressed from a multicopy plasmid, M. smegmatis exported comparable proportions of both the M. tuberculosis and M. smegmatis GSs (in the glnA1 strain) or SODs (in the sodA strain), in contrast to previous observations in wild-type strains. Surprisingly, recombinant M. smegmatis and M. tuberculosis strains even exported nonmycobacterial SODs. To determine the extent to which export of these large, leaderless proteins is expression dependent, we constructed a recombinant M. tuberculosis strain expressing green fluorescent protein (GFP) at high levels and a recombinant M. smegmatis strain coexpressing the M. smegmatis GS, M. smegmatis SOD, and M. tuberculosis BfrB (bacterioferritin) at high levels. The recombinant M. tuberculosis strain exported GFP even in early stages of growth and at proportions very similar to those of the endogenous M. tuberculosis GS and SOD. Similarly, the recombinant M. smegmatis strain exported bacterioferritin, a large (∼500-kDa), leaderless, multimeric protein, in proportions comparable to GS and SOD. In contrast, high-level expression of the large, leaderless

  8. A component of the multisynthetase complex is a multifunctional aminoacyl-tRNA synthetase.

    PubMed Central

    Cerini, C; Kerjan, P; Astier, M; Gratecos, D; Mirande, M; Sémériva, M

    1991-01-01

    In higher eukaryotes, nine aminoacyl-tRNA synthetases are associated within a multienzyme complex which is composed of 11 polypeptides with molecular masses ranging from 18 to 150 kDa. We have cloned and sequenced a cDNA from Drosophila encoding the largest polypeptide of this complex. We demonstrate here that the corresponding protein is a multifunctional aminoacyl-tRNA synthetase. It is composed of three major domains, two of them specifying distinct synthetase activities. The amino and carboxy-terminal domains were expressed separately in Escherichia coli, and were found to catalyse the aminoacylation of glutamic acid and proline tRNA species, respectively. The central domain is made of six 46 amino acid repeats. In prokaryotes, these two aminoacyl-tRNA synthetases are encoded by distinct genes. The emergence of a multifunctional synthetase by a gene fusion event seems to be a specific, but general attribute of all higher eukaryotic cells. This type of structural organization, in relation to the occurrence of multisynthetase complexes, could be a mechanism to integrate several catalytic domains within the same particle. The involvement of the internal repeats in mediating complex assembly is discussed. Images PMID:1756734

  9. Identification and Functional Characterization of a Novel Bacterial Type Asparagine Synthetase A

    PubMed Central

    Manhas, Reetika; Tripathi, Pankaj; Khan, Sameena; Sethu Lakshmi, Bhavana; Lal, Shambhu Krishan; Gowri, Venkatraman Subramanian; Sharma, Amit; Madhubala, Rentala

    2014-01-01

    Asparagine is formed by two structurally distinct asparagine synthetases in prokaryotes. One is the ammonia-utilizing asparagine synthetase A (AsnA), and the other is asparagine synthetase B (AsnB) that uses glutamine or ammonia as a nitrogen source. In a previous investigation using sequence-based analysis, we had shown that Leishmania spp. possess asparagine-tRNA synthetase paralog asparagine synthetase A (LdASNA) that is ammonia-dependent. Here, we report the cloning, expression, and kinetic analysis of ASNA from Leishmania donovani. Interestingly, LdASNA was both ammonia- and glutamine-dependent. To study the physiological role of ASNA in Leishmania, gene deletion mutations were attempted via targeted gene replacement. Gene deletion of LdASNA showed a growth delay in mutants. However, chromosomal null mutants of LdASNA could not be obtained as the double transfectant mutants showed aneuploidy. These data suggest that LdASNA is essential for survival of the Leishmania parasite. LdASNA enzyme was recalcitrant toward crystallization so we instead crystallized and solved the atomic structure of its close homolog from Trypanosoma brucei (TbASNA) at 2.2 Å. A very significant conservation in active site residues is observed between TbASNA and Escherichia coli AsnA. It is evident that the absence of an LdASNA homolog from humans and its essentiality for the parasites make LdASNA a novel drug target. PMID:24610810

  10. Acetyl-CoA synthetase is activated as part of the PDH-bypass in the oleaginous green alga Chlorella desiccata

    PubMed Central

    Avidan, Omri; Pick, Uri

    2015-01-01

    In a recent study, it has been shown that biosynthesis of triacylglycerol (TAG) in the oleaginous green alga Chlorella desiccata is preceded by a large increase in acetyl-coenzyme A (Ac-CoA) levels and by upregulation of plastidic pyruvate dehydrogenase (ptPDH). It was proposed that the capacity to accumulate high TAG critically depends on enhanced production of Ac-CoA. In this study, two alternative Ac-CoA producers—plastidic Ac-CoA synthase (ptACS) and ATP citrate lyase (ACL)—are shown to be upregulated prior to TAG accumulation under nitrogen deprivation in the oleaginous species C. desiccata, but not in the moderate TAG accumulators Dunaliella tertiolecta and Chlamydomonas reinhardtii. Measurements of endogenous acetate production and of radiolabelled acetate incorporation into lipids are consistent with the upregulation of ptACS, but suggest that its contribution to the overall TAG biosynthesis is negligible. Induction of ACS and production of endogenous acetate are correlated with activation of alcohol dehydrogenase, suggesting that the upregulation of ptACS is associated with activation of PDH-bypass in C. desiccata. It is proposed that activation of the PDH-bypass in C. desiccata is needed to enable a high rate of lipid biosynthesis under nitrogen deprivation by controlling the level of pyruvate reaching ptPHD and/or mtPDH. This may be an important parameter for massive TAG accumulation in microalgae. PMID:26357883

  11. Expression of acyl-CoA synthetase 5 reflects the state of villus architecture in human small intestine.

    PubMed

    Gassler, Nikolaus; Kopitz, Jürgen; Tehrani, Arman; Ottenwälder, Birgit; Schnölzer, Martina; Kartenbeck, Jürgen; Lyer, Stefan; Autschbach, Frank; Poustka, Annemarie; Otto, Herwart F; Mollenhauer, Jan

    2004-02-01

    Several disorders of the small intestine are associated with disturbances in villus architecture. Thus, an understanding of the molecular mechanisms associated with the differentiation of villi represents an important step in the improvement of the understanding of small intestinal pathology. Screening of antibodies from a hybridoma library led to the identification of an acyl-CoA synthetase 5-specific monoclonal antibody. Protein synthesis, mRNA expression, and the enzyme activity of acyl-CoA synthetase 5 were studied by several methods in human small intestinal tissues with Crohn's disease or coeliac disease, respectively. Acyl-CoA synthetase 5 mRNA and protein levels were substantially reduced in injured small intestinal mucosa. Moreover, impaired synthesis of the acyl-CoA synthetase 5 protein was reflected by a decrease in intramucosal enzyme activity. Subtle changes of the acyl-CoA synthetase 5 pattern correlate with conversion of intestinal epithelial cells to a gastric phenotype. These results suggest that deranged acyl-CoA synthetase 5 expression, synthesis, and activity are closely related to the state of villus architecture and epithelial homeostasis in human small intestine. PMID:14743501

  12. Properties of Kaurene Synthetase from Marah macrocarpus1

    PubMed Central

    Frost, Russell G.; West, Charles A.

    1977-01-01

    The kaurene synthetase from immature seeds of Marah macrocarpus (Greene) Greene was partially purified from cell-free homogenates of endosperm by a combination of QAE-Sephadex A-25 chromatography and hydroxyapatite chromatography and freed of contaminating phosphatase activity. The two catalytic activities associated with kaurene synthetase, the cyclization of geranylgeranyl-pyrophosphate to copalyl-pyrophosphate (activity A) and the cyclization of copalyl-pyrophosphate to ent-kaurene (activity B), were not even partially resolved from one another during these procedures. Both activities had identical elution profiles from a calibrated Sepharose 4B column corresponding to a molecular weight less than that of ovalbumin (45,000). The A and B activities had pH optima of 7.3 and 6.9, respectively. Both activities required millimolar concentrations of the following divalent cations in the order: Mg2+ > Mn2+ > Co2+. Activities A and B were both sensitive to inhibition by Hg2+, Cu2+, p-hydroxymercuribenzoate, and N-ethylmaleimide, but activity B was much more sensitive than activity A. The average value of Km′ (apparent Km in the absence of substrate inhibition) for geranylgeranyl-pyrophosphate was 1.6 μm. Values of 0.5 and 0.6 μm were obtained for Km′ and Km, respectively, for copalyl-pyrophosphate. The Vm′ values for the two activities were similar: 12 and 9 pmol/minute·μg protein for activities A and B, respectively. N,N-Dimethylaminoethyl-2,2-diphenylpentanoate (SKF-525A) and N,N-dimethylaminoethyl-2,2-diphenylphentyl ether (SKF-3301A), tributyl-2,4-dichlorobenzylphosphonium chloride (Phosfon D), tributyl-2,4-dichlorobenzylammonium chloride (Phosfon S), 2′-isopropyl-4′-(trimethylammonium chloride)-5′-methylphenyl piperidine-1-carboxylate (Amo-1618), 2-(N,N-dimethyl-N-heptylammonium bromide)-p-methan-1-ol (Q-58), and 2-(N,N-dimethyl-N-octylammonium bromide)-p-methan-1-ol (Q-64), at concentrations from 1 to 5 μm, were effective inhibitors of kaurene

  13. Bacteriophage T4 Virion Baseplate Thymidylate Synthetase and Dihydrofolate Reductase

    PubMed Central

    Kozloff, L. M.; Lute, M.; Crosby, L. K.

    1977-01-01

    Additional evidence is presented that both the phage T4D-induced thymidylate synthetase (gp td) and the T4D-induced dihydrofolate reductase (gp frd) are baseplate structural components. With regard to phage td it has been found that: (i) low levels of thymidylate synthetase activity were present in highly purified preparations of T4D ghost particles produced after infection with td+, whereas particles produced after infection with td− had no measurable enzymatic activity; (ii) a mutation of the T4D td gene from tdts to td+ simultaneously produced a heat-stable thymidylate synthetase enzyme and heat-stable phage particles (it should be noted that the phage baseplate structure determines heat lability); (iii) a recombinant of two T4D mutants constructed containing both tdts and frdts genes produced particles whose physical properties indicate that these two molecules physically interact in the baseplate. With regard to phage frd it has been found that two spontaneous revertants each of two different T4D frdts mutants to frd+ not only produced altered dihydrofolate reductases but also formed phage particles with heat sensitivities different from their parents. Properties of T4D particles produced after infection with parental T4D mutants presumed to have a deletion of the td gene and/or the frd gene indicate that these particles still retain some characteristics associated with the presence of both the td and the frd molecules. Furthermore, the particles produced by the deletion mutants have been found to be physically different from the parent particles. PMID:894793

  14. Inactivation and covalent modification of CTP synthetase by thiourea dioxide.

    PubMed

    Robertson, J G; Sparvero, L J; Villafranca, J J

    1992-10-01

    Thiourea dioxide was used in chemical modification studies to identify functionally important amino acids in Escherichia coli CTP synthetase. Incubation at pH 8.0 in the absence of substrates led to rapid, time dependent, and irreversible inactivation of the enzyme. The second-order rate constant for inactivation was 0.18 M-1 s-1. Inactivation also occurred in the absence of oxygen and in the presence of catalase, thereby ruling out mixed-function oxidation/reduction as the mode of amino acid modification. Saturating concentrations of the substrates ATP and UTP, and the allosteric activator GTP prevented inactivation by thiourea dioxide, whereas saturating concentrations of glutamine (a substrate) did not. The concentration dependence of nucleotide protection revealed cooperative behavior with respect to individual nucleotides and with respect to various combinations of nucleotides. Mixtures of nucleotides afforded greater protection against inactivation than single nucleotides alone, and a combination of the substrates ATP and UTP provided the most protection. The Hill coefficient for nucleotide protection was approximately 2 for ATP, UTP, and GTP. In the presence of 1:1 ratios of ATP:UTP, ATP:GTP, and UTP:GTP, the Hill coefficient was approximately 4 in each case. Fluorescence and circular dichroism measurements indicated that modification by thiourea dioxide causes detectable changes in the structure of the protein. Modification with [14C]thiourea dioxide demonstrated that complete inactivation correlates with incorporation of 3 mol of [14C]thiourea dioxide per mole of CTP synthetase monomer. The specificity of thiourea dioxide for lysine residues indicates that one or more lysines are most likely involved in CTP synthetase activity. The data further indicate that nucleotide binding prevents access to these functionally important residues. PMID:1303749

  15. Inactivation and covalent modification of CTP synthetase by thiourea dioxide.

    PubMed Central

    Robertson, J. G.; Sparvero, L. J.; Villafranca, J. J.

    1992-01-01

    Thiourea dioxide was used in chemical modification studies to identify functionally important amino acids in Escherichia coli CTP synthetase. Incubation at pH 8.0 in the absence of substrates led to rapid, time dependent, and irreversible inactivation of the enzyme. The second-order rate constant for inactivation was 0.18 M-1 s-1. Inactivation also occurred in the absence of oxygen and in the presence of catalase, thereby ruling out mixed-function oxidation/reduction as the mode of amino acid modification. Saturating concentrations of the substrates ATP and UTP, and the allosteric activator GTP prevented inactivation by thiourea dioxide, whereas saturating concentrations of glutamine (a substrate) did not. The concentration dependence of nucleotide protection revealed cooperative behavior with respect to individual nucleotides and with respect to various combinations of nucleotides. Mixtures of nucleotides afforded greater protection against inactivation than single nucleotides alone, and a combination of the substrates ATP and UTP provided the most protection. The Hill coefficient for nucleotide protection was approximately 2 for ATP, UTP, and GTP. In the presence of 1:1 ratios of ATP:UTP, ATP:GTP, and UTP:GTP, the Hill coefficient was approximately 4 in each case. Fluorescence and circular dichroism measurements indicated that modification by thiourea dioxide causes detectable changes in the structure of the protein. Modification with [14C]thiourea dioxide demonstrated that complete inactivation correlates with incorporation of 3 mol of [14C]thiourea dioxide per mole of CTP synthetase monomer. The specificity of thiourea dioxide for lysine residues indicates that one or more lysines are most likely involved in CTP synthetase activity. The data further indicate that nucleotide binding prevents access to these functionally important residues. PMID:1303749

  16. A human aminoacyl-tRNA synthetase as a regulator of angiogenesis.

    PubMed

    Wakasugi, Keisuke; Slike, Bonnie M; Hood, John; Otani, Atsushi; Ewalt, Karla L; Friedlander, Martin; Cheresh, David A; Schimmel, Paul

    2002-01-01

    Aminoacyl-tRNA synthetases catalyze the first step of protein synthesis. It was shown recently that human tyrosyl-tRNA synthetase (TyrRS) can be split into two fragments having distinct cytokine activities, thereby linking protein synthesis to cytokine signaling pathways. Tryptophanyl-tRNA synthetase (TrpRS) is a close homologue of TyrRS. A natural fragment, herein designated as mini TrpRS, was shown by others to be produced by alternative splicing. Production of this fragment is reported to be stimulated by IFN-gamma, a cytokine that also stimulates production of angiostatic factors. Mini TrpRS is shown here to be angiostatic in a mammalian cell culture system, the chicken embryo, and two independent angiogenesis assays in the mouse. The full-length enzyme is inactive in the same assays. Thus, protein synthesis may be linked to the regulation of angiogenesis by a natural fragment of TrpRS. PMID:11773626

  17. A human aminoacyl-tRNA synthetase as a regulator of angiogenesis

    PubMed Central

    Wakasugi, Keisuke; Slike, Bonnie M.; Hood, John; Otani, Atsushi; Ewalt, Karla L.; Friedlander, Martin; Cheresh, David A.; Schimmel, Paul

    2002-01-01

    Aminoacyl-tRNA synthetases catalyze the first step of protein synthesis. It was shown recently that human tyrosyl-tRNA synthetase (TyrRS) can be split into two fragments having distinct cytokine activities, thereby linking protein synthesis to cytokine signaling pathways. Tryptophanyl-tRNA synthetase (TrpRS) is a close homologue of TyrRS. A natural fragment, herein designated as mini TrpRS, was shown by others to be produced by alternative splicing. Production of this fragment is reported to be stimulated by IFN-γ, a cytokine that also stimulates production of angiostatic factors. Mini TrpRS is shown here to be angiostatic in a mammalian cell culture system, the chicken embryo, and two independent angiogenesis assays in the mouse. The full-length enzyme is inactive in the same assays. Thus, protein synthesis may be linked to the regulation of angiogenesis by a natural fragment of TrpRS. PMID:11773626

  18. Mutants of Phycomyces blakesleeanus Defective in Acetyl-CoA Synthetase

    PubMed

    Garre; Torres-Martinez

    1996-03-01

    Nine mutants of the filamentous fungus Phycomyces blakesleeanus have been isolated on the basis of their resistance to fluoroacetate. None of the isolates uses acetate as the sole carbon source. Genetic complementation experiments revealed that all the mutants belong to the same complementation group. Biochemical analysis indicated that the acetate-induced acetyl-CoA synthetase activity is abolished in all nine mutants, thus suggesting that they are affected in the gene coding for acetyl-CoA synthetase (facA). PMID:8812287

  19. Lincosamide synthetase--a unique condensation system combining elements of nonribosomal peptide synthetase and mycothiol metabolism.

    PubMed

    Janata, Jiri; Kadlcik, Stanislav; Koberska, Marketa; Ulanova, Dana; Kamenik, Zdenek; Novak, Petr; Kopecky, Jan; Novotna, Jitka; Radojevic, Bojana; Plhackova, Kamila; Gazak, Radek; Najmanova, Lucie

    2015-01-01

    In the biosynthesis of lincosamide antibiotics lincomycin and celesticetin, the amino acid and amino sugar units are linked by an amide bond. The respective condensing enzyme lincosamide synthetase (LS) is expected to be an unusual system combining nonribosomal peptide synthetase (NRPS) components with so far unknown amino sugar related activities. The biosynthetic gene cluster of celesticetin was sequenced and compared to the lincomycin one revealing putative LS coding ORFs shared in both clusters. Based on a bioassay and production profiles of S. lincolnensis strains with individually deleted putative LS coding genes, the proteins LmbC, D, E, F and V were assigned to LS function. Moreover, the newly recognized N-terminal domain of LmbN (LmbN-CP) was also assigned to LS as a NRPS carrier protein (CP). Surprisingly, the homologous CP coding sequence in celesticetin cluster is part of ccbZ gene adjacent to ccbN, the counterpart of lmbN, suggesting the gene rearrangement, evident also from still active internal translation start in lmbN, and indicating the direction of lincosamide biosynthesis evolution. The in vitro test with LmbN-CP, LmbC and the newly identified S. lincolnensis phosphopantetheinyl transferase Slp, confirmed the cooperation of the previously characterized NRPS A-domain LmbC with a holo-LmbN-CP in activation of a 4-propyl-L-proline precursor of lincomycin. This result completed the functional characterization of LS subunits resembling NRPS initiation module. Two of the four remaining putative LS subunits, LmbE/CcbE and LmbV/CcbV, exhibit low but significant homology to enzymes from the metabolism of mycothiol, the NRPS-independent system processing the amino sugar and amino acid units. The functions of particular LS subunits as well as cooperation of both NRPS-based and NRPS-independent LS blocks are discussed. The described condensing enzyme represents a unique hybrid system with overall composition quite dissimilar to any other known enzyme system

  20. Genetics Home Reference: glutathione synthetase deficiency

    MedlinePlus

    ... PubMed Njålsson R. Glutathione synthetase deficiency. Cell Mol Life Sci. 2005 Sep;62(17):1938-45. Review. Citation on PubMed Ristoff E, Larsson A. Inborn errors in the metabolism of glutathione. Orphanet J Rare Dis. 2007 Mar 30;2:16. Review. Citation on PubMed or ...

  1. Genetics Home Reference: holocarboxylase synthetase deficiency

    MedlinePlus

    ... important for the effective use of biotin, a B vitamin found in foods such as liver, egg yolks, and milk. Holocarboxylase synthetase attaches biotin to certain enzymes that are essential for the normal production and breakdown of proteins, fats, and carbohydrates in ...

  2. Management of a patient with holocarboxylase synthetase deficiency.

    PubMed

    Van Hove, Johan L K; Josefsberg, Sagi; Freehauf, Cynthia; Thomas, Janet A; Thuy, Le Phuc; Barshop, Bruce A; Woontner, Michael; Mock, Donald M; Chiang, Pei-Wen; Spector, Elaine; Meneses-Morales, Iván; Cervantes-Roldán, Rafael; León-Del-Río, Alfonso

    2008-12-01

    We investigated in a patient with holocarboxylase synthetase deficiency, the relation between the biochemical and genetic factors of the mutant protein with the pharmacokinetic factors of successful biotin treatment. A girl exhibited abnormal skin at birth, and developed in the first days of life neonatal respiratory distress syndrome and metabolic abnormalities diagnostic of multiple carboxylase deficiency. Enzyme assays showed low carboxylase activities. Fibroblast analysis showed poor incorporation of biotin into the carboxylases, and low transfer of biotin by the holocarboxylase synthetase enzyme. Kinetic studies identified an increased Km but a preserved Vmax. Mutation analysis showed the child to be a compound heterozygote for a new nonsense mutation Q379X and for a novel missense mutation Y663H. This mutation affects a conserved amino acid, which is located the most 3' of all recorded missense mutations thus far described, and extends the region of functional biotin interaction. Treatment with biotin 100mg/day gradually improved the biochemical abnormalities in blood and in cerebrospinal fluid (CSF), corrected the carboxylase enzyme activities, and provided clinical stability and a normal neurodevelopmental outcome. Plasma concentrations of biotin were increased to more than 500 nM, thus exceeding the increased Km of the mutant enzyme. At these pharmacological concentrations, the CSF biotin concentration was half the concentration in blood. Measuring these pharmacokinetic variables can aid in optimizing treatment, as individual tailoring of dosing to the needs of the mutation may be required. PMID:18974016

  3. MANAGEMENT OF A PATIENT WITH HOLOCARBOXYLASE SYNTHETASE DEFICIENCY

    PubMed Central

    Van Hove, Johan LK; Josefsberg, Sagi; Freehauf, Cynthia; Thomas, Janet A.; Thuy, Le Phuc; Barshop, Bruce A.; Woontner, Michael; Mock, Donald M; Chiang, Pei-Wen; Spector, Elaine; Meneses-Morales, Iván; Cervantes-Roldán, Rafael; León-Del-Río, Alfonso

    2009-01-01

    We investigated in a patient with holocarboxylase synthetase deficiency, the relation between the biochemical and genetic factors of the mutant protein with the pharmacokinetic factors of successful biotin treatment. A girl exhibited abnormal skin at birth, and developed in the first days of life neonatal respiratory distress syndrome and metabolic abnormalities diagnostic of multiple carboxylase deficiency. Enzyme assays showed low carboxylase activities. Fibroblast analysis showed poor incorporation of biotin into the carboxylases, and low transfer of biotin by the holocarboxylase synthetase enzyme. Kinetic studies identified an increased Km but a preserved Vmax. Mutation analysis showed the child to be a compound heterozygote for a new nonsense mutation Q379X and for a novel missense mutation Y663H. This mutation affects a conserved amino acid, which is located the most 3′ of all recorded missense mutations thus far described, and extends the region of functional biotin interaction. Treatment with biotin 100 mg/day gradually improved the biochemical abnormalities in blood and in cerebrospinal fluid, corrected the carboxylase enzyme activities, and provided clinical stability and a normal neurodevelopmental outcome. Plasma concentrations of biotin were increased to more than 500 nM, thus exceeding the increased Km of the mutant enzyme. At these pharmacological concentrations, the CSF biotin concentration was half the concentration in blood. Measuring these pharmacokinetic variables can aid in optimizing treatment, as individual tailoring of dosing to the needs of the mutation may be required. PMID:18974016

  4. Inhibitory effect of quinolone antimicrobial and nonsteroidal anti-inflammatory drugs on a medium chain acyl-CoA synthetase.

    PubMed

    Kasuya, F; Hiasa, M; Kawai, Y; Igarashi, K; Fukui, M

    2001-08-01

    The inhibitory effects of quinolone antimicrobial agents and nonsteroidal anti-inflammatory drugs on purified mouse liver mitochondrial medium chain acyl-CoA synthetase catalyzing the first reaction of glycine conjugation were examined, using hexanoic acid as a substrate. Enoxacin, ofloxacin, nalidixic acid, diflunisal, salicylic acid, 2-hydroxynaphthoic acid, and 2-hydroxydodecanoic acid, which do not act as substrates, were potent inhibitors. Diflunisal, nalidixic acid, salicylic acid, 2-hydroxynaphthoic acid, and 2-hydroxydodecanoic acid inhibited competitively this medium chain acyl-CoA synthetase with K(i) values of 0.6, 12.4, 19.6, 13.4, and 15.0 microM, respectively. Enoxacin and ofloxacin inhibited this medium chain acyl-CoA synthetase in a mixed-type manner with K(i) values of 23.7 and 38.2 microM, respectively. Felbinac, which is a substrate, inhibited the activity of this medium chain acyl-CoA synthetase for hexanoic acid (IC50 = 25 microM). The concomitant presence of enoxacin and felbinac strongly inhibited this medium chain acyl-CoA synthetase. These findings indicate that medium chain acyl-CoA synthetases may be influenced by quinolone antimicrobial and nonsteroidal anti-inflammatory drugs. PMID:11434910

  5. Characterization of recombinant glutamine synthetase from the hyperthermophilic archaeon Pyrococcus sp. strain KOD1.

    PubMed Central

    Adul Rahman, R N; Jongsareejit, B; Fujiwara, S; Imanaka, T

    1997-01-01

    The glnA gene encoding glutamine synthetase was cloned from the hyperthermophilic archaeon Pyrococcus sp. strain KOD1, and its nucleotide sequence was determined. The glnA gene was expressed in Escherichia coli ME8459 (glnA mutant strain), and the protein was purified to homogeneity and shown to be functional in a dodecameric from (637,000 Da), exhibiting both transferase and synthetase activities. However, kinetic studies indicated that the enzyme possessed low biosynthetic activity, suggesting that the reaction was biased towards glutamate production. The optimum temperature for both activities was 60 degrees C, which was lower than the optimal growth temperature of KOD1. Recombinant KOD1 GlnA exhibited different optimum pHs depending on the reaction employed (pH 7.8 for the synthetase reaction and pH 7.2 for the transferase reaction). Of the various nucleoside triphosphates tested, GTP as well as ATP was involved in the synthetase reaction. PMID:9172372

  6. Anticodon recognition in evolution: switching tRNA specificity of an aminoacyl-tRNA synthetase by site-directed peptide transplantation.

    PubMed

    Brevet, Annie; Chen, Josiane; Commans, Stéphane; Lazennec, Christine; Blanquet, Sylvain; Plateau, Pierre

    2003-08-15

    The highly conserved aspartyl-, asparaginyl-, and lysyl-tRNA synthetases compose one subclass of aminoacyl-tRNA synthetases, called IIb. The three enzymes possess an OB-folded extension at their N terminus. The function of this extension is to specifically recognize the anticodon triplet of the tRNA. Three-dimensional models of bacterial aspartyl- and lysyl-tRNA synthetases complexed to tRNA indicate that a rigid scaffold of amino acid residues along the five beta-strands of the OB-fold accommodates the base U at the center of the anticodon. The binding of the adjacent anticodon bases occurs through interactions with a flexible loop joining strands 4 and 5 (L45). As a result, a switching of the specificity of lysyl-tRNA synthetase from tRNALys (anticodon UUU) toward tRNAAsp (GUC) could be attempted by transplanting the small loop L45 of aspartyl-tRNA synthetase inside lysyl-tRNA synthetase. Upon this transplantation, lysyl-tRNA synthetase loses its capacity to aminoacylate tRNALys. In exchange, the chimeric enzyme acquires the capacity to charge tRNAAsp with lysine. Upon giving the tRNAAsp substrate the discriminator base of tRNALys, the specificity shift is improved. The change of specificity was also established in vivo. Indeed, the transplanted lysyl-tRNA synthetase succeeds in suppressing a missense Lys --> Asp mutation inserted into the beta-lactamase gene. These results functionally establish that sequence variation in a small peptide region of subclass IIb aminoacyl-tRNA synthetases contributes to specification of nucleic acid recognition. Because this peptide element is not part of the core catalytic structure, it may have evolved independently of the active sites of these synthetases. PMID:12766171

  7. Regulation of the intersubunit ammonia tunnel in Mycobacterium tuberculosis glutamine-dependent NAD[superscript +] synthetase

    SciTech Connect

    Chuenchor, Watchalee; Doukov, Tzanko I.; Resto, Melissa; Chang, Andrew; Gerratana, Barbara

    2012-08-31

    Glutamine-dependent NAD{sup +} synthetase is an essential enzyme and a validated drug target in Mycobacterium tuberculosis (mtuNadE). It catalyses the ATP-dependent formation of NAD{sup +} from NaAD{sup +} (nicotinic acid-adenine dinucleotide) at the synthetase active site and glutamine hydrolysis at the glutaminase active site. An ammonia tunnel 40 {angstrom} (1 {angstrom} = 0.1 nm) long allows transfer of ammonia from one active site to the other. The enzyme displays stringent kinetic synergism; however, its regulatory mechanism is unclear. In the present paper, we report the structures of the inactive glutaminase C176A variant in an apo form and in three synthetase-ligand complexes with substrates (NaAD{sup +}/ATP), substrate analogue {l_brace}NaAD{sup +}/AMP-CPP (adenosine 5'-[{alpha},{beta}-methylene]triphosphate){r_brace} and intermediate analogues (NaAD{sup +}/AMP/PPi), as well as the structure of wild-type mtuNadE in a product complex (NAD{sup +}/AMP/PPi/glutamate). This series of structures provides snapshots of the ammonia tunnel during the catalytic cycle supported also by kinetics and mutagenesis studies. Three major constriction sites are observed in the tunnel: (i) at the entrance near the glutaminase active site; (ii) in the middle of the tunnel; and (iii) at the end near the synthetase active site. Variation in the number and radius of the tunnel constrictions is apparent in the crystal structures and is related to ligand binding at the synthetase domain. These results provide new insight into the regulation of ammonia transport in the intermolecular tunnel of mtuNadE.

  8. Inhibition of recombinant Pneumocystis carinii dihydropteroate synthetase by sulfa drugs.

    PubMed Central

    Hong, Y L; Hossler, P A; Calhoun, D H; Meshnick, S R

    1995-01-01

    Forty-four sulfa drugs were screened against crude preparations of recombinant Pneumocystis carinii dihydropteroate synthetase. The apparent Michaelis-Menten constants (Km) for p-aminobenzoic acid and 7,8-dihydro-6-hydroxymethylpterin pyrophosphate were 0.34 +/- 0.02 and 2.50 +/- 0.71 microM, respectively. Several sulfa drugs, including sulfathiazole, sulfachlorpyridazine, sulfamethoxypyridazine, and sulfathiourea, inhibited dihydropteroate synthetase approximately as well as sulfamethoxazole, as determined by the concentrations which cause 50% inhibition and/or by Ki. For all sulfones and sulfonamides tested, unsubstituted p-amino groups were necessary for activity, and sulfonamides containing an N1-heterocyclic substituent were found to be the most effective inhibitors. Folate biosynthesis in isolated intact P. carinii was approximately equally sensitive to inhibition by sulfamethoxazole, sulfachlorpyridazine, sulfamethoxypyridazine, sulfisoxazole, and sulfathiazole. Two of these drugs, sulfamethoxypyridazine and sulfisoxazole, are known to be less toxic than sulfamethoxazole and should be further evaluated for the treatment of P. carinii pneumonia. PMID:7486915

  9. Aromatase inhibitors and anti-synthetase syndrome.

    PubMed

    Mascella, Fabio; Gianni, Lorenzo; Affatato, Alessandra; Fantini, Manuela

    2016-09-01

    Adjuvant therapy in postmenopausal women with endocrine-responsive breast cancer (BC) is actually centered on the use of anti-aromatase inhibitors (AI). Several reports, however, are emerging in literature associating the use of this drugs to rheumatic disorders. This case report describes the first case of anti-synthetase syndrome diagnosis after treatment with anti-estrogen agents in a patient with pre-existing rheumatoid arthritis. PMID:27225465

  10. Properties of 5-aminolaevulinate synthetase and its relationship to microsomal mixed-function oxidation in the southern armyworm (Spodoptera eridania).

    PubMed

    Brattsten, L B; Wilkinson, C F

    1975-07-01

    1. Activity of 5-aminolaevulinate synthetase was measured in the midgut and other tissues of the last larval instar of the southern armyworm (Spodoptera eridania Cramer, formerly Prodenia eridania Cramer). 2. Optimum conditions for measuring the activity were established with respect to all variables involved and considerable differences from those reported for mammalian enzyme preparations were found. 3. Maximum activity (20 nmol/h per mg of protein) occurs 18-24 h after the fifth moult and thereafter decreases to trace amounts as the larvae age and approach pupation. 4. Synthetase activity was rapidly induced by oral administration (in the diet) of pentamethylbenzene, phenobarbital, diethyl 1,4-dihydro-2,4,6-trimethylpyridine-3, 5-dicarboxylate, and 2-allyl-2-isopropylacetamide. 5. Puromycin inhibited the induction of synthetase by pentamethylbenzene. 6. Induction of 5-aminolaevulinate synthetase correlated well with the induction of microsomal N-demethylation of p-chloro-N-methylaniline, except for phenobarbital, which induced the microsomal oxidase relatively more than the synthetase. PMID:1004

  11. Properties of 5-aminolaevulinate synthetase and its relationship to microsomal mixed-function oxidation in the southern armyworm (Spodoptera eridania).

    PubMed Central

    Brattsten, L B; Wilkinson, C F

    1975-01-01

    1. Activity of 5-aminolaevulinate synthetase was measured in the midgut and other tissues of the last larval instar of the southern armyworm (Spodoptera eridania Cramer, formerly Prodenia eridania Cramer). 2. Optimum conditions for measuring the activity were established with respect to all variables involved and considerable differences from those reported for mammalian enzyme preparations were found. 3. Maximum activity (20 nmol/h per mg of protein) occurs 18-24 h after the fifth moult and thereafter decreases to trace amounts as the larvae age and approach pupation. 4. Synthetase activity was rapidly induced by oral administration (in the diet) of pentamethylbenzene, phenobarbital, diethyl 1,4-dihydro-2,4,6-trimethylpyridine-3, 5-dicarboxylate, and 2-allyl-2-isopropylacetamide. 5. Puromycin inhibited the induction of synthetase by pentamethylbenzene. 6. Induction of 5-aminolaevulinate synthetase correlated well with the induction of microsomal N-demethylation of p-chloro-N-methylaniline, except for phenobarbital, which induced the microsomal oxidase relatively more than the synthetase. PMID:1004

  12. Properties and substrate specificities of the phenylalanyl-transfer-ribonucleic acid synthetases of Aesculus species

    PubMed Central

    Anderson, J. W.; Fowden, L.

    1970-01-01

    1. Phenylalanyl-tRNA synthetases have been partially purified from cotyledons of seeds of Aesculus californica, which contains 2-amino-4-methylhex-4-enoic acid, and from four other species of Aesculus that do not contain this amino acid. The A. californica preparation was free from other aminoacyl-tRNA synthetases, and the contaminating synthetase activity in preparations from A. hippocastanum was decreased to acceptable limits by conducting assays of pyrophosphate exchange activity in 0.5m-potassium chloride. 2. The phenylalanyl-tRNA synthetase from each species activated 2-amino-4-methylhex-4-enoic acid with Km 30–40 times that for phenylalanine. The maximum velocity for 2-amino-4-methylhex-4-enoic acid was only 30% of that for phenylalanine with the A. californica enzyme, but the maximum velocities for the two substrates were identical for the other four species. 3. 2-Amino-4-methylhex-4-enoic acid was not found in the protein of A. californica, so discrimination against this amino acid probably occurs in the step of transfer to tRNA, though subcellular localization, or subsequent steps of protein synthesis could be involved. 4. Crotylglycine, methallylglycine, ethallylglycine, 2-aminohex-4,5-dienoic acid, 2-amino-5-methylhex-4-enoic acid, 2-amino-4-methylhex-4-enoic acid, β-(thien-2-yl)alanine, β-(pyrazol-1-yl)alanine, phenylserine and m-fluorophenylalanine were substrates for pyrophosphate exchange catalysed by the phenylalanyl-tRNA synthetases of A. californica or A. hippocastanum. Allylglycine, phenylglycine and 2-amino-4-phenylbutyric acid were inactive. PMID:5493504

  13. Helicobacter pylori Glutamine Synthetase Lacks Features Associated with Transcriptional and Posttranslational Regulation

    PubMed Central

    Garner, Rachel M.; Fulkerson, John; Mobley, Harry L. T.

    1998-01-01

    Helicobacter pylori urease, produced in abundance, is indispensable for the survival of H. pylori in animal hosts. Urea is hydrolyzed by the enzyme, resulting in the liberation of excess ammonia, some of which neutralizes gastric acid. The remaining ammonia is assimilated into protein by glutamine synthetase (EC 6.3.1.2), which catalyzes the reaction: NH3 + glutamate + ATP→glutamine + ADP + Pi. We hypothesized that glutamine synthetase plays an unusually critical role in nitrogen assimilation by H. pylori. We developed a phenotypic screen to isolate genes that contribute to the synthesis of a catalytically active urease. Escherichia coli SE5000 transformed with plasmid pHP808 containing the entire H. pylori urease gene cluster was cotransformed with a pBluescript plasmid library of the H. pylori ATCC 43504 genome. A weakly urease-positive 9.4-kb clone, pUEF728, was subjected to nucleotide sequencing. Among other genes, the gene for glutamine synthetase was identified. The complete 1,443-bp glnA gene predicts a polypeptide of 481 amino acid residues with a molecular weight of 54,317; this was supported by maxicell analysis of cloned glnA expressed in E. coli. The top 10 homologs were all bacterial glutamine synthetases, including Salmonella typhimurium glnA. The ATP-binding motif GDNGSG (residues 272 to 277) of H. pylori GlnA exactly matched and aligned with the sequence in 8 of the 10 homologs. The adenylation site found in the top 10 homologs (consensus sequence, NLYDLP) is replaced in H. pylori by NLFKLT (residues 405 to 410). Since the Tyr (Y) residue is the target of adenylation and since the H. pylori glutamine synthetase lacks that residue in four strains examined, we conclude that no adenylation occurs within this motif. Cloned H. pylori glnA complemented a glnA mutation in E. coli, and GlnA enzyme activity could be measured spectrophotometrically. In an attempt to produce a GlnA-deficient mutant of H. pylori, a kanamycin resistance cassette was cloned

  14. Pseudomonas syringae Phytotoxins: Mode of Action, Regulation, and Biosynthesis by Peptide and Polyketide Synthetases

    PubMed Central

    Bender, Carol L.; Alarcón-Chaidez, Francisco; Gross, Dennis C.

    1999-01-01

    Coronatine, syringomycin, syringopeptin, tabtoxin, and phaseolotoxin are the most intensively studied phytotoxins of Pseudomonas syringae, and each contributes significantly to bacterial virulence in plants. Coronatine functions partly as a mimic of methyl jasmonate, a hormone synthesized by plants undergoing biological stress. Syringomycin and syringopeptin form pores in plasma membranes, a process that leads to electrolyte leakage. Tabtoxin and phaseolotoxin are strongly antimicrobial and function by inhibiting glutamine synthetase and ornithine carbamoyltransferase, respectively. Genetic analysis has revealed the mechanisms responsible for toxin biosynthesis. Coronatine biosynthesis requires the cooperation of polyketide and peptide synthetases for the assembly of the coronafacic and coronamic acid moieties, respectively. Tabtoxin is derived from the lysine biosynthetic pathway, whereas syringomycin, syringopeptin, and phaseolotoxin biosynthesis requires peptide synthetases. Activation of phytotoxin synthesis is controlled by diverse environmental factors including plant signal molecules and temperature. Genes involved in the regulation of phytotoxin synthesis have been located within the coronatine and syringomycin gene clusters; however, additional regulatory genes are required for the synthesis of these and other phytotoxins. Global regulatory genes such as gacS modulate phytotoxin production in certain pathovars, indicating the complexity of the regulatory circuits controlling phytotoxin synthesis. The coronatine and syringomycin gene clusters have been intensively characterized and show potential for constructing modified polyketides and peptides. Genetic reprogramming of peptide and polyketide synthetases has been successful, and portions of the coronatine and syringomycin gene clusters could be valuable resources in developing new antimicrobial agents. PMID:10357851

  15. Nodule-specific modulation of glutamine synthetase in transgenic Medicago truncatula leads to inverse alterations in asparagine synthetase expression.

    PubMed

    Carvalho, Helena G; Lopes-Cardoso, Inês A; Lima, Ligia M; Melo, Paula M; Cullimore, Julie V

    2003-09-01

    Transgenic Medicago truncatula plants were produced harboring chimeric gene constructs of the glutamine synthetase (GS) cDNA clones (MtGS1a or MtGS1b) fused in sense or antisense orientation to the nodule-specific leghemoglobin promoter Mtlb1. A series of transgenic plants were obtained showing a 2- to 4-fold alteration in nodule GS activity when compared with control plants. Western and northern analyses revealed that the increased or decreased levels of GS activity correlate with the amount of cytosolic GS polypeptides and transcripts present in the nodule extracts. An analysis of the isoenzyme composition showed that the increased or decreased levels of GS activity were attributable to major changes in the homo-octameric isoenzyme GS1a. Nodules of plants transformed with antisense GS constructs showed an increase in the levels of both asparagine synthetase (AS) polypeptides and transcripts when compared with untransformed control plants, whereas the sense GS transformants showed decreased AS transcript levels but polypeptide levels similar to control plants. The polypeptide abundance of other nitrogen metabolic enzymes NADH-glutamic acid synthase and aspartic acid amino-transferase as well as those of major carbon metabolic enzymes phosphoenolpyruvate carboxylase, carbonic anhydrase, and sucrose synthase were not affected by the GS-gene manipulations. Increased levels of AS polypeptides and transcripts were also transiently observed in nodules by inhibiting GS activity with phosphinothricin. Taken together, the results presented here suggest that GS activity negatively regulates the level of AS in root nodules of M. truncatula. The potential role of AS in assimilating ammonium when GS becomes limiting is discussed. PMID:12970490

  16. Nodule-Specific Modulation of Glutamine Synthetase in Transgenic Medicago truncatula Leads to Inverse Alterations in Asparagine Synthetase Expression1

    PubMed Central

    Carvalho, Helena G.; Lopes-Cardoso, Inês A.; Lima, Ligia M.; Melo, Paula M.; Cullimore, Julie V.

    2003-01-01

    Transgenic Medicago truncatula plants were produced harboring chimeric gene constructs of the glutamine synthetase (GS) cDNA clones (MtGS1a or MtGS1b) fused in sense or antisense orientation to the nodule-specific leghemoglobin promoter Mtlb1. A series of transgenic plants were obtained showing a 2- to 4-fold alteration in nodule GS activity when compared with control plants. Western and northern analyses revealed that the increased or decreased levels of GS activity correlate with the amount of cytosolic GS polypeptides and transcripts present in the nodule extracts. An analysis of the isoenzyme composition showed that the increased or decreased levels of GS activity were attributable to major changes in the homo-octameric isoenzyme GS1a. Nodules of plants transformed with antisense GS constructs showed an increase in the levels of both asparagine synthetase (AS) polypeptides and transcripts when compared with untransformed control plants, whereas the sense GS transformants showed decreased AS transcript levels but polypeptide levels similar to control plants. The polypeptide abundance of other nitrogen metabolic enzymes NADH-glutamic acid synthase and aspartic acid amino-transferase as well as those of major carbon metabolic enzymes phosphoenolpyruvate carboxylase, carbonic anhydrase, and sucrose synthase were not affected by the GS-gene manipulations. Increased levels of AS polypeptides and transcripts were also transiently observed in nodules by inhibiting GS activity with phosphinothricin. Taken together, the results presented here suggest that GS activity negatively regulates the level of AS in root nodules of M. truncatula. The potential role of AS in assimilating ammonium when GS becomes limiting is discussed. PMID:12970490

  17. S-adenosyl-L-methionine synthetase and phospholipid methyltransferase are inhibited in human cirrhosis.

    PubMed

    Duce, A M; Ortíz, P; Cabrero, C; Mato, J M

    1988-01-01

    We have measured the activity S-adenosyl-L-methionine synthetase in liver biopsies from a group of controls (n = 17) and in 26 cirrhotics (12 alcoholic and 14 posthepatic). The activity of this enzyme was markedly reduced in the group of cirrhotics (285 +/- 32 pmoles per min per mg protein) when compared with that observed in controls (505 +/- 37 pmoles per min per mg protein). No differences in S-adenosyl-L-methionine synthetase was observed between both groups of cirrhotics. Similarly, a marked reduction in the activity phospholipid methyltransferase was also observed in liver biopsies from the same group of cirrhotics (105 +/- 12 pmoles per min per mg protein) when compared with the control subjects (241 +/- 13 pmoles per min per mg protein). Again, no difference in the activity of this enzyme was observed between both groups of cirrhotics. These results indicated a marked deficiency in the metabolism of S-adenosyl-L-methionine in cirrhosis. PMID:3338721

  18. Antitumor/Antifungal Celecoxib Derivative AR-12 is a Non-Nucleoside Inhibitor of the ANL-Family Adenylating Enzyme Acetyl CoA Synthetase

    PubMed Central

    2016-01-01

    AR-12/OSU-03012 is an antitumor celecoxib-derivative that has progressed to Phase I clinical trial as an anticancer agent and has activity against a number of infectious agents including fungi, bacteria and viruses. However, the mechanism of these activities has remained unclear. Based on a chemical-genetic profiling approach in yeast, we have found that AR-12 is an ATP-competitive, time-dependent inhibitor of yeast acetyl coenzyme A synthetase. AR-12-treated fungal cells show phenotypes consistent with the genetic reduction of acetyl CoA synthetase activity, including induction of autophagy, decreased histone acetylation, and loss of cellular integrity. In addition, AR-12 is a weak inhibitor of human acetyl CoA synthetase ACCS2. Acetyl CoA synthetase activity is essential in many fungi and parasites. In contrast, acetyl CoA is primarily synthesized by an alternate enzyme, ATP-citrate lyase, in mammalian cells. Taken together, our results indicate that AR-12 is a non-nucleoside acetyl CoA synthetase inhibitor and that acetyl CoA synthetase may be a feasible antifungal drug target. PMID:27088128

  19. Transformation of Bacillus Subtilis with cloned thymidylate synthetases

    SciTech Connect

    Rubin, Edward M.

    1980-01-01

    Bacillus subtilis carries two genes, thyA and thyB, each encoding different protein products, with thymidylate synthetase (TSase) activity. Either of these genes alone is sufficient for thymidine independence in B. subtilis. In addition there exist two B. subtilis temperate bacteriophages which upon infection of thymine requiring auxotrophs results in conversion of the organism to thymine independence. Chimeric plasmids selected for Thy/sup +/ transforming activity in E. coli were constructed and then used as a source of defined highly enriched DNA with which to transform competent B. subtilis. These plasmids were studied for their: (1) abiility to transform B. subtilis to thymine independence; (2) site of integration within the B. subtilis chromosome upon transformation; (3) phenotype of Thy/sup +/ plasmid generated transformants; and (4) nucleotide sequence homology among the cloned DNA fragments conferring thymine independence. Plasmids containing the two bacteriophage thy genes displayed the phenotype associated with thyA, whereas the plasmids containing the cloned B. subtilis chromosomal genes displayed the phenotype associated with thyB. Utilizing similar technology, the ability of an entirely foreign hybred bacterial plasmiid to transform B. subtilis was examined. In this case the gene from E. coli encoding thymidylate synthetase was cloned in the plasmid pBR322. The resulting chimeric plasmid was effective in transforming both E. coli and B. subtilis to thymine prototrophy. Uncloned linear E. coli chromosomal DNA was unable to transform thymine requiring strains of B. subtilis to thymine independence. Although the Thy/sup +/ transformants of E. coli contained plasmid DNA, the Thy/sup +/ transformants derived from the transformation of B. subtilis did not contain detectable extrachromosomal DNA. Instead the DNA from the chimeric plasmid was integrated into the chromosome of B. subtilis. (ERB)

  20. Halofuginone and other febrifugine derivatives inhibit prolyl-tRNA synthetase

    PubMed Central

    Keller, Tracy L.; Zocco, Davide; Sundrud, Mark S.; Hendrick, Margaret; Edenius, Maja; Yum, Jina; Kim, Yeon-Jin; Lee, Hak-kyo; Cortese, Joseph F.; Wirth, Dyann; Dignam, John David; Rao, Anjana; Yeo, Chang-Yeol; Mazitschek, Ralph; Whitman, Malcolm

    2011-01-01

    Febrifugine, one of the fifty fundamental herbs of traditional Chinese medicine, has been characterized for its therapeutic activity whilst its molecular target has remained unknown. Febrifugine derivatives have been used to treat malaria, cancer, fibrosis, and inflammatory disease. We recently demonstrated that halofuginone (HF), a widely studied derivative of febrifugine, inhibits the development of Th17-driven autoimmunity in a mouse model of multiple sclerosis by activating the amino acid response pathway (AAR). Here we show that HF binds glutamyl-prolyl-tRNA synthetase (EPRS) inhibiting prolyl-tRNA synthetase activity; this inhibition is reversed by the addition of exogenous proline or EPRS. We further show that inhibition of EPRS underlies the broad bioactivities of this family of natural products. This work both explains the molecular mechanism of a promising family of therapeutics, and highlights the AAR pathway as an important drug target for promoting inflammatory resolution. PMID:22327401

  1. Enrichment and characterization of the mRNAs of four aminoacyl-tRNA synthetases from yeast.

    PubMed Central

    Sellami, M; Rether, B; Gangloff, J; Ebel, J P; Bonnet, J

    1983-01-01

    We have partially purified the messenger RNAs for yeast arginyl-, aspartyl-, valyl-, alpha and beta subunits of phenylalanyl-tRNA synthetases in order to study their biosynthesis and ultimately, to isolate their genes. Sucrose gradient fractionation of poly U-Sepharose selected mRNAs resulted in a ten fold enrichment of the in vitro translation activity of these mRNAs. The translation products of messenger RNAs for arginyl- and valyl-tRNA synthetases have the same molecular weight as the purified enzymes; translation of aspartyl-tRNA synthetase messenger RNA yielded a 68 kD molecular weight polypeptide (while the purified cristallisable enzyme appears as a 64-66 kD doublet, which, as we showed is a proteolysis product). The translation of the mRNAs for alpha and beta phenylalanyl-tRNA synthetase gave polypeptides having the same molecular weight as those obtained from the purified enzyme, but the major translation products are slightly heavier, indicating that they may be translated as precursors. As estimated from centrifugation experiments mRNAs of arginyl-, aspartyl-, alpha and beta subunits of phenylalanyl-tRNA synthetase were 1700-2000 nucleotides long, indicating that alpha and beta are translated from two different mRNAs. Images PMID:6344009

  2. Cavitation as a mechanism of substrate discrimination by adenylosuccinate synthetases.

    PubMed

    Iancu, Cristina V; Zhou, Yang; Borza, Tudor; Fromm, Herbert J; Honzatko, Richard B

    2006-09-26

    Adenylosuccinate synthetase catalyzes the first committed step in the de novo biosynthesis of AMP, coupling L-aspartate and IMP to form adenylosuccinate. Km values of IMP and 2'-deoxy-IMP are nearly identical with each substrate supporting comparable maximal velocities. Nonetheless, the Km value for L-aspartate and the Ki value for hadacidin (a competitive inhibitor with respect to L-aspartate) are 29-57-fold lower in the presence of IMP than in the presence of 2'-deoxy-IMP. Crystal structures of the synthetase ligated with hadacidin, GDP, and either 6-phosphoryl-IMP or 2'-deoxy-6-phosphoryl-IMP are identical except for the presence of a cavity normally occupied by the 2'-hydroxyl group of IMP. In the presence of 6-phosphoryl-IMP and GDP (hadacidin absent), the L-aspartate pocket can retain its fully ligated conformation, forming hydrogen bonds between the 2'-hydroxyl group of IMP and sequence-invariant residues. In the presence of 2'-deoxy-6-phosphoryl-IMP and GDP, however, the L-aspartate pocket is poorly ordered. The absence of the 2'-hydroxyl group of the deoxyribonucleotide may destabilize binding of the ligand to the L-aspartate pocket by disrupting hydrogen bonds that maintain a favorable protein conformation and by the introduction of a cavity into the fully ligated active site. At an approximate energy cost of 2.2 kcal/mol, the unfavorable thermodynamics of cavity formation may be the major factor in destabilizing ligands at the L-aspartate pocket. PMID:16981730

  3. Reassimilation of Photorespiratory Ammonium in Lotus japonicus Plants Deficient in Plastidic Glutamine Synthetase

    PubMed Central

    Pérez-Delgado, Carmen M.; García-Calderón, Margarita; Márquez, Antonio J.; Betti, Marco

    2015-01-01

    It is well established that the plastidic isoform of glutamine synthetase (GS2) is the enzyme in charge of photorespiratory ammonium reassimilation in plants. The metabolic events associated to photorespiratory NH4+ accumulation were analyzed in a Lotus japonicus photorespiratory mutant lacking GS2. The mutant plants accumulated high levels of NH4+ when photorespiration was active, followed by a sudden drop in the levels of this compound. In this paper it was examined the possible existence of enzymatic pathways alternative to GS2 that could account for this decline in the photorespiratory ammonium. Induction of genes encoding for cytosolic glutamine synthetase (GS1), glutamate dehydrogenase (GDH) and asparagine synthetase (ASN) was observed in the mutant in correspondence with the diminishment of NH4+. Measurements of gene expression, polypeptide levels, enzyme activity and metabolite levels were carried out in leaf samples from WT and mutant plants after different periods of time under active photorespiratory conditions. In the case of asparagine synthetase it was not possible to determine enzyme activity and polypeptide content; however, an increased asparagine content in parallel with the induction of ASN gene expression was detected in the mutant plants. This increase in asparagine levels took place concomitantly with an increase in glutamine due to the induction of cytosolic GS1 in the mutant, thus revealing a major role of cytosolic GS1 in the reassimilation and detoxification of photorespiratory NH4+ when the plastidic GS2 isoform is lacking. Moreover, a diminishment in glutamate levels was observed, that may be explained by the induction of NAD(H)-dependent GDH activity. PMID:26091523

  4. Glutamine synthetase in ribulose 1,5-bisphosphate carboxylase/oxygenase deficient tobacco mutants in cell suspension culture.

    PubMed

    Hirel, B; Nato, A; Martin, F

    1984-06-01

    In two tobacco mutants lacking ribulose, 1,5-bisphosphate carboxylase/oxygenase the amount of glutamine synthetase and its activity were determined and compared with the wild type green cells. It was shown that in these two mutants glutamine synthetase protein content was six times lower than in the wild type. This situation was comparable to that found in etiolated cells where ribulose 1,5-bisphosphate carboxylase/oxygenase was absent. These observations suggest that a common regulatory mechanism might control the dual light dependent biosynthesis of both enzymes. The results have also implications concerning the efficiency of the reassimilation of ammonia by chloroplastic glutamine synthetase during the photorespiratory process. PMID:24253436

  5. Alterations in Dihydropteroate Synthetase in Cell-Free Extracts of Sulfanilamide-Resistant Neisseria meningitidis and Neisseria gonorrhoeae

    PubMed Central

    Ho, Richard I.; Corman, Leonard; Morse, Stephen A.; Artenstein, Malcolm S.

    1974-01-01

    Extracts from Neisseria meningitidis and N. gonorrhoeae with varying susceptibility to sulfanilamide have been investigated for dihydropteroate synthetase activity. Sulfanilamide was a competitive inhibitor of dihydropteroate synthetase with respect to p-aminobenzoate in extracts from both species. Though the Km for p-aminobenzoate was unaffected, the Ki for sulfanilamide increased and the Vmax decreased as the strains' resistance to sulfanilamide increased. Temperature studies have revealed differences in the dihydropteroate synthetase from N. meningitidis and N. gonorrhoeae. A direct relationship was observed between the minimal inhibitory concentration of sulfanilamide determined in vitro and the ratio of Ki/Km. This ratio may be a molecular explanation of sulfanilamide resistance for both N. meningitidis and N. gonorrhoeae. PMID:15825393

  6. Inhibition of human glutamine synthetase by L-methionine-S,R-sulfoximine-relevance to the treatment of neurological diseases.

    PubMed

    Jeitner, Thomas M; Cooper, Arthur J L

    2014-12-01

    At high concentrations, the glutamine synthetase inhibitor L-methionine-S,R-sulfoximine (MSO) is a convulsant, especially in dogs. Nevertheless, sub-convulsive doses of MSO are neuroprotective in rodent models of hyperammonemia, acute liver disease, and amyotrophic lateral sclerosis and suggest MSO may be clinically useful. Previous work has also shown that much lower doses of MSO are required to produce convulsions in dogs than in primates. Evidence from the mid-20th century suggests that humans are also less sensitive. In the present work, the inhibition of recombinant human glutamine synthetase by MSO is shown to be biphasic-an initial reversible competitive inhibition (K i 1.19 mM) is followed by rapid irreversible inactivation. This K i value for the human enzyme accounts, in part, for relative insensitivity of primates to MSO and suggests that this inhibitor could be used to safely inhibit glutamine synthetase activity in humans. PMID:24136581

  7. Inhibition of human glutamine synthetase by L-methionine-S,R-sulfoximine – relevance to the treatment of neurological diseases

    PubMed Central

    Jeitner, Thomas M.; Cooper, Arthur J. L.

    2013-01-01

    At high concentrations, the glutamine synthetase inhibitor L-methionine-S,R-sulfoximine is a convulsant, especially in dogs. Nevertheless, sub-convulsive doses of MSO are neuroprotective in rodent models of hyperammonemia, acute liver disease, and amyotrophic lateral sclerosis and suggest MSO may be clinically useful. Previous work has also shown that much lower doses of MSO are required to produce convulsions in dogs than in primates. Evidence from the mid-20th century suggests that humans are also less sensitive. In the present work, the inhibition of recombinant human glutamine synthetase with MSO is shown to be biphasic – an initial reversible competitive inhibition (Ki 1.19 mM) is followed by rapid irreversible inactivation. This Ki value for the human enzyme accounts, in part, for relative insensitivity of primates to MSO and suggests that this inhibitor could be used to safely inhibit glutamine synthetase activity in humans. PMID:24136581

  8. Structure of an unusual S-adenosylmethionine synthetase from Campylobacter jejuni.

    PubMed

    Zano, Stephen P; Pavlovsky, Alexander G; Viola, Ronald E

    2014-02-01

    S-Adenosylmethionine (AdoMet) participates in a wide range of methylation and other group-transfer reactions and also serves as the precursor for two groups of quorum-sensing molecules that function as regulators of the production of virulence factors in Gram-negative bacteria. The synthesis of AdoMet is catalyzed by AdoMet synthetases (MATs), a ubiquitous family of enzymes found in species ranging from microorganisms to mammals. The AdoMet synthetase from the bacterium Campylobacter jejuni (cjMAT) is an outlier among this homologous enzyme family, with lower sequence identity, numerous insertions and substitutions, and higher catalytic activity compared with other bacterial MATs. Alterations in the structure of this enzyme provide an explanation for its unusual dimeric quaternary structure relative to the other MATs. Taken together with several active-site substitutions, this new structure provides insights into its improved kinetic properties with alternative substrates. PMID:24531478

  9. Structural basis for the binding of succinate to succinyl-CoA synthetase.

    PubMed

    Huang, Ji; Fraser, Marie E

    2016-08-01

    Succinyl-CoA synthetase catalyzes the only step in the citric acid cycle that provides substrate-level phosphorylation. Although the binding sites for the substrates CoA, phosphate, and the nucleotides ADP and ATP or GDP and GTP have been identified, the binding site for succinate has not. To determine this binding site, pig GTP-specific succinyl-CoA synthetase was crystallized in the presence of succinate, magnesium ions and CoA, and the structure of the complex was determined by X-ray crystallography to 2.2 Å resolution. Succinate binds in the carboxy-terminal domain of the β-subunit. The succinate-binding site is near both the active-site histidine residue that is phosphorylated in the reaction and the free thiol of CoA. The carboxy-terminal domain rearranges when succinate binds, burying this active site. However, succinate is not in position for transfer of the phosphoryl group from phosphohistidine. Here, it is proposed that when the active-site histidine residue has been phosphorylated by GTP, the phosphohistidine displaces phosphate and triggers the movement of the carboxylate of succinate into position to be phosphorylated. The structure shows why succinyl-CoA synthetase is specific for succinate and does not react appreciably with citrate nor with the other C4-dicarboxylic acids of the citric acid cycle, fumarate and oxaloacetate, but shows some activity with L-malate. PMID:27487822

  10. Virtual Screening to Identify Lead Inhibitors for Bacterial NAD Synthetase (NADs)

    PubMed Central

    Moro, Whitney Beysselance; Yang, Zhengrong; Kane, Tasha; Brouillette, Christie G.; Brouillette, Wayne J.

    2009-01-01

    Virtual screening was employed to identify new drug-like inhibitors of NAD synthetase (NADs) as antibacterial agents. Four databases of commercially available compounds were docked against three subsites of the NADs active site using FlexX in conjunction with CScore. Over 200 commercial compounds were purchased and evaluated in enzyme inhibition and antibacterial assays. 18 compounds inhibited NADs at or below 100 μM (7.6% hit rate), and two were selected for future SAR studies. PMID:19249205

  11. Purification and characterization of fatty acyl-acyl carrier protein synthetase from Vibrio harveyi.

    PubMed Central

    Fice, D; Shen, Z; Byers, D M

    1993-01-01

    A Vibrio harveyi enzyme which catalyzes the ATP-dependent ligation of fatty acids to acyl carrier protein (ACP) has been purified 6,000-fold to apparent homogeneity by anion-exchange, gel filtration, and ACP-Sepharose affinity chromatography. Purified acyl-ACP synthetase migrated as a single 62-kDa band on sodium dodecyl sulfate-polyacrylamide gel electrophoresis and as an 80-kDa protein by gel filtration under reducing conditions. Activity of the purified enzyme was lost within hours in the absence of glycerol and low concentrations of Triton X-100. Acyl-ACP synthetase exhibited Kms for myristic acid, ACP, and ATP of 7 microM, 18 microM, and 0.3 mM, respectively. The enzyme was specific for adenine-containing nucleotides, and AMP was the product of the reaction. No covalent acyl-enzyme intermediate was observed. Enzyme activity was stimulated up to 50% by iodoacetamide but inhibited > 80% by N-ethylmaleimide: inhibition by the latter was prevented by ATP and ACP but not myristic acid. Dithiothreitol and sulfhydryl-directed reagents also influenced enzyme size, activity, and elution pattern on anion-exchange resins. The function of acyl-ACP synthetase has not been established, but it may be related to the capacity of V. harveyi to elongate exogenous fatty acids by an ACP-dependent mechanism. Images PMID:8384617

  12. Adenine nucleotides as allosteric effectors of PEA seed glutamine synthetase

    SciTech Connect

    Unkefer, P.J.; Knight, T.J.

    1986-05-01

    The energy charge in the plant cell has been proposed as a regulator of glutamine synthetase (GS) activity. The authors have shown that 2.1 moles of ..gamma..(/sup 32/P)-ATP were bound/mole subunits of purified pea seed GS during complete inactivation with methionine sulfoximine. Since GS has one active site per subunit, the second binding site provides the potential for allosteric regulation of GS by adenine nucleotides. The authors have investigated the inhibition of the ATP-dependent synthetic activity by ADP and AMP. ADP and AMP cannot completely inhibit GS; but ATP does overcome the inhibition by ADP and AMP as shown by plots of % inhibition vs inhibitor concentration. This indicates that inhibition of GS by ADP or AMP is not completely due to competitive inhibition. In the absence of ADP or AMP, double reciprocal plots for ATP are linear below 10 mM; however, in the presence of either ADP or AMP these pots are curvilinear downwards. The ratio of Vm/asymptote is less than 1. The Hill number for ATP in the absence of ADP or AMP is 0.93 but decreases with increasing ADP or AMP to a value of 0.28 with 10 mM ADP. These data are consistent with negative cooperativity by ADP and AMP. Thus, as the ADP/ATP or AMP/ATP ratios are increased GS activity decreases. This is consistent with regulation of GS activity by energy charge in planta.

  13. Dual inhibitory effects of dimethyl sulfoxide on poly(ADP-ribose) synthetase.

    PubMed

    Banasik, M; Ueda, K

    1999-01-01

    Dimethyl sulfoxide (DMSO), a solvent popularly used for dissolving water-insoluble compounds, is a weak inhibitor of poly(ADP-ribose) synthetase, that is a nuclear enzyme producing (ADP-ribose)n from NAD+. The inhibitory mode and potency depend on the concentration of substrate, NAD+, as well as the temperature of the reaction; at micromolar concentrations of NAD+, the inhibition by DMSO is biphasic at 37 degrees C, but is monophasic and apparently competitive with NAD+ at 25 degrees C. DMSO, on the other hand, diminishes dose-dependently and markedly the inhibitory potency of benzamide and other inhibitors. Other organic solvents, ethanol and methanol, also show a biphasic effect on the synthetase activity at different concentrations. PMID:10445046

  14. Molecular definition of bovine argininosuccinate synthetase deficiency.

    PubMed Central

    Dennis, J A; Healy, P J; Beaudet, A L; O'Brien, W E

    1989-01-01

    Citrullinemia is an inborn error of metabolism due to deficiency of the urea cycle enzyme, argininosuccinate synthetase [L-citrulline:L-aspartate ligase (AMP-forming), EC 6.3.4.5]. The disease was first described in humans but was recently reported in dairy cattle in Australia. Here we report the nucleotide sequence of the normal bovine cDNA for argininosuccinate synthetase and the mutation present in animals with citrullinemia. Analysis of DNA from affected animals by Southern blotting did not readily identify the mutation in the bovine gene. RNA (Northern) blotting revealed a major reduction in the steady-state amount of mRNA in the liver of affected animals to less than 5% of controls. The bovine cDNA was cloned and sequenced and revealed 96% identity with the deduced human sequence at the amino acid level. Starting with mutant bovine liver, the mRNA was reverse-transcribed; the cDNA product was amplified with the polymerase chain reaction, cloned, and sequenced. The sequence revealed a C----T transition converting arginine-86 (CGA) to a nonsense codon (TGA). A second C----T transition represented a polymorphism in proline-175 (CCC----CCT). The mutation and the polymorphism were confirmed by amplification of genomic DNA and demonstration with restriction endonuclease enzymes of both the loss of an Ava II site in DNA from mutant animals at codon 86 and the presence or absence of a Dde I site at codon 175. The loss of the Ava II site can be used for rapid, economical, nonradioactive detection of heterozygotes for bovine citrullinemia. Images PMID:2813370

  15. Characterization of the Cephalosporium acremonium pcbAB gene encoding alpha-aminoadipyl-cysteinyl-valine synthetase, a large multidomain peptide synthetase: linkage to the pcbC gene as a cluster of early cephalosporin biosynthetic genes and evidence of multiple functional domains.

    PubMed Central

    Gutiérrez, S; Díez, B; Montenegro, E; Martín, J F

    1991-01-01

    A 24-kb region of Cephalosporium acremonium C10 DNA was cloned by hybridization with the pcbAB and pcbC genes of Penicillium chrysogenum. A 3.2-kb BamHI fragment of this region complemented the mutation in the structural pcbC gene of the C. acremonium N2 mutant, resulting in cephalosporin production. A functional alpha-aminoadipyl-cysteinyl-valine (ACV) synthetase was encoded by a 15.6-kb EcoRI-BamHI DNA fragment, as shown by complementation of an ACV synthetase-deficient mutant of P. chrysogenum. Two transcripts of 1.15 and 11.4 kb were found by Northern (RNA blot) hybridization with probes internal to the pcbC and pcbAB genes, respectively. An open reading frame of 11,136 bp was located upstream of the pcbC gene that matched the 11.4-kb transcript initiation and termination regions. It encoded a protein of 3,712 amino acids with a deduced Mr of 414,791. The nucleotide sequence of the gene showed 62.9% similarity to the pcbAB gene encoding the ACV synthetase of P. chrysogenum; 54.9% of the amino acids were identical in both ACV synthetases. Three highly repetitive regions occur in the deduced amino acid sequence of C. acremonium ACV synthetase. Each is similar to the three repetitive domains in the deduced sequence of P. chrysogenum ACV synthetase and also to the amino acid sequence of gramicidin synthetase I and tyrocidine synthetase I of Bacillus brevis. These regions probably correspond to amino acid activating domains in the ACV synthetase protein. In addition, a thioesterase domain was present in the ACV synthetases of both fungi. A similarity has been found between the domains existing in multienzyme nonribosomal peptide synthetases and polyketide and fatty acid synthetases. The pcbAB gene is linked to the pcbC gene, forming a cluster of early cephalosporin-biosynthetic genes. Images PMID:1706706

  16. Structural studies of lysyl-tRNA synthetase: conformational changes induced by substrate binding.

    PubMed

    Onesti, S; Desogus, G; Brevet, A; Chen, J; Plateau, P; Blanquet, S; Brick, P

    2000-10-24

    Lysyl-tRNA synthetase is a member of the class II aminoacyl-tRNA synthetases and catalyses the specific aminoacylation of tRNA(Lys). The crystal structure of the constitutive lysyl-tRNA synthetase (LysS) from Escherichia coli has been determined to 2.7 A resolution in the unliganded form and in a complex with the lysine substrate. A comparison between the unliganded and lysine-bound structures reveals major conformational changes upon lysine binding. The lysine substrate is involved in a network of hydrogen bonds. Two of these interactions, one between the alpha-amino group and the carbonyl oxygen of Gly 216 and the other between the carboxylate group and the side chain of Arg 262, trigger a subtle and complicated reorganization of the active site, involving the ordering of two loops (residues 215-217 and 444-455), a change in conformation of residues 393-409, and a rotation of a 4-helix bundle domain (located between motif 2 and 3) by 10 degrees. The result of these changes is a closing up of the active site upon lysine binding. PMID:11041850

  17. The structure of tryptophanyl-tRNA synthetase from Giardia lamblia reveals divergence from eukaryotic homologs

    PubMed Central

    Arakaki, Tracy L; Carter, Megan; Napuli, Alberto J; Verlinde, Christophe L M J; Fan, Erkang; Zucker, Frank; Buckner, Frederick S; Van Voorhis, Wesley C; Hol, Wim G J; Merritt, Ethan A

    2010-01-01

    The 2.1 Å crystal structure of tryptophanyl-tRNA synthetase (TrpRS) from the diplomonad Giardia lamblia reveals that the N-terminus of this class I aminoacyl-tRNA synthetase forms a 16-residue α-helix. This helix replaces a β-hairpin that is required by human TrpRS for normal activity and has been inferred to play a similar role in all eukaryotic TrpRS. The primary sequences of TrpRS homologs from several basal eukaryotes including Giardia lack a set of three residues observed to stabilize interactions with this β-hairpin in the human TrpRS. Thus the present structure suggests that the activation reaction mechanism of TrpRS from the basal eukaryote G. lamblia differs from that of higher eukaryotes. Furthermore, the protein as observed in the crystal forms an (α2)2 homotetramer. The canonical dimer interface observed in all previous structures of tryptophanyl-tRNA synthetases is maintained, but in addition each N-terminal α-helix reciprocally interlocks with the equivalent helix from a second dimer to form a dimer of dimers. Although we have no evidence for tetramer formation in vivo, modeling indicates that the crystallographically observed tetrameric structure would be compatible with the tRNA binding mode used by dimeric TrpRS and TyrRS. PMID:20438846

  18. Directed evolution of adenylosuccinate synthetase from Bacillus subtilis and its application in metabolic engineering.

    PubMed

    Wang, Xiaoyue; Wang, Guanglu; Li, Xinli; Fu, Jing; Chen, Tao; Wang, Zhiwen; Zhao, Xueming

    2016-08-10

    Adenylosuccinate synthetase (EC. 6.3.4.4) encoded by purA in Bacillus subtilis, catalyzing the first step of the conversion of IMP to AMP, plays an important role in flux distribution in the purine biosynthetic pathway. In this study, we described the use of site saturation mutagenesis to obtain a desired enzyme activity of adenylosuccinate synthetase and its application in flux regulation. Based on sequence alignment and structural modeling, a library of enzyme variants was created by a semi-rational evolution strategy in position Thr238 and Pro242. Other than purA deletion, the leaky mutation purA(P242N) partially reduced the flux towards AMP derived from IMP and increased the riboflavin synthesis precursor GTP, while also kept the requirement of ATP synthesis for cell growth. PurA(P242N) was introduced into an inosine-producing strain and resulted in an approximately 4.66-fold increase in inosine production, from 0.088±0.009g/L to 0.41±0.051g/L, in minimal medium without hypoxanthine accumulation. These results underline that the directed evolution of adenylosuccinate synthetase could tailor its activities and adjust metabolic flux. This mutation may provide a promising application in purine-based product accumulation, like inosine, guanosine and folate which are directly stemming from purine pathway in B. subtilis. PMID:27234879

  19. Crystal structure of recombinant human T-cell cyclophilin A at 2.5 A resolution.

    PubMed

    Ke, H M; Zydowsky, L D; Liu, J; Walsh, C T

    1991-11-01

    The structure of the unligated human T-cell recombinant cyclophilin has been determined at 3 A resolution by multipole isomorphous replacement methods and refined at 2.5 A resolution to an R factor of 0.209. The root-mean-square errors of the bond lengths and bond angles are 0.013 A and 2.8 degrees from ideal geometry, respectively. The overall structure is a beta-barrel, consisting of eight antiparallel beta-strands wrapping around the barrel surface and two alpha-helices sitting on the top and the bottom closing the barrel. Inside the barrel, seven aromatic and other hydrophobic residues form a compact hydrophobic core. A loop of Lys-118 to His-126 and four beta-strands (B3-B6) constitute a pocket we speculate to be the binding site of cyclosporin A. PMID:1946361

  20. Purification and Characterization of Two Forms of Glutamine Synthetase from the Pedicel Region of Maize (Zea mays L.) Kernels

    PubMed Central

    Muhitch, Michael J.

    1989-01-01

    Maize (Zea mays L.) kernel pedicels, including vascular tissues, pedicel parenchyma, placento-chalazal tissue, and the surrounding pericarp, contained two forms of glutamine synthetase (EC 6.3.1.2), separable by anion exchange chromatography under mildly acidic conditions. The earlier-eluting activity (GSp1), but not the later-eluting activity (GSp2), was chromatographically distinct from the maize leaf and root glutamine synthetases. The level of GSp1 activity changed in a developmentally dependent manner while GSp2 activity was constitutive. GSp1 and GSp2 exhibited distinct ratios of transferase to hydroxylamine-dependent synthetase activities (5 and 23, respectively), which did not change with kernel age. Purified pedicel glutamine synthetases had native relative molecular masses of 340,000, while the subunit relative molecular masses differed slightly at 38,900 and 40,500 for GSp1 and GSp2, respectively. Both GS forms required free Mg2+ with apparent Kms = 2.0 and 0.19 millimolar for GSp1 and GSp2, respectively. GSp1 had an apparent Km for glutamate of 35 millimolar and exhibited substrate inhibition at glutamate concentrations greater than 90 millimolar. In contrast, GSp2 exhibited simple Michaelis-Menten kinetics for glutamate with a Km value of 3.4 millimolar. Both isozymes exhibited positive cooperativity for ammonia, with S0.5 values of 100 and 45 micromolar, respectively. GSp1 appears to be a unique, kernel-specific form of plant glutamine synthetase. Possible functions for the pedicel GS isozymes in kernel nitrogen metabolism are discussed. Images Figure 4 PMID:16667150

  1. Inhibition of isoleucyl-transfer ribonucleic acid synthetase in Echerichia coli by pseudomonic acid

    PubMed Central

    Hughes, Julia; Mellows, Graham

    1978-01-01

    The mode of action of the antibiotic pseudomonic acid has been studied in Escherichia coli. Pseudomonic acid strongly inhibits protein and RNA synthesis in vivo. The antibiotic had no effect on highly purified DNA-dependent RNA polymerase and showed only a weak inhibitory effect on a poly(U)-directed polyphenylalanine-forming ribosomal preparation. Chloramphenicol reversed inhibition of RNA synthesis in vivo. Pseudomonic acid had little effect on RNA synthesis in a regulatory mutant, E. coli B AS19 RCrel, whereas protein synthesis was strongly inhibited. In pseudomonic acid-treated cells, increased concentrations of ppGpp, pppGpp and ATP were observed, but the GTP pool size decreased, suggesting that inhibition of RNA synthesis is a consequence of the stringent control mechanism imposed by pseudomonic acid-induced deprivation of an amino acid. Of the 20 common amino acids, only isoleucine reversed the inhibitory effect in vivo. The antibiotic was found to be a powerful inhibitor of isoleucyl-tRNA synthetase both in vivo and in vitro. Of seven other tRNA synthetases assayed, only a weak inhibitory effect on phenylalanyl-tRNA synthetase was observed; this presumably accounted for the weak effect on polyphenylalanine formation in a ribosomal preparation. Pseudomonic acid also significantly de-repressed threonine deaminase and transaminase B activity, but not dihydroxyacid dehydratase (isoleucine-biosynthetic enzymes) by decreasing the supply of aminoacylated tRNAIle. Pseudomonic acid is the second naturally occurring inhibitor of bacterial isoleucyl-tRNA synthetase to be discovered, furanomycin being the first. PMID:365175

  2. Glutamine synthetase gene expression during the regeneration of the annelid Enchytraeus japonensis.

    PubMed

    Niva, Cintia Carla; Lee, Jae Min; Myohara, Maroko

    2008-01-01

    Enchytraeus japonensis is a highly regenerative oligochaete annelid that can regenerate a complete individual from a small body fragment in 4-5 days. In our previous study, we performed complementary deoxyribonucleic acid subtraction cloning to isolate genes that are upregulated during E. japonensis regeneration and identified glutamine synthetase (gs) as one of the most abundantly expressed genes during this process. In the present study, we show that the full-length sequence of E. japonensis glutamine synthetase (EjGS), which is the first reported annelid glutamine synthetase, is highly similar to other known class II glutamine synthetases. EjGS shows a 61-71% overall amino acid sequence identity with its counterparts in various other animal species, including Drosophila and mouse. We performed detailed expression analysis by in situ hybridization and reveal that strong gs expression occurs in the blastemal regions of regenerating E. japonensis soon after amputation. gs expression was detectable at the cell layer covering the wound and was found to persist in the epidermal cells during the formation and elongation of the blastema. Furthermore, in the elongated blastema, gs expression was detectable also in the presumptive regions of the brain, ventral nerve cord, and stomodeum. In the fully formed intact head, gs expression was also evident in the prostomium, brain, the anterior end of the ventral nerve cord, the epithelium of buccal and pharyngeal cavities, the pharyngeal pad, and in the esophageal appendages. In intact E. japonensis tails, gs expression was found in the growth zone in actively growing worms but not in full-grown individuals. In the nonblastemal regions of regenerating fragments and in intact worms, gs expression was also detected in the nephridia, chloragocytes, gut epithelium, epidermis, spermatids, and oocytes. These results suggest that EjGS may play roles in regeneration, nerve function, cell proliferation, nitrogenous waste excretion

  3. Structure and regulation of expression of the Bacillus subtilis valyl-tRNA synthetase gene.

    PubMed Central

    Luo, D; Leautey, J; Grunberg-Manago, M; Putzer, H

    1997-01-01

    We have sequenced the valyl-tRNA synthetase gene (valS) of Bacillus subtilis and found an open reading frame coding for a protein of 880 amino acids with a molar mass of 101,749. The predicted amino acid sequence shares strong similarity with the valyl-tRNA synthetases from Bacillus stearothermophilus, Lactobacillus casei, and Escherichia coli. Extracts of B. subtilis strains overexpressing the valS gene on a plasmid have increased valyl-tRNA aminoacylation activity. Northern analysis shows that valS is cotranscribed with the folC gene (encoding folyl-polyglutamate synthetase) lying downstream. The 300-bp 5' noncoding region of the gene contains the characteristic regulatory elements, T box, "specifier codon" (GUC), and rho-independant transcription terminator of a gene family in gram-positive bacteria that encodes many aminoacyl-tRNA synthetases and some amino acid biosynthetic enzymes and that is regulated by tRNA-mediated antitermination. We have shown that valS expression is induced by valine limitation and that the specificity of induction can be switched to threonine by changing the GUC (Val) specifier triplet to ACC (Thr). Overexpression of valS from a recombinant plasmid leads to autorepression of a valS-lacZ transcriptional fusion. Like induction by valine starvation, autoregulation of valS depends on the presence of the GUC specifier codon. Disruption of the valS gene was not lethal, suggesting the existence of a second gene, as is the case for both the thrS and the tyrS genes. PMID:9098041

  4. Crystal structure of histidyl-tRNA synthetase from Escherichia coli complexed with histidyl-adenylate.

    PubMed Central

    Arnez, J G; Harris, D C; Mitschler, A; Rees, B; Francklyn, C S; Moras, D

    1995-01-01

    The crystal structure at 2.6 A of the histidyl-tRNA synthetase from Escherichia coli complexed with histidyl-adenylate has been determined. The enzyme is a homodimer with a molecular weight of 94 kDa and belongs to the class II of aminoacyl-tRNA synthetases (aaRS). The asymmetric unit is composed of two homodimers. Each monomer consists of two domains. The N-terminal catalytic core domain contains a six-stranded antiparallel beta-sheet sitting on two alpha-helices, which can be superposed with the catalytic domains of yeast AspRS, and GlyRS and SerRS from Thermus thermophilus with a root-mean-square difference on the C alpha atoms of 1.7-1.9 A. The active sites of all four monomers are occupied by histidyl-adenylate, which apparently forms during crystallization. The 100 residue C-terminal alpha/beta domain resembles half of a beta-barrel, and provides an independent domain oriented to contact the anticodon stem and part of the anticodon loop of tRNA(His). The modular domain organization of histidyl-tRNA synthetase reiterates a repeated theme in aaRS, and its structure should provide insight into the ability of certain aaRS to aminoacylate minihelices and other non-tRNA molecules. Images PMID:7556055

  5. Alternative splicing creates two new architectures for human tyrosyl-tRNA synthetase

    PubMed Central

    Wei, Zhiyi; Xu, Zhiwen; Liu, Xiaotian; Lo, Wing-Sze; Ye, Fei; Lau, Ching-Fun; Wang, Feng; Zhou, Jie J.; Nangle, Leslie A.; Yang, Xiang-Lei; Zhang, Mingjie; Schimmel, Paul

    2016-01-01

    Many human tRNA synthetases evolved alternative functions outside of protein synthesis. These functions are associated with over 200 splice variants (SVs), most of which are catalytic nulls that engender new biology. While known to regulate non-translational activities, little is known about structures resulting from natural internal ablations of any protein. Here, we report analysis of two closely related, internally deleted, SVs of homodimeric human tyrosyl-tRNA synthetase (TyrRS). In spite of both variants ablating a portion of the catalytic core and dimer-interface contacts of native TyrRS, each folded into a distinct stable structure. Biochemical and nuclear magnetic resonance (NMR) analysis showed that the internal deletion of TyrRSΔE2–4 SV gave an alternative, neomorphic dimer interface ‘orthogonal’ to that of native TyrRS. In contrast, the internal C-terminal splice site of TyrRSΔE2–3 prevented either dimerization interface from forming, and yielded a predominantly monomeric protein. Unlike ubiquitous TyrRS, the neomorphs showed clear tissue preferences, which were distinct from each other. The results demonstrate a sophisticated structural plasticity of a human tRNA synthetase for architectural reorganizations that are preferentially elicited in specific tissues. PMID:26773056

  6. Mutants of Salmonella typhimurium with an Altered Leucyl-Transfer Ribonucleic Acid Synthetase

    PubMed Central

    Alexander, Renee R.; Calvo, J. M.; Freundlich, M.

    1971-01-01

    Two trifluoroleucine-resistant mutants of Salmonella typhimurium, strains CV69 and CV117, had an altered leucyl-transfer ribonucleic acid (tRNA) synthetase. The mutant enzymes had higher apparent Km values for leucine (ca. 10-fold) and lower specific activities (ca. twofold) than the parent enzyme when tested in crude extracts. Preparations of synthetase purified ca. 60-fold from the parent and strain CV117 differed sixfold in their leucine Km values. In addition, the mutant enzyme was inactivated faster than the parent enzyme at 50 C. The growth rates of strains CV69 and CV117 at 37 C were not significantly different from that of the parent, whereas at 42 C strain CV69 grew more slowly than the parent. Leucine-, valine-, and isoleucine-forming enzymes were partially derepressed when the mutants were grown in minimal medium; the addition of leucine repressed these enzymes to wild-type levels. During growth in minimal medium, the proportion of leucine tRNA that was charged in the mutants was about 75% of that in the parent. The properties of strain CV117 were shown to result from a single mutation located near gal at minute 18 on the genetic map. These studies suggest that leucyl-tRNA synthetase is involved in repression of the enzymes required for the synthesis of branched-chain amino acids. PMID:4928008

  7. Brucella melitensis Methionyl-tRNA-Synthetase (MetRS), a Potential Drug Target for Brucellosis

    PubMed Central

    Ranade, Ranae M.; Zhang, Zhongsheng; Dranow, David M.; Myers, Janette B.; Choi, Ryan; Nakazawa Hewitt, Steve; Edwards, Thomas E.; Davies, Douglas R.; Lorimer, Donald; Boyle, Stephen M.; Barrett, Lynn K.; Buckner, Frederick S.; Fan, Erkang; Van Voorhis, Wesley C.

    2016-01-01

    We investigated Brucella melitensis methionyl-tRNA-synthetase (BmMetRS) with molecular, structural and phenotypic methods to learn if BmMetRS is a promising target for brucellosis drug development. Recombinant BmMetRS was expressed, purified from wild type Brucella melitensis biovar Abortus 2308 strain ATCC/CRP #DD-156 and screened by a thermal melt assay against a focused library of one hundred previously classified methionyl-tRNA-synthetase inhibitors of the blood stage form of Trypanosoma brucei. Three compounds showed appreciable shift of denaturation temperature and were selected for further studies on inhibition of the recombinant enzyme activity and cell viability against wild type B. melitensis strain 16M. BmMetRS protein complexed with these three inhibitors resolved into three-dimensional crystal structures and was analyzed. All three selected methionyl-tRNA-synthetase compounds inhibit recombinant BmMetRS enzymatic functions in an aminoacylation assay at varying concentrations. Furthermore, growth inhibition of B. melitensis strain 16M by the compounds was shown. Inhibitor-BmMetRS crystal structure models were used to illustrate the molecular basis of the enzyme inhibition. Our current data suggests that BmMetRS is a promising target for brucellosis drug development. However, further studies are needed to optimize lead compound potency, efficacy and safety as well as determine the pharmacokinetics, optimal dosage, and duration for effective treatment. PMID:27500735

  8. Differential inactivation of alfalfa nodule glutamine synthetases by tabtoxinine-. beta. -lactam. [Pseudomonas syringae

    SciTech Connect

    Knight, T.J.; Unkefer, P.J.

    1987-04-01

    The presence of the pathogen Pseudomonas syringae pv. tabaci within the rhizosphere of nodulated alfalfa plants results in an increase in N/sub 2/-fixation potential and growth, but a 40-50% decrease in nodule glutamine synthetase (GS) activity, as compared to nodulated control plants. Tabtoxinine-..beta..-Lactam an exocellular toxin produced by Pseudomonas syringae pv tabaci irreversibly inhibits glutamine synthetase. Partial purification of nodule GS by DEAE-cellulose chromatography reveals two enzyme forms are present (GS/sub n1/ and GS/sub n2/). In vitro inactivation of the two glutamine synthetases associated with the nodule indicates a differential sensitivity to T-..beta..-L. The nodule specific GS/sub n1/ is much less sensitive to T-..beta..-L than the GS/sub n2/ enzyme, which was found to coelute with the root enzyme (GS/sub r/). However, both GS/sub n1/ and GS/sub n2/ are rapidly inactivated by methionine sulfoximine, another irreversible inhibitor of GS.

  9. Examination of the mechanism of sucrose synthetase by positional isotope exchange

    SciTech Connect

    Singh, A.N.; Hester, L.S.; Raushel, F.M.

    1987-02-25

    The mechanism of the sucrose synthetase reaction has been probed by the technique of positional isotope exchange. (beta-/sup 18/O/sub 2/, alpha beta-/sup 18/O)UDP-Glc has been synthesized starting from oxygen-18-labeled phosphate and the combined activities of carbamate kinase, hexokinase, phosphoglucomutase, and uridine diphosphoglucose pyrophosphorylase. The oxygen-18 at the alpha beta-bridge position of the labeled UDP-Glc has been shown to cause a 0.014 ppm upfield chemical shift in the 31P NMR spectrum of both the alpha- and beta-phosphorus atoms in UDP-Glc relative to the unlabeled compound. The chemical shift induced by each of the beta-nonbridge oxygen-18 atoms was 0.030 ppm. Incubation of (beta-/sup 18/O/sub 2/, alpha beta-/sup 18/O)UDP-Glc with sucrose synthetase in the presence and absence of 2,5-anhydromannitol did not result in any significant exchange of an oxygen-18 from the beta-nonbridge position to the anomeric oxygen of the glucose moiety. It can thus be concluded that either sucrose synthetase does not catalyze the cleavage of the scissile carbon-oxygen bond of UDP-Glc in the absence of fructose or, alternatively, the beta-phosphoryl group of the newly formed UDP is rotationally immobilized.

  10. Alternative splicing creates two new architectures for human tyrosyl-tRNA synthetase.

    PubMed

    Wei, Zhiyi; Xu, Zhiwen; Liu, Xiaotian; Lo, Wing-Sze; Ye, Fei; Lau, Ching-Fun; Wang, Feng; Zhou, Jie J; Nangle, Leslie A; Yang, Xiang-Lei; Zhang, Mingjie; Schimmel, Paul

    2016-02-18

    Many human tRNA synthetases evolved alternative functions outside of protein synthesis. These functions are associated with over 200 splice variants (SVs), most of which are catalytic nulls that engender new biology. While known to regulate non-translational activities, little is known about structures resulting from natural internal ablations of any protein. Here, we report analysis of two closely related, internally deleted, SVs of homodimeric human tyrosyl-tRNA synthetase (TyrRS). In spite of both variants ablating a portion of the catalytic core and dimer-interface contacts of native TyrRS, each folded into a distinct stable structure. Biochemical and nuclear magnetic resonance (NMR) analysis showed that the internal deletion of TyrRSΔE2-4 SV gave an alternative, neomorphic dimer interface 'orthogonal' to that of native TyrRS. In contrast, the internal C-terminal splice site of TyrRSΔE2-3 prevented either dimerization interface from forming, and yielded a predominantly monomeric protein. Unlike ubiquitous TyrRS, the neomorphs showed clear tissue preferences, which were distinct from each other. The results demonstrate a sophisticated structural plasticity of a human tRNA synthetase for architectural reorganizations that are preferentially elicited in specific tissues. PMID:26773056

  11. Mis-regulation of 3-deoxy-D-arabino-heptulosonate 7-phosphate synthetase does not account for growth inhibition by phenylalanine in Agmenellum quadruplicatum.

    PubMed

    Jensen, R A; Stenmark-Cox, S; Ingram, L O

    1974-12-01

    The growth of the blue-green bacterium, Agmenellum quadruplicatum, is inhibited in the presence of l-phenylalanine. This species has a single, constitutively synthesized 3-deoxy-d-arabino-heptulosonate 7-phosphate (DAHP) synthetase. l-Phenylalanine inhibits DAHP synthetase non-competitively with respect to both substrate reactants. Other aromatic amino acids do not inhibit the activity of DAHP synthetase. A common expectation for branch-point enzymes such as DAHP synthetase is a balanced pattern of feedback control by all of the ultimate end products. It seemed likely that growth inhibition might equate with defective regulation within the branched aromatic pathway. Accordingly, the possibility was examined that mis-regulation of DAHP synthetase by l-phenylalanine in wild-type cells causes starvation for precursors of the other aromatic end products. However, the molecular basis for growth inhibition cannot be attributed to l-phenylalanine inhibition of DAHP synthetase for the following reasons: (i) DAHP synthetase enzymes from l-phenylalanine-resistant mutants are more, rather than less, sensitive to feedback inhibition by l-phenylalanine. (ii) Shikimate not only fails to antagonize inhibition, but is itself inhibitory. (iii) Neither the sensitivity nor the completeness of l-phenylalanine inhibition of the wild-type enzyme in vitro appears sufficient to account for the potent inhibition of growth in vivo by l-phenylalanine. The dominating effect of l-phenylalanine in the control of DAHP synthetase appears to reflect a mechanism that prevents rather than causes growth inhibition by l-phenylalanine. The alteration of the control of DAHP synthetase in mutants selected for resistance to growth inhibition by l-phenylalanine did indicate that the cause for this metabolite vulnerability can be localized within the aromatic amino acid pathway. Apparently, an aromatic intermediate (between shikimate and the end products) accumulates in the presence of l

  12. Characterization of two members among the five ADP-forming acyl coenzyme A (Acyl-CoA) synthetases reveals the presence of a 2-(Imidazol-4-yl)acetyl-CoA synthetase in Thermococcus kodakarensis.

    PubMed

    Awano, Tomotsugu; Wilming, Anja; Tomita, Hiroya; Yokooji, Yuusuke; Fukui, Toshiaki; Imanaka, Tadayuki; Atomi, Haruyuki

    2014-01-01

    The genome of Thermococcus kodakarensis, along with those of most Thermococcus and Pyrococcus species, harbors five paralogous genes encoding putative α subunits of nucleoside diphosphate (NDP)-forming acyl coenzyme A (acyl-CoA) synthetases. The substrate specificities of the protein products for three of these paralogs have been clarified through studies on the individual enzymes from Pyrococcus furiosus and T. kodakarensis. Here we have examined the biochemical properties of the remaining two acyl-CoA synthetase proteins from T. kodakarensis. The TK0944 and TK2127 genes encoding the two α subunits were each coexpressed with the β subunit-encoding TK0943 gene. In both cases, soluble proteins with an α2β2 structure were obtained and their activities toward various acids in the ADP-forming reaction were examined. The purified TK0944/TK0943 protein (ACS IIITk) accommodated a broad range of acids that corresponded to those generated in the oxidative metabolism of Ala, Val, Leu, Ile, Met, Phe, and Cys. In contrast, the TK2127/TK0943 protein exhibited relevant levels of activity only toward 2-(imidazol-4-yl)acetate, a metabolite of His degradation, and was thus designated 2-(imidazol-4-yl)acetyl-CoA synthetase (ICSTk), a novel enzyme. Kinetic analyses were performed on both proteins with their respective substrates. In T. kodakarensis, we found that the addition of histidine to the medium led to increases in intracellular ADP-forming 2-(imidazol-4-yl)acetyl-CoA synthetase activity, and 2-(imidazol-4-yl)acetate was detected in the culture medium, suggesting that ICSTk participates in histidine catabolism. The results presented here, together with those of previous studies, have clarified the substrate specificities of all five known NDP-forming acyl-CoA synthetase proteins in the Thermococcales. PMID:24163338

  13. Chitin synthetase in encysting Giardia lamblia and Entamoeba invadens

    SciTech Connect

    Das, S.; Gillin, F.D.

    1987-05-01

    Giardia lamblia (Gl) and Entamoeba invadens (Ei) are protozoan parasites with two morphologic stages in their life cycles. Motile trophozoites colonize the intestine of humans and reptiles respectively. Water resistant cysts, which can survive outside the host, transmit infection. In vitro cyst formation of Ei from trophozoites has been reported, and the authors have recently induced in vitro encystation of Gl. Although the cyst walls of both parasites contain chitin, it synthesis by encysting trophozoites has not been reported. The authors now show that encystation conditions greatly increase chitin synthetase (CS) specific activity (incorporation of /sup 3/H GlcNAc from UDP-GlcNAc into TCA-or alcohol-precipitable material). Extracts of encysting Gl incorporated 3.6 nmol/mg protein in 5 hr compared to < 0.005 in controls. Extracts of encysting Fi incorporated 4.8 n mol/mg protein, compared to 1.7 in the control. CS activity of both parasites requires preformed chitin. The Gl enzyme requires a reducing agent, is inhibited by digitonin and the CS inhibitors, polyoxin D and Nikkomycin, but not by tunicamycin. The product is digested by chitinase. Ei enzyme does not require a reducing agent and is stimulated by 1 mg/ml digitonin, but inhibited by higher concentrations. These studies demonstrate CS enzymes which may play important roles in encystation of Gl and Ei.

  14. Modulation of 2{prime}-5{prime} oligoadenylate synthetase by environmental stress in the marine sponge Geodia cydonium

    SciTech Connect

    Schroeder, H.C.; Wiens, M.; Mueller, W.E.G.; Kuusksalu, A.; Kelve, M.

    1997-07-01

    Recently the authors established the presence of relatively high amounts of 2{prime}-5{prime} oligoadenylates (2{prime}-5{prime} A) and 2{prime}-5{prime} oligoadenylate synthetase (2{prime}-5{prime} A synthetase) in the marine sponge Geodia cydonium. Here they determined by applying radioimmunoassay and high-performance liquid chromatographical methods that the concentration of 2{prime}-5{prime} A synthetase change following exposure of G. cydonium tissue to environmental stress. The 2{prime}-5{prime} A content and the activity of 2{prime}-5{prime} A synthetase, present in crude sponge extract, increase by up to three-fold after treating sponge cubes for 2 h with natural stressors including heat shock (26 C), cold shock (6 C), pH shock (pH 6), and hypertonic shock and subsequent incubation for 18 h under ambient conditions (16 C). No response was observed after exposure of sponges to an alkaline (pH 10) or hypotonic environment. Similar changes have been found for the expression of heat shock protein HSP70 in G. cydonium. These results show that 2{prime}-5{prime} A in sponges may be useful as a novel biomarker for environmental monitoring.

  15. Dihydrofolate synthetase and folylpolyglutamate synthetase: direct evidence for intervention of acyl phosphate intermediates

    SciTech Connect

    Banerjee, R.V.; Shane, B.; McGuire, J.J.; Coward, J.K.

    1988-12-13

    The transfer of /sup 17/O and/or /sup 18/O from (COOH-/sup 17/O or -/sup 18/O) enriched substrates to inorganic phosphate (P/sub i/) has been demonstrated for two enzyme-catalyzed reactions involved in folate biosynthesis and glutamylation. COOH-/sup 18/O-labeled folate, methotrexate, and dihydropteroate, in addition to (/sup 17/O)-glutamate, were synthesized and used as substrates for folylpolyglutamate synthetase (FPGS) isolated from Escherichia coli, hog liver, and rat liver and for dihydrofolate synthetase (DHFS) isolated from E. coli. P/sub i/ was purified from the reaction mixtures and converted to trimethyl phosphate (TMP), which was then analyzed for /sup 17/O and /sup 18/O enrichment by nuclear magnetic resonance (NMR) spectroscopy and/or mass spectroscopy. In the reactions catalyzed by the E. coli enzymes, both NMR and quantitative mass spectral analyses established that transfer of the oxygen isotope from the substrate /sup 18/O-enriched carboxyl group to P/sub i/ occurred, thereby providing strong evidence for an acyl phosphate intermediate in both the FPGS- and DHFS-catalyzed reactions. Similar oxygen-transfer experiments were carried out by use of two mammalian enzymes. The small amounts of P/sub i/ obtained from reactions catalyzed by these less abundant FPGS proteins precluded the use of NMR techniques. However, mass spectral analysis of the TMP derived from the mammalian FPGS-catalyzed reactions showed clearly that /sup 18/O transfer had occurred.

  16. The enterococcal cytolysin synthetase has an unanticipated lipid kinase fold

    PubMed Central

    Dong, Shi-Hui; Tang, Weixin; Lukk, Tiit; Yu, Yi; Nair, Satish K; van der Donk, Wilfred A

    2015-01-01

    The enterococcal cytolysin is a virulence factor consisting of two post-translationally modified peptides that synergistically kill human immune cells. Both peptides are made by CylM, a member of the LanM lanthipeptide synthetases. CylM catalyzes seven dehydrations of Ser and Thr residues and three cyclization reactions during the biosynthesis of the cytolysin large subunit. We present here the 2.2 Å resolution structure of CylM, the first structural information on a LanM. Unexpectedly, the structure reveals that the dehydratase domain of CylM resembles the catalytic core of eukaryotic lipid kinases, despite the absence of clear sequence homology. The kinase and phosphate elimination active sites that affect net dehydration are immediately adjacent to each other. Characterization of mutants provided insights into the mechanism of the dehydration process. The structure is also of interest because of the interactions of human homologs of lanthipeptide cyclases with kinases such as mammalian target of rapamycin. DOI: http://dx.doi.org/10.7554/eLife.07607.001 PMID:26226635

  17. The aminoacyl-tRNA synthetases of Drosophila melanogaster

    PubMed Central

    Lu, Jiongming; Marygold, Steven J; Gharib, Walid H; Suter, Beat

    2015-01-01

    Aminoacyl-tRNA synthetases (aaRSs) ligate amino acids to their cognate tRNAs, allowing them to decode the triplet code during translation. Through different mechanisms aaRSs also perform several non-canonical functions in transcription, translation, apoptosis, angiogenesis and inflammation. Drosophila has become a preferred system to model human diseases caused by mutations in aaRS genes, to dissect effects of reduced translation or non-canonical activities, and to study aminoacylation and translational fidelity. However, the lack of a systematic annotation of this gene family has hampered such studies. Here, we report the identification of the entire set of aaRS genes in the fly genome and we predict their roles based on experimental evidence and/or orthology. Further, we propose a new, systematic and logical nomenclature for aaRSs. We also review the research conducted on Drosophila aaRSs to date. Together, our work provides the foundation for further research in the fly aaRS field. PMID:26761199

  18. The aminoacyl-tRNA synthetases of Drosophila melanogaster.

    PubMed

    Lu, Jiongming; Marygold, Steven J; Gharib, Walid H; Suter, Beat

    2015-01-01

    Aminoacyl-tRNA synthetases (aaRSs) ligate amino acids to their cognate tRNAs, allowing them to decode the triplet code during translation. Through different mechanisms aaRSs also perform several non-canonical functions in transcription, translation, apoptosis, angiogenesis and inflammation. Drosophila has become a preferred system to model human diseases caused by mutations in aaRS genes, to dissect effects of reduced translation or non-canonical activities, and to study aminoacylation and translational fidelity. However, the lack of a systematic annotation of this gene family has hampered such studies. Here, we report the identification of the entire set of aaRS genes in the fly genome and we predict their roles based on experimental evidence and/or orthology. Further, we propose a new, systematic and logical nomenclature for aaRSs. We also review the research conducted on Drosophila aaRSs to date. Together, our work provides the foundation for further research in the fly aaRS field. PMID:26761199

  19. Secondary NAD+ deficiency in the inherited defect of glutamine synthetase.

    PubMed

    Hu, Liyan; Ibrahim, Khalid; Stucki, Martin; Frapolli, Michele; Shahbeck, Noora; Chaudhry, Farrukh A; Görg, Boris; Häussinger, Dieter; Penberthy, W Todd; Ben-Omran, Tawfeg; Häberle, Johannes

    2015-11-01

    Glutamine synthetase (GS) deficiency is an ultra-rare inborn error of amino acid metabolism that has been described in only three patients so far. The disease is characterized by neonatal onset of severe encephalopathy, low levels of glutamine in blood and cerebrospinal fluid, chronic moderate hyperammonemia, and an overall poor prognosis in the absence of an effective treatment. Recently, enteral glutamine supplementation was shown to be a safe and effective therapy for this disease but there are no data available on the long-term effects of this intervention. The amino acid glutamine, severely lacking in this disorder, is central to many metabolic pathways in the human organism and is involved in the synthesis of nicotinamide adenine dinucleotide (NAD(+)) starting from tryptophan or niacin as nicotinate, but not nicotinamide. Using fibroblasts, leukocytes, and immortalized peripheral blood stem cells (PBSC) from a patient carrying a GLUL gene point mutation associated with impaired GS activity, we tested whether glutamine deficiency in this patient results in NAD(+) depletion and whether it can be rescued by supplementation with glutamine, nicotinamide or nicotinate. The present study shows that congenital GS deficiency is associated with NAD(+) depletion in fibroblasts, leukocytes and PBSC, which may contribute to the severe clinical phenotype of the disease. Furthermore, it shows that NAD(+) depletion can be rescued by nicotinamide supplementation in fibroblasts and leukocytes, which may open up potential therapeutic options for the treatment of this disorder. PMID:25896882

  20. Antimalarial Benzoxaboroles Target Plasmodium falciparum Leucyl-tRNA Synthetase.

    PubMed

    Sonoiki, Ebere; Palencia, Andres; Guo, Denghui; Ahyong, Vida; Dong, Chen; Li, Xianfeng; Hernandez, Vincent S; Zhang, Yong-Kang; Choi, Wai; Gut, Jiri; Legac, Jennifer; Cooper, Roland; Alley, M R K; Freund, Yvonne R; DeRisi, Joseph; Cusack, Stephen; Rosenthal, Philip J

    2016-08-01

    There is a need for new antimalarials, ideally with novel mechanisms of action. Benzoxaboroles have been shown to be active against bacteria, fungi, and trypanosomes. Therefore, we investigated the antimalarial activity and mechanism of action of 3-aminomethyl benzoxaboroles against Plasmodium falciparum Two 3-aminomethyl compounds, AN6426 and AN8432, demonstrated good potency against cultured multidrug-resistant (W2 strain) P. falciparum (50% inhibitory concentration [IC50] of 310 nM and 490 nM, respectively) and efficacy against murine Plasmodium berghei infection when administered orally once daily for 4 days (90% effective dose [ED90], 7.4 and 16.2 mg/kg of body weight, respectively). To characterize mechanisms of action, we selected parasites with decreased drug sensitivity by culturing with stepwise increases in concentration of AN6426. Resistant clones were characterized by whole-genome sequencing. Three generations of resistant parasites had polymorphisms in the predicted editing domain of the gene encoding a P. falciparum leucyl-tRNA synthetase (LeuRS; PF3D7_0622800) and in another gene (PF3D7_1218100), which encodes a protein of unknown function. Solution of the structure of the P. falciparum LeuRS editing domain suggested key roles for mutated residues in LeuRS editing. Short incubations with AN6426 and AN8432, unlike artemisinin, caused dose-dependent inhibition of [(14)C]leucine incorporation by cultured wild-type, but not resistant, parasites. The growth of resistant, but not wild-type, parasites was impaired in the presence of the unnatural amino acid norvaline, consistent with a loss of LeuRS editing activity in resistant parasites. In summary, the benzoxaboroles AN6426 and AN8432 offer effective antimalarial activity and act, at least in part, against a novel target, the editing domain of P. falciparum LeuRS. PMID:27270277

  1. The McbB component of microcin B17 synthetase is a zinc metalloprotein.

    PubMed

    Zamble, D B; McClure, C P; Penner-Hahn, J E; Walsh, C T

    2000-12-26

    The microcin B17 synthetase converts glycine, serine, and cysteine residues in a polypeptide precursor into oxazoles and thiazoles during the maturation of the Escherichia coli antibiotic Microcin B17. This multimeric enzyme is composed of three subunits (McbB, McbC, and McbD), and it employs both ATP and FMN as cofactors. The McbB subunit was purified as a fusion with the maltose-binding protein (MBP), and metal analysis revealed that this protein binds 0.91+/-0.17 zinc atoms. Upon incubation of MBP-McbB with excess zinc, the stoichiometry increased to two atoms of zinc bound, but metal binding to the second site resulted in a decrease in the heterocyclization activity when MBP-McbB was reconstituted with the other components of the synthetase. Apo-protein was prepared by using p-hydroxymercuriphenylsulfonic acid (PMPS), and loss of the metal caused a severe reduction in enzymatic activity. However, if dithiothreitol was added to the PMPS reactions within a few minutes, enzymatic activity was retained and MBP-McbB could be reconstituted with zinc. Spectroscopic analysis of the cobalt-containing protein and extended X-ray absorption fine structure analysis of the zinc-containing protein both provide evidence for a tetrathiolate coordination sphere. Site-directed mutants of MBP-McbB as well as the synthetase tagged with the calmodulin-binding peptide were constructed. Activity assays and metal analysis were used to determine which of the six cysteines in McbB are metal ligands. These results suggest that the zinc cofactor in McbB plays a structural role. PMID:11123948

  2. [Thromboxane A2 synthetase inhibitor in asthma therapy].

    PubMed

    Machida, K; Takagi, K; Horiba, M

    1996-11-01

    Thromboxane A2(TXA2), a platelet aggregator and vasoconstricter, has been implicated as a potential mediator of bronchial asthma. TXA2 induces potent contraction of airway smooth muscles and airway hyperresponsiveness. OKY-046 (ozagrel hydrochloride) is a specific inhibitor of TXA2 synthetase and a new antiasthmatic agent. In a phase III study ozagrel has shown significantly higher effect in ameliorating the asthma symptoms and reduced the dose of concomitant steroid therapy compared to azelastine hydrochloride. Both basical and clinical studies showed that TXA2 synthetase inhibitor is effective on airway hyperresponsiveness. In this review the role of TXA2 synthetase inhibitor in current asthma therapy, which is based on the Japanese guideline of allergic disorders, was discussed. PMID:8950950

  3. Interferon-induced 2'-5' adenylate synthetase in vivo and interferon production in vitro by lymphocytes from systemic lupus erythematosus patients with and without circulating interferon

    SciTech Connect

    Preble, O.T.; Rothko, K.; Klippel, J.H.; Friedman, R.M.; Johnston, M.I.

    1983-06-01

    The interferon (IFN)-induced enzyme 2-5A synthetase was elevated in mononuclear cells from both serum IFN-positive and -negative systemic lupus erythematosus (SLE) patients. This suggests that a much higher percentage of patients than previously thought produce endogenous IFN. These results may partly explain findings that mononuclear cells from SLE patients are deficient in IFN production in vitro in response to certain IFN inducers. Although normal lymphocytes can produce an acid-labile alpha IFN after stimulation with C. parvum in vitro, the reason for endogenous production of this unusual alpha IFN by SLE patients remains unknown.

  4. Proteasomal degradation of glutamine synthetase regulates schwann cell differentiation.

    PubMed

    Saitoh, Fuminori; Araki, Toshiyuki

    2010-01-27

    Rapid saltatory nerve conduction is facilitated by myelin structure, which is composed of Schwann cells in the peripheral nervous system. Schwann cells drastically change their phenotype following peripheral nerve injury. These phenotypic changes are required for efficient degeneration/regeneration. We previously identified ZNRF1 as an E3 ubiquitin ligase containing a RING finger motif, whose expression is upregulated in the Schwann cells following nerve injury. This suggested that posttranscriptional regulation of protein expression in Schwann cells may be involved in their phenotypic changes during nerve degeneration/regeneration. Here we report the identification of glutamine synthetase (GS), an enzyme that synthesizes glutamine using glutamate and ammonia, as a substrate for E3 activity of ZNRF1 in Schwann cells. GS is known to be highly expressed in differentiated Schwann cells, but its functional significance has remained unclear. We found that during nerve degeneration/regeneration, GS expression is controlled mostly by ZNRF1-dependent proteasomal degradation. We also found that Schwann cells increase oxidative stress upon initiation of nerve degeneration, which promotes carbonylation and subsequent degradation of GS. Surprisingly, we discovered that GS expression regulates Schwann cell differentiation; i.e., increased GS expression promotes myelination via its enzymatic activity. Among the substrates and products of GS, increased glutamate concentration inhibited myelination and yet promoted Schwann cell proliferation by activating metabotropic glutamate receptor signaling. This would suggest that GS may exert its effect on Schwann cell differentiation by regulating glutamate concentration. These results indicate that the ZNRF1-GS system may play an important role in correlating Schwann cell metabolism with its differentiation. PMID:20107048

  5. Kyotorphin (tyrosine-arginine) synthetase in rat brain synaptosomes.

    PubMed

    Ueda, H; Yoshihara, Y; Fukushima, N; Shiomi, H; Nakamura, A; Takagi, H

    1987-06-15

    Kyotorphin (Tyr-Arg) is a unique neuropeptide which produces analgesia by releasing Met-enkephalin from slices of the brain and spinal cord. Recent studies revealed that kyotorphin possesses the properties of neurotransmitter/neuroregulator. In the present study, we identified a kyotorphin synthetase in the soluble fraction of rat brain synaptosomes (synaptosol) and characterized it. The enzyme partially purified with Sephacryl S-300 showed an absolute requirement for ATP, MgCl2, tyrosine, and arginine. The optimal pH was 7.5-9.0 and the pI was determined to be 6.1-6.2 by isoelectric focusing. The Km was 25.6 microM for tyrosine, 926 microM for arginine, 294 microM for ATP, and 442 microM for MgCl2. The Vmax was 34.0 pmol/mg of protein/h. The apparent molecular size of this "kyotorphin synthetase" further purified by the DE52 column was 240,000-245,000 daltons, estimated using TSKgel G4000SW column chromatography. The enzyme reaction is represented by the following equation: Tyr + Arg + ATP + MgCl2 + kyotorphin synthetase----Tyr-Arg (kyotorphin) + AMP + PPi + MgCl2 + kyotorphin synthetase. The regional distribution and subcellular localization of the synthetase showed a close correlation to that of kyotorphin levels in the rat brain. The amounts of kyotorphin formed from amino acids by the synthetase in the dialyzed synaptosol was 3.0-4.0 times higher than that from precursor proteins by processing enzymes within the 30 min incubation. PMID:3597366

  6. L-arginine recognition by yeast arginyl-tRNA synthetase.

    PubMed Central

    Cavarelli, J; Delagoutte, B; Eriani, G; Gangloff, J; Moras, D

    1998-01-01

    The crystal structure of arginyl-tRNA synthetase (ArgRS) from Saccharomyces cerevisiae, a class I aminoacyl-tRNA synthetase (aaRS), with L-arginine bound to the active site has been solved at 2.75 A resolution and refined to a crystallographic R-factor of 19.7%. ArgRS is composed predominantly of alpha-helices and can be divided into five domains, including the class I-specific active site. The N-terminal domain shows striking similarity to some completely unrelated proteins and defines a module which should participate in specific tRNA recognition. The C-terminal domain, which is the putative anticodon-binding module, displays an all-alpha-helix fold highly similar to that of Escherichia coli methionyl-tRNA synthetase. While ArgRS requires tRNAArg for the first step of the aminoacylation reaction, the results show that its presence is not a prerequisite for L-arginine binding. All H-bond-forming capability of L-arginine is used by the protein for the specific recognition. The guanidinium group forms two salt bridge interactions with two acidic residues, and one H-bond with a tyrosine residue; these three residues are strictly conserved in all ArgRS sequences. This tyrosine is also conserved in other class I aaRS active sites but plays several functional roles. The ArgRS structure allows the definition of a new framework for sequence alignments and subclass definition in class I aaRSs. PMID:9736621

  7. A domain in the N-terminal extension of class IIb eukaryotic aminoacyl-tRNA synthetases is important for tRNA binding

    PubMed Central

    Frugier, Magali; Moulinier, Luc; Giegé, Richard

    2000-01-01

    Cytoplasmic aspartyl-tRNA synthetase (AspRS) from Saccharomyces cerevisiae is a homodimer of 64 kDa subunits. Previous studies have emphasized the high sensitivity of the N-terminal region to proteolytic cleavage, leading to truncated species that have lost the first 20–70 residues but that retain enzymatic activity and dimeric structure. In this work, we demonstrate that the N-terminal extension in yeast AspRS participates in tRNA binding and we generalize this finding to eukaryotic class IIb aminoacyl-tRNA synthetases. By gel retardation studies and footprinting experiments on yeast tRNAAsp, we show that the extension, connected to the anticodon-binding module of the synthetase, contacts tRNA on the minor groove side of its anticodon stem. Sequence comparison of eukaryotic class IIb synthetases identifies a lysine-rich 11 residue sequence (29LSKKALKKLQK39 in yeast AspRS with the consensus xSKxxLKKxxK in class IIb synthetases) that is important for this binding. Direct proof of the role of this sequence comes from a mutagenesis analysis and from binding studies using the isolated peptide. PMID:10811628

  8. Dihydroaeruginoic acid synthetase and pyochelin synthetase, products of the pchEF genes, are induced by extracellular pyochelin in Pseudomonas aeruginosa.

    PubMed

    Reimmann, C; Serino, L; Beyeler, M; Haas, D

    1998-11-01

    The siderophore pyochelin of Pseudomonas aeruginosa is derived from one molecule of salicylate and two molecules of cysteine. Two cotranscribed genes, pchEF, encoding peptide synthetases have been identified and characterized. pchE was required for the conversion of salicylate to dihydroaeruginoate (Dha), the condensation product of salicylate and one cysteine residue and pchF was essential for the synthesis of pyochelin from Dha. The deduced PchE (156 kDa) and PchF (197 kDa) proteins had adenylation, thiolation and condensation/cyclization motifs arranged as modules which are typical of those peptide synthetases forming thiazoline rings. The pchEF genes were coregulated with the pchDCBA operon, which provides enzymes for the synthesis (PchBA) and activation (PchD) of salicylate as well as a putative thioesterase (PchC). Expression of a translational pchE'-'lacZ fusion was strictly dependent on the PchR regulator and was induced by extracellular pyochelin, the end product of the pathway. Iron replete conditions led to Fur (ferric uptake regulator)-dependent repression of the pchE'-'lacZ fusion. A translational pchD'-'lacZ fusion was also positively regulated by PchR and pyochelin and repressed by Fur and iron. Thus, autoinduction by pyochelin (or ferric pyochelin) and repression by iron ensure a sensitive control of the pyochelin pathway in P. aeruginosa. PMID:9846750

  9. Pathogenic implications of human mitochondrial aminoacyl-tRNA synthetases.

    PubMed

    Schwenzer, Hagen; Zoll, Joffrey; Florentz, Catherine; Sissler, Marie

    2014-01-01

    Mitochondria are considered as the powerhouse of eukaryotic cells. They host several central metabolic processes fueling the oxidative phosphorylation pathway (OXPHOS) that produces ATP from its precursors ADP and inorganic phosphate Pi (PPi). The respiratory chain complexes responsible for the OXPHOS pathway are formed from complementary sets of protein subunits encoded by the nuclear genome and the mitochondrial genome, respectively. The expression of the mitochondrial genome requires a specific and fully active translation machinery from which aminoacyl-tRNA synthetases (aaRSs) are key actors. Whilst the macromolecules involved in mammalian mitochondrial translation have been under investigation for many years, there has been an explosion of interest in human mitochondrial aaRSs (mt-aaRSs) since the discovery of a large (and growing) number of mutations in these genes that are linked to a variety of neurodegenerative disorders. Herein we will review the present knowledge on mt-aaRSs in terms of their biogenesis, their connection to mitochondrial respiration, i.e., the respiratory chain (RC) complexes, and to the mitochondrial translation machinery. The pathology-related mutations detected so far are described, with special attention given to their impact on mt-aaRSs biogenesis, functioning, and/or subsequent activities. The collected data to date shed light on the diverse routes that are linking primary molecular possible impact of a mutation to its phenotypic expression. It is envisioned that a variety of mechanisms, inside and outside the translation machinery, would play a role on the heterogeneous manifestations of mitochondrial disorders. PMID:23824528

  10. Biochemical and Crystallographic Analysis of Substrate Binding and Conformational Changes in Acetyl-CoA Synthetase

    SciTech Connect

    Reger,A.; Carney, J.; Gulick, A.

    2007-01-01

    The adenylate-forming enzymes, including acyl-CoA synthetases, the adenylation domains of non-ribosomal peptide synthetases (NRPS), and firefly luciferase, perform two half-reactions in a ping-pong mechanism. We have proposed a domain alternation mechanism for these enzymes whereby, upon completion of the initial adenylation reaction, the C-terminal domain of these enzymes undergoes a 140{sup o} rotation to perform the second thioester-forming half-reaction. Structural and kinetic data of mutant enzymes support this hypothesis. We present here mutations to Salmonella enterica acetyl-CoA synthetase (Acs) and test the ability of the enzymes to catalyze the complete reaction and the adenylation half-reaction. Substitution of Lys609 with alanine results in an enzyme that is unable to catalyze the adenylate reaction, while the Gly524 to leucine substitution is unable to catalyze the complete reaction yet catalyzes the adenylation half-reaction with activity comparable to the wild-type enzyme. The positions of these two residues, which are located on the mobile C-terminal domain, strongly support the domain alternation hypothesis. We also present steady-state kinetic data of putative substrate-binding residues and demonstrate that no single residue plays a dominant role in dictating CoA binding. We have also created two mutations in the active site to alter the acyl substrate specificity. Finally, the crystallographic structures of wild-type Acs and mutants R194A, R584A, R584E, K609A, and V386A are presented to support the biochemical analysis.

  11. Characterization of the acyl substrate binding pocket of acetyl-CoA synthetase.

    PubMed

    Ingram-Smith, Cheryl; Woods, Barrett I; Smith, Kerry S

    2006-09-26

    AMP-forming acetyl-CoA synthetase [ACS; acetate:CoA ligase (AMP-forming), EC 6.2.1.1] catalyzes the activation of acetate to acetyl-CoA in a two-step reaction. This enzyme is a member of the adenylate-forming enzyme superfamily that includes firefly luciferase, nonribosomal peptide synthetases, and acyl- and aryl-CoA synthetases/ligases. Although the structures of several superfamily members demonstrate that these enzymes have a similar fold and domain structure, the low sequence conservation and diversity of the substrates utilized have limited the utility of these structures in understanding substrate binding in more distantly related enzymes in this superfamily. The crystal structures of the Salmonella enterica ACS and Saccharomyces cerevisiae ACS1 have allowed a directed approach to investigating substrate binding and catalysis in ACS. In the S. enterica ACS structure, the propyl group of adenosine 5'-propylphosphate, which mimics the acyl-adenylate intermediate, lies in a hydrophobic pocket. Modeling of the Methanothermobacter thermautotrophicus Z245 ACS (MT-ACS1) on the S. cerevisiae ACS structure showed similar active site architecture, and alignment of the amino acid sequences of proven ACSs indicates that the four residues that compose the putative acetate binding pocket are well conserved. These four residues, Ile312, Thr313, Val388, and Trp416 of MT-ACS1, were targeted for alteration, and our results support that they do indeed form the acetate binding pocket and that alterations at these positions significantly alter the enzyme's affinity for acetate as well as the range of acyl substrates that can be utilized. In particular, Trp416 appears to be the primary determinant for acyl chain length that can be accommodated in the binding site. PMID:16981708

  12. Control of Escherichia coli lysyl-tRNA synthetase expression by anaerobiosis.

    PubMed Central

    Lévêque, F; Gazeau, M; Fromant, M; Blanquet, S; Plateau, P

    1991-01-01

    Escherichia coli lysyl-tRNA synthetase was previously shown to occur as two distinct species encoded by either the lysS or the lysU gene. The expression of one of these genes, lysU, is under the control of cell growth conditions. To study the regulation of lysU, delta lysS strains were constructed. During aerobic growth at 37 degrees C or below, the amount of the lysU product in the cell is so reduced that delta lysS bacteria grow only poorly. The reduced expression of lysU is not related to the steady-state lysyl-tRNA synthetase concentration in the cell, since the expression of a lysU::lacZ fusion is insensitive to the absence of either lysS or lysU or to the addition of a multi-copy plasmid carrying either lysU or lysS. During anaerobic growth in rich medium, the lysU gene becomes strongly expressed and, in cell extracts, the amount of lysyl-tRNA synthetase activity originating from lysU may become seven times greater than the activity originating from lysS. In minimal medium, lysU expression is only slightly induced. Evidence that the sensitivity of lysU expression to anaerobiosis, as well as to low external pH conditions (E. W. Hickey and I. N. Hirshfield, Appl. Environ. Microbiol. 56:1038-1045, 1990), is governed at the level of transcription is provided. Images FIG. 4 PMID:1744045

  13. Mammalian folylpoly-. gamma. -glutamate synthetase. 1. Purification and general properties of the hog liver enzyme

    SciTech Connect

    Cichowicz, D.J.; Shane, B.

    1987-01-27

    Folylpolyglutamate synthetase was purified 30,000-150,000-fold from hog liver. Purification required the use of protease inhibitors, and the protein was purified to homogeneity in two forms. Both forms of the enzyme were monomers of M/sub r/ 62,000 and had similar specific activities. The specific activity of the homogeneous protein was over 2000-fold higher than reported for partially purified folylpolyglutamate synthetases from other mammalian sources. Enzyme activity was absolutely dependent on the presence of a reducing agent and a monovalent cation, of which K/sup +/ was most effective. The purified enzyme catalyzed a MgATP-dependent addition of glutamate to tetrahydrofolate with the concomitant stoichiometric formation of MgADP and phosphate. Under conditions that resembled the expected substrate and enzyme concentrations in hog liver, tetrahydrofolate was metabolized to long glutamate chain length derivatives with the hexaglutamate, the major in vivo folate derivative, predominating. Enzyme activity was maximal at about pH 9.5. The high-pH optimum was primarily due to an increase in the K/sub m/ value for the L-glutamate substrate at lower pH values, and the reaction proceeded effectively at physiological pH provided high levels of glutamate were supplied.

  14. Trans-oligomerization of duplicated aminoacyl-tRNA synthetases maintains genetic code fidelity under stress.

    PubMed

    Rubio, Miguel Ángel; Napolitano, Mauro; Ochoa de Alda, Jesús A G; Santamaría-Gómez, Javier; Patterson, Carl J; Foster, Andrew W; Bru-Martínez, Roque; Robinson, Nigel J; Luque, Ignacio

    2015-11-16

    Aminoacyl-tRNA synthetases (aaRSs) play a key role in deciphering the genetic message by producing charged tRNAs and are equipped with proofreading mechanisms to ensure correct pairing of tRNAs with their cognate amino acid. Duplicated aaRSs are very frequent in Nature, with 25,913 cases observed in 26,837 genomes. The oligomeric nature of many aaRSs raises the question of how the functioning and oligomerization of duplicated enzymes is organized. We characterized this issue in a model prokaryotic organism that expresses two different threonyl-tRNA synthetases, responsible for Thr-tRNA(Thr) synthesis: one accurate and constitutively expressed (T1) and another (T2) with impaired proofreading activity that also generates mischarged Ser-tRNA(Thr). Low zinc promotes dissociation of dimeric T1 into monomers deprived of aminoacylation activity and simultaneous induction of T2, which is active for aminoacylation under low zinc. T2 either forms homodimers or heterodimerizes with T1 subunits that provide essential proofreading activity in trans. These findings evidence that in organisms with duplicated genes, cells can orchestrate the assemblage of aaRSs oligomers that meet the necessities of the cell in each situation. We propose that controlled oligomerization of duplicated aaRSs is an adaptive mechanism that can potentially be expanded to the plethora of organisms with duplicated oligomeric aaRSs. PMID:26464444

  15. Trans-oligomerization of duplicated aminoacyl-tRNA synthetases maintains genetic code fidelity under stress

    PubMed Central

    Rubio, Miguel Ángel; Napolitano, Mauro; Ochoa de Alda, Jesús A. G.; Santamaría-Gómez, Javier; Patterson, Carl J.; Foster, Andrew W.; Bru-Martínez, Roque; Robinson, Nigel J.; Luque, Ignacio

    2015-01-01

    Aminoacyl-tRNA synthetases (aaRSs) play a key role in deciphering the genetic message by producing charged tRNAs and are equipped with proofreading mechanisms to ensure correct pairing of tRNAs with their cognate amino acid. Duplicated aaRSs are very frequent in Nature, with 25,913 cases observed in 26,837 genomes. The oligomeric nature of many aaRSs raises the question of how the functioning and oligomerization of duplicated enzymes is organized. We characterized this issue in a model prokaryotic organism that expresses two different threonyl-tRNA synthetases, responsible for Thr-tRNAThr synthesis: one accurate and constitutively expressed (T1) and another (T2) with impaired proofreading activity that also generates mischarged Ser-tRNAThr. Low zinc promotes dissociation of dimeric T1 into monomers deprived of aminoacylation activity and simultaneous induction of T2, which is active for aminoacylation under low zinc. T2 either forms homodimers or heterodimerizes with T1 subunits that provide essential proofreading activity in trans. These findings evidence that in organisms with duplicated genes, cells can orchestrate the assemblage of aaRSs oligomers that meet the necessities of the cell in each situation. We propose that controlled oligomerization of duplicated aaRSs is an adaptive mechanism that can potentially be expanded to the plethora of organisms with duplicated oligomeric aaRSs. PMID:26464444

  16. Conversion of rat liver S-adenosyl-L-methionine synthetase from high-Mr form to low-Mr form by LiBr.

    PubMed

    Cabrero, C; Alemany, S

    1988-02-10

    Rat liver S-adenosyl-L-methionine synthetase exists in two forms which are, respectively, a dimer and a tetramer of an Mr 48,500 subunit. The high-molecular-mass form is converted into the low-molecular-mass form by incubation with 1.4 M LiBr. The kinetic properties of the low-molecular-mass form obtained by LiBr treatment are the same as those obtained with the low-molecular-mass S-adenosyl-L-methionine synthetase form purified from rat liver cytosol. These results demonstrate that the differences in specific activity and regulatory properties of the high-molecular-mass and the low-molecular-mass S-adenosyl-L-methionine synthetase forms are due to their different polymeric states. PMID:2827780

  17. Three-dimensional structure of phosphoribosyl pyrophosphate synthetase from E. coli at 2.71 Å resolution

    NASA Astrophysics Data System (ADS)

    Timofeev, V. I.; Abramchik, Yu. A.; Zhukhlistova, N. E.; Muravieva, T. I.; Esipov, R. S.; Kuranova, I. P.

    2016-01-01

    Phosphoribosyl pyrophosphate synthetase from Escherichia coli was cloned, purified, and crystallized. Single crystals of the enzyme were grown under microgravity. The X-ray diffraction data set was collected at the Spring-8 synchrotron facility and used to determine the three-dimensional structure of the enzyme by the molecular-replacement method at 2.71 Å resolution. The active and regulatory sites in the molecule of E. coli phosphoribosyl pyrophosphate synthetase were revealed by comparison with the homologous protein from Bacillus subtilis, the structure of which was determined in a complex with functional ligands. The conformations of polypeptide-chain fragments surrounding and composing the active and regulatory sites were shown to be identical in both proteins.

  18. Tissue Distribution of Glutamate Synthase and Glutamine Synthetase in Rice Leaves 1

    PubMed Central

    Yamaya, Tomoyuki; Hayakawa, Toshihiko; Tanasawa, Keisuke; Kamachi, Kazunari; Mae, Tadahiko; Ojima, Kunihiko

    1992-01-01

    To further explore the function of NADH-dependent glutamate synthase (GOGAT), the tissue distribution of NADH-GOGAT protein and activity was investigated in rice (Oryza sativa L.) leaves. The distributions of ferredoxin (Fd)-dependent GOGAT, plastidic glutamine synthetase, and cytosolic glutamine synthetase proteins were also determined in the same tissues. High levels of NADH-GOGAT protein (33.1 μg protein/g fresh weight) and activity were detected in the 10th leaf blade before emergence. The unexpanded, nongreen portion of the 9th leaf blade contained more than 50% of the NADH-GOGAT protein and activity per gram fresh weight when compared with the 10th leaf. The expanding, green portion of the 9th leaf blade outside of the sheath contained a slightly lower abundance of NADH-GOGAT protein than the nongreen portion of the 9th blade on a fresh weight basis. The fully expanded leaf blades at positions lower than the 9th leaf had decreased NADH-GOGAT levels as a function of increasing age, and the oldest, 5th blade contained only 4% of the NADH-GOGAT protein compared with the youngest 10th leaf blade. Fd-GOGAT protein, on the other hand, was the major form of GOGAT in the green tissues, and the highest amount of Fd-GOGAT protein (111 μg protein/g fresh weight) was detected in the 7th leaf blade. In the nongreen 10th leaf blade, the content of Fd-GOGAT protein was approximately 7% of that found in the 7th leaf blade. In addition, the content of NADH-GOGAT protein in the 10th leaf blade was about 4 times higher than that of Fd-GOGAT protein. The content of plastidic glutamine synthetase polypeptide was also the highest in the 7th leaf blade (429 μg/g fresh weight) and lowest in nongreen blades and sheaths. On the other hand, the relative abundance of the cytosolic glutamine synthetase polypeptide was the highest in the oldest leaf blade, decreasing to 10 to 20% of that value in young, nongreen leaves. These results suggest that NADH-GOGAT is important for the

  19. Identification of a Long-Chain Polyunsaturated Fatty Acid Acyl-Coenzyme A Synthetase from the Diatom Thalassiosira pseudonana1

    PubMed Central

    Tonon, Thierry; Qing, Renwei; Harvey, David; Li, Yi; Larson, Tony Robert; Graham, Ian Alexander

    2005-01-01

    The draft genome of the diatom Thalassiosira pseudonana was searched for DNA sequences showing homology with long-chain acyl-coenzyme A synthetases (LACSs), since the corresponding enzyme may play a key role in the accumulation of health-beneficial polyunsaturated fatty acids (PUFAs) in triacylglycerol. Among the candidate genes identified, an open reading frame named TplacsA was found to be full length and constitutively expressed during cell cultivation. The predicted amino acid sequence of the corresponding protein, TpLACSA, exhibited typical features of acyl-coenzyme A (acyl-CoA) synthetases involved in the activation of long-chain fatty acids. Feeding experiments carried out in yeast (Saccharomyces cerevisiae) transformed with the algal gene showed that TpLACSA was able to activate a number of PUFAs, including eicosapentaenoic acid and docosahexaenoic acid (DHA). Determination of acyl-CoA synthetase activities by direct measurement of acyl-CoAs produced in the presence of different PUFA substrates showed that TpLACSA was most active toward DHA. Heterologous expression also revealed that TplacsA transformants were able to incorporate more DHA in triacylglycerols than the control yeast. PMID:15821149

  20. Nitric oxide (no), citrulline - no cycle enzymes, glutamine synthetase and oxidative stress in anoxia (hypobaric hypoxia) and reperfusion in rat brain.

    PubMed

    Swamy, M; Salleh, Mohd Jamsani Mat; Sirajudeen, K N S; Yusof, Wan Roslina Wan; Chandran, G

    2010-01-01

    Nitric oxide is postulated to be involved in the pathophysiology of neurological disorders due to hypoxia/ anoxia in brain due to increased release of glutamate and activation of N-methyl-D-aspartate receptors. Reactive oxygen species have been implicated in pathophysiology of many neurological disorders and in brain function. To understand their role in anoxia (hypobaric hypoxia) and reperfusion (reoxygenation), the nitric oxide synthase, argininosuccinate synthetase, argininosuccinate lyase, glutamine synthetase and arginase activities along with the concentration of nitrate /nitrite, thiobarbituric acid reactive substances and total antioxidant status were estimated in cerebral cortex, cerebellum and brain stem of rats subjected to anoxia and reperfusion. The results of this study clearly demonstrated the increased production of nitric oxide by increased activity of nitric oxide synthase. The increased activities of argininosuccinate synthetase and argininosuccinate lyase suggest the increased and effective recycling of citrulline to arginine in anoxia, making nitric oxide production more effective and contributing to its toxic effects. The decreased activity of glutamine synthetase may favor the prolonged availability of glutamic acid causing excitotoxicity leading to neuronal damage in anoxia. The increased formation of thiobarbituric acid reactive substances and decreased total antioxidant status indicate the presence of oxidative stress in anoxia and reperfusion. The increased arginase and sustained decrease of GS activity in reperfusion group likely to be protective. PMID:20567615

  1. The importance of cytosolic glutamine synthetase in nitrogen assimilation and recycling

    SciTech Connect

    Bernard, S.M.; Habash, D.Z.

    2009-07-02

    Glutamine synthetase assimilates ammonium into amino acids, thus it is a key enzyme for nitrogen metabolism. The cytosolic isoenzymes of glutamine synthetase assimilate ammonium derived from primary nitrogen uptake and from various internal nitrogen recycling pathways. In this way, cytosolic glutamine synthetase is crucial for the remobilization of protein-derived nitrogen. Cytosolic glutamine synthetase is encoded by a small family of genes that are well conserved across plant species. Members of the cytosolic glutamine synthetase gene family are regulated in response to plant nitrogen status, as well as to environmental cues, such as nitrogen availability and biotic/abiotic stresses. The complex regulation of cytosolic glutamine synthetase at the transcriptional to post-translational levels is key to the establishment of a specific physiological role for each isoenzyme. The diverse physiological roles of cytosolic glutamine synthetase isoenzymes are important in relation to current agricultural and ecological issues.

  2. Further characterization of Escherichia coli alanyl-tRNA synthetase.

    PubMed

    Sood, S M; Slattery, C W; Filley, S J; Wu, M X; Hill, K A

    1996-04-15

    Selected physical and thermodynamic parameters for Escherichia coli alanyl-tRNA synthetase (AlaRS) have been determined primarily to assess the quaternary structure of this enzyme. The extinction coefficient (epsilon) at 280 nm was determined experimentally to be 0.71 ml mg-1 cm-1, and the partial specific volume (nu) was calculated from the amino acid composition to be 0.73 ml g-1. From viscosity experiments the intrinsic viscosity (eta) of AlaRS was extrapolated to be 3.4 ml g-1 and the degree of hydration (delta 1) estimated to be 0.67 gH2O g(-1)(AlaRS). Laser light-scattering studies indicated some heterogeneity; a radius of 6.3 nm was calculated for the major fraction with a diffusion coefficient (D20,W) of 3.89 x 10(-7) cm2 s-1. In 50 mM Hepes, pH 7.5, 20 mM KCl, 2 mM 2-mercaptoethanol and at a protein concentration of 4.2 mg ml-1 the sedimentation coefficient (S20,W) was 6.36 S; this value increased slightly when the protein concentration was decreased. The combination of S20,W and D20,W under these conditions yielded a molecular weight of approximately 186,000 Da, corresponding to a dimer. The S20,W was virtually independent of temperature in the range of 10-37 degrees C, while an Arrhenius plot of aminoacylation activity was biphasic. The isoelectric point was determined experimentally to be 4.9. Sedimentation equilibrium data were best fit to a decamer association complex in which dimeric AlaRS is the predominant species at 25 degrees C. PMID:8645007

  3. Mechanism of oxidant-induced mistranslation by threonyl-tRNA synthetase.

    PubMed

    Wu, Jiang; Fan, Yongqiang; Ling, Jiqiang

    2014-06-01

    Aminoacyl-tRNA synthetases maintain the fidelity during protein synthesis by selective activation of cognate amino acids at the aminoacylation site and hydrolysis of misformed aminoacyl-tRNAs at the editing site. Threonyl-tRNA synthetase (ThrRS) misactivates serine and utilizes an editing site cysteine (C182 in Escherichia coli) to hydrolyze Ser-tRNA(Thr). Hydrogen peroxide oxidizes C182, leading to Ser-tRNA(Thr) production and mistranslation of threonine codons as serine. The mechanism of C182 oxidation remains unclear. Here we used a chemical probe to demonstrate that C182 was oxidized to sulfenic acid by air, hydrogen peroxide and hypochlorite. Aminoacylation experiments in vitro showed that air oxidation increased the Ser-tRNA(Thr) level in the presence of elongation factor Tu. C182 forms a putative metal binding site with three conserved histidine residues (H73, H77 and H186). We showed that H73 and H186, but not H77, were critical for activating C182 for oxidation. Addition of zinc or nickel ions inhibited C182 oxidation by hydrogen peroxide. These results led us to propose a model for C182 oxidation, which could serve as a paradigm for the poorly understood activation mechanisms of protein cysteine residues. Our work also suggests that bacteria may use ThrRS editing to sense the oxidant levels in the environment. PMID:24744241

  4. Synthetic cycle of the initiation module of a formylating nonribosomal peptide synthetase.

    PubMed

    Reimer, Janice M; Aloise, Martin N; Harrison, Paul M; Schmeing, T Martin

    2016-01-14

    Nonribosomal peptide synthetases (NRPSs) are very large proteins that produce small peptide molecules with wide-ranging biological activities, including environmentally friendly chemicals and many widely used therapeutics. NRPSs are macromolecular machines, with modular assembly-line logic, a complex catalytic cycle, moving parts and many active sites. In addition to the core domains required to link the substrates, they often include specialized tailoring domains, which introduce chemical modifications and allow the product to access a large expanse of chemical space. It is still unknown how the NRPS tailoring domains are structurally accommodated into megaenzymes or how they have adapted to function in nonribosomal peptide synthesis. Here we present a series of crystal structures of the initiation module of an antibiotic-producing NRPS, linear gramicidin synthetase. This module includes the specialized tailoring formylation domain, and states are captured that represent every major step of the assembly-line synthesis in the initiation module. The transitions between conformations are large in scale, with both the peptidyl carrier protein domain and the adenylation subdomain undergoing huge movements to transport substrate between distal active sites. The structures highlight the great versatility of NRPSs, as small domains repurpose and recycle their limited interfaces to interact with their various binding partners. Understanding tailoring domains is important if NRPSs are to be utilized in the production of novel therapeutics. PMID:26762462

  5. Analogs of natural aminoacyl-tRNA synthetase inhibitors clear malaria in vivo.

    PubMed

    Novoa, Eva Maria; Camacho, Noelia; Tor, Anna; Wilkinson, Barrie; Moss, Steven; Marín-García, Patricia; Azcárate, Isabel G; Bautista, José M; Mirando, Adam C; Francklyn, Christopher S; Varon, Sònia; Royo, Miriam; Cortés, Alfred; Ribas de Pouplana, Lluís

    2014-12-23

    Malaria remains a major global health problem. Emerging resistance to existing antimalarial drugs drives the search for new antimalarials, and protein translation is a promising pathway to target. Here we explore the potential of the aminoacyl-tRNA synthetase (ARS) family as a source of antimalarial drug targets. First, a battery of known and novel ARS inhibitors was tested against Plasmodium falciparum cultures, and their activities were compared. Borrelidin, a natural inhibitor of threonyl-tRNA synthetase (ThrRS), stands out for its potent antimalarial effect. However, it also inhibits human ThrRS and is highly toxic to human cells. To circumvent this problem, we tested a library of bioengineered and semisynthetic borrelidin analogs for their antimalarial activity and toxicity. We found that some analogs effectively lose their toxicity against human cells while retaining a potent antiparasitic activity both in vitro and in vivo and cleared malaria from Plasmodium yoelii-infected mice, resulting in 100% mice survival rates. Our work identifies borrelidin analogs as potent, selective, and unexplored scaffolds that efficiently clear malaria both in vitro and in vivo. PMID:25489076

  6. Monoclonal antibodies against tyrosyl-tRNA synthetase and its isolated cytokine-like domain.

    PubMed

    Kondratiuk, Iuliia; Khoruzenko, Antonina; Cherednyk, Olga; Filonenko, Valeriy; Kornelyuk, Aleksander

    2013-06-01

    Tyrosyl-tRNA synthetase (TyrRS) is one of the key enzymes of protein biosynthesis. In addition to its basic role, this enzyme reveals some important non-canonical functions. Under apoptotic conditions, the full-length enzyme splits into two fragments having distinct cytokine activities, thereby linking protein synthesis to cytokine signaling pathways. The NH2-terminal catalytic fragment, known as miniTyrRS, binds strongly to the CXC-chemokine receptor CXCR1 and, like interleukin 8, functions as a chemoattractant for polymorphonuclear leukocytes. On the other hand, an extra COOH-terminal domain of human TyrRS has cytokine activities like those of a mature human endothelial monocyte-activating polypeptide II (EMAP II). Moreover, the etiology of specific diseases (cancer, neuronal pathologies, autoimmune disorders, and disrupted metabolic conditions) is connected to specific aminoacyl-tRNA synthetases. Here we report the generation and characterization of monoclonal antibodies specific to N- and C-terminal domains of TyrRS. Recombinant TyrRS and its N- and C-terminal domains were expressed as His-tag fusion proteins in bacteria. Affinity purified proteins have been used as antigens for immunization and hybridoma cell screening. Monoclonal antibodies specific to catalytic N-terminal module and C-terminal EMAP II-like domain of TyrRS may be useful as tools in various aspects of TyrRS function and cellular localization. PMID:23750478

  7. Glial glutamate transporter and glutamine synthetase regulate GABAergic synaptic strength in the spinal dorsal horn.

    PubMed

    Jiang, Enshe; Yan, Xisheng; Weng, Han-Rong

    2012-05-01

    Decreased GABAergic synaptic strength ('disinhibition') in the spinal dorsal horn is a crucial mechanism contributing to the development and maintenance of pathological pain. However, mechanisms leading to disinhibition in the spinal dorsal horn remain elusive. We investigated the role of glial glutamate transporters (GLT-1 and GLAST) and glutamine synthetase in maintaining GABAergic synaptic activity in the spinal dorsal horn. Electrically evoked GABAergic inhibitory post-synaptic currents (eIPSCs), spontaneous IPSCs (sIPSCs) and miniature IPSCs were recorded in superficial spinal dorsal horn neurons of spinal slices from young adult rats. We used (2S,3S)-3-[3-[4-(trifluoromethyl)benzoylamino]benzyloxy]aspartate (TFB-TBOA), to block both GLT-1 and GLAST and dihydrokainic acid to block only GLT-1. We found that blockade of both GLAST and GLT-1 and blockade of only GLT-1 in the spinal dorsal horn decreased the amplitude of GABAergic eIPSCs, as well as both the amplitude and frequency of GABAergic sIPSCs or miniature IPSCs. Pharmacological inhibition of glial glutamine synthetase had similar effects on both GABAergic eIPSCs and sIPSCs. We provided evidence demonstrating that the reduction in GABAergic strength induced by the inhibition of glial glutamate transporters is due to insufficient GABA synthesis through the glutamate-glutamine cycle between astrocytes and neurons. Thus, our results indicate that deficient glial glutamate transporters and glutamine synthetase significantly attenuate GABAergic synaptic strength in the spinal dorsal horn, which may be a crucial synaptic mechanism underlying glial-neuronal interactions caused by dysfunctional astrocytes in pathological pain conditions. PMID:22339645

  8. Structural Insights into the Polyphyletic Origins of Glycyl tRNA Synthetases*♦

    PubMed Central

    Valencia-Sánchez, Marco Igor; Rodríguez-Hernández, Annia; Ferreira, Ruben; Santamaría-Suárez, Hugo Aníbal; Arciniega, Marcelino; Dock-Bregeon, Anne-Catherine; Moras, Dino; Beinsteiner, Brice; Brieba, Luis G.; Grøtli, Morten

    2016-01-01

    Glycyl tRNA synthetase (GlyRS) provides a unique case among class II aminoacyl tRNA synthetases, with two clearly widespread types of enzymes: a dimeric (α2) species present in some bacteria, archaea, and eukaryotes; and a heterotetrameric form (α2β2) present in most bacteria. Although the differences between both types of GlyRS at the anticodon binding domain level are evident, the extent and implications of the variations in the catalytic domain have not been described, and it is unclear whether the mechanism of amino acid recognition is also dissimilar. Here, we show that the α-subunit of the α2β2 GlyRS from the bacterium Aquifex aeolicus is able to perform the first step of the aminoacylation reaction, which involves the activation of the amino acid with ATP. The crystal structure of the α-subunit in the complex with an analog of glycyl adenylate at 2.8 Å resolution presents a conformational arrangement that properly positions the cognate amino acid. This work shows that glycine is recognized by a subset of different residues in the two types of GlyRS. A structural and sequence analysis of class II catalytic domains shows that bacterial GlyRS is closely related to alanyl tRNA synthetase, which led us to define a new subclassification of these ancient enzymes and to propose an evolutionary path of α2β2 GlyRS, convergent with α2 GlyRS and divergent from AlaRS, thus providing a possible explanation for the puzzling existence of two proteins sharing the same fold and function but not a common ancestor. PMID:27226617

  9. Structural Insights into the Polyphyletic Origins of Glycyl tRNA Synthetases.

    PubMed

    Valencia-Sánchez, Marco Igor; Rodríguez-Hernández, Annia; Ferreira, Ruben; Santamaría-Suárez, Hugo Aníbal; Arciniega, Marcelino; Dock-Bregeon, Anne-Catherine; Moras, Dino; Beinsteiner, Brice; Mertens, Haydyn; Svergun, Dmitri; Brieba, Luis G; Grøtli, Morten; Torres-Larios, Alfredo

    2016-07-01

    Glycyl tRNA synthetase (GlyRS) provides a unique case among class II aminoacyl tRNA synthetases, with two clearly widespread types of enzymes: a dimeric (α2) species present in some bacteria, archaea, and eukaryotes; and a heterotetrameric form (α2β2) present in most bacteria. Although the differences between both types of GlyRS at the anticodon binding domain level are evident, the extent and implications of the variations in the catalytic domain have not been described, and it is unclear whether the mechanism of amino acid recognition is also dissimilar. Here, we show that the α-subunit of the α2β2 GlyRS from the bacterium Aquifex aeolicus is able to perform the first step of the aminoacylation reaction, which involves the activation of the amino acid with ATP. The crystal structure of the α-subunit in the complex with an analog of glycyl adenylate at 2.8 Å resolution presents a conformational arrangement that properly positions the cognate amino acid. This work shows that glycine is recognized by a subset of different residues in the two types of GlyRS. A structural and sequence analysis of class II catalytic domains shows that bacterial GlyRS is closely related to alanyl tRNA synthetase, which led us to define a new subclassification of these ancient enzymes and to propose an evolutionary path of α2β2 GlyRS, convergent with α2 GlyRS and divergent from AlaRS, thus providing a possible explanation for the puzzling existence of two proteins sharing the same fold and function but not a common ancestor. PMID:27226617

  10. p53-Dependent DNA damage response sensitive to editing-defective tRNA synthetase in zebrafish.

    PubMed

    Song, Youngzee; Shi, Yi; Carland, Tristan M; Lian, Shanshan; Sasaki, Tomoyuki; Schork, Nicholas J; Head, Steven R; Kishi, Shuji; Schimmel, Paul

    2016-07-26

    Brain and heart pathologies are caused by editing defects of transfer RNA (tRNA) synthetases, which preserve genetic code fidelity by removing incorrect amino acids misattached to tRNAs. To extend understanding of the broader impact of synthetase editing reactions on organismal homeostasis, and based on effects in bacteria ostensibly from small amounts of mistranslation of components of the replication apparatus, we investigated the sensitivity to editing of the vertebrate genome. We show here that in zebrafish embryos, transient overexpression of editing-defective valyl-tRNA synthetase (ValRS(ED)) activated DNA break-responsive H2AX and p53-responsive downstream proteins, such as cyclin-dependent kinase (CDK) inhibitor p21, which promotes cell-cycle arrest at DNA damage checkpoints, and Gadd45 and p53R2, with pivotal roles in DNA repair. In contrast, the response of these proteins to expression of ValRS(ED) was abolished in p53-deficient fish. The p53-activated downstream signaling events correlated with suppression of abnormal morphological changes caused by the editing defect and, in adults, reversed a shortened life span (followed for 2 y). Conversely, with normal editing activities, p53-deficient fish have a normal life span and few morphological changes. Whole-fish deep sequencing showed genomic mutations associated with the editing defect. We suggest that the sensitivity of p53 to expression of an editing-defective tRNA synthetase has a critical role in promoting genome integrity and organismal homeostasis. PMID:27402763

  11. Acyl CoA synthetase 5 (ACSL5) ablation in mice increases energy expenditure and insulin sensitivity and delays fat absorption

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Objective: The family of acyl-CoA synthetase enzymes (ACSL) activates fatty acids within cells to generate long chain fatty acyl CoA (FACoA). The differing metabolic fates of FACoAs such as incorporation into neutral lipids, phospholipids, and oxidation pathways are differentially regulated by the ...

  12. Functional Characterization of PyrG, an Unusual Nonribosomal Peptide Synthetase Module from the Pyridomycin Biosynthetic Pathway.

    PubMed

    Huang, Tingting; Li, Lili; Brock, Nelson L; Deng, Zixin; Lin, Shuangjun

    2016-08-01

    Pyridomycin is an antimycobacterial cyclodepsipeptide assembled by a nonribosomal peptide synthetase/polyketide synthase hybrid system. Analysis of its cluster revealed a nonribosomal peptide synthetase (NRPS) module, PyrG, that contains two tandem adenylation domains and a PKS-type ketoreductase domain. In this study, we biochemically validated that the second A domain recognizes and activates α-keto-β-methylvaleric acid (2-KVC) as the native substrate; the first A domain was not functional but might play a structural role. The KR domain catalyzed the reduction of the 2-KVC tethered to the peptidyl carrier protein of PyrG in the presence of the MbtH family protein, PyrH. PyrG was demonstrated to recognize many amino acids. This substrate promiscuity provides the potential to generate pyridomycin analogues with various enolic acids moiety; this is important for binding InhA, a critical enzyme for cell-wall biosynthesis in Mycobacterium tuberculosis. PMID:27197800

  13. Demonstration of an altered phenylalanyl-tRNA synthetase in an analogue-resistant mutant of Aspergillus nidulans.

    PubMed

    Tiwary, B N; Bisen, P S; Sinha, U

    1987-08-01

    We have isolated and characterized a new class of p-fluorophenylalanine (FPA)-resistant mutant in Aspergillus nidulans using a phenA strain as the wild type, by optimizing the conditions of growth. All four spontaneous mutants selected on a medium containing FPA were found to be recessive to their wild-type alleles in heterozygous diploids. Complementation analyses and linkage data showed that they were allelic and mapped at a single locus (fpaU) in the facA-riboD interval on the right arm of linkage group V. Partial purification and characterization of Phe-tRNA synthetase from wild-type and mutant strains revealed that the mutant enzyme had a greatly reduced ability to activate the analogue. It is suggested that mutation in the fpaU gene brings about a structural alteration in Phe-tRNA synthetase. PMID:3312953

  14. Amino acid binding by the class I aminoacyl-tRNA synthetases: role for a conserved proline in the signature sequence.

    PubMed Central

    Burbaum, J. J.; Schimmel, P.

    1992-01-01

    Although partial or complete three-dimensional structures are known for three Class I aminoacyl-tRNA synthetases, the amino acid-binding sites in these proteins remain poorly characterized. To explore the methionine binding site of Escherichia coli methionyl-tRNA synthetase, we chose to study a specific, randomly generated methionine auxotroph that contains a mutant methionyl-tRNA synthetase whose defect is manifested in an elevated Km for methionine (Barker, D.G., Ebel, J.-P., Jakes, R.C., & Bruton, C.J., 1982, Eur. J. Biochem. 127, 449-457), and employed the polymerase chain reaction to sequence this mutant synthetase directly. We identified a Pro 14 to Ser replacement (P14S), which accounts for a greater than 300-fold elevation in Km for methionine and has little effect on either the Km for ATP or the kcat of the amino acid activation reaction. This mutation destabilizes the protein in vivo, which may partly account for the observed auxotrophy. The altered proline is found in the "signature sequence" of the Class I synthetases and is conserved. This sequence motif is 1 of 2 found in the 10 Class I aminoacyl-tRNA synthetases and, in the known structures, it is in the nucleotide-binding fold as part of a loop between the end of a beta-strand and the start of an alpha-helix. The phenotype of the mutant and the stability and affinity for methionine of the wild-type and mutant enzymes are influenced by the amino acid that is 25 residues beyond the C-terminus of the signature sequence.(ABSTRACT TRUNCATED AT 250 WORDS) PMID:1304356

  15. Reaction Mechanism of Mycobacterium Tuberculosis Glutamine Synthetase Using Quantum Mechanics/Molecular Mechanics Calculations.

    PubMed

    Moreira, Cátia; Ramos, Maria J; Fernandes, Pedro Alexandrino

    2016-06-27

    This paper is devoted to the understanding of the reaction mechanism of mycobacterium tuberculosis glutamine synthetase (mtGS) with atomic detail, using computational quantum mechanics/molecular mechanics (QM/MM) methods at the ONIOM M06-D3/6-311++G(2d,2p):ff99SB//B3LYP/6-31G(d):ff99SB level of theory. The complete reaction undergoes a three-step mechanism: the spontaneous transfer of phosphate from ATP to glutamate upon ammonium binding (ammonium quickly loses a proton to Asp54), the attack of ammonia on phosphorylated glutamate (yielding protonated glutamine), and the deprotonation of glutamine by the leaving phosphate. This exothermic reaction has an activation free energy of 21.5 kcal mol(-1) , which is consistent with that described for Escherichia coli glutamine synthetase (15-17 kcal mol(-1) ). The participating active site residues have been identified and their role and energy contributions clarified. This study provides an insightful atomic description of the biosynthetic reaction that takes place in this enzyme, opening doors for more accurate studies for developing new anti-tuberculosis therapies. PMID:27225077

  16. Sirtuin-dependent reversible lysine acetylation of glutamine synthetases reveals an autofeedback loop in nitrogen metabolism.

    PubMed

    You, Di; Yin, Bin-Cheng; Li, Zhi-Hai; Zhou, Ying; Yu, Wen-Bang; Zuo, Peng; Ye, Bang-Ce

    2016-06-14

    In cells of all domains of life, reversible lysine acetylation modulates the function of proteins involved in central cellular processes such as metabolism. In this study, we demonstrate that the nitrogen regulator GlnR of the actinomycete Saccharopolyspora erythraea directly regulates transcription of the acuA gene (SACE_5148), which encodes a Gcn5-type lysine acetyltransferase. We found that AcuA acetylates two glutamine synthetases (GlnA1 and GlnA4) and that this lysine acetylation inactivated GlnA4 (GSII) but had no significant effect on GlnA1 (GSI-β) activity under the conditions tested. Instead, acetylation of GlnA1 led to a gain-of-function that modulated its interaction with the GlnR regulator and enhanced GlnR-DNA binding. It was observed that this regulatory function of acetylated GSI-β enzymes is highly conserved across actinomycetes. In turn, GlnR controls the catalytic and regulatory activities (intracellular acetylation levels) of glutamine synthetases at the transcriptional and posttranslational levels, indicating an autofeedback loop that regulates nitrogen metabolism in response to environmental change. Thus, this GlnR-mediated acetylation pathway provides a signaling cascade that acts from nutrient sensing to acetylation of proteins to feedback regulation. This work presents significant new insights at the molecular level into the mechanisms underlying the regulation of protein acetylation and nitrogen metabolism in actinomycetes. PMID:27247389

  17. β-Lactam formation by a non-ribosomal peptide synthetase during antibiotic biosynthesis

    PubMed Central

    Gaudelli, Nicole M.; Long, Darcie H.; Townsend, Craig A.

    2014-01-01

    Non-ribosomal peptide synthetases (NRPSs) are giant enzymes comprised of modules that house repeated sets of functional domains, which select, activate and couple amino acids drawn from a pool of nearly 500 potential building blocks.1 The structurally and stereochemically diverse peptides generated in this manner underlie the biosynthesis of a large sector of natural products. Many of their derived metabolites are bioactive such as the antibiotics vancomycin, bacitracin, daptomycin and the β-lactam-containing penicillins, cephalosporins and nocardicins. Although penicillins and cephalosporins are synthesised from a classically derived NRPS tripeptide (from ACVS, δ-(L-α-aminoadipyl)–L-cysteinyl–D-valine synthetase)2, we now report an unprecedented NRPS activity to both assemble a serine-containing peptide and mediate its cyclisation to the critical β-lactam ring of the nocardicin family of antibiotics. A histidine-rich condensation (C) domain, which typically carries out peptide bond formation during product assembly, was found to also synthesise the embedded 4-membered ring. Here, a mechanism is proposed and supporting experiments are described, which is distinct from the pathways that have evolved to the three other β-lactam antibiotic families: penicillin/cephalosporins, clavams and carbapenems. These findings raise the possibility that β-lactam rings can be regio- and stereospecifically integrated into engineered peptides for application as, for example, targeted protease inactivators.3,4 PMID:25624104

  18. An Acyl-CoA Synthetase in Mycobacterium tuberculosis Involved in Triacylglycerol Accumulation during Dormancy

    PubMed Central

    Daniel, Jaiyanth; Sirakova, Tatiana; Kolattukudy, Pappachan

    2014-01-01

    Latent infection with dormant Mycobacterium tuberculosis is one of the major reasons behind the emergence of drug-resistant strains of the pathogen worldwide. In its dormant state, the pathogen accumulates lipid droplets containing triacylglycerol synthesized from fatty acids derived from host lipids. In this study, we show that Rv1206 (FACL6), which is annotated as an acyl-CoA synthetase and resembles eukaryotic fatty acid transport proteins, is able to stimulate fatty acid uptake in E. coli cells. We show that purified FACL6 displays acyl-coenzyme A synthetase activity with a preference towards oleic acid, which is one of the predominant fatty acids in host lipids. Our results indicate that the expression of FACL6 protein in Mycobacterium tuberculosis is significantly increased during in vitro dormancy. The facl6-deficient Mycobacterium tuberculosis mutant displayed a diminished ability to synthesize acyl-coenzyme A in cell-free extracts. Furthermore, during in vitro dormancy, the mutant synthesized lower levels of intracellular triacylglycerol from exogenous fatty acids. Complementation partially restored the lost function. Our results suggest that FACL6 modulates triacylglycerol accumulation as the pathogen enters dormancy by activating fatty acids. PMID:25490545

  19. Glutamine synthetase 2 is not essential for biosynthesis of compatible solutes in Halobacillus halophilus

    PubMed Central

    Shiyan, Anna; Thompson, Melanie; Köcher, Saskia; Tausendschön, Michaela; Santos, Helena; Hänelt, Inga; Müller, Volker

    2014-01-01

    Halobacillus halophilus, a moderately halophilic bacterium isolated from salt marshes, produces various compatible solutes to cope with osmotic stress. Glutamate and glutamine are dominant compatible solutes at mild salinities. Glutamine synthetase activity in cell suspensions of Halobacillus halophilus wild type was shown to be salt dependent and chloride modulated. A possible candidate to catalyze glutamine synthesis is glutamine synthetase A2, whose transcription is stimulated by chloride. To address the role of GlnA2 in the biosynthesis of the osmolytes glutamate and glutamine, a deletion mutant (ΔglnA2) was generated and characterized in detail. We compared the pool of compatible solutes and performed transcriptional analyses of the principal genes controlling the solute production in the wild type strain and the deletion mutant. These measurements did not confirm the hypothesized role of GlnA2 in the osmolyte production. Most likely the presence of another, yet to be identified enzyme has the main contribution in the measured activity in crude extracts and probably determines the total chloride-modulated profile. The role of GlnA2 remains to be elucidated. PMID:24782854

  20. A human leucyl-tRNA synthetase as an anticancer target

    PubMed Central

    Gao, Guangwei; Yao, Ying; Li, Kun; Mashausi, Dhahiri Saidi; Li, Dongsheng; Negi, Hema; Kamle, Suchitra; Chen, Hao; Wu, Zhenghua; Zhou, Huchen; Li, Dawei

    2015-01-01

    Several aminoacyl-tRNA synthetases have been reported to be overexpressed for charging essential aminoacyl-tRNAs in many cancer types. In this study, we aimed to explore the potential role of leucyl-tRNA synthetase (LARS) as an anticancer target. MTT assay was performed to screen inhibitors to human LARS (hsLARS) from compounds AN2690 and its derivatives, compounds 1–6, in U2OS and SKOV3 cells. The compound with the strongest inhibitory ability was further investigated for its inhibitory effect in cancer cell lines and in an animal tumor model. Additionally, a LARS-rescue experiment was performed to explore the potential target in U2OS using Western blot and flow cytometry. Luciferase reporter assay was designed to analyze the effect of of hsLARS inhibitor on p21 activation. We identified an hsLARS inhibitor (compound 2) that suppressed the proliferation of U2OS and SKOV3 cells in vitro. A LARS-rescue experiment demonstrated that the proliferation inhibition was induced by targeting intracellular LARS. In addition, the hsLARS inhibition was shown to activate the p21 early transcription and promote cell apoptosis, as well as reduce implanted EMT6 tumor progression in mice. Our results suggest that LARS might serve as a potential anticancer target through the p21 signaling pathway and that the nutritional signaling pathway may provide a valuable anticancer strategy for further investigation. PMID:26508878

  1. Preparation of fatty-acylated derivatives of acyl carrier protein using Vibrio harveyi acyl-ACP synthetase.

    PubMed

    Shen, Z; Fice, D; Byers, D M

    1992-07-01

    A simple two-step purification of Vibrio harveyi fatty acyl-acyl carrier protein (acyl-ACP) synthetase, which is useful for the quantitative preparation and analysis of fatty-acylated derivatives of ACP, is described. Acyl-ACP synthetase can be partially purified from extracts of this bioluminescent bacterium by Cibacron blue chromatography and Sephacryl S-300 gel filtration and is stable for months at -20 degrees C in the presence of glycerol. Incubation of ACP from Escherichia coli with ATP and radiolabeled fatty acids (6 to 16 carbons in length) in the presence of the enzyme resulted in quantitative conversion to biologically active acylated derivatives. The enzyme reaction can be monitored by a filter disk assay to quantitate levels of ACP or by sodium dodecyl sulfate-polyacrylamide gel electrophoresis and fluorography to detect ACP in cell extracts. With its broad fatty acid chain length specificity and optimal activity in mild nondenaturing buffers, the soluble V. harveyi acyl-ACP synthetase provides an attractive alternative to current chemical and enzymatic methods of acyl-ACP preparation and analysis. PMID:1514693

  2. Essentiality Assessment of Cysteinyl and Lysyl-tRNA Synthetases of Mycobacterium smegmatis

    PubMed Central

    Ravishankar, Sudha; Ambady, Anisha; Swetha, Rayapadi G.; Anbarasu, Anand; Ramaiah, Sudha; Sambandamurthy, Vasan K.

    2016-01-01

    Discovery of mupirocin, an antibiotic that targets isoleucyl-tRNA synthetase, established aminoacyl-tRNA synthetase as an attractive target for the discovery of novel antibacterial agents. Despite a high degree of similarity between the bacterial and human aminoacyl-tRNA synthetases, the selectivity observed with mupirocin triggered the possibility of targeting other aminoacyl-tRNA synthetases as potential drug targets. These enzymes catalyse the condensation of a specific amino acid to its cognate tRNA in an energy-dependent reaction. Therefore, each organism is expected to encode at least twenty aminoacyl-tRNA synthetases, one for each amino acid. However, a bioinformatics search for genes encoding aminoacyl-tRNA synthetases from Mycobacterium smegmatis returned multiple genes for glutamyl (GluRS), cysteinyl (CysRS), prolyl (ProRS) and lysyl (LysRS) tRNA synthetases. The pathogenic mycobacteria, namely, Mycobacterium tuberculosis and Mycobacterium leprae, were also found to possess two genes each for CysRS and LysRS. A similar search indicated the presence of additional genes for LysRS in gram negative bacteria as well. Herein, we describe sequence and structural analysis of the additional aminoacyl-tRNA synthetase genes found in M. smegmatis. Characterization of conditional expression strains of Cysteinyl and Lysyl-tRNA synthetases generated in M. smegmatis revealed that the canonical aminoacyl-tRNA synthetase are essential, while the additional ones are not essential for the growth of M. smegmatis. PMID:26794499

  3. Crystal structure of a eukaryote/archaeon-like protyl-tRNA synthetase and its complex with tRNAPro(CGG).

    PubMed

    Yaremchuk, A; Cusack, S; Tukalo, M

    2000-09-01

    Prolyl-tRNA synthetase (ProRS) is a class IIa synthetase that, according to sequence analysis, occurs in different organisms with one of two quite distinct structural architectures: prokaryote-like and eukaryote/archaeon-like. The primary sequence of ProRS from the hypothermophilic eubacterium Thermus thermophilus (ProRSTT) shows that this enzyme is surprisingly eukaryote/archaeon-like. We describe its crystal structure at 2.43 angstom resolution, which reveals a feature that is unique among class II synthetases. This is an additional zinc-containing domain after the expected class IIa anticodon-binding domain and whose C-terminal extremity, which ends in an absolutely conserved tyrosine, folds back into the active site. We also present an improved structure of ProRSTT complexed with tRNAPro(CGG) at 2.85 angstom resolution. This structure represents an initial docking state of the tRNA in which the anticodon stem-loop is engaged, particularly via the tRNAPro-specific bases G35 and G36, but the 3' end does not enter the active site. Considerable structural changes in tRNA and/or synthetase, which are probably induced by small substrates, are required to achieve the conformation active for aminoacylation. PMID:10970866

  4. Molecular cloning of the human CTP synthetase gene by functional complementation with purified human metaphase chromosomes.

    PubMed

    Yamauchi, M; Yamauchi, N; Meuth, M

    1990-07-01

    Successive rounds of chromosome-mediated gene transfer were used to complement a hamster cytidine auxotroph deficient in CTP synthetase activity and eventually to clone human genomic and cDNA fragments coding for the structural gene. Our approach was to isolate human Alu+ fragments from a tertiary transfectant and to utilize these fragments to screen a panel of primary transfectants. In this manner two DNA fragments, both mapping within the structural gene, were identified and used to clone a partial length cDNA. The remaining portion of the open reading frame was obtained through the RACE polymerase chain reaction technique. The open reading frame encodes 591 amino acids having a striking degree of similarity to the Escherichia coli structural gene (48% identical amino acids with 76% overall similarity including conservative substitutions) with the glutamine amide transfer domain being particularly conserved. As regulatory mutations of CTP synthetase confer both multi-drug resistance to agents widely used in cancer chemotherapy and a mutator phenotype, the cloning of the structural gene will be important in assessing the relevance of such phenotypes to the development of cellular drug resistance. PMID:2113467

  5. Crystal Structure and Function of 5-Formaminoimidazole-4-carboxamide Ribonucleotide Synthetase from Methanocaldococcus jannaschii

    SciTech Connect

    Zhang, Yang; White, Robert H.; Ealick, Steven E.

    2008-08-06

    Purine biosynthesis requires 10 enzymatic steps in higher organisms, while prokaryotes require an additional enzyme for step 6. In most organisms steps 9 and 10 are catalyzed by the purH gene product, a bifunctional enzyme with both 5-formaminoimidazole-4-carboxamide ribonucleotide (FAICAR) synthase and inosine monophosphate (IMP) cyclohydrolase activity. Recently it was discovered that Archaea utilize different enzymes to catalyze steps 9 and 10. An ATP-dependent FAICAR synthetase is encoded by the purP gene, and IMP cyclohydrolase is encoded by the purO gene. We have determined the X-ray crystal structures of FAICAR synthetase from Methanocaldococcus jannaschii complexed with various ligands, including the tertiary substrate complex and product complex. The enzyme belongs to the ATP grasp superfamily and is predicted to use a formyl phosphate intermediate formed by an ATP-dependent phosphorylation. In addition, we have determined the structures of a PurP orthologue from Pyrococcus furiosus, which is functionally unclassified, in three crystal forms. With approximately 50% sequence identity, P. furiosus PurP is structurally homologous to M. jannaschii PurP. A phylogenetic analysis was performed to explore the possible role of this functionally unclassified PurP.

  6. Poly specific trans-acyltransferase machinery revealed via engineered acyl-CoA synthetases.

    PubMed

    Koryakina, Irina; McArthur, John; Randall, Shan; Draelos, Matthew M; Musiol, Ewa M; Muddiman, David C; Weber, Tilmann; Williams, Gavin J

    2013-01-18

    Polyketide synthases construct polyketides with diverse structures and biological activities via the condensation of extender units and acyl thioesters. Although a growing body of evidence suggests that polyketide synthases might be tolerant to non-natural extender units, in vitro and in vivo studies aimed at probing and utilizing polyketide synthase specificity are severely limited to only a small number of extender units, owing to the lack of synthetic routes to a broad variety of acyl-CoA extender units. Here, we report the construction of promiscuous malonyl-CoA synthetase variants that can be used to synthesize a broad range of malonyl-CoA extender units substituted at the C2-position, several of which contain handles for chemoselective ligation and are not found in natural biosynthetic systems. We highlighted utility of these enzymes by probing the acyl-CoA specificity of several trans-acyltransferases, leading to the unprecedented discovery of poly specificity toward non-natural extender units, several of which are not found in naturally occurring biosynthetic pathways. These results reveal that polyketide biosynthetic machinery might be more tolerant to non-natural substrates than previously established, and that mutant synthetases are valuable tools for probing the specificity of biosynthetic machinery. Our data suggest new synthetic biology strategies for harnessing this promiscuity and enabling the regioselective modification of polyketides. PMID:23083014

  7. Asparagine synthetase deficiency detected by whole exome sequencing causes congenital microcephaly, epileptic encephalopathy and psychomotor delay

    PubMed Central

    Ben-Salem, Salma; Gleeson, Joseph G.; Al-Shamsi, Aisha M.; Islam, Barira; Hertecant, Jozef; Ali, Bassam R.

    2016-01-01

    Deficiency of Asparagine Synthetase (ASNSD, MIM 615574) is a very rare autosomal recessive disorder presenting with some brain abnormalities. Affected individuals have congenital microcephaly and progressive encephalopathy associated with severe intellectual disability and intractable seizures. The loss of function of the asparagine synthetase (ASNS, EC 6.3.5.4), particularly in the brain, is the major cause of this particular congenital microcephaly. In this study, we clinically evaluated an affected child from a consanguineous Emirati family presenting with congenital microcephaly and epileptic encephalopathy. In addition, whole-exome sequencing revealed a novel homozygous substitution mutation (c.1193A>C) in the ASNS gene. This mutation resulted in the substitution of highly conserved tyrosine residue by cysteine (p.Y398C). Molecular modeling analysis predicts hypomorphic and damaging effects of this mutation on the protein structure and altering its enzymatic activity. Therefore, we conclude that the loss of ASNS function is most likely the cause of this condition in the studied family. This report brings the number of reported families with this very rare disorder to five and the number of pathogenic mutations in the ASNS gene to four. This finding extends the ASNS pathogenic mutations spectrum and highlights the utility of whole-exome sequencing in elucidation the causes of rare recessive disorders that are heterogeneous and/or overlap with other conditions. PMID:25227173

  8. CcsBA is a cytochrome c synthetase that also functions in heme transport

    PubMed Central

    Frawley, Elaine R.; Kranz, Robert G.

    2009-01-01

    Little is known about trafficking of heme from its sites of synthesis to sites of heme-protein assembly. We describe an integral membrane protein that allows trapping of endogenous heme to elucidate trafficking mechanisms. We show that CcsBA, a representative of a superfamily of integral membrane proteins involved in cytochrome c biosynthesis, exports and protects heme from oxidation. CcsBA has 10 transmembrane domains (TMDs) and reconstitutes cytochrome c synthesis in the Escherichia coli periplasm; thus, CcsBA is a cytochrome c synthetase. Purified CcsBA contains heme in an “external heme binding domain” for which two external histidines are shown to serve as axial ligands that protect the heme iron from oxidation. This is likely the active site of the synthetase. Furthermore, two conserved histidines in TMDs are required for heme to travel to the external heme binding domain. Remarkably, the function of CcsBA with mutations in these TMD histidines is corrected by exogenous imidazole, a result analogous to correction of heme binding by myoglobin when its proximal histidine is mutated. These data suggest that CcsBA has a heme binding site within the bilayer and that CcsBA is a heme channel. PMID:19509336

  9. Divergent anticodon recognition in contrasting glutamyl-tRNA synthetases.

    PubMed

    Lee, Joohee; Hendrickson, Tamara L

    2004-12-10

    The pathogenic bacterium Helicobacter pylori utilizes two essential glutamyl-tRNA synthetases (GluRS1 and GluRS2). These two enzymes are closely related in evolution and yet they aminoacylate contrasting tRNAs. GluRS1 is a canonical discriminating GluRS (D-GluRS) that biosynthesizes Glu-tRNA(Glu) and cannot make Glu-tRNA(Gln). In contrast, GluRS2 is non-canonical as it is only essential for the production of misacylated Glu-tRNA(Gln). The co-existence and evident divergence of these two enzymes was capitalized upon to directly examine how GluRS2 acquired tRNA(Gln) specificity. One key feature that distinguishes tRNA(Glu) from tRNA(Gln) is the third position in the anticodon of each tRNA (C36 versus G36, respectively). By comparing sequence alignments of different GluRSs, including GluRS1s and GluRS2s, to the crystal structure of the Thermus thermophilus D-GluRS:tRNA(Glu) complex, a divergent pattern of conservation in enzymes that aminoacylate tRNA(Glu)versus those specific for tRNA(Gln) emerged and was experimentally validated. In particular, when an arginine conserved in discriminating GluRSs and GluRS1s was inserted into Hp GluRS2 (Glu334Arg GluRS2), the catalytic efficiency of the mutant enzyme (k(cat)/K(Mapp)) was reduced by approximately one order of magnitude towards tRNA(Gln). However, this mutation did not introduce activity towards tRNA(Glu). In contrast, disruption of a glycine that is conserved in all GluRS2s but not in other GluRSs (Gly417Thr GluRS2) generated a mutant GluRS2 with weak activity towards tRNA(Glu1). Synergy between these two mutations was observed in the double mutant (Glu334Arg/Gly417Thr GluRS2), which specifically and more robustly aminoacylates tRNA(Glu1) instead of tRNA(Gln). As GluRS1 and GluRS2 are related by an apparent gene duplication event, these results demonstrate that we can experimentally map critical evolutionary events in the emergence of new tRNA specificities. PMID:15561136

  10. Glutathione production by recombinant Escherichia coli expressing bifunctional glutathione synthetase.

    PubMed

    Wang, Dezheng; Wang, Cheng; Wu, Hui; Li, Zhimin; Ye, Qin

    2016-01-01

    Glutathione (GSH) is an important bioactive substance applied widely in pharmaceutical and food industries. Due to the strong product inhibition in the GSH biosynthetic pathway, high levels of intracellular content, yield and productivity of GSH are difficult to achieve. Recently, a novel bifunctional GSH synthetase was identified to be less sensitive to GSH. A recombinant Escherichia coli strain expressing gshF encoding the bifunctional glutathione synthetase of Streptococcus thermophilus was constructed for GSH production. In this study, efficient GSH production using this engineered strain was investigated. The cultivation process was optimized by controlling dissolved oxygen (DO), amino acid addition and glucose feeding. 36.8 mM (11.3 g/L) GSH were formed at a productivity of 2.06 mM/h when the amino acid precursors (75 mM each) were added and glucose was supplied as the sole carbon and energy source. PMID:26586402

  11. Glutamine synthetase gene evolution: a good molecular clock.

    PubMed Central

    Pesole, G; Bozzetti, M P; Lanave, C; Preparata, G; Saccone, C

    1991-01-01

    Glutamine synthetase (EC 6.3.1.2) gene evolution in various animals, plants, and bacteria was evaluated by a general stationary Markov model. The evolutionary process proved to be unexpectedly regular even for a time span as long as that between the divergence of prokaryotes from eukaryotes. This enabled us to draw phylogenetic trees for species whose phylogeny cannot be easily reconstructed from the fossil record. Our calculation of the times of divergence of the various organelle-specific enzymes led us to hypothesize that the pea and bean chloroplast genes for these enzymes originated from the duplication of nuclear genes as a result of the different metabolic needs of the various species. Our data indicate that the duplication of plastid glutamine synthetase genes occurred long after the endosymbiotic events that produced the organelles themselves. PMID:1671172

  12. Aminoacyl-tRNA Synthetase Complexes in Evolution

    PubMed Central

    Havrylenko, Svitlana; Mirande, Marc

    2015-01-01

    Aminoacyl-tRNA synthetases are essential enzymes for interpreting the genetic code. They are responsible for the proper pairing of codons on mRNA with amino acids. In addition to this canonical, translational function, they are also involved in the control of many cellular pathways essential for the maintenance of cellular homeostasis. Association of several of these enzymes within supramolecular assemblies is a key feature of organization of the translation apparatus in eukaryotes. It could be a means to control their oscillation between translational functions, when associated within a multi-aminoacyl-tRNA synthetase complex (MARS), and nontranslational functions, after dissociation from the MARS and association with other partners. In this review, we summarize the composition of the different MARS described from archaea to mammals, the mode of assembly of these complexes, and their roles in maintenance of cellular homeostasis. PMID:25807264

  13. Rare recessive loss-of-function methionyl-tRNA synthetase mutations presenting as a multi-organ phenotype

    PubMed Central

    2013-01-01

    Background Methionyl-tRNA synthetase (MARS) catalyzes the ligation of methionine to its cognate transfer RNA and therefore plays an essential role in protein biosynthesis. Methods We used exome sequencing, aminoacylation assays, homology modeling, and immuno-isolation of transfected MARS to identify and characterize mutations in the methionyl-tRNA synthetase gene (MARS) in an infant with an unexplained multi-organ phenotype. Results We identified compound heterozygous mutations (F370L and I523T) in highly conserved regions of MARS. The parents were each heterozygous for one of the mutations. Aminoacylation assays documented that the F370L and I523T MARS mutants had 18 ± 6% and 16 ± 6%, respectively, of wild-type activity. Homology modeling of the human MARS sequence with the structure of E. coli MARS showed that the F370L and I523T mutations are in close proximity to each other, with residue I523 located in the methionine binding pocket. We found that the F370L and I523T mutations did not affect the association of MARS with the multisynthetase complex. Conclusion This infant expands the catalogue of inherited human diseases caused by mutations in aminoacyl-tRNA synthetase genes. PMID:24103465

  14. Impaired protein translation in Drosophila models for Charcot–Marie–Tooth neuropathy caused by mutant tRNA synthetases

    PubMed Central

    Niehues, Sven; Bussmann, Julia; Steffes, Georg; Erdmann, Ines; Köhrer, Caroline; Sun, Litao; Wagner, Marina; Schäfer, Kerstin; Wang, Guangxia; Koerdt, Sophia N.; Stum, Morgane; RajBhandary, Uttam L.; Thomas, Ulrich; Aberle, Hermann; Burgess, Robert W.; Yang, Xiang-Lei; Dieterich, Daniela; Storkebaum, Erik

    2015-01-01

    Dominant mutations in five tRNA synthetases cause Charcot–Marie–Tooth (CMT) neuropathy, suggesting that altered aminoacylation function underlies the disease. However, previous studies showed that loss of aminoacylation activity is not required to cause CMT. Here we present a Drosophila model for CMT with mutations in glycyl-tRNA synthetase (GARS). Expression of three CMT-mutant GARS proteins induces defects in motor performance and motor and sensory neuron morphology, and shortens lifespan. Mutant GARS proteins display normal subcellular localization but markedly reduce global protein synthesis in motor and sensory neurons, or when ubiquitously expressed in adults, as revealed by FUNCAT and BONCAT. Translational slowdown is not attributable to altered tRNAGly aminoacylation, and cannot be rescued by Drosophila Gars overexpression, indicating a gain-of-toxic-function mechanism. Expression of CMT-mutant tyrosyl-tRNA synthetase also impairs translation, suggesting a common pathogenic mechanism. Finally, genetic reduction of translation is sufficient to induce CMT-like phenotypes, indicating a causal contribution of translational slowdown to CMT. PMID:26138142

  15. SIRT5 Deacetylates carbamoyl phosphate synthetase 1 and regulates the urea cycle.

    PubMed

    Nakagawa, Takashi; Lomb, David J; Haigis, Marcia C; Guarente, Leonard

    2009-05-01

    Sirtuins are NAD-dependent protein deacetylases that connect metabolism and aging. In mammals, there are seven sirtuins (SIRT1-7), three of which are associated with mitochondria. Here, we show that SIRT5 localizes in the mitochondrial matrix and interacts with carbamoyl phosphate synthetase 1 (CPS1), an enzyme, catalyzing the initial step of the urea cycle for ammonia detoxification and disposal. SIRT5 deacetylates CPS1 and upregulates its activity. During fasting, NAD in liver mitochondria increases, thereby triggering SIRT5 deacetylation of CPS1 and adaptation to the increase in amino acid catabolism. Indeed, SIRT5 KO mice fail to upregulate CPS1 activity and show elevated blood ammonia during fasting. Similar effects occur during long-term calorie restriction or a high protein diet. These findings demonstrate SIRT5 plays a pivotal role in ammonia detoxification and disposal by activating CPS1. PMID:19410549

  16. Detection of carbamyl phosphate synthetase 1 deficiency using duodenal biopsy samples.

    PubMed Central

    Hoogenraad, N J; Mitchell, J D; Don, N A; Sutherland, T M; Mc Leay, A C

    1980-01-01

    The activity of urea cycle enzymes was assayed in duodenal biopsy specimens obtained from a female infant who presented with neonatal hyperammonaemia. All enzyme levels were normal except N-acetyl glutamate-dependent carbamyl phosphate synthetase 1 (CPS1) which was half the mean activity in normal control specimens. A similar deficiency of CPS1 was also shown in duodenal specimens from the patient's mother who became slightly symptomatic after relatively high protein meals and during pregnancy, and had spontaneously modified her diet to one with protein restriction. The patient is growing normally on a dietary regimen similar to that spontaneously adopted by her mother. Urea cycle enzyme activity in the duodenal biopsy material from the controls was similar to that found in the normal human liver and appears to have distinct advantages as a means of assaying for urea cycle defects in patients with hyperammonaemia and their relatives. PMID:7416778

  17. Mammalian ACSF3 Protein Is a Malonyl-CoA Synthetase That Supplies the Chain Extender Units for Mitochondrial Fatty Acid Synthesis*

    PubMed Central

    Witkowski, Andrzej; Thweatt, Jennifer; Smith, Stuart

    2011-01-01

    The objective of this study was to identify a source of intramitochondrial malonyl-CoA that could be used for de novo fatty acid synthesis in mammalian mitochondria. Because mammalian mitochondria lack an acetyl-CoA carboxylase capable of generating malonyl-CoA inside mitochondria, the possibility that malonate could act as a precursor was investigated. Although malonyl-CoA synthetases have not been identified previously in animals, interrogation of animal protein sequence databases identified candidates that exhibited sequence similarity to known prokaryotic forms. The human candidate protein ACSF3, which has a predicted N-terminal mitochondrial targeting sequence, was cloned, expressed, and characterized as a 65-kDa acyl-CoA synthetase with extremely high specificity for malonate and methylmalonate. An arginine residue implicated in malonate binding by prokaryotic malonyl-CoA synthetases was found to be positionally conserved in animal ACSF3 enzymes and essential for activity. Subcellular fractionation experiments with HEK293T cells confirmed that human ACSF3 is located exclusively in mitochondria, and RNA interference experiments verified that this enzyme is responsible for most, if not all, of the malonyl-CoA synthetase activity in the mitochondria of these cells. In conclusion, unlike fungi, which have an intramitochondrial acetyl-CoA carboxylase, animals require an alternative source of mitochondrial malonyl-CoA; the mitochondrial ACSF3 enzyme is capable of filling this role by utilizing free malonic acid as substrate. PMID:21846720

  18. Construction of hybrid peptide synthetases for the production of alpha-l-aspartyl-l-phenylalanine, a precursor for the high-intensity sweetener aspartame.

    PubMed

    Duerfahrt, Thomas; Doekel, Sascha; Sonke, Theo; Quaedflieg, Peter J L M; Marahiel, Mohamed A

    2003-11-01

    Microorganisms produce a large number of pharmacologically and biotechnologically important peptides by using nonribosomal peptide synthetases (NRPSs). Due to their modular arrangement and their domain organization NRPSs are particularly suitable for engineering recombinant proteins for the production of novel peptides with interesting properties. In order to compare different strategies of domain assembling and module fusions we focused on the selective construction of a set of peptide synthetases that catalyze the formation of the dipeptide alpha-l-aspartyl-l-phenylalanine (Asp-Phe), the precursor of the high-intensity sweetener alpha-l-aspartyl-l-phenylalanine methyl ester (aspartame). The de novo design of six different Asp-Phe synthetases was achieved by fusion of Asp and Phe activating modules comprising adenylation, peptidyl carrier protein and condensation domains. Product release was ensured by a C-terminally fused thioesterase domains and quantified by HPLC/MS analysis. Significant differences of enzyme activity caused by the fusion strategies were observed. Two forms of the Asp-Phe dipeptide were detected, the expected alpha-Asp-Phe and the by-product beta-Asp-Phe. Dependent on the turnover rates ranging from 0.01-0.7 min-1, the amount of alpha-Asp-Phe was between 75 and 100% of overall product, indicating a direct correlation between the turnover numbers and the ratios of alpha-Asp-Phe to beta-Asp-Phe. Taken together these results provide useful guidelines for the rational construction of hybrid peptide synthetases. PMID:14622284

  19. On the role of helix 0 of the tryptophan synthetase alpha chain of Escherichia coli.

    PubMed

    Yee, M C; Horn, V; Yanofsky, C

    1996-06-21

    The role of helix 0 of the alpha chain (TrpA) of the tryptophan synthetase alpha2beta2 multi-functional enzyme complex of Escherichia coli was examined by deleting amino-terminal residues 2-6, 2-11, or 2-19 of TrpA. Selected substitutions were also introduced at TrpA positions 2-6. The altered genes encoding these polypeptides were overexpressed from a foreign promoter on a multicopy plasmid and following insertion at their normal chromosomal location. Each deletion polypeptide was functional in vivo. However all appeared to be somewhat more labile and insoluble and less active enzymatically than wild type TrpA. The deletion polypeptides were overproduced and solubilized from cell debris by denaturation and refolding. Several were partially purified and assayed in various reactions in the presence of tryptophan synthetase beta2 (TrpB). The purified TrpADelta2-6 and TrpADelta2-11 deletion polypeptides had low activity in both the indole + serine --> tryptophan reaction and the indoleglycerol phosphate + serine --> tryptophan reaction. Poor activity in each reaction was partly due to reduced association of TrpA with TrpB. The addition of the TrpA ligands, alpha-glycerophosphate or indoleglycerol phosphate, during catalysis of the indole + serine --> tryptophan reaction increased association and activity. These findings suggest that removal of helix 0 of TrpA decreases TrpA-TrpB association as well as the activity of the TrpA active site. Alignment of the TrpA sequences from different species indicates that several lack part or all of helix 0. In some of these polypeptides, extra residues at the carboxyl end may substitute for helix 0. PMID:8662916

  20. Glutamine synthetase of Klebsiella aerogenes: properties of glnD mutants lacking uridylyltransferase.

    PubMed Central

    Foor, F; Cedergren, R J; Streicher, S L; Rhee, S G; Magasanik, B

    1978-01-01

    The glnD mutation of Klebsiella aerogenes is cotransducible by phage P1 with pan (requirement for pantothenate) and leads to a loss of uridylytransferase and uridylyl-removing enzyme, components of the glutamine synthetase adenylylation system. This defect results in an inability to deadenylylate glutamine synthetase rapidly and in a requirement for glutamine for normal growth. Suppression of the glnD mutation are located at the glutamine synthetase structural gene glnA. PMID:26659

  1. Inhibition by propionyl-coenzyme A of N-acetylglutamate synthetase in rat liver mitochondria. A possible explanation for hyperammonemia in propionic and methylmalonic acidemia.

    PubMed

    Coude, F X; Sweetman, L; Nyhan, W L

    1979-12-01

    In the search for the mechanism by which hyperammonemia complicates propionic and methylmalonic acidemia the effects of a series of acyl-coenzyme A (CoA) derivatives were studied on the activity of N-acetylglutamate synthetase in rat liver mitochondria using acetyl-CoA as substrate. Propionyl-CoA was found to be a competitive inhibitor. The inhibition constant of 0.71 mM is in the range of concentrations of propionate found in the serum of patients with propionic and methylmalonic acidemia. Propionyl-CoA was also found to be a substrate for N-acetylglutamate synthetase, forming N-propionylglutamate. This compound was a weak activator of rat liver carbamoylphosphate synthetase; the activation constant was 1.1 mM as compared with 0.12 mM for N-acetylglutamate. A decreased level of N-acetylglutamate in liver mitochondria that would follow inhibition of N-acetylglutamate synthetase by propionyl-CoA would be expected to lead to hyperammonemia. Methylmalonyl-CoA, tiglyl-CoA, and isovaleryl-CoA at a concentration of 3 mM caused 30-70% inhibition of N-acetylglutamate synthetase. 3the latter two compounds are readily detoxified by the formation of N-acylglycine conjugates in liver, which may prevent large accumulations and could explain why hyperammonemia is not characteristic of patients with beta-ketothiolase deficiency or isovaleric acidemia in whom these compounds would be expected to be elevated. PMID:500823

  2. Activation of RNase L is dependent on OAS3 expression during infection with diverse human viruses.

    PubMed

    Li, Yize; Banerjee, Shuvojit; Wang, Yuyan; Goldstein, Stephen A; Dong, Beihua; Gaughan, Christina; Silverman, Robert H; Weiss, Susan R

    2016-02-23

    The 2',5'-oligoadenylate (2-5A) synthetase (OAS)-RNase L system is an IFN-induced antiviral pathway. RNase L activity depends on 2-5A, synthesized by OAS. Although all three enzymatically active OAS proteins in humans--OAS1, OAS2, and OAS3--synthesize 2-5A upon binding dsRNA, it is unclear which are responsible for RNase L activation during viral infection. We used clustered regularly interspaced short palindromic repeats (CRISPR)-CRISPR-associated protein-9 nuclease (Cas9) technology to engineer human A549-derived cell lines in which each of the OAS genes or RNase L is knocked out. Upon transfection with poly(rI):poly(rC), a synthetic surrogate for viral dsRNA, or infection with each of four viruses from different groups (West Nile virus, Sindbis virus, influenza virus, or vaccinia virus), OAS1-KO and OAS2-KO cells synthesized amounts of 2-5A similar to those synthesized in parental wild-type cells, causing RNase L activation as assessed by rRNA degradation. In contrast, OAS3-KO cells synthesized minimal 2-5A, and rRNA remained intact, similar to infected RNase L-KO cells. All four viruses replicated to higher titers in OAS3-KO or RNase L-KO A549 cells than in parental, OAS1-KO, or OAS2-KO cells, demonstrating the antiviral effects of OAS3. OAS3 displayed a higher affinity for dsRNA in intact cells than either OAS1 or OAS2, consistent with its dominant role in RNase L activation. Finally, the requirement for OAS3 as the major OAS isoform responsible for RNase L activation was not restricted to A549 cells, because OAS3-KO cells derived from two other human cell lines also were deficient in RNase L activation. PMID:26858407

  3. Partial Purification and Properties of d-Desthiobiotin Synthetase from Escherichia coli1

    PubMed Central

    Cheeseman, P.; Pai, C. H.

    1970-01-01

    d-Desthiobiotin synthetase, an enzyme that catalyzes the synthesis of d-desthiobiotin from dl-7,8-diaminopelargonic acid and HCO3−, was purified 100-fold from cells of a biotin mutant strain of Escherichia coli. Adenosine triphosphate and Mg2+ were shown, especially in purified extracts, to be obligatory for enzyme activity, although concentrations higher than 5 mm caused severe inhibition of the reaction with unpurified cell-free extracts. Adenosine diphosphate and adenosine monophosphate were shown to inhibit the reaction, but fluoride (up to 50 mm) had no detectable effect. The product of the enzyme reaction was identical to d-desthiobiotin on the basis of biological activity and chromatography. Furthermore, when H14CO3− was used as a substrate, the radioactive product was shown to be 14C-desthiobiotin labeled exclusively in the ureido carbon. PMID:4923070

  4. Non-standard amino acid recognition by Escherichia coli leucyl-tRNA synthetase

    NASA Technical Reports Server (NTRS)

    Martinis, S. A.; Fox, G. E.

    1997-01-01

    Recombinant E. coli leucyl-tRNA synthetase was screened for amino acid-dependent pyrophosphate exchange activity using noncognate aliphatic amino acids including norvaline, homocysteine, norleucine, methionine, and homoserine. [32P]-labeled reaction products were separated by thin layer chromatography using a novel solvent system and then quantified by phosphorimaging. Norvaline which differs from leucine by only one methyl group stimulated pyrophosphate exchange activity as did both homocysteine and norleucine to a lesser extent. The KM parameters for leucine and norvaline were measured to be 10 micromoles and 1.5 mM, respectively. Experiments are in progress to determine if norvaline is transferred to tRNA(Leu) and/or edited by a pre- or post-transfer mechanism.

  5. Purification, Characterization, and Expression of Multiple Glutamine Synthetases from Prevotella ruminicola 23

    PubMed Central

    Kim, Jong Nam; Cann, Isaac K. O.

    2012-01-01

    The Prevotella ruminicola 23 genome encodes three different glutamine synthetase (GS) enzymes: glutamine synthetase I (GSI) (ORF02151), GSIII-1 (ORF01459), and GSIII-2 (ORF02034). GSI, GSIII-1, and GSIII-2 have each been heterologously expressed in and purified from Escherichia coli. The subunit molecular mass of GSI was 56 kDa, while GSIII-1 and GSIII-2 were both 83 kDa. Optimal conditions for γ-glutamyl transferase activity were found to be 35°C at pH 5.6 with 0.25 mM Mn2+ ions (GSI) or 37°C at pH 6.0 (GSIII-1 and GSIII-2) with 0.50 to 1.00 mM Mn2+ ions. GSIII biosynthetic activity was found to be optimal at 50 to 60°C and pH 6.8 to 7.0 with 10 mM Mn2+ ions, while GSI displayed no GS biosynthetic activity. Kinetic analysis revealed Km values for glutamate and ammonium as well as for hydrolysis of ATP to be 8.58, 0.48, and 1.91 mM, respectively, for GSIII-1 and 1.72, 0.43, and 2.65 mM, respectively, for GSIII-2. A quantitative reverse transcriptase PCR assay (qRT-PCR) revealed GSIII-2 to be significantly induced by high concentrations of ammonia, and this corresponded with increases in measured GS activity. Collectively, these results show that both GSIII enzymes in P. ruminicola 23 are functional and indicate that GSIII-2, flanked by GOGAT (gltB and gltD genes), plays an important role in the acquisition and metabolism of ammonia, particularly under nonlimiting ammonia growth conditions. PMID:22020637

  6. Unique regulatory properties of the UDP-glucose:. beta. -1,4-glucan synthetase of Acetobacter xylinum. [Acetobacter xylinum

    SciTech Connect

    Benziman, M.; Aloni, Y.; Delmer, D.P.

    1983-01-01

    Conditions have been found for an extremely efficient transfer of glucose from UDP-glucose to a cellulosic ..beta..-1,4-glucan product, using enzyme preparations derived from cells of Acetobacter xylinum. Membrane fractions obtained by rupturing cells in the presence of 20% (w/v) polyethylene glycol-4000 (PEG-4000) exhibited UDP-glucose:..beta..-1,4-glucan synthetase activity 3- to 10-fold higher than those previously reported. Enzyme prepared in this fashion also shows a further marked activation by GTP. The activation (apparent K/sub alpha/ = 35 ..mu..M) is quite specific for GTP. A variety of other nucleotides and nucleotide derivatives had no effect on activity. Guanosine-5'-(lambda-thio)triphosphate, an analog of GTP, is even more efficient than GTP (K/sub alpha/ = 17 ..mu..M). Enzyme prepared in the absence of PEG-4000 does not respond to GTP because it lacks a protein factor essential for GTP activation. PEG-4000 promotes the interaction of the protein factor with the enzyme. The factor itself is devoid of synthetase activity and does not stimulate activity of the enzyme in the absence of GTP. Under optimal conditions, in the presence of GTP, factor, and PEG-4000, initial rates of enzyme activity that are 200 times higher than those previously reported can be achieved. Such rates exceed 40% of the in vivo rate of cellulose synthesis from glucose. 26 references, 3 figures, 3 tables.

  7. Nitric oxide (NO), citrulline-NO cycle enzymes, glutamine synthetase, and oxidative status in kainic acid-mediated excitotoxicity in rat brain.

    PubMed

    Swamy, Mummedy; Sirajudeen, Kuttulebbai N S; Chandran, Govindasamy

    2009-01-01

    Neuronal excitation, involving the excitatory glutamate receptors, is recognized as an important underlying mechanism in neurodegenerative disorders. To understand their role in excitotoxicity, the nitric oxide synthase (NOS), argininosuccinate synthetase (AS), argininosuccinate lyase (AL), glutamine synthetase (GS), and arginase activities, along with the concentration of nitrate/nitrite, thiobarbituric acid-reactive substances (TBARS), and total antioxidant status (TAS), were estimated in the cerebral cortex, cerebellum, and brain stem of rats subjected to kainic acid-mediated excitotoxicity. The results of this study clearly demonstrated the increased production of NO by increased activity of NOS. The increased activities of AS and AL suggest the increased and effective recycling of citrulline to arginine in excitotoxicity, making NO production more effective and contributing to its toxic effects. The decreased activity of GS may favor the prolonged availability of glutamic acid, causing excitotoxicity, leading to neuronal damage. The increased formation of TBARS and decreased TAS indicate the presence of oxidative stress in excitotoxicity. PMID:19793024

  8. Engineering polyketide synthases and nonribosomal peptide synthetases

    PubMed Central

    Williams, Gavin

    2014-01-01

    Naturally occurring polyketides and non-ribosomal peptides with broad and potent biological activities continue to inspire the discovery of new and improved analogs. The biosynthetic apparatus responsible for the construction of these natural products has been the target of intensive protein engineering efforts. Traditionally, engineering has focused on substituting individual enzymatic domains or entire modules with those of different building block specificity, or by deleting various enzymatic functions, in an attempt to generate analogs. This review highlights strategies based on site-directed mutagenesis of substrate binding pockets, semi-rational mutagenesis, and whole-gene random mutagenesis to engineer the substrate specificity, activity, and protein interactions of polyketide and non-ribosomal peptide biosynthetic machinery. PMID:23838175

  9. Response of transgenic poplar overexpressing cytosolic glutamine synthetase to phosphinothricin.

    PubMed

    Pascual, María Belén; Jing, Zhong Ping; Kirby, Edward G; Cánovas, Francisco M; Gallardo, Fernando

    2008-01-01

    Glutamine synthetase (GS) is the main enzyme involved in ammonia assimilation in plants and is the target of phosphinothricin (PPT), an herbicide commonly used for weed control in agriculture. As a result of the inhibition of GS, PPT also blocks photorespiration, resulting in the depletion of leaf amino acid pools leading to the plant death. Hybrid transgenic poplar (Populus tremula x P. alba INRA clone 7171-B4) overexpressing cytosolic GS is characterized by enhanced vegetative growth [Gallardo, F., Fu, J., Cantón, F.R., García-Gutiérrez, A., Cánovas, F.M., Kirby, E.G., 1999. Expression of a conifer glutamine synthetase gene in transgenic poplar. Planta 210, 19-26; Fu, J., Sampalo, R., Gallardo, F., Cánovas, F.M., Kirby, E.G., 2003. Assembly of a cytosolic pine glutamine synthetase holoenzyme in leaves of transgenic poplar leads to enhanced vegetative growth in young plants. Plant Cell Environ. 26, 411-418; Jing, Z.P., Gallardo, F., Pascual, M.B., Sampalo, R., Romero, J., Torres de Navarra, A., Cánovas, F.M., 2004. Improved growth in a field trial of transgenic hybrid poplar overexpressing glutamine synthetase. New Phytol. 164, 137-145], increased photosynthetic and photorespiratory capacities [El-Khatib, R.T., Hamerlynck, E.P., Gallardo, F., Kirby, E.G., 2004. Transgenic poplar characterized by ectopic expression of a pine cytosolic glutamine synthetase gene exhibits enhanced tolerance to water stress. Tree Physiol. 24, 729-736], enhanced tolerance to water stress (El-Khatib et al., 2004), and enhanced nitrogen use efficiency [Man, H.-M., Boriel, R., El-Khatib, R.T., Kirby, E.G., 2005. Characterization of transgenic poplar with ectopic expression of pine cytosolic glutamine synthetase under conditions of varying nitrogen availability. New Phytol. 167, 31-39]. In vitro plantlets of GS transgenic poplar exhibited enhanced resistance to PPT when compared with non-transgenic controls. After 30 days exposure to PPT at an equivalent dose of 275 g ha(-1), growth

  10. Methods and compositions for the production of orthogonal tRNA-aminoacyl-tRNA synthetase pairs

    DOEpatents

    Schultz, Peter G.; Wang, Lei; Anderson, John Christopher; Chin, Jason W.; Liu, David R.; Magliery, Thomas J.; Meggers, Eric L.; Mehl, Ryan Aaron; Pastrnak, Miro; Santoro, Stephen William; Zhang, Zhiwen

    2011-09-06

    This invention provides compositions and methods for generating components of protein biosynthetic machinery including orthogonal tRNAs, orthogonal aminoacyl-tRNA synthetases, and orthogonal pairs of tRNAs/synthetases. Methods for identifying orthogonal pairs are also provided. These components can be used to incorporate unnatural amino acids into proteins in vivo.

  11. Methods and composition for the production of orthogonal tRNA-aminoacyltRNA synthetase pairs

    DOEpatents

    Schultz, Peter G.; Wang, Lei; Anderson, John Christopher; Chin, Jason; Liu, David R.; Magliery, Thomas J.; Meggers, Eric L.; Mehl, Ryan Aaron; Pastrnak, Miro; Santoro, Steven William; Zhang, Zhiwen

    2012-05-22

    This invention provides compositions and methods for generating components of protein biosynthetic machinery including orthogonal tRNAs, orthogonal aminoacyl-tRNA synthetases, and orthogonal pairs of tRNAs/synthetases. Methods for identifying orthogonal pairs are also provided. These components can be used to incorporate unnatural amino acids into proteins in vivo.

  12. Methods and composition for the production of orthogonal tRNA-aminoacyltRNA synthetase pairs

    DOEpatents

    Schultz, Peter G.; Wang, Lei; Anderson, John Christopher; Chin, Jason; Liu, David R.; Magliery, Thomas J.; Meggers, Eric L.; Mehl, Ryan Aaron; Pastrnak, Miro; Santoro, Steven William; Zhang, Zhiwen

    2008-04-08

    This invention provides compositions and methods for generating components of protein biosynthetic machinery including orthogonal tRNAs, orthogonal aminoacyl-tRNA synthetases, and orthogonal pairs of tRNAs/synthetases. Methods for identifying orthogonal pairs are also provided. These components can be used to incorporate unnatural amino acids into proteins in vivo.

  13. Methods and composition for the production of orthogonal tRNA-aminoacyltRNA synthetase pairs

    DOEpatents

    Schultz, Peter G.; Wang, Lei; Anderson, John Christopher; Chin, Jason; Liu, David R.; Magliery, Thomas J.; Meggers, Eric L.; Mehl, Ryan Aaron; Pastrnak, Miro; Santoro, Stephen William; Zhang, Zhiwen

    2010-05-11

    This invention provides compositions and methods for generating components of protein biosynthetic machinery including orthogonal tRNAs, orthogonal aminoacyl-tRNA synthetases, and orthogonal pairs of tRNAs/synthetases. Methods for identifying orthogonal pairs are also provided. These components can be used to incorporate unnatural amino acids into proteins in vivo.

  14. Inhibition of Long Chain Fatty Acyl-CoA Synthetase (ACSL) and Ischemia Reperfusion Injury

    PubMed Central

    Prior, Allan M.; Zhang, Man; Blakeman, Nina; Datta, Palika; Pham, Hung; Young, Lindon H.; Weis, Margaret T.; Hua, Duy H.

    2014-01-01

    Various triacsin C analogs, containing different alkenyl chains and carboxylic acid bioisoteres including 4-aminobenzoic acid, isothiazolidine dioxide, hydroxylamine, hydroxytriazene, and oxadiazolidine dione, were synthesized and their inhibitions of long chain fatty acyl-CoA synthetase (ACSL) were examined. Two methods, a cell-based assay of ACSL activity and an in situ [14C]-palmitate incorporation into extractable lipids were used to study the inhibition. Using an in vivo leukocyte recruitment inhibition protocol, the translocation of one or more cell adhesion molecules from the cytoplasm to the plasma membrane on either the endothelium or leukocyte or both was inhibited by inhibitors 1, 9, and triacsin C. The results suggest that inhibition of ACSL may attenuate the vascular inflammatory component associated with ischemia reperfusion injury and lead to a decrease of infarct expansion. PMID:24480468

  15. Plant growth is influenced by glutamine synthetase-catalyzed nitrogen metabolism

    SciTech Connect

    Langston-Unkefer, P.J.

    1991-06-11

    Ammonia assimilation has been implicated as participating in regulation of nitrogen fixation in free-living bacteria. In fact, these simple organisms utilize an integrated regulation of carbon and nitrogen metabolism; we except to observe an integration of nitrogen and carbon fixation in plants; how could these complex systems grow efficiently and compete in the ecosystem without coordinating these two crucial activities We have been investigating the role of ammonia assimilation regulating the complex symbiotic nitrogen fixation of legumes. Just as is observed in the simple bacterial systems, perturbation of ammonia assimilation in legumes results in increased overall nitrogen fixation. The perturbed plants have increased growth and total nitrogen fixation capability. Because we have targeted the first enyzme in ammonia assimilation, glutamine synthetase, this provides a marker that could be used to assist selection or screening for increased biomass yield. 45 refs., 4 tabs.

  16. Fluorine-19 nuclear magnetic resonance and biochemical characterization of fluorotyrosine-labeled-thymidylate-synthetase

    NASA Astrophysics Data System (ADS)

    Rosson, Dan; Lewis, Charles A.; Ellis, Paul D.; Dunlap, R. Bruce

    1994-03-01

    Fluorotyrosine has been incorporated into thymidylate synthetase from Lactobacillus casei by growth of the bacterium in media containing 3-fluorotyrosine. The enzyme exhibited a specific activity 70% of that of the normal enzyme and formed a covalent binary complex with pyrimidine nucleotides, as well as a covalent ternary complex with 5-fluorodeoxyuridylate and 5,10-methylenetetrahydrofolate. 19F nuclear magnetic resonance spectroscopy has been used to follow the formation of these complexes. 5-Fluorodeoxyuridylate, dUMP, dTMP and dCMP produced identical conformational changes in the enzyme as monitored by the fluorotyrosyl resonances. Ternary complex formation of the fluorotyrosine-containing enzyme with 5-fluorodeoxyuridylate and 5,10-methylenetetrahydrofolate resulted in further spectral changes.

  17. Design, Synthesis and Biological Evaluation of Trypanosoma brucei Trypanothione Synthetase Inhibitors

    PubMed Central

    Spinks, Daniel; Torrie, Leah S; Thompson, Stephen; Harrison, Justin R; Frearson, Julie A; Read, Kevin D; Fairlamb, Alan H; Wyatt, Paul G; Gilbert, Ian H

    2012-01-01

    Trypanothione synthetase (TryS) is essential for the survival of the protozoan parasite Trypanosoma brucei, which causes human African trypanosomiasis. It is one of only a handful of chemically validated targets for T. brucei in vivo. To identify novel inhibitors of TbTryS we screened our in-house diverse compound library that contains 62 000 compounds. This resulted in the identification of six novel hit series of TbTryS inhibitors. Herein we describe the SAR exploration of these hit series, which gave rise to one common series with potency against the enzyme target. Cellular studies on these inhibitors confirmed on-target activity, and the compounds have proven to be very useful tools for further study of the trypanothione pathway in kinetoplastids. PMID:22162199

  18. Bimodular Peptide Synthetase SidE Produces Fumarylalanine in the Human Pathogen Aspergillus fumigatus

    PubMed Central

    Steinchen, Wieland; Lackner, Gerald; Yasmin, Sabiha; Schrettl, Markus; Dahse, Hans-Martin

    2013-01-01

    The filamentous mold Aspergillus fumigatus causes invasive aspergillosis, a potentially life-threatening infectious disease, in humans. The sidE gene encodes a bimodular peptide synthetase and was shown previously to be strongly upregulated during initiation of murine lung infection. In this study, we characterized the two adenylation domains of SidE with the ATP-[32P]pyrophosphate exchange assay in vitro, which identified fumarate and l-alanine, respectively, as the preferred substrates. Using full-length holo-SidE, fumarylalanine (FA) formation was observed in vitro. Furthermore, FA was identified in A. fumigatus culture supernatants under inducing conditions, unless sidE was genetically inactivated. As FA is structurally related to established pharmaceutical products exerting immunomodulatory activity, this work may contribute to our understanding of the virulence of A. fumigatus. PMID:23974138

  19. A Nonribosomal Peptide Synthetase-derived Iron(III) Complex from the Pathogenic Fungus Aspergillus fumigatus

    PubMed Central

    Yin, Wen-Bing; Baccile, Joshua A.; Bok, Jin Woo; Chen, Yiming; Keller, Nancy P.; Schroeder, Frank C.

    2013-01-01

    Small molecules (SMs) play central roles as virulence factors of pathogenic fungi and bacteria; however, genomic analyses suggest that the majority of microbial SMs have remained uncharacterized. Based on microarray analysis followed by comparative metabolomics of overexpression/knockout mutants we identified a tryptophan-derived iron(III)-complex, hexadehydroastechrome (HAS), as the major product of the cryptic has non-ribosomal peptide synthetase (NRPS) gene cluster in the human pathogen Aspergillus fumigatus. Activation of the has cluster created a highly virulent A. fumigatus strain that increased mortality of infected mice. Comparative metabolomics of different mutant strains allowed to propose a pathway for HAS biosynthesis and further revealed cross-talk with another NRPS pathway producing the anti-cancer fumitremorgins. PMID:23360537

  20. Glutamine Triggers Acetylation-Dependent Degradation of Glutamine Synthetase via the Thalidomide Receptor Cereblon.

    PubMed

    Nguyen, T Van; Lee, J Eugene; Sweredoski, Michael J; Yang, Seung-Joo; Jeon, Seung-Je; Harrison, Joseph S; Yim, Jung-Hyuk; Lee, Sang Ghil; Handa, Hiroshi; Kuhlman, Brian; Jeong, Ji-Seon; Reitsma, Justin M; Park, Chul-Seung; Hess, Sonja; Deshaies, Raymond J

    2016-03-17

    Cereblon (CRBN), a substrate receptor for the cullin-RING ubiquitin ligase 4 (CRL4) complex, is a direct protein target for thalidomide teratogenicity and antitumor activity of immunomodulatory drugs (IMiDs). Here we report that glutamine synthetase (GS) is an endogenous substrate of CRL4(CRBN). Upon exposing cells to high glutamine concentration, GS is acetylated at lysines 11 and 14, yielding a degron that is necessary and sufficient for binding and ubiquitylation by CRL4(CRBN) and degradation by the proteasome. Binding of acetylated degron peptides to CRBN depends on an intact thalidomide-binding pocket but is not competitive with IMiDs. These findings reveal a feedback loop involving CRL4(CRBN) that adjusts GS protein levels in response to glutamine and uncover a new function for lysine acetylation. PMID:26990986

  1. Site-specific cleavage of acetoacetyl-CoA synthetase by legumain.

    PubMed

    Hasegawa, Shinya; Inoue, Daiki; Yamasaki, Masahiro; Li, Chuan; Imai, Masahiko; Takahashi, Noriko; Fukui, Tetsuya

    2016-06-01

    Acetoacetyl-CoA synthetase (AACS) is a ketone body-utilizing enzyme and is responsible for the synthesis of cholesterol and fatty acids. We have previously shown that AACS is cleaved by legumain, a lysosomal asparaginyl endopeptidase. In this study, we attempted to determine the cleavage site of AACS. Mutagenesis analysis of AACS revealed that Asn547 is the specific cleavage site of AACS in mouse livers. The cleaved form of AACS (1-547) lost the ability to convert acetoacetate to acetoacetyl-CoA. Moreover, hydrodynamics-based gene transduction showed that overexpression of AACS (1-547) increases the protein expression of caveolin-1, the principal component of the caveolae. These results suggest that cleavage of AACS by legumain is critical for the regulation of enzymatic activity and results in gain-of-function changes. PMID:27129883

  2. Crystal structure of the large fragment of Thermus aquaticus DNA polymerase I at 2.5-A resolution: structural basis for thermostability.

    PubMed

    Korolev, S; Nayal, M; Barnes, W M; Di Cera, E; Waksman, G

    1995-09-26

    The crystal structure of the large fragment of the Thermus aquaticus DNA polymerase (Klentaq1), determined at 2.5-A resolution, demonstrates a compact two-domain architecture. The C-terminal domain is identical in fold to the equivalent region of the Klenow fragment of Escherichia coli DNA polymerase I (Klenow pol I). Although the N-terminal domain of Klentaq1 differs greatly in sequence from its counterpart in Klenow pol I, it has clearly evolved from a common ancestor. The structure of Klentaq1 reveals the strategy utilized by this protein to maintain activity at high temperatures and provides the structural basis for future improvements of the enzyme. PMID:7568114

  3. The evolution of Class II Aminoacyl-tRNA synthetases and the first code.

    PubMed

    Smith, Temple F; Hartman, Hyman

    2015-11-30

    Class II Aminoacyl-tRNA synthetases are a set of very ancient multi domain proteins. The evolution of the catalytic domain of Class II synthetases can be reconstructed from three peptidyl-hairpins. Further evolution from this primordial catalytic core leads to a split of the Class II synthetases into two divisions potentially associated with the operational code. The earliest form of this code likely coded predominantly Glycine (Gly), Proline (Pro), Alanine (Ala) and "Lysine"/Aspartic acid (Lys/Asp). There is a paradox in these synthetases beginning with a hairpin structure before the Genetic Code existed. A resolution is found in the suggestion that the primordial Aminoacyl synthetases formed in a transition from a Thioester world to a Phosphate ester world. PMID:26472323

  4. Distinctive properties and expression profiles of glutamine synthetase from a plant symbiotic fungus.

    PubMed Central

    Montanini, Barbara; Betti, Marco; Márquez, Antonio J; Balestrini, Raffaella; Bonfante, Paola; Ottonello, Simone

    2003-01-01

    The nucleotide sequences reported in this paper have been submitted to the GenBank(R)/EBI Nucleotide Sequence Databases with accession numbers AF462037 (glutamine synthetase) and AF462032 (glutamate synthase). Nitrogen retrieval and assimilation by symbiotic ectomycorrhizal fungi is thought to play a central role in the mutualistic interaction between these organisms and their plant hosts. Here we report on the molecular characterization of the key N-assimilation enzyme glutamine synthetase from the mycorrhizal ascomycete Tuber borchii (TbGS). TbGS displayed a strong positive co-operativity ( n =1.7+/-0.29) and an unusually high S(0.5) value (54+/-16 mM; S(0.5) is the substrate concentration value at which v =(1/2) V (max)) for glutamate, and a correspondingly low sensitivity towards inhibition by the glutamate analogue herbicide phosphinothricin. The TbGS mRNA, which is encoded by a single-copy gene in the Tuber genome, was up-regulated in N-starved mycelia and returned to basal levels upon resupplementation of various forms of N, the most effective of which was nitrate. Both responses were accompanied by parallel variations of TbGS protein amount and glutamine synthetase activity, thus indicating that TbGS levels are primarily controlled at the pre-translational level. As revealed by a comparative analysis of the TbGS mRNA and of the mRNAs for the metabolically related enzymes glutamate dehydrogenase and glutamate synthase, TbGS is not only the sole messenger that positively responds to N starvation, but also the most abundant under N-limiting conditions. A similar, but even more discriminating expression pattern, with practically undetectable glutamate dehydrogenase mRNA levels, was observed in fruitbodies. The TbGS mRNA was also found to be expressed in symbiosis-engaged hyphae, with distinctively higher hybridization signals in hyphae that were penetrating among and within root cells. PMID:12683951

  5. Functional asymmetry in the lysyl-tRNA synthetase explored by molecular dynamics, free energy calculations and experiment

    PubMed Central

    Hughes, Samantha J; Tanner, Julian A; Hindley, Alison D; Miller, Andrew D; Gould, Ian R

    2003-01-01

    Background Charging of transfer-RNA with cognate amino acid is accomplished by the aminoacyl-tRNA synthetases, and proceeds through an aminoacyl adenylate intermediate. The lysyl-tRNA synthetase has evolved an active site that specifically binds lysine and ATP. Previous molecular dynamics simulations of the heat-inducible Escherichia coli lysyl-tRNA synthetase, LysU, have revealed differences in the binding of ATP and aspects of asymmetry between the nominally equivalent active sites of this dimeric enzyme. The possibility that this asymmetry results in different binding affinities for the ligands is addressed here by a parallel computational and biochemical study. Results Biochemical experiments employing isothermal calorimetry, steady-state fluorescence and circular dichroism are used to determine the order and stoichiometries of the lysine and nucleotide binding events, and the associated thermodynamic parameters. An ordered mechanism of substrate addition is found, with lysine having to bind prior to the nucleotide in a magnesium dependent process. Two lysines are found to bind per dimer, and trigger a large conformational change. Subsequent nucleotide binding causes little structural rearrangement and crucially only occurs at a single catalytic site, in accord with the simulations. Molecular dynamics based free energy calculations of the ATP binding process are used to determine the binding affinities of each site. Significant differences in ATP binding affinities are observed, with only one active site capable of realizing the experimental binding free energy. Half-of-the-sites models in which the nucleotide is only present at one active site achieve their full binding potential irrespective of the subunit choice. This strongly suggests the involvement of an anti-cooperative mechanism. Pathways for relaying information between the two active sites are proposed. Conclusions The asymmetry uncovered here appears to be a common feature of oligomeric aminoacyl

  6. An Ancestral Tryptophanyl-tRNA Synthetase Precursor Achieves High Catalytic Rate Enhancement without Ordered Ground-State Tertiary Structures.

    PubMed

    Sapienza, Paul J; Li, Li; Williams, Tishan; Lee, Andrew L; Carter, Charles W

    2016-06-17

    Urzymes-short, active core modules derived from enzyme superfamilies-prepared from the two aminoacyl-tRNA synthetase (aaRS) classes contain only the modules shared by all related family members. They have been described as models for ancestral forms. Understanding them currently depends on inferences drawn from the crystal structures of the full-length enzymes. As aaRS Urzymes lack much of the mass of modern aaRS's, retaining only a small portion of the hydrophobic cores of the full-length enzymes, it is desirable to characterize their structures. We report preliminary characterization of (15)N tryptophanyl-tRNA synthetase Urzyme by heteronuclear single quantum coherence (HSQC) NMR spectroscopy supplemented by circular dichroism, thermal melting, and induced fluorescence of bound dye. The limited dispersion of (1)H chemical shifts (0.5 ppm) is inconsistent with a narrow ensemble of well-packed structures in either free or substrate-bound forms, although the number of resonances from the bound state increases, indicating a modest, ligand-dependent gain in structure. Circular dichroism spectroscopy shows the presence of helices and evidence of cold denaturation, and all ligation states induce Sypro Orange fluorescence at ambient temperatures. Although the term "molten globule" is difficult to define precisely, these characteristics are consistent with most such definitions. Active-site titration shows that a majority of molecules retain ∼60% of the transition state stabilization free energy observed in modern synthetases. In contrast to the conventional view that enzymes require stable tertiary structures, we conclude that a highly flexible ground-state ensemble can nevertheless bind tightly to the transition state for amino acid activation. PMID:27008438

  7. MS_RHII-RSD, a Dual-Function RNase HII-(p)ppGpp Synthetase from Mycobacterium smegmatis

    PubMed Central

    Murdeshwar, Maya S.

    2012-01-01

    In the noninfectious soil saprophyte Mycobacterium smegmatis, intracellular levels of the stress alarmones guanosine tetraphosphate and guanosine pentaphosphate, together termed (p)ppGpp, are regulated by the enzyme RelMsm. This enzyme consists of a single, bifunctional polypeptide chain that is capable of both synthesizing and hydrolyzing (p)ppGpp. The relMsm knockout strain of M. smegmatis (ΔrelMsm) is expected to show a (p)ppGpp null [(p)ppGpp0] phenotype. Contrary to this expectation, the strain is capable of synthesizing (p)ppGpp in vivo. In this study, we identify and functionally characterize the open reading frame (ORF), MSMEG_5849, that encodes a second functional (p)ppGpp synthetase in M. smegmatis. In addition to (p)ppGpp synthesis, the 567-amino-acid-long protein encoded by this gene is capable of hydrolyzing RNA·DNA hybrids and bears similarity to the conventional RNase HII enzymes. We have classified this protein as actRelMsm in accordance with the recent nomenclature proposed and have named it MS_RHII-RSD, indicating the two enzymatic activities present [RHII, RNase HII domain, originally identified as domain of unknown function 429 (DUF429), and RSD, RelA_SpoT nucleotidyl transferase domain, the SYNTH domain responsible for (p)ppGpp synthesis activity]. MS_RHII-RSD is expressed and is constitutively active in vivo and behaves like a monofunctional (p)ppGpp synthetase in vitro. The occurrence of the RNase HII and (p)ppGpp synthetase domains together on the same polypeptide chain is suggestive of an in vivo role for this novel protein as a link connecting the essential life processes of DNA replication, repair, and transcription to the highly conserved stress survival pathway, the stringent response. PMID:22636779

  8. Novel Insights into Regulation of Asparagine Synthetase in Conifers

    PubMed Central

    Canales, Javier; Rueda-López, Marina; Craven-Bartle, Blanca; Avila, Concepción; Cánovas, Francisco M.

    2012-01-01

    Asparagine, a key amino acid for nitrogen storage and transport in plants, is synthesized via the ATP-dependent reaction catalyzed by the enzyme asparagine synthetase (AS; EC 6.3.5.4). In this work, we present the molecular analysis of two full-length cDNAs that encode asparagine synthetase in maritime pine (Pinus pinaster Ait.), PpAS1, and PpAS2. Phylogenetic analyses of the deduced amino acid sequences revealed that both genes are class II AS, suggesting an ancient origin of these genes in plants. A comparative study of PpAS1 and PpAS2 gene expression profiles showed that PpAS1 gene is highly regulated by developmental and environmental factors, while PpAS2 is expressed constitutively. To determine the molecular mechanisms underpinning the differential expression of PpAS1, the promoter region of the gene was isolated and putative binding sites for MYB transcription factors were identified. Gel mobility shift assays showed that a MYB protein from Pinus taeda (PtMYB1) was able to interact with the promoter region of PpAS1. Furthermore, transient expression analyses in pine cells revealed a negative effect of PtMYB1 on PpAS1 expression. The potential role of MYB factors in the transcriptional regulation of PpAS1 in vascular cells is discussed. PMID:22654888

  9. Holocarboxylase synthetase deficiency pre and post newborn screening

    PubMed Central

    Donti, Taraka R.; Blackburn, Patrick R.; Atwal, Paldeep S.

    2016-01-01

    Holocarboxylase synthetase deficiency is an autosomal recessive disorder of biotin metabolism resulting in multiple carboxylase deficiency. The typical presentation described in the medical literature is of neonatal onset within hours to weeks of birth with emesis, hypotonia, lethargy, seizures, metabolic ketolactic acidosis, hyperammonemia, developmental delay, skin rash and alopecia. The condition is screened for by newborn screening (NBS) tandem mass spectroscopy by elevated hydroxypentanoylcarnitine on dried blood spots. Urine organic acid profile may demonstrate elevated lactic, 3-OH isovaleric, 3-OH propionic, 3-MCC, methylcitric acids, and tiglylglycine consistent with loss of function of the above carboxylases. Here we describe a cohort of patients, 2 diagnosed pre-NBS and 3 post-NBS with broad differences in initial presentation and phenotype. In addition, prior to the advent of NBS, there are isolated reports of late-onset holocarboxylase synthetase deficiency in the medical literature, which describe patients diagnosed between 1 and 8 years of life, however to our knowledge there are no reports of late-onset HCLS being missed by NBS. Also we report two cases, each with novel pathogenic variants HCLS, diagnosed at age 3 years and 21 months respectively. The first patient had a normal newborn screen whilst the second had an abnormal newborn screen but was misdiagnosed as 3-methylcrotonylcarboxylase (3-MCC) deficiency and subsequently lost to follow-up until they presented again with severe metabolic acidosis. PMID:27114915

  10. Holocarboxylase synthetase deficiency pre and post newborn screening.

    PubMed

    Donti, Taraka R; Blackburn, Patrick R; Atwal, Paldeep S

    2016-06-01

    Holocarboxylase synthetase deficiency is an autosomal recessive disorder of biotin metabolism resulting in multiple carboxylase deficiency. The typical presentation described in the medical literature is of neonatal onset within hours to weeks of birth with emesis, hypotonia, lethargy, seizures, metabolic ketolactic acidosis, hyperammonemia, developmental delay, skin rash and alopecia. The condition is screened for by newborn screening (NBS) tandem mass spectroscopy by elevated hydroxypentanoylcarnitine on dried blood spots. Urine organic acid profile may demonstrate elevated lactic, 3-OH isovaleric, 3-OH propionic, 3-MCC, methylcitric acids, and tiglylglycine consistent with loss of function of the above carboxylases. Here we describe a cohort of patients, 2 diagnosed pre-NBS and 3 post-NBS with broad differences in initial presentation and phenotype. In addition, prior to the advent of NBS, there are isolated reports of late-onset holocarboxylase synthetase deficiency in the medical literature, which describe patients diagnosed between 1 and 8 years of life, however to our knowledge there are no reports of late-onset HCLS being missed by NBS. Also we report two cases, each with novel pathogenic variants HCLS, diagnosed at age 3 years and 21 months respectively. The first patient had a normal newborn screen whilst the second had an abnormal newborn screen but was misdiagnosed as 3-methylcrotonylcarboxylase (3-MCC) deficiency and subsequently lost to follow-up until they presented again with severe metabolic acidosis. PMID:27114915

  11. Structural basis of improved second-generation 3-nitro-tyrosine tRNA synthetases.

    PubMed

    Cooley, Richard B; Feldman, Jessica L; Driggers, Camden M; Bundy, Taylor A; Stokes, Audrey L; Karplus, P Andrew; Mehl, Ryan A

    2014-04-01

    Genetic code expansion has provided the ability to site-specifically incorporate a multitude of noncanonical amino acids (ncAAs) into proteins for a wide variety of applications, but low ncAA incorporation efficiency can hamper the utility of this powerful technology. When investigating proteins containing the post-translational modification 3-nitro-tyrosine (nitroTyr), we developed second-generation amino-acyl tRNA synthetases (RS) that incorporate nitroTyr at efficiencies roughly an order of magnitude greater than those previously reported and that advanced our ability to elucidate the role of elevated cellular nitroTyr levels in human disease (e.g., Franco, M. et al. Proc. Natl. Acad. Sci. U.S.A 2013 , 110 , E1102 ). Here, we explore the origins of the improvement achieved in these second-generation RSs. Crystal structures of the most efficient of these synthetases reveal the molecular basis for the enhanced efficiencies observed in the second-generation nitroTyr-RSs. Although Tyr is not detectably incorporated into proteins when expression media is supplemented with 1 mM nitroTyr, a major difference between the first- and second-generation RSs is that the second-generation RSs have an active site more compatible with Tyr binding. This feature of the second-generation nitroTyr-RSs appears to be the result of using less stringent criteria when selecting from a library of mutants. The observation that a different selection strategy performed on the same library of mutants produced nitroTyr-RSs with dramatically improved efficiencies suggests the optimization of established selection protocols could lead to notable improvements in ncAA-RS efficiencies and thus the overall utility of this technology. PMID:24611875

  12. Recombinant expression, purification, and crystallization of the glutaminyl-tRNA synthetase from Toxoplasma gondii.

    PubMed

    van Rooyen, Jason M; Hakimi, Mohamed-Ali; Belrhali, Hassan

    2015-06-01

    Aminoacyl tRNA synthetases play a critical role in protein synthesis by providing precursor transfer-RNA molecules correctly charged with their cognate amino-acids. The essential nature of these enzymes make them attractive targets for designing new drugs against important pathogenic protozoans like Toxoplasma. Because no structural data currently exists for a protozoan glutaminyl-tRNA synthetase (QRS), an understanding of its potential as a drug target and its function in the assembly of the Toxoplasma multi-aminoacyl tRNA (MARS) complex is therefore lacking. Here we describe the optimization of expression and purification conditions that permitted the recovery and crystallization of both domains of the Toxoplasma QRS enzyme from a heterologous Escherichia coli expression system. Expression of full-length QRS was only achieved after the addition of an N-terminal histidine affinity tag and the isolated protein was active on both cellular and in vitro produced Toxoplasma tRNA. Taking advantage of the proteolytic susceptibility of QRS to cleavage into component domains, N-terminal glutathione S-transferase (GST) motif-containing domain fragments were isolated and crystallization conditions discovered. Isolation of the C-terminal catalytic domain was accomplished after subcloning the domain and optimizing expression conditions. Purified catalytic domain survived cryogenic storage and yielded large diffraction-quality crystals over-night after optimization of screening conditions. This work will form the basis of future structural studies into structural-functional relationships of both domains including potential targeted drug-design studies and investigations into the assembly of the Toxoplasma MARS complex. PMID:25736594

  13. A minimalist mitochondrial threonyl-tRNA synthetase exhibits tRNA-isoacceptor specificity during proofreading

    PubMed Central

    Zhou, Xiao-Long; Ruan, Zhi-Rong; Wang, Meng; Fang, Zhi-Peng; Wang, Yong; Chen, Yun; Liu, Ru-Juan; Eriani, Gilbert; Wang, En-Duo

    2014-01-01

    Yeast mitochondria contain a minimalist threonyl-tRNA synthetase (ThrRS) composed only of the catalytic core and tRNA binding domain but lacking the entire editing domain. Besides the usual tRNAThr2, some budding yeasts, such as Saccharomyces cerevisiae, also contain a non-canonical tRNAThr1 with an enlarged 8-nucleotide anticodon loop, reprograming the usual leucine CUN codons to threonine. This raises interesting questions about the aminoacylation fidelity of such ThrRSs and the possible contribution of the two tRNAThrs during editing. Here, we found that, despite the absence of the editing domain, S. cerevisiae mitochondrial ThrRS (ScmtThrRS) harbors a tRNA-dependent pre-transfer editing activity. Remarkably, only the usual tRNAThr2 stimulated pre-transfer editing, thus, establishing the first example of a synthetase exhibiting tRNA-isoacceptor specificity during pre-transfer editing. We also showed that the failure of tRNAThr1 to stimulate tRNA-dependent pre-transfer editing was due to the lack of an editing domain. Using assays of the complementation of a ScmtThrRS gene knockout strain, we showed that the catalytic core and tRNA binding domain of ScmtThrRS co-evolved to recognize the unusual tRNAThr1. In combination, the results provide insights into the tRNA-dependent editing process and suggest that tRNA-dependent pre-transfer editing takes place in the aminoacylation catalytic core. PMID:25414329

  14. A minimalist mitochondrial threonyl-tRNA synthetase exhibits tRNA-isoacceptor specificity during proofreading.

    PubMed

    Zhou, Xiao-Long; Ruan, Zhi-Rong; Wang, Meng; Fang, Zhi-Peng; Wang, Yong; Chen, Yun; Liu, Ru-Juan; Eriani, Gilbert; Wang, En-Duo

    2014-12-16

    Yeast mitochondria contain a minimalist threonyl-tRNA synthetase (ThrRS) composed only of the catalytic core and tRNA binding domain but lacking the entire editing domain. Besides the usual tRNA(Thr)2, some budding yeasts, such as Saccharomyces cerevisiae, also contain a non-canonical tRNA(Thr)1 with an enlarged 8-nucleotide anticodon loop, reprograming the usual leucine CUN codons to threonine. This raises interesting questions about the aminoacylation fidelity of such ThrRSs and the possible contribution of the two tRNA(Thr)s during editing. Here, we found that, despite the absence of the editing domain, S. cerevisiae mitochondrial ThrRS (ScmtThrRS) harbors a tRNA-dependent pre-transfer editing activity. Remarkably, only the usual tRNA(Thr)2 stimulated pre-transfer editing, thus, establishing the first example of a synthetase exhibiting tRNA-isoacceptor specificity during pre-transfer editing. We also showed that the failure of tRNA(Thr)1 to stimulate tRNA-dependent pre-transfer editing was due to the lack of an editing domain. Using assays of the complementation of a ScmtThrRS gene knockout strain, we showed that the catalytic core and tRNA binding domain of ScmtThrRS co-evolved to recognize the unusual tRNA(Thr)1. In combination, the results provide insights into the tRNA-dependent editing process and suggest that tRNA-dependent pre-transfer editing takes place in the aminoacylation catalytic core. PMID:25414329

  15. Functional connectivity between tRNA binding domains in glutaminyl-tRNA synthetase.

    PubMed

    Sherman, J M; Thomann, H U; Söll, D

    1996-03-15

    The structure of Escherichia coli glutaminyl-tRNA synthetase (GlnRS) in complex with tRNAGln and ATP has identified a number a sequence-specific protein-tRNA interactions. The contribution to glutamine identity has previously been determined for the nucleotides in tRNAGln. Here, we report the mutational analysis of residues in all three tRNA recognition domains of GlnRS, thus completing a survey of the major sequence-specific contacts between GlnRS and tRNAGln. Specifically, we analyzed the GlnRS determinants involved in recognition of the anticodon which is essential for glutamine identity and in the communication of anticodon recognition to the acceptor binding domain in GlnRS. A combined in vivo and in vitro approach has demonstrated that Arg341, which makes a single sequence-specific hydrogen bond with U35 in the anticodon of tRNAGln, is involved in initial RNA recognition and is an important positive determinant for this base in both cognate and non- cognate tRNA contexts. However, Arg341, as well as Arg402, which interacts with G36 in the anticodon, are negative determinants for non-cognate nucleotides at their respective positions. Analysis of acceptor-anticodon binding double mutants and of a mutation of Glu323 in the loop-strand-helix connectivity subdomain in GlnRS has further implicated this domain in the functional communication of anticodon recognition. The better than expected activity (anticooperativity) of these double mutants has led us to propose an "anticodon-independent" mechanism, in which the removal of certain synthetase interactions with the anticodon eliminates structural constraints, thus allowing the relaxed specificity mutants in the acceptor binding domain ot make more productive interactions. PMID:8601833

  16. Naturally Occurring Isoleucyl-tRNA Synthetase without tRNA-dependent Pre-transfer Editing*

    PubMed Central

    Cvetesic, Nevena; Dulic, Morana; Bilus, Mirna; Sostaric, Nikolina; Lenhard, Boris; Gruic-Sovulj, Ita

    2016-01-01

    Isoleucyl-tRNA synthetase (IleRS) is unusual among aminoacyl-tRNA synthetases in having a tRNA-dependent pre-transfer editing activity. Alongside the typical bacterial IleRS (such as Escherichia coli IleRS), some bacteria also have the enzymes (eukaryote-like) that cluster with eukaryotic IleRSs and exhibit low sensitivity to the antibiotic mupirocin. Our phylogenetic analysis suggests that the ileS1 and ileS2 genes of contemporary bacteria are the descendants of genes that might have arisen by an ancient duplication event before the separation of bacteria and archaea. We present the analysis of evolutionary constraints of the synthetic and editing reactions in eukaryotic/eukaryote-like IleRSs, which share a common origin but diverged through adaptation to different cell environments. The enzyme from the yeast cytosol exhibits tRNA-dependent pre-transfer editing analogous to E. coli IleRS. This argues for the presence of this proofreading in the common ancestor of both IleRS types and an ancient origin of the synthetic site-based quality control step. Yet surprisingly, the eukaryote-like enzyme from Streptomyces griseus IleRS lacks this capacity; at the same time, its synthetic site displays the 103-fold drop in sensitivity to antibiotic mupirocin relative to the yeast enzyme. The discovery that pre-transfer editing is optional in IleRSs lends support to the notion that the conserved post-transfer editing domain is the main checkpoint in these enzymes. We substantiated this by showing that under error-prone conditions S. griseus IleRS is able to rescue the growth of an E. coli lacking functional IleRS, providing the first evidence that tRNA-dependent pre-transfer editing in IleRS is not essential for cell viability. PMID:26921320

  17. Thermodynamic analysis reveals a temperature-dependent change in the catalytic mechanism of bacillus stearothermophilus tyrosyl-tRNA synthetase.

    PubMed

    Sharma, Gyanesh; First, Eric A

    2009-02-13

    Catalysis of tRNA(Tyr) aminoacylation by tyrosyl-tRNA synthetase can be divided into two steps. In the first step, tyrosine is activated by ATP to form the tyrosyl-adenylate intermediate. In the second step, the tyrosyl moiety is transferred to the 3' end of tRNA. To investigate the roles that enthalpic and entropic contributions play in catalysis by Bacillus stearothermophilus tyrosyl-tRNA synthetase (TyrRS), the temperature dependence for the activation of tyrosine and subsequent transfer to tRNA(Tyr) has been determined using single turnover kinetic methods. A van't Hoff plot for binding of ATP to the TyrRS.Tyr complex reveals three distinct regions. Particularly striking is the change occurring at 25 degrees C, where the values of DeltaH(0) and DeltaS(0) go from -144 kJ/mol and -438 J/mol K below 25 degrees C to +137.9 kJ/mol and +507 J/mol K above 25 degrees C. Nonlinear Eyring and van't Hoff plots are also observed for formation of the TyrRS.[Tyr-ATP](double dagger) and TyrRS.Tyr-AMP complexes. Comparing the van't Hoff plots for the binding of ATP to tyrosyl-tRNA synthetase in the absence and presence of saturating tyrosine concentrations indicates that the temperature-dependent changes in DeltaH(0) and DeltaS(0) for the binding of ATP only occur when tyrosine is bound to the enzyme. Previous investigations revealed a similar synergistic interaction between the tyrosine and ATP substrates when the "KMSKS" signature sequence is deleted or replaced by a nonfunctional sequence. We propose that the temperature-dependent changes in DeltaH(0) and DeltaS(0) are because of the KMSKS signature sequence being conformationally constrained and unable to disrupt this synergistic interaction below 25 degrees C. PMID:19098308

  18. Cloning and biochemical characterization of indole-3-acetic acid-amino acid synthetase PsGH3 from pea.

    PubMed

    Ostrowski, Maciej; Mierek-Adamska, Agnieszka; Porowińska, Dorota; Goc, Anna; Jakubowska, Anna

    2016-10-01

    Phytohormone conjugation is one of the mechanisms that maintains a proper hormonal homeostasis and that is necessary for the realization of physiological responses. Gretchen Hagen 3 (GH3) acyl acid amido synthetases convert indole-3-acetic acid (IAA) to IAA-amino acid conjugates by ATP-dependent reactions. IAA-aspartate (IAA-Asp) exists as a predominant amide conjugate of auxin in pea tissues and acts as an intermediate during IAA catabolism. Here we report a novel recombinant indole-3-acetic acid-amido synthetase in Pisum sativum. In silico analysis shows that amino acid sequence of PsGH3 has the highest homology to Medicago truncatula GH3.3. The recombinant His-tag-PsGH3 fusion protein has been obtained in E. coli cells and is a soluble monomeric polypeptide with molecular mass of 69.18 kDa. The PsGH3 was purified using Ni(2+)-affinity chromatography and native PAGE. Kinetic analysis indicates that the enzyme strongly prefers IAA and L-aspartate as substrates for conjugation revealing Km(ATP) = 0.49 mM, Km(L-Asp) = 2.2 mM, and Km(IAA) = 0.28 mM. Diadenosine pentaphosphate (Ap5A) competes with ATP for catalytic site and diminishes the PsGH3 affinity toward ATP approximately 1.11-fold indicating Ki = 8.5 μM. L-Tryptophan acts as an inhibitor of IAA-amido synthesizing activity by competition with L-aspartate. Inorganic pyrophosphatase (PPase) hydrolyzing pyrophosphate to two phosphate ions, potentiates IAA-Asp synthetase activity of PsGH3. Our results demonstrate that PsGH3 is a novel enzyme that is involved in auxin metabolism in pea seeds. PMID:27235647

  19. Evolution of the Glx-tRNA synthetase family: the glutaminyl enzyme as a case of horizontal gene transfer.

    PubMed Central

    Lamour, V; Quevillon, S; Diriong, S; N'Guyen, V C; Lipinski, M; Mirande, M

    1994-01-01

    An important step ensuring the fidelity in protein biosynthesis is the aminoacylation of tRNAs by aminoacyl-tRNA synthetases. The accuracy of this process rests on a family of 20 enzymes, one for each amino acid. One exception is the formation of Gln-tRNA(Gln) that can be accomplished by two different pathways: aminoacylation of tRNA(Gln) with Gln by glutaminyl-tRNA synthetase (GlnRS; EC 6.1.1.18) or transamidation of Glu from Glu-tRNA(Gln) mischarged by glutamyl-tRNA synthetase (GluRS; EC 6.1.1.17). The latter pathway is widespread among bacteria and organelles that, accordingly, lack GlnRS. However, some bacterial species, such as Escherichia coli, do possess a GlnRS activity, which is responsible for Gln-tRNA(Gln) formation. In the cytoplasm of eukaryotic cells, both GluRS and GlnRS activities can be detected. To gain more insight into the evolutionary relationship between GluRS and GlnRS enzyme species, we have now isolated and characterized a human cDNA encoding GlnRS. The deduced amino acid sequence shows a strong similarity with other known GlnRSs and with eukaryotic GluRSs. A molecular phylogenetic analysis was conducted on the 14 GlxRS (GluRS or GlnRS) sequences available to date. Our data suggest that bacterial GlnRS has a eukaryotic origin and was acquired by a mechanism of horizontal gene transfer. Images PMID:8078941

  20. Cardiolipin synthetase is involved in antagonistic interaction (reverse CAMP phenomenon) of Mycoplasma species with Staphylococcus aureus beta-hemolysis.

    PubMed

    Kornspan, Jonathan D; Rottem, Shlomo; Nir-Paz, Ran

    2014-05-01

    Mycoplasma hyorhinis has been implicated in a variety of swine diseases. However, little is known about the hemolytic capabilities of Mycoplasma species in general or M. hyorhinis in particular. In this study, we show that M. hyorhinis possesses beta-hemolytic activity which may be involved in the invasion process. M. hyorhinis also possesses antagonistic cooperativity (reverse CAMP phenomenon) with Staphylococcus aureus beta-hemolysis, resulting in the protection of erythrocytes from the beta-hemolytic activity of S. aureus (reverse CAMP). The reversed CAMP phenomenon has been attributed to phospholipase D (PLD) activity. In silico analysis of the M. hyorhinis genome revealed the absence of the pld gene but the presence of the cls gene encoding cardiolipin synthetase, which contains two PLD active domains. The transformation of Mycoplasma gallisepticum that has neither the cls gene nor the reverse CAMP phenomenon with the cls gene from M. hyorhinis resulted in the reverse CAMP phenomenon, suggesting for the first time that reverse CAMP can be induced by cardiolipin synthetase. PMID:24599982

  1. Direct evidence for an acyl phosphate intermediate in the folylpoly-. gamma. -glutamate synthetase and dihydrofolate synthetase-catalyzed reactions

    SciTech Connect

    Banerjee, R.

    1987-01-01

    The mechanism of the reactions catalyzed by two enzymes, namely dihydrofolate synthetase (DHFS) and folylpoly-..gamma..-glutamate synthetase (FPGS), has been investigated. The nature of the intermediate in each of the two reactions was monitored simultaneously in the multifunctional enzyme, FPGS/DHFS from E. coli. The latter was isolated from a transformant containing the cloned FPGS/DHFS gene. Incubation of (/sup 18/O)-H/sub 2/Pte and (/sup 17/O)-glutamate with ATP and the enzyme, resulted in the formation of (/sup 18/O)- and (/sup 17/O)-P/sub i/, thus providing strong evidence for the formation of an acyl phosphate species during catalysis of each reaction. The inorganic phosphate formed in the enzyme-catalyzed reaction was purified by chromatography on DEAE-cellulose, then converted to the trimethyl ester and analyzed by mass spectroscopy /sup 17/O NMR and /sup 31/P NMR. Stoichiometric formation of (/sup 17/O)- and (/sup 18/O)-Pi was observed. /sup 31/P NMR analysis showed the expected /sup 18/O-induced isotopic perturbations. The presence of (/sup 17/O)-trimethyl phosphate was revealed by /sup 17/O NMR. The mechanism of the FPGS-catalyzed reaction was also investigated with the antifolate (/sup 18/O)-methotrexate.

  2. Aminoacyl-tRNA synthetases as drug targets in eukaryotic parasites☆

    PubMed Central

    Pham, James S.; Dawson, Karen L.; Jackson, Katherine E.; Lim, Erin E.; Pasaje, Charisse Flerida A.; Turner, Kelsey E.C.; Ralph, Stuart A.

    2013-01-01

    Aminoacyl-tRNA synthetases are central enzymes in protein translation, providing the charged tRNAs needed for appropriate construction of peptide chains. These enzymes have long been pursued as drug targets in bacteria and fungi, but the past decade has seen considerable research on aminoacyl-tRNA synthetases in eukaryotic parasites. Existing inhibitors of bacterial tRNA synthetases have been adapted for parasite use, novel inhibitors have been developed against parasite enzymes, and tRNA synthetases have been identified as the targets for compounds in use or development as antiparasitic drugs. Crystal structures have now been solved for many parasite tRNA synthetases, and opportunities for selective inhibition are becoming apparent. For different biological reasons, tRNA synthetases appear to be promising drug targets against parasites as diverse as Plasmodium (causative agent of malaria), Brugia (causative agent of lymphatic filariasis), and Trypanosoma (causative agents of Chagas disease and human African trypanosomiasis). Here we review recent developments in drug discovery and target characterisation for parasite aminoacyl-tRNA synthetases. PMID:24596663

  3. On the assembly of dodecameric glutamine synthetase from stable chaperonin complexes.

    PubMed

    Fisher, M T

    1993-07-01

    For many in vitro protein-folding reactions, the fraction of correctly folded product declines as the initial protein concentration increases due primarily to misfolding and aggregation reactions. Under optimal conditions and in the presence of ATP, chaperonins (groEL and groES) enhanced the renaturation of dodecameric glutamine synthetase (GS) with yields of active enzyme between 75 and 85% of the original activity (Fisher, M.T. (1992) Biochemistry 31, 3955-3963). In spite of this enhancement, a concentration-dependent decline in recoverable activity was observed when increasing concentrations of unfolded GS were rapidly mixed with renaturation buffer containing a 2-fold molar excess (GS subunits:groEL oligomer) of chaperonins. When a stable groEL-GS complex, formed under optimal conditions, was concentrated 4-fold by centrifugal ultrafiltration prior to ATP addition, the amount of total active GS (percent of the original activity) recovered remained at optimal levels and no longer showed a concentration-dependent decline. The GS subunits that are initially bound and then released from groEL by ATP are assembly-competent. It is proposed that the subunits are no longer able to kinetically equilibrate with folding intermediates that misfold or aggregate. If a stable groEL-protein substrate complex can be amassed without loss of activity, this will facilitate studies on molecular aspects of chaperonin release mechanisms and oligomeric protein assembly. PMID:8100224

  4. Argininosuccinate synthetase regulates hepatic AMPK linking protein catabolism and ureagenesis to hepatic lipid metabolism.

    PubMed

    Madiraju, Anila K; Alves, Tiago; Zhao, Xiaojian; Cline, Gary W; Zhang, Dongyan; Bhanot, Sanjay; Samuel, Varman T; Kibbey, Richard G; Shulman, Gerald I

    2016-06-14

    A key sensor of cellular energy status, AMP-activated protein kinase (AMPK), interacts allosterically with AMP to maintain an active state. When active, AMPK triggers a metabolic switch, decreasing the activity of anabolic pathways and enhancing catabolic processes such as lipid oxidation to restore the energy balance. Unlike oxidative tissues, in which AMP is generated from adenylate kinase during states of high energy demand, the ornithine cycle enzyme argininosuccinate synthetase (ASS) is a principle site of AMP generation in the liver. Here we show that ASS regulates hepatic AMPK, revealing a central role for ureagenesis flux in the regulation of metabolism via AMPK. Treatment of primary rat hepatocytes with amino acids increased gluconeogenesis and ureagenesis and, despite nutrient excess, induced both AMPK and acetyl-CoA carboxylase (ACC) phosphorylation. Antisense oligonucleotide knockdown of hepatic ASS1 expression in vivo decreased liver AMPK activation, phosphorylation of ACC, and plasma β-hydroxybutyrate concentrations. Taken together these studies demonstrate that increased amino acid flux can activate AMPK through increased AMP generated by ASS, thus providing a novel link between protein catabolism, ureagenesis, and hepatic lipid metabolism. PMID:27247419

  5. Argininosuccinate synthetase regulates hepatic AMPK linking protein catabolism and ureagenesis to hepatic lipid metabolism

    PubMed Central

    Madiraju, Anila K.; Alves, Tiago; Zhao, Xiaojian; Cline, Gary W.; Zhang, Dongyan; Bhanot, Sanjay; Samuel, Varman T.; Kibbey, Richard G.; Shulman, Gerald I.

    2016-01-01

    A key sensor of cellular energy status, AMP-activated protein kinase (AMPK), interacts allosterically with AMP to maintain an active state. When active, AMPK triggers a metabolic switch, decreasing the activity of anabolic pathways and enhancing catabolic processes such as lipid oxidation to restore the energy balance. Unlike oxidative tissues, in which AMP is generated from adenylate kinase during states of high energy demand, the ornithine cycle enzyme argininosuccinate synthetase (ASS) is a principle site of AMP generation in the liver. Here we show that ASS regulates hepatic AMPK, revealing a central role for ureagenesis flux in the regulation of metabolism via AMPK. Treatment of primary rat hepatocytes with amino acids increased gluconeogenesis and ureagenesis and, despite nutrient excess, induced both AMPK and acetyl-CoA carboxylase (ACC) phosphorylation. Antisense oligonucleotide knockdown of hepatic ASS1 expression in vivo decreased liver AMPK activation, phosphorylation of ACC, and plasma β-hydroxybutyrate concentrations. Taken together these studies demonstrate that increased amino acid flux can activate AMPK through increased AMP generated by ASS, thus providing a novel link between protein catabolism, ureagenesis, and hepatic lipid metabolism. PMID:27247419

  6. Mechanisms of photoprotection and nonphotochemical quenching in pea light-harvesting complex at 2.5 A resolution.

    PubMed

    Standfuss, Jörg; Terwisscha van Scheltinga, Anke C; Lamborghini, Matteo; Kühlbrandt, Werner

    2005-03-01

    The plant light-harvesting complex of photosystem II (LHC-II) collects and transmits solar energy for photosynthesis in chloroplast membranes and has essential roles in regulation of photosynthesis and in photoprotection. The 2.5 A structure of pea LHC-II determined by X-ray crystallography of stacked two-dimensional crystals shows how membranes interact to form chloroplast grana, and reveals the mutual arrangement of 42 chlorophylls a and b, 12 carotenoids and six lipids in the LHC-II trimer. Spectral assignment of individual chlorophylls indicates the flow of energy in the complex and the mechanism of photoprotection in two close chlorophyll a-lutein pairs. We propose a simple mechanism for the xanthophyll-related, slow component of nonphotochemical quenching in LHC-II, by which excess energy is transferred to a zeaxanthin replacing violaxanthin in its binding site, and dissipated as heat. Our structure shows the complex in a quenched state, which may be relevant for the rapid, pH-induced component of nonphotochemical quenching. PMID:15719016

  7. Structure-guided expansion of the substrate range of methylmalonyl coenzyme A synthetase (MatB) of Rhodopseudomonas palustris.

    PubMed

    Crosby, Heidi A; Rank, Katherine C; Rayment, Ivan; Escalante-Semerena, Jorge C

    2012-09-01

    Malonyl coenzyme A (malonyl-CoA) and methylmalonyl-CoA are two of the most commonly used extender units for polyketide biosynthesis and are utilized to synthesize a vast array of pharmaceutically relevant products with antibacterial, antiparasitic, anticholesterol, anticancer, antifungal, and immunosuppressive properties. Heterologous hosts used for polyketide production such as Escherichia coli often do not produce significant amounts of methylmalonyl-CoA, however, requiring the introduction of other pathways for the generation of this important building block. Recently, the bacterial malonyl-CoA synthetase class of enzymes has been utilized to generate malonyl-CoA and methylmalonyl-CoA directly from malonate and methylmalonate. We demonstrate that in the purple photosynthetic bacterium Rhodopseudomonas palustris, MatB (RpMatB) acts as a methylmalonyl-CoA synthetase and is required for growth on methylmalonate. We report the apo (1.7-Å resolution) and ATP-bound (2.0-Å resolution) structure and kinetic analysis of RpMatB, which shows similar activities for both malonate and methylmalonate, making it an ideal enzyme for heterologous polyketide biosynthesis. Additionally, rational, structure-based mutagenesis of the active site of RpMatB led to substantially higher activity with ethylmalonate and butylmalonate, demonstrating that this enzyme is a prime target for expanded substrate specificity. PMID:22773649

  8. Identification and molecular characterization of the acetyl coenzyme A synthetase gene (acoE) of Alcaligenes eutrophus.

    PubMed Central

    Priefert, H; Steinbüchel, A

    1992-01-01

    The gene locus acoE, which is involved in the utilization of acetoin in Alcaligenes eutrophus, was identified as the structural gene of an acetyl coenzyme A synthetase (acetate:coenzyme A ligase [AMP forming]; EC 6.2.1.1). This gene was localized on a 3.8-kbp SmaI-EcoRI subfragment of an 8.1-kbp EcoRI restriction fragment (fragment E) that was cloned recently (C. Fründ, H. Priefert, A. Steinbüchel, and H. G. Schlegel, J. Bacteriol. 171:6539-6548, 1989). The 1,983 bp acoE gene encoded a protein with a relative molecular weight of 72,519, and it was preceded by a putative Shine-Dalgarno sequence. A comparison analysis of the amino acid sequence deduced from acoE revealed a high degree of homology to primary structures of acetyl coenzyme A synthetases from other sources (amounting to up to 50.5% identical amino acids). Tn5 insertions in two transposon-induced mutants of A. eutrophus, that were impaired in the catabolism of acetoin were mapped 481 and 1,159 bp downstream from the translational start codon of acoE. The expression of acoE in Escherichia coli led to the formation of an acyl coenzyme A synthetase that accepted acetate as the preferred substrate (100% relative activity) but also reacted with propionate (46%) and hydroxypropionate (87%); fatty acids consisting of four or more carbon atoms were not accepted. In addition, evidence for the presence of a second acyl coenzyme A synthetase was obtained; this enzyme exhibited a different substrate specificity. The latter enzyme is obviously required for the activation of propionate, e.g., during the formation of the storage compound poly(3-hydroxybutyric acid-co-3-hydroxyvaleric acid) when propionate is provided as the sole carbon source. An analysis of mutants provided evidence that the expression of the uptake protein for propionate depends on the presence of alternate sigma factor sigma 54. Images PMID:1356967

  9. Isopenicillin N synthetase of Penicillium chrysogenum, an enzyme that converts delta-(L-alpha-aminoadipyl)-L-cysteinyl-D-valine to isopenicillin N.

    PubMed

    Ramos, F R; López-Nieto, M J; Martín, J F

    1985-03-01

    The tripeptide delta-(L-alpha-aminoadipyl)-L-cysteinyl-D-valine, an intermediate in the penicillin biosynthetic pathway, is converted to isopenicillin N by isopenicillin N synthetase (cyclase) of Penicillium chrysogenum. The cyclization required dithiothreitol and was stimulated by ferrous ions and ascorbate. Co2+ and Mn2+ completely inhibited enzyme activity. Optimal temperature and pH were 25 degrees C and 7.8, respectively. The reaction required O2 and was stimulated by increasing the dissolved oxygen concentration of the reaction mixture. Purification of the enzyme to a single major band in polyacrylamide gel electrophoresis was achieved by protamine sulfate precipitation, ammonium sulfate fractionation (50 to 80% of saturation), DEAE-Sephacel chromatography, and gel filtration on Sephacryl S-200. The estimated molecular weight was 39,000 +/- 1,000. The apparent Km of isopenicillin N synthetase for delta-(L-alpha-aminoadipyl)-L-cysteinyl-D-valine was 0.13 mM. The enzyme activity was strongly inhibited by glutathione, which acts as a competitive inhibitor. A good correlation was observed between the isopenicillin N synthetase activity in extracts of four different strains of P. chrysogenum (with widely different penicillin-producing capability) and the amount of penicillin production by these strains. PMID:3922296

  10. The CcmFH complex is the system I holocytochrome c synthetase: engineering cytochrome c maturation independent of CcmABCDE

    PubMed Central

    Francisco, Brian San; Sutherland, Molly C.; Kranz, Robert G.

    2014-01-01

    SUMMARY Cytochrome c maturation (ccm) in many bacteria, archaea, and plant mitochondria requires eight membrane proteins, CcmABCDEFGH, called system I. This pathway delivers and attaches heme covalently to two cysteines (of Cys-Xxx-Xxx-Cys-His) in the cytochrome c. All models propose that CcmFH facilitates covalent attachment of heme to the apocytochrome; namely, that it is the synthetase. However, holocytochrome c synthetase activity has not been directly demonstrated for CcmFH. We report formation of holocytochromes c by CcmFH and CcmG, a periplasmic thioredoxin, independent of CcmABCDE (we term this activity CcmFGH-only). Cytochrome c produced in the absence of CcmABCDE is indistinguishable from cytochrome c produced by the full system I, with a cleaved signal sequence and two covalent bonds to heme. We engineered increased cytochrome c production by CcmFGH-only, with yields approaching those from the full system I. Three conserved histidines in CcmF (TM-His1, TM-His2, and P-His1) are required for activity, as are the conserved cysteine pairs in CcmG and CcmH. Our findings establish that CcmFH is the system I holocytochrome c synthetase. Although we discuss why this engineering would likely not replace the need for CcmABCDE in nature, these results provide unique mechanistic and evolutionary insights into cytochrome c biosynthesis. PMID:24397552

  11. Use of genomics to identify bacterial undecaprenyl pyrophosphate synthetase: cloning, expression, and characterization of the essential uppS gene.

    PubMed

    Apfel, C M; Takács, B; Fountoulakis, M; Stieger, M; Keck, W

    1999-01-01

    The prenyltransferase undecaprenyl pyrophosphate synthetase (di-trans,poly-cis-decaprenylcistransferase; EC 2.5.1.31) was purified from the soluble fraction of Escherichia coli by TSK-DEAE, ceramic hydroxyapatite, TSK-ether, Superdex 200, and heparin-Actigel chromatography. The protein was labeled with the photolabile analogue of the farnesyl pyrophosphate analogue (E, E)-[1-3H]-(2-diazo-3-trifluoropropionyloxy)geranyl diphosphate and was detected on a sodium dodecyl sulfate-polyacrylamide gel as a protein with an apparent molecular mass of 29 kDa. This protein band was cut out from the gel, trypsin digested, and subjected to matrix-assisted laser desorption ionization mass spectrometric analysis. Comparison of the experimental data with computer-simulated trypsin digest data for all E. coli proteins yielded a single match with a protein of unassigned function (SWISS-PROT Q47675; YAES_ECOLI). Sequences with strong similarity indicative of homology to this protein were identified in 25 bacterial species, in Saccharomyces cerevisiae, and in Caenorhabditis elegans. The homologous genes (uppS) were cloned from E. coli, Haemophilus influenzae, and Streptococcus pneumoniae, expressed in E. coli as amino-terminal His-tagged fusion proteins, and purified over a Ni2+ affinity column. An untagged version of the E. coli uppS gene was also cloned and expressed, and the protein purified in two chromatographic steps. We were able to detect Upp synthetase activity for all purified enzymes. Further, biochemical characterization revealed no differences between the recombinant untagged E. coli Upp synthetase and the three His-tagged fusion proteins. All enzymes were absolutely Triton X-100 and MgCl2 dependent. With the use of a regulatable gene disruption system, we demonstrated that uppS is essential for growth in S. pneumoniae R6. PMID:9882662

  12. The RNA sequence context defines the mechanistic routes by which yeast arginyl-tRNA synthetase charges tRNA.

    PubMed

    Sissler, M; Giegé, R; Florentz, C

    1998-06-01

    Arginylation of tRNA transcripts by yeast arginyl-tRNA synthetase can be triggered by two alternate recognition sets in anticodon loops: C35 and U36 or G36 in tRNA(Arg) and C36 and G37 in tRNA(Asp) (Sissler M, Giegé R, Florentz C, 1996, EMBO J 15:5069-5076). Kinetic studies on tRNA variants were done to explore the mechanisms by which these sets are expressed. Although the synthetase interacts in a similar manner with tRNA(Arg) and tRNA(Asp), the details of the interaction patterns are idiosyncratic, especially in anticodon loops (Sissler M, Eriani G, Martin F, Giegé R, Florentz C, 1997, Nucleic Acids Res 25:4899-4906). Exchange of individual recognition elements between arginine and aspartate tRNA frameworks strongly blocks arginylation of the mutated tRNAs, whereas full exchange of the recognition sets leads to efficient arginine acceptance of the transplanted tRNAs. Unpredictably, the similar catalytic efficiencies of native and transplanted tRNAs originate from different k(cat) and Km combinations. A closer analysis reveals that efficient arginylation results from strong anticooperative effects between individual recognition elements. Nonrecognition nucleotides as well as the tRNA architecture are additional factors that tune efficiency. Altogether, arginyl-tRNA synthetase is able to utilize different context-dependent mechanistic routes to be activated. This confers biological advantages to the arginine aminoacylation system and sheds light on its evolutionary relationship with the aspartate system. PMID:9622124

  13. Dispensability of zinc and the putative zinc-binding domain in bacterial glutamyl-tRNA synthetase

    PubMed Central

    Chongdar, Nipa; Dasgupta, Saumya; Datta, Ajit Bikram; Basu, Gautam

    2015-01-01

    The putative zinc-binding domain (pZBD) in Escherichia coli glutamyl-tRNA synthetase (GluRS) is known to correctly position the tRNA acceptor arm and modulate the amino acid-binding site. However, its functional role in other bacterial species is not clear since many bacterial GluRSs lack a zinc-binding motif in the pZBD. From experimental studies on pZBD-swapped E. coli GluRS, with Thermosynechoccus elongatus GluRS, Burkholderia thailandensis GluRS and E. coli glutamyl-queuosine-tRNAAsp synthetase (Glu-Q-RS), we show that E. coli GluRS, containing the zinc-free pZBD of B. thailandensis, is as functional as the zinc-bound wild-type E. coli GluRS, whereas the other constructs, all zinc-bound, show impaired function. A pZBD-tinkered version of E. coli GluRS that still retained Zn-binding capacity, also showed reduced activity. This suggests that zinc is not essential for the pZBD to be functional. From extensive structural and sequence analyses from whole genome database of bacterial GluRS, we further show that in addition to many bacterial GluRS lacking a zinc-binding motif, the pZBD is actually deleted in some bacteria, all containing either glutaminyl-tRNA synthetase (GlnRS) or a second copy of GluRS (GluRS2). Correlation between the absence of pZBD and the occurrence of glutamine amidotransferase CAB (GatCAB) in the genome suggests that the primordial role of the pZBD was to facilitate transamidation of misacylated Glu-tRNAGln via interaction with GatCAB, whereas its role in tRNAGlu interaction may be a consequence of the presence of pZBD. PMID:25686371

  14. Treatment of renal colic by prostaglandin synthetase inhibitors and avafortan (analgesic antispasmodic).

    PubMed

    el-Sherif, A E; Foda, R; Norlen, L J; Yahia, H

    1990-12-01

    In a study of the pain-relieving effect of 3 drugs commonly used to treat acute renal colic in this hospital, intravenous indomethacin and intramuscular diclofenac (prostaglandin synthetase inhibitors) were compared with intravenous Avafortan (analgesic antispasmodic). As first-line analgesics, prostaglandin synthetase inhibitors, if given intravenously, offer an effective alternative to Avafortan. Of 145 patients studied, 32 required a second injection for complete relief of pain. Administering a second dose of prostaglandin synthetase inhibitors resulted in equally significant pain relief rate even though the route was intramuscular. PMID:2265331

  15. Isolation and characterization of glutamine synthetase from the marine diatom Skeletonema costatum.

    PubMed Central

    Robertson, D L; Alberte, R S

    1996-01-01

    Two peaks of glutamine synthetase (GS) activity were resolved by anion-exchange chromatography from the marine diatom Skeletonema costatum Grev. The second peak of activity accounted for greater than 93% of total enzyme activity, and this isoform was purified over 200-fold. Results from denaturing gel electrophoresis and gel-filtration chromatography suggest that six 70-kD subunits constitute the 400-kD native enzyme. The structure of the diatom GS, therefore, appears more similar to that of a type found in bacteria than to the type common among other eukaryotes. Apparent Michaelis constant values were 0.7 mM for NH4(+), 5.7 mM for glutamic acid, and 0.5 mM for ATP. Enzyme activity was inhibited by serine, alanine, glycine, phosphinothricin, and methionine sulfoximine. Polyclonal antiserum raised against the purified enzyme localized a single polypeptide on western blots of S. costatum cell lysates and recognized the denatured, native enzyme. Western analysis of the two peak fractions derived from anion-exchange chromatography demonstrated that the 70-kD protein was present only in the later eluting peak of enzyme activity. This form of GS does not appear to be unique to S. costatum, since the antiserum recognized a similar-sized protein in cell lysates of other chromophytic algae. PMID:8756499

  16. Multiple molecular forms of glutamine synthetase in pea seeds.

    PubMed

    Antonyuk, L P; Pushkin, A V; Vorobyeva, L M; Solovjeva, N A; Evstigneeva, Z G; Kretovich, W L

    1982-08-20

    Multiple molecular forms of glutamine synthetase (GS, EC 6.3.1.2) have been studied in pea seeds of different varieties. The number of GS molecular forms in the seeds proved to be related to their colour. Two GS forms in the green seeds have been found and only one of them in the yellow seeds. Green seeds had chlorophyll content amounted to 0.4% of the total pigment content in the leaves. Chloroplasts, somewhat smaller than those in pea leaves of the same variety, have been isolated from green seeds. The presence of the second GS form in the pea green seeds we relate to the chloroplasts. By electrophoretic mobility both forms of GS from the green seeds are not identical to the chloroplast GS and the cytosol GS of leaves. Thus, we believe pea plant to contain, at least, four GS forms. PMID:6127624

  17. Aminoacyl-tRNA synthetase complexes: molecular multitasking revealed

    PubMed Central

    Hausmann, Corinne D.; Ibba, Michael

    2008-01-01

    The accurate synthesis of proteins, dictated by the corresponding nucleotide sequence encoded in mRNA, is essential for cell growth and survival. Central to this process are the aminoacyl-tRNA synthetases (aaRSs), which provide amino acid substrates for the growing polypeptide chain in the form of aminoacyl-tRNAs. The aaRSs are essential for coupling the correct amino acid and tRNA molecules, but are also known to associate in higher order complexes with proteins involved in processes beyond translation. Multiprotein complexes containing aaRSs are found in all three domains of life playing roles in splicing, apoptosis, viral assembly, and regulation of transcription and translation. An overview of the complexes aaRSs form in all domains of life is presented, demonstrating the extensive network of connections between the translational machinery and cellular components involved in a myriad of essential processes beyond protein synthesis. PMID:18522650

  18. Crystal structure of schistatin, a disintegrin homodimer from saw-scaled viper (Echis carinatus) at 2.5 A resolution.

    PubMed

    Bilgrami, Sameeta; Tomar, Shailly; Yadav, Savita; Kaur, Punit; Kumar, Janesh; Jabeen, Talat; Sharma, Sujata; Singh, Tej P

    2004-08-13

    This is the first structure of a biological homodimer of disintegrin. Disintegrins are a class of small (4-14 kDa) proteins that bind to transmembrane integrins selectively. The present molecule is the first homodimer that has been isolated from the venom of Echis carinatus. The monomeric chain contains 64 amino acid residues. The three-dimensional structure of schistatin has been determined by the multiple isomorphous replacement method. It has been refined to an R-factor of 0.190 using all the data to 2.5 A resolution. The two subunits of the disintegrin homodimer are related by a 2-fold crystallographic symmetry. Thus, the crystallographic asymmetric unit contains a monomer of disintegrin. The monomer folds into an up-down topology with three sets of antiparallel beta-strands. The structure is well ordered with four intramolecular disulfide bonds. the two monomers are firmly linked to each other through two intermolecular disulfide bridges at their N termini together with several other interactions. This structure has corrected the error in the disulfide bond pattern of the two intermolecular disulfide bridges that was reported earlier using chemical methods. Unique sequence and structural features of the schistatin monomers suggest that they have the ability to bind well with both alphaIIb beta3 and alphav beta3 integrins. The N termini anchored two chains of the dimer diverge away at their C termini exposing the Arg-Gly-Asp motif into opposite directions thus enhancing their binding efficiency to integrins. This is one of the unique features of the present disintegrin homodimer and seems to be responsible for the clustering of integrin molecules. The homodimer binds to integrins apparently with a higher affinity than the monomers and also plays a role in the signaling pathway. PMID:15317139

  19. S-adenosylmethionine synthetase in bloodstream Trypanosoma brucei.

    PubMed

    Yarlett, N; Garofalo, J; Goldberg, B; Ciminelli, M A; Ruggiero, V; Sufrin, J R; Bacchi, C J

    1993-03-24

    S-adenosylmethionine synthetase was studied from bloodstream forms of Trypanosoma brucei brucei, the agent of African sleeping sickness. Two isoforms of the enzyme were evident from Eadie Hofstee and Hanes-Woolf plots of varying ATP or methionine concentrations. In the range 10-250 microM the Km for methionine was 20 microM, and this changed to 200 microM for the range 0.5-5.0 mM. In the range 10-250 microM the Km for ATP was 53 microM, and this changed to 1.75 mM for the range 0.5-5.0 mM. The trypanosome enzyme had a molecular weight of 145 kDa determined by agarose gel filtration. Methionine analogs including selenomethionine, L-2-amino-4-methoxy-cis but-3-enoic acid and ethionine acted as competitive inhibitors of methionine and as weak substrates when tested in the absence of methionine with [14C]ATP. The enzyme was not inducible in procyclic trypomastigotes in vitro, and the enzyme half-life was > 6 h. T. b. brucei AdoMet synthetase was inhibited by AdoMet (Ki 240 microM). The relative insensitivity of the trypanosome enzyme to control by product inhibition indicates it is markedly different from mammalian isoforms of the enzyme which are highly sensitive to AdoMet. Since trypanosomes treated with the ornithine decarboxylase antagonist DL-alpha-difluoromethylornithine accumulate AdoMet and dcAdoMet (final concentration approximately 5 mM), this enzyme may be the critical drug target linking inhibition of polyamine synthesis to disruption of AdoMet metabolism. PMID:8457607

  20. Identification of Lethal Mutations in Yeast Threonyl-tRNA Synthetase Revealing Critical Residues in Its Human Homolog*

    PubMed Central

    Ruan, Zhi-Rong; Fang, Zhi-Peng; Ye, Qing; Lei, Hui-Yan; Eriani, Gilbert; Zhou, Xiao-Long; Wang, En-Duo

    2015-01-01

    Aminoacyl-tRNA synthetases (aaRSs) are a group of ancient enzymes catalyzing aminoacylation and editing reactions for protein biosynthesis. Increasing evidence suggests that these critical enzymes are often associated with mammalian disorders. Therefore, complete determination of the enzymes functions is essential for informed diagnosis and treatment. Here, we show that a yeast knock-out strain for the threonyl-tRNA synthetase (ThrRS) gene is an excellent platform for such an investigation. Saccharomyces cerevisiae ThrRS has a unique modular structure containing four structural domains and a eukaryote-specific N-terminal extension. Using randomly mutated libraries of the ThrRS gene (thrS) and a genetic screen, a set of loss-of-function mutants were identified. The mutations affected the synthetic and editing activities and influenced the dimer interface. The results also highlighted the role of the N-terminal extension for enzymatic activity and protein stability. To gain insights into the pathological mechanisms induced by mutated aaRSs, we systematically introduced the loss-of-function mutations into the human cytoplasmic ThrRS gene. All mutations induced similar detrimental effects, showing that the yeast model could be used to study pathology-associated point mutations in mammalian aaRSs. PMID:25416776

  1. Identification of lethal mutations in yeast threonyl-tRNA synthetase revealing critical residues in its human homolog.

    PubMed

    Ruan, Zhi-Rong; Fang, Zhi-Peng; Ye, Qing; Lei, Hui-Yan; Eriani, Gilbert; Zhou, Xiao-Long; Wang, En-Duo

    2015-01-16

    Aminoacyl-tRNA synthetases (aaRSs) are a group of ancient enzymes catalyzing aminoacylation and editing reactions for protein biosynthesis. Increasing evidence suggests that these critical enzymes are often associated with mammalian disorders. Therefore, complete determination of the enzymes functions is essential for informed diagnosis and treatment. Here, we show that a yeast knock-out strain for the threonyl-tRNA synthetase (ThrRS) gene is an excellent platform for such an investigation. Saccharomyces cerevisiae ThrRS has a unique modular structure containing four structural domains and a eukaryote-specific N-terminal extension. Using randomly mutated libraries of the ThrRS gene (thrS) and a genetic screen, a set of loss-of-function mutants were identified. The mutations affected the synthetic and editing activities and influenced the dimer interface. The results also highlighted the role of the N-terminal extension for enzymatic activity and protein stability. To gain insights into the pathological mechanisms induced by mutated aaRSs, we systematically introduced the loss-of-function mutations into the human cytoplasmic ThrRS gene. All mutations induced similar detrimental effects, showing that the yeast model could be used to study pathology-associated point mutations in mammalian aaRSs. PMID:25416776

  2. Leucyl-tRNA synthetase editing domain functions as a molecular rheostat to control codon ambiguity in Mycoplasma pathogens

    PubMed Central

    Li, Li; Palencia, Andrés; Lukk, Tiit; Li, Zhi; Luthey-Schulten, Zaida A.; Cusack, Stephen; Martinis, Susan A.; Boniecki, Michal T.

    2013-01-01

    Mycoplasma leucyl-tRNA synthetases (LeuRSs) have been identified in which the connective polypeptide 1 (CP1) amino acid editing domain that clears mischarged tRNAs are missing (Mycoplasma mobile) or highly degenerate (Mycoplasma synoviae). Thus, these enzymes rely on a clearance pathway called pretransfer editing, which hydrolyzes misactivated aminoacyl-adenylate intermediate via a nebulous mechanism that has been controversial for decades. Even as the sole fidelity pathway for clearing amino acid selection errors in the pathogenic M. mobile, pretransfer editing is not robust enough to completely block mischarging of tRNALeu, resulting in codon ambiguity and statistical proteins. A high-resolution X-ray crystal structure shows that M. mobile LeuRS structurally overlaps with other LeuRS cores. However, when CP1 domains from different aminoacyl-tRNA synthetases and origins were fused to this common LeuRS core, surprisingly, pretransfer editing was enhanced. It is hypothesized that the CP1 domain evolved as a molecular rheostat to balance multiple functions. These include distal control of specificity and enzyme activity in the ancient canonical core, as well as providing a separate hydrolytic active site for clearing mischarged tRNA. PMID:23431144

  3. Crystallogenesis in tRNA aminoacylation systems: how packing accounts for crystallization drawbacks with yeast aspartyl-tRNA synthetase

    NASA Astrophysics Data System (ADS)

    Sauter, C.; Lorber, B.; Théobald-Dietrich, A.; Giegé, R.

    2001-11-01

    Two active forms of homodimeric aspartyl-tRNA synthetase from Saccharomyces cerevisiae differing in length at their N-terminus crystallize in the same orthorhombic space group (P4 12 12) with identical cell parameters. Initial studies were hampered by the poor and anisotropic diffraction of the crystals of enzyme extracted from yeast cells. Isotropic diffraction at higher resolution was obtained when crystals were grown from an engineered protein deprived of its 70 N-terminal amino acids. The present work describes the packing contacts in crystals of the shortened protein whose structure was solved at 2.3 Å resolution. Each subunit of the enzyme develops two lattice interactions covering a surface of 670 Å 2, about 7-fold smaller than that of the interface between monomers. The smallest lattice interaction, covering 150 Å 2, brings the anticodon binding domain adjacent to the N-terminus of one monomer in contact with a loop from the active-site domain of a neighboring monomer. Modeling of the extension in the solvent channels shows that the 150 Å 2 intermolecular contact is perturbed in protein molecules possessing a floppy appendix while their second and larger 520 Å 2 contact area is unaffected. Altogether the packing organization explains the poor diffraction properties of the native enzyme crystals and the enhanced diffraction of the crystals of shortened synthetase.

  4. Glutamine synthetase in Durum Wheat: Genotypic Variation and Relationship with Grain Protein Content

    PubMed Central

    Nigro, Domenica; Fortunato, Stefania; Giove, Stefania L.; Paradiso, Annalisa; Gu, Yong Q.; Blanco, Antonio; de Pinto, Maria C.; Gadaleta, Agata

    2016-01-01

    Grain protein content (GPC), is one of the most important trait in wheat and its characterized by a very complex genetic control. The identification of wheat varieties with high GPC (HGPC), as well as the characterization of central enzymes involved in these processes, are important for more sustainable agricultural practices. In this study, we focused on Glutamine synthetase (GS) as a candidate to study GPC in wheat. We analyzed GS expression and its enzymatic activity in different tissues and phenological stages in 10 durum wheat genotypes with different GPC. Although each genotype performed quite differently from the others, both because their genetic variability and their adaptability to specific environmental conditions, the highest GS activity and expression were found in genotypes with HGPC and vice versa the lowest ones in genotypes with low GPC (LGPC). Moreover, in genotypes contrasting in GPC bred at different nitrogen regimes (0, 60, 140 N Unit/ha) GS behaved differently in diverse organs. Nitrogen supplement increased GS expression and activity in roots of all genotypes, highlighting the key role of this enzyme in nitrogen assimilation and ammonium detoxification in roots. Otherwise, nitrogen treatments decreased GS expression and activity in the leaves of HGPC genotypes and did not affect GS in the leaves of LGPC genotypes. Finally, no changes in GS and soluble protein content occurred at the filling stage in the caryopses of all analyzed genotypes. PMID:27468287

  5. Degenerate connective polypeptide 1 (CP1) domain from human mitochondrial leucyl-tRNA synthetase.

    PubMed

    Ye, Qing; Wang, Meng; Fang, Zhi-Peng; Ruan, Zhi-Rong; Ji, Quan-Quan; Zhou, Xiao-Long; Wang, En-Duo

    2015-10-01

    The connective polypeptide 1 (CP1) editing domain of leucyl-tRNA synthetase (LeuRS) from various species either harbors a conserved active site to exclude tRNA mis-charging with noncognate amino acids or is evolutionarily truncated or lost because there is no requirement for high translational fidelity. However, human mitochondrial LeuRS (hmtLeuRS) contains a full-length but degenerate CP1 domain that has mutations in some residues important for post-transfer editing. The significance of such an inactive CP1 domain and a translational accuracy mechanism with different noncognate amino acids are not completely understood. Here, we identified the essential role of the evolutionarily divergent CP1 domain in facilitating hmtLeuRS's catalytic efficiency and endowing enzyme with resistance to AN2690, a broad-spectrum drug acting on LeuRSs. In addition, the canonical core of hmtLeuRS is not stringent for noncognate norvaline (Nva) and valine (Val). hmtLeuRS has a very weak tRNA-independent pre-transfer editing activity for Nva, which is insufficient to remove mis-activated Nva. Moreover, hmtLeuRS chimeras fused with a functional CP1 domain from LeuRSs of other species, regardless of origin, showed restored post-transfer editing activity and acquired fidelity during aminoacylation. This work offers a novel perspective on the role of the CP1 domain in optimizing aminoacylation efficiency. PMID:26272616

  6. Enhanced tolerance to salt stress in transgenic rice that overexpresses chloroplast glutamine synthetase.

    PubMed

    Hoshida, H; Tanaka, Y; Hibino, T; Hayashi, Y; Tanaka, A; Takabe, T; Takabe, T

    2000-05-01

    The potential role of photorespiration in the protection against salt stress was examined with transgenic rice plants. Oryza sativa L. cv. Kinuhikari was transformed with a chloroplastic glutamine synthetase (GS2) gene from rice. Each transgenic rice plant line showed a different accumulation level of GS2. A transgenic plant line, G39-2, which accumulated about 1.5-fold more GS2 than the control plant, had an increased photorespiration capacity. In another line, G241-12, GS2 was almost lost and photorespiration activity could not be detected. Fluorescence quenching analysis revealed that photorespiration could prevent the over-reduction of electron transport systems. When exposed to 150 mM NaCl for 2 weeks, the control rice plants completely lost photosystem II activity, but G39-2 plants retained more than 90% activity after the 2-week treatment, whereas G241-12 plants lost these activities within one week. In the presence of isonicotinic acid hydrazide, an inhibitor of photorespiration, G39-2 showed the same salt tolerance as the control plants. The intracellular contents of NH4+ and Na+ in the stressed plants correlated well with the levels of GS2. Thus, the enhancement of photorespiration conferred resistance to salt in rice plants. Preliminary results suggest chilling tolerance in the transformant. PMID:10949377

  7. Glutamine synthetase in Durum Wheat: Genotypic Variation and Relationship with Grain Protein Content.

    PubMed

    Nigro, Domenica; Fortunato, Stefania; Giove, Stefania L; Paradiso, Annalisa; Gu, Yong Q; Blanco, Antonio; de Pinto, Maria C; Gadaleta, Agata

    2016-01-01

    Grain protein content (GPC), is one of the most important trait in wheat and its characterized by a very complex genetic control. The identification of wheat varieties with high GPC (HGPC), as well as the characterization of central enzymes involved in these processes, are important for more sustainable agricultural practices. In this study, we focused on Glutamine synthetase (GS) as a candidate to study GPC in wheat. We analyzed GS expression and its enzymatic activity in different tissues and phenological stages in 10 durum wheat genotypes with different GPC. Although each genotype performed quite differently from the others, both because their genetic variability and their adaptability to specific environmental conditions, the highest GS activity and expression were found in genotypes with HGPC and vice versa the lowest ones in genotypes with low GPC (LGPC). Moreover, in genotypes contrasting in GPC bred at different nitrogen regimes (0, 60, 140 N Unit/ha) GS behaved differently in diverse organs. Nitrogen supplement increased GS expression and activity in roots of all genotypes, highlighting the key role of this enzyme in nitrogen assimilation and ammonium detoxification in roots. Otherwise, nitrogen treatments decreased GS expression and activity in the leaves of HGPC genotypes and did not affect GS in the leaves of LGPC genotypes. Finally, no changes in GS and soluble protein content occurred at the filling stage in the caryopses of all analyzed genotypes. PMID:27468287

  8. Mouse very long-chain acyl-CoA synthetase in X-linked adrenoleukodystrophy.

    PubMed

    Heinzer, Ann K; Kemp, Stephan; Lu, Jyh-Feng; Watkins, Paul A; Smith, Kirby D

    2002-08-01

    X-linked adrenoleukodystrophy (X-ALD) is a neurodegenerative disorder characterized by accumulation of very long-chain fatty acids (VLCFA). This accumulation has been attributed to decreased VLCFA beta-oxidation and peroxisomal very long-chain acyl-CoA synthetase (VLCS) activity. The X-ALD gene, ABCD1, encodes a peroxisomal membrane ATP binding cassette transporter, ALDP, that is hypothesized to affect VLCS activity in peroxisomes by direct interaction with the VLCS enzyme. Recently, a VLCS gene that encodes a protein with significant sequence identity to known rat and human peroxisomal VLCS protein has been identified in mice. We find that the mouse VLCS gene (Vlcs) encodes an enzyme (Vlcs) with VLCS activity that localizes to peroxisomes and is expressed in X-ALD target tissues. We show that the expression of Vlcs in the peroxisomes of X-ALD mouse fibroblasts improves VLCFA beta-oxidation in these cells, implying a role for this enzyme in the biochemical abnormality of X-ALD. X-ALD mice, which accumulate VLCFA in tissues, show no change in the expression of Vlcs, the subcellular localization of Vlcs, or general peroxisomal VLCS activity. These observations imply that ALDP is not necessary for the proper expression or localization of Vlcs protein, and the control of VLCFA levels does not depend on the direct interaction of Vlcs and ALDP. PMID:12048192

  9. Inhibition of glutamine synthetase in the central nucleus of the amygdala induces anhedonic behavior and recurrent seizures in a rat model of mesial temporal lobe epilepsy.

    PubMed

    Gruenbaum, Shaun E; Wang, Helen; Zaveri, Hitten P; Tang, Amber B; Lee, Tih-Shih W; Eid, Tore; Dhaher, Roni

    2015-10-01

    The prevalence of depression and suicide is increased in patients with mesial temporal lobe epilepsy (MTLE); however, the underlying mechanism remains unknown. Anhedonia, a core symptom of depression that is predictive of suicide, is common in patients with MTLE. Glutamine synthetase, an astrocytic enzyme that metabolizes glutamate and ammonia to glutamine, is reduced in the amygdala in patients with epilepsy and depression and in suicide victims. Here, we sought to develop a novel model of anhedonia in MTLE by testing the hypothesis that deficiency in glutamine synthetase in the central nucleus of the amygdala (CeA) leads to epilepsy and comorbid anhedonia. Nineteen male Sprague-Dawley rats were implanted with an osmotic pump infusing either the glutamine synthetase inhibitor methionine sulfoximine [MSO (n=12)] or phosphate buffered saline [PBS (n=7)] into the right CeA. Seizure activity was monitored by video-intracranial electroencephalogram (EEG) recordings for 21days after the onset of MSO infusion. Sucrose preference, a measure of anhedonia, was assessed after 21days. Methionine sulfoximine-infused rats exhibited recurrent seizures during the monitoring period and showed decreased sucrose preference over days when compared with PBS-infused rats (p<0.01). Water consumption did not differ between the PBS-treated group and the MSO-treated group. Neurons were lost in the CeA, but not the medial amygdala, lateral amygdala, basolateral amygdala, or the hilus of the dentate gyrus, in the MSO-treated rats. The results suggest that decreased glutamine synthetase activity in the CeA is a possible common cause of anhedonia and seizures in TLE. We propose that the MSO CeA model can be used for mechanistic studies that will lead to the development and testing of novel drugs to prevent seizures, depression, and suicide in patients with TLE. PMID:26262937

  10. A Master Switch Couples Mg2+-Assisted Catalysis to Domain Motion in B. stearothermophilus Tryptophanyl-tRNA Synthetase

    PubMed Central

    Weinreb, Violetta; Li, Li; Carter, Charles W.

    2011-01-01

    Summary We demonstrate how Tryptophanyl-tRNA synthetase (TrpRS) uses conformation-dependent Mg2+ activation to couple catalysis of tryptophan activation to specific, functional domain movements. Rate acceleration by Mg2+ requires ~ -6.0 kcal/mole in protein•Mg2+ interaction energy, none of which arises from the active site. A highly cooperative interaction between Mg2+ and four residues from a remote, conserved motif that mediates the shear of domain movement: (i) destabilizes the pre-transition state conformation, thereby (ii) inducing the Mg2+ to stabilize the transition state for kcat by ~ -5.0 kcal/mole. Cooperative, long-range conformational effects on the metal therefore convert an inactive Mg2+ coordination into one that can stabilize the transition state if, and only if, domain motion occurs. Transient, conformation-dependent Mg2+ activation, analogous to the escapement in mechanical clocks, explains vectorial coupling. PMID:22244762

  11. Evidence for two immunologically distinct acetyl-coenzyme A synthetases in yeast

    NASA Technical Reports Server (NTRS)

    Satyanarayana, T.; Mandel, A. D.; Klein, H. P.

    1974-01-01

    Evidence is presented that clearly establishes the presence of two acetyl-CoA synthetases in Saccharomyces cerevisiae, one elaborated under 'aerobic' conditions, the other under 'nonaerobic' conditions. The antibody produced by each enzyme is immunologically specific.

  12. Cloning and characterization of the gene for Escherichia coli seryl-tRNA synthetase.

    PubMed Central

    Härtlein, M; Madern, D; Leberman, R

    1987-01-01

    Seryl-tRNA synthetase is the gene product of the serS locus in Escherichia coli. Its gene has been cloned by complementation of a serS temperature sensitive mutant K28 with an E. coli gene bank DNA. The resulting clones overexpress seryl-tRNA synthetase by a factor greater than 50 and more than 6% of the total cellular protein corresponds to the enzyme. The DNA sequence of the complete coding region and the 5'- and 3' untranslated regions was determined. Protein sequence comparison of SerRS with all available aminoacyl-tRNA synthetase sequences revealed some regions of significant homology particularly with the isoleucyl- and phenylalanyl-tRNA synthetases from E. coli. Images PMID:3029694

  13. The 2.1Å Crystal Structure of an Acyl-CoA Synthetase from Methanosarcina acetivorans reveals an alternate acyl binding pocket for small branched acyl substrates†,‡

    PubMed Central

    Shah, Manish B.; Ingram-Smith, Cheryl; Cooper, Leroy L.; Qu, Jun; Meng, Yu; Smith, Kerry S.; Gulick, Andrew M.

    2009-01-01

    The acyl-AMP forming family of adenylating enzymes catalyze two-step reactions to activate a carboxylate with the chemical energy derived from ATP hydrolysis. X-ray crystal structures have been determined for multiple members of this family and, together with biochemical studies, provide insights into the active site and catalytic mechanisms used by these enzymes. These studies have shown that the enzymes use a domain rotation of 140° to reconfigure a single active site to catalyze the two partial reactions. We present here the crystal structure of a new medium chain acyl-CoA synthetase from Methanosarcina acetivorans. The binding pocket for the three substrates is analyzed, with many conserved residues present in the AMP binding pocket. The CoA binding pocket is compared to the pockets of both acetyl-CoA synthetase and 4-chlorobenzoate:CoA ligase. Most interestingly, the acyl binding pocket of the new structure is compared with other acyl- and aryl-CoA synthetases. A comparison of the acyl-binding pocket of the acyl-CoA synthetase from M. acetivorans with other structures identifies a shallow pocket that is used to bind the medium chain carboxylates. These insights emphasize the high sequence and structural diversity among this family in the area of the acyl binding pocket. PMID:19544569

  14. Lack of protective effect of thromboxane synthetase inhibitor (CGS-13080) on single dose radiated canine intestine

    SciTech Connect

    Barter, J.F.; Marlow, D.; Kamath, R.K.; Harbert, J.; Torrisi, J.R.; Barnes, W.A.; Potkul, R.K.; Newsome, J.T.; Delgado, G. )

    1991-03-01

    The effect of a thromboxane A2 synthetase inhibitor (CGS-13080) on canine intestine was studied using a single dose of radiation, and radioactive microspheres were used to determine resultant blood flow. Thromboxane A2 causes vasospasm and platelet aggregation and may play a dominant role in radiation injury. However, there was no effect on the intestinal blood flow diminution occurring after radiation in this laboratory model using this thromboxane A2 synthetase inhibitor.

  15. Lincosamide Synthetase—A Unique Condensation System Combining Elements of Nonribosomal Peptide Synthetase and Mycothiol Metabolism

    PubMed Central

    Janata, Jiri; Kadlcik, Stanislav; Koberska, Marketa; Ulanova, Dana; Kamenik, Zdenek; Novak, Petr; Kopecky, Jan; Novotna, Jitka; Radojevic, Bojana; Plhackova, Kamila; Gazak, Radek; Najmanova, Lucie

    2015-01-01

    In the biosynthesis of lincosamide antibiotics lincomycin and celesticetin, the amino acid and amino sugar units are linked by an amide bond. The respective condensing enzyme lincosamide synthetase (LS) is expected to be an unusual system combining nonribosomal peptide synthetase (NRPS) components with so far unknown amino sugar related activities. The biosynthetic gene cluster of celesticetin was sequenced and compared to the lincomycin one revealing putative LS coding ORFs shared in both clusters. Based on a bioassay and production profiles of S. lincolnensis strains with individually deleted putative LS coding genes, the proteins LmbC, D, E, F and V were assigned to LS function. Moreover, the newly recognized N-terminal domain of LmbN (LmbN-CP) was also assigned to LS as a NRPS carrier protein (CP). Surprisingly, the homologous CP coding sequence in celesticetin cluster is part of ccbZ gene adjacent to ccbN, the counterpart of lmbN, suggesting the gene rearrangement, evident also from still active internal translation start in lmbN, and indicating the direction of lincosamide biosynthesis evolution. The in vitro test with LmbN-CP, LmbC and the newly identified S. lincolnensis phosphopantetheinyl transferase Slp, confirmed the cooperation of the previously characterized NRPS A-domain LmbC with a holo-LmbN-CP in activation of a 4-propyl-L-proline precursor of lincomycin. This result completed the functional characterization of LS subunits resembling NRPS initiation module. Two of the four remaining putative LS subunits, LmbE/CcbE and LmbV/CcbV, exhibit low but significant homology to enzymes from the metabolism of mycothiol, the NRPS-independent system processing the amino sugar and amino acid units. The functions of particular LS subunits as well as cooperation of both NRPS-based and NRPS-independent LS blocks are discussed. The described condensing enzyme represents a unique hybrid system with overall composition quite dissimilar to any other known enzyme system

  16. The identification of new cytosolic glutamine synthetase and asparagine synthetase genes in barley (Hordeum vulgare L.), and their expression during leaf senescence

    PubMed Central

    Avila-Ospina, Liliana; Marmagne, Anne; Talbotec, Joël; Krupinska, Karin; Masclaux-Daubresse, Céline

    2015-01-01

    Glutamine synthetase and asparagine synthetase are two master enzymes involved in ammonium assimilation in plants. Their roles in nitrogen remobilization and nitrogen use efficiency have been proposed. In this report, the genes coding for the cytosolic glutamine synthetases (HvGS1) and asparagine synthetases (HvASN) in barley were identified. In addition to the three HvGS1 and two HvASN sequences previously reported, two prokaryotic-like HvGS1 and three HvASN cDNA sequences were identified. Gene structures were then characterized, obtaining full genomic sequences. The response of the five HvGS1 and five HvASN genes to leaf senescence was then studied. Developmental senescence was studied using primary and flag leaves. Dark-exposure or low-nitrate conditions were also used to trigger stress-induced senescence. Well-known senescence markers such as the chlorophyll and Rubisco contents were monitored in order to characterize senescence levels in the different leaves. The three eukaryotic-like HvGS1_1, HvGS1_2, and HvGS1_3 sequences showed the typical senescence-induced reduction in gene expression described in many plant species. By contrast, the two prokaryotic-like HvGS1_4 and HvGS1_5 sequences were repressed by leaf senescence, similar to the HvGS2 gene, which encodes the chloroplast glutamine synthetase isoenzyme. There was a greater contrast in the responses of the five HvASN and this suggested that these genes are needed for N remobilization in senescing leaves only when plants are well fertilized with nitrate. Responses of the HvASN sequences to dark-induced senescence showed that there are two categories of asparagine synthetases, one induced in the dark and the other repressed by the same conditions. PMID:25697791

  17. Physiological Studies of Glutamine Synthetases I and III from Synechococcus sp. WH7803 Reveal Differential Regulation.

    PubMed

    Domínguez-Martín, María Agustina; Díez, Jesús; García-Fernández, José M

    2016-01-01

    The marine picocyanobacterium Synechococcus sp. WH7803 possesses two glutamine synthetases (GSs; EC 6.3.1.2), GSI encoded by glnA and GSIII encoded by glnN. This is the first work addressing the physiological regulation of both enzymes in a marine cyanobacterial strain. The increase of GS activity upon nitrogen starvation was similar to that found in other model cyanobacteria. However, an unusual response was found when cells were grown under darkness: the GS activity was unaffected, reflecting adaptation to the environment where they thrive. On the other hand, we found that GSIII did not respond to nitrogen availability, in sharp contrast with the results observed for this enzyme in other cyanobacteria thus far studied. These features suggest that GS activities in Synechococcus sp. WH7803 represent an intermediate step in the evolution of cyanobacteria, in a process of regulatory streamlining where GSI lost the regulation by light, while GSIII lost its responsiveness to nitrogen. This is in good agreement with the phylogeny of Synechococcus sp. WH7803 in the context of the marine cyanobacterial radiation. PMID:27446010

  18. Comparative properties of glutamine synthetases I and II in Rhizobium and Agrobacterium spp.

    PubMed Central

    Fuchs, R L; Keister, D L

    1980-01-01

    Some properties of glutamine synthetase I (GSI) and GSII are described for a fast-growing Rhizobium sp. (Rhizobium trifolii T1), a slow-growing Rhizobium sp. (Rhizobium japonicum USDA 83), and Agrobacterium tumefaciens C58. GSII of the fast-growing Rhizobium sp. and GSII of the Agrobacterium sp. were considerably more heat labile than GSII of the slow-growing Rhizobium sp. As previously shown in R. japonicum 61A76, GSI became adenylylated rapidly in all species tested in response to ammonium. GSII activity disappeared within one generation of growth in two of the strains, but the disappearance of GSII activity required two generations in another. Isoactivity points for transferase assay, which were derived from the pH curves of adenylylated GSI and deadenylylated GSI, were approximately pH 7.8 for both R. trifolii and A. tumefaciens. No isoactivity point was found for R. japonicum under the standard assay conditions used. When the feedback inhibitor glycine was used to inhibit differentially the adenylylated GSI and deadenylylated GSI of R. japonicum, an isoactivity point was observed at pH 7.3. Thus, the transferase activity of GSI could be determined independent of the state of adenylation. A survey of 23 strains of bacteria representing 11 genera indicated that only Rhizobium spp. and Agrobacterium spp. contained GSII. Thus, this enzyme appears to be unique for the Rhizobiaceae. PMID:6107288

  19. Specific disulfide cross-linking to constrict the mobile carrier domain of nonribosomal peptide synthetases

    PubMed Central

    Tarry, Michael J.; Schmeing, T. Martin

    2015-01-01

    Nonribosomal peptide synthetases are large, multi-domain enzymes that produce peptide molecules with important biological activity such as antibiotic, antiviral, anti-tumor, siderophore and immunosuppressant action. The adenylation (A) domain catalyzes two reactions in the biosynthetic pathway. In the first reaction, it activates the substrate amino acid by adenylation and in the second reaction it transfers the amino acid onto the phosphopantetheine arm of the adjacent peptide carrier protein (PCP) domain. The conformation of the A domain differs significantly depending on which of these two reactions it is catalyzing. Recently, several structures of A–PCP di-domains have been solved using mechanism-based inhibitors to trap the PCP domain in the A domain active site. Here, we present an alternative strategy to stall the A–PCP di-domain, by engineering a disulfide bond between the native amino acid substrate and the A domain. Size exclusion studies showed a significant shift in apparent size when the mutant A–PCP was provided with cross-linking reagents, and this shift was reversible in the presence of high concentrations of reducing agent. The cross-linked protein crystallized readily in several of the conditions screened and the best crystals diffracted to ≈8 Å. PMID:25713404

  20. Physiological Studies of Glutamine Synthetases I and III from Synechococcus sp. WH7803 Reveal Differential Regulation

    PubMed Central

    Domínguez-Martín, María Agustina; Díez, Jesús; García-Fernández, José M.

    2016-01-01

    The marine picocyanobacterium Synechococcus sp. WH7803 possesses two glutamine synthetases (GSs; EC 6.3.1.2), GSI encoded by glnA and GSIII encoded by glnN. This is the first work addressing the physiological regulation of both enzymes in a marine cyanobacterial strain. The increase of GS activity upon nitrogen starvation was similar to that found in other model cyanobacteria. However, an unusual response was found when cells were grown under darkness: the GS activity was unaffected, reflecting adaptation to the environment where they thrive. On the other hand, we found that GSIII did not respond to nitrogen availability, in sharp contrast with the results observed for this enzyme in other cyanobacteria thus far studied. These features suggest that GS activities in Synechococcus sp. WH7803 represent an intermediate step in the evolution of cyanobacteria, in a process of regulatory streamlining where GSI lost the regulation by light, while GSIII lost its responsiveness to nitrogen. This is in good agreement with the phylogeny of Synechococcus sp. WH7803 in the context of the marine cyanobacterial radiation. PMID:27446010

  1. Purification, crystallization and preliminary X-ray characterization of a human mitochondrial phenylalanyl-tRNA synthetase

    SciTech Connect

    Levin, Inna; Kessler, Naama; Moor, Nina; Klipcan, Liron; Koc, Emine; Templeton, Paul; Spremulli, Linda; Safro, Mark

    2007-09-01

    The expression, purification and crystallization of recombinant human mitochondrial phenylalanyl-tRNA synthetase (mitPheRS) are reported. Diffraction data were collected to 2.2 Å resolution and the mitPheRS structure was solved using the molecular-replacement method. Human monomeric mitochondrial phenylalanyl-tRNA synthetase (mitPheRS) is an enzyme that catalyzes the charging of tRNA with the cognate amino acid phenylalanine. Human mitPheRS is a chimera of the bacterial α-subunit of PheRS and the B8 domain of its β-subunit. Together, the α-subunit and the ‘RNP-domain’ (B8 domain) at the C-terminus form the minimal structural set to construct an enzyme with phenylalanylation activity. The recombinant human mitPheRS was purified to homogeneity and crystallized in complex with phenylalanine and ATP. The crystals diffracted to 2.2 Å resolution and belonged to space group P2{sub 1}2{sub 1}2{sub 1}, with unit-cell parameters a = 55, b = 90, c = 96 Å.

  2. Role of dimerization in yeast aspartyl-tRNA synthetase and importance of the class II invariant proline.

    PubMed Central

    Eriani, G; Cavarelli, J; Martin, F; Dirheimer, G; Moras, D; Gangloff, J

    1993-01-01

    Cytoplasmic aspartyl-tRNA synthetase (AspRS; EC 6.1.1.12) from yeast is, as are most class II synthetases, an alpha 2 dimer. The only invariant amino acid in signature motif 1 of this class is Pro-273; this residue is located at the dimer interface. To understand the role of Pro-273 in the conserved dimeric configuration, we tested the effect of a Pro-273-->Gly (P273G) substitution on the catalytic properties of homo- and heterodimeric AspRS. Heterodimers of AspRS were produced in vivo by overexpression of their respective subunit variants from plasmid-encoded genes and purified to homogeneity in one HPLC step. The homodimer containing the P273G shows an 80% inactivation of the enzyme and an affinity decrease for its cognate tRNA(Asp) of one order of magnitude. The P273G-mutated subunit recovered wild-type enzymatic properties when associated with a native subunit or a monomer otherwise inactivated having an intact dimeric interface domain. These results, which can be explained by the crystal structure of the native enzyme complexed with its substrates, confirm the structural importance of Pro-273 for dimerization and clearly establish the functional interdependence of the AspRS subunits. More generally, the dimeric conformation may be a structural prerequisite for the activity of mononucleotide binding sites constructed from antiparallel beta strands. Images Fig. 1 Fig. 3 PMID:8248175

  3. Biosynthesis of amphi-enterobactin siderophores by Vibrio harveyi BAA-1116: identification of a bifunctional nonribosomal peptide synthetase condensation domain.

    PubMed

    Zane, Hannah K; Naka, Hiroaki; Rosconi, Federico; Sandy, Moriah; Haygood, Margo G; Butler, Alison

    2014-04-16

    The genome of Vibrio harveyi BAA-1116 contains a nonribosomal peptide synthetase (NRPS) gene cluster (aebA-F) resembling that for enterobactin, yet enterobactin is not produced. A gene predicted to encode a long-chain fatty acid CoA ligase (FACL), similar to enzymes involved in the biosynthesis of acyl peptides, resides 15 kb away from the putative enterobactin-like biosynthetic gene cluster (aebG). The proximity of this FACL gene to the enterobactin-like synthetase suggested that V. harveyi may produce amphiphilic enterobactin-like siderophores. Extraction of the bacterial cell pellet of V. harveyi led to the isolation and structure determination of a suite of eight amphi-enterobactin siderophores composed of the cyclic lactone of tris-2,3-dihydroxybenzoyl-L-serine and acyl-L-serine. The FACL knockout mutant, ΔaebG V. harveyi, and the NRPS knockout mutant, ΔaebF V. harveyi, do not produce amphi-enterobactins. The amphi-enterobactin biosynthetic machinery was heterologously expressed in Escherichia coli and reconstituted in vitro, demonstrating the condensation domain of AebF has unique activity, catalyzing two distinct condensation reactions. PMID:24701966

  4. Identification of the nuclear export signals that regulate the intracellular localization of the mouse CMP-sialic acid synthetase

    SciTech Connect

    Fujita, Akiko; Sato, Chihiro; Kitajima, Ken. E-mail: kitajima@agr.nagoya-u.ac.jp

    2007-03-30

    The CMP-sialic acid synthetase (CSS) catalyzes the activation of sialic acid (Sia) to CMP-Sia which is a donor substrate of sialyltransferases. The vertebrate CSSs are usually localized in nucleus due to the nuclear localization signal (NLS) on the molecule. In this study, we first point out that a small, but significant population of the mouse CMP-sialic acid synthetase (mCSS) is also present in cytoplasm, though mostly in nucleus. As a mechanism for the localization in cytoplasm, we first identified two nuclear export signals (NESs) in mCSS, based on the localization studies of the potential NES-deleted mCSS mutants as well as the potential NES-tagged eGFP proteins. These two NESs are conserved among mammalian and fish CSSs, but not present in the bacterial or insect CSS. These results suggest that the intracellular localization of vertebrate CSSs is regulated by not only the NLS, but also the NES sequences.

  5. Structural analysis of malaria-parasite lysyl-tRNA synthetase provides a platform for drug development.

    PubMed

    Khan, Sameena; Garg, Ankur; Camacho, Noelia; Van Rooyen, Jason; Kumar Pole, Anil; Belrhali, Hassan; Ribas de Pouplana, Lluis; Sharma, Vinay; Sharma, Amit

    2013-05-01

    Aminoacyl-tRNA synthetases are essential enzymes that transmit information from the genetic code to proteins in cells and are targets for antipathogen drug development. Elucidation of the crystal structure of cytoplasmic lysyl-tRNA synthetase from the malaria parasite Plasmodium falciparum (PfLysRS) has allowed direct comparison with human LysRS. The authors' data suggest that PfLysRS is dimeric in solution, whereas the human counterpart can also adopt tetrameric forms. It is shown for the first time that PfLysRS is capable of synthesizing the signalling molecule Ap4a (diadenosine tetraphosphate) using ATP as a substrate. The PfLysRS crystal structure is in the apo form, such that binding to ATP will require rotameric changes in four conserved residues. Differences in the active-site regions of parasite and human LysRSs suggest the possibility of exploiting PfLysRS for selective inhibition. These investigations on PfLysRS further validate malarial LysRSs as attractive antimalarial targets and provide new structural space for the development of inhibitors that target pathogen LysRSs selectively. PMID:23633587

  6. Origin and Evolution of Glutamyl-prolyl tRNA Synthetase WHEP Domains Reveal Evolutionary Relationships within Holozoa

    PubMed Central

    Ray, Partho Sarothi; Fox, Paul L.

    2014-01-01

    Repeated domains in proteins that have undergone duplication or loss, and sequence divergence, are especially informative about phylogenetic relationships. We have exploited divergent repeats of the highly structured, 50-amino acid WHEP domains that join the catalytic subunits of bifunctional glutamyl-prolyl tRNA synthetase (EPRS) as a sequence-informed repeat (SIR) to trace the origin and evolution of EPRS in holozoa. EPRS is the only fused tRNA synthetase, with two distinct aminoacylation activities, and a non-canonical translation regulatory function mediated by the WHEP domains in the linker. Investigating the duplications, deletions and divergence of WHEP domains, we traced the bifunctional EPRS to choanozoans and identified the fusion event leading to its origin at the divergence of ichthyosporea and emergence of filozoa nearly a billion years ago. Distribution of WHEP domains from a single species in two or more distinct clades suggested common descent, allowing the identification of linking organisms. The discrete assortment of choanoflagellate WHEP domains with choanozoan domains as well as with those in metazoans supported the phylogenetic position of choanoflagellates as the closest sister group to metazoans. Analysis of clustering and assortment of WHEP domains provided unexpected insights into phylogenetic relationships amongst holozoan taxa. Furthermore, observed gaps in the transition between WHEP domain groupings in distant taxa allowed the prediction of undiscovered or extinct evolutionary intermediates. Analysis based on SIR domains can provide a phylogenetic counterpart to palaentological approaches of discovering “missing links” in the tree of life. PMID:24968216

  7. Twin Attributes of Tyrosyl-tRNA Synthetase of Leishmania donovani: A HOUSEKEEPING PROTEIN TRANSLATION ENZYME AND A MIMIC OF HOST CHEMOKINE.

    PubMed

    Anand, Sneha; Madhubala, Rentala

    2016-08-19

    Aminoacyl-tRNA synthetases (aaRSs) are housekeeping enzymes essential for protein synthesis. Apart from their parent aminoacylation activity, several aaRSs perform non-canonical functions in diverse biological processes. The present study explores the twin attributes of Leishmania tyrosyl-tRNA synthetase (LdTyrRS) namely, aminoacylation, and as a mimic of host CXC chemokine. Leishmania donovani is a protozoan parasite. Its genome encodes a single copy of tyrosyl-tRNA synthetase. We first tested the canonical aminoacylation role of LdTyrRS. The recombinant protein was expressed, and its kinetic parameters were determined by aminoacylation assay. To study the physiological role of LdTyrRS in Leishmania, gene deletion mutations were attempted via targeted gene replacement. The heterozygous mutants showed slower growth kinetics and exhibited attenuated virulence. LdTyrRS appears to be an essential gene as the chromosomal null mutants did not survive. Our data also highlights the non-canonical function of L. donovani tyrosyl-tRNA synthetase. We show that LdTyrRS protein is present in the cytoplasm and exits from the parasite cytoplasm into the extracellular medium. The released LdTyrRS functions as a neutrophil chemoattractant. We further show that LdTyrRS specifically binds to host macrophages with its ELR (Glu-Leu-Arg) peptide motif. The ELR-CXCR2 receptor interaction mediates this binding. This interaction triggers enhanced secretion of the proinflammatory cytokines TNF-α and IL-6 by host macrophages. Our data indicates a possible immunomodulating role of LdTyrRS in Leishmania infection. This study provides a platform to explore LdTyrRS as a potential target for drug development. PMID:27382051

  8. Acetate utilization is inhibited by benzoate in Alcaligenes eutrophus: evidence for transcriptional control of the expression of acoE coding for acetyl coenzyme A synthetase.

    PubMed Central

    Ampe, F; Lindley, N D

    1995-01-01

    During batch growth of Alcaligenes eutrophus on benzoate-acetate mixtures, benzoate was the preferred substrate, with acetate consumption being delayed until the rate of benzoate consumption had diminished. This effect was attributed to a transcriptional control of the synthesis of acetyl coenzyme A (acetyl-CoA) synthetase, an enzyme necessary for the entry of acetate into the central metabolic pathways, rather than to a biochemical modulation of the activity of this enzyme. Analysis of a 2.4-kb mRNA transcript hybridizing with the A. eutrophus acoE gene confirmed this repression effect. In a benzoate-limited chemostat culture, derepression was observed, with no increase in the level of expression following an acetate pulse. Benzoate itself was not the signal triggering the repression of acetyl-CoA synthetase. This role was played by catechol, which transiently accumulated in the medium when high specific rates of benzoate consumption were reached. The lack of rapid inactivation of the functional acetyl-CoA synthetase after synthesis has been stopped enables A. eutrophus to retain the capacity to metabolize acetate for prolonged periods while conserving minimal protein expenditure. PMID:7592330

  9. Expression and fine structure of the gene encoding N epsilon-(indole-3-acetyl)-L-lysine synthetase from Pseudomonas savastanoi.

    PubMed Central

    Roberto, F F; Klee, H; White, F; Nordeen, R; Kosuge, T

    1990-01-01

    The gene encoding N epsilon-(indole-3-acetyl)-L-lysine synthetase, iaaL, from Pseudomonas savastanoi was localized within a 4.25-kilobase EcoRI fragment derived from pIAA1 of oleander strain EW 2009. Two open reading frames of 606 and 1188 nucleotides were identified upon sequencing, which directed the in vitro synthesis of Mr 21,000 and Mr 44,000 proteins. Expression of an open reading frame-2 subclone, pMON686, in Escherichia coli indicates that (indole-3-acetyl)-L-lysine synthetase is encoded solely by open reading frame-2. Hydrophobicity plots of the deduced open reading frame-1 protein suggest that it may be a membrane-bound protein, whereas the predicted iaaL gene product possesses considerable hydrophilic character, consistent with the demonstration of (indole-3-acetyl)-L-lysine synthetase activity in cell-free aqueous extracts. No nucleotide or protein homologies were found between iaaL and any sequences contained within the GenBank or National Biomedical Research Foundation data bases (April 13, 1989). Images PMID:2377619

  10. Site-specific incorporation of redox active amino acids into proteins

    DOEpatents

    Alfonta, Lital; Schultz, Peter G.; Zhang, Zhiwen

    2011-08-30

    Compositions and methods of producing components of protein biosynthetic machinery that include orthogonal tRNAs, orthogonal aminoacyl-tRNA synthetases, and orthogonal pairs of tRNAs/synthetases, which incorporate redox active amino acids into proteins are provided. Methods for identifying these orthogonal pairs are also provided along with methods of producing proteins with redox active amino acids using these orthogonal pairs.

  11. Site-specific incorporation of redox active amino acids into proteins

    DOEpatents

    Alfonta, Lital; Schultz, Peter G.; Zhang, Zhiwen

    2009-02-24

    Compositions and methods of producing components of protein biosynthetic machinery that include orthogonal tRNAs, orthogonal aminoacyl-tRNA synthetases, and orthogonal pairs of tRNAs/synthetases, which incorporate redox active amino acids into proteins are provided. Methods for identifying these orthogonal pairs are also provided along with methods of producing proteins with redox active amino acids using these orthogonal pairs.

  12. Site-specific incorporation of redox active amino acids into proteins

    DOEpatents

    Alfonta, Lital; Schultz, Peter G.; Zhang, Zhiwen

    2012-02-14

    Compositions and methods of producing components of protein biosynthetic machinery that include orthogonal tRNAs, orthogonal aminoacyl-tRNA synthetases, and orthogonal pairs of tRNAs/synthetases, which incorporate redox active amino acids into proteins are provided. Methods for identifying these orthogonal pairs are also provided along with methods of producing proteins with redox active amino acids using these orthogonal pairs.

  13. Site-specific incorporation of redox active amino acids into proteins

    DOEpatents

    Alfonta; Lital , Schultz; Peter G. , Zhang; Zhiwen

    2010-10-12

    Compositions and methods of producing components of protein biosynthetic machinery that include orthogonal tRNAs, orthogonal aminoacyl-tRNA synthetases, and orthogonal pairs of tRNAs/synthetases, which incorporate redox active amino acids into proteins are provided. Methods for identifying these orthogonal pairs are also provided along with methods of producing proteins with redox active amino acids using these orthogonal pairs.

  14. Plant perception of β-aminobutyric acid is mediated by an aspartyl-tRNA synthetase

    PubMed Central

    Luna, Estrella; van Hulten, Marieke; Zhang, Yuhua; Berkowitz, Oliver; López, Ana; Pétriacq, Pierre; Sellwood, Matthew A.; Chen, Beining; Burrell, Mike; van de Meene, Allison; Pieterse, Corné M.J.; Flors, Victor; Ton, Jurriaan

    2014-01-01

    Specific chemicals can prime the plant immune system for augmented defence. β-aminobutyric acid (BABA) is a priming agent that provides broad-spectrum disease protection. However, BABA also suppresses plant growth when applied in high doses, which has hampered its application as a crop defence activator. Here we describe a mutant of Arabidopsis thaliana that is impaired in BABA-induced disease immunity (ibi1) but hypersensitive to BABA-induced growth repression. IBI encodes an aspartyl-tRNA synthetase. Enantiomer-specific binding of R-BABA to IBI1 primed the protein for non-canonical defence signalling in the cytoplasm after pathogen attack. This priming was associated with aspartic acid accumulation and tRNA-induced phosphorylation of translation initiation factor eIF2α. However, mutation of eIF2α-phosphorylating GCN2 kinase did not affect BABA-induced immunity, but relieved BABA-induced growth repression. Hence, BABA-activated IBI1 controls plant immunity and growth via separate pathways. Our results open new opportunities to separate broad-spectrum disease resistance from the associated costs on plant growth. PMID:24776930

  15. Plant perception of β-aminobutyric acid is mediated by an aspartyl-tRNA synthetase.

    PubMed

    Luna, Estrella; van Hulten, Marieke; Zhang, Yuhua; Berkowitz, Oliver; López, Ana; Pétriacq, Pierre; Sellwood, Matthew A; Chen, Beining; Burrell, Mike; van de Meene, Allison; Pieterse, Corné M J; Flors, Victor; Ton, Jurriaan

    2014-06-01

    Specific chemicals can prime the plant immune system for augmented defense. β-aminobutyric acid (BABA) is a priming agent that provides broad-spectrum disease protection. However, BABA also suppresses plant growth when applied in high doses, which has hampered its application as a crop defense activator. Here we describe a mutant of Arabidopsis thaliana that is impaired in BABA-induced disease immunity (ibi1) but is hypersensitive to BABA-induced growth repression. IBI1 encodes an aspartyl-tRNA synthetase. Enantiomer-specific binding of the R enantiomer of BABA to IBI1 primed the protein for noncanonical defense signaling in the cytoplasm after pathogen attack. This priming was associated with aspartic acid accumulation and tRNA-induced phosphorylation of translation initiation factor eIF2α. However, mutation of eIF2α-phosphorylating GCN2 kinase did not affect BABA-induced immunity but relieved BABA-induced growth repression. Hence, BABA-activated IBI1 controls plant immunity and growth via separate pathways. Our results open new opportunities to separate broad-spectrum disease resistance from the associated costs on plant growth. PMID:24776930

  16. Over-expression in Escherichia coli and characterization of two recombinant isoforms of human FAD synthetase

    SciTech Connect

    Brizio, Carmen; Galluccio, Michele; Wait, Robin; Torchetti, Enza Maria; Bafunno, Valeria; Accardi, Rosita; Gianazza, Elisabetta; Indiveri, Cesare; Barile, Maria . E-mail: m.barile@biologia.uniba.it

    2006-06-09

    FAD synthetase (FADS) (EC 2.7.7.2) is a key enzyme in the metabolic pathway that converts riboflavin into the redox cofactor FAD. Two hypothetical human FADSs, which are the products of FLAD1 gene, were over-expressed in Escherichia coli and identified by ESI-MS/MS. Isoform 1 was over-expressed as a T7-tagged protein which had a molecular mass of 63 kDa on SDS-PAGE. Isoform 2 was over-expressed as a 6-His-tagged fusion protein, carrying an extra 84 amino acids at the N-terminal with an apparent molecular mass of 60 kDa on SDS-PAGE. It was purified near to homogeneity from the soluble cell fraction by one-step affinity chromatography. Both isoforms possessed FADS activity and had a strict requirement for MgCl{sub 2}, as demonstrated using both spectrophotometric and chromatographic methods. The purified recombinant isoform 2 showed a specific activity of 6.8 {+-} 1.3 nmol of FAD synthesized/min/mg protein and exhibited a K {sub M} value for FMN of 1.5 {+-} 0.3 {mu}M. This is First report on characterization of human FADS, and First cloning and over-expression of FADS from an organism higher than yeast.

  17. In vivo selection of lethal mutations reveals two functional domains in arginyl-tRNA synthetase.

    PubMed Central

    Geslain, R; Martin, F; Delagoutte, B; Cavarelli, J; Gangloff, J; Eriani, G

    2000-01-01

    Using random mutagenesis and a genetic screening in yeast, we isolated 26 mutations that inactivate Saccharomyces cerevisiae arginyl-tRNA synthetase (ArgRS). The mutations were identified and the kinetic parameters of the corresponding proteins were tested after purification of the expression products in Escherichia coli. The effects were interpreted in the light of the crystal structure of ArgRS. Eighteen functional residues were found around the arginine-binding pocket and eight others in the carboxy-terminal domain of the enzyme. Mutations of these residues all act by strongly impairing the rates of tRNA charging and arginine activation. Thus, ArgRS and tRNA(Arg) can be considered as a kind of ribonucleoprotein, where the tRNA, before being charged, is acting as a cofactor that activates the enzyme. Furthermore, by using different tRNA(Arg) isoacceptors and heterologous tRNA(Asp), we highlighted the crucial role of several residues of the carboxy-terminal domain in tRNA recognition and discrimination. PMID:10744027

  18. Porcine 2', 5'-oligoadenylate synthetases inhibit Japanese encephalitis virus replication in vitro.

    PubMed

    Zheng, Sheng; Zhu, Dan; Lian, Xue; Liu, Weiting; Cao, Ruibing; Chen, Puyan

    2016-05-01

    The 2', 5'-oligoadenylate synthetases (OAS) are antiviral proteins and several isoforms have been identified as flavivirus-resistance biomarkers in human and mouse. The expression kinetics and antiviral functions of porcine OAS family (OAS1, OAS2, and OASL) in PK-15 cells following infection by Japanese encephalitis virus (JEV) were evaluated in the present study. The endogenous expression of the three OAS genes was efficiently induced by IFN-α treatment in PK-15 cells. However, expression of pOAS1 and pOAS2 responded more quickly than pOASL. Infection by JEV also induced the expression of the pOAS isoforms, but at a significantly lower level than that observed following IFN-α stimulation. Transient overexpression of pOASL and pOAS1 inhibited JEV replication more efficiently than OAS2 overexpression. Interestingly, knockdown of pOAS2 expression by siRNA treatment led to the highest increase in JEV multiplication. Co-silencing of RNase L and each pOAS revealed that the anti-JEV function of pOAS1 and pOAS2 were RNase L dependent, while the antiviral activity of pOASL was not. In conclusion, all pOAS isoforms play a significant role in the response to JEV infection, and are differentially induced by different stimuli. The alternative pathways of antiviral activity stimulated by OASL require further study. PMID:26437676

  19. Methods for Kinetic and Thermodynamic Analysis of Aminoacyl-tRNA Synthetases

    PubMed Central

    Francklyn, Christopher S.; First, Eric A.; Perona, John J.; Hou, Ya-Ming

    2008-01-01

    The accuracy of protein synthesis relies on the ability of aminoacyl-tRNA synthetases (aaRSs) to discriminate among true and near cognate substrates. To date, analysis of aaRSs function, including identification of residues of aaRS participating in amino acid and tRNA discrimination, has largely relied on the steady state kinetic pyrophosphate exchange and aminoacylation assays. Pre-steady state kinetic studies investigating a more limited set of aaRS systems have also been undertaken to assess the energetic contributions of individual enzyme-substrate interactions, particularly in the adenylation half reaction. More recently, a renewed interest in the use of rapid kinetics approaches for aaRSs has led to their application to several new aaRS systems, resulting in the identification of mechanistic differences that distinguish the two structurally distinct aaRS classes. Here, we review the techniques for thermodynamic and kinetic analysis of aaRS function. Following a brief survey of methods for the preparation of materials and for steady state kinetic analysis, this review will describe pre-steady state kinetic methods employing rapid quench and stopped-flow fluorescence for analysis of the activation and aminoacyl transfer reactions. Application of these methods to any aaRS system allows the investigator to derive detailed kinetic mechanisms for the activation and aminoacyl transfer reactions, permitting issues of substrate specificity, stereochemical mechanism, and inhibitor interaction to be addressed in a rigorous and quantitative fashion. PMID:18241792

  20. Cancer association study of aminoacyl-tRNA synthetase signaling network in glioblastoma.

    PubMed

    Kim, Yong-Wan; Kwon, Changhyuk; Liu, Juinn-Lin; Kim, Se Hoon; Kim, Sunghoon

    2012-01-01

    Aminoacyl-tRNA synthetases (ARSs) and ARS-interacting multifunctional proteins (AIMPs) exhibit remarkable functional versatility beyond their catalytic activities in protein synthesis. Their non-canonical functions have been pathologically linked to cancers. Here we described our integrative genome-wide analysis of ARSs to show cancer-associated activities in glioblastoma multiforme (GBM), the most aggressive malignant primary brain tumor. We first selected 23 ARS/AIMPs (together referred to as ARSN), 124 cancer-associated druggable target genes (DTGs) and 404 protein-protein interactors (PPIs) of ARSs using NCI's cancer gene index. 254 GBM affymetrix microarray data in The Cancer Genome Atlas (TCGA) were used to identify the probe sets whose expression were most strongly correlated with survival (Kaplan-Meier plots versus survival times, log-rank t-test <0.05). The analysis identified 122 probe sets as survival signatures, including 5 of ARSN (VARS, QARS, CARS, NARS, FARS), and 115 of DTGs and PPIs (PARD3, RXRB, ATP5C1, HSP90AA1, CD44, THRA, TRAF2, KRT10, MED12, etc). Of note, 61 survival-related probes were differentially expressed in three different prognosis subgroups in GBM patients and showed correlation with established prognosis markers such as age and phenotypic molecular signatures. CARS and FARS also showed significantly higher association with different molecular networks in GBM patients. Taken together, our findings demonstrate evidence for an ARSN biology-dominant contribution in the biology of GBM. PMID:22952576

  1. Over-expression of cytosolic glutamine synthetase increases photosynthesis and growth at low nitrogen concentrations.

    PubMed

    Fuentes, S I; Allen, D J; Ortiz-Lopez, A; Hernández, G

    2001-05-01

    Nitrogen, which is a major limiting nutrient for plant growth, is assimilated as ammonium by the concerted action of glutamine synthetase (GS) and glutamate synthase (GOGAT). GS catalyses the critical incorporation of inorganic ammonium into the amino acid glutamine. Two types of GS isozymes, located in the cytosol (GS1) and in the chloroplast (GS2) have been identified in plants. Tobacco (Nicotiana tabacum) transformants, over-expressing GS1 driven by the constitutive CaMV 35S promoter were analysed. GS in leaves of GS-5 and GS-8 plants was up-regulated, at the level of RNA and proteins. These transgenic plants had six times higher leaf GS activity than controls. Under optimum nitrogen fertilization conditions there was no effect of GS over-expression on photosynthesis or growth. However, under nitrogen starvation the GS transgenics had c. 70% higher shoot and c. 100% greater root dry weight as well as 50% more leaf area than low nitrogen controls. This was achieved by the maintenance of photosynthesis at rates indistinguishable from plants under high nitrogen, while photosynthesis in control plants was inhibited by 40-50% by nitrogen deprivation. It was demonstrated that manipulation of GS activity has the potential to maintain crop photosynthetic productivity while reducing nitrogen fertilization and the concomitant pollution. PMID:11432923

  2. Oxidative stress diverts tRNA synthetase to nucleus for protection against DNA damage.

    PubMed

    Wei, Na; Shi, Yi; Truong, Lan N; Fisch, Kathleen M; Xu, Tao; Gardiner, Elisabeth; Fu, Guangsen; Hsu, Yun-Shiuan Olivia; Kishi, Shuji; Su, Andrew I; Wu, Xiaohua; Yang, Xiang-Lei

    2014-10-23

    Tyrosyl-tRNA synthetase (TyrRS) is known for its essential aminoacylation function in protein synthesis. Here we report a function for TyrRS in DNA damage protection. We found that oxidative stress, which often downregulates protein synthesis, induces TyrRS to rapidly translocate from the cytosol to the nucleus. We also found that angiogenin mediates or potentiates this stress-induced translocalization. The nuclear-localized TyrRS activates transcription factor E2F1 to upregulate the expression of DNA damage repair genes such as BRCA1 and RAD51. The activation is achieved through direct interaction of TyrRS with TRIM28 to sequester this vertebrate-specific epigenetic repressor and its associated HDAC1 from deacetylating and suppressing E2F1. Remarkably, overexpression of TyrRS strongly protects against UV-induced DNA double-strand breaks in zebrafish, whereas restricting TyrRS nuclear entry completely abolishes the protection. Therefore, oxidative stress triggers an essential cytoplasmic enzyme used for protein synthesis to translocate to the nucleus to protect against DNA damage. PMID:25284223

  3. The gene encoding human glutathione synthetase (GSS) maps to the long arm of chromosome 20 at band 11.2

    SciTech Connect

    Webb, G.C.; Vaska, V.L.; Ford, J.H.

    1995-12-10

    Two forms of glutathione synthetase deficiency have been described. While one form is mild, causing hemolytic anemia, the other more severe form causes 5-oxoprolinuria with secondary neurological involvement. Despite the existence of two deficiency phenotypes, Southern blots hybridized with a glutathione synthetase cDNA suggest that there is a single glutathione synthetase gene in the human genome. Analysis of somatic cell hybrids showed the human glutathione synthetase gene (GSS) to be located on chromosome 20, and this assignment has been refined to subband 20q11.2 using in situ hybridization. 16 refs., 2 figs.

  4. Structural and mutational studies of the amino acid-editing domain from archaeal/eukaryal phenylalanyl-tRNA synthetase.

    PubMed

    Sasaki, Hiroshi M; Sekine, Shun-ichi; Sengoku, Toru; Fukunaga, Ryuya; Hattori, Motoyuki; Utsunomiya, Yukiko; Kuroishi, Chizu; Kuramitsu, Seiki; Shirouzu, Mikako; Yokoyama, Shigeyuki

    2006-10-01

    To achieve accurate aminoacylation of tRNAs with their cognate amino acids, errors in aminoacylation are corrected by the "editing" mechanism in several aminoacyl-tRNA synthetases. Phenylalanyl-tRNA synthetase (PheRS) hydrolyzes, or edits, misformed tyrosyl-tRNA with its editing domain in the beta subunit. We report the crystal structure of an N-terminal fragment of the PheRS beta subunit (PheRS-beta(N)) from the archaeon, Pyrococcus horikoshii, at 1.94-A resolution. PheRS-beta(N) includes the editing domain B3/4, which has archaea/eukarya-specific insertions/deletions and adopts a different orientation relative to other domains, as compared with that of bacterial PheRS. Surprisingly, most residues constituting the editing active-site pocket were substituted between the archaeal/eukaryal and bacterial PheRSs. We prepared Ala-substituted mutants of P. horikoshii PheRS for 16 editing-pocket residues, of which 12 are archaea/eukarya-specific and four are more widely conserved. On the basis of their activities, Tyr-adenosine was modeled on the B3/4-domain structure. First, the mutations of Leu-202, Ser-211, Asp-234, and Thr-236 made the PheRS incorrectly hydrolyze the cognate Phe-tRNA(Phe), indicating that these residues participate in the Tyr hydroxy group recognition and are responsible for discrimination against Phe. Second, the mutations of Leu-168 and Arg-223, which could interact with the tRNA 3'-terminal adenosine, reduced Tyr-tRNA(Phe) deacylation activity. Third, the mutations of archaea/eukarya-specific Gln-126, Glu-127, Arg-137, and Asn-217, which are proximal to the ester bond to be cleaved, also reduced Tyr-tRNA(Phe) deacylation activity. In particular, the replacement of Asn-217 abolished the activity, revealing its absolute requirement for the catalysis. PMID:17003130

  5. Structural and mutational studies of the amino acid-editing domain from archaeal/eukaryal phenylalanyl-tRNA synthetase

    PubMed Central

    Sasaki, Hiroshi M.; Sekine, Shun-ichi; Sengoku, Toru; Fukunaga, Ryuya; Hattori, Motoyuki; Utsunomiya, Yukiko; Kuroishi, Chizu; Kuramitsu, Seiki; Shirouzu, Mikako; Yokoyama, Shigeyuki

    2006-01-01

    To achieve accurate aminoacylation of tRNAs with their cognate amino acids, errors in aminoacylation are corrected by the “editing” mechanism in several aminoacyl-tRNA synthetases. Phenylalanyl-tRNA synthetase (PheRS) hydrolyzes, or edits, misformed tyrosyl-tRNA with its editing domain in the β subunit. We report the crystal structure of an N-terminal fragment of the PheRS β subunit (PheRS-βN) from the archaeon, Pyrococcus horikoshii, at 1.94-Å resolution. PheRS-βN includes the editing domain B3/4, which has archaea/eukarya-specific insertions/deletions and adopts a different orientation relative to other domains, as compared with that of bacterial PheRS. Surprisingly, most residues constituting the editing active-site pocket were substituted between the archaeal/eukaryal and bacterial PheRSs. We prepared Ala-substituted mutants of P. horikoshii PheRS for 16 editing-pocket residues, of which 12 are archaea/eukarya-specific and four are more widely conserved. On the basis of their activities, Tyr-adenosine was modeled on the B3/4-domain structure. First, the mutations of Leu-202, Ser-211, Asp-234, and Thr-236 made the PheRS incorrectly hydrolyze the cognate Phe-tRNAPhe, indicating that these residues participate in the Tyr hydroxy group recognition and are responsible for discrimination against Phe. Second, the mutations of Leu-168 and Arg-223, which could interact with the tRNA 3′-terminal adenosine, reduced Tyr-tRNAPhe deacylation activity. Third, the mutations of archaea/eukarya-specific Gln-126, Glu-127, Arg-137, and Asn-217, which are proximal to the ester bond to be cleaved, also reduced Tyr-tRNAPhe deacylation activity. In particular, the replacement of Asn-217 abolished the activity, revealing its absolute requirement for the catalysis. PMID:17003130

  6. Differential expression of argininosuccinate synthetase in serous and non‐serous ovarian carcinomas

    PubMed Central

    Cheon, Dong‐Joo; Walts, Ann E; Beach, Jessica A; Lester, Jenny; Bomalaski, John S; Walsh, Christine S; Ruprecht Wiedemeyer, W; Karlan, Beth Y

    2014-01-01

    Abstract The current standard of care for epithelial ovarian cancer does not discriminate between different histologic subtypes (serous, clear cell, endometrioid and mucinous) despite the knowledge that ovarian carcinoma subtypes do not respond uniformly to conventional platinum/taxane‐based chemotherapy. Exploiting addictions and vulnerabilities in cancers with distinguishable molecular features presents an opportunity to develop individualized therapies that may be more effective than the current ‘one size fits all' approach. One such opportunity is arginine depletion therapy with pegylated arginine deiminase, which has shown promise in several cancer types that exhibit low levels of argininosuccinate synthetase including hepatocellular and prostate carcinoma and melanoma. Based on the high levels of argininosuccinate synthetase previously observed in ovarian cancers, these tumours have been considered unlikely candidates for arginine depletion therapy. However, argininosuccinate synthetase levels have not been evaluated in the individual histologic subtypes of ovarian carcinoma. The current study is the first to examine the expression of argininosuccinate synthetase at the mRNA and protein levels in large cohorts of primary and recurrent ovarian carcinomas and ovarian cancer cell lines. We show that the normal fallopian tube fimbria and the majority of primary high‐grade and low‐grade serous ovarian carcinomas express high levels of argininosuccinate synthetase, which tend to further increase in recurrent tumours. In contrast to the serous subtype, non‐serous ovarian carcinoma subtypes (clear cell, endometrioid and mucinous) frequently lack detectable argininosuccinate synthetase expression. The in vitro sensitivity of ovarian cancer cell lines to arginine depletion with pegylated arginine deiminase was inversely correlated with argininosuccinate synthetase expression. Our data suggest that the majority of serous ovarian carcinomas are not susceptible

  7. Protein tyrosine nitration of mitochondrial carbamoyl phosphate synthetase 1 and its functional consequences.

    PubMed

    Takakusa, Hideo; Mohar, Isaac; Kavanagh, Terrance J; Kelly, Edward J; Kaspera, Rüdiger; Nelson, Sidney D

    2012-03-30

    Mitochondria are the primary locus for the generation of reactive nitrogen species including peroxynitrite and subsequent protein tyrosine nitration. Protein tyrosine nitration may have important functional and biological consequences such as alteration of enzyme catalytic activity. In the present study, mouse liver mitochondria were incubated with peroxynitrite, and the mitochondrial proteins were separated by 1D and 2D gel electrophoresis. Nitrotyrosinylated proteins were detected with an anti-nitrotyrosine antibody. One of the major proteins nitrated by peroxynitrite was carbamoyl phosphate synthetase 1 (CPS1) as identified by LC-MS protein analysis and Western blotting. The band intensity of nitration normalized to CPS1 was increased in a peroxynitrite concentration-dependent manner. In addition, CPS1 activity was decreased by treatment with peroxynitrite in a peroxynitrite concentration- and time-dependent manner. The decreased CPS1 activity was not recovered by treatment with reduced glutathione, suggesting that the decrease of the CPS1 activity is due to tyrosine nitration rather than cysteine oxidation. LC-MS analysis of in-gel digested samples, and a Popitam-based modification search located 5 out of 36 tyrosine residues in CPS1 that were nitrated. Taken together with previous findings regarding CPS1 structure and function, homology modeling of mouse CPS1 suggested that nitration at Y1450 in an α-helix of allosteric domain prevents activation of CPS1 by its activator, N-acetyl-l-glutamate. In conclusion, this study demonstrated the tyrosine nitration of CPS1 by peroxynitrite and its functional consequence. Since CPS1 is responsible for ammonia removal in the urea cycle, nitration of CPS1 with attenuated function might be involved in some diseases and drug-induced toxicities associated with mitochondrial dysfunction. PMID:22402285

  8. New isoforms and assembly of glutamine synthetase in the leaf of wheat (Triticum aestivum L.).

    PubMed

    Wang, Xiaochun; Wei, Yihao; Shi, Lanxin; Ma, Xinming; Theg, Steven M

    2015-11-01

    Glutamine synthetase (GS; EC 6.3.1.2) plays a crucial role in the assimilation and re-assimilation of ammonia derived from a wide variety of metabolic processes during plant growth and development. Here, three developmentally regulated isoforms of GS holoenzyme in the leaf of wheat (Triticum aestivum L.) seedlings are described using native-PAGE with a transferase activity assay. The isoforms showed different mobilities in gels, with GSII>GSIII>GSI. The cytosolic GSI was composed of three subunits, GS1, GSr1, and GSr2, with the same molecular weight (39.2kDa), but different pI values. GSI appeared at leaf emergence and was active throughout the leaf lifespan. GSII and GSIII, both located in the chloroplast, were each composed of a single 42.1kDa subunit with different pI values. GSII was active mainly in green leaves, while GSIII showed brief but higher activity in green leaves grown under field conditions. LC-MS/MS experiments revealed that GSII and GSIII have the same amino acid sequence, but GSII has more modification sites. With a modified blue native electrophoresis (BNE) technique and in-gel catalytic activity analysis, only two GS isoforms were observed: one cytosolic and one chloroplastic. Mass calibrations on BNE gels showed that the cytosolic GS1 holoenzyme was ~490kDa and likely a dodecamer, and the chloroplastic GS2 holoenzyme was ~240kDa and likely a hexamer. Our experimental data suggest that the activity of GS isoforms in wheat is regulated by subcellular localization, assembly, and modification to achieve their roles during plant development. PMID:26307137

  9. Nucleotide triphosphate promiscuity in Mycobacterium tuberculosis dethiobiotin synthetase.

    PubMed

    Salaemae, Wanisa; Yap, Min Y; Wegener, Kate L; Booker, Grant W; Wilce, Matthew C J; Polyak, Steven W

    2015-05-01

    Dethiobiotin synthetase (DTBS) plays a crucial role in biotin biosynthesis in microorganisms, fungi, and plants. Due to its importance in bacterial pathogenesis, and the absence of a human homologue, DTBS is a promising target for the development of new antibacterials desperately needed to combat antibiotic resistance. Here we report the first X-ray structure of DTBS from Mycobacterium tuberculosis (MtDTBS) bound to a nucleotide triphosphate (CTP). The nucleoside base is stabilized in its pocket through hydrogen-bonding interactions with the protein backbone, rather than amino acid side chains. This resulted in the unexpected finding that MtDTBS could utilise ATP, CTP, GTP, ITP, TTP, or UTP with similar Km and kcat values, although the enzyme had the highest affinity for CTP in competitive binding and surface plasmon resonance assays. This is in contrast to other DTBS homologues that preferentially bind ATP primarily through hydrogen-bonds between the purine base and the carboxamide side chain of a key asparagine. Mutational analysis performed alongside in silico experiments revealed a gate-keeper role for Asn175 in Escherichia coli DTBS that excludes binding of other nucleotide triphosphates. Here we provide evidence to show that MtDTBS has a broad nucleotide specificity due to the absence of the gate-keeper residue. PMID:25801336

  10. Glutamine synthetase predicts adjuvant TACE response in hepatocellular carcinoma

    PubMed Central

    Zhang, Bo; Liu, Kai; Zhang, Jian; Dong, Liwei; Jin, Zhichao; Zhang, Xinji; Xue, Feng; He, Jia

    2015-01-01

    Background: Adjuvant transcatheter arterial chemoembolization (TACE) is associated with better outcome and reduced tumor recurrence in hepatocellular carcinoma (HCC) patients. This study aimed to investigate the relationship between glutamine synthetase (GS) expression and survival of HCC patients after postoperative adjuvant TACE. Methods: We retrospectively analyzed 554 HCC patients in two independent cohorts who underwent curative resection. Immunohistochemistry assay was used to investigate the expression of GS protein and evaluate the association with survival and the response to adjuvant TACE. Results: In training cohort, patients with low GS expression who received postoperative adjuvant TACE showed a better overall survival (OS) (P<0.001) and less early phase recurrence (P=0.016). Adjuvant TACE was an independent prognostic factor for 5-year OS (HR=0.408, 95% CI 0.261-0.639, P<0.001) and early phase recurrence (HR=0.592, 95% CI 0.376-0.931, P=0.023). The same result was confirmed in validation cohort. Patients with high GS expression in both cohorts did not have a significant response to adjuvant TACE in OS and early phase recurrence. Conclusions: GS status in tumor might be a useful tool in the selection of HCC patients who would be likely to benefit from postoperative adjuvant TACE. PMID:26884995

  11. Isolation and characterization of glutamine synthetase genes in Chlamydomonas reinhardtii.

    PubMed

    Chen, Q; Silflow, C D

    1996-11-01

    To elucidate the role of glutamine synthetase (GS) in nitrogen assimilation in the green alga Chlamydomonas reinhardtii we used maize GS1 (the cytosolic form) and GS2 (the chloroplastic form) cDNAs as hybridization probes to isolate C. reinhardtii cDNA clones. The amino acid sequences derived from the C. reinhardtii clones have extensive homology with GS enzymes from higher plants. A putative amino-terminal transit peptide encoded by the GS2 cDNA suggests that the protein localizes to the chloroplast. Genomic DNA blot analysis indicated that GS1 is encoded by a single gene, whereas two genomic fragments hybridized to the GS2 cDNA probe. All GS2 cDNA clones corresponded to only one of the two GS2 genomic sequences. We provide evidence that ammonium, nitrate, and light regulate GS transcript accumulation in green algae. Our results indicate that the level of GS1 transcripts is repressed by ammonium but induced by nitrate. The level of GS2 transcripts is not affected by ammonium or nitrate. Expression of both GS1 and GS2 genes is regulated by light, but perhaps through different mechanisms. Unlike in higher plants, no decreased level of GS2 transcripts was detected when cells were grown under conditions that repress photorespiration. Analysis of GS transcript levels in mutants with defects in the nitrate assimilation pathway show that nitrate assimilation and ammonium assimilation are regulated independently. PMID:8938407

  12. Evidence for allosteric regulation of succinyl-CoA synthetase.

    PubMed Central

    Um, H D; Klein, C

    1993-01-01

    We have previously reported that distinctly different concentrations of GDP stimulate the phosphorylation and dephosphorylation of p36, the alpha-subunit of succinyl-CoA synthetase (SCS) in Dictyostelium discoideum. In this present study, we have investigated the mechanism underlying these dual effects of GDP. Dephosphorylation of p36 is induced by relatively high levels of GDP and is coincident with the formation of GTP. This indicates that, at high concentrations, GDP serves as a substrate of SCS. However, 100-fold lower concentrations of GDP, which do not bind to the catalytic site to induce SCS dephosphorylation, stimulate p36 phosphorylation. This stimulation is not diminished by dilution of the sample, and is retained during purification of the protein. Gel-filtration analyses indicate that SCS in our system behaves as a non-interacting alpha beta dimer, the hydrodynamic behaviour of which is not altered by the presence of added GDP. The data indicate that altered protein-protein interactions do not account for the stimulation of p36 phosphorylation by low GDP concentrations. We propose that GDP functions as an allosteric regulator of SCS, and experiments using guanosine 5'-[beta-thio]diphosphate (GDP[S]) are shown to distinguish further the allosteric and catalytic binding sites. Images Figure 1 Figure 2 Figure 3 Figure 5 PMID:8240297

  13. Evidence for allosteric regulation of succinyl-CoA synthetase.

    PubMed

    Um, H D; Klein, C

    1993-11-01

    We have previously reported that distinctly different concentrations of GDP stimulate the phosphorylation and dephosphorylation of p36, the alpha-subunit of succinyl-CoA synthetase (SCS) in Dictyostelium discoideum. In this present study, we have investigated the mechanism underlying these dual effects of GDP. Dephosphorylation of p36 is induced by relatively high levels of GDP and is coincident with the formation of GTP. This indicates that, at high concentrations, GDP serves as a substrate of SCS. However, 100-fold lower concentrations of GDP, which do not bind to the catalytic site to induce SCS dephosphorylation, stimulate p36 phosphorylation. This stimulation is not diminished by dilution of the sample, and is retained during purification of the protein. Gel-filtration analyses indicate that SCS in our system behaves as a non-interacting alpha beta dimer, the hydrodynamic behaviour of which is not altered by the presence of added GDP. The data indicate that altered protein-protein interactions do not account for the stimulation of p36 phosphorylation by low GDP concentrations. We propose that GDP functions as an allosteric regulator of SCS, and experiments using guanosine 5'-[beta-thio]diphosphate (GDP[S]) are shown to distinguish further the allosteric and catalytic binding sites. PMID:8240297

  14. Cloning of the glutamine synthetase gene from group B streptococci.

    PubMed

    Suvorov, A N; Flores, A E; Ferrieri, P

    1997-01-01

    The glnA gene from the human pathogen Streptococcus agalactiae was cloned from a genomic library prepared with the lambda phage vector lambdaDASHII. A 4.6-kb DNA fragment of one of the recombinant phages was subcloned in pUC18. This Escherichia coli clone expressed a 52-kDa protein encoded by a 1,341-bp open reading frame. The nucleotide sequence of the open reading frame and the deduced amino acid sequence shared a significant degree of homology with the sequences of other glutamine synthetases (GS). The highest homology was between our deduced protein and GS of gram-positive bacteria such as Bacillus subtilis, Bacillus cereus, and Staphylococcus aureus. Plasmids with the cloned streptococcal glnA were able to complement E. coli glnA mutants grown on minimal media. Rabbit antisera to streptococcal GS recombinant protein recognized not only the recombinant protein but also a similar-sized band in mutanolysin extracts of all group B streptococcal strains tested, regardless of polysaccharide type or surface protein profile. The amino acid sequence of the deduced protein had similarities to other streptococcal cell-surface-bound proteins. The possible functional role of the immunological features of streptococcal GS is discussed. PMID:8975911

  15. Elaborate uORF/IRES features control expression and localization of human glycyl-tRNA synthetase

    PubMed Central

    Alexandrova, Jana; Paulus, Caroline; Rudinger-Thirion, Joëlle; Jossinet, Fabrice; Frugier, Magali

    2015-01-01

    The canonical activity of glycyl-tRNA synthetase (GARS) is to charge glycine onto its cognate tRNAs. However, outside translation, GARS also participates in many other functions. A single gene encodes both the cytosolic and mitochondrial forms of GARS but 2 mRNA isoforms were identified. Using immunolocalization assays, in vitro translation assays and bicistronic constructs we provide experimental evidence that one of these mRNAs tightly controls expression and localization of human GARS. An intricate regulatory domain was found in its 5′-UTR which displays a functional Internal Ribosome Entry Site and an upstream Open Reading Frame. Together, these elements hinder the synthesis of the mitochondrial GARS and target the translation of the cytosolic enzyme to ER-bound ribosomes. This finding reveals a complex picture of GARS translation and localization in mammals. In this context, we discuss how human GARS expression could influence its moonlighting activities and its involvement in diseases. PMID:26327585

  16. Variable Sensitivity to Bacterial Methionyl-tRNA Synthetase Inhibitors Reveals Subpopulations of Streptococcus pneumoniae with Two Distinct Methionyl-tRNA Synthetase Genes

    PubMed Central

    Gentry, Daniel R.; Ingraham, Karen A.; Stanhope, Michael J.; Rittenhouse, Stephen; Jarvest, Richard L.; O'Hanlon, Peter J.; Brown, James R.; Holmes, David J.

    2003-01-01

    As reported previously (J. R. Jarvest et al., J. Med. Chem. 45:1952-1962, 2002), potent inhibitors (at nanomolar concentrations) of Staphylococcus aureus methionyl-tRNA synthetase (MetS; encoded by metS1) have been derived from a high-throughput screening assay hit. Optimized compounds showed excellent activities against staphylococcal and enterococcal pathogens. We report on the bimodal susceptibilities of S. pneumoniae strains, a significant fraction of which was found to be resistant (MIC, ≥8 mg/liter) to these inhibitors. Using molecular genetic techniques, we have found that the mechanism of resistance is the presence of a second, distantly related MetS enzyme, MetS2, encoded by metS2. We present evidence that the metS2 gene is necessary and sufficient for resistance to MetS inhibitors. PCR analysis for the presence of metS2 among a large sample (n = 315) of S. pneumoniae isolates revealed that it is widespread geographically and chronologically, occurring at a frequency of about 46%. All isolates tested also contained the metS1 gene. Searches of public sequence databases revealed that S. pneumoniae MetS2 was most similar to MetS in Bacillus anthracis, followed by MetS in various non-gram-positive bacterial, archaeal, and eukaryotic species, with streptococcal MetS being considerably less similar. We propose that the presence of metS2 in specific strains of S. pneumoniae is the result of horizontal gene transfer which has been driven by selection for resistance to some unknown class of naturally occurring antibiotics with similarities to recently reported synthetic MetS inhibitors. PMID:12760849

  17. Strictly Conserved Lysine of Prolyl-tRNA Synthetase Editing Domain Facilitates Binding and Positioning of Misacylated tRNAPro

    PubMed Central

    2015-01-01

    To ensure high fidelity in translation, many aminoacyl-tRNA synthetases, enzymes responsible for attaching specific amino acids to cognate tRNAs, require proof-reading mechanisms. Most bacterial prolyl-tRNA synthetases (ProRSs) misactivate alanine and employ a post-transfer editing mechanism to hydrolyze Ala-tRNAPro. This reaction occurs in a second catalytic site (INS) that is distinct from the synthetic active site. The 2′-OH of misacylated tRNAPro and several conserved residues in the Escherichia coli ProRS INS domain are directly involved in Ala-tRNAPro deacylation. Although mutation of the strictly conserved lysine 279 (K279) results in nearly complete loss of post-transfer editing activity, this residue does not directly participate in Ala-tRNAPro hydrolysis. We hypothesized that the role of K279 is to bind the phosphate backbone of the acceptor stem of misacylated tRNAPro and position it in the editing active site. To test this hypothesis, we carried out pKa, charge neutralization, and free-energy of binding calculations. Site-directed mutagenesis and kinetic studies were performed to verify the computational results. The calculations revealed a considerably higher pKa of K279 compared to an isolated lysine and showed that the protonated state of K279 is stabilized by the neighboring acidic residue. However, substitution of this acidic residue with a positively charged residue leads to a significant increase in Ala-tRNAPro hydrolysis, suggesting that enhancement in positive charge density in the vicinity of K279 favors tRNA binding. A charge-swapping experiment and free energy of binding calculations support the conclusion that the positive charge at position 279 is absolutely necessary for tRNA binding in the editing active site. PMID:24450765

  18. Modulation of Aminoacylation and Editing Properties of Leucyl-tRNA Synthetase by a Conserved Structural Module.

    PubMed

    Yan, Wei; Ye, Qing; Tan, Min; Chen, Xi; Eriani, Gilbert; Wang, En-Duo

    2015-05-01

    A conserved structural module following the KMSKS catalytic loop exhibits α-α-β-α topology in class Ia and Ib aminoacyl-tRNA synthetases. However, the function of this domain has received little attention. Here, we describe the effect this module has on the aminoacylation and editing capacities of leucyl-tRNA synthetases (LeuRSs) by characterizing the key residues from various species. Mutation of highly conserved basic residues on the third α-helix of this domain impairs the affinity of LeuRS for the anticodon stem of tRNA(Leu), which decreases both aminoacylation and editing activities. Two glycine residues on this α-helix contribute to flexibility, leucine activation, and editing of LeuRS from Escherichia coli (EcLeuRS). Acidic residues on the β-strand enhance the editing activity of EcLeuRS and sense the size of the tRNA(Leu) D-loop. Incorporation of these residues stimulates the tRNA-dependent editing activity of the chimeric minimalist enzyme Mycoplasma mobile LeuRS fused to the connective polypeptide 1 editing domain and leucine-specific domain from EcLeuRS. Together, these results reveal the stem contact-fold to be a functional as well as a structural linker between the catalytic site and the tRNA binding domain. Sequence comparison of the EcLeuRS stem contact-fold domain with editing-deficient enzymes suggests that key residues of this module have evolved an adaptive strategy to follow the editing functions of LeuRS. PMID:25817995

  19. Modulation of Aminoacylation and Editing Properties of Leucyl-tRNA Synthetase by a Conserved Structural Module*

    PubMed Central

    Yan, Wei; Ye, Qing; Tan, Min; Chen, Xi; Eriani, Gilbert; Wang, En-Duo

    2015-01-01

    A conserved structural module following the KMSKS catalytic loop exhibits α-α-β-α topology in class Ia and Ib aminoacyl-tRNA synthetases. However, the function of this domain has received little attention. Here, we describe the effect this module has on the aminoacylation and editing capacities of leucyl-tRNA synthetases (LeuRSs) by characterizing the key residues from various species. Mutation of highly conserved basic residues on the third α-helix of this domain impairs the affinity of LeuRS for the anticodon stem of tRNALeu, which decreases both aminoacylation and editing activities. Two glycine residues on this α-helix contribute to flexibility, leucine activation, and editing of LeuRS from Escherichia coli (EcLeuRS). Acidic residues on the β-strand enhance the editing activity of EcLeuRS and sense the size of the tRNALeu D-loop. Incorporation of these residues stimulates the tRNA-dependent editing activity of the chimeric minimalist enzyme Mycoplasma mobile LeuRS fused to the connective polypeptide 1 editing domain and leucine-specific domain from EcLeuRS. Together, these results reveal the stem contact-fold to be a functional as well as a structural linker between the catalytic site and the tRNA binding domain. Sequence comparison of the EcLeuRS stem contact-fold domain with editing-deficient enzymes suggests that key residues of this module have evolved an adaptive strategy to follow the editing functions of LeuRS. PMID:25817995

  20. Identification and characterization of important residues in the catalytic mechanism of CMP-Neu5Ac synthetase from Neisseria meningitidis.

    PubMed

    Horsfall, Louise E; Nelson, Adam; Berry, Alan

    2010-07-01

    Sialylated oligosaccharides, present on mammalian outer-cell surfaces, play vital roles in cellular interactions and some bacteria are able to mimic these structures to evade their host's immune system. It would be of great benefit to the study of infectious and autoimmune diseases and cancers, to understand the pathway of sialylation in detail to enable the design and production of inhibitors and mimetics. Sialylation occurs in two stages, the first to activate sialic acid and the second to transfer it to the target molecule. The activation step is catalysed by the enzyme CMP-Neu5Ac synthetase (CNS). Here we used crystal structures of CNS and similar enzymes to predict residues of importance in the CNS from Neisseria meningitidis. Nine residues were mutated to alanine, and the steady-state enzyme kinetic parameters were measured using a continuous assay to detect one of the products of the reaction, pyrophosphate. Mutations that caused the greatest loss in activity included K142A, D211A, D209A and a series of mutations at residue Q104, highlighted from sequence-alignment studies of related enzymes, demonstrating significant roles for these residues in the catalytic mechanism of CNS. The mutations of D211A and D209A provide strong evidence for a previously proposed metal-binding site in the enzyme, and the results of our mutations at residue Q104 lead us to include this residue in the metal-binding site of an intermediate complex. This suggests that, like the sugar-activating lipopolysaccharide-synthesizing CMP-2-keto-3-deoxy-manno-octonic acid synthetase enzyme KdsB, CNS recruits two Mg(2+) ions during the catalytic cycle. PMID:20491913

  1. The Effect of Nitrogen Nutrition on the Cellular Localization of Glutamine Synthetase Isoforms in Barley Roots.

    PubMed Central

    Peat, L. J.; Tobin, A. K.

    1996-01-01

    Glutamine synthetase (GS) was detected by immunogold localization in the cytosol and plastids of roots of 7-d-old barley (Hordeum vulgare L. cv Klaxon) seedlings grown in the presence or absence of NO3- (15 mM) or NH4+ (30 mM). The number of GS polypeptides changed during root development, and this was affected by N nutrition. There was no evidence of a NO3--inducible root plastid GS.In apical 5- to 10-mm regions of the root the concentration of immunogold labeling of cytosolic GS was higher in the cortical parenchyma than in the vascular cells of the stele, irrespective of N nutrition. This labeling was at least 50% higher in both cell types in N-free compared with N-grown (either NO3- or NH4+) seedlings. In contrast, GS specific activity was highest in roots of NO3--grown seedlings. It is suggested that this indicates the presence of inactive GS in roots grown without N. This study has identified both cell- and development-specific responses of GS to N nutrition. PMID:12226350

  2. Peripheral neuropathy via mutant tRNA synthetases: Inhibition of protein translation provides a possible explanation.

    PubMed

    Storkebaum, Erik

    2016-09-01

    Recent evidence indicates that inhibition of protein translation may be a common pathogenic mechanism for peripheral neuropathy associated with mutant tRNA synthetases (aaRSs). aaRSs are enzymes that ligate amino acids to their cognate tRNA, thus catalyzing the first step of translation. Dominant mutations in five distinct aaRSs cause Charcot-Marie-Tooth (CMT) peripheral neuropathy, characterized by length-dependent degeneration of peripheral motor and sensory axons. Surprisingly, loss of aminoacylation activity is not required for mutant aaRSs to cause CMT. Rather, at least for some mutations, a toxic-gain-of-function mechanism underlies CMT-aaRS. Interestingly, several mutations in two distinct aaRSs were recently shown to inhibit global protein translation in Drosophila models of CMT-aaRS, by a mechanism independent of aminoacylation, suggesting inhibition of translation as a common pathogenic mechanism. Future research aimed at elucidating the molecular mechanisms underlying the translation defect induced by CMT-mutant aaRSs should provide novel insight into the molecular pathogenesis of these incurable diseases. PMID:27352040

  3. Genetic identification of essential indels and domains in carbamoyl phosphate synthetase II of Toxoplasma gondii

    PubMed Central

    Fox, Barbara A.; Ristuccia, Jessica G.; Bzik, David J.

    2013-01-01

    New treatments need to be developed for the significant human diseases of toxoplasmosis and malaria to circumvent problems with current treatments and drug resistance. Apicomplexan parasites causing these lethal diseases are deficient in pyrimidine salvage suggesting that selective inhibition of de novo pyrimidine biosynthesis can lead to a severe loss of UMP and dTMP pools thereby inhibiting parasite RNA and DNA synthesis. Disruption of Toxoplasma gondii carbamoyl phosphate synthetase II (CPSII) induces a severe uracil auxotrophy with no detectable parasite replication in vitro and complete attenuation of virulence in mice. Here we show that a CPSII cDNA minigene efficiently complements the uracil auxotrophy of CPSII deficient mutants restoring parasite growth and virulence. Our complementation assays reveal that engineered mutations within or proximal to the catalytic triad of the N-terminal glutamine amidotransferase (GATase) domain inactivate the complementation activity of T. gondii CPSII and demonstrate a critical dependence on the apicomplexan CPSII GATase domain in vivo. Surprisingly, indels present within the T. gondii CPSII GATase domain as well as the C-terminal allosteric regulatory domain are found to be essential. In addition several mutations directed at residues implicated in allosteric regulation in Escherichia coli CPS either abolish or markedly suppress complementation and further define the functional importance of the allosteric regulatory region. Collectively, these findings identify novel features of T. gondii CPSII as potential parasite-selective targets for drug development. PMID:18992249

  4. Genetic identification of essential indels and domains in carbamoyl phosphate synthetase II of Toxoplasma gondii.

    PubMed

    Fox, Barbara A; Ristuccia, Jessica G; Bzik, David J

    2009-04-01

    New treatments need to be developed for the significant human diseases of toxoplasmosis and malaria to circumvent problems with current treatments and drug resistance. Apicomplexan parasites causing these lethal diseases are deficient in pyrimidine salvage, suggesting that selective inhibition of de novo pyrimidine biosynthesis can lead to a severe loss of uridine 5'-monophosphate (UMP) and thymidine 5'-monophosphate (dTMP) pools, thereby inhibiting parasite RNA and DNA synthesis. Disruption of Toxoplasma gondii carbamoyl phosphate synthetase II (CPSII) induces a severe uracil auxotrophy with no detectable parasite replication in vitro and complete attenuation of virulence in mice. Here we show that a CPSII cDNA minigene efficiently complements the uracil auxotrophy of CPSII-deficient mutants, restoring parasite growth and virulence. Our complementation assays reveal that engineered mutations within, or proximal to, the catalytic triad of the N-terminal glutamine amidotransferase (GATase) domain inactivate the complementation activity of T. gondii CPSII and demonstrate a critical dependence on the apicomplexan CPSII GATase domain in vivo. Surprisingly, indels present within the T. gondii CPSII GATase domain as well as the C-terminal allosteric regulatory domain are found to be essential. In addition, several mutations directed at residues implicated in allosteric regulation in Escherichia coli CPS either abolish or markedly suppress complementation and further define the functional importance of the allosteric regulatory region. Collectively, these findings identify novel features of T. gondii CPSII as potential parasite-selective targets for drug development. PMID:18992249

  5. In vitro characterization of the NAD(+) synthetase NadE1 from Herbaspirillum seropedicae.

    PubMed

    Laskoski, Kerly; Santos, Adrian R S; Bonatto, Ana C; Pedrosa, Fábio O; Souza, Emanuel M; Huergo, Luciano F

    2016-05-01

    Nicotinamide adenine dinucleotide synthetase enzyme (NadE) catalyzes the amination of nicotinic acid adenine dinucleotide (NaAD) to form NAD(+). This reaction represents the last step in the majority of the NAD(+) biosynthetic routes described to date. NadE enzymes typically use either glutamine or ammonium as amine nitrogen donor, and the reaction is energetically driven by ATP hydrolysis. Given the key role of NAD(+) in bacterial metabolism, NadE has attracted considerable interest as a potential target for the development of novel antibiotics. The plant-associative nitrogen-fixing bacteria Herbaspirillum seropedicae encodes two putative NadE, namely nadE1 and nadE2. The nadE1 gene is linked to glnB encoding the signal transduction protein GlnB. Here we report the purification and in vitro characterization of H. seropedicae NadE1. Gel filtration chromatography analysis suggests that NadE1 is an octamer. The NadE1 activity was assayed in vitro, and the Michaelis-Menten constants for substrates NaAD, ATP, glutamine and ammonium were determined. Enzyme kinetic and in vitro substrate competition assays indicate that H. seropedicae NadE1 uses glutamine as a preferential nitrogen donor. PMID:26802007

  6. Labeling of the Plasma Membrane of Pea Cells by a Surface-localized Glucan Synthetase 1

    PubMed Central

    Anderson, Robin L.; Ray, Peter M.

    1978-01-01

    When radioactive UDP-glucose is supplied to 1-millimeter-thick slices of pea (Pisum sativum) stem tissue, radioactive glucose becomes incorporated into membrane-bound polysaccharides. Evidence is given that this incorporation does not result from breakdown of UDP-glucose and utilization of the resultant free glucose, and that the incorporation most likely takes place at the cell surface, leading to a specific labeling of the plasma membrane. The properties of the plasma membrane that are indicated by this method of recognition, including the association of K+-stimulated ATPase activity with the plasma membrane, resemble properties inferred using other approaches. The membrane-associated polysaccharide product formed from UDP-glucose is largely 1,3-linked glucan, presumably callose, and does not behave as a precursor of cell wall polymers. No substantial amount of cellulose is formed from UDP-glucose in this procedure, even though these cells incorporate free glucose rapidly into cellulose. This synthetase system that uses external UDP-glucose may serve for formation of wound callose. PMID:16660373

  7. Differential Gene Expression and Protein Localization of Cryptosporidium parvum Fatty Acyl-CoA Synthetase Isoforms.

    PubMed

    Guo, Fengguang; Zhang, Haili; Payne, Harold Ross; Zhu, Guan

    2016-03-01

    Cryptosporidium parvum is unable to synthesize fatty acids de novo, but possesses three long-chain fatty acyl-CoA synthetase (CpACS) isoforms for activating fatty acids. We have recently shown that these enzymes could be targeted to kill the parasite in vitro and in vivo. Here, we demonstrated that the CpACS genes were differentially expressed during the parasite life cycle, and their proteins were localized to different subcellular structures by immunofluorescence and immuno-electron microscopies. Among them, CpACS1 displayed as an apical protein in sporozoites and merozoites, but no or little presence during the intracellular merogony until the release of merozoites, suggesting that CpACS1 probably functioned mainly during the parasite invasion and/or early stage of intracellular development. Both CpACS2 and CpACS3 proteins were present in all parasite life cycle stages, in which CpACS2 was present in the parasite and the parasitophorous vacuole membranes (PVM), whereas CpACS3 was mainly present in the parasite plasma membranes with little presence in the PVM. These observations suggest that CpACS2 and CpACS3 may participate in scavenging and transport of fatty acids across the PVM and the parasite cytoplasmic membranes, respectively. PMID:26411755

  8. Glutamine synthetase in Medicago truncatula, unveiling new secrets of a very old enzyme

    PubMed Central

    Seabra, Ana R.; Carvalho, Helena G.

    2015-01-01

    Glutamine synthetase (GS) catalyzes the first step at which nitrogen is brought into cellular metabolism and is also involved in the reassimilation of ammonium released by a number of metabolic pathways. Due to its unique position in plant nitrogen metabolism, GS plays essential roles in all aspects of plant development, from germination to senescence, and is a key component of nitrogen use efficiency (NUE) and plant yield. Understanding the mechanisms regulating GS activity is therefore of utmost importance and a great effort has been dedicated to understand how GS is regulated in different plant species. The present review summarizes exciting recent developments concerning the structure and regulation of GS isoenzymes, using the model legume Medicago truncatula. These include the understanding of the structural determinants of both the cytosolic and plastid located isoenzymes, the existence of a seed-specific GS gene unique to M. truncatula and closely related species and the discovery that GS isoenzymes are regulated by nitric oxide at the post-translational level. The data is discussed and integrated with the potential roles of the distinct GS isoenzymes within the whole plant context. PMID:26284094

  9. Promotion of glioma cell survival by acyl-CoA synthetase 5 under extracellular acidosis conditions.

    PubMed

    Mashima, T; Sato, S; Sugimoto, Y; Tsuruo, T; Seimiya, H

    2009-01-01

    Extracellular acidosis (low pH) is a tumor microenvironmental stressor that has a critical function in the malignant progression and metastatic dissemination of tumors. To survive under stress conditions, tumor cells must evolve resistance to stress-induced toxicity. Acyl-CoA synthetase 5 (ACSL5) is a member of the ACS family, which converts fatty acid to acyl-CoA. ACSL5 is frequently overexpressed in malignant glioma, whereas its functional significance is still unknown. Using retrovirus-mediated stable gene transfer (gain of function) and small interfering RNA-mediated gene silencing (loss of function), we show here that ACSL5 selectively promotes human glioma cell survival under extracellular acidosis. ACSL5 enhanced cell survival through its ACS catalytic activity. To clarify the genome-wide changes in cell signaling pathways by ACSL5, we performed cDNA microarray analysis and identified an ACSL5-dependent gene expression signature. The analysis revealed that ACSL5 was critical to the expression of tumor-related factors including midkine (MDK), a heparin-binding growth factor frequently overexpressed in cancer. Knockdown of MDK expression significantly attenuated ACSL5-mediated survival under acidic state. These results indicate that ACSL5 is a critical factor for survival of glioma cells under acidic tumor microenvironment, thus providing novel molecular basis for cancer therapy. PMID:18806831

  10. Localization and nucleotide specificity of Blastocystis succinyl-CoA synthetase

    PubMed Central

    Hamblin, Karleigh; Standley, Daron M; Rogers, Matthew B; Stechmann, Alexandra; Roger, Andrew J; Maytum, Robin; van der Giezen, Mark

    2008-01-01

    The anaerobic lifestyle of the intestinal parasite Blastocystis raises questions about the biochemistry and function of its mitochondria-like organelles. We have characterized the Blastocystis succinyl-CoA synthetase (SCS), a tricarboxylic acid cycle enzyme that conserves energy by substrate-level phosphorylation. We show that SCS localizes to the enigmatic Blastocystis organelles, indicating that these organelles might play a similar role in energy metabolism as classic mitochondria. Although analysis of residues inside the nucleotide-binding site suggests that Blastocystis SCS is GTP-specific, we demonstrate that it is ATP-specific. Homology modelling, followed by flexible docking and molecular dynamics simulations, indicates that while both ATP and GTP fit into the Blastocystis SCS active site, GTP is destabilized by electrostatic dipole interactions with Lys 42 and Lys 110, the side-chains of which lie outside the nucleotide-binding cavity. It has been proposed that residues in direct contact with the substrate determine nucleotide specificity in SCS. However, our results indicate that, in Blastocystis, an electrostatic gatekeeper controls which ligands can enter the binding site. PMID:18452512

  11. Structure of human carbamoyl phosphate synthetase: deciphering the on/off switch of human ureagenesis.

    PubMed

    de Cima, Sergio; Polo, Luis M; Díez-Fernández, Carmen; Martínez, Ana I; Cervera, Javier; Fita, Ignacio; Rubio, Vicente

    2015-01-01

    Human carbamoyl phosphate synthetase (CPS1), a 1500-residue multidomain enzyme, catalyzes the first step of ammonia detoxification to urea requiring N-acetyl-L-glutamate (NAG) as essential activator to prevent ammonia/amino acids depletion. Here we present the crystal structures of CPS1 in the absence and in the presence of NAG, clarifying the on/off-switching of the urea cycle by NAG. By binding at the C-terminal domain of CPS1, NAG triggers long-range conformational changes affecting the two distant phosphorylation domains. These changes, concerted with the binding of nucleotides, result in a dramatic remodeling that stabilizes the catalytically competent conformation and the building of the ~35 Å-long tunnel that allows migration of the carbamate intermediate from its site of formation to the second phosphorylation site, where carbamoyl phosphate is produced. These structures allow rationalizing the effects of mutations found in patients with CPS1 deficiency (presenting hyperammonemia, mental retardation and even death), as exemplified here for some mutations. PMID:26592762

  12. Structure of human carbamoyl phosphate synthetase: deciphering the on/off switch of human ureagenesis

    PubMed Central

    de Cima, Sergio; Polo, Luis M.; Díez-Fernández, Carmen; Martínez, Ana I.; Cervera, Javier; Fita, Ignacio; Rubio, Vicente

    2015-01-01

    Human carbamoyl phosphate synthetase (CPS1), a 1500-residue multidomain enzyme, catalyzes the first step of ammonia detoxification to urea requiring N-acetyl-L-glutamate (NAG) as essential activator to prevent ammonia/amino acids depletion. Here we present the crystal structures of CPS1 in the absence and in the presence of NAG, clarifying the on/off-switching of the urea cycle by NAG. By binding at the C-terminal domain of CPS1, NAG triggers long-range conformational changes affecting the two distant phosphorylation domains. These changes, concerted with the binding of nucleotides, result in a dramatic remodeling that stabilizes the catalytically competent conformation and the building of the ~35 Å-long tunnel that allows migration of the carbamate intermediate from its site of formation to the second phosphorylation site, where carbamoyl phosphate is produced. These structures allow rationalizing the effects of mutations found in patients with CPS1 deficiency (presenting hyperammonemia, mental retardation and even death), as exemplified here for some mutations. PMID:26592762

  13. Regulation of expression of glutamine synthetase in a symbiotic Nostoc strain associated with Anthoceros punctatus.

    PubMed Central

    Joseph, C M; Meeks, J C

    1987-01-01

    A characteristic of N2-fixing cyanobacteria in symbiotic associations appears to be release of N2-derived NH4+. The specific activity of the primary ammonium-assimilating enzyme, glutamine synthetase (GS), was found to be three- to fourfold lower in Nostoc sp. strain 7801 grown in symbiotic association with the bryophyte Anthoceros punctatus than in free-living Nostoc sp. strain 7801. Quantitative immunological assays with antisera against GS purified from Nostoc sp. strain 7801 and from Escherichia coli indicated that similar amounts of the GS protein were present in symbiotic (50 micrograms mg-1) and free-living (68 micrograms mg-1) cultures. The conclusion from these experiments is that GS is regulated by a posttranslational mechanism in Anthoceros-associated Nostoc sp. strain 7801. However, the results of comparative catalytic and immunological experiments between N2- and NH4+-grown free-living Nostoc sp. strain 7801 implied control of GS synthesis. A correlation was not observed between the level of GS expression and the extent of symbiotic heterocyst differentiation in Nostoc sp. strain 7801 associated with A. punctatus. Images PMID:2884210

  14. Glutamine synthetase in the phloem plays a major role in controlling proline production

    PubMed Central

    Brugiere, N; Dubois, F; Limami, AM; Lelandais, M; Roux, Y; Sangwan, RS; Hirel, B

    1999-01-01

    To inhibit expression specifically in the phloem, a 274-bp fragment of a cDNA (Gln1-5) encoding cytosolic glutamine synthetase (GS1) from tobacco was placed in the antisense orientation downstream of the cytosolic Cu/Zn superoxide dismutase promoter of Nicotiana plumbaginifolia. After Agrobacterium-mediated transformation, two transgenic N. tabacum lines exhibiting reduced levels of GS1 mRNA and GS activity in midribs, stems, and roots were obtained. Immunogold labeling experiments allowed us to verify that the GS protein content was markedly decreased in the phloem companion cells of transformed plants. Moreover, a general decrease in proline content in the transgenic plants in comparison with wild-type tobacco was observed when plants were forced to assimilate large amounts of ammonium. In contrast, no major changes in the concentration of amino acids used for nitrogen transport were apparent. A (15)NH(4)(+)-labeling kinetic over a 48-hr period confirmed that in leaves of transgenic plants, the decrease in proline production was directly related to glutamine availability. After 2 weeks of salt treatment, the transgenic plants had a pronounced stress phenotype, consisting of wilting and bleaching in the older leaves. We conclude that GS in the phloem plays a major role in regulating proline production consistent with the function of proline as a nitrogen source and as a key metabolite synthesized in response to water stress. PMID:10521528

  15. Proteomic identification of glutamine synthetase as a differential marker for oligodendrogliomas and astrocytomas

    PubMed Central

    Zhuang, Zhengping; Qi, Meng; Li, Jie; Okamoto, Hiroaki; Xu, David S.; Iyer, Rajiv R.; Lu, Jie; Yang, Chunzhang; Weil, Robert J.; Vortmeyer, Alexander; Lonser, Russell R.

    2016-01-01

    Object Astrocytomas and oligodendrogliomas are primary CNS tumors that remain a challenge to differentiate histologically because of their morphological variability and because there is a lack of reliable differential diagnostic markers. To identify proteins that are differentially expressed between astrocytomas and oligodendrogliomas, the authors analyzed the proteomic expression patterns and identified uniquely expressed proteins in these neoplasms. Methods Proteomes of astrocytomas and oligodendrogliomas were analyzed using 2D gel electrophoresis and subsequent computerized gel analysis to detect differentially expressed proteins. The proteins were identified using high-performance liquid chromatography accompanied by tandem mass spectrometry. To determine the role of the differentially expressed proteins in astrocytes, undifferentiated glial cell cultures were treated with dibutyryl–cyclic adenosine monophosphate (cAMP). Results Two-dimensional gel electrophoresis revealed that glutamine synthetase was differentially expressed in astrocytomas and oligodendrogliomas. Western blot and immunohistochemical analyses confirmed the increased expression of glutamine synthetase in astrocytomas compared with oligodendrogliomas. Whereas glutamine synthetase expression was demonstrated across all grades of astrocytomas (Grade II–IV [15 tumors]) and oligoastrocytomas (4 tumors), it was expressed in only 1 oligodendroglioma (6% [16 tumors]). Treatment of undifferentiated glial cell cultures with dibutyryl-cAMP resulted in astrocyte differentiation that was associated with increased levels of glial fibrillary acidic protein and glutamine synthetase. Conclusions These data indicate that glutamine synthetase expression can be used to distinguish astrocytic from oligodendroglial tumors and may play a role in the pathogenesis of astrocytomas. PMID:21682567

  16. Interdomain and Intermodule Organization in Epimerization Domain Containing Nonribosomal Peptide Synthetases.

    PubMed

    Chen, Wei-Hung; Li, Kunhua; Guntaka, Naga Sandhya; Bruner, Steven D

    2016-08-19

    Nonribosomal peptide synthetases are large, complex multidomain enzymes responsible for the biosynthesis of a wide range of peptidic natural products. Inherent to synthetase chemistry is the thioester templated mechanism that relies on protein/protein interactions and interdomain dynamics. Several questions related to structure and mechanism remain to be addressed, including the incorporation of accessory domains and intermodule interactions. The inclusion of nonproteinogenic d-amino acids into peptide frameworks is a common and important modification for bioactive nonribosomal peptides. Epimerization domains, embedded in nonribosomal peptide synthetases assembly lines, catalyze the l- to d-amino acid conversion. Here we report the structure of the epimerization domain/peptidyl carrier protein didomain construct from the first module of the cyclic peptide antibiotic gramicidin synthetase. Both holo (phosphopantethiene post-translationally modified) and apo structures were determined, each representing catalytically relevant conformations of the two domains. The structures provide insight into domain-domain recognition, substrate delivery during the assembly line process, in addition to the structural organization of homologous condensation domains, canonical players in all synthetase modules. PMID:27294598

  17. Glutamine Synthetase Sensitivity to Oxidative Modification during Nutrient Starvation in Prochlorococcus marinus PCC 9511

    PubMed Central

    Gómez-Baena, Guadalupe; Domínguez-Martín, María Agustina; Donaldson, Robert P.; García-Fernández, José Manuel; Diez, Jesús

    2015-01-01

    Glutamine synthetase plays a key role in nitrogen metabolism, thus the fine regulation of this enzyme in Prochlorococcus, which is especially important in the oligotrophic oceans where this marine cyanobacterium thrives. In this work, we studied the metal-catalyzed oxidation of glutamine synthetase in cultures of Prochlorococcus marinus strain PCC 9511 subjected to nutrient limitation. Nitrogen deprivation caused glutamine synthetase to be more sensitive to metal-catalyzed oxidation (a 36% increase compared to control, non starved samples). Nutrient starvation induced also a clear increase (three-fold in the case of nitrogen) in the concentration of carbonyl derivatives in cell extracts, which was also higher (22%) upon addition of the inhibitor of electron transport, DCMU, to cultures. Our results indicate that nutrient limitations, representative of the natural conditions in the Prochlorococcus habitat, affect the response of glutamine synthetase to oxidative inactivating systems. Implications of these results on the regulation of glutamine synthetase by oxidative alteration prior to degradation of the enzyme in Prochlorococcus are discussed. PMID:26270653

  18. Membrane Anchoring of Aminoacyl-tRNA Synthetases by Convergent Acquisition of a Novel Protein Domain*

    PubMed Central

    Olmedo-Verd, Elvira; Santamaría-Gómez, Javier; Ochoa de Alda, Jesús A. G.; Ribas de Pouplana, Lluis; Luque, Ignacio

    2011-01-01

    Four distinct aminoacyl-tRNA synthetases (aaRSs) found in some cyanobacterial species contain a novel protein domain that bears two putative transmembrane helices. This CAAD domain is present in glutamyl-, isoleucyl-, leucyl-, and valyl-tRNA synthetases, the latter of which has probably recruited the domain more than once during evolution. Deleting the CAAD domain from the valyl-tRNA synthetase of Anabaena sp. PCC 7120 did not significantly modify the catalytic properties of this enzyme, suggesting that it does not participate in its canonical tRNA-charging function. Multiple lines of evidence suggest that the function of the CAAD domain is structural, mediating the membrane anchorage of the enzyme, although membrane localization of aaRSs has not previously been described in any living organism. Synthetases containing the CAAD domain were localized in the intracytoplasmic thylakoid membranes of cyanobacteria and were largely absent from the plasma membrane. The CAAD domain was necessary and apparently sufficient for protein targeting to membranes. Moreover, localization of aaRSs in thylakoids was important under nitrogen limiting conditions. In Anabaena, a multicellular filamentous cyanobacterium often used as a model for prokaryotic cell differentiation, valyl-tRNA synthetase underwent subcellular relocation at the cell poles during heterocyst differentiation, a process also dependent on the CAAD domain. PMID:21965654

  19. A second glutamine synthetase gene with expression in the gills of the gulf toadfish (opsanus beta)

    SciTech Connect

    Walsh, Patrick J.; Mayer, Gregory D.; Medina, Monica; Bernstein, Matthew L.; Barimo, John F.; Mommsen, Thomas P.

    2003-05-08

    Enzyme and molecular biology approaches were used to more completely characterize the expression of the nitrogen metabolism enzyme glutamine synthetase [GSase; L-glutamate: ammonia ligase (ADP-forming), E.C. 6.3.1.2] in a variety of tissues of the gulf toadfish (Opsanus beta) subjected to unconfined (ammonotelic) and confined (ureotelic) conditions. Enzymological results demonstrate that while weight-specific GSase activities rank in the order of brain > liver > stomach {approx} kidney > intestine > gill> heart/spleen > muscle, when tissue mass is used to calculate a glutamine synthetic potential, the liver has the greatest, followed by muscle > stomach and intestine with minor contributions from the remaining tissues. Additionally, during confinement stress, GSase activity only increases significantly in liver (5-fold) and muscle (2-fold), tissues which previously showed significant expression of the other enzymes of urea synthesis. RT PCR and RACE PCR revealed the presence of a second GSas e cDNA from gill tissue that appears to share relatively low nucleotide and amino acid sequence similarity ({approx}73 percent) with the original GSase cloned from liver, and furthermore lacks a mitochondrial leader targeting sequence. RT PCR and restriction digestion experiments demonstrated that mRNA from the original ''liver'' GSase is expressed in all tissues examined (liver, gill, stomach, intestine, kidney, brain and muscle), whereas the new ''gill'' form shows expression primarily in the gill. Enzyme activities of gill GSase also exhibit a different subcellular compartmentation with apparent exclusive expression in the soluble compartment, whereas other tissues expressing the ''liver'' form show both cytoplasmic and mitochondrial activities. Finally, phylogenetic analysis of a number of GSases demonstrates that the toadfish gill GSase has a greater affinity for a clade that includes the Xenopus GSase genes and one of two Fugu GSase genes, than it has for a clade

  20. Enzymatic characterization of two acetyl-CoA synthetase genes from Populus trichocarpa.

    PubMed

    Cao, Shan; Li, Hui; Yao, Xiaoyun; Li, Lihong; Jiang, Luyao; Zhang, Qiang; Zhang, Jiaxue; Liu, Di; Lu, Hai

    2016-01-01

    The acetyl-CoA synthetase (ACS) family is a subfamily of adenylate-forming enzymes, which has a close evolutionary relationship with the 4-coumarate:CoA ligase (4CL) family. In this study, two ACS genes were cloned from Populus trichocarpa and were named PtrACS1 and PtrACS2. Bioinformatics characterization of PtrACS1 and PtrACS2 showed that they contained the key ACS residues and a putative peroxisome targeting sequence 1 (PTS1) at the end of the C-terminal sequence. Real-time PCR results showed that PtrACS1 and PtrACS2 were expressed in the phloem, xylem, leaves, and roots of one-year-old P. trichocarpa, but were expressed primarily in the leaves. The ACS enzyme activity was higher in leaves than other tissues in P. trichocarpa. Two overexpressed recombinant proteins showed no catalytic activity toward the substrates of 4CL, but did have notable catalytic activity toward sodium acetate and substrates of ACS. The relative activities of PtrACS1 and PtrACS2 were 194.16 ± 11.23 and 422.25 ± 21.69 μM min(-1) mg(-1), respectively. The K m and V max of PtrACS1 were 0.25 mM and 698.85 μM min(-1) mg(-1), while those for PtrACS2 were 0.72 mM and 245.96 μM min(-1) mg(-1), respectively. Our results revealed that both proteins belong to the ACS family, and provide a theoretical foundation for the identification and functional analysis of members of the adenylate-forming enzyme superfamily. PMID:27390658

  1. Structural Insights into the Catalytic Mechanism of Escherichia coli Selenophosphate Synthetase

    SciTech Connect

    Noinaj, Nicholas; Wattanasak, Rut; Lee, Duck-Yeon; Wally, Jeremy L.; Piszczek, Grzegorz; Chock, P. Boon; Stadtman, Thressa C.; Buchanan, Susan K.

    2012-03-26

    Selenophosphate synthetase (SPS) catalyzes the synthesis of selenophosphate, the selenium donor for the biosynthesis of selenocysteine and 2-selenouridine residues in seleno-tRNA. Selenocysteine, known as the 21st amino acid, is then incorporated into proteins during translation to form selenoproteins which serve a variety of cellular processes. SPS activity is dependent on both Mg{sup 2+} and K{sup +} and uses ATP, selenide, and water to catalyze the formation of AMP, orthophosphate, and selenophosphate. In this reaction, the gamma phosphate of ATP is transferred to the selenide to form selenophosphate, while ADP is hydrolyzed to form orthophosphate and AMP. Most of what is known about the function of SPS has derived from studies investigating Escherichia coli SPS (EcSPS) as a model system. Here we report the crystal structure of the C17S mutant of SPS from E. coli (EcSPS{sup C17S}) in apo form (without ATP bound). EcSPS{sup C17S} crystallizes as a homodimer, which was further characterized by analytical ultracentrifugation experiments. The glycine-rich N-terminal region (residues 1 through 47) was found in the open conformation and was mostly ordered in both structures, with a magnesium cofactor bound at the active site of each monomer involving conserved aspartate residues. Mutating these conserved residues (D51, D68, D91, and D227) along with N87, also found at the active site, to alanine completely abolished AMP production in our activity assays, highlighting their essential role for catalysis in EcSPS. Based on the structural and biochemical analysis of EcSPS reported here and using information obtained from similar studies done with SPS orthologs from Aquifex aeolicus and humans, we propose a catalytic mechanism for EcSPS-mediated selenophosphate synthesis.

  2. Arabidopsis thaliana GLN2-Encoded Glutamine Synthetase Is Dual Targeted to Leaf Mitochondria and Chloroplasts

    PubMed Central

    Taira, Masakazu; Valtersson, Ulrika; Burkhardt, Brad; Ludwig, Robert A.

    2004-01-01

    In higher plants, photorespiratory Gly oxidation in leaf mitochondria yields ammonium in large amounts. Mitochondrial ammonium must somehow be recovered as glutamate in chloroplasts. As the first step in that recovery, we report glutamine synthetase (GS) activity in highly purified Arabidopsis thaliana mitochondria isolated from light-adapted leaf tissue. Leaf mitochondrial GS activity is further induced in response to either physiological CO2 limitation or transient darkness. Historically, whether mitochondria are fully competent for oxidative phosphorylation in actively photorespiring leaves has remained uncertain. Here, we report that light-adapted, intact, leaf mitochondria supplied with Gly as sole energy source are fully competent for oxidative phosphorylation. Purified intact mitochondria efficiently use Gly oxidation (as sole energy, NH3, and CO2 source) to drive conversion of l-Orn to l-citrulline, an ATP-dependent process. An A. thaliana genome-wide search for nuclear gene(s) encoding mitochondrial GS activity yielded a single candidate, GLN2. Stably transgenic A. thaliana ecotype Columbia plants expressing a p35S∷GLN2∷green fluorescent protein (GFP) chimeric reporter were constructed. When observed by laser scanning confocal microscopy, leaf mesophyll and epidermal tissue of transgenic plants showed punctate GFP fluorescence that colocalized with mitochondria. In immunoblot experiments, a 41-kD chimeric GLN2∷GFP protein was present in both leaf mitochondria and chloroplasts of these stably transgenic plants. Therefore, the GLN2 gene product, heretofore labeled plastidic GS-2, functions in both leaf mitochondria and chloroplasts to faciliate ammonium recovery during photorespiration. PMID:15273293

  3. Molecular Mechanisms of Glutamine Synthetase Mutations that Lead to Clinically Relevant Pathologies.

    PubMed

    Frieg, Benedikt; Görg, Boris; Homeyer, Nadine; Keitel, Verena; Häussinger, Dieter; Gohlke, Holger

    2016-02-01

    Glutamine synthetase (GS) catalyzes ATP-dependent ligation of ammonia and glutamate to glutamine. Two mutations of human GS (R324C and R341C) were connected to congenital glutamine deficiency with severe brain malformations resulting in neonatal death. Another GS mutation (R324S) was identified in a neurologically compromised patient. However, the molecular mechanisms underlying the impairment of GS activity by these mutations have remained elusive. Molecular dynamics simulations, free energy calculations, and rigidity analyses suggest that all three mutations influence the first step of GS catalytic cycle. The R324S and R324C mutations deteriorate GS catalytic activity due to loss of direct interactions with ATP. As to R324S, indirect, water-mediated interactions reduce this effect, which may explain the suggested higher GS residual activity. The R341C mutation weakens ATP binding by destabilizing the interacting residue R340 in the apo state of GS. Additionally, the mutation is predicted to result in a significant destabilization of helix H8, which should negatively affect glutamate binding. This prediction was tested in HEK293 cells overexpressing GS by dot-blot analysis: Structural stability of H8 was impaired through mutation of amino acids interacting with R341, as indicated by a loss of masking of an epitope in the glutamate binding pocket for a monoclonal anti-GS antibody by L-methionine-S-sulfoximine; in contrast, cells transfected with wild type GS showed the masking. Our analyses reveal complex molecular effects underlying impaired GS catalytic activity in three clinically relevant mutants. Our findings could stimulate the development of ATP binding-enhancing molecules by which the R324S mutant can be repaired extrinsically. PMID:26836257

  4. Molecular Mechanisms of Glutamine Synthetase Mutations that Lead to Clinically Relevant Pathologies

    PubMed Central

    Frieg, Benedikt; Görg, Boris; Homeyer, Nadine; Keitel, Verena; Häussinger, Dieter; Gohlke, Holger

    2016-01-01

    Glutamine synthetase (GS) catalyzes ATP-dependent ligation of ammonia and glutamate to glutamine. Two mutations of human GS (R324C and R341C) were connected to congenital glutamine deficiency with severe brain malformations resulting in neonatal death. Another GS mutation (R324S) was identified in a neurologically compromised patient. However, the molecular mechanisms underlying the impairment of GS activity by these mutations have remained elusive. Molecular dynamics simulations, free energy calculations, and rigidity analyses suggest that all three mutations influence the first step of GS catalytic cycle. The R324S and R324C mutations deteriorate GS catalytic activity due to loss of direct interactions with ATP. As to R324S, indirect, water-mediated interactions reduce this effect, which may explain the suggested higher GS residual activity. The R341C mutation weakens ATP binding by destabilizing the interacting residue R340 in the apo state of GS. Additionally, the mutation is predicted to result in a significant destabilization of helix H8, which should negatively affect glutamate binding. This prediction was tested in HEK293 cells overexpressing GS by dot-blot analysis: Structural stability of H8 was impaired through mutation of amino acids interacting with R341, as indicated by a loss of masking of an epitope in the glutamate binding pocket for a monoclonal anti-GS antibody by L-methionine-S-sulfoximine; in contrast, cells transfected with wild type GS showed the masking. Our analyses reveal complex molecular effects underlying impaired GS catalytic activity in three clinically relevant mutants. Our findings could stimulate the development of ATP binding-enhancing molecules by which the R324S mutant can be repaired extrinsically. PMID:26836257

  5. Methods and compositions for the production of orthogonal tRNA-aminoacyl tRNA synthetase pairs

    SciTech Connect

    Schultz, Peter G.; Wang, Lei; Anderson, John Christopher; Chin, Jason W.; Liu, David R.; Magliery, Thomas J.; Meggers, Eric L.; Mehl, Ryan Aaron; Pastrnak, Miro; Santoro, Stephen William; Zhang, Zhiwen

    2015-10-20

    This invention provides compositions and methods for generating components of protein biosynthetic machinery including orthogonal tRNAs, orthogonal aminoacyl-tRNA synthetases, and orthogonal pairs of tRNAs/synthetases. Methods for identifying orthogonal pairs are also provided. These components can be used to incorporate unnatural amino acids into proteins in vivo.

  6. Methods and composition for the production of orthogonal tRNA-aminoacyl tRNA synthetase pairs

    DOEpatents

    Schultz, Peter G.; Wang, Lei; Anderson, John Christopher; Chin, Jason W.; Liu, David R.; Magliery, Thomas J.; Meggers, Eric L.; Mehl, Ryan Aaron; Pastrnak, Miro; Santoro, Stephen William; Zhang, Zhiwen

    2012-05-08

    This invention provides compositions and methods for generating components of protein biosynthetic machinery including orthogonal tRNAs, orthogonal aminoacyl-tRNA synthetases, and orthogonal pairs of tRNAs/synthetases. Methods for identifying orthogonal pairs are also provided. These components can be used to incorporate unnatural amino acids into proteins in vivo.

  7. Compositions of orthogonal glutamyl-tRNA and aminoacyl-tRNA synthetase pairs and uses thereof

    DOEpatents

    Anderson, J Christopher [San Francisco, CA; Schultz, Peter G [La Jolla, CA; Santoro, Stephen [Cambridge, MA

    2009-05-05

    Compositions and methods of producing components of protein biosynthetic machinery that include glutamyl orthogonal tRNAs, glutamyl orthogonal aminoacyl-tRNA synthetases, and orthogonal pairs of glutamyl tRNAs/synthetases are provided. Methods for identifying these orthogonal pairs are also provided along with methods of producing proteins using these orthogonal pairs.

  8. Methods and compositions for the production of orthogonal tRNA-aminoacyl tRNA synthetase pairs

    DOEpatents

    Schultz, Peter; Wang, Lei; Anderson, John Christopher; Chin, Jason; Liu, David R.; Magliery, Thomas J.; Meggers, Eric L.; Mehl, Ryan Aaron; Pastrnak, Miro; Santoro, Stephen William; Zhang, Zhiwen

    2006-08-01

    This invention provides compositions and methods for generating components of protein biosynthetic machinery including orthogonal tRNAs, orthogonal aminoacyl-tRNA synthetases, and orthogonal pairs of tRNAs/synthetases. Methods for identifying orthogonal pairs are also provided. These components can be used to incorporate unnatural amino acids into proteins in vivo.

  9. Rational protein engineering in action: The first crystal structure of a phenylalanine tRNA synthetase from Staphylococcus haemolyticus

    SciTech Connect

    Evdokimov, Artem G.; Mekel, Marlene; Hutchings, Kim; Narasimhan, Lakshmi; Holler, Tod; McGrath, Teresa; Beattie, Bryan; Fauman, Eric; Yan, Chunhong; Heaslet, Holly; Walter, Richard; Finzel, Barry; Ohren, Jeffrey; McConnell, Patrick; Braden, Timothy; Sun, Fang; Spessard, Cindy; Banotai, Craig; Al-Kassim, Loola; Ma, Weijun; Wengender, Paul; Kole, Denis; Garceau, Norman; Toogood, Peter; Liu, Jia

    2008-07-08

    In this article, we describe for the first time the high-resolution crystal structure of a phenylalanine tRNA synthetase from the pathogenic bacterium Staphylococcus haemolyticus. We demonstrate the subtle yet important structural differences between this enzyme and the previously described Thermus thermophilus ortholog. We also explain the structure-activity relationship of several recently reported inhibitors. The native enzyme crystals were of poor quality -- they only diffracted X-rays to 3--5 {angstrom} resolution. Therefore, we have executed a rational surface mutagenesis strategy that has yielded crystals of this 2300-amino acid multidomain protein, diffracting to 2 {angstrom} or better. This methodology is discussed and contrasted with the more traditional domain truncation approach.

  10. Target profiling of 4-hydroxyderricin in S. aureus reveals seryl-tRNA synthetase binding and inhibition by covalent modification.

    PubMed

    Battenberg, Oliver A; Yang, Yinliang; Verhelst, Steven H L; Sieber, Stephan A

    2013-03-01

    4-Hydroxyderricin is a heat labile bioactive chalcone isolated from the plant Angelica keiskei. It received attention due to its antibiotic potency against several strains of bacteria including pathogens such as Staphylococcus aureus. Despite these promising pharmacological properties, the exact mode of action or the biological targets are still unknown. Here we report the synthesis and the application of a 4-hydroxyderricin probe for activity-based protein profiling (ABPP) in S. aureus. Due to the heat sensitivity of the natural product we utilize a chemical tool for the mild and selective enrichment of labile probe-protein conjugates and report seryl-tRNA synthetase (STS) to be covalently modified by our probe. This modification results in inhibition of the amino acylation of tRNAs catalyzed by S. aureus STS which is an essential enzymatic pathway for bacterial viability. PMID:23295910

  11. Acetyl-CoA Synthetase 2 Promotes Acetate Utilization and Maintains Cancer Cell Growth under Metabolic Stress

    PubMed Central

    Schug, Zachary T.; Peck, Barrie; Jones, Dylan T.; Zhang, Qifeng; Grosskurth, Shaun; Alam, Israt S.; Goodwin, Louise M.; Smethurst, Elizabeth; Mason, Susan; Blyth, Karen; McGarry, Lynn; James, Daniel; Shanks, Emma; Kalna, Gabriela; Saunders, Rebecca E.; Jiang, Ming; Howell, Michael; Lassailly, Francois; Thin, May Zaw; Spencer-Dene, Bradley; Stamp, Gordon; van den Broek, Niels J.F.; Mackay, Gillian; Bulusu, Vinay; Kamphorst, Jurre J.; Tardito, Saverio; Strachan, David; Harris, Adrian L.; Aboagye, Eric O.; Critchlow, Susan E.; Wakelam, Michael J.O.; Schulze, Almut; Gottlieb, Eyal

    2015-01-01

    Summary A functional genomics study revealed that the activity of acetyl-CoA synthetase 2 (ACSS2) contributes to cancer cell growth under low-oxygen and lipid-depleted conditions. Comparative metabolomics and lipidomics demonstrated that acetate is used as a nutritional source by cancer cells in an ACSS2-dependent manner, and supplied a significant fraction of the carbon within the fatty acid and phospholipid pools. ACSS2 expression is upregulated under metabolically stressed conditions and ACSS2 silencing reduced the growth of tumor xenografts. ACSS2 exhibits copy-number gain in human breast tumors, and ACSS2 expression correlates with disease progression. These results signify a critical role for acetate consumption in the production of lipid biomass within the harsh tumor microenvironment. PMID:25584894

  12. Acetyl-CoA synthetase 2 promotes acetate utilization and maintains cancer cell growth under metabolic stress.

    PubMed

    Schug, Zachary T; Peck, Barrie; Jones, Dylan T; Zhang, Qifeng; Grosskurth, Shaun; Alam, Israt S; Goodwin, Louise M; Smethurst, Elizabeth; Mason, Susan; Blyth, Karen; McGarry, Lynn; James, Daniel; Shanks, Emma; Kalna, Gabriela; Saunders, Rebecca E; Jiang, Ming; Howell, Michael; Lassailly, Francois; Thin, May Zaw; Spencer-Dene, Bradley; Stamp, Gordon; van den Broek, Niels J F; Mackay, Gillian; Bulusu, Vinay; Kamphorst, Jurre J; Tardito, Saverio; Strachan, David; Harris, Adrian L; Aboagye, Eric O; Critchlow, Susan E; Wakelam, Michael J O; Schulze, Almut; Gottlieb, Eyal

    2015-01-12

    A functional genomics study revealed that the activity of acetyl-CoA synthetase 2 (ACSS2) contributes to cancer cell growth under low-oxygen and lipid-depleted conditions. Comparative metabolomics and lipidomics demonstrated that acetate is used as a nutritional source by cancer cells in an ACSS2-dependent manner, and supplied a significant fraction of the carbon within the fatty acid and phospholipid pools. ACSS2 expression is upregulated under metabolically stressed conditions and ACSS2 silencing reduced the growth of tumor xenografts. ACSS2 exhibits copy-number gain in human breast tumors, and ACSS2 expression correlates with disease progression. These results signify a critical role for acetate consumption in the production of lipid biomass within the harsh tumor microenvironment. PMID:25584894

  13. Nineteen-year follow-up of a patient with severe glutathione synthetase deficiency.

    PubMed

    Atwal, Paldeep S; Medina, Casey R; Burrage, Lindsay C; Sutton, V Reid

    2016-07-01

    Glutathione synthetase deficiency is a rare autosomal recessive disorder resulting in low levels of glutathione and an increased susceptibility to oxidative stress. Patients with glutathione synthetase deficiency typically present in the neonatal period with hemolytic anemia, metabolic acidosis and neurological impairment. Lifelong treatment with antioxidants has been recommended in an attempt to prevent morbidity and mortality associated with the disorder. Here, we present a 19-year-old female who was diagnosed with glutathione synthetase deficiency shortly after birth and who has been closely followed in our metabolic clinic. Despite an initial severe presentation, she has had normal intellectual development and few complications of her disorder with a treatment regimen that includes polycitra (citric acid, potassium citrate and sodium citrate), vitamin C, vitamin E and selenium. PMID:26984560

  14. Constitutive Expression of Enniatin Synthetase during Fermentative Growth of Fusarium scirpi

    PubMed Central

    Billich, Andreas; Zocher, Rainer

    1988-01-01

    The production of enniatins by Fusarium scirpi during fermentative growth in submerged cultures was measured. The fungus produced the antibiotic during mycelial growth, but not during the stationary phase of cultivation. By contrast, enniatin synthetase, the enzyme responsible for enniatin synthesis, was present during growth, during the stationary phase, and even in spores. Similarly, the enniatin synthetase mRNA was present at every stage of the cultivation of the fungus. Therefore, this multifunctional peptide synthetase is a constitutive enzyme, the expression of which is not regulated by any specific mechanism. The findings stand in contrast to the common assumption that production of secondary metabolites underlies regulatory control, leading to separation of the trophophase and the idiophase. Images PMID:16347758

  15. Isolation and characterisation of a ferrirhodin synthetase gene from the sugarcane pathogen Fusarium sacchari.

    PubMed

    Munawar, Asifa; Marshall, James W; Cox, Russell J; Bailey, Andy M; Lazarus, Colin M

    2013-02-11

    FSN1, a gene isolated from the sugar-cane pathogen Fusarium sacchari, encodes a 4707-residue nonribosomal peptide synthetase consisting of three complete adenylation, thiolation and condensation modules followed by two additional thiolation and condensation domain repeats. This structure is similar to that of ferricrocin synthetase, which makes a siderophore that is involved in intracellular iron storage in other filamentous fungi. Heterologous expression of FSN1 in Aspergillus oryzae resulted in the accumulation of a secreted metabolite that was identified as ferrirhodin. This siderophore was found to be present in both mycelium and culture filtrates of F. sacchari, whereas ferricrocin is found only in the mycelium, thus suggesting that ferricrocin is an intracellular storage siderophore in F. sacchari, whereas ferrirhodin is used for iron acquisition. To our knowledge, this is the first report to characterise a ferrirhodin synthetase gene functionally. PMID:23307607

  16. Characterization of a thermosensitive Escherichia coli aspartyl-tRNA synthetase mutant.

    PubMed Central

    Martin, F; Sharples, G J; Lloyd, R G; Eiler, S; Moras, D; Gangloff, J; Eriani, G

    1997-01-01

    The Escherichia coli tls-1 strain carrying a mutated aspS gene (coding for aspartyl-tRNA synthetase), which causes a temperature-sensitive growth phenotype, was cloned by PCR, sequenced, and shown to contain a single mutation resulting in substitution by serine of the highly conserved proline 555, which is located in motif 3. When an aspS fragment spanning the codon for proline 555 was transformed into the tls-1 strain, it was shown to restore the wild-type phenotype via homologous recombination with the chromosomal tls-1 allele. The mutated AspRS purified from an overproducing strain displayed marked temperature sensitivity, with half-life values of 22 and 68 min (at 42 degrees C), respectively, for tRNA aminoacylation and ATP/PPi exchange activities. Km values for aspartic acid, ATP, and tRNA(Asp) did not significantly differ from those of the native enzyme; thus, mutation Pro555Ser lowers the stability of the functional configuration of both the acylation and the amino acid activation sites but has no significant effect on substrate binding. This decrease in stability appears to be related to a conformational change, as shown by gel filtration analysis. Structural da