Science.gov

Sample records for 2-acrylamido-2-methylpropane sulfonic acid

  1. Synthesis and properties of poly(methyl methacrylate-2-acrylamido-2-methylpropane sulfonic acid)/PbS hybrid composite

    SciTech Connect

    Preda, N.; Rusen, E.; Musuc, A.; Enculescu, M.; Matei, E.; Marculescu, B.; Fruth, V.; Enculescu, I.

    2010-08-15

    The synthesis of a new hybrid composite based on PbS nanoparticles and poly(methyl methacrylate-2-acrylamido-2-methylpropane sulfonic acid) [P(MMA-AMPSA)] copolymer is reported. The chemical synthesis consists in two steps: (i) a surfactant-free emulsion copolymerization between methyl methacrylate and 2-acrylamido-2-methylpropane sulfonic acid and (ii) the generation of PbS particles in the presence of the P(MMA-AMPSA) latex, from the reaction between lead nitrate and thiourea. The composite was studied by scanning electron microscopy (SEM), X-ray diffraction, FTIR spectroscopy, thermogravimetric analysis and differential scanning calorimetry. The microstructure observed using SEM proves that the PbS nanoparticles are well dispersed in the copolymer matrix. The X-ray diffraction measurements demonstrate that the PbS nanoparticles have a cubic rock salt structure. It was also found that the inorganic semiconductor nanoparticles improve the thermal stability of the copolymer matrix.

  2. Synthesis and evaluation of poly(Sodium 2-Acrylamido-2-Methylpropane Sulfonate-co-Styrene)/magnetite nanoparticle composites as corrosion inhibitors for steel.

    PubMed

    El-Mahdy, Gamal A; Atta, Ayman M; Al-Lohedan, Hamad A

    2014-01-01

    Self-stabilized magnetic polymeric composite nanoparticles of coated poly-(sodium 2-acrylamido-2-methylpropane sulfonate-co-styrene)/magnetite (PAMPS-Na-co-St/Fe3O4) were prepared by emulsifier-free miniemulsion polymerization using styrene (St) as a monomer, 2-acrylamido-2-methylpropane sulfonic acid sodium salt (AMPS-Na) as an ionic comonomer, N,N-methylenebisacrylamide (MBA) as crosslinker, hexadecane (HD) as a hydrophobic solvent, and 2,2-azodiisobutyronitrile (AIBN) as an initiator in the presence of hydrophobic oleic acid coated magnetite particles. Hydrophobic oleic acid coated magnetite particles with an average size of about 7-10 nm were prepared with the new modified water-based magnetite ferrofluid, synthesized by a chemical modified coprecipitation method. The morphology and the particle size distributions of the crosslinked PAMPS-Na-co-St/Fe3O4 composite were observed and analyzed by transmission electron microscopy (TEM). The average Fe3O4 content of PAMPS-Na-co-St/Fe3O4 was determined by thermogravimetric analysis (TGA). The inhibitory action of PAMPS-Na-co-St/Fe3O4 towards steel corrosion in 1 M HCl solutions has been investigated by polarization and electrochemical impedance spectroscopy (EIS) methods. Polarization measurements indicate that PAMPS-Na-co-St/Fe3O4 acts as a mixed type-inhibitor and the inhibition efficiency increases with inhibitor concentration. The results of potentiodynamic polarization and EIS measurements clearly showed that the inhibition mechanism involves blocking of the steel surface by inhibitor molecules via adsorption. PMID:24487568

  3. Synthesis and evaluation of poly(Sodium 2-Acrylamido-2-Methylpropane Sulfonate-co-Styrene)/magnetite nanoparticle composites as corrosion inhibitors for steel.

    PubMed

    El-Mahdy, Gamal A; Atta, Ayman M; Al-Lohedan, Hamad A

    2014-01-30

    Self-stabilized magnetic polymeric composite nanoparticles of coated poly-(sodium 2-acrylamido-2-methylpropane sulfonate-co-styrene)/magnetite (PAMPS-Na-co-St/Fe3O4) were prepared by emulsifier-free miniemulsion polymerization using styrene (St) as a monomer, 2-acrylamido-2-methylpropane sulfonic acid sodium salt (AMPS-Na) as an ionic comonomer, N,N-methylenebisacrylamide (MBA) as crosslinker, hexadecane (HD) as a hydrophobic solvent, and 2,2-azodiisobutyronitrile (AIBN) as an initiator in the presence of hydrophobic oleic acid coated magnetite particles. Hydrophobic oleic acid coated magnetite particles with an average size of about 7-10 nm were prepared with the new modified water-based magnetite ferrofluid, synthesized by a chemical modified coprecipitation method. The morphology and the particle size distributions of the crosslinked PAMPS-Na-co-St/Fe3O4 composite were observed and analyzed by transmission electron microscopy (TEM). The average Fe3O4 content of PAMPS-Na-co-St/Fe3O4 was determined by thermogravimetric analysis (TGA). The inhibitory action of PAMPS-Na-co-St/Fe3O4 towards steel corrosion in 1 M HCl solutions has been investigated by polarization and electrochemical impedance spectroscopy (EIS) methods. Polarization measurements indicate that PAMPS-Na-co-St/Fe3O4 acts as a mixed type-inhibitor and the inhibition efficiency increases with inhibitor concentration. The results of potentiodynamic polarization and EIS measurements clearly showed that the inhibition mechanism involves blocking of the steel surface by inhibitor molecules via adsorption.

  4. bFGF interaction and in vivo angiogenesis inhibition by self-assembling sulfonic acid-based copolymers.

    PubMed

    García-Fernández, L; Aguilar, M R; Ochoa-Callejero, L; Abradelo, C; Martínez, A; San Román, J

    2012-01-01

    The antiangiogenic activity of different families of biocompatible and non-toxic polymer drugs based on 2-acrylamido-2-methylpropane sulfonic acid (AMPS) or polymethacrylic derivatives of 5-aminonaphthalen sulfonic acid (MANSA) is analyzed using directed in vivo angiogenesis assay and correlated with in vitro results. These active compounds were copolymerized with butylacrylate (BA) and N-vinylpyrrolidone in order to obtain two families of copolymers with different properties in aqueous media. The most hydrophobic copolymers poly(BA-co-MANSA) and poly(BA-co-AMPS) formed amphiphilic copolymers and presented micellar morphology in aqueous media. This supramolecular organization of the copolymers had a clear effect on bioactivity. Poly(BA-co-MANSA) copolymers showed the best antiangiogenic activity and very low toxicity at relatively low dose, with the possibility to be injected directly in the solid tumors alone or in combination with other therapeutic agents such as anti-VEGF drugs. The obtained results demonstrate that not only the chemical structure but also the supramolecular organization of the macromolecules plays a key role in the anti-angiogenic activity of these active polymers.

  5. Sulfonated macro-RAFT agents for the surfactant-free synthesis of cerium oxide-based hybrid latexes.

    PubMed

    Garnier, Jérôme; Warnant, Jérôme; Lacroix-Desmazes, Patrick; Dufils, Pierre-Emmanuel; Vinas, Jérôme; van Herk, Alex

    2013-10-01

    Three types of amphiphatic macro-RAFT agents were employed as compatibilizers to promote the polymerization reaction at the surface of nanoceria for the synthesis of CeO2-based hybrid latexes. Macro-RAFT copolymers and terpolymers were first synthesized employing various combinations of butyl acrylate as a hydrophobic monomer and acrylic acid (AA) and/or 2-acrylamido-2-methylpropane sulfonic acid (AMPS) as hydrophilic monomers. After characterizing the adsorption of these macro-RAFT agents at the cerium oxide surface by UV-visible spectrometry, emulsion copolymerization reactions of styrene and methyl acrylate were then carried out in the presence of the surface-modified nanoceria. Dynamic Light Scattering and cryo-Transmission Electron Microscopy were employed to confirm the hybrid structure of the final CeO2/polymer latexes, and proved that the presence of acrylic acid units in amphiphatic macro-RAFT agents enabled an efficient formation of hybrid structures, while the presence of AMPS units, when combined with AA units, resulted in a better distribution of cerium oxide nanoclusters between latex particles.

  6. Well treating fluids and additives therefor

    SciTech Connect

    Patel, B.

    1991-07-16

    This patent describes a solid, dry additive for reducing the water loss and improving other properties of well treating fluids in high temperature environments. It comprises a mixture of a water soluble copolymer of N-vinyl pyrrolidone and the sodium salt of 2- acrylamido-2-methylpropane sulfonic acid and an organic compound selected from the group consisting of lignites, tannins, asphaltic materials, derivatives thereof and mixtures of such compounds, the mixture of the water soluble copolymer and organic compound being prepared by mixing a water and oil emulsion containing the copolymer with the organic compound followed by removing the oil and water from the resultant mixture.

  7. Safety assessment of xylene sulfonic acid, toluene sulfonic acid, and alkyl aryl sulfonate hydrotropes as used in cosmetics.

    PubMed

    Bergfeld, Wilma F; Belsito, Donald V; Klaassen, Curtis D; Hill, Ronald; Liebler, Daniel; Marks, James G; Shank, Ronald C; Slaga, Thomas J; Snyder, Paul W; Andersen, F Alan

    2011-12-01

    Xylene sulfonic acid, toluene sulfonic acid, and alkyl aryl sulfonate hydrotropes used in cosmetics as surfactants, hydrotropes, were reviewed in this safety assessment. The similar structure, properties, functions, and uses of these ingredients enabled grouping them and using the available toxicological data to assess the safety of the entire group. The Cosmetic Ingredient Review Expert Panel reviewed relevant animal and human data related to these ingredients. The panel concluded that xylene sulfonic acid and alkyl aryl sulfonate hydrotropes are safe as cosmetic ingredients in the present practices of use and concentrations as described in this safety assessment, when formulated to be nonirritating.

  8. Use of amidoximated hydrogel for removal and recovery of U(VI) ion from water samples.

    PubMed

    Hazer, Orhan; Kartal, Senol

    2010-10-15

    Poly(acrylamidoxime-co-2-acrylamido-2-methylpropane sulfonic acid) (PAMSA) hydrogel was prepared by copolymerization of acrylonitrile and 2-acrylamido-2-methylpropane sulfonic acid as monomer, N,N'-methylenebis(acrylamide) as crosslinking agent and potassium peroxodisulfate as initiator. Amidoximated copolymer network was prepared by the reaction of copolymer network with hydroxylamine hydrochloride. A batch procedure was used for the determination of the characteristics of the U(VI) solid phase extraction from the amidoximated hydrogel. The determination of U(VI) was performed by spectrophotometric method using arsenazo-III as complexing agent. Optimal pH value for the quantitative preconcentration was 3, and full desorption was achieved with 3 mol L(-1) HClO(4). The adsorption process can be well described by the pseudo-second-order kinetic model, and the equilibrium adsorption isotherm was closely fitted with the Langmuir model. A preconcentration factor of 20 and the three sigma detection limit of 2.8 μg L(-1) (n=20) were achieved for uranium(VI) ions. The PAMSA hydrogel was used for separating and preconcentrating the uranyl ion existing in sea water samples, thermal spring water samples and the certified reference materials (TMDA 64; fortified lake water sample). PMID:20875604

  9. Synthesis of sulfonate analogs of bile acids.

    PubMed

    Kihira, K; Mikami, T; Ikawa, S; Okamoto, A; Yoshii, M; Miki, S; Mosbach, E H; Hoshita, T

    1992-04-01

    Sulfonate analogs of C23 and C24 bile acids were synthesized from norcholic, norchenodeoxycholic, norursodeoxycholic, nordeoxycholic, norhyodeoxycholic, cholic, deoxycholic, hyodeoxycholic, and lithocholic acids. The principal reactions used were (1) reduction of the bile acids with NaBH4 to the corresponding bile alcohols, (2) selective tosylation of the terminal hydroxyl group, (3) iodination of the tosyl esters with NaI, and (4) treatment of the iodides with Na2SO3 to form the sulfonate analogs of the bile acids. The sulfonate analogs showed polarity similar to that of taurine-conjugated bile acids on thin-layer chromatography. The carbon 13 nuclear magnetic resonance spectral data for the sulfonate analogs were tabulated.

  10. Alkyl phosphonic acids and sulfonic acids in the Murchison meteorite

    NASA Technical Reports Server (NTRS)

    Cooper, George W.; Onwo, Wilfred M.; Cronin, John R.

    1992-01-01

    Homologous series of alkyl phosphonic acids and alkyl sulfonic acids, along with inorganic orthophosphate and sulfate, are identified in water extracts of the Murchison meteorite after conversion to their t-butyl dimethylsilyl derivatives. The methyl, ethyl, propyl, and butyl compounds are observed in both series. Five of the eight possible alkyl phosphonic acids and seven of the eight possible alkyl sulfonic acids through C4 are identified. Abundances decrease with increasing carbon number as observed of other homologous series indigenous to Murchison. Concentrations range downward from approximately 380 nmol/gram in the alkyl sulfonic acid series, and from 9 nmol/gram in the alkyl phosphonic acid series.

  11. 21 CFR 173.395 - Trifluoromethane sulfonic acid.

    Code of Federal Regulations, 2013 CFR

    2013-04-01

    ... 21 Food and Drugs 3 2013-04-01 2013-04-01 false Trifluoromethane sulfonic acid. 173.395 Section... HUMAN CONSUMPTION Specific Usage Additives § 173.395 Trifluoromethane sulfonic acid. Trifluoromethane sulfonic acid has the empirical formula CF3SO3H (CAS Reg. No. 1493-13-6). The catalyst...

  12. 21 CFR 173.395 - Trifluoromethane sulfonic acid.

    Code of Federal Regulations, 2012 CFR

    2012-04-01

    ... 21 Food and Drugs 3 2012-04-01 2012-04-01 false Trifluoromethane sulfonic acid. 173.395 Section... HUMAN CONSUMPTION Specific Usage Additives § 173.395 Trifluoromethane sulfonic acid. Trifluoromethane sulfonic acid has the empirical formula CF3SO3H (CAS Reg. No. 1493-13-6). The catalyst...

  13. 21 CFR 173.395 - Trifluoromethane sulfonic acid.

    Code of Federal Regulations, 2011 CFR

    2011-04-01

    ... 21 Food and Drugs 3 2011-04-01 2011-04-01 false Trifluoromethane sulfonic acid. 173.395 Section... HUMAN CONSUMPTION Specific Usage Additives § 173.395 Trifluoromethane sulfonic acid. Trifluoromethane sulfonic acid has the empirical formula CF3SO3H (CAS Reg. No. 1493-13-6). The catalyst...

  14. Acid-mediated formation of trifluoromethyl sulfonates from sulfonic acids and a hypervalent iodine trifluoromethylating agent.

    PubMed

    Koller, Raffael; Huchet, Quentin; Battaglia, Philip; Welch, Jan M; Togni, Antonio

    2009-10-28

    A variety of sulfonic acids have been trifluoromethylated using 1-trifluoromethyl-1,2-benziodoxol-3(1H)-one under mild conditions in good to excellent yields. Initial mechanistic investigations of this reaction show a clean second-order kinetics and only very weak substrate electronic effects.

  15. The separation and analysis of symmetric and asymmetric dimethylarginine and other hydrophilic isobaric compounds using aqueous normal phase chromatography.

    PubMed

    Pesek, Joseph J; Matyksa, Maria T; Modereger, Brent; Hasbun, Alejandra; Phan, Vy T; Mehr, Zahra; Guzman, Mariano; Watanable, Seiichiro

    2016-04-01

    Two biologically important compounds with clinical relevance, asymmetric dimethylarginine and symmetric dimethylarginine, are analyzed using aqueous normal phase chromatography on silica hydride-based columns. Two different stationary phases were tested, a commercially available Diamond Hydride™ and a 2-acrylamido-2-methylpropane sulfonic acid experimental column. Two types of analytical protocols were investigated: analysis of the compounds when separation was achieved and analysis of the compounds with partial chromatographic separation. Urine samples from tuberculosis patients were tested for levels of asymmetric and symmetric dimethylarginine. The mass spectrometric technique of in-source fragmentation that can provide data similar to a tandem mass analyzer was evaluated as a means of identification and quantitation of the two compounds when complete separation is not achieved. This same protocol was also evaluated for two other isobaric compounds, glucose-1 and glucose-6 phohsphate, and leucine and isoleucine.

  16. Cell proliferation and cell sheet detachment from the positively and negatively charged nanocomposite hydrogels.

    PubMed

    Liu, Dan; Wang, Tao; Liu, Xinxing; Tong, Zhen

    2014-01-01

    The charged nanocomposite hydrogels (NC gels) were synthesized by copolymerization of positively or negatively chargeable monomer with N-isopropylacrylamide (NIPAm) in the aqueous suspension of hectorite clay. The ionic NC gels preserved the thermo-responsibility with the phase-transition temperature below 37°C. The L929 cell proliferation was sensitive to charge polarity and charge density. As compared to the PNIPAm NC gel, the cationic NC gels with <5 mol % of 2-(dimethylamino)ethyl methacrylate (DMAEMA) showed improved cell proliferation, whereas the cells grew slowly on the gels with negatively charged 2-acrylamido-2-methylpropane sulfonic acid (AMPSNa). By lowering temperature, rapid cell sheet detachment was observed from the surface of ionic NC gels with 1 mol % of ionizable monomers. However, lager amount of AMPSNa or DMAEMA did not support rapid cell sheet detachment, probably owing to the adverse swelling effects and/or enhanced electrostatic attraction.

  17. Electrochromic cells with lutetium diphthalocyanine and semisolid polymer electrolytes

    NASA Astrophysics Data System (ADS)

    Pizzarello, F. A.; Nicholson, M. M.

    1987-11-01

    Cyclic voltammograms were obtained for lutetium diphthalocyanine films in contact with plasticized poly(ethylene oxide) (PEO) electrolytes or solvent-swollen 2-acrylamido-2-methylpropane- sulfonic acid (AMPS) polymer electrolytes. Cells containing PEO-salt combinations plasticized with propylene glycol (PG) or acetonitrile resulted in slow, nonuniform color changes due to high interfacial resistance. The AMPS cell fabrication was simplified by starting with a commercial AMPS polymer product in the form of a transparent sheet containing water and other additives. This material, when further swollen in a PG-HC1 solution, produced the full range of uniform colors, accompanied by well defined voltammograms. It maintained good contact with the dye from -5 to 40 C.

  18. The separation and analysis of symmetric and asymmetric dimethylarginine and other hydrophilic isobaric compounds using aqueous normal phase chromatography.

    PubMed

    Pesek, Joseph J; Matyksa, Maria T; Modereger, Brent; Hasbun, Alejandra; Phan, Vy T; Mehr, Zahra; Guzman, Mariano; Watanable, Seiichiro

    2016-04-01

    Two biologically important compounds with clinical relevance, asymmetric dimethylarginine and symmetric dimethylarginine, are analyzed using aqueous normal phase chromatography on silica hydride-based columns. Two different stationary phases were tested, a commercially available Diamond Hydride™ and a 2-acrylamido-2-methylpropane sulfonic acid experimental column. Two types of analytical protocols were investigated: analysis of the compounds when separation was achieved and analysis of the compounds with partial chromatographic separation. Urine samples from tuberculosis patients were tested for levels of asymmetric and symmetric dimethylarginine. The mass spectrometric technique of in-source fragmentation that can provide data similar to a tandem mass analyzer was evaluated as a means of identification and quantitation of the two compounds when complete separation is not achieved. This same protocol was also evaluated for two other isobaric compounds, glucose-1 and glucose-6 phohsphate, and leucine and isoleucine. PMID:26952368

  19. Affinity labelling enzymes with esters of aromatic sulfonic acids

    DOEpatents

    Wong, Show-Chu; Shaw, Elliott

    1977-01-01

    Novel esters of aromatic sulfonic acids are disclosed. The specific esters are nitrophenyl p- and m-amidinophenylmethanesulfonate. Also disclosed is a method for specific inactivation of the enzyme, thrombin, employing nitrophenyl p-amidinophenylmethanesulfonate.

  20. Sulfur and hydrogen isotope anomalies in meteorite sulfonic acids.

    PubMed

    Cooper, G W; Thiemens, M H; Jackson, T L; Chang, S

    1997-08-22

    Intramolecular carbon, hydrogen, and sulfur isotope ratios were measured on a homologous series of organic sulfonic acids discovered in the Murchison meteorite. Mass-independent sulfur isotope fractionations were observed along with high deuterium/hydrogen ratios. The deuterium enrichments indicate formation of the hydrocarbon portion of these compounds in a low-temperature environment that is consistent with that of interstellar clouds. Sulfur-33 enrichments observed in methanesulfonic acid could have resulted from gas-phase ultraviolet irradiation of a precursor, carbon disulfide. The source of the sulfonic acid precursors may have been the reactive interstellar molecule carbon monosulfide.

  1. Sulfur and Hydrogen Isotope Anomalies in Meteorite Sulfonic Acids

    NASA Technical Reports Server (NTRS)

    Cooper, George W.; Thiemens, Mark H.; Jackson, Teresa L.; Chang, Sherwood

    1997-01-01

    Intramolecular carbon, hydrogen, and sulfur isotope ratios were measured on a homologous series of organic sulfonic acids discovered in the Murchison meteorite. Mass-independent sulfur isotope fractionations were observed along with high deuterium/hydrogen ratios. The deuterium enrichments indicate formation of the hydrocarbon portion of these compounds in a low-temperature environment that is consistent with that of interstellar clouds. Sulfur-33 enrichments observed in methanesulfonic acid could have resulted from gas-phase ultraviolet irradiation of a precursor, carbon disulfide. The source of the sulfonic acid precursors may have been the reactive interstellar molecule carbon monosulfide.

  2. 40 CFR 417.140 - Applicability; description of the neutralization of sulfuric acid esters and sulfonic acids...

    Code of Federal Regulations, 2014 CFR

    2014-07-01

    ... neutralization of sulfuric acid esters and sulfonic acids subcategory. 417.140 Section 417.140 Protection of... MANUFACTURING POINT SOURCE CATEGORY Neutralization of Sulfuric Acid Esters and Sulfonic Acids Subcategory § 417.140 Applicability; description of the neutralization of sulfuric acid esters and sulfonic...

  3. 40 CFR 417.140 - Applicability; description of the neutralization of sulfuric acid esters and sulfonic acids...

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... neutralization of sulfuric acid esters and sulfonic acids subcategory. 417.140 Section 417.140 Protection of... MANUFACTURING POINT SOURCE CATEGORY Neutralization of Sulfuric Acid Esters and Sulfonic Acids Subcategory § 417.140 Applicability; description of the neutralization of sulfuric acid esters and sulfonic...

  4. 40 CFR 417.140 - Applicability; description of the neutralization of sulfuric acid esters and sulfonic acids...

    Code of Federal Regulations, 2013 CFR

    2013-07-01

    ... neutralization of sulfuric acid esters and sulfonic acids subcategory. 417.140 Section 417.140 Protection of... MANUFACTURING POINT SOURCE CATEGORY Neutralization of Sulfuric Acid Esters and Sulfonic Acids Subcategory § 417.140 Applicability; description of the neutralization of sulfuric acid esters and sulfonic...

  5. 40 CFR 417.140 - Applicability; description of the neutralization of sulfuric acid esters and sulfonic acids...

    Code of Federal Regulations, 2012 CFR

    2012-07-01

    ... neutralization of sulfuric acid esters and sulfonic acids subcategory. 417.140 Section 417.140 Protection of... MANUFACTURING POINT SOURCE CATEGORY Neutralization of Sulfuric Acid Esters and Sulfonic Acids Subcategory § 417.140 Applicability; description of the neutralization of sulfuric acid esters and sulfonic...

  6. 40 CFR 417.140 - Applicability; description of the neutralization of sulfuric acid esters and sulfonic acids...

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ... neutralization of sulfuric acid esters and sulfonic acids subcategory. 417.140 Section 417.140 Protection of... MANUFACTURING POINT SOURCE CATEGORY Neutralization of Sulfuric Acid Esters and Sulfonic Acids Subcategory § 417.140 Applicability; description of the neutralization of sulfuric acid esters and sulfonic...

  7. Identification of sulfonic acids as efficient ecto-5'-nucleotidase inhibitors.

    PubMed

    Iqbal, Jamshed; Saeed, Aamer; Raza, Rabia; Matin, Abdul; Hameed, Abdul; Furtmann, Norbert; Lecka, Joanna; Sévigny, Jean; Bajorath, Jürgen

    2013-01-01

    Ecto-5'-nucleotidase (CD73) is well known for its implication in cancer. Inhibition of ecto-5'-nucleotidases is thought to provide an attractive approach to cancer therapy. This study identifies sulfonic acid compounds as efficient inhibitors of ecto-5'-nucleotidases. The compounds were tested against recombinant human and rat ecto-5'-nucleotidases. The most potent new sulfonic acid inhibitor 6-amino-4-hydroxynaphthalene-2-sulfonic acid (1) of ecto-5'-nucleotidase had an IC₅₀ of 1.32 ± 0.09 μM for the human and 10.4 ± 3.3 μM for the rat enzyme. Generally, all compounds were more active against the human enzyme. Plausible binding mode models were developed for this new class of inhibitors. Furthermore, several sulfonic acid inhibitors were efficient cytotoxic agents when tested on H157 cancer cell lines. Hence, new ecto-5'-nucleotidases inhibitors displayed significant potential for further development as compounds for anti-cancer therapy.

  8. 40 CFR 721.6220 - Aryl sulfonate of a fatty acid mixture, polyamine condensate.

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... 40 Protection of Environment 30 2010-07-01 2010-07-01 false Aryl sulfonate of a fatty acid mixture... Specific Chemical Substances § 721.6220 Aryl sulfonate of a fatty acid mixture, polyamine condensate. (a... generically as an aryl sulfonate of a fatty acid mixture, polyamine condensate (PMN P-91-584) is subject...

  9. 40 CFR 721.6220 - Aryl sulfonate of a fatty acid mixture, polyamine condensate.

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ... 40 Protection of Environment 31 2011-07-01 2011-07-01 false Aryl sulfonate of a fatty acid mixture... Specific Chemical Substances § 721.6220 Aryl sulfonate of a fatty acid mixture, polyamine condensate. (a... generically as an aryl sulfonate of a fatty acid mixture, polyamine condensate (PMN P-91-584) is subject...

  10. 40 CFR 721.9620 - Aromatic sulfonic acid compound with amine.

    Code of Federal Regulations, 2012 CFR

    2012-07-01

    ... 40 Protection of Environment 32 2012-07-01 2012-07-01 false Aromatic sulfonic acid compound with... Specific Chemical Substances § 721.9620 Aromatic sulfonic acid compound with amine. (a) Chemical substance... aromatic sulfonic acid compound with amine (PMN P-93-832) is subject to reporting under this section...

  11. 40 CFR 721.10437 - Sulfonic acid, linear xylene alkylate, mono, sodium salts (generic).

    Code of Federal Regulations, 2013 CFR

    2013-07-01

    ... 40 Protection of Environment 32 2013-07-01 2013-07-01 false Sulfonic acid, linear xylene alkylate... Significant New Uses for Specific Chemical Substances § 721.10437 Sulfonic acid, linear xylene alkylate, mono... chemical substances identified generically as sulfonic acid, linear xylene alkylate, mono, sodium...

  12. 40 CFR 721.9620 - Aromatic sulfonic acid compound with amine.

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ... 40 Protection of Environment 31 2011-07-01 2011-07-01 false Aromatic sulfonic acid compound with... Specific Chemical Substances § 721.9620 Aromatic sulfonic acid compound with amine. (a) Chemical substance... aromatic sulfonic acid compound with amine (PMN P-93-832) is subject to reporting under this section...

  13. 40 CFR 721.10437 - Sulfonic acid, linear xylene alkylate, mono, sodium salts (generic).

    Code of Federal Regulations, 2014 CFR

    2014-07-01

    ... 40 Protection of Environment 31 2014-07-01 2014-07-01 false Sulfonic acid, linear xylene alkylate... Significant New Uses for Specific Chemical Substances § 721.10437 Sulfonic acid, linear xylene alkylate, mono... chemical substances identified generically as sulfonic acid, linear xylene alkylate, mono, sodium...

  14. 40 CFR 721.9620 - Aromatic sulfonic acid compound with amine.

    Code of Federal Regulations, 2013 CFR

    2013-07-01

    ... 40 Protection of Environment 32 2013-07-01 2013-07-01 false Aromatic sulfonic acid compound with... Specific Chemical Substances § 721.9620 Aromatic sulfonic acid compound with amine. (a) Chemical substance... aromatic sulfonic acid compound with amine (PMN P-93-832) is subject to reporting under this section...

  15. 40 CFR 721.9620 - Aromatic sulfonic acid compound with amine.

    Code of Federal Regulations, 2014 CFR

    2014-07-01

    ... 40 Protection of Environment 31 2014-07-01 2014-07-01 false Aromatic sulfonic acid compound with... Specific Chemical Substances § 721.9620 Aromatic sulfonic acid compound with amine. (a) Chemical substance... aromatic sulfonic acid compound with amine (PMN P-93-832) is subject to reporting under this section...

  16. 40 CFR 721.9595 - Alkyl benzene sulfonic acids and alkyl sulfates, amine salts (generic).

    Code of Federal Regulations, 2012 CFR

    2012-07-01

    ... 40 Protection of Environment 32 2012-07-01 2012-07-01 false Alkyl benzene sulfonic acids and alkyl... Significant New Uses for Specific Chemical Substances § 721.9595 Alkyl benzene sulfonic acids and alkyl...) The chemical substances identified generically as alkyl benzene sulfonic acids and alkyl...

  17. 40 CFR 721.9595 - Alkyl benzene sulfonic acids and alkyl sulfates, amine salts (generic).

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... 40 Protection of Environment 30 2010-07-01 2010-07-01 false Alkyl benzene sulfonic acids and alkyl... Significant New Uses for Specific Chemical Substances § 721.9595 Alkyl benzene sulfonic acids and alkyl...) The chemical substances identified generically as alkyl benzene sulfonic acids and alkyl...

  18. 40 CFR 721.9595 - Alkyl benzene sulfonic acids and alkyl sulfates, amine salts (generic).

    Code of Federal Regulations, 2014 CFR

    2014-07-01

    ... 40 Protection of Environment 31 2014-07-01 2014-07-01 false Alkyl benzene sulfonic acids and alkyl... Significant New Uses for Specific Chemical Substances § 721.9595 Alkyl benzene sulfonic acids and alkyl...) The chemical substances identified generically as alkyl benzene sulfonic acids and alkyl...

  19. 40 CFR 721.9595 - Alkyl benzene sulfonic acids and alkyl sulfates, amine salts (generic).

    Code of Federal Regulations, 2013 CFR

    2013-07-01

    ... 40 Protection of Environment 32 2013-07-01 2013-07-01 false Alkyl benzene sulfonic acids and alkyl... Significant New Uses for Specific Chemical Substances § 721.9595 Alkyl benzene sulfonic acids and alkyl...) The chemical substances identified generically as alkyl benzene sulfonic acids and alkyl...

  20. 40 CFR 721.9595 - Alkyl benzene sulfonic acids and alkyl sulfates, amine salts (generic).

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ... 40 Protection of Environment 31 2011-07-01 2011-07-01 false Alkyl benzene sulfonic acids and alkyl... Significant New Uses for Specific Chemical Substances § 721.9595 Alkyl benzene sulfonic acids and alkyl...) The chemical substances identified generically as alkyl benzene sulfonic acids and alkyl...

  1. 40 CFR 721.9620 - Aromatic sulfonic acid compound with amine.

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... 40 Protection of Environment 30 2010-07-01 2010-07-01 false Aromatic sulfonic acid compound with... Specific Chemical Substances § 721.9620 Aromatic sulfonic acid compound with amine. (a) Chemical substance... aromatic sulfonic acid compound with amine (PMN P-93-832) is subject to reporting under this section...

  2. 40 CFR 721.10474 - Substituted amino ethane sulfonic acid salt (generic).

    Code of Federal Regulations, 2013 CFR

    2013-07-01

    ... 40 Protection of Environment 32 2013-07-01 2013-07-01 false Substituted amino ethane sulfonic acid... Specific Chemical Substances § 721.10474 Substituted amino ethane sulfonic acid salt (generic). (a... generically as substituted amino ethane sulfonic acid salt (PMN P-04-107) is subject to reporting under...

  3. 40 CFR 721.10474 - Substituted amino ethane sulfonic acid salt (generic).

    Code of Federal Regulations, 2014 CFR

    2014-07-01

    ... 40 Protection of Environment 31 2014-07-01 2014-07-01 false Substituted amino ethane sulfonic acid... Specific Chemical Substances § 721.10474 Substituted amino ethane sulfonic acid salt (generic). (a... generically as substituted amino ethane sulfonic acid salt (PMN P-04-107) is subject to reporting under...

  4. 40 CFR 721.10633 - Aromatic sulfonic acid amino azo dye salts (generic).

    Code of Federal Regulations, 2013 CFR

    2013-07-01

    ... 40 Protection of Environment 32 2013-07-01 2013-07-01 false Aromatic sulfonic acid amino azo dye... Specific Chemical Substances § 721.10633 Aromatic sulfonic acid amino azo dye salts (generic). (a) Chemical... as aromatic sulfonic acid amino azo dye salts (PMN P-12-276) is subject to reporting under...

  5. 40 CFR 721.6220 - Aryl sulfonate of a fatty acid mixture, polyamine condensate.

    Code of Federal Regulations, 2014 CFR

    2014-07-01

    ... 40 Protection of Environment 31 2014-07-01 2014-07-01 false Aryl sulfonate of a fatty acid mixture... Specific Chemical Substances § 721.6220 Aryl sulfonate of a fatty acid mixture, polyamine condensate. (a... generically as an aryl sulfonate of a fatty acid mixture, polyamine condensate (PMN P-91-584) is subject...

  6. 40 CFR 721.6220 - Aryl sulfonate of a fatty acid mixture, polyamine condensate.

    Code of Federal Regulations, 2013 CFR

    2013-07-01

    ... 40 Protection of Environment 32 2013-07-01 2013-07-01 false Aryl sulfonate of a fatty acid mixture... Specific Chemical Substances § 721.6220 Aryl sulfonate of a fatty acid mixture, polyamine condensate. (a... generically as an aryl sulfonate of a fatty acid mixture, polyamine condensate (PMN P-91-584) is subject...

  7. 40 CFR 721.6220 - Aryl sulfonate of a fatty acid mixture, polyamine condensate.

    Code of Federal Regulations, 2012 CFR

    2012-07-01

    ... 40 Protection of Environment 32 2012-07-01 2012-07-01 false Aryl sulfonate of a fatty acid mixture... Specific Chemical Substances § 721.6220 Aryl sulfonate of a fatty acid mixture, polyamine condensate. (a... generically as an aryl sulfonate of a fatty acid mixture, polyamine condensate (PMN P-91-584) is subject...

  8. Ultrasound assisted regioselective sulfonation of aromatic compounds with sulfuric acid.

    PubMed

    Qureshi, Ziyauddin S; Deshmukh, Krishna M; Jagtap, Sachin R; Nandurkar, Nitin S; Bhanage, Bhalchandra M

    2009-03-01

    A simple and convenient methodology for selective sulfonation of aromatic compounds using sulfuric acid under sonication is described. The present methodology shows a considerable enhancement in the reaction rate along with improved selectivity compared with the reactions performed under silent conditions. The effect of various parameters such as agitation speed, sulfuric acid concentration, and temperature on reaction system have been investigated and are explained on the basis of ultrasonically generated cavitational effects. PMID:19014895

  9. 40 CFR 721.10045 - Diazotized substituted heteromonocycle coupled with naphthalene sulfonic acid derivative, nickel...

    Code of Federal Regulations, 2012 CFR

    2012-07-01

    ... coupled with naphthalene sulfonic acid derivative, nickel complex, alkaline salt (generic). 721.10045... derivative, nickel complex, alkaline salt (generic). (a) Chemical substance and significant new uses subject... heteromonocycle coupled with naphthalene sulfonic acid derivative, nickel complex, alkaline salt (PMN P-02-737)...

  10. 40 CFR 721.10045 - Diazotized substituted heteromonocycle coupled with naphthalene sulfonic acid derivative, nickel...

    Code of Federal Regulations, 2014 CFR

    2014-07-01

    ... coupled with naphthalene sulfonic acid derivative, nickel complex, alkaline salt (generic). 721.10045... derivative, nickel complex, alkaline salt (generic). (a) Chemical substance and significant new uses subject... heteromonocycle coupled with naphthalene sulfonic acid derivative, nickel complex, alkaline salt (PMN P-02-737)...

  11. 40 CFR 721.10045 - Diazotized substituted heteromonocycle coupled with naphthalene sulfonic acid derivative, nickel...

    Code of Federal Regulations, 2013 CFR

    2013-07-01

    ... coupled with naphthalene sulfonic acid derivative, nickel complex, alkaline salt (generic). 721.10045... derivative, nickel complex, alkaline salt (generic). (a) Chemical substance and significant new uses subject... heteromonocycle coupled with naphthalene sulfonic acid derivative, nickel complex, alkaline salt (PMN P-02-737)...

  12. 40 CFR 721.10045 - Diazotized substituted heteromonocycle coupled with naphthalene sulfonic acid derivative, nickel...

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... coupled with naphthalene sulfonic acid derivative, nickel complex, alkaline salt (generic). 721.10045... derivative, nickel complex, alkaline salt (generic). (a) Chemical substance and significant new uses subject... heteromonocycle coupled with naphthalene sulfonic acid derivative, nickel complex, alkaline salt (PMN P-02-737)...

  13. 40 CFR 721.10045 - Diazotized substituted heteromonocycle coupled with naphthalene sulfonic acid derivative, nickel...

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ... coupled with naphthalene sulfonic acid derivative, nickel complex, alkaline salt (generic). 721.10045... derivative, nickel complex, alkaline salt (generic). (a) Chemical substance and significant new uses subject... heteromonocycle coupled with naphthalene sulfonic acid derivative, nickel complex, alkaline salt (PMN P-02-737)...

  14. Bis-sulfonic acid ionic liquids for the conversion of fructose to 5-hydroxymethyl-2-furfural.

    PubMed

    Sim, Sang Eun; Kwon, Sunjeong; Koo, Sangho

    2012-10-31

    Homogenous bis-sulfonic acid ionic liquids (1 mol equiv.) in DMSO (10 mol equiv.) at 100 °C efficiently mediated the conversion of D-fructose into 5-hydroxymethyl-2-furfural in 75% isolated yield, which was roughly a 10% increment compared to the case of the mono-sulfonic acid ionic liquids.

  15. 40 CFR 721.10487 - Alkylbenzenes sulfonic acids, metal salts (generic).

    Code of Federal Regulations, 2013 CFR

    2013-07-01

    ... salts (generic). 721.10487 Section 721.10487 Protection of Environment ENVIRONMENTAL PROTECTION AGENCY... Specific Chemical Substances § 721.10487 Alkylbenzenes sulfonic acids, metal salts (generic). (a) Chemical... as alkylbenzenes sulfonic acids, metal salts (PMNs P-04-599, P-04-600, P-04-605, and P-04-606)...

  16. Nanostructured membranes and electrodes with sulfonic acid functionalized carbon nanotubes

    NASA Astrophysics Data System (ADS)

    Tripathi, Bijay P.; Schieda, M.; Shahi, Vinod K.; Nunes, Suzana P.

    Herein we report the covalent functionalization of multiwall carbon nanotubes by grafting sulfanilic acid and their dispersion into sulfonated poly(ether ether ketone). The nanocomposites were explored as an option for tuning the proton and electron conductivity, swelling, water and alcohol permeability aiming at nanostructured membranes and electrodes for application in alcohol or hydrogen fuel cells and other electrochemical devices. The nanocomposites were extensively characterized, by studying their physicochemical and electrochemical properties. They were processed as self-supporting films with high mechanical stability, proton conductivity of 4.47 × 10 -2 S cm -1 at 30 °C and 16.8 × 10 -2 S cm -1 at 80 °C and 100% humidity level, electron conductivity much higher than for the plain polymer. The methanol permeability could be reduced to 1/20, keeping water permeability at reasonable values. The ratio of bound water also increases with increasing content of sulfonated filler, helping in keeping water in the polymer in conditions of low external humidity level.

  17. Rh(III)-catalyzed synthesis of sultones through C-H activation directed by a sulfonic acid group.

    PubMed

    Qi, Zisong; Wang, Mei; Li, Xingwei

    2014-09-01

    A new rhodium-catalyzed synthesis of sultones via the oxidative coupling of sulfonic acids with internal alkynes is described. The reaction proceeds via aryl C-H activation assisted by a sulfonic acid group.

  18. Use of esters of sulfonic acids as anti-sludge agents during the acidizing of formations containing sludging crude oils

    SciTech Connect

    Looney, J.R.; McDougall, L.A.

    1984-04-10

    An anti-sludge agent useful for acid stimulated hydrocarbon containing formations is an ester of sulfonic acid, e.g. monoethoxylated dodecyl benzene sulfonic acid, preferably used in combination with from 0.1 to 2 parts by weight of a surfactant.

  19. Solid Sulfonic Acid Catalysts Based on Porous Carbons and Carbon-Silica Composites

    NASA Astrophysics Data System (ADS)

    Tian, Xiao Ning; Luo, Lijuan; Jiang, Zhongqing; Zhao, X. S.

    Mesoporous carbons prepared using a templating method under different carbonization temperatures are sulfonated with concentrated H2SO4. Without the moving of silica template carbon-silica composites were prepared, which can maintain the pore structure well during sulfonation reaction process. The resultant samples are characterized using nitrogen adsorption, transmission electron microscope, field-emission scanning electron microscope, X-ray diffraction, X-ray photoelectron spectroscopy, and elemental analysis techniques. The catalytic performances of the sulfonated carbons and composites are evaluated by esterification reaction of methanol with acetic acid. The results show that a low-temperature carbonization process is favorable for improving the reaction conversion of acetic acid. In addition, the sulfonated carbon-silica composites show a higher acetic acid conversion than the sulfonated mesoporous carbons.

  20. Semiconductor/solid electrolyte junctions for optical information storage. Solid-state electrochromic cell using lutecium diphthalocyanine

    NASA Astrophysics Data System (ADS)

    Sammells, A. F.; Pujare, N. U.

    1986-01-01

    The overall program goal is to perform a basic investigation of photoelectrochemical and electrochemical effects by electrochromic materials in solid polymer electrolyte (SPE) containing solid-state cells. Initial investigations have been directed towards reversible electrochromic behavior at the interface between lutecium diphthalocyanine deposited onto electronically conducting glass, and the homopolymer poly-2-acrylamido -2-methylpropane sulfonic acid (poly(Amps)). We wish to report here some recent work on solid-state electrochromic cells in which ionic mediation to thin-film deposits of lutecium diphthalocyanine is via the homopolymer poly-2-acrylamido-2-methyl propane sulfonic acid (poly-Amps). Separation between the working (LuH(Pc)2 deposited onto SnO2 conducting glass) and counter (CeCl3 in poly (Amps)) electrodes in these solid-state cells was realized by the use of the insoluble copolymer perfluorosulfonic acid (Nafion). Solid-state electrochromic cells were prepared using the supporting electrolytes (SEs) 0.1M Na2SO4 and 0.1M KCl. Upon subjecting the cell to anodic and cathodic voltage scans, up to four distinct color changes were observed varying from red (at anodic potentials) to violet (at cathodic potentials). Formation of the violet lutecium diphthalocyanine reduction product was not found contingent upon the absence of alkali cations as reported by others.

  1. Enantioselective transformation of Na2SO3 into allylic sulfonic acids under Pd catalysis.

    PubMed

    Liu, Wei; Zhao, Xiao-ming; Zhang, Hong-bo; Zhang, Liang

    2015-01-14

    Pd-catalyzed asymmetric allylic sulfonation of di-aryl-substituted allylic acetates with sodium sulfite (Na2SO3) in THF-H2O at room temperature was described. This method directly provided allylic sulfonic acids in up to excellent yield and enantioselectivity. PMID:25415622

  2. Determination of perfluoroalkyl carboxylic, sulfonic, and phosphonic acids in food.

    PubMed

    Ullah, Shahid; Alsberg, Tomas; Vestergren, Robin; Berger, Urs

    2012-11-01

    A sensitive and accurate method was developed and validated for simultaneous analysis of perfluoroalkyl carboxylic acids, sulfonic acids, and phosphonic acids (PFPAs) at low picograms per gram concentrations in a variety of food matrices. The method employed extraction with acetonitrile/water and cleanup on a mixed-mode co-polymeric sorbent (C8 + quaternary amine) using solid-phase extraction. High-performance liquid chromatographic separation was achieved on a C18 column using a mobile phase gradient containing 5 mM 1-methyl piperidine for optimal chromatographic resolution of PFPAs. A quadrupole time-of-flight high-resolution mass spectrometer operating in negative ion mode was used as detector. Method detection limits were in the range of 0.002 to 0.02 ng g(-1) for all analytes. Sample preparation (extraction and cleanup) recoveries at a spiking level of 0.1 ng g(-1) to a baby food composite were in the range of 59 to 98 %. A strong matrix effect was observed in the analysis of PFPAs in food extracts, which was tentatively assigned to sorption of PFPAs to the injection vial in the solvent-based calibration standard. The method was successfully applied to a range of different food matrices including duplicate diet samples, vegetables, meat, and fish samples.

  3. Production of Jatropha biodiesel fuel over sulfonic acid-based solid acids.

    PubMed

    Chen, Shih-Yuan; Lao-Ubol, Supranee; Mochizuki, Takehisa; Abe, Yohko; Toba, Makoto; Yoshimura, Yuji

    2014-04-01

    Sulfonic acid-functionalized platelet SBA-15 mesoporous silica with an acid capacity of 2.44mmol H(+) g-cat(-1) (shortly termed 15SA-SBA-15-p) was one-pot synthesized by co-condensation method. When applied as solid acid catalyst in synthesis of Jatropha biodiesel fuel (BDF), the 15SA-SBA-15-p catalyst showed higher activity and resistances to water and free fatty acid (FFA) than commercial sulfonic resins of Amberlyst-15 and SAC-13. For the continuous Jatropha BDF production, a steady 75-78wt% of fatty acid methyl ester (FAME) content was obtained over 15SA-SBA-15-p catalyst at 150°C for 75h, whereas the Amberlyst-15 and SAC-13 catalysts were quickly deactivated due to the decomposition of thermally unstable framework and serious leaching of sulfonic acids. More importantly, the quality, stability and cold flow characteristic of Jatropha BDF synthesized by 15SA-SBA-15-p catalyst were better than those synthesized by Amberlyst-15 and SAC-13 catalysts, making the blending with petro-diesel an easy task.

  4. Titania-based molecularly imprinted polymer for sulfonic acid dyes prepared by sol-gel method.

    PubMed

    Li, Man; Li, Rong; Tan, Jin; Jiang, Zi-Tao

    2013-03-30

    A novel titania-based molecularly imprinted polymer (MIP) was synthesized through sol-gel process with sunset yellow (Sun) as template, without use of functional monomer. MIP was used as a solid-phase extraction material for the isolation and enrichment of sulfonic acid dyes in beverages. The results showed that MIP exhibited better selectivity, higher recovery and adsorption capacity for the sulfonic acid dyes compared to the non-imprinted polymer (NIP). MIP presented highest extraction selectivity to Sun when pH less than or equal to 3. The adsorption capacity was 485.9 mg g(-1), which was larger than that of NIP (384.7 mg g(-1)). The better clean-up ability demonstrated the capability of MIP for the isolation and enrichment of sulfonic acid dyes in complicated food samples. The mean recoveries for the sulfonic acid dyes on MIP were from 81.9% to 97.2% in spiked soft drink.

  5. Magnetite-supported sulfonic acid: a retrievable nanocatalyst for the Ritter reaction and multicomponent reactions

    EPA Science Inventory

    Magnetite-sulfonic acid (NanocatFe-OSO3H), prepared by wet-impregnation method, serves as a magnetically retrievable sustainable catalyst for the Ritter reaction which can be used in several reaction cycles without any loss of activity.

  6. Perfluorooctane sulfonate (PFOS) and perfluorooctanoic acid (PFOA) contamination from textiles.

    PubMed

    Supreeyasunthorn, Phenpimuk; Boontanon, Suwanna K; Boontanon, Narin

    2016-01-01

    The goals of this study were to determine the concentrations of perfluorooctane sulfonate (PFOS) and perfluorooctanoic acid (PFOA) in textiles and to determine PFOS and PFOA contamination in textile washing water. Quantification analysis was performed by high performance liquid chromatography coupled with tandem mass spectrometry. Analysis of 32 textile samples by methanol extraction revealed that the average concentrations of PFOS and PFOA were 0.18 µg m(-2) (0.02 to 0.61 µg m(-2)) and 2.74 µg m(-2) (0.31 to 14.14 µg m(-2)), respectively. Although the average concentration of PFOS found in textile samples was below European Union (EU) Commission regulations (<1 µg m(-2)), the average concentration of PFOA was 2.74 µg m(-2), and 68.75% of textile samples had PFOA concentrations exceeding 1 µg m(-2). Thus, based on these results, the concentration of PFOA in products should also be regulated. Experiments on PFOS and PFOA leaching into washing water were conducted. The maximum concentrations of PFOS and PFOA were measured after the first washing; the concentrations gradually decreased with each subsequent washing. PFOS and PFOA migrated from textiles and were released into the environment, with disappearance percentages of 29.8% for PFOS and 99% for PFOA. The data presented in this study showed that textiles could be a significant direct and indirect source of PFOS and PFOA exposure for both humans and the environment.

  7. [New synthesis of the anticoagulant pentasaccharide idraparinux and preparation of its analogues containing sulfonic acid moieties].

    PubMed

    Herczeg, Mihály

    2012-01-01

    Two novel synthetic pathways were elaborated for the preparation of idraparinux, a heparin-related fully O-sulfated, O-methylated anticoagulant pentasaccharide. Both methods based upon a [2+3] block synthesis utilizing the same trisaccharide acceptor which was coupled to either a uronic acid disaccharide donor or its nonoxidized precursor. Two bioisosteric sulfonic acid analogues of idraparinux were also prepared, in which two or three primary sulfate esters were replaced by sodium-sulfonatomethyl moieties. The sulfonic acid groups were formed on a monosaccharide level and the obtained carbohydrate sulfonic acid esters were found to be excellent donors and acceptors in the glycosylation reactions. The disulfonic-acid analogue was prepared in a [2+3] block synthesis by using a trisaccharide disulfonic acid as an acceptor and a glucuronide disaccharide as a donor. For the synthesis of the pentasaccharide trisulfonic acid, a more-efficient approach, which involved elongation of the trisaccharide acceptor with a non-oxidized precursor of the glucuronic acid followed by post-glycosidation oxidation at the tetrasaccharide level and a subsequent [1+4] coupling reaction, was elaborated. In vitro evaluation of the anticoagulant activity of the reference compound idraparinux and the new sulfonic acid derivatives revealed that the disulfonate analogue inhibited the blood-coagulation-proteinase factor Xa with outstanding efficacy; however, the introduction of the third sulfonic acid moiety resulted in a notable decrease in the anti-Xa activity.

  8. [New synthesis of the anticoagulant pentasaccharide idraparinux and preparation of its analogues containing sulfonic acid moieties].

    PubMed

    Herczeg, Mihály

    2012-01-01

    Two novel synthetic pathways were elaborated for the preparation of idraparinux, a heparin-related fully O-sulfated, O-methylated anticoagulant pentasaccharide. Both methods based upon a [2+3] block synthesis utilizing the same trisaccharide acceptor which was coupled to either a uronic acid disaccharide donor or its nonoxidized precursor. Two bioisosteric sulfonic acid analogues of idraparinux were also prepared, in which two or three primary sulfate esters were replaced by sodium-sulfonatomethyl moieties. The sulfonic acid groups were formed on a monosaccharide level and the obtained carbohydrate sulfonic acid esters were found to be excellent donors and acceptors in the glycosylation reactions. The disulfonic-acid analogue was prepared in a [2+3] block synthesis by using a trisaccharide disulfonic acid as an acceptor and a glucuronide disaccharide as a donor. For the synthesis of the pentasaccharide trisulfonic acid, a more-efficient approach, which involved elongation of the trisaccharide acceptor with a non-oxidized precursor of the glucuronic acid followed by post-glycosidation oxidation at the tetrasaccharide level and a subsequent [1+4] coupling reaction, was elaborated. In vitro evaluation of the anticoagulant activity of the reference compound idraparinux and the new sulfonic acid derivatives revealed that the disulfonate analogue inhibited the blood-coagulation-proteinase factor Xa with outstanding efficacy; however, the introduction of the third sulfonic acid moiety resulted in a notable decrease in the anti-Xa activity. PMID:23230650

  9. Structural effects in photopolymerized sodium AMPS hydrogels crosslinked with poly(ethylene glycol) diacrylate for use as burn dressings.

    PubMed

    Nalampang, Kanarat; Panjakha, Rachanida; Molloy, Robert; Tighe, Brian J

    2013-01-01

    Synthetic hydrogel polymers were prepared by free radical photopolymerization in aqueous solution of the sodium salt of 2-acrylamido-2-methylpropane sulfonic acid (Na-AMPS). Poly(ethylene glycol) diacrylate (PEGDA) and 4,4'-azo-bis(4-cyanopentanoic acid) were used as the crosslinker and UV-photoinitiator, respectively. The effects of varying the Na-AMPS monomer concentration within the range of 30-50% w/v and the crosslinker concentration within the range of 0.1-1.0% mol (relative to monomer) were studied in terms of their influence on water absorption properties. The hydrogel sheets exhibited extremely high swelling capacities in aqueous media which were dependent on monomer concentration, crosslink density, and the ionic strength and composition of the immersion medium. The effects of varying the number-average molecular weight of the PEGDA crosslinker from [Formula: see text] = 250 to 700 were also investigated. Interestingly, it was found that increasing the molecular weight and therefore the crosslink length at constant crosslink density decreased both the rate of water absorption and the equilibrium water content. Cytotoxicity testing by the direct contact method with mouse fibroblast L929 cells indicated that the synthesized hydrogels were nontoxic. On the basis of these results, it is considered that photopolymerized Na-AMPS hydrogels crosslinked with PEGDA show considerable potential for biomedical use as dressings for partial thickness burns. This paper describes some structural effects which are relevant to their design as biomaterials for this particular application. PMID:23796031

  10. [Studies for analyzing restricted ingredients such as phenylbenzoimidazole sulfonic acid].

    PubMed

    Tokunaga, Hiroshi; Mori, Kenichiro; Onuki, Nahomi; Nosaka, Tomio; Doi, Kayo; Sakaguchi, Hiroshi; Fujii, Makiko; Takano, Katuhiro; Hayashi, Masato; Yoshizawa, Kenichi; Shimamura, Kimio; Sato, Nobuo

    2006-01-01

    Phenylbenzoimidazol sulfonic acid (PBS) is a kind of sunscreens in cosmetics and is nominated as the restricted ingredients in cosmetics in Japanese Pharmaceutical Affairs Act. So the analytical method for PBS was investigated by HPLC. 1.0 g of the lotions with 1.0% PBS was exactly weighed, put into a 50-mL volumetric flask. Water was added to make exactly 50 mL and this mixture was used as the sample solution. On the other hand, 1.0 g of the creams with 1.0% PBS was exactly weighed, put into a beaker. After adding 1 mL of tetrahydrofuran and dissolving the cream, that mixture was transferred to a 50-mL volumetric flask. And then the beaker was rinsed with 1 mL of tetrahydrofuran and the rinsed solution was put together into the volumetric flask. After adding water to the volumetric flask to make exactly 50 mL, this mixture was used as the sample solution. If necessary, the mixture was filtrated with a membrane filter (0.45 microm). 5.0 mL of the sample solution was pipetted and put into a 200-mL volumetric flask. After adding water to make exactly 200 mL, 20 microL of this solution was analyzed by HPLC using the ODS column (CAPCELL PAK C18 column, 4.6 mm i.d. x 250 mm), the mixture of 40 mmol/L acetic buffer (pH 3.4) and acetonitrile (3:1) with 0.8 mmol/L dodecyltrimethyl ammonium bromide and the detection wavelength of 305 nm. The working curve from 0.5 to 20.0 microg/mL showed a linear line between the concentrations of PBS and the peak areas. There was no interference of peak of PBS from the lotion and cream.

  11. Development and characterization of a novel, antimicrobial, sterile hydrogel dressing for burn wounds: single-step production with gamma irradiation creates silver nanoparticles and radical polymerization.

    PubMed

    Boonkaew, Benjawan; Barber, Philip M; Rengpipat, Sirirat; Supaphol, Pitt; Kempf, Margit; He, Jibao; John, Vijay T; Cuttle, Leila

    2014-10-01

    Patients with burn wounds are susceptible to wound infection and sepsis. This research introduces a novel burn wound dressing that contains silver nanoparticles (SNPs) to treat infection in a 2-acrylamido-2-methylpropane sulfonic acid sodium salt (AMPS-Na(+) ) hydrogel. Silver nitrate was dissolved in AMPS-Na(+) solution and then exposed to gamma irradiation to form SNP-infused hydrogels. The gamma irradiation results in a cross-linked polymeric network of sterile hydrogel dressing and a reduction of silver ions to form SNPs infused in the hydrogel in a one-step process. About 80% of the total silver was released from the hydrogels after 72 h immersion in simulated body fluid solution; therefore, they could be used on wounds for up to 3 days. All the hydrogels were found to be nontoxic to normal human dermal fibroblast cells. The silver-loaded hydrogels had good inhibitory action against Pseudomonas aeruginosa and methicillin-resistant Staphylococcus aureus. Results from a pilot study on a porcine burn model showed that the 5-mM silver hydrogel was efficient at preventing bacterial colonization of wounds, and the results were comparable to the commercially available silver dressings (Acticoat(TM) , PolyMem Silver(®) ). These results support its use as a potential burn wound dressing.

  12. Fabrication, modeling and optimization of an ionic polymer gel actuator

    NASA Astrophysics Data System (ADS)

    Jo, Choonghee; Naguib, Hani E.; Kwon, Roy H.

    2011-04-01

    The modeling of the electro-active behavior of ionic polymer gel is studied and the optimum conditions that maximize the deflection of the gel are investigated. The bending deformation of polymer gel under an electric field is formulated by using chemo-electro-mechanical parameters. In the modeling, swelling and shrinking phenomena due to the differences in ion concentration at the boundary between the gel and solution are considered prior to the application of an electric field, and then bending actuation is applied. As the driving force of swelling, shrinking and bending deformation, differential osmotic pressure at the boundary of the gel and solution is considered. From this behavior, the strain or deflection of the gel is calculated. To find the optimum design parameter settings (electric voltage, thickness of gel, concentration of polyion in the gel, ion concentration in the solution, and degree of cross-linking in the gel) for bending deformation, a nonlinear constrained optimization model is formulated. In the optimization model, a bending deflection equation of the gel is used as an objective function, and a range of decision variables and their relationships are used as constraint equations. Also, actuation experiments are conducted using poly(2-acrylamido-2-methylpropane sulfonic acid) (PAMPS) gel and the optimum conditions predicted by the proposed model have been verified by the experiments.

  13. Configuration control on the shape memory stiffness of molecularly imprinted polymer for specific uptake of creatinine

    NASA Astrophysics Data System (ADS)

    Ang, Qian Yee; Zolkeflay, Muhammad Helmi; Low, Siew Chun

    2016-04-01

    In this study, sol-gel processing was proposed to prepare a creatinine (Cre)-imprinted molecularly imprinted polymer (MIP). The intermolecular interaction constituted by the cross-linkers, i.e., 2-acrylamido-2-methylpropane-sulfonic acid (AMPS) and aluminium ion (Al3+), was studied and compared in order to form a confined matrix that promises the effectiveness of molecular imprinting. In view of the shape recognition, the hydrogen bonded Cre-AMPS did not demonstrate good recognition of Cre, with Cre binding found only at 5.70 ± 0.15 mg g-1 of MIP. Whilst, MIP cross-linked using Al3+ was able to attain an excellent Cre adsorption capacity of 19.48 ± 0.64 mg g-1 of MIP via the stronger ionic interaction of Cre-Al3+. Based on the Scatchard analysis, a higher Cre concentration in testing solution required greater driving force to resolve the binding resistance of Cre molecules, so as to have a precise Cre binding with shape factor. The molecular recognition ability of Cre-MIP in present work was shape-specific for Cre as compared to its structural analogue, 2-pyrrolidinone (2-pyr), by an ideal selectivity coefficient of 6.57 ± 0.10. In overall, this study has come up with a practical approach on the preparation of MIP for the detection of renal dysfunction by point-of-care Cre testing.

  14. Controlled delivery of valsartan by cross-linked polymeric matrices: Synthesis, in vitro and in vivo evaluation.

    PubMed

    Sohail, Muhammad; Ahmad, Mahmood; Minhas, Muhammad Usman; Ali, Liaqat; Khalid, Ikrima; Rashid, Haroon

    2015-06-20

    The purpose of study was to develop chemically cross-linked chitosan-co-poly(AMPS) hydrogel based on low molecular weight chitosan for pH-responsive and controlled drug delivery of a model drug. Cross-linking was achieved chemically, by using free radical polymerization technique. Polymer (low molecular weight chitosan) was chemically cross-linked with monomer (2-acrylamido-2-methylpropane sulfonic acid) in aqueous medium. N, N'-Methylenebisacrylamide (MBA) was used as cross-linking agent. Sodium hydrogen sulfite (SHS) and ammonium peroxodisulphate (APS) were used as initiators in a chemical reaction. Hydrogels were characterized by FT-IR, SEM and DSC. Swelling studies and pH-sensitivity of hydrogels were studies at pH 1.2 and 7.4. Chitosan-co-poly(AMPS) hydrogels were administered to rabbits orally to evaluate its pharmacokinetic behavior. As a result of successful cross-linking of polymer and monomer, novel co-polymer has been developed, having suitable characteristics as desired for controlled release drug delivery system. Maximum swelling, drug loading and release have been observed at pH 7.4. In vivo results exhibited significant drug release and absorption at pH 7.4 in rabbits. It is concluded that highly swelling chitosan-AMPS based hydrogels were developed having pH independent swelling and pH dependent drug release properties. These hydrogels have great potential to be used for loading and controlled release of various therapeutic agents. PMID:25865571

  15. SANS Study of Static Structure of The Double Network Polymers

    NASA Astrophysics Data System (ADS)

    Tominaga, Taiki; Takata, Shin-ichi; Suzuki, Jun-ichi; Aizawa, Kazuya; Seto, Hideki; Arai, Masatoshi

    The freeze-dried double-network hydrogels (DN-polymers) have cross-linked aqueous polymer networks giving unique mechanical properties [1]. The Young's modulus of the DN-polymers is nearly unchanged around 102 MPa in the relative humidity (RH) between 0 and 80%. The DN-polymers also show maximum values in both Young's modulus and fracture stress around 30% RH, which corresponds to the water content of about 7 wt.%, in contrast with the plastics for which tinny amount of water causes significant decrease of mechanical properties. Small-angle neutron scattering (SANS) measurements were carried out to investigate the humidity dependence of the nanoscaled structure of the DN-polymers. Several SANS profiles obtained for un-deformed DN-polymers made of poly- (2-acrylamido-2-methylpropane sulfonic acid) sodium salt (PNaAMPS) and polyacrylamide (PAAm) are compared with each other. The SANS results show that water is adsorbed on the structure larger than a mesh-size of the polymer network at low RH but is adsorbed gradually also on the structure in a scale of the segment of the polymer with increasing RH.

  16. Ag (I)-based 2D metal frameworks with helical structures decorated by the homochiral camphor-10-sulfonic acid

    NASA Astrophysics Data System (ADS)

    Guo, Peng; Wang, Jing; Wang, Jun; Pan, Daocheng; Xu, Guohai

    2010-12-01

    Two two-dimension homochiral Ag (I) metal frameworks constructed from enantiopure camphor-10-sulfonic acid and hexamethylenetetramine have been synthesized at the room temperature. These two complexes with (6, 3) topology decorated by the homochiral camphor-10-sulfonic acid possess the unique helical structures. The result of Circular Dichroism (CD) spectroscopy confirms that the bulk materials are homochiral and also indicates the handedness of the single crystals can be controlled by the chirality of the camphor-10-sulfonic acid.

  17. Nitric Acid Dehydration Using Perfluoro Carboxylate and Mixed Sulfonate/Carboxylate Membranes

    SciTech Connect

    Ames, Richard L.

    2004-09-01

    Perfluoro ionomer membranes are tetrafluoro ethylene-based materials with microheterogeneous structures consisting of a hydrophobic polymer backbone and a hydrophilic side-chain cluster region. Due to the ionomer cluster morphology, these films exhibit unique transport properties. Recent investigations with perfluoro sulfonate and perfluoro sulfonate/carboxylate composite polymers have demonstrated their value in the dehydration of nitric acid and they show potential as an alternative to conventional, energy intensive unit operations in the concentration of acid feeds. As a result, investigations were conducted to determine the feasibility of using pure perfluoro carboxylate and mixed perfluoro sulfonate/carboxylate films for the dehydration of nitric acid because of the speculation of improved water selectivity of the carboxylate pendant chain. During the first phase of these investigations the effort was focused on generating a thin, solution cast perfluoro carboxylate ionomer film, to evaluate the general, chemical and physical characteristics of the polymer, and to assess the material's aqueous transport performance (flux and nitrate separation efficiencies) in pervaporation and high-pressure environments. Results demonstrated that generating robust solution-cast films was difficult yet a number of membranes survived high trans-membrane pressures up to 700 psig. General characterization of the solution cast product showed reduced ion exchange capacities when compared with thicker, ''as received'' perfluoro carboxylate and similar sulfonate films. Small angle x-ray scattering analysis results suggested that the solution cast carboxylate films contained a small fraction of sulfonate terminated side-chains. Aqueous transport experimentation showed that permeate fluxes for both pure water and nitric acid were approximately two orders of magnitude smaller for the carboxylate solution cast membranes when compared to their sulfonate counterparts of similar thickness

  18. Tin Coatings Electrodeposited from Sulfonic Acid-Based Electrolytes: Tribological Behavior

    NASA Astrophysics Data System (ADS)

    Bengoa, L. N.; Tuckart, W. R.; Zabala, N.; Prieto, G.; Egli, W. A.

    2015-06-01

    A high efficiency methane sulfonic acid electrolyte used for tin electrodeposition was studied, and the properties of the resulting deposits were compared to those of tin coatings obtained from an industrial phenol sulfonic acid electrolyte. Cyclic voltammetry was used to study the effect of organic additives on the reduction process to define the composition of the electrolytic bath. Thick tin electrodeposits were obtained on rotating cylinder steel electrodes, and their surface morphology, preferred crystal orientation, surface roughness, micro hardness, and tribological behavior were measured. Smooth, adherent, and bright tin coatings were obtained from the methane sulfonic acid electrolyte, which differed in morphology and texture from tin electrodeposited from the industrial bath. Influence of organic additives on preferred crystal orientation of the coatings was found to be stronger than changing the supporting sulfonic acid type. Tribological tests showed that the two types of deposits have a similar coefficient of friction. However, tin coatings obtained from methane sulfonic electrolytes presented a lower wear resistance and underwent galling at lower loads.

  19. Chiral separation of metolachlor ethane sulfonic acid as a groundwater dating tool

    Technology Transfer Automated Retrieval System (TEKTRAN)

    We have studied the hydrologic fate of metolachlor and its two predominant metabolites, metolachlor ethane sulfonic acid (MESA) and metolachlor oxanilic acid, in groundwater and base flows of streams for several years. These two metabolites are excellent markers for groundwater processes related to...

  20. Using chiral identification of metolachlor ethane sulfonic acid as a groundwater dating tool

    Technology Transfer Automated Retrieval System (TEKTRAN)

    We have studied the hydrologic fate of metolachlor and its two predominant metabolites, metolachlor ethane sulfonic acid (MESA) and metolachlor oxanilic acid, in groundwater and base flows of streams for several years. These two metabolites are excellent markers for groundwater processes related to...

  1. Accumulation potentials of perfluoroalkyl carboxylic acids (PFCAs) and perfluoroalkyl sulfonic acids (PFSAs) in maize (Zea mays).

    PubMed

    Krippner, Johanna; Falk, Sandy; Brunn, Hubertus; Georgii, Sebastian; Schubert, Sven; Stahl, Thorsten

    2015-04-15

    Uptake of perfluoroalkyl acids (PFAAs) by maize represents a potential source of exposure for humans, either directly or indirectly via feed for animals raised for human consumption. The aim of the following study was, therefore, to determine the accumulation potential of perfluoroalkyl carboxylic acids (PFCAs) and perfluoroalkyl sulfonic acids (PFSAs) in maize (Zea mays). Two different concentrations of PFAAs were applied as aqueous solution to the soil to attain target concentrations of 0.25 mg or 1.00 mg of PFAA per kg of soil. Maize was grown in pots, and after harvesting, PFAA concentrations were measured in the straw and kernels of maize. PFCA and PFSA concentrations of straw decreased significantly with increasing chain length. In maize kernels, only PFCAs with a chain length ≤ C8 as well as perfluorobutanesulfonic acid (PFBS) were detected. The highest soil-to-plant transfer for both straw and kernels was determined for short-chained PFCAs and PFSAs.

  2. Nuclear Magnetic Resonance Identification of New Sulfonic Acid Metabolites of Chloroacetanilide Herbicides

    USGS Publications Warehouse

    Morton, M.D.; Walters, F.H.; Aga, D.S.; Thurman, E.M.; Larive, C.K.

    1997-01-01

    The detection of the sulfonic acid metabolites of the chloroacetanilide herbicides acetochlor, alachlor, butachlor, propachlor, and, more recently, metolachlor in surface and ground water suggests that a common mechanism for dechlorination exists via the glutathione conjugation pathway. The identification of these herbicides and their metabolites is important due to growing public awareness and concern about pesticide levels in drinking water. Although these herbicides are regulated, little is known about the fate of their metabolites in soil. The sulfonic acid metabolites were synthesized by reaction of the parent compounds with an excess of sodium sulfite. Acetochlor, alachlor, butachlor, metolachlor, and propachlor and their sulfonic acid metabolites were studied by nuclear magnetic resonance spectroscopy and fast atom bombardment mass spectrometry. This paper provides a direct method for the preparation and characterization of these compounds that will be useful in the analysis and study of chloracetanilide herbicides and their metabolites.

  3. Effective and selective bisphenol A synthesis on a layered silicate with spatially arranged sulfonic acid.

    PubMed

    Ide, Yusuke; Kagawa, Noriko; Itakura, Masaya; Imae, Ichiro; Sadakane, Masahiro; Sano, Tsuneji

    2012-04-01

    The silylated derivatives of a layered alkali silicate, magadiite, modified with propylsulfonic or arylsulfonic acid were synthesized and used as catalysts for an acid-catalyzed condensation of phenol with acetone. The propylsulfonated magadiites with a different amount of the attached silyl group were synthesized by the silylation of the dodecylammonium-exchanged magadiite with the tuned amount of 3-(mercaptopropyl)trimethoxysilane and the subsequent oxidation of the attached thiol to sulfonic acid. The arylsulfonated magadiite was synthesized by the silylation of the dodecylammonium-exchanged magadiite with 2-(4-chlorosulfonylphenyl)ethyltrimethoxysilane and the subsequent hydrolysis of the attached sulfonyl chloride to sulfonic acid. The X-ray diffraction (XRD) patterns and elemental mappings of the products, and the photoluminescent spectra of the Eu(3+)-exchanged products suggested that propylsulfonic or arylsulfonic acid was homogeneously distributed in the interlayer space. When all the sulfonated materials were used as an acid catalyst for condensation between phenol and acetone, p,p' bisphenol A selectively formed over the o,p' isomer, and higher yield and selectivity were attained on the catalysts with larger amount of the attached sulfonic acid. When the interlayer space of the propylsulfonated magadiite was expanded by the co-attachment of octadecylsilyl group, lower selectivity was obtained. The arylsulfonated magadiite showed considerably higher p,p' bisphenol A yield than the propylsulfonated magadiites.

  4. Sorption of perfluorooctanoic acid, perfluorooctane sulfonate and perfluoroheptanoic acid on granular activated carbon.

    PubMed

    Zhang, Di; Luo, Qi; Gao, Bin; Chiang, Sheau-Yun Dora; Woodward, David; Huang, Qingguo

    2016-02-01

    The sorption of perfluorooctane sulfonate (PFOS), perfluorooctanoic acid (PFOA), and perfluoroheptanoic acid (PFHpA) on granular activated carbon (GAC) was characterized and compared to explore the underlying mechanisms. Sorption of the three perfluoroalkyl acids (PFAAs) on GAC appeared to be a rapid intra-particle diffusion process, which were well represented by the pseudo-second-order rate model with the sorption rate following the order PFOS > PFOA > PFHpA. Sorption isotherm data were well fitted by the Freundlich model with the sorption capacity (Kf) of PFOS, PFOA and PFHpA being 4.45, 2.42 and 1.66 respectively. This suggests that the hydrophilic head group on PFAAs, i.e. sulfonate vs carboxylic, has a strong influence on their sorption. Comparison between PFOA and PFHpA revealed that hydrophobicity could also play a role in the sorption of PFAAs on GAC when the fluorocarbon chain length is different. Analyses using Attenuated Total Reflection (ATR)-Fourier Transform Infrared (FTIR) spectroscopy suggested possible formation of a negative charge-assisted H-bond between PFAAs and the functionalities on GAC surfaces, including non-aromatic ketones, sulfides, and halogenated hydrocarbons. PMID:26606188

  5. Sulfonated mesoporous silica-carbon composites and their use as solid acid catalysts

    NASA Astrophysics Data System (ADS)

    Valle-Vigón, Patricia; Sevilla, Marta; Fuertes, Antonio B.

    2012-11-01

    The synthesis of highly functionalized porous silica-carbon composites made up of sulfonic groups attached to a carbon layer coating the pores of three types of mesostructured silica (i.e. SBA-15, KIT-6 and mesocellular silica) is presented. The synthesis procedure involves the following steps: (a) removal of the surfactant, (b) impregnation of the silica pores with a carbon precursor, (c) carbonization and (d) sulfonation. The resulting silica-carbon composites contain ˜30 wt % of carbonaceous matter with a high density of acidic groups attached to the deposited carbon (i.e.sbnd SO3H, sbnd COOH and sbnd OH). The structural characteristics of the parent silica are retained in the composite materials, which exhibit a high surface area, a large pore volume and a well-ordered porosity made up uniform mesopores. The high density of the sulfonic groups in combination with the mesoporous structure of the composites ensures that a large number of active sites are easily accessible to reactants. These sulfonated silica-carbon composites behave as eco-friendly, active, selective, water tolerant and recyclable solid acids. In this study we demonstrate the usefulness of these composites as solid acid catalysts for the esterification of maleic anhydride, succinic acid and oleic acid with ethanol. These composites exhibit a superior intrinsic catalytic activity to other commercial solid acids such as Amberlyst-15.

  6. Synthesis of sulfonated porous carbon nanospheres solid acid by a facile chemical activation route

    SciTech Connect

    Chang, Binbin Guo, Yanzhen; Yin, Hang; Zhang, Shouren; Yang, Baocheng

    2015-01-15

    Generally, porous carbon nanospheres materials are usually prepared via a template method, which is a multi-steps and high-cost strategy. Here, we reported a porous carbon nanosphere solid acid with high surface area and superior porosity, as well as uniform nanospheical morphology, which prepared by a facile chemical activation with ZnCl{sub 2} using resorcinol-formaldehyde (RF) resins spheres as precursor. The activation of RF resins spheres by ZnCl{sub 2} at 400 °C brought high surface area and large volume, and simultaneously retained numerous oxygen-containing and hydrogen-containing groups due to the relatively low processing temperature. The presence of these functional groups is favorable for the modification of –SO{sub 3}H groups by a followed sulfonation treating with sulphuric acid and organic sulfonic acid. The results of N{sub 2} adsorption–desorption and electron microscopy clearly showed the preservation of porous structure and nanospherical morphology. Infrared spectra certified the variation of surface functional groups after activation and the successful modification of –SO{sub 3}H groups after sulfonation. The acidities of catalysts were estimated by an indirect titration method and the modified amount of –SO{sub 3}H groups were examined by energy dispersive spectra. The results suggested sulfonated porous carbon nanospheres catalysts possessed high acidities and –SO{sub 3}H densities, which endowed their significantly catalytic activities for biodiesel production. Furthermore, their excellent stability and recycling property were also demonstrated by five consecutive cycles. - Graphical abstract: Sulfonated porous carbon nanospheres with high surface area and superior catalytic performance were prepared by a facile chemical activation route. - Highlights: • Porous carbon spheres solid acid prepared by a facile chemical activation. • It owns high surface area, superior porosity and uniform spherical morphology. • It possesses

  7. Copoly(arlene ether)s containing pendant sulfonic acid groups as proton exchange membrane

    SciTech Connect

    Kim, Yu Seung; Kim, Dae Sik; Robertson, Gilles; Guiver, Michael

    2008-01-01

    A copoly(arylene ether) (PAE) with high fluorine content and a copoly(arylene ether nitrile) (PAEN) with high nitrile content, each containing pendant phenyl sulfonic acids were synthesized. The P AE and PAEN were prepared from decafluorobiphenyl (DFBP) and difluorobenzonitrile (DFBN) respectively, by polycondensation with 2-phenylhydroquinone (PHQ) by conventional aromatic nucleophilic substitution reactions. The sulfonic acid groups were introduced by mild post-sulfonation exclusively on the para-position of the pendant phenyl ring in PHQ. The membrane properties of the resulting sulfonated copolymers sP AE and sP AEN were compared for fuel cell applications. The copolymers sPAE and sPAEN, each having a degree of sulfonation (DS) of 1.0 had high ion exchange capacities (IEC{sub v}(wet) (volume-based, wet state)) of 1.77 and 2.55 meq./cm{sup 3}, high proton conductivities of 135.4 and 140.1 mS/cm at 80 C, and acceptable volume-based water uptake of 44.5-51.9 vol% at 80 C, respectively, compared to Nafion. The data points of these copolymer membranes are located in the area of outstanding properties in the trade-off plot of alternative hydrocarbon polyelectrolyte membranes (PEM) for the relationship between proton conductivity versus water uptake (weight based or volume based). Furthermore, the relative selectivity derived from proton conductivity and methanol permeability is higher than that of Nafion.

  8. Synthesis of sulfonated porous carbon nanospheres solid acid by a facile chemical activation route

    NASA Astrophysics Data System (ADS)

    Chang, Binbin; Guo, Yanzhen; Yin, Hang; Zhang, Shouren; Yang, Baocheng

    2015-01-01

    Generally, porous carbon nanospheres materials are usually prepared via a template method, which is a multi-steps and high-cost strategy. Here, we reported a porous carbon nanosphere solid acid with high surface area and superior porosity, as well as uniform nanospheical morphology, which prepared by a facile chemical activation with ZnCl2 using resorcinol-formaldehyde (RF) resins spheres as precursor. The activation of RF resins spheres by ZnCl2 at 400 °C brought high surface area and large volume, and simultaneously retained numerous oxygen-containing and hydrogen-containing groups due to the relatively low processing temperature. The presence of these functional groups is favorable for the modification of -SO3H groups by a followed sulfonation treating with sulphuric acid and organic sulfonic acid. The results of N2 adsorption-desorption and electron microscopy clearly showed the preservation of porous structure and nanospherical morphology. Infrared spectra certified the variation of surface functional groups after activation and the successful modification of -SO3H groups after sulfonation. The acidities of catalysts were estimated by an indirect titration method and the modified amount of -SO3H groups were examined by energy dispersive spectra. The results suggested sulfonated porous carbon nanospheres catalysts possessed high acidities and -SO3H densities, which endowed their significantly catalytic activities for biodiesel production. Furthermore, their excellent stability and recycling property were also demonstrated by five consecutive cycles.

  9. Bifunctional phenyl monophosphonic/sulfonic acid ion exchange resin and process for using the same

    DOEpatents

    Alexandratos, Spiro; Shelley, Christopher A.; Horwitz, E. Philip; Chiarizia, Renato

    2001-01-01

    A cross-linked water-insoluble ion exchange resin comprised of polymerized monomers having a phenyl ring is disclosed. A contemplated resin contains (i) polymerized phenyl ring-containing monomers having a phosphonic acid ligand linked to the phenyl ring, (ii) about 2 to about 5 millimoles per gram (mmol/g) of phosphorus as phosphonic acid ligands, and (iii) a sufficient amount of a sulfonic acid ligand such that the ratio of mmol/g of phosphonic acid to mmol/g sulfonic acid is up to 3:1. A process for removing polyvalent metal cations from aqueous solution, and a process for removing iron(III) cations from acidic copper(II) cation-containing solutions that utilize the contemplated resin or other resins are disclosed.

  10. Bifunctional phenyl monophosphonic/sulfonic acid ion exchange resin and process for using the same

    DOEpatents

    Alexandratos, Spiro; Shelley, Christopher A.; Horwitz, E. Philip; Chiarizia, Renato; Gula, Michael J.; Xue, Sui; Harvey, James T.

    2002-01-01

    A cross-linked water-insoluble ion exchange resin comprised of polymerized monomers having a phenyl ring is disclosed. A contemplated resin contains (i) polymerized phenyl ring-containing monomers having a phosphonic acid ligand linked to the phenyl ring, (ii) about 2 to about 5 millimoles per gram (mmol/g) of phosphorus as phosphonic acid ligands, and (iii) a sufficient amount of a sulfonic acid ligand such that the ratio of mmol/g of phosphonic acid to mmol/g sulfonic acid is up to 3:1. A process for removing polyvalent metal cations from aqueous solution, and a process for removing iron(III) cations from acidic copper(II) cation-containing solutions that utilize the contemplated resin or other resins are disclosed.

  11. Determination of polyfluoroalkyl phosphoric acid diesters, perfluoroalkyl phosphonic acids, perfluoroalkyl phosphinic acids, perfluoroalkyl carboxylic acids, and perfluoroalkane sulfonic acids in lake trout from the Great Lakes region.

    PubMed

    Guo, Rui; Reiner, Eric J; Bhavsar, Satyendra P; Helm, Paul A; Mabury, Scott A; Braekevelt, Eric; Tittlemier, Sheryl A

    2012-11-01

    A comprehensive method to extract perfluoroalkyl carboxylic acids, perfluoroalkane sulfonic acids, perfluoroalkyl phosphonic acids, perfluoroalkyl phosphinic acids, and polyfluoroalkyl phosphoric acid diesters simultaneously from fish samples has been developed. The recoveries of target compounds ranged from 78 % to 121 %. The new method was used to analyze lake trout (Salvelinus namaycush) from the Great Lakes region. The results showed that the total perfluoroalkane sulfonate concentrations ranged from 0.1 to 145 ng/g (wet weight) with perfluorooctane sulfonate (PFOS) as the dominant contaminant. Concentrations in fish between lakes were in the order of Lakes Ontario ≈ Erie > Huron > Superior ≈ Nipigon. The total perfluoroalkyl carboxylic acid concentrations ranged from 0.2 to 18.2 ng/g wet weight. The aggregate mean perfluorooctanoic acid (PFOA) concentration in fish across all lakes was 0.045 ± 0.023 ng/g. Mean concentrations of PFOA were not significantly different (p > 0.1) among the five lakes. Perfluoroalkyl phosphinic acids were detected in lake trout from Lake Ontario, Lake Erie, and Lake Huron with concentration ranging from non-detect (ND) to 0.032 ng/g. Polyfluoroalkyl phosphoric acid diesters were detected only in lake trout from Lake Huron, at levels similar to perfluorooctanoic acid.

  12. POLYSTYRENE SULFONIC ACID CATALYZED GREENER SYNTHESIS OF HYDRAZONES IN AQUEOUS MEDIUM USING MICROWAVES

    EPA Science Inventory

    An environmentally benign aqueous protocol for the synthesis of cyclic, bi-cyclic, and heterocyclic hydrazones using polystyrene sulfonic acid (PSSA) as a catalyst has been developed; the simple reaction proceeds efficiently in water in the absence of any organic solvent under mi...

  13. Rh-catalyzed sulfonic acid group directed ortho C-H olefination of arenes.

    PubMed

    Dong, Yi; Liu, Gang

    2013-09-21

    A Rh-catalyzed ortho C-H olefination of arenes directed by a sulfonic acid group was developed with good yields and a broad reaction scope. Efficient performance of the catalyst caused this electron-poor aromatic C-H to be activated effectively and unactivated alkenes are also suitable for this reaction.

  14. 40 CFR 721.10487 - Alkylbenzenes sulfonic acids, metal salts (generic).

    Code of Federal Regulations, 2014 CFR

    2014-07-01

    ... salts (generic). 721.10487 Section 721.10487 Protection of Environment ENVIRONMENTAL PROTECTION AGENCY (CONTINUED) TOXIC SUBSTANCES CONTROL ACT SIGNIFICANT NEW USES OF CHEMICAL SUBSTANCES Significant New Uses for Specific Chemical Substances § 721.10487 Alkylbenzenes sulfonic acids, metal salts (generic). (a)...

  15. Chiral Sulfinamide/Achiral Sulfonic Acid Co-Catalyzed Enantioselective Protonation of Enol Silanes

    PubMed Central

    Beck, Elizabeth M.; Hyde, Alan M.

    2011-01-01

    The application of chiral sulfinamides and achiral sulfonic acids as a co-catalyst system for enantioselective protonation reactions is described. Structurally simple, easily accessible sulfinamides were found to induce moderate-to-high ee's in the formation of 2-aryl-substituted cycloalkanones from the corresponding trimethylsilyl enol ethers. PMID:21786775

  16. Chemical force titrations of amine- and sulfonic acid-modified poly(dimethylsiloxane).

    PubMed

    Wang, Bin; Oleschuk, Richard D; Horton, J Hugh

    2005-02-15

    Chemical force titrations-measurements of the adhesive interaction between a pair of suitably chemically modified atomic force microscopy (AFM) tip and sample surfaces as a function of pH-have been carried out for various combinations of silanol, amine, carboxylic acid, and sulfonic acid functional groups on both tip and sample. The primary surface material studied was poly(dimethylsiloxane) (PDMS). Surface modification was carried out using a plasma oxidation process to form silanol sites; further modification with amine or sulfonic acid sites was carried out by reaction of the silanol sites with the appropriate trialkoxysilane derivative. AFM tips were also modified using trialkoxysilane compounds. In the cases of tip/sample combinations with the same functional group on each, surface pK(1/2) values could be determined. In several "mixed" tip/sample combinations, a peak appeared in the titration curve midway between the surface pK(1/2) values of the tip and sample, consistent with an ionic H-bonding model for the interactions. The amine/sulfonic acid pair showed more complex behavior; the amine-terminated tip/sulfonic acid-terminated PDMS surface force titration curve consisted of two peaks centered at pH 4 and pH 8. Reversing the tip/sample pair resulted in the peak positions being shifted upward by 1.0 pH unit. The peak appearing at lower pH is assigned to electrostatic interactions between the two oppositely charged surfaces, whereas the higher pH peak is believed to arise due to ionic H-bonding interactions. AFM images show the effects on surface patterning of amine- and sulfonic acid-modified PDMS surfaces that have undergone two different oxidation methods (air plasma oxidation and Tesla coil oxidation). The surface morphologies of freshly prepared and 24 h aged air plasma oxidized PDMS are also discussed in this study.

  17. Characteristic constants of 2,2',4'-trihydroxyazobenzene-5-sulfonic acid, a reagent for spectrophotometric analysis

    USGS Publications Warehouse

    Fletcher, Mary H.

    1960-01-01

    The dye 2,2',4'-trihydroxyazobenzene-5-sulfonic acid, has shown promise as a reagent for the determination of zirconium. As the literature contains very little information about this dye, basic data pertinent to its use as a reagent were determined. The sulfonic acid group and all three of the hydroxy groups show acidic characteristics. Apparent dissociation constants were determined for the three more labile protons and the approximate order of magnitude for the fourth constant was estimated. Absorption spectra for the different ionization species are given. A curve is also included which shows the fraction of dye in the different ionization forms at acidities from 10.35M hydrochloric acid to pH 11.9. A sixth dye species was found in 1.0 to 8.4M potassium hydroxide solutions, but its nature is unknown.

  18. Ruthenium(II)-catalyzed oxidative C-H alkenylations of sulfonic acids, sulfonyl chlorides and sulfonamides.

    PubMed

    Ma, Wenbo; Mei, Ruhuai; Tenti, Giammarco; Ackermann, Lutz

    2014-11-10

    Twofold C-H functionalization of aromatic sulfonic acids was achieved with an in situ generated ruthenium(II) catalyst. The optimized cross-dehydrogenative alkenylation protocol proved applicable to differently substituted arenes and a variety of alkenes, including vinyl arenes, sulfones, nitriles and ketones. The robustness of the ruthenium(II) catalyst was demonstrated by the chemoselective oxidative olefination of sulfonamides as well as sulfonyl chlorides. Mechanistic studies provided support for a reversible, acetate-assisted C-H ruthenation, along with a subsequent olefin insertion.

  19. Radiation synthesis of eco-friendly water reducing sulfonated starch/acrylic acid hydrogel designed for cement industry

    NASA Astrophysics Data System (ADS)

    Abd El-Rehim, H. A.; Hegazy, El-Sayed A.; Diaa, D. A.

    2013-04-01

    Starch was treated with chlorosulfonic acid to obtain sulfonated starch. Acrylic acid/sulfonated starch semi-interpenetrated network IPN of different compositions was prepared using ionizing radiation. Swelling of prepared IPNs at different environmental conditions was studied. The possible use of sulfonated starch/acrylic acid IPN as a water-retarding agent in the cement industry was investigated. ζ-potential measurements were used to determine the stability of the colloidal cement—SS/AA and cement -poly-naphthalene sulfonic acid (SNF) water retarding mixtures. Sulfonated starch/acrylic acid water-retarding property was influenced by hydrogel concentration and composition. Sulfonated starch/acrylic acid IPN admixture has a great effect on the cement initial setting time. Using 2% of SS/AA or SNF resulted in an increase in initial setting time by 2 and 1 h respectively, if compared with native cement initial setting time. The results showed that the synthetic commercial super-plasticizers could be replaced by an eco-friendly water-retarding sulfonated starch/acrylic acid IPN in the cement industry.

  20. From thiol to sulfonic acid: modeling the oxidation pathway of protein thiols by hydrogen peroxide.

    PubMed

    van Bergen, Laura A H; Roos, Goedele; De Proft, Frank

    2014-08-01

    Hydrogen peroxide is a natural oxidant that can oxidize protein thiols (RSH) via sulfenic acid (RSOH) and sulfinic acid (RSO2H) to sulfonic acid (RSO3H). In this paper, we study the complete anionic and neutral oxidation pathway from thiol to sulfonic acid. Reaction barriers and reaction free energies for all three oxidation steps are computed, both for the isolated substrates and for the substrates in the presence of different model ligands (CH4, H2O, NH3) mimicking the enzymatic environment. We found for all three barriers that the anionic thiolate is more reactive than the neutral thiol. However, the assistance of the environment in the neutral pathway in a solvent-assisted proton-exchange (SAPE) mechanism can lower the reaction barrier noticeably. Polar ligands can decrease the reaction barriers, whereas apolar ligands do not influence the barrier heights. The same holds for the reaction energies: they decrease (become more negative) in the presence of polar ligands whereas apolar ligands do not have an influence. The consistently negative consecutive reaction energies for the oxidation in the anionic pathway when going from thiolate over sulfenic and sulfinic acid to sulfonic acid are in agreement with biological reversibility.

  1. Synthesis of a sulfonic acid mimetic of the sulfated Lewis A pentasaccharide.

    PubMed

    Jakab, Zsolt; Fekete, Anikó; Csávás, Magdolna; Borbás, Anikó; Lipták, András; Antus, Sándor

    2012-03-01

    The first sulfonic acid mimetic of the sulfated Lewis A pentasaccharide in which the natural L-fucose unit is replaced by a D-arabinose ring was synthesized. Formation of the sulfonic acid moiety at a pentasaccharide level could be successfully achieved by means of introduction of an acetylthio moiety into the terminal D-galactose residue and subsequent oxidation. The equatorial arrangement of the acetylthio group linked to C-3 of the galactose ring could be obtained by double nucleophilic substitutions; efficient formation of the gulo-triflate derivatives required low-power microwave (MW) activation. Oxidation of the acetylthio group was carried out using Oxone in the presence of acetic acid.

  2. Copoly(arylene ether)s containing pendant sulfonic acid groups as proton exchange membranes

    SciTech Connect

    Dae Sik, Kim; Yu Seung, Kim; Gilles, Robertson; Guiver, Michael D

    2009-01-01

    A copoly(arylene ether) (PAE) with high fluorine content and a copoly(arylene ether nitrile) (PAEN) with high nitrile content, each containing pendant phenyl sulfonic acids were synthesized. The PAE and P AEN were prepared from decafluorobiphenyl (DFBP) and difluorobenzonitrile (DFBN) respectively, by polycondensation with 2phenylhydroquinone (PHQ) by conventional aromatic nucleophilic substitution reactions. sulfonic acid groups were introduced by mild post-sulfonation exclusively on the para-position of the pendant phenyl ring in PHQ. The membrane properties of the resulting sulfonated copolymers sPAE and sPAEN were compared for fuel cell applications. The copolymers sPAE and sPAEN, each having a degree of sulfonation (OS) of 1.0 had high ion exchange capacities (IEC{sub v})(wet) (volume-based, wet state) of 1.77 and 2.55 meq./cm3, high proton conductivities of 135.4 and 140.1 mS/cm at 80 C, and acceptable volume-based water uptake of 44.5 -51.9 vol% at 80 C, respectively, compared to Nafion. The data points of these copolymer membranes are located in the upper left-hand corner in the trade-off plot of alternative hydrocarbon polyelectrolyte membranes (PEM) for the relationship between proton conductivity versus water uptake (weight based or volume based), i.e., high proton conductivity and low water uptake. Furthermore, the relative selectivity derived from proton conductivity and methanol permeability is higher than that of Nafion.

  3. Three 2D Ag(I)-framework isomers with helical structures controlled by the chirality of camphor-10-sulfonic acid.

    PubMed

    Guo, Peng

    2011-02-28

    Three 2D Ag(I)-framework isomers were constructed from enantiopure camphor-10-sulfonic acids or racemic camphor-10-sulfonic acids, together with achiral 4-aminobenzoic acids. In complex 1, (+)-camphor-10-sulfonic acids bridge the single left-handed helices that are made up of Ag ions and 4-aminobenzoic acids, generating a homochiral 2D layer. In such a structure, the interweaving of triple left-handed homohelices was also found. It is worth noting that the helicity of complex 2 could be controlled by the handedness of the camphor-10-sulfonic acid. In complex 2, there are right-handed helical structures, including single right-handed and triple right-handed helical structures connected by (-)-camphor-10-sulfonic acids. For a comparative study, (±)-camphor-10-sulfonic acids were utilized to synthesize complex 3, in which equal numbers of right-handed or left-handed double-helical chains are created. All the complexes were characterized by single-crystal X-ray structure determination, powder X-ray diffraction, IR, TGA and element analysis. Circular dichroism spectra of complexes 1 and 2 were been studied to confirm the fact that enantiopure bridging ligands do not racemize. PMID:21264423

  4. Three 2D Ag(I)-framework isomers with helical structures controlled by the chirality of camphor-10-sulfonic acid.

    PubMed

    Guo, Peng

    2011-02-28

    Three 2D Ag(I)-framework isomers were constructed from enantiopure camphor-10-sulfonic acids or racemic camphor-10-sulfonic acids, together with achiral 4-aminobenzoic acids. In complex 1, (+)-camphor-10-sulfonic acids bridge the single left-handed helices that are made up of Ag ions and 4-aminobenzoic acids, generating a homochiral 2D layer. In such a structure, the interweaving of triple left-handed homohelices was also found. It is worth noting that the helicity of complex 2 could be controlled by the handedness of the camphor-10-sulfonic acid. In complex 2, there are right-handed helical structures, including single right-handed and triple right-handed helical structures connected by (-)-camphor-10-sulfonic acids. For a comparative study, (±)-camphor-10-sulfonic acids were utilized to synthesize complex 3, in which equal numbers of right-handed or left-handed double-helical chains are created. All the complexes were characterized by single-crystal X-ray structure determination, powder X-ray diffraction, IR, TGA and element analysis. Circular dichroism spectra of complexes 1 and 2 were been studied to confirm the fact that enantiopure bridging ligands do not racemize.

  5. Reaction kinetics of free fatty acids esterification in palm fatty acid distillate using coconut shell biochar sulfonated catalyst

    NASA Astrophysics Data System (ADS)

    Hidayat, Arif; Rochmadi, Wijaya, Karna; Budiman, Arief

    2015-12-01

    Recently, a new strategy of preparing novel carbon-based solid acids has been developed. In this research, the esterification reactions of Palm Fatty Acid Distillate (PFAD) with methanol, using coconut shell biochar sulfonated catalyst from biomass wastes as catalyst, were studied. In this study, the coconut shell biochar sulfonated catalysts were synthesized by sulfonating the coconut shell biochar using concentrated H2SO4. The kinetics of free fatty acid (FFA) esterification in PFAD using a coconut shell biochar sulfonated catalyst was also studied. The effects of the mass ratio of catalyst to oil (1-10%), the molar ratio of methanol to oil (6:1-12:1), and the reaction temperature (40-60°C) were studied for the conversion of PFAD to optimize the reaction conditions. The results showed that the optimal conditions were an methanol to PFAD molar ratio of 12:1, the amount of catalyst of 10%w, and reaction temperature of 60°C. The proposed kinetic model shows a reversible second order reaction and represents all the experimental data satisfactorily, providing deeper insight into the kinetics of the reaction.

  6. Mesoporous MFI zeolites by microwave induced assembly between sulfonic acid functionalized MFI zeolite nanoparticles and alkyltrimethylammonium cationic surfactants.

    PubMed

    Jin, Hailian; Ansari, Mohd Bismillah; Park, Sang-Eon

    2011-07-14

    Mesoporous MFI zeolites (ZSM-5, TS-1, S-1) having intracrystalline mesoporosity within zeolite crystals were synthesized by microwave induced assembly through the ionic interaction between the sulfonic acid functionalized MFI zeolite nanoparticles and alkyltrimethylammonium cationic surfactants.

  7. Kinetics of the reduction of p-nitrobenzoic acid esters in nanoreactors on the basis of sulfonated polymers

    NASA Astrophysics Data System (ADS)

    Al'tshuler, G. N.; Shkurenko, G. Yu.; Gorlov, A. A.

    2015-03-01

    The kinetics of the reduction of p-nitrobenzoic acid esters in nanoreactors based on sulfonated network polymers containing nanodispersed palladium was studied. The kinetic characteristics of the hydrogenation of aromatic nitro compounds were calculated.

  8. Absorption and excretion of 14C-perfluorooctanoic acid (PFOA) and perfluorooctane sulfonate (PFOS) in beef cattle

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Perfluoroalkyl compounds such as perfluorooctanoic acid (PFOA) and perfluorooctane sulfonate (PFOS) are industrial chemicals that are environmentally persistent. Both PFOS and PFOA are found in biosolids, and the application of these contaminated biosolids to pastures has raised concerns about possi...

  9. Electroactive self-doped poly(amic acid) with oligoaniline and sulfonic acid groups: synthesis and electrochemical properties.

    PubMed

    Chi, Maoqiang; Wang, Shutao; Liang, Yuan; Chao, Danming; Wang, Ce

    2014-06-01

    A novel poly(amic acid) with pendant aniline tetramer and sulfonic acid groups (ESPAA) was synthesized by ternary polymerization and characterized by Fourier-transform infrared spectra, ((1))H NMR and gel permeation chromatography. The polymer showed good thermal stability and excellent solubility in the common organic solvents. The electrochemical properties were investigated carefully on a CHI 660A Electrochemical Workstation. The polymer displayed good electroactivity in acid, neutral and even in alkaline solutions (pH=1-10) due to the self-doping effect between aniline tetramer and sulfonic/carboxylic acid groups. It also exhibited satisfactory electrochromic performance with high contrast value, acceptable coloration efficiency and fast switching time in the range of pH=1-9.

  10. Preparation and Characterization of Sulfonic Acid Functionalized Silica and Its Application for the Esterification of Ethanol and Maleic Acid

    NASA Astrophysics Data System (ADS)

    Sirsam, Rajkumar; Usmani, Ghayas

    2016-04-01

    The surface of commercially available silica gel, 60-200 mesh size, was modified with sulfonic acid through surface activation, grafting of 3-Mercaptopropyltrimethoxysilane, oxidation and acidification of 3-Mercaptopropylsilica. Sulfonic Acid Functionalization of Silica (SAFS) was confirmed by Fourier Transform Infra-red (FTIR) spectroscopy and thermal gravimetric analysis. Acid-base titration was used to estimate the cation exchange capacity of the SAFS. Catalytic activity of SAFS was judged for the esterification of ethanol with maleic acid. An effect of different process parameters viz. molar ratio, catalyst loading, speed of agitation and temperature were studied and optimized by Box Behnken Design (BBD) of Response Surface Methodology (RSM). Quadratic model developed by BBD-RSM reasonably satisfied an experimental and predicted values with correlation coefficient value R2 = 0.9504.

  11. Copper-mediated aerobic (phenylsulfonyl)difluoromethylation of arylboronic acids with difluoromethyl phenyl sulfone.

    PubMed

    Li, Xinjin; Zhao, Jingwei; Hu, Mingyou; Chen, Dingben; Ni, Chuanfa; Wang, Limin; Hu, Jinbo

    2016-03-01

    A new method for the generation of the "PhSO2CF2Cu" species from readily available difluoromethyl phenyl sulfone (PhSO2CF2H) has been developed. The "PhSO2CF2Cu" reagent can be applied in (phenylsulfonyl)difluoromethylation of arylboronic acids, which affords a convenient approach to introducing the PhSO2CF2 group into aromatics. PMID:26854122

  12. Synthesis and anticoagulant activity of bioisosteric sulfonic-Acid analogues of the antithrombin-binding pentasaccharide domain of heparin.

    PubMed

    Herczeg, Mihály; Lázár, László; Bereczky, Zsuzsanna; Kövér, Katalin E; Timári, István; Kappelmayer, János; Lipták, András; Antus, Sándor; Borbás, Anikó

    2012-08-20

    Two pentasaccharide sulfonic acids that were related to the antithrombin-binding domain of heparin were prepared, in which two or three primary sulfate esters were replaced by sodium-sulfonatomethyl moieties. The sulfonic-acid groups were formed on a monosaccharide level and the obtained carbohydrate sulfonic-acid esters were found to be excellent donors and acceptors in the glycosylation reactions. Throughout the synthesis, the hydroxy groups to be methylated were masked in the form of acetates and the hydroxy groups to be sulfated were masked with benzyl groups. The disulfonic-acid analogue was prepared in a [2+3] block synthesis by using a trisaccharide disulfonic acid as an acceptor and a glucuronide disaccharide as a donor. For the synthesis of the pentasaccharide trisulfonic acid, a more-efficient approach, which involved elongation of the trisaccharide acceptor with a non-oxidized precursor of the glucuronic acid followed by post-glycosidation oxidation at the tetrasaccharide level and a subsequent [1+4] coupling reaction, was elaborated. In vitro evaluation of the anticoagulant activity of these new sulfonic-acid derivatives revealed that the disulfonate analogue inhibited the blood-coagulation-proteinase factor Xa with outstanding efficacy; however, the introduction of the third sulfonic-acid moiety resulted in a notable decrease in the anti-Xa activity. The difference in the biological activity of the disulfonic- and trisulfonic-acid counterparts could be explained by the different conformation of their L-iduronic-acid residues.

  13. Vacuum thermal evaporation of polyaniline doped with camphor sulfonic acid

    SciTech Connect

    Boyne, Devon; Menegazzo, Nicola; Pupillo, Rachel C.; Rosenthal, Joel; Booksh, Karl S.

    2015-05-15

    Intrinsically conducting polymers belong to a class of organic polymers with intriguing electronic and physical properties specifically for electro-optical applications. Significant interest into doped polyaniline (PAni) can be attributed to its high conductivity and environmental stability. Poor dissolution in most solvents has thus far hindered the successful integration of PAni into commercial applications, which in turn, has led to the investigations of various deposition and acidic doping methods. Physical vapor deposition methods, including D.C. magnetron sputtering and vacuum thermal evaporation, have shown exceptional control over physical film properties (thickness and morphology). However, resulting films are less conductive than films deposited by conventional methods (i.e., spin and drop casting) due to interruption of the hyperconjugation of polymer chains. Specifically, vacuum thermal evaporation requires a postdoping process, which results in incorporation of impurities and oxidation of surface moieties. In this contribution, thermally evaporated films, sequentially doped by vacuum evaporation of an organic acid (camphorsulfonic acid, CSA) is explored. Spectroscopic evidence confirms the successful doping of PAni with CSA while physical characterization (atomic force microscopy) suggests films retain good morphology and are not damaged by the doping process. The procedure presented herein also combines other postpreparation methods in an attempt to improve conductivity and/or substrate adhesion.

  14. Sulfonic Acid- and Lithium Sulfonate-Grafted Poly(Vinylidene Fluoride) Electrospun Mats As Ionic Liquid Host for Electrochromic Device and Lithium-Ion Battery.

    PubMed

    Zhou, Rui; Liu, Wanshuang; Leong, Yew Wei; Xu, Jianwei; Lu, Xuehong

    2015-08-01

    Electrospun polymer nanofibrous mats loaded with ionic liquids (ILs) are promising nonvolatile electrolytes with high ionic conductivity. The large cations of ILs are, however, difficult to diffuse into solid electrodes, making them unappealing for application in some electrochemical devices. To address this issue, a new strategy is used to introduce proton conduction into an IL-based electrolyte. Poly(vinylidene fluoride-co-hexafluoropropylene) (P(VDF-HFP)) copolymer is functionalized with sulfonic acid through covalent attachment of taurine. The sulfonic acid-grafted P(VDF-HFP) electrospun mats consist of interconnected nanofibers, leading to remarkable improvement in dimensional stability of the mats. IL-based polymer electrolytes are prepared by immersing the modified mats in 1-butyl-3-methylimidazolium tetrafluoroborate (BMIM(+)BF4(-)). It is found that the SO3(-) groups can have Lewis acid-base interactions with the cations (BMIM(+)) of IL to promote the dissociation of ILs, and provide additional proton conduction, resulting in significantly improved ionic conductivity. Using this novel electrolyte, polyaniline-based electrochromic devices show higher transmittance contrast and faster switching behavior. Furthermore, the sulfonic acid-grafted P(VDF-HFP) electrospun mats can also be lithiated, giving additional lithium ion conduction for the IL-based electrolyte, with which Li/LiCoO2 batteries display enhanced C-rate performance.

  15. Syntheses of biodiesel precursors: sulfonic acid catalysts for condensation of biomass-derived platform molecules.

    PubMed

    Balakrishnan, Madhesan; Sacia, Eric R; Bell, Alexis T

    2014-04-01

    Synthesis of transportation fuel from lignocellulosic biomass is an attractive solution to the green alternative-energy problem. The production of biodiesel, in particular, involves the process of upgrading biomass-derived small molecules to diesel precursors containing a specific carbon range (C11 -C23). Herein, a carbon-upgrading process utilizing an acid-catalyzed condensation of furanic platform molecules from biomass is described. Various types of sulfonic acid catalysts have been evaluated for this process, including biphasic and solid supported catalysts. A silica-bound alkyl sulfonic acid catalyst has been developed for promoting carbon-carbon bond formation of biomass-derived carbonyl compounds with 2-methylfuran. This hydrophobic solid acid catalyst exhibits activity and selectivity that are comparable to those of a soluble acid catalyst. The catalyst can be readily recovered and recycled, possesses appreciable hydrolytic stability in the presence of water, and retains its acidity over multiple reaction cycles. Application of this catalyst to biomass-derived platform molecules led to the synthesis of a variety of furanic compounds, which are potential biodiesel precursors.

  16. Optical and electronic properties of polyaniline sulfonic acid-ribonucleic acid-gold nanobiocomposites.

    PubMed

    Routh, Parimal; Garai, Ashesh; Nandi, Arun K

    2011-08-14

    Finely fibrillar polyaniline sulfonic acid (PSA)/ribonucleic acid (RNA) hybrids are developed by wrapping PSA with RNA from a mixture of aqueous PSA (P) and RNA (R) solutions of different compositions. FTIR spectra suggest H-bonding and π-π interactions in the hybrids and dedoping of self doped PSA during hybrid formation. UV-vis spectra exhibit a blue shift of the π-band to polaron band transition of PSA from 870 to 581 nm due to dedoping. The PR hybrids show enhanced PL-properties when excited at 540 nm relative to PSA which also exhibits rectification behavior in current (I)-voltage (V) curves. Gold nanoparticles (Au NPs) grown on these PR hybrids by the reduction of Au(3+) by PSA show different morphologies with varying composition. FTIR spectra of the nanobiocomposites indicate that Au NPs are stabilized by the co-ordination of the nitrogen atoms of -N=Q=N- bonds of PSA (Q = quinonoid ring). The intensity of the Au plasmon band gradually decreases with time but the PL-intensities of the PAu/PRAu nanocomposites increase with time. The PL-intensity of the nanocomposites is higher than that of PSA and PR hybrids. The DC-conductivity of the PR hybrids increases by an order of magnitude on addition of Au NPs. I-V curves of the nanobiocomposites show negative differential resistance (NDR) in PSA rich systems with a stable NDR ratio of 7 in the PRAu21 and PRAu11 hybrids. Possible reasons from the accumulation of charges on the Au NPs and its stabilization through the π-clouds of RNA bases are discussed. The PRAu11 system also exhibits rectification properties with a rectification ratio of 14.

  17. Optical and electronic properties of polyaniline sulfonic acid-ribonucleic acid-gold nanobiocomposites.

    PubMed

    Routh, Parimal; Garai, Ashesh; Nandi, Arun K

    2011-08-14

    Finely fibrillar polyaniline sulfonic acid (PSA)/ribonucleic acid (RNA) hybrids are developed by wrapping PSA with RNA from a mixture of aqueous PSA (P) and RNA (R) solutions of different compositions. FTIR spectra suggest H-bonding and π-π interactions in the hybrids and dedoping of self doped PSA during hybrid formation. UV-vis spectra exhibit a blue shift of the π-band to polaron band transition of PSA from 870 to 581 nm due to dedoping. The PR hybrids show enhanced PL-properties when excited at 540 nm relative to PSA which also exhibits rectification behavior in current (I)-voltage (V) curves. Gold nanoparticles (Au NPs) grown on these PR hybrids by the reduction of Au(3+) by PSA show different morphologies with varying composition. FTIR spectra of the nanobiocomposites indicate that Au NPs are stabilized by the co-ordination of the nitrogen atoms of -N=Q=N- bonds of PSA (Q = quinonoid ring). The intensity of the Au plasmon band gradually decreases with time but the PL-intensities of the PAu/PRAu nanocomposites increase with time. The PL-intensity of the nanocomposites is higher than that of PSA and PR hybrids. The DC-conductivity of the PR hybrids increases by an order of magnitude on addition of Au NPs. I-V curves of the nanobiocomposites show negative differential resistance (NDR) in PSA rich systems with a stable NDR ratio of 7 in the PRAu21 and PRAu11 hybrids. Possible reasons from the accumulation of charges on the Au NPs and its stabilization through the π-clouds of RNA bases are discussed. The PRAu11 system also exhibits rectification properties with a rectification ratio of 14. PMID:21698302

  18. Preparation of sulfonic acid-containing rubbers from natural rubber vulcanizates

    NASA Astrophysics Data System (ADS)

    Poonsawat, Worapong; Poompradub, Sirilux; Ngamcharussrivichai, Chawalit

    2014-06-01

    In this work, a series of sulfonic acid-containing rubbers were prepared by aqueous phase oxidation of natural rubber vulcanizates in the presence of hydrogen peroxide (H2O2) and formic acid (HCOOH). The starting vulcanizates were neatly prepared via an efficient vulcanization (EV) system by varying mass ratio of N-cyclohexyl-2-benzothiazole sulfonamide (CBS), as an accelerator, to sulfur. The oxidation conditions were controlled at the molar ratio of H2O2: HCOOH = 1:1, the concentration of H2O2 = 15 wt.%, the temperature = 50 °C, and the reaction time = 3 h. The rubber materials before and after the oxidation were characterized for their physicochemical properties by using Fourier transform infrared spectroscopy, bomb calorimetry, acid-base titration and swelling measurements. The results indicated the presence of sulfonic acid group in the oxidized rubbers, generated by the oxidative cleaves of sulfide crosslinks in the rubber vulcanizates. The oxidation decreased the sulfur content of the rubber in which the level of sulfur loss was determined by the CBS/sulfur ratio. Moreover, the acidity of the oxidized products was correlated with the amount of sulfur remaining.

  19. Nanocasting Design and Spatially Selective Sulfonation of Polystyrene-Based Polymer Networks as Solid Acid Catalysts.

    PubMed

    Richter, Felix H; Sahraoui, Laila; Schüth, Ferdi

    2016-09-12

    Nanocasting is a general and widely applied method in the generation of porous materials during which a sacrificial solid template is used as a mold on the nanoscale. Ideally, the resulting structure is the inverse of the template. However, replication is not always as direct as anticipated, so the influences of the degree of pore filling and of potential restructuring processes after removal of the template need to be considered. These apparent limitations give rise to opportunities in the synthesis of poly(styrene-co-divinylbenzene) (PSD) polymer networks of widely varying porosities (BET surface area=63-562 m(2)  g(-1) ; Vtot =0.18-1.05 cm(3)  g(-1) ) by applying a single synthesis methodology. In addition, spatially selective sulfonation on the nanoscale seems possible. Together, nanocasting and sulfonation enable rational catalyst design. The highly porous nanocast and predominantly surface-sulfonated PSD networks approach the activity of the corresponding molecular catalyst, para-toluenesulfonic acid, and exceed those of commercial ion-exchange polymers in the depolymerization of macromolecular inulin.

  20. Nanocasting Design and Spatially Selective Sulfonation of Polystyrene-Based Polymer Networks as Solid Acid Catalysts.

    PubMed

    Richter, Felix H; Sahraoui, Laila; Schüth, Ferdi

    2016-09-12

    Nanocasting is a general and widely applied method in the generation of porous materials during which a sacrificial solid template is used as a mold on the nanoscale. Ideally, the resulting structure is the inverse of the template. However, replication is not always as direct as anticipated, so the influences of the degree of pore filling and of potential restructuring processes after removal of the template need to be considered. These apparent limitations give rise to opportunities in the synthesis of poly(styrene-co-divinylbenzene) (PSD) polymer networks of widely varying porosities (BET surface area=63-562 m(2)  g(-1) ; Vtot =0.18-1.05 cm(3)  g(-1) ) by applying a single synthesis methodology. In addition, spatially selective sulfonation on the nanoscale seems possible. Together, nanocasting and sulfonation enable rational catalyst design. The highly porous nanocast and predominantly surface-sulfonated PSD networks approach the activity of the corresponding molecular catalyst, para-toluenesulfonic acid, and exceed those of commercial ion-exchange polymers in the depolymerization of macromolecular inulin. PMID:27561365

  1. A potential new metabolite of gamma-hydroxybutyrate: sulfonated gamma-hydroxybutyric acid.

    PubMed

    Hanisch, Stephanie; Stachel, Nicole; Skopp, Gisela

    2016-03-01

    Detection of gamma-hydroxybutyric acid (GHB) became crucial in many clinical and forensic settings due to its increasing use for recreational purposes and drug-facilitated sexual assault. Its narrow window of detection of about 3-12 h in urine represents a major problem. Analogous to ethyl glucuronide, the recently identified GHB-glucuronide exhibits a longer window of detection than the parent drug. It appeared reasonable that a sulfonated metabolite of GHB (GHB-SUL) will also be formed. Due to the lack of an appropriate standard, GHB was incubated with a human liver cytosolic fraction to produce GHB-SUL. Following development of a liquid chromatography/tandem mass spectrometry (LC-MS/MS) assay to measure GHB and GHB-SUL, authentic urine samples (n = 5) were tested for GHB-SUL. These investigations revealed detectable signals of both GHB and GHB-SUL, strongly indicating that GHB is not only glucuronidated but also sulfonated. Given that sulfonated metabolites generally have longer half-life times than the corresponding free drugs, GHB-SUL may serve as a biomarker of GHB misuse along with its glucuronide. PMID:26210636

  2. Synthesis and characterization of sulfonated single-walled carbon nanotubes and their performance as solid acid catalyst

    NASA Astrophysics Data System (ADS)

    Yu, Hao; Jin, Yuguang; Li, Zhili; Peng, Feng; Wang, Hongjuan

    2008-03-01

    Single-walled carbon nanotubes (SWCNTs) were treated with sulfuric acid at 300 °C to synthesize sulfonated SWCNTs (s-SWCNTs), which were characterized by electron microscopy, infrared, Raman and X-ray photoelectron spectroscopy, and thermo analysis. Compared with activated carbon, more sulfonic acid groups can be introduced onto the surfaces of SWCNTs. The high degree (˜20 wt%) of surface sulfonation led to hydrophilic sidewalls that allows the SWCNTs to be uniformly dispersed in water and organic solvents. The high surface acidity of s-SWCNTs was demonstrated by NH 3 temperature-programmed desorption technique and tested by an acetic acid esterification reaction catalyzed by s-SWCNTs. The results show that the water-dispersive s-SWCNTs are an excellent solid acid catalyst and demonstrate the potential of SWCNTs in catalysis applications.

  3. Photophysical and photosensitizing characters of 2-phenylbenzimidazole-5-sulfonic acid. A theoretical study.

    PubMed

    Shen, Liang

    2015-01-01

    The sunscreen agent 2-phenylbenzimidazole-5-sulfonic acid (PBSA) has been reported to exhibit photosensitizing activity. In the present study, the photophysical and photosensitizing properties of PBSA were investigated by means of quantum chemical calculations with the aim to gain deeper insights into the underlying photosensitizing mechanisms. The results indicate that singlet oxygen may be generated spontaneously through direct energy transfer from triplet excited state PBSA to (3)O2, and superoxide anion radical is formed through electron transfer between the anion of PBSA and (3)O2. This offers some deeper insights into the photosensitizing mechanisms of PBSA.

  4. Ring-opening polymerization of ε-caprolactone catalyzed by sulfonic acids: computational evidence for bifunctional activation.

    PubMed

    Susperregui, Nicolas; Delcroix, Damien; Martin-Vaca, Blanca; Bourissou, Didier; Maron, Laurent

    2010-10-01

    The mechanism of ring-opening of ε-caprolactone by methanol catalyzed by trifluoromethane and methane sulfonic acids has been studied computationally at the DFT level of theory. For both elementary steps, the sulfonic acid was predicted to behave as a bifunctional catalyst. The nucleophilic addition proceeds via activation of both the monomer and the alcohol. The ring-opening involves the cleavage of the endo C-O bond of the tetrahedral intermediate with concomitant proton transfer. In both cases, the sulfonic acid acts as a proton shuttle via its acidic hydrogen atom and basic oxygen atoms. The computed activation barriers are consistent with the relatively fast polymerizations observed experimentally at room temperature with both catalysts.

  5. Mapping protein cysteine sulfonic acid modifications with specific enrichment and mass spectrometry: an integrated approach to explore the cysteine oxidation.

    PubMed

    Chang, Yuan-Chang; Huang, Chien-Ning; Lin, Chia-Hung; Chang, Huan-Cheng; Wu, Chih-Che

    2010-08-01

    Oxidation of thiol proteins, which results in conversion of cysteine residues to cysteine sulfenic, sulfinic or sulfonic acids, is an important posttranslational control of protein function in cells. To facilitate the analysis of this process with MALDI-MS, we have developed a method for selective enrichment and identification of peptides containing cysteine sulfonic acid (sulfopeptides) in tryptic digests of proteins based on ionic affinity capture using polyarginine-coated nanodiamonds as high-affinity probes. The method was applied to selectively concentrate sulfopeptides from either a highly dilute solution or a complex peptide mixture in which the abundance of the sulfonated analyte is as low as 0.02%. The polyarginine-coated probes exhibit a higher affinity for peptides containing multiple sulfonic acids than peptides containing single sulfonic acid. The limit of the detection is in the femtomole range, with the MALDI-TOF mass spectrometer operating in the negative ion mode. The results show that the new approach has good specificity even in the presence of phosphopeptides. An application of this method for selective enrichment and structural identification of sulfopeptides is demonstrated with the tryptic digests of performic-acid-oxidized BSA.

  6. Physicochemical pretreatments and hydrolysis of furfural residues via carbon-based sulfonated solid acid.

    PubMed

    Ma, Bao Jun; Sun, Yuan; Lin, Ke Ying; Li, Bing; Liu, Wan Yi

    2014-03-01

    Potential commercial physicochemical pretreatment methods, NaOH/microwave and NaOH/ultrasound were developed, and the carbon-based sulfonated solid acid catalysts were prepared for furfural residues conversion into reducing sugars. After the two optimum pretreatments, both the content of cellulose increased (74.03%, 72.28%, respectively) and the content of hemicellulose (94.11%, 94.17% of removal rate, respectively) and lignin (91.75%, 92.09% of removal rate, respectively) decreased in furfural residues. The reducing sugar yields of furfural residues with the two physicochemical pretreatments on coal tar-based solid acid reached 33.94% and 33.13%, respectively, higher than that pretreated via NaOH alone (27%) and comparable to that pretreated via NaOH/H2O2 (35.67%). The XRD patterns, IR spectra and SEM images show microwave and ultrasound improve the pretreatment effect. The results demonstrate the carbon-based sulfonated solid acids and the physicochemical pretreatments are green, effective, low-cost for furfural residues conversion.

  7. Polyaniline nanotubes and their dendrites doped with different naphthalene sulfonic acids

    SciTech Connect

    Zhang Zhiming; Wei Zhixiang; Zhang Lijuan; Wan Meixiang . E-mail: wanmx@iccas.ac.cn

    2005-03-01

    Polyaniline (PANI) nanotubes (130-250 nm in average diameter) doped with {alpha}-naphthalene sulfonic acid ({alpha}-NSA), {beta}-naphthalene sulfonic acid ({beta}-NSA) and 1,5-naphthalene disulfonic acid were synthesized via a self-assembly process. It was found that the formation yield, morphology (hollow or solid), size, crystalline and electrical properties of the nanostructures are affected by the position and number of -SO{sub 3}H groups attached to the naphthalene ring of NSA as well as the synthesis conditions. Moreover, these nanotubes aggregate to form a dendritic morphology when the polymerization is performed at a static state. The micelles composed of dopant or dopant/anilinium cations might act in a template-like fashion in forming self-assembled PANI nanotubes, which was further confirmed by X-ray diffraction measurements, while the aggregated morphology of the nanotubes might result from polymer chain interactions including {pi}-{pi} interactions, hydrogen and ionic bonds.

  8. Theoretical stusy of the reaction between 2,2',4' - trihydroxyazobenzene-5-sulfonic acid and zirconium

    USGS Publications Warehouse

    Fletcher, Mary H.

    1960-01-01

    Zirconium reacts with 2,2',4'-trihydroxyazobenzene-5-sulfonic acid in acid solutions to Form two complexes in which the ratios of dye to zirconium are 1 to 1 and 2 to 1. Both complexes are true chelates, with zirconium acting as a bridge between the two orthohydroxy dye groups. Apparent equilibrium constants for the reactions to form each of the complexes are determined. The reactions are used as a basis for the determination of the active component in the dye and a graphical method for the determination of reagent purity is described. Four absorption spectra covering the wave length region from 350 to 750 mu are given, which completely define the color system associated with the reactions in solutions where the hydrochloric acid concentration ranges from 0.0064N to about 7N.

  9. Asymmetric synthesis of allylic sulfonic acids: enantio- and regioselective iridium-catalyzed allylations of Na2SO3.

    PubMed

    Liu, Wei; Zhao, Xiao-ming; Zhang, Hong-bo; Zhang, Liang; Zhao, Ming-zhu

    2014-12-15

    An enantioselective allylation reaction of allylic carbonates with sodium sulfite (Na2 SO3 ) catalyzed by Ir complex was accomplished, providing allylic sulfonic acids in good to excellent yields with a high level of enantio- and regioselectivities. (R)-2-Phenyl-2-sulfoacetic acid, a key intermediate for the synthesis of Cefsulodin and Sulbenicillin, was synthesized as well.

  10. Asymmetric synthesis of allylic sulfonic acids: enantio- and regioselective iridium-catalyzed allylations of Na2SO3.

    PubMed

    Liu, Wei; Zhao, Xiao-ming; Zhang, Hong-bo; Zhang, Liang; Zhao, Ming-zhu

    2014-12-15

    An enantioselective allylation reaction of allylic carbonates with sodium sulfite (Na2 SO3 ) catalyzed by Ir complex was accomplished, providing allylic sulfonic acids in good to excellent yields with a high level of enantio- and regioselectivities. (R)-2-Phenyl-2-sulfoacetic acid, a key intermediate for the synthesis of Cefsulodin and Sulbenicillin, was synthesized as well. PMID:25367779

  11. Synthesis, cytotoxic evaluation and in silico pharmacokinetic prediction of some benzo[a]phenazine-5-sulfonic acid derivatives.

    PubMed

    Hari Narayana Moorthy, N S; Karthikeyan, C; Trivedi, Piyush

    2009-11-01

    Cancer is one of the life threatening diseases and the development of novel anticancer molecules is limited by many reasons. In the present investigation, some novel benzo[a]phenazine-5-sulfonic acid derivatives as DNA intercalator was designed with optimized pharmacokinetic features for cancer treatment. The compounds with desired pharmacokinetic profile were synthesized and structurally characterized. Cytotoxic activity study against HL-60 tumor cell lines shows that 10-dimethyl carboxamido derivative of benzo[a]phenazine-5-sulfonic acid is found to be the most active in the series with cytotoxic activity (IC(50) = 19 microM) comparable to cisplatin (IC(50) = 7 microM). The study concluded that the novel benzo[a]phenazine-5-sulfonic acid derivatives were found to have enhanced DNA binding affinity and exhibited significant activity in vitro against HL-60 cell lines. This work will also guide for further development of effective DNA intercalators for cancer treatment.

  12. Synthesis of a Sulfonated Two-Dimensional Covalent Organic Framework as an Efficient Solid Acid Catalyst for Biobased Chemical Conversion.

    PubMed

    Peng, Yongwu; Hu, Zhigang; Gao, Yongjun; Yuan, Daqiang; Kang, Zixi; Qian, Yuhong; Yan, Ning; Zhao, Dan

    2015-10-12

    Because of limited framework stability tolerance, de novo synthesis of sulfonated covalent organic frameworks (COFs) remains challenging and unexplored. Herein, a sulfonated two-dimensional crystalline COF, termed TFP-DABA, was synthesized directly from 1,3,5-triformylphloroglucinol and 2,5-diaminobenzenesulfonic acid through a previously reported Schiff base condensation reaction, followed by irreversible enol-to-keto tautomerization, which strengthened its structural stability. TFP-DABA is a highly efficient solid acid catalyst for fructose conversion with remarkable yields (97 % for 5-hydroxymethylfurfural and 65 % for 2,5-diformylfuran), good chemoselectivity, and good recyclability. The present study sheds light on the de novo synthesis of sulfonated COFs as novel solid acid catalysts for biobased chemical conversion.

  13. Synthesis of a Sulfonated Two-Dimensional Covalent Organic Framework as an Efficient Solid Acid Catalyst for Biobased Chemical Conversion.

    PubMed

    Peng, Yongwu; Hu, Zhigang; Gao, Yongjun; Yuan, Daqiang; Kang, Zixi; Qian, Yuhong; Yan, Ning; Zhao, Dan

    2015-10-12

    Because of limited framework stability tolerance, de novo synthesis of sulfonated covalent organic frameworks (COFs) remains challenging and unexplored. Herein, a sulfonated two-dimensional crystalline COF, termed TFP-DABA, was synthesized directly from 1,3,5-triformylphloroglucinol and 2,5-diaminobenzenesulfonic acid through a previously reported Schiff base condensation reaction, followed by irreversible enol-to-keto tautomerization, which strengthened its structural stability. TFP-DABA is a highly efficient solid acid catalyst for fructose conversion with remarkable yields (97 % for 5-hydroxymethylfurfural and 65 % for 2,5-diformylfuran), good chemoselectivity, and good recyclability. The present study sheds light on the de novo synthesis of sulfonated COFs as novel solid acid catalysts for biobased chemical conversion. PMID:26448524

  14. Modification of the cellulosic component of hemp fibers using sulfonic acid derivatives: Surface and thermal characterization.

    PubMed

    George, Michael; Mussone, Paolo G; Bressler, David C

    2015-12-10

    The aim of this study was to characterize the surface, morphological, and thermal properties of hemp fibers treated with two commercially available, inexpensive, and water soluble sulfonic acid derivatives. Specifically, the cellulosic component of the fibers were targeted, because cellulose is not easily removed during chemical treatment. These acids have the potential to selectively transform the surfaces of natural fibers for composite applications. The proposed method proceeds in the absence of conventional organic solvents and high reaction temperatures. Surface chemical composition and signature were measured using gravimetric analysis, X-ray photoelectron spectroscopy (XPS) and Fourier transform infra-red spectroscopy (FTIR). XPS data from the treated hemp fibers were characterized by measuring the reduction in O/C ratio and an increase in abundance of the C-C-O signature. FTIR confirmed the reaction with the emergence of peaks characteristic of disubstituted benzene and amino groups. Grafting of the sulfonic derivatives resulted in lower surface polarity. Thermogravimetric analysis revealed that treated fibers were characterized by lower percent degradation between 200 and 300 °C, and a higher initial degradation temperature.

  15. Electrochemiluminescence of tris(8-hydroxyquinoline-5-sulfonic acid)aluminum(III) in aqueous solution.

    PubMed

    Muegge, Brian D; Brooks, Sean; Richter, Mark M

    2003-03-01

    The electrochemiluminescence (ECL) of tris(8-hydroxyquinoline-5-sulfonic acid)aluminum(III) in aqueous solution is reported. ECL is generated by complexing aluminum ions with the chelating agent 8-hydroxyquinoline-5-sulfonic acid (HQS) to form Al(HQS)3, followed by oxidation in the presence of tri-n-propylamine (TPrA). The ECL intensity peaks a potential corresponding to oxidation of both TPrA and Al(HQS)3, and the ECL emission spectrum (lambda(max) = 499 nm) matches the photoluminescence emission spectrum, indicating that the emission is from a Al(HQS)3* excited state. ECL efficiencies (phi(ecl), photons generated per redox event) of 0.002 using Ru(bpy)3(2+) (phi(ecl) = 1) as relative standard. Conditions for ECL emission were optimized and used to generate a calibration curve that was linear over the 7 x 10(-6)-4 x 10(-4) M (5-281 mg/L (ppm)) range with a theoretical limit of detection of 1 ppm. The ECL of several metal ions other than aluminum with HQS and effects on Al(HQS)3 ECL were also examined.

  16. Cross-linked polystyrene sulfonic acid and polyethylene glycol as a low-fouling material.

    PubMed

    Alghunaim, Abdullah; Zhang Newby, Bi-min

    2016-04-01

    A negatively charged hydrophilic low fouling film was prepared by thermally cross-linking a blend consisting of polystyrene sulfonic acid (PSS) and polyethylene glycol (PEG). The film was found to be stable by dip-washing. The fouling resistance of this material toward bacterial (Escherichia coli) and colloidal (polystyrene particles) attachment, non-specific protein (fibronectin) adsorption and cell (3T3 NIH) adhesion was evaluated and was compared with glass slides modified with polyethylene glycol (PEG) brushes, oxidized 3-mercaptopropyltrimethoxysilane (sulfonic acid, SA), and n-octadecyltrichlorosilane (OTS). The extended Derjaguin-Landau-Verwey-Overbeek (XDLVO) theory and thermodynamic models based on surface energy were used to explain the interaction behaviors of E. coli/polystyrene particles-substrate and protein-substrate interactions, respectively. The cross-linked PSS-PEG film was found to be slightly better than SA and PEG toward resisting non-specific protein adsorption, and showed comparable low attachment results as those of PEG toward particle, bacterial and NIH-3T3 cells adhesion. The low-fouling performance of PSS-PEG, a cross-linked film by a simple thermal curing process, could allow this material to be used for applications in aqueous environments, where most low fouling hydrophilic polymers, such as PSS or PEG, could not be easily retained.

  17. Alkyl sulfonic acide hydrazides: Synthesis, characterization, computational studies and anticancer, antibacterial, anticarbonic anhydrase II (hCA II) activities

    NASA Astrophysics Data System (ADS)

    O. Ozdemir, Ummuhan; İlbiz, Firdevs; Balaban Gunduzalp, Ayla; Ozbek, Neslihan; Karagoz Genç, Zuhal; Hamurcu, Fatma; Tekin, Suat

    2015-11-01

    Methane sulfonic acide hydrazide, CH3SO2NHNH2 (1), ethane sulfonic acide hydrazide, CH3CH2SO2NHNH2 (2), propane sulfonic acide hydrazide, CH3CH2CH2SO2NHNH2 (3) and butane sulfonic acide hydrazide, CH3CH2CH2CH2SO2NHNH2 (4) have been synthesized as homologous series and characterized by using elemental analysis, spectrophotometric methods (1H-13C NMR, FT-IR, LC-MS). In order to gain insight into the structure of the compounds, we have performed computational studies by using 6-311G(d, p) functional in which B3LYP functional were implemented. The geometry of the sulfonic acide hydrazides were optimized at the DFT method with Gaussian 09 program package. A conformational analysis of compounds were performed by using NMR theoretical calculations with DFT/B3LYP/6-311++G(2d, 2p) level of theory by applying the (GIAO) approach. The anticancer activities of these compounds on MCF-7 human breast cancer cell line investigated by comparing IC50 values. The antibacterial activities of synthesized compounds were studied against Gram positive bacteria; Staphylococcus aureus ATCC 6538, Bacillus subtilis ATCC 6633, Bacillus cereus NRRL-B-3711, Enterococcus faecalis ATCC 29212 and Gram negative bacteria; Escherichia coli ATCC 11230, Pseudomonas aeruginosa ATCC 15442, Klebsiella pneumonia ATCC 70063 by using the disc diffusion method. The inhibition activities of these compounds on carbonic anhydrase II enzyme (hCA II) have been investigated by comparing IC50 and Ki values. The biological activity screening shows that butane sulfonic acide hydrazide (4) has more activity than the others against tested breast cancer cell lines MCF-7, Gram negative/Gram positive bacteria and carbonic anhydrase II (hCA II) isoenzyme.

  18. Estimated pKa values for the environmentally relevant C1 through C8 perfluorinated sulfonic acid isomers.

    PubMed

    Rayne, Sierra; Forest, Kaya

    2016-10-14

    In order to estimate isomer-specific acidity constants (pKa) for the perfluorinated sulfonic acid (PFSA) environmental contaminants, the parameterization method 6 (PM6) pKa prediction method was extensively validated against a wide range of carbon oxyacids and related sulfonic/sulfinic acids. Excellent pKa prediction performance was observed for the carbon oxyacids using the PM6 method, but this approach was found to have a severe positive bias for sulfonic/sulfinic acids. To overcome this obstacle, a correlation was developed between non-adjusted PM6 pKa values and the corresponding experimentally obtained/estimated acidity constants for a range of representative alkyl, aryl and halogen-substituted sulfonic acids. Application of this correction to the PM6 values allows for extension of this computational method to a new acid functional group. When used to estimate isomer-specific pKa values for the C1 through C8 PFSAs, the modified PM6 approach suggests an adjusted pKa range from -5.3 to -9.0, indicating that all members of this class of well-known environmental contaminants will be effectively completely dissociated in aquatic systems.

  19. Estimated pKa values for the environmentally relevant C1 through C8 perfluorinated sulfonic acid isomers.

    PubMed

    Rayne, Sierra; Forest, Kaya

    2016-10-14

    In order to estimate isomer-specific acidity constants (pKa) for the perfluorinated sulfonic acid (PFSA) environmental contaminants, the parameterization method 6 (PM6) pKa prediction method was extensively validated against a wide range of carbon oxyacids and related sulfonic/sulfinic acids. Excellent pKa prediction performance was observed for the carbon oxyacids using the PM6 method, but this approach was found to have a severe positive bias for sulfonic/sulfinic acids. To overcome this obstacle, a correlation was developed between non-adjusted PM6 pKa values and the corresponding experimentally obtained/estimated acidity constants for a range of representative alkyl, aryl and halogen-substituted sulfonic acids. Application of this correction to the PM6 values allows for extension of this computational method to a new acid functional group. When used to estimate isomer-specific pKa values for the C1 through C8 PFSAs, the modified PM6 approach suggests an adjusted pKa range from -5.3 to -9.0, indicating that all members of this class of well-known environmental contaminants will be effectively completely dissociated in aquatic systems. PMID:27389973

  20. Fluorimetric sequential injection determination of magnesium using 8-hydroxiquinoline-5-sulfonic acid in a micellar medium.

    PubMed

    de Armas, G; Cladera, A; Becerra, E; Estela, J M; Cerdà, V

    2000-05-31

    A fluorimetric sequential injection method for the determination of magnesium is proposed. The system is based on the complex formation between Mg(II) and 8-hydroxyquinoline-5-sulfonic acid (HQS). The reaction was carried out in the presence of ethylene glycol-bis(beta-aminoethyl ether)-N,N,N',N'-tetraacetic acid (EGTA) as a masking agent. Cetyltrimethylammonium chloride (HTAC) was employed as a fluorescence enhancer. The influence of several variables, such as reagent concentration, volumes and pH has been investigated. The reagent was prepared in a 0.1 M Tris-HCl buffer solution (pH 9). A detection limit of 12 mug l(-1) magnesium was obtained. The proposed method was applied to the determination of magnesium in natural waters.

  1. Inhibition of mild steel corrosion by sodium dodecyl benzene sulfonate and sodium oleate in acidic solutions

    SciTech Connect

    Luo, H.; Han, K.N.; Guan, Y.C.

    1998-08-01

    Inhibition of mild steel corrosion by sodium dodecyl benzene sulfonate (C{sub 12}H{sub 25}C{sub 6}H{sub 4}SO{sub 3}Na [SDBS]) and sodium oleate (CH{sub 3}[CH{sub 2}]{sub 7}CH{double_bond}CH[CH{sub 2}]{sub 7}COONa) in acidic solutions was investigated using a potentiostat, a lock-in amplifier, a contact angle goniometer, A fourier transform infrared (FTIR) spectrometer, and an ultraviolet (UV)/visible spectrophotometer. In the presence of the organic inhibitors, the corrosion rate was reduced significantly, Anionic SDBS was adsorbed on the positively charged mild steel surface through the electrostatic attraction. However, for sodium oleate, the soluble oleic acid (CH{sub 3}[CH{sub 2}]{sub 7}CH{double_bond}CH[CH]{sub 7}COOH) chemisorbed on the steel surface at the first stage. Then, insoluble colloid adsorbed on the chemisorbed surface through van der Waals forces.

  2. Investigation of the doping efficiency of poly(styrene sulfonic acid) in poly(3,4-ethylenedioxythiophene)/poly(styrene sulfonic acid) dispersions by capillary electrophoresis.

    PubMed

    Diah, Anang W M; Quirino, Joselito P; Belcher, Warwick; Holdsworth, Clovia I

    2014-07-01

    CE can efficiently separate poly(3,4-ethylenedioxythiophene)/poly(styrene sulfonic acid) (PEDOT/PSS) complexes and free PSS in dispersions and can be used to estimate the degree of PSS doping. We investigated the doping efficiency of PSS on PEDOT in dispersions using CE and its effect on the conductivity of the resulting PEDOT/PSS films. Results of this study indicate that dispersions containing 1:2.5-3 EDOT:PSS feed ratio (by weight) exhibiting 72-73% PSS doping generate highly processable and highly conductive films. Conductivity can be optimized by limiting the time of reaction to 12 h. At this point of the reaction, the PEDOT/PSS segments, appearing as broad band in the electropherogram, could still exist in an extended coil conformation favoring charge transport resulting in high conductivity. Above a threshold PEDOT length formed at reaction times longer than 12 h, the PEDOT/PSS complex, appearing as spikes in the electropherogram, most likely have undergone a conformational change to coiled core-shell structure restricting charge transport resulting in low conductivity. The optimal conductivity (5.2 S/cm) of films from dispersions synthesized for 12 h is significantly higher than those from its commercial equivalent Clevios P and other reported values obtained under similar conditions without the addition of codopants. PMID:24782292

  3. Synthesis and characterization of sulfonated single-walled carbon nanotubes and their performance as solid acid catalyst

    SciTech Connect

    Yu Hao Jin Yuguang; Li Zhili; Peng Feng Wang Hongjuan

    2008-03-15

    Single-walled carbon nanotubes (SWCNTs) were treated with sulfuric acid at 300 deg. C to synthesize sulfonated SWCNTs (s-SWCNTs), which were characterized by electron microscopy, infrared, Raman and X-ray photoelectron spectroscopy, and thermo analysis. Compared with activated carbon, more sulfonic acid groups can be introduced onto the surfaces of SWCNTs. The high degree ({approx}20 wt%) of surface sulfonation led to hydrophilic sidewalls that allows the SWCNTs to be uniformly dispersed in water and organic solvents. The high surface acidity of s-SWCNTs was demonstrated by NH{sub 3} temperature-programmed desorption technique and tested by an acetic acid esterification reaction catalyzed by s-SWCNTs. The results show that the water-dispersive s-SWCNTs are an excellent solid acid catalyst and demonstrate the potential of SWCNTs in catalysis applications. - Graphical abstract: Sulfonated SWCNTs with 20 wt% -SO{sub 2}OH groups were prepared by a high-temperature H{sub 2}SO{sub 4} process, which transformed the hydrophobic surface of pristine SWCNTs to a hydrophilic surface and provided an excellent performance as solid acid catalyst.

  4. Synthesis, characterization, antibacterial activity and quantum chemical studies of N'-Acetyl propane sulfonic acid hydrazide

    NASA Astrophysics Data System (ADS)

    Alyar, Saliha; Alyar, Hamit; Ozdemir, Ummuhan Ozmen; Sahin, Omer; Kaya, Kerem; Ozbek, Neslihan; Gunduzalp, Ayla Balaban

    2015-08-01

    A new N'-Acetyl propane sulfonic acid hydrazide, C3H7sbnd SO2sbnd NHsbnd NHsbnd COCH3 (Apsh, an sulfon amide compound) has been synthesized for the first time. The structure of Apsh was investigated using elemental analysis, spectral (IR, 1H/13C NMR) measurements. In addition, molecular structure of the Apsh was determined by single crystal X-ray diffraction technique and found that the compound crystallizes in monoclinic, space group P 21/c. 1H and 13C shielding tensors for crystal structure were calculated with GIAO/DFT/B3LYP/6-311++G(d,p) methods in CDCl3. The structure of Apsh is optimized using Density Functional Theory (DFT) method. The vibrational band assignments were performed at B3LYP/6-311++G(d,p) theory level combined with scaled quantum mechanics force field (SQMFF) methodology. The theoretical IR frequencies are found to be in good agreement with the experimental IR frequencies. Nonlinear optical (NLO) behaviour of Apsh is also examined by the theoretically predicted values of dipole moment (μ), polarizability (α0) and first hyperpolarizability (βtot). The antibacterial activities of synthesized compound were studied against Gram positive bacteria: Staphylococcus aureus ATCC 25923, Enterococcus faecalis ATCC 23212, Staphylococcus epidermidis ATCC 34384, Gram negative bacteria: Eschericha coli ATCC 25922, Pseudomonas aeruginosa ATCC 27853, Klebsiella pneumoniae ATCC 70063 by using microdilution method (as MICs) and disc diffusion method.

  5. Effect of a sulfonated azo dye and sulfanilic acid on nitrogen transformation processes in soil.

    PubMed

    Topaç, F Olcay; Dindar, Efsun; Uçaroğlu, Selnur; Başkaya, Hüseyin S

    2009-10-30

    Introduction of organic dyes into soil via wastewater and sludge applications has been of increasing concern especially in developing or under-developed countries where appropriate management strategies are scarce. Assessing the response of terrestrial ecosystems to organic dyes and estimating the inhibition concentrations will probably contribute to soil remediation studies in regions affected by the same problem. Hence, an incubation study was conducted in order to investigate the impact of a sulfonated azo dye, Reactive Black 5 (RB5) and sulfanilic acid (SA), a typical representative of aromatic sulfonated amines, on soil nitrogen transformation processes. The results apparently showed that nitrogen related processes in soil can be used as bioindicators of anthropogenic stress caused by organic dyes. It was found that urease activity, arginine ammonification rate, nitrification potential and ammonium oxidising bacteria numbers decreased by 10-20% and 7-28% in the presence of RB5 (> 20 mg/kg dry soil) and SA (> 8 mg/kg dry soil), respectively. Accordingly, it was concluded that organic dye pollution may restrict the nitrogen-use-efficiency of plants, thus further reducing the productivity of terrestrial ecosystems. Furthermore, the response of soil microbiota to SA suggested that inhibition effects of the organic dye may continue after the possible reduction of the parent dye to associated aromatic amines.

  6. Conformationally-restricted amino acid analogues bearing a distal sulfonic acid show selective inhibition of system x(c)(-) over the vesicular glutamate transporter.

    PubMed

    Etoga, Jean-Louis G; Ahmed, S Kaleem; Patel, Sarjubhai; Bridges, Richard J; Thompson, Charles M

    2010-04-15

    A panel of amino acid analogs and conformationally-restricted amino acids bearing a sulfonic acid were synthesized and tested for their ability to preferentially inhibit the obligate cysteine-glutamate transporter system x(c)(-) versus the vesicular glutamate transporter (VGLUT). Several promising candidate molecules were identified: R/S-4-[4'-carboxyphenyl]-phenylglycine, a biphenyl substituted analog of 4-carboxyphenylglycine and 2-thiopheneglycine-5-sulfonic acid both of which reduced glutamate uptake at system x(c)(-) by 70-75% while having modest to no effect on glutamate uptake at VGLUT.

  7. Mineralization of sulfonated azo dyes and sulfanilic acid by Phanerochaete chrysosporium and Streptomyces chromofuscus.

    PubMed

    Paszczynski, A; Pasti-Grigsby, M B; Goszczynski, S; Crawford, R L; Crawford, D L

    1992-11-01

    Five 14C-radiolabeled azo dyes and sulfanilic acid were synthesized and used to examine the relationship between dye substitution patterns and biodegradability (mineralization to CO2) by a white-rot fungus and an actinomycete. 4-Amino-[U-14C]benzenesulfonic acid and 4-(3-sulfo-4-aminophenylazo)-[U-14C]benzenesulfonic acid were used as representative compounds having sulfo groups or both sulfo and azo groups. Such compounds are not known to be present in the biosphere as natural products. The introduction of lignin-like fragments into the molecules of 4-amino-[U-14C]benzenesulfonic acid and 4-(3-sulfo-4-aminophenylazo)-[U-14C]benzenesulfonic acid by coupling reactions with guaiacol (2-methoxyphenol) resulted in the formation of the dyes 4-(3-methoxy-4-hydroxyphenylazo)-[U-14C]benzenesulfonic acid and 4-(2-sulfo-3'-methoxy-4'-hydroxy-azobenzene-4-azo)-[U-14C]benzenesulf oni c acid, respectively. The synthesis of acid azo dyes 4-(2-hydroxy-1-naphthylazo)-[U-14C]benzenesulfonic acid and 4-(4-hydroxy-1-naphthylazo)-[U-14C]benzenesulfonic acid also allowed the abilities of these microorganisms to mineralize these commercially important compounds to be evaluated. Phanerochaete chrysosporium mineralized all of the sulfonated azo dyes, and the substitution pattern did not significantly influence the susceptibility of the dyes to degradation. In contrast, Streptomyces chromofuscus was unable to mineralize aromatics with sulfo groups and both sulfo and azo groups. However, it mediated the mineralization of modified dyes containing lignin-like substitution patterns. This work showed that lignocellulolytic fungi and bacteria can be used for the biodegradation of anionic azo dyes, which thus far have been considered among the xenobiotic compounds most resistant to biodegradation.(ABSTRACT TRUNCATED AT 250 WORDS)

  8. Analysis of metolachlor ethane sulfonic acid chirality in groundwater: A tool for dating groundwater movement in agricultural settings

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Chemical chirality of pesticides can be a useful tool for studying environmental processes. The chiral forms of metolachlor ethane sulfonic acid (MESA), an abundant metabolite of metolachlor, and metolachlor were examined over a 6 year period in groundwater and a groundwater-fed stream in a riparia...

  9. A diet with lactosucrose supplementation ameliorates trinitrobenzene sulfonic acid-induced colitis in rats.

    PubMed

    Zhou, Yan; Ruan, Zheng; Zhou, Xiaoli; Huang, Xiaoliu; Li, Hua; Wang, Ling; Zhang, Cui; Liu, Shiqiang; Deng, Zeyuan; Wu, Guoyao; Yin, Yulong

    2015-01-01

    Chronic intestinal inflammation contributes to an increased risk of colon cancer. Lactosucrose (LS), a kind of functional trisaccharide, can modulate immunity and promote microbe growth. The aim of this study was to investigate the effect of LS on 2,4,6-trinitrobenzene sulfonic acid (TNBS) induced colitis in rats. Rats were randomly divided into four treatment groups: the normal group, TNBS group, LS group, and salicylazosulfapyridine (SASP) group for five weeks. LS supplementation ameliorated TNBS-induced colitis. LS supplementation increased IL-10 production and suppressed the secretion of IL-12 in the colon, as compared to the TNBS group. LS decreased the production of TLR-2 protein and nuclear NF-κB p65 protein, as well as mRNA levels, as compared with colitic rats. These results indicate that chronic feeding of LS inhibited TNBS-induced chronic inflammation. LS has potential nutraceutical intervention to combat colitis.

  10. Synthesis of p-azobenzenediazoaminoazobenzene sulfonic acid and its application for spectrophotometric determination of cadmium

    SciTech Connect

    Jiang Wanquan; Zhu Yurui ); Teng Enjiang; Wei Fusheng )

    1992-02-01

    The synthesis and characteristics of a new chromogenic reagent p-azobenzenediazoaminoazobenzene sulfonic acid (ADAAS) is reported. ADAAS forms a dark-violet red complex with cadmium in the presence of Triton X-100 and in ammonia medium. The molar absorptivity of the complex is 2.02 {times} 10{sup 5} 1 mol{sup {minus}1} cm{sup {minus}1} at 532 nm, and the formation constant of the complex is 6 {times} 10{sup 21}. Beer's law is obeyed for cadmium concentrations of between 3.6 {times} 10{sup {minus}8} M and 4.3 {times} 10{sup {minus}6} M. The effect of foreign ion can been eliminated completely by use of masking agents. The proposed method has been used for the determination of trace amounts of cadmium in water samples.

  11. Nanoscale Distribution of Sulfonic Acid Groups Determines Structure and Binding of Water in Nafion Membranes

    PubMed Central

    Ling, Xiao; Bonn, Mischa

    2016-01-01

    Abstract The connection between the nanoscale structure of two chemically equivalent, yet morphologically distinct Nafion fuel‐cell membranes and their macroscopic chemical properties is demonstrated. Quantification of the chemical interactions between water and Nafion reveals that extruded membranes have smaller water channels with a reduced sulfonic acid head group density compared to dispersion‐cast membranes. As a result, a disproportionally large amount of non‐bulk water molecules exists in extruded membranes, which also exhibit larger proton conductivity and larger water mobility compared to cast membranes. The differences in the physicochemical properties of the membranes, that is, the chemical constitution of the water channels and the local water structure, and the accompanying differences in macroscopic water and proton transport suggest that the chemistry of nanoscale channels is an important, yet largely overlooked parameter that influences the functionality of fuel‐cell membranes. PMID:26895211

  12. Assessment of perfluorooctanoic acid and perfluorooctane sulfonate in surface water - Tamil Nadu, India.

    PubMed

    Sunantha, Ganesan; Vasudevan, Namasivayam

    2016-08-15

    As an emerging class of environmentally persistent organic pollutants, perfluorinated compounds (PFCs), particularly perfluorooctanoic acid (PFOA) and perfluorooctane sulfonate (PFOS); have been universally found in the environment. Wastewater and untreated effluents are likely the major causes for the accumulation of PFCs in surface water. There are very few reports on the contamination of PFCs in the developing countries, particularly in India. This study reports the quantitative analysis of PFOA and PFOS in Noyyal, Cauvery, and also lakes in and around Chennai, using Ultra-Fast liquid chromatograph. The concentration of PFOA and PFOS ranged from 4 to 93ng/L and 3 to 29ng/L, respectively. The concentration of PFOS was below detectable limit in Cauvery River. A reliable concentration of PFOA was recorded at all sites of River Cauvery (5ng/L). The present study could be useful for the assessment of future monitoring programs of PFOA and PFOS in the surface water.

  13. Identification of small molecule sulfonic acids as ecto-5'-Nucleotidase inhibitors.

    PubMed

    Raza, Rabia; Saeed, Aamer; Lecka, Joanna; Sévigny, Jean; Iqbal, Jamshed

    2012-11-01

    Ecto-5'-Nucleotidase inhibitors have great potential as anti-tumor agents. We have investigated biochemical properties of human and rat ecto-5'-Nucleotidases and characterized 19 small molecule sulfonic acid derivatives as potential inhibitors of ecto-5'-Nucleotidases. We identified 11 potent inhibitors of human and rat ecto-5'-Nucleotidases and checked their selectivity. Compound 10 (Sodium 2,4-dinitrobenzenesulfonate) with K(i) value of 0.66 μM and 19 (N-(4-sulfamoylphenylcarbamothioyl) pivalamide) with K(i) value of 0.78 μM were identified as the most potent inhibitors for human and rat ecto-5'-Nucleotidase, respectively. The present compounds have low molecular weights, water solubility and equal potency as compared to the reported inhibitors.

  14. Nanoscale Distribution of Sulfonic Acid Groups Determines Structure and Binding of Water in Nafion Membranes.

    PubMed

    Ling, Xiao; Bonn, Mischa; Parekh, Sapun H; Domke, Katrin F

    2016-03-14

    The connection between the nanoscale structure of two chemically equivalent, yet morphologically distinct Nafion fuel-cell membranes and their macroscopic chemical properties is demonstrated. Quantification of the chemical interactions between water and Nafion reveals that extruded membranes have smaller water channels with a reduced sulfonic acid head group density compared to dispersion-cast membranes. As a result, a disproportionally large amount of non-bulk water molecules exists in extruded membranes, which also exhibit larger proton conductivity and larger water mobility compared to cast membranes. The differences in the physicochemical properties of the membranes, that is, the chemical constitution of the water channels and the local water structure, and the accompanying differences in macroscopic water and proton transport suggest that the chemistry of nanoscale channels is an important, yet largely overlooked parameter that influences the functionality of fuel-cell membranes.

  15. Identification of a new sulfonic acid metabolite of metolachlor in soil

    USGS Publications Warehouse

    Aga, D.S.; Thurman, E.M.; Yockel, M.E.; Zimmerman, L.R.; Williams, T.D.

    1996-01-01

    An ethanesulfonic acid metabolite of metolachlor (metolachlor ESA) was identified in soil-sample extracts by negative-ion, fast-atom bombardment mass spectrometry (FAB-MS) and FAB tandem mass spectrometry (FAB-MS/MS). Production fragments from MS/MS analysis of the deprotonated molecular ion of metolachlor ESA in the soil extract can be reconciled with the structure of the synthesized standard. The elemental compositions of the (M - H)- ions of the metolachlor ESA standard and the soil-sample extracts were confirmed by high-resolution mass spectrometry. A dissipation study revealed that metolachlor ESA is formed in soil under field conditions corresponding to a decrease in the concentration of the parent herbicide, metolachlor. The identification of the sulfonated metabolite of metolachlor suggests that the glutathione conjugation pathway is a common detoxification pathway shared by chloroacetanilide herbicides.

  16. Evaluation of linear dodecyl benzene sulfonic acid as a teat dip in a commercial dairy.

    PubMed

    Pankey, J W; Boddie, R L; Philpot, W N

    1984-06-01

    A postmilking teat dip containing 1.94% linear dodecyl benzene sulfonic acid was evaluated for approximately 6 mo on a commercial dairy farm that milked an average of 75 cows. Sixteen Staphylococcus aureus infections were diagnosed, 12 in the undipped control quarters and 4 in the dipped. Incidence of intramammary infection with Staphylococcus aureus was reduced 68.1%. Seventy-five infections were diagnosed as micrococci, 42 in control and 33 in the dipped group, a 23.6% reduction. A total of 37 Corynebacterium sp. infections were diagnosed, 21 and 16 in control and dipped groups, a 25.8% reduction. Teat skin condition did not change during the study. PMID:6747046

  17. Sulfone and phosphinic acid analogs of decaprenolphosphoarabinose as potential anti-tuberculosis agents.

    PubMed

    Centrone, Charla A; Lowary, Todd L

    2004-11-01

    Mycobacteria biosynthesize a cell wall structure that is rich in polysaccharides containing arabinofuranose residues. The source of these arabinofuranose residues is decaprenolphosphoarabinose (1), the donor substrate for mycobacterial arabinosyltransferases. We have previously demonstrated that an analog of 1, C-phosphonate 7, prevented the growth of mycobacteria and this compound is currently undergoing testing for efficacy in tuberculosis-infected mice. We describe here the synthesis and testing of additional analogs of 1 that contain either a sulfone (8-14) or phosphinic acid (15-19) moiety in place of the phosphodiester functionality. Screening of these compounds in vitro against Mycobacterium tuberculosis strain H(37)Rv revealed that while some of these compounds possessed low to modest activity, none was as potent as 7.

  18. Chemical doping of MoS2 multilayer by p-toluene sulfonic acid

    NASA Astrophysics Data System (ADS)

    Andleeb, Shaista; Singh, Arun Kumar; Eom, Jonghwa

    2015-06-01

    We report the tailoring of the electrical properties of mechanically exfoliated multilayer (ML) molybdenum disulfide (MoS2) by chemical doping. Electrical charge transport and Raman spectroscopy measurements revealed that the p-toluene sulfonic acid (PTSA) imposes n-doping in ML MoS2. The shift of threshold voltage for ML MoS2 transistor was analyzed as a function of reaction time. The threshold voltage shifted toward more negative gate voltages with increasing reaction time, which indicates an n-type doping effect. The shift of the Raman peak positions was also analyzed as a function of reaction time. PTSA treatment improved the field-effect mobility by a factor of ~4 without degrading the electrical characteristics of MoS2 devices.

  19. Toxicokinetics of seven perfluoroalkyl sulfonic and carboxylic acids in pigs fed a contaminated diet.

    PubMed

    Numata, Jorge; Kowalczyk, Janine; Adolphs, Julian; Ehlers, Susan; Schafft, Helmut; Fuerst, Peter; Müller-Graf, Christine; Lahrssen-Wiederholt, Monika; Greiner, Matthias

    2014-07-16

    The transfer of a mixture of perfluoroalkyl acids (PFAAs) from contaminated feed into the edible tissues of 24 fattening pigs was investigated. Four perfluoroalkyl sulfonic (PFSAs) and three perfluoroalkyl carboxylic acids (PFCAs) were quantifiable in feed, plasma, edible tissues, and urine. As percentages of unexcreted PFAA, the substances accumulated in plasma (up to 51%), fat, and muscle tissues (collectively, meat 40-49%), liver (under 7%), and kidney (under 2%) for most substances. An exception was perfluorooctanesulfonic acid (PFOS), with lower affinity for plasma (23%) and higher for liver (35%). A toxicokinetic model is developed to quantify the absorption, distribution, and excretion of PFAAs and to calculate elimination half-lives. Perfluorohexanoic acid (PFHxA), a PFCA, had the shortest half-life at 4.1 days. PFSAs are eliminated more slowly (e.g., half-life of 634 days for PFOS). PFAAs in pigs exhibit longer elimination half-lives than in most organisms reported in the literature, but still shorter than in humans.

  20. Influence of volatile fatty acid concentration stability on anaerobic degradation of linear alkylbenzene sulfonate.

    PubMed

    Okada, Dagoberto Y; Delforno, Tiago P; Esteves, Andressa S; Polizel, Juliana; Hirasawa, Julia S; Duarte, Iolanda C S; Varesche, Maria B A

    2013-10-15

    Linear alkylbenzene sulfonate (LAS) is an anionic surfactant used in cleaning products, which is usually found in wastewaters. Despite the greater LAS removal rate related to a lower concentrations of volatile fatty acids (VFA), the influence of different ranges of VFA on LAS degradation is not known. LAS degradation was evaluated in upflow anaerobic sludge blanket (UASB) and expanded granular sludge bed (EGSB) reactors at different ranges of VFA concentrations. The reactors were fed with a synthetic wastewater containing LAS (14 mg/L). A greater LAS removal rate (40-80%) was related to the lower and narrower range of acetic acid concentration (1-22 mg/L) in the EGSB reactor. In the UASB reactor, the acetic acid concentrations presented a wider range (2-45 mg/L), and some low LAS removal rates (around 20-25%) were observed even at low acetic acid concentrations (<10 mg/L). The high recirculation rate in the EGSB reactor improved substrate-biomass contact, which resulted in a narrower range of VFA and greater LAS removal rate. PMID:23735461

  1. Sulfonated reduced graphene oxide as a highly efficient catalyst for direct amidation of carboxylic acids with amines using ultrasonic irradiation.

    PubMed

    Mirza-Aghayan, Maryam; Tavana, Mahdieh Molaee; Boukherroub, Rabah

    2016-03-01

    Sulfonated reduced graphene oxide nanosheets (rGO-SO3H) were prepared by grafting sulfonic acid-containing aryl radicals onto chemically reduced graphene oxide (rGO) under sonochemical conditions. rGO-SO3H catalyst was characterized by Fourier-transform infrared (FT-IR) spectroscopy, Raman spectroscopy, scanning electron microscopy (SEM), X-ray diffraction (XRD), thermogravimetric analysis (TGA), differential scanning calorimetry (DSC) and X-ray photoelectron spectroscopy (XPS). rGO-SO3H catalyst was successfully applied as a reusable solid acid catalyst for the direct amidation of carboxylic acids with amines into the corresponding amides under ultrasonic irradiation. The direct sonochemical amidation of carboxylic acid takes place under mild conditions affording in good to high yields (56-95%) the corresponding amides in short reaction times.

  2. An Introduction to Multivariate Curve Resolution-Alternating Least Squares: Spectrophotometric Study of the Acid-Base Equilibria of 8-Hydroxyquinoline-5-Sulfonic Acid

    ERIC Educational Resources Information Center

    Rodriguez-Rodriguez, Cristina; Amigo, Jose Manuel; Coello, Jordi; Maspoch, Santiago

    2007-01-01

    A spectrophotometric study of the acid-base equilibria of 8-hydroxyquinoline-5-sulfonic acid to describe the multivariate curve resolution-alternating least squares algorithm (MCR-ALS) is described. The algorithm provides a lot of information and hence is of great importance for the chemometrics research.

  3. Direct synthesis of sulfonated dihydroisoquinolinones from N-allylbenzamide and arylsulfinic acids via TBHP-promoted cascade radical addition and cyclization.

    PubMed

    Xia, Dong; Li, Yang; Miao, Tao; Li, Pinhua; Wang, Lei

    2016-10-01

    A novel synthesis of sulfonated dihydroisoquinolinones via cascade radical addition and cyclization was developed in the presence of tert-butyl hydroperoxide (TBHP). The reactions generated the desired sulfonated dihydroisoquinolinones in good yields from readily available arylsulfinic acids and N-allylbenzamides under metal-free conditions. PMID:27604055

  4. Sulfonated methyl esters of fatty acids in aqueous solutions: Interfacial and micellar properties.

    PubMed

    Danov, Krassimir D; Stanimirova, Rumyana D; Kralchevsky, Peter A; Basheva, Elka S; Ivanova, Veronika I; Petkov, Jordan T

    2015-11-01

    The interest to sulfonated methyl esters of fatty acids (SME) has been growing during the last decade, because these surfactants are considered as an environmentally friendly and renewable alternative of the linear alkyl-benzene sulfonates (LAS). Here, we present a quantitative study on the properties of aqueous SME solutions, and especially on their surface tension isotherms, critical micelle concentration (CMC) and its dependence on the concentration of added NaCl. It is demonstrated that the CMC of an ionic surfactant determined by electrical conductivity is insensitive to the presence of a small nonionic admixture, so that the CMC values determined by conductivity represent the CMC of the pure surfactant. Using SME as an example, we have demonstrated the application of a new and powerful method for determining the physicochemical parameters of the pure ionic surfactant by theoretical data analysis ("computer purification") if the used surfactant sample contains nonionic admixtures, which are present as a rule. This method involves fits of the experimental data for surface tension and conductivity by a physicochemical model based on a system of mass-balance, chemical-equilibrium and electric-double-layer equations, which allows us to determine the adsorption and micellization parameters of C12-, C14-, C16- and C18-SME, as well the fraction of nonionic admixtures (if any). Having determined these parameters, we can further predict the interfacial and micellization properties of the surfactant solutions, such as surface tension, adsorption, degree of counterion binding, and surface electric potential at every surfactant, salt and co-surfactant concentrations.

  5. Sulfonated methyl esters of fatty acids in aqueous solutions: Interfacial and micellar properties.

    PubMed

    Danov, Krassimir D; Stanimirova, Rumyana D; Kralchevsky, Peter A; Basheva, Elka S; Ivanova, Veronika I; Petkov, Jordan T

    2015-11-01

    The interest to sulfonated methyl esters of fatty acids (SME) has been growing during the last decade, because these surfactants are considered as an environmentally friendly and renewable alternative of the linear alkyl-benzene sulfonates (LAS). Here, we present a quantitative study on the properties of aqueous SME solutions, and especially on their surface tension isotherms, critical micelle concentration (CMC) and its dependence on the concentration of added NaCl. It is demonstrated that the CMC of an ionic surfactant determined by electrical conductivity is insensitive to the presence of a small nonionic admixture, so that the CMC values determined by conductivity represent the CMC of the pure surfactant. Using SME as an example, we have demonstrated the application of a new and powerful method for determining the physicochemical parameters of the pure ionic surfactant by theoretical data analysis ("computer purification") if the used surfactant sample contains nonionic admixtures, which are present as a rule. This method involves fits of the experimental data for surface tension and conductivity by a physicochemical model based on a system of mass-balance, chemical-equilibrium and electric-double-layer equations, which allows us to determine the adsorption and micellization parameters of C12-, C14-, C16- and C18-SME, as well the fraction of nonionic admixtures (if any). Having determined these parameters, we can further predict the interfacial and micellization properties of the surfactant solutions, such as surface tension, adsorption, degree of counterion binding, and surface electric potential at every surfactant, salt and co-surfactant concentrations. PMID:26196714

  6. Sulfonic-hydroxyl-type heterogemini surfactants synthesized from unsaturated fatty acids.

    PubMed

    Sakai, Kenichi; Sangawa, Yuta; Takamatsu, Yuichiro; Kawai, Takeshi; Matsumoto, Mutsuyoshi; Sakai, Hideki; Abe, Masahiko

    2010-01-01

    Novel anionic heterogemini surfactants have been synthesized from two kinds of unsaturated fatty acids (oleic acid and petroselinic acid). The hydrocarbon chain is covalently bound to the terminal carbonyl group of the unsaturated fatty acids and hydrophilic headgroups (i.e., sulfonic and hydroxyl groups) are introduced to the cis double bond. The aqueous solution properties of the surfactants synthesized here have been studied on the basis of static/dynamic surface tension, conductivity, fluorescence, and dynamic light scattering (DLS) data. We have mainly focused on the following two factors that may significantly impact the aqueous solution properties of the surfactants: one is hydrocarbon chain length and the other is molecular symmetry. The first key result from our current study is that increased hydrocarbon chain length results in a closely packed monolayer film at the air/aqueous solution interface, even at low concentrations as a result of the increased hydrophobicity of the longer chain analogue. We have previously observed a similar trend when aqueous solution properties of oleic acid-based phosphate-type heterogemini surfactants were studied. The second key finding of our current research is that increased molecular symmetry results in greater surface activities (which include lower aqueous surface tension and greater molecular packing at the air/aqueous solution interface). In addition, it seems likely that the size of molecular assemblies spontaneously formed in bulk solution decreases when the molecular symmetry increases. These results suggest that the symmetric analogue provides greater hydrophobic environments, although the exact reason for this is not yet known.

  7. Removal of free fatty acid in Palm Fatty Acid Distillate using sulfonated carbon catalyst derived from biomass wastefor biodiesel production

    NASA Astrophysics Data System (ADS)

    Hidayat, Arif; Rochmadi; Wijaya, Karna; Budiman, Arief

    2016-01-01

    In this research, the esterification of PFAD using the sulfonatedcoconut shell biochar catalyst was studied. Carbon solid catalysts were prepared by a sulfonation of carbonized coconut shells. The performances of the catalysts were evaluated in terms of the reaction temperatures, the molar ratios of methanol to PFAD, the catalyst loading and the reaction times. The reusability of the solid acid carbon catalysts was also studied in this work. The results indicated that the FFA conversion was significantly increased with increasing catalyst loading and reaction times. It can be concluded that the optimal conditions were an PFAD to methanol molar ratio of 1:12, the amount of catalyst of 10%w, and reaction temperature of 60oC.At this optimum condition, the conversion to biodieselreached 88%.

  8. Synthesis and solid-state NMR characterization of cubic mesoporous silica SBA-1 functionalized with sulfonic acid groups.

    PubMed

    Tsai, Hui-Hsu Gavin; Chiu, Po-Jui; Jheng, Guang-Liang; Ting, Chun-Chiang; Pan, Yu-Chi; Kao, Hsien-Ming

    2011-07-01

    Well-ordered cubic mesoporous silicas SBA-1 functionalized with sulfonic acid groups have been synthesized through in situ oxidation of mercaptopropyl groups with H(2)O(2) via co-condensation of tetraethoxysilane (TEOS) and 3-mercaptopropyltrimethoxysilane (MPTMS) templated by cetyltriethylammonium bromide (CTEABr) under strong acidic conditions. Various synthesis parameters such as the amounts of H(2)O(2) and MPTMS on the structural ordering of the resultant materials were systematically investigated. The materials thus obtained were characterized by a variety of techniques including powder X-ray diffraction (XRD), multinuclear solid-state Nuclear Magnetic Resonance (NMR) spectroscopy, (29)Si{(1)H} 2D HETCOR (heteronuclear correlation) NMR spectroscopy, thermogravimetric analysis (TGA), and nitrogen sorption measurements. By using (13)C CPMAS NMR technique, the status of the incorporated thiol groups and their transformation to sulfonic acid groups can be monitored and, as an extension, to define the optimum conditions to be used for the oxidation reaction to be quantitative. In particular, (29)Si{(1)H} 2D HETCOR NMR revealed that the protons in sulfonic acid groups are in close proximity to the silanol Q(3) species, but not close enough to form a hydrogen bond.

  9. Syntheses, crystal structures and antioxidant study of Zn(II) complexes with morin-5'-sulfonic acid (MSA).

    PubMed

    Pieniążek, Elżbieta; Kalembkiewicz, Jan; Dranka, Maciej; Woźnicka, Elżbieta

    2014-12-01

    The study of modified synthetic procedure of water soluble morin-5'-sulfonic acid sodium salt (NaMSA) involving less aggressive chemicals and carried out at mild conditions was described. The NaMSA salt is a convenient source of anionic morin-5'-sulfonic ligand (MSA) in ion exchange reactions. The coordination ability of MSA ligand towards the zinc cations was investigated in aqueous solution and in solid state. Novel zinc complexes of morin-5'-sulfonate were obtained by a reaction of Zn(NO3)2 with morin-5'-sulfonate in water. Resulting compounds were characterized by single-crystal X-ray diffraction analysis, as well as spectral and thermal methods. The coordination interaction, hydrogen bond and π-π stacking lead to the formation of a 1D chain or 3D coordination polymers. The antioxidant activity of the Zn(II)-MSA complexes was evaluated by means of 1,1-diphenyl-2-picrylhydrazyl (DPPH) radical scavenging method. In this work, we have shown that the studied compounds are more effective free radical scavengers than the natural flavonoids like plain morin.

  10. Exploring the other side of biologically relevant chemical space: insights into carboxylic, sulfonic and phosphonic acid bioisosteric relationships.

    PubMed

    Macchiarulo, Antonio; Pellicciari, Roberto

    2007-11-01

    Bioisosteric replacements have been widely and successfully applied to develop bioisosteric series of biologically active compounds in medicinal chemistry. In this work, the concept of bioisosterism is revisited using a novel approach based on charting the "other side" of biologically relevant chemical space. This space is composed by the ensemble of binding sites of protein structures. Explorations into the "other side" of biologically relevant chemical space are exploited to gain insight into the principles that rules molecular recognition and bioisosteric relationships of molecular fragments. We focused, in particular, on the construction of the "other side" of chemical space covered by binding sites of small molecules containing carboxylic, sulfonic, and phosphonic acidic groups. The analysis of differences in the occupation of that space by distinct types of binding sites unveils how evolution has worked in assessing principles that rule the selectivity of molecular recognition, and improves our knowledge on the molecular basis of bioisosteric relationships among carboxylic, sulfonic, and phosphonic acidic groups.

  11. Gene Expression Profiling in the Liver and Lung of Perfluorooctane Sulfonate-Exposed Mouse Fetuses: Comparison to Changes Induced by Exposure to Perfluorooctanoic Acid

    EPA Science Inventory

    Perfluorooctane sulfonate (PFOS) and perfluorooctanoic acid (PFOA) are environmental contaminants found in the tissues of humans and wildlife. They are activators of peroxisome proliferator-activated receptor-alpha (PPARα) and exhibit hepatocarcinogenic potential in rats. PFOS...

  12. Sulfotanone, a new alkyl sulfonic acid derivative from Streptomyces sp. IFM 11694 with TRAIL resistance-overcoming activity.

    PubMed

    Abdelfattah, Mohamed S; Ishikawa, Naoki; Karmakar, Utpal K; Ishibashi, Masami

    2016-04-01

    One new alkyl sulfonic acid derivative, sulfotanone (1), and the known panosialin wA (2) were isolated from the methanolic extract of mycelium of Streptomyces sp. 11694. The structure of the new compound (1) was established by a combination of spectroscopic techniques, including HRESIMS, IR, 1D and 2D NMR measurements. Compound 1 (40 µM) in combination with TRAIL showed synergistic activity in sensitizing TRAIL-resistance in human gastric adenocarcinoma cell lines.

  13. Copper-catalyzed aerobic decarboxylative sulfonylation of cinnamic acids with sodium sulfinates: stereospecific synthesis of (E)-alkenyl sulfones.

    PubMed

    Jiang, Qing; Xu, Bin; Jia, Jing; Zhao, An; Zhao, Yu-Rou; Li, Ying-Ying; He, Na-Na; Guo, Can-Cheng

    2014-08-15

    A copper-catalyzed aerobic decarboxylative sulfonylation of alkenyl carboxylic acids with sodium sulfinates is developed. This study offers a new and expedient strategy for stereoselective synthesis of (E)-alkenyl sulfones that are widely present in biologically active natural products and therapeutic agents. Moreover, the transformation is proposed to proceed via a radical process and exhibits a broad substrate scope and good functional group tolerance.

  14. Spontaneous modification of graphite anode by anthraquinone-2-sulfonic acid for microbial fuel cells.

    PubMed

    Tang, Xinhua; Li, Haoran; Du, Zhuwei; Ng, How Yong

    2014-07-01

    In this study, anthraquinone-2-sulfonic acid (AQS), an electron transfer mediator, was immobilized onto graphite felt surface via spontaneous reduction of the in situ generated AQS diazonium cations. Cyclic voltammetry (CV) and energy dispersive spectrometry (EDS) characterizations of AQS modified graphite demonstrated that AQS was covalently grafted onto the graphite surface. The modified graphite, with a surface AQS concentration of 5.37 ± 1.15 × 10(-9)mol/cm(2), exhibited good electrochemical activity and high stability. The midpoint potential of the modified graphite was about -0.248 V (vs. normal hydrogen electrode, NHE), indicating that electrons could be easily transferred from NADH in bacteria to the electrode. AQS modified anode in MFCs increased the maximum power density from 967 ± 33 mW/m(2) to 1872 ± 42 mW/m(2). These results demonstrated that covalently modified AQS functioned as an electron transfer mediator to facilitate extracellular electron transfer from bacteria to electrode and significantly enhanced the power production in MFCs.

  15. Human Exposure and Elimination Kinetics of Chlorinated Polyfluoroalkyl Ether Sulfonic Acids (Cl-PFESAs).

    PubMed

    Shi, Yali; Vestergren, Robin; Xu, Lin; Zhou, Zhen; Li, Chuangxiu; Liang, Yong; Cai, Yaqi

    2016-03-01

    The incomplete mass-balance of organic fluorine in human serum indicates the existence of unknown per- and polyfluoroalkyl substances (PFASs) with persistent and bioaccumulative properties. Here we characterized human exposure and elimination kinetics of chlorinated polyfluoroalkyl ether sulfonic acids (Cl-PFESAs) in metal plating workers (n = 19), high fish consumers (n = 45), and background controls (n = 8). Cl-PFESAs were detected in >98% of the sampled individuals with serum concentrations ranging <0.019-5040 ng/mL. Statistically higher median serum levels were observed in high fish consumers (93.7 ng/mL) and metal plating workers (51.5 ng/mL) compared to the background control group (4.78 ng/mL) (Kruskal-Wallis rank sum test, p < 0.01). Cl-PFESAs could account for 0.269 to 93.3% of ∑PFASs in human serum indicating that this compound class may explain a substantial fraction of previously unidentified organic fluorine in the Chinese population. Estimated half-lives for renal clearance (median 280 years; range 7.1-4230 years) and total elimination (median 15.3 years; range 10.1-56.4 years) for the eight carbon Cl-PFESA suggest that this is the most biopersistent PFAS in humans reported to date. The apparent ubiquitous distribution and slow elimination kinetics in humans underscore the need for more research and regulatory actions on Cl-PFESAs and PFAS alternatives with similar chemical structures.

  16. Formation and transport of the sulfonic acid metabolites of alachlor and metolachlor in soil

    USGS Publications Warehouse

    Aga, D.S.; Thurman, E.M.

    2001-01-01

    Alachlor and metolachlor are dechlorinated and transformed into their corresponding ethane sulfonic acid (ESA) metabolites in soil. In a field-disappearance study, it was shown that alachlor ESA was formed at a faster rate and at concentrations 2-4 times higher than metolachlor ESA, conforming with the observed longer disappearance half-life of metolachlor (15.5 d) in the field as compared to alachlor (8 d). Runoff data also showed higher concentrations of alachlor ESA as compared to metolachlor ESA, even though they were applied at the same levels. Data from soil cores showed transport of the ESA compounds in soil to as far down as 75-90 cm below the surface, at concentrations ranging from less than 0.5 ??g/L to about 50 ??g/L. In contrast, no parent herbicide was detected at these depths. This observation correlates with the higher log KOC values for alachlor (3.33) and metolachlor (3.01) relative to their corresponding ESA metabolites, alachlor ESA (2.26), and metolachlor ESA (2.29).

  17. Laccase-catalyzed bisphenol A oxidation in the presence of 10-propyl sulfonic acid phenoxazine.

    PubMed

    Ivanec-Goranina, Rūta; Kulys, Juozas; Bachmatova, Irina; Marcinkevičienė, Liucija; Meškys, Rolandas

    2015-04-01

    The kinetics of the Coriolopsis byrsina laccase-catalyzed bisphenol A (BisA) oxidation was investigated in the absence and presence of electron-transfer mediator 3-phenoxazin-10-yl-propane-1-sulfonic acid (PPSA) at pH5.5 and 25°C. It was shown that oxidation rate of the hardly degrading compound BisA increased in the presence of the highly reactive substrate PPSA. The increase of reaction rate depends on PPSA and BisA concentrations as well on their ratio, e.g., at 0.2 mmol/L of BisA and 2 μmol/L of PPSA the rate increased 2 times. The kinetic data were analyzed using a scheme of synergistic laccase-catalyzed BisA oxidation. The calculated constant, characterizing reactivity of PPSA with laccase, is almost 1000 times higher than the constant, characterizing reactivity of BisA with laccase. This means that mediator-assisted BisA oxidation rate can be 1000 times higher in comparison to non-mediator reaction if compounds concentration is equal but very low.

  18. BPC-15 reduces trinitrobenzene sulfonic acid-induced colonic damage in rats.

    PubMed

    Veljaca, M; Lesch, C A; Pllana, R; Sanchez, B; Chan, K; Guglietta, A

    1995-01-01

    The effect of BPC-15 (Booly Protection Compound-15) was evaluated in a rat model of colonic injury. A single intracolonic administration of trinitrobenzene sulfonic acid (TNBS) dissolved in ethanol induces severe colonic damage, which is characterized by areas of necrosis surrounded by areas of acute inflammation. The damage is associated with high myeloperoxidase (MPO) activity, mainly as a reflection of neutrophilic infiltration into the damaged tissue. In this study, 1 hr before a single intracolonic administration of 50 mg/kg of TNBS in 50% ethanol, the animals were treated with one of the following doses of BPC-15: 0.0001, 0.001, 0.01, 0.1, 1 or 10 nmol/kg administered i.p. or with a dose of 10 nmol/kg administered intracolonically. The animals were sacrificed 3 days later and the extent of colonic necrosis and hyperemia was measured with an image analyzer. The i.p. administration of BPC-15 significantly reduced the extent of TNBS-induced colonic damage in a dose-dependent manner. This was associated with a statistically significant and dose-dependent reduction in colonic tissue MPO activity. At the dose tested (10 nmol/kg), intracolonic administration of BPC-15 did not significantly reduce either the extent of the colonic damage or the increase in MPO activity induced by TNBS. In conclusion, this study showed that i.p. administration of BPC-15 reduced TNBS-induced colonic damage in rats. PMID:7815358

  19. Use of anionic clays for photoprotection and sunscreen photostability: Hydrotalcites and phenylbenzimidazole sulfonic acid

    NASA Astrophysics Data System (ADS)

    Perioli, Luana; Ambrogi, Valeria; Rossi, Carlo; Latterini, Loredana; Nocchetti, Morena; Costantino, Umberto

    2006-05-01

    Layered double hydroxides of hydrotalcite (HTlc) type have many applications as matrices in pharmaceutical and cosmetic fields when intercalated with active species in anionic form. The aim of this work was to intercalate 2-phenyl-1H-benzimidazole-5-sulfonic acid (Eusolex 232) (EUS) as sunscreen molecule into hydrotalcites in order to obtain the sunscreen stabilization, the reduction of its photodegradation and the elimination of close contact between skin and filter. Hydrotalcites MgAl and ZnAl were used as hosts and the intercalation products obtained were characterized by TG, RX and DSC. They were also submitted to spectrophotometric assays in order to study the matrix influence on sunlight protection and on sunscreen photostability. These experiments showed that both MgAl and ZnAl HTlc intercalation products maintained the sunscreen properties and eusolex photodegradation was reduced. The in vitro EUS release from both formulations was almost negligible when compared with formulations containing free EUS. The EUS intercalation in HTlc and the respective formulations provided advantages in the maintenance of photoprotection efficacy, filter photostabilization and avoidance of a close contact between skin and filter, with consequent elimination of allergy problems and photocross reactions.

  20. Removal of textile dyes and metallic ions using polyelectrolytes and macroelectrolytes containing sulfonic acid groups.

    PubMed

    Caldera Villalobos, M; Peláez Cid, A A; Herrera González, Ana M

    2016-07-15

    This work reports the removal of textile dyes and metallic ions by means of adsorption and coagulation-flocculation using two polyelectrolytes and two macroelectrolytes containing sulfonic acid groups. The adsorption of textile dyes was studied in aqueous solutions containing cationic dyes and in wastewater containing a vat dye. Also, removal of vat and naphthol dyes was studied using the process of coagulation-flocculation. The results show these materials possess elevated adsorption capacity, and they accomplished removal rates above 97% in aqueous solutions. The removal of the vat dye improved the quality of the wastewater notably, and an uncolored effluent was obtained at the end of the treatment. The treatment using adsorption decreased the values for coloration, conductivity, suspended solids, and pH. The removal of vat and naphthol dyes by means of coagulation-flocculation was studied as well, and removal rates of 90% were obtained. The polyelectrolytes and macroelectrolytes also proved effective in the adsorption of metallic ions in wastewater. The treatment using adsorption accomplished high removal rates of metallic ions, and it showed greater selectivity towards Cu(2+), Fe(3+) and Pb(2+). A decrease in the content of solids as well as the values for COD and conductivity was observed in the wastewater as well. The analyses of FT-IR indicated that cationic dyes and metallic ions were chemisorbed by means of ionic exchange.

  1. Aquatic predicted no-effect-concentration derivation for perfluorooctane sulfonic acid.

    PubMed

    Qi, Ping; Wang, Ying; Mu, Jingli; Wang, Juying

    2011-04-01

    Perfluorooctane sulfonic acid (PFOS), a representative perfluorinated surfactant, is an anthropogenic pollutant detected in various environmental and biological matrices. Some laboratory and field work has been conducted to assess the aquatic toxicity of PFOS, but little is known regarding its toxicity threshold to the aquatic ecosystem. In the present study, predicted no-effect concentrations (PNECs) were derived by four different approaches. The interspecies correlation estimation (ICE) program and final acute-to-chronic ratio (FACR) were applied to the development of PNEC based on the toxic mode of action (MOA) of PFOS. By comparison of the different PNECs, the recommended aquatic toxicity thresholds for PFOS are in the range of 0.61 to 6.66 µg/L. Based on comparison of PNEC values, microcosm results, and reported environmental concentrations, PFOS appears not to pose a serious threat to aquatic organisms. The present results demonstrate that MOA is an important consideration for the derivation of reliable PNECs; moreover, the ICE-based species sensitivity distribution (SSD) method can be used to derive PNECs when toxicological data are limited. The application of MOA and ICE for deriving PNEC values in the present study may facilitate studies on using a combination of quantitative structure-activity relationship (QSAR) models and ICE to estimate PNECs.

  2. Removal of textile dyes and metallic ions using polyelectrolytes and macroelectrolytes containing sulfonic acid groups.

    PubMed

    Caldera Villalobos, M; Peláez Cid, A A; Herrera González, Ana M

    2016-07-15

    This work reports the removal of textile dyes and metallic ions by means of adsorption and coagulation-flocculation using two polyelectrolytes and two macroelectrolytes containing sulfonic acid groups. The adsorption of textile dyes was studied in aqueous solutions containing cationic dyes and in wastewater containing a vat dye. Also, removal of vat and naphthol dyes was studied using the process of coagulation-flocculation. The results show these materials possess elevated adsorption capacity, and they accomplished removal rates above 97% in aqueous solutions. The removal of the vat dye improved the quality of the wastewater notably, and an uncolored effluent was obtained at the end of the treatment. The treatment using adsorption decreased the values for coloration, conductivity, suspended solids, and pH. The removal of vat and naphthol dyes by means of coagulation-flocculation was studied as well, and removal rates of 90% were obtained. The polyelectrolytes and macroelectrolytes also proved effective in the adsorption of metallic ions in wastewater. The treatment using adsorption accomplished high removal rates of metallic ions, and it showed greater selectivity towards Cu(2+), Fe(3+) and Pb(2+). A decrease in the content of solids as well as the values for COD and conductivity was observed in the wastewater as well. The analyses of FT-IR indicated that cationic dyes and metallic ions were chemisorbed by means of ionic exchange. PMID:27082258

  3. Electrochemical treatment of perfluorooctanoic acid (PFOA) and perfluorooctane sulfonic acid (PFOS) in groundwater impacted by aqueous film forming foams (AFFFs).

    PubMed

    Schaefer, Charles E; Andaya, Christina; Urtiaga, Ana; McKenzie, Erica R; Higgins, Christopher P

    2015-09-15

    Laboratory experiments were performed to evaluate the use of electrochemical treatment for the decomposition of perfluorooctanoic acid (PFOA) and perfluorooctane sulfonic acid (PFOS), as well as other perfluoroalkyl acids (PFAAs), in aqueous film forming foam (AFFF)-impacted groundwater collected from a former firefighter training area and PFAA-spiked synthetic groundwater. Using a commercially-produced Ti/RuO2 anode in a divided electrochemical cell, PFOA and PFOS decomposition was evaluated as a function of current density (0-20 mA/cm(2)). Decomposition of both PFOA and PFOS increased with increasing current density, although the decomposition of PFOS did not increase as the current density was increased above 2.5 mA/cm(2). At a current density of 10 mA/cm(2), the first-order rate constants, normalized for current density and treatment volume, for electrochemical treatment of both PFOA and PFOS were 46 × 10(-5) and 70 × 10(-5) [(min(-1)) (mA/cm(2))(-1) (L)], respectively. Defluorination was confirmed for both PFOA and PFOS, with 58% and 98% recovery as fluoride, respectively (based upon the mass of PFOA and PFOS degraded). Treatment of other PFAAs present in the groundwater also was observed, with shorter chain PFAAs generally being more recalcitrant. Results highlight the potential for electrochemical treatment of PFAAs, particularly PFOA and PFOS, in AFFF-impacted groundwater.

  4. Photochemical degradation of sunscreen agent 2-phenylbenzimidazole-5-sulfonic acid in different water matrices.

    PubMed

    Ji, Yuefei; Zhou, Lei; Zhang, Ya; Ferronato, Corinne; Brigante, Marcello; Mailhot, Gilles; Yang, Xi; Chovelon, Jean-Marc

    2013-10-01

    The occurrence of sunscreen agents in natural environment is of scientific concern recently due to their potential risk to ecology system and human beings as endocrine disrupting chemicals (EDCs). In this work the photodegradation mechanism and pathways of sunscreen agent 2-phenylbenzimidazole-5-sulfonic acid (PBSA) were investigated under artificial solar irradiation with the goal of assessing the potential of photolysis as a transformation mechanism in aquatic environments. The quantum yield of PBSA direct photolysis in pH 6.8 buffer solution under filtered mercury lamp irradiation was determined as 2.70 × 10(-4). Laser flash photolysis (LFP) experiments confirmed the involvement of PBSA radical cation (PBSA(·+)) during direct photolysis. Acidic or basic condition facilitated PBSA direct photolysis in aqueous solution. Indirect photolysis out-competes direct photolysis as a major process for PBSA attenuation only at higher level of photosensitizers (e.g., NO3(-) > 2 mM). Thus, direct photolysis is likely to be the major loss pathway responsible for the elimination of PBSA in natural sunlit surface waters, while indirect photolysis (e.g., mediated by HO·) appeared to be less important due to a general low level of steady-state concentration of HO· ([HO·]ss) in natural surface waters. Direct photolysis pathways of PBSA includes desulfonation and benzimidazole ring cleavage, which are probably initiated by the excited triplet state ((3)PBSA*) and radical cation (PBSA(·+)). Conversely, hydroxylation products of PBSA and 2-phenyl-1H-benzimidazole as well as their ring opening intermediates were found in nitrate-induced PBSA photolysis, suggesting the indirect photodegradation was primarily mediated by HO and followed a different mechanism.

  5. Effect of humic acid on the sorption of perfluorooctane sulfonate (PFOS) and perfluorobutane sulfonate (PFBS) on boehmite.

    PubMed

    Wang, Fei; Shih, Kaimin; Leckie, James O

    2015-01-01

    The sorption of PFOS and PFBS on boehmite was significantly retarded by the competitive sorption of humic acid (HA), implying that PFOS and PFBS are likely more mobile in water and groundwater systems enriched with HA. The sorption behavior of PFOS and PFBS on the HA-modified boehmite surface were also found to differ due to their different chain lengths. For a partially HA-modified boehmite surface, the isotherm study showed that PFOS had a much higher maximum sorption capacity than PFBS and that PFOS might possess additional surface interactions besides electrostatic interaction. For a HA-saturated boehmite, a linear sorption isotherm was found for PFOS while nearly no PFBS sorption was observed. This indicates that sorption behavior between PFOS and the sorbed HA on boehmite was dominated by hydrophobic interactions, instead of electrostatic interaction. In addition, a conceptual model combining hydrophobic and electrostatic interaction was established to explain the sorption behavior of PFOS and PFBS on HA-modified boehmite. Finally, the results revealed that the sorption of PFOS and PFBS on HA-modified boehmite is pH-dependent. The neutralization of negative sites on HA-modified boehmite reduced the electrostatic repulsion and enhanced the partitioning of PFBS on the sorbed HA. PMID:25268321

  6. Analysis of perfluorinated phosponic acids and perfluorooctane sulfonic acid in water, sludge and sediment by LC-MS/MS.

    PubMed

    Esparza, X; Moyano, E; de Boer, J; Galceran, M T; van Leeuwen, S P J

    2011-10-30

    Residues of perfluorinated phosphonic acids (PFPAs) and perfluorooctane sulfonic acid (PFOS) were investigated in various Dutch surface waters, sludge and sediments. For this purpose, a liquid chromatographic (LC) method was optimized by testing several columns with different mobile phases. Atmospheric pressure chemical ionization (APCI) was chosen for the LC tandem mass spectrometry (MS/MS) analysis. An ion-pair reagent was added to the injection solvent to improve peak shape. Different solvents were studied for the extraction from solid samples. For clean-up and pre-concentration, weak anion-exchange solid-phase extraction cartridges were used. Water samples were extracted using the same cartridges. The method was used for screening PFPAs in the Dutch aquatic environment. PFPAs were not observed in sediment or sludge samples. PFOPA was found at 1 ng L(-1) in one surface water sample. PFOS was found at levels between 0.07 ng g(-1) and 48 ng g(-1) (dry weight) in sediments and sewage sludge samples. PFOS concentrations in surface water ranged from 3.3 ng L(-1) to 25.4 ng L(-1).

  7. Fluorinated alternatives to long-chain perfluoroalkyl carboxylic acids (PFCAs), perfluoroalkane sulfonic acids (PFSAs) and their potential precursors.

    PubMed

    Wang, Zhanyun; Cousins, Ian T; Scheringer, Martin; Hungerbühler, Konrad

    2013-10-01

    Since 2000 there has been an on-going industrial transition to replace long-chain perfluoroalkyl carboxylic acids(PFCAs), perfluoroalkane sulfonic acids (PFSAs) and their precursors. To date, information on these replacements including their chemical identities, however, has not been published or made easily accessible to the public, hampering risk assessment and management of these chemicals. Here we review information on fluorinated alternatives in the public domain. We identify over 20 fluorinated substances that are applied in [i] fluoropolymer manufacture, [ii] surface treatment of textile, leather and carpets, [iii] surface treatment of food contact materials,[iv] metal plating, [v] fire-fighting foams, and [vi] other commercial and consumer products.We summarize current knowledge on their environmental releases, persistence, and exposure of biota and humans. Based on the limited information available, it is unclear whether fluorinated alternatives are safe for humans and the environment.We identify three major data gaps that must be filled to perform meaningful risk assessments and recommend generation of the missing data through cooperation among all stakeholders (industry, regulators, academic scientists and the public).

  8. Toxicity of perfluorooctane sulfonic acid and perfluorooctanoic acid on freshwater macroinvertebrates (Daphnia magna and Moina macrocopa) and fish (Oryzias latipes).

    PubMed

    Ji, Kyunghee; Kim, Younghee; Oh, Sorin; Ahn, Byeongwoo; Jo, Hyunye; Choi, Kyungho

    2008-10-01

    Because of their global distribution, persistence, and tendency to bioaccumulate, concerns about perfluorooctane sulfonic acid (PFOS) and perfluorooctanoic acid (PFOA) are growing. We determined the toxicity of PFOS and PFOA in several freshwater organisms, including two cladocerans, Daphnia magna and Moina macrocopa, and the teleost Oryzias latipes. In general, PFOS is approximately 10 times more toxic than PFOA in these organisms. In M. macrocopa, the median lethal concentration (LC50) was 17.95 mg/L for PFOS and 199.51 mg/L for PFOA. Moina macrocopa exhibited greater sensitivity than D. magna to both perfluorinated compounds in both acute and chronic exposures. In the 48-h acute toxicity test, M. macrocopa was approximately two times more sensitive than D. magna. In the 7-d chronic toxicity test, M. macrocopa showed significant reproductive changes at 0.31 mg/L for PFOS, which was approximately seven times lower than the effect concentrations observed over the 21-d exposure in D. magna. Two-generation fish toxicity tests showed that parental exposure to both compounds affected the performance of offspring. Unexposed progeny-generation (F1) fish exhibited elevated mortality and histopathological changes that were correlated with exposure in the parental generation (F0). Continuous exposure from F0 through F1 generations increased the extent of adverse effects. Considering the persistent nature of PFOS and PFOA, more research is required to determine potential consequences of long-term exposure to these compounds in aquatic ecosystems. PMID:18593212

  9. Theoretical determination of the p Kas of the 8-hydroxyquinoline-5-sulfonic acid: A DFT based approach

    NASA Astrophysics Data System (ADS)

    Le Bahers, Tangui; Adamo, Carlo; Ciofini, Ilaria

    2009-04-01

    The three acid dissociation constants (p Kas) of the 8-hydroxyquinoline-5-sulfonic acid were computed using a computational protocol based on Density Functional Theory. A hybrid exchange correlation functional was applied and bulk solvent effects were treated within the framework of the Polarizable Continuum Model. Direct solute-solvent interactions were taken into account adding explicit water molecules. The computed p Kas are in line with the experimental data and allow better defining the first p Ka, confirmed to be negative. From the calculated p Kas, 'ab initio' distribution diagrams of the relative concentration of the different species in solution as a function of pH were drawn.

  10. Toxicity of perfluorooctane sulfonate and perfluorooctanoic acid to plants and aquatic invertebrates.

    PubMed

    Li, Mei-Hui

    2009-02-01

    Acute toxicities of perfluorooctane sulfonate (PFOS) and perfluorooctanoic acid (PFOA) were tested on four freshwater species and three plant species. PFOS was more toxic than PFOA for all species tested in this study. Similar time-response patterns of PFOS and PFOA toxicity were observed for each tested species. Values of the 48-h LC(50) of PFOS for all test species ranged from 27 to 233 mg/L and values of the 96-h LC(50) for three of the species ranged from 10 to 178 mg/L. Values of the 48-h LC(50) of PFOA for all test species ranged from 181 to 732 mg/L and values of the 96-h LC(50) for three of the species ranged from 337 to 672 mg/L. The most sensitive freshwater species to PFOS was green neon shrimp (Neocaridina denticulate) with a 96-h LC(50) of 10 mg/L. Of the aquatic organisms tested, the aquatic snail (Physa acuta) always has the highest resistance to PFOS or PFOA toxicity over each exposure period. Both PFOS and PFOA had no obvious adverse effect on seed germination for all three plant species. Five-day EC(50) of root elongation was more sensitive to LC(50) of seed germination in this study. Based on EC(10), EC(50), and NOECs, the 5-day root elongation sensitivity of test plants to both PFOS and PFOA was in the order of lettuce (Lactuca sativa) > pakchoi (Brassica rapa chinensis) > cucumber (Cucumis sativus). Based on the results of this study and other published literature, it is suggested that current PFOS and PFOA levels in freshwater may have no acute harmful ecological impact on the aquatic environment. However, more research on the long-term ecological effects of PFOS and PFOA on aquatic fauna are needed to provide important information to adequately assess ecological risk of PFOS and PFOA.

  11. Occurrence of Perfluorooctanoic Acid and Perfluorooctane Sulfonate in Milk and Yogurt and Their Risk Assessment

    PubMed Central

    Xing, Zhenni; Lu, Jianjiang; Liu, Zilong; Li, Shanman; Wang, Gehui; Wang, Xiaolong

    2016-01-01

    Although perfluorooctanoic acid (PFOA) and perfluorooctane sulfonate (PFOS) have been identified in milk and dairy products in many regions, knowledge on their occurrence in Xinjiang (China) is rare. This study was conducted to measure the levels of PFOA and PFOS in milk and yogurt from Xinjiang and to investigate the average daily intake (ADI) of these two compounds. PFOA and PFOS levels were analyzed using ultrasonic extraction with methanol and solid-phase extraction followed by liquid chromatography–mass spectrometry. Retail milk and yogurt samples present higher detection rates (39.6% and 48.1%) and mean concentrations (24.5 and 31.8 ng/L) of PFOS than those of PFOA (33.0% and 37.0%; 16.2 and 22.6 ng/L, respectively). For raw milk samples, only PFOS was detected. The differences in the levels of the two compounds between samples from the north and south regions were observed, and northern regions showed higher pollution levels than southern regions. On the basis of the retail milk measurements and consumption data, the ADIs of PFOA and PFOS for Xinjiang adults were calculated to be 0.0211 and 0.0318 ng/kg/day, respectively. Furthermore, the estimated intakes of PFOA and PFOS varied among different groupings (age, area, gender, and race) and increased with increasing age. Relevant hazard ratios were found to be far less than 1.0, and this finding suggested that no imminent health damages were produced by PFOA and PFOS intake via milk and yogurt consumption in the Xinjiang population. PMID:27775680

  12. Worldwide surveys of perfluorooctane sulfonate (PFOS) and perfluorooctanoic acid (PFOA) in water environment in recent years.

    PubMed

    Kunacheva, Chinagarn; Fujii, Shigeo; Tanaka, Shuhei; Seneviratne, S T M L D; Lien, Nguyen Pham Hong; Nozoe, Munehiro; Kimura, Koji; Shivakoti, Binaya Raj; Harada, Hidenori

    2012-01-01

    Recently, perfluorinated compounds (PFCs) have been noted as causes of some of the important environmental problems in recent years due to their occurrences and properties. The most commonly used PFCs are perfluorooctane sulfonate (PFOS) and perfluorooctanoic acid (PFOA), which have been used in many kinds of products. They have been found in surface water and tap water in both developed and developing countries around the world including in North America, Europe and Asia. In most countries, rivers are the source of tap water, which is one of the important pathways in which PFCs reach humans. It is essential to evaluate PFOS and PFOA contamination in the river basin. The purpose of this field study was to determine the presence of PFOS and PFOA in rivers around the world. The surveys were conducted in 15 countries during 2004 to 2010. In total, 539 samples were collected from the rivers in 41 cities. A solid phase extraction (SPE) coupled with HPLC-ESI-MS/MS were used for the analysis of these chemicals. PFOS and PFOA were detected in all 41 cities not only in industrialized areas but also in non-industrialized areas, representing that these compounds undergo long-range transportation in the environment. The average concentration of PFOS in each city ranged from not detected to 70.1 ng/L. The average concentration of PFOA in each city was in the range 0.2-1,630.2 ng/L. The industrialized areas show higher contamination in both PFOS and PFOA concentrations than non-industrialized areas. Industrial activities are some of the major sources of PFCs contamination in rivers.

  13. Toxicity of perfluorooctane sulfonate and perfluorooctanoic acid to plants and aquatic invertebrates.

    PubMed

    Li, Mei-Hui

    2009-02-01

    Acute toxicities of perfluorooctane sulfonate (PFOS) and perfluorooctanoic acid (PFOA) were tested on four freshwater species and three plant species. PFOS was more toxic than PFOA for all species tested in this study. Similar time-response patterns of PFOS and PFOA toxicity were observed for each tested species. Values of the 48-h LC(50) of PFOS for all test species ranged from 27 to 233 mg/L and values of the 96-h LC(50) for three of the species ranged from 10 to 178 mg/L. Values of the 48-h LC(50) of PFOA for all test species ranged from 181 to 732 mg/L and values of the 96-h LC(50) for three of the species ranged from 337 to 672 mg/L. The most sensitive freshwater species to PFOS was green neon shrimp (Neocaridina denticulate) with a 96-h LC(50) of 10 mg/L. Of the aquatic organisms tested, the aquatic snail (Physa acuta) always has the highest resistance to PFOS or PFOA toxicity over each exposure period. Both PFOS and PFOA had no obvious adverse effect on seed germination for all three plant species. Five-day EC(50) of root elongation was more sensitive to LC(50) of seed germination in this study. Based on EC(10), EC(50), and NOECs, the 5-day root elongation sensitivity of test plants to both PFOS and PFOA was in the order of lettuce (Lactuca sativa) > pakchoi (Brassica rapa chinensis) > cucumber (Cucumis sativus). Based on the results of this study and other published literature, it is suggested that current PFOS and PFOA levels in freshwater may have no acute harmful ecological impact on the aquatic environment. However, more research on the long-term ecological effects of PFOS and PFOA on aquatic fauna are needed to provide important information to adequately assess ecological risk of PFOS and PFOA. PMID:18461560

  14. Perfluorooctanoic acid and perfluorooctane sulfonate in liver and muscle tissue from wild boar in Hesse, Germany.

    PubMed

    Stahl, T; Falk, S; Failing, K; Berger, J; Georgii, S; Brunn, H

    2012-05-01

    Approximately 15,000 tons of wild boar meats (Sus scrofa) are consumed per year in Germany. Boar meat therefore plays a definite role in regard to human diet. Because they are omnivores and because of their high body fat quotient, wild boar may accumulate large concentrations of persistent organic compounds, such as halogenated hydrocarbons, and could thus possibly serve as bioindicators for persistent xenobiotics. In addition, consumption of wild boar meat and liver could lead to increased contaminant levels in humans. Between 2007 and 2009, we tested a total of 529 livers and 506 muscle tissue samples from wild boar for the presence of perfluorooctanoic acid (PFOA) and perfluorooctane sulfonate (PFOS). PFOA concentrations ≤45 μg/kg and PFOS concentrations ≤1,780 μg/kg were detected in the liver samples. PFOA concentrations ≤7.4 μg/kg and PFOS concentrations ≤28.6 μg/kg were detected in muscle tissue. Our results show that PFOS may be detected in considerably greater concentrations than PFOA in organs and tissues, which is in agreement with results from other published studies. The comparisons between both organs for the same substance, as well as the comparisons between the substances within an organ, showed clear and statistically significant differences at P < 0.0001. Assuming a tolerable daily intake value of PFOA (1.5 μg/kg bw/d) and PFOS (0.15 μg/kg bw/d) as recommended by the European Food Safety Authority, the results of model calculations based on the maximum concentrations of PFOA and PFOS found in wild boar indicate that there should be no PFC-related health danger resulting from moderate consumption of wild boar meat or liver.

  15. Covalently bonded sulfonic acid magnetic graphene oxide: Fe3O4@GO-Pr-SO3H as a powerful hybrid catalyst for synthesis of indazolophthalazinetriones.

    PubMed

    Doustkhah, Esmail; Rostamnia, Sadegh

    2016-09-15

    Multistep synthesis of covalently sulfonated magnetic graphene oxide was achieved by starting from Hummer's method to produce graphene oxide (GO) from chemical oxidation of graphite. Then, GO nanosheets were applied to support Fe3O4 nanoparticles (Fe3O4@GO) using co-precipitation method in the presence of GO sheets. This strategy led to formation of uniform particles of Fe3O4 on the surface of GO sheets. Then, it was sulfonated (Fe3O4@GO-Pr-SO3H) through modification with 3-mercaptopropyltrimethoxysilane (MPTMS) and subsequent oxidation with hydrogen peroxide (H2O2). In comparison, the covalently bonded propyl sulfonic acid groups were more prevailing rather to sulfonic acids of GO itself. The proposed catalyst was more active and recyclable at least for 11 runs.

  16. Covalently bonded sulfonic acid magnetic graphene oxide: Fe3O4@GO-Pr-SO3H as a powerful hybrid catalyst for synthesis of indazolophthalazinetriones.

    PubMed

    Doustkhah, Esmail; Rostamnia, Sadegh

    2016-09-15

    Multistep synthesis of covalently sulfonated magnetic graphene oxide was achieved by starting from Hummer's method to produce graphene oxide (GO) from chemical oxidation of graphite. Then, GO nanosheets were applied to support Fe3O4 nanoparticles (Fe3O4@GO) using co-precipitation method in the presence of GO sheets. This strategy led to formation of uniform particles of Fe3O4 on the surface of GO sheets. Then, it was sulfonated (Fe3O4@GO-Pr-SO3H) through modification with 3-mercaptopropyltrimethoxysilane (MPTMS) and subsequent oxidation with hydrogen peroxide (H2O2). In comparison, the covalently bonded propyl sulfonic acid groups were more prevailing rather to sulfonic acids of GO itself. The proposed catalyst was more active and recyclable at least for 11 runs. PMID:27309948

  17. Simultaneous determination of ofloxacin and gatifloxacin on cysteic acid modified electrode in the presence of sodium dodecyl benzene sulfonate.

    PubMed

    Zhang, Fenfen; Gu, Shuqing; Ding, Yaping; Li, Li; Liu, Xiao

    2013-02-01

    A novel cysteic acid modified carbon paste electrode (cysteic acid/CPE) based on electrochemical oxidation of L-cysteine was developed to simultaneously determine ofloxacin and gatifloxacin in the presence of sodium dodecyl benzene sulfonate (SDBS). Fourier transform infrared spectra (FTIR) indicated that L-cysteine was oxidated to cysteic acid. Electrochemical impedance spectroscopy (EIS) and cyclic voltammograms (CV) indicated that cysteic acid was successfully modified on electrode. The large peak separation (116 mV) between ofloxacin and gatifloxacin was obtained on cysteic acid/CPE while only one oxidation peak was found on bare electrode. And the peak currents increased 5 times compared to bare electrode. Moreover, the current could be further enhanced in the presence of an anionic surfactant, sodium dodecyl benzene sulfonate. The differential pulse voltammograms (DPV) exhibited that the oxidation peak currents were linearly proportional to their concentrations in the range of 0.06-10 μM for ofloxacin and 0.02-200 μM for gatifloxacin, and the detection limits of ofloxacin and gatifloxacin were 0.02 μM and 0.01 μM (S/N=3), respectively. This proposed method was successfully applied to determine ofloxacin and gatifloxacin in pharmaceutical formulations and human serum samples.

  18. Sulfonic acid-functionalized α-zirconium phosphate single-layer nanosheets as a strong solid acid for heterogeneous catalysis applications.

    PubMed

    Zhou, Yingjie; Huang, Rongcai; Ding, Fuchuan; Brittain, Alex D; Liu, Jingjing; Zhang, Meng; Xiao, Min; Meng, Yuezhong; Sun, Luyi

    2014-05-28

    Solid acids have received considerable attention as alternatives to traditional corrosive and hazardous homogeneous acids because of their advantages in practical applications, including their low corrosion of equipment and high catalytic activity and recyclability. In this work, a strong solid acid was prepared by anchoring thiol group terminated chains on layered α-zirconium phosphate (ZrP) single-layer nanosheets, followed by oxidation of thiol groups to form sulfonic acid groups. The obtained solid acids were thoroughly characterized and the results proved that sulfonic acid group terminated chains were successfully grafted onto the ZrP nanosheets with a high loading density. Such a strong solid acid based on inorganic nanosheets can be well-dispersed in polar solvents, leading to high accessibility to the acid functional groups. Meanwhile, it can be easily separated from the dispersion system by centrifugation or filtration. The strong solid acid can serve as an effective heterogeneous catalyst for various reactions, including the Bayer-Villiger oxidation of cyclohexanone to ε-caprolactone in the absence of organic solvents.

  19. Superprotonic conductivity of a UiO-66 framework functionalized with sulfonic acid groups by facile postsynthetic oxidation.

    PubMed

    Phang, Won Ju; Jo, Hyuna; Lee, Woo Ram; Song, Jeong Hwa; Yoo, Kicheon; Kim, BongSoo; Hong, Chang Seop

    2015-04-20

    Facile postsynthetic oxidation of the thiol-laced UiO-66-type framework UiO-66(SH)2 enabled the generation of UiO-66(SO3 H)2 with sulfonic acid groups covalently linked to the backbone of the system. The oxidized material exhibited a superprotonic conductivity of 8.4×10(-2)  S cm(-1) at 80 °C and 90 % relative humidity, and long-term stability of the conductivity was observed. This level of conductivity exceeds that of any proton-conducting MOF reported to date and is equivalent to the conductivity of the most effective known electrolyte, Nafion.

  20. Vapor-phase esterification of acetic acid with ethanol catalyzed by a macroporous sulfonated styrene-divinylbenzene (20%) resin

    SciTech Connect

    Gimenez, J.; Costa, J.; Cervera, S.

    1987-02-01

    The kinetics of the vapor-phase (85-120/sup 0/C) esterification of acetic acid with ethyl alcohol, at atmospheric pressure, catalyzed by a macroporous sulfonated styrene-divinylbenzene (DVB;20%) resin, has been studied. A simple first-order model (r = kp/sub 1/) fits experimental kinetic data properly for a constant reactants ratio. Discussion by means of L-H-H-W models shows that the rate-controlling step is the surface reaction with a single-site mechanism. The apparent activation energy is 4000 cal/mol.

  1. Theoretical investigation on the molecular inclusion process of prilocaine into p-sulfonic acid calix[6]arene

    NASA Astrophysics Data System (ADS)

    de Sousa, Sara M. R.; Fernandes, Sergio A.; De Almeida, Wagner B.; Guimarães, Luciana; Abranches, Paula A. S.; Varejão, Eduardo V. V.; Nascimento, Clebio S., Jr.

    2016-02-01

    The present letter reports, for the first time, results from a theoretical analysis of the inclusion process involving the prilocaine into the p-sulfonic acid calix[6]arene. Structure and stabilization energies were calculated, in both gas and aqueous phases, using a sequential methodology based on semiempirical and Density Functional Theory (DFT) calculations. From the results, a qualitative structure property relationship could be established with some main structural features being relevant for inclusion complex stabilization: (i) the hydrogen bonds established between guest and host molecules, (ii) the dispersion effect and (iii) the inclusion mode of guest molecule into the host cavity.

  2. Proparacaine complexation with beta-cyclodextrin and p-sulfonic acid calix[6]arene, as evaluated by varied (1)H-NMR approaches.

    PubMed

    Arantes, Lucas Micquéias; Scarelli, Camilla; Marsaioli, Anita Jocelyne; de Paula, Eneida; Fernandes, Sergio Antonio

    2009-09-01

    This study focused on the use of NMR techniques as a tool for the investigation of complex formation between proparacaine and cyclodextrins (CDs) or p-sulfonic acid calix[6]arene. The pH dependence of the complexation of proparacaine with beta-CD and p-sulfonic acid calix[6]arene was studied and binding constants were determined by (1)H NMR spectroscopy [diffusion-ordered spectroscopy (DOSY)] for the charged and uncharged forms of the local anesthetic in beta-CD and p-sulfonic acid calix[6]arene. The stoichiometries of the complexes was determined and rotating frame Overhauser enhancement spectroscopy (ROESY) 1D experiments revealed details of the molecular insertion of proparacaine into the beta-CD and p-sulfonic acid calix[6]arene cavities. The results unambiguously demonstrate that pH is an important factor for the development of supramolecular architectures based on beta-CD and p-sulfonic acid calix[6]arene as the host molecules. Such host-guest complexes were investigated in view of their potential use as new therapeutic formulations, designed to increase the bioavailability and/or to decrease the systemic toxicity of proparacaine in anesthesia procedures.

  3. Nanostructured bacterial cellulose-poly(4-styrene sulfonic acid) composite membranes with high storage modulus and protonic conductivity.

    PubMed

    Gadim, Tiago D O; Figueiredo, Andrea G P R; Rosero-Navarro, Nataly C; Vilela, Carla; Gamelas, José A F; Barros-Timmons, Ana; Neto, Carlos Pascoal; Silvestre, Armando J D; Freire, Carmen S R; Figueiredo, Filipe M L

    2014-05-28

    The present study reports the development of a new generation of bio-based nanocomposite proton exchange membranes based on bacterial cellulose (BC) and poly(4-styrene sulfonic acid) (PSSA), produced by in situ free radical polymerization of sodium 4-styrenesulfonate using poly(ethylene glycol) diacrylate (PEGDA) as cross-linker, followed by conversion of the ensuing polymer into the acidic form. The BC nanofibrilar network endows the composite membranes with excellent mechanical properties at least up to 140 °C, a temperature where either pure PSSA or Nafion are soft, as shown by dynamic mechanical analysis. The large concentration of sulfonic acid groups in PSSA is responsible for the high ionic exchange capacity of the composite membranes, reaching 2.25 mmol g(-1) for a composite with 83 wt % PSSA/PEGDA. The through-plane protonic conductivity of the best membrane is in excess of 0.1 S cm(-1) at 94 °C and 98% relative humidity (RH), decreasing to 0.042 S cm(-1) at 60% RH. These values are comparable or even higher than those of ionomers such as Nafion or polyelectrolytes such as PSSA. This combination of electric and viscoelastic properties with low cost underlines the potential of these nanocomposites as a bio-based alternative to other polymer membranes for application in fuel cells, redox flow batteries, or other devices requiring functional proton conducting elements, such as sensors and actuators.

  4. Preparation of water-soluble hyperbranched polyester nanoparticles with sulfonic acid functional groups and their micelles behavior, anticoagulant effect and cytotoxicity.

    PubMed

    Han, Qiaorong; Chen, Xiaohan; Niu, Yanlian; Zhao, Bo; Wang, Bingxiang; Mao, Chun; Chen, Libin; Shen, Jian

    2013-07-01

    Biocompatibility of nanoparticles has been attracting great interest in the development of nanoscience and nanotechnology. Herein, the aliphatic water-soluble hyperbranched polyester nanoparticles with sulfonic acid functional groups (HBPE-SO3 NPs) were synthesized and characterized. They are amphiphilic polymeric nanoparticles with hydrophobic hyperbranched polyester (HBPE) core and hydrophilic sulfonic acid terminal groups. Based on our observations, we believe there are two forms of HBPE-SO3 NPs in water under different conditions: unimolecular micelles and large multimolecular micelles. The biocompatibility and anticoagulant effect of the HBPE-SO3 NPs were investigated using coagulation tests, hemolysis assay, morphological changes of red blood cells (RBCs), complement and platelet activation detection, and cytotoxicity (MTT). The results confirmed that the sulfonic acid terminal groups can substantially enhance the anticoagulant property of HBPE, and the HBPE-SO3 NPs have the potential to be used in nanomedicine due to their good bioproperties.

  5. Gas chromatography/mass spectrometric analysis of methyl esters of N,N-dialkylaminoethane-2-sulfonic acids for verification of the Chemical Weapons Convention.

    PubMed

    Pardasani, Deepak; Gupta, Arvinda K; Palit, Meehir; Shakya, Purushottam; Kanaujia, Pankaj K; Sekhar, K; Dubey, Devendra K

    2005-01-01

    This paper describes the synthesis and gas chromatography/electron ionization mass spectrometric (GC/EI-MS) analysis of methyl esters of N,N-dialkylaminoethane-2-sulfonic acids (DAESAs). These sulfonic acids are important environmental signatures of nerve agent VX and its toxic analogues, hence GC/EI-MS analysis of their methyl esters is of paramount importance for verification of the Chemical Weapons Convention. DAESAs were prepared by condensation of 2-bromoethane sulfonic acid with dialkylamines, and by condensation of dialkylaminoethyl chloride with sodium bisulfite. GC/EI-MS analysis of methyl esters of DAESAs yielded mass spectra; based on these spectra, generalized fragmentation routes are proposed that rationalize most of the characteristic ions. PMID:16196000

  6. Liquid Chromatography-Tandem Mass Spectrometry Analysis of Perfluorooctane Sulfonate and Perfluorooctanoic Acid in Fish Fillet Samples

    PubMed Central

    Paiano, Viviana; Fattore, Elena; Carrà, Andrea; Generoso, Caterina; Fanelli, Roberto; Bagnati, Renzo

    2012-01-01

    Perfluorooctane sulfonate (PFOS) and perfluorooctanoic (PFOA) acid are persistent contaminants which can be found in environmental and biological samples. A new and fast analytical method is described here for the analysis of these compounds in the edible part of fish samples. The method uses a simple liquid extraction by sonication, followed by a direct determination using liquid chromatography-tandem mass spectrometry (LC-MS/MS). The linearity of the instrumental response was good, with average regression coefficients of 0.9971 and 0.9979 for PFOS and PFOA, respectively, and the coefficients of variation (CV) of the method ranged from 8% to 20%. Limits of detection (LOD) were 0.04 ng/g for both the analytes and recoveries were 90% for PFOS and 76% for PFOA. The method was applied to samples of homogenized fillets of wild and farmed fish from the Mediterranean Sea. Most of the samples showed little or no contamination by perfluorooctane sulfonate and perfluorooctanoic acid, and the highest concentrations detected among the fish species analyzed were, respectively, 5.96 ng/g and 1.89 ng/g. The developed analytical methodology can be used as a tool to monitor and to assess human exposure to perfluorinated compounds through sea food consumption. PMID:22567564

  7. Acid-Base Interactions of Polystyrene Sulfonic Acid in Amorphous Solid Dispersions Using a Combined UV/FTIR/XPS/ssNMR Study.

    PubMed

    Song, Yang; Zemlyanov, Dmitry; Chen, Xin; Nie, Haichen; Su, Ziyang; Fang, Ke; Yang, Xinghao; Smith, Daniel; Byrn, Stephen; Lubach, Joseph W

    2016-02-01

    This study investigates the potential drug-excipient interactions of polystyrene sulfonic acid (PSSA) and two weakly basic anticancer drugs, lapatinib (LB) and gefitinib (GB), in amorphous solid dispersions. Based on the strong acidity of the sulfonic acid functional group, PSSA was hypothesized to exhibit specific intermolecular acid-base interactions with both model basic drugs. Ultraviolet (UV) spectroscopy identified red shifts, which correlated well with the color change observed in lapatinib-PSSA solutions. Fourier transform infrared (FTIR) spectra suggest the protonation of the quinazoline nitrogen atom in both model compounds, which agrees well with data from the crystalline ditosylate salt of lapatinib. X-ray photoelectron spectroscopy (XPS) detected increases in binding energy of the basic nitrogen atoms in both lapatinib and gefitinib, strongly indicating protonation of these nitrogen atoms. (15)N solid-state NMR spectroscopy provided direct spectroscopic evidence for protonation of the quinazoline nitrogen atoms in both LB and GB, as well as the secondary amine nitrogen atom in LB and the tertiary amine nitrogen atom in GB. The observed chemical shifts in the LB-PSSA (15)N spectrum also agree very well with the lapatinib ditosylate salt where proton transfer is known. Additionally, the dissolution and physical stability behaviors of both amorphous solid dispersions were examined. PSSA was found to significantly improve the dissolution of LB and GB and effectively inhibit the crystallization of LB and GB under accelerated storage conditions due to the beneficial strong intermolecular acid-base interaction between the sulfonic acid groups and basic nitrogen centers.

  8. Acid-Base Interactions of Polystyrene Sulfonic Acid in Amorphous Solid Dispersions Using a Combined UV/FTIR/XPS/ssNMR Study.

    PubMed

    Song, Yang; Zemlyanov, Dmitry; Chen, Xin; Nie, Haichen; Su, Ziyang; Fang, Ke; Yang, Xinghao; Smith, Daniel; Byrn, Stephen; Lubach, Joseph W

    2016-02-01

    This study investigates the potential drug-excipient interactions of polystyrene sulfonic acid (PSSA) and two weakly basic anticancer drugs, lapatinib (LB) and gefitinib (GB), in amorphous solid dispersions. Based on the strong acidity of the sulfonic acid functional group, PSSA was hypothesized to exhibit specific intermolecular acid-base interactions with both model basic drugs. Ultraviolet (UV) spectroscopy identified red shifts, which correlated well with the color change observed in lapatinib-PSSA solutions. Fourier transform infrared (FTIR) spectra suggest the protonation of the quinazoline nitrogen atom in both model compounds, which agrees well with data from the crystalline ditosylate salt of lapatinib. X-ray photoelectron spectroscopy (XPS) detected increases in binding energy of the basic nitrogen atoms in both lapatinib and gefitinib, strongly indicating protonation of these nitrogen atoms. (15)N solid-state NMR spectroscopy provided direct spectroscopic evidence for protonation of the quinazoline nitrogen atoms in both LB and GB, as well as the secondary amine nitrogen atom in LB and the tertiary amine nitrogen atom in GB. The observed chemical shifts in the LB-PSSA (15)N spectrum also agree very well with the lapatinib ditosylate salt where proton transfer is known. Additionally, the dissolution and physical stability behaviors of both amorphous solid dispersions were examined. PSSA was found to significantly improve the dissolution of LB and GB and effectively inhibit the crystallization of LB and GB under accelerated storage conditions due to the beneficial strong intermolecular acid-base interaction between the sulfonic acid groups and basic nitrogen centers. PMID:26716395

  9. Calix[8]arene Sulfonic Acid Catalyzed Three-Component Reaction for Convenient Synthesis of 3,4-Dihydropyrimidin-2(1H)-ones/thiones under Ultrasonic Irradiation.

    PubMed

    An, Lin; Han, Li-li; Wang, Zu-jian; Huang, Tong-hui; Zhu, Hui-dong

    2016-01-01

    In this work, the catalytic activity of calix[8]arene sulfonic acid was successfully investigated for the famous Biginelli reaction. Under ultrasonic irradiation, calix[8]arene sulfonic acid could efficiently catalyzed the three-component reaction of aldehydes with ethyl acetoacetate and urea or thiourea in ethanol to afford the corresponding 3,4-dihydropyrimidin-2(1H)-ones/thiones in 46-93%. The advantages of this method are the easy isolated procedure, short reaction time and low cost of the catalyst.

  10. Sulfonic acid polymers: Highly potent inhibition of HIV-1 and HIV-2 reverse transcriptase and antiviral activity

    SciTech Connect

    Mohan, P.; Verma, S.; Tan, G.T.; Wickramasinghe, A.; Pezzuto, J.M.; Huges, S.H.; Baba, M.

    1993-12-31

    In an extension of the authors` work in the sulfonic acid polymer area they have evaluated the reverse transcriptase (RT) inhibitory activity of several varying molecular weight aromatic and aliphatic derivatives. All the polymers possess anti-HIV activity at doses that are non-toxic to the host cells and act by inhibiting viral adsorption. In the RT assay, poly(4-styrenesulfonic acid) exhibited highly potent inhibition with IC{sub 50} values of 0.0008 {mu}M and 0.0007 {mu}M for HIV-1 and HIV-2 RT respectively. The discovery of the anti-RT potential of these derivatives provides the impetus to investigate additional intervention strategies that are coupled with the facilitated cellular penetration of these agents.

  11. Capillary electrochromatography with polyacrylamide monolithic stationary phases having bonded dodecyl ligands and sulfonic acid groups: evaluation of column performance with alkyl phenyl ketones and neutral moderately polar pesticides.

    PubMed

    Zhang, M; El Rassi, Z

    2001-08-01

    In this report, we describe the preparation of porous polyacrylamide-based monolithic columns via vinyl polymerization. These monoliths possess in their structures bonded dodecyl ligands and sulfonic acid groups. While the sulfonic acid groups are meant to support the electroosmotic flow (EOF) necessary for moving the mobile phase through the monolithic capillary, the dodecyl ligands are introduced to provide the nonpolar sites for chromatographic retention. However, incorporating the sulfonic acid groups in the monoliths does not only support the EOF but also exhibit hydrophilic interaction with moderately polar compounds such as urea herbicides and carbamates insecticides. Consequently, mixed-mode (reversed-phase/normal phase) retention behavior is observed with neutral and moderately polar pesticides. The amount of sulfonic acid group in the monolith can be conveniently adjusted by changing the amount of vinylsulfonic acid added to the polymerization reaction. Optimum EOF velocity and adequate chromatographic retention are obtained when 15% vinylsulfonic acid is added to the reaction mixture. Under these conditions, rapid separation and high plate counts reaching greater than 400000 plates/m are readily obtained.

  12. A new strategy for the synthesis of taurine derivatives using the 'safety-catch' principle for the protection of sulfonic acids.

    PubMed

    Seeberger, Sonja; Griffin, Roger J; Hardcastle, Ian R; Golding, Bernard T

    2007-01-01

    The safety-catch principle has been applied for the development of a new method for protecting sulfonic acids. 2,2-Dimethylsuccinic acid was reduced to 2,2-dimethylbutane-1,4-diol, which was selectively silylated to give 4-(tert-butyldiphenylsilanyloxy)-2,2-dimethylbutan-1-ol. Reaction of the latter compound with 2-chloroethanesulfonyl chloride in the presence of triethylamine afforded 4-(tert-butyldiphenylsilyloxy)-2,2-dimethylbutyl ethenesulfonate directly. The ethenesulfonate underwent Michael-type addition with secondary amines to give protected derivatives of taurine (2-aminoethanesulfonic acid). Deprotection was achieved on treatment with tetrabutylammonium fluoride, whereby cleavage of the silicon-oxygen bond led to an intermediate alkoxide that immediately cyclised to 2,2-dimethyltetrahydrofuran with liberation of a sulfonate. Pure sulfonic acids were obtained from the crude product by ion exchange chromatography on a strongly basic resin, which was eluted with aqueous acetic acid. The method developed should be generally applicable to the protection of sulfonic acids and is amenable to a multiparallel format.

  13. Continuous lifetime distributions of β-cyclodextrin-anilinonaphthalene sulfonic acid inclusion complexes.

    PubMed

    Catena, G C; Bright, F V

    1991-03-01

    Fluorescence lifetimes are reported for a series of anilinonaphthalene sulfonate (ANS) probe molecules complexed with β-cyclodextrin (β-CD). The fluorescence decay kinetics are recovered by multifrequency phase and modulation measurements in concert with a global analysis scheme. In all cases studied, a continuous Lorentzian distribution of lifetimes is observed, resulting from the dynamical nature of the ANS-β-CD complex and free ANS. Trends are discussed and comparisons made between bound and free fluorophore and between different isomeric ANS structures.

  14. Enhanced bio-decolorization of 1-amino-4-bromoanthraquinone-2-sulfonic acid by Sphingomonas xenophaga with nutrient amendment.

    PubMed

    Lu, Hong; Guan, Xiaofan; Wang, Jing; Zhou, Jiti; Zhang, Haikun

    2015-01-01

    Bacterial decolorization of anthraquinone dye intermediates is a slow process under aerobic conditions. To speed up the process, in the present study, effects of various nutrients on 1-amino-4-bromoanthraquinone-2-sulfonic acid (ABAS) decolorization by Sphingomonas xenophaga QYY were investigated. The results showed that peptone, yeast extract and casamino acid amendments promoted ABAS bio-decolorization. In particular, the addition of peptone and casamino acids could improve the decolorization activity of strain QYY. Further experiments showed that l-proline had a more significant accelerating effect on ABAS decolorization compared with other amino acids. l-Proline not only supported cell growth, but also significantly increased the decolorization activity of strain QYY. Membrane proteins of strain QYY exhibited ABAS decolorization activities in the presence of l-proline or reduced nicotinamide adenine dinucleotide, while this behavior was not observed in the presence of other amino acids. Moreover, the positive correlation between l-proline concentration and the decolorization activity of membrane proteins was observed, indicating that l-proline plays an important role in ABAS decolorization. The above findings provide us not only a novel insight into bacterial ABAS decolorization, but also an l-proline-supplemented bioaugmentation strategy for enhancing ABAS bio-decolorization.

  15. Using a Macroporous Silver Shell to Coat Sulfonic Acid Group-Functionalized Silica Spheres and Their Applications in Catalysis and Surface-Enhanced Raman Scattering.

    PubMed

    Ren, Guohong; Wang, Wenqin; Shang, Mengying; Zou, Hanzhi; Cheng, Shengwei

    2015-09-29

    In this paper, novel organic sulfonic acid group-functionalized silica spheres (SiO2-SO3H) were chosen as a template for fabricating core-shell SiO2-SO3H@Ag composite spheres by the seed-mediated growth method. The SiO2-SO3H spheres could be obtained easily by oxidation of the thiol group-terminated silica spheres (SiO2-SH) with H2O2. Due to the presence of sulfonic acid groups, the [Ag(NH3)2](+) ions were captured on the surface of the silica spheres, followed by in-site reduction to silver nanoseeds for further growth of the silver shell. By this strategy, the complete silver shell could be obtained, and the surface morphologies and structures of the silver shell could be controlled by adjusting the number of sulfonic acid groups on the silica spheres. A large number of sulfonic acid groups on the SiO2-SO3H spheres favored the formation of the macroporous silver shell, which was unique and exhibited good catalytic performance and a high surface-enhanced Raman scattering (SERS) enhancement ability.

  16. Electrical stimulation promotes nerve cell differentiation on polypyrrole/poly (2-methoxy-5 aniline sulfonic acid) composites

    NASA Astrophysics Data System (ADS)

    Liu, Xiao; Gilmore, Kerry J.; Moulton, Simon E.; Wallace, Gordon G.

    2009-12-01

    The purpose of this work was to investigate for the first time the potential biomedical applications of novel polypyrrole (PPy) composites incorporating a large polyelectrolyte dopant, poly (2-methoxy-5 aniline sulfonic acid) (PMAS). The physical and electrochemical properties were characterized. The PPy/PMAS composites were found to be smooth and hydrophilic and have low electrical impedance. We demonstrate that PPy/PMAS supports nerve cell (PC12) differentiation, and that clinically relevant 250 Hz biphasic current pulses delivered via PPy/PMAS films significantly promote nerve cell differentiation in the presence of nerve growth factor (NGF). The capacity of PPy/PMAS composites to support and enhance nerve cell differentiation via electrical stimulation renders them valuable for medical implants for neurological applications.

  17. A DFT Study on the Dissociation Property of Sulfonic Acids with Different Neighboring Pendants in Polymer Electrolyte Membranes

    NASA Astrophysics Data System (ADS)

    Zhao, Yuan-yuan; Tsuchida, Eiji; Choe, Yoong-Kee; Ikeshoji, Tamio; Ohira, Akihiro

    The proton dissociation property of four model compounds of polymer electrolyte membranes, M1-M4, has been studied based on density functional theory. These four model compounds have the same proton donor group, sulfonic acid, while differ by types of neighboring pendants, non-fluorinated and fluorinated. We find that the protons in the fluorinated model compounds can be dissociated when hydrated by 3 water molecules, comparable to Nafion, while for those non-fluorinated compounds, the protons can be dissociated only hydrated by 4 water molecules. The results indicate that the neighboring pendants have a significant effect on the proton dissociation property of the model compounds. The electron-withdrawing group involved in the neighboring pendants can improve the proton dissociation property of the compounds, which would be meaningful for finding a novel polymer electrolyte membrane with good conductivity.

  18. Per-fluorinated sulfonic acid/PTFE copolymer studied by positron annihilation lifetime and gas permeation techniques

    NASA Astrophysics Data System (ADS)

    Mohamed, Hamdy F. M.; Abdel-Hady, E. E.; Ohira, A.

    2015-06-01

    The mechanism of gas permeation in per-fluorinated sulfonic acid/PTFE copolymer Fumapem® membranes for polymer electrolyte fuel cells has been investigated from the viewpoint of free volume. Three different samples, Fumapem® F-950, F-1050 and F-14100 membranes with ion exchange capacity (IEC) = 1.05, 0.95 and 0.71 meq/g, respectively were used after drying. Free volume was quantified using the positron annihilation lifetime (PAL) technique and gas permeabilities were measured for O2 and H2 as function of temperature. Good linear correlation between the logarithm of the permeabilities at different temperatures and reciprocal free volume indicate that gas permeation in dry Fumapem® is governed by the free volume. Nevertheless permeabilities are much smaller than the corresponding flexible chain polymer with a similar free volume size due to stiff chains of the perfluoroethylene backbone.

  19. Versatile acetylation of carbohydrate substrates with bench-top sulfonic acids and application to one-pot syntheses of peracetylated thioglycosides.

    PubMed

    Chao, Chin-Sheng; Chen, Min-Chun; Lin, Shih-Che; Mong, Kwok-Kong T

    2008-04-01

    Inexpensive and readily available sulfonic acids, p-toluenesulfonic acid, and sulfuric acid are versatile and efficient catalysts for the peracetylation of a broad spectrum of carbohydrate substrates in good yield and in a practical time frame. Three appealing features in sulfonic acid-catalyzed acetylation of free sugars were explored including (1) suppression of furanosyl acetate formation for D-galactose and L-fucose; (2) high yielding chemoselective acetylation of sialic acid under appropriate conditions; and (3) peracetylation of amino sugars with different amino protecting functions. Simple one-pot two step acetylation-thioglycosidation methods for the expeditious synthesis of p-tolyl per-O-acetyl thioglycosides were also delineated.

  20. Virus concentration using sulfonated magnetic beads to improve sensitivity in nucleic acid amplification tests.

    PubMed

    Iwata, Akiko; Satoh, Koei; Murata, Mitsuhiro; Hikata, Mikio; Hayakawa, Takao; Yamaguchi, Teruhide

    2003-08-01

    To enhance the sensitivity of virus detection by polymerase chain reaction (PCR) and reverse-transcriptional (RT)-PCR, we developed a novel virus-concentration method using sulfonated (SO-) magnetic beads in the presence of divalent cations. In the presence of either Zn(2+) or Cu(2+) ions, we showed that SO-magnetic beads were able to concentrate non-enveloped model viruses, such as porcine parvovirus (PPV) and poliovirus, which were not concentrated by polyethyleneimine (PEI)-magnetic beads.(1)) Using the SO-magnetic beads, the sensitivity of virus genome detection by PCR or RT-PCR can be enhanced. Therefore, an efficient virus concentration method using either SO-magnetic beads or PEI-magnetic beads enhances the sensitivity of virus detection by PCR or RT-PCR.

  1. Morphology Tailoring of Sulfonic Acid Functionalized Organosilica Nanohybrids for the Synthesis of Biomass-Derived Alkyl Levulinates.

    PubMed

    An, Sai; Song, Daiyu; Lu, Bo; Yang, Xia; Guo, Yi-Hang

    2015-07-20

    Morphology evolution of sulfonic acid functionalized organosilica nanohybrids (Si(Et)Si-Pr/ArSO3 H) with a 1D tubular structure (inner diameter of ca. 5 nm), a 2D hexagonal mesostructure (pore diameter of ca. 5 nm), and a 3D hollow spherical structure (shell thickness of 2-3 nm and inner diameter of ca. 15 nm) was successfully realized through P123-templated sol-gel cocondensation strategies and fine-tuning of the acidity followed by aging or a hydrothermal treatment. The Si(Et)Si-Pr/ArSO3 H nanohybrids were applied in synthesis of alkyl levulinates from the esterification of levulinic acid and ethanolysis of furfural alcohol. Hollow spherical Si(Et)Si-Pr/ArSO3 H and hexagonal mesoporous analogues exhibited the highest and lowest catalytic activity, respectively, among three types of nanohybrids; additionally, the activity was influenced by the -SO3 H loading. The activity differences are explained in terms of different Brønsted acid and textural properties, reactant/product diffusion, and mass transfer rate, as well as accessibility of -SO3 H sites to the reactant molecules. The reusability of the nanohybrids was also evaluated.

  2. Proton Conductivity of Nafion/Ex-Situ Sulfonic Acid-Modified Stöber Silica Nanocomposite Membranes As a Function of Temperature, Silica Particles Size and Surface Modification

    PubMed Central

    Muriithi, Beatrice; Loy, Douglas A.

    2016-01-01

    The introduction of sulfonic acid modified silica in Nafion nanocomposite membranes is a good method of improving the Nafion performance at high temperature and low relative humidity. Sulfonic acid-modified silica is bifunctional, with silica phase expected to offer an improvement in membranes hydration while sulfonic groups enhance proton conductivity. However, as discussed in this paper, this may not always be the case. Proton conductivity enhancement of Nafion nanocomposite membranes is very dependent on silica particle size, sometimes depending on experimental conditions, and by surface modification. In this study, Sulfonated Preconcentrated Nafion Stober Silica composites (SPNSS) were prepared by modification of Stober silica particles with mercaptopropyltriethoxysilane, dispersing the particles into a preconcentrated solution of Nafion, then casting the membranes. The mercapto groups were oxidized to sulfonic acids by heating the membranes in 10 wt % hydrogen peroxide for 1 h. At 80 °C and 100% relative humidity, a 20%–30% enhancement of proton conductivity was only observed when sulfonic acid modified particle less than 50 nm in diameter were used. At 120 °C, and 100% humidity, proton conductivity increased by 22%–42% with sulfonated particles with small particles showing the greatest enhancement. At 120 °C and 50% humidity, the sulfonated particles are less efficient at keeping the membranes hydrated, and the composites underperform Nafion and silica-Nafion nanocomposite membranes. PMID:26828525

  3. Proton Conductivity of Nafion/Ex-Situ Sulfonic Acid-Modified Stöber Silica Nanocomposite Membranes As a Function of Temperature, Silica Particles Size and Surface Modification.

    PubMed

    Muriithi, Beatrice; Loy, Douglas A

    2016-01-28

    The introduction of sulfonic acid modified silica in Nafion nanocomposite membranes is a good method of improving the Nafion performance at high temperature and low relative humidity. Sulfonic acid-modified silica is bifunctional, with silica phase expected to offer an improvement in membranes hydration while sulfonic groups enhance proton conductivity. However, as discussed in this paper, this may not always be the case. Proton conductivity enhancement of Nafion nanocomposite membranes is very dependent on silica particle size, sometimes depending on experimental conditions, and by surface modification. In this study, Sulfonated Preconcentrated Nafion Stober Silica composites (SPNSS) were prepared by modification of Stober silica particles with mercaptopropyltriethoxysilane, dispersing the particles into a preconcentrated solution of Nafion, then casting the membranes. The mercapto groups were oxidized to sulfonic acids by heating the membranes in 10 wt % hydrogen peroxide for 1 h. At 80 °C and 100% relative humidity, a 20%-30% enhancement of proton conductivity was only observed when sulfonic acid modified particle less than 50 nm in diameter were used. At 120 °C, and 100% humidity, proton conductivity increased by 22%-42% with sulfonated particles with small particles showing the greatest enhancement. At 120 °C and 50% humidity, the sulfonated particles are less efficient at keeping the membranes hydrated, and the composites underperform Nafion and silica-Nafion nanocomposite membranes.

  4. Sulfonic acid-functionalized ordered nanoporous Na+-montmorillonite as an efficient, eco-benign, and water-tolerant nanoreactor for chemoselective oxathioacetalization of aldehydes

    NASA Astrophysics Data System (ADS)

    Shirini, Farhad; Atghia, Seyyed Vahid; Mamaghani, Manouchehr

    2013-01-01

    Sulfonic acid-functionalized ordered nanoporous sodium montmorillonite has been found to be a mild and efficient solid acid catalyst for the chemoselective protection of a variety of carbonyl compounds as oxathiolanes in good to excellent yields. The present method offers several advantages such as short reaction times, high yields, simple procedure and mild conditions. Also, the catalyst could be recycled and reused at least for five times without noticeably decreasing the catalytic activity.

  5. Syn-Selective Synthesis of β-Branched α-Amino Acids by Alkylation of Glycine-Derived Imines with Secondary Sulfonates.

    PubMed

    Lou, Sha; McKenna, Grace M; Tymonko, Steven A; Ramirez, Antonio; Benkovics, Tamas; Conlon, David A; González-Bobes, Francisco

    2015-10-16

    A syn-selective synthesis of β-branched α-amino acids has been developed based on the alkylation of glycine imine esters with secondary sulfonates. The potassium counterion for the enolate, the solvent, and the leaving group on the electrophile were key levers to maximize the diasteroselectivity of the alkylation. The optimized conditions enabled a straightforward preparation of a number of β-branched α-amino acids that can be challenging to obtain.

  6. Iron oxide nanoparticles immobilized to mesoporous NH2-SiO2 spheres by sulfonic acid functionalization as highly efficient catalysts

    NASA Astrophysics Data System (ADS)

    Zhang, Guoliang; Qin, Lei; Wu, Yujiao; Xu, Zehai; Guo, Xinwen

    2014-12-01

    A novel SiO2 nanosphere was synthesized by the post-synthetic grafting of sulfonic acid groups on to anionic-surfactant-templated mesoporous NH2-silica (AMAS). This one-pot post-functionalization strategy allowed more metal ions to be homogeneously anchored into the channel of the meso-SiO2 nanosphere. After hydrothermal and calcination treatment, the in situ growth of α-Fe2O3 on sulfonic acid-functionalized mesoporous NH2-SiO2 (SA-AMAS) exhibited much higher activity in the visible-light assisted Fenton reaction at neutral pH than that for AMAS or meso-SiO2 nanospheres. By analysis, the grafted sulfonic acid group can not only enhance the acid strength of the catalyst, but can also bring more orbital-overlapping between the active sites (FeII and FeIII) and the surface peroxide species, to facilitate the decomposition of H2O2 to hydroxyl radical. The present results provide opportunities for developing heterogeneous catalysts with high-performance in the field of green chemistry and environmental remediation.A novel SiO2 nanosphere was synthesized by the post-synthetic grafting of sulfonic acid groups on to anionic-surfactant-templated mesoporous NH2-silica (AMAS). This one-pot post-functionalization strategy allowed more metal ions to be homogeneously anchored into the channel of the meso-SiO2 nanosphere. After hydrothermal and calcination treatment, the in situ growth of α-Fe2O3 on sulfonic acid-functionalized mesoporous NH2-SiO2 (SA-AMAS) exhibited much higher activity in the visible-light assisted Fenton reaction at neutral pH than that for AMAS or meso-SiO2 nanospheres. By analysis, the grafted sulfonic acid group can not only enhance the acid strength of the catalyst, but can also bring more orbital-overlapping between the active sites (FeII and FeIII) and the surface peroxide species, to facilitate the decomposition of H2O2 to hydroxyl radical. The present results provide opportunities for developing heterogeneous catalysts with high-performance in the

  7. 5-Hydroxyquinoline-2-Carboxylic Acid, a Dead-End Metabolite from the Bacterial Oxidation of 5-Aminonaphthalene-2-Sulfonic Acid

    PubMed Central

    Nörtemann, Bernd; Glässer, Andrea; Machinek, Reinhard; Remberg, Gerd; Knackmuss, Hans-Joachim

    1993-01-01

    5-Aminonaphthalene-2-sulfonate (5A2NS) is converted by strain BN6 into 5-hydroxyquinoline-2-carboxylate (5H2QC). The authenticity of this new compound is confirmed by nuclear magnetic resonance and mass spectrometry. Its formation is explained by a spontaneous cyclization of the hypothetical metabolite 6′-amino-2′-hydroxybenzalpyruvate. The formation of 5H2QC as a dead-end product of 5A2NS prevents NADH regeneration so that 5A2NS oxidation is limited by the internal NADH pool. PMID:16348967

  8. Catalytic Upgrading of bio-oil using 1-octene and 1-butanol over sulfonic acid resin catalysts

    SciTech Connect

    Zhang, Zhijun; Wang, Qingwen; Tripathi, Prabhat; Pittman, Charles U.

    2011-02-04

    Raw bio-oil from fast pyrolysis of biomass must be refined before it can be used as a transporation fuel, a petroleum refinery feed or for many other fuel uses. Raw bio-oil was upgraded with the neat model olefin, 1-octene, and with 1-octene/1-butanol mixtures over sulfonic acid resin catalysts frin 80 to 150 degrees celisus in order to simultaneously lower water content and acidity and to increase hydrophobicity and heating value. Phase separation and coke formation were key factors limiting the reaction rate during upgrading with neat 1-octene although octanols were formed by 1-octene hydration along with small amounts of octyl acetates and ethers. GC-MS analysis confirmed that olefin hydration, carboxylic acid esterification, acetal formation from aldehydes and ketones and O- and C-alkylations of phenolic compounds occurred simultaneously during upgrading with 1-octene/1-butanol mixtures. Addition of 1-butanol increased olefin conversion dramatically be reducing mass transfer restraints and serving as a cosolvent or emulsifying agent. It also reacted with carboxylic acids and aldehydes/ketones to form esters, and acetals, respectively, while also serving to stabilize bio-oil during heating. 1-Butanol addition also protected the catalysts, increasing catalyst lifetime and reducing or eliminationg coking. Upgrading sharply increased ester content and decreased the amounts of levoglucosan, polyhydric alcohols and organic acids. Upgrading lowered acidity (pH value rise from 2.5 to >3.0), removed the uppleasant ordor and increased hydrocarbon solubility. Water content decreased from 37.2% to < 7.5% dramatically and calorific value increased from 12.6 MJ kg to about 30.0 MJ kg.

  9. Inhibition of lactoperoxidase-catalyzed 2,2'-azino-bis(3-ethylbenzthiazoline-6-sulfonic acid) (ABTS) and tyrosine oxidation by tyrosine-containing random amino acid copolymers.

    PubMed

    Clausen, Morten R; Skibsted, Leif H; Stagsted, Jan

    2008-09-24

    Oxidation of 2,2'-azino-bis(3-ethylbenzthiazoline-6-sulfonic acid) by lactoperoxidase was found to be inhibited by tyrosine-containing random amino acid copolymers but not by tyrosine. Both electrostatic effects and polymer size were found to be important by comparison of negatively and positively charged copolymers of varying lengths, with poly(Glu, Tyr)4:1 ([E 4Y 1] approximately 40) as the strongest competitive inhibitor (EC 50 approximately 20 nM). This polymer did not form dityrosine in the presence of lactoperoxidase (LPO) and peroxide. Furthermore, incubation with tert-butyl hydroperoxide, as opposed to hydrogen peroxide, resulted in a peculiar long lag phase of the reaction between the redox intermediate compound II and [E 4Y 1] approximately 40, indicating a very tight association between enzyme and inhibitor. We propose that interactions between multiple positively charged areas on the surface of LPO and the polymer are required for optimal inhibition.

  10. An energy-efficient process for decomposing perfluorooctanoic and perfluorooctane sulfonic acids using dc plasmas generated within gas bubbles

    NASA Astrophysics Data System (ADS)

    Yasuoka, K.; Sasaki, K.; Hayashi, R.

    2011-06-01

    Perfluorooctanoic acid (PFOA) and perfluorooctane sulfonic acid (PFOS) are environmentally harmful and persistent substances. Their decomposition was investigated using dc plasmas generated within small gas bubbles in a solution. The plasma characteristics including discharge voltage, voltage drop in the liquid, plasma shape and the emission spectrum were examined with different gases. The decomposition rate and energy efficiency were evaluated by measuring the concentration of fluoride and sulfate ions released from PFOA/PFOS molecules. The concentration of fluoride ions and energy efficiency in the treatment of a PFOS solution were 17.7 mg l-1 (54.8% of the initial amount of fluorine atoms) and 26 mg kWh-1, respectively, after 240 min of operation. The addition of scavengers of hydroxyl radicals and hydrated electrons showed little effect on the decomposition. The decomposition processes were analyzed with an assumption that positive species reacted with PFOA/PFOS molecules at the boundary of the plasma-solution surface. This type of plasma showed a much higher decomposition energy efficiency compared with energy efficiencies reported in other studies.

  11. Synthesis and chelation properties of a new polymeric ligand derived from 1-amino-2-naphthol-4-sulfonic Acid.

    PubMed

    Manivannan, Dhanasekaran; Biju, Valsala Madhavan Nair

    2015-01-01

    A novel chelating resin for preconcentration of heavy metals from various seawater samples has been developed by condensing 1-amino-2-hydroxy-7-[(4-hydroxyphenyl)diazenyl] naphthalene-4-sulfonic acid (AHDNS) with formaldehyde (1:2 mole ratio) in the presence of oxalic acid as the catalyst. The resin thus obtained was used as a solid sorbent for the separation of divalent metal ions present at trace levels in seawater. The functionalized phenol (AHDNS) was characterized by spectral studies. The polymeric resin AHDNS-formaldehyde (AHDNS-F) obtained by condensing the functionalized phenol and formaldehyde was characterized by IR and NMR spectral studies. The chelating property of the AHDNS-F resin towards divalent metal ions was studied as a function of pH and in the presence of electrolyte. The metal uptake properties of the resin were determined by using an atomic absorption spectrophotometer. This procedure was validated for recovery of divalent metal ions from seawater samples. The recoveries of cadmium, cobalt, copper, manganese, lead, and zinc were above 92% under the optimum preconcentration conditions. The LOD was <0.73 μg/L and the RSDs were <2%. Thus, the AHDNS-F resin can be widely used as a solid sorbent for the preconcentration of trace metals at ppm levels in seawater samples.

  12. Global analysis of myocardial peptides containing cysteines with irreversible sulfinic and sulfonic acid post-translational modifications.

    PubMed

    Paulech, Jana; Liddy, Kiersten A; Engholm-Keller, Kasper; White, Melanie Y; Cordwell, Stuart J

    2015-03-01

    Cysteine (Cys) oxidation is a crucial post-translational modification (PTM) associated with redox signaling and oxidative stress. As Cys is highly reactive to oxidants it forms a range of post-translational modifications, some that are biologically reversible (e.g. disulfides, Cys sulfenic acid) and others (Cys sulfinic [Cys-SO2H] and sulfonic [Cys-SO3H] acids) that are considered "irreversible." We developed an enrichment method to isolate Cys-SO2H/SO3H-containing peptides from complex tissue lysates that is compatible with tandem mass spectrometry (MS/MS). The acidity of these post-translational modification (pKa Cys-SO3H < 0) creates a unique charge distribution when localized on tryptic peptides at acidic pH that can be utilized for their purification. The method is based on electrostatic repulsion of Cys-SO2H/SO3H-containing peptides from cationic resins (i.e. "negative" selection) followed by "positive" selection using hydrophilic interaction liquid chromatography. Modification of strong cation exchange protocols decreased the complexity of initial flowthrough fractions by allowing for hydrophobic retention of neutral peptides. Coupling of strong cation exchange and hydrophilic interaction liquid chromatography allowed for increased enrichment of Cys-SO2H/SO3H (up to 80%) from other modified peptides. We identified 181 Cys-SO2H/SO3H sites from rat myocardial tissue subjected to physiologically relevant concentrations of H2O2 (<100 μm) or to ischemia/reperfusion (I/R) injury via Langendorff perfusion. I/R significantly increased Cys-SO2H/SO3H-modified peptides from proteins involved in energy utilization and contractility, as well as those involved in oxidative damage and repair.

  13. Aldicarb sulfone

    Integrated Risk Information System (IRIS)

    Aldicarb sulfone ; CASRN 1646 - 88 - 4 Human health assessment information on a chemical substance is included in the IRIS database only after a comprehensive review of toxicity data , as outlined in the IRIS assessment development process . Sections I ( Health Hazard Assessments for Noncarcinogenic

  14. Luminescent hybrid lanthanide sulfates and lanthanide sulfonate-carboxylates with 1,10-phenanthroline involving in-situ oxidation of 2-mercaptonbenzoic acid

    SciTech Connect

    Zhong, Jie-Cen; Wan, Fang; Sun, Yan-Qiong; Chen, Yi-Ping

    2015-01-15

    A series of lanthanide sulfates and lanthanide sulfonate-carboxylates, [Ln{sub 2}(phen){sub 2}(SO{sub 4}){sub 3}(H{sub 2}O){sub 2}]{sub n} (I:Ln=Nd(1a), Sm(1b), Eu(1c), phen=1,10-phenanthroline) and [Ln(phen)(2-SBA)(BZA)]{sub n} (II: Ln=Sm(2a), Eu(2b), Dy(2c), 2-SBA=2-sulfobenzoate, BZA=benzoate) have been hydrothermally synthesized from lanthanide oxide, 2-mercaptonbenzoic acid with phen as auxiliary ligand and characterized by single-crystal X-ray diffraction, elemental analyses, IR spectra, TG analyses and luminescence spectroscopy. Interestingly, SO{sub 4}{sup 2−} anions in I came from the in situ deep oxidation of thiol groups of 2-mercaptonbenzoic acid while 2-sulfobenzoate and benzoate ligands in II from the middle oxidation and desulfuration reactions of 2-mercaptonbenzoic acid. Compounds I are organic–inorganic hybrid lanthanide sulfates, which have rare one-dimensional column-like structures. Complexes II are binuclear lanthanide sulfonate-carboxylates with 2-sulfobenzoate and benzoate as bridges and 1,10-phenanthroline as terminal. Photoluminescence studies reveal that complexes I and II exhibit strong lanthanide characteristic emission bands in the solid state at room temperature. - Graphical abstract: Lanthanide sulfates and lanthanide sulfonate-carboxylates have been hydrothermally synthesized. Interestingly, sulfate anions, 2-sulfobenzoate and benzoate ligands came from the in situ oxidation and desulfuration reactions of 2-mercaptonbenzoic acid. - Highlights: • In situ oxidation and desulfuration reactions of 2-mercaptonbenzoic acid. • The organic–inorganic hybrid lanthanide sulfates with one-dimensional column-like structure. • The dinuclear lanthanide sulfonate-carboxylates. • The emission spectra exhibit the characteristic transition of {sup 5}D{sub 0}→{sup 7}F{sub J} (J=0–4) of the Eu(III)

  15. Iron oxide nanoparticles immobilized to mesoporous NH2-SiO2 spheres by sulfonic acid functionalization as highly efficient catalysts.

    PubMed

    Zhang, Guoliang; Qin, Lei; Wu, Yujiao; Xu, Zehai; Guo, Xinwen

    2015-01-21

    A novel SiO2 nanosphere was synthesized by the post-synthetic grafting of sulfonic acid groups on to anionic-surfactant-templated mesoporous NH2-silica (AMAS). This one-pot post-functionalization strategy allowed more metal ions to be homogeneously anchored into the channel of the meso-SiO2 nanosphere. After hydrothermal and calcination treatment, the in situ growth of α-Fe2O3 on sulfonic acid-functionalized mesoporous NH2-SiO2 (SA-AMAS) exhibited much higher activity in the visible-light assisted Fenton reaction at neutral pH than that for AMAS or meso-SiO2 nanospheres. By analysis, the grafted sulfonic acid group can not only enhance the acid strength of the catalyst, but can also bring more orbital-overlapping between the active sites (Fe(II) and Fe(III)) and the surface peroxide species, to facilitate the decomposition of H2O2 to hydroxyl radical. The present results provide opportunities for developing heterogeneous catalysts with high-performance in the field of green chemistry and environmental remediation.

  16. Efficacy of two acidified chlorite postmilking teat disinfectants with sodium dodecylbenzene sulfonic acid on prevention of contagious mastitis using an experimental challenge protocol.

    PubMed

    Oura, L Y; Fox, L K; Warf, C C; Kempt, G K

    2002-01-01

    Two acidified sodium chlorite postmilking teat disinfectants were evaluated for efficacy against Staphylococcus aureus and Streptococcus agalactiae by using National Mastitis Council experimental challenge procedures. The effect of these teat dips on teat skin and teat end condition was also determined. Both dips contained 0.32% sodium chlorite, 1.32% lactic, and 2.5% glycerin. Dips differed in the amount of sodium dodecylbenzene sulfonic acid (0.53 or 0.27%) added as a surfactant. Both dips significantly reduced new intramammary infection (IMI) rates compared with undipped controls. The dip containing 0.53% dodecylbenzene sulfonic acid reduced new IMI by Staph. aureus by 72% and Strep. agalactiae by 75%. The dip containing 0.27% dodecylbenzene sulfonic acid reduced new IMI by Staph. aureus by 100% and by Strep. agalactiae by 88%. Changes in teat skin and teat end condition for treatment and control groups varied in parallel over time. Teats treated with either teat dip had higher mean teat skin and teat end scores than control teats at some weeks. However, teat skin and teat end condition did not tend to change from the start to the completion of the trial. Application of the two new postmilking teat dips was effective in reducing new IMI from contagious mastitis pathogens. (Key words: teat dip, contagious mastitis, chlorous acid) PMID:11860118

  17. Process for sulfonation of gas oils

    SciTech Connect

    Berg, R. C.

    1980-12-23

    A process for the production of oil-soluble sulfonates from a gas oil such as a vacuum gas oil. Water-soluble sulfonic acids are separated from the effluent of the sulfonation zone, and the remainder of the effluent is then passed through a saponification zone to produce oil-soluble sulfonates which are then recovered. The remaining hydrocarbons are fractionated, with the resultant heavy fraction being passed through a reforming zone to produce additional aromatics which are then recycled to the sulfonation zone.

  18. Palladium-Catalyzed Synthesis of (Hetero)Aryl Alkyl Sulfones from (Hetero)Aryl Boronic Acids, Unactivated Alkyl Halides, and Potassium Metabisulfite.

    PubMed

    Shavnya, Andre; Hesp, Kevin D; Mascitti, Vincent; Smith, Aaron C

    2015-11-01

    A palladium-catalyzed one-step synthesis of (hetero)aryl alkyl sulfones from (hetero)arylboronic acids, potassium metabisulfite, and unactivated or activated alkylhalides is described. This transformation is of broad scope, occurs under mild conditions, and employs readily available reactants. A stoichiometric experiment has led to the isolation of a catalytically active dimeric palladium sulfinate complex, which was characterized by X-ray diffraction analysis.

  19. An Evaluation of a Teat Dip with Dodecyl Benzene Sulfonic Acid in Preventing Bovine Mammary Gland Infection from Experimental Exposure to Streptococcus agalactiae and Staphylococcus aureus

    PubMed Central

    Barnum, D. A.; Johnson, R. E.; Brooks, B. W.

    1982-01-01

    The effectiveness of a teat dip with dodecyl benzene sulfonic acid (1.94%) for the prevention of intramammary infections was determined in cows experimentally challenged with Streptococcus agalactiae and Staphylococcus aureus. The infection rates with Streptococcus agalactiae and Staphylococcus aureus were 62.5% and 75% in undipped quarters, 12.5% and 21.5% in dipped quarters with a reduction rate of 80% and 71% respectively. The significance of some findings in relation to mastitis control are discussed. PMID:17422110

  20. A new sulfonic acid derivative, (Z)-4-methylundeca-1,9-diene-6-sulfonic acid, isolated from the cold water sea urchin inhibits inflammatory responses through JNK/p38 MAPK and NF-κB inactivation in RAW 264.7.

    PubMed

    Lee, Dong-Sung; Cui, Xiang; Ko, Wonmin; Kim, Kyoung-Su; Kim, Il Chan; Yim, Joung Han; An, Ren-Bo; Kim, Youn-Chul; Oh, Hyuncheol

    2014-08-01

    In this study, we isolated a new sulfonic acid derivative, (Z)-4-methylundeca-1,9-diene-6-sulfonic acid (1), from the sea urchin collected from the Sea of Okhotsk. We established the structure of this new compound by analysis of NMR and HRMS data, along with comparison of the data with those of the related compounds reported in the literature. In addition, we investigated its anti-inflammatory effects in LPS-stimulated RAW264.7 macrophages. Compound 1 inhibited the production of NO, iNOS, PGE2, and COX-2, and it also suppressed the production of pro-inflammatory cytokines, such as TNF-α and IL-1β. It inhibited the translocation of the NF-κB subunit p65 into the nucleus by interrupting the phosphorylation and degradation of IκB-α. In addition, compound 1 significantly decreased the phosphorylation of JNK and p38 in LPS-stimulated RAW264.7 macrophages, suggesting that suppression of the inflammation process by compound 1 was mediated through the MAPK pathway. Taken together, this study showed that the anti-inflammatory effects of a new sulfonic acid derivative, (Z)-4-methylundeca-1,9-diene-6-sulfonic acid were mediated through the inhibition of NF-κB and JNK/p38 MAPK signaling pathways.

  1. Temporal trends of perfluoroalkane sulfonic acids and their sulfonamide-based precursors in herring from the Swedish west coast 1991-2011 including isomer-specific considerations.

    PubMed

    Ullah, Shahid; Huber, Sandra; Bignert, Anders; Berger, Urs

    2014-04-01

    A method was developed for simultaneous analysis of perfluoroalkane sulfonic acids (PFSAs) and their sulfonamide-based precursors (perfluoroalkane sulfonamidoacetic acids (FASAAs), sulfonamides (FASAs), and sulfonamidoethanols (FASEs)) in fish muscle. Extraction was performed with acetonitrile followed by a clean-up and fractionation step and instrumental analysis by UPLC/MS/MS and GC/MS. Time trends of PFSAs and their precursors in herring muscle samples originating from the Kattegat at the west coast of Sweden were investigated covering the years 1991-2011. The following analytes were detected, all with decreasing or unchanged trends between 1991 and 2011: Perfluorobutane sulfonic acid (PFBS, below the method detection limit (sulfonic acid (PFHxS, 9-38pg/g), perfluorooctane sulfonic acid (PFOS, 240-930pg/g), perfluorodecane sulfonic acid (PFDS, acid (MeFOSAA and EtFOSAA, 2-39 and 2-31pg/g, respectively) and perfluorooctane sulfonamide (FOSA, 78-920pg/g). The highest concentrations were found for PFOS and FOSA around the turn of the century. Shorter disappearance half-lives were observed for precursors compared to PFSAs. Assuming that these trend differences are representative for fish consumed by the general Swedish population, this observation suggests that the relative contribution of precursors to total human exposure to PFOS via fish intake has decreased in Sweden over the study period. PFOS precursors in fish may have constituted a significant indirect exposure pathway for PFOS in the 1990s. Isomer-specific analysis of PFOS and FOSA revealed <10% relative contributions of branched isomers to total PFOS and total FOSA. Furthermore, the percentage branched isomers decreased over time for both compounds. These findings are contrary to patterns and temporal trends of PFOS isomers commonly found in human serum. In combination with literature data on isomer patterns

  2. Spectrophotometric determination of procaine hydrochloride in pharmaceutical products using 1,2-naphthoquinone-4-sulfonic acid as the chromogenic reagent

    NASA Astrophysics Data System (ADS)

    Xu, Li Xiao; Shen, Yun Xiu; Wang, Huai You; Jiang, Ji Gang; Xiao, Yan

    2003-11-01

    Spectrophotometric determination of procaine hydrochloride is described. The procaine hydrochloride reacts with 1,2-naphthoquinone-4-sulfonic acid in pH 3.60 buffer solution to form a salmon pink compound, and its maximum absorption wavelength is at 484 nm, ɛ 484=5.22×10 3.The absorbance for procaine hydrochloride from 0.30 to 100 μg ml -1 obeys Beer's law. The linear regression equation of the calibration graph is C=19.23A-0.03, with a linear regression correlative coefficient is 0.9996, the detection limit is 0.28 μg ml -1; recovery is from 98.0 to 105.2%. Effects of pH, surfactant, organic solvent, foreign ions, and standing time on the determination of procaine hydrochloride have been examined. This method is rapid and simple, and can be used for the determination of procaine hydrochloride in injection solution of procaine hydrochloride. The results obtained by this method agreed with those by the official method (dead-stop titration).

  3. Concentrating versus non-concentrating reactors for solar photocatalytic degradation of p-nitrotoluene-o-sulfonic acid.

    PubMed

    Parra, S; Malato, S; Blanco, J; Péringer, P; Pulgari, C

    2001-01-01

    The photocatalytic oxidation of the non-biodegradable p-nitrotoluene-o-sulfonic acid (p-NTS) in homogeneous (photo-Fenton reactions) and heterogeneous (with TiO2) solutions has been studied at a pilot-scale under solar irradiation at the Plataforma Solar de Almeria (PSA). In this study two different reactors were tested: a medium concentrating radiation system (Heliomans, HM) and a non-concentrating radiation system (CPC). Their advantages and disadvantages for p-NTS degradation have been compared and discussed. The degradation rates obtained in the CPC collector are around three times more efficient than in the HM collectors. However, in both systems, 100% of the initial concentration of p-NTS was removed. Kinetic experiments were performed in both systems using TiO2 suspensions. During the photodegradation, the disappearance of p-NTS was followed by HPLC, the mineralization of the solution by the TOC technique, the evolution of NO3-, NO2-, and SO4(2-) concentration by ionic chromatography, the toxicity by the standard Microtox test, and the biodegradability by BOD5 and COD measurements. The obtained results demonstrated the utility of the heterogeneous catalysis (using TiO2 as catalyst) as a pretreatment method that can be followed by a biological process.

  4. Benzocaine complexation with p-sulfonic acid calix[n]arene: experimental ((1) H-NMR) and theoretical approaches.

    PubMed

    Arantes, Lucas M; Varejão, Eduardo V V; Pelizzaro-Rocha, Karin J; Cereda, Cíntia M S; de Paula, Eneida; Lourenço, Maicon P; Duarte, Hélio A; Fernandes, Sergio A

    2014-05-01

    The aim of this work was to study the interaction between the local anesthetic benzocaine and p-sulfonic acid calix[n]arenes using NMR and theoretical calculations and to assess the effects of complexation on cytotoxicity of benzocaine. The architectures of the complexes were proposed according to (1) H NMR data (Job plot, binding constants, and ROESY) indicating details on the insertion of benzocaine in the cavity of the calix[n]arenes. The proposed inclusion compounds were optimized using the PM3 semiempirical method, and the electronic plus nuclear repulsion energy contributions were performed at the DFT level using the PBE exchange/correlation functional and the 6-311G(d) basis set. The remarkable agreement between experimental and theoretical approaches adds support to their use in the structural characterization of the inclusion complexes. In vitro cytotoxic tests showed that complexation intensifies the intrinsic toxicity of benzocaine, possibly by increasing the water solubility of the anesthetic and favoring its partitioning inside of biomembranes.

  5. Effect of diameter of cellulosic nano-fiber on conductivity of poly(aniline sulfonic acid) composites

    NASA Astrophysics Data System (ADS)

    Konagaya, S.; Shimizu, K.; Terada, M.; Yamada, T.; Sanada, K.; Numata, O.; Sugino, G.

    2014-05-01

    The authors have been studying the effect of cellulosic nano-fiber (CeNF) with the diameter of less than 30 nm and the length of a few micrometers on the conductivity of the conductive polymer composites (PAS/PEs/CeNF) prepared from poly(aniline sulfonic acid) (PAS), a water dispersible polyester (PEs) and CeNF and confirmed that CeNF was effective for the enhancement of their conductivity, and that the conductivity enhancement was attributable to the strong adsorbing ability of CeNF to PAS molecules. Thiner CeNF has so larger surface area that it is expected to adsorb more PAS molecules on its surface, which possibly lead to further conductivity enhancement of the composites. The authors prepared thinner CeNF with the size of 16 nm by the use of ultrasonic dispersing machine. It was clarified that the thinner CeNF had a higher adsorbing ability to PAS molecules and a larger effect on the conductivity enhancement of PAS/PEs/CeNF composites.

  6. Evaluation of single and joint toxicity of perfluorooctane sulfonate, perfluorooctanoic acid, and copper to Carassius auratus using oxidative stress biomarkers.

    PubMed

    Feng, Mingbao; He, Qun; Meng, Lingjun; Zhang, Xiaoling; Sun, Ping; Wang, Zunyao

    2015-04-01

    Perfluorooctane sulfonate, perfluorooctanoic acid, and copper have been recently regarded as ubiquitous environmental contaminants in aquatic ecosystems worldwide. However, data on their possible combined toxic effects on aquatic organisms are still lacking. In this study, a systematic experimental approach was used to assess the impacts of these chemicals and their mixtures on hepatic antioxidant status of Carassius auratus after 4 days. Oxidative stress was apparently observed for joint exposure by determining biochemical parameters (superoxide dismutase, catalase, glutathione peroxidase, reduced glutathione, and malondialdehyde). The integrated biomarker response index was calculated to rank the toxicity order, from which the synergistic effect was tentatively proposed for joint-toxicity action. In addition, these treatments significantly altered trace element homeostasis in different fish tissues, and the concentration distribution of these test chemicals was also measured. Taken together, these results provided some valuable toxicological data on the joint effects of perfluorinated compounds and heavy metals on aquatic species, which can facilitate further understanding on the potential risks of other coexisting pollutants in the natural aquatic environment. PMID:25697679

  7. Demographic, Reproductive, and Dietary Determinants of Perfluorooctane Sulfonic (PFOS) and Perfluorooctanoic Acid (PFOA) Concentrations in Human Colostrum.

    PubMed

    Jusko, Todd A; Oktapodas, Marina; Palkovičová Murinová, L'ubica; Babinská, Katarina; Babjaková, Jana; Verner, Marc-André; DeWitt, Jamie C; Thevenet-Morrison, Kelly; Čonka, Kamil; Drobná, Beata; Chovancová, Jana; Thurston, Sally W; Lawrence, B Paige; Dozier, Ann M; Järvinen, Kirsi M; Patayová, Henrieta; Trnovec, Tomáš; Legler, Juliette; Hertz-Picciotto, Irva; Lamoree, Marja H

    2016-07-01

    To determine demographic, reproductive, and maternal dietary factors that predict perfluoroalkyl substance (PFAS) concentrations in breast milk, we measured perfluorooctane sulfonic (PFOS) and perfluorooctanoic acid (PFOA) concentrations, using liquid chromatography-mass spectrometry, in 184 colostrum samples collected from women participating in a cohort study in Eastern Slovakia between 2002 and 2004. During their hospital delivery stay, mothers completed a food frequency questionnaire, and demographic and reproductive data were also collected. PFOS and PFOA predictors were identified by optimizing multiple linear regression models using Akaike's information criterion (AIC). The geometric mean concentration in colostrum was 35.3 pg/mL for PFOS and 32.8 pg/mL for PFOA. In multivariable models, parous women had 40% lower PFOS (95% CI: -56 to -17%) and 40% lower PFOA (95% CI: -54 to -23%) concentrations compared with nulliparous women. Moreover, fresh/frozen fish consumption, longer birth intervals, and Slovak ethnicity were associated with higher PFOS and PFOA concentrations in colostrum. These results will help guide the design of future epidemiologic studies examining milk PFAS concentrations in relation to health end points in children.

  8. CD4+ T cell responses in Balb/c mice with food allergy induced by trinitrobenzene sulfonic acid and ovalbumin.

    PubMed

    Sun, Chen-Yi; Bai, Jie; Hu, Tian-Yong; Cheng, Bao-Hui; Ma, Li; Fan, Xiao-Qin; Yang, Ping-Chang; Zheng, Peng-Yuan; Liu, Zhi-Qiang

    2016-06-01

    The rapid increase in atopic diseases is potentially linked to increased hapten exposure, however, the role of haptens in the pathogenesis of food allergy remains unknown. Further studies are required to elucidate the cluster of differentiation 4 positive (CD4+) T cell response to food allergy induced by haptens. Dendritic cells were primed by trinitrobenzene sulfonic acid (TNBS) as a hapten or ovalbumin (OVA) as a model antigen, in a cell culture model. BALB/c mice were sensitized using TNBS and/or OVA. Intestinal Th1/Th2 cell and ovalbumin specific CD4+ T cells proliferation, intestinal cytokines (interleukin‑4 and interferon‑γ) in CD4+ T cells were evaluated. TNBS increased the expression of T cell immunoglobulin and mucin domain‑4 and tumor necrosis factor ligand superfamily member 4 in dendritic cells. Skewed Th2 cell polarization, extensive expression of interleukin‑4, reduced expression of interferon‑γ and forkhead box protein P3 were elicited following concomitant exposure to TNBS and OVA, with reduced regulatory T cells in the mouse intestinal mucosa, whereas a Th1 response was detected when challenged by TNBS or OVA alone. This data suggests that TNBS, as a hapten, combined with food antigens may lead to a Th2 cell response in the intestinal mucosa.

  9. Inventory development for perfluorooctane sulfonic acid (PFOS) in Turkey: challenges to control chemicals in articles and products.

    PubMed

    Korucu, M Kemal; Gedik, Kadir; Weber, Roland; Karademir, Aykan; Kurt-Karakus, Perihan Binnur

    2015-10-01

    Perfluorooctane sulfonic acid (PFOS) and related substances have been listed as persistent organic pollutants (POPs) in the Stockholm Convention. Countries which have ratified the Convention need to take appropriate actions to control PFOS use and release. This study compiles and enhances the findings of the first inventory of PFOS and related substances use in Turkey conducted within the frame of the Stockholm Convention National Implementation Plan (NIP) update. The specific Harmonized Commodity Description and Coding System (Harmonized System (HS)) codes of imported and exported goods that possibly contain PFOS and 165 of Chemical Abstracts Service (CAS) numbers of PFOS-related substances were assessed for acquiring information from customs and other authorities. However, with the current approaches available, no useful information could be compiled since HS codes are not specific enough and CAS numbers are not used by customs. Furthermore, the cut-off volume in chemical databases in Turkey and the reporting limit in the HS system (0.1 %) are too high for controlling PFOS. The attempt of modeling imported volumes by a Monte Carlo simulation did not also result in a satisfactory estimate, giving an upper-bound estimate above the global production volumes. The replies to questionnaires were not satisfactory, highlighting that an elaborated approach is needed in the communication with potentially PFOS-using stakeholders. The experience of the challenges of gathering information on PFOS in articles and products revealed the gaps of controlling highly hazardous substances in products and articles and the need of improvements.

  10. Modeling of boldine alkaloid adsorption onto pure and propyl-sulfonic acid-modified mesoporous silicas. A comparative study.

    PubMed

    Geszke-Moritz, Małgorzata; Moritz, Michał

    2016-12-01

    The present study deals with the adsorption of boldine onto pure and propyl-sulfonic acid-functionalized SBA-15, SBA-16 and mesocellular foam (MCF) materials. Siliceous adsorbents were characterized by nitrogen sorption analysis, transmission electron microscopy (TEM), scanning electron microscopy (SEM), Fourier-transform infrared (FT-IR) spectroscopy and thermogravimetric analysis. The equilibrium adsorption data were analyzed using the Langmuir, Freundlich, Redlich-Peterson, and Temkin isotherms. Moreover, the Dubinin-Radushkevich and Dubinin-Astakhov isotherm models based on the Polanyi adsorption potential were employed. The latter was calculated using two alternative formulas including solubility-normalized (S-model) and empirical C-model. In order to find the best-fit isotherm, both linear regression and nonlinear fitting analysis were carried out. The Dubinin-Astakhov (S-model) isotherm revealed the best fit to the experimental points for adsorption of boldine onto pure mesoporous materials using both linear and nonlinear fitting analysis. Meanwhile, the process of boldine sorption onto modified silicas was described the best by the Langmuir and Temkin isotherms using linear regression and nonlinear fitting analysis, respectively. The values of adsorption energy (below 8kJ/mol) indicate the physical nature of boldine adsorption onto unmodified silicas whereas the ionic interactions seem to be the main force of alkaloid adsorption onto functionalized sorbents (energy of adsorption above 8kJ/mol).

  11. A novel voltammetric sensor for citalopram based on multiwall carbon nanotube/(poly(p-aminobenzene sulfonic acid)/β-cyclodextrin).

    PubMed

    Gholivand, Mohammad-Bagher; Akbari, Arezoo

    2016-05-01

    Multi-walled carbon nanotube (MWCNTS) coated with poly p-aminobenzene sulfonic acid/β-cyclodextrin (p-ABSA/β-CD) film was used as an effective strategy for modification of the surface of glassy carbon electrode (GCE). Electrochemical study and determination of citalopram (CT) were investigated at the p (p-ABSA)/β-CD/MWCNT/GC using cyclic and differential pulse anodic stripping voltammetric techniques. The results indicate that the p (p-ABSA)/β-CD/MWCNT/GC significantly enhanced the oxidation peak current of CT. The modified electrode was characterized by electrochemical impedance spectroscopy (EIS), scanning electron microscopy(SEM) and cyclic voltammetry (CV).The fabricated electrochemical sensor exhibits a fast and reversible linear response toward CT within the concentration ranges of 90 nM-1 μM, 1-11 μM and 11-100 μM with correlation coefficients greater than 0.99 and detection limit of 44 nM. The resulting functionalized polymer film features interesting electrochemical properties such good recovery, reproducibility and selectivity toward CT. The applicability of the proposed sensor was tested by determination of CT in pharmaceutical combinations and human body fluids.

  12. Denaturant effects on HbGp hemoglobin as monitored by 8-anilino-1-naphtalene-sulfonic acid (ANS) probe.

    PubMed

    Barros, Ana E B; Carvalho, Francisco A O; Alves, Fernanda R; Carvalho, José W P; Tabak, Marcel

    2015-03-01

    Glossoscolex paulistus extracellular hemoglobin (HbGp) stability has been monitored in the presence of denaturant agents. 8-Anilino-1-naphtalene-sulfonic acid (ANS) was used, and spectroscopic and hydrodynamic studies were developed. Dodecyltrimethylammonium bromide (DTAB) induces an increase in ANS fluorescence emission intensity, with maximum emission wavelength blue-shifted from 517 to 493 nm. Two transitions are noticed, at 2.50 and 9.50 mmol/L of DTAB, assigned to ANS interaction with pre-micellar aggregates and micelles, respectively. In oxy-HbGp, ANS binds to protein sites less exposed to solvent, as compared to DTAB micelles. In DTAB-HbGp-ANS ternary system, at pH 7.0, protein aggregation, oligomeric dissociation and unfolding were observed, while, at pH 5.0, aggregation is absent. DTAB induced unfolding process displays two transitions, one due to oligomeric dissociation and the second one, probably, to the denaturation of dissociated subunits. Moreover, guanidine hydrochloride and urea concentrations above 1.5 and 4.0 mol/L, respectively, induce the full HbGp denaturation, with reduction of ANS-bound oxy-HbGp hydrophobic patches, as noticed by fluorescence quenching up to 1.0 and 5.0 mol/L of denaturants. Our results show clearly the differences in probe sensitivity to the surfactant, in the presence and absence of protein, and new insights into the denaturant effects on HbGp unfolding.

  13. Bioavailability of perfluorooctane sulfonate (PFOS) and perfluorooctanoic acid (PFOA) in biosolids-amended soils to earthworms (Eisenia fetida).

    PubMed

    Wen, Bei; Zhang, Hongna; Li, Longfei; Hu, Xiaoyu; Liu, Yu; Shan, Xiao-quan; Zhang, Shuzhen

    2015-01-01

    The bioavailability of perfluorooctane sulfonate (PFOS) and perfluorooctanoic acid (PFOA) in seven biosolids-amended soils without any additionally spiking to earthworms (Eisenia fetida) was studied. The uptake and elimination kinetics of PFOS and PFOA fit a one-compartment first-order kinetic model. PFOS displayed higher uptake and lower elimination rate coefficients, and longer time to reach steady-state (t(ss)) than those of PFOA. The bioaccumulation factors (BAFs) of PFOS and PFOA ranged 1.54–4.12 and 0.52–1.34 g(soil) g(worm)(−1), respectively. The BAFs and tss decreased with increasing concentrations of PFOS and PFOA in soils. Stepwise multiple regression analysis was used to elucidate the bioavailability of PFOS and PFOA. The results showed that the total concentrations of PFOS and PFOA, and organic matter (OM) contents in soils explained 87.2% and 91.3% of the variation in bioavailable PFOS and PFOA, respectively. PFOS and PFOA concentrations exhibited positive influence and OM contents showed the negative influence on the accumulation of PFOS and PFOA in earthworms. Soil pH and clay contents played relatively unimportant role in PFOS and PFOA bioavailability.

  14. Demographic, Reproductive, and Dietary Determinants of Perfluorooctane Sulfonic (PFOS) and Perfluorooctanoic Acid (PFOA) Concentrations in Human Colostrum.

    PubMed

    Jusko, Todd A; Oktapodas, Marina; Palkovičová Murinová, L'ubica; Babinská, Katarina; Babjaková, Jana; Verner, Marc-André; DeWitt, Jamie C; Thevenet-Morrison, Kelly; Čonka, Kamil; Drobná, Beata; Chovancová, Jana; Thurston, Sally W; Lawrence, B Paige; Dozier, Ann M; Järvinen, Kirsi M; Patayová, Henrieta; Trnovec, Tomáš; Legler, Juliette; Hertz-Picciotto, Irva; Lamoree, Marja H

    2016-07-01

    To determine demographic, reproductive, and maternal dietary factors that predict perfluoroalkyl substance (PFAS) concentrations in breast milk, we measured perfluorooctane sulfonic (PFOS) and perfluorooctanoic acid (PFOA) concentrations, using liquid chromatography-mass spectrometry, in 184 colostrum samples collected from women participating in a cohort study in Eastern Slovakia between 2002 and 2004. During their hospital delivery stay, mothers completed a food frequency questionnaire, and demographic and reproductive data were also collected. PFOS and PFOA predictors were identified by optimizing multiple linear regression models using Akaike's information criterion (AIC). The geometric mean concentration in colostrum was 35.3 pg/mL for PFOS and 32.8 pg/mL for PFOA. In multivariable models, parous women had 40% lower PFOS (95% CI: -56 to -17%) and 40% lower PFOA (95% CI: -54 to -23%) concentrations compared with nulliparous women. Moreover, fresh/frozen fish consumption, longer birth intervals, and Slovak ethnicity were associated with higher PFOS and PFOA concentrations in colostrum. These results will help guide the design of future epidemiologic studies examining milk PFAS concentrations in relation to health end points in children. PMID:27244128

  15. Modeling of boldine alkaloid adsorption onto pure and propyl-sulfonic acid-modified mesoporous silicas. A comparative study.

    PubMed

    Geszke-Moritz, Małgorzata; Moritz, Michał

    2016-12-01

    The present study deals with the adsorption of boldine onto pure and propyl-sulfonic acid-functionalized SBA-15, SBA-16 and mesocellular foam (MCF) materials. Siliceous adsorbents were characterized by nitrogen sorption analysis, transmission electron microscopy (TEM), scanning electron microscopy (SEM), Fourier-transform infrared (FT-IR) spectroscopy and thermogravimetric analysis. The equilibrium adsorption data were analyzed using the Langmuir, Freundlich, Redlich-Peterson, and Temkin isotherms. Moreover, the Dubinin-Radushkevich and Dubinin-Astakhov isotherm models based on the Polanyi adsorption potential were employed. The latter was calculated using two alternative formulas including solubility-normalized (S-model) and empirical C-model. In order to find the best-fit isotherm, both linear regression and nonlinear fitting analysis were carried out. The Dubinin-Astakhov (S-model) isotherm revealed the best fit to the experimental points for adsorption of boldine onto pure mesoporous materials using both linear and nonlinear fitting analysis. Meanwhile, the process of boldine sorption onto modified silicas was described the best by the Langmuir and Temkin isotherms using linear regression and nonlinear fitting analysis, respectively. The values of adsorption energy (below 8kJ/mol) indicate the physical nature of boldine adsorption onto unmodified silicas whereas the ionic interactions seem to be the main force of alkaloid adsorption onto functionalized sorbents (energy of adsorption above 8kJ/mol). PMID:27612776

  16. Effects of Temperature and Humidity History on Brittleness of α-Sulfonated Fatty Acid Methyl Ester Salt Crystals.

    PubMed

    Watanabe, Hideaki; Morigaki, Atsunori; Kaneko, Yukihiro; Tobori, Norio; Aramaki, Kenji

    2016-01-01

    α-Sulfonated fatty acid methyl ester salts (MES), which were made from vegetable sources, are attractive candidates for eco-friendly washing detergents because they have various special features like excellent detergency, favorable biodegradability, and high stability against enzymes. To overcome some disadvantages of powder-type detergents like caking, sorting, and dusting, we studied how temperature and humidity history, as a model for long-term storage conditions, can affect crystalline structures and reduce the brittleness of MES powder. We characterized the crystalline structure of MES grains using small-angle X-ray scattering, wide-angle X-ray scattering, differential scanning calorimetry, and Fourier transform infrared spectroscopy measurements and determined the yield values, which measure the brittleness of MES grains, in shear stress using dynamic viscoelasticity measurements. This study confirmed that MES crystals form three pseudo-polymorphs via thermal or humidity conditioning: metastable crystals (αsubcell), anhydrous crystals (β subcell), and dihydrate crystals (β' subcell). Further, we found that the yield value increases upon phase transition from the β subcell to the β' subcell and from the β' subcell to the αsubcell. Therefore, controlling the thermal and humidity conditioning of MES grains is an effective way to decrease the brittleness of MES powders and can be used to overcome the above mentioned disadvantages of powder-type detergents in the absence of co-surfactants.

  17. Bioavailability of perfluorooctane sulfonate (PFOS) and perfluorooctanoic acid (PFOA) in biosolids-amended soils to earthworms (Eisenia fetida).

    PubMed

    Wen, Bei; Zhang, Hongna; Li, Longfei; Hu, Xiaoyu; Liu, Yu; Shan, Xiao-quan; Zhang, Shuzhen

    2015-01-01

    The bioavailability of perfluorooctane sulfonate (PFOS) and perfluorooctanoic acid (PFOA) in seven biosolids-amended soils without any additionally spiking to earthworms (Eisenia fetida) was studied. The uptake and elimination kinetics of PFOS and PFOA fit a one-compartment first-order kinetic model. PFOS displayed higher uptake and lower elimination rate coefficients, and longer time to reach steady-state (t(ss)) than those of PFOA. The bioaccumulation factors (BAFs) of PFOS and PFOA ranged 1.54–4.12 and 0.52–1.34 g(soil) g(worm)(−1), respectively. The BAFs and tss decreased with increasing concentrations of PFOS and PFOA in soils. Stepwise multiple regression analysis was used to elucidate the bioavailability of PFOS and PFOA. The results showed that the total concentrations of PFOS and PFOA, and organic matter (OM) contents in soils explained 87.2% and 91.3% of the variation in bioavailable PFOS and PFOA, respectively. PFOS and PFOA concentrations exhibited positive influence and OM contents showed the negative influence on the accumulation of PFOS and PFOA in earthworms. Soil pH and clay contents played relatively unimportant role in PFOS and PFOA bioavailability. PMID:25439283

  18. A novel voltammetric sensor for citalopram based on multiwall carbon nanotube/(poly(p-aminobenzene sulfonic acid)/β-cyclodextrin).

    PubMed

    Gholivand, Mohammad-Bagher; Akbari, Arezoo

    2016-05-01

    Multi-walled carbon nanotube (MWCNTS) coated with poly p-aminobenzene sulfonic acid/β-cyclodextrin (p-ABSA/β-CD) film was used as an effective strategy for modification of the surface of glassy carbon electrode (GCE). Electrochemical study and determination of citalopram (CT) were investigated at the p (p-ABSA)/β-CD/MWCNT/GC using cyclic and differential pulse anodic stripping voltammetric techniques. The results indicate that the p (p-ABSA)/β-CD/MWCNT/GC significantly enhanced the oxidation peak current of CT. The modified electrode was characterized by electrochemical impedance spectroscopy (EIS), scanning electron microscopy(SEM) and cyclic voltammetry (CV).The fabricated electrochemical sensor exhibits a fast and reversible linear response toward CT within the concentration ranges of 90 nM-1 μM, 1-11 μM and 11-100 μM with correlation coefficients greater than 0.99 and detection limit of 44 nM. The resulting functionalized polymer film features interesting electrochemical properties such good recovery, reproducibility and selectivity toward CT. The applicability of the proposed sensor was tested by determination of CT in pharmaceutical combinations and human body fluids. PMID:26952450

  19. Preparation of organic-inorganic hybrid silica monolith with octyl and sulfonic acid groups for capillary electrochromatograhpy and application in determination of theophylline and caffeine in beverage.

    PubMed

    Chen, Ming-Luan; Zheng, Ming-Ming; Feng, Yu-Qi

    2010-05-21

    An organic-inorganic hybrid silica monolithic column with octyl and sulfonic acid groups has been prepared by sol-gel technique for capillary electrochromatograhpy. The structure of hybrid monolith was optimized by changing the composition of tetraethoxysilane (TEOS), octyltriethoxysilane (C(8)-TEOS) and 3-mercaptopropyltrimethoxysilane (MPTMS) in the mixture of precursors. Then, the obtained hybrid monolith was oxidized using hydrogen peroxide (30%, w/w) to yield sulfonic acid groups. The sulfonic acid group, which served as strong cation-exchanger, dominated the charge on the surface of the capillary column and generated stable electroosmotic flow (EOF) in a wide range of pH. The monolithic column was characterized by scanning electron microscopy (SEM), Fourier transform infrared (FT-IR) spectroscopy and elemental analysis (EA), and the performance of column was evaluated in detail by separating different kinds of compounds with column efficiency up to 155,000 plates/m for thiourea. In addition, this monolithic column was also applied in the analysis of theophylline (TP) and caffeine (CA) in beverages. The detection limits were 0.39 and 0.48 microg/mL for theophylline and caffeine, respectively. The method reproducibility was tested by evaluating the intra- and inter-day precisions, and relative standard deviations of less than 3.9 and 8.4%, respectively, were obtained. Recoveries of compounds from spiked beverage samples ranged from 87.2 to 105.2%.

  20. Light-scattering study of polyelectrolyte complex formation between anionic and cationic nanogels in an aqueous salt-free system.

    PubMed

    Miyake, Masafumi; Ogawa, Kazuyoshi; Kokufuta, Etsuo

    2006-08-15

    We studied complex formation in an aqueous salt-free system (pH approximately 3 and at 25 degrees C) between nanogel particles having opposite charges. Anionic gel (AG) and cationic gel (CG) particles consist of lightly cross-linked N-isopropylacrylamide (NIPA) copolymers with 2-acrylamido-2-methylpropane sulfonic acid and with 1-vinylimidazole, respectively. The number of charges per particle was -4490 for AG and +20 300 for CG, as estimated from their molar masses (3.33 MD for AG and 11.7 MD for CG) by static light scattering (SLS) and their charge densities (1.35 mmol/g for AG and 1.74 mmol/g for CG) by potentiometric titration. The complexes were formed through the addition of AG to CG and vice versa using a turbidimetric titration technique. At the endpoint of the titration, the aggregate formed was a complex based upon stoichiometric charge neutralization: CG(n)()(+) + xAG(m)()(-) --> CG(n)()(+) (AG(m)()(-))(x)() where x = (n)()/(m)(). At different stages of the titration before the endpoint, the resulting complexes were examined in detail using dynamic light scattering, SLS, and electrophoretic light scattering (ELS). The main results are summarized as follows: (i) When AG with a hydrodynamic radius (R(h)) of 119 nm is added to CG (R(h) approximately 156 nm), the (R(h)) of the complex size decreases from 156 to 80 nm. (ii) In contrast to this (R(h)) change, the molar mass increases from 11.7 MD to 24 MD with increasing amounts of added AG. (iii) Upon addition of CG to AG, the complex formed has the same size ((R(h)) approximately 80 nm) and the same molar mass (55 +/- 2.5 MD) until 55 +/- 5% of AG has been consumed in the complexation. To understand these results, we used the following two models: the random model (RM), in which the added AG particles uniformly bind to all of the CG particles in the system via a strong electrostatic attraction, and the all-or-none model (AONM), in which part of the AG particles in the system preferably bind to the added CG

  1. Phase equilibria in a system of aqueous arginine with an octane solution of sulfonic acid

    NASA Astrophysics Data System (ADS)

    Kuvaeva, Z. I.; Koval'chuk, I. V.; Vodop'yanova, L. A.; Soldatov, V. S.

    2013-05-01

    The extraction of arginine (Arg) from aqueous salt (0.1 M NaCl) solutions with a sulfo extractant in a wide range of pH values and amino acid concentrations was studied. The 0.1 M solution of dinonylnaphthalenesulfonic acid (HD) in octane was used as an extractant. The degree of extraction was found to be high at pH 0.8-9.0. This can be explained by the effect of additional intermolecular interactions in the extractant phase involving the guanidine group of Arg.

  2. A Comparative Ab Initio Study of the Primary Hydration and Proton Dissociation of Various Imide and Sulfonic Acid Ionomers

    SciTech Connect

    Clark II, Jeffrey K.; Paddison, Stephen J.; Eikerling, Michael; Dupuis, Michel; Zawodzinski, Jr., Thomas A.

    2012-03-29

    We compare the role of neighboring group substitutions on proton dissociation of hydrated acidic moieties suitable for proton exchange membranes through electronic structure calculations. Three pairs of ionomers containing similar electron withdrawing groups within the pair were chosen for the study: two fully fluorinated sulfonyl imides (CF3SO2NHSO2CF3 and CF3CF2SO2NHSO2CF3), two partially fluorinated sulfonyl imides (CH3SO2NHSO2CF3 and C6H5SO2NHSO2CF2CF3), and two aromatic sulfonic acid based material s (CH3C6H4SO3H and CH3 OC6 - H3OCH3C6H4SO3H). Fully optimized counterpoise (CP) corrected geometries were obtained for each ionomer fragment with the inclusion of water molecules at the B3LYP/6-311G** level of density functional theory. Spontaneous proton dissociation was observed upon addition of three water molecules in each system, and the transition to a solvent-separated ion pair occurred when four water molecules were introduced. No considerable quantitative or qualitative differences in proton dissociation, hydrogen bond networks formed, or water binding energies were found between systems containing similar electron withdrawing groups. Each of the sulfonyl imide ionomers exhibited qualitatively similar results regarding proton dissociation and separation. The fully fluorinated sulfonyl imides, however, showed a greater propensity to exist in dissociated and ion-pair separated states at low degrees of hydration than the partially fluorinated sulfonyl imides. This effect is due to the additional electron withdrawing groups providing charge stabilization as the dissociated proton migrates away from the imide anion.

  3. Formation of the bisulfite anion (HSO(3) (-) , m/z 81) upon collision-induced dissociation of anions derived from organic sulfonic acids.

    PubMed

    Jariwala, Freneil B; Wood, Ryan E; Nishshanka, Upul; Attygalle, Athula B

    2012-04-01

    In the negative-ion collision-induced dissociation mass spectra of most organic sulfonates, the base peak is observed at m/z 80 for the sulfur trioxide radical anion (SO(3) (-·) ). In contrast, the product-ion spectra of a few sulfonates, such as cysteic acid, aminomethanesulfonate, and 2-phenylethanesulfonate, show the base peak at m/z 81 for the bisulfite anion (HSO(3) (-) ). An investigation with an extensive variety of sulfonates revealed that the presence of a hydrogen atom at the β-position relative to the sulfur atom is a prerequisite for the formation of the bisulfite anion. The formation of HSO(3) (-) is highly favored when the atom at the β-position is nitrogen, or the leaving neutral species is a highly conjugated molecule such as styrene or acrylic acid. Deuterium-exchange experiments with aminomethanesulfonate demonstrated that the hydrogen for HSO(3) (-) formation is transferred from the β-position. The presence of a peak at m/z 80 in the spectrum of 2-sulfoacetic acid, in contrast to a peak at m/z 81 in that of 3-sulfopropanoic acid, corroborated the proposed hydrogen transfer mechanism. For diacidic compounds, such as 4-sulfobutanoic acid and cysteic acid, the m/z 81 ion can be formed by an alternative mechanism, in which the negative charge of the carboxylate moiety attacks the α-carbon relative to the sulfur atom. Experiments conducted with deuterium-exchanged and deuterium-labeled analogs of sulfocarboxylic acids demonstrated that the formation of the bisulfite anion resulted either from a hydrogen transfer from the β-carbon, or from a direct attack by the carboxylate moiety on the α-carbon.

  4. Surface processing with sulfonic acid for quantum dot and its characteristics

    NASA Astrophysics Data System (ADS)

    Shiohara, Amane; Manabe, Noriyoshi; Yamamoto, Kenji

    2006-02-01

    We developed the smaller sized quantum dots covered with sodium 2-mercaptoethanesulfonate which has a sulfonyl group (QDs-SO 3-), and compared its stability in acid, salt and buffer solutions with that of the quantum dots covered with the mercaptoundecanoic acid (QDs-MUA) and covered with the NH II group (QDs-NH II). We found that the QD-SO 3- well disperses in these solutions without quenching and this stability holds on 24 hours. Next, we observed the cell damage caused by the quantum dots. In the evaluation of cell damage, QD-SO 3- did not show noticeable cell damage in the 0.2mg/mL by the comet assay as well as QD-MUA and QD-NH II in the same concentration. All these results could suggest that SO 3- might be useful for the biomedical engineering.

  5. Synthesis of sulfonic acid derivatives by oxidative deprotection of thiols using tert-butyl hypochlorite.

    PubMed

    Joyard, Yoann; Papamicaël, Cyril; Bohn, Pierre; Bischoff, Laurent

    2013-05-01

    Starting from alkyl halides or Michael acceptors, thioacetates were prepared in situ and further treated with t-BuOCl, affording the corresponding sulfonyl chlorides which were trapped with nucleophiles such as water, alcohol, or amines. The three steps can be achieved in a one-pot procedure. Oxidative deprotection also proved to be efficient with S-trityl and S-tert-butyl groups, making it a convenient route toward cysteic acid derivatives.

  6. Separation and fragmentation study of isocoproporphyrin derivatives by UHPLC-ESI-exact mass MS/MS and identification of a new isocoproporphyrin sulfonic acid metabolite.

    PubMed

    Benton, Christopher M; Lim, Chang Kee; Moniz, Caje; Baxter, Sinéad L; Jones, Donald J L

    2014-01-01

    Isocoproporphyrin and its derivatives are commonly used as biomarkers of porphyria cutanea tarda, heavy metal toxicity and hexachlorobenzene (HCB) intoxication in humans and animals. However, most are isobaric with other porphyrins and reference materials are unavailable commercially. The structural characterisation of these porphyrins is important but very little data is available. We report here the separation and characterisation of isocoproporphyrin, deethylisocoproporphyrin, hydroxyisocoproporphyrin and ketoisocoproporphyrin, isolated in the faeces of rats fed with a diet containing HCB, by ultra high performance liquid chromatography-exact mass tandem mass spectrometry (UHPLC-MS/MS). Furthermore, we report the identification and characterisation of a previously unreported porphyrin metabolite, isocoproporphyrin sulfonic acid isolated in the rat faeces. The measured mass-to-charge ratio (m/z) of the precursor ion was m/z 735.2338, corresponding to a molecular formula of C36H39N4O11S with an error of 0.3 ppm from the calculated m/z 735.2336. The MS/MS data was consistent with an isocoproporphyrin sulfonic acid structure, derived from dehydroisocoproporphyrinogen by sulfonation of the vinyl group. The metabolite was present in a greater abundance than other isocoproporphyrin derivatives and may be a more useful biomarker for HCB intoxication.

  7. Degradation and mineralization of organic UV absorber compound 2-phenylbenzimidazole-5-sulfonic acid (PBSA) using UV-254nm/H2O2.

    PubMed

    Abdelraheem, Wael H M; He, Xuexiang; Duan, Xiaodi; Dionysiou, Dionysios D

    2015-01-23

    Various studies have revealed the non-biodegradable and endocrine disrupting properties of sulfonated organic UV absorbers, directing people's attention toward their risks on ecological and human health and hence their removal from water. In this study, UV-254nm/H2O2 advanced oxidation process (AOP) was investigated for degrading a model UV absorber compound 2-phenylbenzimidazole-5-sulfonic acid (PBSA) and a structurally similar compound 1H-benzimidazole-2-sulfonic acid (BSA), with a specific focus on their mineralization. At 4.0mM [H2O2]0, a complete removal of 40.0μM parent PBSA and 25% decrease in TOC were achieved with 190min of UV irradiation; SO4(2-) was formed and reached its maximum level while the release of nitrogen as NH4(+) was much lower (around 50%) at 190min. Sulfate removal was strongly enhanced by increasing [H2O2]0 in the range of 0-4.0mM, with slight inhibition in 4.0-12.0mM. Faster and earlier ammonia formation was observed at higher [H2O2]0. The presence of Br(-) slowed down the degradation and mineralization of both compounds while a negligible effect on the degradation was observed in the presence of Cl(-). Our study provides important technical and fundamental results on the HO based degradation and mineralization of SO3H and N-containing UV absorber compounds.

  8. Experimental study of the removal of copper ions using hydrogels of xanthan, 2-acrylamido-2-methyl-1-propane sulfonic acid, montmorillonite: Kinetic and equilibrium study.

    PubMed

    Aflaki Jalali, Marzieh; Dadvand Koohi, Ahmad; Sheykhan, Mehdi

    2016-05-20

    In this paper, removal of copper ions from aqueous solution using novel xanthan gum (XG) hydrogel, xanthan gum-graft-2-acrylamido-2-methyl-1-propane sulfonic acid (XG-g-P(AMPS)) hydrogel and xanthan gum-graft-2-acrylamido-2-methyl-1-propane sulfonic acid/montmorillonite (XG-g-P(AMPS)/MMT) hydrogel composite were studied. The structure and morphologies of the xanthan-based hydrogels were characterized by Fourier transform infrared spectroscopy (FTIR) and scanning electron microscope (SEM). Adsorbents comprised a porous crosslink structure with side chains that carried carboxyl, hydroxyl and sulfonate. Maximum adsorption was observed in the pH=5.2, initial concentrations of Cu(2+)=321.8 mg/L, Temperature=45 °C, contact time=5 h with 0.2 g/50 mL of the hydrogels. Adsorption process was found to follow Langmuir isotherm model with maximum adsorption capacity of 24.57, 39.06 and 29.49 mg/g for the XG, XG-g-P(AMPS) and XG-g-P(AMPS)/MMT, respectively. Adsorption kinetics data fitted well with pseudo second order model. The negative ΔG° values and the positive ΔS° confirmed that the adsorption was a spontaneous process. The positive ΔH° values suggested that the adsorption was endothermic in nature.

  9. Synthesis, Antibacterial and Antitubercular Activities of Some 5H-Thiazolo[3,2-a]pyrimidin-5-ones and Sulfonic Acid Derivatives.

    PubMed

    Cai, Dong; Zhang, Zhi-Hua; Chen, Yu; Yan, Xin-Jia; Zou, Liang-Jing; Wang, Ya-Xin; Liu, Xue-Qi

    2015-09-10

    A series of 5H-thiazolo[3,2-a]pyrimidin-5-ones were synthesized by the cyclization reactions of S-alkylated derivatives in concentrated H₂SO₄. Upon treatment of S-alkylated derivatives at different temperatures, intramolecular cyclization to 7-(substituted phenylamino)-5H-thiazolo[3,2-a]pyrimidin-5-ones or sulfonation of cyclized products to sulfonic acid derivatives occurred. The structures of the target compounds were confirmed by IR, ¹H-NMR, (13)C-NMR and HRMS studies. The compounds were evaluated for their preliminary in vitro antibacterial activity against some Gram-positive and Gram-negative bacteria and screened for antitubercular activity against Mycobacterium tuberculosis by the broth dilution assay method. Some compounds showed good antibacterial and antitubercular activities.

  10. Crystal structure of 2-benzene-sulfon-amido-3-hy-droxy-propanoic acid.

    PubMed

    Jabeen, Nabila; Mushtaq, Misbah; Danish, Muhammad; Tahir, Muhammad Nawaz; Raza, Muhammad Asam

    2015-11-01

    In the title compound, C9H11NO5S, the O=S=O plane of the sulfonyl group is twisted at a dihedral angle of 52.54 (16)° with respect to the benzene ring. The dihedral angle between the carb-oxy-lic acid group and the benzene ring is 49.91 (16)°. In the crystal, C-H⋯O, N-H⋯O and O-H⋯O hydrogen bonds link the mol-ecules into (001) sheets. PMID:26594589

  11. Na+/Taurocholate Cotransporting Polypeptide and Apical Sodium-Dependent Bile Acid Transporter Are Involved in the Disposition of Perfluoroalkyl Sulfonates in Humans and Rats

    PubMed Central

    Zhao, Wen; Zitzow, Jeremiah D.; Ehresman, David J.; Chang, Shu-Ching; Butenhoff, John L.; Forster, Jameson; Hagenbuch, Bruno

    2015-01-01

    Among the perfluoroalkyl sulfonates (PFASs), perfluorohexane sulfonate (PFHxS), and perfluorooctane sulfonate (PFOS) have half-lives of several years in humans, mainly due to slow renal clearance and potential hepatic accumulation. Both compounds undergo enterohepatic circulation. To determine whether transporters involved in the enterohepatic circulation of bile acids are also involved in the disposition of PFASs, uptake of perfluorobutane sulfonate (PFBS), PFHxS, and PFOS was measured using freshly isolated human and rat hepatocytes in the absence or presence of sodium. The results demonstrated sodium-dependent uptake for all 3 PFASs. Given that the Na+/taurocholate cotransporting polypeptide (NTCP) and the apical sodium-dependent bile salt transporter (ASBT) are essential for the enterohepatic circulation of bile acids, transport of PFASs was investigated in stable CHO Flp-In cells for human NTCP or HEK293 cells transiently expressing rat NTCP, human ASBT, and rat ASBT. The results demonstrated that both human and rat NTCP can transport PFBS, PFHxS, and PFOS. Kinetics with human NTCP revealed Km values of 39.6, 112, and 130 µM for PFBS, PFHxS, and PFOS, respectively. For rat NTCP Km values were 76.2 and 294 µM for PFBS and PFHxS, respectively. Only PFOS was transported by human ASBT whereas rat ASBT did not transport any of the tested PFASs. Human OSTα/β was also able to transport all 3 PFASs. In conclusion, these results suggest that the long half-live and the hepatic accumulation of PFOS in humans are at least, in part, due to transport by NTCP and ASBT. PMID:26001962

  12. Sulfonic acid functionalized nano-γ-Al2O3: a new, efficient, and reusable catalyst for synthesis of 3-substituted-2H-1,4-benzothiazines.

    PubMed

    Li, Wei Lin; Tian, Shuan Bao; Zhu, Feng

    2013-01-01

    A simple and efficient synthetic protocol has been developed for the synthesis of 3-substituted-2H-1,4-benzothiazines by using a novel sulfonic acid functionalized nano-γ-Al2O3 catalyst, devoid of corrosive acidic, and basic reagents. The developed method has the advantages of good to excellent yields, short reaction times, operational simplicity, and a recyclable catalyst. The catalyst can be prepared by a simple procedure from inexpensive and readily available nano-γ-Al2O3 and has been shown to be recoverable and reusable up to six cycles without any loss of activity.

  13. p-Sulfonic Acid Calix[4]arene as an Efficient Catalyst for One-Pot Synthesis of Pharmaceutically Significant Coumarin Derivatives under Solvent-Free Condition

    PubMed Central

    Tashakkorian, Hamed; Lakouraj, Moslem Mansour; Rouhi, Mona

    2015-01-01

    One-pot and efficient protocol for preparation of some potent pharmaceutically valuable coumarin derivatives under solvent-free condition via direct coupling using biologically nontoxic organocatalyst, calix[4]arene tetrasulfonic acid (CSA), was introduced. Calix[4]arene sulfonic acid has been incorporated lately as a magnificent and recyclable organocatalyst for the synthesis of some organic compounds. Nontoxicity, solvent-free conditions, good-to-excellent yields for pharmaceutically significant structures, and especially ease of catalyst recovery make this procedure valuable and environmentally benign. PMID:26798517

  14. A note concerning acetate activation of peroxidative activity of catalases using 2,2'-azino-bis(3-ethylbenzthiazoline)-6-sulfonic acid as a substrate.

    PubMed

    Baker, Warren L; Key, Christopher; Lonergan, Greg T

    2005-01-01

    Beef liver catalases showed peroxidative activity using 2,2'-azino-bis-(3-ethylbenzthiazoline)-6-sulfonic acid as the electron donor and hydrogen peroxide as the acceptor at a pH of 5. This activity was not observed at pH 7. The reaction depended on acetate concentration, although succinate and propionate could partly replace the acetate as a catalyst. Other haem proteins also catalyzed a peroxidative effect. The reaction using syringaldazine or the coupling between dimethylaminobenzoic acid and 3-methyl-2-benzothiazolinone hydrazone was less effective and less sensitive. Evidence is presented that the reaction is associated with a conformational change of the catalase. PMID:15932252

  15. The enhancement of fluorescence quantum yields of anilino naphthalene sulfonic acids by inclusion of various cyclodextrins and cucurbit[7]uril

    NASA Astrophysics Data System (ADS)

    Sueishi, Yoshimi; Fujita, Tomonori; Nakatani, Shinichiro; Inazumi, Naoya; Osawa, Yoshihiro

    2013-10-01

    The association constants (K) for the inclusion complexation of four kinds of cyclodextrins (CDs (β- and γ-), 2,6-di-O-methylated β-CD, and 2,3,6-tri-O-methylated β-CD) and cucurbit[7]uril (CB[7]) with 1,8- and 2,6-anilinonaphthalene sulfonic acids (ANSs) were determined from fluorescence spectra enhanced by inclusion. Various CDs and CB[7] form stable 1:1 inclusion complexes with 1,8- and 2,6-ANSs: K = 80-11 700 M-1 for 2,6-ANS and 50-195 M-1 for 1,8-ANS. The high stability of the inclusion complexes of 2,6-ANS with CB[7] and 2,6-di-O-methylated β-CD is shown. Further, we determined the fluorescence quantum yields (Φ values) for the inclusion complexes of ANSs by using a fluorescence spectrophotometer equipped with a half-moon unit. The Φ values of 1,8- and 2,6-ANSs were largely enhanced by the inclusion of methylated β-CDs and did not correlate with the degree of stability (K) of the inclusion complexes. We characterized the structures of the inclusion complexes by 2D ROESY-NMR measurements. In addition, the microenvironmental polarity inside the hydrophobic CD and CB[7] cavities was evaluated using the fluorescence probe 2,6-ANS. Based on the emission mechanism and the aspect of inclusion in a hydrophobic cavity, we have suggested that the microenvironmental polarity and viscosity for the excited state of ANS plays an important role for the Φ values of inclusion complexes.

  16. The enhancement of fluorescence quantum yields of anilino naphthalene sulfonic acids by inclusion of various cyclodextrins and cucurbit[7]uril.

    PubMed

    Sueishi, Yoshimi; Fujita, Tomonori; Nakatani, Shinichiro; Inazumi, Naoya; Osawa, Yoshihiro

    2013-10-01

    The association constants (K) for the inclusion complexation of four kinds of cyclodextrins (CDs (β- and γ-), 2,6-di-O-methylated β-CD, and 2,3,6-tri-O-methylated β-CD) and cucurbit[7]uril (CB[7]) with 1,8- and 2,6-anilinonaphthalene sulfonic acids (ANSs) were determined from fluorescence spectra enhanced by inclusion. Various CDs and CB[7] form stable 1:1 inclusion complexes with 1,8- and 2,6-ANSs: K=80-11700 M(-1) for 2,6-ANS and 50-195 M(-1) for 1,8-ANS. The high stability of the inclusion complexes of 2,6-ANS with CB[7] and 2,6-di-O-methylated β-CD is shown. Further, we determined the fluorescence quantum yields (Φ values) for the inclusion complexes of ANSs by using a fluorescence spectrophotometer equipped with a half-moon unit. The Φ values of 1,8- and 2,6-ANSs were largely enhanced by the inclusion of methylated β-CDs and did not correlate with the degree of stability (K) of the inclusion complexes. We characterized the structures of the inclusion complexes by 2D ROESY-NMR measurements. In addition, the microenvironmental polarity inside the hydrophobic CD and CB[7] cavities was evaluated using the fluorescence probe 2,6-ANS. Based on the emission mechanism and the aspect of inclusion in a hydrophobic cavity, we have suggested that the microenvironmental polarity and viscosity for the excited state of ANS plays an important role for the Φ values of inclusion complexes.

  17. A novel PPARα agonist propane-2-sulfonic acid octadec-9-enyl-amide inhibits inflammation in THP-1 cells.

    PubMed

    Zhao, Yun; Yan, Lu; Luo, Xiu-Mei; Peng, Lu; Guo, Han; Jing, Zuo; Yang, Li-Chao; Hu, Rong; Wang, Xuan; Huang, Xue-Feng; Wang, Yi-Qing; Jin, Xin

    2016-10-01

    Our group synthesized propane-2-sulfonic acid octadec-9-enyl-amide (N15), a novel peroxisome proliferator activated receptor alpha (PPARα) agonist. Because PPARα activation is associated with inflammation control, we hypothesize that N15 may have anti-inflammatory effects. We investigated the effect of N15 on the regulation of inflammation in THP-1 cells stimulated with lipopolysaccharide (LPS). In particular, we assessed the production of chemokines, adhesion molecules and proinflammatory cytokines, three important types of cytokines that are released from monocytes and are involved in the development of atherosclerosis. The results showed that N15 remarkably reduced the mRNA expression of chemokines, such as monocyte chemotactic protein 1 (MCP-1 or CCL2), interleukin-8 (IL-8) and interferon-inducible protein-10 (IP-10 or CXCL10), and proinflammatory cytokines, such as tumor necrosis factor-α (TNF-α), interleukin-1β (IL-1β) and interleukin-6 (IL-6). N15 also decreased the protein expression of vascular cell adhesion molecule (VCAM) and matrix metalloproteinase (MMP) 2 and 9. The reduction in the expression of cytokine mRNAs observed following N15 treatment was abrogated in THP-1 cells treated with PPARα siRNA, indicating that the anti-inflammatory effects of N15 are dependent on PPARα activation. Toll-like receptor 4 (TLR4)/nuclear factor-κB (NF-κB) and signal transducer and activator of transcription 3 (STAT3) inhibition, which are dependent on PPARα activation, were also involved in the mechanism underlying the anti-inflammatory effects of N15. In conclusion, the novel PPARα agonist, N15, exerts notable anti-inflammatory effects, which are mediated via PPARα activation and TLR4/NF-κB and STAT3 inhibition, in LPS-stimulated THP-1 cells. In our study, N15 exhibits promise for the treatment of atherosclerosis.

  18. Protective effect of royal jelly in 2,4,6 trinitrobenzene sulfonic acid-induced colitis in rats

    PubMed Central

    Karaca, Turan; Uz, Yesim Hulya; Demirtas, Selim; Karaboga, Ihsan; Can, Guray

    2015-01-01

    Objective(s): In the present study, we evaluated immunological and immunomodulatory properties of royal jelly (RJ) in 2,4,6 trinitrobenzene sulfonic acid (TNBS)-induced colitis in rats. Materials and Methods: Eighteen adult female Wistar albino rats were divided into three groups of six animals each: a control group that received only saline solution, a TNBS-induced colitis group, and a TNBS-colitis+RJ group that received 250 mg/kg/day of RJ for seven days before the induction of colitis, following by the same treatment for an additional seven days. At the end of the experiment, cardiac blood and colon samples were obtained under deep anaesthesia from the animals in all groups. Serum interleukin-1β (IL-1β), tumour necrosis factor-alpha (TNF-α) and IL-10 levels were analyzed with an enzyme-linked immunosorbent assay (ELISA). Five-micrometre-thick sections were stained with haematoxylin-eosin (H&E) for microscopic evaluations. For immunohistochemical evaluations, the paraffin sections were stained with anti-CD3 (cluster of differentiation), anti-CD5, anti-CD8 and anti-CD45. Results: The results showed that the oral RJ treatment inhibited proinflammatory cytokines, IL-1β and TNF-α secretion, while increasing anti-inflammatory cytokine IL-10 production in the TNBS-induced colitis+RJ group compared with the colitis group not treated with RJ. The colitis was not as severe in the colitis+RJ group, with ulcerative damage, weight loss and inflammatory scores suggesting that impaired CD3-, CD5-, CD8- and CD45-positive T cell immune responses likely mediated the anti-inflammatory effect. Conclusion: The antioxidant and anti-inflammatory properties of RJ protected colon mucosa against TNBS-induced colitis in rats orally treated with RJ. PMID:26019800

  19. Beneficial effect of trimebutine and N-monodesmethyl trimebutine on trinitrobenzene sulfonic acid-induced colitis in rats.

    PubMed

    Chevalier, Eric; Pétoux, Francine; Chovet, Maria; Langlois, Annik

    2004-12-01

    The use of local anesthetics, such as lidocaine, has been proposed in the treatment of distal ulcerative colitis. Trimebutine maleate (TMB) displays a local anesthetic activity higher than that of lidocaine in rabbit corneal reflex. TMB and nor-TMB its main metabolite in human show similar affinity to that of bupivacaine toward sodium channel labeled by [3H]batrachotoxin and block sodium currents in sensory neurons from rat dorsal root ganglia. The aim of this study was to evaluate the effects of TMB and nor-TMB in comparison to lidocaine and bupivacaine in a rat model of acute colonic inflammation induced by trinitrobenzene sulfonic acid (TNBS). A single intracolonic instillation of TNBS (50 mg/kg dissolved in ethanol 30%) led to early plasma extravasation then macroscopic damage (hyperemia and necrosis), increased colonic weight and tissular MPO, a marker of neutrophilic infiltration. Local administration of TMB at dose of 3 to 60 mg/kg, 30 min before, 24 and 48 h after colitis induction, significantly reduced the severity of colitis. Nor-TMB (1, 3, 10, 30 mg/kg) as well as lidocaine (1, 3, 10 mg/kg) dose-dependently reduced colitis while bupivacaine at 10 mg/kg did not affect it significantly. In contrast systemic administration of TMB, nor-TMB and lidocaine at 10 mg/kg had no significant effect. Furthermore, local administration of TMB (30 mg/kg) and lidocaine (10 mg/kg) significantly reduced plasmatic extravasation. In conclusion, intracolonic treatment with TMB and nor-TMB improved acute experimental TNBS-induced colitis in rat and these effects could be explained by their local anesthetic activity. PMID:15531383

  20. Perfluorooctanoic acid (PFOA) but not perfluorooctane sulfonate (PFOS) showed DNA damage in comet assay on Paramecium caudatum.

    PubMed

    Kawamoto, Kosuke; Oashi, Takahiro; Oami, Kazunori; Liu, Wei; Jin, Yihe; Saito, Norimitsu; Sato, Itaru; Tsuda, Shuji

    2010-12-01

    Persistent perfluorinated organic compounds such as perfluorooctane sulfonate (PFOS) and perfluorooctanoic acid (PFOA) are distributed widely in the global environment including wildlife and human. In this study, we investigated the genotoxicity of PFOS and PFOA using the novel in vivo comet assay developed for Paramecium caudatum. For the comet assay, large nuclei squeezed out of the paramecia with 0.25 M sucrose containing 0.6% Triton X-100 were embedded in a layer of agarose gel placed over the slide glass. N-methyl-N´-nitro-N-nitrosoguanidine (MNNG) and 2-aminoanthracene (2-AA) were successfully used for positive controls. Productions of 8-hydroxydeoxyguanosine (8-OH-dG) and intracellular reactive oxygen species (ROS) were also measured in paramecia. PFOS did not cause DNA damage on any conditions examined. On the other hand, 12 and 24 hr exposure to PFOA (100 µM) increased DNA migration in electrophoresis condition at pH 13, but not at pH 12.1, suggesting that the DNA damage may be alkali labile site (such as apurinic/apyrimidinic (AP) site). Exposure of paramecia to 100 µM PFOA for 1, 3 and 24 hr and to 10 µM PFOA for 24 hr significantly increased intracellular ROS. Under the same condition, however, 8-OH-dG level was not affected by PFOA. The PFOA-induced DNA damage was not abolished by the application of 100 µM GSH which completely inhibited the increase of intracellular ROS. In conclusion, the PFOA-induced in vivo DNA damage was first shown in paramecia, and the DNA damage might not be directly attributable to increase in intracellular ROS.

  1. A novel PPARα agonist propane-2-sulfonic acid octadec-9-enyl-amide inhibits inflammation in THP-1 cells.

    PubMed

    Zhao, Yun; Yan, Lu; Luo, Xiu-Mei; Peng, Lu; Guo, Han; Jing, Zuo; Yang, Li-Chao; Hu, Rong; Wang, Xuan; Huang, Xue-Feng; Wang, Yi-Qing; Jin, Xin

    2016-10-01

    Our group synthesized propane-2-sulfonic acid octadec-9-enyl-amide (N15), a novel peroxisome proliferator activated receptor alpha (PPARα) agonist. Because PPARα activation is associated with inflammation control, we hypothesize that N15 may have anti-inflammatory effects. We investigated the effect of N15 on the regulation of inflammation in THP-1 cells stimulated with lipopolysaccharide (LPS). In particular, we assessed the production of chemokines, adhesion molecules and proinflammatory cytokines, three important types of cytokines that are released from monocytes and are involved in the development of atherosclerosis. The results showed that N15 remarkably reduced the mRNA expression of chemokines, such as monocyte chemotactic protein 1 (MCP-1 or CCL2), interleukin-8 (IL-8) and interferon-inducible protein-10 (IP-10 or CXCL10), and proinflammatory cytokines, such as tumor necrosis factor-α (TNF-α), interleukin-1β (IL-1β) and interleukin-6 (IL-6). N15 also decreased the protein expression of vascular cell adhesion molecule (VCAM) and matrix metalloproteinase (MMP) 2 and 9. The reduction in the expression of cytokine mRNAs observed following N15 treatment was abrogated in THP-1 cells treated with PPARα siRNA, indicating that the anti-inflammatory effects of N15 are dependent on PPARα activation. Toll-like receptor 4 (TLR4)/nuclear factor-κB (NF-κB) and signal transducer and activator of transcription 3 (STAT3) inhibition, which are dependent on PPARα activation, were also involved in the mechanism underlying the anti-inflammatory effects of N15. In conclusion, the novel PPARα agonist, N15, exerts notable anti-inflammatory effects, which are mediated via PPARα activation and TLR4/NF-κB and STAT3 inhibition, in LPS-stimulated THP-1 cells. In our study, N15 exhibits promise for the treatment of atherosclerosis. PMID:27318324

  2. Method development and optimization on cinchona and chiral sulfonic acid-based zwitterionic stationary phases for enantiomer separations of free amino acids by high-performance liquid chromatography.

    PubMed

    Zhang, Tong; Holder, Emilie; Franco, Pilar; Lindner, Wolfgang

    2014-10-10

    CHIRALPAK ZWIX(+) and ZWIX(-) are cinchona alkaloid-derived zwitterionic chiral stationary phases (CSPs) containing a chiral sulfonic acid motif which serves as negatively charged interaction site. They are versatile for direct enantiomer resolution of amino acids and many other ampholytic compounds by HPLC. The synergistic double ion-pairing between the zwittrionic chiral selector and the ampholyte is the basis for interaction and chiral recognition mechanisms. ZWIX(+) and ZWIX(-) type CSPs or columns behave pseudo-enantiomerically and provide the feature of reversing enantiomer elution order by column switching. In the current study, extensive experimental work was carried out with the aim of developing schemes for an efficient generic screening and proposing straightforward approaches for method optimization on these ZWIX columns. Various chromatographic parameters were investigated using a large series of diverse amino acids and analogues for the purpose. The role of methanol (MeOH) as the protic solvent in the mobile phase is confirmed to be essential. The presence of water in a low percentage is beneficial for peak shape, resolution, analysis speed, sample solubility and MS detection performance. The involvement of acetonitrile (ACN) or tetrahydrofuran (THF) can help for adjusting retention time and selectivity. Incorporation of a suitable pair of acidic-basic additives at a right ratio in the mobile phase is determinant as well for the double ion-pairing mechanism. 50 mM formic acid+25 mM diethylamine (or ammonium hydroxide) in MeOH/ACN/H₂O and in MeOH/THF/H₂O at 49:49:2 (by volume) are recommended as the starting mobile phases for method development. Some other parameters are also considered in the proposed scheme to achieve successful enantioselective or stereoselective separation of the ampholytes.

  3. Design, synthesis, and evaluation of 2 beta-alkenyl penam sulfone acids as inhibitors of beta-lactamases.

    PubMed

    Richter, H G; Angehrn, P; Hubschwerlen, C; Kania, M; Page, M G; Specklin, J L; Winkler, F K

    1996-09-13

    A general method for synthesis of 2 beta-alkenyl penam sulfones has been developed. The new compounds inhibited most of the common types of beta-lactamase. The level of activity depended very strongly on the nature of the substituent in the 2 beta-alkenyl group. The inhibited species formed with the beta-lactamase from Citrobacter freundii 1205 was sufficiently stable for X-ray crystallographic studies. These, together with UV absorption spectroscopy and studies of chemical degradation, suggested a novel reaction mechanism for the new inhibitors that might account for their broad spectrum of action. The (Z)-2 beta-acrylonitrile penam sulfone Ro 48-1220 was the most active inhibitor from this class of compound. The inhibitor enhanced the action of, for example, ceftriaxone against a broad selection of organisms producing beta-lactamases. The organisms included strains of Enterobacteriaceae that produce cephalosporinases, which is an exceptional activity for penam sulfones.

  4. Spectral characterization of novel ternary zinc(II) complexes containing 1,10-phenanthroline and Schiff bases derived from amino acids and salicylaldehyde-5-sulfonates

    NASA Astrophysics Data System (ADS)

    Boghaei, Davar M.; Gharagozlou, Mehrnaz

    2007-07-01

    A series of new ternary zinc(II) complexes [Zn(L 1-10)(phen)], where phen is 1,10-phenanthroline and H 2L 1-10 = tridentate Schiff base ligands derived from the condensation of amino acids (glycine, L-phenylalanine, L-valine, L-alanine, and L-leucine) and salicylaldehyde-5-sulfonates (sodium salicylaldehyde-5-sulfonate and sodium 3-methoxy-salicylaldehyde-5-sulfonate), have been synthesized. The complexes were characterized by elemental analysis, IR, UV-vis, 1H NMR, and 13C NMR spectra. The IR spectra of the complexes showed large differences between νas(COO) and νs(COO), Δ ν ( νas(COO) - νs(COO)) of 191-225 cm -1, indicating a monodentate coordination of the carboxylate group. Spectral data showed that in these ternary complexes the zinc atom is coordinated with the Schiff base ligand acts as a tridentate ONO moiety, coordinating to the metal through its phenolic oxygen, imine nitrogen, and carboxyl oxygen, and also with the neutral planar chelating ligand, 1,10-phenanthroline, coordinating through nitrogens.

  5. Isolation and Characterization of the 2,2'-Azinobis(3-ethylbenzothiazoline-6-sulfonic acid) (ABTS) Radical Cation-Scavenging Reaction Products of Arbutin.

    PubMed

    Tai, Akihiro; Ohno, Asako; Ito, Hideyuki

    2016-09-28

    Arbutin, a glucoside of hydroquinone, has shown strong 2,2'-azinobis(3-ethylbenzothiazoline-6-sulfonic acid) (ABTS) radical cation-scavenging activity, especially in reaction stoichiometry. This study investigated the reaction mechanism of arbutin against ABTS radical cation that caused high stoichiometry of arbutin in an ABTS radical cation-scavenging assay. HPLC analysis of the reaction mixture of arbutin and ABTS radical cation indicated the existence of two reaction products. The two reaction products were purified and identified to be a covalent adduct of arbutin with an ABTS degradation fragment and 3-ethyl-6-sulfonate benzothiazolone. A time-course study of the radical-scavenging reactions of arbutin and the two reaction products suggested that one molecule of arbutin scavenges three ABTS radical cation molecules to generate an arbutin-ABTS fragment adduct as a final reaction product. The results suggest that one molecule of arbutin reduced two ABTS radical cation molecules to ABTS and then cleaved the third ABTS radical cation molecule to generate two products, an arbutin-ABTS fragment adduct and 3-ethyl-6-sulfonate benzothiazolone.

  6. Isolation and Characterization of the 2,2'-Azinobis(3-ethylbenzothiazoline-6-sulfonic acid) (ABTS) Radical Cation-Scavenging Reaction Products of Arbutin.

    PubMed

    Tai, Akihiro; Ohno, Asako; Ito, Hideyuki

    2016-09-28

    Arbutin, a glucoside of hydroquinone, has shown strong 2,2'-azinobis(3-ethylbenzothiazoline-6-sulfonic acid) (ABTS) radical cation-scavenging activity, especially in reaction stoichiometry. This study investigated the reaction mechanism of arbutin against ABTS radical cation that caused high stoichiometry of arbutin in an ABTS radical cation-scavenging assay. HPLC analysis of the reaction mixture of arbutin and ABTS radical cation indicated the existence of two reaction products. The two reaction products were purified and identified to be a covalent adduct of arbutin with an ABTS degradation fragment and 3-ethyl-6-sulfonate benzothiazolone. A time-course study of the radical-scavenging reactions of arbutin and the two reaction products suggested that one molecule of arbutin scavenges three ABTS radical cation molecules to generate an arbutin-ABTS fragment adduct as a final reaction product. The results suggest that one molecule of arbutin reduced two ABTS radical cation molecules to ABTS and then cleaved the third ABTS radical cation molecule to generate two products, an arbutin-ABTS fragment adduct and 3-ethyl-6-sulfonate benzothiazolone. PMID:27607833

  7. Combined Effect of Free Nitrous Acid Pretreatment and Sodium Dodecylbenzene Sulfonate on Short-Chain Fatty Acid Production from Waste Activated Sludge

    PubMed Central

    Zhao, Jianwei; Liu, Yiwen; Ni, Bingjie; Wang, Qilin; Wang, Dongbo; Yang, Qi; Sun, Yingjie; Zeng, Guangming; Li, Xiaoming

    2016-01-01

    Free nitrous acid (FNA) serving as a pretreatment is an effective approach to accelerate sludge disintegration. Also, sodium dodecylbenzene sulfonate (SDBS), a type of surfactants, has been determined at significant levels in sewage sludge, which thereby affects the characteristics of sludge. Both FNA pretreatment and sludge SDBS levels can affect short-chain fatty acid (SCFA) generation from sludge anaerobic fermentation. To date, however, the combined effect of FNA pretreatment and SDBS presence on SCFA production as well as the corresponding mechanisms have never been documented. This work therefore aims to provide such support. Experimental results showed that the combination of FNA and SDBS treatment not only improved SCFA accumulation but also shortened the fermentation time. The maximal SCFA accumulation of 334.5 mg chemical oxygen demand (COD)/g volatile suspended solids (VSS) was achieved at 1.54 mg FNA/L treatment and 0.02 g/g dry sludge, which was respectively 1.79-fold and 1.41-fold of that from FNA treatment and sludge containing SDBS alone. Mechanism investigations revealed that the combined FNA pretreatment and SDBS accelerated solubilization, hydrolysis, and acidification steps but inhibited the methanogenesis. All those observations were in agreement with SCFA enhancement. PMID:26868898

  8. Neomycin-loaded poly(styrene sulfonic acid-co-maleic acid) (PSSA-MA)/polyvinyl alcohol (PVA) ion exchange nanofibers for wound dressing materials.

    PubMed

    Nitanan, Todsapon; Akkaramongkolporn, Prasert; Rojanarata, Theerasak; Ngawhirunpat, Tanasait; Opanasopit, Praneet

    2013-05-01

    In this study, poly(styrene sulfonic acid-co-maleic acid) (PSSA-MA) blended with polyvinyl alcohol (PVA) was electrospun and then subjected to thermal crosslinking to produce PSSA-MA/PVA ion exchange nanofiber mats. The cationic drug neomycin (0.001, 0.01, and 0.1%, w/v) was loaded onto the cationic exchange fibers. The amount of neomycin loaded and released and the cytotoxicity of the fiber mats were analyzed. In vivo wound healing tests were also performed in Wistar rats. The results indicated that the diameters of the fibers were on the nanoscale (250 ± 21 nm). The ion exchange capacity (IEC) value and the percentage of water uptake were 2.19 ± 0.1 mequiv./g-dry fibers and 268 ± 15%, respectively. The loading capacity was increased upon increasing the neomycin concentration. An initial concentration of 0.1% (w/v) neomycin (F3) showed the highest loading capacity (65.7 mg/g-dry fibers). The neomycin-loaded nanofiber mats demonstrated satisfactory antibacterial activity against both Gram-positive and Gram-negative bacteria, and an in vivo wound healing test revealed that these mats performed better than gauze and blank nanofiber mats in decreasing acute wound size during the first week after tissue damage. In conclusion, the antibacterial neomycin-loaded PSSA-MA/PVA cationic exchange nanofiber mats have the potential for use as wound dressing materials.

  9. Antibacterial characteristics of YTR 830, a sulfone beta-lactamase inhibitor, compared with those of clavulanic acid and sulbactam.

    PubMed Central

    Moosdeen, F; Williams, J D; Yamabe, S

    1988-01-01

    The antibacterial activity, binding to penicillin-binding proteins, and morphological changes effected by YTR 830, a sulfone beta-lactamase inhibitor, were studied in comparison with those of other beta-lactamase inhibitors. YTR 830 had very poor antibacterial activity, bound to PBP 2 of gram-negative organisms, and at the MIC caused rapid lysis of spheroplasts formed. Images PMID:2843088

  10. Determination of aluminium with 8-hydroxyquinoline-5-sulfonic acid in presence of a cationic surfactant by first and second derivative synchronous fluorimetry

    SciTech Connect

    Salinas, F.; de la Pena, A.; Duran, M.S.

    1988-08-01

    An analytical method has been developed for the fluorimetric determination of nanogram amounts of aluminium in solution. The method is based on the reaction of aluminium with 8-hydroxyquinoline-5-sulfonic acid presence of hexadeciltrimethylammonium bromide as a surfactant agent. Synchronous scanned first and second derivative fluorimetry has been employed to increase the sensitivity of the method. The influence of reaction variables as well as instrumental parameters is discussed. The interference of various foreign ions has also been examined and in some cases eliminated or reduced by addition of 1,10-phenanthroline.

  11. Application of Partial Least Square (PLS) Analysis on Fluorescence Data of 8-Anilinonaphthalene-1-Sulfonic Acid, a Polarity Dye, for Monitoring Water Adulteration in Ethanol Fuel.

    PubMed

    Kumar, Keshav; Mishra, Ashok Kumar

    2015-07-01

    Fluorescence characteristic of 8-anilinonaphthalene-1-sulfonic acid (ANS) in ethanol-water mixture in combination with partial least square (PLS) analysis was used to propose a simple and sensitive analytical procedure for monitoring the adulteration of ethanol by water. The proposed analytical procedure was found to be capable of detecting even small adulteration level of ethanol by water. The robustness of the procedure is evident from the statistical parameters such as square of correlation coefficient (R(2)), root mean square of calibration (RMSEC) and root mean square of prediction (RMSEP) that were found to be well with in the acceptable limits.

  12. Altered vasoactive intestinal peptides expression in irritable bowel syndrome patients and rats with trinitrobenzene sulfonic acid-induced colitis

    PubMed Central

    Del Valle-Pinero, Arseima Y; Sherwin, LeeAnne B; Anderson, Ethan M; Caudle, Robert M; Henderson, Wendy A

    2015-01-01

    AIM: To investigate the vasoactive intestinal peptides (VIP) expression in irritable bowel syndrome (IBS) and trinitrobenzene sulfonic acid (TNBS) induced colitis. METHODS: The VIP gene expression and protein plasma levels were measured in adult participants (45.8% male) who met Rome III criteria for IBS for longer than 6 mo and in a rat model of colitis as induced by TNBS. Plasma and colons were collected from naïve and inflamed rats. Markers assessing inflammation (i.e., weight changes and myeloperoxidase levels) were assessed on days 2, 7, 14 and 28 and compared to controls. Visceral hypersensitivity of the rats was assessed with colo-rectal distension and mechanical threshold testing on hind paws. IBS patients (n = 12) were age, gender, race, and BMI-matched with healthy controls (n = 12). Peripheral whole blood and plasma from fasting participants was collected and VIP plasma levels were assayed using a VIP peptide-enzyme immunoassay. Human gene expression of VIP was analyzed using a custom PCR array. RESULTS: TNBS induced colitis in the rats was confirmed with weight loss (13.7 ± 3.2 g) and increased myeloperoxidase activity. Visceral hypersensitivity to colo-rectal distension was increased in TNBS treated rats up to 21 d and resolved by day 28. Somatic hypersensitivity was also increased up to 14 d post TNBS induction of colitis. The expression of an inflammatory marker myeloperoxidase was significantly elevated in the intracellular granules of neutrophils in rat models following TNBS treatment compared to naïve rats. This confirmed the induction of inflammation in rats following TNBS treatment. VIP plasma concentration was significantly increased in rats following TNBS treatment as compared to naïve animals (P < 0.05). Likewise, the VIP gene expression from peripheral whole blood was significantly upregulated by 2.91-fold in IBS patients when compared to controls (P < 0.00001; 95%CI). VIP plasma protein was not significantly different when compared with

  13. Equilibrium analysis of aggregation behavior in the solvent extraction of Cu(II) from sulfuric acid by didodecylnaphthalene sulfonic acid

    SciTech Connect

    Moyer, B.A.; Baes, C.F. Jr.; Case, G.N.; Lumetta, G.J.; Wilson, N.M.

    1993-01-01

    By use of the principles of equilibrium analysis, the liquid-liquid cation exchange of Cu(II) from aqueous sulfuric acid at 25{degrees}C by didodecylnaphthalenesulfonic acid (HDDNS) in toluene may be understood in terms of small hydrated aggregated species in the organic phase. Extraction data were measured as a function of organic-phase HDDNS molarity (1.0 {times} 10{sup {minus}4} to 1.0 {times} 10{sup {minus}1}), aqueous copper(II) sulfate molarity (1.2 {times} 10{sup {minus}8} to 1.3 {times} 10{sup {minus}2}), and aqueous sulfuric acid molarity (0.03 to 6.0). Graphical analysis of linear regions of the data support a model in which organic-phase aggregates of HDDNS function by cation exchange to incorporate Cu(II) ions with no apparent change in aggregation number at low loading. Supporting FTIR spectra and water-content measurements of HDDNS solutions in toluene show that the HDDNS aggregates are highly hydrated. By use of the computer program SXLSQA, a comprehensive equilibrium model was developed with inclusion of activity effects. Aqueous-phase activity coefficients and degree of aqueous bisulfate formation were estimated by use of the Pitzer treatment. Organic-phase nonideality was estimated by the Hildebrand-Scott treatment and was shown to be a negligible effect under the conditions tested. Excluding aqueous sulfuric acid molarities greater than 1, it was possible to model the data to within experimental error by assuming only the equilibrium extraction of Cu{sup 2+} ion by the aggregate (HDDNS){sub 4}(H{sub 2}O){sub 22} and the equilibrium dissociation of (HDDNS){sub 4}(H{sub 2}O){sub 22} to the monomer. The dependence of Cu(II) distribution on aqueous sulfuric acid molarity was shown to be quantitatively consistent with a cation-exchange process. In comparison with the graphical approach, the computer analysis allows comprehensive model testing over large, nonlinear data sets and eliminates the need to make limiting assumptions.

  14. Pilot study on levels of perfluorooctane sulfonic acid (PFOS) and perfluorooctanoic acid (PFOA) in selected foodstuffs and human milk from Italy.

    PubMed

    Guerranti, Cristiana; Perra, Guido; Corsolini, Simonetta; Focardi, Silvano E

    2013-09-01

    Despite the health risks associated with perfluorinated compounds (PFC) exposure and the detection of these compounds in many countries around the world, little is known on their occurrence in Italy. The results of a study on levels of perfluorooctane sulfonate (PFOS) and perfluorooctanoic acid (PFOA), analysed by HPLC-ESI-MS, in human milk and food samples from the city of Siena and its province (central Italy) are here reported. PFOS was found in 13 out of 49 breast milk samples (0.76±1.27 ng/g), while PFOA was detected in one sample (8.04 ng/g). Only PFOS was found in food samples. Fish were the most contaminated samples (7.65±34.2 ng/g); mean concentrations in meat and milk and dairy products were similar (1.43±7.21 ng/g and 1.35±3.45 ng/g, respectively). In all cereal-based food, eggs, vegetables, honey and beverages PFOS concentration was

  15. Sulfonic acid-functionalized silica-coated magnetic nanoparticles as an efficient reusable catalyst for the synthesis of 1-substituted 1H-tetrazoles under solvent-free conditions.

    PubMed

    Naeimi, Hossein; Mohamadabadi, Samaneh

    2014-09-14

    Regarding green chemistry goals, silica-coated magnetite nanoparticles open up a new avenue to introduce a very useful and efficient system for facilitating catalyst recovery in different organic reactions. Therefore, in this paper the preparation of sulfonic acid-functionalized silica-coated magnetic nanoparticles with core-shell structure (Fe3O4@silica sulfonic acid) is presented by using Fe3O4 spheres as the core and silica sulfonic acid nanoparticles as the shell. The catalyst was characterized by infrared spectroscopy, scanning electron microscopy, X-ray diffraction analysis, dynamic light scattering, thermogravimetric analysis and vibrating sample magnetometry. Nanocatalyst can be recovered using an external magnet and reused for subsequent reactions 6 times without noticeable deterioration in catalytic activity.

  16. Sulfonic acid-functionalized hybrid organic-inorganic proton exchange membranes synthesized by sol-gel using 3-mercaptopropyl trimethoxysilane (MPTMS)

    NASA Astrophysics Data System (ADS)

    Mosa, J.; Durán, A.; Aparicio, M.

    2015-11-01

    Organic/inorganic hybrid membranes based on (3-glycidoxypropyl) trimethoxysilane (GPTMS) and 3-mercaptopropyl trimethoxysilane (MPTMS) have been prepared by sol-gel method and organic polymerisation, as candidate materials for proton exchange membranes in direct alcohol fuel cell (DMFC) applications. The -SH groups of MPTMS are oxidized to sulfonic acid groups, which are attributed to enhance the proton conductivity of hybrid membranes. FTIR, XPS and contact angle were used to characterize and confirm the hybrid structure and oxidation reaction progress. Membranes characterization also includes ion exchange capacity, water uptake, methanol permeability and proton conductivity to confirm their applicability in fuel cells. All the membranes were homogeneous and thermally and chemically resistant. In particular, the hybrid membranes demonstrated proton conductivities as high as 0.16 S cm-1 at high temperature, while exhibiting a low methanol permeability as compared to Nafion®. These results are associated with proton conducting paths through the silica pseudo-PEO network in which sulfonic acid groups work as proton donor.

  17. Magnetic solid sulfonic acid decorated with hydrophobic regulators: a combinatorial and magnetically separable catalyst for the synthesis of α-aminonitriles.

    PubMed

    Mobaraki, Akbar; Movassagh, Barahman; Karimi, Babak

    2014-07-14

    A three-component, Strecker reaction of a series of aldehydes or ketones, amines, and trimethylsilyl cyanide for the synthesis of α-aminonitriles in the presence of a catalytic amount of a magnetic solid sulfonic acid catalyst, Fe3O4@SiO2@Me&Et-PhSO3H under solvent-free conditions have been investigated. This catalyst, with a combination of hydrophobicity and acidity on the Fe3O4@SiO2 core-shell of the magnetic nanobeads, as well as its water-resistant property, enabled easy mass transfer and catalytic activity in the Strecker reaction. The catalyst was easily separated by an external magnet and the recovered catalyst was reused in 6 successive reaction cycles without any significant loss of activity.

  18. Identification of Novel Perfluoroalkyl Ether Carboxylic Acids (PFECAs) and Sulfonic Acids (PFESAs) in Natural Waters Using Accurate Mass Time-of-Flight Mass Spectrometry (TOFMS).

    PubMed

    Strynar, Mark; Dagnino, Sonia; McMahen, Rebecca; Liang, Shuang; Lindstrom, Andrew; Andersen, Erik; McMillan, Larry; Thurman, Michael; Ferrer, Imma; Ball, Carol

    2015-10-01

    Recent scientific scrutiny and concerns over exposure, toxicity, and risk have led to international regulatory efforts resulting in the reduction or elimination of certain perfluorinated compounds from various products and waste streams. Some manufacturers have started producing shorter chain per- and polyfluorinated compounds to try to reduce the potential for bioaccumulation in humans and wildlife. Some of these new compounds contain central ether oxygens or other minor modifications of traditional perfluorinated structures. At present, there has been very limited information published on these "replacement chemistries" in the peer-reviewed literature. In this study we used a time-of-flight mass spectrometry detector (LC-ESI-TOFMS) to identify fluorinated compounds in natural waters collected from locations with historical perfluorinated compound contamination. Our workflow for discovery of chemicals included sequential sampling of surface water for identification of potential sources, nontargeted TOFMS analysis, molecular feature extraction (MFE) of samples, and evaluation of features unique to the sample with source inputs. Specifically, compounds were tentatively identified by (1) accurate mass determination of parent and/or related adducts and fragments from in-source collision-induced dissociation (CID), (2) in-depth evaluation of in-source adducts formed during analysis, and (3) confirmation with authentic standards when available. We observed groups of compounds in homologous series that differed by multiples of CF2 (m/z 49.9968) or CF2O (m/z 65.9917). Compounds in each series were chromatographically separated and had comparable fragments and adducts produced during analysis. We detected 12 novel perfluoroalkyl ether carboxylic and sulfonic acids in surface water in North Carolina, USA using this approach. A key piece of evidence was the discovery of accurate mass in-source n-mer formation (H(+) and Na(+)) differing by m/z 21.9819, corresponding to the

  19. Enhancing proton conduction under low humidity by incorporating core-shell polymeric phosphonic acid submicrospheres into sulfonated poly(ether ether ketone) membrane

    NASA Astrophysics Data System (ADS)

    Nie, Lingli; Wang, Jingtao; Xu, Tao; Dong, Hao; Wu, Hong; Jiang, Zhongyi

    2012-09-01

    Polymeric phosphonic acid submicrospheres (PPASs) with carboxylic acid cores and phosphonic acid shells are synthesized by distillation-precipitation polymerization. The structure and composition of PPASs are confirmed by transmission electron microscopy (TEM), Fourier transform infrared spectroscopy (FTIR), and energy dispersive X-ray (EDX). The PPASs are then incorporated into sulfonated poly(ether ether ketone) (SPEEK) to fabricate composite membranes for direct methanol fuel cells (DMFCs). The incorporated PPASs enlarge the ion-channel size of the composite membranes as testified by small-angle X-ray scattering (SAXS), affording significantly enhanced water uptake and water retention. Compared with the membrane containing the polymeric carboxylic acid submicrospheres (PCASs), the PPASs-filled membrane exhibits higher proton conductivity owing to the higher water uptake and water retention of the PPASs and stronger acidity of phosphonic acid. The composite membrane with 15 wt.% PPASs displays the highest proton conductivity of 0.0187 S cm-1 at room temperature and 100% relative humidity (RH). At the RH as low as 20%, this membrane acquires a proton conductivity of 0.0066 S cm-1, 5 times higher than that of the SPEEK control membrane (0.0011 S cm-1) after 90 min testing, at 40 °C.

  20. Degradation of chloroacetanilide herbicides: The prevalence of sulfonic and oxanilic acid metabolites in Iowa groundwaters and surface waters

    USGS Publications Warehouse

    Kalkhoff, S.J.; Kolpin, D.W.; Thurman, E.M.; Ferrer, I.; Barcelo, D.

    1998-01-01

    Water samples were collected from 88 municipal wells throughout Iowa during the summer and were collected monthly at 12 stream sites in eastern Iowa from March to December 1996 to study the occurrence of the sulfonic and oxanilic metabolites of acetochlor, alachlor, and metolachlor. The sulfonic and oxanilic metabolites were present in almost 75% of the groundwater samples and were generally present from 3 to 45 times more frequently than their parent compounds. In groundwater, the median value of the summed concentrations of acetochlor, alachlor, and metolachlor was less than 0.05 μg/L, and the median value of the summed concentrations of the six metabolites was 1.2 μg/L. All surface water samples contained at least one detectable metabolite compound. Individual metabolites were detected from 2 to over 100 times more frequently than the parent compounds. In surface water, the median value of the summed concentrations of the three parent compounds was 0.13 μg/L, and the median value of the summed concentrations of the six metabolites was 6.4 μg/L. These data demonstrate the importance of analyzing both parent compounds and metabolites to more fully understand the environmental fate and transport of herbicides in the hydrologic system.

  1. Enhanced conductivity of poly(3,4-ethylenedioxythiophene):poly(styrene sulfonate) film by acid treatment for indium tin oxide-free organic solar cells

    NASA Astrophysics Data System (ADS)

    Lin, Chun-Chiao; Huang, Chih-Kuo; Hung, Yu-Chieh; Chang, Mei-Ying

    2016-08-01

    An acid treatment is used in the enhancement of the conductivity of the conducting polymer poly(3,4-ethylenedioxythiophene):poly(styrene sulfonate) (PEDOT:PSS) thin film, which is often used as the anode in organic solar cells. There are three types of acid treatment for PEDOT:PSS thin film: hydrochloric, sulfuric, and phosphoric acid treatments. In this study, we examine and compare these three ways with each other for differences in conductivity. Hydrochloric acid results in the highest conductivity enhancement, from 0.3 to 1109 S/cm. We also discuss the optical transmittance, conductivity, surface roughness, surface morphology, and stability, as well as the factors that can influence device efficiency. The devices are fabricated using an acid-treated PEDOT:PSS thin film as the anode. The highest power conversion efficiency was 1.32%, which is a large improvement over that of the unmodified organic solar cell (0.21%). It is comparable to that obtained when using indium tin oxide (ITO) as an electrode, ca. 1.46%.

  2. β-Cyclodextrin-Propyl Sulfonic Acid Catalysed One-Pot Synthesis of 1,2,4,5-Tetrasubstituted Imidazoles as Local Anesthetic Agents.

    PubMed

    Ran, Yan; Li, Ming; Zhang, Zong-Ze

    2015-11-12

    Some functionalized 1,2,4,5-tetrasubstituted imidazole derivatives were synthesized using a one-pot, four component reaction involving 1,2-diketones, aryl aldehydes, ammonium acetate and substituted aromatic amines. The synthesis has been efficiently carried out in a solvent free medium using β-cyclodextrin-propyl sulfonic acid as a catalyst to afford the target compounds in excellent yields. The local anesthetic effect of these derivatives was assessed in comparison to lidocaine as a standard using a rabbit corneal and mouse tail anesthesia model. The three most potent promising compounds were subjected to a rat sciatic nerve block assay where they showed considerable local anesthetic activity, along with minimal toxicity. Among the tested analogues, 4-(1-benzyl-4,5-diphenyl-1H-imidazol-2-yl)-N,N-dimethylaniline (5g) was identified as most potent analogue with minimal toxicity. It was further characterized by a more favourable therapeutic index than the standard.

  3. Fluorimetric determination of tin and organotin compounds in hydroorganic and micellar media in the presence of 8-hydroxyquinoline-5-sulfonic acid.

    PubMed

    Jourquin, G; Mahedero, M C; Paredes, S; Vire, J C; Kauffmann, J M

    1996-06-01

    The fluorescence of tin(IV) complexed by 8-hydroxyquinoline-5-sulfonic acid (8-HQSA) has been studied in both aqueous and hydroorganic (acetate buffer and dimethylsulfoxide) media. Several experimental parameters such as pH, DMSO/water ratio and reactant concentration have been investigated to increase the fluorescence of the tin(IV)-8-HQSA complex. A linear relationship between tin(IV) concentration and fluorescence intensity was observed between 1.7 and 20 microM). Mechanistic and quantitative studies in the presence of surfactants have been performed. Judiciously selected micellar media permitted solubilisation and quantitation of tin(IV) as well as dibutyltin compounds. A linear relationship between concentration and fluorescence intensity was found for mono-, di- and tributyltin with detection limits of 0.1 microM, 0.7 microM and 1 microM, respectively.

  4. β-Cyclodextrin-Propyl Sulfonic Acid Catalysed One-Pot Synthesis of 1,2,4,5-Tetrasubstituted Imidazoles as Local Anesthetic Agents.

    PubMed

    Ran, Yan; Li, Ming; Zhang, Zong-Ze

    2015-01-01

    Some functionalized 1,2,4,5-tetrasubstituted imidazole derivatives were synthesized using a one-pot, four component reaction involving 1,2-diketones, aryl aldehydes, ammonium acetate and substituted aromatic amines. The synthesis has been efficiently carried out in a solvent free medium using β-cyclodextrin-propyl sulfonic acid as a catalyst to afford the target compounds in excellent yields. The local anesthetic effect of these derivatives was assessed in comparison to lidocaine as a standard using a rabbit corneal and mouse tail anesthesia model. The three most potent promising compounds were subjected to a rat sciatic nerve block assay where they showed considerable local anesthetic activity, along with minimal toxicity. Among the tested analogues, 4-(1-benzyl-4,5-diphenyl-1H-imidazol-2-yl)-N,N-dimethylaniline (5g) was identified as most potent analogue with minimal toxicity. It was further characterized by a more favourable therapeutic index than the standard. PMID:26569210

  5. Polyacrylamido-2-methyl-1-propane sulfonic acid-grafted-natural rubber as bio-adsorbent for heavy metal removal from aqueous standard solution and industrial wastewater.

    PubMed

    Phetphaisit, Chor Wayakron; Yuanyang, Siriwan; Chaiyasith, Wipharat Chuachuad

    2016-01-15

    Bio-adsorbent modified natural rubber (modified NR) was prepared, by placing the sulfonic acid functional group on the isoprene chain. This modification was carried out with the aim to prepare material capable to remove heavy metals from aqueous solution. The structures of modified NR materials were characterized by FT-IR and NMR spectroscopies. Thermal gravimetric analysis of modified NR showed that the initial degradation temperature of rubber decreases with increasing amount of polyacrylamido-2-methyl-1-propane sulfonic acid (PAMPS) in the structure. In addition, water uptake of the rubber based materials was studied as a function of time and content of PAMPS. The influence of the amount of PAMPS grafted onto NR, time, pH, concentration of metal ions, temperature, and regeneration were studied in terms of their influence on the adsorption of heavy metals (Pb(2+), Cd(2+) and Cu(2+)). The adsorption isotherms of Pb(2+) and Cd(2+) were fitted to the Freundlich isotherm model, while Cu(2+) was fitted to the Langmuir isotherm. However, the results from these two isotherms resulted in a similar behavior. The adsorption capacity of the modified NR for the various heavy metals was in the following order: Pb(2+)∼Cd(2+)>Cu(2+). The maximum adsorption capacities of Pb(2+), Cd(2+), and Cu(2+) were 272.7, 267.2, and 89.7 mg/g of modified rubber, respectively. Moreover, the modified natural rubber was used for the removal of metal ions in real samples of industrial effluents where the efficiency and regeneration were also investigated.

  6. Perfluoroalkyl Sulfonates and Carboxylic Acids in Liver, Muscle and Adipose Tissues of Black-Footed Albatross (Phoebastria nigripes) from Midway Island, North Pacific Ocean

    PubMed Central

    Chu, Shaogang; Wang, Jun; Leong, Gladys; Woodward, Lee Ann; Letcher, Robert J.; Li, Qing X.

    2015-01-01

    The Great Pacific Garbage Patch (GPGP) is a gyre of marine plastic debris in the North Pacific Ocean, and nearby is Midway Atoll which is a focal point for ecological damage. This study investigated 13 C4-C16 perfluorinated carboxylic acids (PFCAs), four (C4, C6, C8 and C10) perfluorinated sulfonates and perfluoro-4-ethylcyclohexane sulfonate [collectively perfluoroalkyl acids (PFAAs)] in black-footed albatross tissues (collected in 2011) from Midway Atoll. Of the 18 PFCAs and PFSAs monitored, most were detectable in the liver, muscle and adipose tissues. The concentrations of PFCAs and PFSAs were higher than those in most seabirds from the arctic environment, but lower than those in most of fish-eating water birds collected in the U.S. mainland. The concentrations of the PFAAs in the albatross livers were 7-fold higher than those in Laysan albatross liver samples from the same location reported in 1994. The concentration ranges of PFOS were 22.91-70.48, 3.01-6.59 and 0.53-8.35 ng g-1 wet weight (ww), respectively, in the liver, muscle and adipose. In the liver samples PFOS was dominant, followed by longer chain PFUdA (8.04-18.70 ng g-1 ww), PFTrDA, and then PFNA, PFDA and PFDoA. Short chain PFBA, PFPeA, PFBS and C16 PFODA were below limit of quantification. C8-C13 PFCAs showed much higher composition compared to those found in other wildlife where PFOS typically predominated. The concentrations of PFUdA in all 8 individual albatross muscle samples were even higher than those of PFOS. This phenomenon may be attributable to GPGP as a pollution source as well as PFAA physicochemical properties. PMID:26037817

  7. Perfluoroalkyl sulfonates and carboxylic acids in liver, muscle and adipose tissues of black-footed albatross (Phoebastria nigripes) from Midway Island, North Pacific Ocean.

    PubMed

    Chu, Shaogang; Wang, Jun; Leong, Gladys; Woodward, Lee Ann; Letcher, Robert J; Li, Qing X

    2015-11-01

    The Great Pacific Garbage Patch (GPGP) is a gyre of marine plastic debris in the North Pacific Ocean, and nearby is Midway Atoll which is a focal point for ecological damage. This study investigated 13 C4-C16 perfluorinated carboxylic acids (PFCAs), four (C4, C6, C8 and C10) perfluorinated sulfonates and perfluoro-4-ethylcyclohexane sulfonate [collectively perfluoroalkyl acids (PFAAs)] in black-footed albatross tissues (collected in 2011) from Midway Atoll. Of the 18 PFCAs and PFSAs monitored, most were detectable in the liver, muscle and adipose tissues. The concentrations of PFCAs and PFSAs were higher than those in most seabirds from the arctic environment, but lower than those in most of fish-eating water birds collected in the U.S. mainland. The concentrations of the PFAAs in the albatross livers were 7-fold higher than those in Laysan albatross liver samples from the same location reported in 1994. The concentration ranges of PFOS were 22.91-70.48, 3.01-6.59 and 0.53-8.35 ng g(-1) wet weight (ww), respectively, in the liver, muscle and adipose. In the liver samples PFOS was dominant, followed by longer chain PFUdA (8.04-18.70 ng g(-1) ww), PFTrDA, and then PFNA, PFDA and PFDoA. Short chain PFBA, PFPeA, PFBS and PFODA were below limit of quantification. C8-C13 PFCAs showed much higher composition compared to those found in other wildlife where PFOS typically predominated. The concentrations of PFUdA in all 8 individual albatross muscle samples were even higher than those of PFOS. This phenomenon may be attributable to GPGP as a pollution source as well as PFAA physicochemical properties. PMID:26037817

  8. Perfluoroalkyl sulfonates and carboxylic acids in liver, muscle and adipose tissues of black-footed albatross (Phoebastria nigripes) from Midway Island, North Pacific Ocean.

    PubMed

    Chu, Shaogang; Wang, Jun; Leong, Gladys; Woodward, Lee Ann; Letcher, Robert J; Li, Qing X

    2015-11-01

    The Great Pacific Garbage Patch (GPGP) is a gyre of marine plastic debris in the North Pacific Ocean, and nearby is Midway Atoll which is a focal point for ecological damage. This study investigated 13 C4-C16 perfluorinated carboxylic acids (PFCAs), four (C4, C6, C8 and C10) perfluorinated sulfonates and perfluoro-4-ethylcyclohexane sulfonate [collectively perfluoroalkyl acids (PFAAs)] in black-footed albatross tissues (collected in 2011) from Midway Atoll. Of the 18 PFCAs and PFSAs monitored, most were detectable in the liver, muscle and adipose tissues. The concentrations of PFCAs and PFSAs were higher than those in most seabirds from the arctic environment, but lower than those in most of fish-eating water birds collected in the U.S. mainland. The concentrations of the PFAAs in the albatross livers were 7-fold higher than those in Laysan albatross liver samples from the same location reported in 1994. The concentration ranges of PFOS were 22.91-70.48, 3.01-6.59 and 0.53-8.35 ng g(-1) wet weight (ww), respectively, in the liver, muscle and adipose. In the liver samples PFOS was dominant, followed by longer chain PFUdA (8.04-18.70 ng g(-1) ww), PFTrDA, and then PFNA, PFDA and PFDoA. Short chain PFBA, PFPeA, PFBS and PFODA were below limit of quantification. C8-C13 PFCAs showed much higher composition compared to those found in other wildlife where PFOS typically predominated. The concentrations of PFUdA in all 8 individual albatross muscle samples were even higher than those of PFOS. This phenomenon may be attributable to GPGP as a pollution source as well as PFAA physicochemical properties.

  9. Polyacrylamido-2-methyl-1-propane sulfonic acid-grafted-natural rubber as bio-adsorbent for heavy metal removal from aqueous standard solution and industrial wastewater.

    PubMed

    Phetphaisit, Chor Wayakron; Yuanyang, Siriwan; Chaiyasith, Wipharat Chuachuad

    2016-01-15

    Bio-adsorbent modified natural rubber (modified NR) was prepared, by placing the sulfonic acid functional group on the isoprene chain. This modification was carried out with the aim to prepare material capable to remove heavy metals from aqueous solution. The structures of modified NR materials were characterized by FT-IR and NMR spectroscopies. Thermal gravimetric analysis of modified NR showed that the initial degradation temperature of rubber decreases with increasing amount of polyacrylamido-2-methyl-1-propane sulfonic acid (PAMPS) in the structure. In addition, water uptake of the rubber based materials was studied as a function of time and content of PAMPS. The influence of the amount of PAMPS grafted onto NR, time, pH, concentration of metal ions, temperature, and regeneration were studied in terms of their influence on the adsorption of heavy metals (Pb(2+), Cd(2+) and Cu(2+)). The adsorption isotherms of Pb(2+) and Cd(2+) were fitted to the Freundlich isotherm model, while Cu(2+) was fitted to the Langmuir isotherm. However, the results from these two isotherms resulted in a similar behavior. The adsorption capacity of the modified NR for the various heavy metals was in the following order: Pb(2+)∼Cd(2+)>Cu(2+). The maximum adsorption capacities of Pb(2+), Cd(2+), and Cu(2+) were 272.7, 267.2, and 89.7 mg/g of modified rubber, respectively. Moreover, the modified natural rubber was used for the removal of metal ions in real samples of industrial effluents where the efficiency and regeneration were also investigated. PMID:26348149

  10. Novel sulfonated poly (ether ether ketone)/phosphonic acid-functionalized titania nanohybrid membrane by an in situ method for direct methanol fuel cells

    NASA Astrophysics Data System (ADS)

    Wu, Hong; Cao, Ying; Li, Zhen; He, Guangwei; Jiang, Zhongyi

    2015-01-01

    Sulfonated poly (ether ether ketone)/phosphonic acid-functionalized titania nanohybrid membranes are prepared by an in situ method using titanium tetrachloride (TiCl4) as inorganic precursor and amino trimethylene phosphonic acid (ATMP) as modifier. Phosphonic acid-functionalized titania nanoparticles with a uniform particle size of ∼50 nm are formed and dispersed homogeneously in the SPEEK matrix with good interfacial compatibility. Accordingly, the nanohybrid membranes display remarkably enhanced proton conduction property due to the incorporation of additional sites for proton transport and the formation of well-connected channels by bridging the hydrophilic domains in SPEEK matrix. The nanohybrid membrane with 6 wt. % of phosphonic acid-functionalized titania nanoparticles exhibits the highest proton conductivity of 0.334 S cm-1 at 65 °C and 100% RH, which is 63.7% higher than that of pristine SPEEK membrane. Furthermore, the as-prepared nanohybrid membranes also show elevated thermal and mechanical stabilities as well as decreased methanol permeability.

  11. Direct methanol fuel cell performance using sulfonated poly (arylene ether sulfone) random copolymers as electrolytes.

    SciTech Connect

    Zawodzinski, T. A. , Jr.; Zelenay, P.; Hickner, M.; Wang, F.; McGrath, James E.; Pivovar, B. S.

    2001-01-01

    Sulfonated poly(arylene ether sulfone) random copolymers are a new series of sulfonic acid containing polymers that have shown promise as fuel cell electrolytes. Here, we report on direct methanol fuel cell (DMFC) performance of this class of polymers at sulfonation levels ranging from 40 to 60% (monomer basis). The DMFC performance of these polymers is compared to that of Nafion 117, the long standing standard in fuel cell testing. These polymers show a higher selectivity for protons over methanol for all the sulfonation levels tested, with the 40% sulfonated polymer showing 2.5 times the selectivity of Nafion. While the higher sulfonated forms (50 and 60%) did show a higher selectivity, only the lower sulfonation levels (40 and 45%) have shown improved performance in DMFC testing. The results of these experiments will be discussed in terms of the relevant test conditions, and experimentally determined membrane properties. The relevant DMFC properties of these polymers will be discussed in terms of sulfonation level and compared to those of Nafion 117.

  12. Highly elevated levels of perfluorooctane sulfonate and other perfluorinated acids found in biota and surface water downstream of an international airport, Hamilton, Ontario, Canada.

    PubMed

    de Solla, S R; De Silva, A O; Letcher, R J

    2012-02-01

    Per- and poly-fluorinated compounds (PFCs), which include perfluorinated carboxylates (PFCAs) and sulfonates (PFSAs) and various precursors, are used in a wide variety of industrial, commercial and domestic products. This includes aqueous film forming foam (AFFF), which is used by military and commercial airports as fire suppressants. In a preliminary assessment prior to this study, very high concentrations (>1 ppm wet weight) of the PFSA, perfluorooctane sulfonate (PFOS), were discovered in the plasma of snapping turtles (Chelydra serpentina) collected in 2008 from Lake Niapenco in southern Ontario, Canada. We presently report on a suite of C(6) to C(15) PFCAs, C(4), C(6), C(8) and C(10) PFSAs, several PFC precursors (e.g. perfluorooctane sulfonamide, PFOSA), and a cyclic perfluorinated acid used in aircraft hydraulic fluid, perfluoroethylcyclohexane sulfonate (PFECHS) in surface water from the Welland River and Lake Niapenco, downstream of the John C. Munro International Airport, Hamilton, Ontario, Canada. Amphipods, shrimp, and water were sampled from the Welland River and Lake Niapenco, as well as local references. The same suite of PFCs in turtle plasma from Lake Niapenco was compared to those from other southern Ontario sites. PFOS dominated the sum PFCs in all substrates (e.g., >99% in plasma of turtles downstream the Hamilton Airport, and 72.1 to 94.1% at all other sites). PFOS averaged 2223(±247.1SE) ng/g in turtle plasma from Lake Niapenco, and ranged from 9.0 to 171.4 elsewhere. Mean PFOS in amphipods and in water were 518.1(±83.8)ng/g and 130.3(±43.6) ng/L downstream of the airport, and 19.1(±2.7) ng/g and 6.8(±0.5) ng/L at reference sites, respectively. Concentrations of selected PFCs declined with distance downstream from the airport. Although there was no known spill event or publicly reported use of AFFF associated with a fire event at the Hamilton airport, the airport is a likely major source of PFC contamination in the Welland River. PMID

  13. Preparation of sludge derived magnetic porous carbon and their application in Fenton-like degradation of 1-diazo-2-naphthol-4-sulfonic acid.

    PubMed

    Gu, Lin; Zhu, Nanwen; Zhou, Pin

    2012-08-01

    A magnetic porous carbon containing Fe(3)O(4) (FPC) has been synthesized by a novel activation and carbonization process of sewage sludge without extra addition of ferric ions. Properties of FPC carbonized at 600, 800 and 1000 °C were studied using N(2) adsorption and desorption isotherms, X-ray diffraction (XRD), scanning electron microscopy (SEM) and vibrating sample magnetometer. The results indicate that FPC carbonized at 600 °C has a superior porous structure and high pore volume (0.504 mL/g). Further study found that Fe(3)O(4) is dominating in the presence of iron in FPC carbonized at 600 °C. The resulting chars shows higher catalytic activity in 1-diazo-2-naphthol-4-sulfonic acid (1,2,4-Acid) oxidation than commercial Fe(3)O(4) MNPs. The 1,2,4-Acid and TOC removal efficiency can reach 96.6% and 87.2% after 260 min Fenton-like treatment. The mechanism in FPC-H(2)O(2) system may include a Haber-Weiss type reaction between the active sites (e.g. Fe(3)O(4)) in FPC and hydrogen peroxide.

  14. Novel Ordered Mesoporous Carbon Based Sulfonic Acid as an Efficient Catalyst in the Selective Dehydration of Fructose into 5-HMF: the Role of Solvent and Surface Chemistry.

    PubMed

    Karimi, Babak; Mirzaei, Hamid M; Behzadnia, Hesam; Vali, Hojatollah

    2015-09-01

    Novel ionic liquid derived ordered mesoporous carbons functionalized with sulfonic acid groups IOMC-ArSO3H and GIOMC-ArSO3H were prepared, characterized, and examined in the dehydration reaction of fructose into 5-hydroxymethylfurfural (5-HMF) both in aqueous and nonaqueous systems. To study and correlate the surface properties of these carbocatalysts and some other SBA-15 typed solid acids with 5-HMF yield, hydrophilicity index (H-index) were employed in the fructose dehydration. Our study systematically declared that almost a criterion may be expected for application of solid acids in which by increasing H-index value up to 0.8 the HMF yield enhances accordingly. More increase in H-index up to 1.3 did not change the HMF yield profoundly. Although, it has been shown that the catalyst with larger H-index (∼1.3) resulted in higher activity both in aqueous and 2-propanol systems, during the recycling process deactivation occurs because of more water uptake and the catalysts with optimum amount of H-index (∼0.8) is more robust in the dehydration of fructose.

  15. Properties investigation of sulfonated poly(ether ether ketone)/polyacrylonitrile acid-base blend membrane for vanadium redox flow battery application.

    PubMed

    Li, Zhaohua; Dai, Wenjing; Yu, Lihong; Liu, Le; Xi, Jingyu; Qiu, Xinping; Chen, Liquan

    2014-11-12

    Acid-base blend membrane prepared from sulfonated poly(ether ether ketone) (SPEEK) and polyacrylonitrile (PAN) was detailedly evaluated for vanadium redox flow battery (VRFB) application. SPEEK/PAN blend membrane exhibited dense and homogeneous cross-section morphology as scanning electron microscopy and energy-dispersive X-ray spectroscopy images show. The acid-base interaction of ionic cross-linking and hydrogen bonding between SPEEK and PAN could effectively reduce water uptake, swelling ratio, and vanadium ion permeability, and improve the performance and stability of blend membrane. Because of the good balance of proton conductivity and vanadium ion permeability, blend membrane with 20 wt % PAN (S/PAN-20%) showed higher Coulombic efficiency (96.2% vs 91.1%) and energy efficiency (83.5% vs 78.4%) than Nafion 117 membrane at current density of 80 mA cm(-2) when they were used in VRFB single cell. Besides, S/PAN-20% membrane kept a stable performance during 150 cycles at current density of 80 mA cm(-2) in the cycle life test. Hence the SPEEK/PAN acid-base blend membrane could be used as promising candidate for VRFB application. PMID:25315399

  16. Properties investigation of sulfonated poly(ether ether ketone)/polyacrylonitrile acid-base blend membrane for vanadium redox flow battery application.

    PubMed

    Li, Zhaohua; Dai, Wenjing; Yu, Lihong; Liu, Le; Xi, Jingyu; Qiu, Xinping; Chen, Liquan

    2014-11-12

    Acid-base blend membrane prepared from sulfonated poly(ether ether ketone) (SPEEK) and polyacrylonitrile (PAN) was detailedly evaluated for vanadium redox flow battery (VRFB) application. SPEEK/PAN blend membrane exhibited dense and homogeneous cross-section morphology as scanning electron microscopy and energy-dispersive X-ray spectroscopy images show. The acid-base interaction of ionic cross-linking and hydrogen bonding between SPEEK and PAN could effectively reduce water uptake, swelling ratio, and vanadium ion permeability, and improve the performance and stability of blend membrane. Because of the good balance of proton conductivity and vanadium ion permeability, blend membrane with 20 wt % PAN (S/PAN-20%) showed higher Coulombic efficiency (96.2% vs 91.1%) and energy efficiency (83.5% vs 78.4%) than Nafion 117 membrane at current density of 80 mA cm(-2) when they were used in VRFB single cell. Besides, S/PAN-20% membrane kept a stable performance during 150 cycles at current density of 80 mA cm(-2) in the cycle life test. Hence the SPEEK/PAN acid-base blend membrane could be used as promising candidate for VRFB application.

  17. An 2,2'-azino-bis(3-ethylbenzthiazoline-6-sulfonic acid)-immobilized electrode for the simultaneous detection of dopamine and uric acid in the presence of ascorbic acid.

    PubMed

    Chih, Yi-Kai; Yang, Ming-Chang

    2013-06-01

    An 2,2'-azino-bis(3-ethylbenzthiazoline-6-sulfonic acid) (ABTS)-immobilized carbon nanotube (CNT) electrode was used to simultaneously detect dopamine (DA) and uric acid (UA) in the presence of ascorbic acid (AA) with differential pulse voltammetry. When ABTS was immobilized onto the CNT electrode in the presence of DA, UA and 100 μM AA, the sensitivity to DA increased from 0.600 (±0.013) to 1.334 (±0.010) μA/μM in the concentration ranges of 0.90-10 μM and 1.87-20 μM, respectively, and the sensitivity to UA increased from 0.030 (±0.005) to 0.078 (±0.006) μA/μM in the concentration ranges of 2.16-240 μM and 3.07-400 μM, respectively. These findings demonstrate that the ABTS-immobilized CNT electrode attained a higher sensitivity to UA and also a wider linear range of concentrations.

  18. Effect of propane-2-sulfonic acid octadec-9-enyl-amide on the expression of adhesion molecules in human umbilical vein endothelial cells.

    PubMed

    Chen, Cai-Xia; Yang, Li-Chao; Xu, Xu-Dong; Wei, Xiao; Gai, Ya-Ting; Peng, Lu; Guo, Han; Hao-Zhou; Wang, Yi-Qing; Jin, Xin

    2015-06-01

    Oleoylethanolamide (OEA), an endogenous agonist of PPARα, has been reported to have anti-atherosclerotic properties. However, OEA can be enzymatically hydrolyzed to oleic acid and ethanolamine and, thus, is not expected to be orally active. In the present study, we designed and synthesized an OEA analog, propane-2-sulfonic acid octadec-9-enyl-amide (N15), which is resistant to enzymatic hydrolysis. The purpose of this study was to investigate the effects of N15 on the expression of adhesion molecules in human umbilical vein endothelial cells (HUVECs). The results showed that N15 inhibited TNFα-induced production of vascular cell adhesion molecule-1 and intercellular adhesion molecule-1 and the adhesion of monocytes to TNFα-induced HUVECs. Furthermore, the protective effect of N15 on inflammation is dependent upon a PPAR-α/γ-mediated mechanism. In conclusion, N15 protects against TNFα-induced vascular endothelial inflammation. This anti-inflammatory effect of N15 is dependent on PPAR-α/γ dual targets.

  19. Presence of UV filters in surface water and the effects of phenylbenzimidazole sulfonic acid on rainbow trout (Oncorhynchus mykiss) following a chronic toxicity test.

    PubMed

    Grabicova, Katerina; Fedorova, Ganna; Burkina, Viktoriia; Steinbach, Christoph; Schmidt-Posthaus, Heike; Zlabek, Vladimir; Kocour Kroupova, Hana; Grabic, Roman; Randak, Tomas

    2013-10-01

    UV filters belong to a group of compounds that are used by humans and are present in municipal waste-waters, effluents from sewage treatment plants and surface waters. Current information regarding UV filters and their effects on fish is limited. In this study, the occurrence of three commonly used UV filters - 2-phenylbenzimidazole-5-sulfonic acid (PBSA), 2-hydroxy-4-methoxybenzophenone (benzophenone-3, BP-3) and 5-benzoyl-4-hydroxy-2-methoxy-benzenesulfonic acid (benzophenone-4, BP-4) - in South Bohemia (Czech Republic) surface waters is presented. PBSA concentrations (up to 13μgL(-1)) were significantly greater than BP-3 or BP-4 concentrations (up to 620 and 390ngL(-1), respectively). On the basis of these results, PBSA was selected for use in a toxicity test utilizing the common model organism rainbow trout (Oncorhynchus mykiss). Fish were exposed to three concentrations of PBSA (1, 10 and 1000µgL(-1)) for 21 and 42 days. The PBSA concentrations in the fish plasma, liver and kidneys were elevated after 21 and 42 days of exposure. PBSA increased activity of certain P450 cytochromes. Exposure to PBSA also changed various biochemical parameters and enzyme activities in the fish plasma. However, no pathological changes were obvious in the liver or gonads.

  20. Photophysical properties of 8-hydroxyquinoline-5-sulfonic acid as a function of the pH: a TD-DFT investigation.

    PubMed

    Le Bahers, Tangui; Adamo, Carlo; Ciofini, Ilaria

    2010-05-13

    Time dependent density functional theory (TD-DFT) in conjunction with a hybrid exchange correlation functional (PBE0) were applied to characterize the photophysical behavior of the 8-hydroxyquinoline-5-sulfonic acid (8-HQS) in solution as a function of the pH. In particular, absorption and emission spectra of each species as well as their relative stability in the first excited state were computed. From these calculations it is possible to directly derive quantities otherwise hardly experimentally accessible such as excited state acidic dissociation constants (pK(a)*) and corresponding distribution diagrams at the excited state. These two latter quantities were determined by first principles from the relative stabilities of the species at the excited state computed at the TD-DFT level. Consequently, the evolution of the absorption and emission spectral properties of 8-HQS as a function of the pH could be fully simulated from first principles. Finally, insights on energetics and the mechanism of the phototautomerization reaction supposed to be responsible for the absence of fluorescence of the 8-HQS molecule were derived from the calculations.

  1. Electrochemical sensor based on molecularly imprinted film at polypyrrole-sulfonated graphene/hyaluronic acid-multiwalled carbon nanotubes modified electrode for determination of tryptamine.

    PubMed

    Xing, Xianrong; Liu, Su; Yu, Jinghua; Lian, Wenjing; Huang, Jiadong

    2012-01-15

    An imprinted electrochemical sensor based on polypyrrole-sulfonated graphene (PPy-SG)/hyaluronic acid-multiwalled carbon nanotubes (HA-MWCNTs) for sensitive detection of tryptamine was presented. Molecularly imprinted polymers (MIPs) were synthesized by electropolymerization using tryptamine as the template, and para-aminobenzoic acid (pABA) as the monomer. The surface feature of the modified electrode was characterized by cyclic voltammetry (CV). The proposed sensor was tested by chronoamperometry. Several important parameters controlling the performance of the molecularly imprinted sensor were investigated and optimized. The results showed that the PPy-SG composites films showed improved conductivity and electrochemical performances. HA-MWCNTs bionanocomposites could enhance the current response evidently. The good selectivity of the sensor allowed three discriminations of tryptamine from interferents, which include tyramine, dopamine and tryptophan. Under the optimal conditions, a linear ranging from 9.0×10(-8) mol L(-1) to 7.0×10(-5) mol L(-1) for the detection of tryptamine was observed with the detection limit of 7.4×10(-8) mol L(-1) (S/N=3). This imprinted electrochemical sensor was successfully employed to detect tryptamine in real samples.

  2. Visceral Hypersensitivity Is Provoked by 2,4,6-Trinitrobenzene Sulfonic Acid-Induced Ileitis in Rats

    PubMed Central

    Shah, Manoj K.; Wan, Juan; Janyaro, Habibullah; Tahir, Adnan H.; Cui, Luying; Ding, Ming-Xing

    2016-01-01

    Background and Aims: Crohn’s Disease (CD), a chronic Inflammatory Bowel Disease, can occur in any part of the gastrointestinal tract, but most frequently in the ileum. Visceral hypersensitivity contributes for development of chronic abdominal pain in this disease. Currently, the understanding of the mechanism underlying hypersensitivity of Crohn’s ileitis has been hindered by a lack of specific animal model. The present study is undertaken to investigate the visceral hypersensitivity provoked by 2,4,6-trinitrobenzene sulfonic (TNBS)-induced ileitis rats. Methods: Male Sprague-Dawley rats were anaesthetized and laparotomized for intraileal injection of TNBS (0.6 ml, 80 mg/kg body weight in 30% ethanol, n = 48), an equal volume of 30% Ethanol (n = 24), and Saline (n = 24), respectively. Visceral hypersensitivity was assessed by visceromotor responses (VMR) to 20, 40, 60, 80, and 100 mmHg colorectal distension pressure (CRD) at day 1, 3, 7, 14, 21, and 28. Immediately after CRD test, the rats were euthanized for collecting the terminal ileal segment for histopathological examinations and ELISA of myleoperoxidase and cytokines (TNF-α, IL-1β, IL-6), and dorsal root ganglia (T11) for determination of calcitonin gene-related peptide by immunohistochemistry, respectively. Results: Among all groups, TNBS-treatment showed transmural inflammation initially at 3 days, reached maximum at 7 days and persisted up to 21 days. The rats with ileitis exhibited (P < 0.05) VMR to CRD at day 7 to day 21. The calcitonin gene-related peptide-immunoreactive positive cells increased (P < 0.05) in dorsal root ganglia at day 7 to 21, which was persistently consistent with visceral hypersensitivity in TNBS-treated rats. Conclusion: TNBS injection into the ileum induced transmural ileitis including granuloma and visceral hypersensitivity. As this model mimics clinical manifestations of CD, it may provide a road map to probe the pathogenesis of gut inflammation and visceral

  3. Immunotoxicity of perfluorooctanoic acid and perfluorooctane sulfonate and the role of peroxisome proliferator-activated receptor alpha

    EPA Science Inventory

    Peroxisome proliferators, including perfluorooctanoic acid (PFOA), are environmentally widespread and persistent and multiple toxicities have been reported in experimental animals and humans. These compounds trigger biological activity via activation of the alpha isotype of pero...

  4. Congener-specific organic carbon-normalized soil and sediment-water partitioning coefficients for the C1 through C8 perfluoroalkyl carboxylic and sulfonic acids.

    PubMed

    Rayne, Sierra; Forest, Kaya

    2009-11-01

    Organic carbon-normalized soil and sediment-water partitioning coefficients (K(oc)) were estimated for all C(1) through C(8) perfluoroalkyl carboxylic (PFCA) and sulfonic (PFSA) acid congeners. The limited experimental K(oc) data set for the straight chain C(7) through C(10) PFCAs and C(8) and C(10) PFSAs was correlated to SPARC and ALOGPS computationally estimated octanol-water partitioning/distribution constants and used to predict K(oc) values for both branched and linear C(1) through C(8) isomers. Branched and linear congeners in this homologue range are generally expected to have K(oc) values > 1, leading to their accumulation in organic matter on sediments and soils, retardation during ground and pore water flow, and the preferential association with dissolved organic matter in aquatic systems. Both increasing perfluoroalkyl chain length and linearity increase K(oc) values with substantial intra- and inter-homologue variation and interhomologue mixing. Variability in K(oc) values among the PFCA and PFSA congeners will likely lead to an enrichment of more linear and longer-chain isomers in organic matter fractions, resulting in aqueous phases fractionated towards shorter-chain branched congeners. The expected magnitude of fractionation will require inclusion in source apportionment models and risk assessments. A comparison of representative established quantitative structure property relationships for estimating K(oc) values from octanol-water partitioning constants suggests that these equilibrium partitioning frameworks may be applicable towards modeling PFCA and PFSA environmental fate processes. PMID:20183495

  5. Self-assembled platinum nanoparticles on sulfonic acid-grafted graphene as effective electrocatalysts for methanol oxidation in direct methanol fuel cells

    PubMed Central

    Lu, Jinlin; Li, Yanhong; Li, Shengli; Jiang, San Ping

    2016-01-01

    In this article, sulfonic acid-grafted reduced graphene oxide (S-rGO) were synthesized using a one-pot method under mild conditions, and used as Pt catalyst supports to prepare Pt/S-rGO electrocatalysts through a self-assembly route. The structure, morphologies and physicochemical properties of S-rGO were examined in detail by techniques such as atomic force microscope (AFM), transmission electron microscopy (TEM) and X-ray photoelectron spectroscopy (XPS). The S-rGO nanosheets show excellent solubility and stability in water and the average particle size of Pt nanoparticles supported on S-rGO is ~3.8 nm with symmetrical and uniform distribution. The electrocatalytic properties of Pt/S-rGO were investigated for methanol oxidation reaction (MOR) in direct methanol fuel cells (DMFCs). In comparison to Pt supported on high surface area Vulcan XC-72 carbon (Pt/VC) and Pt/rGO, the Pt/S-rGO electrocatalyst exhibits a much higher electrocatalytic activity, faster reaction kinetics and a better stability. The results indicate that Pt/S-rGO is a promising and effective electrocatalyst for MOR of DMFCs. PMID:26876468

  6. Simultaneous determination of caffeine and paracetamol by square wave voltammetry at poly(4-amino-3-hydroxynaphthalene sulfonic acid)-modified glassy carbon electrode.

    PubMed

    Tefera, Molla; Geto, Alemnew; Tessema, Merid; Admassie, Shimelis

    2016-11-01

    Poly(4-amino-3-hydroxynaphthalene sulfonic acid)-modified glassy carbon electrode (poly(AHNSA)/GCE) was prepared for simultaneous determination of caffeine and paracetamol using square-wave voltammetry. The method was used to study the effects of pH and scan rate on the voltammetric response of caffeine and paracetamol. Linear calibration curves in the range of 10-125μM were obtained for both caffeine and paracetamol in acetate buffer solution of pH 4.5 with a correlation coefficient of 0.9989 and 0.9986, respectively. The calculated detection limits (S/N=3) were 0.79μM for caffeine and 0.45μM for paracetamol. The effects of some interfering substances in the determination of caffeine and paracetamol were also studied and their interferences were found to be negligible which proved the selectivity of the modified electrode. The method was successfully applied for the quantitative determination of caffeine and paracetamol in Coca-Cola, Pepsi-Cola and tea samples.

  7. Treatment of naphthalene-2-sulfonic acid from tannery wastewater by a granular activated carbon fixed bed inoculated with bacterial isolates Arthrobacter globiformis and Comamonas testosteroni.

    PubMed

    Song, Zhi; Edwards, Suzanne R; Burns, Richard G

    2006-02-01

    The kinetics of naphthalene-2-sulfonic acid (2-NSA) adsorption by granular activated carbon (GAC) were measured and the relationships between adsorption, desorption, bioavailability and biodegradation assessed. The conventional Langmuir model fitted the experimental sorption isotherm data and introduced 2-NSA degrading bacteria, established on the surface of the GAC, did not interfere with adsorption. The potential value of GAC as a microbial support in the aerobic degradation of 2-NSA by Arthrobacter globiformis and Comamonas testosteroni was investigated. Using both virgin and microbially colonised GAC, adsorption removed 2-NSA from the liquid phase up to its saturation capacity of 140 mg/g GAC within 48 h. However, between 83.2% and 93.3% of the adsorbed 2-NSA was bioavailable to both bacterial species as a source of carbon for growth. In comparison to the non-inoculated GAC, the combination of rapid adsorption and biodegradation increased the amount (by 70-93%) of 2-NSA removal from the influent phase as well as the bed-life of the GAC (from 40 to >120 d). A microbially conditioned GAC fixed-bed reactor containing 15 g GAC removed 100% 2-NSA (100 mg/l) from tannery wastewater at an empty bed contact time of 22 min for a minimum of 120 d without the need for GAC reconditioning or replacement. This suggests that small volume GAC bioreactors could be used for tannery wastewater recycling.

  8. Physiological Modifications in the Production and Repair of Methyl Methane Sulfonate-Induced Breaks in the Deoxyribonucleic Acid of Escherichia coli K-12

    PubMed Central

    Scudiero, Dominic A.; Friesen, Benjamin S.; Baptist, Jeremy E.

    1973-01-01

    The medium in which Rec+ strains of Escherichia coli K-12 are grown affected their sensitivity to treatment with methyl methane sulfonate (MMS). Rec+ cells grown to the stationary phase in glucose-enriched nutrient broth (GNB) were more resistant to MMS than cells grown in nutrient broth (NB). The repair of MMS-induced breaks (or alkali-labile bonds) in the deoxyribonucleic acid (DNA) from E. coli K-12 strains AB1157, AB1886 uvrA6, and SR111 recA13 recB21 grown in GNB and NB media was examined by means of alkaline sucrose gradient centrifugation. It appeared that essentially all of the repair of breaks that occurred, as evidenced by an increase in “molecular weight,” took place within 10 min after treatment with MMS under our conditions. Cell survival was highest in cells for which the size of the DNA after the post-treatment incubation was the largest. The largest DNA after post-treatment incubation was found in Rec+ cells grown in GNB medium. The results suggest that these cells may have an enhanced capacity for repairing breaks in DNA. PMID:4349030

  9. Use of dynamic simulation to assess the behaviour of linear alkyl benzene sulfonates and their biodegradation intermediates (sulfophenylcarboxylic acids) in estuaries

    NASA Astrophysics Data System (ADS)

    García-Luque, E.; González-Mazo, E.; Forja, J. M.; Gómez-Parra, A.

    2009-02-01

    Dynamic laboratory simulation of processes affecting chemical species in their transit through estuaries is a very useful tool to characterize these littoral systems. To date, laboratory studies concerning biodegradation and sorption (onto suspended particulate matter) of LAS in an estuary are scarce. For this reason, a dynamic automated estuarine simulator has been employed to carry out different experiments in order to assess the biodegradability of linear alkyl benzene sulfonates (LAS) and their biodegradation intermediates (sulfophenylcarboxylic acids, SPCs) using environmentally representative LAS concentrations in estuaries by a continuous injection of LAS into the system. During the experiments, a great affinity of LAS for the solid phase has been found, as well as an increased adsorption in line with increased chain length. On the other hand, the presence of SPCs with chain length between 6 and 13 carbon atoms was detected. Accumulation and persistence of medium chain length SPCs (C 6-C 8) along the experiments show that their degradation constitutes the limiting step for the process of LAS mineralization. In the final zone of the simulated estuarine system, the levels of SPCs were below the limits of detection. Thus, the disappearance of SPCs indicated that LAS biodegradation had been completed along the estuary. Similar results have been described for different Iberian littoral ecosystems. Therefore, the simulator employed in this research appears to be a useful tool to anticipate the behaviour of a xenobiotic chemical in its transit through littoral systems with different salinity gradients.

  10. One-step electrochemical synthesis of 6-amino-4-hydroxy-2-napthalene-sulfonic acid functionalized graphene for green energy storage electrode materials

    NASA Astrophysics Data System (ADS)

    Kuila, Tapas; Khanra, Partha; Kim, Nam Hoon; Kuk Choi, Sung; Yun, Hyung Joong; Lee, Joong Hee

    2013-09-01

    A green approach for the one-step electrochemical synthesis of water dispersible graphene is reported. An alkaline solution of 6-amino-4-hydroxy-2-naphthalene-sulfonic acid (ANS) serves the role of electrolyte as well as surface modifier. High-purity graphite rods are used as electrodes which can be exfoliated under a constant electrical potential (˜20 V) to form ANS functionalized graphene (ANEG). The aqueous dispersion of ANEG obeyed Beer’s law at moderate concentrations, as evidenced from ultraviolet-visible spectroscopy analysis. X-ray diffraction analysis suggests complete exfoliation of graphite into graphene. Fourier transform infrared and x-ray photoelectron spectroscopy not only confirm the functionalization of graphene with ANS, but also suggest the formation of oxygen containing functional groups on the surface of ANEG. Raman spectra analysis indicates the presence of defects in ANEG as compared to pure graphite. Cyclic voltammetry and charge-discharge measurements of ANEG using three electrode systems show a specific capacitance of 115 F g-1 at a current density of 4 A g-1. The ANEG electrode exhibits 93% retention in specific capacitance after 1000 charge-discharge cycles, confirming its utility as a green energy storage electrode material.

  11. Electrodeposition of manganese dioxide in three-dimensional poly(3,4-ethylenedioxythiophene)-poly(styrene sulfonic acid)-polyaniline for supercapacitor

    NASA Astrophysics Data System (ADS)

    Liu, Feng-Jiin

    The preparation of composites of precise metal oxides/conducting polymers is important in studies of supercapacitors. In this work, a three-dimensional matrix of poly(3,4-ethylenedioxythiophene)-poly(styrene sulfonic acid)-polyaniline (PEDOT-PSS-PANI) was prepared by interfacial polymerization of ANI into PEDOT-PSS. Conductivity was enhanced by incorporating of PANI into PEDOT-PSS because of the decrease in the distance for electron shuttling along the conjugated polymeric chain. Composite electrodes were prepared by the electrodeposition of manganese dioxide (MnO 2) in a PEDOT-PSS-PANI three-dimensional matrix. The electrodes were characterized by field emission scanning electron microscopy (FE-SEM), X-ray photoelectron spectroscopy (XPS), and cyclic voltammetry techniques. The results show a significant improvement in the specific capacitance of the composite electrode. For PEDOT-PSS the specific capacitance was of 0.23 F g -1, while PEDOT-PSS-PANI and PEDOT-PSS-PANI-MnO 2 displayed values of 6.7 and 61.5 F g -1, respectively. When only considering the MnO 2 mass, the composite had the specific capacitance of 372 F g -1. The composite also had an excellent cyclic performance.

  12. Association of fluorescent probes 1-anilinonaphthalene-8-sulfonate and 4,4'-dianilino-1,1'-binaphthyl-5,5'-disulfonic acid with T7 RNA polymerase.

    PubMed

    Ghosh, Utpal; Das, Mili; Dasgupta, Dipak

    2003-01-01

    T7 RNA polymerase is an enzyme that carries out transcription using DNA as the template and ribonucleotides as the substrates. Here we report the association of the polymerase with 1-anilinonaphthalene-8-sulfonate (ANS) and 4,4'-dianilino-1,1'-binaphthyl-5,5'-disulfonic acid (bis-ANS), which are two fluorescent hydrophobic probes that are frequently used to study structural perturbations in proteins and intermediate states of proteins during folding and unfolding. Our results from the fluorescence titration data show that these two molecules bind to the enzyme with dissociation constants on the micromolar order. The results from the tryptic digestion of the enzyme in the absence and presence of the probes show that they inhibit the rate of tryptic digestion. Circular dichroism spectroscopic studies of the protein in the near UV region indicate that both probes induce tertiary structural changes in the polymerase. There is also a probe (ANS or bis-ANS) induced inhibition of the enzymatic activity. All these results are attributed to association of the probes with the enzyme, leading to an alteration in the conformation of T7 RNA polymerase. This limits the use of these extrinisic probes to the study of the folding properties of the enzyme.

  13. White light emission from Mn2 + doped ZnS nanocrystals through the surface chelating of 8-hydroxyquinoline-5-sulfonic acid

    NASA Astrophysics Data System (ADS)

    Lü, Xiaodan; Yang, Jing; Fu, Yuqin; Liu, Qianqian; Qi, Bin; Lü, Changli; Su, Zhongmin

    2010-03-01

    White light emitting semiconductor nanocrystals (NCs) have been successfully synthesized from 8-hydroxyquinoline-5-sulfonic acid (HQS) decorated manganese doped ZnS NCs through fine tuning the surface-coordination emission and dopant emission of the NC host. The HQS functionalized manganese doped ZnS NCs (QS-ZnS:Mn), with a cubic crystal structure, have the same diameter of about 4.0 nm as ZnS:Mn NCs without HQS. The intensity of the surface-coordination emission peak increased with increasing HQS content or augmenting excited wavelength. The emission of white light was achieved by carefully controlling the dosage of HQS in NCs and appropriately tuning the excited wavelength. The color coordinates (0.35, 0.34) for the efficient white light emitting NCs were very close to the ideal Commission Internationale de l'Eclairage (CIE) chromaticity coordinates for pure white light (0.33, 0.33). The photoluminescence (PL) decay study revealed that the white light emitting NCs exhibited maximum lifetime values at different emission peaks for different NC samples. The study results also indicated that the HQS molecules were attached to the surface of ZnS:Mn NCs in a single coordination fashion due to the steric hindrance effect of the special spherical surface of NCs, which made the QS-ZnS:Mn NCs possess stable and high fluorescent properties in different organic solvents as compared with the conventional small molecule complexes.

  14. White light emission from Mn2 + doped ZnS nanocrystals through the surface chelating of 8-hydroxyquinoline-5-sulfonic acid.

    PubMed

    Lü, Xiaodan; Yang, Jing; Fu, Yuqin; Liu, Qianqian; Qi, Bin; Lü, Changli; Su, Zhongmin

    2010-03-19

    White light emitting semiconductor nanocrystals (NCs) have been successfully synthesized from 8-hydroxyquinoline-5-sulfonic acid (HQS) decorated manganese doped ZnS NCs through fine tuning the surface-coordination emission and dopant emission of the NC host. The HQS functionalized manganese doped ZnS NCs (QS-ZnS:Mn), with a cubic crystal structure, have the same diameter of about 4.0 nm as ZnS:Mn NCs without HQS. The intensity of the surface-coordination emission peak increased with increasing HQS content or augmenting excited wavelength. The emission of white light was achieved by carefully controlling the dosage of HQS in NCs and appropriately tuning the excited wavelength. The color coordinates (0.35, 0.34) for the efficient white light emitting NCs were very close to the ideal Commission Internationale de l'Eclairage (CIE) chromaticity coordinates for pure white light (0.33, 0.33). The photoluminescence (PL) decay study revealed that the white light emitting NCs exhibited maximum lifetime values at different emission peaks for different NC samples. The study results also indicated that the HQS molecules were attached to the surface of ZnS:Mn NCs in a single coordination fashion due to the steric hindrance effect of the special spherical surface of NCs, which made the QS-ZnS:Mn NCs possess stable and high fluorescent properties in different organic solvents as compared with the conventional small molecule complexes.

  15. Involvement of mitogen-activated protein kinase and NF-κB signaling pathways in perfluorooctane sulfonic acid-induced inflammatory reaction in BV2 microglial cells.

    PubMed

    Zhu, Jingying; Qian, Wenyi; Wang, Yixin; Gao, Rong; Wang, Jun; Xiao, Hang

    2015-12-01

    Microglial activation is closely related to the pathogenesis of neurodegenerative diseases by producing proinflammatory cytokines. Perfluorooctane sulfonic acid (PFOS), known as an emerging persistent organic pollutant, is reported to disturb human immune homeostasis; however, whether it affects cytokine production or the immune response in the central nervous system remains unclear. The present study was aimed to explore whether PFOS contributed to inflammatory action and to investigate the corresponding mechanisms in BV2 microglia. PFOS-mediated morphologic changes, cytokine responses and signaling events were examined by light microscopy, real-time polymerase chain reaction, enzyme-linked immunosorbent assay and Western blot assays. Our results indicated that PFOS increased BV2 cells activation and simultaneously increased tumor necrosis factor alpha and interleukin-6 expression. In addition, the c-Jun N-terminal protein kinase inhibitor (SP600125), as well as ERK1/2 blocker (PD98059), transcriptionally at least, displayed anti-inflammatory properties on PFOS-elicited cytokine responses. Moreover, the inflammatory transcription factor NF-κB was specifically activated by PFOS as well. These results, taken together, suggested that PFOS exerts its functional effects on the response of microglial cell activation via, in part, the c-Jun N-terminal protein kinase, ERK and NF-κB signaling pathways with its subsequent influence on proinflammatory action.

  16. Self-assembled platinum nanoparticles on sulfonic acid-grafted graphene as effective electrocatalysts for methanol oxidation in direct methanol fuel cells

    NASA Astrophysics Data System (ADS)

    Lu, Jinlin; Li, Yanhong; Li, Shengli; Jiang, San Ping

    2016-02-01

    In this article, sulfonic acid-grafted reduced graphene oxide (S-rGO) were synthesized using a one-pot method under mild conditions, and used as Pt catalyst supports to prepare Pt/S-rGO electrocatalysts through a self-assembly route. The structure, morphologies and physicochemical properties of S-rGO were examined in detail by techniques such as atomic force microscope (AFM), transmission electron microscopy (TEM) and X-ray photoelectron spectroscopy (XPS). The S-rGO nanosheets show excellent solubility and stability in water and the average particle size of Pt nanoparticles supported on S-rGO is ~3.8 nm with symmetrical and uniform distribution. The electrocatalytic properties of Pt/S-rGO were investigated for methanol oxidation reaction (MOR) in direct methanol fuel cells (DMFCs). In comparison to Pt supported on high surface area Vulcan XC-72 carbon (Pt/VC) and Pt/rGO, the Pt/S-rGO electrocatalyst exhibits a much higher electrocatalytic activity, faster reaction kinetics and a better stability. The results indicate that Pt/S-rGO is a promising and effective electrocatalyst for MOR of DMFCs.

  17. The Environmental Pollutants Perfluorooctane Sulfonate and Perfluorooctanoic Acid Upregulate Uncoupling Protein 1 (UCP1) in Brown-Fat Mitochondria Through a UCP1-Dependent Reduction in Food Intake.

    PubMed

    Shabalina, Irina G; Kramarova, Tatiana V; Mattsson, Charlotte L; Petrovic, Natasa; Rahman Qazi, Mousumi; Csikasz, Robert I; Chang, Shu-Ching; Butenhoff, John; DePierre, Joseph W; Cannon, Barbara; Nedergaard, Jan

    2015-08-01

    The environmental pollutants perfluorooctane sulfonate (PFOS) and perfluorooctanoic acid (PFOA) cause a dramatic reduction in the size of the major adipose tissue depots and a general body weight decrease when they are added to the food of mice. We demonstrate here that this is mainly due to a reduction in food intake; this reduction was not due to food aversion. Remarkably and unexpectedly, a large part of the effect of PFOA/PFOS on food intake was dependent on the presence of the uncoupling protein 1 (UCP1) in the mice. Correspondingly, PFOA/PFOS treatment induced recruitment of brown adipose tissue mitochondria: increased oxidative capacity and increased UCP1-mediated oxygen consumption (thermogenesis). In mice pair-fed to the food intake during PFOA/PFOS treatment in wildtype mice, brown-fat mitochondrial recruitment was also induced. We conclude that we have uncovered the existence of a regulatory component of food intake that is dependent upon brown adipose tissue thermogenic activity. The possible environmental consequences of this novel PFOA/PFOS effect (a possible decreased fitness) are noted, as well as the perspectives of this finding on the general understanding of control of food intake control and its possible extension to combatting obesity.

  18. One-step electrochemical synthesis of 6-amino-4-hydroxy-2-napthalene-sulfonic acid functionalized graphene for green energy storage electrode materials.

    PubMed

    Kuila, Tapas; Khanra, Partha; Kim, Nam Hoon; Choi, Sung Kuk; Yun, Hyung Joong; Lee, Joong Hee

    2013-09-13

    A green approach for the one-step electrochemical synthesis of water dispersible graphene is reported. An alkaline solution of 6-amino-4-hydroxy-2-naphthalene-sulfonic acid (ANS) serves the role of electrolyte as well as surface modifier. High-purity graphite rods are used as electrodes which can be exfoliated under a constant electrical potential (∼20 V) to form ANS functionalized graphene (ANEG). The aqueous dispersion of ANEG obeyed Beer's law at moderate concentrations, as evidenced from ultraviolet-visible spectroscopy analysis. X-ray diffraction analysis suggests complete exfoliation of graphite into graphene. Fourier transform infrared and x-ray photoelectron spectroscopy not only confirm the functionalization of graphene with ANS, but also suggest the formation of oxygen containing functional groups on the surface of ANEG. Raman spectra analysis indicates the presence of defects in ANEG as compared to pure graphite. Cyclic voltammetry and charge-discharge measurements of ANEG using three electrode systems show a specific capacitance of 115 F g(-1) at a current density of 4 A g(-1). The ANEG electrode exhibits 93% retention in specific capacitance after 1000 charge-discharge cycles, confirming its utility as a green energy storage electrode material.

  19. A Facile Chemical Reduction of Graphene-Oxide Using p-Toluene Sulfonic Acid and Fabrication of Reduced Graphene-Oxide Film.

    PubMed

    Vengatesan, M R; Shen, Tian-Zi; Alagar, M; Song, Jang-Kun

    2016-01-01

    We report a cost effective and easy chemical reduction method for exfoliated individual graphene oxide (GO) and GO paper using p-toluene sulfonic acid (PTSA) under mild conditions. Raman spectroscopy, Fourier transform infrared (FT-IR) spectroscopy, X-ray diffraction (XRD), X-ray photon spectroscopy (XPS), thermo gravimetric analysis (TGA) and transmission electron microscopy (TEM) analysis were performed to investigate the quality of GO reduction. Data resulting from the spectral analysis suggest that the reduction method using PTSA is an efficient method to remove oxygen functionalities in the GO and also as an alternative to commonly used reducing agents. We also fabricated chemically reduced GO (RGO) film from GO film using this method. The RGO film exhibits an electrical conductivity of about 10587 Sm⁻¹. These results suggest that this method is very useful for the reduction of GO and GO film or paper using PTSA in a solution process for flexible electronics due to its facile, efficient and cost-effective features. PMID:27398462

  20. Simultaneous determination of caffeine and paracetamol by square wave voltammetry at poly(4-amino-3-hydroxynaphthalene sulfonic acid)-modified glassy carbon electrode.

    PubMed

    Tefera, Molla; Geto, Alemnew; Tessema, Merid; Admassie, Shimelis

    2016-11-01

    Poly(4-amino-3-hydroxynaphthalene sulfonic acid)-modified glassy carbon electrode (poly(AHNSA)/GCE) was prepared for simultaneous determination of caffeine and paracetamol using square-wave voltammetry. The method was used to study the effects of pH and scan rate on the voltammetric response of caffeine and paracetamol. Linear calibration curves in the range of 10-125μM were obtained for both caffeine and paracetamol in acetate buffer solution of pH 4.5 with a correlation coefficient of 0.9989 and 0.9986, respectively. The calculated detection limits (S/N=3) were 0.79μM for caffeine and 0.45μM for paracetamol. The effects of some interfering substances in the determination of caffeine and paracetamol were also studied and their interferences were found to be negligible which proved the selectivity of the modified electrode. The method was successfully applied for the quantitative determination of caffeine and paracetamol in Coca-Cola, Pepsi-Cola and tea samples. PMID:27211634

  1. Investigation of the Effects of Perfluorooctanoic Acid (PFOA) and Perfluorooctane Sulfonate (PFOS) on Apoptosis and Cell Cycle in a Zebrafish (Danio rerio) Liver Cell Line

    PubMed Central

    Cui, Yuan; Liu, Wei; Xie, Wenping; Yu, Wenlian; Wang, Cheng; Chen, Huiming

    2015-01-01

    This study aimed to explore the effects of perfluorooctanoic acid (PFOA) and perfluorooctane sulfonate (PFOS) on apoptosis and cell cycle in a zebrafish (Danio rerio) liver cell line (ZFL). Treatment groups included a control group, PFOA-IC50, PFOA-IC80, PFOS-IC50 and PFOS-IC80 groups. IC50 and IC80 concentrations were identified by cellular modeling and MTT assays. mRNA levels of p53, Bcl-2, Bax, Caspase-3 and NF-κB p65 were detected by qPCR. Cell apoptosis and cell cycle were detected by flow cytometry and the protein levels of p53, Bcl-2, Bax, Caspase-3 and NF-κB p65 were determined by western blotting. Both PFOA and PFOS inhibited the growth of zebrafish liver cells, and the inhibition rate of PFOS was higher than that of PFOA. Bcl-2 expression levels in the four groups were significantly higher than the control group and Bcl-2 increased significantly in the PFOA-IC80 group. However, the expression levels of Bax in the four treatment groups were higher than the control group. The percentage of cell apoptosis increased significantly with the treatment of PFOA and PFOS (p < 0.05). Cell cycle and cell proliferation were blocked in both the PFOA-IC80 and PFOS-IC80 groups, indicating that PFOA-IC80 and PFOS-IC50 enhanced apoptosis in ZFL cells. PMID:26690195

  2. Design, Synthesis, and Crystal Structures of 6-Alkylidene-2 -Substituted Penicillanic Acid Sulfones as Potent Inhibitors of Acinetobacter baumannii OXA-24 Carbapenemase

    SciTech Connect

    Bou, G.; Santillana, E; Sheri, A; Beceiro, A; Sampson, J; Kalp, M; Bethel, C; Distler, A; Drawz, S; et. al.

    2010-01-01

    Class D {beta}-lactamases represent a growing and diverse class of penicillin-inactivating enzymes that are usually resistant to commercial {beta}-lactamase inhibitors. As many such enzymes are found in multi-drug resistant (MDR) Acinetobacter baumannii and Pseudomonas aeruginosa, novel {beta}-lactamase inhibitors are urgently needed. Five unique 6-alkylidene-2{prime}-substituted penicillanic acid sulfones (1-5) were synthesized and tested against OXA-24, a clinically important {beta}-lactamase that inactivates carbapenems and is found in A. baumannii. Based upon the roles Tyr112 and Met223 play in the OXA-24 {beta}-lactamase, we also engineered two variants (Tyr112Ala and Tyr112Ala,Met223Ala) to test the hypothesis that the hydrophobic tunnel formed by these residues influences inhibitor recognition. IC{sub 50} values against OXA-24 and two OXA-24 {beta}-lactamase variants ranged from 10 {+-} 1 (4 vs WT) to 338 {+-} 20 nM (5 vs Tyr112Ala, Met223Ala). Compound 4 possessed the lowest K{sub i} (500 {+-} 80 nM vs WT), and 1 possessed the highest inactivation efficiency (k{sub inact}/K{sub i} = 0.21 {+-} 0.02 {micro}M{sup -1}s{sup -1}). Electrospray ionization mass spectrometry revealed a single covalent adduct, suggesting the formation of an acyl-enzyme intermediate. X-ray structures of OXA-24 complexed to four inhibitors (2.0-2.6 {angstrom}) reveal the formation of stable bicyclic aromatic intermediates with their carbonyl oxygen in the oxyanion hole. These data provide the first structural evidence that 6-alkylidene-2{prime}-substituted penicillin sulfones are effective mechanism-based inactivators of class D {beta}-lactamases. Their unique chemistry makes them developmental candidates. Mechanisms for class D hydrolysis and inhibition are discussed, and a pathway for the evolution of the BlaR1 sensor of Staphylococcus aureus to the class D {beta}-lactamases is proposed.

  3. Novel proton-exchange membrane based on single-step preparation of functionalized ceramic powder containing surface-anchored sulfonic acid

    NASA Astrophysics Data System (ADS)

    Reichman, S.; Burstein, L.; Peled, E.

    2008-05-01

    A novel approach to the synthesis of a low-cost proton-exchange membrane (PEM) based on the single-step preparation of a functionalized ceramic powder containing surface-anchored sulfonic acid (SASA) and a polymer binder, is presented for the first time. The added value of this technique, compared with earlier work published by our group, is the adoption of a direct, single-step synthesis, as opposed to a multiple-step synthesis. The latter requires an oxidation step, in order to convert the thiol group into a sulfonic group. SASA powders of different compositions have been prepared and characterized by means of Brunaur-Emmet-Teller (BET), thermogravimetric analysis-differential thermal analysis (TGA-DTG), differential scanning calorimeter (DSC), Fourier transformation infrared (FT-IR), nuclear magnetic resonance (NMR), X-ray photoelectron spectroscopy (XPS), atomic force microscopy (AFM), scanning electron microscopy (SEM) and electrochemical techniques. The lowest equivalent weight measured for SASA powders is 1281 g equiv.-1. The ionic conductivity of a 100-μm-thick membrane is measured ex situ at room temperature (25 ± 3 °C) and the highest proton conductivity is 48 mS cm-1. The typical pore size, for the SASA powders is less than 10 nm and ranges from 2 to 50 nm for the SASA-based membranes. The membranes are thermally stable up to 250 °C. Direct methanol fuel cells (DMFCs) are assembled with some of the membranes. Preliminary tests showed that the cell resistance for a ∼100-μm-thick membrane ranges between 0.29 and 0.19 Ω cm2 from 80 to 130 °C, respectively, and that the maximum cell power density with a 1 M methanol solution is 127, 208 and 290 mW cm-2 at 80, 110 and 130 °C, respectively, while the corresponding methanol crossover current density is 0.093, 0.238 and 0.281 A cm-2.

  4. An alternative standard for Trolox-equivalent antioxidant-capacity estimation based on thiol antioxidants. Comparative 2,2'-azinobis[3-ethylbenzothiazoline-6-sulfonic acid] decolorization and rotational viscometry study regarding hyaluronan degradation.

    PubMed

    Hrabárová, Eva; Valachová, Katarína; Rapta, Peter; Soltés, Ladislav

    2010-09-01

    Comparison of the effectiveness of antioxidant activity of three thiol compounds, D-penicillamine, reduced L-glutathione, and 1,4-dithioerythritol, expressed as a radical-scavenging capacity based on the two independent methods, namely a decolorization 2,2'-azinobis[3-ethylbenzothiazoline-6-sulfonic acid] assay and a rotational viscometry, is reported. Particular concern was focused on the testing of potential free-radical scavenging effects of thiols against hyaluronan degradation, induced by hydroxyl radicals. A promising, solvent-independent, antioxidative function of 1,4-dithioerythritol, comparable to that of a standard compound, Trolox(®), was confirmed by the 2,2'-azinobis[3-ethylbenzothiazoline-6-sulfonic acid] assay. The new potential antioxidant 1,4-dithioerythritol exhibited very good solubility in a variety of solvents (e.g., H(2)O, EtOH, and DMSO) and could be widely accepted and used as an effective antioxidant standard instead of a routinely used Trolox(®) on 2,2'-azinobis[3-ethylbenzothiazoline-6-sulfonic acid] assay.

  5. Intensification of biocatalytical processes by synergistic substrate conversion. Fungal peroxidase catalyzed N-hydroxy derivative oxidation in presence of 10-propyl sulfonic acid phenoxazine.

    PubMed

    Kulys, Juozas; Dapkunas, Zilvinas; Stupak, Robert

    2009-08-01

    Many industrial pollutants, xenobiotics, and industry-important compounds are known to be oxidized by peroxidases. It has been shown that highly efficient peroxidase substrates are able to enhance the oxidation of low reactive substrate by acting as mediators. To explore this effect, the oxidation of two N-hydroxy derivatives, i.e., N-hydroxy-N-phenyl-acetamide (HPA) and N-hydroxy-N-phenyl-carbamic acid methyl ester (HPCM) catalyzed by recombinant Coprinus cinereus (rCiP) peroxidase has been studied in presence of efficient substrate 3-(4a,10a-dihydro- phenoxazin-10-yl)-propane-1-sulfonic acid (PPSA) at pH 8.5. The bimolecular constant of PPSA cation radical reaction with HPA was estimated to be (2.5 +/- 0.2).10(7) M(-1) s(-1) and for HPCM was even higher. The kinetic measurements show that rCiP-catalyzed oxidation of HPA and HPCM can increase up to 33,000 times and 5,500 times in the presence of equivalent concentration of high reactive substrate PPSA. The mathematical model of synergistic rCiP-catalyzed HPA-PPSA and HPCM-PPSA oxidation was proposed. Experimentally obtained rate constants were in good agreement with those calculated from the model confirming the synergistic scheme of the substrate oxidation. In order to explain the different reactivity of substrates, the docking of substrates in the active site of the enzyme was calculated. Molecular dynamic calculations show that the enzyme-substrate complexes are structurally stable. The high reactive PPSA exhibited higher affinity to enzyme active site than HPA and HPCM. Furthermore, the orientation of HPA and HPCM was not favorable for proton transfer to the distal histidine, and different substrate reactivity was explained by these diversities.

  6. Electrochemical oxidation of 1H,1H,2H,2H-perfluorooctane sulfonic acid (6:2 FTS) on DSA electrode: operating parameters and mechanism.

    PubMed

    Zhuo, Qiongfang; Li, Xiang; Yan, Feng; Yang, Bo; Deng, Shubo; Huang, Jun; Yu, Gang

    2014-08-01

    The 6:2 FTS was the substitute for perfluorooctane sulfonate (PFOS) in the chrome plating industry in Japan. Electrochemical oxidation of 6:2 FTS was investigated in this study. The degradabilities of PFOS and 6:2 FTS were tested on the Ti/SnO₂-Sb₂O₅-Bi₂O₃ anode. The effects of current density, potential, and supporting electrolyte on the degradation of 6:2 FTS were evaluated. Experimental results showed that 6:2 FTS was more easily degraded than PFOS on the Ti/SnO₂-Sb₂O₅-Bi₂O₃ anode. At a low current density of 1.42 mA/cm², 6:2 FTS was not degraded on Ti/SnO₂-Sb₂O₅-Bi₂O₃, while the degradation ratio increased when the current density ranged from 4.25 to 6.80 mA/cm². The degradation of 6:2 FTS at current density of 6.80 mA/cm² followed pseudo first-order kinetics with the rate constant of 0.074 hr⁻¹. The anodic potential played an important role in the degradation of 6:2 FTS, and the pseudo first-order rate constants increased with the potential. The surface of Ti/SnO₂-Sb₂O₅-Bi₂O₃ was contaminated after electrolysis at constant potential of 3V, while the fouling phenomenon was not observed at 5V. The fouled anode could be regenerated by incinerating at 600°C. The intermediates detected by ultra-performance liquid chromatography coupled with a triple-stage quadrupole mass spectrometer (UPLC-MS/MS) were shorter chain perfluorocarboxylic acids. The 6:2 FTS was first attacked by hydroxyl radical, and then formed perfluorinated carboxylates, which decarboxylated and removed CF2 units to yield shorter-chain perfluorocarboxylic acids.

  7. Sulfonated Nanoplates in Proton Conducting Membranes for Fuel Cells

    SciTech Connect

    Chen, W.F.; Ni’mah, H.; Yu-Cheng Shen, Y.-C.; Kuo, P.-L.

    2011-09-29

    Surface-functionalized nanoplates are synthesized by anchoring sulfonic acid containing siloxanes on zirconium phosphate, and in turn blended with Nafion to fabricate proton conducting membranes. The effects of these sulfonated nanoplates on proton conduction, hydro-characteristics and fuel cell performance are reported.

  8. Electrocatalytic activities of cathode electrodes for water electrolysis using tetra-alkyl-ammonium-sulfonic acid ionic liquid as electrolyte

    NASA Astrophysics Data System (ADS)

    Fiegenbaum, Fernanda; de Souza, Michèle O.; Becker, Márcia R.; Martini, Emilse M. A.; de Souza, Roberto F.

    2015-04-01

    The hydrogen evolution reaction (HER) performed with platinum (Pt), nickel (Ni), stainless steel 304 (SS) or glassy carbon (GC) cathodes in 0.1 M 3-triethylammonium-propanesulfonic acid tetrafluoroborate (TEA-PS.BF4) solution is studied using quasi-potentiostatic and impedance spectroscopy techniques. The objective is to compare the catalytic effect on the cathode using different materials to obtain hydrogen by water electrolysis. Furthermore, the catalytic effect of the ionic liquid (IL) on the cathode compared with that of a hydrochloric acid (HCl) solution with same pH value (0.8) is reported. A low activation energy (Ea) of 8.7 kJ mol-1 is found for the glassy carbon cathode. Tafel plots obtained with TEA-PS.BF4 IL suggest the formation of an electroactive layer of IL on the cathode, which may be responsible for the catalytically enhanced performance observed.

  9. Improved polymers for enhanced-oil-recovery synthesis and rheology. Fifth annual report, October 1981-September 1982

    SciTech Connect

    McCormick, C.L.; Hester, R.D.; Neidlinger, H.H.; Wildman, G.C.

    1983-10-01

    The goal of this project is to gain a more complete understanding of structure/property/performance interrelationships of water-soluble polymers which can aid industry in commercial production of polymers which are more efficient than those presently used. During the past the following have been accomplished: synthesis of model dextran-g-poly(acrylamide-co-sodium acrylates); synthesis of model dextran-g-poly(acrylamide-co-sodium-2-acrylamido-2-methylpropane sulfonates); characterization of model copolymers by elemental analysis, C-13NMR, and viscometry; study of dilute solution properties of the models including the effects of temperature, salt, pH; rheological studies of model graft copolymers; development of mathematical models, new calibration functions, analytical methods, and data acquisition techniques for aqueous size exclusion chromatography; application of quasielastic light scattering techniques to the study of hydrodynamic volume concepts; preferential and overall solvation studies of AN/NaA and AM/NaAMPS copolymers; study of phase behavior of model polymers in mono- and multivalent electrolytes at different polymer and salt concentrations as a function of temperature; education and training of students in basic energy research.

  10. Sulfonated polyphenylene polymers

    DOEpatents

    Cornelius, Christopher J.; Fujimoto, Cy H.; Hickner, Michael A.

    2007-11-27

    Improved sulfonated polyphenylene compositions, improved polymer electrolyte membranes and nanocomposites formed there from for use in fuel cells are described herein. The improved compositions, membranes and nanocomposites formed there from overcome limitations of Nafion.RTM. membranes.

  11. Sodium Polystyrene Sulfonate

    MedlinePlus

    ... is used to treat hyperkalemia (increased amounts of potassium in the body). Sodium polystyrene sulfonate is in a class of medications called potassium-removing agents. It works by removing excess potassium ...

  12. Fabrication of sulfonated poly(ether ether ketone)-based hybrid proton-conducting membranes containing carboxyl or amino acid-functionalized titania by in situ sol-gel process

    NASA Astrophysics Data System (ADS)

    Yin, Yongheng; Xu, Tao; He, Guangwei; Jiang, Zhongyi; Wu, Hong

    2015-02-01

    Functionalized titania are used as fillers to modify the sulfonated poly(ether ether ketone) (SPEEK) membrane for improved proton conductivity and methanol barrier property. The functionalized titania sol which contains proton conductive carboxylic acid groups or amino acid groups are derived from a facile chelation method using different functional additives. Then the novel SPEEK/carboxylic acid-functionalized titania (SPEEK/TC) and SPEEK/amino acid-functionalized titania (SPEEK/TNC) hybrid membranes are fabricated via in situ sol-gel method. The anti-swelling property and thermal stability of hybrid membranes are enhanced owing to the formation of electrostatic force between SPEEK and titania nanoparticles. The hybrid membranes exhibit higher proton conductivity than plain SPEEK membrane because more proton transfer sites are provided by the functionalized titania nanoparticles. Particularly, the proton conductivity of SPEEK/TNC membrane with 15% filler content reaches up to 6.24 × 10-2 S cm-1, which is 3.5 times higher than that of the pure SPEEK membrane. For methanol permeability, the SPEEK/TNC membranes possess the lowest values because the acid-base interaction between sulfonic acid groups in SPEEK and amino groups in functionalized titania leads to a more compact membrane structure.

  13. Brain region-specific perfluoroalkylated sulfonate (PFSA) and carboxylic acid (PFCA) accumulation and neurochemical biomarker responses in east Greenland polar bears (Ursus maritimus).

    PubMed

    Eggers Pedersen, Kathrine; Basu, Niladri; Letcher, Robert; Greaves, Alana K; Sonne, Christian; Dietz, Rune; Styrishave, Bjarne

    2015-04-01

    Perfluoroalkyl substances (PFASs) is a growing class of contaminants in the Arctic environment, and include the established perfluorinated sulfonates (PFSAs; especially perfluorooctane sulfonate (PFOS)) and carboxylic acids (PFCAs). PFSAs and PFCAs of varying chain length have been reported to bioaccumulate in lipid rich tissues of the brain among other tissues such as liver, and can reach high concentrations in top predators including the polar bear. PFCA and PFSA bioaccummulation in the brain has the potential to pose neurotoxic effects and therefore we conducted a study to investigate if variations in neurochemical transmitter systems i.e. the cholinergic, glutaminergic, dopaminergic and GABAergic, could be related to brain-specific bioaccumulation of PFASs in East Greenland polar bears. Nine brain regions from nine polar bears were analyzed for enzyme activity (monoamine oxidase (MAO), acetylcholinesterase (AChE) and glutamine synthetase (GS)) and receptor density (dopamine-2 (D2), muscarinic cholinergic (mAChR) and gamma-butyric acid type A (GABA-A)) along with PFSA and PFCA concentrations. Average brain ∑PFSA concentration was 25ng/g ww where PFOS accounted for 91%. Average ∑PFCA concentration was 88ng/g ww where PFUnDA, PFDoDA and PFTrDA combined accounted for 79%. The highest concentrations of PFASs were measured in brain stem, cerebellum and hippocampus. Correlative analyses were performed both across and within brain regions. Significant positive correlations were found between PFASs and MAO activity in occipital lobe (e.g. ∑PFCA; rp=0.83, p=0.041, n=6) and across brain regions (e.g. ∑PFCA; rp=0.47, p=0.001, ∑PFSA; rp=0.44, p>0.001; n=50). GABA-A receptor density was positively correlated with two PFASs across brain regions (PFOS; rp=0.33, p=0.02 and PFDoDA; rp=0.34, p=0.014; n=52). Significant negative correlations were found between mAChR density and PFASs in cerebellum (e.g. ∑PFCA; rp=-0.95, p=0.013, n=5) and across brain regions (e.g.

  14. Brain region-specific perfluoroalkylated sulfonate (PFSA) and carboxylic acid (PFCA) accumulation and neurochemical biomarker responses in east Greenland polar bears (Ursus maritimus).

    PubMed

    Eggers Pedersen, Kathrine; Basu, Niladri; Letcher, Robert; Greaves, Alana K; Sonne, Christian; Dietz, Rune; Styrishave, Bjarne

    2015-04-01

    Perfluoroalkyl substances (PFASs) is a growing class of contaminants in the Arctic environment, and include the established perfluorinated sulfonates (PFSAs; especially perfluorooctane sulfonate (PFOS)) and carboxylic acids (PFCAs). PFSAs and PFCAs of varying chain length have been reported to bioaccumulate in lipid rich tissues of the brain among other tissues such as liver, and can reach high concentrations in top predators including the polar bear. PFCA and PFSA bioaccummulation in the brain has the potential to pose neurotoxic effects and therefore we conducted a study to investigate if variations in neurochemical transmitter systems i.e. the cholinergic, glutaminergic, dopaminergic and GABAergic, could be related to brain-specific bioaccumulation of PFASs in East Greenland polar bears. Nine brain regions from nine polar bears were analyzed for enzyme activity (monoamine oxidase (MAO), acetylcholinesterase (AChE) and glutamine synthetase (GS)) and receptor density (dopamine-2 (D2), muscarinic cholinergic (mAChR) and gamma-butyric acid type A (GABA-A)) along with PFSA and PFCA concentrations. Average brain ∑PFSA concentration was 25ng/g ww where PFOS accounted for 91%. Average ∑PFCA concentration was 88ng/g ww where PFUnDA, PFDoDA and PFTrDA combined accounted for 79%. The highest concentrations of PFASs were measured in brain stem, cerebellum and hippocampus. Correlative analyses were performed both across and within brain regions. Significant positive correlations were found between PFASs and MAO activity in occipital lobe (e.g. ∑PFCA; rp=0.83, p=0.041, n=6) and across brain regions (e.g. ∑PFCA; rp=0.47, p=0.001, ∑PFSA; rp=0.44, p>0.001; n=50). GABA-A receptor density was positively correlated with two PFASs across brain regions (PFOS; rp=0.33, p=0.02 and PFDoDA; rp=0.34, p=0.014; n=52). Significant negative correlations were found between mAChR density and PFASs in cerebellum (e.g. ∑PFCA; rp=-0.95, p=0.013, n=5) and across brain regions (e.g.

  15. Detecting a quasi-stable imine species on the reaction pathway of SHV-1 β-lactamase and 6β-(hydroxymethyl)penicillanic acid sulfone.

    PubMed

    Che, Tao; Rodkey, Elizabeth A; Bethel, Christopher R; Shanmugam, Sivaprakash; Ding, Zhe; Pusztai-Carey, Marianne; Nottingham, Michael; Chai, Weirui; Buynak, John D; Bonomo, Robert A; van den Akker, Focco; Carey, Paul R

    2015-01-27

    For the class A β-lactamase SHV-1, the kinetic and mechanistic properties of the clinically used inhibitor sulbactam are compared with the sulbactam analog substituted in its 6β position by a CH2OH group (6β-(hydroxymethyl)penicillanic acid). The 6β substitution improves both in vitro and microbiological inhibitory properties of sulbactam. Base hydrolysis of both compounds was studied by Raman and NMR spectroscopies and showed that lactam ring opening is followed by fragmentation of the dioxothiazolidine ring leading to formation of the iminium ion within 3 min. The iminium ion slowly loses a proton and converts to cis-enamine (which is a β-aminoacrylate) in 1 h for sulbactam and in 4 h for 6β-(hydroxymethyl) sulbactam. Rapid mix-rapid freeze Raman spectroscopy was used to follow the reactions between the two sulfones and SHV-1. Within 23 ms, a 10-fold excess of sulbactam was entirely hydrolyzed to give a cis-enamine product. In contrast, the 6β-(hydroxymethyl) sulbactam formed longer-lived acyl-enzyme intermediates that are a mixture of imine and enamines. Single crystal Raman studies, soaking in and washing out unreacted substrates, revealed stable populations of imine and trans-enamine acyl enzymes. The corresponding X-ray crystallographic data are consonant with the Raman data and also reveal the role played by the 6β-hydroxymethyl group in retarding hydrolysis of the acyl enzymes. The 6β-hydroxymethyl group sterically hinders approach of the water molecule as well as restraining the side chain of E166 that facilitates hydrolysis.

  16. Effects of morin-5'-sulfonic acid sodium salt (NaMSA) on cyclophosphamide-induced changes in oxido-redox state in rat liver and kidney.

    PubMed

    Merwid-Ląd, A; Trocha, M; Chlebda, E; Sozański, T; Magdalan, J; Ksiądzyna, D; Kopacz, M; Kuźniar, A; Nowak, D; Pieśniewska, M; Fereniec-Gołębiewska, L; Kwiatkowska, J; Szeląg, A

    2012-08-01

    Cyclophosphamide (CPX) is an anticancer drug with immunosuppressive properties. Its adverse effects are partly connected to the induction of oxidative stress. Some studies indicate that water-soluble derivative of morin-morin-5'-sulfonic acid sodium salt (NaMSA) exhibits strong antioxidant activity. The aim of present study was to evaluate the effect of NaMSA on CPX-induced changes in oxido-redox state in rat. Experiment was carried out on Wistar rats divided in three experimental groups (N = 12) receiving: 0.9% saline, CPX (15 mg/kg) or CPX (15 mg/kg) + NaMSA (100 mg/kg), respectively, and were given intragastrically for 10 days. Malondialdehyde (MDA) and glutathione (GSH) concentrations and superoxide dismutase (SOD) activity were determined in liver and kidneys. Catalase (CAT) activity was assessed only in liver. Treatment with CPX resulted in significant decrease in MDA level in both tissues, which was completely reversed by NaMSA treatment only in liver. In comparison to the control group significant decrease in SOD activity were observed in both tissues of CPX receiving group. In kidneys this parameter was fully restored by NaMSA administration. CPX evoked significant decrease in GSH concentration in kidneys, which was completely reversed by NaMSA treatment. No significant changes were seen in GSH levels and CAT activity between all groups in liver. Results of our study suggest that CPX may exert significant impact on oxido-redox state in both organs. NaMSA fully reversed the CPX-induced changes, especially MDA level in liver, SOD activity and GSH concentration in kidneys and it may be done by enhancement of activity/concentration of endogenous antioxidants.

  17. Detecting a Quasi-stable Imine Species on the Reaction Pathway of SHV-1 β-Lactamase and 6β-(Hydroxymethyl)penicillanic Acid Sulfone

    PubMed Central

    2015-01-01

    For the class A β-lactamase SHV-1, the kinetic and mechanistic properties of the clinically used inhibitor sulbactam are compared with the sulbactam analog substituted in its 6β position by a CH2OH group (6β-(hydroxymethyl)penicillanic acid). The 6β substitution improves both in vitro and microbiological inhibitory properties of sulbactam. Base hydrolysis of both compounds was studied by Raman and NMR spectroscopies and showed that lactam ring opening is followed by fragmentation of the dioxothiazolidine ring leading to formation of the iminium ion within 3 min. The iminium ion slowly loses a proton and converts to cis-enamine (which is a β-aminoacrylate) in 1 h for sulbactam and in 4 h for 6β-(hydroxymethyl) sulbactam. Rapid mix–rapid freeze Raman spectroscopy was used to follow the reactions between the two sulfones and SHV-1. Within 23 ms, a 10-fold excess of sulbactam was entirely hydrolyzed to give a cis-enamine product. In contrast, the 6β-(hydroxymethyl) sulbactam formed longer-lived acyl–enzyme intermediates that are a mixture of imine and enamines. Single crystal Raman studies, soaking in and washing out unreacted substrates, revealed stable populations of imine and trans-enamine acyl enzymes. The corresponding X-ray crystallographic data are consonant with the Raman data and also reveal the role played by the 6β-hydroxymethyl group in retarding hydrolysis of the acyl enzymes. The 6β-hydroxymethyl group sterically hinders approach of the water molecule as well as restraining the side chain of E166 that facilitates hydrolysis. PMID:25536850

  18. Magnetic graphene - polystyrene sulfonic acid nano composite: A dispersive cation exchange sorbent for the enrichment of aminoalcohols and ethanolamines from environmental aqueous samples.

    PubMed

    Chinthakindi, Sridhar; Purohit, Ajay; Singh, Varoon; Tak, Vijay; Dubey, D K; Pardasani, Deepak

    2015-12-01

    Present study aimed at graphene surface modification to achieve selective analyte binding in dispersive solid phase extraction. Magnetic graphene - polystyrene sulfonic acid (MG-PSS) cation exchange nano-composite was prepared by non-covalent wrapping method. Composite was characterized by FT-IR and zeta potential. Material exhibited good dispersion in water and high exchange capacity of 1.97±0.16mMg(-1). Prepared nano-sorbent was then exploited for the cation exchange extraction and gas chromatography mass spectrometric analysis of Chemical Weapons Convention relevant aminoalcohols and ethanolamines from aqueous samples. Extraction parameters such as sorbent amount, extraction time, desorption conditions and sample pH were optimized and effect of common matrix interferences such as polyethylene glycol and metal salts was also studied. Three milligram of sorbent per mL of sample with 20min of extraction time at room temperature afforded 70-81% recoveries of the selected analytes spiked at concentration level of 1μgmL(-1). Method showed good linearity in the studied range with r(2)≥0.993. The limits of detection and limits of quantification ranged from 23 to 54ngmL(-1) and 72 to 147ngmL(-1), respectively. The relative standard deviation for intra- and inter-day precision ranged from 4.6 to 10.2% and 7.4 to 14.8% respectively. Applicability of the method to different environmental samples as well as the proficiency tests conducted by the Organization for the Prohibition of Chemical Weapons (OPCW) was also ascertained.

  19. Toxicity of perfluorooctane sulfonate and perfluorooctanoic acid to Escherichia coli: Membrane disruption, oxidative stress, and DNA damage induced cell inactivation and/or death.

    PubMed

    Liu, Gesheng; Zhang, Shuai; Yang, Kun; Zhu, Lizhong; Lin, Daohui

    2016-07-01

    Perfluorooctane sulfonate (PFOS) and perfluorooctanoic acid (PFOA) are two widely used polyfluorinated compounds (PFCs) and are persistent in the environment. This study for the first time systematically investigated their toxicities and the underlying mechanisms to Escherichia coli. Much higher toxicity was observed for PFOA than PFOS, with the 3 h half growth inhibition concentrations (IC50) determined to be 10.6 ± 1.0 and 374 ± 3 mg L(-1), respectively, while the bacterial accumulation of PFOS was much greater than that of PFOA. The PFC exposures disrupted cell membranes as evidenced by the dose-dependent variations of cell structures (by transmission electron microscopy observations), surface properties (electronegativity, hydrophobicity, and membrane fluidity), and membrane compositions (by gas chromatogram and Fourier transform infrared spectroscopy analyses). The increases in the contents of intracellular reactive oxygen species (ROS) and malondialdehyde and the activity of superoxide dismutase indicated the increment of oxidative stress induced by the PFCs in the bacterial cells. The fact that the cell growth inhibition was mitigated by the addition of ROS scavenger (N-acetyl cysteine) further evidenced the important role of oxidative damage in the toxicities of PFOS and PFOA. Eighteen genes involved in cell division, membrane instability, oxidative stress, and DNA damage of the exposed cells were up or down expressed, indicating the DNA damage by the PFCs. The toxicities of PFOS and PFOA to E. coli were therefore ascribed to the membrane disruption, oxidative stress, and DNA damage induced cell inactivation and/or death. The difference in the bactericidal effect between PFOS and PFOA was supposed to be related to their different dominating toxicity mechanisms, i.e., membrane disruption and oxidative damage, respectively. The outcomes will shed new light on the assessment of ecological effects of PFCs. PMID:27155098

  20. Preparation of Fe3O4 encapsulated-silica sulfonic acid nanoparticles and study of their in vitro antimicrobial activity.

    PubMed

    Naeimi, Hossein; Nazifi, Zahra Sadat; Amininezhad, Seyedeh Matin

    2015-08-01

    A simple and efficient method for the functionalization of silica-coated Fe3O4 magnetic nanoparticles (Fe3O4@SiO2) using chlorosulfonic acid is described. The prepared compounds were screened for antibacterial activity against Escherichia coli (E. coli ATCC 25922) and Staphylococcus aureus (S. aureus ATCC 25923) under UV-light and dark conditions. It was found that the Fe3O4@SiO2-SO3H was significantly indicated the higher photocatalytic inactivation than both Fe3O4 and Fe3O4@SiO2 against E. coli in compared with S. aureus. Furthermore, the inactivation efficiency against both organisms under light conditions has been higher than this efficiency under dark conditions.

  1. Uptake of perfluorooctanoic acid, perfluorooctane sulfonate and perfluorooctane sulfonamide by carrot and lettuce from compost amended soil.

    PubMed

    Bizkarguenaga, E; Zabaleta, I; Mijangos, L; Iparraguirre, A; Fernández, L A; Prieto, A; Zuloaga, O

    2016-11-15

    Sewage sludge, which acts like a sink for many pollutants, including metals, pathogens and organic pollutants, that are not completely removed in waste water treatment plants (WWTPs), is applied as a nutrient rich organic fertilizer in many agricultural applications. In the present work, carrot and lettuce crops were grown in two different compost amended soils fortified with perfluorooctanoic acid (PFOA), perfluorosulfonate acid (PFOS) and perfluorosulfonamide (FOSA) and cultivated in a greenhouse. The plants were harvested and divided into root core, root peel and leaves in the case of carrots and into heart and leaves for lettuces. Concentrations for all the different compartments were determined to assess the bioconcentration factors (BCFs) and the plant distribution of the target analytes. The highest carrot BCFs for PFOA and PFOS were determined in the leaves (0.6-3.4), while lower values were calculated in the core (0.05-0.6) and the peel (0.05-1.9) compartments. However, PFOA was taken up in the translocation stream and accumulated more than PFOS in the edible part of lettuce. FOSA was totally degraded in the presence of carrot; however, a lower FOSA degradation was observed in presence of the lettuce, which was dependent on the total organic carbon (TOC) content of the soil. The higher the TOC value, the higher the FOSA degradation observed. No degradation was observed in the crop absence. In the case of the carrot experiments, different polymeric materials (polyethersulfone, PES, polyoxymethylene, and silicone rod) were tested to predict the concentration in the cultivation media. A high correlation (r(2)>0.63) was observed for the BCFs in the PES and in the carrot core and peel for PFOA and PFOS. It could be, concluded that the PES can be used as a first approach for the determination of the uptake of compounds such as PFOS and PFOA in carrot. PMID:27450950

  2. Analysis and detection of the herbicides dimethenamid and flufenacet and their sulfonic and oxanilic acid degradates in natural water

    USGS Publications Warehouse

    Zimmerman, L.R.; Schneider, R.J.; Thurman, E.M.

    2002-01-01

    Dimethenamid [2-chloro-N-(2,4-dimethyl-3-thienyl)-N-(2-methoxy-1-methylethyl)acetamide] and flufenacet [N-(4-fluorophenyl)-N-(1-methylethyl)-2-(5-(trifluoromethyl)-1,3,4- thiadiazol-2-yl)oxy] were isolated by C-18 solid-phase extraction and separated from their ethanesulfonic acid (ESA) and oxanilic acid (OXA) degradates during their elution using ethyl acetate for the parent compound, followed by methanol for the polar degradates. The parent compounds were detected using gas chromatography-mass spectrometry in selected-ion mode. The ESA and OXA degradates were detected using high-performance liquid chromatography-electrospray mass spectrometry (HPLC-ESPMS) in negative-ion mode. The method detection limits for a 123-mL sample ranged from 0.01 to 0.07 ??g/L. These methods are compatible with existing methods and thus allow for analysis of 17 commonly used herbicides and 18 of their degradation compounds with one extraction. In a study of herbicide transport near the mouth of the Mississippi River during 1999 and 2000, dimethenamid and its ESA and OXA degradates were detected in surface water samples during the annual spring flushes. For flufenacet, the only detections at the study site were for the ESA degradates in samples collected at the peak of the herbicide spring flush in 2000. The low frequency of detections in surface water likely is due to dimethenamid and flufenacet being relatively new herbicides. In addition, detectable amounts of the stable degradates have not been detected in ground water.

  3. Crystal Structures of KPC-2[beta]-Lactamase in Complex with 3-Nitrophenyl Boronic Acid and the Penam Sulfone PSR-3-226

    SciTech Connect

    Ke, Wei; Bethel, Christopher R.; Papp-Wallace, Krisztina M.; Pagadala, Sundar Ram Reddy; Nottingham, Micheal; Fernandez, Daniel; Buynak, John D.; Bonomo, Robert A.; van den Akker, Focco

    2012-08-01

    Class A carbapenemases are a major threat to the potency of carbapenem antibiotics. A widespread carbapenemase, KPC-2, is not easily inhibited by {beta}-lactamase inhibitors (i.e., clavulanic acid, sulbactam, and tazobactam). To explore different mechanisms of inhibition of KPC-2, we determined the crystal structures of KPC-2 with two {beta}-lactamase inhibitors that follow different inactivation pathways and kinetics. The first complex is that of a small boronic acid compound, 3-nitrophenyl boronic acid (3-NPBA), bound to KPC-2 with 1.62-{angstrom} resolution. 3-NPBA demonstrated a Km value of 1.0 {+-} 0.1 {micro}M (mean {+-} standard error) for KPC-2 and blocks the active site by making a reversible covalent interaction with the catalytic S70 residue. The two boron hydroxyl atoms of 3-NPBA are positioned in the oxyanion hole and the deacylation water pocket, respectively. In addition, the aromatic ring of 3-NPBA provides an edge-to-face interaction with W105 in the active site. The structure of KPC-2 with the penam sulfone PSR-3-226 was determined at 1.26-{angstrom} resolution. PSR-3-226 displayed a K{sub m} value of 3.8 {+-} 0.4 {micro}M for KPC-2, and the inactivation rate constant (kinact) was 0.034 {+-} 0.003 s{sup -1}. When covalently bound to S70, PSR-3-226 forms a trans-enamine intermediate in the KPC-2 active site. The predominant active site interactions are generated via the carbonyl oxygen, which resides in the oxyanion hole, and the carboxyl moiety of PSR-3-226, which interacts with N132, N170, and E166. 3-NPBA and PSR-3-226 are the first {beta}-lactamase inhibitors to be trapped as an acyl-enzyme complex with KPC-2. The structural and inhibitory insights gained here could aid in the design of potent KPC-2 inhibitors.

  4. Selective removal of Cr(VI) from aqueous solution by polypyrrole/2,5-diaminobenzene sulfonic acid composite.

    PubMed

    Kera, Nazia H; Bhaumik, Madhumita; Ballav, Niladri; Pillay, Kriveshini; Ray, Suprakas Sinha; Maity, Arjun

    2016-08-15

    A polypyrrole/2,5-diaminobenzenesulfonic acid (PPy/DABSA) composite, synthesised by the in situ oxidative polymerization of pyrrole in the presence of DABSA, was studied as an adsorbent for the removal of Cr(VI) from aqueous solution. The structure and morphology of the composite were investigated by ATR-FTIR, FE-SEM, EDX, TGA, XRD and XPS studies. The adsorption of Cr(VI) by PPy/DABSA composite was highly pH dependent and optimum removal was achieved at pH 2. Adsorption of Cr(VI) was confirmed by EDX and XPS studies. The isotherm data fitted the linear Langmuir model well, with a maximum adsorption capacity of 303mg/g at 25°C. Thermodynamic parameters (ΔG°, ΔH° and ΔS°) were calculated using isotherm data and confirmed that the adsorption process was spontaneous and endothermic. Adsorption kinetics was best described by the pseudo-second-order model. The activation energy of the adsorption process suggested that Cr(VI) was chemisorbed by PPy/DABSA composite. PPy/DABSA composite could be used for three consecutive adsorption-desorption cycles without loss of its original adsorption capacity. Highly selective removal of Cr(VI) was observed even when co-existing ions such as Cu(2+), Zn(2+), Ni(2+), Cl(-), SO4(2)(-) and NO3(-) were present in the solution. In summary, the potential of PPy/DABSA composite for remediating industrial wastewater contaminated by Cr(VI) has been demonstrated.

  5. Effects of mimic of manganese superoxide dismutase on 2,4,6-trinitrobenzene sulfonic acid-induced colitis in rats.

    PubMed

    Wang, Yan-Hong; Dong, Jiao; Zhang, Jian-Xin; Zhai, Jing; Ge, Bin

    2016-09-01

    The mimic of manganese superoxide dismutase (MnSODm) has been synthesized and reported to have anti-inflammatory properties. However, whether MnSODm has anti-inflammatory effects on colitis and any underlying mechanisms are poorly understood. This study was to investigate therapeutic effects and mechanism of MnSODm on 2,4,6-trinitrobenzenesulfonic acid (TNBS) induced colitis model in rats. Rats were intragastrically administered MnSODm (10, 20, and 40 mg/kg) per day for 7 days after colitis was induced by TNBS. After treated with MnSODm, the colonic macroscopic and microscopic damage scores and colonic weight/length ratios were significantly decreased compared with colitis model group. Myeloperoxidase (MPO) activity, malonyldialdehyde (MDA), tumor necrosis factor-α (TNF-α), interleukin (IL)-1β, IL-6, and IL-8 levels in colon tissues were also significantly decreased in MnSODm treatment groups. However, superoxide dismutase (SOD) activity significantly increased and phosphorylated inhibitory kappa B-alpha (IκBα), inhibitor kappa B kinase (IKKα/β), and nuclear factor-kappa Bp65 (NF-κBp65) as well as Toll-like receptor 4 (TLR4) and myeloid differentiation actor 88 (MyD88) in the colonic mucosa were significantly inhibited by MnSODm treatment. Thus, MnSODm was protective against colitis via antioxidant activity and by inhibiting inflammatory mediators by down-regulating TLR4/MyD88/NF-κB signaling pathways. These data suggest a potential therapeutic effect of MnSODm in colitis.

  6. Selective removal of Cr(VI) from aqueous solution by polypyrrole/2,5-diaminobenzene sulfonic acid composite.

    PubMed

    Kera, Nazia H; Bhaumik, Madhumita; Ballav, Niladri; Pillay, Kriveshini; Ray, Suprakas Sinha; Maity, Arjun

    2016-08-15

    A polypyrrole/2,5-diaminobenzenesulfonic acid (PPy/DABSA) composite, synthesised by the in situ oxidative polymerization of pyrrole in the presence of DABSA, was studied as an adsorbent for the removal of Cr(VI) from aqueous solution. The structure and morphology of the composite were investigated by ATR-FTIR, FE-SEM, EDX, TGA, XRD and XPS studies. The adsorption of Cr(VI) by PPy/DABSA composite was highly pH dependent and optimum removal was achieved at pH 2. Adsorption of Cr(VI) was confirmed by EDX and XPS studies. The isotherm data fitted the linear Langmuir model well, with a maximum adsorption capacity of 303mg/g at 25°C. Thermodynamic parameters (ΔG°, ΔH° and ΔS°) were calculated using isotherm data and confirmed that the adsorption process was spontaneous and endothermic. Adsorption kinetics was best described by the pseudo-second-order model. The activation energy of the adsorption process suggested that Cr(VI) was chemisorbed by PPy/DABSA composite. PPy/DABSA composite could be used for three consecutive adsorption-desorption cycles without loss of its original adsorption capacity. Highly selective removal of Cr(VI) was observed even when co-existing ions such as Cu(2+), Zn(2+), Ni(2+), Cl(-), SO4(2)(-) and NO3(-) were present in the solution. In summary, the potential of PPy/DABSA composite for remediating industrial wastewater contaminated by Cr(VI) has been demonstrated. PMID:27209399

  7. Effects of mimic of manganese superoxide dismutase on 2,4,6-trinitrobenzene sulfonic acid-induced colitis in rats.

    PubMed

    Wang, Yan-Hong; Dong, Jiao; Zhang, Jian-Xin; Zhai, Jing; Ge, Bin

    2016-09-01

    The mimic of manganese superoxide dismutase (MnSODm) has been synthesized and reported to have anti-inflammatory properties. However, whether MnSODm has anti-inflammatory effects on colitis and any underlying mechanisms are poorly understood. This study was to investigate therapeutic effects and mechanism of MnSODm on 2,4,6-trinitrobenzenesulfonic acid (TNBS) induced colitis model in rats. Rats were intragastrically administered MnSODm (10, 20, and 40 mg/kg) per day for 7 days after colitis was induced by TNBS. After treated with MnSODm, the colonic macroscopic and microscopic damage scores and colonic weight/length ratios were significantly decreased compared with colitis model group. Myeloperoxidase (MPO) activity, malonyldialdehyde (MDA), tumor necrosis factor-α (TNF-α), interleukin (IL)-1β, IL-6, and IL-8 levels in colon tissues were also significantly decreased in MnSODm treatment groups. However, superoxide dismutase (SOD) activity significantly increased and phosphorylated inhibitory kappa B-alpha (IκBα), inhibitor kappa B kinase (IKKα/β), and nuclear factor-kappa Bp65 (NF-κBp65) as well as Toll-like receptor 4 (TLR4) and myeloid differentiation actor 88 (MyD88) in the colonic mucosa were significantly inhibited by MnSODm treatment. Thus, MnSODm was protective against colitis via antioxidant activity and by inhibiting inflammatory mediators by down-regulating TLR4/MyD88/NF-κB signaling pathways. These data suggest a potential therapeutic effect of MnSODm in colitis. PMID:27506642

  8. Double partial cone conformation for Na{sub 8}(calix[6]arene sulfonate){center_dot}20.5H{sub 2}O and its parent acid

    SciTech Connect

    Atwood, J.L.; Juneja, R.K.; Orr, G.W.

    1992-09-09

    The chemistry of calixarenes has recently become a very active area of endeavor. Of the numerous stimulating findings to appear thus far in the literature, one of the most intriguing concerns the discovery of certain uranophiles by Shinkai. It was reported that calix[5]arene sulfonate, calix[6]arene sulfonate, and the two corresponding derivatives substituted at the base by carboxymethoxy groups, 1 with R{prime} = CH{sub 2}COOH, exhibited stability constants for the uranyl ion of K = 10{sup 18.4-19.2}. Indeed, in competition experiments these calixarenes showed selectivity factors of 10{sup 12-17} for uranyl over the Ni{sup 2+}, Zn{sup 2+}, and Cu{sup 2+} ions. This selectivity was attributed to a moderately rigid calix[6]arene structure which was preorganized to match the rather unusual pseudoplanar hexacoordination needs of the UO{sub 2}{sup 2+} ion. However, on the basis of this study this premise appears untenable. Considering the importance of the above mentioned findings, the structural chemistry of derivatives of calix[6]arene has been slow to develop. In the available selection it is difficult to find general conformational features, apart from the elliptical cone conformation exhibited by the parent p-tert-butycalix[6]arene. Since our group has found a rich and often surprising inclusion chemistry for calix[4]arene sulfonates, we decided to investigate the structure of calix[6]arene sulfonate and its alkali metal salts. 28 refs., 1 fig.

  9. Biodegradation of naphthalene-2-sulfonic acid present in tannery wastewater by bacterial isolates Arthrobacter sp. 2AC and Comamonas sp. 4BC.

    PubMed

    Song, Zhi; Edwards, Suzanne R; Burns, Richard G

    2005-06-01

    Two bacterial strains, 2AC and 4BC, both capable of utilizing naphthalene-2-sulfonic acid (2-NSA) as a sole source of carbon, were isolated from activated sludges previously exposed to tannery wastewater. Enrichments were carried out in mineral salt medium (MSM) with 2-NSA as the sole carbon source. 16S rDNA sequencing analysis indicated that 2AC is an Arthrobacter sp. and 4BC is a Comamonas sp. Within 33 h, both isolates degraded 100% of 2-NSA in MSM and also 2-NSA in non-sterile tannery wastewater. The yield coefficient was 0.33 g biomass dry weight per gram of 2-NSA. A conceptual model, which describes the aerobic transformation of organic matter, was used for interpreting the biodegradation kinetics of 2-NSA. The half-lives for 2-NSA, at initial concentrations of 100 and 500 mg/l in MSM, ranged from 20 h (2AC) to 26 h (4BC) with lag-phases of 8 h (2AC) and 12 h (4BC). The carbon balance indicates that 75-90% of the initial TOC (total organic carbon) was mineralized, 5-20% remained as DOC (dissolved organic carbon) and 3-10% was biomass carbon. The principal metabolite of 2-NSA biodegradation (in both MSM and tannery wastewater) produced by Comamonas sp. 4BC had a MW of 174 and accounted for the residual DOC (7.0-19.0% of the initial TOC and 66% of the remaining TOC). Three to ten percent of the initial TOC (33% of the remaining TOC) was associated with biomass. The metabolite was not detected when Arthrobacter sp. 2AC was used, and a lower residual DOC and biomass carbon were recorded. This suggests that the two strains may use different catabolic pathways for 2-NSA degradation. The rapid biodegradation of 2-NSA (100 mg/l) added to non-sterile tannery wastewater (total 2-NSA, 105 mg/l) when inoculated with either Arthrobacter 2AC or Comamonas 4BC showed that both strains were able to compete with the indigenous microorganisms and degrade 2-NSA even in the presence of alternate carbon sources (DOC in tannery wastewater = 91 mg/l). The results provide information

  10. Sulfonic acid resin-catalyzed addition of phenols, carboxylic acids, and water to olefins: Model reactions for catalytic upgrading of bio-oil.

    PubMed

    Zhang, Zhi-Jun; Wang, Qing-Wen; Yang, Xu-Lai; Chatterjee, Sabornie; Pittman, Charles U

    2010-05-01

    Acid-catalyzed 1-octene reactions with phenol and mixtures of phenol with water, acetic acid and 1-butanol were studied as partial bio-oil upgrading models. Bio-oil from fast biomass pyrolysis has poor fuel properties due to the presence of substantial amounts of water, carboxylic acid, phenolic derivatives and other hydroxyl-containing compounds. Additions across olefins offer a route to simultaneously lower water content and acidity while increasing hydrophobicity, stability and heating value. Amberlyst15, Dowex50WX2 and Dowex50WX4 effectively catalyzed phenol O- and C-alkylation from 65 to 120 degrees C, giving high O-alkylation selectivities in the presence of water, acetic acid and 1-butanol. Octanols and dioctyl ethers were formed from water and octyl acetates and phenol acetates from acetic acid. Phenol alkylation slowed in the presence of water. Dowex50WX2 and Dowex50WX4 were more stable in the presence of water than Amberlyst15 and were successfully recycled. Adding 1-butanol to phenol/water/1-octene, gave emulsion-like mixtures which improved phenol conversion and olefin hydration.

  11. Poly(arlyene ether sulfone) based semi-interpenetrating polymer network membranes containing cross-linked poly(vinyl phosphonic acid) chains for fuel cell applications at high temperature and low humidity conditions

    NASA Astrophysics Data System (ADS)

    Kim, Kihyun; Heo, Pilwon; Ko, Taeyun; Kim, Ki-hyun; Kim, Sung-Kon; Pak, Chanho; Lee, Jong-Chan

    2015-10-01

    Semi-interpenetrating polymer network (semi-IPN) membranes are prepared by in-situ casting and thermal-initiated radical polymerization of vinyl phosphonic acid (VPA) and bis(2-(methacryloyloxy)ethyl) phosphate (BMAEP) in N,N-dimethylacetamide solutions of sulfonated poly(arylene ether sulfone) (SPAES). The incorporation of VPA units into the SPAES membranes improves proton conductivity especially at high temperature and low humidity conditions. In addition the cross-linker, BMAEP, prevents the decrease of the mechanical and chemical stabilities by the aliphatic linear poly(vinyl phosphonic acid) chains in the semi-IPN membranes, and furthermore the phosphonic acid group in BMAEP can prevent the decrease of the proton conductivity by the formation of cross-linked structures. Therefore, the resulting semi-IPN membranes show high proton conductivities up to 15 mS cm-1 at 120 °C and 40% RH. The fuel cell performance (187 mW cm-2 at 120 °C and 40% RH) of membrane-electrode assembly (MEA) from the semi-IPN membrane is found to be superior to that (145 mW cm-2 at 120 °C and 40% RH) of MEA from the SPAES membrane. The durability test result at the operating conditions indicates that the semi-IPN membrane is electrochemically very stable maintaining the low hydrogen cross-over and high power densities.

  12. Synthesis of basic and overbasic sulfonate detergent additives

    SciTech Connect

    Abou El Naga, H.H.; Abd El-Azim, W.M.; Bendary, S.A.; Awad, N.G.

    1993-12-01

    Heavy alkylbenzene, which accumulates as a by-product from linear alkylbenzene synthesis, is evaluated as a starting material for preparation of basic and over basic sulfonate detergent additives. Chemical structure analysis showed that this by-product contains several components in different proportions. Most of these components, as traced via mass spectrometry, showed the presence of paraffinic side chains within the carbon range C{sub 11}--C{sub 22}. Accordingly, sulfonation conditions for it were adjusted to optimize the reaction yield and sulfonic quality. Neutralization of the sulfonic acid was carried out by adding CaO in the presence of methanol as a promoter. Preparation of over basic sulfonate was run via a carbonation process at 55--60 C. Evaluations of synthesized basic calcium sulfonate in comparison to a commercial additive is supported by its efficiency as a detergent additive. The synthesized product has a higher total base number and Ca content than those for the commercial one. On the other hand, evaluation of the synthesized overbasic calcium sulfonate compared with overbasic commercial additives with medium and high alkalinity indicated that the synthesized product can be classified as overbasic calcium sulfonate with medium alkalinity, good dispersive power, and detergent efficiency.

  13. Process for recovering 4,4 prime dihydroxydiphenyl sulfone from an isomer mixture

    SciTech Connect

    Zemlanicky, F.; Cooker, B.

    1991-03-19

    This patent describes a process for the recovery of 4,4{prime}-bisphenol sulfone from an isomer mixture comprising 4,4{prime}-bisphenol sulfone and 2,4{prime}-bisphenol sulfone. It comprises dissolving the isomer mixture in a basic aqueous solution comprising about one mole of base per mole of the mixture of 4,4{prime}-bisphenol sulfone and 2,4{prime}-bisphenol sulfone to form a basic isomer solution and adding acid to the isomer solution in an amount of from about 0.85 to 0.95 mole per mole of the 4,4{prime}-bisphenol sulfone wherein the acid is added in an amount sufficient to cause selective precipitation of crystals of 4,4{prime}-bisphenol sulfone yet in an amount less than sufficient to neutralize the isomer solution and removing the crystals of 4,4{prime}-bisphenol from the aqueous solution.

  14. Comparison of the toxicokinetic behavior of perfluorohexanoic acid (PFHxA) and nonafluorobutane-1-sulfonic acid (PFBS) in cynomolgus monkeys and rats.

    PubMed

    Chengelis, Christopher P; Kirkpatrick, Jeannie B; Myers, Nichole R; Shinohara, Motoki; Stetson, Philip L; Sved, Daniel W

    2009-06-01

    The toxicokinetics of perfluorohexanoic acid (PFHxA) and nonafluoro-1-butanesulfonic acid (PFBS) were evaluated in Sprague-Dawley rats and cynomolgus monkeys. Systemic exposure to PFHxA was lower than for PFBS following single equivalent intravenous or oral (rat only) doses. Serum clearance was more rapid for PFHxA than for PFBS. In rats, exposure to PFHxA and PFBS was up to 8-fold (intravenous) and 4-fold (oral) higher for males than females and serum clearance of PFHxA and PFBS was more rapid in females than males; however, there was no appreciable difference in the extent or rate of urinary elimination between compounds or genders. There were no apparent differences between genders in the serum half-life for PFHxA following 26 days of repeated oral dosing in rats; exposure decreased upon repeated dosing.

  15. Correlating electronic structure and chemical durability of sulfonated poly(arylene ether sulfone)s

    NASA Astrophysics Data System (ADS)

    Lawrence, Jimmy; Yamashita, Koichi; Yamaguchi, Takeo

    2015-04-01

    Many different proton-conducting polymeric materials have been developed for polymer electrolyte membrane fuel cells (PEMFCs). The development of perfluorosulfonic acid-based, polymer electrolyte membranes (PFSA-PEMs) was followed by aromatic hydrocarbon-based PEMs (HC-PEMs), which allow for tailored design and optimization of their molecular structures. Although many new PFSA-PEMs and HC-PEMs have shown promising proton conductivity and thermal stability, chemical degradation of these materials in an oxidizing environment remains a significant technical barrier in PEMFC development. Here, we used accelerated degradation tests and electronic structure analysis to examine the chemical stability of sulfonated poly(arylene ether sulfone) (SPES) copolymers, a highly thermally stable HC-PEM. HOMO levels, the presence of main chain-protecting steric groups, and HOMO-LUMO location along the main chain have significant effects on the chain scission modes and degradation rate of SPES copolymers. Rational design of HC-PEMs to suppress midpoint scission can open many opportunities in the development of highly robust polymer electrolytes for fuel cell and other energy storage applications.

  16. Zwitterionic chiral stationary phases based on cinchona and chiral sulfonic acids for the direct stereoselective separation of amino acids and other amphoteric compounds.

    PubMed

    Zhang, Tong; Holder, Emilie; Franco, Pilar; Lindner, Wolfgang

    2014-06-01

    An extensive series of free amino acids and analogs were directly resolved into enantiomers (and stereoisomers where appropriate) by HPLC on zwitterionic chiral stationary phases (Chiralpak ZWIX(+) and Chiralpak ZWIX(-)). The interaction and chiral recognition mechanisms were based on the synergistic double ion-paring process between the analyte and the chiral selectors. The chiral separation and elution order were found to be predictable for primary α-amino acids with apolar aliphatic side chains. A systematic investigation was undertaken to gain an insight into the influence of the structural features on the enantiorecognition. The presence of polar and/or aromatic groups in the analyte structure is believed to tune the double ion-paring equilibrium by the involvement of the secondary interaction forces such as hydrogen bonding, Van der Waals forces and π-π stacking in concert with steric parameters. The ZWIX chiral columns were able to separate enantiomers and stereoisomers of various amphoteric compounds with no need for precolumn derivatization. Column switching between ZWIX(+) and ZWIX(-) is believed to be an instrumental tool to reverse or control the enantiomers elution order, due to the complementarity of the applied chiral selectors.

  17. Sulfonated Polymerized Ionic Liquid Block Copolymers.

    PubMed

    Meek, Kelly M; Elabd, Yossef A

    2016-07-01

    The successful synthesis of a new diblock copolymer, referred to as sulfonated polymerized ionic liquid (PIL) block copolymer, poly(SS-Li-b-AEBIm-TFSI), is reported, which contains both sulfonated blocks (sulfonated styrene: SS) and PIL blocks (1-[(2-acryloyloxy)ethyl]-3-butylimidazolium: AEBIm) with both mobile cations (lithium: Li(+) ) and mobile anions (bis(trifluoromethylsulfonyl)imide: TFSI(-) ). Synthesis consists of polymerization via reversible addition-fragmentation chain transfer, followed by post-functionalization reactions to covalently attach the imidazolium cations and sulfonic acid anions to their respective blocks, followed by ion exchange metathesis resulting in mobile Li(+) cations and mobile TFSI(-) anions. Solid-state films containing 1 m Li-TFSI salt dissolved in ionic liquid result in an ion conductivity of >1.5 mS cm(-1) at 70 °C, where small-angle X-ray scattering data indicate a weakly ordered microphase-separated morphology. These results demonstrate a new ion-conducting block copolymer containing both mobile cations and mobile anions. PMID:27125600

  18. Synthesis and characterization of taurine Schiff base derivatives and their Cu(II) complexes: crystal and molecular structure of 5-NO/sub 2/ salicylaldimine ethylene sulfonic acid complex of Cu(II)

    SciTech Connect

    Perez-Cesar, M.C.; Soriano-Garcia, M.; Toscano, R.A.; Gomez-Lara, J.

    1986-04-01

    Spectroscopic analysis of eight copper(II) complexes of Schiff bases derived from taurine and eight different salicylaldehydes and naphthaldehydes are reported. X-ray structural analysis of the copper(II) complex of the 5-NO/sub 2/-salicylaldehyde imine of taurine (5-NO/sub 2/-salicylaldimine ethylene sulfonic acid) as the tetra n-butylammonium salt (Cu(C/sub 9/H/sub 8/N/sub 2/O/sub 6/S)/sub 2/)/sup 2 -/2((C/sub 4/H/sub 9/)/sub 4/N)/sup +/ (CUTAUTBA) has been carried out. The space group is P anti 1, with a = 8.761(4), b = 10.410(3), c = 16.528(4) A, ..cap alpha.. = 77.85(3), ..beta.. = 86.53(4), ..gamma.. = 79.15(3)/sup 0/, and Z = 1. The structure was solved by the heavy-atom method and refined by least-squares techniques to an R factor of 0.068 for 2807 observed reflections. The CUTAU cation is centrosymmetric, with the Cu atom sitting on a crystallographic center of symmetry. The copper atom has a square-planar environment, coordinated by the potentially tridentate Schiff base only through the imino nitrogen and the phenolate oxygen with the deprotonated sulfonic group directed away from the coordination sphere of the Cu(II).

  19. A rapid method for the determination of perfluoroalkyl substances including structural isomers of perfluorooctane sulfonic acid in human serum using 96-well plates and column-switching ultra-high performance liquid chromatography tandem mass spectrometry.

    PubMed

    Salihovic, Samira; Kärrman, Anna; Lindström, Gunilla; Lind, P Monica; Lind, Lars; van Bavel, Bert

    2013-08-30

    To facilitate high-throughput analysis suitable for large epidemiological studies we developed an automated column-switching ultra-performance liquid chromatography-tandem mass spectrometry (HPLC-MS/MS) method for determination of perfluorocarboxylic acids (PFCAs; C5, C6, C7, C8, C9, C10, C11, C12, and C13), perfluoroalkyl sulfonic acids (PFSAs; C4, C6, C8, and C10), perfluorooctane sulfonamide (PFOSA), and five groups of structural perfluorooctane sulfonic acid (PFOS) isomers in human serum or plasma. The analytical procedure involves rapid protein precipitation using 96-well plates followed by an automated sample clean-up using an on-line trap column removing many potentially interfering sample components while through the mobile phase gradient the target analytes are eluted onto the analytical column for further separation and subsequent mass detection. The method was linear (R(2)<0.995) at concentrations ranging from 0.01 to 60ngmL(-1) with method detection limits ranging between 0.01 and 0.17ngmL(-1) depending on the analyte. The developed method was precise, with repeatability (n=7) and reproducibility (n=103) coefficients of variation between 2% and 20% for most compounds including PFOS (2% and 8%) and its structural isomers (2-6% and 4-8%). The method was in conformity with a standard reference material. The column-switching HPLC-MS/MS method has been successfully applied for the determination of perfluoroalkyl substances including structural PFOS isomers in human plasma from an epidemiological study.

  20. Proton Conduction in Sulfonated Organic-Inorganic Hybrid Monoliths with Hierarchical Pore Structure.

    PubMed

    von der Lehr, Martin; Seidler, Christopher F; Taffa, Dereje H; Wark, Michael; Smarsly, Bernd M; Marschall, Roland

    2016-09-28

    Porous organic-inorganic hybrid monoliths with hierarchical porosity exhibiting macro- and mesopores are prepared via sol-gel process under variation of the mesopore size. Organic moieties in the pore walls are incorporated by substituting up to 10% of the silicon precursor tetramethylorthosilicate with bisilylated benzene molecules. After functionalization with sulfonic acid groups, the resulting sulfonated hybrid monoliths featuring a bimodal pore structure are investigated regarding proton conduction depending on temperature and relative humidity. The hierarchical pore system and controlled mesopore design turn out to be crucial for sulfonation and proton conduction. These sulfonated hybrid hierarchical monoliths containing only 10% organic precursor exhibit higher proton conduction at different relative humidities than sulfonated periodic mesoporous organosilica made of 100% bisilylated precursors exhibiting solely mesopores, even with a lower concentration of sulfonic acid groups. PMID:27598017

  1. Proton Conduction in Sulfonated Organic-Inorganic Hybrid Monoliths with Hierarchical Pore Structure.

    PubMed

    von der Lehr, Martin; Seidler, Christopher F; Taffa, Dereje H; Wark, Michael; Smarsly, Bernd M; Marschall, Roland

    2016-09-28

    Porous organic-inorganic hybrid monoliths with hierarchical porosity exhibiting macro- and mesopores are prepared via sol-gel process under variation of the mesopore size. Organic moieties in the pore walls are incorporated by substituting up to 10% of the silicon precursor tetramethylorthosilicate with bisilylated benzene molecules. After functionalization with sulfonic acid groups, the resulting sulfonated hybrid monoliths featuring a bimodal pore structure are investigated regarding proton conduction depending on temperature and relative humidity. The hierarchical pore system and controlled mesopore design turn out to be crucial for sulfonation and proton conduction. These sulfonated hybrid hierarchical monoliths containing only 10% organic precursor exhibit higher proton conduction at different relative humidities than sulfonated periodic mesoporous organosilica made of 100% bisilylated precursors exhibiting solely mesopores, even with a lower concentration of sulfonic acid groups.

  2. Multiwavelength spectral correction for the simultaneous determination of Cu(II), Fe(II), and Zn(II) with 1-(5-bromo-2-pyridylazo)-2-naphthol-6-sulfonic acid.

    PubMed

    Gao, H W

    2001-01-01

    A new analytical method is described for the simultaneous determination of various components by multiwavelength spectrophotometry. Because of the influence of the free ligand and various complexes on spectrophotometric absorption, the spectral correction principle was used to establish the calculation matrix formula. The 3 sensitive reactions of Cu(II), Fe(II), and Zn(II), with 1-(5-bromo-2-pyridylazo)-2-naphthol-6-sulfonic acid were studied at pH 10.5. In analyses of fortified samples, the recoveries of Fe, Zn, and Cu were between 93.0 and 103%, 87.0 and 108%, and 92.5 and 108%, respectively; the relative standard deviations for 5 determinations of Fe, Zn, and Cu in unfortified ore were 3.6, 5.8, and 4.5%, respectively.

  3. The Attenuation of Scutellariae radix Extract on Oxidative Stress for Colon Injury in Lipopolysaccharide-induced RAW264.7 Cell and 2,4,6-trinitrobenzene Sulfonic Acid-induced Ulcerative Colitis Rats

    PubMed Central

    Jin, Yu; Yang, Jun; Lin, Lianjie; Lin, Yan; Zheng, Changqing

    2016-01-01

    Background: Oxidative stress (OS) has been regarded as one of the major pathogeneses of ulcerative colitis (UC) through damaging colon. It has been shown that Scutellariae radix (SR) extract has a beneficial effect for the prevention and treatment of UC. Objective: The aim of this study was to investigate whether SR had a potential capacity on oxidant damage for colon injury both in vivo and in vitro. Materials and Methods: The 2,4,6-trinitrobenzene sulfonic acid (TNBS) was used to induce UC rats model while 1 μg/ml lipopolysaccharide (LPS) was for RAW264.7 cell damage. Disease activity index (DAI) was determined to response the severity of colitis. The myeloperoxidase (MPO) activity in rat colon was also estimated. The 2,2’-azino-bis-3-ethylbenzthiazoline-6-sulfonic acid assay was performed to evaluate the total antioxidant capacity of SR. Furthermore, the activity of glutathione peroxidase (GSH-PX), catalase (CAT), superoxide dismutase (SOD), and lipid peroxidation malondialdehyde (MDA) in cell supernatant and rat serum were detected by appropriate kits. In addition, an immunohistochemical assay was applied to examine transforming growth factor beta 1 (TGF-β1) protein expression in colon tissue. Results: The treatment with SR could significantly increase the activity of GSH-PX, CAT, and SOD associated with OS in LPS-induced RAW264.7 cell damage and TNBS-induced UC rats. However, the level of MDA was markedly reduced both in vitro and in vivo. Furthermore, SR significantly decreased DAI and reversed the increased MPO activity. Thus, SR could decrease the severity of acute TNBS-induced colitis in rats. Immunohistochemical assay showed that SR significantly downregulated TGF-β1 protein expression in colon tissue. Conclusion: Our data provided evidence to support this fact that SR attenuated OS in LPS-induced RAW264.7 cell and also in TNBS-induced UC rats. Thus, SR may be an interesting candidate drug for the management of UC. SUMMARY Scutellariae radix (SR

  4. Proton-conducting membrane based on epoxy resin-poly(vinyl alcohol)-sulfosuccinic acid blend and its nanocomposite with sulfonated multiwall carbon nanotubes for fuel-cell application

    NASA Astrophysics Data System (ADS)

    Kakati, Nitul; Das, Gautam; Yoon, Young Soo

    2016-01-01

    A blend of poly(vinyl alcohol) (PVA) with diglycidyl ether of bisphenol-A (DGB) in the presence of sulfosuccinic acid (SSA) was investigated as hydrolytically-stable proton-conducting membrane. The PVA modification was carried out by varying the DGB:SSA ratio (20:20, 10:20, and 5:20). A nanocomposite of the blend (20:20) was prepared with sulfonated multiwall carbon nanotubes (viz., 1, 3 and 5 wt%). The water uptake behavior and the proton conductivity of the prepared membranes were evaluated. The ionic conductivity of the membranes and the water uptake behavior depended on the s-MWCNT and the DGB contents. The ionic conductivity showed an enhancement for the blend and for the nanocomposite membrane as compared to the pristine polymer.

  5. Preparation of allenic sulfones and allenes from the selenosulfonation of acetylenes

    SciTech Connect

    Back, T.G.; Krishna, M.V.; Muralidharan, K.R. )

    1989-08-18

    {beta}-(phenylseleno)vinyl sulfones 2 are readily obtained from the free-radical selenosulfonation of acetylenes. Compounds 2 isomerize to allyl sulfones 4 under base-catalyzed conditions in nearly quantitative yield, with high stereoselectivity favoring the Z configuration. Allyl sulfones 4 afford generally high yields of allenic sulfones 1 when subjected to oxidation with m-chloroperbenzoic acid or tert-butyl hydroperoxide, followed by selenoxide syn-elimination. The sulfone-stabilized anion intermediates in the isomerizations of 2 to 4 can be alkylated, deuterated, or silylated in the {alpha}-position prior to oxidation, providing allenic sulfones with an additional {alpha}-substituent. In some cases, spontaneous elimination of the phenylseleno group occurred, producing the allenic sulfone without the need for an oxidation step. Desulfonylation of allyl sulfones 4f, 4c, and 25 with sodium amalgam afforded vinyl selenides that were converted to allenes in moderate to good yields by oxidation-elimination. The copper-catalyzed coupling of allyl sulfones 4 with Grignard reagents comprises an alternative route to vinyl selenide precursors of allenes. These procedures permit the synthesis of various {alpha}- and {gamma}-substituted allenic sulfones and allenes from acetylenes.

  6. Molecular sieve/sulfonated poly(ether ketone ether sulfone) composite membrane as proton exchange membrane

    NASA Astrophysics Data System (ADS)

    Changkhamchom, Sairung; Sirivat, Anuvat

    2012-02-01

    A proton exchange membrane (PEM) is an electrolyte membrane used in both polymer electrolyte membrane fuel cells (PEMFC) and direct methanol fuel cells (DMFCs). Currently, PEMs typically used for PEMFCs are mainly the commercially available Nafion^ membranes, which is high cost and loss of proton conductivity at elevated temperature. In this work, the Sulfonated poly(ether ketone ether sulfone), (S-PEKES), was synthesized by the nucleophilic aromatic substitution polycondensation between bisphenol S and 4,4'-dichlorobenzophenone, and followed by the sulfonation reaction with concentrated sulfuric acid. The molecular sieve was added in the S-PEKES matrix at various ratios to form composite membranes to be the candidate for PEM. Properties of both pure sulfonated polymer and composite membranes were compared with the commercial Nafion^ 117 membrane from Dupont. S-PEKES membranes cast from these materials were evaluated as a polymer electrolyte membrane for direct methanol fuel cells. The main properties investigated were the proton conductivity, methanol permeability, thermal, chemical, oxidative, and mechanical stabilities by using a LCR meter, Gas Chromatography, Thermogravimetric Analysis, Fourier Transform Infrared Spectroscopy, Fenton's reagent, and Universal Testing Machine. The addition of the molecular sieve helped to increase both the proton conductivity and the methanol stability. These composite membranes are shown as to be potential candidates for use as a Proton Exchange Membrane (PEM).

  7. Synthesis and characterization of binary and ternary complexes of Co(II), Ni(II), Cu(II) and Zn(II) ions based on 4-aminotoluene-3-sulfonic acid.

    PubMed

    Faheim, Abeer A; Abdou, Safaa N; Abd El-Wahab, Zeinab H

    2013-03-15

    Salicylidene (4-aminotoluene-3-sulfonic acid) Schiff base ligand H(2)L, and its binary and ternary Co(II), Ni(II), Cu(II) and Zn(II) complexes using 8-hydroxyquinoline (8-HOqu) and 2-aminopyridine (2-Ampy) as secondary ligands have been synthesised and characterized via elemental analysis, spectral data (IR, (1)H NMR, mass and solid reflectance), molar conductance, magnetic moment, TG-DSC measurements and XRPD analysis. Correlation of all spectroscopic data suggest that H(2)L ligand acts as monoanionic terdentate ligand with ONO sites coordinating to the metal ions via deprotonated phenolic-O, azomethine-N and sulfonate-O while 2-Ampy behaves as a neutral monodentate ligand via amino group-N and 8-HOqu behaves as a monoanionic bidentate ligand through the ring-N and deprotonated phenolic-O. The thermal behavior of these complexes shows that the coordinated water molecules were eliminated from the complexes at relatively higher temperatures than the hydrated water and there are two routes in removal of coordinated water molecules. All complexes have mononuclear structure and the tetrahedral, square planar or an octahedral geometry have been proposed. The ligand and its complexes have been screened for their antimicrobial activity against Staphylococcus aureus, Bacillus subtilis, Escherichia coli, Salmonella typhimurium, Candida albicans and Aspergillus fumigatus. Among the synthesised compounds, the binary and ternary Ni(II) complexes, (2, 8 and 10) and ternary Zn(II) complex, (12) were found to be very effective against Candida albicans and Bacillus subtilis than all other complexes with MICs of 2 and 8 μg/mL, respectively.

  8. 21 CFR 573.600 - Lignin sulfonates.

    Code of Federal Regulations, 2010 CFR

    2010-04-01

    ... 21 Food and Drugs 6 2010-04-01 2010-04-01 false Lignin sulfonates. 573.600 Section 573.600 Food... Additive Listing § 573.600 Lignin sulfonates. Lignin sulfonates may be safely used in animal feeds in... feeds, as liquid lignin sulfonate, in an amount not to exceed 11 percent of the molasses. (4) As...

  9. 21 CFR 573.600 - Lignin sulfonates.

    Code of Federal Regulations, 2011 CFR

    2011-04-01

    ... 21 Food and Drugs 6 2011-04-01 2011-04-01 false Lignin sulfonates. 573.600 Section 573.600 Food... Additive Listing § 573.600 Lignin sulfonates. Lignin sulfonates may be safely used in animal feeds in... feeds, as liquid lignin sulfonate, in an amount not to exceed 11 percent of the molasses. (4) As...

  10. Tissue Distribution and Whole Body Burden of the Chlorinated Polyfluoroalkyl Ether Sulfonic Acid F-53B in Crucian Carp (Carassius carassius): Evidence for a Highly Bioaccumulative Contaminant of Emerging Concern.

    PubMed

    Shi, Yali; Vestergren, Robin; Zhou, Zhen; Song, Xiaowei; Xu, Lin; Liang, Yong; Cai, Yaqi

    2015-12-15

    Following the global actions to phase out perfluoroctanesulfonic acid (PFOS) a large number of alternative per- and polyfluoroalkyl substances, with poorly defined hazard properties, are being used in increasing quantities. Here, we report on the first detection of the chlorinated polyfluoroalkyl ether sulfonic acid F-53B in biological samples and determine the tissue distribution and whole body bioaccumulation factors (BAFwhole body) in crucian carp (Carassius carassius). Analysis of fish samples from Xiaoqing River (XR) and Tangxun Lake (TL) demonstrated a similar level of F-53B contamination with median concentrations in blood of 41.9 and 20.9 ng/g, respectively. Tissue/blood ratios showed that distribution of F-53B primarily occurs to the kidney (TL: 0.48, XR: 0.54), gonad (TL: 0.36, XR: 0.54), liver (TL: 0.38, XR: 0.53), and heart (TL: 0.47, XR: 0.47). Median Log BAFwhole body values for F-53B (XR: 4.124, TL: 4.322) exceeded regulatory bioaccumulation criterion and were significantly higher than those of PFOS in the same data sets (XR: 3.430, TL: 3.279). On the basis of its apparent omnipresence and strong bioaccumulation propensity, it is hypothesized that F-53B could explain a significant fraction of previously unidentified organofluorine in biological samples from China, and regulatory actions for this compound are encouraged.

  11. Modification of Escherichia coli ribosomes with the fluorescent reagent N-[[(iodoacetyl)amino]ethyl]-5-naphthylamine-1-sulfonic acid. Identification of derivatized L31' and studies on its intraribosomal properties.

    PubMed

    Hanas, J S; Simpson, M V

    1985-12-01

    N-[[(Iodoacetyl)amino]ethyl]-5-naphthylamine-1-sulfonic acid (IAEDANS) is a fluorescent reagent which reacts covalently with the free thiol groups of proteins. When the reagent is reacted with the Escherichia coli ribosome under mild conditions, gel electrophoresis shows modification of predominantly two proteins, S18 and L31', which become labeled to an equal extent. When the native (i.e., untreated) ribosome is dissociated into 30S and 50S subunits, only the 30S ribosomal protein S18 reacts with IAEDANS despite the fact that L31' is still present on the large subunit. Upon heat activation of the subunits, a procedure which alters subunit conformation, S18 plus a number of higher molecular weight proteins is modified, but not L31'; the latter reacts with IAEDANS only in the 70S ribosome or when it is free. In contrast to the relatively stable association of L31' with native or with dissociated ribosomes, dissociation of N-[(acetylamino)ethyl]-5-naphthylaminesulfonic acid (AEDANS)-treated ribosomes weakens the AEDANS-L31'/ribosome interaction, resulting, upon gel filtration analysis, in ribosomes devoid of this derivatized protein.

  12. Determination of hydrogen ion by ion chromatography (IC) with sulfonated cation-exchange resin as the stationary phase and aqueous EDTA (ethylenediamine-N,N,N',N'-tetraacetic acid) solution as the mobile phase.

    PubMed

    Hu, W; Iles, A; Hasebe, K; Matsukami, H; Cao, S; Tanaka, K

    2001-05-01

    An ion chromatographic (IC) method has been developed for determination of hydrogen ion (H+). It is based on the use of sulfonated cation-exchange resin as stationary phase, aqueous ethylenediamine-N,N,N',N'-tetraacetic acid (dipotassium salt, EDTA-2K, written as K2H2Y) solution as mobile phase, and conductivity for detection. H+ was separated mainly by cation-exchange, but its elution was accelerated by the presence of EDTA. The order of elution for the model cations was H+ > Li+ > Na+ > NH4+ > Ca2+ > > Mg2+. A sharp and highly symmetrical peak was obtained for H+ and this was attributed to the capacity of H2Y2(2-) to receive and bind H+. H+ was detected conductiometrically and detector response (reduction in conductivity as a result of H+ +H2Y2- --> H3Y-) was linearly proportional to the concentration of H+ in the sample. The detection limit for H+ with this IC system was better than 4.7 micromol L(-1). A significant advantage of this method was the ability to separate and determine, in one step, H+ and other cations. The successful determination of H+ and other cation species in real acid-rain samples demonstrated the usefulness of this method.

  13. Electrical conductivity of sulfonated poly(ether ether ketone) based composite membranes containing sulfonated polyhedral oligosilsesquioxane

    NASA Astrophysics Data System (ADS)

    Celso, Fabricio; Mikhailenko, Serguei D.; Rodrigues, Marco A. S.; Mauler, Raquel S.; Kaliaguine, Serge

    2016-02-01

    Composite proton exchange membranes (PEMs) intended for fuel cell applications were prepared by embedding of various amounts of dispersed tri-sulfonic acid ethyl POSS (S-Et-POSS) and tri-sulfonic acid butyl POSS (S-Bu-POSS) in thin films of sulfonated poly ether-ether ketone. The electrical properties of the PEMs were studied by Impedance spectroscopy and it was found that their conductivity σ changes with the filler content following a curve with a maximum. The water uptake of these PEMs showed the same dependence. The investigation of initial isolated S-POSS substances revealed the properties of typical electrolytes, which however in both cases possessed low conductivities of 1. 17 × 10-5 S cm-1 (S-Et-POSS) and 3.52 × 10-5 S cm-1 (S-Bu-POSS). At the same time, the insoluble in water S-POSS was found forming highly conductive interface layer when wetted with liquid water and hence producing a strong positive impact on the conductivity of the composite PEM. Electrical properties of the composites were analysed within the frameworks of effective medium theory and bounding models, allowing to evaluate analytically the range of possible conductivity values. It was found that these approaches produced quite good approximation of the experimental data and constituted a fair basis for interpretation of the observed relationship.

  14. Preparation of a sulfonated carbonaceous material from lignosulfonate and its usefulness as an esterification catalyst.

    PubMed

    Lee, Duckhee

    2013-07-10

    Sulfonated carbonaceous material useful as a solid acid catalyst was prepared from lignosulfonate, a waste of the paper-making industry sulfite pulping process, and characterized by 13C-NMR, FT-IR, TGA, SEM and elemental analysis, etc. The sulfonic acid group density and total density of all acid groups in the sulfonated carbonaceous material was determined by titration to be 1.24 mmol/g and 5.90 mmol/g, respectively. Its catalytic activity in the esterification of cyclohexanecarboxylic acid with anhydrous ethanol was shown to be comparable to that of the ionic exchange resin Amberlyst-15, when they were used in the same amount. In the meantime, the sulfonic acid group was found to be leached out by 26%-29% after it was exposed to hot water (95 °C) for 5 h. The catalytic usefulness of the prepared carbonaceous material was investigated by performing esterifications.

  15. Prenatal and neonatal exposure to perfluorooctane sulfonic acid results in aberrant changes in miRNA expression profile and levels in developing rat livers.

    PubMed

    Wang, Fan; Liu, Wei; Jin, Yihe; Wang, Faqi; Ma, Junsheng

    2015-01-01

    Perfluorooctane sulfonate (PFOS) is an animal carcinogen. However, the underlying mechanism in cancer initiation is still largely unknown. Recently identified microRNAs (miRNAs) may play an important role in toxicant exposure and in the process of toxicant-induced tumorigenesis. We used PFOS to investigate PFOS-induced changes in miRNA expression in developing rat liver and the potential mechanism of PFOS-induced toxic action. Dams received 3.2 mg/kg PFOS in their feed from gestational day 1 (GD1) to postnatal day 7 (PND 7). Pups then had free access to treated feed until PND 7. We isolated RNAs from liver tissues on PND 1 and 7 and analyzed the expression profiles of 387 known rat miRNAs using microarray technology. PFOS exposure induced significant changes in miRNA expression profiles. Forty-six miRNAs had significant expression alterations on PND 1, nine miRNAs on PND 7. Specifically, expression of four miRNAs was up-regulated on PND 7 but down-regulated on PND1 (p < 0.05). Many aberrantly expressed miRNAs were related to various cancers. We found oncogenic and tumor-suppressing miRNAs, which included miR-19b, miR-21*, miR-17-3p, miR-125a-3p, miR-16, miR-26a, miR-1, miR-200c, and miR-451. In addition, four miRNAs were simultaneous significantly expressed on both PND 1 and 7. Functional Annotation analysis of the predicted transcript targets revealed that PFOS exposure potentially alters pathways associated with different cancers (cancer, melanoma, pancreatic cancer, colorectal cancer, and glioma), biological processes which include positive regulation of apoptosis and cell proliferation. Results showed PFOS exposure altered the expression of a suite of miRNAs. © 2014 Wiley Periodicals, Inc. Environ Toxicol 30: 712-723, 2015.

  16. ACTIVATION OF MOUSE AND HUMAN PEROXISOME PROLIFERATOR-ACTIVATED RECEPTORS (PPAR ALPHA, GAMMA, BETA DELTA) BY PERFLUOROOCTANOIC ACID (PFOA) AND PERFLUOROOCTANE SULFONATE (PFOS)

    EPA Science Inventory

    This study evaluates the potential for perfluorooctanoic acid (PFOA) and perfluorooctanesulfonate (PFOS) to activate peroxisome proliferator-activated receptors (PPARs), using a transient transfection cell assay. Cos-1 cells were cultured in DMEM with fetal bovine serum (FBS) in ...

  17. Structural Insights into 2,2′-Azino-Bis(3-Ethylbenzothiazoline-6-Sulfonic Acid) (ABTS)-Mediated Degradation of Reactive Blue 21 by Engineered Cyathus bulleri Laccase and Characterization of Degradation Products

    PubMed Central

    Kenzom, T.; Srivastava, P.

    2014-01-01

    Advanced oxidation processes are currently used for the treatment of different reactive dyes which involve use of toxic catalysts. Peroxidases are reported to be effective on such dyes and require hydrogen peroxide and/or metal ions. Cyathus bulleri laccase, expressed in Pichia pastoris, catalyzes efficient degradation (78 to 85%) of reactive azo dyes (reactive black 5, reactive orange 16, and reactive red 198) in the presence of synthetic mediator ABTS [2,2′-azino-bis(3-ethylbenzothiazoline-6-sulfonic acid)]. This laccase was engineered to degrade effectively reactive blue 21 (RB21), a phthalocyanine dye reported to be decolorized only by peroxidases. The 816-bp segment (toward the C terminus) of the lcc gene was subjected to random mutagenesis and enzyme variants (Lcc35, Lcc61, and Lcc62) were selected based on increased ABTS oxidizing ability. Around 78 to 95% decolorization of RB21 was observed with the ABTS-supplemented Lcc variants in 30 min. Analysis of the degradation products by mass spectrometry indicated the formation of several low-molecular-weight compounds. Mapping the mutations on the modeled structure implicated residues both near and far from the T1 Cu site that affected the catalytic efficiency of the mutant enzymes on ABTS and, in turn, the rate of oxidation of RB21. Several inactive clones were also mapped. The importance of geometry as well as electronic changes on the reactivity of laccases was indicated. PMID:25261507

  18. Carryover of perfluorooctanoic acid (PFOA) and perfluorooctane sulfonate (PFOS) from soil to plant and distribution to the different plant compartments studied in cultures of carrots (Daucus carota ssp. Sativus), potatoes (Solanum tuberosum), and cucumbers (Cucumis Sativus).

    PubMed

    Lechner, Mareike; Knapp, Holger

    2011-10-26

    A vegetation study was carried out to investigate the carryover of Perfluorooctanoic Acid (PFOA) and Perfluorooctane Sulfonate (PFOS) from soil mixed with contaminated sewage sludge to potato, carrot, and cucumber plants. Analysis was done by liquid-extraction using acetonitrile with dispersive SPE cleanup and subsequent HPLC-MS/MS. In order to assess the transfer potential from soil, transfer factors (TF) were calculated for the different plant compartments: TF = [PFC](plant (wet substance))/[PFC](soil (dry weight)). The highest TF were found for the vegetative plant compartments with average values for PFOS below those for PFOA: cucumber, 0.17 (PFOS), 0.88 (PFOA); potato, 0.36 (PFOS), 0.40 (PFOA); carrot, 0.38 (PFOS), 0.53 (PFOA). Transfer of PFOA and PFOS into potato peelings (average values of TF: PFOA 0.03, PFOS 0.04) exceeded the carryover to the peeled tubers (PFOA 0.01, PFOS < 0.01). In carrots, this difference did not occur (average values of TF: PFOA 0.04, PFOS 0.04). Transfer of PFOS into the unpeeled cucumbers was low and comparable to that of peeled potatoes (TF < 0.01). For PFOA, it was higher (TF: 0.03).

  19. A simple, post-additional antioxidant capacity assay using adenosine triphosphate-stabilized 2,2'-azinobis(3-ethylbenzothiazoline)-6-sulfonic acid (ABTS) radical cation in a G-quadruplex DNAzyme catalyzed ABTS-H2O2 system.

    PubMed

    Jia, Shu-Min; Liu, Xiao-Fei; Kong, De-Ming; Shen, Han-Xi

    2012-05-15

    The scavenging of 2,2'-azinobis(3-ethylbenzothiazoline)-6-sulfonic acid (ABTS) radical cation (ABTS(+)) by antioxidants has been widely used in antioxidant capacity assay. Because of ABTS(+) disproportionation, however, this radical cannot be prepared on a large scale and stored long-term, making it unsuitable for high-throughput detection and screening of antioxidants. We developed a modified "post-additional" antioxidant capacity assay. This method possessed two remarkable features: First, instead of natural peroxidases, an artificial enzyme, G-quadruplex DNAzyme, was used for the preparation of ABTS(+), thus greatly reducing the cost of the assay, and eliminating the strict demand for the storage of enzymes. Second, an ABTS(+) stabilizer, adenosine triphosphate (ATP), was used. In the presence of ATP, the disproportionation of ABTS(+) was effectively inhibited, and the lifetime of this radical cation was prolonged about 6-fold (12 days versus 2 days), making the large-scale preparation of ABTS(+) possible. Utilizing this method, the antioxidant capacities of individual antioxidants and real samples can be quantified and compared easily. In addition, this method can be developed as a high-throughput screening method for antioxidants. The screening results could even be judged by the naked eye, eliminating the need for expensive instruments.

  20. Structural insights into 2,2'-azino-Bis(3-ethylbenzothiazoline-6-sulfonic acid) (ABTS)-mediated degradation of reactive blue 21 by engineered Cyathus bulleri Laccase and characterization of degradation products.

    PubMed

    Kenzom, T; Srivastava, P; Mishra, S

    2014-12-01

    Advanced oxidation processes are currently used for the treatment of different reactive dyes which involve use of toxic catalysts. Peroxidases are reported to be effective on such dyes and require hydrogen peroxide and/or metal ions. Cyathus bulleri laccase, expressed in Pichia pastoris, catalyzes efficient degradation (78 to 85%) of reactive azo dyes (reactive black 5, reactive orange 16, and reactive red 198) in the presence of synthetic mediator ABTS [2,2'-azino-bis(3-ethylbenzothiazoline-6-sulfonic acid)]. This laccase was engineered to degrade effectively reactive blue 21 (RB21), a phthalocyanine dye reported to be decolorized only by peroxidases. The 816-bp segment (toward the C terminus) of the lcc gene was subjected to random mutagenesis and enzyme variants (Lcc35, Lcc61, and Lcc62) were selected based on increased ABTS oxidizing ability. Around 78 to 95% decolorization of RB21 was observed with the ABTS-supplemented Lcc variants in 30 min. Analysis of the degradation products by mass spectrometry indicated the formation of several low-molecular-weight compounds. Mapping the mutations on the modeled structure implicated residues both near and far from the T1 Cu site that affected the catalytic efficiency of the mutant enzymes on ABTS and, in turn, the rate of oxidation of RB21. Several inactive clones were also mapped. The importance of geometry as well as electronic changes on the reactivity of laccases was indicated.

  1. Flame Atomic Absorption Spectrometric Determination of Trace Metal Ions in Environmental and Biological Samples After Preconcentration on a Newly Developed Amberlite XAD-16 Chelating Resin Containing p-Aminobenzene Sulfonic Acid.

    PubMed

    Islam, Aminul; Ahmad, Akil; Laskar, Mohammad Asaduddin

    2015-01-01

    Amberlite® XAD-16 was functionalized with p-aminobenzene sulfonic acid via an azo spacer in order to prepare a new chelating resin, which was then characterized by water regain value, hydrogen ion capacity, elemental analyses, and IR spectral and thermal studies. The maximum uptake of Cu(II), Ni(II), Zn(II), Co(II), Cr(III), Fe(III), and Pb(II) ions was observed in the pH range 4.0-6.0 with the corresponding half-loading times of 6.5, 7.0, 8.0, 9.0, 11.0, 8.5, and 16.5 min. The sorption data followed Langmuir isotherms and a pseudo-second-order model. Thermodynamic quantities, ΔH and ΔS, based on the variation of the distribution coefficient with temperature were also evaluated. High preconcentration factors of 60-100 up to a low preconcentration limit of 4.0-6.6 μg/L have been achieved for the metal ions. The validity of the method was checked by analyzing standard reference materials and recoveries of trace metals after spiking. The analytical applications of the method were explored by analyzing natural water, mango pulp, mint leaves, and fish. PMID:25857893

  2. Carryover of perfluorooctanoic acid (PFOA) and perfluorooctane sulfonate (PFOS) from soil to plant and distribution to the different plant compartments studied in cultures of carrots (Daucus carota ssp. Sativus), potatoes (Solanum tuberosum), and cucumbers (Cucumis Sativus).

    PubMed

    Lechner, Mareike; Knapp, Holger

    2011-10-26

    A vegetation study was carried out to investigate the carryover of Perfluorooctanoic Acid (PFOA) and Perfluorooctane Sulfonate (PFOS) from soil mixed with contaminated sewage sludge to potato, carrot, and cucumber plants. Analysis was done by liquid-extraction using acetonitrile with dispersive SPE cleanup and subsequent HPLC-MS/MS. In order to assess the transfer potential from soil, transfer factors (TF) were calculated for the different plant compartments: TF = [PFC](plant (wet substance))/[PFC](soil (dry weight)). The highest TF were found for the vegetative plant compartments with average values for PFOS below those for PFOA: cucumber, 0.17 (PFOS), 0.88 (PFOA); potato, 0.36 (PFOS), 0.40 (PFOA); carrot, 0.38 (PFOS), 0.53 (PFOA). Transfer of PFOA and PFOS into potato peelings (average values of TF: PFOA 0.03, PFOS 0.04) exceeded the carryover to the peeled tubers (PFOA 0.01, PFOS < 0.01). In carrots, this difference did not occur (average values of TF: PFOA 0.04, PFOS 0.04). Transfer of PFOS into the unpeeled cucumbers was low and comparable to that of peeled potatoes (TF < 0.01). For PFOA, it was higher (TF: 0.03). PMID:21905714

  3. Structural insights into 2,2'-azino-Bis(3-ethylbenzothiazoline-6-sulfonic acid) (ABTS)-mediated degradation of reactive blue 21 by engineered Cyathus bulleri Laccase and characterization of degradation products.

    PubMed

    Kenzom, T; Srivastava, P; Mishra, S

    2014-12-01

    Advanced oxidation processes are currently used for the treatment of different reactive dyes which involve use of toxic catalysts. Peroxidases are reported to be effective on such dyes and require hydrogen peroxide and/or metal ions. Cyathus bulleri laccase, expressed in Pichia pastoris, catalyzes efficient degradation (78 to 85%) of reactive azo dyes (reactive black 5, reactive orange 16, and reactive red 198) in the presence of synthetic mediator ABTS [2,2'-azino-bis(3-ethylbenzothiazoline-6-sulfonic acid)]. This laccase was engineered to degrade effectively reactive blue 21 (RB21), a phthalocyanine dye reported to be decolorized only by peroxidases. The 816-bp segment (toward the C terminus) of the lcc gene was subjected to random mutagenesis and enzyme variants (Lcc35, Lcc61, and Lcc62) were selected based on increased ABTS oxidizing ability. Around 78 to 95% decolorization of RB21 was observed with the ABTS-supplemented Lcc variants in 30 min. Analysis of the degradation products by mass spectrometry indicated the formation of several low-molecular-weight compounds. Mapping the mutations on the modeled structure implicated residues both near and far from the T1 Cu site that affected the catalytic efficiency of the mutant enzymes on ABTS and, in turn, the rate of oxidation of RB21. Several inactive clones were also mapped. The importance of geometry as well as electronic changes on the reactivity of laccases was indicated. PMID:25261507

  4. Thermal stability of sulfonated polymers

    SciTech Connect

    Audibert, A.; Argillier, J.F.

    1995-11-01

    Polyacrylamides which are used in oil applications i.e. polymer flooding and water based muds, are hydrolyzed versus time and temperature. This leads to a lack of tolerance towards electrolyte contamination and to a rapid degradation inducing a loss of their properties. Modifications of polyacrylamide structure have been proposed to postpone their thermal stability to higher temperatures. Monomers such as acrylamido methylpropane sulfonate (AMPS) or sulfonated styrene/maleic anhydride can be used to prevent acrylamide comonomer from hydrolysis. The aim of this work is to study under controlled conditions, i.e. anaerobic atmosphere, neutral pH, the stability of sulfonated polymers in order to distinguish between hydrolysis and radical degradation reactions. It has been observed that up to 100 C, the AMPS group is stable and protects the acrylamide function from hydrolysis up to 80%. At higher temperature, even the hydrolysis of the AMPS group occurs, giving acrylate and {beta},{beta} dimethyl taurine, with a kinetics that depends on temperature and time. Degradation in terms of molecular weight then occurs indicating that it follows a radical decarboxylation reaction. It can be limited either by the use of free radical scavenger or when the polymer is in the presence of a mineral phase such as bentonite. These results provide valuable data for the determination of the limits of use of sulfonated copolymers and guidelines for optimizing chemical structure of sulfonated polymers used in water based formulation, in particular to enhance their thermal stability.

  5. Anhydrous state proton and lithium ion conducting solid polymer electrolytes based on sulfonated bisphenol-A-poly(arylene ethers)

    NASA Astrophysics Data System (ADS)

    Guha Thakurta, Soma

    Sulfonated polymer based solid polymer electrolytes (SPEs) have received considerable interest in recent years because of their wide variety of applications particularly in fuel cells, batteries, supercapacitors, and electrochromic devices. The present research was focused on three interrelated subtopics. First, two different bisphenol-A-poly(arylene ethers), polyetherimide (PEI) and polysulfone (PSU) were sulfonated by a post sulfonation method to various degrees of sulfonation, and their thermal and mechanical properties were examined. The effects of poly(arylene ether) chemical structure, reaction time, concentration, and types of sulfonating agents on sulfonation reaction were investigated. It was found that deactivation of bisphenol A unit caused by the electron withdrawing imide, retarded the sulfonation of PEI compared to PSU. Sulfonation conducted with a high concentration of sulfonating agent and/or prolonged reaction time exhibited evidence of degradation at the isopropylidene unit. The degradation occurred through the same mechanistic pathway with the two different sulfonating agents, chlorosulfonic acid (CSA) and trimethylsilyl chlorosulfonate (TMSCS). The degradation was faster with CSA than its silyl ester, TMSCS, and was evident even at low acid concentration. Second, novel anhydrous proton conducting solid polymer electrolytes (SPEs) were prepared by the incorporation of 1H-1,2,4-triazole (Taz) as a proton solvent in sulfonated polyetherimide (SPEI) matrix. The size, shape, and state of dispersion (crystal morphology) of triazole crystals in SPEI were examined as a function of degree of sulfonation and triazole concentration. Increasing sulfonic acid content caused reduction of triazole crystallite size, hence the depression of melting temperature and their uniform distribution throughout the sulfonated polymer matrix. The increased rate of structure diffusion within the smaller size crystals due to the improved molecular mobility contributed

  6. Sulfonate-cosurfactant mixtures for use in hard brines during oil recovery operations

    SciTech Connect

    Meister, J. J.

    1981-05-12

    Alkyl vinyl ether-maleic anhydride copolymers, alone or in combination with ethoxylated acids and/or ethoxylated amides and, optionally, together with polyalkoxylated carboxylic acids, polyalkoxylated amides and sulfated derivatives thereof, ethoxylated alkyl phenols, ethoxylated alcohols and the corresponding sulfated derivatives, sulfated aliphatic alcohols and alkylene oxide block copolymers, are useful to stabilize sulfonate surfactants, E.G., petroleum sulfonates, E.G., for use in tertiary oil recovery.

  7. PtCu substrates subjected to AC and DC electric fields in a solution of benzene sulfonic acid-phenol as novel batteries and their use in glucose biofuel cells

    NASA Astrophysics Data System (ADS)

    Ammam, Malika; Fransaer, Jan

    2013-11-01

    We describe how bi-metal PtCu connected wires, immersed in a solution of benzene sulfonic acid (BSA)-phenol (P) or 2,2‧-azino-bis(3-ethylbenzothiazoline-6-sulphonic acid) (ABTS)-phenol (P), then subjected to simultaneous alternating current (AC) and direct current (DC) electric fields generate power. We discovered that PtCu substrate covered by the deposit containing (BSA-PP-Pt-Cu), abbreviated as PtCu(BSA-PP-Pt-Cu) electrode, plays the role of a substantial anode and cathode. The latter was related to the formation of micro-batteries in the deposited film (BSA-PP-Pt-Cu) that are able to take or deliver electrons from the deposited Pt and Cu, respectively. PP-BSA plays probably the role of bridge for proton conduction in the formed micro-batteries. The power density of the fuel cell (FC)-based PtCu(BSA-PP-Pt-Cu) anode and PtCu(BSA-PP-Pt-Cu) cathode in phosphate buffer solution pH 7.4 at room temperature reaches ˜10.8 μW mm-2. Addition of enzymes, glucose oxidase at the anode and laccase at the cathode and, replacement of BSA by ABTS at the cathode in the deposited films increases the power density to 13.3 μW mm-2. This new procedure might be of great relevance for construction of a new generation of FCs operating at mild conditions or boost the power outputs of BFCs and make them suitable for diverse applications.

  8. Profiling sulfonate ester stability: identification of complementary protecting groups for sulfonates

    PubMed Central

    Miller, Stephen C.

    2010-01-01

    Sulfonation is prized for its ability to impart water-solubility to hydrophobic molecules such as dyes. This modification is usually performed as a final step, since sulfonated molecules are poorly soluble in most organic solvents, which complicates their synthesis and purification. This work compares the intrinsic lability of different sulfonate esters, identifying new sulfonate protecting groups and mild, selective cleavage conditions. PMID:20515067

  9. Rapid screening and quantification of sulfonate derivatives in white peony root by UHPLC-MS-MS.

    PubMed

    Yan, Zhixiang; Chen, Chen; Xie, Xiabing; Fu, Bo; Yang, Xinghao

    2012-02-01

    A rapid ultra-high-performance liquid chromatographic-tandem mass spectrometric (UHPLC-MS-MS) method has been developed for rapid screening and quantitative analysis of sulfonate derivatives (SDs) in commercial white peony root. Separation was performed on an Agilent Zorbax Eclipse Plus-C18 column by gradient elution with acetonitrile-0.1% (v/v) formic acid as the mobile phase. In-source fragmentation was used to generate the characteristic fragment ion at m/z 259 and to screen for nine SDs. Detection of these SDs was further performed in multiple reaction monitoring (MRM) mode to improve sensitivity and to quantify the two SDs paeoniflorin sulfonate and benzoylpaeoniflorin sulfonate. The method was validated for specificity, linearity, limits of detection and quantification, precision, accuracy, and matrix effects. Nine commercial white peony root samples were examined by use of this method, which revealed great variety in the paeoniflorin sulfonate and benzoylpaeoniflorin sulfonate content.

  10. Synthesis and polymerization of substituted ammonium sulfonate monomers for advanced materials applications.

    PubMed

    Cavicchi, Kevin A

    2012-02-01

    Sulfonated polymers have found use as ion-exchange membranes for use in fuel cells, water purification, electroactive devices, and inorganic materials templating and synthesis. Improving the materials for these applications and opening up new applications requires the ability to synthesis targeted or more complex sulfonated polymers, which includes tailoring the chemistry (copolymerization across a wider range of solubility) and/or polymer architecture (block, graft, nanoparticle). This article will summarize the recent work using sulfonated monomers with substituted ammonium counterions as a versatile route for enabling this goal. Two main benefits of these monomers are as follows. First, they are useful for preparing amphiphilic copolymers, which is a challenge using traditional acidic or alkali salt forms of sulfonated monomers. Second, sulfonated polymers with substituted ammonium counterions are useful polymers for obtaining unique material properties, such as organo-gelation of low polarity solvents or obtaining ionic liquid polymers for the fabrication of solid polymer electrolytes.

  11. Sulfone cosurfactants in enhanced oil recovery processes

    SciTech Connect

    Stapp, P. R.

    1984-12-04

    A surfactant system useful for oil recovery consisting essentially of a NaCl, a hydrocarbon sulfonate surfactant, such as a petroleum sulfonate, and a cosurfactant such as a sulfone or sulfolane derivative. In another embodiment, a C/sub 1/ to C/sub 8/ alcohol is additionally present as a cosurfactant.

  12. p-Chlorophenyl methyl sulfone

    Integrated Risk Information System (IRIS)

    p - Chlorophenyl methyl sulfone ; CASRN 98 - 57 - 7 Human health assessment information on a chemical substance is included in the IRIS database only after a comprehensive review of toxicity data , as outlined in the IRIS assessment development process . Sections I ( Health Hazard Assessments for No

  13. Coarse graining of polystyrene sulfonate

    NASA Astrophysics Data System (ADS)

    Perahia, Dvora; Agrawal, Anupriya; Grest, Gary S.

    2015-03-01

    Capturing large length scales in soft matter while retaining atomistic properties is imperative to computational studies. Here we develop a new coarse-grained model for polystyrene sulfonate (PSS) that often serves as a model system because of its narrow molecular weight distribution and defined degree of sulfonation. Four beads are used to represent polymer where the backbone, the phenyl group, and the sulfonated group are each represented by a different bead and the fourth one represents counterion, which is sodium in our case. Initial atomistic simulations of PSS melt with sulfonation levels of 2-10%, with a dielectric constant ɛ = 1 revealed a ``locked'' phase where motion of the polymer is limited. Dielectric constant of ɛ = 5 was used to accelerate the dynamics. Bonded interactions were obtained using Boltzmann inversion on the bonded distributions extracted from atomistic simulation. Non-bonded interaction of polystyrene monomer was taken from our previous work and potential of mean force was used as the initial guess for interaction of the ionic beads. This set of potential was subsequently iterated to get a good match with radial distribution functions. This potential and its transferability across dielectric constants and temperatures will be presented. Grant DE-SC007908.

  14. Phycotoxicity of linear alkylbenzene sulfonate

    SciTech Connect

    Chawla, G.; Viswanathan, P.N.; Devi, S.

    1988-04-01

    Dose- and time-dependent effects of linear alkylbenzene sulfonate, a major component of synthetic detergent, to the blue-green alga Nostoc muscorum, were studied under laboratory conditions. Toxicity was evident, at doses above 0.001%, from the decrease in biomass, heterocyst number, and protein content and pathomorphological alterations.

  15. Advances in membrane materials: desalination membranes based on directly copolymerized disulfonated poly(arylene ether sulfone) random copolymers.

    PubMed

    Xie, Wei; Park, Ho-Bum; Cook, Joseph; Lee, Chang Hyun; Byun, Gwangsu; Freeman, Benny D; McGrath, James E

    2010-01-01

    The water and salt transport properties of chlorine tolerant disulfonated poly(arylene ether sulfone) (BPS) copolymers have been characterized. Cast BPS membranes of both salt form and acid form with sulfonation levels from 20% to 40% were investigated. Water permeability of BPS films increases more than one order of magnitude as sulfonation level increases from 20% to 40%, while the salt permeability of the corresponding membranes increases two orders of magnitude. Moderate salt rejection (98.2%) was achieved by a BPS salt form membrane with a sulfonation level of 20%.

  16. Immune modulatory treatment of trinitrobenzene sulfonic acid colitis with calcitriol is associated with a change of a T helper (Th) 1/Th17 to a Th2 and regulatory T cell profile.

    PubMed

    Daniel, Carolin; Sartory, Nico A; Zahn, Nadine; Radeke, Heinfried H; Stein, Jürgen M

    2008-01-01

    A number of recent studies testify that calcitriol alone or in combination with corticosteroids exerts strong immune modulatory activity. As a new approach, we evaluated the protolerogenic potential of calcitriol and dexamethasone in acute T helper (Th)1-mediated colitis in mice. A rectal enema of trinitrobenzene sulfonic acid (TNBS) (100 mg/kg) was applied to BALB/c mice. Calcitriol and/or dexamethasone were administered i.p. from days 0 to 3 or 3 to 5 following the instillation of the haptenating agent. Assessment of colitis severity was performed daily. Colon tissue was analyzed macroscopically and microscopically, and myeloperoxidase activity, as well as cytokine levels [tumor necrosis factor-alpha, interferon-gamma, interleukin (IL)-12p70, IL-1beta, IL-10, IL-4] were determined by enzyme-linked immunosorbent assay, T-bet, GATA family of transcription factors 3, a Th2 master regulator (GATA3), Foxp3, cytotoxic T-lymphocyte-associated antigen 4 (CTLA4), IL-23p19 and IL-17 expression by immunoblot analysis. The combination of the steroids most effectively reduced the clinical and histopathologic severity of TNBS colitis. Th1-related parameters were down-regulated, whereas Th2 markers like IL-4 and GATA3 were up-regulated. Apart from known steroid effects, calcitriol in particular promoted regulatory T cell profiles as indicated by a marked increase of IL-10, TGFbeta, FoxP3, and CTLA4. Furthermore, analysis of dendritic cell mediators responsible for a proinflammatory differentiation of T cells revealed a significant reduction of IL-12p70 and IL23p19 as well as IL-6 and IL-17. Thus, our data support a rationale for a steroid-sparing, clinical application of calcitriol derivatives in inflammatory bowel disease. Furthermore they suggest that early markers of inflammatory dendritic cell and Th17 differentiation qualify as new target molecules for both calcitriol and highly selective immune-modulating vitamin D analogs.

  17. Fully aromatic block copolymers for fuel cell membranes with densely sulfonated nanophase domains.

    PubMed

    Takamuku, Shogo; Jannasch, Patric

    2011-03-01

    Two multiblock copoly(arylene ether sulfone)s with similar block lengths and ion exchange capacities (IECs) were prepared by a coupling reaction between a non-sulfonated precursor block and a highly sulfonated precursor block containing either fully disulfonated diarylsulfone or fully tetrasulfonated tetraaryldisulfone segments. The latter two precursor blocks were sulfonated via lithiation-sulfination reactions whereby the sulfonic acid groups were exclusively placed in ortho positions to the many sulfone bridges, giving these blocks IECs of 4.1 and 4.6 meq·g⁻¹, respectively. Copolymer membranes with IECs of 1.4 meq·g⁻¹ displayed well-connected hydrophilic nanophase domains and had decomposition temperatures at, or above, 300 °C under air. The copolymer with the tetrasulfonated tetraaryldisulfone segments showed a proton conductivity of 0.13 S·cm⁻¹ at 80 °C under fully humidified conditions, and surpassed that of a perfluorosulfonic acid membrane (NRE212) by a factor of 5 at -20 °C over time.

  18. Determination of alachlor and its sulfonic acid metabolite in water by solid-phase extraction and enzyme-linked immunosorbent assay

    USGS Publications Warehouse

    Aga, D.S.; Thurman, E.M.; Pomes, M.L.

    1994-01-01

    Solid-phase extraction (SPE) and enzyme-linked immunosorbent assay (ELISA) were combined for the trace analysis of the herbicide alachlor and its major soil metabolite, ethanesulfonic acid (ESA). The anti-alachlor antibody cross-reacted with ESA, which produced false-positive detections of alachlor in water samples by immunoassay screens. Alachlor and ESA were isolated from water by SPE on a C18 resin and eluted sequentially with ethyl acetate and methanol. Alachlor is soluble in ethyl acetate while the anionic ESA is not. Thus ESA remained adsorbed on the C18 resin and was eluted later with methanol. The combination of SPE with ELISA effectivety separated and quantified both alachlor and ESA using the same antibody for two ELISA methods. The general method may have applicability for the separation of other herbicides and their ionic metabolites. The SPE-ELISA method has a, detection limit of 0.01 ??g/L for alachlor and 0.05 ??g/L for ESA, with a precision of ?? 10%. Analyses of surface and ground water samples were confirmed by gas chromatography/mass spectrometry and high-performance liquid chromatography with photodiode-array detection. Results showed widespread occurrence of ESA in surface and ground water of the midwestern United States, with concentrations ranging from 10 ??g/L.

  19. Selective determination of pharmaceuticals and illicit drugs in wastewaters using a novel strong cation-exchange solid-phase extraction combined with liquid chromatography-tandem mass spectrometry.

    PubMed

    Gilart, Núria; Cormack, P A G; Marcé, Rosa Maria; Fontanals, Núria; Borrull, Francesc

    2014-01-17

    In this study, two materials are presented with strong cation-exchange (SCX) behaviour synthesised by two different approaches and then crushed for their application as sorbents for solid-phase extraction (SPE) to extract a group of pharmaceuticals and illicit drugs selectively from wastewater samples. The first SCX polymer was obtained by copolymerisation of three monomers: 2-acrylamido-2-methylpropane sulphonic acid (AMPSA), 2-hydroxyethyl methacrylate (HEMA) and pentaerythritol triacrylate (PETRA), while the second was obtained by post-modification with sulphuric acid (H2SO4) of a copolymer based on HEMA and divinylbenzene (DVB). After their syntheses, both polymers were evaluated as SPE sorbents, with all parameters affecting SPE being optimised, such as sample pH, washing and elution solvents and volumes. Thanks to the sulphonic groups present in the structure of the polymers, all of the compounds with basic functionalities were retained on the sorbents after the washing step, removing the acidic analytes and other interfering compounds, providing successful results in terms of ion suppression/enhancement (-12% and 21%) when wastewater samples were analysed. However, AMPSA/HEMA/PETRA (20/60/20) failed to retain the analytes after loading wastewater samples (25 or 50mL), decreasing analyte recovery values significantly, whereas the sulphonated HEMA/DVB (50/50) enabled good SPE performance with recovery values between 70% and 98%, except for ranitidine and EDDP (39% and 43%, respectively). Therefore, this polymer was selected for further method validation and quantification of wastewater samples, providing low method detection limits (MDLs) in this matrix (from 2 to 40ngL(-1)). Finally, most of the studied compounds were detected and quantified in wastewater samples, especially atenolol, ranitidine, cocaine and its metabolite benzoylecgonine. PMID:24369996

  20. Pyrolysis Pathways of Sulfonated Polyethylene, an Alternative Carbon Fiber Precursor

    SciTech Connect

    Younker, Jarod M; Saito, Tomonori; Hunt, Marcus A; Beste, Ariana; Naskar, Amit K

    2013-01-01

    Sulfonated polyethylene is an emerging precursor for the production of carbon fibers. Pyrolysis of sulfonated polyethylene was characterized by thermogravimetric analysis (TGA). n-heptane-4-sulfonic acid (H4S) was selected as a model compound for the study of sulfonated polyethylene. Density functional theory and conventional transition state theory were used to determine the rate constants of pyrolysis for H4S from 300-1000 K. Multiple reaction channels from two different mechanisms were explored: 1) internal five-centered elimination (Ei 5) and 2) radical chain reaction. The pyrolysis of H4S was simulated with kinetic Monte Carlo (kMC) to obtain TGA plots that compared favorably to experiment. We observed that at tem- peratures < 550 K, the radical mechanism was dominant and yielded the trans-alkene, whereas cis-alkene was formed at higher temperatures from the internal elimination. The maximum rates of % mass loss became independent of initial OH radical concentration at 440-480 K. Experimentally, the maximum % mass loss occurred from 440-460 K (heating rate dependent). Activation energies derived from the kMC-simulated TGAs of H4S (26-29 kcal/mol) agreed with experiment for sulfonated polyethylene ( 31 kcal/mol). The simulations revealed that in this region, decomposition of radical HOSO2 became competitive to H abstraction by HOSO2, making OH the carrying radical for the reaction chain. The maximum rate of % mass loss for internal elimination was observed at temperatures > 600 K. Low-scale carbonization utilizes temperatures < 620 K; thus, internal elimination will not be competitive. Ei5 elimination has been studied for sulfoxides and sulfones, but this represents the first study of internal elimination in sulfonic acids. Nonlinear Arrhenius plots were found for all bimolecular reactions. The most significant nonlinear behavior was observed for reactions where the barrier was small. For reactions with low activation barriers, nonlinearity was traced to

  1. On the mechanism of divalent metal ion chelator induced activation of the 7S nerve growth factor esteropeptidase. Activation by 2,2',2''-terpyridine and by 8-hydroxyquinoline 5-sulfonic acid.

    PubMed

    Pattison, S E; Dunn, M F

    1976-08-24

    Our previous studies (Pattison, S. E., and Dunn, M. F. (1975), Biochemistry 14, 2733) have shown that the reaction of divalent metal ion chelators with the 140 000 mol wt mouse submaxillary nerve growth factor protein (7S NGF) activates the iota-subunit esteropeptidase activity ca. sevenfold. Ultraviolet-visible spectral studies with the chelator 2,2',2''-terpyridine (terpyridine) and fluorescence emission studies with 8-hydroxyquinoline-5-sulfonic acid (HQSA) in combination with both conventional and rapid-mixing stopped-flow kinetic techniques have been employed in the present study to investigate (a) the mechanism of the chelator-induced activation process, and (b) the identity of the divalent metal ion involved. The spectral studies confirm the presence of stoichiometrically significant amounts of tightly bound zinc ion in native 7S NGF (1-2 g-atoms of An2+/mol of 7S NGF). The kinetic studies show that the reaction of terpyridine with 7S NGF occurs via a two-step process involving first a rapid, apparent second-order step (k1 = 1 x 10(6) M-1 s-1) to form a 7S NGF-Zn2+-chelator monocomplex, then a slow step to form a bis(terpyridine)-Zn(II) complex and activated 7S NGF in an apparent first-order process (kobsd = 0.10 min-1). This rate is, within experimental error, identical with the apparent first-order rate constant for the chelator-induced activation process (monitored by the rate of change in the steady-state rate of hydrolysis of chromophoric substrate, alpha-N-benzoyl-D,L-arginine-p-nitroanilide). Kinetic studies of the reaction of HQSA with native 7S NGF show that, under the same conditions of concentration, the rate of formation of the tris(HQSA)-Zn(II) complex is identical with the rate of the HQSA-induced activation of the 7S NGF esteropeptidase. Thus, these studies unambiguously establish that zinc ion is the metal ion involved in the chelator-induced activation process, and that activation involves removal of zinc ion from native 7S NGF.

  2. Copolymers of fluorinated polydienes and sulfonated polystyrene

    DOEpatents

    Mays, Jimmy W.; Gido, Samuel P.; Huang, Tianzi; Hong, Kunlun

    2009-11-17

    Copolymers of fluorinated polydienes and sulfonated polystyrene and their use in fuel cell membranes, batteries, breathable chemical-biological protective materials, and templates for sol-gel polymerization.

  3. Sulfonated poly(arylene ether sulfone)s with phosphine oxide moieties: a promising material for proton exchange membranes.

    PubMed

    Fu, Lingchao; Xiao, Guyu; Yan, Deyue

    2010-06-01

    Sulfonated poly(arylene ether sulfone)s with phosphine oxide moieties (sPESPO) were achieved by polycondensation of bis(4-hydroxyphenyl)phenylphosphine oxide with 3,3'-disulfonate-4,4'-difluorodiphenyl sulfone (SFDPS) and 4-fluorophenyl sulfone (FPSF). Sulfonated poly(arylene ether sulfone)s (sPES) were also synthesized by polymerization of 4,4'-sulfonyldiphenol with SFDPS and FPSF for comparison. The comparative study demonstrates that the sPESPO ionomers exhibit strong intermolecular interactions and high oxidative stability because of the phosphine oxide groups. Furthermore, the sPESPO membrane and the sPES membrane with an equal ion exchange capacity show much different nanophase separation morphology. As a result, the former shows better properties than the latter. The sPESPO membranes exhibit excellent overall properties. For instance, the sPESPO membrane, with a disulfonation degree of 45%, exhibits high thermal and oxidative stability. Moreover, it shows a water uptake of 30.8% and a swelling ratio of 15.8% as well as a proton conductivity of 0.087 S/cm at 80 degrees C.

  4. Effective catalytic conversion of cellulose into high yields of methyl glucosides over sulfonated carbon based catalyst.

    PubMed

    Dora, Sambha; Bhaskar, Thallada; Singh, Rawel; Naik, Desavath Viswanatha; Adhikari, Dilip Kumar

    2012-09-01

    An amorphous carbon based catalyst was prepared by sulfonation of the bio-char obtained from fast pyrolysis (N(2) atm; ≈ 550°C) of biomass. The sulfonated carbon catalyst contained high acidity of 6.28 mmol/g as determined by temperature programmed desorption of ammonia of sulfonated carbon catalyst and exhibited high catalytic performance for the hydrolysis of cellulose. Amorphous carbon based catalyst containing -SO(3)H groups was successfully tested and the complete conversion of cellulose in methanol at moderate temperatures with high yields ca. ≥ 90% of α, β-methyl glucosides in short reaction times was achieved. The methyl glucosides formed in methanol are more stable for further conversion than the products formed in water. The carbon catalyst was demonstrated to be stable for five cycles with slight loss in catalytic activity. The utilization of bio-char as a sulfonated carbon catalyst provides a green and efficient process for cellulose conversion. PMID:22776237

  5. Synthesis and characterizations of electrospun sulfonated poly (ether ether ketone) SPEEK nanofiber membrane

    NASA Astrophysics Data System (ADS)

    Hasbullah, N.; Sekak, K. A.; Ibrahim, I.

    2016-07-01

    A novel electrospun polymer electrolyte membrane (PEM) based on Sulfonated Poly (ether ether ketone) were prepared and characterized. The poly (ether ether ketone) PEEK was sulfonated using concentrated sulfuric acid at room temperature for 60 hours reaction time. The degree sulfonation (DS) of the SPEEK are 58% was determined by H1 NMR using area under the peak of the hydrogen shielding at aromatic ring of the SPEEK. Then, the functional group of the SPEEK was determined using Fourier transfer infrared (FTIR) showed O-H vibration at 3433 cm-1 of the sulfonated group (SO2-OH). The effect of the solvent and polymer concentration toward the electrospinning process was investigated which, the DMAc has electrospun ability compared to the DMSO. While, at 20 wt.% of the polymer concentration able to form a fine and uniform nanofiber, this was confirmed by FESEM that shown electrospun fiber mat SPEEK surface at nano scale diameter.

  6. Sulfonated graphene oxide as effective catalyst for conversion of 5-(hydroxymethyl)-2-furfural into biofuels.

    PubMed

    Antunes, Margarida M; Russo, Patrícia A; Wiper, Paul V; Veiga, Jacinto M; Pillinger, Martyn; Mafra, Luís; Evtuguin, Dmitry V; Pinna, Nicola; Valente, Anabela A

    2014-03-01

    The acid-catalyzed reaction of 5-(hydroxymethyl)-2-furfural with ethanol is a promising route to produce biofuels or fuel additives within the carbohydrate platform; specifically, this reaction may give 5-ethoxymethylfurfural, 5-(ethoxymethyl)furfural diethylacetal, and/or ethyl levulinate (bioEs). It is shown that sulfonated, partially reduced graphene oxide (S-RGO) exhibits a more superior catalytic performance for the production of bioEs than several other acid catalysts, which include sulfonated carbons and the commercial acid resin Amberlyst-15, which has a much higher sulfonic acid content and stronger acidity. This was attributed to the cooperative effects of the sulfonic acid groups and other types of acid sites (e.g., carboxylic acids), and to the enhanced accessibility to the active sites as a result of the 2D structure. Moreover, the acidic functionalities bonded to the S-RGO surface were more stable under the catalytic reaction conditions than those of the other solids tested, which allowed its efficient reuse.

  7. Isotopic Measurements of Organic Sulfonates From The Murchison Meteorite

    NASA Technical Reports Server (NTRS)

    Cooper, G. W.; Chang, S.; DeVincenzi, Donald L. (Technical Monitor)

    1995-01-01

    Organic sulfonates and phosphonates have been extracted from the Murchison meteorite for stable isotope measurements. Preliminary stable isotope measurements of individual alkyl sulfonates, R-SO3H (R=C(sub n)H(sub 2n+l)), are shown. These compounds were found in aqueous extracts of Murchison. Both groups show trends similar to other homologous series of organic compounds indigenous to Murchison. Molecular abundances decrease with increasing carbon number, and all possible isomers at each carbon number (through C-4) are present. Carbon isotope measurements of the sulfonates show a decrease in the C-13/C-12 ratio with increasing carbon number. The overall objectives of this project are to obtain dime element carbon, hydrogen, and sulfur - intramolecular isotopic analyses of individual sulfonates, and isotopic measurement of carbon and hydrogen of the phosphonates as a group. The Murchison meteorite is the best characterized carbonaceous chondrite with respect to organic chemistry. The finding of organic sulfonates and phosphonates in Murchison is of interest because they are the first well-characterized series of sulfur and phosphorus containing organic compounds found in meteorites. Also, meteorites, comets, and interplanetary dust particles may have been involved in chemical evolution on the early Earth. Because of the critical role of organic phosphorus and sulfur in all living systems, it is particularly interesting to see examples of abiotic syntheses of these classes of compounds. The study of the isotopic composition of the sulfonates and phosphonates can yield insight into their possible interstellar origin as well as their mechanisms of synthesis in the early solar system. Previous isotopic analyses of other classes of organic compounds indigenous to meteorites, e.g., amino acids, carboxylic acids, and hydrocarbons indicate the possibility that interstellar molecules were incorporated into meteorite parent bodies. In these compounds the ratios of heavy to

  8. Base-Mediated Cyclocondensation of Salicylaldehydes and 2-Bromoallyl Sulfones for the Synthesis of 3-Sulfonylchromene Derivatives and Their Regioselective Friedel-Crafts Heteroarylation Reactions.

    PubMed

    Kumar, Anand; Thadkapally, Srinivas; Menon, Rajeev S

    2015-11-01

    Cesium carbonate-mediated reaction of 2-hydroxybenzaldehydes and 2-bromoallyl sulfones afforded 2H- and 4H-chromenol derivatives endowed with a 3-arylsulfonyl group. 2-Bromoallyl sulfones functioned as synthetic equivalents of allenyl sulfones under these conditions. The 2H- and 4H-chromenol derivatives underwent regioselective Friedel-Crafts reactions with heteroarenes in the presence of p-toluenesulfonic acid to afford 4-heteroaryl-4H-chromene derivatives in excellent yields.

  9. Oil recovery method utilizing an alkylarylpoxyalkylene sulfonate

    SciTech Connect

    McCoy, D.R.

    1984-08-14

    An alkylarylpolyalkoxyalkylene sulfonate alone or combined with a water soluble petroleum sulfonate surfactant is dissolved in water to form an effective surfactant fluid that is stable in high salinity environments. The surfactant fluid is injected into an underground petroleum-containing reservoir in an enhanced oil recovery process.

  10. Functionalization of overbased calcium sulfonates-synthesis and evaluation of antiwear and extreme-pressure performances

    SciTech Connect

    Delfort, B.; Born, M.; Daoudal, B.

    1995-12-01

    To improve antiwear and extreme-pressure performances of overbased calcium sulfonates, three overbased substrates with different colloidal characteristics were modified by partial neutralization with two sulfur-containing carboxylic acids, dithiodigylcolic acid and 4,4{prime} -(1,3,4-thiadiazole-2,5-diyl) bis (thiabutanoic) acid (DMTD/AA). In this way, six modified overbased calcium sulfonates were prepared. For each product, the colloidal nature of the calcium carboxylate was demonstrated, and all modified and non-modified compounds were evaluated as antiwear and extreme-pressure additives at different concentrations in oil in four-ball tests. The results of this evaluation show that the antiwear performances of basic overbased calcium sulfonates depends on the colloidal structure, while extreme-pressure properties depend on the total calcium carbonate amount in oil. Functionalization significantly enhances the extreme-pressure performances without affecting the initial good antiwear behavior. 20 refs., 9 figs., 4 tabs.

  11. Characterization of three deoxynivalenol sulfonates formed by reaction of deoxynivalenol with sulfur reagents.

    PubMed

    Schwartz, Heidi Elisabeth; Hametner, Christian; Slavik, Veronika; Greitbauer, Oliver; Bichl, Gerlinde; Kunz-Vekiru, Elisavet; Schatzmayr, Dian; Berthiller, Franz

    2013-09-18

    Reduction of the Fusarium mycotoxin deoxynivalenol (DON) in animal feed by treatment with sodium bisulfite and sodium metabisulfite has been successfully demonstrated in several studies. All of them reported formation of one DON sulfonate of strongly reduced toxicity compared to DON. The starting point of the present work was investigation of different sulfur reagents for reduction of DON. In the course of these experiments, three different DON sulfonates termed DON sulfonate 1 (1), DON sulfonate 2 (2), and DON sulfonate 3 (3) were identified and structurally elucidated by UHPLC-HRMS/MS as well as NMR spectroscopy. Compound 1 is characterized by loss of the epoxide group, and 2 by formation of a hemiketal. Compound 3 is an equilibrating mixture of two isomers, a ketone and a hemiketal. The MS/MS pattern can be used to differentiate the three DON sulfonates, despite their same mass and molecular formula. Investigation of parameters influencing formation and stability of DON sulfonates revealed that rapid formation of 1 and 2 occurs at alkaline pH, whereas at acidic pH, slow formation of 3 takes place, irrespective of the sulfur reagent used. Whereas 1 and 2 are stable across a broad pH range, 3 decomposes to DON, 1, and 2 at alkaline pH. In addition, both 2 and 3 are unstable in solid form. The formation, characterization, and stability of three novel DON sulfonates with respect to results from previous studies are discussed, providing insights of relevance for detoxification of DON-containing animal feed.

  12. Polymer electrolyte membranes from fluorinated polyisoprene-block-sulfonated polystyrene: Membrane structure and transport properties

    SciTech Connect

    Sodeye, Akinbode; Huang, Tianzi; Gido, Samuel; Mays, Jimmy

    2011-01-01

    With a view to optimizing morphology and ultimately properties, membranes have been cast from relatively inexpensive block copolymer ionomers of fluorinated polyisoprene-block-sulfonated polystyrene (FISS) with various sulfonation levels, in both the acid form and the cesium neutralized form. The morphology of these membranes was characterized by transmission electron microscopy and ultra-small angle X-ray scattering, as well as water uptake, proton conductivity and methanol permeability within the temperature range from 20 to 60 C. Random phase separated morphologies were obtained for all samples except the cesium sample with 50 mol% sulfonation. The transport properties increased with increasing degree of sulfonation and temperature for all samples. The acid form samples absorbed more water than the cesium samples with a maximum swelling of 595% recorded at 60 C for the acid sample having 50 mol% sulfonation. Methanol permeability for the latter sample was more than an order of magnitude less than for Nafion 112 but so was the proton conductivity within the plane of the membrane at 20 C. Across the plane of the membrane this sample had half the conductivity of Nafion 112 at 60 C.

  13. Crystal Structures of the Trifluoromethyl Sulfonates M(SO3CF3)2 (M = Mg, Ca, Ba, Zn, Cu) from Synchrotron X-ray Powder Diffraction Data

    SciTech Connect

    Dinnebier,R.; Sofina, N.; Hildebrandt, L.; Jansen, M.

    2006-01-01

    The crystal structures of divalent metal salts of trifluoromethyl sulfonic acid ('trifluoromethyl sulfonates') M(SO{sub 3}CF{sub 3}){sub 2} (M = Mg, Ca, Ba, Zn, Cu) were determined from high-resolution X-ray powder diffraction data. Magnesium, calcium and zinc trifluoromethyl sulfonate crystallize in the rhombohedral space group R{bar 3}. Barium trifluoromethyl sulfonate crystallizes in the monoclinic space group I2/a(C2/c) and copper trifluoromethyl sulfonate crystallizes in the triclinic group P{bar 1}. Within the crystal structures the trifluoromethyl sulfonate anions are arranged in double layers with the apolar CF{sub 3} groups pointing towards each other. The cations are located next to the SO{sub 3} groups. The symmetry relations between the different crystal structures have been analyzed.

  14. Aromatic sulfide/sulfone polymer production

    SciTech Connect

    Scoggins, L.E.; Hoover, K.C.; Shang, W.W.

    1991-05-14

    This patent describes a process for the production of aromatic sulfide/sulfone polymer. It comprises: contacting at least one lactam, at least one alkali metal hydrosulfide, water, and at least one base selected from the group consisting of alkali metal hydroxides and mixtures of alkali metal hydroxides with alkali metal carbonates under reaction conditions of time and temperature sufficient to produce a mixture containing a complex which comprises the at least one alkali metal hydrosulfide and contacting the mixture produced with a least one dihaloaromatic sulfone under polymerization conditions for a period of time sufficient to form an aromatic sulfide/sulfone polymer.

  15. Examination of mercaptobenzyl sulfonates as catalysts for native chemical ligation: application to the assembly of a glycosylated Glucagon-Like Peptide 1 (GLP-1) analogue.

    PubMed

    Cowper, Ben; Sze, Tsz Mei; Premdjee, Bhavesh; Bongat White, Aileen F; Hacking, Andrew; Macmillan, Derek

    2015-02-21

    3/4-Mercaptobenzyl sulfonates were investigated as aryl thiol catalysts for native chemical ligation (NCL). Whilst catalysing NCL processes at a similar rate to 4-mercaptophenyl acetic acid (MPAA), the increased polarity and solubility of 3-mercaptobenzyl sulfonate in particular may favour its selection as NCL catalyst in many instances. PMID:25605668

  16. Examination of mercaptobenzyl sulfonates as catalysts for native chemical ligation: application to the assembly of a glycosylated Glucagon-Like Peptide 1 (GLP-1) analogue.

    PubMed

    Cowper, Ben; Sze, Tsz Mei; Premdjee, Bhavesh; Bongat White, Aileen F; Hacking, Andrew; Macmillan, Derek

    2015-02-21

    3/4-Mercaptobenzyl sulfonates were investigated as aryl thiol catalysts for native chemical ligation (NCL). Whilst catalysing NCL processes at a similar rate to 4-mercaptophenyl acetic acid (MPAA), the increased polarity and solubility of 3-mercaptobenzyl sulfonate in particular may favour its selection as NCL catalyst in many instances.

  17. Changes in morphometry and association between whole-body fatty acids and steroid hormone profiles in relation to bioaccumulation patterns in salmon larvae exposed to perfluorooctane sulfonic or perfluorooctane carboxylic acids.

    PubMed

    Arukwe, Augustine; Cangialosi, Maria V; Letcher, Robert J; Rocha, Eduardo; Mortensen, Anne S

    2013-04-15

    In the present study, we have used salmon embryos whose continuous exposure to waterborne PFOA or PFOS at 100 μg/L started as freshly fertilized eggs, and lasted for a total of 52 days. PFOS and PFOA were dissolved in methanol (carrier vehicle) whose concentration never exceeded 0.01% of total tank volume. Samples were collected at day 21, 28, 35, 52, 49 and 56 after the start of the exposure. Note that days 49 and 56 represent end of exposure and 1 week after a recovery period, respectively. Tissue bioaccumulations were determined by HPLC/MS/MS, steroid hormones, fatty acids (FAs) and lipids were determined by GC-MS, while mRNA expression levels of genes were determined by qPCR in whole body homogenate. We observed that PFOS and PFOA showed a steady increase in whole body burden during the exposure period, with a slight decrease after the recovery period. Calculated somatic indexes showed that PFOA produced increases in heart-, thymus-, liver- and kidney somatic indexes (HSI, TSI, LSI and KSI). PFOA and PFOS exposure produced significant decreases in whole body dehydroepiandrosterone (DHEA), estrone and testosterone at sampling day 21 and a strong increase of cortisol and cholesterol at the end of recovery period (day 56). PFOA and PFOS effects differed with DHEA and estrone. While PFOS decreased DHEA levels, PFOA produced an increase at day 49, and while PFOS decreased estrone, PFOA produced a slight increase at day 56. We observed changes in FA composition that predominantly involved increases in FA methyl esters (FAMEs), mono- and poly-unsaturated FA (MUFA and PUFA) and a decrease in n-3/n-6 PUFA ratio by both PFOA and PFOS. Particularly, an increase in - pentadecenoic MUFA (15:1), two n-3 PUFAs α-linolenic acid [ALA: 18:3 n3] and eicosapentaenoic acid [EPA: 20:5 n-3] and n-6 PUFA: arachidonic acid [ARA: 20:4 n6], docosapentaenoic acid (DPA) by PFOA and PFOS were observed. These effects were associated with changes in mRNA expression of FA elongase (FAE), Δ5

  18. Characterizing hydrocarbon sulfonates and utilization of hydrocarbon sulfonates in oil recovery

    SciTech Connect

    Glinsmann, G.R.; Hedges, J.H.

    1982-05-18

    A method for determining the average equivalent weight of hydrocarbon sulfonates and the optimal salinity and unique salinity of surfactant systems containing such hydrocarbon sulfonates is based on the discovery that the average equivalent weights of hydrocarbon sulfonates vary inversely and linearly as the optimal salinities and unique salinities of surfactant systems containing such hydrocarbon sulfonates vary. Methods of preparing surfactant systems for the displacement of oil from subterranean reservoirs and for the displacement of oil from subterranean reservoirs, based on the above-mentioned relationships, are also disclosed.

  19. Chlorine resistant desalination membranes based on directly sulfonated poly(arylene ether sulfone) copolymers

    DOEpatents

    McGrath, James E.; Park, Ho Bum; Freeman, Benny D.

    2011-10-04

    The present invention provides a membrane, kit, and method of making a hydrophilic-hydrophobic random copolymer membrane. The hydrophilic-hydrophobic random copolymer membrane includes a hydrophilic-hydrophobic random copolymer. The hydrophilic-hydrophobic random copolymer includes one or more hydrophilic monomers having a sulfonated polyarylsulfone monomer and a second monomer and one or more hydrophobic monomers having a non-sulfonated third monomer and a fourth monomer. The sulfonated polyarylsulfone monomer introduces a sulfonate into the hydrophilic-hydrophobic random copolymer prior to polymerization.

  20. QENS investigation of proton confined motions in hydrated perfluorinated sulfonic membranes and self-assembled surfactants

    NASA Astrophysics Data System (ADS)

    Berrod, Quentin; Lyonnard, Sandrine; Guillermo, Armel; Ollivier, Jacques; Frick, Bernhard; Gébel, Gérard

    2015-01-01

    We report on QuasiElastic Neutron Scattering (QENS) investigations of the dynamics of protons and water molecules confined in nanostructured perfluorinated sulfonic acid (PFSA) materials, namely a commercial Aquivion membrane and the perfluorooctane sulfonic acid (PFOS) surfactant. The former is used as electrolyte in low-temperature fuel cells, while the latter forms mesomorphous self-assembled phases in water. The dynamics was investigated as a function of the hydration level, in a wide time range by combining time-of-flight and backscattering incoherent QENS experiments. Analysis of the quasielastic broadening revealed for both systems the existence of localized translational diffusive motions, fast rotational motions and slow hopping of protons in the vicinity of the sulfonic charges. The characteristic times and diffusion coefficients have been found to exhibit a very similar behaviour in both membrane and surfactant structures. Our study provides a comprehensive picture of the proton motion mechanisms and the dynamics of confined water in model and real PFSA nanostructures.

  1. Mechanoassisted Synthesis of Sulfonated Covalent Organic Frameworks with High Intrinsic Proton Conductivity.

    PubMed

    Peng, Yongwu; Xu, Guodong; Hu, Zhigang; Cheng, Youdong; Chi, Chenglong; Yuan, Daqiang; Cheng, Hansong; Zhao, Dan

    2016-07-20

    It is challenging to introduce pendent sulfonic acid groups into modularly built crystalline porous frameworks for intrinsic proton conduction. Herein, we report the mechanoassisted synthesis of two sulfonated covalent organic frameworks (COFs) possessing one-dimensional nanoporous channels decorated with pendent sulfonic acid groups. These COFs exhibit high intrinsic proton conductivity as high as 3.96 × 10(-2) S cm(-1) with long-term stability at ambient temperature and 97% relative humidity (RH). In addition, they were blended with nonconductive polyvinylidene fluoride (PVDF) affording a series of mixed-matrix membranes (MMMs) with proton conductivity up to 1.58 × 10(-2) S cm(-1) and low activation energy of 0.21 eV suggesting the Grotthuss mechanism for proton conduction. Our study has demonstrated the high intrinsic proton conductivity of COFs shedding lights on their wide applications in proton exchange membranes.

  2. Mechanoassisted Synthesis of Sulfonated Covalent Organic Frameworks with High Intrinsic Proton Conductivity.

    PubMed

    Peng, Yongwu; Xu, Guodong; Hu, Zhigang; Cheng, Youdong; Chi, Chenglong; Yuan, Daqiang; Cheng, Hansong; Zhao, Dan

    2016-07-20

    It is challenging to introduce pendent sulfonic acid groups into modularly built crystalline porous frameworks for intrinsic proton conduction. Herein, we report the mechanoassisted synthesis of two sulfonated covalent organic frameworks (COFs) possessing one-dimensional nanoporous channels decorated with pendent sulfonic acid groups. These COFs exhibit high intrinsic proton conductivity as high as 3.96 × 10(-2) S cm(-1) with long-term stability at ambient temperature and 97% relative humidity (RH). In addition, they were blended with nonconductive polyvinylidene fluoride (PVDF) affording a series of mixed-matrix membranes (MMMs) with proton conductivity up to 1.58 × 10(-2) S cm(-1) and low activation energy of 0.21 eV suggesting the Grotthuss mechanism for proton conduction. Our study has demonstrated the high intrinsic proton conductivity of COFs shedding lights on their wide applications in proton exchange membranes. PMID:27385672

  3. Crystal structure of zwitterionic bisimidazolium sulfonates

    NASA Astrophysics Data System (ADS)

    Kohmoto, Shigeo; Okuyama, Shinpei; Yokota, Nobuyuki; Takahashi, Masahiro; Kishikawa, Keiki; Masu, Hyuma; Azumaya, Isao

    2012-05-01

    Crystal structures of three zwitterionic bisimidazolium salts 1-3 in which imidazolium sulfonate moieties were connected with aromatic linkers, p-xylylene, 4,4'-dimethylenebiphenyl, and phenylene, respectively, were examined. The latter two were obtained as hydrates. An S-shaped molecular structure in which the sulfonate moiety was placed on the imidazolium ring was observed for 1. A helical array of hydrated water molecules was obtained for 2 while a linear array of hydrated water molecules was observed for 3.

  4. Synthesis, Characterization, and Catalytic Activity of Sulfonated Carbon-Based Catalysts Derived From Rubber Tree Leaves and Pulp and Paper Mill Waste

    NASA Astrophysics Data System (ADS)

    Janaun, J.; Sinin, E.; Hiew, S. F.; Kong, A. M. T.; Lahin, F. A.

    2016-06-01

    Sulfonated carbon-based catalysts derived from rubber tree leaves, and pulp and paper mill waste were synthesized and characterized. Three types of catalyst synthesized were sulfonated rubber tree leaves (S-RTL), pyrolysed sludge char (P-SC) and sulfonated sludge char (S-SC). Sulfonated rubber tree leaves (S-RTL) and sulfonated sludge char (S-SC) were prepared through pyrolysis followed by functionalization via sulfonation process whereas, P- SC was only pyrolyzed without sulfonation. The characterization results indicated sulfonic acids, hydroxyl, and carboxyl moieties were detected in S-RTL and S-SC, but no sulfonic acid was detected in P-SC. Total acidity test showed S-RTL had the highest value followed by S-SC and P-SC. The thermal stability of S-RTL and S-SC were up to 230oC as the loss was associated with the decomposition of sulfonic acid group, whereas, P-SC showed higher stability than the S-RTL and S-SC. Morphology analysis showed that S-RTL consisted of an amorphous carbon structure, and a crystalline structure for P-SC and S-SC. Furthermore, traces of metal components were also detected on all of the catalysts. The catalyst catalytic activity was tested through esterification of oleic acid with methanol. The results showed that the reaction using S-RTL catalyst produced the highest conversion (99.9%) followed by P-SC (88.4%) and lastly S-SC (82.7%). The synthesized catalysts showed high potential to be used in biodiesel production.

  5. SWELLING OF PEATS IN LIQUID METHYL, TETRAMETHYLENE AND PROPYL SULFOXIDES AND IN LIQUID PROPYL SULFONE

    EPA Science Inventory

    The interactions of methyl, tetramethylene, and propyl sulfoxides and propyl sulfone during sorption onto four de-waxed, acid-form peats have been studied by means of swelling measurements. The results for sulfoxides are displayed as het-eromolecular sorption isotherms, which plo...

  6. GENE PROFILING IN WILD-TYPE AND PPARα-NULL MICE EXPOSED TO PERFLUOROOCTANE SULFONATE

    EPA Science Inventory

    Perfluorooctane sulfonate (PFOS), a perfluoroalkyl acid (PFAA), is a persistent environmental contaminant found in the tissues of humans and wildlife. Over the last decade, health concerns have been raised, in part, because of the long half-life of PFOS and other PFAAs in humans,...

  7. Primary biodegradation of linear alkyltoluene and alkylbenzene sulfonates.

    PubMed

    Singh, M; Satish, S

    1989-01-01

    Studies on the primary biodegradation of linear dodecylbenzene sulfonate, linear dodecyltoluene sulfonate, linear C(10-14) benzene sulfonate, linear C(10-14) toluene sulfonate, commercial samples of linear C(10-14) benzene sulfonate and branched dodecylbenzene sulfonate (DDBS) were carried out using a microbial culture developed from garden soil. Results show that linear alkyl toluene (LAT) is as degradable as linear alkylbenzene (LAB) in 7 days. However, a slower rate of degradation was noted with LAT. Various distributions of the positional isomers of the phenyl ring in the alkane chain of C(10-14) LAB showed no change in the pattern of primary biodegradation.

  8. Syntheses, characterizations and crystal structures of two new lead(II) amino and carboxylate-sulfonates with a layered and a pillared layered structure

    NASA Astrophysics Data System (ADS)

    Yuan, Yan-Ping; Mao, Jiang-Gao; Song, Jun-Ling

    2004-03-01

    Reactions of lead(II) acetate with m-aminobenzenesulfonic acid (H L1) and 5-sulfoisophthalic acid (H 3L2) afforded two new lead(II) sulfonates, Pb( L1) 21 and Pb 2( L2)( μ3-OH)(H 2O) 2. In compound 1, the lead(II) ion is eight-coordinated by two sulfonate groups bidentately, two sulfonate groups unidentately and two amino groups from six ligands. Each L1 ligand is tetradentate and bridges with three Pb(II) ions. The interconnection of the Pb(II) ions via bridging sulfonate ligands resulted in <100> and <200> layers. In compound 2, one Pb(II) ion is six-coordinated by a carboxylate group bidentately, by two carboxylate groups unidentately, by a sulfonate oxygen atom and by an OH anion, whereas the other one is six-coordinated by a bidentate chelating carboxylate group, two μ3-OH anions, a sulfonate oxygen atom and an aqua ligand. The interconnection of irregular PbO 6 polyhedra via carboxylate-sulfonate ligands resulted in the formation of a pillared layered structure with the 2D layer being formed; the lead(II) ions, hydroxyl groups, carboxylate and sulfonate groups and the benzene ring as the pillar agent.

  9. Synthesis of Unsymmetrical Sulfides and Their Oxidation to Sulfones to Discover Potent Antileishmanial Agents.

    PubMed

    Dar, Ajaz A; Enjamuri, Nagasuresh; Shadab, Md; Ali, Nahid; Khan, Abu T

    2015-11-01

    Unsymmetrical sulfides were first synthesized using combinations of a 1,3-dicarbonyl, an aromatic aldehyde and a thiol in the presence of 10 mol % ethanolic piperidine. These sulfides derivatives were subsequently converted into corresponding sulfones via oxidation in the presence of m-chloroperoxybenzoic acid (m-CPBA) at ice-bath to room temperature. The former reaction was achieved at room temperature through one-pot three-component. The later was obtained in good yields using mild reaction conditions with flexibility in choice from a range of substrates. The antimicrobial properties of the newly synthesized sulfone derivatives were investigated against the protozoan parasite, Leishmania donovani, a causative agent of visceral leishmaniasis (VL). Nine sulfone derivatives were found to be efficacious and exhibited significant antimicrobial activity. Further, these compounds were nontoxic on murine peritoneal macrophages thus eliminating potential cytoxicity in the host cells. These compounds may be indicated as potential leads in the treatment of visceral leishmaniasis. PMID:26441303

  10. Synthesis of porous sulfonated carbon as a potential adsorbent for phenol wastewater.

    PubMed

    Prabhu, Azhagapillai; Al Shoaibi, Ahmed; Srinivasakannan, C

    2015-01-01

    The work reports a facile synthesis procedure for preparation of porous sulfonated carbons and its suitability for adsorption of phenol. The sulfonated carbon was synthesized utilizing a simplified, single-step, shorter duration process by sulfonation, dehydration and carbonization of sucrose in sulfuric acid and tetraethylorthosilicate. The surface and internal structures of the adsorbents were characterized utilizing various characterization techniques to understand the porous nature and surface functional groups of the porous matrix. Adsorption capacity was found to be highest for the sample heat treated at 600 °C, with the maximum adsorption capacity of 440 mg/g at 30 °C. The adsorption isotherms were tested with the Freundlich and Langmuir adsorption isotherms models to identify the appropriate adsorption mechanism.

  11. Susceptibility of Candida albicans to new synthetic sulfone derivatives.

    PubMed

    Staniszewska, Monika; Bondaryk, Małgorzata; Ochal, Zbigniew

    2015-02-01

    The influence of halogenated methyl sulfones, i.e. bromodichloromethyl-4-chloro-3-nitrophenyl sulfone (named halogenated methyl sulfone 1), dichloromethyl-4-chloro-3-nitrophenyl sulfone (halogenated methyl sulfone 2), and chlorodibromomethyl-4-hydrazino-3-nitrophenyl sulfone (halogenated methyl sulfone 3), on cell growth inhibition, aspartic protease gene (SAP4-6) expression, adhesion to epithelium, and filamentation was investigated. Antifungal susceptibility of the halogenated methyl sulfones was determined with the M27-A3 protocol in the range of 16-0.0313 µg/mL. Adherence to Caco-2 cells was performed in 24-well plates; relative quantification was normalized against ACT1 in cells after 18 h of growth in YEPD and on Caco-2 cells. SAP4-6 expression was analyzed using RT-PCR. Structure-activity relationship studies suggested that halogenated methyl sulfone 1 containing bromodichloromethyl or dichloromethyl function at C-4 (halogenated methyl sulfone 2) of the phenyl ring showed the best activity (100% cell inhibition at 0.5 µg/mL), while hydrazine at C-1 (halogenated methyl sulfone 3) reduced the sulfone potential (100% = 4 µg/mL). SAP4-6 were up- or down-regulated depending on the strains' genetic background and the substitutions on the phenyl ring. Halogenated methyl sulfone 2 repressed germination and affected adherence to epithelium (P ≤ 0.05). The tested halogenated methyl sulfones interfered with the adhesion of Candida albicans cells to the epithelial tissues, without affecting their viability after 90 min of incubation. The mode of action of the halogenated methyl sulfones was attributed to the reduced virulence of C. albicans. SAP5 and SAP6 contribute to halogenated methyl sulfones resistance. Thus, halogenated methyl sulfones can inhibit biofilm formation due to their interference with adherence and with the yeast-to-hyphae transition.

  12. Destruction of gel sulfonated cation-exchangers of the KU-2 type under the influence of hydrogen peroxide

    SciTech Connect

    Roginskaya, B.S.; Zavadovskaya, A.S.; Znamenskii, Yu.P.; Paskhina, N.A.; Dobrova, E.I.

    1988-10-20

    The purpose of this work was to study the mechanism of interaction of Soviet sulfonated cation-exchangers of the KU-2 type with hydrogen peroxide. It is shown that under the influence of hydrogen peroxide sulfonated cation-exchangers begin, after a certain induction period, to lose capacity and to release destruction products into water; the length of the induction period increases with the degree of cross-linking. In a given time of contact between the resin and the solution the degree of destruction falls with increase of cross-linking. The principal product of destruction of sulfonated cation-exchangers is an aromatic sulfonic acid containing oxidized groups in the side chains.

  13. Cross-linked polyelectrolyte for direct methanol fuel cells applications based on a novel sulfonated cross-linker

    NASA Astrophysics Data System (ADS)

    Li, Mingyu; Zhang, Gang; Xu, Shuai; Zhao, Chengji; Han, Miaomiao; Zhang, Liyuan; Jiang, Hao; Liu, Zhongguo; Na, Hui

    2014-06-01

    A novel type of cross-linked proton exchange membrane of lower methanol permeation and high proton conductivity is prepared, based on a newly synthesized sulfonated cross-linker: carboxyl terminated benzimidazole trimer bearing sulfonic acid groups (s-BI). Compared to membranes cross-linked with non-sulfonated cross-linker (BI), SPEEK/s-BI-n membranes show higher IEC values and proton conductivities. Meanwhile, oxidative stability and mechanical property of SPEEK/s-BI-n membranes are obviously improved. Among SPEEK/s-BI-n membranes, SPEEK/s-BI-2 exhibits high proton conductivity, low swelling ratio (0.122 S cm-1 and 15.2% at 60 °C, respectively) and low methanol permeability coefficient. These results imply that the cross-linked membranes prepared with the newly sulfonated cross-linker are promising for the direct methanol fuel cells (DMFCs) application.

  14. Devopmental toxicity of perfluorooctane Sulfonate (PFOS) is not dependent on expression on peroxisome proliferator activated receptor-alpha (PPAR-alpha)in the mouse

    EPA Science Inventory

    Perfluorooctane sulfonate (PFOS) and perfluorooctanoic acid (PFOA) are members of a family of perfluorinated compounds. Both are environmentally persistent and found in the serum of wildlife and humans. PFOS and PFOA are developmentally toxic in laboratory rodents. Exposure to t...

  15. Wine metabolomics reveals new sulfonated products in bottled white wines, promoted by small amounts of oxygen.

    PubMed

    Arapitsas, Panagiotis; Ugliano, Maurizio; Perenzoni, Daniele; Angeli, Andrea; Pangrazzi, Paolo; Mattivi, Fulvio

    2016-01-15

    The impact of minute amounts of oxygen in the headspace on the post-bottling development of wine is generally considered to be very important, since oxygen can either damage or improve the quality of wine. This project aimed to gain new experimental evidence about the chemistry of the interaction between wine and oxygen. The experimental design included 216 bottles of 12 different white wines produced from 6 different cultivars (Inzolia, Muller Thurgau, Chardonnay, Grillo, Traminer and Pinot gris). Half of them were bottled using the standard industrial process with inert headspace and the other half without inert gas and with extra headspace. After 60 days of storage at room temperature, the wines were analysed using an untargeted LC-MS method. The use of a detailed holistic analysis workflow, with several levels of quality control and marker selection, gave 35 metabolites putatively induced by the different amounts of oxygen. These metabolite markers included ascorbic acid, tartaric acid and various sulfonated compounds observed in wine for the first time (e.g. S-sulfonated cysteine, glutathione and pantetheine; and sulfonated indole-3-lactic acid hexoside and tryptophol). The consumption of SO2 mediated by these sulfonation reactions was promoted by the presence of higher levels of oxygen on bottling. PMID:26709023

  16. Wine metabolomics reveals new sulfonated products in bottled white wines, promoted by small amounts of oxygen.

    PubMed

    Arapitsas, Panagiotis; Ugliano, Maurizio; Perenzoni, Daniele; Angeli, Andrea; Pangrazzi, Paolo; Mattivi, Fulvio

    2016-01-15

    The impact of minute amounts of oxygen in the headspace on the post-bottling development of wine is generally considered to be very important, since oxygen can either damage or improve the quality of wine. This project aimed to gain new experimental evidence about the chemistry of the interaction between wine and oxygen. The experimental design included 216 bottles of 12 different white wines produced from 6 different cultivars (Inzolia, Muller Thurgau, Chardonnay, Grillo, Traminer and Pinot gris). Half of them were bottled using the standard industrial process with inert headspace and the other half without inert gas and with extra headspace. After 60 days of storage at room temperature, the wines were analysed using an untargeted LC-MS method. The use of a detailed holistic analysis workflow, with several levels of quality control and marker selection, gave 35 metabolites putatively induced by the different amounts of oxygen. These metabolite markers included ascorbic acid, tartaric acid and various sulfonated compounds observed in wine for the first time (e.g. S-sulfonated cysteine, glutathione and pantetheine; and sulfonated indole-3-lactic acid hexoside and tryptophol). The consumption of SO2 mediated by these sulfonation reactions was promoted by the presence of higher levels of oxygen on bottling.

  17. Waterflooding employing mixtures of sulfonate surfactants

    SciTech Connect

    Savins, J.G.; Waite, J.M.; Burdyn, R.F.

    1980-11-04

    A new waterflooding process is described in which at least a portion of the injected fluid comprises a viscous aqueous liquid having a monovalent salt salinity within the range of 1.5 to 4.0% by wt and containing first and second sulfonate surfactants. The first surfactant is a petroleum sulfonate having a relatively broad molecular weight distribution and the second surfactant is a synthetic alkyl or alkylaryl sulfonate having a molecular weight distribution narrower than that of the first surfactant. The first and second surfactants are present in the aqueous liquid in relative amounts such that the ratio of the concentration of the first surfactant to the concentration of the second surfactant is within the range of 1:3 to 1:1. The thickened aqueous liquid containing the above described multicomponent surfactant system also contains a water-soluble C3-C6 aliphatic alcohol. 11 claims.

  18. Comparison of antioxidant activities of different parts from snow chrysanthemum (Coreopsis tinctoria Nutt.) and identification of their natural antioxidants using high performance liquid chromatography coupled with diode array detection and mass spectrometry and 2,2'-azinobis(3-ethylbenzthiazoline-sulfonic acid)diammonium salt-based assay.

    PubMed

    Chen, L X; Hu, D J; Lam, S C; Ge, L; Wu, D; Zhao, J; Long, Z R; Yang, W J; Fan, B; Li, S P

    2016-01-01

    Snow chrysanthemum (Coreopsis tinctoria Nutt.), a world-widely well-known flower tea material, has attracted more and more attention because of its beneficial health effects such as antioxidant activity and special flavor. In this study, a high performance liquid chromatography coupled with diode array detection and mass spectrometry (HPLC-DAD-MS) and 2,2'-azinobis(3-ethylbenzthiazoline-sulfonic acid)diammonium salt (ABTS) based assay was employed for comparison and identification of antioxidants in different samples of snow chrysanthemum. The results showed that snow chrysanthemum flowers possessed the highest while stems presented the lowest antioxidant capacities. Fourteen detected peaks with antioxidant activity were temporarily identified as 3,4',5,6,7-pentahydroxyflavanone-O-hexoside, chlorogenic acid, 2R-3',4',8-trihydroxyflavanone-7-O-glucoside, flavanomarein, flavanocorepsin, flavanokanin, quercetagitin-7-O-glucoside, 3',5,5',7-tetrahydroxyflavanone-O-hexoside, marein, maritimein, 1,3-dicaffeoylquinic acid, coreopsin, okanin and acetyl-marein by comparing their UV spectra, retention times and MS data with standards or literature data. Antioxidants existed in snow chrysanthemum are quite different from those reported in Chrysanthemum morifolium, a well-known traditional beverage in China, which indicated that snow chrysanthemum may be a promising herbal tea material with obvious antioxidant activity. PMID:26521095

  19. Comparison of antioxidant activities of different parts from snow chrysanthemum (Coreopsis tinctoria Nutt.) and identification of their natural antioxidants using high performance liquid chromatography coupled with diode array detection and mass spectrometry and 2,2'-azinobis(3-ethylbenzthiazoline-sulfonic acid)diammonium salt-based assay.

    PubMed

    Chen, L X; Hu, D J; Lam, S C; Ge, L; Wu, D; Zhao, J; Long, Z R; Yang, W J; Fan, B; Li, S P

    2016-01-01

    Snow chrysanthemum (Coreopsis tinctoria Nutt.), a world-widely well-known flower tea material, has attracted more and more attention because of its beneficial health effects such as antioxidant activity and special flavor. In this study, a high performance liquid chromatography coupled with diode array detection and mass spectrometry (HPLC-DAD-MS) and 2,2'-azinobis(3-ethylbenzthiazoline-sulfonic acid)diammonium salt (ABTS) based assay was employed for comparison and identification of antioxidants in different samples of snow chrysanthemum. The results showed that snow chrysanthemum flowers possessed the highest while stems presented the lowest antioxidant capacities. Fourteen detected peaks with antioxidant activity were temporarily identified as 3,4',5,6,7-pentahydroxyflavanone-O-hexoside, chlorogenic acid, 2R-3',4',8-trihydroxyflavanone-7-O-glucoside, flavanomarein, flavanocorepsin, flavanokanin, quercetagitin-7-O-glucoside, 3',5,5',7-tetrahydroxyflavanone-O-hexoside, marein, maritimein, 1,3-dicaffeoylquinic acid, coreopsin, okanin and acetyl-marein by comparing their UV spectra, retention times and MS data with standards or literature data. Antioxidants existed in snow chrysanthemum are quite different from those reported in Chrysanthemum morifolium, a well-known traditional beverage in China, which indicated that snow chrysanthemum may be a promising herbal tea material with obvious antioxidant activity.

  20. Simulation study of sulfonate cluster swelling in ionomers

    NASA Astrophysics Data System (ADS)

    Allahyarov, Elshad; Taylor, Philip L.; Löwen, Hartmut

    2009-12-01

    We have performed simulations to study how increasing humidity affects the structure of Nafion-like ionomers under conditions of low sulfonate concentration and low humidity. At the onset of membrane hydration, the clusters split into smaller parts. These subsequently swell, but then maintain constant the number of sulfonates per cluster. We find that the distribution of water in low-sulfonate membranes depends strongly on the sulfonate concentration. For a relatively low sulfonate concentration, nearly all the side-chain terminal groups are within cluster formations, and the average water loading per cluster matches the water content of membrane. However, for a relatively higher sulfonate concentration the water-to-sulfonate ratio becomes nonuniform. The clusters become wetter, while the intercluster bridges become drier. We note the formation of unusual shells of water-rich material that surround the sulfonate clusters.

  1. Mechanisms for selective toxicity of fipronil insecticide and its sulfone metabolite and desulfinyl photoproduct.

    PubMed

    Hainzl, D; Cole, L M; Casida, J E

    1998-12-01

    Fipronil, an N-phenylpyrazole with a trifluoromethylsulfinyl substituent, initiated the second generation of insecticides acting at the gamma-aminobutyric acid (GABA) receptor to block the chloride channel. The first generation includes the polychlorocycloalkanes alpha-endosulfan and lindane. In this study, we examine the mechanisms for selective toxicity of the sulfoxide fipronil and its sulfone metabolite and desulfinyl photoproduct relative to their target site interactions in vitro and ex vivo and the importance in fipronil action of biooxidation to the sulfone. Differences in GABA receptor sensitivity, assayed by displacement of 4'-ethynyl-4-n-[2, 3-3H2]propylbicycloorthobenzoate ([3H]EBOB) from the noncompetitive blocker site, appear to be a major factor in fipronil being much more toxic to the insects (housefly and fruit fly) than to the vertebrates (humans, dogs, mice, chickens, quail, and salmon) examined; in insects, the IC50s range from 3 to 12 nM for fipronil and its sulfone and desulfinyl derivatives, while in vertebrates, the IC50 average values are 1103, 175, and 129 nM for fipronil, fipronil sulfone, and desulfinyl fipronil, respectively. The insect relative to the vertebrate specificity decreases in the following order: fipronil > lindane > desulfinyl fipronil > fipronil sulfone > alpha-endosulfan. Ex vivo inhibition of [3H]EBOB binding in mouse brain is similar for fipronil and its sulfone and desulfinyl derivatives at the LD50 dose, but surprisingly, at higher doses fipronil can be lethal without detectably blocking the [3H]EBOB site. The P450 inhibitor piperonyl butoxide, acting in houseflies, increases the metabolic stability and effectiveness of fipronil and the sulfone but not those of the desulfinyl compound, and in mice it completely blocks the sulfoxide to sulfone conversion without altering the poisoning. Thus, the selective toxicity of fipronil and fipronil-derived residues is due in part to the higher potency of the parent compound at

  2. 40 CFR 721.1625 - Alkylbenzene sulfonate, amine salt.

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ... 40 Protection of Environment 31 2011-07-01 2011-07-01 false Alkylbenzene sulfonate, amine salt... Substances § 721.1625 Alkylbenzene sulfonate, amine salt. (a) Chemical substance and significant new uses subject to reporting. (1) The chemical substance identified generically as alkylbenzene sulfonate,...

  3. 40 CFR 721.10035 - Alkylbenzene sulfonate (generic).

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... 40 Protection of Environment 30 2010-07-01 2010-07-01 false Alkylbenzene sulfonate (generic). 721... Substances § 721.10035 Alkylbenzene sulfonate (generic). (a) Chemical substance and significant new uses subject to reporting. (1) The chemical substance identified generically as alkylbenzene sulfonate...

  4. 40 CFR 721.10035 - Alkylbenzene sulfonate (generic).

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ... 40 Protection of Environment 31 2011-07-01 2011-07-01 false Alkylbenzene sulfonate (generic). 721... Substances § 721.10035 Alkylbenzene sulfonate (generic). (a) Chemical substance and significant new uses subject to reporting. (1) The chemical substance identified generically as alkylbenzene sulfonate...

  5. 40 CFR 721.1625 - Alkylbenzene sulfonate, amine salt.

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... 40 Protection of Environment 30 2010-07-01 2010-07-01 false Alkylbenzene sulfonate, amine salt... Substances § 721.1625 Alkylbenzene sulfonate, amine salt. (a) Chemical substance and significant new uses subject to reporting. (1) The chemical substance identified generically as alkylbenzene sulfonate,...

  6. 21 CFR 177.2500 - Polyphenylene sulfone resins.

    Code of Federal Regulations, 2011 CFR

    2011-04-01

    ... 21 Food and Drugs 3 2011-04-01 2011-04-01 false Polyphenylene sulfone resins. 177.2500 Section 177... Components of Articles Intended for Repeated Use § 177.2500 Polyphenylene sulfone resins. The polyphenylene sulfone resins (CAS Reg. No. 31833-61-1) identified in paragraph (a) of this section may be safely used...

  7. 21 CFR 177.2500 - Polyphenylene sulfone resins.

    Code of Federal Regulations, 2010 CFR

    2010-04-01

    ... 21 Food and Drugs 3 2010-04-01 2009-04-01 true Polyphenylene sulfone resins. 177.2500 Section 177... Components of Articles Intended for Repeated Use § 177.2500 Polyphenylene sulfone resins. The polyphenylene sulfone resins (CAS Reg. No. 31833-61-1) identified in paragraph (a) of this section may be safely used...

  8. 40 CFR 721.1625 - Alkylbenzene sulfonate, amine salt.

    Code of Federal Regulations, 2014 CFR

    2014-07-01

    ... 40 Protection of Environment 31 2014-07-01 2014-07-01 false Alkylbenzene sulfonate, amine salt... Substances § 721.1625 Alkylbenzene sulfonate, amine salt. Link to an amendment published at 79 FR 34636, June... substance identified generically as alkylbenzene sulfonate, amine salt (PMN P-90-456) is subject...

  9. Perfluorooctane sulfonate (PFOS) depletion in beef cattle

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Perfluorooctane sulfonate (PFOS) is an industrial chemical that is used as a surfactant in several manufactured consumer products but is also a breakdown product from other chemical surfactants. As a result of its extensive use, PFOS is ubiquitous in the environment and is often detected in biosoli...

  10. Phase Behavior of Symmetric Sulfonated Block Copolymers

    SciTech Connect

    Park, Moon Jeong; Balsara, Nitash P.

    2008-08-21

    Phase behavior of poly(styrenesulfonate-methylbutylene) (PSS-PMB) block copolymers was studied by varying molecular weight, sulfonation level, and temperature. Molecular weights of the copolymers range from 2.9 to 117 kg/mol. Ordered lamellar, gyroid, hexagonally perforated lamellae, and hexagonally packed cylinder phases were observed in spite of the fact that the copolymers are nearly symmetric with PSS volume fractions between 0.45 and 0.50. The wide variety of morphologies seen in our copolymers is inconsistent with current theories on block copolymer phase behavior such as self-consistent field theory. Low molecular weight PSS-PMB copolymers (<6.2 kg/mol) show order-order and order-disorder phase transitions as a function of temperature. In contrast, the phase behavior of high molecular weight PSS-PMB copolymers (>7.7 kg/mol) is independent of temperature. Due to the large value of Flory-Huggins interaction parameter, x, between the sulfonated and non-sulfonated blocks, PSS-PMB copolymers with PSS and PMB molecular weights of 1.8 and 1.4 kg/mol, respectively, show the presence of an ordered gyroid phase with a 2.5 nm diameter PSS network. A variety of methods are used to estimate x between PSS and PMB chains as a function of sulfonation level. Some aspects of the observed phase behavior of PSS-PMB copolymers can be rationalized using x.

  11. 21 CFR 573.600 - Lignin sulfonates.

    Code of Federal Regulations, 2014 CFR

    2014-04-01

    ... DRUGS, FEEDS, AND RELATED PRODUCTS FOOD ADDITIVES PERMITTED IN FEED AND DRINKING WATER OF ANIMALS Food... accordance with the following prescribed conditions: (a) For the purpose of this section, the food additive... 21 Food and Drugs 6 2014-04-01 2014-04-01 false Lignin sulfonates. 573.600 Section 573.600...

  12. 21 CFR 573.600 - Lignin sulfonates.

    Code of Federal Regulations, 2013 CFR

    2013-04-01

    ... DRUGS, FEEDS, AND RELATED PRODUCTS FOOD ADDITIVES PERMITTED IN FEED AND DRINKING WATER OF ANIMALS Food... accordance with the following prescribed conditions: (a) For the purpose of this section, the food additive... 21 Food and Drugs 6 2013-04-01 2013-04-01 false Lignin sulfonates. 573.600 Section 573.600...

  13. 21 CFR 573.600 - Lignin sulfonates.

    Code of Federal Regulations, 2012 CFR

    2012-04-01

    ... DRUGS, FEEDS, AND RELATED PRODUCTS FOOD ADDITIVES PERMITTED IN FEED AND DRINKING WATER OF ANIMALS Food... accordance with the following prescribed conditions: (a) For the purpose of this section, the food additive... 21 Food and Drugs 6 2012-04-01 2012-04-01 false Lignin sulfonates. 573.600 Section 573.600...

  14. Toxicity of pyrolysis gases from polyether sulfone

    NASA Technical Reports Server (NTRS)

    Hilado, C. J.; Olcomendy, E. M.

    1979-01-01

    A sample of polyether sulfone was evaluated for toxicity of pyrolysis gases, using the toxicity screening test method developed at the University of San Francisco. Animal response times were relatively short at pyrolysis temperatures of 600 to 800 C, with death occurring within 6 min. The principal toxicant appeared to be a compound other than carbon monoxide.

  15. Properties of polypyrrole doped with alkylbenzene sulfonates

    NASA Astrophysics Data System (ADS)

    Bay, Lasse; Skaarup, Steen; West, Keld; Mazur, Tanja; Joergensen, Ole; Rasmussen, Helle D.

    2001-07-01

    Conducting polymers such as polypyrrole (PPy) doped with large anionic detergents have high stability in aqueous systems. PPy can be reversibly oxidised and reduced electrochemically. The redox change of PPy is accompanied by a change in volume of the polymer. This is partly ascribed to take-up of ions and solvent molecules. This volume change can be used as a polymer actuator (artificial muscle) working in a narrow voltage range (less than 1 V). The properties of the PPy polymer are largely determined by the dopant ions and also by the deposition conditions and the substrate. A free-standing 10 micrometers thick film is prepared electrochemically at a constant current from an aqueous solution of pyrrole and sodium alkylbenzene sulfonate. The mechanical properties of the film (tensile strength and Young's modulus) and the reversible linear elongation between the oxidised and reduced states are measured. Alkylbenzene sulfonates with alkyl chain lengths between 1 and 22 carbon atoms are used as dopant anion. The films made with the different anions have highly different properties and are here compared to outline the influence of the size of the anion. A maximum in linear elongation is found for p-(n-octyl)benzene sulfonate and in conductivity for p-(n-butyl)benzene sulfonate.

  16. Aryl sulfonates as neutral photoacid generators (PAGs) for EUV lithography

    NASA Astrophysics Data System (ADS)

    Sulc, Robert; Blackwell, James M.; Younkin, Todd R.; Putna, E. Steve; Esswein, Katherine; DiPasquale, Antonio G.; Callahan, Ryan; Tsubaki, Hideaki; Tsuchihashi, Tooru

    2009-03-01

    EUV lithography (EUVL) is a leading candidate for printing sub-32 nm hp patterns. In order for EUVL to be commercially viable at these dimensions, a continuous evolution of the photoresist material set is required to simultaneously meet the aggressive specifications for resolution, resist sensitivity, LWR, and outgassing rate. Alternative PAG designs, especially if tailored for EUVL, may aid in the formation of a material set that helps achieve these aggressive targets. We describe the preparation, characterization, and lithographic evaluation of aryl sulfonates as non-ionic or neutral photoacid generators (PAGs) for EUVL. Full lithographic characterization is reported for our first generation resist formulation using compound H, MAP-1H-2.5. It is benchmarked against MAP-1P-5.0, which contains the well-known sulfonium PAG, triphenylsulfonium triflate (compound P). Z-factor analysis indicates nZ32 = 81.4 and 16.8 respectively, indicating that our first generation aryl sulfonate formulations require about 4.8x improvement to match the results achieved with a model onium PAG. Improving the acid generation efficiency and use of the generated byproducts is key to the continued optimization of this class of PAGs. To that end, we believe EI-MS fragmentation patterns and molecular simulations can be used to understand and optimize the nature and efficiency of electron-induced PAG fragmentation.

  17. Development of a new highly conductive and thermomechanically stable complex membrane based on sulfonated polyimide/ionic liquid for high temperature anhydrous fuel cells

    NASA Astrophysics Data System (ADS)

    Deligöz, Hüseyin; Yılmazoğlu, Mesut

    The paper deals with the synthesis and characterization of a new type of acid doped highly conductive complex membrane based on sulfonated polyimide (sPI) and ionic liquid (IL) for high temperature anhydrous fuel cells. For this purpose, 2,4-diaminobenzene sulfonic acid (2,4-DABSA) is reacted with benzophenontetracarboxylic dianhydride (BTDA) to yield sulfonated poly(amic acid) (sPAA) intermediate. Subsequently, IL is added into sPAA to form an interaction between sulfonic acid and imidazolium group of IL followed by acid doping. The ionic conductivity of acid doped sPI/IL complex polymer membrane is higher than that of IL containing composite membranes reported in the literature (5.59 × 10 -2 S cm -1 at 180 °C). Furthermore, dynamic mechanical analysis (DMA) results of acid doped sPI/IL complex membrane show that the mechanical strength of the complex product is slightly changed until 350 °C due to the formation of ionic interactions between sulfonic acid groups of sPI and imidazolium groups of IL. Consequently, the ionic interaction not only provides high ionic conductivity with excellent thermomechanical properties (the storage module of 0.91 GPa at 300 °C) but also results in a positive effect in long term conductivity stability by blocking IL migration through the membrane.

  18. Highly branched sulfonated poly(fluorenyl ether ketone sulfone)s membrane for energy efficient vanadium redox flow battery

    NASA Astrophysics Data System (ADS)

    Yin, Bibo; Li, Zhaohua; Dai, Wenjing; Wang, Lei; Yu, Lihong; Xi, Jingyu

    2015-07-01

    A series of highly branched sulfonated poly (fluorenyl ether ketone sulfone)s (HSPAEK) are synthesized by direct polycondensation reactions. The HSPAEK with 8% degree of branching is further investigated as membrane for vanadium redox flow battery (VRFB). The HSPAEK membrane prepared by solution casting method exhibits smooth, dense and tough morphology. It possesses very low VO2+ permeability and high ion selectivity compared to those of Nafion 117 membrane. When applied to VRFB, this novel membrane shows higher coulombic efficiency (CE, 99%) and energy efficiency (EE, 84%) than Nafion 117 membrane (CE, 92% and EE, 78%) at current density of 80 mA cm-2. Besides, the HSPAEK membrane shows super stable CE and EE as well as excellent discharge capacity retention (83%) during 100 cycles life test. After being soaked in 1.5 mol L-1 VO2+ solution for 21 days, the weight loss of HSPAEK membrane and the amount of VO2+ reduced from VO2+ are only 0.26% and 0.7%, respectively, indicating the superior chemical stability of the membrane.

  19. Synthesis and characterization of silica-based hyper-crosslinked sulfonate-modified reversed stationary phases

    PubMed Central

    Luo, Hao; Ma, Lianjia; Zhang, Yu; Carr, Peter W.

    2011-01-01

    A novel type of silica-based sulfonate-modified reversed phase (−SO3-HC-C8 ) has been synthesized; it is based on a newly developed acid stable “hyper-crosslinked” C8 derivatized reversed phase, denoted HC-C8. The −SO3-HC-C8 phases containing controlled amounts of sulfonyl groups were made by sulfonating the aromatic hyper-crosslinked network of the HC-C8 phase at different temperatures. The −SO3-HC-C8 phases are only slightly less hydrophobic than the parent HC-C8 phase. The added sulfonyl groups provide a unique strong cation-exchange selectivity to the hydrophobic hyper-crosslinked substrate as indicated by the very large C coefficient as shown by Snyder’s hydrophobic subtraction reversed-phase characterization method. This cation-exchange activity clearly distinguishes the sulfonated phase from all other reversed phases as confirmed by the extraordinary high values of Snyder’s column comparison function Fs. In addition, as was found in previous studies of silica-based and zirconia-based reversed phases, a strong correlation between the cation-exchange interaction and hydrophobic interaction was observed for these sulfonated phases in studies of the retention of cationic solutes. The overall chromatographic selectivity of these −SO3-HC-C8 phases is greatly enhanced by its high hydrophobicity through a “hydrophobically assisted” ion-exchange retention process. PMID:18207150

  20. Printing properties of the red reactive dyes with different number sulfonate groups on cotton fabric.

    PubMed

    Xie, Kongliang; Gao, Aiqin; Li, Min; Wang, Xiao

    2014-01-30

    Cellulose fabric is an important printing substrate. Four red azo reactive dyes based on 1-naphthol-8-amino-3,6-disulfonic acid for cotton fabric printing were designed. Their UV-Vis spectra and printing properties for cotton were investigated. The relationship between the chemical structures of the dyes and their printing properties on cotton fabric was discussed. The results show that the color yield (K/S) values of the printed fabrics decreased with the increase of sulfonate groups, but the fixation and penetration of the reactive dyes on cotton fabric increased. The reactive dyes with fewer number sulfonate groups were sensitive to alkaline and urea. Whereas, the reactive dyes with numerous sulfonate groups were not sensitive to urea and had good leveling properties, penetration uniformity, and good wet fastness for cotton fabric. Surface wettability of all cotton fabrics printed with four dyes was excellent. It is possible to print cotton fabric urea-free using the reactive dyes with numerous sulfonate groups.

  1. Morphologies in Sulfonated Styrenic Pentablock Copolymer Membranes

    NASA Astrophysics Data System (ADS)

    Choi, Jae-Hong; Bramson, Matt; Winey, Karen I.

    2010-03-01

    Membranes of pentablock and triblock copolymers consisting of poly(tert-butyl styrene) (TBS), hydrogenated polyisoprene (HI), and partially sulfonated poly(styrene-ran-styrene sulfonate) (SS) were studied using small angle X-ray scattering (SAXS) and transmission electron microscopy (TEM). The TBS-HI-SS-HI-TBS pentablock and TBS-HI-SS triblock copolymer membranes exhibit anisotropic microphase separated morphologies. Because the pentablock and triblock copolymers can be expected to have complex morphologies, thermal annealing was conducted to promote well-defined morphologies. The annealed membranes exhibit stronger peaks and more high order reflections in SAXS patterns, as well as better defined microstructures in the TEM. Electron microcopy studies with various staining protocols are underway to establish the morphology of the pentablock copolymer membranes including the size and shape of the three microdomains (TBS, HI and SS). We gratefully acknowledge Kraton Polymers, Inc. for materials.

  2. Sorption of sodium dodecylbenzene sulfonate by montmorillonite.

    PubMed

    Yang, Kun; Zhu, Lizhong; Xing, Baoshan

    2007-01-01

    Sorption of linear alkylbenzene sulfonates by soils and sediments is an important process that may affect their fate, transport, toxicity and their application in remediation of contaminated soil and groundwater. In this study, batch experiments were conducted to elucidate the sorption of a widely used anionic surfactant, sodium dodecylbenzene sulfonate (SDBS), by montmorillonite. It was observed that: (i) SDBS was sorbed significantly by montmorillonite saturated with Ca(2+), but little by Na-saturated montmorillonite; (ii) the amount of SDBS sorbed by Ca(2+)-montmorillonite was enhanced by NaCl; and (iii) no significant intercalation of SDBS into Ca(2+)-montmorillonite was observed by X-ray diffraction (XRD) analysis. These results indicate that the removal of SDBS by Ca(2+)-montmorillonite was primarily attributed to the precipitation between DBS(-) and Ca(2+) in solution which was released from montmorillonite via cation exchange. These results will help us to understand the sorption behavior and environmental effects of anionic surfactants. PMID:16759775

  3. Sorption of sodium dodecylbenzene sulfonate by montmorillonite.

    PubMed

    Yang, Kun; Zhu, Lizhong; Xing, Baoshan

    2007-01-01

    Sorption of linear alkylbenzene sulfonates by soils and sediments is an important process that may affect their fate, transport, toxicity and their application in remediation of contaminated soil and groundwater. In this study, batch experiments were conducted to elucidate the sorption of a widely used anionic surfactant, sodium dodecylbenzene sulfonate (SDBS), by montmorillonite. It was observed that: (i) SDBS was sorbed significantly by montmorillonite saturated with Ca(2+), but little by Na-saturated montmorillonite; (ii) the amount of SDBS sorbed by Ca(2+)-montmorillonite was enhanced by NaCl; and (iii) no significant intercalation of SDBS into Ca(2+)-montmorillonite was observed by X-ray diffraction (XRD) analysis. These results indicate that the removal of SDBS by Ca(2+)-montmorillonite was primarily attributed to the precipitation between DBS(-) and Ca(2+) in solution which was released from montmorillonite via cation exchange. These results will help us to understand the sorption behavior and environmental effects of anionic surfactants.

  4. Phase behavior of simple salt tolerant sulfonates

    SciTech Connect

    Barakat, Y.; Fortney, L.N.; Lalanne-Cassou, C.; Schechter, R.S.; Wade, W.H.; Yiv, S.H.

    1982-01-01

    Alkane and /alpha/-olefin sulfonates can be utilized to produce optimal microemulsion formulations which have very high salinity (including divalent ion) tolerance while maintaining large solubilization parameters and low interfacial tensions. Such molecules require elevated temperatures or higher alcohol concentrations to suppress liquid crystal formulation. As found for other species, solubilization is inversely related to width of the three phase regime, and interfacial tension and solubilization are strongly coupled. 18 refs.

  5. Phase behavior of simple salt tolerant sulfonates

    SciTech Connect

    Barakat, Y.; Fortney, L.N.; Lalanne-Cassou, C.; Schechter, R.S.; Wade, W.H.; Yiv, S.H.

    1982-01-01

    Alkane and ..cap alpha..-olefin sulfonates can be utilized to produce optimal microemulsion formulations which have very high salinity (including divalent ion) tolerance while maintaining large solubilization parameters and low interfacial tensions. Such molecules require elevated temperatures or higher alcohol concentrations to suppress liquid crystal formation. As found for other species, solubilization is inversely related to width of the three phase regime, and interfacial tension and solubilization are strongly coupled.

  6. High Lipophilicty of Perfluoroalkyl Carboxylate and Sulfonate

    PubMed Central

    Jing, Ping; Rodgers, Patrick J.; Amemiya, Shigeru

    2009-01-01

    Here we report on remarkably high lipophilicity of perfluoroalkyl carboxylate and sulfonate. A lipophilic nature of this emerging class of organic pollutants has been hypothesized as an origin of their bioaccumulation and toxicity. Both carboxylate and sulfonate, however, are considered hydrophilic while perfluroalkyl groups are not only hydrophobic but also oleophobic. Partition coefficients of homologous series of perfluoroalkyl and alkyl carboxylates between water and n-octanol were determined as a measure of their lipophilicity by ion-transfer cyclic voltammetry. Very similar lipophilicity of perfluoroalkyl and alkyl chains with the same length is demonstrated experimentally for the first time by fragment analysis of the partition coefficients. This finding is important for pharmaceutical and biomedical applications of perfluoroalkyl compounds. Interestingly, ∼2 orders of magnitude higher lipophilicity of a perfluoroalkyl carboxylate or sulfonate in comparison to its alkyl counterpart is ascribed nearly exclusively to their oxoanion groups. The higher lipophilicity originates from a strong electron-withdrawing effect of the perfluoroalkyl group on the adjacent oxoanion group, which is weakly hydrated to decrease its hydrophilicity. In fact, the inductive effect is dramatically reduced for a fluorotelomer with an ethylene spacer between perfluorohexyl and carboxylate groups, which is only as lipophilic as its alkyl counterpart, nonanoate, and is 400 times less lipophilic than perfluorononanoate. The high lipophilicity of perfluoroalkyl carboxylate and sulfonate implies that their permeation across such a thin lipophilic membrane as a bilayer lipid membrane is limited by their transfer at a membrane/water interface. The limiting permeability is lower and less dependent on their lipophilicity than the permeability controlled by their diffusion in the membrane interior as assumed in the classical solubility-diffusion model. PMID:19170492

  7. Comparative study on the antibacterial activity of some flavonoids and their sulfonic derivatives.

    PubMed

    Woźnicka, Elzbieta; Kuźniar, Anna; Nowak, Dorota; Nykiel, Elzbieta; Kopacz, Maria; Gruszecka, Jolanta; Golec, Krzysztof

    2013-01-01

    The antibacterial activity of quercetin, morin, sodium salt of quercetin-5'-sulfonic acid (NaQSA) and sodium salt of morin-5'-sulfonic acid (NaMSA) were tested against six bacterial strains: Escherichia coli (ATCC 25922 and clinical isolates--ESBL), Pseudomonas aeruginosa (ATCC 27853 and clinical isolates--carbapenem resistant), Staphylococcus aureus (ATCC 29213 and clinical isolats- MRSA). The most effective inhibitors against the model strain S. aureus are NaQSA and NaMSA (MIC = 3.9 microg/mL). Among polyhydroxyflavones used in this investigation, morin exhibits the highest antibacterial activity against tested strains. The structure-activity relationship indicates that 2',4'-dihydroxylation of the B ring in the flavanone structure is important for significant antibacterial activity and that substitution of the sulfo group at position 5' on the lateral phenyl ring enhances antistaphylococcal activity of flavonoids.

  8. Electrodeposition and characterisation of polypyrroles containing sulfonated carbon nanotubes.

    PubMed

    Lynam, Carol; Wallace, Gordon G; Officer, David L

    2007-10-01

    Using facile diazonium chemistry, sulfonate groups have been covalently attached to single wall carbon nanotubes. The resulting sulfonated tubes form a stable aqueous dispersion in the presence of pyrrole monomer. Subsequent electropolymerisation results in a conductive, electroactive polypyrrole doped with sulfonated tubes being formed at unusually low potentials. The potential of this material as a host matrix for biomolecules has been demonstrated by entrapping horse-radish peroxidase directly in the polypyrrole during composite formation.

  9. Sulfonated hierarchical H-USY zeolite for efficient hydrolysis of hemicellulose/cellulose.

    PubMed

    Zhou, Lipeng; Liu, Zhen; Shi, Meiting; Du, Shanshan; Su, Yunlai; Yang, Xiaomei; Xu, Jie

    2013-10-15

    Sulfonated hierarchical H-USY zeolite was prepared and characterized by X-ray diffraction, N2 physisorption, Fourier transform infrared spectroscopy, inductively coupled plasma atomic emission spectroscopy, temperature-programmed desorption of ammonia, and acid-base titration. It was proved that sulfonic group was successfully anchored onto the hierarchical H-USY zeolite. The acidity of the hierarchical H-USY was remarkably improved. Sulfonated hierarchical H-USY zeolite was efficient for the hydrolysis of hemicellulose and cellulose. The yield of TRS for hydrolysis of hemicellulose reached 78.0% at 140 °C for 9h. For hydrolysis of α-cellulose, 60.8% conversion with 22.4% yield of glucose was obtained. Even for microcrystalline cellulose, 43.7% conversion with 15.1% yield of glucose can be obtained. These results are much higher than those obtained over hierarchical H-USY zeolite, indicating that both the acidity and the pore structure determine the activity of zeolite as catalyst in the hydrolysis of biomass. PMID:23987328

  10. Sulfonated graphene nanosheets as a superb adsorbent for various environmental pollutants in water.

    PubMed

    Shen, Yi; Chen, Baoliang

    2015-06-16

    Graphene nanosheets, as a novel nanoadsorbent, can be further modified to optimize the adsorption capability for various pollutants. To overcome the structural limits of graphene (aggregation) and graphene oxide (hydrophilic surface) in water, sulfonated graphene (GS) was prepared by diazotization reaction using sulfanilic acid. It was demonstrated that GS not only recovered a relatively complete sp(2)-hybridized plane with high affinity for aromatic pollutants but also had sulfonic acid groups and partial original oxygen-containing groups that powerfully attracted positively charged pollutants. The saturated adsorption capacities of GS were 400 mg/g for phenanthrene, 906 mg/g for methylene blue and 58 mg/g for Cd(2+), which were much higher than the corresponding values for reduced graphene oxide and graphene oxide. GS as a graphene-based adsorbent exhibits fast adsorption kinetic rate and superior adsorption capacity toward various pollutants, which mainly thanks to the multiple adsorption sites in GS including the conjugate π region sites and the functional group sites. Moreover, the sulfonic acid groups endow GS with the good dispersibility and single or few nanosheets which guarantee the adsorption processes. It is great potential to expose the adsorption sites of graphene nanosheets for pollutants in water by regulating their microstructures, surface properties and water dispersion.

  11. HEPATIC GENE EXPRESSION PROFILING IN PERFLUOROHEXANE SULFONATE-EXPOSED WILD-TYPE AND PPARα-NULL MICE.

    EPA Science Inventory

    Perfluorohexane sulfonate (PFHxS) is one member of a group ofperfluoroakyl acids (PFAAs) presently recognized as widespread environmental contaminants. Like other PFAAs, PFHxS is also commonly found in human serum. Although PFHxS is presumed to be an activator of peroxisome proli...

  12. Hydrazine-1,2-diium bis-(3-carb-oxy-4-hy-droxy-benzene-sulfonate) tetra-hydrate.

    PubMed

    Selvaraju, Devipriya; Venkatesh, Ranjithkumar; Sundararajan, Vairam

    2011-05-01

    Reaction of 5-sulfosalicylic acid with hydrazine hydrate at pH = 1 results in the formation of the title hydrated salt, 0.5N(2)H(6) (2+)·C(7)H(5)O(6)S(-)·2H(2)O. The hydrazinium dications lie on centres of inversion. They are located between 3-carb-oxy-4-hy-droxy-benzene-sulfonate anions, forming inter-molecular N-H⋯O hydrogen bonds with sulfonate ions and water mol-ecules of crystallisation. Further intra- and inter-molecular O-H⋯O hydrogen bonds are observed in the crystal structure. PMID:21754532

  13. Sulfonimide-containing poly(arylene ether)s and poly(arylene ether sulfone)s, methods for producing the same, and uses thereof

    DOEpatents

    Hofmann, Michael A.

    2006-11-14

    The present invention is directed to sulfonimide-containing polymers, specifically sulfonimide-containing poly(arylene ether)s and sulfonimide-containing poly(arylene ether sulfone)s, and processes for making the sulfonimide-containing poly(arylene ether)s and sulfonimide-containing poly(arylene ether sulfone)s, for use conductive membranes and fuel cells.

  14. Developmental Toxicity of Perfluoroalkyl Acid Mixtures in CD-1 Mice

    EPA Science Inventory

    Perfluorooctanoic acid (PFOA), perfluorooctane sulfonate (PFOS) and perfluorononanoic acid (PFNA) belong to a family of fluoro-organic compounds known as perfluoroalkyl acids (PFAAs). PFAAs have been widely used in industrial and commercial applications, and have been found to be...

  15. Boiling significantly promotes photodegradation of perfluorooctane sulfonate.

    PubMed

    Lyu, Xian-Jin; Li, Wen-Wei; Lam, Paul K S; Yu, Han-Qing

    2015-11-01

    The application of photochemical processes for perfluorooctane sulfonate (PFOS) degradation has been limited by a low treatment efficiency. This study reports a significant acceleration of PFOS photodegradation under boiling condition compared with the non-boiling control. The PFOS decomposition rate increased with the increasing boiling intensity, but declined at a higher hydronium level or under oxygenation. These results suggest that the boiling state of solution resulted in higher effective concentrations of reactants at the gas-liquid interface and enhanced the interfacial mass transfer, thereby accelerating the PFOS decomposition. This study broadens our knowledge of PFOS photodegradation process and may have implications for development of efficient photodegradation technologies. PMID:26117498

  16. Boiling significantly promotes photodegradation of perfluorooctane sulfonate.

    PubMed

    Lyu, Xian-Jin; Li, Wen-Wei; Lam, Paul K S; Yu, Han-Qing

    2015-11-01

    The application of photochemical processes for perfluorooctane sulfonate (PFOS) degradation has been limited by a low treatment efficiency. This study reports a significant acceleration of PFOS photodegradation under boiling condition compared with the non-boiling control. The PFOS decomposition rate increased with the increasing boiling intensity, but declined at a higher hydronium level or under oxygenation. These results suggest that the boiling state of solution resulted in higher effective concentrations of reactants at the gas-liquid interface and enhanced the interfacial mass transfer, thereby accelerating the PFOS decomposition. This study broadens our knowledge of PFOS photodegradation process and may have implications for development of efficient photodegradation technologies.

  17. Three-component synthesis of pyrano[2,3-d]-pyrimidine dione derivatives facilitated by sulfonic acid nanoporous silica (SBA-Pr-SO3H) and their docking and urease inhibitory activity

    PubMed Central

    2013-01-01

    Background A straightforward and efficient method for the synthesis of pyrano[2,3-d]pyrimidine diones derivatives from the reaction of barbituric acid, malononitrile and various aromatic aldehydes using SBA-Pr-SO3H as a nanocatalyst is reported. Results Reactions proceed with high efficiency under solvent free conditions. Urease inhibitory activity of pyrano[2,3-d]pyrimidine diones derivatives were tested against Jack bean urease using phenol red method. Three compounds of 4a, 4d and 4l were not active in urease inhibition test, but compound 4a displayed slight urease activation properties. Compounds 4b, 4k, 4f, 4e, 4j, 4g and 4c with hydrophobic substitutes on phenyl ring, showed good inhibitory activity (19.45-279.14 μM). Discussion The compounds with electron donating group and higher hydrophobic interaction with active site of enzyme prevents hydrolysis of substrate. Electron withdrawing groups such as nitro at different position and meta-methoxy reduced urease inhibitory activity. Substitution of both hydrogen of barbituric acid with methyl group will convert inhibitor to activator. PMID:23351402

  18. A sulfonated poly (aryl ether ether ketone ketone) isomer: synthesis and DMFC performance

    SciTech Connect

    Kim, Yu Seung; Liu, Baijun; Hu, Wei; Jiang, Zhenhua; Robertson, Gilles; Guiver, Michael

    2009-01-01

    A sulfonated poly(aryl ether ether ketone ketone) (PEEKK) having a well-defined rigid homopolymer-like chemical structure was synthesized from a readily-prepared PEEKK post-sulfonation with concentrated sulfuric acid at room temperature within several hours. The polymer electrolyte membrane (PEM) cast from the resulting polymer exhibited an excellent combination of thermal resistance, oxidative and dimensional stability, low methanol fuel permeability and high proton conductivity. Furthermore, membrane electrode assemblies (MEAs) were successfully fabricated and good direct methanol fuel cell (DMFC) performance was observed. At 2 M MeOH feed, the current density at 0.5 V reached 165 mA/cm, which outperformed our reported analogues and eveluated Nafion membranes.

  19. Sulfonate-grafted porous polymer networks for preferential CO2 adsorption at low pressure.

    PubMed

    Lu, Weigang; Yuan, Daqiang; Sculley, Julian; Zhao, Dan; Krishna, Rajamani; Zhou, Hong-Cai

    2011-11-16

    A porous polymer network (PPN) grafted with sulfonic acid (PPN-6-SO(3)H) and its lithium salt (PPN-6-SO(3)Li) exhibit significant increases in isosteric heats of CO(2) adsorption and CO(2)-uptake capacities. IAST calculations using single-component-isotherm data and a 15/85 CO(2)/N(2) ratio at 295 K and 1 bar revealed that the sulfonate-grafted PPN-6 networks show exceptionally high adsorption selectivity for CO(2) over N(2) (155 and 414 for PPN-6-SO(3)H and PPN-6-SO(3)Li, respectively). Since these PPNs also possess ultrahigh physicochemical stability, practical applications in postcombustion capture of CO(2) lie well within the realm of possibility.

  20. Synthesis of cyclic sulfones by ring-closing metathesis.

    PubMed

    Yao, Qingwei

    2002-02-01

    A general and highly efficient synthesis of cyclic sulfones based on ring-closing metathesis has been developed. The synthetic utility of the resulting cyclic sulfones was demonstrated by their participation in stereoselective Diels-Alder reactions and transformation to cyclic dienes by the Ramberg-Bäcklund reaction. PMID:11820896