Science.gov

Sample records for 2-cm diameter centrifugal

  1. Effects of Centrifuge Diameter and Operation on Rodent Adaptation to Chronic Centrifugation

    NASA Technical Reports Server (NTRS)

    Fuller, Charles A.

    1992-01-01

    This study examined the responses of rats to centrifugation in a constant acceleration field (1.5 G). Centrifuge diameter (1.8m, 2.5m or 6.0m) and schedule of operation (Daily or weekly stop) varied between groups. Body mass, food consumption, water consumption and neurovestibular function were measured weekly. Body temperature and activity were continuously monitored using telemetry. A subset of subjects were videotaped (50 minutes per day) to allow for movement analysis. Exposure to a hyperdynamic field of this magnitude did cause the expected depression in the physiological variables monitored. Recovery was accomplished within a relatively rapid time frame; all variables returned to precentrifugation levels. In general, the magnitudes of the changes and the rate of recovery were similar at different centrifuge diameters and stopping frequency. There were cases, however, in which the magnitude of the response and/or the rate of recovery to a new steady-state were altered as a result of centrifuge diameter. In summary, these results indicate that stopping frequency has little, if any, effect on adaptation to chronic centrifugation. However, the angular velocity (omega), and therefore centrifuge diameter is an important consideration in the adaptation of an organism to chronic centrifugation.

  2. Effects of Centrifuge Diameter and Operation on Rodent Adaptation to Chronic Centrifugation

    NASA Technical Reports Server (NTRS)

    Fuller, Charles A.

    1997-01-01

    This study examined the responses of rats to centrifugation in a constant acceleration field (1.5 G). Centrifuge diameter (1.8m, 2.5m or 6.0m) and schedule of operation (Daily or weekly stop) varied between groups. Body mass, food consumption, water consumption and neurovestibular function were measured weekly. Body temperature and activity were continuously monitored using telemetry. A subset of subjects were videotaped (50 minutes per day) to allow for movement analysis. Exposure to a hyperdynamic field of this magnitude did cause the expected depression in the physiological variables monitored. Recovery was accomplished within a relatively rapid time frame; all variables returned to precentrifugation levels. In general, the magnitudes of the changes and the rate of recovery were similar at different centrifuge diameters and stopping frequency. There were cases, however, in which the magnitude of the response and/or the rate of recovery to a new steady-state were altered as a result of centrifuge diameter. In summary, these results indicate that stopping frequency has little, if any, effect on adaptation to chronic centrifugation. However, the angular velocity (omega), and therefore centrifuge diameter is an important consideration in the adaptation of an organism to chronic centrifugation.

  3. DEMONSTRATION OF THE NEXT-GENERATION CAUSTIC-SIDE SOLVENT EXTRACTION SOLVENT WITH 2-CM CENTRIFUGAL CONTRACTORS USING TANK 49H WASTE AND WASTE SIMULANT

    SciTech Connect

    Pierce, R.; Peters, T.; Crowder, M.; Caldwell, T.; Pak, D; Fink, S.; Blessing, R.; Washington, A.

    2011-09-27

    Researchers successfully demonstrated the chemistry and process equipment of the Caustic-Side Solvent Extraction (CSSX) flowsheet using MaxCalix for the decontamination of high level waste (HLW). The demonstration was completed using a 12-stage, 2-cm centrifugal contactor apparatus at the Savannah River National Laboratory (SRNL). This represents the first CSSX process demonstration of the MaxCalix solvent system with Savannah River Site (SRS) HLW. Two tests lasting 24 and 27 hours processed non-radioactive simulated Tank 49H waste and actual Tank 49H HLW, respectively. Conclusions from this work include the following. The CSSX process is capable of reducing {sup 137}Cs in high level radioactive waste by a factor of more than 40,000 using five extraction, two scrub, and five strip stages. Tests demonstrated extraction and strip section stage efficiencies of greater than 93% for the Tank 49H waste test and greater than 88% for the simulant waste test. During a test with HLW, researchers processed 39 liters of Tank 49H solution and the waste raffinate had an average decontamination factor (DF) of 6.78E+04, with a maximum of 1.08E+05. A simulant waste solution ({approx}34.5 liters) with an initial Cs concentration of 83.1 mg/L was processed and had an average DF greater than 5.9E+03, with a maximum DF of greater than 6.6E+03. The difference may be attributable to differences in contactor stage efficiencies. Test results showed the solvent can be stripped of cesium and recycled for {approx}25 solvent turnovers without the occurrence of any measurable solvent degradation or negative effects from minor components. Based on the performance of the 12-stage 2-cm apparatus with the Tank 49H HLW, the projected DF for MCU with seven extraction, two scrub, and seven strip stages operating at a nominal efficiency of 90% is {approx}388,000. At 95% stage efficiency, the DF in MCU would be {approx}3.2 million. Carryover of organic solvent in aqueous streams (and aqueous in organic

  4. Non-randomized confirmatory trial of modified radical hysterectomy for patients with tumor diameter 2 cm or less FIGO Stage IB1 uterine cervical cancer: Japan Clinical Oncology Group Study (JCOG1101).

    PubMed

    Kunieda, Futoshi; Kasamatsu, Takahiro; Arimoto, Takahide; Onda, Takashi; Toita, Takafumi; Shibata, Taro; Fukuda, Haruhiko; Kamura, Toshiharu

    2015-01-01

    A non-randomized confirmatory trial was started in Japan to evaluate the efficacy of modified radical hysterectomy in patients with tumor diameter 2 cm or less FIGO Stage IB1 uterine cervical cancer, for which the current standard is radical hysterectomy. This study began in January 2013 and a total of 240 patients will be accrued from 37 institutions within 3 years. The primary endpoint is 5-year survival. The secondary endpoints are overall survival, relapse-free survival, local relapse-free survival, percent completion of modified radical hysterectomy, percent local relapse, percent pathological parametrial involvement, days until self-urination and residual urine disappearance, blood loss, operation time, percent post-operative radiation therapy, adverse events and severe adverse events. This trial was registered at the UMIN Clinical Trials Registry as UMIN 000009726 (http://www.umin.ac.jp/ctr/).

  5. CENTRIFUGE

    DOEpatents

    Rushing, F.C.

    1960-09-01

    A vibration damping mechanism for damping vibration forces occurring during the operation of a centrifuge is described. The vibration damping mechanism comprises a plurality of nested spaced cylindrical elements surrounding the rotating shaft of the centrifuge. Some of the elements are held substantially stationary while the others are held with respect to a pair of hearings spaced along the rotating shaft. A fluid is retained about the cylindrical elements.

  6. Experimental performance of a 13.65-centimeter-tip-diameter tandem-bladed sweptback centrifugal compressor designed for a pressure ratio of 6

    NASA Technical Reports Server (NTRS)

    Klassen, H. A.; Wood, J. R.; Schumann, L. F.

    1977-01-01

    A 13.65 cm tip diameter backswept centrifugal impeller having a tandem inducer and a design mass flow rate of 0.907 kg/sec was experimentally investigated to establish stage and impeller characteristics. Tests were conducted with both a cascade diffuser and a vaneless diffuser. A pressure ratio of 5.9 was obtained near surge for the smallest clearance tested. Flow range at design speed was 6.3 percent for the smallest clearance test. Impeller exit to shroud axial clearance at design speed was varied to determine the effect on stage and impeller performance.

  7. CENTRIFUGE APPARATUS

    DOEpatents

    Skarstrom, C.; Urey, H.C.; Cohen, K.

    1960-08-01

    A high-speed centrifuge for the separation of gaseous isotopes is designed comprising a centrifugal pump mounted on the outlet of a centrifuge bowl and arranged to pump the heavy and light fractions out of the centrifuge bowl in two separate streams.

  8. Efficacy of retrograde ureteropyeloscopic holmium laser lithotripsy for intrarenal calculi >2 cm.

    PubMed

    Bader, M J; Gratzke, C; Walther, S; Weidlich, P; Staehler, M; Seitz, M; Sroka, R; Reich, O; Stief, C G; Schlenker, B

    2010-10-01

    The objectives of this study are to assess the efficacy and safety of retrograde ureteroscopic holmium laser lithotripsy for intrarenal calculi greater than 2 cm in diameter. A total of 24 patients with a stone burden >2 cm were treated with retrograde ureteroscopic laser lithotripsy. Primary study endpoints were number of treatments until the patient was stone free and perioperative complications with a follow-up of at least 3 months after intervention. In 24 patients (11 women and 13 men, 20-78 years of age), a total of 40 intrarenal calculi were treated with retrograde endoscopic procedures. At the time of the initial procedure, calculi had an average total linear diameter of 29.75 ± 1.57 mm and an average stone volume of 739.52 ± 82.12 mm(3). The mean number of procedures per patient was 1.7 ± 0.8 (range 1-3 procedures). The overall stone-free rate was 92%. After 1, 2 and 3 procedures 54, 79 and 92% of patients were stone free, respectively. There were no major complications. Minor postoperative complications included pyelonephritis in three cases (7.5%), of whom all responded immediately to parenteral antibiotics. In one patient the development of steinstrasse in the distal ureter required ureteroscopic fragment disruption and basketing. Ureteroscopy with holmium laser lithotripsy represents an efficient treatment option and allows the treatment of large intrarenal calculi of all compositions and throughout the whole collecting system even for patients with a stone burden of more than 2 cm size.

  9. Centrifuge apparatus

    DOEpatents

    Sartory, Walter K.; Eveleigh, John W.

    1976-01-01

    A method and apparatus for operating a continuous flow blood separation centrifuge are provided. The hematocrit of the entrant whole blood is continuously maintained at an optimum constant value by the addition of plasma to the entrant blood. The hematocrit of the separated red cells is monitored to indicate the degree of separation taking place, thereby providing a basis for regulating the flow through the centrifuge.

  10. [First time revealed small formations of lungs (under 2 cm in diameter). Dynamic follow-up or surgery?

    PubMed

    Pavlov, Yu V; Rybin, V K

    Введение. Патологические образования легких малого размера (до 2 см) в подавляющем большинстве случаев выявляются при проведении компьютерной томографии грудной клетки, выполняемой по различным причинам. Обнаруженные при таком обследовании очаговые образования в легочной ткани нередко остаются без внимания специалистов, что порой влечет за собой неутешительные результаты лечения данной категории больных. Угрожающим фактором в диагностике опухолей легких малого диаметра является их бессимптомность. Цель. Разработать алгоритм лечения у больных с выявленными образованиями легких до 2 см в диаметре. Материал и методы. Работа основана на результатах обследования и лечения 110 больных с патологическими образованиями легких малого диаметра, находившихся в Клинике факультетской хирургии им. Н.Н. Бурденко с 1997 по 2013 г. Всем пациентам были выполнены операции удаления участков легочной ткани из различных операционных доступов: 44 видеоторакоскопические резекции легкого, 43 миниторакотомии с видео сопровождением, 23 миниторакотомии. Результаты. У 25 пациентов был выявлен рак легкого, у 38 — доброкачественные опухоли (гамартомы и туберкуломы), у 10 больных — диссеминированный туберкулез, что потребовало незамедлительного лечения в специализированных стационарах. Вывод. При малых размерах образований (от 0,5 до 2 см) показано удаление их без морфологического подтверждения диагноза до операции. Оптимальный оперативный доступ для хирургического лечения пациентов с опухолями легких малого размера следует выбирать в зависимости от диаметра и количества патологических образований. При единичной опухоли легкого размером менее 0,5 см, впервые выявленной при компьютерной томографии, наиболее целесообразной тактикой будет динамическое наблюдение больного и проведение контрольной компьютерной томографии через 3—6—12 мес.

  11. Evaluation of the Hydraulic Capacity and Mass Transfer Efficiency of the CSSX Process with the Optimized Solvent in a Single Stage of 5.5-cm-Diameter Centrifugal Contactor

    SciTech Connect

    Law, Jack Douglas; Tillotson, Richard Dean; Todd, Terry Allen

    2002-09-01

    The Caustic-Side Solvent Extraction (CSSX) process has been selected for the separation of cesium from Savannah River Site high-level waste. The solvent composition used in the CSSX process was recently optimized so that the solvent is no longer supersaturated with respect to the calixarene crown ether extractant. Hydraulic performance and mass transfer efficiency testing of a single stage of 5.5-cm ORNL-designed centrifugal contactor has been performed for the CSSX process with the optimized solvent. Maximum throughputs of the 5.5-cm centrifugal contactor, as a function of contactor rotor speed, have been measured for the extraction, scrub, strip, and wash sections of the CSSX flowsheet at the baseline organic/aqueous flow ratios (O/A) of the process, as well as at O/A’s 20% higher and 20% lower than the baseline. Maximum throughputs are comparable to the design throughput of the contactor, as well as with throughputs obtained previously in a 5-cm centrifugal contactor with the non-optimized CSSX solvent formulation. The 20% variation in O/A had minimal effect on contactor throughput. Additionally, mass transfer efficiencies have been determined for the extraction and strip sections of the flowsheet. Efficiencies were lower than the process goal of greater than or equal to 80%, ranging from 72 to 75% for the extraction section and from 36 to 60% in the strip section. Increasing the mixing intensity and/or the solution level in the mixing zone of the centrifugal contactor (residence time) could potentially increase efficiencies. Several methods are available to accomplish this including (1) increasing the size of the opening in the bottom of the rotor, resulting in a contactor which is partially pumping instead of fully pumping, (2) decreasing the number of vanes in the contactor, (3) increasing the vane height, or (4) adding vanes on the rotor and baffles on the housing of the contactor. The low efficiency results obtained stress the importance of proper design

  12. Evaluation of the Hydraulic Performance and Mass Transfer Efficiency of the CSSX Process with the Optimized Solvent in a Single Stage of 5.5-Cm Diameter Centrifugal Contactor

    SciTech Connect

    Law, J.D.; Tillotson, R.D.; Todd, T.A.

    2002-09-19

    The Caustic-Side Solvent Extraction (CSSX) process has been selected for the separation of cesium from Savannah River Site high-level waste. The solvent composition used in the CSSX process was recently optimized so that the solvent is no longer supersaturated with respect to the calixarene crown ether extractant. Hydraulic performance and mass transfer efficiency testing of a single stage of 5.5-cm ORNL-designed centrifugal contactor has been performed for the CSSX process with the optimized solvent. Maximum throughputs of the 5.5-cm centrifugal contactor, as a function of contactor rotor speed, have been measured for the extraction, scrub, strip, and wash sections of the CSSX flowsheet at the baseline organic/aqueous flow ratios (O/A) of the process, as well as at O/A's 20% higher and 20% lower than the baseline. Maximum throughputs are comparable to the design throughput of the contactor, as well as with throughputs obtained previously in a 5-cm centrifugal contactor with the non-optimized CSSX solvent formulation. The 20% variation in O/A had minimal effect on contactor throughput. Additionally, mass transfer efficiencies have been determined for the extraction and strip sections of the flowsheet. Efficiencies were lower than the process goal of greater than or equal to 80%, ranging from 72 to 75% for the extraction section and from 36 to 60% in the strip section. Increasing the mixing intensity and/or the solution level in the mixing zone of the centrifugal contactor (residence time) could potentially increase efficiencies. Several methods are available to accomplish this including (1) increasing the size of the opening in the bottom of the rotor, resulting in a contactor which is partially pumping instead of fully pumping, (2) decreasing the number of vanes in the contactor, (3) increasing the vane height, or (4) adding vanes on the rotor and baffles on the housing of the contactor. The low efficiency results obtained stress the importance of proper design of

  13. Centrifugal pyrocontactor

    DOEpatents

    Chow, L.S.; Leonard, R.A.

    1993-10-19

    A method is described for mixing and separating immiscible liquid salts and liquid metals in a centrifugal contractor. The method includes introducing the liquids into an annular mixing zone and intensely mixing the liquids using vertical vanes attached to a rotor cooperating with vertical baffles, a horizontal baffle, and bottom vanes attached to the contactor housing. The liquids enter the contactor in the range of 700-800 degrees Celsius. The liquids are separated in the rotor into a dense phase and a light phase which are discharged from the contactor. 6 figures.

  14. Centrifugal pyrocontactor

    DOEpatents

    Chow, Lorac S.; Leonard, Ralph A.

    1993-01-01

    A method for mixing and separating immiscible liquid salts and liquid metals in a centrifugal contractor. The method includes introducing the liquids into an annular mixing zone and intensely mixing the liquids using vertical vanes attached to a rotor cooperating with vertical baffles, a horizontal baffle, and bottom vanes attached to the contactor housing. The liquids enter the contactor in the range of 700-800 degrees Celsius. The liquids are separated in the rotor into a dense phase and a light phase which are discharged from the contactor.

  15. CENTRIFUGAL MEMBRANE FILTRATION

    SciTech Connect

    Daniel J. Stepan; Bradley G. Stevens; Melanie D. Hetland

    1999-10-01

    The overall project consists of several integrated research phases related to the applicability, continued development, demonstration, and commercialization of the SpinTek centrifugal membrane filtration process. Work performed during this reporting period consisted of Phase 2 evaluation of the SpinTek centrifugal membrane filtration technology and Phase 3, Technology Partnering. During Phase 1 testing conducted at the EERC using the SpinTek ST-IIL unit operating on a surrogate tank waste, a solids cake developed on the membrane surface. The solids cake was observed where linear membrane velocities were less than 17.5 ft/s and reduced the unobstructed membrane surface area up to 25%, reducing overall filtration performance. The primary goal of the Phase 2 research effort was to enhance filtration performance through the development and testing of alternative turbulence promoter designs. The turbulence promoters were designed to generate a shear force across the entire membrane surface sufficient to maintain a self-cleaning membrane capability and improve filtration efficiency and long-term performance. Specific Phase 2 research activities included the following: System modifications to accommodate an 11-in.-diameter, two-disk rotating membrane assembly; Development and fabrication of alternative turbulence promoter designs; Testing and evaluation of the existing and alternative turbulence promoters under selected operating conditions using a statistically designed test matrix; and Data reduction and analysis; The objective of Phase 3 research was to demonstrate the effectiveness of SpinTek's centrifugal membrane filtration as a pretreatment to remove suspended solids from a liquid waste upstream of 3M's WWL cartridge technology for the selective removal of technetium (Tc).

  16. Detection of Thermal 2 cm and 1 cm Formaldehyde Emission in NGC 7538

    NASA Astrophysics Data System (ADS)

    Yuan, Liang; Araya, E. D.; Hofner, P.; Kurtz, S.; Pihlstrom, Y.

    2011-05-01

    Formaldehyde is a tracer of high density gas in massive star forming regions. The K-doublet lines from the three lowest rotational energy levels of ortho-formaldehyde correspond to wavelengths of 6, 2 and 1 cm. Thermal emission of these transitions is rare, and maser emission has only been detected in the 6 cm line. NGC 7538 is an active site of massive star formation in the Galaxy, and one of only a few regions known to harbor 6 cm formaldehyde (H2CO) masers. Using the NRAO 100 m Green Bank Telescope (GBT), we detected 2 cm H2CO emission toward NGC 7538 IRS1. The velocity of the 2 cm H2CO line is very similar to the velocity of one of the 6 cm H2CO masers but the linewidth is greater. To investigate the nature of the 2 cm emission, we conducted observations of the 1 cm H2CO transition, and obtained a cross-scan map of the 2 cm line. We detected 1 cm emission and found that the 2 cm emission is extended (greater than 30"), which implies brightness temperatures of ˜0.2 K. Assuming optically thin emission, LTE, and that the 1 cm and 2 cm lines originate from the same volume of gas, both these detections are consistent with thermal emission of gas at ˜30 K. We conclude that the 1 cm and 2 cm H2CO lines detected with the GBT are thermal, which implies molecular densities above ˜105 cm-3. LY acknowledges support from WIU. PH acknowledges partial support from NSF grant AST-0908901.

  17. CENTRIFUGE END CAP

    DOEpatents

    Beams, J.W.; Snoddy, L.B.

    1960-08-01

    An end cap for ultra-gas centrifuges is designed to impart or remove angular momentum to or from the gas and to bring the entering gas to the temperature of the gas inside the centrifuge. The end cap is provided with slots or fins for adjusting the temperature and the angular momentum of the entering gas to the temperature and momentum of the gas in the centrifuge and is constructed to introduce both the inner and the peripheral stream into the centrifuge.

  18. Detections of 2 cm formaldehyde emissions towards Galactic star-forming regions with 6 cm counterpart

    NASA Astrophysics Data System (ADS)

    Chen, Xi; Shen, Zhi-Qiang; Li, Xiao-Qiong; Yang, Kai; Li, Juan; Wang, Jun-Zhi; Wu, Ya-Jun; Zhao, Rong-Bin; Wang, Jin-Qing; Dong, Jian; Jiang, Dong-Rong; Li, Bin

    2017-01-01

    We report the detections of H2CO emission at the 2 cm transition towards Galactic star-forming regions with known 6 cm counterpart using the Shanghai Tianma Radio Telescope (TMRT). One significant detection (in NGC7538) and two possible detections (in G23.01-0.41 and G29.96-0.02) were made. Comparing with previous observations, we found that there is a time lag of appearance of 2 cm and 6 cm emissions detected in NGC7538, contradicting with the prediction of radiative pumping via radio continuum radiation. Combinations of the variability of 6 cm masers in NGC7538 suggest that collisional pumping via high-velocity shocks could better explain the 6 cm H2CO maser emission. Under this scheme, excitation of the 2 cm maser may require a higher collision energy compared to the 6 cm transition.

  19. A search for periodic structure in solar 2 cm microwave radiation. Ph.D. Thesis

    NASA Technical Reports Server (NTRS)

    Sentman, D. D.

    1973-01-01

    A power spectral analysis of 285 hr of 2 cm microwave intensity data showed no statistically significant ( 96% confidence) periodicities in the frequency range 1 to 15 mHz. No correlation was found between 2 cm periodicities and solar activity in H alpha, X-ray, and several microwave frequencies. A small shift of power toward higher frequencies in the power spectrum of the 2 cm data was found to be correlated with solar H alpha and X-ray activity. Using the statistical properties of power spectra, an expression for the ratio of the minimum detectable peak-to-peak to ambient temperature at chromospheric heights may be derived. Applied to a model for oscillation bursts in quiescent supergranules, and using the most significant results of experiments to detect the microwave periodicities, this expression yields an upper limit of approximately .0015.

  20. Radio observation at 8.2 cm of the total solar eclipse of 1980 February 16

    NASA Astrophysics Data System (ADS)

    Ji, Shu-Chen; Yang, Rong-Bang; Liu, Lan-Xian

    1988-06-01

    A radio intensity measurement was performed with a radio telescope of 8.2cm wavelength when the track of total solar eclipse passed over Yunnan Observatory on Feb 16, 1980. Some preliminary results deduced from this observation are discussed. The correlations of radio sources with optical active regions are examined. The flux densities, one-dimensional sizes, heights and brightness temperatures of fifteen regions are given in this paper. The emission measure of the halo N 2L above the plage is calculated to be 5.3 × 10 28 electron 2/cm 5

  1. The structure and temperature of Pluto's Sputnik Planum using 4.2 cm radiometry

    NASA Astrophysics Data System (ADS)

    Linscott, Ivan; Protopapa, Silvia; Hinson, David P.; Bird, Mike; Tyler, G. Leonard; Grundy, William M.; McKinnon, William B.; Olkin, Catherine B.; Stern, S. Alan; Stansberry, John A.; Weaver, Harold A.; Pluto Composition Team, Pluto Geophysics and Geology Team, Pluto Atmospheres Team

    2016-10-01

    New Horizons measured the radiometric brightness temperature of Pluto at 4.2 cm, during the encounter with two scans of the spacecraft's high gain antenna shortly after closest approach. The Pluto mid-section scan included the region informally known as Sputnik Planum, now understood to be filled with nitrogen ice. The mean radiometric brightness temperature at 4.2 cm, obtained in this region is 25 K, for both Right Circular Polarization (RCP) and Left Circular Polarization (LCP), well below the sublimation temperature for nitrogen ice. Sputnik Planum was near the limb and the termination of the radiometric scan. Consequently, the thermal emission was measured obliquely over a wide range of emission angles. This geometry affords detailed modeling of the angular dependence of the thermal radiation, incorporating surface and subsurface electromagnetic scattering models as well as emissivity models of the nitrogen ice. In addition, a bistatic radar measurement detected the scattering of a 4.2 cm uplink transmitted from Earth. The bistatic specular point was within Sputnik Planum and the measurements are useful for constraining the dielectric constant as well as the surface and subsurface scattering functions of the nitrogen ice. The combination of the thermal emission's angular dependence, RCP and LCP polarization dependence, and the bistatic scattering, yields estimates of the radiometric thermal emissivity, nitrogen ice temperature and spatial correlation scales.This work is supported by the NASA New Horizons Mission.

  2. METHOD OF CENTRIFUGE OPERATION

    DOEpatents

    Cohen, K.

    1960-05-10

    A method of isotope separation is described in which two streams are flowed axially of, and countercurrently through, a cylindrical centrifuge bowl. Under the influence of a centrifugal field, the light fraction is concentrated in a stream flowing through the central portion of the bowl, whereas the heavy fraction is concentrated in a stream at the periphery thereof.

  3. Valve for gas centrifuges

    DOEpatents

    Hahs, C.A.; Rurbage, C.H.

    1982-03-17

    The invention is pneumatically operated valve assembly for simulatenously (1) closing gas-transfer lines connected to a gas centrifuge or the like and (2) establishing a recycle path between two on the lines so closed. The value assembly is especially designed to be compact, fast-acting, reliable, and comparatively inexpensive. It provides large reductions in capital costs for gas-centrifuge cascades.

  4. Radio observation at 8.2 CM of the total solar eclipse of 1980 February 16

    NASA Astrophysics Data System (ADS)

    Ji, Shu-Chen; Yang, Rong-Bang; Liu, Lan-Xian

    1988-06-01

    A radio intensity measurement was performed with a radio telescope at 8.2 cm wavelength when the track of the total solar eclipse passed over Yunnan Observatory on February 16, 1980. Some preliminary results deduced from this observation are discussed. The correlations of radio sources with optical active regions are examined. The flux densities, one-dimensional sizes, heights, and brightness temperatures of 15 regions are given in this paper. The emission measure of the halo above the plage is calculated to be 5.3 x 10 to the 28th electron sq/cm exp 5.

  5. Impact of the radiosurgery prescription dose on the local control of small (2 cm or smaller) brain metastases.

    PubMed

    Mohammadi, Alireza M; Schroeder, Jason L; Angelov, Lilyana; Chao, Samuel T; Murphy, Erin S; Yu, Jennifer S; Neyman, Gennady; Jia, Xuefei; Suh, John H; Barnett, Gene H; Vogelbaum, Michael A

    2017-03-01

    OBJECTIVE The impact of the stereotactic radiosurgery (SRS) prescription dose (PD) on local progression and radiation necrosis for small (≤ 2 cm) brain metastases was evaluated. METHODS An institutional review board-approved retrospective review was performed on 896 patients with brain metastases ≤ 2 cm (3034 tumors) who were treated with 1229 SRS procedures between 2000 and 2012. Local progression and/or radiation necrosis were the primary end points. Each tumor was followed from the date of radiosurgery until one of the end points was reached or the last MRI follow-up. Various criteria were used to differentiate tumor progression and radiation necrosis, including the evaluation of serial MRIs, cerebral blood volume on perfusion MR, FDG-PET scans, and, in some cases, surgical pathology. The median radiographic follow-up per lesion was 6.2 months. RESULTS The median patient age was 56 years, and 56% of the patients were female. The most common primary pathology was non-small cell lung cancer (44%), followed by breast cancer (19%), renal cell carcinoma (14%), melanoma (11%), and small cell lung cancer (5%). The median tumor volume and median largest diameter were 0.16 cm(3) and 0.8 cm, respectively. In total, 1018 lesions (34%) were larger than 1 cm in maximum diameter. The PD for 2410 tumors (80%) was 24 Gy, for 408 tumors (13%) it was 19 to 23 Gy, and for 216 tumors (7%) it was 15 to 18 Gy. In total, 87 patients (10%) had local progression of 104 tumors (3%), and 148 patients (17%) had at least radiographic evidence of radiation necrosis involving 199 tumors (7%; 4% were symptomatic). Univariate and multivariate analyses were performed for local progression and radiation necrosis. For local progression, tumors less than 1 cm (subhazard ratio [SHR] 2.32; p < 0.001), PD of 24 Gy (SHR 1.84; p = 0.01), and additional whole-brain radiation therapy (SHR 2.53; p = 0.001) were independently associated with better outcome. For the development of radiographic radiation

  6. Analysis of Saturn's Thermal Emission at 2.2-cm Wavelength: Spatial Distribution of Ammonia Vapor

    NASA Technical Reports Server (NTRS)

    Laraia, A. L.; Ingersoll, A. P.; Janssen, Michael A.; Gulkis, Samuel; Oyafuso, Fabiano A.; Allison, Michael D.

    2013-01-01

    This work focuses on determining the latitudinal structure of ammonia vapor in Saturn's cloud layer near 1.5 bars using the brightness temperature maps derived from the Cassini RADAR (Elachi et al., 2004) instrument, which works in a passive mode to measure thermal emission from Saturn at 2.2-cm wavelength. We perform an analysis of five brightness temperature maps that span epochs from 2005 to 2011, which are presented in a companion paper by Janssen et al. (2013a, this issue). The brightness temperature maps are representative of the spatial distribution of ammonia vapor, since ammonia gas is the only effective opacity source in Saturn's atmosphere at 2.2-cm wavelength. Relatively high brightness temperatures indicate relatively low ammonia relative humidity (RH), and vice versa. We compare the observed brightness temperatures to brightness temperatures computed using the Juno atmospheric microwave radiative transfer (JAMRT) program which includes both the means to calculate a tropospheric atmosphere model for Saturn and the means to carry out radiative transfer calculations at microwave frequencies. The reference atmosphere to which we compare has a 3x solar deep mixing ratio of ammonia (we use 1.352x10(exp -4) for the solar mixing ratio of ammonia vapor relative to H2; see Atreya, 2010) and is fully saturated above its cloud base. The maps are comprised of residual brightness temperatures-observed brightness temperature minus the model brightness temperature of the saturated atmosphere.

  7. High-Grade Partial and Retracted (<2 cm) Proximal Hamstring Ruptures

    PubMed Central

    Piposar, Jonathan R.; Vinod, Amrit V.; Olsen, Joshua R.; Lacerte, Edward; Miller, Suzanne L.

    2017-01-01

    Background: High-grade partial proximal hamstring tears and complete tears with retraction less than 2 cm are a subset of proximal hamstring injuries where, historically, treatment has been nonoperative. It is unknown how nonoperative treatment compares with operative treatment. Hypothesis: The clinical and functional outcomes of nonoperative and operative treatment of partial/complete proximal hamstring tears were compared. We hypothesize that operative treatment of these tears leads to better clinical and functional results. Study Design: Case series; Level of evidence, 4. Methods: A retrospective review identified patients with a high-grade partial or complete proximal hamstring rupture with retraction less than 2 cm treated either operatively or nonoperatively from 2007 to 2015. All patients had an initial period of nonoperative treatment. Surgery was offered if patients had continued pain and/or limited function refractory to nonoperative treatment with physical therapy. Outcome measures were each patient’s strength perception, ability to return to activity, Lower Extremity Functional Scale (LEFS) score, Short Form–12 (SF-12) physical and mental component outcome scores, distance traversed by a single-leg hop, and Biodex hamstring strength testing. Results: A total of 25 patients were enrolled in the study. The 15 patients who were treated nonoperatively sustained injuries at a mean age of 55.73 ± 14.83 years and were evaluated 35.47 ± 30.35 months after injury. The 10 patients who elected to have surgery sustained injuries at 50.40 ± 6.31 years of age (P = .23) and were evaluated 30.11 ± 19.43 months after surgery. LEFS scores were significantly greater for the operative group compared with the nonoperative group (77/80 vs 64.3/80; P = .01). SF-12 physical component scores for the operative group were also significantly greater (P = .03). Objectively, operative and nonoperative treatment modalities showed no significant difference in terms of single

  8. Pediatric retrograde intra-renal surgery for renal stones <2 cm in solitary kidney

    PubMed Central

    Gamal, Wael Mohamed; Hussein, Mohamed M.; Rashed, El Nisr; Mohamed, Al-Dahshoury; Mmdouh, Ahmed; Fawzy, Farag

    2016-01-01

    Introduction: Management of renal stones in children with a solitary kidney is a challenge. In the current study, the efficacy and safety of retrograde intrarenal surgery (RIRS) in these children were determined. Patients and Methods: Records of children with renal stones who were treated at our institute between August 2011 and August 2014 were retrospectively assessed. Inclusion criteria were: Children with single renal stone <2 cm size, in a solitary kidney. A 7.5 Fr flexible ureteroscope (FURS) was introduced into the ureter over a hydrophilic guidewire under visual and fluoroscopic guidance - applying a back-loading technique. The stone was completely dusted using 200 μm laser fiber (0.2–0.8 joules power and 10–30 Hz frequency). At the end of the maneuver, a 5 Fr JJ stent was inserted into the ureter. The children were discharged home 24 h postoperative - provided that no complications were detected. Results: Fourteen children (3 girls and 11 boys) with median age 9.5 years (range 6–12) were included. The mean stone burden was 12.2 ± 1.5 mm (range 9–20). Stones were successfully accessed in all of the cases by the FURS except for 2 cases in whom a JJ stent was inserted into the ureter and left in place for 2 weeks to achieve passive dilatation. All of the stones were dusted completely. The immediate postoperative stone-free rate (SFR) was 79%, and the final SFR was 100% after 3 weeks. No intraoperative complications were observed. Conclusions: RIRS for renal stone <2 cm in children with a solitary kidney is a single-session procedure with a high SFR, low complication rate, and is a minimally invasive, natural orifice technique. PMID:27843213

  9. Saturns Thermal Emission at 2.2-cm Wavelength as Imaged by the Cassini RADAR Radiometer

    NASA Technical Reports Server (NTRS)

    Janssen, M. A.; Ingersoll, A. P.; Allison, M. D.; Gulkis, S.; Laraia, A. L.; Baines, K. H.; Edgington, S. G.; Anderson, Y. Z.; Kelleher, K.; Oyafuso, F. A.

    2013-01-01

    We present well-calibrated, high-resolution maps of Saturn's thermal emission at 2.2-cm wavelength obtained by the Cassini RADAR radiometer through the Prime and Equinox Cassini missions, a period covering approximately 6 years. The absolute brightness temperature calibration of 2% achieved is more than twice better than for all previous microwave observations reported for Saturn, and the spatial resolution and sensitivity achieved each represent nearly an order of magnitude improvement. The brightness temperature of Saturn in the microwave region depends on the distribution of ammonia, which our radiative transfer modeling shows is the only significant source of absorption in Saturn's atmosphere at 2.2-cm wavelength. At this wavelength the thermal emission comes from just below and within the ammonia cloud-forming region, and yields information about atmospheric circulations and ammonia cloud-forming processes. The maps are presented as residuals compared to a fully saturated model atmosphere in hydrostatic equilibrium. Bright regions in these maps are readily interpreted as due to depletion of ammonia vapor in, and, for very bright regions, below the ammonia saturation region. Features seen include the following: a narrow equatorial band near full saturation surrounded by bands out to about 10deg planetographic latitude that demonstrate highly variable ammonia depletion in longitude; narrow bands of depletion at -35deg latitude; occasional large oval features with depleted ammonia around -45deg latitude; and the 2010-2011 storm, with extensive saturated and depleted areas as it stretched halfway around the planet in the northern hemisphere. Comparison of the maps over time indicates a high degree of stability outside a few latitudes that contain active regions.

  10. Valve for gas centrifuges

    DOEpatents

    Hahs, Charles A.; Burbage, Charles H.

    1984-01-01

    The invention is a pneumatically operated valve assembly for simultaneously (1) closing gas-transfer lines connected to a gas centrifuge or the like and (2) establishing a recycle path between two of the lines so closed. The valve assembly is especially designed to be compact, fast-acting, reliable, and comparatively inexpensive. It provides large reductions in capital costs for gas-centrifuge cascades.

  11. VLA Images of Venus at 1.3 CM and 2 CM Wavelengths

    NASA Astrophysics Data System (ADS)

    Suleiman, S. H.; Kolodner, M. A.; Butler, B. J.; Steffes, P. G.

    1996-09-01

    On April 5, 1996, we performed an observation of Venus using the Very Large Array (VLA) at 15 GHz (2 cm) and 22 GHz (1.3 cm) simultaneously. High resolution continuum images for Venus were obtained at both frequencies. These images show significant polar darkening at latitudes above 60(deg) which is consistent with the results obtained by the Pioneer Venus Orbiter Infrared Radiometer (OIR) experiment (Taylor et al., J. Geophys. Res. 85, 7963-8006, 1980). These images are currently being used to detect potential spatial (longitudinal and latitudinal) variations in the abundances of gaseous sulfur dioxide (SO_2) and gaseous sulfuric acid (H_2SO_4) across the disk of Venus. Our new radiative transfer model (RTM) has shown that the emission spectrum is especially sensitive to the abundances of these constituents at these wavelengths. The detection of these constituents is being accomplished by matching the computed emission from our RTM to the measured emission of Venus by the VLA. Our RTM incorporates the newly developed Ben Reuven formalism which provides a more accurate characterization of the microwave absorption of gaseous SO_2 (Suleiman et al., J. Geophys. Res. 101, 4623-4635, 1996). A description of the observation, visibility data, and images are presented. This work was supported by the NASA Planetary Atmospheres Program under grant NAGW-533.

  12. Centrifugal main fuel pump

    SciTech Connect

    Cole, E.F.

    1986-08-26

    For a gas turbine power plant having a fuel supply and a fuel metering valve and variable geometry for the power plant including servo actuating mechanisms for the fuel metering valve and variable geometry, a fuel pumping system, is described to supply pressurized fuel for the servo actuating mechanisms and for the engine working fluid medium. The pumping system includes a centrifugal pump solely supplying the fuel to the fuel metering valve to be delivered to the power plant for its working fluid medium, a positive displacement pump in parallel with the centrifugal pump and solely to supply pressurized fuel to the servo actuating mechanisms for the fuel metering valve and for the variable geometry, and a boost pump means disposed in serial relationship with the positive displacement pump and the centrifugal pump for augmenting the pressure supplied by the positive displacement pump and the centrifugal pump during predetermined operating conditions of the power plant. The combined boost pump and centrifugal pump capability is sufficient to satisfy the vapor to liquid ratio requirements of the power during its entire operating envelope.

  13. SEAL FOR HIGH SPEED CENTRIFUGE

    DOEpatents

    Skarstrom, C.W.

    1957-12-17

    A seal is described for a high speed centrifuge wherein the centrifugal force of rotation acts on the gasket to form a tight seal. The cylindrical rotating bowl of the centrifuge contains a closure member resting on a shoulder in the bowl wall having a lower surface containing bands of gasket material, parallel and adjacent to the cylinder wall. As the centrifuge speed increases, centrifugal force acts on the bands of gasket material forcing them in to a sealing contact against the cylinder wall. This arrangememt forms a simple and effective seal for high speed centrifuges, replacing more costly methods such as welding a closure in place.

  14. Geotechnical centrifuge under construction

    NASA Astrophysics Data System (ADS)

    Richman, Barbara T.

    Modifications are underway at the National Aeronautics and Space Administration (NASA) Ames Research Center in California to transform a centrifuge used in the Apollo space program to the largest geotechnical centrifuge in the free world. The centrifuge, to be finished in August and opened next January, following check out and tuning, will enable geoscientists to model stratigraphic features down to 275 m below the earth's surface. Scientists will be able to model processes that are coupled with body force loading, including earthquake response of earth structures and soil structure interaction; rubbled-bed behavior during in situ coal gasification or in oil shale in situ retorts; behavior of frozen soil; frost heave; behavior of offshore structures; wave-seabed interactions; explosive cratering; and blast-induced liquefaction.The centrifuge will have a load capacity of 900-g-tons (short); that is, it will be able to carry a net soil load of 3 short tons to a centripetal acceleration of 300 times the acceleration caused by gravity. Modified for a total cost of $2.4 million, the centrifuge will have an arm with a 7.6-m radius and a swinging platform or bucket at its end that will be able to carry a payload container measuring 2.1×2.1 m. An additional future input of $500,000 would enable the purchase of a larger bucket that could accommodate a load of up to 20 tons, according to Charles Babendreier, program director for geotechnical engineering at the National Science Foundation. Additional cooling for the motor would also be required. The centrifuge has the capability of accelerating the 20-ton load to 100 g.

  15. Research centrifuge accommodations on Space Station Freedom

    NASA Technical Reports Server (NTRS)

    Arno, Roger D.; Horkachuk, Michael J.

    1990-01-01

    Life sciences research using plants and animals on the Space Station Freedom requires the ability to maintain live subjects in a safe and low stress environment for long durations at microgravity and at one g. The need for a centrifuge to achieve these accelerations is evident. Programmatic, technical, and cost considerations currently favor a 2.5 meter diameter centrifuge located either in the end cone of a Space Station Freedom node or in a separate module. A centrifuge facility could support a mix of rodent, plant, and small primate habitats. An automated cage extractor could be used to remove modular habitats in pairs without stopping the main rotor, minimizing the disruption to experiment protocols. The accommodation of such a centrifuge facility on the Space Station represents a significant demand on the crew time, power, data, volume, and logistics capability. It will contribute to a better understanding of the effects of space flight on humans, an understanding of plant growth in space for the eventual production of food, and an understanding of the role of gravity in biological processes.

  16. Two-Stage Centrifugal Fan

    NASA Technical Reports Server (NTRS)

    Converse, David

    2011-01-01

    Fan designs are often constrained by envelope, rotational speed, weight, and power. Aerodynamic performance and motor electrical performance are heavily influenced by rotational speed. The fan used in this work is at a practical limit for rotational speed due to motor performance characteristics, and there is no more space available in the packaging for a larger fan. The pressure rise requirements keep growing. The way to ordinarily accommodate a higher DP is to spin faster or grow the fan rotor diameter. The invention is to put two radially oriented stages on a single disk. Flow enters the first stage from the center; energy is imparted to the flow in the first stage blades, the flow is redirected some amount opposite to the direction of rotation in the fixed stators, and more energy is imparted to the flow in the second- stage blades. Without increasing either rotational speed or disk diameter, it is believed that as much as 50 percent more DP can be achieved with this design than with an ordinary, single-stage centrifugal design. This invention is useful primarily for fans having relatively low flow rates with relatively high pressure rise requirements.

  17. Human Powered Centrifuge

    NASA Technical Reports Server (NTRS)

    Mulenburg, Gerald M. (Inventor); Vernikos, Joan (Inventor)

    1997-01-01

    A human powered centrifuge has independently established turntable angular velocity and human power input. A control system allows excess input power to be stored as electric energy in a battery or dissipated as heat through a resistors. In a mechanical embodiment, the excess power is dissipated in a friction brake.

  18. Enhancing Centrifugal Separation With Electrophoresis

    NASA Technical Reports Server (NTRS)

    Herrmann, F. T.

    1986-01-01

    Separation of biological cells by coil-planet centrifuge enhanced by electrophoresis. By itself, coil-planet centrifuge offers relatively gentle method of separating cells under low centrifugal force in physiological medium that keeps cells alive. With addition of voltage gradient to separation column of centrifuge, separation still gentle but faster and more complete. Since separation apparatus contains no rotary seal, probability of leakage, contamination, corrosion, and short circuits reduced.

  19. Effects of scaling on centrifugal blood pumps.

    PubMed

    Wong, Yew Wah; Chan, Weng Kong; Yu, S C M; Chua, Leok Poh

    2002-11-01

    Experimental studies on the effects of scaling on the performance of centrifugal blood pumps were conducted in a closed-loop test rig. For the prototype, eight different impellers of the same outer diameter of 25 mm were tested at 1,500, 2,000, and 2,500 revolutions per minute (rpm) using blood analog as fluid medium. This corresponds to Reynolds numbers (Re) of 25,900, 34,500, and 43,200, respectively. The results indicated that the nondimensional pump characteristic is a function of Re. This is understandable since the typical operating Re for centrifugal blood pumps is less than 100,000. Thus, the effects of scaling cannot be ignored for centrifugal blood pumps. Experiments on a 5x scaled-up model have also indicated that the scaled-up model is more efficient than the prototype model. Our results showed that in the range of Re tested, the nondimensional head versus flow curve is a function of Re to the power of approximately 0.25. It is observed that the nondimensional head versus flow is a function of diameter ratio to the power of 0.2.

  20. The Human Centrifuge

    NASA Astrophysics Data System (ADS)

    van Loon, Jack J. W. A.

    2009-01-01

    Life on Earth has developed at unit gravity, 9.81 m/s2, which was a major factor especially when vertebrates emerged from water onto land in the late Devonian, some 375 million years ago. But how would nature have evolved on a larger planet? We are able to address this question simply in experiments using centrifuges. Based on these studies we have gained valuable insights in the physiological process in plants and animals. They adapt to a new steady state suitable for the high-g environments applied. Information on mammalian adaptations to hyper-g is interesting or may be even vital for human space exploration programs. It has been shown in long duration animal hypergravity studies, ranging from snails, rats to primates, that various structures like muscles, bones, neuro-vestibular, or the cardio-vascular system are affected. However, humans have never been exposed to a hyper-g environment for long durations. Centrifuge studies involving humans are mostly in the order of hours. The current work on human centrifuges are all focused on short arm systems to apply short periods of artificial gravity in support of long duration space missions in ISS or to Mars. In this paper we will address the possible usefulness of a large human centrifuge on Earth. In such a centrifuge a group of humans can be exposed to hypergravity for, in principle, an unlimited period of time like living on a larger planet. The input from a survey under scientists working in the field of gravitational physiology, but also other disciplines, will be discussed.

  1. DEMONSTRATION OF THE NEXT-GENERATION CAUSTIC-SIDE SOLVENT EXTRACTION SOLVENT WITH 2-CM CENTRIGUGAL CONTRACTORS USING TANK 49H WASTE AND WASTE SIMULANT

    SciTech Connect

    Pierce, R.; Peters, T.; Crowder, M.; Pak, D.; Fink, S.; Blessing, R.; Washington, A.; Caldwell, T.

    2011-11-29

    Researchers successfully demonstrated the chemistry and process equipment of the Caustic-Side Solvent Extraction (CSSX) flowsheet using MaxCalix for the decontamination of high level waste (HLW). The demonstration was completed using a 12-stage, 2-cm centrifugal contactor apparatus at the Savannah River National Laboratory (SRNL). This represents the first CSSX process demonstration of the MaxCalix solvent system with Savannah River Site (SRS) HLW. Two tests lasting 24 and 27 hours processed non-radioactive simulated Tank 49H waste and actual Tank 49H HLW, respectively. A solvent extraction system for removal of cesium from alkaline solutions was developed utilizing a novel solvent invented at the Oak Ridge National Laboratory (ORNL). This solvent consists of a calix[4]arene-crown-6 extractant dissolved in an inert hydrocarbon matrix. A modifier is added to the solvent to enhance the extraction power of the calixarene and to prevent the formation of a third phase. An additional additive is used to improve stripping performance and to mitigate the effects of any surfactants present in the feed stream. The process that deploys this solvent system is known as Caustic Side Solvent Extraction (CSSX). The solvent system has been deployed at the Savannah River Site (SRS) in the Modular CSSX Unit (MCU) since 2008.

  2. Centrifugally decoupling touchdown bearings

    DOEpatents

    Post, Richard F

    2014-06-24

    Centrifugally decoupling mechanical bearing systems provide thin tensioned metallic ribbons contained in a support structure. This assembly rotates around a stationary shaft being centered at low speeds by the action of the metal ribbons. Tension springs are connected on one end to the ribbons and on the other end to the support structure. The ribbons pass through slots in the inner ring of the support structure. The spring preloading thus insures contact (or near-contact) between the ribbons and the shaft at rotation speeds below the transition speed. Above this speed, however, the centrifugal force on the ribbons produces a tensile force on them that exceeds the spring tensile force so that the ribbons curve outward, effectively decoupling them from mechanical contact with the shaft. They still remain, however, in position to act as a touchdown bearing in case of abnormally high transverse accelerations.

  3. Centrifugal pump fuel system

    SciTech Connect

    McGlone, M.E.; Larkins, L.J.; Johnson, R.O.; Moeller, K.A.

    1993-06-22

    A centrifugal pump fuel system for an engine driven fuel pump for an aircraft gas turbine engine is described comprising: a centrifugal pump having at constant speed rising head/flow characteristic at low flows; a plumbing system receiving flow from the pump, and having at least one control valve located down stream of and defining a discrete volume of the plumbing system; a plumbing resonant frequency defined by the discrete volume, the geometry of the plumbing system, and the bulk modulus of the fuel; a pressure difference regulating valve located adjacent to the discharge of the pump, up stream of the vast majority of the discrete volume; and the frequency response of the regulating valve being significantly less than the frequency response of the plumbing system such that the response of the regulating valve is attenuated at the resonant frequency of the plumbing system.

  4. Centrifugal unbalance detection system

    DOEpatents

    Cordaro, Joseph V.; Reeves, George; Mets, Michael

    2002-01-01

    A system consisting of an accelerometer sensor attached to a centrifuge enclosure for sensing vibrations and outputting a signal in the form of a sine wave with an amplitude and frequency that is passed through a pre-amp to convert it to a voltage signal, a low pass filter for removing extraneous noise, an A/D converter and a processor and algorithm for operating on the signal, whereby the algorithm interprets the amplitude and frequency associated with the signal and once an amplitude threshold has been exceeded the algorithm begins to count cycles during a predetermined time period and if a given number of complete cycles exceeds the frequency threshold during the predetermined time period, the system shuts down the centrifuge.

  5. Centrifugal adsorption system

    NASA Technical Reports Server (NTRS)

    Gonda, Steve R. (Inventor); Tsao, Yow-Min D. (Inventor); Lee, Wenshan (Inventor)

    2006-01-01

    A gas-liquid separator uses a helical passageway to impart a spiral motion to a fluid passing therethrough. The centrifugal force generated by the spiraling motion urges the liquid component of the fluid radially outward which forces the gas component radially inward. The gas component is then separated through a gas-permeable, liquid-impervious membrane and discharged through a central passageway. A filter material captures target substances contained in the fluid.

  6. Oscillatory counter-centrifugation

    NASA Astrophysics Data System (ADS)

    Xu, Shujing; Nadim, Ali

    2016-02-01

    In ordinary centrifugation, a suspended particle that is heavier than the displaced fluid migrates away from the rotation axis when the fluid-filled container rotates steadily about that axis. In contrast a particle that is lighter than the displaced fluid (e.g., a bubble) migrates toward the rotation axis in a centrifuge. In this paper, we show theoretically that if a fluid-filled container rotates in an oscillatory manner as a rigid body about an axis, at high enough oscillation frequencies, the sense of migration of suspended particles is reversed. That is, in that case particles denser than the fluid migrate inward, while those that are lighter than the fluid move outward. We term this unusual phenomenon "Oscillatory Counter-Centrifugation" or OCC, for short. Through application of the method of averaging to the equations of motion, we derive a simple criterion to predict the occurrence of OCC. The analysis also reveals that the time-average of the Coriolis force in the radial direction is the term that is responsible for this effect. In addition, we analyze the effects of the Basset history force and the Rubinow-Keller lift force on particle trajectories and find that OCC persists even when these forces are active. The phenomenon awaits experimental verification.

  7. Gas Centrifuges and Nuclear Proliferation

    SciTech Connect

    Albright, David

    2004-09-15

    Gas centrifuges have been an ideal enrichment method for a wide variety of countries. Many countries have built gas centrifuges to make enriched uranium for peaceful nuclear purposes. Other countries have secretly sought centrifuges to make highly enriched uranium for nuclear weapons. In more recent times, several countries have secretly sought or built gas centrifuges in regions of tension. The main countries that have been of interest in the last two decades have been Pakistan, Iraq, Iran, and North Korea. Currently, most attention is focused on Iran, Pakistan, and North Korea. These states did not have the indigenous abilities to make gas centrifuges, focusing instead on illicit and questionable foreign procurement. The presentation covered the following main sections: Spread of centrifuges through illicit procurement; Role of export controls in stopping proliferation; Increasing the transparency of gas centrifuge programs in non-nuclear weapon states; and, Verified dismantlement of gas centrifuge programs. Gas centrifuges are important providers of low enriched uranium for civil nuclear power reactors. They also pose special nuclear proliferation risks. We all have special responsibilities to prevent the spread of gas centrifuges into regions of tension and to mitigate the consequences of their spread into the Middle East, South Asia, and North Asia.

  8. Pasteurization of grapefruit juice using a centrifugal ultraviolet light irradiator

    Technology Transfer Automated Retrieval System (TEKTRAN)

    The pharmaceutical industry uses UV irradiators to inactivate viruses in liquids without heat. The penetration depth of UV in some liquids, such as serum plasma, can be short. To overcome this, very thin films may be produced by centrifugal force, small diameter tubing, or other means. Many liquid f...

  9. SU-E-T-134: Assessing the Capabilities of An MU Model for Fields as Small as 2cm in a Passively Scattered Proton Beam

    SciTech Connect

    Simpson, R; Ghebremedhin, A; Gordon, I; Patyal, B

    2015-06-15

    Purpose: To assess and expand the capabilities of the current MU model for a passively scattered proton beam. The expanded MU model can potentially be used to predict the dose/MU for fields smaller than 2cm in diameter and reduce time needed for physical calibrations. Methods: The current MU model accurately predicted the dose/MU for more than 800 fields when compared to physical patient calibrations. Three different ion chambers were used in a Plastic Water phantom for physical measurements: T1, PIN, and A-16. The original MU model predicted output for fields that were affected by the bolus gap factor (BGF) and nozzle extension factor (NEF). As the system was tested for smaller treatment fields, the mod wheel dependent field size factor (MWDFSF) had to be included to describe the changes observed in treatment fields smaller than 3cm. The expanded model used Clarkson integration to determine the appropriate value for each factor (field size factor (FSF), BGF, NEF, and MWDFSF), to accurately predict the dose/MU for fields smaller than 2.5cm in effective diameter. Results: The expanded MU model demonstrated agreement better than 2% for more than 800 physical calibrations that were tested. The minimum tested fields were 1.7cm effective diameter for 149MeV and 2.4cm effective diameter for 186MeV. The inclusion of Clarkson integration into the MU model enabled accurate prediction of the dose/MU for very small and irregularly shaped treatment fields. Conclusion: The MU model accurately predicted the dose/MU for a wide range of treatment fields used in the clinic. The original MU model has been refined using factors that were problematic to accurately predict the dose/MU: the BGF, NEF, and MWDFSF. The MU model has minimized the time for determining dose/MU and reduced the time needed for physical calibrations, improving the efficiency of the patient treatment process.

  10. Femoral development in chronically centrifuged rats

    NASA Technical Reports Server (NTRS)

    Smith, S. D.

    1977-01-01

    Groups of 30-d-old male and female rats were centrifuged at 2.00 G (RE, Rotation Experimental), 1.05 G (RC, Rotation Control) or exposed to the noise and wind of the centrifuge at 1.00 G (EC, Earth Control) for periods of 1, 2, 4, 8, and 16 weeks. Measurements of their femurs indicated that exposure to centrifugation a) decreased femoral length in RE animals, b) increased femoral length in RC animals, c) reduced femoral diameter in RE and RC animals, d) increased L/D ratios in RC animals, e) decreased L/D ratios in RE animals, f) increased femur length/body weight in RE animals, g) decreased cortical thickness (CT) in RE animals, h) increased relative CT in RE animals, and decreased it in RC animals, i) accelerated ossification in RC femoral heads, j) thinned and distorted RE epiphyseal plates, and k) thickened condylar cartilage in RE females. The effects tended to be strongly sexually dimorphic, with females more severely affected by the stress than males.

  11. Research opportunities with the Centrifuge Facility

    NASA Astrophysics Data System (ADS)

    Funk, Glenn A.

    The Centrifuge Facility on Space Station Freedom will consist of a 2.5-meter diameter Centrifuge accommodating two concentric rings of habitats and providing variable g-forces between 0.01 g and 2.0 g; modular habitats providing housing and lifesupport for rats, mice, and plants; a habitat holding system providing power, water, airflow and other utilities to several modular habitats; and a life sciences glovebox, an isolated work volume accommodating simultaneous operations by at least two scientists and providing lighting, airflow, video and data access, and other experiment support functions. The centrifuge facility will enable long-duration animal and plant microgravity research not previously possible in the NASA flight research program. It will offer unprecedented opportunities for use of on-board 1-g control populations and statistically significant numbers of specimens. On orbit 1-g controls will allow separation of the effects of microgravity from other environmental factors. Its selectable-g and simultaneous multiple-g capabilities will enable studies of gravitational thresholds, the use of artificial gravity as a countermeasure to the effects of microgravity, and ready simulation of Lunar and Martian gravities.

  12. Research opportunities with the Centrifuge Facility

    NASA Technical Reports Server (NTRS)

    Funk, Glenn A.

    1992-01-01

    The Centrifuge Facility on Space Station Freedom will consist of a 2.5-meter diameter Centrifuge accommodating two concentric rings of habitats and providing variable g-forces between 0.01 g and 2.0 g; modular habitats providing housing and lifesupport for rats, mice, and plants; a habitat holding system providing power, water, airflow and other utilities to several modular habitats; and a life sciences glovebox, an isolated work volume accommodating simultaneous operations by at least two scientists and providing lighting, airflow, video and data access, and other experiment support functions. The centrifuge facility will enable long-duration animal and plant microgravity research not previously possible in the NASA flight research program. It will offer unprecedented opportunities for use of on-board 1-g control populations and statistically significant numbers of specimens. On orbit 1-g controls will allow separation of the effects of microgravity from other environmental factors. Its selectable-g and simultaneous multiple-g capabilities will enable studies of gravitational thresholds, the use of artificial gravity as a countermeasure to the effects of microgravity, and ready simulation of Lunar and Martian gravities.

  13. Centrifugal Adsorption Cartridge System

    NASA Technical Reports Server (NTRS)

    Gonda, Steve R.; Tsao, Yow-Min D.; Lee, Wenshan

    2004-01-01

    The centrifugal adsorption cartridge system (CACS) is an apparatus that recovers one or more bioproduct(s) from a dilute aqueous solution or suspension flowing from a bioreactor. The CACS can be used both on Earth in unit gravity and in space in low gravity. The CACS can be connected downstream from the bioreactor; alternatively, it can be connected into a flow loop that includes the bioreactor so that the liquid can be recycled. A centrifugal adsorption cartridge in the CACS (see figure) includes two concentric cylinders with a spiral ramp between them. The volume between the inner and outer cylinders, and between the turns of the spiral ramp is packed with an adsorbent material. The inner cylinder is a sieve tube covered with a gas-permeable, hydrophobic membrane. During operation, the liquid effluent from the bioreactor is introduced at one end of the spiral ramp, which then constrains the liquid to flow along the spiral path through the adsorbent material. The spiral ramp also makes the flow more nearly uniform than it would otherwise be, and it minimizes any channeling other than that of the spiral flow itself. The adsorbent material is formulated to selectively capture the bioproduct(s) of interest. The bioproduct(s) can then be stored in bound form in the cartridge or else eluted from the cartridge. The centrifugal effect of the spiral flow is utilized to remove gas bubbles from the liquid. The centrifugal effect forces the bubbles radially inward, toward and through the membrane of the inner cylinder. The gas-permeable, hydrophobic membrane allows the bubbles to enter the inner cylinder while keeping the liquid out. The bubbles that thus enter the cylinder are vented to the atmosphere. The spacing between the ramps determines rate of flow along the spiral, and thereby affects the air-bubble-removal efficiency. The spacing between the ramps also determines the length of the fluid path through the cartridge adsorbent, and thus affects the bioproduct

  14. National geotechnical centrifuge

    NASA Technical Reports Server (NTRS)

    Hallam, J. A.; Kunz, N.; Vallotton, W. C.

    1982-01-01

    A high G-ton centrifuge, able to take a 2700 kg (6000 lb) payload up to 300 G, is described. The stability of dams and embankments, the bearing capacity of soil foundations, and the dynamic behavior of foundations due to vibration of machinery are examples of applications. A power rating of 6,000 kW (9,000 hp) was established for the motor. An acceptable maximum speed of 70 rpm was determined. A speed increase with a ratio of 1:3 is discussed. The isolated tension straps, the anti-spreader bar and the flexwall bucket, and safety precautions are also discussed.

  15. Centrifugal-reciprocating compressor

    NASA Technical Reports Server (NTRS)

    Higa, W. H. (Inventor)

    1984-01-01

    A centrifugal compressor is described which includes at least one pair of cylinders arranged in coaxial alignment and supported for angular displacement about a common axis of rotation normally disecting a common longitudinal axis of symmetry for the cylinders. The cylinders are characterized by ported closures located at the mutually remote ends thereof through which the cylinders are charged and discharged, and a pair of piston heads seated within the cylinders and supported for floating displacement in compressive strokes in response to unidirectional angular displacement imparted to the cylinders.

  16. Centrifuge impact cratering experiment 5

    NASA Technical Reports Server (NTRS)

    1984-01-01

    Transient crates motions, cratering flow fields, crates dynamics, determining impact conditions from total crater welt, centrifuge quarter-space cratering, and impact cratering mechanics research is documented.

  17. Scientific uses and technical implementation of a variable gravity centrifuge on Space Station Freedom

    NASA Technical Reports Server (NTRS)

    Johnson, C. C.; Hargens, A. R.

    1990-01-01

    The potential need and science requirements for a centrifuge to be designed and flown on Space Station Freedom are discussed, with a focus on a design concept for a centrifuge developed at NASA Ames. Applications identified for the centrifuge include fundamental studies in which gravity is a variable under experimental control, the need to provide a 1-g control, attempts to discover the threshold value of gravitation force for psychological response, and an effort to determine the effects of intermittent hypergravity. Science requirements specify the largest possible diameter at approximately 2.5 m, gravity levels ranging from 0.01 to 2 g, a nominal ramp-up rate of 0.01 g/sec, and life support for plants and animals. Ground-based studies using rats and squirrel monkeys on small-diameter centrifuges have demonstrated that animals can adapt to centrifugation at gravity gradients higher than those normally used in ground-based hypergravity studies.

  18. Centrifugal precipitation chromatography.

    PubMed

    Ito, Yoichiro; Qi, Lin

    2010-01-15

    Centrifugal precipitation chromatography separates analytes according their solubility in ammonium sulfate (AS) solution and other precipitants. The separation column is made from a pair of long spiral channels partitioned with a semipermeable membrane. In a typical separation, concentrated ammonium sulfate is eluted through one channel while water is eluted through the other channel in the opposite direction. This countercurrent process forms an exponential AS concentration gradient through the water channel. Consequently, protein samples injected into the water channel is subjected to a steadily increasing AS concentration and at the critical AS concentration they are precipitated and deposited in the channel bed by the centrifugal force. Then the chromatographic separation is started by gradually reducing the AS concentration in the AS channel which lowers the AS gradient concentration in the water channel. This results in dissolution of deposited proteins which are again precipitated at an advanced critical point as they move through the channel. Consequently, proteins repeat precipitation and dissolution through a long channel and finally eluted out from the column in the order of their solubility in the AS solution. The present method has been successfully applied to a number of analytes including human serum proteins, recombinant ketosteroid isomerase, carotenoid cleavage enzymes, plasmid DNA, polysaccharide, polymerized pigments, PEG-protein conjugates, etc. The method is capable to single out the target species of proteins by affinity ligand or immunoaffinity separation.

  19. Interpreting stem diameter changes

    NASA Astrophysics Data System (ADS)

    Hölttä, T.; Sevanto, S.; Nikinmaa, E.

    2009-12-01

    Detecting phloem transport in stem diameter changes Teemu Hölttä1, Sanna Sevanto2, Eero Nikinmaa1 1Department of Forest Ecology, P.O. Box 27, FIN-00014 University of Helsinki, Finland 2Department of Physics, P.O. Box 48, FIN-00014 University of Helsinki, Finland Introduction The volume of living cells and xylem conduits vary according to pressures they are subjected to. Our proposition is that the behavior of the inner bark diameter variation which cannot be explained by changes in xylem water status arise from changes in the osmotic concentration of the phloem and cambial growth. Materials and methods Simultaneous xylem and stem diameter measurements were conducted between June 28th to October 4th 2006 in Southern Finland on a 47-year old, 15 meter tall, Scots pine tree (DBH 15 cm) at heights of 1.5 and 10 meters. The difference between the measured inner bark diameter and the inner bark diameter predicted from xylem diameter change with a simple model (assuming there was no change in the osmotic concentration of the phloem) is hypothesized to give the changes in the osmotic concentration of the inner bark. The simple model calculates the radial water exchange between the xylem and phloem driven by the water potential changes in the xylem. Results and Discussion The major signal in the inner bark diameter was the transpiration rate as assumed, but also a signal arising from the change in the osmotic concentration (Fig 1a). The predicted osmotic concentration of the phloem typically increased during the afternoon due to the loading of photosynthesized sugars to the phloem. Inner bark osmotic concentration followed the photosynthesis rate with a 3 and 4 hour time-lag at the top and base, respectively (Fig 1b). The connection between photosynthesis and the predicted change in phloem osmotic concentration was stronger in the upper part of the tree compared to lower part. The changes in the predicted osmotic concentration were not similar every day, indicating that

  20. Centrifuge treatment of coal tar

    SciTech Connect

    L.A. Kazak; V.Z. Kaidalov; L.F. Syrova; O.S. Miroshnichenko; A.S. Minakov

    2009-07-15

    New technology is required for the removal of water and heavy fractions from regular coal tar. Centrifuges offer the best option. Purification of coal tar by means of centrifuges at OAO NLMK permits the production of pitch coke or electrode pitch that complies with current standards.

  1. Unshrouded Centrifugal Turbopump Impeller

    NASA Technical Reports Server (NTRS)

    Prueger, George; Williams, Morgan; Chen, Wei; Paris, John; Stewart, Eric; Williams, Robert

    1999-01-01

    The ratio of rocket engine thrust to weight is a limiting constraint in placing more payload into orbit at a low cost. A key component of an engine's overall weight is the turbopump weight, Reducing the turbopump weight can result in significant engine weight reduction and hence, increased delivered payload. There are two main types of pumps: centrifugal and axial pumps. These types of pumps can be further sub-divided into those with shrouds and those without shrouds (unshrouded pumps). Centrifugal pumps can achieve the same pump discharge pressure as an axial pump and it requires fewer pump stages and lower pump weight than an axial pump. Also, with unshrouded centrifugal pumps (impeller), the number of stages and weight can be further reduced. However. there are several issues with regard to using an unshrouded impeller: 1) there is a pump performance penalty due to the front open face recirculation flow; 2) there is a potential pump axial thrust problem from the unbalanced front open face and the back shroud face; and, 3) since test data is very linu'ted for this configuration, there is uncertainty in the magnitude and phase of the rotordynamics forces due to the front impeller passage. The purpose of the paper is to discuss the design of an unshrouded impeller and to examine the design's hydrodynamic performance, axial thrust, and rotordynamics performance. The design methodology will also be discussed. This work will help provide some guidelines for unshrouded impeller design. In particular, the paper will discuss the design of three unshrouded impellers - one with 5 full and 5 partial blades (5+5). one with 6+6 blades and one with 8+8 blades. One of these designs will be selected for actual fabrication and flow test. Computational fluid dynamics (CFD) is used to help design and optimize the unshrouded impeller. The relative pump performance penalty is assessed by comparing the CFD results of the unshrouded impeller with the equivalent shrouded impeller for a

  2. Rat growth during chronic centrifugation

    NASA Technical Reports Server (NTRS)

    Pitts, G. C.; Oyama, J.

    1978-01-01

    Female weanling rats were chronically centrifuged at 4.15 G with controls at terrestrial gravity. Samples were sacrificed for body composition studies at 0, 28, 63, 105 and 308 days of centrifugation. The centrifuged group approached a significantly lower mature body mass than the controls (251 and 318g) but the rate of approach was the same in both groups. Retirement to 1G on the 60th day resulted in complete recovery. Among individual components muscle, bone, skin, CNS, heart, kidneys, body water and body fat were changed in the centrifuged group. However, an analysis of the growth of individual components relative to growth of the total fat-free compartment revealed that only skin (which increased in mass) was responding to centrifugation per se.

  3. [Galileo and centrifugal force].

    PubMed

    Vilain, Christiane

    This work intends to focus on Galileo's study of what is now called "centrifugal force," within the framework of the Second Day of his Dialogo written in 1632, rather than on the previously published commentaries on the topic. Galileo proposes three geometrical demonstrations in order to prove that gravity will always overcome centrifugalforce, and that the potential rotation of the Earth, whatever its speed, cannot in any case project objects beyond it. Each of these demonstrations must consequently contain an error and it has seemed to us that the first one had not been understood up until now. Our analysis offers an opportunity to return to Galileo's geometrical representation of dynamical questions; actually, we get an insight into the sophistication of Galileo's practices more than into his mistakes. Our second point, concerning the historiography of the problem, shows an evolution from anachronic critics to more contextual considerations, in the course of the second half of the twentieth century.

  4. Immunoaffinity centrifugal precipitation chromatography.

    PubMed

    Qi, Lin; Ito, Yoichiro

    2007-06-01

    Purification of proteins based on immunoaffinity has been performed using a solid support coated with antibody against the target proteins. The method requires immobilizing the antibody onto the solid support using protein A or G, and has a risk of adsorptive loss of target proteins onto the solid support. Centrifugal precipitation chromatography has been successfully used to purify enzymes, such as ketosteroid isomerase and hyaluronidase without the use of solid support. The purpose of this study is to demonstrate that immunoaffinity centrifugal precipitation chromatography is capable of isolating an antigen by exploiting antigen-antibody binding. The separation was initiated by filling both channels with 40% saturated ammonium sulfate (AS) of pH 4-4.5 followed by loading 20 microl of human plasma (National Institutes of Health blood bank) mixed with 2 mg of rabbit anti-HSA (human serum protein) antibody (Sigma). Then, the sample channel was eluted with water at 0.03 ml/min and AS channel with 40% AS solution of pH 4-4.5 at 1 ml/min until all non-binding components were eluted. Then, the releasing reagent (50% AS solution containing 0.5 M glycine and 10% ammonium hydroxide at pH 10) was introduced through the AS channel to release the target protein (HSA). The retained antibody was recovered by eluting the sample channel with water at 1 ml/min. A hollow fiber membrane device at the outlet (MicroKros, Spectrum, New Brunswick, NJ, USA) was provided on-line dialysis of the eluent before fractions were collected, so that the fractions could be analyzed by SDS-PAGE (sodium dodecyl sulfate - polyacrylamide gel electrophoresis) without further dialysis. The current method does not require immobilizing the antibody onto a matrix, which is used by the conventional immunoaffinity chromatography. This method ensures full recovery of the antigen and antibody, and it may be applied to purification of other proteins.

  5. Gas centrifuge purge method

    DOEpatents

    Theurich, Gordon R.

    1976-01-01

    1. In a method of separating isotopes in a high speed gas centrifuge wherein a vertically oriented cylindrical rotor bowl is adapted to rotate about its axis within an evacuated chamber, and wherein an annular molecular pump having an intake end and a discharge end encircles the uppermost portion of said rotor bowl, said molecular pump being attached along its periphery in a leak-tight manner to said evacuated chamber, and wherein end cap closure means are affixed to the upper end of said rotor bowl, and a process gas withdrawal and insertion system enters said bowl through said end cap closure means, said evacuated chamber, molecular pump and end cap defining an upper zone at the discharge end of said molecular pump, said evacuated chamber, molecular pump and rotor bowl defining a lower annular zone at the intake end of said molecular pump, a method for removing gases from said upper and lower zones during centrifuge operation with a minimum loss of process gas from said rotor bowl, comprising, in combination: continuously measuring the pressure in said upper zone, pumping gas from said lower zone from the time the pressure in said upper zone equals a first preselected value until the pressure in said upper zone is equal to a second preselected value, said first preselected value being greater than said second preselected value, and continuously pumping gas from said upper zone from the time the pressure in said upper zone equals a third preselected value until the pressure in said upper zone is equal to a fourth preselected value, said third preselected value being greater than said first, second and fourth preselected values.

  6. Centrifuge Facility for the International Space Station Alpha

    NASA Technical Reports Server (NTRS)

    Johnson, Catherine C.; Hargens, Alan R.

    1994-01-01

    The Centrifuge Facility planned for the International Space Station Alpha has under-one considerable redesign over the past year, primarily because the Station is now viewed as a 10 year mission rather than a 30 year mission and because of the need to simply the design to meet budget constraints and a 2000 launch date. The basic elements of the Centrifuge Facility remain the same, i.e., a 2.5 m diameter centrifuge, a micro-g holding unit, plant and animal habitats, a glovebox and a service unit. The centrifuge will still provide the full range of artificial gravity from 0.01 a to 2 - as originally planned; however, the extractor to permit withdrawal of habitats from the centrifuge without stopping the centrifuge has been eliminated. The specimen habitats have also been simplified and are derived from other NASA programs. The Plant Research Unit being developed by the Gravitational Biology Facility will be used to house plants in the Centrifuge Facility. Although not as ambitious as the Centrifuge Facility plant habitat, it will provide much better environmental control and lighting than the current Shuttle based Plant Growth Facility. Similarly, rodents will be housed in the Advanced Animal Habitat being developed for the Shuttle program. The Centrifuge Facility and ISSA will provide the opportunity to perform repeatable, high quality science. The long duration increments available on the Station will permit multigeneration studies on both plants and animals which have not previously been possible. The Centrifuge Facility will accommodate sufficient number of specimens to permit statistically significant sampling of specimens to investigate the time course of adaptation to altered gravity environments. The centrifuge will for the first time permit investigators to use gravity itself as a tool to investigate fundamental processes, to investigate the intensity and duration of gravity to maintain normal structure and function, to separate the effects of micro-g from

  7. Space Station Centrifuge: A Requirement for Life Science Research

    NASA Technical Reports Server (NTRS)

    Smith, Arthur H.; Fuller, Charles A.; Johnson, Catherine C.; Winget, Charles M.

    1992-01-01

    A centrifuge with the largest diameter that can be accommodated on Space Station Freedom is required to conduct life science research in the microgravity environment of space. (This was one of the findings of a group of life scientists convened at the University of California, Davis, by Ames Research Center.) The centrifuge will be used as a research tool to understand how gravity affects biological processes; to provide an on-orbit one-g control; and to assess the efficacy of using artificial gravity to counteract the deleterious biological effect of space flight. The rationale for the recommendation and examples of using ground-based centrifugation for animal and plant acceleration studies are presented. Included are four appendixes and an extensive bibliography of hypergravity studies.

  8. 2 cm spatial-resolution and 2 km range Brillouin optical fiber sensor using a transient differential pulse pair.

    PubMed

    Dong, Yongkang; Zhang, Hongying; Chen, Liang; Bao, Xiaoyi

    2012-03-20

    We report a high-spatial-resolution and long-range distributed temperature sensor through optimizing differential pulse-width pair Brillouin optical time-domain analysis (DPP-BOTDA). In DPP-BOTDA, the differential signal suffers from a signal-to-noise ratio (SNR) reduction with respect to the original signals, and for a fixed pulse-width difference the SNR reduction increases with the pulse width. Through reducing the pulse width to a transient regime (near to or less than the phonon lifetime) to decrease the SNR reduction after the differential process, the optimized 8/8.2 ns pulse pair is applied to realize a 2 cm spatial resolution, where a pulse generator with a 150 ps fall-time is used to ensure the effective resolution of DPP-BOTDA. In the experiment, a 2 cm spatial-resolution hot-spot detection with a 2 °C temperature accuracy is demonstrated over a 2 km sensing fiber.

  9. HOUSINGS AND MOUNTINGS FOR CENTRIFUGES

    DOEpatents

    Rushing, F.C.

    1960-08-16

    A protective housing for a gas centrifuge comprises a slidable connection between flanges and framework portions for absorbing rotational energy in case of bursting of the rotor and a sealing means for sealing the rotor chamber.

  10. Centrifugal dryers keep pace with the market

    SciTech Connect

    Fiscor, S.

    2008-03-15

    New plant design and upgrades create a shift in dewatering strategies. The article describes recent developments. Three major manufacturers supply centrifugal dryers - TEMA, Centrifugal & Mechanical Industries (CMI) and Ludowici. CMI introduced a line of vertical centrifugal dryers. TEMA improved the techniques by developing a horizontal vibratory centrifuge (HVC) which simplified maintenance. 3 figs., 1 photo.

  11. Microwave assisted centrifuge and related methods

    DOEpatents

    Meikrantz, David H [Idaho Falls, ID

    2010-08-17

    Centrifuge samples may be exposed to microwave energy to heat the samples during centrifugation and to promote separation of the different components or constituents of the samples using a centrifuge device configured for generating microwave energy and directing the microwave energy at a sample located in the centrifuge.

  12. Variable-Speed Instrumented Centrifuges

    NASA Technical Reports Server (NTRS)

    Chapman, David K.; Brown, Allan H.

    1991-01-01

    Report describes conceptual pair of centrifuges, speed of which varied to produce range of artificial gravities in zero-gravity environment. Image and data recording and controlled temperature and gravity provided for 12 experiments. Microprocessor-controlled centrifuges include video cameras to record stop-motion images of experiments. Potential applications include studies of effect of gravity on growth and on production of hormones in corn seedlings, experiments with magnetic flotation to separate cells, and electrophoresis to separate large fragments of deoxyribonucleic acid.

  13. Centrifugal Compressor Aeroelastic Analysis Code

    NASA Astrophysics Data System (ADS)

    Keith, Theo G., Jr.; Srivastava, Rakesh

    2002-01-01

    Centrifugal compressors are very widely used in the turbomachine industry where low mass flow rates are required. Gas turbine engines for tanks, rotorcraft and small jets rely extensively on centrifugal compressors for rugged and compact design. These compressors experience problems related with unsteadiness of flowfields, such as stall flutter, separation at the trailing edge over diffuser guide vanes, tip vortex unsteadiness, etc., leading to rotating stall and surge. Considerable interest exists in small gas turbine engine manufacturers to understand and eventually eliminate the problems related to centrifugal compressors. The geometric complexity of centrifugal compressor blades and the twisting of the blade passages makes the linear methods inapplicable. Advanced computational fluid dynamics (CFD) methods are needed for accurate unsteady aerodynamic and aeroelastic analysis of centrifugal compressors. Most of the current day industrial turbomachines and small aircraft engines are designed with a centrifugal compressor. With such a large customer base and NASA Glenn Research Center being, the lead center for turbomachines, it is important that adequate emphasis be placed on this area as well. Currently, this activity is not supported under any project at NASA Glenn.

  14. Comparison of flexible ureterorenoscopy and mini-percutaneous nephrolithotomy in treatment of lower calyceal stones smaller than 2 cm.

    PubMed

    Akbulut, Fatih; Kucuktopcu, Onur; Kandemir, Emre; Sonmezay, Erkan; Simsek, Abdulmuttalip; Ozgor, Faruk; Binbay, Murat; Muslumanoglu, Ahmet Yaser; Gurbuz, Gokhan

    2016-01-01

    To compare the outcomes of flexible ureterorenoscopy (F-URS) and mini-percutaneous nephrolithotomy (mini-PNL) in the treatment of lower calyceal stones smaller than 2 cm. Patients who underwent F-URS and mini-PNL for the treatment of lower calyceal stones smaller than 2 cm between March 2009 and December 2014 were retrospectively evaluated. Ninety-four patients were divided into two groups by treatment modality: F-URS (Group 1: 63 patients) and mini-PNL (Group 2: 31 patients). All patients were preoperatively diagnosed with intravenous pyelography or computed tomography. Success rates for F-URS and mini-PNL at postoperative first month were 85.7% and 90.3%, respectively. Operation time, fluoroscopy time, and hospitalization time for F-URS and mini-PNL patients were 44.40 min, 2.9 min, 22.4 h, and 91.9 min, 6.4 min, and 63.8 h, respectively. All three parameters were significantly shorter among the F-URS group (p < 0.001). Postoperative hemoglobin drop was significantly lower in F-URS group compared to mini-PNL group (0.39 mg/dL vs. 1.15 mg/dL, p = 0.001). A comparison of complications according to the Clavien classification demonstrated significant differences between the groups (p = 0.001). More patients in the F-URS groups require antibiotics due to urinary tract infection, and more patients in the mini-PNL group required ureteral double J catheter insertion under general anesthesia. Although both F-URS and mini-PNL have similar success rates for the treatment of lower calyceal stones, F-URS appears to be more favorable due to shorter fluoroscopy and hospitalization times; and lower hemoglobin drops. Multicenter and studies using higher patient volumes are needed to confirm these findings.

  15. Solar Diameter Latitude Dependence

    NASA Astrophysics Data System (ADS)

    Emilio, M.; Leister, N. V.; Laclare, F.

    The observing programs of the Sun for determining the fundamental system of reference enable, as a by-product, to measure the apparent solar diameter (Poppe, P.C.R. et al. 1996; Leister et al. 1996; Laclare et al. 1991). The diameter obtained at the Calern Observatory (φ = 43-circ 44' 55''.9; λ = -0h 27m 42s.44) and at Abrahao de Moraes Observatory (OAM) (φ = -23-circ 00'6''.0; λ = 3h 07m 52s.22) was analyzed searching for periodicity evidences. For this we utilized the temporal methods CLEAN and CLEANEST. The analysis in function of heliographic latitude shows a dependence that may be correlated to mode of pulsation non-radial gravity. A discussion is made in terms of physical parameters like temperature luminosity and magnetic field involving the solar radius (Emilio M. 1997; Laclare et al. 1996).

  16. CENTRIFUGAL MEMBRANE FILTRATION

    SciTech Connect

    William A. Greene; Patricia A. Kirk; Richard Hayes; Joshua Riley

    2005-10-28

    SpinTek Membrane Systems, Inc., the developer of a centrifugal membrane filtration technology, has engineered and developed a system for use within the U.S. Department of Energy (DOE) Environmental Management (EM) Program. The technology uses supported microporous membranes rotating at high rpm, under pressure, to separate suspended and colloidal solids from liquid streams, yielding a solids-free permeate stream and a highly concentrated solids stream. This is a crosscutting technology that falls under the Efficient Separations and Processing Crosscutting Program, with potential application to tank wastes, contaminated groundwater, landfill leachate, and secondary liquid waste streams from other remediation processes, including decontamination and decommissioning systems. SpinTek II High Shear Rotary Membrane Filtration System is a unique compact crossflow membrane system that has large, demonstrable advantages in performance and cost compared to currently available systems: (1) High fluid shear prevents membrane fouling even with very high solids content; hazardous and radioactive components can be concentrated to the consistency of a pasty slurry without fouling. (2) Induced turbulence and shear across the membrane increases membrane flux by a factor of ten over existing systems and allows operation on fluids not otherwise treatable. (3) Innovative ceramic membrane and mechanical sealing technology eliminates compatibility problems with aggressive DOE waste streams. (4) System design allows rapid, simple disassembly for inspection or complete decontamination. (5) Produces colloidal- and suspended-solids-free filtrate without the addition of chemicals. The first phase of this project (PRDA maturity stage 5) completed the physical scale-up of the SpinTek unit and verified successful scale-up with surrogate materials. Given successful scale-up and DOE concurrence, the second phase of this project (PRDA maturity stage 6) will provide for the installation and

  17. Concept designs of nonrotating-type centrifugal blood pump and basic study on output characteristics of the oscillating disk-type centrifugal pump.

    PubMed

    Kabei, N; Tuichiya, K; Sakurai, Y

    1994-09-01

    When designing a turbo-type blood pump as an artificial heart, the gap between a rotating shaft and a pump housing should be perfectly sealed to prevent any leakage or contamination through a seal. In addition, blood coagulation in a blood chamber must be avoided. To overcome these problems, we proposed five different nonrotating-type turbo pumps: a caudal-fin-type axial-flow pump, a caudal-fin-type centrifugal pump, a nutating-column-type centrifugal pump, a nutating-collapsible-tube-type centrifugal pump, and an oscillating-disk-type centrifugal pump. We selected and developed the oscillating-disk-type centrifugal pump that consists of a disk, a driving rod, a seal, an oscillation mechanism, and a pump housing. The disk is mounted on the end of the rod, which is connected to a high-speed DC motor through an oscillation mechanism. The rod and the disk do not rotate, but they oscillate in the pump housing. This movement of the disk generates forward fluid flow around the axis (i.e., the rotational fluid flow). Centrifugal force due to fluid rotation supports the pressure difference between the outlet and the inlet. The diameter of the disk is 39 mm, the maximum inner diameter of the pump housing is 40 mm, and the volume of the blood chamber for 25 degrees' oscillation is 16.9 ml. The performance of the pump was tested in a mock circulatory system.(ABSTRACT TRUNCATED AT 250 WORDS)

  18. Centrifuge-Based Fluidic Platforms

    NASA Astrophysics Data System (ADS)

    Zoval, Jim; Jia, Guangyao; Kido, Horacio; Kim, Jitae; Kim, Nahui; Madou, Marc

    In this chapter centrifuge-based microfluidic platforms are reviewed and compared with other popular microfluidic propulsion methods. The underlying physical principles of centrifugal pumping in microfluidic systems are presented and the various centrifuge fluidic functions such as valving, decanting, calibration, mixing, metering, heating, sample splitting, and separation are introduced. Those fluidic functions have been combined with analytical measurements techniques such as optical imaging, absorbance and fluorescence spectroscopy and mass spectrometry to make the centrifugal platform a powerful solution for medical and clinical diagnostics and high-throughput screening (HTS) in drug discovery. Applications of a compact disc (CD)-based centrifuge platform analyzed in this review include: two-point calibration of an optode-based ion sensor, an automated immunoassay platform, multiple parallel screening assays and cellular-based assays. The use of modified commercial CD drives for high-resolution optical imaging is discussed as well. From a broader perspective, we compare the technical barriers involved in applying microfluidics for sensing and diagnostic as opposed to applying such techniques to HTS. The latter poses less challenges and explains why HTS products based on a CD fluidic platform are already commercially available, while we might have to wait longer to see commercial CD-based diagnostics.

  19. Hemolysis in different centrifugal pumps.

    PubMed

    Kawahito, K; Nosé, Y

    1997-04-01

    Different types of centrifugal pumps cause different amounts of hemolysis based on shear stress and blood exposure time. However, the hemolytic characteristics of centrifugal pumps in each clinical condition are not always clear. We compared the hemolytic characteristics of one cone-type centrifugal pump (Medtronic BioMedicus BP-80) and 2 impeller-type centrifugal pumps (Nikkiso HMS-12 and Terumo Capiox) under experimental conditions simulating their use in cardiopulmonary bypass (CPB), extracorporeal membrane oxygenation (ECMO), and percutaneous cardiopulmonary support (PCPS) as well as their use as left ventricular assist devices (LVADs). The normalized indexes of hemolysis (NIHs; grams free plasma hemoglobin per 100 L blood pumped) during use as LVADs were not significantly different among the 3 pumps. The BP-80 pump produced almost 3-fold more hemolysis than the HMS-12 and Capiox pumps during CPB, 3- to 4-fold more hemolysis during ECMO, and 5.5-fold more hemolysis during PCPS. The 2 impeller-type centrifugal pumps will therefore cause less hemolysis under high flow, high pressure difference (as in CPB) and low flow, high pressure difference (as in ECMO and PCPS) conditions than the cone-type pump.

  20. Analysis of Saturn’s thermal emission at 2.2-cm wavelength: Spatial distribution of ammonia vapor

    NASA Astrophysics Data System (ADS)

    Laraia, A. L.; Ingersoll, A. P.; Janssen, M. A.; Gulkis, S.; Oyafuso, F.; Allison, M.

    2013-09-01

    This work focuses on determining the latitudinal structure of ammonia vapor in Saturn’s cloud layer near 1.5 bars using the brightness temperature maps derived from the Cassini RADAR (Elachi et al. [2004], Space Sci. Rev. 115, 71-110) instrument, which works in a passive mode to measure thermal emission from Saturn at 2.2-cm wavelength. We perform an analysis of five brightness temperature maps that span epochs from 2005 to 2011, which are presented in a companion paper by Janssen et al. (Janssen, M.A., Ingersoll, A.P., Allison, M.D., Gulkis, S., Laraia, A.L., Baines, K., Edgington, S., Anderson, Y., Kelleher, K., Oyafuso, F. [2013]. Icarus, this issue). The brightness temperature maps are representative of the spatial distribution of ammonia vapor, since ammonia gas is the only effective opacity source in Saturn’s atmosphere at 2.2-cm wavelength. Relatively high brightness temperatures indicate relatively low ammonia relative humidity (RH), and vice versa. We compare the observed brightness temperatures to brightness temperatures computed using the Juno atmospheric microwave radiative transfer (JAMRT) program which includes both the means to calculate a tropospheric atmosphere model for Saturn and the means to carry out radiative transfer calculations at microwave frequencies. The reference atmosphere to which we compare has a 3× solar deep mixing ratio of ammonia (we use 1.352 × 10-4 for the solar mixing ratio of ammonia vapor relative to H2; see Atreya [2010]. In: Galileo’s Medicean Moons - Their Impact on 400 years of Discovery. Cambridge University Press, pp. 130-140 (Chapter 16)) and is fully saturated above its cloud base. The maps are comprised of residual brightness temperatures-observed brightness temperature minus the model brightness temperature of the saturated atmosphere. The most prominent feature throughout all five maps is the high brightness temperature of Saturn’s subtropical latitudes near ±9° (planetographic). These latitudes

  1. Composition and bathymetry of Ligeia Mare, Titan, derived from its 2.2-cm wavelength thermal microwave emission

    NASA Astrophysics Data System (ADS)

    Le Gall, A. A.; Janssen, M. A.; Mastrogiuseppe, M., Sr.; Hayes, A. G., Jr.; Lorenz, R. D.; Encrenaz, P.; Malaska, M. J.

    2014-12-01

    In May 2013, the bottom of Ligeia Mare (LM), Titan, was detected in the active altimetry mode of the Cassini RADAR at a maximum depth of 160 m (Mastroguiseppe et al., 2014). This was the first and, so far, only detection of the floor of an extraterrestrial sea. The difference of amplitude of the surface and bottom echoes was also investigated in order to evaluate losses by absorption in the liquid layer. In this paper, we analyze the passive radiometry data that were acquired concurrently with the active data, in order to provide an independent estimate of the liquid loss tangent and to determine the dielectric constant of both the liquid and the seafloor. We then used these results to convert the radiometry mosaic of LM into a low-resolution bathymetry map. For the last 10 years, the passive radiometer incorporated in the Cassini RADAR has been observing the 2.2-cm wavelength thermal microwave emission from Titan. Its calibration has been recently refined to an unprecedented accuracy of <1% (Janssen et al., this meeting). To date, all LM has been mapped in high-spatial resolution. The 2.2-cm emissivity measured over it is directly related to the depth of the seafloor, the most emissive areas being the deepest and vice-versa. Comparing the radiometry data acquired in May 2013 to a two-layer model and using as an input the altimetry-derived depth profile, we find that the loss tangent value that best fits data is very low and only slightly smaller than that found by Mastroguiseppe et al. (2014) (3.0±1.0 10-5). This strongly suggests that the sea is composed of pure hydrocarbons with no or few suspended particles. A dielectric constant of 2.9 is inferred for the sea bottom pointing to water ice as its most likely composition rather than organic sediments. Lastly, the dielectric constant of the liquid is found to be <1.7, which, together with the low loss tangent, supports the idea of a methane-dominated composition (rather than ethane, Mitchell et al., submitted).

  2. Centrifugal slip casting of components

    SciTech Connect

    Steinlage, G.A.; Roeder, R.K.; Trumble, K.P.; Bowman, K.J.

    1996-05-01

    Research in layered and functionally gradient materials has emerged because of the increasing demand for high-performance engineering materials. Many techniques have been used to produce layered and functionally gradient components. Common examples include thermal spray processing, powder processing, chemical and physical vapor deposition, high-temperature or combustion synthesis, diffusion treatments, microwave processing and infiltration. Of these techniques, powder processing routes offer excellent microstructural control and product quality, and they are capable of producing large components. Centrifugal slip casting is a powder-processing technique combining the effects of slip casting and centrifugation. In slip casting, consolidation takes place as fluid is removed by the porous mold. Particles within the slip move with the suspending fluid until reaching the mold wall, at which point they are consolidated. In centrifugation, particles within the slip move through the fluid at a rate dependent upon the gravitational force and particle drag.

  3. Double diameter boring tool

    DOEpatents

    Ashbaugh, Fred N.; Murry, Kenneth R.

    1988-12-27

    A boring tool and a method of operation are provided for boring two concentric holes of precision diameters and depths in a single operation. The boring tool includes an elongated tool body, a shank for attachment to a standard adjustable boring head which is used on a manual or numerical control milling machine and first and second diametrically opposed cutting edges formed for cutting in opposite directions. The diameter of the elongated tool body is substantially equal to the distance from the first cutting edge tip to the axis of rotation plus the distance from the second cutting edge tip to the axis of rotation. The axis of rotation of the tool is spaced from the tool centerline a distance substantially equal to one-half the distance from the second cutting edge tip to the axis of rotation minus one-half the distance from the first cutting edge tip to the axis of rotation. The method includes the step of inserting the boring tool into the boring head, adjusting the distance between the tool centerline and the tool axis of rotation as described above and boring the two concentric holes.

  4. Double diameter boring tool

    DOEpatents

    Ashbaugh, F.A.; Murry, K.R.

    1986-02-10

    A boring tool and a method of operation are provided for boring two concentric holes of precision diameters and depths in a single operation. The boring tool includes an elongated tool body, a shank for attachment to a standard adjustable boring head which is used on a manual or numerical control milling machine and first and second diametrically opposed cutting flutes formed for cutting in opposite directions. The diameter of the elongated tool body is substantially equal to the distance from the first flute tip to the axis of rotation plus the distance from the second flute tip to the axis of rotation. The axis of rotation of the tool is spaced from the tool centerline a distance substantially equal to one-half the distance from the second flute tip to the axis of rotation minus one-half the distance from the first flute tip to the axis of rotation. The method includes the step of inserting the boring tool into the boring head, adjusting the distance between the tool centerline and the tool axis of rotation as described above and boring the two concentric holes.

  5. Centrifugation and the Manhattan Project

    NASA Astrophysics Data System (ADS)

    Reed, Cameron

    2009-05-01

    A study of U. S. Army Manhattan Engineer District documents reveals that consideration of centrifugation as a means of uranium enrichment during World War II was considerably more extensive than is commonly appreciated. By the time the centrifuge project was abandoned in early 1944 a full-scale prototype unit had been fabricated and tested at near-production speeds, enrichments of close to theoretically-expected levels had been demonstrated with pilot-plant units, and plans for production plants had been developed. This paper will review the history of this little-known aspect of the Project and examine the circumstances of how it came to be discontinued.

  6. Centrifugation and the Manhattan Project

    NASA Astrophysics Data System (ADS)

    Reed, Cameron

    2009-04-01

    A study of U. S. Army Manhattan Engineer District documents reveals that consideration of centrifugation as a means of uranium enrichment during World War II was considerably more extensive than is commonly appreciated. By the time the centrifuge project was abandoned in early 1944 a full-scale prototype unit had been fabricated and tested at near-production speeds, enrichments of close to theoretically-expected levels had been demonstrated with pilot-plant units, and plans for production plants had been developed. This paper will review the history of this little-known aspect of the Project and examine the circumstances of how it came to be discontinued.

  7. MEANS FOR DETERMINING CENTRIFUGE ALIGNMENT

    DOEpatents

    Smith, W.Q.

    1958-08-26

    An apparatus is presented for remotely determining the alignment of a centrifuge. The centrifage shaft is provided with a shoulder, upon which two followers ride, one for detecting radial movements, and one upon the shoulder face for determining the axial motion. The followers are attached to separate liquid filled bellows, and a tube connects each bellows to its respective indicating gage at a remote location. Vibrations produced by misalignment of the centrifuge shaft are transmitted to the bellows, and tbence through the tubing to the indicator gage. This apparatus is particularly useful for operation in a hot cell where the materials handled are dangerous to the operating personnel.

  8. Titan's surface at 2.2-cm wavelength imaged by the Cassini RADAR radiometer: Calibration and first results

    USGS Publications Warehouse

    Janssen, M.A.; Lorenz, R.D.; West, R.; Paganelli, F.; Lopes, R.M.; Kirk, R.L.; Elachi, C.; Wall, S.D.; Johnson, W.T.K.; Anderson, Y.; Boehmer, R.A.; Callahan, P.; Gim, Y.; Hamilton, G.A.; Kelleher, K.D.; Roth, L.; Stiles, B.; Le, Gall A.

    2009-01-01

    The first comprehensive calibration and mapping of the thermal microwave emission from Titan's surface is reported based on radiometric data obtained at 2.2-cm wavelength by the passive radiometer included in the Cassini Radar instrument. The data reported were accumulated from 69 separate observational segments in Titan passes from Ta (October 2004) through T30 (May 2007) and include emission from 94% of Titan's surface. They are diverse in the key observing parameters of emission angle, polarization, and spatial resolution, and their reduction into calibrated global mosaic maps involved several steps. Analysis of the polarimetry obtained at low to moderate resolution (50+ km) enabled integration of the radiometry into a single mosaic of the equivalent brightness temperature at normal incidence with a relative precision of about 1 K. The Huygens probe measurement of Titan's surface temperature and radiometry obtained on Titan's dune fields allowed us to infer an absolute calibration estimated to be accurate to a level approaching 1 K. The results provide evidence for a surface that is complex and varied on large scales. The radiometry primarily constrains physical properties of the surface, where we see strong evidence for subsurface (volume) scattering as a dominant mechanism that determines the emissivity, with the possibility of a fluffy or graded-density surface layer in many regions. The results are consistent with, but not necessarily definitive of a surface composition resulting from the slow deposition and processing of organic compounds from the atmosphere. ?? 2008 Elsevier Inc.

  9. Numerical Simulation and Cold Modeling experiments on Centrifugal Casting

    NASA Astrophysics Data System (ADS)

    Keerthiprasad, Kestur Sadashivaiah; Murali, Mysore Seetharam; Mukunda, Pudukottah Gopaliengar; Majumdar, Sekhar

    2011-02-01

    In a centrifugal casting process, the fluid flow eventually determines the quality and characteristics of the final product. It is difficult to study the fluid behavior here because of the opaque nature of melt and mold. In the current investigation, numerical simulations of the flow field and visualization experiments on cold models have been carried out for a centrifugal casting system using horizontal molds and fluids of different viscosities to study the effect of different process variables on the flow pattern. The effects of the thickness of the cylindrical fluid annulus formed inside the mold and the effects of fluid viscosity, diameter, and rotational speed of the mold on the hollow fluid cylinder formation process have been investigated. The numerical simulation results are compared with corresponding data obtained from the cold modeling experiments. The influence of rotational speed in a real-life centrifugal casting system has also been studied using an aluminum-silicon alloy. Cylinders of different thicknesses are cast at different rotational speeds, and the flow patterns observed visually in the actual castings are found to be similar to those recorded in the corresponding cold modeling experiments. Reasonable agreement is observed between the results of numerical simulation and the results of cold modeling experiments with different fluids. The visualization study on the hollow cylinders produced in an actual centrifugal casting process also confirm the conclusions arrived at from the cold modeling experiments and numerical simulation in a qualitative sense.

  10. Life Sciences Centrifuge Facility assessment

    NASA Technical Reports Server (NTRS)

    Benson, Robert H.

    1994-01-01

    This report provides an assessment of the status of the Centrifuge Facility being developed by ARC for flight on the International Space Station Alpha. The assessment includes technical status, schedules, budgets, project management, performance of facility relative to science requirements, and identifies risks and issues that need to be considered in future development activities.

  11. Life Sciences Centrifuge Facility review

    NASA Technical Reports Server (NTRS)

    Young, Laurence R.

    1994-01-01

    The Centrifuge Facility Project at ARC was reviewed by a code U team to determine appropriateness adequacy for the ISSA. This report represents the findings of one consultant to this team and concentrates on scientific and technical risks. This report supports continuation of the project to the next phase of development.

  12. Axial-Centrifugal Compressor Program

    DTIC Science & Technology

    1975-10-01

    We also wish to thank Robert Langworthy of the Eustis Directorate for his timely assistance and constructive guidance. 3, INj TABLE OF CONTENTS Page...34 PREFACE 3 LIST OF ILLUSTRATIONS ..................... 7 LIST OF TABLES . . . . . . . . . . . . . . . . . . . . . . . . . 17 INTRODUCTIONB...Blow Test. 132 Axial IGV Blow Test . . . . . . . . ........... 141 PMIZ ?crn AM BLANK-NOT 1=43D TABLE OF CONTENTS - Continued Centrifugal Compressor

  13. Centrifugal pumps for rocket engines

    NASA Technical Reports Server (NTRS)

    Campbell, W. E.; Farquhar, J.

    1974-01-01

    The use of centrifugal pumps for rocket engines is described in terms of general requirements of operational and planned systems. Hydrodynamic and mechanical design considerations and techniques and test procedures are summarized. Some of the pump development experiences, in terms of both problems and solutions, are highlighted.

  14. Laser and gas centrifuge enrichment

    SciTech Connect

    Heinonen, Olli

    2014-05-09

    Principles of uranium isotope enrichment using various laser and gas centrifuge techniques are briefly discussed. Examples on production of high enriched uranium are given. Concerns regarding the possibility of using low end technologies to produce weapons grade uranium are explained. Based on current assessments commercial enrichment services are able to cover the global needs of enriched uranium in the foreseeable future.

  15. High Efficiency Centrifugal Compressor for Rotorcraft Applications

    NASA Technical Reports Server (NTRS)

    Medic, Gorazd; Sharma, Om P.; Jongwook, Joo; Hardin, Larry W.; McCormick, Duane C.; Cousins, William T.; Lurie, Elizabeth A.; Shabbir, Aamir; Holley, Brian M.; Van Slooten, Paul R.

    2014-01-01

    The report "High Efficiency Centrifugal Compressor for Rotorcraft Applications" documents the work conducted at UTRC under the NRA Contract NNC08CB03C, with cost share 2/3 NASA, and 1/3 UTRC, that has been extended to 4.5 years. The purpose of this effort was to identify key technical barriers to advancing the state-of-the-art of small centrifugal compressor stages; to delineate the measurements required to provide insight into the flow physics of the technical barriers; to design, fabricate, install, and test a state-of-the-art research compressor that is representative of the rear stage of an axial-centrifugal aero-engine; and to acquire detailed aerodynamic performance and research quality data to clarify flow physics and to establish detailed data sets for future application. The design activity centered on meeting the goal set outlined in the NASA solicitation-the design target was to increase efficiency at higher work factor, while also reducing the maximum diameter of the stage. To fit within the existing Small Engine Components Test Facility at NASA Glenn Research Center (GRC) and to facilitate component re-use, certain key design parameters were fixed by UTRC, including impeller tip diameter, impeller rotational speed, and impeller inlet hub and shroud radii. This report describes the design effort of the High Efficiency Centrifugal Compressor stage (HECC) and delineation of measurements, fabrication of the compressor, and the initial tests that were performed. A new High-Efficiency Centrifugal Compressor stage with a very challenging reduction in radius ratio was successfully designed, fabricated and installed at GRC. The testing was successful, with no mechanical problems and the running clearances were achieved without impeller rubs. Overall, measured pressure ratio of 4.68, work factor of 0.81, and at design exit corrected flow rate of 3 lbm/s met the target requirements. Polytropic efficiency of 85.5 percent and stall margin of 7.5 percent were

  16. Design of a centrifugal blood pump: Heart Turcica Centrifugal.

    PubMed

    Demir, Onur; Biyikli, Emre; Lazoglu, Ismail; Kucukaksu, Suha

    2011-07-01

    A prototype of a new implantable centrifugal blood pump system named Heart Turcica Centrifugal (HTC) was developed as a left ventricular assist device (LVAD) for the treatment of end-stage cardiac failure. In the development of HTC, effects of blade height and volute tongue profiles on the hydraulic and hemolytic performances of the pump were investigated. As a result, the prototype was manufactured using the best blade height and volute tongue profiles. Performance of the prototype model was experimentally evaluated in a closed-loop flow system using water as the medium. The hydraulic performance requirement of an LVAD (5 L/min flow rate against a pressure difference of 100 mm Hg) was attained at 2800 rpm rotational speed.

  17. Composition, seasonal change and bathymetry of Ligeia Mare, Titan, derived from its 2.2-cm thermal emission

    NASA Astrophysics Data System (ADS)

    Le Gall, A. A.; Malaska, M.; Lorenz, R. D.; Janssen, M. A.; Tokano, T.; Hayes, A.; Lunine, J. I.; Veyssière, G.; Mastrogiuseppe, M.; Karatekin, O.; Encrenaz, P.

    2015-12-01

    For the last 10 years, the Cassini RADAR has been exploring Saturn's moon Titan, the only planetary body besides Earth whose surface presently exhibits significant accumulations of liquids in the forms of lakes and seas. In particular, the passive Radiometer that is incorporated in this instrument has been recording the 2.2 cm-wavelength thermal emission from Titan's three seas. Radiometry observations provide new information beyond the active radar reflection data. In this paper, we analyze the radiometry observations collected from Feb. 2007 to July 2013 over one of these seas, Ligeia Mare, with the goal of providing constrains on its liquid composition, seafloor nature, bathymetry, and dynamics. In light of the two-layer model we have developed for this analysis, we find that the dielectric constant of the sea liquid is most likely smaller than 1.8, suggesting that the composition of Ligeia Mare is dominated by liquid methane rather than liquid ethane (although a ternary methane-ethane-nitrogen mixture cannot be ruled out). This result is further supported by the value we infer for the liquid loss tangent of 3-5×10-5. This value is in agreement with the one first published by Mastrogiuseppe et al. (2014) based on active radar observation. A high methane concentration suggests that Ligeia Mare is either a sea from which ethane has been removed by crustal interaction, or a sea primarely fed by methane-rich precipitation, or both. For the seafloor, a dielectric constant of 2.6-2.9±0.9 is determined. Though this result is not very constraining, we favor a scenario where the floor of Ligeia Mare is covered by a sludge of compacted and possibly nitrile-rich organic material formed by the deposition of photochemical haze or by rain-washing of the nearby shores. These results are then used to convert the radiometry mosaic of Ligeia Mare into a qualitative low-resolution bathymetry map. Lastly, we establish limits on the physical temperature variation of the sea

  18. Centrifugal separator devices, systems and related methods

    DOEpatents

    Meikrantz, David H [Idaho Falls, ID; Law, Jack D [Pocatello, ID; Garn, Troy G [Idaho Falls, ID; Todd, Terry A [Aberdeen, ID; Macaluso, Lawrence L [Carson City, NV

    2012-03-20

    Centrifugal separator devices, systems and related methods are described. More particularly, fluid transfer connections for a centrifugal separator system having support assemblies with a movable member coupled to a connection tube and coupled to a fixed member, such that the movable member is constrained to movement along a fixed path relative to the fixed member are described. Also, centrifugal separator systems including such fluid transfer connections are described. Additionally, methods of installing, removing and/or replacing centrifugal separators from centrifugal separator systems are described.

  19. When to maintain centrifugal pumps

    SciTech Connect

    Karassik, I.J.

    1993-04-01

    Centrifugal pumps comprise critical maintenance equipment. The rationale of when to maintain them relates to a spreading tendency to contain costs in the face of tight money. Plant managers are thus entitled to a thorough analysis of whether reduced expenditures truly lower costs or actually hinder maintenance and increase costs. Absence of such an analysis hides the fact that proper and timely maintenance has a double effect: it not only reduces power consumption but also extends equipment life, and thus reduces the frequency of labor and material expenditures for scheduled or crisis maintenance. Centrifugal pump maintenance can demonstrate well the validity of this observation. The paper discusses: restoring internal clearances; real cost of renewing clearances; and monitoring clearances and pump performance.

  20. Development of Advanced Centrifugal Pumps

    SciTech Connect

    Rohatgi, U.

    2009-09-30

    A CRADA project was performed between BNL and Flowserve, California, under the auspices of Initiative for Proliferation Prevention (IPP) with the DOE support. The purpose was to jointly support a team of Russian institutes led by Kurchatov Institute to develop technology to increase operating life of centrifugal pumps. The work was performed from March 1, 2002 to September 30, 2009. The project resulted in development and validation the total cost of the sub-contract with Kurchatov Institute was $700,000, with matching fund from the industrial partner, Flowserve. The technical objective of this project is to develop advanced centrifugal pumps for the power, petroleum, chemical and water services industries by increasing the reliability of pumping equipment without a corresponding increase in life cycle cost. This major market need can be served by developing centrifugal pumps that generate only modest forces on the mechanical system even when operating under significant off-design conditions. This project is focused towards understanding the origin of hydraulic forces (both radial and axial, steady and time-dependent) and to develop design options, which reduce these forces over a broad flow range. This focus will include the force generation due to cavitation inside the pump as the operating conditions extend to low suction pressures. The results of research will reduce the inception of cavitation that leads to surface erosion and to find passive method of reducing peaks in axial thrust during whole range of flow rates.

  1. The DIAMET campaign

    NASA Astrophysics Data System (ADS)

    Vaughan, G.

    2012-04-01

    DIAMET (DIAbatic influences on Mesoscale structures in ExTratropical storms) is a joint project between the UK academic community and the Met Office. Its focus is on understanding and predicting mesoscale structures in synoptic-scale storms, and in particular on the role of diabatic processes in generating and maintaining them. Such structures include fronts, rain bands, secondary cyclones, sting jets etc, and are important because much of the extreme weather we experience (e.g. strong winds, heavy rain) comes from such regions. The project conducted two field campaigns in the autumn of 2011, from September 14 - 30 and November 24 - December 14, based around the FAAM BAe146 aircraft with support from ground-based radar and radiosonde measurements. Detailed modelling, mainly using the Met Office Unified model, supported the planning and interpretation of these campaigns. This presentation will give a brief overview of the campaigns. Both in September and November-December the weather regime was westerly, with a strong jet stream directed across the Atlantic. Three IOPs were conducted in September, to observe a convective band ahead of an upper-level trough, waves on a long trailing cold front, and a warm conveyor belt associated with a secondary cyclone. In November-December six IOPs were conducted, to observe frontal passages and high winds. This period was notable for a number of very strong windstorms passing across the north of the UK, and gave us an opportunity to examine bent-back warm fronts in the southern quadrant of these storms where the strongest winds are found. The case studies fell into two basic patterns. In the majority of cases, dropsonde legs at high level were used to obtain a cross-section of winds and thermodynamic structure (e.g. across a front), followed by in situ legs at lower levels (generally where the temperature was between 0 and -10°) to examine microphysical processes, especially ice multiplication and the extent of supercooled water

  2. Performance analysis on solid-liquid mixed flow in a centrifugal pump

    NASA Astrophysics Data System (ADS)

    Ning, C.; Wang, Y.

    2016-05-01

    In order to study the solid-liquid mixed flow hydraulic characteristics of centrifugal pump, the Pro/E software was used for three-dimensional modeling of centrifugal pump chamber. By using the computational fluid dynamics software CFX, the numerical simulation calculation of solid-liquid two-phase flow within whole flow passage of centrifugal pump was conducted. Aim at different particle diameters, the Reynolds-averaged N-S equations with the RNG k-Ɛ turbulence model and SIMPLEC algorithm were used to simulate the two-phase flow respectively on the condition of different volume fraction. The influence of internal flow characteristic on pump performance was analyzed. On the conditions of different particle diameter and different volume fraction, the turbulence kinetic energy and particle concentration are analyzed. It can be found that the erosion velocity ratio on the flow channel wall increases along with the increasing of the volume fraction

  3. Twinning of amphibian embryos by centrifugation

    NASA Technical Reports Server (NTRS)

    Black, S. D.

    1984-01-01

    In the frog Xenopus laevis, the dorsal structures of the embryonic body axis normally derive from the side of the egg opposite the side of sperm entry. However, if the uncleaved egg is inclined at lg or centrifuged in an inclined position, this topographic relationship is overridden: the egg makes its dorsal axial structures according to its orientation in the gravitational/centrifugal field, irrespective of the position of sperm entry. Certain conditions of centrifugation cause eggs to develop into conjoined twins with two sets of axial structures. A detailed analysis of twinning provided some insight into experimental axis orientation. First, as with single-axis embryos, both axes in twins are oriented according to the direction of centrifugation. One axis forms at the centripetal side of the egg and the other forms at the centrifugal side, even when the side of sperm entry is normal to the centrifugal force vector. Second, if eggs are centrifuged to give twins, but are inclined at lg to prevent post-centrifugation endoplasmic redistributions, only single-axis embryos develop. Thus, a second redistribution is required for high-frequency secondary axis formation. This can be accomplished by lg (as in the single centrifugations) or by a second centrifugation directed along the egg's animal-vegetal axis.

  4. Solid-phase microextraction of hydrocarbons from water in a centrifuge

    NASA Astrophysics Data System (ADS)

    Ryabov, A. Yu.; Chuikin, A. V.; Velikov, A. A.

    2016-06-01

    The results of our study of solid-phase microextraction of substances using a centrifuge for determining the microquantities of hydrocarbon impurities in water are presented. The cartridge diameter, sorbent mass, and solvent volume were shown to affect the percent extraction of substances and the analytical signal intensity. The relationship between the cartridge geometry, the sorbent mass, and the solvent volume was considered.

  5. Centrifugal experimental study of suction bucket foundations under dynamic loading

    NASA Astrophysics Data System (ADS)

    Lu, Xiaobing; Wu, Yongren; Jiao, Bintian; Wang, Shuyun

    2007-12-01

    Centrifugal experiments were carried out to investigate the responses of suction bucket foundations under horizontal and vertical dynamic loading. It is shown that when the loading amplitude is over a critical value, the sand at the upper part around the bucket is softened or even liquefied. The excess pore pressure decreases from the upper part to the lower part of the sand layer in the vertical direction and decreases radially from the bucket’s side wall in the horizontal direction. Large settlements of the bucket and the sand layer around the bucket are induced by dynamic loading. The dynamic responses of the bucket with smaller height (the same diameter) are heavier.

  6. CENTRIFUGES

    DOEpatents

    Beams, J.W.; Snoddy, L.B.

    1960-08-01

    Damping bearings for use on the shafts of an ultracentrifuge were designed which are capable of passing through critical angular speeds. The shaft extending from one end of the rotor is journaled in fixed-plain bearings mounted on annular resilient shock-absorbing elements to dampen small vibrations. The shaft at the other end of the rotor is journaled in two damper-bearing assemblies which are so spaced on the shaft that a vibration node can at no time exist at both bearing assemblies. These bearings are similar to the other bearings except that the bearing housings are slidably mounted on the supporting structure for movement transverse to the rotational axis of the rotor.

  7. Centrifugal separators and related devices and methods

    DOEpatents

    Meikrantz, David H [Idaho Falls, ID; Law, Jack D [Pocatello, ID; Garn, Troy G [Idaho Falls, ID; Macaluso, Lawrence L [Carson City, NV; Todd, Terry A [Aberdeen, ID

    2012-03-06

    Centrifugal separators and related methods and devices are described. More particularly, centrifugal separators comprising a first fluid supply fitting configured to deliver fluid into a longitudinal fluid passage of a rotor shaft and a second fluid supply fitting sized and configured to sealingly couple with the first fluid supply fitting are described. Also, centrifugal separator systems comprising a manifold having a drain fitting and a cleaning fluid supply fitting are described, wherein the manifold is coupled to a movable member of a support assembly. Additionally, methods of cleaning centrifugal separators are described.

  8. Centrifugal step emulsification applied for absolute quantification of nucleic acids by digital droplet RPA.

    PubMed

    Schuler, Friedrich; Schwemmer, Frank; Trotter, Martin; Wadle, Simon; Zengerle, Roland; von Stetten, Felix; Paust, Nils

    2015-07-07

    Aqueous microdroplets provide miniaturized reaction compartments for numerous chemical, biochemical or pharmaceutical applications. We introduce centrifugal step emulsification for the fast and easy production of monodisperse droplets. Homogenous droplets with pre-selectable diameters in a range from 120 μm to 170 μm were generated with coefficients of variation of 2-4% and zero run-in time or dead volume. The droplet diameter depends on the nozzle geometry (depth, width, and step size) and interfacial tensions only. Droplet size is demonstrated to be independent of the dispersed phase flow rate between 0.01 and 1 μl s(-1), proving the robustness of the centrifugal approach. Centrifugal step emulsification can easily be combined with existing centrifugal microfluidic unit operations, is compatible to scalable manufacturing technologies such as thermoforming or injection moulding and enables fast emulsification (>500 droplets per second and nozzle) with minimal handling effort (2-3 pipetting steps). The centrifugal microfluidic droplet generation was used to perform the first digital droplet recombinase polymerase amplification (ddRPA). It was used for absolute quantification of Listeria monocytogenes DNA concentration standards with a total analysis time below 30 min. Compared to digital droplet polymerase chain reaction (ddPCR), with processing times of about 2 hours, the overall processing time of digital analysis was reduced by more than a factor of 4.

  9. Comparative hemolysis study of clinically available centrifugal pumps.

    PubMed

    Naito, K; Suenaga, E; Cao, Z L; Suda, H; Ueno, T; Natsuaki, M; Itoh, T

    1996-06-01

    Centrifugal pumps have become important devices for cardiopulmonary bypass and circulatory assistance. Five types of centrifugal pumps are clinically available in Japan. To evaluate the blood trauma caused by centrifugal pumps, a comparative hemolysis study was performed under identical conditions. In vitro hemolysis test circuits were constructed to operate the BioMedicus BP-80 (Medtronic, BioMedicus), Sarns Delphin (Sarns/3M Healthcare), Isoflow (St. Jude Medical [SJM]), HPM-15 (Nikkiso), and Capiox CX-SP45 (Terumo). The hemolysis test loop consisted of two 1.5 m lengths of polyvinyl chloride tubing with a 3/8-inch internal diameter, a reservoir with a sampling port, and a pump head. All pumps were set to flow at 6 L/min against the total pressure head of 120 mm Hg. Experiments were conducted simultaneously for 6 h at room temperature (21 degrees C) with fresh bovine blood. Blood samples for plasma-free hemoglobin testing were taken, and the change in temperature at the pump outlet port was measured during the experiment. The mean pump rotational speeds were 1,570, 1,374, 1,438, 1,944, and 1,296 rpm, and the normalized indexes of hemolysis were 0.00070, 0.00745, 0.00096, 0.00066, 0.00090 g/100 L for the BP-80, Sarns, SJM, Nikkiso, and Terumo pumps, respectively. The change in temperature at the pump outlet port was the least for the Nikkiso pump (1.8 degrees C) and the most with the SJM pump (3.8 degrees C). This study showed that there is no relationship between the pump rotational speed (rpm) and the normalized index of hemolysis in 5 types of centrifugal pumps. The pump design and number of impellers could be more notable factors in blood damage.

  10. Wheel Diameter and Speedometer Reading

    ERIC Educational Resources Information Center

    Murray, Clifton

    2010-01-01

    Most introductory physics students have seen vehicles with nonstandard wheel diameters; some may themselves drive "low-rider" cars or "big-wheel" pickup trucks. But how does changing wheel diameter affect speedometer readout for a given speed? Deriving the answer can be followed readily by students who have been introduced to rotation, and it…

  11. Creating porous tubes by centrifugal forces for soft tissue application.

    PubMed

    Dalto, P D; Shoichet, M S

    2001-10-01

    Chemically crosslinked poly(2-hydroxyethyl methacrylate) (PHEMA) tubes were synthesized by applying centrifugal forces to propagating polymer chains in solution. Initiated monomer solutions, with a composition typical for PHEMA sponges, were placed into a cylindrical mold that was rotated about its long axis. As polymerization proceeded, phase separated PHEMA formed a sediment at the periphery under centrifugal action. The solvent remained in the center of the mold while the PHEMA phase gelled, resulting in a tube. By controlling the rotational speed and the formulation chemistry (i.e., monomer, initiator and crosslinking agent concentrations), the tube dimensions and wall morphology were manipulated. Tube manufacture was limited by a critical casting concentration [M]c, above which only rods formed. All tubes had an outer diameter of 2.4 mm, reflecting the internal diameter of the mold and a wall thickness of approximately 40-400 microm. Wall morphologies varied from interconnecting polymer and water phases to a closed cell, gel-like, structure. Concentric tubes were successfully prepared by using formulations that enhanced phase separation over gelation/network formation. This was achieved by using formulations with lower concentrations of monomer and crosslinking agent and higher concentrations of initiator. This technique offers a new approach to the synthesis of polymeric tubes for use in soft tissue applications, such as nerve guidance channels.

  12. Liquid–liquid mixing studies in annular centrifugal contactors comparing stationary mixing vane options

    SciTech Connect

    Wardle, Kent E.

    2015-09-11

    Comparative studies of multiphase operation of an annular centrifugal contactor show the impact of housing stationary mixing vane configuration. A number of experimental results for several different mixing vane options are reported for operation of a 12.5 cm engineering-scale contactor unit. Fewer straight vanes give greater mixing-zone hold-up compared to curved vanes. Quantitative comparison of droplet size distribution also showed a significant decrease in mean diameter for four straight vanes versus eight curved vanes. This set of measurements gives a compelling case for careful consideration of mixing vane geometry when evaluating hydraulic operation and extraction process efficiency of annular centrifugal contactors.

  13. Liquid–Liquid Mixing Studies in Annular Centrifugal Contactors Comparing Stationary Mixing Vane Options

    SciTech Connect

    Wardle, Kent E.

    2015-11-10

    Comparative studies of multiphase operation of annular centrifugal contactors showing the impact of housing stationary mixing vane configuration. A number of experimental results for several different mixing vane options are reported with selected measurements in a lab-scale 5 cm contactor and 12.5 cm engineering-scale unit. Fewer straight vanes give greater mixingzone hold-up compared to curved vanes. Quantitative comparison of droplet size distribution also showed a significant decrease in mean diameter for four straight vanes versus eight curved vanes. This set of measurements gives a compelling case for careful consideration of mixing vane geometry when evaluating hydraulic operation and extraction process efficiency of annular centrifugal contactors.

  14. Apparatus for centrifugal separation of coal particles

    SciTech Connect

    Dickie, William; Cavallaro, Joseph A.; Killmeyer, Richard P.

    1991-01-01

    A gravimetric cell for centrifugal separation of fine coal by density has a cylindrical body and a butterfly valve or other apparatus for selectively sealing the body radially across the approximate center of the cylinder. A removable top is provided which seals the cylinder in the centrifuge and in unvented areas.

  15. Fiber diameter control in electrospinning

    NASA Astrophysics Data System (ADS)

    Stepanyan, R.; Subbotin, A.; Cuperus, L.; Boonen, P.; Dorschu, M.; Oosterlinck, F.; Bulters, M.

    2014-10-01

    A simple model is proposed to predict the fiber diameter in electrospinning. We show that the terminal diameter is determined by the kinetics of the jet elongation—under the influence of the electric and viscous forces—and the solvent evaporation. Numerical and simple scaling analyses are performed, predicting the fiber diameter to scale as a power 1/3 of viscosity and 2/3 of polymer solution throughput divided by electrical current. Model predictions show a good agreement to our own electrospinning experiments on polyamide-6 solutions as well as to the data available in the literature.

  16. Rotor for centrifugal fast analyzers

    DOEpatents

    Lee, N.E.

    1984-01-01

    The invention is an improved photometric analyzer of the rotary cuvette type, the analyzer incorporating a multicuvette rotor of novel design. The rotor (a) is leaktight, (b) permits operation in the 90/sup 0/ and 180/sup 0/ excitation modes, (c) is compatible with extensively used Centrifugal Fast Analyzers, and (d) can be used thousands of times. The rotor includes an assembly comprising a top plate, a bottom plate, and a central plate, the rim of the central plate being formed with circumferentially spaced indentations. A uv-transmitting ring is sealably affixed to the indented rim to define with the indentations an array of cuvettes. The ring serves both as a sealing means and an end window for the cuvettes.

  17. Rotor for centrifugal fast analyzers

    DOEpatents

    Lee, Norman E.

    1985-01-01

    The invention is an improved photometric analyzer of the rotary cuvette type, the analyzer incorporating a multicuvette rotor of novel design. The rotor (a) is leaktight, (b) permits operation in the 90.degree. and 180.degree. excitation modes, (c) is compatible with extensively used Centrifugal Fast Analyzers, and (d) can be used thousands of times. The rotor includes an assembly comprising a top plate, a bottom plate, and a central plate, the rim of the central plate being formed with circumferentially spaced indentations. A UV-transmitting ring is sealably affixed to the indented rim to define with the indentations an array of cuvettes. The ring serves both as a sealing means and an end window for the cuvettes.

  18. Centrifuges in gravitational physiology research

    NASA Technical Reports Server (NTRS)

    Ballard, Rodney W.; Davies, Phil; Fuller, Charles A.

    1993-01-01

    Data from space flight and ground based experiments have clearly demonstrated the importance of Earth gravity for normal physiological function in man and animals. Gravitational Physiology is concerned with the role and influence of gravity on physiological systems. Research in this field examines how we perceive and respond to gravity and the mechanisms underlying these responses. Inherent in our search for answers to these questions is the ability to alter gravity, which is not physically possible without leaving Earth. However, useful experimental paradigms have been to modify the perceived force of gravity by changing either the orientation of subjects to the gravity vector (i.e., postural changes) or by applying inertial forces to augment the magnitude of the gravity vector. The later technique has commonly been used by applying centripetal force via centrifugation.

  19. Centrifugal membrane filtration -- Task 9

    SciTech Connect

    1996-08-01

    The Energy and Environmental Research Center (EERC) has teamed with SpinTek Membrane Systems, Inc., the developer of a centrifugal membrane filtration technology, to demonstrate applications for the SpinTek technology within the US Department of Energy (DOE) Environmental management (EM) Program. The technology uses supported microporous membranes rotating at high rpm, under pressure, to separate suspended and colloidal solids from liquid streams, yielding a solids-free permeate stream and a highly concentrated solids stream. This is a crosscutting technology that falls under the Efficient Separations and Processing Crosscutting Program, with potential application to tank wastes, contaminated groundwater, landfill leachate, and secondary liquid waste streams from other remediation processes, including decontamination and decommissioning systems. Membrane-screening tests were performed with the SpinTek STC-X4 static test cell filtration unit, using five ceramic membranes with different pore size and composition. Based on permeate flux, a 0.25-{micro}m TiO{sub 2}/Al{sub 2}O{sub 3} membrane was selected for detailed performance evaluation using the SpinTek ST-IIL centrifugal membrane filtration unit with a surrogate tank waste solution. An extended test run of 100 hr performed on a surrogate tank waste solution showed some deterioration in filtration performance, based on flux, apparently due to the buildup of solids near the inner portion of the membrane where relative membrane velocities were low. Continued testing of the system will focus on modifications to the shear pattern across the entire membrane surface to affect improved long-term performance.

  20. Wheel Diameter and Speedometer Reading

    NASA Astrophysics Data System (ADS)

    Murray, Clifton

    2010-09-01

    Most introductory physics students have seen vehicles with nonstandard wheel diameters; some may themselves drive "low-rider" cars or "big-wheel" pickup trucks. But how does changing wheel diameter affect speedometer readout for a given speed? Deriving the answer can be followed readily by students who have been introduced to rotation, and it makes a good illustration of how reasoning in physics can lead to a result that is useful outside the classroom.

  1. Class I versus Class III radical hysterectomy in stage IB1 (tumor ≤ 2 cm) cervical cancer: a matched cohort study

    PubMed Central

    Wang, Wei; Shang, Chun-liang; Du, Qi-qiao; Wu, Di; Liang, Yan-chun; Liu, Tian-yu; Huang, Jia-ming; Yao, Shu-zhong

    2017-01-01

    Background & Aims: The long-term oncological outcome of Class I hysterectomy to treat stage IB1 cervical cancer is unclear. The aim of the present study was to compare the surgical and long-term oncological outcomes of Class I hysterectomy and Class III radical hysterectomy for treatment of stage IB1 cervical cancer (tumor ≤ 2 cm). Methods: Seventy stage IB1 cervical cancer patients (tumor ≤ 2 cm) underwent Class I hysterectomy and 577 stage IB1 cervical cancer patients (tumor ≤ 2 cm) underwent Class III radical hysterectomy were matched with known risk factors for recurrence by greedy algorithm. Clinical, pathologic and follow-up data were retrospectively collected. Five-year survival outcomes were assessed using Kaplan-Meier model. Results: After matching, a total of 70 patient pairs (Class I - Class III) were included. The median follow-up times were 75 (range, 26-170) months in the Class III group and 75 (range, 27-168) months in the Class I group. The Class I and Class III group had similar 5-year recurrence-free survival rates (RFS) (98.6% vs. 97.1%, P = 0.56) and overall survival rates (OS) (100.0% vs. 98.5%, P = 0.32). Compared with the Class III group, the Class I group resulted in significantly shorter operating time, less intra-operative blood loss, less intraoperative complications, less postoperative complications, and shorter hospital stay. Conclusions: These findings suggest that Class I hysterectomy is an oncological safe alternative to Class III radical hysterectomy in treatment of stage IB1 cervical cancer (tumor ≤ 2 cm) and Class I hysterectomy is associated with fewer perioperative complication and earlier recovery.

  2. Stellar diameters and temperatures. IV. Predicting stellar angular diameters

    SciTech Connect

    Boyajian, Tabetha S.; Van Belle, Gerard; Von Braun, Kaspar

    2014-03-01

    The number of stellar angular diameter measurements has greatly increased over the past few years due to innovations and developments in the field of long baseline optical interferometry. We use a collection of high-precision angular diameter measurements for nearby, main-sequence stars to develop empirical relations that allow the prediction of stellar angular sizes as a function of observed photometric color. These relations are presented for a combination of 48 broadband color indices. We empirically show for the first time a dependence on metallicity of these relations using Johnson (B – V) and Sloan (g – r) colors. Our relations are capable of predicting diameters with a random error of less than 5% and represent the most robust and empirical determinations of stellar angular sizes to date.

  3. Prototyping of ultra micro centrifugal compressor-influence of meridional configuration

    NASA Astrophysics Data System (ADS)

    Hirano, Toshiyuki; Muto, Tadataka; Tsujita, Hoshio

    2011-08-01

    In order to investigate the design method for a micro centrifugal compressor, which is the most important component of an ultra micro gas turbine, two types of centrifugal impeller with 2-dimensional blade were designed, manufactured and tested. These impellers have different shapes of hub on the meridional plane with each other. Moreover, these types of impeller were made for the 5 times and the 6 times size of the final target centrifugal impeller with the outer diameter of 4mm in order to assess the similitude for the impellers. The comparison among the performance characteristics of the impellers revealed the influence of the meridional configuration on the performance and the similitude of the compressors.

  4. Structure and compressive strength of silicon open-cell foam obtained by a centrifugal separation method

    NASA Astrophysics Data System (ADS)

    Cho, Ju-Young; Kim, Ki-Young

    2013-03-01

    The present study describes a new way to make an open-cell silicon foam from an Al-Si alloy melt by centrifugation during its solidification. The effects of the silicon content and the chute diameter of the crucible on the morphology, the density and the compressive strength of the silicon foams were investigated. A vertical-type centrifugal separator was designed to push the unfrozen Al-Si melt outside, leaving only the silicon foam inside the crucible during rotation. Alloys in the Al-Si system with silicon contents of 40 and 50 wt% were prepared by an electrical resistance furnace, and the revolution of the centrifugal separator was controlled to fabricate the foam. Open-cell silicon foams could be obtained successfully. The apparent density and the compressive strength were in the ranges of 620-820 kg/m3 and 7.5-14.5 MPa, respectively.

  5. Centrifuge workers study. Phase II, completion report

    SciTech Connect

    Wooten, H.D.

    1994-09-01

    Phase II of the Centrifuge Workers Study was a follow-up to the Phase I efforts. The Phase I results had indicated a higher risk than expected among centrifuge workers for developing bladder cancer when compared with the risk in the general population for developing this same type of cancer. However, no specific agent could be identified as the causative agent for these bladder cancers. As the Phase II Report states, Phase I had been limited to workers who had the greatest potential for exposure to substances used in the centrifuge process. Phase II was designed to expand the survey to evaluate the health of all employees who had ever worked in Centrifuge Program Departments 1330-1339 but who had not been interviewed in Phase I. Employees in analytical laboratories and maintenance departments who provided support services for the Centrifuge Program were also included in Phase II. In December 1989, the Oak Ridge Associated Universities (ORAU), now known as Oak Ridge Institute for Science and Education (ORISE), was contracted to conduct a follow-up study (Phase II). Phase H of the Centrifuge Workers Study expanded the survey to include all former centrifuge workers who were not included in Phase I. ORISE was chosen because they had performed the Phase I tasks and summarized the corresponding survey data therefrom.

  6. REMOVAL OF SOLIDS FROM HIGHLY ENRICHED URANIUM SOLUTIONS USING THE H-CANYON CENTRIFUGE

    SciTech Connect

    Rudisill, T; Fernando Fondeur, F

    2009-01-15

    Prior to the dissolution of Pu-containing materials in HB-Line, highly enriched uranium (HEU) solutions stored in Tanks 11.1 and 12.2 of H-Canyon must be transferred to provide storage space. The proposed plan is to centrifuge the solutions to remove solids which may present downstream criticality concerns or cause operational problems with the 1st Cycle solvent extraction due to the formation of stable emulsions. An evaluation of the efficiency of the H-Canyon centrifuge concluded that a sufficient amount (> 90%) of the solids in the Tank 11.1 and 12.2 solutions will be removed to prevent any problems. We based this conclusion on the particle size distribution of the solids isolated from samples of the solutions and the calculation of particle settling times in the centrifuge. The particle size distributions were calculated from images generated by scanning electron microscopy (SEM). The mean particle diameters for the distributions were 1-3 {micro}m. A significant fraction (30-50%) of the particles had diameters which were < 1 {micro}m; however, the mass of these solids is insignificant (< 1% of the total solids mass) when compared to particles with larger diameters. It is also probable that the number of submicron particles was overestimated by the software used to generate the particle distribution due to the morphology of the filter paper used to isolate the solids. The settling times calculated for the H-Canyon centrifuge showed that particles with diameters less than 1 to 0.5 {micro}m will not have sufficient time to settle. For this reason, we recommend the use of a gelatin strike to coagulate the submicron particles and facilitate their removal from the solution; although we have no experimental basis to estimate the level of improvement. Incomplete removal of particles with diameters < 1 {micro}m should not cause problems during purification of the HEU in the 1st Cycle solvent extraction. Particles with diameters > 1 {micro}m account for > 99% of the

  7. Gas dynamics in strong centrifugal fields

    SciTech Connect

    Bogovalov, S.V.; Kislov, V.A.; Tronin, I.V.

    2015-03-10

    Dynamics of waves generated by scopes in gas centrifuges (GC) for isotope separation is considered. The centrifugal acceleration in the GC reaches values of the order of 106g. The centrifugal and Coriolis forces modify essentially the conventional sound waves. Three families of the waves with different polarisation and dispersion exist in these conditions. Dynamics of the flow in the model GC Iguasu is investigated numerically. Comparison of the results of the numerical modelling of the wave dynamics with the analytical predictions is performed. New phenomena of the resonances in the GC is found. The resonances occur for the waves polarized along the rotational axis having the smallest dumping due to the viscosity.

  8. Modeling of Centrifugal Force Field and the Effect on Filling and Solidification in Centrifugal Casting

    NASA Astrophysics Data System (ADS)

    Sheng, Wenbin; Ma, Chunxue; Gu, Wanli

    2011-06-01

    Based on the steady flow in a tube, a mathematical model has been established for the consideration of centrifuging force field by combining the equations of continuity, conservation of momentum and general energy. Effects of centrifugal field on the filling and solidification are modeled by two accessional terms: centrifugal force and Chorios force. In addition, the transfer of heat by convection is considered to achieve a coupling calculation of velocity field and temperature field. The solution of pressure item is avoided by introducing the stream function ψ(x,y) and the eddy function ξ(x,y). Corresponding difference formats for the simultaneous equations of centrifugal filling, the accessional terms and the solidifying latent heat have been established by the finite difference technique. Furthermore, the centrifugal filling and solidification processes in a horizontal tube are summarized to interpret the mechanism by which internal defects are formed in centrifugal castings.

  9. Development of an atraumatic small centrifugal pump for second-generation cardiopulmonary bypass.

    PubMed

    Jikuya, T; Sasaki, T; Aizawa, T; Shiono, M; Glueck, J A; Smith, C P; Feldman, L; Sakuma, I; Sekela, M E; Noda, T

    1992-12-01

    A small and light direct-drive centrifugal pump has been developed for cardiopulmonary bypass. In the development process, blood compatibility studies including a hemolysis study, an in vitro fluid dynamic performance study, and in vivo durability and feasibility studies were performed. The centrifugal pump with a 50 mm diameter impeller resulted in almost the same index of hemolysis value as did a Bio-Medicus centrifugal pump. Heat dissipation from the motor was prevented by using a flexible drive cable. Forty-eight-hour sealing durability around the driving axis was accomplished by using a fluoro-rubber V-ring that connected to the hard chrome-plated stainless steel. In vitro and in vivo performances of the pump were satisfactory. Thrombus formation behind the impeller was prevented by using a holed impeller that generated blood flow from the back to the surface of the impeller. Elimination of air during priming procedures was also easier with this modification. This centrifugal pump has one-quarter of the priming volume, size, and weight of magnetically coupled centrifugal pump systems.

  10. Gas centrifuge with driving motor

    DOEpatents

    Dancy, Jr., William H.

    1976-01-01

    1. A centrifuge for separating gaseous constituents of different masses comprising a vertical tubular rotor, means for introducing a gas mixture of different masses into said rotor and means for removing at least one of the gas components from the rotor, a first bearing means supporting said rotor at one end for rotational movement, a support, a damping bearing mounted on said support, a shaft fixed to said rotor at the opposite end and mechanically connecting said rotor to said damping bearing, a cup-shaped tube of electrically conductive, non-magnetic material in coaxial relationship with said shaft, the open end of said tube extending away from said rotor and the closed end of said tube being directly secured to the adjacent end of the rotor, an annular core of magnetic material fixedly mounted on said support so as to be disposed within said tube and around said shaft, and a second annular magnetic core with coils arranged thereon to receive polyphase current to produce a rotating magnetic field traversing the circumference of said tube, fixedly mounted on said support so as to surround said tube, the size of said first annular core and said second annular core being such as to permit limited radial displacement of said shaft and said tube.

  11. Optical detection strategies for centrifugal microfluidic platforms

    NASA Astrophysics Data System (ADS)

    King, Damien; O'Sullivan, Mary; Ducrée, Jens

    2014-01-01

    Centrifugal microfluidic systems have become one of the principal platforms for implementing bioanalytical assays, most notably for biomedical point-of-care diagnostics. These so-called 'lab-on-a-disc' systems primarily utilise the rotationally controlled centrifugal field in combination with capillary forces to automate a range of laboratory unit operations (LUOs) for sample preparation, such as metering, aliquoting, mixing and extraction for biofluids as well as sorting, isolation and counting of bioparticles. These centrifugal microfluidic LUOs have been regularly surveyed in the literature. However, even though absolutely essential to provide true sample-to-answer functionality of lab-on-a-disc platforms, systematic examination of associated, often optical, read-out technologies has been so far neglected. This review focusses on the history and state-of-the-art of optical read-out strategies for centrifugal microfluidic platforms, arising (commercial) application potential and future opportunities.

  12. Combination Of Investment And Centrifugal Casting

    NASA Technical Reports Server (NTRS)

    Creeger, Gordon A.

    1994-01-01

    Modifications, including incorporation of centrifugal casting, made in investment-casting process reducing scrap rate. Used to make first- and second-stage high-pressure-fuel-turbopump nozzles, containing vanes with thin trailing edges and other thin sections. Investment mold spun for short time while being filled, and stopped before solidification occurs. Centrifugal force drives molten metal into thin trailing edges, ensuring they are filled. With improved filling, preheat and pour temperatures reduced and solidification hastened so less hot tearing.

  13. Renal Response to Chronic Centrifugation in Rats

    NASA Technical Reports Server (NTRS)

    Ortiz, Rudy M.; Wang, T. J.; Corbin, B. J.; Wade, C. E.; Hargens, Alan R. (Technical Monitor)

    1996-01-01

    Previously reported effects of chronic centrifugation on renal function in mammals are contradictory. The present study was conducted as an effort to provide a comprehensive analysis of renal response to chronic centrifugation (12 days at +2 Gz). Sixteen male Sprague-Dawley rats (210-230 g) were used: eight centrifuged (EC) and eight off centrifuge controls (OCC). During centrifugation EC had lower body weight and food consumption. EC showed a decrease (72%) in water intake for the first two days (T1 and T2) followed by significant increases from T4-T6. EC urine output increased two-fold over the first four days, returning to baseline by T9. EC urea excretion was elevated on T3 through T5. Creatinine, Na(+), K(+), and osmolar excretion were lower than OCC over the last four days of the study. Assuming constant plasma osmolarity and creatinine levels, EC free water clearance (C(sub H2O)) was elevated significantly on T4 when the peak urine output was exhibited. EC also had a greater C(sub H2O) over the last four days, associated with a significantly lower osmolar clearance and GFR. The initial diuresis exhibited during centrifugation can be attributed to a reduced water resorption and increased urea excretion. This diuresis was mediated independent of changes in GFR over the first eight days. However, differences in excretion seen after eight days of centrifugation are probably GFR mediated which would imply animals established a new homeostatic setpoint by that time. Centrifugation elicites an acute alteration in fluid homeostasis followed by adaptation within a week.

  14. High voltage variable diameter insulator

    DOEpatents

    Vanacek, D.L.; Pike, C.D.

    1982-07-13

    A high voltage feedthrough assembly having a tubular insulator extending between the ground plane ring and the high voltage ring. The insulator is made of Pyrex and decreases in diameter from the ground plane ring to the high voltage ring, producing equipotential lines almost perpendicular to the wall of the insulator to optimize the voltage-holding capability of the feedthrough assembly.

  15. Centrifugal casting of metal matrix composites. Ph.D. Thesis

    SciTech Connect

    Berger, R.E.

    1994-01-01

    Metal matrix composites (MMCs) have excellent properties and low material costs, but high manufacturing costs. The primary difficulty in manufacturing MMCs is in forming a tight matrix/reinforcement bond. This dissertation investigates improving the matrix/reinforcement bond through the use of high centrifugal forces. High centrifugal forces promote fiber infiltration (or particle submergence), remove gas voids, and resist particle pushing by the solidification front. Several aluminum matrix MMC samples are formed at up to 2,660 g`s. The project involves: (1) design and construction of a rotating crucible capable of a 690 C, 2,600 g-force environment; (2) a finite differences heat transfer model using an unique technique (spreadsheet iteration) which has application to engineering teaching and simple modeling problems; (3) a bubble buoyancy/surface adhesion analysis to predict maximum surface voids or bubble cling in cast materials; (4) a fluid surface tension effects analysis evaluating particle submergence into a melt, and melt infiltration into a porous media such as a fiber form; (5) creation of samples and direct visual measurement of void sizes in agreement with bubble buoyancy/surface adhesion theory; (6) performance of tests and direct evidence supporting the developed particle submergence/porous media infiltration theories; and (7) creation of samples and direct measurement of material strength under subjection to bending stress. The final conclusion is that use of high centrifugal forces in MMC manufacturing has potential, however it is only useful for large diameter fibers or particles (on the order of 200 micron) and relatively high g-forces (on the order of 2,500 g`s).

  16. Regulation of PP2Cm expression by miRNA-204/211 and miRNA-22 in mouse and human cells

    PubMed Central

    Pan, Bang-fen; Gao, Chen; Ren, Shu-xun; Wang, Yi-bin; Sun, Hai-peng; Zhou, Mei-yi

    2015-01-01

    Aim: The mitochondrial targeted 2C-type serine/threonine protein phosphatase (PP2Cm) is encoded by the gene PPM1K and is highly conserved among vertebrates. PP2Cm plays a critical role in branched-chain amino acid catabolism and regulates cell survival. Its expression is dynamically regulated by the nutrient environment and pathological stresses. However, little is known about the molecular mechanism underlying the regulation of PPM1K gene expression. In this study, we aimed to reveal how PPM1K expression is affected by miRNA-mediated post-transcriptional regulation. Methods: Computational analysis based on conserved miRNA binding motifs was applied to predict the candidate miRNAs that potentially affect PPM1K expression. Dual-luciferase reporter assay was performed to verify the miRNAs' binding sites in the PPM1K gene and their influence on PPM1K 3′UTR activity. We further over-expressed the mimics of these miRNAs in human and mouse cells to examine whether miRNAs affected the mRNA level of PPM1K. Results: Computational analysis identified numerous miRNAs potentially targeting PPM1K. Luciferase reporter assays demonstrated that the 3′UTR of PPM1K gene contained the recognition sites of miR-204 and miR-211. Overexpression of these miRNAs in human and mouse cells diminished the 3′UTR activity and the endogenous mRNA level of PPM1K. However, the miR-22 binding site was found only in human and not mouse PPM1K 3′UTR. Accordingly, PPM1K 3′UTR activity was suppressed by miR-22 overexpression in human but not mouse cells. Conclusion: These data suggest that different miRNAs contribute to the regulation of PP2Cm expression in a species-specific manner. miR-204 and miR-211 are efficient in both mouse and human cells, while miR-22 regulates PP2Cm expression only in human cells. PMID:26592513

  17. Ageing studies on CuInS2/In2S3 junction (2.5×2cm2) deposited using automated spray machine

    NASA Astrophysics Data System (ADS)

    Santhosh, M. V.; Kartha, C. Sudha; Vijayakumar, K. P.

    2014-04-01

    CuInS2/In2S3 heterojunction photovoltaic device was realized in an area of 2.5 × 2 cm2 using automated spray pyrolysis machine which shows an open-circuit voltage of 432mV, short circuit current density of 6.33mA/cm2, fill factor of 34% and efficiency of 0.94%. Performance of the device was monitored up to 100 days and it was working quite well without the application of any protective coatings. The device maintains a fill factor of around 32% up to 80 days but other photovoltaic parameters had slight decrease.

  18. Magnetically suspended centrifugal blood pump with a self bearing motor.

    PubMed

    Masuzawa, Toru; Onuma, Hiroyuki; Kim, Seung-Jong; Okada, Yohji

    2002-01-01

    A magnetically suspended centrifugal blood pump with a self bearing motor has been developed for long-term ventricular assistance. A rotor of the self bearing motor is actively suspended and rotated by an electromagnetic field without mechanical bearings. Radial position of the rotor is controlled actively, and axial position of the rotor is passively stable within the thin rotor structure. An open impeller and a semiopened impeller were examined to determine the best impeller structure. The outer diameter and height of the impeller are 63 and 34 mm, respectively. Both the impellers indicated similar pump performance. Single volute and double volute structures were also tested to confirm the performance of the double volute. Power consumption for levitation and radial displacement of the impeller with a rotational speed of 1,500 rpm were 0.7 W and 0.04 mm in the double volute, while those in the single volute were 1.3 W and 0.07 mm, respectively. The stator of the self bearing motor was redesigned to avoid magnetic saturation and improve motor performance. Maximum flow rate and pressure head were 9 L/min and 250 mm Hg, respectively. The developed magnetically suspended centrifugal blood pump is a candidate for an implantable left ventricular assist device.

  19. Magnetically suspended centrifugal blood pump with a radial magnetic driver.

    PubMed

    Hoshi, Hideo; Katakoa, Kiroyuki; Ohuchi, Katsuhiro; Asama, Jun-ichi; Shinshi, Tadahiko; Shimokohbe, Akira; Takatani, Setsuo

    2005-01-01

    A new magnetic bearing has been designed to achieve a low electronic power requirement and high stiffness. The magnetic bearing consists of 1) radial passive forces between the permanent magnet ring mounted inside the impeller rotor and the electromagnet core materials in the pump casing and 2) radial active forces generated by the electromagnets using the two gap sensor signals. The magnetic bearing was assembled into a centrifugal rotary blood pump (CRBP) driven with a radial, magnetic coupled driver. The impeller vane shape was designed based upon the computational fluid dynamic simulation. The diameter and height of the CRBP were 75 mm and 50 mm, respectively. The magnetic bearing system required the power of 1.0-1.4 W. The radial impeller movement was controlled to within +/- 10 microm. High stiffness in the noncontrolled axes, Z, phi, and theta, was obtained by the passive magnetic forces. The pump flow of 5 L/min against 100 mm Hg head pressure was obtained at 1,800 rpm with the electrical to hydraulic efficiency being greater than 15%. The Normalized Index of Hemolysis (NIH) of the magnetic bearing CRBP was one fifth of the BioPump BP-80 and one half of the NIKKISO HPM-15 after 4 hours. The newly designed magnetic bearing with two degrees of freedom control in combination with optimized impeller vane was successful in achieving an excellent hemolytic performance in comparison with the clinical centrifugal blood pumps.

  20. ENVIRONMENTAL TECHNOLOGY VERIFICATION: JOINT (NSF-EPA) VERIFICATION STATEMENT AND REPORT: TRITON SYSTEMS, LLC SOLID BOWL CENTRIFUGE, MODEL TS-5000

    EPA Science Inventory

    Verification testing of the Triton Systems, LLC Solid Bowl Centrifuge Model TS-5000 (TS-5000) was conducted at the Lake Wheeler Road Field Laboratory Swine Educational Unit in Raleigh, North Carolina. The TS-5000 was 48" in diameter and 30" deep, with a bowl capacity of 16 ft3. ...

  1. Tracheid diameter is the key trait determining the extent of freezing-induced embolism in conifers.

    PubMed

    Pittermann, Jarmila; Sperry, John

    2003-09-01

    We tested the hypotheses that freezing-induced embolism is related to conduit diameter, and that conifers and angiosperms with conduits of equivalent diameter will exhibit similar losses of hydraulic conductivity in response to freezing. We surveyed the freeze-thaw response of conifers with a broad range of tracheid diameters by subjecting wood segments (root, stem and trunk wood) to a freeze-thaw cycle at -0.5 MPa in a centrifuge. Embolism increased as mean tracheid diameter exceeded 30 microm. Tracheids with a critical diameter greater than 43 microm were calculated to embolize in response to freezing and thawing at a xylem pressure of -0.5 MPa. To confirm that freezing-induced embolism is a function of conduit air content, we air-saturated stems of Abies lasiocarpa (Hook.) Nutt. (mean conduit diameter 13.7 +/- 0.7 microm) by pressurizing them 1 to 60 times above atmospheric pressure, prior to freezing and thawing. The air saturation method simulated the effect of increased tracheid size because the degree of super-saturation is proportional to a tracheid volume holding an equivalent amount of dissolved air at ambient pressure. Embolism increased when the dissolved air content was equivalent to a mean tracheid diameter of 30 microm at ambient air pressure. Our centrifuge and air-saturation data show that conifers are as vulnerable to freeze-thaw embolism as angiosperms with equal conduit diameter. We suggest that the hydraulic conductivity of conifer wood is maximized by increasing tracheid diameters in locations where freezing is rare. Conversely, the narrowing of tracheid diameters protects against freezing-induced embolism in cold climates.

  2. Hydrogen test of a small, low specific speed centrifugal pump stage

    NASA Technical Reports Server (NTRS)

    1991-01-01

    A small, low specific speed centrifugal pump stage with a 2 inch tip diameter, .030 inch tip width shrouded impeller and volute collector was tested with liquid hydrogen as the pumped fluid. The hydrodynamic design of the pump stage is summarized and the noncavitating and cavitating performance results are presented. Test speeds were 60 and 80 percent of the 77,000 rpm design speed. Liquid hydrogen test results are compared with data from previous tests of the stage in water.

  3. Characterization of a centrifugal pump in He II

    NASA Technical Reports Server (NTRS)

    Weisend, J. G., II; Van Sciver, S. W.

    1988-01-01

    As part of an effort to determine the feasibility of helium transfer in space, a centrifugal pump was tested in He II at a variety of flow rates, pump speeds, and fluid temperatures. The pump, which has a straight bladed impeller 6.86 cm in diameter, generated a maximum pressure rise of 15 kPa and a maximum flow rate of 22 g/s for the conditions of the test. Pump performance seems to be independent of fluid temperature and is in good agreement with the values predicted by the manufacturer. Over the range of flow coefficients, the measured maximum efficiency is around 50 percent. Cavitation is observed in the pump and is thought to be highly dependent on the local heating of the helium in the pump. Preliminary measurements of the noise spectra of the pump suggest a possible mechanism to predict the onset of cavitation.

  4. Large-diameter astromast development

    NASA Technical Reports Server (NTRS)

    Finley, L. A.

    1984-01-01

    The 15-m-long by 0.75-diameter deployable supermast was delivered. The performance characteristics, design parameters, and developmental work associated with this mast are described. The main differences, besides the length of these two mast sections, are a change in the longeron material (the principal structural member) to a circular cross section and the incorporation of a lanyard-bridle system which makes unaided deployment and retraction possible in zero gravity.

  5. High voltage variable diameter insulator

    DOEpatents

    Vanecek, David L.; Pike, Chester D.

    1984-01-01

    A high voltage feedthrough assembly (10) having a tubular insulator (15) extending between the ground plane ring (16) and the high voltage ring (30). The insulator (15) is made of Pyrex and decreases in diameter from the ground plane ring (16) to the high voltage ring (30), producing equipotential lines almost perpendicular to the wall (27) of the insulator (15) to optimize the voltage-holding capability of the feedthrough assembly (10).

  6. Review of the gas centrifuge until 1962. Part II: Principles of high-speed rotation

    NASA Astrophysics Data System (ADS)

    Whitley, Stanley

    1984-01-01

    The principles of the separation physics of the gas centrifuge were described in Part I of this review. In this second section the principles involved in spinning the rotors of these centrifuges are described. Three types of rotor can be identified, depending on the ratio of length to diameter. If the rotor is very short, length-diameter ratio less than one, it is gyroscopically stable and easy to spin. If the length-diameter ratio is in the region of 4 or 5, the rotor behaves as a rigid body and is relatively easy to accelerate to speed; however, it has a tendency at full speed to exhibit gyroscopic precessions. Finally, if the length-diameter ratio is very large, the rotor becomes easy to stabilize gyroscopically, but it is difficult to get it to speed because long rotors are very flexible and have resonant frequencies of flexure lower than the operating speed. The problems of these three types of centrifuge (the rotor dynamics, the bearings used to support the rotor, and the stress analysis of the rotating components) were investigated in the last century as part of classical mechanics because of the emergence of steam turbines during the latter part of the industrial revolution. These early principles are briefly reviewed, with particular reference to the work of De Laval, who invented the principle of self-balancing, Reynolds and Evershed, who developed hydrodynamic and magnetic bearing, respectively, and Chree, who did the most extensive early work on the stress analysis of tubes and discs. The work is described as it applies to the centrifuges developed in America and Germany during the war and in the Soviet Union after the war. The work of Beams in America is described in most detail, since he and his colleagues developed all three types of centrifuge during the Manhattan Project. The other work described is that of Groth and Beyerle, who developed subcritical machines in Germany during the war, and of Steenbeck and Zippe, who helped to develop both

  7. Specific Yield--Column drainage and centrifuge moisture content

    USGS Publications Warehouse

    Johnson, A.I.; Prill, R.C.; Morris, D.A.

    1963-01-01

    The specific yield of a rock or soil, with respect to water, is the ratio of (1) the volume of water which, after being saturated, it will yield by gravity to (2) its own volume. Specific retention represents the water retained against gravity drainage. The specific yield and retention when added together are equal to the total interconnected porosity of the rock or soil. Because specific retention is more easily determined than specific yield, most methods for obtaining yield first require the determination of specific retention. Recognizing the great need for developing improved methods of determining the specific yield of water-bearing materials, the U.S. Geological Survey and the California Department of Water Resources initiated a cooperative investigation of this subject. The major objectives of this research are (1) to review pertinent literature on specific yield and related subjects, (2) to increase basic knowledge of specific yield and rate of drainage and to determine the most practical methods of obtaining them, (3) to compare and to attempt to correlate the principal laboratory and field methods now commonly used to obtain specific yield, and (4) to obtain improved estimates of specific yield of water-bearing deposits in California. An open-file report, 'Specific yield of porous media, an annotated bibliography,' by A. I. Johnson, D. A. Morris, and R. C. Prill, was released in 1960 in partial fulfillment of the first objective. This report describes the second phase of the specific-yield study by the U.S. Geological Survey Hydrologic Laboratory at Denver, Colo. Laboratory research on column drainage and centrifuge moisture equivalent, two methods for estimating specific retention of porous media, is summarized. In the column-drainage study, a wide variety of materials was packed into plastic columns of 1- to 8-inch diameter, wetted with Denver tap water, and drained under controlled conditions of temperature and humidity. The effects of cleaning the

  8. MHD Stability of Centrifugally Confined Plasmas

    NASA Astrophysics Data System (ADS)

    Huang, Yi-Min

    2003-10-01

    Centrifugally confined plasmas utilize centrifugal forces from plasma rotation to augment magnetic confinement, as an alternative approach to fusion. One magnetic geometry is mirror-type, with rotation about the axis induced from a central, biased core conductor. The outward centrifugal forces from the rotation have a component along the field lines, thus confining ions to the center. The immediate concern, of course, is that the system could be flute unstable to the interchange. The antidote here is that the radial shear in the rotation could stabilize the flute. Our 2D simulations show, first, that plasma pressure is highly peaked at the center away from the mirror end coils. Next, 3D simulations show unequivocally that velocity shear is providing the stability. Further study indicates that the flute stability is sensitive to the density profile. A favorable density profile could be achieved by judiciously placing the particle source, also necessary for a steady state centrifuge. As flows approach the Alfven speed, electromagnetic modes could be involved. The latter is motivated by the question of whether magnetorotational instability, thought to be an angular momentum transporter in accretion disks, could be found in centrifugal plasmas, since all the ingredients are there. We show that the MRI as understood should be stable; however, a related astrophysical instability, the Parker instability, could arise. The Parker instability results in plasma accumulating in regions of bent field lines, further accentuating the bending.

  9. Centrifugal techniques for measuring saturated hydraulic conductivity

    USGS Publications Warehouse

    Nimmo, John R.; Mello, Karen A.

    1991-01-01

    Centrifugal force is an alternative to large pressure gradients for the measurement of low values of saturated hydraulic conductivity (Ksat). With a head of water above a porous medium in a centrifuge bucket, both constant-head and falling-head measurements are practical at forces up to at least 1800 times normal gravity. Darcy's law applied to the known centrifugal potential leads to simple formulas for Ksat that are analogous to those used in the standard gravity-driven constant- and falling-head methods. Both centrifugal methods were tested on several fine-textured samples of soil and ceramic with Ksat between about 10−10 and 10−9 m/s. The results were compared to falling-head gravity measurements. The comparison shows most measurements agreeing to within 20% for a given sample, much of the variation probably resulting from run-to-run changes in sample structure. The falling-head centrifuge method proved to be especially simple in design and operation and was more accurate than the constant-head method. With modified apparatus, Ksat measurements less than 10−10 m/s should be attainable.

  10. Liquid centrifugation for nuclear waste partitioning

    SciTech Connect

    Bowman, C.D.

    1992-03-11

    The performance of liquid centrifugation for nuclear waste partitioning is examined for the Accelerator Transmutation of Waste Program currently under study at the Los Alamos National Laboratory. Centrifugation might have application for the separation of the LiF-BeF{sub 2} salt from heavier radioactive materials fission product and actinides in the separation of fission product from actinides, in the isotope separation of fission-product cesium before transmutation of the {sup 137}Cs and {sup 135}Cs, and in the removal of spallation product from the liquid lead target. It is found that useful chemical separations should be possible using existing materials for the centrifuge construction for all four cases with the actinide fraction in fission product perhaps as low as 1 part in 10{sup 7} and the fraction of {sup 137}CS in {sup 133}Cs being as low as a few parts in 10{sup 5}. A centrifuge cascade has the advantage that it can be assembled and operated as a completely closed system without a waste stream except that associated with maintenance or replacement of centrifuge components.

  11. 7 CFR 51.2934 - Diameter.

    Code of Federal Regulations, 2013 CFR

    2013-01-01

    ..., CERTIFICATION, AND STANDARDS) United States Standards for Grades of Apricots Definitions § 51.2934 Diameter. Diameter means the greatest diameter, measured through the center of the apricot, at right angles to a...

  12. 7 CFR 51.2934 - Diameter.

    Code of Federal Regulations, 2010 CFR

    2010-01-01

    ... Standards for Grades of Apricots Definitions § 51.2934 Diameter. Diameter means the greatest diameter, measured through the center of the apricot, at right angles to a line running from the stem to the...

  13. 7 CFR 51.2934 - Diameter.

    Code of Federal Regulations, 2012 CFR

    2012-01-01

    ... Standards for Grades of Apricots Definitions § 51.2934 Diameter. Diameter means the greatest diameter, measured through the center of the apricot, at right angles to a line running from the stem to the...

  14. 7 CFR 51.2934 - Diameter.

    Code of Federal Regulations, 2011 CFR

    2011-01-01

    ... Standards for Grades of Apricots Definitions § 51.2934 Diameter. Diameter means the greatest diameter, measured through the center of the apricot, at right angles to a line running from the stem to the...

  15. 7 CFR 51.2934 - Diameter.

    Code of Federal Regulations, 2014 CFR

    2014-01-01

    ..., CERTIFICATION, AND STANDARDS) United States Standards for Grades of Apricots Definitions § 51.2934 Diameter. Diameter means the greatest diameter, measured through the center of the apricot, at right angles to a...

  16. Wide dynamic range enrichment method of semiconducting single-walled carbon nanotubes with weak field centrifugation

    PubMed Central

    Reis, Wieland G.; Tomović, Željko; Weitz, R. Thomas; Krupke, Ralph; Mikhael, Jules

    2017-01-01

    The potential of single–walled carbon nanotubes (SWCNTs) to outperform silicon in electronic application was finally enabled through selective separation of semiconducting nanotubes from the as-synthesized statistical mix with polymeric dispersants. Such separation methods provide typically high semiconducting purity samples with narrow diameter distribution, i.e. almost single chiralities. But for a wide range of applications high purity mixtures of small and large diameters are sufficient or even required. Here we proof that weak field centrifugation is a diameter independent method for enrichment of semiconducting nanotubes. We show that the non-selective and strong adsorption of polyarylether dispersants on nanostructured carbon surfaces enables simple separation of diverse raw materials with different SWCNT diameter. In addition and for the first time, we demonstrate that increased temperature enables higher purity separation. Furthermore we show that the mode of action behind this electronic enrichment is strongly connected to both colloidal stability and protonation. By giving simple access to electronically sorted SWCNTs of any diameter, the wide dynamic range of weak field centrifugation can provide economical relevance to SWCNTs. PMID:28317942

  17. Wide dynamic range enrichment method of semiconducting single-walled carbon nanotubes with weak field centrifugation

    NASA Astrophysics Data System (ADS)

    Reis, Wieland G.; Tomović, Željko; Weitz, R. Thomas; Krupke, Ralph; Mikhael, Jules

    2017-03-01

    The potential of single–walled carbon nanotubes (SWCNTs) to outperform silicon in electronic application was finally enabled through selective separation of semiconducting nanotubes from the as-synthesized statistical mix with polymeric dispersants. Such separation methods provide typically high semiconducting purity samples with narrow diameter distribution, i.e. almost single chiralities. But for a wide range of applications high purity mixtures of small and large diameters are sufficient or even required. Here we proof that weak field centrifugation is a diameter independent method for enrichment of semiconducting nanotubes. We show that the non-selective and strong adsorption of polyarylether dispersants on nanostructured carbon surfaces enables simple separation of diverse raw materials with different SWCNT diameter. In addition and for the first time, we demonstrate that increased temperature enables higher purity separation. Furthermore we show that the mode of action behind this electronic enrichment is strongly connected to both colloidal stability and protonation. By giving simple access to electronically sorted SWCNTs of any diameter, the wide dynamic range of weak field centrifugation can provide economical relevance to SWCNTs.

  18. Effect of Periradial Administration of Papaverine on Radial Artery Diameter

    PubMed Central

    Nagaraja, P. S.; Singh, Naveen G.; Manjunatha, N.; Desai, Rushikesh Chintamanrao

    2017-01-01

    Background: Radial artery cannulation is a skillful procedure. An experienced anesthesiologist might also face difficulty in cannulating a feeble radial pulse. Aim: The purpose of the study was to determine whether periradial subcutaneous administration of papaverine results in effective vasodilation and improvement in the palpability score of radial artery. Settings and Design: Prospective, double-blinded trial. Methodology: Thirty patients undergoing elective cardiac surgery were enrolled in the study. 30 mg of papaverine with 1 ml of 2% lignocaine and 3 ml of normal saline were injected subcutaneously 1–2 cm proximal to styloid process of the radius. Radial artery diameter before and after 20 min of injection papaverine was measured using ultrasonography. The palpability of the radial pulse was also determined before the injection of papaverine and 20 min later. Patients were monitored for hemodynamics and any complications were noted. Statistical Analysis Used: Student's t-test for paired data. Results: Radial artery diameter increased significantly (P < 0.0001), and the pulse palpability score also showed statistically significant improvement (P < 0.0001) after periradial subcutaneous administration of papaverine. There was no statistically significant difference in heart rate, mean arterial blood pressure before and after papaverine injection. No complications were noted in 24 h of follow-up. Conclusion: Periradial subcutaneous administration of papaverine significantly increased the radial artery diameter and pulse palpability score, which had an impact on ease of radial artery cannulation essential for hemodynamic monitoring in cardiac surgical patients. PMID:28298790

  19. Root resistance to cavitation is accurately measured using a centrifuge technique.

    PubMed

    Pratt, R B; MacKinnon, E D; Venturas, M D; Crous, C J; Jacobsen, A L

    2015-02-01

    Plants transport water under negative pressure and this makes their xylem vulnerable to cavitation. Among plant organs, root xylem is often highly vulnerable to cavitation due to water stress. The use of centrifuge methods to study organs, such as roots, that have long vessels are hypothesized to produce erroneous estimates of cavitation resistance due to the presence of open vessels through measured samples. The assumption that roots have long vessels may be premature since data for root vessel length are sparse; moreover, recent studies have not supported the existence of a long-vessel artifact for stems when a standard centrifuge technique was used. We examined resistance to cavitation estimated using a standard centrifuge technique and compared these values with native embolism measurements for roots of seven woody species grown in a common garden. For one species we also measured vulnerability using single-vessel air injection. We found excellent agreement between root native embolism and the levels of embolism measured using a centrifuge technique, and with air-seeding estimates from single-vessel injection. Estimates of cavitation resistance measured from centrifuge curves were biologically meaningful and were correlated with field minimum water potentials, vessel diameter (VD), maximum xylem-specific conductivity (Ksmax) and vessel length. Roots did not have unusually long vessels compared with stems; moreover, root vessel length was not correlated to VD or to the vessel length of stems. These results suggest that root cavitation resistance can be accurately and efficiently measured using a standard centrifuge method and that roots are highly vulnerable to cavitation. The role of root cavitation resistance in determining drought tolerance of woody species deserves further study, particularly in the context of climate change.

  20. Effects of chronic centrifugation on mice

    NASA Technical Reports Server (NTRS)

    Janer, L.; Duke, J.

    1984-01-01

    Previous studies have shown that exposure to excess gravity in vitro alters the developmental sequence in embryonic mouse limbs and palates (Duke, Janer and Campbell, 1984; Duke, 1983). The effects of excess gravity on in vivo mammalian development was investigated using a small animal centrifuge. Four-week old female mice exposed to excess gravities of 1.8-3.5 G for eight weeks weighed significantly less than controls. Mice were mated after five weeks of adaptation to excess G, and sacrificed either at gestational day 12 or 18. There were fewer pregnancies in the centrifuged group (4/36) than in controls (9/31), and crown rump lengths (CRL) of embryos developing in the centrifuge were less than CRLs of 1-G embryos. These results show that although immersed in amniotic fluid, embryos are responsive to Delta-G.

  1. Possible segregation caused by centrifugal titanium casting.

    PubMed

    Watanabe, K; Okawa, S; Kanatani, M; Nakano, S; Miyakawa, O; Kobayashi, M

    1996-12-01

    The possibility of the segregation under solidification process using a centrifugal casting machine was investigated using an electron probe microanalyzer with elemental distribution map, line analysis and quantitative analysis. When a very small quantity of platinum was added to local molten titanium during the casting process, macroscopic segregation was observed under conditions of density difference of 0.1 g/cm3 at the most, confirming that the centrifugal force of the casting machine is extremely strong. When a Ti-6Al-4V alloy was cast, however, no macroscopic segregation was observed. The centrifugal force of the casting machine examined in the present study hardly results in the body-force segregation in this titanium alloy.

  2. 26. RW Meyer Sugar Mill: 18761889. Centrifugals, 1879, 1881. Manufacturer, ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    26. RW Meyer Sugar Mill: 1876-1889. Centrifugals, 1879, 1881. Manufacturer, unknown. Supplied by Honolulu Ironworks, Honolulu, Hawaii, 1879, 1881. View: Historical view, 1934, from T. T. Waterman collection, Hawaiian Sugar Planters' Association. Once the molasses was separated from the sugar crystals it flowed through the spouts in the base of the centrifugals. The centrifugals' pulleys can be seen underneath the centrifugal. The centrifugal on the right has been reinforced with seven metal bands. The handles for the clutch mechanism are located above the centrifugal. - R. W. Meyer Sugar Mill, State Route 47, Kualapuu, Maui County, HI

  3. Detection methods for centrifugal microfluidic platforms.

    PubMed

    Burger, Robert; Amato, Letizia; Boisen, Anja

    2016-02-15

    Centrifugal microfluidics has attracted much interest from academia as well as industry, since it potentially offers solutions for affordable, user-friendly and portable biosensing. A wide range of so-called fluidic unit operations, e.g. mixing, metering, liquid routing, and particle separation, have been developed and allow automation and integration of complex assay protocols in lab-on-a-disc systems. Besides liquid handling, the detection strategy for reading out the assay is crucial for developing a fully integrated system. In this review, we focus on biosensors and readout methods for the centrifugal microfluidics platform and cover optical as well as mechanical and electrical detection principles.

  4. Wave-Driven Rotation In Centrifugal Mirrors

    SciTech Connect

    Abraham J. Fetterman and Nathaniel J. Fisch

    2011-03-28

    Centrifugal mirrors use supersonic rotation to provide axial confinement and enhanced stability. Usually the rotation is produced using electrodes, but these electrodes have limited the rotation to the Alfven critical ionization velocity, which is too slow to be useful for fusion. Instead, the rotation could be produced using radio frequency waves. A fixed azimuthal ripple is a simple and efficient wave that could produce rotation by harnessing alpha particle energy. This is an extension of the alpha channeling effect. The alpha particle power and efficiency in a simulated devices is sufficient to produce rotation without external energy input. By eliminating the need for electrodes, this opens new opportunities for centrifugal traps.

  5. Vacuum chamber-free centrifuge with magnetic bearings.

    PubMed

    Park, Cheol Hoon; Kim, Soohyun; Kim, Kyung-Soo

    2013-09-01

    Centrifuges are devices that separate particles of different densities and sizes through the application of a centrifugal force. If a centrifuge could be operated under atmospheric conditions, all vacuum-related components such as the vacuum chamber, vacuum pump, diffusion pump, and sealing could be removed from a conventional centrifuge system. The design and manufacturing procedure for centrifuges could then be greatly simplified to facilitate the production of lightweight centrifuge systems of smaller volume. Furthermore, the maintenance costs incurred owing to wear and tear due to conventional ball bearings would be eliminated. In this study, we describe a novel vacuum chamber-free centrifuge supported by magnetic bearings. We demonstrate the feasibility of the vacuum chamber-free centrifuge by presenting experimental results that verify its high-speed support capability and motoring power capacity.

  6. 21 CFR 864.5350 - Microsedimentation centrifuge.

    Code of Federal Regulations, 2010 CFR

    2010-04-01

    ... 21 Food and Drugs 8 2010-04-01 2010-04-01 false Microsedimentation centrifuge. 864.5350 Section 864.5350 Food and Drugs FOOD AND DRUG ADMINISTRATION, DEPARTMENT OF HEALTH AND HUMAN SERVICES (CONTINUED) MEDICAL DEVICES HEMATOLOGY AND PATHOLOGY DEVICES Automated and Semi-Automated Hematology...

  7. 21 CFR 864.5350 - Microsedimentation centrifuge.

    Code of Federal Regulations, 2011 CFR

    2011-04-01

    ... 21 Food and Drugs 8 2011-04-01 2011-04-01 false Microsedimentation centrifuge. 864.5350 Section 864.5350 Food and Drugs FOOD AND DRUG ADMINISTRATION, DEPARTMENT OF HEALTH AND HUMAN SERVICES (CONTINUED) MEDICAL DEVICES HEMATOLOGY AND PATHOLOGY DEVICES Automated and Semi-Automated Hematology...

  8. Predicting Droplet Formation on Centrifugal Microfluidic Platforms

    NASA Astrophysics Data System (ADS)

    Moebius, Jacob Alfred

    Centrifugal microfluidics is a widely known research tool for biological sample and water quality analysis. Currently, the standard equipment used for such diagnostic applications include slow, bulky machines controlled by multiple operators. These machines can be condensed into a smaller, faster benchtop sample-to-answer system. Sample processing is an important step taken to extract, isolate, and convert biological factors, such as nucleic acids or proteins, from a raw sample to an analyzable solution. Volume definition is one such step. The focus of this thesis is the development of a model predicting monodispersed droplet formation and the application of droplets as a technique for volume definition. First, a background of droplet microfluidic platforms is presented, along with current biological analysis technologies and the advantages of integrating such technologies onto microfluidic platforms. Second, background and theories of centrifugal microfluidics is given, followed by theories relevant to droplet emulsions. Third, fabrication techniques for centrifugal microfluidic designs are discussed. Finally, the development of a model for predicting droplet formation on the centrifugal microfluidic platform are presented for the rest of the thesis. Predicting droplet formation analytically based on the volumetric flow rates of the continuous and dispersed phases, the ratios of these two flow rates, and the interfacial tension between the continuous and dispersed phases presented many challenges, which will be discussed in this work. Experimental validation was completed using continuous phase solutions of different interfacial tensions. To conclude, prospective applications are discussed with expected challenges.

  9. Centrifugal Pump Experiment for Chemical Engineering Undergraduates

    ERIC Educational Resources Information Center

    Vanderslice, Nicholas; Oberto, Richard; Marrero, Thomas R.

    2012-01-01

    The purpose of this paper is to describe a Centrifugal Pump Experiment that provided an experiential learning experience to chemical engineering undergraduates at the University of Missouri in the spring of 2010 in the Unit Operations Laboratory course. Lab equipment was used by senior students with computer-based data and control technology. In…

  10. Extracting hydrocarbons from water using a centrifuge

    NASA Astrophysics Data System (ADS)

    Ryabov, A. Yu.; Ilyina, A. A.; Chuikin, A. V.; Velikov, A. A.

    2014-09-01

    An original method for the solid-phase microextraction of hydrocarbons from water using a centrifuge is proposed. Comparative results from the chromatographic elution of substances after liquid-phase and solid-phase microextraction are presented. The percentage of the extraction of substances from aqueous solutions and the minimum detection limit for aromatic and aliphatic compounds are calculated.

  11. Differential white cell count by centrifugal microfluidics.

    SciTech Connect

    Sommer, Gregory Jon; Tentori, Augusto M.; Schaff, Ulrich Y.

    2010-07-01

    We present a method for counting white blood cells that is uniquely compatible with centrifugation based microfluidics. Blood is deposited on top of one or more layers of density media within a microfluidic disk. Spinning the disk causes the cell populations within whole blood to settle through the media, reaching an equilibrium based on the density of each cell type. Separation and fluorescence measurement of cell types stained with a DNA dye is demonstrated using this technique. The integrated signal from bands of fluorescent microspheres is shown to be proportional to their initial concentration in suspension. Among the current generation of medical diagnostics are devices based on the principle of centrifuging a CD sized disk functionalized with microfluidics. These portable 'lab on a disk' devices are capable of conducting multiple assays directly from a blood sample, embodied by platforms developed by Gyros, Samsung, and Abaxis. [1,2] However, no centrifugal platform to date includes a differential white blood cell count, which is an important metric complimentary to diagnostic assays. Measuring the differential white blood cell count (the relative fraction of granulocytes, lymphocytes, and monocytes) is a standard medical diagnostic technique useful for identifying sepsis, leukemia, AIDS, radiation exposure, and a host of other conditions that affect the immune system. Several methods exist for measuring the relative white blood cell count including flow cytometry, electrical impedance, and visual identification from a stained drop of blood under a microscope. However, none of these methods is easily incorporated into a centrifugal microfluidic diagnostic platform.

  12. Centrifugal blood pumps for various clinical needs.

    PubMed

    Ichikawa, Seiji; Nosé, Yukihiko

    2002-11-01

    During the past 10 years, different types of blood pumps were developed to address various clinical needs. The Nikkiso centrifugal blood pump was developed for cardiopulmonary bypass application. This blood pump has been widely used in Japan in more than 20% of the cardiopulmonary bypass procedures. The Kyocera C1E3 Gryo pump was developed for short-term circulatory assistance and extracorporeal membrane oxygenation application for up to 2 weeks. This blood pump has been clinically used for up to 28 days without any blood clot formation. Through Phase I of the Japanese government New Energy and Industrial Technology Development Organization (NEDO) program, a chronically implanted centrifugal pump for left ventricular assistance was developed. This pump has already demonstrated its effectiveness, safety, and durability as a 2 year blood pump through in vitro and in vivo experiments. Currently, it is in the process of being converted from an experimental to a clinical device. Through Phase II of the NEDO program, a permanently implantable biventricular assist centrifugal blood pump system is under development. It has demonstrated that the previously mentioned left ventricular assist device blood pump is easily converted into a right ventricular assist pump by simply adding a spacer between the pump and the actuator. This communication discusses the historical development strategies for centrifugal blood pumps and their current status for different clinical needs.

  13. 21 CFR 864.5350 - Microsedimentation centrifuge.

    Code of Federal Regulations, 2013 CFR

    2013-04-01

    ... 21 Food and Drugs 8 2013-04-01 2013-04-01 false Microsedimentation centrifuge. 864.5350 Section 864.5350 Food and Drugs FOOD AND DRUG ADMINISTRATION, DEPARTMENT OF HEALTH AND HUMAN SERVICES (CONTINUED) MEDICAL DEVICES HEMATOLOGY AND PATHOLOGY DEVICES Automated and Semi-Automated Hematology...

  14. 21 CFR 864.5350 - Microsedimentation centrifuge.

    Code of Federal Regulations, 2014 CFR

    2014-04-01

    ... 21 Food and Drugs 8 2014-04-01 2014-04-01 false Microsedimentation centrifuge. 864.5350 Section 864.5350 Food and Drugs FOOD AND DRUG ADMINISTRATION, DEPARTMENT OF HEALTH AND HUMAN SERVICES (CONTINUED) MEDICAL DEVICES HEMATOLOGY AND PATHOLOGY DEVICES Automated and Semi-Automated Hematology...

  15. 21 CFR 864.5350 - Microsedimentation centrifuge.

    Code of Federal Regulations, 2012 CFR

    2012-04-01

    ... 21 Food and Drugs 8 2012-04-01 2012-04-01 false Microsedimentation centrifuge. 864.5350 Section 864.5350 Food and Drugs FOOD AND DRUG ADMINISTRATION, DEPARTMENT OF HEALTH AND HUMAN SERVICES (CONTINUED) MEDICAL DEVICES HEMATOLOGY AND PATHOLOGY DEVICES Automated and Semi-Automated Hematology...

  16. Evaluation of an improved centrifugal casting machine.

    PubMed

    Donovan, T E; White, L E

    1985-05-01

    A Type III gold alloy, a silver-palladium alloy, and a base metal alloy were cast in two different centrifugal casting machines. With the number of complete cast mesh squares as an indicator of castability, the Airspin casting machine produced superior castings with all three alloys. The base metal alloy produced the greatest number of complete squares with both casting machines.

  17. Pressure distribution in centrifugal dental casting.

    PubMed

    Nielsen, J P

    1978-02-01

    Equations are developed for liquid metal pressure in centrifugal dental casting, given the instantaneous rotational velocity, density, and certain dimensions of the casting machine and casting pattern. A "reference parabola" is introduced making the fluid pressure concept more understandable. A specially designed specimen demonstrates experimentally the reference parabola at freezing.

  18. Flow Pattern Characterization for a Centrifugal Impeller

    NASA Astrophysics Data System (ADS)

    Benavides, Efrén M.

    2014-08-01

    This paper proposes a model for characterizing the flow pattern of a centrifugal impeller attending to the severity of the reverse flow. The model assumes 1) a definition of an escaping particle as the one that flows in every operational point from the trailing edge towards the leading edge of the impeller blades, and 2) a characterization of flow where an operational point is said to have a theoretical flow pattern if it is not possible to establish a fully-reversed escaping particle on it. Therefore, the first part of the article is focused on defining an escaping particle for a centrifugal compressor. The model locates over the map of a centrifugal impeller the line that splits the map in two regions: the region on the right hand side, where a theoretical flow pattern can exist, and the region on the left, where a theoretical flow pattern cannot exist. Therefore, the locus of this line marks a frontier where the expected performance of the impeller cannot be sustained as high as expected. The second part of the article uses a high-performance commercial centrifugal impeller wheel for contrasting the model. A qualitative characterization of the surge line, conclusions and discussions are presented.

  19. APPLICATION ANALYSIS REPORT: RETECH PLASMA CENTRIFUGAL FURNACE

    EPA Science Inventory

    This document is an evaluation of the performance of the Retech, Inc. Plasma Centrifugal Furnace (PCF) and its applicability as a treatment for soils contaminated with organic and/or inorganic compounds. Both the technical and economic aspectsof the technology were examined. A...

  20. Mass Transfer in 12-CM Centrifugal Contactors

    SciTech Connect

    Chesna, J.C.

    2001-06-26

    One eight-stage unit (8-pack) of centrifugal contactors was tested in both extraction and stripping modes. Efficiencies approaching 100 percent were obtained in both modes. The contactors were operated successfully at a wide range of combined flow rates, including the HEF conditions. This report discusses the results of that test.

  1. 76 FR 9613 - USEC Inc. (American Centrifuge Lead Cascade Facility and American Centrifuge Plant); Order...

    Federal Register 2010, 2011, 2012, 2013, 2014

    2011-02-18

    ... use source and special nuclear material at the Lead Cascade at the Portsmouth Gaseous Diffusion Plant... operate a gas centrifuge uranium enrichment facility (the ACP) at the Portsmouth Gaseous Diffusion...

  2. Optimization of Centrifugal Pump Characteristic Dimensions for Mechanical Circulatory Support Devices.

    PubMed

    Korakianitis, Theodosios; Rezaienia, Mohammad A; Paul, Gordon M; Rahideh, Akbar; Rothman, Martin T; Mozafari, Sahand

    2016-01-01

    The application of artificial mechanical pumps as heart assist devices impose power and size limitations on the pumping mechanism, and therefore requires careful optimization of pump characteristics. Typically new pumps are designed by relying on the performance of other previously designed pumps of known performance using concepts of fluid dynamic similarity. Such data are readily available for industrial pumps, which operate in Reynolds numbers region of 10. Heart assist pumps operate in Reynolds numbers of 10. There are few data available for the design of centrifugal pumps in this characteristic range. This article develops specific speed versus specific diameter graphs suitable for the design and optimization of these smaller centrifugal pumps concentrating in dimensions suitable for ventricular assist devices (VADs) and mechanical circulatory support (MCS) devices. A combination of experimental and numerical techniques was used to measure and analyze the performance of 100 optimized pumps designed for this application. The data are presented in the traditional Cordier diagram of nondimensional specific speed versus specific diameter. Using these data, nine efficient designs were selected to be manufactured and tested in different operating conditions of flow, pressure, and rotational speed. The nondimensional results presented in this article enable preliminary design of centrifugal pumps for VADs and MCS devices.

  3. Current progress in the development of a totally implantable Gyro centrifugal artificial heart.

    PubMed

    Takami, Y; Ohtsuka, G; Mueller, J; Ebner, M; Tayama, E; Ohashi, Y; Taylor, D; Fernandes, J; Schima, H; Schmallegger, H; Wolner, E; Nosé, Y

    1998-01-01

    A totally implantable centrifugal artificial heart has been developed using a miniaturized pivot bearing supported centrifugal pump (Gyro PI pump). The authors report current progress in its development. The Gyro PI-601 has a priming volume of 20 ml, weighs 100 g, has a height of 60 mm, and has a diameter of 65 mm. This pump can provide 8 L/min against 150 mmHg at 2,250 rpm. It is driven by an miniaturized DC brushless motor with the coils fixed in a plastic mold that is waterproof and made of titanium (weight, 204 g; height, 18 mm; diameter, 65 mm). In this centrifugal artificial heart, two Gyro PI pumps are implanted independently to replace cardiac function without resecting the native heart. Its anatomic and surgical feasibility were confirmed experimentally. The Gyro PI-601 was implanted as a right or left ventricular assist device in the preperitoneal space of five calves. All five tests proceeded without any thromboembolic symptoms. One of five tests was extended more than 1 month to confirm the long-term feasibility of the Gyro PI-601 pump system. Based on the satisfactory results of the in vivo tests, the material conversion of the Gyro PI from polycarbonate to titanium alloy (Ti-6A1-4V) was undertaken to improve its biocompatibility for long-term implantation.

  4. Mechanisms of Sensorimotor Adaptation to Centrifugation

    NASA Technical Reports Server (NTRS)

    Paloski, W. H.; Wood, S. J.; Kaufman, G. D.

    1999-01-01

    We postulate that centripetal acceleration induced by centrifugation can be used as an inflight sensorimotor countermeasure to retain and/or promote appropriate crewmember responses to sustained changes in gravito-inertial force conditions. Active voluntary motion is required to promote vestibular system conditioning, and both visual and graviceptor sensory feedback are critical for evaluating internal representations of spatial orientation. The goal of our investigation is to use centrifugation to develop an analog to the conflicting visual/gravito-inertial force environment experienced during space flight, and to use voluntary head movements during centrifugation to study mechanisms of adaptation to altered gravity environments. We address the following two hypotheses: (1) Discordant canal-otolith feedback during head movements in a hypergravity tilted environment will cause a reorganization of the spatial processing required for multisensory integration and motor control, resulting in decreased postural stability upon return to normal gravity environment. (2) Adaptation to this "gravito-inertial tilt distortion" will result in a negative after-effect, and readaptation will be expressed by return of postural stability to baseline conditions. During the third year of our grant we concentrated on examining changes in balance control following 90-180 min of centrifugation at 1.4 9. We also began a control study in which we exposed subjects to 90 min of sustained roll tilt in a static (non-rotating) chair. This allowed us to examine adaptation to roll tilt without the hypergravity induced by centrifugation. To these ends, we addressed the question: Is gravity an internal calibration reference for postural control? The remainder of this report is limited to presenting preliminary findings from this study.

  5. Centrifugal Modelling of Soil Structures. Part I. Centrifugal Modelling of Slope Failures.

    DTIC Science & Technology

    1979-03-01

    centrifugal loading in multiples of earth’s gravitational acceleration Nd number of equipotential drops in a flow net Nf number of flow channels in a... straight line from point A to point B. It is valid for laminar flow , where v - discharge velocity, k - coefficient of permeability, i - hydraulic gradient...number) Soil mechanics, embankmen’: stability, sloPe Stability, centrifuge modelling, clay slopes, mine waste slltpes, sea clay, landslides, flow slides

  6. Performance of a 64-channel, 3.2×3.2 cm2 SiPM tile for TOF-PET application

    NASA Astrophysics Data System (ADS)

    Ferri, Alessandro; Acerbi, Fabio; Gola, Alberto; Piemonte, Claudio; Paternoster, Giovanni; Zorzi, Nicola

    2016-07-01

    In this work, we present a new 3.2×3.2 cm2 detector tile, composed of 8×8 single SiPMs, having a regular 4 mm pitch in both the X and Y directions. The tile fill factor is 85%. We produced two versions of the tile with different SiPM technologies: RGB-HD and NUV. The first one features square micro-cells with 25 μm pitch, a PDE peaked at 550 nm and a DCR of 300 kHz/mm2, at 20 °C and at maximum detection efficiency. The second one features micro-cells with 40 μm pitch and a PDE peaked in the blue part of the spectrum. The dark count rate at 20 °C and at maximum PDE is 100 kHz/mm2. In this work, we show the energy and timing resolution measurements at 511 keV obtained coupling the two tiles to an 8×8 LYSO array with a pixel size of 4×4×22 mm3, perfectly matching the photo-detector array.

  7. Enhanced centrifuge-based approach to powder characterization

    NASA Astrophysics Data System (ADS)

    Thomas, Myles Calvin

    powder through one adjustable parameter that was linked to the size distribution. It is important to note that when the engineered substrates (hemispherical indentations) were applied, it was possible to extract both powder size distribution and effective Hamaker constant information from the simulated centrifuge adhesion experiments. Experimental validation of the simulated technique was performed with a silica powder dispersed onto a stainless steel substrate with no engineered surface features. Though the proof-of-concept work was accomplished for indented substrates, non-ideal, relatively flat (non-indented) substrates were used experimentally to demonstrate that the technique can be extended to this case. The experimental data was then used within the newly developed simulation procedure to show its application to real systems. In the absence of engineered features on the substrates, it was necessary to specify the size distribution of the powder as an input to the simulator. With this information, it was possible to extract an effective Hamaker constant distribution and when the effective Hamaker constant distribution was applied in conjunction with the size distribution, the observed adhesion force distribution was described precisely. An equation was developed that related the normalized effective Hamaker constants (normalized by the particle diameter) to the particle diameter was formulated from the effective Hamaker constant distribution. It was shown, by application of the equation, that the adhesion behavior of an ideal (smooth, spherical) powder with an experimentally-validated, effective Hamaker constant distribution could be used to effectively represent that of a realistic powder. Thus, the roughness effects and size variations of a real powder are captured in this one distributed parameter (effective Hamaker constant distribution) which provides a substantial improvement to the existing technique. This can lead to better optimization of powder processing

  8. Solidification analysis of a centrifugal atomizer using the Al-32.7wt.% Cu alloy

    SciTech Connect

    Osborne, Matthew G.

    1998-02-23

    A centrifugal atomizer (spinning disk variety) was designed and constructed for the production of spherical metal powders, 100-1,000 microns in diameter in an inert atmosphere. Initial atomization experiments revealed the need for a better understanding of how the liquid metal was atomized and how the liquid droplets solidified. To investigate particle atomization, Ag was atomized in air and the process recorded on high-speed film. To investigate particle solidification, Al-32.7 wt.% Cu was atomized under inert atmosphere and the subsequent particles were examined microscopically to determine solidification structure and rate. This dissertation details the experimental procedures used in producing the Al-Cu eutectic alloy particles, examination of the particle microstructures, and determination of the solidification characteristics (e.g., solidification rate) of various phases. Finally, correlations are proposed between the operation of the centrifugal atomizer and the observed solidification spacings.

  9. Centrifugal Force Based Magnetic Micro-Pump Driven by Rotating Magnetic Fields

    NASA Astrophysics Data System (ADS)

    Kim, S. H.; Hashi, S.; Ishiyama, K.

    2011-01-01

    This paper presents a centrifugal force based magnetic micro-pump for the pumping of blood. Most blood pumps are driven by an electrical motor with wired control. To develop a wireless and battery-free blood pump, the proposed pump is controlled by external rotating magnetic fields with a synchronized impeller. Synchronization occurs because the rotor is divided into multi-stage impeller parts and NdFeB permanent magnet. Finally, liquid is discharged by the centrifugal force of multi-stage impeller. The proposed pump length is 30 mm long and19 mm in diameter which much smaller than currently pumps; however, its pumping ability satisfies the requirement for a blood pump. The maximum pressure is 120 mmHg and the maximum flow rate is 5000ml/min at 100 Hz. The advantage of the proposed pump is that the general mechanical problems of a normal blood pump are eliminated by the proposed driving mechanism.

  10. Synergy in combining findings from mammography and ultrasonography in detecting malignancy in women with higher density breasts and lesions over 2 cm in Albania

    PubMed Central

    Shahini, Albana

    2017-01-01

    Aim of the study To provide evidence of the synergy of combining findings from mammography (MM) and ultrasonography (US) in detecting malignancy in women with high-density breasts. Material and methods A total of 245 women were screened for breast cancer using both mammography and ultrasonography at the American Hospital in Tirana during 2013–2014. The data was used to identify possible benefits in detecting malignancy, by combining the findings of MM and US and confirming them with those of the biopsy. Data on age, breast density, BI-RADS classification, and biopsy confirmations were collected and analysed. Results Out of the 245 women, 36 biopsies were taken (17 for women classified BI-RADS 4 and 5; 19 for women with BI-RADS 3 that had grown in size from the previous examination). The accuracy in detecting malignancy for low-density-breast women was 90% for MM, 70% for US, and 90% for combined. For high-density breasts, the accuracy was 65% for MM, 79% for US, and 82% for combined findings. Multivariate analysis indicates that high-density-breast women who have a malignant finding in at least one of the examinations (MM or US) are 24 times more likely (p = 0.039) to have a positive finding in biopsy for malignancy. The odds increased 32 times for lesions over 2 cm (p = 0.056). Conclusions Our study results indicate additional benefits of combining findings from MM and US for high-density-breast women. Further study is warranted in a larger population and for different kinds of cancer. PMID:28239286

  11. Life Sciences Research in the Centrifuge Accommodation Module of the International Space Station

    NASA Technical Reports Server (NTRS)

    Dalton, Bonnie P.; Plaut, Karen; Meeker, Gabrielle B.; Sun, Sid (Technical Monitor)

    2000-01-01

    The Centrifuge Accommodation Module (CAM) will be the home of the fundamental biology research facilities on the International Space Station (ISS). These facilities are being built by the Biological Research Project (BRP), whose goal is to oversee development of a wide variety of habitats and host systems to support life sciences research on the ISS. The habitats and host systems are designed to provide life support for a variety of specimens including cells, bacteria, yeast, plants, fish, rodents, eggs (e.g., quail), and insects. Each habitat contains specimen chambers that allow for easy manipulation of specimens and alteration of sample numbers. All habitats are capable of sustaining life support for 90 days and have automated as well as full telescience capabilities for sending habitat parameters data to investigator homesite laboratories. The habitats provide all basic life support capabilities including temperature control, humidity monitoring and control, waste management, food, media and water delivery as well as adjustable lighting. All habitats will have either an internal centrifuge or are fitted to the 2.5-meter diameter centrifuge allowing for variable centrifugation up to 2 g. Specimen chambers are removable so that the specimens can be handled in the life sciences glovebox. Laboratory support equipment is provided for handling the specimens. This includes a compound and dissecting microscope with advanced video imaging, mass measuring devices, refrigerated centrifuge for processing biological samples, pH meter, fixation and complete cryogenic storage capabilities. The research capabilities provided by the fundamental biology facilities will allow for flexibility and efficiency for long term research on the International Space Station.

  12. Cavitation optimization for a centrifugal pump impeller by using orthogonal design of experiment

    NASA Astrophysics Data System (ADS)

    Pei, Ji; Yin, Tingyun; Yuan, Shouqi; Wang, Wenjie; Wang, Jiabin

    2017-01-01

    Cavitation is one of the most important performance of centrifugal pumps. However, the current optimization works of centrifugal pump are mostly focusing on hydraulic efficiency only, which may result in poor cavitation performance. Therefore, it is necessary to find an appropriate solution to improve cavitation performance with acceptable efficiency. In this paper, to improve the cavitation performance of a centrifugal pump with a vaned diffuser, the influence of impeller geometric parameters on the cavitation of the pump is investigated using the orthogonal design of experiment (DOE) based on computational fluid dynamics. The impeller inlet diameter D 1, inlet incidence angle Δ β, and blade wrap angle φ are selected as the main impeller geometric parameters and the orthogonal experiment of L9(3*3) is performed. Three-dimensional steady simulations for cavitation are conducted by using constant gas mass fraction model with second-order upwind, and the predicated cavitation performance is validated by laboratory experiment. The optimization results are obtained by the range analysis method to improve cavitation performance without obvious decreasing the efficiency of the centrifugal pump. The internal flow of the pump is analyzed in order to identify the flow behavior that can affect cavitation performance. The results show that D 1 has the greatest influence on the pump cavitation and the final optimized impeller provides better flow distribution at blade leading edge. The final optimized impeller accomplishes better cavitation and hydraulic performance and the NPSHR decreases by 0.63m compared with the original one. The presented work supplies a feasible route in engineering practice to optimize a centrifugal pump impeller for better cavitation performance.

  13. Numerical simulation and analysis of solid-liquid two-phase flow in centrifugal pump

    NASA Astrophysics Data System (ADS)

    Zhang, Yuliang; Li, Yi; Cui, Baoling; Zhu, Zuchao; Dou, Huashu

    2013-01-01

    The flow with solid-liquid two-phase media inside centrifugal pumps is very complicated and the relevant method for the hydraulic design is still immature so far. There exist two main problems in the operation of the two-phase flow pumps, i.e., low overall efficiency and severe abrasion. In this study, the three-dimensional, steady, incompressible, and turbulent solid-liquid two-phase flows in a low-specific-speed centrifugal pump are numerically simulated and analyzed by using a computational fluid dynamics (CFD) code based on the mixture model of the two-phase flow and the RNG k- ɛ two-equation turbulence model, in which the influences of rotation and curvature are fully taken into account. The coupling between impeller and volute is implemented by means of the frozen rotor method. The simulation results predicted indicate that the solid phase properties in two-phase flow, especially the concentration, the particle diameter and the density, have strong effects on the hydraulic performance of the pump. Both the pump head and the efficiency are reduced with increasing particle diameter or concentration. However, the effect of particle density on the performance is relatively minor. An obvious jet-wake flow structure is presented near the volute tongue and becomes more remarkable with increasing solid phase concentration. The suction side of the blade is subject to much more severe abrasion than the pressure side. The obtained results preliminarily reveal the characteristics of solid-liquid two-phase flow in the centrifugal pump, and are helpful for improvement and empirical correction in the hydraulic design of centrifugal pumps.

  14. 7 CFR 51.2656 - Diameter.

    Code of Federal Regulations, 2011 CFR

    2011-01-01

    ... Standards for Grades for Sweet Cherries 1 Definitions § 51.2656 Diameter. Diameter means the greatest dimension measured at right angles to a line from the stem to the blossom end of the cherry....

  15. High stability design for new centrifugal compressor

    NASA Technical Reports Server (NTRS)

    Kanki, H.; Katayama, K.; Morii, S.; Mouri, Y.; Umemura, S.; Ozawa, U.; Oda, T.

    1989-01-01

    It is essential that high-performance centrifugal compressors be free of subsynchronous vibrations. A new high-performance centrifugal compressor has been developed by applying the latest rotordynamics knowledge and design techniques: (1) To improve the system damping, a specially designed oil film seal was developed. This seal attained a damping ratio three times that of the conventional design. The oil film seal contains a special damper ring in the seal cartridge. (2) To reduce the destabilizing effect of the labyrinth seal, a special swirl canceler (anti-swirl nozzle) was applied to the balance piston seal. (3) To confirm the system damping margin, the dynamic simulation rotor model test and the full load test applied the vibration exciting test in actual load conditions.

  16. A centrifugal pump used as a turbine

    SciTech Connect

    Yap, F.U.; Lasnier, F. )

    1990-06-01

    Due to the high cost of putting up conventional turbines for micro-hydropower installations, Inversin (1986) mentioned the use of pumps being run in reverse to function as turbines. Typical performance characteristics of a centrifugal pump running as a turbine are shown in a figure. Pump/turbine maximum efficiencies tend to occur over a wide range of capacity. This study is concerned with the use of non-conventional hydro equipment, locally and readily available for small rural electricity applications. Here, the operation of a small centrifugal pump, used as a turbine and coupled with a conventional car alternator, was investigated. The article reveals a method for evaluating not only this but other small generating systems for appropriateness to the conditions of the site.

  17. Spaceborne centrifugal relays for spacecraft propulsion

    NASA Technical Reports Server (NTRS)

    Ouzidane, Malika

    1991-01-01

    Acceleration using centrifugal relays is a recently discovered method for the acceleration of spaceborne payloads to high velocity at high thrust. Centrifugal relays are moving rotors which progressively accelerate reaction mass to higher velocities. One important engineering problem consists of accurately tracking the position of the projectiles and rotors and guiding each projectile exactly onto the appropriate guide tracks on each rotor. The topics of this research are the system kinematics and dynamics and the computerized guidance system which will allow the projectile to approach each rotor with exact timing with respect to the rotor rotation period and with very small errors in lateral positions. Kinematics studies include analysis of rotor and projectile positions versus time and projectile/rotor interactions. Guidance studies include a detailed description of the tracking mechanism (interrupt of optical beams) and the aiming mechanism (electromagnetic focusing) including the design of electromagnetic deflection coils and the switching circuitry.

  18. Optimum design for LRE centrifugal pumps

    NASA Astrophysics Data System (ADS)

    Zhu, Zuchao; Zhang, Guoqian; Sun, Jiren

    1995-05-01

    We set up a mathematical model to predict low specific speed liquid rocket engine (LRE) centrifugal pump unit performance. Using the model in question, performance predictions were carried out for 10 types of LRE centrifugal pumps. Relative errors between experimental values and predicted values associated with efficiency and lift were all within 4%. Using the model in question, design optimization with efficiency as the target function was carried out on AM-7H and O pumps as well as AM-1R pumps and AM-50 pumps. Results clearly show that, with a presupposition of surety systems possessing high vapor corrosion characteristics, the efficiencies of these four types of pumps can be respectively raised 6.5%, 5.22%, 5.2%, and 4.41%.

  19. 7 CFR 51.587 - Diameter.

    Code of Federal Regulations, 2013 CFR

    2013-01-01

    ... 7 Agriculture 2 2013-01-01 2013-01-01 false Diameter. 51.587 Section 51.587 Agriculture..., CERTIFICATION, AND STANDARDS) United States Standards for Celery Definitions § 51.587 Diameter. Diameter means... lowest outer branch to the base....

  20. 7 CFR 51.587 - Diameter.

    Code of Federal Regulations, 2014 CFR

    2014-01-01

    ... 7 Agriculture 2 2014-01-01 2014-01-01 false Diameter. 51.587 Section 51.587 Agriculture..., CERTIFICATION, AND STANDARDS) United States Standards for Celery Definitions § 51.587 Diameter. Diameter means... lowest outer branch to the base....

  1. 7 CFR 51.587 - Diameter.

    Code of Federal Regulations, 2011 CFR

    2011-01-01

    ... 7 Agriculture 2 2011-01-01 2011-01-01 false Diameter. 51.587 Section 51.587 Agriculture... Standards for Celery Definitions § 51.587 Diameter. Diameter means the greatest dimension of the stalk measured at a point 2 inches above the point of attachment of the lowest outer branch to the base....

  2. 7 CFR 51.587 - Diameter.

    Code of Federal Regulations, 2010 CFR

    2010-01-01

    ... 7 Agriculture 2 2010-01-01 2010-01-01 false Diameter. 51.587 Section 51.587 Agriculture... Standards for Celery Definitions § 51.587 Diameter. Diameter means the greatest dimension of the stalk measured at a point 2 inches above the point of attachment of the lowest outer branch to the base....

  3. Hemolytic evaluation using polyurethane microcapsule suspensions in circulatory support devices: normalized index of hemolysis comparisons of commercial centrifugal blood pumps.

    PubMed

    Maruyama, Osamu; Yamaguchi, Katsuhiro; Nishida, Masahiro; Onoguchi, Tomio; Tsutsui, Tatsuo; Jikuya, Tomoaki; Yamane, Takashi

    2008-02-01

    We have been developing some types of microcapsule suspensions with polyurethane membranes to evaluate the absolute hemolytic characteristics of the centrifugal blood pumps used in circulatory support devices such as artificial hearts. In order to facilitate/realize hemolysis testing on centrifugal blood pumps that have hemolysis levels as low as those of commercial centrifugal blood pumps, we eliminated capsules with diameters less than 72.2 microm, amounting to 15.4% of all capsules in the conventional suspension (crude suspension [CS]), and adjusted the capsule volume ratio to correspond to a hematocrit of 40%. In this way we succeeded in enhancing the sensitivity of the suspension to microcapsule destruction 61 fold. We used this new suspension (fine suspension [FS]) to perform hemolysis tests on four types of commercial pump with mock circulation systems. Under conditions of 500 mm Hg and 11.2 L/min, we successfully determined the hemolytic characteristics (normalized index of hemolysis [NIH]) of some of the centrifugal blood pumps; the results showed some correlation with those of hemolysis tests on bovine blood and suggest that microcapsule suspensions with polyurethane membranes are useful as standard test solutions for the absolute evaluation of centrifugal blood pumps.

  4. Mathematical simulation of centrifugal casting of pipes

    SciTech Connect

    Minosyan, Ya.P.; Gerasimov, V.G.; Ryadno, A.A.; Solov'yev, Yu.G.

    1983-01-01

    A mathematical description of centrifugal casting of long pipes in rapidly-rotating ingot molds is given. The effect of gravity force is neglected. A numerical solution is obtained for the solidification of a steel casting in a thermally insulated mold. The effect of the rate of metal pouring on the motion of the solidification interface is investigated. The disagreement with experimental data is less then 7 percent.

  5. Centrifugal shot blasting. Innovative technology summary report

    SciTech Connect

    Not Available

    1999-07-01

    At the US Department of Energy (DOE) Fernald Environmental Management Project (FEMP), the Facilities Closure and Demolition Projects Integrated Remedial Design/Remedial Action (RD/RA) work plan calls for the removal of one inch (1 in) depth of concrete surface in areas where contamination with technetium-99 has been identified. This report describes a comparative demonstration between two concrete removal technologies: an innovative system using Centrifugal Shot Blasting (CSB) and a modified baseline technology called a rotary drum planer.

  6. Operating and maintenance guidelines for screenbowl centrifuges

    SciTech Connect

    Jahnig, W.S.R.; Bratton, R.; Luttrell, G.

    2009-01-15

    Plant dewatering circuits equipped with screenbowl centrifuges need to be well designed, properly operated, and adequately maintained to maximize the dewatering performance. The most important 'feed variables' are particle size, dry solids feed rate and slurry flow rate. The most important 'machine variables' include pool depth, rotational speed and gearbox ratio. The article discusses the effect of these parameters and offers some maintenance guidelines. The article was adapted from a paper presented at CoalPrep 2008. 6 refs., 2 figs., 2 tabs.

  7. Potential flow through centrifugal pumps and turbines

    NASA Technical Reports Server (NTRS)

    Sorensen, E

    1941-01-01

    The methods of conformal transformation up to the present have been applied to the potential flows in the rotation of solid bodies only to a limited extent. This report deals with aspects of centrifugal pumps and turbines such as: the complex potential for rotation, potential for the flow due to the blade rotation, velocities at the blade tip, comparison with "infinite number of blades," and a variable number of blades.

  8. Wave-driven Countercurrent Plasma Centrifuge

    SciTech Connect

    A.J. Fetterman and N.J. Fisch

    2009-03-20

    A method for driving rotation and a countercurrent flow in a fully ionized plasma centrifuge is described. The rotation is produced by radiofrequency waves near the cyclotron resonance. The wave energy is transferred into potential energy in a manner similar to the α channeling effect. The countercurrent flow may also be driven by radiofrequency waves. By driving both the rotation and the flow pattern using waves instead of electrodes, physical and engineering issues may be avoided.

  9. Rapid biofabrication of tubular tissue constructs by centrifugal casting in a decellularized natural scaffold with laser-machined micropores.

    PubMed

    Kasyanov, Vladimir A; Hodde, Jason; Hiles, Michael C; Eisenberg, Carol; Eisenberg, Leonard; De Castro, Luis E F; Ozolanta, Iveta; Murovska, Modra; Draughn, Robert A; Prestwich, Glenn D; Markwald, Roger R; Mironov, Vladimir

    2009-01-01

    Centrifugal casting allows rapid biofabrication of tubular tissue constructs by suspending living cells in an in situ cross-linkable hydrogel. We hypothesize that introduction of laser-machined micropores into a decellularized natural scaffold will facilitate cell seeding by centrifugal casting and increase hydrogel retention, without compromising the biomechanical properties of the scaffold. Micropores with diameters of 50, 100, and 200 mum were machined at different linear densities in decellularized small intestine submucosa (SIS) planar sheets and tubular SIS scaffolds using an argon laser. The ultimate stress and ultimate strain values for SIS sheets with laser-machined micropores with diameter 50 mum and distance between holes as low as 714 mum were not significantly different from unmachined control SIS specimens. Centrifugal casting of GFP-labeled cells suspended in an in situ cross-linkable hyaluronan-based hydrogel resulted in scaffold recellularization with a high density of viable cells inside the laser-machined micropores. Perfusion tests demonstrated the retention of the cells encapsulated within the HA hydrogel in the microholes. Thus, an SIS scaffold with appropriately sized microholes can be loaded with hydrogel encapsulated cells by centrifugal casting to give a mechanically robust construct that retains the cell-seeded hydrogel, permitting rapid biofabrication of tubular tissue construct in a "bioreactor-free" fashion.

  10. Avoid self-priming centrifugal pump

    SciTech Connect

    Reeves, G.G.

    1987-01-01

    The self-priming horizontal centrifugal pump becomes known to its operator either as a good pump or a bad pump. The latter is usually replaced by another type of pump, even though a properly specified self-priming centrifugal pump might have been a good choice. Use of the guidelines described in this article are intended to help in the purchase and installation of a good pump. Self-priming centrifugal pumps are used for removing liquids from below grade sumps or pits that may also contain solids, fibers and/or muck. Alternate pumps for this service include submersible pumps, vertical turbine pumps and positive displacement pumps. These alternate pumps do not pass solid particles as large as self-priming pumps do without damage. Positive displacement pumps are not normally cost-effective when pumping liquid at rates in excess of 500 gallons per minute in low-head applications. Vertical and submersible pumps must be removed when cleaning of the pump is required. Self-priming pumps are easily cleaned by opening the access plates without moving the pump; and they cost less than the other types.

  11. Shallow water model for horizontal centrifugal casting

    NASA Astrophysics Data System (ADS)

    Boháček, J.; Kharicha, A.; Ludwig, A.; Wu, M.

    2012-07-01

    A numerical model was proposed to simulate the solidification process of an outer shell of work roll made by the horizontal centrifugal casting technique. Shallow water model was adopted to solve the 2D average flow dynamics of melt spreading and the average temperature distribution inside the centrifugal casting mould by considering the centrifugal force, Coriolis force, viscous force due to zero velocity on the mould wall, gravity, and energy transport by the flow. Additionally, a 1D sub-model was implemented to consider the heat transfer in the radial direction from the solidifying shell to the mould. The solidification front was tracked by fulfilling the Stefan condition. Radiative and convective heat losses were included from both, the free liquid surface and the outer wall of the mould. Several cases were simulated with the following assumed initial conditions: constant height of the liquid metal (10, 20, and 30 mm), uniform temperature of the free liquid surface (1755 K). The simulation results have shown that while the solidification front remained rather flat, the free surface was disturbed by waves. The amplitude of waves increased with the liquid height. Free surface waves diminished as the solidification proceeded.

  12. Compact, Automated Centrifugal Slide-Staining System

    NASA Technical Reports Server (NTRS)

    Feeback, Daniel L.; Clarke, Mark S. F.

    2004-01-01

    The Directional Acceleration Vector-Driven Displacement of Fluids (DAVD-DOF) system, under development at the time of reporting the information for this article, would be a relatively compact, automated, centrifugally actuated system for staining blood smears and other microbiological samples on glass microscope slides in either a microgravitational or a normal Earth gravitational environment. The DAVD-DOF concept is a successor to the centrifuge-operated slide stainer (COSS) concept, which was reported in Slide-Staining System for Microgravity or Gravity (MSC-22949), NASA Tech Briefs, Vol. 25, No. 1 (January, 2001), page 64. The COSS includes reservoirs and a staining chamber that contains a microscope slide to which a biological sample is affixed. The staining chamber is sequentially filled with and drained of staining and related liquids from the reservoirs by use of a weighted plunger to force liquid from one reservoir to another at a constant level of hypergravity maintained in a standard swing-bucket centrifuge. In the DAVD-DOF system, a staining chamber containing a sample would also be sequentially filled and emptied, but with important differences. Instead of a simple microscope slide, one would use a special microscope slide on which would be fabricated a network of very small reservoirs and narrow channels connected to a staining chamber (see figure). Unlike in the COSS, displacement of liquid would be effected by use of the weight of the liquid itself, rather than the weight of a plunger.

  13. Can a brief period of double J stenting improve the outcome of extracorporeal shock wave lithotripsy for renal calculi sized 1 to 2 cm?

    PubMed Central

    Sharma, Rakesh; Das, Ranjit Kumar; Basu, Supriya; Dey, Ranjan Kumar; Gupta, Rupesh; Deb, Partha Pratim

    2017-01-01

    Purpose Extracorporeal shock wave lithotripsy (ESWL) is an established modality for renal calculi. Its role for large stones is being questioned. A novel model of temporary double J (DJ) stenting followed by ESWL was devised and outcomes were assessed. Materials and Methods The study included 95 patients with renal calculi sized 1 to 2 cm. Patients were randomized into 3 groups. Group 1 received ESWL only, whereas group 2 underwent stenting followed by ESWL. In group 3, a distinct model was applied in which the stent was kept for 1 week and then removed, followed by ESWL. Procedural details, analgesic requirements, and outcome were analyzed. Results Eighty-eight patients (male, 47; female, 41) were available for analysis. The patients' mean age was 37.9±10.9 years. Stone profile was similar among groups. Group 3 received fewer shocks (mean, 3,155) than did group 1 (mean, 3,859; p=0.05) or group 2 (mean, 3,872; p=0.04). The fragmentation rate was similar in group 3 (96.7%) and groups 1 (81.5%, p=0.12) and 2 (87.1%, p=0.16). Overall clearance in group 3 was significantly improved (83.3%) compared with that in groups 1 (63.0%, p=0.02) and 2 (64.5%, p=0.02) and was maintained even in lower pole stones. The percentage successful outcome in groups 1, 2, and 3 was 66.7%, 64.5%, and 83.3%, respectively (p=0.21). The analgesic requirement in group 2 was higher than in the other groups (p=0.00). Group 2 patients also had more grade IIIa (2/3) and IIIB (1/2) complications. Conclusions Stenting adversely affects stone clearance and also makes the later course uncomfortable. Our model of brief stenting followed by ESWL provided better clearance, comfort, and a modest improvement in outcome with fewer sittings and steinstrasse in selected patients with large renal calculi. PMID:28261679

  14. Expression and prognostic value of GalNAc-T3 in patients with completely resected small (≤2 cm) peripheral lung adenocarcinoma after IASLC/ATS/ERS classification

    PubMed Central

    Zhao, Shilei; Guo, Tao; Li, Jinxiu; Uramoto, Hidetaka; Guan, Hongwei; Deng, Wuguo; Gu, Chundong

    2015-01-01

    cell lines was compared with normal bronchial epithelium cell line. Based on the univariate and multivariate analysis, poor TNM stage (P<0.001), pleural invasion (hazard ratio [HR]: 7.958, P=0.021), vascular invasion (HR: 2.403, P=0.040), and low GalNAc-T3 expression (HR: 3.317, P=0.016) were shown to be independently associated with an unfavorable prognosis. However, IASLC/ATS/ERS classification of risk groups and Sica score (P=0.034 and P=0.032, respectively) was correlated with overall survival on Kaplan–Meier method but not Cox regression model. Conclusion GalNAc-T3 expression was correlated with the IASLC/ATS/ERS classification and also associated with prognosis of patients with completely resected small (≤2 cm) peripheral lung adenocarcinoma. PMID:26604783

  15. Design of a continuous flow centrifugal pediatric ventricular assist device.

    PubMed

    Throckmorton, A L; Wood, H G; Day, S W; Song, X; Click, P C; Allaire, P E; Olsen, D B

    2003-11-01

    Thousands of pediatric patients suffering from cardiomyopathy or single ventricular physiologies secondary to debilitating heart defects may benefit from long-term mechanical circulatory support due to the limited number of donor hearts available. This article presents the initial design of a fully implantable centrifugal pediatric ventricular assist device (PVAD) for 2 to 12 year olds. Conventional pump design equations, including a nondimensional scaling approach, enabled performance estimations of smaller scale versions (25 mm and 35 mm impeller diameters) of our adult support VAD. Based on this estimated performance, a computational model of the PVAD with a 35 mm impeller diameter was generated. Employing computational fluid dynamics (CFD) software, the flow paths through the PVAD and overall performance were analyzed for steady state flow conditions. The numerical simulations involved flow rates of 2 to 5 LPM for rotational speeds of 2750 to 3250 RPM and incorporated a k-epsilon fluid turbulence model with a logarithmic wall function to characterize near-wall flow conditions. The CFD results indicated best efficiency points ranging from 25% to 28%, which correlate well with typical values of blood pumps. The results further demonstrated that the pump could deliver 2 to 5 LPM at 70 to 95 mmHg for desired physiologic conditions in resting 2 to 12 year olds. Scalar stress levels remained below 300 Pa, thereby signifying potentially low levels of hemolysis. Several flow regions in the pump exhibited signs of vortices, retrograde flow, and stagnation points, which require optimization and further study. This CFD model represents a reasonable starting point for future model enhancements, leading to prototype manufacturing and experimental validation.

  16. Small centrifugal pumps for low-thrust rocket engines

    NASA Technical Reports Server (NTRS)

    Furst, R. B.

    1986-01-01

    Six small, low specific speed centrifugal pump configurations were designed, fabricated, and tested. The configurations included shrouded, and 25 and 100% admission open face impellers with 2 inch tip diameters; 25, 50, and 100% emission vaned diffusers; and volutes with conical exits. Impeller tip widths varied from 0.030 inch to 0.052 inch. Design specific speeds (N sub s = RPM*GPM**0.5.FT**0.75) were 430 (four configurations) and 215 (two configurations). The six configurations were tested with water as the pumped fluid. Noncavitating performance results are presented for the design speed of 24,500 rpm over a flowrate range from 1 to 6 gpm for the N sub s = 430 configurations and test speeds up to 29,000 rpm over a flowrate range from 0.3 to 1.2 gpm for the N sub s = 215 configurations. Cavitating performance results are presented over a flowrate range from 60 to 120% of design flow. Fabrication of the small pump conponents is also discussed.

  17. Narrowing SWNT diameter distribution using size-separated ferritin-based Fe catalysts.

    PubMed

    Durrer, Lukas; Greenwald, Jason; Helbling, Thomas; Muoth, Matthias; Riek, Roland; Hierold, Christofer

    2009-09-02

    Sensors and devices made from single-walled carbon nanotubes (SWNTs) are most often electrically probed through metal leads contacting the semiconducting SWNTs (s-SWNTs). Contact barriers in general and Schottky barriers (SBs) in particular are usually obtained at a metal-semiconductor interface. The unique one-dimensional structure (1D) of SWNTs allows tailoring of the SB heights through the contact metal type and the size of the s-SWNT bandgap. A large workfunction reduces the SB height (e.g. using Pd as the metal contact material). The bandgap of an SWNT is inversely proportional to its diameter. Ohmic contacts--the preferable choice--are achieved for s-SWNTs with diameters greater than 2 nm on Pd metal leads. SWNT device reproducibility, on the other hand, requires a narrow distribution of the SWNT diameters. Here, we present a method to fabricate SWNTs with a large and adjustable mean diameter (1.9-2.4 nm) and very narrow diameter distribution (+/- 0.27 nm at mean diameter 1.9 nm). The results are achieved through a size separation of the ferritin catalyst particles by sedimentation velocity centrifugation prior to their use in the chemical vapor deposition (CVD) formation of SWNTs.

  18. [Rapid centrifugation assay standarization for dengue virus isolation].

    PubMed

    Palomino, Miryam; Gutierrez, Victoria; Salas, Ramses

    2010-03-01

    The plate centrifugation assay was standardized for dengue virus isolation from serum samples. C6/36-HT cells were used determining the optimal values for centrifugation spin speed, inoculum, sera dilution, and incubation time. Then, 22 positive serum samples with viral isolation and viral strains of the four reference dengue virus serotypes were tested simultaneously by the standardized plate centrifugation method and the conventional tube culture. The isolations were typified by indirect immunofluorescent test using monoclonal antibodies. The plate centrifugation method was optimized to 200 μL of inoculum, dilution of sera 1/20, centrifugation speed at 1600 rpm/30 min, and sensitivity of 95,5% after 5 days post-inoculation. We concluded that the plate centrifugation method increased dengue virus isolation, with a significant reduction of the time of isolation for dengue virus.

  19. Self-Assembly of Ag Nanoparticles Induced by Centrifuging and Broken by Silanization.

    PubMed

    Yang, Ping; Zhang, Yulan

    2015-08-01

    A novel method was developed to assemble Ag nanoparticles (NPs) into chain-like structures. The assembly of the NPs was created by suspending in an ethanol and water solution as well as centrifuging at a high speed (a force of more than 29 Kg for the NPs with an average diameter of 18 nm). The composition of solvents and centrifuged speeds of samples play important roles for the formation of regular assemblies. The number of Ag NPs in the chain-like assemblies was adjusted by changing centrifuging forces. The assemblies of the NPs were fixed by a SiO2 coating through a St6ber synthesis. In addition, the assemblies were broken through a silanization process because of partially hydrolyzed tetraethyl-orthosilicate molecules adsorbed on the surface of Ag NPs to form a SiO2 layer opposite aggregation. A slow silanization process made Ag NPs monodispersed in solutions, in which Ag/SiO2 core/shell NPs were created.

  20. A new design for a compact centrifugal blood pump with a magnetically levitated rotor.

    PubMed

    Asama, Junichi; Shinshi, Tadahiko; Hoshi, Hideo; Takatani, Setsuo; Shimokohbe, Akira

    2004-01-01

    A compact centrifugal blood pump has been developed using a radial magnetic bearing with a two-degree of freedom active control. The proposed magnetic bearing exhibits high stiffness, even in passively controlled directions, and low power consumption because a permanent magnet, incorporated with the rotor, suspends its weight. The rotor is driven by a Lorentz force type of built-in motor, avoiding mechanical friction and material wear. The built-in motor is designed to generate only rotational torque, without radial and axial attractive forces on the rotor, leading to low power consumption by the magnetic bearing. The fabricated centrifugal pump measured 65 mm in diameter and 45 mm in height and weighed 0.36 kg. In the closed loop circuit filled with water, the pump provided a flow rate of 4.5 L/min at 2,400 rpm against a pressure head of 100 mm Hg. Total power consumption at that point was 18 W, including 2 W required for magnetic levitation, with a total efficiency of 5.7%. The experimental results showed that the design of the compact magnetic bearing was feasible and effective for use in a centrifugal blood pump.

  1. Reduced-order modeling for mistuned centrifugal impellers with crack damages

    NASA Astrophysics Data System (ADS)

    Wang, Shuai; Zi, Yanyang; Li, Bing; Zhang, Chunlin; He, Zhengjia

    2014-12-01

    An efficient method for nonlinear vibration analysis of mistuned centrifugal impellers with crack damages is presented. The main objective is to investigate the effects of mistuning and cracks on the vibration features of centrifugal impellers and to explore effective techniques for crack detection. Firstly, in order to reduce the input information needed for component mode synthesis (CMS), the whole model of an impeller is obtained by rotation transformation based on the finite element model of a sector model. Then, a hybrid-interface method of CMS is employed to generate a reduced-order model (ROM) for the cracked impeller. The degrees of freedom on the crack surfaces are retained in the ROM to simulate the crack breathing effects. A novel approach for computing the inversion of large sparse matrix is proposed to save memory space during model order reduction by partitioning the matrix into many smaller blocks. Moreover, to investigate the effects of mistuning and cracks on the resonant frequencies, the bilinear frequency approximation is used to estimate the resonant frequencies of the mistuned impeller with a crack. Additionally, statistical analysis is performed using the Monte Carlo simulation to study the statistical characteristics of the resonant frequencies versus crack length at different mistuning levels. The results show that the most significant effect of mistuning and cracks on the vibration response is the shift and split of the two resonant frequencies with the same nodal diameters. Finally, potential quantitative indicators for detection of crack of centrifugal impellers are discussed.

  2. Centrifuge "therapy" for psychiatric patients in Germany in the early 1800s.

    PubMed

    Harsch, Viktor

    2006-02-01

    In 1818, Dr. Ernst Horn (1774-1848) reported miraculous cures for patients suffering from hysteria through the use of centrifuges at the psychiatric wards of the Charit6-Hospital in Berlin during the previous decade. In his book, "Public Account Concerning My 12 years' Service as Second Physician of the Royal Hospital in Berlin, Including Experiences from Hospitals and Mental Institutions," a full description of the indications and methods for treatment of mental illness, including technical data and construction costs for a rotating bed and rotating chair, is given. The rotating bed was turned by a crankshaft connected by ropes to a capstan. Slowing or stopping was achieved by tensing a rope around a wheel near the ceiling. With a diameter of 13 ft, this therapeutic instrument was capable of producing up to 4 to 5 -Gz in the head region. Several hundred patients and many volunteer subjects, including medical doctors, were reported to have been exposed to the rotating devices, along with some miraculous cures. Apart from the ethical problems associated with this type of torturous treatment, the rotating bed could be described as an ancient centrifuge. With the well-documented observations made on this device, the very first description of G-induced biomedical effects, such as shortness of breath and a feeling of oppression and anxiety, was given: These observations were comparable to those made one century later on human centrifuges and in flight.

  3. Mathematical Modeling of Particle Segregation During Centrifugal Casting of Metal Matrix Composites

    NASA Astrophysics Data System (ADS)

    Balout, B.; Litwin, J.

    2012-04-01

    When a metal matrix composite undergoes centrifugal casting, the velocity, deceleration, displacement, and segregation of its particles are modeled according to changes in the centrifugal radius, as well as by variations in the molten metal viscosity as the temperature decreases during the cooling process. A cast aluminum alloy A356 reinforced by 10 V% of silicon carbide particles (SiC), with a median diameter of 12 μm, was used to conduct the experiments, and a mathematical modeling showed that the particles' volume fraction on the outer casting face varied according to whether the viscosity of the liquid metal used was constant or variable. If variations in viscosity during the cooling process are taken into account, then the volume fraction of the particles for a given time of centrifugation changes on the outer casting face, while it increases if the viscosity was constant. Modeling the particle segregation with variable viscosity produces results that are closer to those obtained with experiments than is the case when a constant viscosity is used. In fact, the higher the initial pouring and mold temperatures, the higher the effect of the viscosity variation on particle segregation.

  4. Numerical simulation of flow in centrifugal pump under cavitation and sediment condition

    NASA Astrophysics Data System (ADS)

    Guo, P. C.; Lu, J. L.; Zheng, X. B.; Zhao, Q.; Luo, X. Q.

    2012-11-01

    The sediment concentration is very high in many rivers in the world, especially in China. The pumps that designed for the clear water are usually seriously abraded. The probability of pump cavitation is greatly enhanced due to the existence of sand. Under the joint action and mutual promotion of sand erosion and cavitation, serious abrasion could occurred, and the hydraulic performance of the pump may be greatly descended, meanwhile the safety and stability of the whole pump are greatly threatened. Therefore, it is significant to investigate the cavitation characteristic of pump under sediment flow condition. In this paper, the flow in a single stage centrifugal pump under cleat water and sediment flow conditions was numerically simulated. The cavitation performance under clear water was firstly analyzed. Then, The pressure, velocity and solid particle distribution in centrifugal pump under different particle diameter and different particle concentration was investigated by using the two-fluid model; The area and extent of erosion was illustrated by using the particle track model. Finally, the influence of mixed sand on centrifugal pump performance was investigated.

  5. Pupil Diameter Tracks Lapses of Attention

    PubMed Central

    Murphy, Peter R.; Nieuwenhuis, Sander

    2016-01-01

    Our ability to sustain attention for prolonged periods of time is limited. Studies on the relationship between lapses of attention and psychophysiological markers of attentional state, such as pupil diameter, have yielded contradicting results. Here, we investigated the relationship between tonic fluctuations in pupil diameter and performance on a demanding sustained attention task. We found robust linear relationships between baseline pupil diameter and several measures of task performance, suggesting that attentional lapses tended to occur when pupil diameter was small. However, these observations were primarily driven by the joint effects of time-on-task on baseline pupil diameter and task performance. The linear relationships disappeared when we statistically controlled for time-on-task effects and were replaced by consistent inverted U-shaped relationships between baseline pupil diameter and each of the task performance measures, such that most false alarms and the longest and most variable response times occurred when pupil diameter was both relatively small and large. Finally, we observed strong linear relationships between the temporal derivative of pupil diameter and task performance measures, which were largely independent of time-on-task. Our results help to reconcile contradicting findings in the literature on pupil-linked changes in attentional state, and are consistent with the adaptive gain theory of locus coeruleus-norepinephrine function. Moreover, they suggest that the derivative of baseline pupil diameter is a potentially useful psychophysiological marker that could be used in the on-line prediction and prevention of attentional lapses. PMID:27768778

  6. Diameter Effect In Initiating Explosives, Numerical Simulations

    SciTech Connect

    Lefrancois, A.; Benterou, J.; Roeske, F.; Roos, E.

    2006-02-10

    The ability to safely machine small pieces of HE with the femtosecond laser allows diameter effect experiments to be performed in initiating explosives in order to study the failure diameter, the reduction of the detonation velocity and curvature versus the diameter. The reduced diameter configuration needs to be optimized, so that the detonation products of the first cylinder will not affect the measurement of the detonation velocity of the second cylinder with a streak camera. Different 2D axi-symmetrical configurations have been calculated to identify the best solution using the Ignition and Growth reactive flow model for LX16 Pellet with Ls-Dyna.

  7. Laminar flow effects in the coil planet centrifuge

    NASA Technical Reports Server (NTRS)

    Herrmann, F. T.

    1984-01-01

    The coil planet centrifuge designed by Ito employs flow of a single liquid phase, through a rotating coiled tube in a centrifugal force field, to provide a separation of particles based on sedimentation rates. Mathematical solutions are derived for the linear differential equations governing particle behavior in the coil planet centrifuge device. These solutions are then applied as the basis of a model for optimizing particle separations.

  8. Modeling Platform Dynamics and Physiological Response to Short Arm Centrifugation

    DTIC Science & Technology

    1994-03-01

    parametric design study for a small radius centrifuge revealed such a centrifuge could fit on the NASA Space Shuttle and provide artificial gravity and...the heart are modelled as variable capacitances separated by one-way valves. The pulmonic and aortic valves are also modelled as one-way valves. The...1992 June. 10. Halstead, TW; Brown, AH; Fuller, CA; Oyama, J. Artificial gravity studies and design considerations for space station centrifuges

  9. Theory and experiments on centrifuge cratering

    NASA Astrophysics Data System (ADS)

    Schmidt, R. M.; Holsapple, K. A.

    1980-01-01

    Centrifuge experimental techniques provide possibilities for laboratory simulation of ground motion and cratering effects due to explosive loadings. The results of a similarity analysis for the thermomechanical response of a continuum show that increased gravity is a necessary condition for subscale testing when identical materials for both model and prototype are being used. The general similarity requirements for this type of subscale testing are examined both theoretically and experimentally. The similarity analysis is used to derive the necessary and sufficient requirements due to the general balance and jump equations and gives relations among all the scale factors for size, density, stress, body forces, internal energy, heat supply, heat conduction, heat of detonation, and time. Additional constraints due to specific choices of material constitutive equations are evaluated separately. The class of constitutive equations that add no further requirements is identified. For this class of materials, direct simulation of large-scale cratering events at small scale on the centrifuge is possible and independent of the actual constitutive equations. For a rate-independent soil it is shown that a small experiment at gravity g and energy E is similar to a large event at 1 G but with energy equal to g3E. Consequently, experiments at 500 G with 8 grams of explosives can be used to simulate a kiloton in the field. A series of centrifuge experiments was performed to validate the derived similarity requirements and to determine the practicality of applying the technique to dry granular soils having little or no cohesion. Ten shots using Ottawa sand at various gravities confirmed reproducibility of results in the centrifuge environment, provided information on particle size effects, and demonstrated the applicability of the derived similitude requirements. These experiments used 0.5-4 grams of pentaerythritol-tetranitrate (PETN) and 1.7 grams of lead-azide explosives. They

  10. Impeller blade design method for centrifugal compressors

    NASA Technical Reports Server (NTRS)

    Jansen, W.; Kirschner, A. M.

    1974-01-01

    The design of a centrifugal impeller with blades that are aerodynamically efficient, easy to manufacture, and mechanically sound is discussed. The blade design method described here satisfies the first two criteria and with a judicious choice of certain variables will also satisfy stress considerations. The blade shape is generated by specifying surface velocity distributions and consists of straight-line elements that connect points at hub and shroud. The method may be used to design radially elemented and backward-swept blades. The background, a brief account of the theory, and a sample design are described.

  11. Autobalancing and FDIR for a space-based centrifuge prototype

    NASA Technical Reports Server (NTRS)

    Wilson, Edward; Mah, Robert W.

    2005-01-01

    This report summarizes centrifuge-related work performed at the Smart Systems Research Laboratory at NASA Ames Research Center's Computational Sciences Division from 1995 through 2003. The goal is to develop an automated system that will sense an imbalance (both static and dynamic3) in a centrifuge and issue control commands to drive counterweights to eliminate the effects of the imbalance. This autobalancing development began when the ISS centrifuge design was not yet finalized, and was designed to work with the SSRL Centrifuge laboratory prototype, constructed in 1993-1995. Significant differences between that prototype and the current International Space Station (ISS) Centrifuge design are that: the spin axis for the SSRL Centrifuge prototype can translate freely in x and y, but not wobble, whereas the ISS centrifuge spin axis has 3 translational and two rotational degrees of freedom, supported by a vibration 34. The imbalance sensors are strained gauges both in the rotor and the stator, measuring the imbalance forces, whereas the ISS centrifuge uses eddy current displacement sensors to measure the displacements resulting from imbalance. High fidelity autobalancing and FDIR systems (for both counterweights and strain gauges) are developed and tested in MATLAB simulation, for the SSRL Centrifuge configuration. Hardware implementation of the autobalancing technology was begun in 1996, but was terminated due to lack of funding. The project lay dormant until 2001-2002 when the FDIR capability was added.

  12. Effects of centrifugation on gonadal and adrenocortical steroids in rats

    NASA Technical Reports Server (NTRS)

    Kakihana, R.; Butte, J. C.

    1980-01-01

    Many endocrine systems are sensitive to external changes in the environment. Both the pituitary adrenal and pituitary gonadal systems are affected by stress including centrifugation stress. The effect of centrifugation on the pituitary gonadal and pituitary adrenocortical systems was examined by measuring the gonadal and adrenal steroids in the plasma and brain following different duration and intensity of centrifugation stress in rats. Two studies were completed and the results are presented. The second study was carried out to describe the developmental changes of brain, plasma and testicular testosterone and dihydrotestosterone in Sprague Dawley rats so that the effect of centrifugation stress on the pituitary gonadal syatem could be better evaluated in future studies.

  13. 77 FR 9273 - USEC Inc. (American Centrifuge Lead Cascade Facility and American Centrifuge Plant); Direct...

    Federal Register 2010, 2011, 2012, 2013, 2014

    2012-02-16

    ... American Centrifuge Operating, LLC (ACO), pursuant to Sections 161(b), 161(i), 161(o) and 184 of the Atomic... that due to uncertainty, it appears that the date for completion of activities associated with the sub... be completed. IV Accordingly, pursuant to Sections 161b, 161i, 161o, and 184 of the Atomic Energy...

  14. Development of a 3D circular microfluidic centrifuge for the separation of mixed particles by using their different centrifuge times

    NASA Astrophysics Data System (ADS)

    Jeon, H. J.; Kim, D. I.; Kim, M. J.; Nguyen, X. D.; Park, D. H.; Go, J. S.

    2015-11-01

    This paper presents a circular microfluidic centrifuge with two inlets and two outlets to separate mixed microparticles with a specially designed sample injection hole. To separate the mixed particles, it uses a rotational flow, generated in a chamber by counter primary flows in the microchannels. The shape and sizes of the circular microfluidic centrifuge have been designed through numerical evaluation to have a large relative centrifugal force. The difference of centrifuge times of the mixed particles of 1 μm and 6 μm was determined to be 8.2 s at an inlet Reynolds number of 500 and a sample Reynolds number of 20. In the experiment, this was measured to be about 10 s. From the separation of the two polymer particles analogous to the representative sizes of platelets and red blood cells, the circular microfluidic centrifuge shows a potential to separate human blood cells size-selectively by using the difference of centrifuge times.

  15. Manufacture of chitosan microbeads using centrifugally driven flow of gel-forming solutions through a polymeric micronozzle.

    PubMed

    Mark, Daniel; Haeberle, Stefan; Zengerle, Roland; Ducree, Jens; Vladisavljević, Goran T

    2009-08-15

    A centrifugally driven pulse-free flow has been used for generation of tripolyphosphate (TPP)-gelated chitosan beads with tunable diameters ranging from 148 to 257 microm. The production process requires a single motor as the sole actively actuated component. The 2% (w/w) chitosan solution was extruded through a polymeric nozzle with an inner diameter of 127 microm in the centrifugal field ranging from 93 to 452 g and the drops were collected in an Eppendorf tube containing 10% (w/w) TPP solution at pH 4.0. The reproducibility of the bead diameters out of different nozzles was very good with overall CVs of the bead diameters down to 15% and the production rate was 45 beads per second per nozzle at 44 Hz rotor frequency. The production rate was proportional to the sixth power of the rotor frequency, which was explained by the non-Newtonian behaviour of the chitosan solution with a flow behaviour index of 0.466. An analytical model for the bead diameter and production rate has been presented and validated by the experimental data. The shrinkage of chitosan drops during gelation was estimated from the observations and the theoretical model.

  16. Stellar angular diameters from occultation observations.

    NASA Astrophysics Data System (ADS)

    Qian, B.-C.

    This paper reviews the history of measuring stellar angular diameters from lunar occultation observations and the techniques of data analysis. Several effects which can affect the results of measurement are discussed. The author finds that there may be systematic errors in angular diameters measured by various observatories for Aldebaran.

  17. Centrifugation of coal-derived liquids

    SciTech Connect

    Weintraub, Murray; Weiss, Milton L.; Akhtar, Sayeed

    1980-06-01

    The application of the continuous solid bowl centrifuge to the removal of solids from coal liquefaction products was investigated. The centrifuge removed from 23 to 88% of the input ash from 8 to 73% of the input organic benzene insolubles while flow rates, viscosities, and dam heights were varied. Viscosity ..mu.., effluent liquid rate Q/sub e/, and Ambler's geometric parameter ..sigma.. were graphically correlated with attained separations. The separation was relatively insensitive to the variables, as a 50-fold increase in Q/sub e//..sigma.. corresponded to a decrease in ash removal only from 84% to 60% and to a decrease in organic solids removal only from 77% to 22%. Organic solids removal was poorer and more erratic than ash removal because of the lesser density differences and greater size variability of the organics. Ancillary studies demonstrated that coal liquefaction products may behave as a Bingham Plastic fluid, and that this results in an absolute limit on the attainable solids separation. Additional studies showed that little difference in density may exist between the organic solids and liquids, and that effects of aging may threaten the validity of viscosity measurements.

  18. Some aversive characteristics of centrifugally generated gravity.

    NASA Technical Reports Server (NTRS)

    Altman, F.

    1973-01-01

    The effective weight of rats was manipulated by centrifugation. Two effective weight levels were obtained. In three escape avoidance conditions a lever press produced a change from a base level of 2.1 g to a response level of 1.1 g. In a punishment condition a response produced a change from a 1.1 g level to a 2.1 g level and in an extinction condition responses had no effect on the 2.1 g effective weight level present. All changes took 30 sec and were maintained for an additional 10 sec before a return to base level was initiated. When responses occurred closer together than the 40 sec, they delayed the return to base level by 40 sec. This 40 sec interval is referred to as response-contingent-time. The response rate and amount of response-contingent-time served as the data. The results confirmed previous data that centrifugation is aversive. The results are interpreted as indicating that the aversiveness is attributable to the increase in effective weight, and that rats can discriminate the different angular velocity-radius of rotation combinations used.

  19. Experimental Investigation of Centrifugal Compressor Stabilization Techniques

    NASA Technical Reports Server (NTRS)

    Skoch, Gary J.

    2003-01-01

    Results from a series of experiments to investigate techniques for extending the stable flow range of a centrifugal compressor are reported. The research was conducted in a high-speed centrifugal compressor at the NASA Glenn Research Center. The stabilizing effect of steadily flowing air-streams injected into the vaneless region of a vane-island diffuser through the shroud surface is described. Parametric variations of injection angle, injection flow rate, number of injectors, injector spacing, and injection versus bleed were investigated for a range of impeller speeds and tip clearances. Both the compressor discharge and an external source were used for the injection air supply. The stabilizing effect of flow obstructions created by tubes that were inserted into the diffuser vaneless space through the shroud was also investigated. Tube immersion into the vaneless space was varied in the flow obstruction experiments. Results from testing done at impeller design speed and tip clearance are presented. Surge margin improved by 1.7 points using injection air that was supplied from within the compressor. Externally supplied injection air was used to return the compressor to stable operation after being throttled into surge. The tubes, which were capped to prevent mass flux, provided 9.3 points of additional surge margin over the baseline surge margin of 11.7 points.

  20. Centrifugally Stimulated Exospheric Ion Escape at Mercury

    NASA Technical Reports Server (NTRS)

    Delcourt, Dominique; Seki, K.; Terada, N.; Moore, Thomas E.

    2012-01-01

    We investigate the transport of ions in the low-altitude magnetosphere magnetosphere of Mercury. We show that, because of small spatial scales, the centrifugal effect due to curvature of the E B drift paths can lead to significant particle energization in the parallel direction. We demonstrate that because of this effect, ions with initial speed smaller than the escape speed such as those produced via thermal desorption can overcome gravity and escape into the magnetosphere. The escape route of this low-energy exosphere originating material is largely controlled by the magnetospheric convection rate. This escape route spreads over a narrower range of altitudes when the convection rate increases. Bulk transport of low-energy planetary material thus occurs within a limited region of space once moderate magnetospheric convection is established. These results suggest that, via release of material otherwise gravitationally trapped, the E B related centrifugal acceleration is an important mechanism for the net supply of plasma to the magnetosphere of Mercury.

  1. Wave Augmented Diffusers for Centrifugal Compressors

    NASA Technical Reports Server (NTRS)

    Paxson, Daniel E.; Skoch, Gary J.

    1998-01-01

    A conceptual device is introduced which would utilize unsteady wave motion to slow and turn flows in the diffuser section of a centrifugal compressor. The envisioned device would substantially reduce the size of conventional centrifugal diffusers by eliminating the relatively large ninety degree bend needed to turn the flow from the radial/tangential to the axial direction. The bend would be replaced by a wall and the flow would instead exit through a series of rotating ports located on a disk, adjacent to the diffuser hub, and fixed to the impeller shaft. The ports would generate both expansion and compression waves which would rapidly transition from the hub/shroud (axial) direction to the radial/tangential direction. The waves would in turn induce radial/tangential and axial flow. This paper presents a detailed description of the device. Simplified cycle analysis and performance results are presented which were obtained using a time accurate, quasi-one-dimensional CFD code with models for turning, port flow conditions, and losses due to wall shear stress. The results indicate that a periodic wave system can be established which yields diffuser performance comparable to a conventional diffuser. Discussion concerning feasibility, accuracy, and integration follow.

  2. Development of an implantable centrifugal blood pump.

    PubMed

    Goldstein, A H; Pacella, J J; Trumble, D R; Clark, R E

    1992-01-01

    The efficacy of centrifugal pumps for short-term (0-30 days) ventricular support has been widely reported and favorably compared with pulsatile systems. A small, durable, implantable centrifugal blood pump is being developed for medium-term use (up to 6 months). The pump is based on the Medtronic Hemadyne system that has existed in multiple forms over the past 30 years. The pump is approximately the size of a tennis ball, weighs 240 g, and is comprised of a 2.5 cm plastic impeller driven by a radially coupled brushless DC motor. In vitro hydraulic performance was recorded over a wide range of flow conditions on a mock circulatory loop. The pump generated 7 L/min flow against an afterload of 100 mmHg pressure, with a maximum power draw of 10.4 watts. Pulsatile flow was preserved when placed in conjunction with a simulated left ventricle. In vivo testing was performed in 10 healthy sheep for 10-292 hr. Heparin was used to facilitate cannulation, and no anticoagulation was administered after pump implantation. Blood chemistries reflecting hematologic, pulmonary, renal, and hepatic functions were recorded and demonstrated no adverse effects with normal pump operation. Complications were related to kinking of blood conduits and thrombus formation within the cannulae. These results are encouraging and warrant further studies to prove feasibility of this pump as a medium-term implantable ventricular assist device.

  3. Entrainment and phase-shifting by centrifugation abolished in mice lacking functional vestibular input

    NASA Astrophysics Data System (ADS)

    Fuller, Charles; Ringgold, Kristyn

    The circadian pacemaker can be phase shifted and entrained by appropriately timed locomotor activity, however the mechanism(s) involved remain poorly understood. Recent work in our lab has suggested the involvement of the vestibular otolith organs in activity-induced changes within the circadian timing system (CTS). For example, we have shown that changes in circa-dian period and phase in response to locomotion (wheel running) require functional macular gravity receptors. We believe the neurovestibular system is responsible for the transduction of gravitoinertial input associated with the types of locomotor activity that are known to af-fect the pacemaker. This study investigated the hypothesis that daily, timed gravitoinertial stimuli, as applied by centrifugation. would induce entrainment of circadian rhythms in only those animals with functional afferent vestibular input. To test this hypothesis, , chemically labyrinthectomized (Labx) mice, mice lacking macular vestibular input (head tilt or hets) and wildtype (WT) littermates were implanted i.p. with biotelemetry and individually housed in a 4-meter diameter centrifuge in constant darkness (DD). After 2 weeks in DD, the mice were exposed daily to 2G via centrifugation from 1000-1200 for 9 weeks. Only WT mice showed entrainment to the daily 2G pulse. The 2G pulse was then re-set to occur at 1200-1400 for 4 weeks. Only WT mice demonstrated a phase shift in response to the re-setting of the 2G pulse and subsequent re-entrainment to the new centrifugation schedule. These results provide further evidence that gravitoinertial stimuli require a functional vestibular system to both en-train and phase shift the CTS. Entrainment among only WT mice supports the role of macular gravity receptive cells in modulation of the CTS while also providing a functional mechanism by which gravitoinertial stimuli, including locomotor activity, may affect the pacemaker.

  4. Development of a compact, sealless, tripod supported, magnetically driven centrifugal blood pump.

    PubMed

    Yuhki, A; Nogawa, M; Takatani, S

    2000-06-01

    In this study, a tripod supported sealless centrifugal blood pump was designed and fabricated for implantable application using a specially designed DC brushless motor. The tripod structure consists of 3 ceramic balls mounted at the bottom surface of the impeller moving in a polyethylene groove incorporated at the bottom pump casing. The follower magnet inside the impeller is coupled to the driver magnet of the motor outside the bottom pump casing, thus allowing the impeller to slide-rotate in the polyethylene groove as the motor turns. The pump driver has a weight of 230 g and a diameter of 60 mm. The acrylic pump housing has a weight of 220 g with the priming volume of 25 ml. At the pump rpm of 1,000 to 2,200, the generated head pressure ranged from 30 to 150 mm Hg with the maximum system efficiency being 12%. When the prototype pump was used in the pulsatile mock loop to assist the ventricle from its apex to the aorta, a strong correlation was obtained between the motor current and bypass flow waveforms. The waveform deformation index (WDI), defined as the ratio of the fundamental to the higher order harmonics of the motor current power spectral density, was computed to possibly detect the suction occurring inside the ventricle due to the prototype centrifugal pump. When the WDI was kept under the value of 0.20 by adjusting the motor rpm, it was successful in suppressing the suction due to the centrifugal pump in the ventricle. The prototype sealless, centrifugal pump together with the control method based on the motor current waveform analysis may offer an intermediate support of the failing left or right ventricle bridging to heart transplantation.

  5. Measurement of wire diameter by optical diffraction

    NASA Astrophysics Data System (ADS)

    Khodier, Soraya A.

    2004-02-01

    A combined interference and diffraction pattern, in the form of equidistant interference fringes, resulting from illuminating a vertical metallic wire by a laser beam is analyzed to measure the diameter of four standard wires. The diameters range from 170 to 450 μm. It is found that the error in the diameter measurements increases for small metallic wires and for small distances between the wire and the screen due to scattering effects. The intensity of the incident laser beam was controlled by a pair of sheet polaroids to minimize the scattered radiation. The used technique is highly sensitive, but requires controlled environmental conditions and absence of vibration effects. The expanded uncertainty for k=2 is calculated and found to decrease from U(D)=±1.45 μm for the wire of nominal diameter 170 μm to ±0.57 μm for the diameter 450 μm.

  6. Power transmission mechanism equipped with fluid and centrifugal clutch

    SciTech Connect

    Tamura, K.; Takeshita, S.; Fukunaga, T.

    1986-12-30

    This patent describes a power transmission mechanism equipped with a fluid coupling, an input shaft thereof interconnected to a power source being interconnected through the fluid coupling to an output shaft, and the output shaft being interconnected to a forward-rearward changeover mechanism including a speed changer. It is characterized in that the fluid coupling includes a shell, an impeller in the shell and a centrifugal clutch means in the shell for engaging the impeller and for driving the impeller when the shell is rotated by the input shaft at a speed above idle speed and for disengaging the impeller and the driving of the impeller when the shell is rotated by the input shaft at the idle speed. A turbine is included in the shell for standing idle in the shell when the centrifugal clutch means is disengaged and for drive by the impeller when the centrifugal clutch means is engaged and for driving the output shaft. The centrifugal clutch means comprises a support member fixed to the shell, a centrifugal shoe mounted on the support member for radial movement outwardly of the support member by centrifugal force and radial movement inwardly toward the support member. It also comprises spring means for moving the shoe inwardly toward the support member when the shell is rotated at idle speed, a cylindrical casing fixed to the impeller radially outward from the shoe and having an engaging surface for engagement by the centrifugal shoe when the shell is rotated at a speed above idle speed and the centrifugal shoe is moved radially outward by centrifugal force. The forward-rearward changeover mechanism, including the speed changer, is driven by the turbine when the centrifugal clutch means is engaged with the engaging surface and standing idle when the centrifugal clutch means is disengaged from the engaging surface and the turbine is standing idle.

  7. [Magnetic field numerical calculation and analysis for magnetic coupling of centrifugal blood pump for extracorporeal circulation].

    PubMed

    Hu, Zhaoyan; Lu, Lijun; Zhang, Tianyi; Chen, Zhenglong; Zhang, Tao

    2013-12-01

    This paper mainly studies the driving system of centrifugal blood pump for extracorporeal circulation, with the core being disc magnetic coupling. Structure parameters of disc magnetic coupling are related to the ability of transferring magnetic torque. Therefore, it is necessary to carry out disc magnetic coupling permanent magnet pole number (n), air gap length (L(g)), permanent magnet thickness (L(m)), permanent magnet body inside diameter (R(i)) and outside diameter (R(o)), etc. thoroughly. This paper adopts the three-dimensional static magnetic field edge element method of Ansys for numerical calculation, and analyses the relations of magnetic coupling each parameter to transmission magnetic torque. It provides a good theory basis and calculation method for further optimization of the disc magnetic coupling.

  8. Centrifugation-based Purification of Emerging Low-dimensional Materials and Their Thin-film Applications

    NASA Astrophysics Data System (ADS)

    Seo, Jung Woo

    Polydispersity in low-dimensional materials offers many interesting challenges and properties. In particular, the one- and two-dimensional carbon allotropes such as carbon nanotubes and graphene have demonstrated exquisite optoelectronic properties that are highly sensitive to their physical structures, where subtle variations in diameter and thickness render them with significantly different electronic band structures. Thus, the carbon nanomaterials have been the subject of extensive studies that address their polydispersity issues. Among these, solution-phase, buoyant density-based methods such as density gradient ultracentrifugation have been widely utilized to enrich subpopulations of carbon nanotubes and graphene with narrow distribution in diameter and thickness, enabling their applications in various next-generation thin-film devices. In this thesis, I present further advancement of centrifugation-based processing methods for emerging low-dimensional materials through systematic utilization of previously explored surfactant systems, development of novel surfactant types, and study of correlation between the chemical structure of surfactants and the dispersion and optoelectronic properties of the nanomaterials. First, I employ an iterative density gradient ultracentrifugation with a combination of anionic surfactants and addition of excess counter-ions to achieve isolation of novel diameter species of semiconducting single-walled carbon nanotubes. The purification of carbon nanotubes with simultaneous, ultrahigh-purity refinement in electronic type and diameter distribution leads to collaborative studies on heat distribution characteristics and diameter-dependent direct current and radio frequency performances in monodisperse carbon nanotube thin-film transistors. Next, I develop the use of non-ionic polymeric surfactants for centrifugation-based processes. Specifically, I utilize polypropylene and polyethylene oxide-based block copolymers with density

  9. Immediate radical trachelectomy versus neoadjuvant chemotherapy followed by conservative surgery for patients with stage IB1 cervical cancer with tumors 2cm or larger: A literature review and analysis of oncological and obstetrical outcomes.

    PubMed

    Pareja, Rene; Rendón, Gabriel J; Vasquez, Monica; Echeverri, Lina; Sanz-Lomana, Carlos Millán; Ramirez, Pedro T

    2015-06-01

    Radical trachelectomy is the treatment of choice in women with early-stage cervical cancer wishing to preserve fertility. Radical trachelectomy can be performed with a vaginal, abdominal, or laparoscopic/robotic approach. Vaginal radical trachelectomy (VRT) is generally not offered to patients with tumors 2cm or larger because of a high recurrence rate. There are no conclusive recommendations regarding the safety of abdominal radical trachelectomy (ART) or laparoscopic radical trachelectomy (LRT) in such patients. Several investigators have used neoadjuvant chemotherapy in patients with tumors 2 to 4cm to reduce tumor size so that fertility preservation may be offered. However, to our knowledge, no published study has compared outcomes between patients with cervical tumors 2cm or larger who underwent immediate radical trachelectomy and those who underwent neoadjuvant chemotherapy followed by radical trachelectomy. We conducted a literature review to compare outcomes with these 2 approaches. Our main endpoints for evaluation were oncological and obstetrical outcomes. The fertility preservation rate was 82.7%, 85.1%, 89%; and 91.1% for ART (tumors larger than >2cm), ART (all sizes), NACT followed by surgery and VRT (all sizes); respectively. The global pregnancy rate was 16.2%, 24% and 30.7% for ART, VRT, and NACT followed by surgery; respectively. The recurrence rate was 3.8%, 4.2%, 6%, 7.6% and 17% for ART (all sizes), VRT (all sizes), ART (tumors>2cm), NACT followed by surgery, and VRT (tumors>2cm). These outcomes must be considered when offering a fertility sparing technique to patients with a tumor larger than 2cm.

  10. Use of a single-bowl continuous-flow centrifuge for dewatering suspended sediments: effect on sediment physical and chemical characteristics

    USGS Publications Warehouse

    Rees, T.F.; Leenheer, J.A.; Ranville, J.F.

    1991-01-01

    Sediment-recovery efficiency of 86-91% is comparable to that of other types of CFC units. The recovery efficiency is limited by the particle-size distribution of the feed water and by the limiting particle diameter that is retained in the centrifuge bowl. Contamination by trace metals and organics is minimized by coating all surfaces that come in contact with the sample with either FEP or PFA Teflon and using a removable FEP Teflon liner in the centrifuge bowl. -from Authors

  11. Parameter Study of Melt Spun Polypropylene Fibers by Centrifugal Spinning

    DTIC Science & Technology

    2014-07-01

    including drawing, template synthesis, phase separation, self- assembly, and electrospinning . Most methods are only relevant on a laboratory scale...attention as an alternative to electrospinning , the most common nanofiber formation method. Fibers of low dielectric constants and insoluble polymers that...generally cannot be used in electrospinning can be produced through centrifugal spinning. The centrifugal spinning process has several key

  12. Coil planet centrifugation as a means for small particle separation

    NASA Technical Reports Server (NTRS)

    Herrmann, F. T.

    1983-01-01

    The coil planet centrifuge uses a centrifugal force field to provide separation of particles based on differences in sedimentation rates by flow through a rotating coiled tube. Three main separations are considered: (1) single phase fresh sheep and human erythrocytes, (2) single phase fixed heep and human erythrocytes, and (3) electrophoretically enhanced single phase fresh sheep and human erythrocytes.

  13. Centrifugal Barrel Finishing Of Turbine-Blade "Fir Trees"

    NASA Technical Reports Server (NTRS)

    Mandel, Johnny L.

    1990-01-01

    Modified centrifugal barrel-finishing machine imparts desired residual compressive stresses to "fir trees" of turbine blades. Centrifugal forces generate compressive stresses, which are transmitted to turbine blades through abrasive slurries in which suspended. Eliminates need for shot peening, rounding of edges and burrs caused by shot peening and, consequently, need for mass finishing operations to remove burrs. Improves surface finish of "fir trees".

  14. Bubble Eliminator Based on Centrifugal Flow

    NASA Technical Reports Server (NTRS)

    Gonda, Steve R.; Tsao, Yow-Min D.; Lee, Wenshan

    2004-01-01

    The fluid bubble eliminator (FBE) is a device that removes gas bubbles from a flowing liquid. The FBE contains no moving parts and does not require any power input beyond that needed to pump the liquid. In the FBE, the buoyant force for separating the gas from the liquid is provided by a radial pressure gradient associated with a centrifugal flow of the liquid and any entrained bubbles. A device based on a similar principle is described in Centrifugal Adsorption Cartridge System (MSC- 22863), which appears on page 48 of this issue. The FBE was originally intended for use in filtering bubbles out of a liquid flowing relatively slowly in a bioreactor system in microgravity. Versions that operate in normal Earth gravitation at greater flow speeds may also be feasible. The FBE (see figure) is constructed as a cartridge that includes two concentric cylinders with flanges at the ends. The outer cylinder is an impermeable housing; the inner cylinder comprises a gas-permeable, liquid-impermeable membrane covering a perforated inner tube. Multiple spiral disks that collectively constitute a spiral ramp are mounted in the space between the inner and outer cylinders. The liquid enters the FBE through an end flange, flows in the annular space between the cylinders, and leaves through the opposite end flange. The spiral disks channel the liquid into a spiral flow, the circumferential component of which gives rise to the desired centrifugal effect. The resulting radial pressure gradient forces the bubbles radially inward; that is, toward the inner cylinder. At the inner cylinder, the gas-permeable, liquid-impermeable membrane allows the bubbles to enter the perforated inner tube while keeping the liquid in the space between the inner and outer cylinders. The gas thus collected can be vented via an endflange connection to the inner tube. The centripetal acceleration (and thus the radial pressure gradient) is approximately proportional to the square of the flow speed and

  15. Supersonic rotation in the Maryland Centrifugal Experiment

    NASA Astrophysics Data System (ADS)

    Messer, Sarah

    The Maryland Centrifugal Experiment (MCX) has been built to study the confinement of supersonically-rotating plasmas and velocity shear stabilization of MHD instabilities. Theory predicts improved stability and confinement when a strong radial electric field is introduced into a magnetic-mirror geometry. The resulting radial currents establish a stable highly sheared plasma rotating at supersonic velocities in the azimuthal direction under the influence of J x B forces. This arrangement leads to increased confinement because the supersonic rotation creates an artificial radial gravity which draws the plasma away from the mirrors, closing the mirror loss cone. The large vφ shear stabilizes the plasma and enforces laminar flow. Based on these concepts, we have designed and constructed a machine to produce supersonically rotating highly-ionized plasmas. It typically does this by introducing a radial voltage of 7 kV in a magnetic-mirror geometry, 2 kG at the midplane and 19 kG at each mirror. MCX has completed its main construction phase and is acquiring data, here analyzed primarily in terms of a circuit model which infers plasma characteristics from the radial voltage across the plasma and the total radial current. The theory and simulations supporting the MCX centrifugal confinement scheme are presented here with the data and analysis from its first nine months of operation, including a description of basic plasma characteristics and evidence for both stability and confinement. Theory simulation, and initial experimental data all indicate that this centrifugal confinement scheme provides good stability and confinement at the temperatures and densities under study, as well as at the larger temperatures, fields, and dimensions expected for a fusion reactor. In particular, spectroscopic and circuit-model data indicate rotational velocities in MCX of up to 100 km/s, ion temperatures of approximately 30 eV, and ion densities upwards of 1020m-3. These parameters give

  16. Centrifugal regulator for control of deployment rates of deployable elements

    NASA Technical Reports Server (NTRS)

    Vermalle, J. C.

    1980-01-01

    The requirements, design, and performance of a centrifugal regulator aimed at limiting deployment rates of deployable elements are discussed. The overall mechanism is comprised of four distinct functional parts in a machined housing: (1) the centrifugal brake device, which checks the payout of a deployment cable; (2) the reducing gear, which produces the spin rate necesary for the braking device; (3) the payout device, which allows the unwinding of the cable; and (4) the locking device, which prevents untimely unwinding. The centrifugal regulator is set into operation by a threshold tension of the cable which unlocks the mechanism and allows unwinding. The pulley of the windout device drives the centrifugal brake with the help of the reducing gear. The centrifugal force pushes aside weights that produce friction of the studs in a cylindrical housing. The mechanism behaved well at qualification temperature and vibrations.

  17. Infiltration of fibrous preform in the centrifugal force field

    SciTech Connect

    Nishida, Yoshinori; Shirayanagi, Itaru; Sakai, Yoshibumi; Tozawa, Yasuhisa

    1994-12-31

    The pressure to infiltrate molten aluminum into alumina short fiber preform was generated by centrifugal force, and the start pressure for the infiltration was measured. The fundamental equation of infiltration phenomenon was derived from the equation of the conservation of momentum of fluid flow in the porous media in the centrifugal force field. One-dimensional solution of the equation was obtained to discuss the characteristics of fluid flow in a centrifugal force field. It was made clear that centrifugal force is effective as a motive force to infiltrate molten metal into fibrous preform, the pressure distribution of molten metal in the preform is different from that predicted by D`Arcy`s law and the infiltration is enhanced by centrifugal force.

  18. Development of Centrifugal Contactor with High Reliability

    SciTech Connect

    Okamura, Nobuo; Takeuchi, Masayuki; Ogino, Hideki; Kase, Takeshi; Koizumi, Tsutomu

    2007-07-01

    In Japan Atomic Energy Agency (JAEA), an innovative centrifugal contactor system has been developed for a future reprocessing plant. It was confirmed that it had a higher extraction capacity through the uranium test already. But it was necessary that it had the higher mechanical reliability to be applied in a reprocessing plant. In this study, two types of driving units that use a ball bearing or a magnetic bearing have been developed for it. It was confirmed that they had enough abilities trough endurance tests. The driving unit with ball bearing could be operated continuously for 5000 hours that was equal to a term of an annual operation. It was found that it could be operated for a year without maintenance. JAEA will continue to improve them and select more advantageous one on the basis of economy and lifetime in near future. (authors)

  19. Implantable centrifugal pump with hybrid magnetic bearings.

    PubMed

    Bearnson, G B; Olsen, D B; Khanwilkar, P S; Long, J W; Sinnott, M; Kumar, A; Allaire, P E; Baloh, M; Decker, J

    1998-01-01

    Test methods and results of in vitro assessment of a centrifugal pump with a magnetically suspended impeller are provided. In vitro blood tests have been completed with a resulting normalized milligram index of hemolysis (NmIH) of 12.4 +/- 4.1, indicating that hemolysis is not a problem. Hydraulic characterization of the system with water has shown that a nominal pumping condition of 6 L/min at 100 mmHg was met at 2,200 rpm. Maximum clinically usable cardiac output is predicted be 10 L/min. The magnetic bearing supported impeller did not contact the housing and was shown to be stable under a variety of pumping conditions. The driving motor efficiency is 75% at the nominal condition. Finally, a description of the clinical version of the pump under development is provided.

  20. Centrifugal governor for internal combustion engines

    SciTech Connect

    Ohnishi, M.

    1986-09-23

    A centrifugal governor is described for use with an internal combustion engine which consists of: a control rack for regulating the quantity of fuel to be supplied to the engine; flyweights radially displaceable in response to the rotational speed of the engine; a tension lever pivotable through an angle dependent upon the amount of radial displacement of the flyweights; an idling spring for urging the tension lever against radially outward displacement of the flyweights; a torque cam having a cam surface determining a fuel increment to be applied at the start of the engine; a sensor lever having one end engaged by the control rack, and another end adapted to engage with the cam surface of the torque cam; a cancelling spring interposed between the torque cam and the tension lever; a control lever; a floating lever interlocking with the control lever; and spring force adjusting means arranged at one end of the idling spring.

  1. A modeling study of a centrifugal compressor

    SciTech Connect

    Popovic, P.; Shapiro, H.N.

    1998-12-31

    A centrifugal compressor, which is part of a chlorofluorocarbon R-114 chiller installation, was investigated, operating with a new refrigerant, hydrofluorocarbon R-236ea, a proposed alternative to R-114. A large set of R-236ea operating data, as well as a limited amount of R-114 data, were available for this study. A relatively simple analytical compressor model was developed to describe compressor performance. The model was built upon a thorough literature search, experimental data, and some compressor design parameters. Two original empirical relations were developed, providing a new approach to the compressor modeling. The model was developed in a format that would permit it to be easily incorporated into a complete chiller simulation. The model was found to improve somewhat on the quantitative and physical aspects of a compressor model of the same format found in the literature. It was found that the compressor model is specific to the particular refrigerant.

  2. Closed continuous-flow centrifuge rotor

    DOEpatents

    Breillatt, Jr., Julian P.; Remenyik, Carl J.; Sartory, Walter K.; Thacker, Louis H.; Penland, William Z.

    1976-01-01

    A blood separation centrifuge rotor having a generally parabolic core disposed concentrically and spaced apart within a housing having a similarly shaped cavity. Blood is introduced through a central inlet and into a central passageway enlarged downwardly to decrease the velocity of the entrant blood. Septa are disposed inside the central passageway to induce rotation of the entrant blood. A separation chamber is defined between the core and the housing wherein the whole blood is separated into red cell, white cell, and plasma zones. The zones are separated by annular splitter blades disposed within the separation chamber. The separated components are continuously removed through conduits communicating through a face seal to the outside of the rotor.

  3. [Hemodynamic analysis of a centrifugal blood pump].

    PubMed

    Wang, Yang; Yang, Ming; Xu, Zihao; Zhuang, Xiaoqi; Li, Qilei; Xu, Liang

    2015-01-01

    This paper built the mathematical model of a centrifugal blood pump, which was designed by ourselves, combined it with that of the human cardiovascular system and simulated the coupling system using Matlab. Then we set up the experiment platform, linked the blood pump to mock human cardiovascular system in case of three-stage heart failure, and measured aortic pressure and flow under different speed. The comparison between experiment results and simulation results not only indicates the coupling model is correct and the blood pump works well, but also shows that with the increase of blood pump speed, the pulsation of aortic pressure and flow will be reduced, this situation will affect the structure and function of blood vessels.

  4. Numerical simulation of centrifugal casting of pipes

    NASA Astrophysics Data System (ADS)

    Kaschnitz, E.

    2012-07-01

    A numerical simulation model for the horizontal centrifugal pipe casting process was developed with the commercial simulation package Flow3D. It considers - additionally to mass, energy and momentum conservation equations and free surface tracking - the fast radial and slower horizontal movement of the mold. The iron inflow is not steady state but time dependent. Of special importance is the friction between the liquid and the mold in connection with the viscosity and turbulence of the iron. Experiments with the mold at controlled revolution speeds were carried out using a high-speed camera. From these experiments friction coefficients for the description of the interaction between mold and melt were obtained. With the simulation model, the influence of typical process parameters (e.g. melts inflow, mold movement, melt temperature, cooling media) on the wall thickness of the pipes can be studied. The comparison to results of pipes from production shows a good agreement between simulation and reality.

  5. Rotordynamic forces on centrifugal pump impellers

    NASA Technical Reports Server (NTRS)

    Franz, R.; Arndt, N.; Caughey, T. K.; Brennen, C. E.; Acosta, A. J.

    1987-01-01

    The asymmetric flow around an impeller in a volute exerts a force upon the impeller. To study the rotordynamic force on an impeller which is vibrating around its machine axis of rotation, the impeller, mounted on a dynamometer, is made to whirl in a circular orbit within the volute. The measured force is expressed as the sum of a steady radial force and an unsteady force due to the eccentric motion of the impeller. These forces were measured in separate tests on a centrifugal pump with radically increased shroud clearance, a two-dimensional impeller, and an impeller with an inducer, the impeller of the HPOTP (High Pressure Oxygen Turbopump) of the SSME (Space Shuttle Main Engine). In each case, a destabilizing force was observed over a region of positive whirl.

  6. Impact Structures: What Does Crater Diameter Mean?

    NASA Astrophysics Data System (ADS)

    Turtle, E. P.; Pierazzo, E.; Collins, G. S.; Osinski, G. R.; Melosh, H. J.; Morgan, J. V.; Reimold, W. U.; Spray, J. G.

    2004-03-01

    Crater diameter is an important parameter in energy scaling and impact simulations. However, disparate types of data make the use of consistent metrics difficult. We suggest a consistent terminology and discuss it in the context of several examples.

  7. Growth of nanostructures with controlled diameter

    DOEpatents

    Pfefferle, Lisa; Haller, Gary; Ciuparu, Dragos

    2009-02-03

    Transition metal-substituted MCM-41 framework structures with a high degree of structural order and a narrow pore diameter distribution were reproducibly synthesized by a hydrothermal method using a surfactant and an anti-foaming agent. The pore size and the mesoporous volume depend linearly on the surfactant chain length. The transition metals, such as cobalt, are incorporated substitutionally and highly dispersed in the silica framework. Single wall carbon nanotubes with a narrow diameter distribution that correlates with the pore diameter of the catalytic framework structure were prepared by a Boudouard reaction. Nanostructures with a specified diameter or cross-sectional area can therefore be predictably prepared by selecting a suitable pore size of the framework structure.

  8. Reciprocating flow-based centrifugal microfluidics mixer

    NASA Astrophysics Data System (ADS)

    Noroozi, Zahra; Kido, Horacio; Micic, Miodrag; Pan, Hansheng; Bartolome, Christian; Princevac, Marko; Zoval, Jim; Madou, Marc

    2009-07-01

    Proper mixing of reagents is of paramount importance for an efficient chemical reaction. While on a large scale there are many good solutions for quantitative mixing of reagents, as of today, efficient and inexpensive fluid mixing in the nanoliter and microliter volume range is still a challenge. Complete, i.e., quantitative mixing is of special importance in any small-scale analytical application because the scarcity of analytes and the low volume of the reagents demand efficient utilization of all available reaction components. In this paper we demonstrate the design and fabrication of a novel centrifugal force-based unit for fast mixing of fluids in the nanoliter to microliter volume range. The device consists of a number of chambers (including two loading chambers, one pressure chamber, and one mixing chamber) that are connected through a network of microchannels, and is made by bonding a slab of polydimethylsiloxane (PDMS) to a glass slide. The PDMS slab was cast using a SU-8 master mold fabricated by a two-level photolithography process. This microfluidic mixer exploits centrifugal force and pneumatic pressure to reciprocate the flow of fluid samples in order to minimize the amount of sample and the time of mixing. The process of mixing was monitored by utilizing the planar laser induced fluorescence (PLIF) technique. A time series of high resolution images of the mixing chamber were analyzed for the spatial distribution of light intensities as the two fluids (suspension of red fluorescent particles and water) mixed. Histograms of the fluorescent emissions within the mixing chamber during different stages of the mixing process were created to quantify the level of mixing of the mixing fluids. The results suggest that quantitative mixing was achieved in less than 3 min. This device can be employed as a stand alone mixing unit or may be integrated into a disk-based microfluidic system where, in addition to mixing, several other sample preparation steps may be

  9. Method and centrifugal apparatus for slurry testing

    SciTech Connect

    Tuzson, J.J.

    1984-04-17

    In accordance with the centrifugal erosion testing method of the invention, a material specimen is rotated with a flat surface facing the direction of rotation and a narrow stream of an abrasive particle slurry is concurrently flowed at a preselected rate in a radial direction across the flat surface, the rotating step being at sufficiently high angular velocity to urge the abrasive particles by Coriolis acceleration into a compacted mass against the flat surface and erode material therefrom by scouring type action as the particles flow radially outward. The rotating and flowing steps are continued for a sufficient preselected duration to erode material to a measurable depth, and the depth to which the flat surface is worn by the abrasive particles is measured as an indication of the erosion resistance of the specimen material. The centrifugal slurry erosion testing apparatus includes a rotatable cylindrical vessel into the interior of which the abrasive slurry is fed and a specimen holder extending radially from the vessel having a cavity for receiving the specimen and a radial slurry flow passage communicating with the interior of the vessel. One of the radial passage longitudinal walls is defined by the flat surface of the specimen. Preferably the specimen holder comprises mating semicylindrical halves one of which has a specimen-receiving cavity in its abutting surface and the other has a narrow rectangular-in-cross section groove in its abutting surface which communicates with the interior of the vessel and together with the flat surface of the specimen defines the radial slurry flow passage. The mating semicylindrical halves are enclosed by a sleeve having an annular rim disposed interiorly of the vessel to prevent radially outward movement of the specimen holder.

  10. Precision wire feeder for small diameter wire

    DOEpatents

    Brandon, E.D.; Hooper, F.M.; Reichenbach, M.L.

    1992-08-11

    A device for feeding small diameter wire having a diameter less than 0.04 mm (16 mil) to a welding station includes a driving wheel for controllably applying a non-deforming driving force to the wire to move the free end of the wire towards the welding station; and a tension device such as a torque motor for constantly applying a reverse force to the wire in opposition to the driving force to keep the wire taut. 1 figure.

  11. Precision wire feeder for small diameter wire

    DOEpatents

    Brandon, Eldon D.; Hooper, Frederick M.; Reichenbach, Marvin L.

    1992-01-01

    A device for feeding small diameter wire having a diameter less than 0.04 mm (16 mil) to a welding station includes a driving wheel for controllably applying a non-deforming driving force to the wire to move the free end of the wire towards the welding station; and a tension device such as a torque motor for constantly applying a reverse force to the wire in opposition to the driving force to keep the wire taut.

  12. Controlling the Fiber Diameter during Electrospinning

    NASA Astrophysics Data System (ADS)

    Fridrikh, Sergey V.; Yu, Jian H.; Brenner, Michael P.; Rutledge, Gregory C.

    2003-04-01

    We present a simple analytical model for the forces that determine jet diameter during electrospinning as a function of surface tension, flow rate, and electric current in the jet. The model predicts the existence of a terminal jet diameter, beyond which further thinning of the jet due to growth of the whipping instability does not occur. Experimental data for various electrospun fibers attest to the accuracy of the model.

  13. Making Jointless Dual-Diameter Tubes

    NASA Technical Reports Server (NTRS)

    Kirkham, Kathleen E.

    1989-01-01

    Welds between sections having different diameters eliminated. Single tube made with integral tapered transition section between straight sections of different diameters and wall thicknesses. Made from single piece; contains no joints, welded or otherwise. Not prone to such weld defects as voids and need not be inspected for them. Tube fabricated by either of two methods: drawing or reduction. Both methods used to fabricate tubes of 316L corrosion-resistant stainless steel for use as heat-exchanger coil.

  14. Large diameter carbon-boron fiber

    NASA Technical Reports Server (NTRS)

    Veltri, R. D.; Jacob, B. A.; Galasso, F. S.

    1975-01-01

    Investigations concerned with a development of large-diameter carbon fibers are considered, taking into account the employment of vapor deposition techniques. In the experiments a carbon monofilament substrate is used together with reacting gases which consist of combinations of hydrogen, methane, and boron trichloride. It is found that the described approach can be used to obtain a large-diameter carbon filament containing boron. The filament has reasonable strength and modulus properties.

  15. Ultra-efficient Engine Diameter Study

    NASA Technical Reports Server (NTRS)

    Daggett, David L.; Brown, Stephen T.; Kawai, Ron T.

    2003-01-01

    Engine fan diameter and Bypass Ratio (BPR) optimization studies have been conducted since the beginning of the turbofan age with the recognition that reducing the engine core jet velocity and increasing fan mass flow rate generally increases propulsive efficiency. However, performance tradeoffs limit the amount of fan flow achievable without reducing airplane efficiency. This study identifies the optimum engine fan diameter and BPR, given the advanced Ultra-Efficient Engine Technology (UEET) powerplant efficiencies, for use on an advanced subsonic airframe. Engine diameter studies have historically focused on specific engine size options, and were limited by existing technology and transportation infrastructure (e.g., ability to fit bare engines through aircraft doors and into cargo holds). This study is unique in defining the optimum fan diameter and drivers for future 2015 (UEET) powerplants while not limiting engine fan diameter by external constraints. This report follows on to a study identifying the system integration issues of UEET engines. This Engine Diameter study was managed by Boeing Phantom Works, Seattle, Washington through the NASA Glenn Revolutionary Aero Space Engine Research (RASER) contract under task order 10. Boeing Phantom Works, Huntington Beach, completed the engine/airplane sizing optimization, while the Boeing Commercial Airplane group (BCA) provided design oversight. A separate subcontract to support the overall project was issued to Tuskegee University.

  16. Sample of CFD optimization of a centrifugal compressor stage

    NASA Astrophysics Data System (ADS)

    Galerkin, Y.; Drozdov, A.

    2015-08-01

    Industrial centrifugal compressor stage is a complicated object for gas dynamic design when the goal is to achieve maximum efficiency. The Authors analyzed results of CFD performance modeling (NUMECA Fine Turbo calculations). Performance prediction in a whole was modest or poor in all known cases. Maximum efficiency prediction was quite satisfactory to the contrary. Flow structure in stator elements was in a good agreement with known data. The intermediate type stage “3D impeller + vaneless diffuser+ return channel” was designed with principles well proven for stages with 2D impellers. CFD calculations of vaneless diffuser candidates demonstrated flow separation in VLD with constant width. The candidate with symmetrically tampered inlet part b3 / b2 = 0,73 appeared to be the best. Flow separation takes place in the crossover with standard configuration. The alternative variant was developed and numerically tested. The obtained experience was formulated as corrected design recommendations. Several candidates of the impeller were compared by maximum efficiency of the stage. The variant with gas dynamic standard principles of blade cascade design appeared to be the best. Quasi - 3D non-viscid calculations were applied to optimize blade velocity diagrams - non-incidence inlet, control of the diffusion factor and of average blade load. “Geometric” principle of blade formation with linear change of blade angles along its length appeared to be less effective. Candidates’ with different geometry parameters were designed by 6th math model version and compared. The candidate with optimal parameters - number of blades, inlet diameter and leading edge meridian position - is 1% more effective than the stage of the initial design.

  17. An implantable centrifugal blood pump for long term circulatory support.

    PubMed

    Yamazaki, K; Litwak, P; Kormos, R L; Mori, T; Tagusari, O; Antaki, J F; Kameneva, M; Watach, M; Gordon, L; Umezu, M; Tomioka, J; Koyanagi, H; Griffith, B P

    1997-01-01

    A compact centrifugal blood pump was developed as an implantable left ventricular assist system. The impeller diameter is 40 mm and the pump dimensions are 55 x 64 mm. This first prototype was fabricated from titanium alloy, resulting in a pump weight of 400 g including a brushless DC motor. Weight of the second prototype pump was reduced to 280 g. The entire blood contacting surface is coated with diamond like carbon to improve blood compatibility. Flow rates of over 7 L/min against 100 mmHg pressure at 2,500 rpm with 9 W total power consumption have been measured. A newly designed mechanical seal with a recirculating purge system ("Cool-Seal") is used as a shaft seal. In this seal system, seal temperature is kept under 40 degrees C to prevent heat denaturation of blood proteins. Purge fluid also cools the pump motor coil and journal bearing. The purge fluid is continuously purified and sterilized by an ultrafiltration filter incorporated into the paracorporeal drive console. In vitro experiments with bovine blood demonstrated an acceptably low hemolysis rate (normalized index of hemolysis = 0.005 +/- 0.002 g/100 L). In vivo experiments are currently ongoing using calves. Via left thoracotomy, left ventricular apex-descending aorta bypass was performed utilizing a PTFE (Polytetrafluoroethylene) vascular graft, with the pump placed in the left thoracic cavity. In two in vivo experiments, pump flow rate was maintained at 5-8 L/min, and pump power consumption remained stable at 9-10 W. All plasma free hemoglobin levels were measured at < 15 mg/dl. The seal system has demonstrated good seal capability with negligible purge fluid consumption (< 0.5 ml/ day). Both animals remain under observation after 162 and 91 days of continuous pump function.

  18. [Increment in height of the upper segment and bi-iliac diameter after menarche in young girls. Longitudinal study of 40 adolescents].

    PubMed

    Singleton, A; Patois, E; Pedron, G; Roy, M P

    1975-11-01

    The growth in height, upper segment and biiliac diameter after the menarche has been studied in 40 girls followed longitudinally until the mean age of 18 years 3 months. The mean increase in height after the menarch was 7.3 +/- 2 cm., with significant individual variations. The upper segment was responsible for much of the total increase, which was greater with an early menarche. The percentage of the final height attained by the menarche was constant: 95.5 % +/- 1,2 %. After cessation in height growth, the biiliac diameter still increased for 75 % of the children. The median value for this increase after the menarche was 2 cm., with a significant scatter. The increase in these three parameters was in indirect correlation with the bone age: the less the bone age at the menarche, the greater the increase in height, upper segment and biiliac diameter.

  19. Selective Dispersion of Highly Pure Large-Diameter Semiconducting Carbon Nanotubes by a Flavin for Thin-Film Transistors.

    PubMed

    Park, Minsuk; Kim, Somin; Kwon, Hyeokjae; Hong, Sukhyun; Im, Seongil; Ju, Sang-Yong

    2016-09-07

    Scalable and simple methods for selective extraction of pure, semiconducting (s) single-walled carbon nanotubes (SWNTs) is of profound importance for electronic and photovoltaic applications. We report a new, one-step procedure to obtain respective large-diameter s- and metallic (m)-SWNT enrichment purity in excess of 99% and 78%, respectively, via interaction between the aromatic dispersing agent and SWNTs. The approach utilizes N-dodecyl isoalloxazine (FC12) as a surfactant in conjunction with sonication and benchtop centrifugation methods. After centrifugation, the supernatant is enriched in s-SWNTs with less carbonaceous impurities, whereas precipitate is enhanced in m-SWNTs. In addition, the use of an increased centrifugal force enhances both the purity and population of larger diameter s-SWNTs. Photoinduced energy transfer from FC12 to SWNTs is facilitated by respective electronic level alignment. Owing to its peculiar photoreduction capability, FC12 can be employed to precipitate SWNTs upon UV irradiation and observe absorption of higher optical transitions of SWNTs. A thin-film transistor prepared from a dispersion of enriched s-SWNTs was fabricated to verify electrical performance of the sorted sample and was observed to display p-type conductance with an average on/off ratio over 10(6) and an average mobility over 10 cm(2)/V·s.

  20. Early Silicate Liquid Immiscibility in the Skaergaard Intrusion: Evidence from high Temperature Centrifugation Experiments

    NASA Astrophysics Data System (ADS)

    Veksler, I.; Dorfman, A. M.; Borisov, A. A.; Wirth, R.; Dingwell, D. B.

    2007-12-01

    Immiscible droplet textures are common in groundmass glasses and plagioclase-hosted melt inclusions of tholeiitic basalts (Philpotts, 1982). Our experiments on synthetic analogues of natural immiscible basaltic-rhyolitic glasses showed that conventional quenching experiments in 1-atm gas mixing furnaces were in most cases unable to reproduce unmixing yielding instead either turbid, opalescent glasses, or crystallization of tridymite and pyroxenes. In contrast, experiments involving in situ high-temperature centrifugation at 1000g on some of the liquids did yield macroscopic unmixing and phase separation. It appears that experimental reproduction of immiscibility in complex ferrobabsaltic aluminosilicate melts is hampered by nucleation barrier, metastable crystallization, and sluggish phase separation kinetics. Three-four hours of centrifugation were insufficient to complete phase segregation, and resulted in sub-micron immiscible emulsions in quenched glasses. For a model liquid composition of the Middle Zone of the Skaergaard intrusion obtained from experiments by Toplis and Carroll (1995) centrifugation at super-liquidus temperatures of 1110-1120 degrees C, produced a thin, silicic layer (64.5 wt.% SiO2 and 7.4 wt.% FeO) at the top of the main Fe-rich glass (46 wt.% SiO2 and 21 wt.% FeO). Transmission electron microscopy of the quenched products revealed silica-rich immiscible globules of about 20--30 nm in diameter suspended in the Fe-rich glass. The globules are however not a quench feature because they moved during centrifugation over a few millimeters of the sample length and eventually accumulated in the thin (0.2 mm) silicic liquid layer at the top. The divergent compositions of the top and at the bottom were shown in a series of static runs to crystallize very similar crystal assemblages of plagioclase, pyroxene, olivine, and Fe-Ti oxides. In light of our centrifuge experiments, immiscibility in the Skaergaard intrusion may have started already at the

  1. Tropic Responses of Phycomyces Sporangiophores to Gravitational and Centrifugal Stimuli

    PubMed Central

    Dennison, David S.

    1961-01-01

    A low-speed centrifuge was used to study the tropic responses of Phycomyces sporangiophores in darkness to the stimulus of combined gravitational and centrifugal forces. If this stimulus is constant the response is a relatively slow tropic reaction, which persists for up to 12 hours. The response is accelerated by increasing the magnitude of the gravitational-centrifugal force. A wholly different tropic response, the transient response, is elicited by an abrupt change in the gravitational-centrifugal stimulus. The transient response has a duration of only about 6 min. but is characterized by a high bending speed (about 5°/min.). An analysis of the distribution of the transient response along the growing zone shows that the active phase of the response has a distribution similar to that of the light sensitivity for the light-growth and phototropic responses. Experiments in which sporangiophores are centrifuged in an inert dense fluid indicate that the sensory mechanism of the transient response is closely related to the physical deformation of the growing zone caused by the action of the gravitational-centrifugal force on the sporangiophore as a whole. However, the response to a steady gravitational-centrifugal force is most likely not connected with this deformation, but is probably triggered by the shifting of regions or particles of differing density relative to one another inside the cell. PMID:13721903

  2. Centrifugal Casting Features/Metallurgical Characterization of Aluminum Alloys

    SciTech Connect

    Chirita, G.; Soares, D.; Cruz, D.; Silva, F. S.; Stefanescu, I.

    2008-02-15

    This paper deals with the study of centrifugal effects on aluminium castings under high G values. Most of the studies in this domain (FGMs obtained by centrifugal casting) deal with functionally graded composites reinforced with a solid phase such as silicon particles or others. However, in this study it will be shown that unreinforced aluminium alloys may be significantly influenced by the centrifugal effect and that functionally graded castings are also obtained. It has been observed that the centrifugal effect may increase in some alloys, depending on the relative position in the castings, the rupture strength by approx. 50%, and rupture strain by about 300%, as compared to the gravity casting technique. The Young's modulus may also increase by about 20%. It has also been reported that in vertical centrifugal castings there are mainly three aspects that affect the components thus obtained, namely: fluid dynamics; vibration (inherent to the system); and centrifugal force. These features have a different effect on the castings depending on the aluminium alloy. In this paper, an analysis of the most important effects of the centrifugal casting process on metallurgical features is conducted. A solidification characterization at several points along the mould will be made in order to have an accurate idea of both the fluid dynamics inside the mould during the casting and the solidification behavior in different parts of the component. These two analyses will be related to the metallurgical properties (phase distribution; SDAS; eutectic silicon content and shape, pores density and shape) along the component and mainly along the direction of the centrifugal pressure. A comparison between castings obtained by both centrifugal casting technique and gravity casting technique is made for reference (gravity casting)

  3. The American Gas Centrifuge Past, Present, and Future

    SciTech Connect

    Waters, Dean

    2004-09-15

    The art of gas centrifugation was born in 1935 at the University of Virginia when Dr. Jesse Beams demonstrated experimentally the separation of chlorine isotopes using an ultra-high speed centrifuge. Dr. Beam’s experiment initiated work that created a rich history of scientific and engineering accomplishment in the United States in the art of isotope separation and even large scale biological separation by centrifugation. The early history of the gas centrifuge development was captured in a lecture and documented by Dr. Jesse Beams in 1975. Much of Dr. Beams lecture material is used in this paper up to the year 1960. Following work by Dr. Gernot Zippe at the University of Virginia between 1958 and 1960, the US government embarked on a centrifuge development program that ultimately led to the start of construction of the Gas Centrifuge Enrichment Plant in Piketon Ohio in the late 1970’s. The government program was abandoned in 1985 after investing in the construction of two of six planned process buildings, a complete supply chain for process and centrifuge parts, and the successful manufacture and brief operation of an initial complement of production machines that would have met 15 percent of the planned capacity of the constructed process buildings. A declining market for enriched uranium, a glut of uranium enrichment capacity worldwide, and the promise of a new laser based separation process factored in the decision to stop the government program. By the late 1990’s it had become evident that gas centrifugation held the best promise to produce enriched uranium at low cost. In1999, the United States Enrichment Corporation undertook an initiative to revive the best of the American centrifuge technology that had been abandoned fourteen years earlier. This is an exciting story and one that when complete will enable the United States to maintain its domestic supply and to be highly competitive in the world market for this important energy commodity. (auth)

  4. DiameterJ: A validated open source nanofiber diameter measurement tool.

    PubMed

    Hotaling, Nathan A; Bharti, Kapil; Kriel, Haydn; Simon, Carl G

    2015-08-01

    Despite the growing use of nanofiber scaffolds for tissue engineering applications, there is not a validated, readily available, free solution for rapid, automated analysis of nanofiber diameter from scanning electron microscope (SEM) micrographs. Thus, the goal of this study was to create a user friendly ImageJ/FIJI plugin that would analyze SEM micrographs of nanofibers to determine nanofiber diameter on a desktop computer within 60 s. Additional design goals included 1) compatibility with a variety of existing segmentation algorithms, and 2) an open source code to enable further improvement of the plugin. Using existing algorithms for centerline determination, Euclidean distance transforms and a novel pixel transformation technique, a plugin called "DiameterJ" was created for ImageJ/FIJI. The plugin was validated using 1) digital synthetic images of white lines on a black background and 2) SEM images of nominally monodispersed steel wires of known diameters. DiameterJ analyzed SEM micrographs in 20 s, produced diameters not statistically different from known values, was over 10-times closer to known diameter values than other open source software, provided hundreds of times the sampling of manual measurement, and was hundreds of times faster than manual assessment of nanofiber diameter. DiameterJ enables users to rapidly and thoroughly determine the structural features of nanofiber scaffolds and could potentially allow new insights to be formed into fiber diameter distribution and cell response.

  5. Ocular counterrolling induced by centrifugation during orbital space flight

    NASA Technical Reports Server (NTRS)

    Moore, S. T.; Clement, G.; Raphan, T.; Cohen, B.

    2001-01-01

    During the 1998 Neurolab mission (STS-90), four astronauts were exposed to interaural centripetal accelerations (Gy centrifugation) of 0.5 g and 1 g during rotation on a centrifuge, both on Earth and during orbital space flight. Subjects were oriented either left-ear out or right-ear out, facing or back to motion. Binocular eye movements were measured in three dimensions using a video technique. On Earth, tangential centrifugation that produces 1 g of interaural linear acceleration combines with gravity to tilt the gravitoinertial acceleration (GIA) vector 45 degrees in the roll plane relative to the head vertical, generating a summed vector of 1.4 g. Before flight, this elicited mean ocular counterrolling (OCR) of 5.7 degrees. Due to the relative absence of gravity during flight, there was no linear acceleration along the dorsoventral axis of the head. As a result, during in-flight centrifugation, gravitoinertial acceleration was strictly aligned with the centripetal acceleration along the interaural axis. There was a small but significant decrease (mean 10%) in the magnitude of OCR in space (5.1 degrees). The magnitude of OCR during postflight 1 g centrifugation was not significantly different from preflight OCR (5.9 degrees). Findings were similar for 0.5 g centrifugation, but the OCR magnitude was approximately 60% of that induced by centrifugation at 1 g. OCR during pre- and postflight static tilt was not significantly different and was always less than OCR elicited by centrifugation of Earth for an equivalent interaural linear acceleration. In contrast, there was no difference between the OCR generated by in-flight centrifugation and by static tilt on Earth at equivalent interaural linear accelerations. These data support the following conclusions: (1) OCR is generated predominantly in response to interaural linear acceleration; (2) the increased OCR during centrifugation on Earth is a response to the head dorsoventral 1 g linear acceleration component, which

  6. Centrifugal pumps: which suction specific speeds are acceptable

    SciTech Connect

    Hallam, J.L.

    1982-04-01

    Suction specific speed is an important consideration when purchasing or analyzing centrifugal pumps. There is a direct correlation between this parameter, pump reliability and maintenance expenses. This article demonstrates that in a large Gulf Coast oil refinery, centrifugal pumps with a suction specific speed greater than 11,000 failed at a frequency nearly twice that of centrifugal pumps with suction specific speed less than 11,000. This study consisted primarily of hydrocarbon pumps with an average horsepower of 150 hp. Results may vary some from those found if high energy water pumps are studied. 5 refs.

  7. Centrifugal Size-Separation Sieve for Granular Materials

    NASA Technical Reports Server (NTRS)

    Walton, Otis (Inventor); Dreyer, Christopher (Inventor); Riedel, Edward (Inventor)

    2015-01-01

    A centrifugal sieve and method utilizes centrifugal force in rapidly-rotated cylindrical or conical screens as the primary body force contributing to size segregation. Within the centrifugal acceleration field, vibration and/or shearing flows are induced to facilitate size segregation and eventual separation of the fines from the coarse material. Inside a rotating cylindrical or conical screen, a separately-rotated screw auger blade can be used to transport material along the rotating cylinder or conical wall and to induce shearing in the material.

  8. 27. RW Meyer Sugar Mill: 18761889. Centrifugals, 1879, 1881. Manufacturer, ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    27. RW Meyer Sugar Mill: 1876-1889. Centrifugals, 1879, 1881. Manufacturer, Unknown. Supplied by Honolulu Ironworks, Honolulu Hawaii, 1879, 1881. View: Historical view, 1934, from T.T. Waterman collection, Hawaiian Sugar Planters' Association. With the inner basket of the centrifugal revolving at 1200 rpm molasses flew outward from the granulated sugar, through the holes in the brass lining, and into the stationary outer basket. The molasses drained through the spout at the right and into molasses storage pits below the floor. The centrifugals were underdriven with a belt connected to the pulley beneath the basket. - R. W. Meyer Sugar Mill, State Route 47, Kualapuu, Maui County, HI

  9. Increased mitogenic response in lymphocytes from chronically centrifuged mice

    NASA Technical Reports Server (NTRS)

    Mueller, Otfried; Hunzinger, E.; Cogoli, Augusto; Bechler, B.; Lee, J.; Moore, J.; Duke, J.

    1990-01-01

    The effects upon the mitogenic response of splenic lymphocytes when exposing mice to prolonged hypergravity conditions (3.5 G for 1 year) were studied. Cultures of splenic lymphocytes isolated from both centrifuged and control (1 G) animals were stimulated with Concanavalin A and the response measured using both morphological and biochemical means. Lymphocytes obtained from centrifuged mice exhibited much higher activation rates (as measured by the incorporation of H-3 thymidine) and larger cell aggregates consisting of more lymphoblasts and mitotic figures than those observed in non centrifuged control animals. Isolated splenic lymphocytes thus appear to have been conditioned by hypergravity state.

  10. Large diameter astromast development, phase 1

    NASA Technical Reports Server (NTRS)

    Preiswerk, P. R.; Finley, L. A.; Knapp, K.

    1983-01-01

    Coilable-longeron lattice columns called Astromasts (trademark) were manufactured for a variety of spacecraft missions. These flight structures varied in diameter from 0.2 to 0.5 meter (9 to 19 in.), and the longest Astromast of this type deploys to a length of 30 meters (100 feet). A double-laced diagonal Astromast design referred to as the Supermast (trademark) which, because it has shorter baylengths than an Astromast, is approximately four times as strong. The longeron cross section and composite material selection for these structures are limited by the maximum strain associated with stowage and deployment. As a result, future requirements for deployable columns with high stiffness and strength require the development of both structures in larger diameters. The design, development, and manufacture of a 6.1-m-long (20-ft), 0.75-m-diameter (30-in.), double-laced diagonal version of the Astromast is described.

  11. Submicron diameter single crystal sapphire optical fiber

    DOE PAGES

    Hill, Cary; Homa, Daniel; Liu, Bo; ...

    2014-10-02

    In this work, a submicron-diameter single crystal sapphire optical fiber was demonstrated via wet acid etching at elevated temperatures. Etch rates on the order 2.3 µm/hr were achievable with a 3:1 molar ratio sulfuric-phosphoric acid solution maintained at a temperature of 343°C. A sapphire fiber with an approximate diameter of 800 nm was successfully fabricated from a commercially available fiber with an original diameter of 50 µm. The simple and controllable etching technique provides a feasible approach to the fabrication of unique waveguide structures via traditional silica masking techniques. The ability to tailor the geometry of sapphire optical fibers ismore » the first step in achieving optical and sensing performance on par with its fused silica counterpart.« less

  12. Submicron diameter single crystal sapphire optical fiber

    SciTech Connect

    Hill, Cary; Homa, Daniel; Liu, Bo; Yu, Zhihao; Wang, Anbo; Pickrell, Gary

    2014-10-02

    In this work, a submicron-diameter single crystal sapphire optical fiber was demonstrated via wet acid etching at elevated temperatures. Etch rates on the order 2.3 µm/hr were achievable with a 3:1 molar ratio sulfuric-phosphoric acid solution maintained at a temperature of 343°C. A sapphire fiber with an approximate diameter of 800 nm was successfully fabricated from a commercially available fiber with an original diameter of 50 µm. The simple and controllable etching technique provides a feasible approach to the fabrication of unique waveguide structures via traditional silica masking techniques. The ability to tailor the geometry of sapphire optical fibers is the first step in achieving optical and sensing performance on par with its fused silica counterpart.

  13. Quantification of the secondary flow in a radial coupled centrifugal blood pump based on particle tracking velocimetry.

    PubMed

    Watanabe, Nobuo; Masuda, Takaya; Iida, Tomoya; Kataoka, Hiroyuki; Fujimoto, Tetsuo; Takatani, Setsuo

    2005-01-01

    Secondary flow in the centrifugal blood pump helps to enhance the washout effect and to minimize thrombus formation. On the other hand, it has an adverse effect on pump efficiency. Excessive secondary flow may induce hemolytic effects. Understanding the secondary flow is thus important to the design of a compact, efficient, biocompatible blood pump. This study examined the secondary flow in a radial coupled centrifugal blood pump based on a simple particle tracking velocimetry (PTV) technique. A radial magnetically coupled centrifugal blood pump has a bell-shaped narrow clearance between the impeller inner radius and the pump casing. In order to vary the flow levels through the clearance area, clearance widths of 0.25 mm and 0.50 mm and impeller washout holes with diameters of 0 mm, 2.5 mm, and 4 mm were prepared. A high-speed video camera (2000 frames per second) was used to capture the particle images from which radial flow components were derived. The flow in the space behind the impeller was assumed to be laminar and Couette type. The larger the inner clearance or diameter of washout hole, the greater was the secondary flow rate. Without washout holes, the flow behind the impeller resulted in convection. The radial flow through the washout holes of the impeller was conserved in the radial as well as in the axial direction behind the impeller. The increase in the secondary flow reduced the net pump efficiency. Simple PTV was successful in quantifying the flow in the space behind the impeller. The results verified the hypothesis that the flow behind the impeller was theoretically Couette along the circumferential direction. The convection flow observed behind the impeller agreed with the reports of other researchers. Simple PTV was effective in understanding the fluid dynamics to help improve the compact, efficient, and biocompatible centrifugal blood pump for safe clinical applications.

  14. Systematic biases in radiometric diameter determinations

    NASA Technical Reports Server (NTRS)

    Spencer, John R.; Lebofsky, Larry A.; Sykes, Mark V.

    1989-01-01

    Radiometric diameter determinations are presently shown to often be significantly affected by the effect of rotation. This thermal effect of rotation depends not only on the object's thermal inertia, rotation rate, and pole orientation, but also on its temperature, since colder objects having constant rotation rate and thermal inertia will radiate less of their heat on the diurnal than on the nocturnal hemisphere. A disk-integrated beaming parameter of 0.72 is determined for the moon, and used to correct empirically for the roughness effects in thermophysical models; the standard thermal model is found to systematically underestimate cold object diameters, while overstating their albedos.

  15. Shaft Diameter Measurement Using Structured Light Vision.

    PubMed

    Liu, Siyuan; Tan, Qingchang; Zhang, Yachao

    2015-08-12

    A method for measuring shaft diameters is presented using structured light vision measurement. After calibrating a model of the structured light measurement, a virtual plane is established perpendicular to the measured shaft axis and the image of the light stripe on the shaft is projected to the virtual plane. On the virtual plane, the center of the measured shaft is determined by fitting the projected image under the geometrical constraints of the light stripe, and the shaft diameter is measured by the determined center and the projected image. Experiments evaluated the measuring accuracy of the method and the effects of some factors on the measurement are analyzed.

  16. THERMAL EVALUATION OF DIFFERENT DRIFT DIAMETER SIZES

    SciTech Connect

    H.M. Wade

    1999-01-04

    The purpose of this calculation is to estimate the thermal response of a repository-emplaced waste package and its corresponding drift wall surface temperature with different drift diameters. The case examined is that of a 21 pressurized water reactor (PWR) uncanistered fuel (UCF) waste package loaded with design basis spent nuclear fuel assemblies. This calculation evaluates a 3.5 meter to 6.5 meter drift diameter range in increments of 1.0 meters. The time-dependent temperatures of interest, as determined by this calculation, are the spent nuclear fuel cladding temperature, the waste package surface temperature, and the drift wall surface temperature.

  17. Fabrication of 10nm diameter carbon nanopores

    SciTech Connect

    Radenovic, Aleksandra; Trepagnier, Eliane; Csencsits, Roseann; Downing, Kenneth H; Liphardt, Jan

    2008-09-25

    The addition of carbon to samples, during imaging, presents a barrier to accurate TEM analysis, the controlled deposition of hydrocarbons by a focused electron beam can be a useful technique for local nanometer-scale sculpting of material. Here we use hydrocarbon deposition to form nanopores from larger focused ion beam (FIB) holes in silicon nitride membranes. Using this method, we close 100-200nm diameter holes to diameters of 10nm and below, with deposition rates of 0.6nm per minute. I-V characteristics of electrolytic flow through these nanopores agree quantitatively with a one dimensional model at all examined salt concentrations.

  18. The truth about small-diameter implants.

    PubMed

    Christensen, Gordon J; Child, Paul L

    2010-05-01

    SDIs that are treatment planned correctly, placed and loaded properly, and are within a well-adjusted occlusion, are working in an excellent manner for the patients described in this article. It is time for those practitioners unfamiliar with SDIs and their uses to discontinue their discouragement of this technique. SDIs are easily placed, minimally invasive, and a true service to those patients described. They do not replace conventional diameter implants; however, they are a significant and important augmentation to the original root-form implant concept. There is obvious evidence of the growing acceptance of small-diameter implants by both general practitioners and specialists.

  19. Effect of interactions between bubbles and graphite particles in copper alloy melts on microstructure formed during centrifugal casting. Part 1: Theoretical analysis

    SciTech Connect

    Kim, J.K.; Rohatgi, P.K.

    1999-06-01

    Frequently, particles get associated with gas bubbles in a melt and their interaction influences the final distribution of particles and porosity in the casting. An analytical model for the separation of a particle from a bubble in melts containing dispersed particles and bubbles is proposed. During centrifugal casting of alloys containing dispersed particles, both the particles and gas bubbles present in the melt move with the centrifugal forces. Using the force balance between surface tension and net centrifugal forces (centrifugal force minus buoyancy force), the critical rotational speed of the mold for the separation of the particles and the bubbles during centrifugal casting is calculated. The critical rotational speed of the mold to separate the particle from the bubble is lower for a small particle attached to a larger bubble, as compared to the case when a large particle is attached to a smaller bubble. For a given bubble size, the critical rotational speed of the mold to separate the bubble from the particle decreases with increasing particle size. For the specific case of spherical 5-{micro}m radius graphite particles dispersed in copper alloy melt, it was found that even at a low semiapical angle of about 9 deg, the critical rotational speed needs to be around 5000 rpm for a bubble size of 500-{micro}m radius and 0.09-m-diameter mold. The rotational speed decreases to 1000 rpm when the graphite particle radius increases to 100 {micro}m for the same bubble size in copper alloy melt.

  20. Investigation of Flow in a Centrifugal Pump

    NASA Technical Reports Server (NTRS)

    Fischer, Karl

    1946-01-01

    The investigation of the flow in a centrifugal pump indicated that the flow patterns in frictional fluid are fundamentally different from those in frictionless fluid. In particular, the dead air space adhering to the section side undoubtedly causes a reduction of the theoretically possible delivery head. The velocity distribution over a parallel circle is also subjected to a noticeable change as a result of the incomplete filling of the passages. The relative velocity on the pressure side of the vane, which for passages completely filled with active flow would differ little from zero even at comparatively lower than normal delivery volume, is increased, so that no rapid reverse flow occurs on the pressure side of the vane even for smaller delivery volume. It was established, further, that the flow ceases to be stationary for very small quantities of water. The inflow to the impeller can be regarded as radial for the operating range an question. The velocity triangles at the exit are subjected to a significant alteration in shape ae a result of the increased peripheral velocity, which may be of particular importance in the determination of the guide vane entrance angle.

  1. Centrifugal governor for internal combustion engines

    SciTech Connect

    Ohnishi, M.

    1986-08-12

    A centrifugal governor is described for use with an internal combustion engine, comprising: a control rack for regulating the quantity of fuel to be supplied to the engine; flyweights radially displaceable in response to the rotational speed of the engine; a tension lever pivotable about a stationary fulcrum in response to the radial displacement of the flyweights; a torque cam having a cam surface determining a fuel increment to be applied at the start of the engine; a sensor lever having one end engaged by the control rack and another end disposed for engagement with the cam surface of the torque cam, the sensor lever being adapted to engage with the cam surface of the torque cam when the engine is in a starting condition, to cause displacement of the control rack into a fuel increasing position for the start of the engine; and spring means interposed between the torque cam and the tension lever and urging the torque cam with a force dependent upon the angularity of the tension lever in a direction of disengaging the sensor lever from the cam surface of the torque cam; the spring means comprising first and second springs, one of the first and second springs being formed of a thermosensitive material having a smaller spring constant at a low temperature below a predetermined value, and a larger spring constant at a temperature above the predetermined value; and the first and second springs of the spring means comprising coiled springs disposed concentrically with each other.

  2. Centrifugal governor for internal combustion engines

    SciTech Connect

    Ohkoshi, M.

    1987-04-14

    This patent describes a centrifugal governor for use with an internal combustion engine, comprising: a control rack for regulating the quantity of fuel to be supplied to the engine; flyweights radially displaceable in response to the rotational speed of the engine; a tension lever pivotable through an angle dependent upon the amount of radial displacement of the flyweights; a torque cam pivotable about and relative to a fulcrum shaft thereof and having a cam surface including a cam surface portion determining a fuel increment to be applied at the start of the engine; a sensor lever having one end engaged by the control rack; the sensor lever having another end disposed to engage with the cam surface portion of the torque cam when the engine is in a starting condition, to permit displacement of the control rack into a fuel increasing position for the start of the engine; and a cancelling spring interposed between the torque cam and the tension lever and urging the torque cam with a force dependent upon the angularity of the tension lever to cause pivoting of the torque cam about the fulcrum shaft thereof in a direction of disengaging the sensor lever from the cam surface portion of the torque cam. The improvement is described comprising biasing means for forcibly pivotally displacing, immediately before operation of a starter of the engine, the torque cam in one direction against the urging force of the cancelling spring to a predetermined position.

  3. Fluid dynamic noise in a centrifugal pump

    NASA Astrophysics Data System (ADS)

    Tse, D. G.; Whitelaw, J. H.

    1993-08-01

    Pressure distributions and frequency spectra have been obtained in a centrifugal pump having flow rates between the design point and near shut-down. The pump was comprised of a radial flow impeller with four backswept blades and a single volute. Measurements were obtained at the design flow rate and at off-design conditions to advance understanding of noise generation, to quantify the contribution of tonal, narrowband and broadband components to the overall noise and to develop strategies for suppressing fluid dynamic noise by flow control and active control. Fluid dynamic noise was generated by the unsteady conditions encountered by the impeller blade. Unsteady conditions originated from non-uniformities at the inlet and the impeller outlet at design and off-design conditions. Inlet flow non-uniformity was induced by separation regions. Flow separations are inherent in turbomachinery because of growth of the boundary layer and the disturbance effect of the rotating impeller. Flow non-uniformity at the impeller outlet stemmed from inlet flow non-uniformities in the inlet, from propagation of pressure waves in a vaneless diffuser, and from scroll effects.

  4. Wave Augmented Diffuser for Centrifugal Compressor

    NASA Technical Reports Server (NTRS)

    Skoch, Gary J. (Inventor); Paxson, Daniel E. (Inventor)

    2001-01-01

    A wave augmented diffuser for a centrifugal compressor surrounds the outlet of an impeller that rotates on a drive shaft having an axis of rotation. The impeller brings flow in in an axial direction and imparts kinetic energy to the flow discharging it in radial and tangential directions. The flow is discharged into a plurality of circumferentially disposed wave chambers. The wave chambers are periodically opened and closed by a rotary valve such that the flow through the diffuser is unsteady. The valve includes a plurality of valve openings that are periodically brought into and out of fluid communication with the wave chambers. When the wave chambers are closed, a reflected compression wave moves upstream towards the diffuser bringing the flow into the wave chamber to rest. This action recovers the kinetic energy from the flow and limits any boundary layer growth. The flow is then discharged in an axial direction through an opening in the valve plate when the valve plate is rotated to an open position. The diffuser thus efficiently raises the static pressure of the fluid and discharges an axially directed flow at a radius that is predominantly below the maximum radius of the diffuser.

  5. High efficiency, variable geometry, centrifugal cryogenic pump

    SciTech Connect

    Forsha, M.D.; Nichols, K.E.; Beale, C.A.

    1994-12-31

    A centrifugal cryogenic pump has been developed which has a basic design that is rugged and reliable with variable speed and variable geometry features that achieve high pump efficiency over a wide range of head-flow conditions. The pump uses a sealless design and rolling element bearings to achieve high reliability and the ruggedness to withstand liquid-vapor slugging. The pump can meet a wide range of variable head, off-design flow requirements and maintain design point efficiency by adjusting the pump speed. The pump also has features that allow the impeller and diffuser blade heights to be adjusted. The adjustable height blades were intended to enhance the pump efficiency when it is operating at constant head, off-design flow rates. For small pumps, the adjustable height blades are not recommended. For larger pumps, they could provide off-design efficiency improvements. This pump was developed for supercritical helium service, but the design is well suited to any cryogenic application where high efficiency is required over a wide range of head-flow conditions.

  6. Central centrifugal cicatricial alopecia: challenges and solutions

    PubMed Central

    Herskovitz, Ingrid; Miteva, Mariya

    2016-01-01

    Central centrifugal cicatricial alopecia (CCCA) is the most common scarring alopecia among African American women. Data about epidemiology, etiology, genetic inheritance, and management are scarce and come from individual reports or small series. CCCA has been associated with hot combing and traumatic hair styling for years; however, studies fail to confirm it as the sole etiologic factor. It has been shown in a small series that CCCA can be inherited in an autosomal dominant fashion, with a partial penetrance and a strong modifying effect of hairstyling and sex. CCCA presents clinically as a central area of progressive irreversible hair loss that expands to the periphery. A patchy form has also been described. Dermoscopy is helpful to identify the optimal site for the biopsy, which establishes the diagnosis. Well-designed randomized controlled trials are needed to discover the optimal management. At this point, patients are advised to avoid traction and chemical treatments; topical and intralesional steroids, calcineurin inhibitors, and minoxidil can be helpful in halting the progression. PMID:27574457

  7. 18. View north of Tropic Chamber Worthington centrifugal compressor and ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    18. View north of Tropic Chamber Worthington centrifugal compressor and control panel, in machine area. - Natick Research & Development Laboratories, Climatic Chambers Building, U.S. Army Natick Research, Development & Engineering Center (NRDEC), Natick, Middlesex County, MA

  8. 16. View northwest of Arctic Chamber Worthington centrifugal compressor and ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    16. View northwest of Arctic Chamber Worthington centrifugal compressor and control panel, in machine area. - Natick Research & Development Laboratories, Climatic Chambers Building, U.S. Army Natick Research, Development & Engineering Center (NRDEC), Natick, Middlesex County, MA

  9. A multiplexed immunoassay system based upon reciprocating centrifugal microfluidics

    NASA Astrophysics Data System (ADS)

    Noroozi, Zahra; Kido, Horacio; Peytavi, Régis; Nakajima-Sasaki, Rie; Jasinskas, Algimantas; Micic, Miodrag; Felgner, Philip L.; Madou, Marc J.

    2011-06-01

    A novel, centrifugal disk-based micro-total analysis system (μTAS) for low cost and high throughput semi-automated immunoassay processing was developed. A key innovation in the disposable immunoassay disk design is in a fluidic structure that enables very efficient micro-mixing based on a reciprocating mechanism in which centrifugal acceleration acting upon a liquid element first generates and stores pneumatic energy that is then released by a reduction of the centrifugal acceleration, resulting in a reversal of direction of flow of the liquid. Through an alternating sequence of high and low centrifugal acceleration, the system reciprocates the flow of liquid within the disk to maximize incubation/hybridization efficiency between antibodies and antigen macromolecules during the incubation/hybridization stage of the assay. The described reciprocating mechanism results in a reduction in processing time and reagent consumption by one order of magnitude.

  10. 3. Interior view of centrifugal pump house showing pumps and ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    3. Interior view of centrifugal pump house showing pumps and engines, looking W. - Laurel Valley Sugar Plantation, Drainage Plant, 2 Miles South of Thibodaux on State Route 308, Thibodaux, Lafourche Parish, LA

  11. 2. View of centrifugal pump house sitting at edge of ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    2. View of centrifugal pump house sitting at edge of drainage canal, looking E. - Laurel Valley Sugar Plantation, Drainage Plant, 2 Miles South of Thibodaux on State Route 308, Thibodaux, Lafourche Parish, LA

  12. 23. TEMPORARY CENTRIFUGAL PUMP. NOTE CHAPMAN HYDRAULICOPERATED VALVE FOR LATER ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    23. TEMPORARY CENTRIFUGAL PUMP. NOTE CHAPMAN HYDRAULIC-OPERATED VALVE FOR LATER CONNECTION OF ENGINE PUMP ENG TO DISCHARGE HEADER. - Lakeview Pumping Station, Clarendon & Montrose Avenues, Chicago, Cook County, IL

  13. Manufacture of hollow ingots using centrifugal casting machines

    NASA Astrophysics Data System (ADS)

    Pomeshchikov, A. G.; Greneva, T. S.; Baidachenko, V. I.; Berezin, V. I.

    2010-12-01

    Centrifugal machines are proposed for the foundry created at the Almalyk Mining and Smelting Factory in order to produce hollow ingots of a liquid metal made by remelting of consumable electrodes in a refractory accumulating crucible.

  14. 25. RW Meyer Sugar Mill: 18761889. Centrifugals, 1879, 1881. Manufacturer, ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    25. RW Meyer Sugar Mill: 1876-1889. Centrifugals, 1879, 1881. Manufacturer, Unknown. Supplied by Honolulu Iron Works, Honolulu, Hawaii, 1879, 1881. View: After sugar was granulated and cooled it had to be dried and drained, completely separating the sugar crystals from the molasses. Revolving at 1200 rpm the inner basket drove the molasses outward into the stationary outer basket leaving dried sugar behind. The steam engine counter-shaft at the left was belt driven and belts running from the counter-shaft pulleys to the centrifugals' base-pulleys provided the necessary power. Part of the clutch system which moved the belt from a moving to a stationary pulley, thus turning the centrifugals on and off, is seen in Between the counter-shaft and the centrifugals. - R. W. Meyer Sugar Mill, State Route 47, Kualapuu, Maui County, HI

  15. 19. LOWER OIL ROOM DIABLO POWERHOUSE: SHARPLES OIL CENTRIFUGE AND ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    19. LOWER OIL ROOM DIABLO POWERHOUSE: SHARPLES OIL CENTRIFUGE AND OIL TANK, 1989. - Skagit Power Development, Diablo Powerhouse, On Skagit River, 6.1 miles upstream from Newhalem, Newhalem, Whatcom County, WA

  16. Looking Southeast at Precipitation System, Steam Dryer and Centrifuge in ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    Looking Southeast at Precipitation System, Steam Dryer and Centrifuge in Red Room within Recycle Recovery Building - Hematite Fuel Fabrication Facility, Recycle Recovery Building, 3300 State Road P, Festus, Jefferson County, MO

  17. A multiplexed immunoassay system based upon reciprocating centrifugal microfluidics

    PubMed Central

    Noroozi, Zahra; Kido, Horacio; Peytavi, Régis; Nakajima-Sasaki, Rie; Jasinskas, Algimantas; Micic, Miodrag; Felgner, Philip L.; Madou, Marc J.

    2011-01-01

    A novel, centrifugal disk-based micro-total analysis system (μTAS) for low cost and high throughput semi-automated immunoassay processing was developed. A key innovation in the disposable immunoassay disk design is in a fluidic structure that enables very efficient micro-mixing based on a reciprocating mechanism in which centrifugal acceleration acting upon a liquid element first generates and stores pneumatic energy that is then released by a reduction of the centrifugal acceleration, resulting in a reversal of direction of flow of the liquid. Through an alternating sequence of high and low centrifugal acceleration, the system reciprocates the flow of liquid within the disk to maximize incubation/hybridization efficiency between antibodies and antigen macromolecules during the incubation/hybridization stage of the assay. The described reciprocating mechanism results in a reduction in processing time and reagent consumption by one order of magnitude. PMID:21721711

  18. TECHNOLOGY EVALUATION REPORT: RETECH'S PLASMA CENTRIFUGAL FURNACE - VOLUME I

    EPA Science Inventory

    A demonstration of the Retech, Inc. Plasma Centrifugal Furnace (PCF) was conducted under the Superfund Innovative Technology Evaluation (SITE) Program at the Department of Energy's (DOE's) Component Development and Integration Facility in Butte, Montana. The furnace uses heat gen...

  19. 14. CENTRIFUGAL FREQUENCY RELAY IN WAYSIDE CABINET, NEW HAVEN YARD ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    14. CENTRIFUGAL FREQUENCY RELAY IN WAYSIDE CABINET, NEW HAVEN YARD - New York, New Haven & Hartford Railroad, Automatic Signalization System, Long Island Sound shoreline between Stamford & New Haven, Stamford, Fairfield County, CT

  20. 15. FRONT VIEW, DETAIL, CENTRIFUGAL FREQUENCY RELAY IN WAYSIDE CABINET, ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    15. FRONT VIEW, DETAIL, CENTRIFUGAL FREQUENCY RELAY IN WAYSIDE CABINET, NEW HAVEN YARD - New York, New Haven & Hartford Railroad, Automatic Signalization System, Long Island Sound shoreline between Stamford & New Haven, Stamford, Fairfield County, CT

  1. 8. FLOOR 1: TENTERING GEAR FOR SOUTH STONES, CENTRIFUGAL GOVERNOR ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    8. FLOOR 1: TENTERING GEAR FOR SOUTH STONES, CENTRIFUGAL GOVERNOR MOUNTED ON STONE SPINDLE, VERY SHORT STEELYARD - Windmill at Water Mill, Montauk Highway & Halsey Lane, Water Mill, Suffolk County, NY

  2. 7 CFR 51.320 - Diameter.

    Code of Federal Regulations, 2010 CFR

    2010-01-01

    ... Standards for Grades of Apples Definitions § 51.320 Diameter. When measuring for minimum size, “diameter” means the greatest dimension of the apple measured at right angles to a line from stem to blossom end. When measuring for maximum size, “diameter” means the smallest dimension of the apple determined...

  3. 7 CFR 51.320 - Diameter.

    Code of Federal Regulations, 2014 CFR

    2014-01-01

    ..., CERTIFICATION, AND STANDARDS) United States Standards for Grades of Apples Definitions § 51.320 Diameter. When measuring for minimum size, “diameter” means the greatest dimension of the apple measured at right angles to... dimension of the apple determined by passing the apple through a round opening in any position....

  4. 7 CFR 51.320 - Diameter.

    Code of Federal Regulations, 2012 CFR

    2012-01-01

    ... Standards for Grades of Apples Definitions § 51.320 Diameter. When measuring for minimum size, “diameter” means the greatest dimension of the apple measured at right angles to a line from stem to blossom end. When measuring for maximum size, “diameter” means the smallest dimension of the apple determined...

  5. 7 CFR 51.320 - Diameter.

    Code of Federal Regulations, 2011 CFR

    2011-01-01

    ... Standards for Grades of Apples Definitions § 51.320 Diameter. When measuring for minimum size, “diameter” means the greatest dimension of the apple measured at right angles to a line from stem to blossom end. When measuring for maximum size, “diameter” means the smallest dimension of the apple determined...

  6. 7 CFR 51.320 - Diameter.

    Code of Federal Regulations, 2013 CFR

    2013-01-01

    ..., CERTIFICATION, AND STANDARDS) United States Standards for Grades of Apples Definitions § 51.320 Diameter. When measuring for minimum size, “diameter” means the greatest dimension of the apple measured at right angles to... dimension of the apple determined by passing the apple through a round opening in any position....

  7. Reducing the diameters of computer networks

    NASA Technical Reports Server (NTRS)

    Bokhari, S. H.; Raza, A. D.

    1986-01-01

    Three methods of reducing the diameters of computer networks by adding additional processor to processor links under the constraint that no more than one I/O port be added to each processor are discussed. This is equivalent to adding edges to a given graph under the constraint that the degree of any node be increased, at most, by one.

  8. Small diameter symmetric networks from linear groups

    NASA Technical Reports Server (NTRS)

    Campbell, Lowell; Carlsson, Gunnar E.; Dinneen, Michael J.; Faber, Vance; Fellows, Michael R.; Langston, Michael A.; Moore, James W.; Multihaupt, Andrew P.; Sexton, Harlan B.

    1992-01-01

    In this note is reported a collection of constructions of symmetric networks that provide the largest known values for the number of nodes that can be placed in a network of a given degree and diameter. Some of the constructions are in the range of current potential engineering significance. The constructions are Cayley graphs of linear groups obtained by experimental computation.

  9. Reduced artery diameters in Klinefelter syndrome.

    PubMed

    Foresta, C; Caretta, N; Palego, P; Ferlin, A; Zuccarello, D; Lenzi, A; Selice, R

    2012-10-01

    Various epidemiological studies in relatively large cohorts of patients with Klinefelter syndrome (KS) described the increased morbidity and mortality in these subjects. Our aim was to study the structure and function of arteries in different districts to investigate in these subjects possible alterations. A total of 92 patients having non-mosaic KS, diagnosed in Centre for Human Reproduction Pathology at the University of Padova, and 50 age-matched healthy male controls were studied. Klinefelter syndrome subjects and controls evaluation included complete medical history, physical examination, measurement of concentrations of the reproductive hormones, lipidic and glycidic metabolism, AR function and sensitivity, ultrasound examinations (diameters, carotid intima-media thickness and brachial flow-mediated dilation) of brachial, common carotid and common femoral artery and abdominal aorta. Klinefelter syndrome patients showed significantly reduced artery diameters in all districts evaluated. On the contrary no statistically significant difference was found in cIMT and brachial FMD values between KS patients and controls. Furthermore, we found no statistically significant correlation of artery diameters with reproductive hormones, metabolic parameters, anthropometric measures and weighted CAG repeats. To our knowledge, this is the first study finding a reduced artery diameter in several districts in KS patients compared with that of normal male subjects and overlapping to that of female subjects. We have not an explanation for this phenomenon, even if a possible involvement of genes controlling the development of vascular system might be hypothesized, and further research is required to verify this hypothesis.

  10. Precision distances with spiral galaxy apparent diameters

    NASA Astrophysics Data System (ADS)

    Steer, Ian

    2016-01-01

    Spiral galaxy diameters offer the oldest extragalactic distance indicator known. Although outdated and hitherto imprecise, two spiral diameter-based distance indicators applied in the 1980s can be tested, calibrated, and re-established for precision era use, based on abundant redshift-independent distances data available in NED-D. Indicator one employs the largest Giant Spiral Galaxies, which have an absolute isophotal major diameter of ~70 +/- 10 kpc, offering standard ruler-based distances with <10% precision. Indicator two employs the diameter-magnitude relation for spirals in general, as a secondary indicator, offering ~20% precision. The ruler-based indicator is the only indicator with <10% precision able to independently calibrate type Ia supernovae-based distances at cosmological distances. The secondary-based indicator is the only indicator with 20% precision applicable to more galaxies than in current Tully-Fisher surveys. The primary indicator gives researchers a new tool to confirm or refute if, as currently believed, universal expansion is accelerating. The secondary indicator gives researchers a new path toward acquiring a more complete 3D picture of the local universe and potentially, because the majority of galaxies in the universe are spirals, the distant universe.

  11. Solar diameter with 2012 Venus Transit

    NASA Astrophysics Data System (ADS)

    Sigismondi, C.

    2012-06-01

    The role of Venus and Mercury transits is crucial to know the past history of the solar diameter. Through the W parameter, the logarithmic derivative of the radius with respect to the luminosity, the past values of the solar luminosity can be recovered. The black drop phenomenon affects the evaluation of the instants of internal and external contacts between the planetary disk and the solar limb. With these observed instants compared with the ephemerides the value of the solar diameter is recovered. The black drop and seeing effects are overcome with two fitting circles, to Venus and to the Sun, drawn in the undistorted part of the image. The corrections of ephemerides due to the atmospheric refraction will also be taken into account. The forthcoming transit of Venus will allow an accuracy on the diameter of the Sun better than 0.01 arcsec, with good images of the ingress and of the egress taken each second. Chinese solar observatories are in the optimal conditions to obtain valuable data for the measurement of the solar diameter with the Venus transit of 5/6 June 2012 with an unprecedented accuracy, and with absolute calibration given by the ephemerides.

  12. Measuring Solar Diameter with 2012 Venus Transits

    NASA Astrophysics Data System (ADS)

    Sigismondi, Costantino

    The role of Venus and Mercury transits is crucial to know the past history of the solar diameter. Through the W parameter, the logarithmic derivative of the radius with respect to the luminosity, the past values of the solar luminosity can be recovered. The black drop phenomenon affects the evaluation of the instants of internal and external contacts between the planetary disk and the solar limb. With these observed instants compared with the ephemerides the value of the solar diameter is recovered. The black drop and seeing effects are overcome with two fitting circles, to Venus and to the Sun, drawn in the undistorted part of the image. The corrections of ephemerides due to the atmospheric refraction will also be taken into account. The forthcoming transit of Venus will allow an accuracy on the diameter of the Sun better than 0.01 arcsec, with good images of the ingress and of the egress taken each second. Chinese solar observatories are in the optimal conditions to obtain valuable data for the measurement of the solar diameter with the Venus transit of 5/6 June 2012 with an unprecedented accuracy, and with absolute calibration given by the ephemerides.

  13. Centrifugal microfluidic platforms: advanced unit operations and applications.

    PubMed

    Strohmeier, O; Keller, M; Schwemmer, F; Zehnle, S; Mark, D; von Stetten, F; Zengerle, R; Paust, N

    2015-10-07

    Centrifugal microfluidics has evolved into a mature technology. Several major diagnostic companies either have products on the market or are currently evaluating centrifugal microfluidics for product development. The fields of application are widespread and include clinical chemistry, immunodiagnostics and protein analysis, cell handling, molecular diagnostics, as well as food, water, and soil analysis. Nevertheless, new fluidic functions and applications that expand the possibilities of centrifugal microfluidics are being introduced at a high pace. In this review, we first present an up-to-date comprehensive overview of centrifugal microfluidic unit operations. Then, we introduce the term "process chain" to review how these unit operations can be combined for the automation of laboratory workflows. Such aggregation of basic functionalities enables efficient fluidic design at a higher level of integration. Furthermore, we analyze how novel, ground-breaking unit operations may foster the integration of more complex applications. Among these are the storage of pneumatic energy to realize complex switching sequences or to pump liquids radially inward, as well as the complete pre-storage and release of reagents. In this context, centrifugal microfluidics provides major advantages over other microfluidic actuation principles: the pulse-free inertial liquid propulsion provided by centrifugal microfluidics allows for closed fluidic systems that are free of any interfaces to external pumps. Processed volumes are easily scalable from nanoliters to milliliters. Volume forces can be adjusted by rotation and thus, even for very small volumes, surface forces may easily be overcome in the centrifugal gravity field which enables the efficient separation of nanoliter volumes from channels, chambers or sensor matrixes as well as the removal of any disturbing bubbles. In summary, centrifugal microfluidics takes advantage of a comprehensive set of fluidic unit operations such as

  14. Preferred orientation of BSCCO via centrifugal slip casting

    SciTech Connect

    Steinlage, G.; Roeder, R.; Trumble, K.; Bowman, K. ); Li, S.; McElfresh, M. )

    1994-04-01

    Due to the highly anisotropic properties of BSCCO superconductors, the bulk properties of these materials can be greatly affected by preferential orientation. Substantial [ital c]-axis orientation normal to the desired direction of current flow has been demonstrated by centrifugally slip casting lead-doped BSCCO-2223. The strong preferred orientation developed in the centrifugally slip-cast material demonstrates high critical current potential.

  15. Computational fluid dynamics analysis of the pediatric tiny centrifugal blood pump (TinyPump).

    PubMed

    Kido, Kazuyuki; Hoshi, Hideo; Watanabe, Nobuo; Kataoka, Hiroyuki; Ohuchi, Katsuhiro; Asama, Junichi; Shinshi, Tadahiko; Yoshikawa, Masaharu; Takatani, Setsuo

    2006-05-01

    We have developed a tiny rotary centrifugal blood pump for the purpose of supporting circulation of children and infants. The pump is designed to provide a flow of 0.1-4.0 L/min against a head pressure of 50-120 mm Hg. The diameter of the impeller is 30 mm with six straight vanes. The impeller is supported by a hydrodynamic bearing at its center and rotated with a radial coupled magnetic driver. The bearing that supports rotation of the impeller of the tiny centrifugal blood pump is very critical to achieve durability, and clot-free and antihemolytic performance. In this study, computational fluid dynamics (CFD) analysis was performed to quantify the secondary flow through the hydrodynamic bearing at the center of the impeller and investigated the effects of bearing clearance on shear stress to optimize hemolytic performance of the pump. Two types of bearing clearance (0.1 and 0.2 mm) were studied. The wall shear stress of the 0.1-mm bearing clearance was lower than that of 0.2-mm bearing clearance at 2 L/min and 3000 rpm. This was because the axial component of the shear rate significantly decreased due to the narrower clearance even though the circumferential component of the shear rate increased. Hemolysis tests showed that the normalized index of hemolysis was reduced to 0.0076 g/100 L when the bearing clearance was reduced to 0.1 mm. It was found that the CFD prediction supported the experimental trend. The CFD is a useful tool for optimization of the hydrodynamic bearing design of the centrifugal rotary blood pump to optimize the performance of the pump in terms of mechanical effect on blood cell elements, durability of the bearing, and antithrombogenic performance.

  16. Synchronization of Mammalian Cells and Nuclei by Centrifugal Elutriation.

    PubMed

    Banfalvi, Gaspar

    2017-01-01

    Synchronized populations of large numbers of cells can be obtained by centrifugal elutriation on the basis of sedimentation properties of small round particles, with minimal perturbation of cellular functions. The physical characteristics of cell size and sedimentation velocity are operative in the technique of centrifugal elutriation also known as counterstreaming centrifugation. The elutriator is an advanced device for increasing the sedimentation rate to yield enhanced resolution of cell separation. A random population of cells is introduced into the elutriation chamber of an elutriator rotor running in a specially designed centrifuge. By increasing step-by-step the flow rate of the elutriation fluid, successive populations of relatively homogeneous cell size can be removed from the elutriation chamber and used as synchronized subpopulations. For cell synchronization by centrifugal elutriation, early log S phase cell populations are most suitable where most of the cells are in G1 and S phase (>80 %). Apoptotic cells can be found in the early elutriation fractions belonging to the sub-Go window. Protocols for the synchronization of nuclei of murine pre-B cells and high-resolution centrifugal elutriation of CHO cells are given. The verification of purity and cell cycle positions of cells in elutriated fractions includes the measurement of DNA synthesis by [(3)H]-thymidine incorporation and DNA content by propidium iodide flow cytometry.

  17. Improved g-level calculations for coil planet centrifuges.

    PubMed

    van den Heuvel, Remco N A M; König, Carola S

    2011-09-09

    Calculation of the g-level is often used to compare CCC centrifuges, either against each other or to allow for comparison with other centrifugal techniques. This study shows the limitations of calculating the g-level in the traditional way. Traditional g-level calculations produce a constant value which does not accurately reflect the dynamics of the coil planet centrifuge. This work has led to a new equation which can be used to determine the improved non-dimensional values. The new equations describe the fluctuating radial and tangential g-level associated with CCC centrifuges and the mean radial g-level value. The latter has been found to be significantly different than that determined by the traditional equation. This new equation will give a better understanding of forces experienced by sample components and allows for more accurate comparison between centrifuges. Although the new equation is far better than the traditional equation for comparing different types of centrifuges, other factors such as the mixing regime may need to be considered to improve the comparison further.

  18. Optimizing the separation performance of a gas centrifuge

    NASA Astrophysics Data System (ADS)

    Wood, H. G.

    1997-11-01

    Gas centrifuges were originally developed for the enrichment of U^235 from naturally occurring uranium for the purpose of providing fuel for nuclear power reactors and material for nuclear weapons. This required the separation of a binary mixture composed of U^235 and U^238. Since the end of the cold war, a surplus of enriched uranium exists on the world market, but many centrifuge plants exist in numerous countries. These circumstances together with the growing demand for stable isotopes for chemical and physical research and in medical science has led to the exploration of alternate applications of gas centrifuge technology. In order to acieve these multi-component separations, existing centrifuges must be modified or new centrifuges must be designed. In either case, it is important to have models of the internal flow fields to predict the separation performance and algorithms to seek the optimal operating conditions of the centrifuges. Here, we use the Onsager pancake model of the internal flow field, and we present an optimization strategy which exploits a similarity parameter in the pancake model. Numerical examples will be presented.

  19. The slide centrifuge gram stain as a urine screening method.

    PubMed

    Olson, M L; Shanholtzer, C J; Willard, K E; Peterson, L R

    1991-10-01

    A slide centrifuge Gram stain procedure was performed to screen for bacteriuria 4161 urine specimens submitted in urine preservative tubes for routine culture. For slide centrifuge Gram staining, each urine sample was mixed well. Thereafter, 0.2 mL of each sample was placed, using a pipette, into a slide centrifuge chamber and centrifuged at 2,000 rpm for 5 minutes. The slides were heat fixed, Gram stained, and read by laboratory personnel who scanned 12 consecutive oil-immersion fields using a set pattern. The presence of the same organism in six or more fields was defined as a positive urine screen. Urine samples were cultured using a 0.001-mL loop and a comparison of culture growth with slide centrifuge screening was made. When growth of 100,000 or more colony-forming units per milliliter (CFU/mL) was the reference for comparison, the screen had a sensitivity rate of 98%, a specificity rate of 90%, a negative predictive value of 99%, and a positive predictive value of 65%. When a lower colony count of 10,000 or more CFU/mL was the reference for comparison, the screen had a sensitivity rate of 88%, a specificity rate of 95%, a negative predictive value of 96%, and a positive predictive value of 84%. The slide centrifuge Gram stain is a very sensitive screening method to detect bacteriuria in an adult male population.

  20. Enhancement of hemocompatibility of the MERA monopivot centrifugal pump: toward medium-term use.

    PubMed

    Yamane, Takashi; Kosaka, Ryo; Nishida, Masahiro; Maruyama, Osamu; Yamamoto, Yoshihiro; Kuwana, Katsuyuki; Kawamura, Hiroshi; Shiraishi, Yasuyuki; Yambe, Tomoyuki; Sankai, Yoshiyuki; Tsutsui, Tatsuo

    2013-02-01

    The MERA monopivot centrifugal pump has been developed for use in open-heart surgery, circulatory support, and bridge-to-decision for up to 4 weeks. The pump has a closed-type, 50-mm diameter impeller with four straight paths. The impeller is supported by a monopivot bearing and is driven by a radial-flux magnet-coupling motor. Because flow visualization experiments have clarified sufficient pivot wash and stagnation at the sharp corner of the pivot support was suggested, sharp corners were removed in the design stage. The index of hemolysis of the pump operating at more than 200 mm Hg was found to be lower than that of a commercial pump. Four-week animal tests were then conducted two times; improvement of thrombus formation was seen in the female pivot through modification of female pivot geometry. Overall antithrombogenicity was also recorded. Finally, to assure mid-term use, an additional 4-week durability test revealed that the rate of the axial pivot wear was as small as 1.1 µm/day. The present in vitro and in vivo studies revealed that the MERA monopivot centrifugal pump has sufficient hemocompatibility and durability for up to 4 weeks.

  1. Effects of Ultra-Clean and centrifugal filtration on rolling-element bearing life

    NASA Technical Reports Server (NTRS)

    Loewenthal, S. H.; Moyer, D. W.; Needelman, W. M.

    1981-01-01

    Fatigue tests were conducted on groups of 65-millimeter bore diameter deep-groove ball bearings in a MIL-L-23699 lubricant under two levels of filtration. In one test series, the oil cleanliness was maintained at an exceptionally high level (better than a class "000" per NAS 1638) with a 3 micron absolute barrier filter. These tests were intended to determine the "upper limit" in bearing life under the strictest possible lubricant cleanliness conditions. In the tests using a centrifugal oil filter, contaminants of the type found in aircraft engine filters were injected into the filters' supply line at 125 milligrams per bearing-hour. "Ultra-clean" lubrication produced bearing fatigue lives that were approximately twice that obtained in previous tests with contaminated oil using 3 micron absolute filtration and approximately three times that obtained with 49 micron filtration. It was also observed that the centrifugal oil filter had approximately the same effectiveness as a 30 micron absolute filter in preventing bearing surface damage.

  2. Hydraulic Performance and Mass Transfer Efficiency of Engineering Scale Centrifugal Contactors

    SciTech Connect

    David Meikrantz; Troy Garn; Nick Mann; Jack Law; Terry Todd

    2007-09-01

    Annular centrifugal contactors (ACCs) are being evaluated for process-scale solvent extraction operations in support of Advanced Fuel Cycle Initiative (AFCI) separations goals. Process-scale annular centrifugal contactors have the potential for high stage efficiency if properly employed and optimized for the application. Hydraulic performance issues related to flow instability and classical flooding are likely unimportant, especially for units with high throughputs. However, annular mixing increases rapidly with increasing rotor diameter while maintaining a fixed g force at the rotor wall. In addition, for engineering/process-scale contactors, elevated rotor speeds and/or throughput rates, can lead to organic phase foaming at the rotor discharge collector area. Foam buildup in the upper rotor head area can aspirate additional vapor from the contactor housing resulting in a complete loss of separation equilibrium. Variable speed drives are thus desirable to optimize and balance the operating parameters to help ensure acceptable performance. Proper venting of larger contactors is required to balance pressures across individual stages and prevent vapor lock due to foam aspiration.

  3. Antithrombogenic properties of a monopivot magnetic suspension centrifugal pump for circulatory assist.

    PubMed

    Yamane, Takashi; Maruyama, Osamu; Nishida, Masahiro; Kosaka, Ryo; Chida, Takahiro; Kawamura, Hiroshi; Kuwana, Katsuyuki; Ishihara, Kazuhiko; Sankai, Yoshiyuki; Matsuzaki, Mio; Shigeta, Osamu; Enomoto, Yoshiharu; Tsutsui, Tatsuo

    2008-06-01

    The National Institute of Advanced Industrial Science and Technology (AIST) monopivot magnetic suspension centrifugal pump (MC105) was developed for open-heart surgery and several weeks of circulatory assist. The monopivot centrifugal pump has a closed impeller of 50 mm in diameter, supported by a single pivot bearing, and is driven through a magnetic coupling to widen the fluid gap. Design parameters such as pivot length and tongue radius were determined through flow visualization experiments, and the effectiveness was verified in preliminary animal experiments. The maximum overall pump efficiency reached 18%, and the normalized index of hemolysis tested with bovine blood was as low as 0.0013 g/100 L. Animal experiments with MC105 were conducted in sheep for 3, 15, 29, and 35 days in a configuration of left ventricle bypass. No thrombus was formed around the pivot bearing except when the pump speed was reduced by 20% of normal operational speed, which reduced the pump flow by 40% to avoid inlet suction. Subsequently, the antithrombogenic design was verified in animal experiments for 5 weeks at a minimum rotational speed of greater than 1500 rpm and a minimum pump flow greater than 1.0 L/min; no thrombus formation was observed under these conditions.

  4. An implantable seal-less centrifugal pump with integrated double-disk motor.

    PubMed

    Schima, H; Schmallegger, H; Huber, L; Birgmann, I; Reindl, C; Schmidt, C; Roschal, K; Wieselthaler, G; Trubel, W; Losert, U

    1995-07-01

    Thrombus formation and sealing problems at the shaft as well as the compact and efficient design of the driving unit have been major difficulties in the construction of a long-term implantable centrifugal pump. To eliminate the problems of the seal, motor size, and efficiency, two major steps were taken by modifying the Vienna implantable centrifugal pump. First, a special driving unit was developed, in which the permanent magnets of the motor themselves are used for coupling the force into the rotor. Second, the rotor shaft in the pumping chamber was eliminated by adopting a concept recently presented by Ohara. The rotor is supported by 3 pins, which run on a carbon disk, whose concave shape leads to stabilization. The device has the following specifications: size: 65 mm (diameter) by 35 mm (height), 101 cm3; priming volume 30 cm3, 240 g; and a 6-pole brushless double disk DC motor. The required input power of the described prototype is 15 W at 150 mm Hg, 5 L/min (overall eta = 11%), and has an in vitro index of hemolysis (IH) of 0.0046 g/100 L. The test for in vitro thrombus growth exhibited far less thrombus formation in the new design than in designs with axles. In conclusion, the design of a special driving unit and the elimination of the axle led to the construction of a small pump with very low blood traumatization.

  5. Fabrication of Al/Diamond Particles Functionally Graded Materials by Centrifugal Sintered-Casting Method

    NASA Astrophysics Data System (ADS)

    Watanabe, Yoshimi; Shibuya, Masafumi; Sato, Hisashi

    2013-03-01

    The continuous graded structure of functionally graded materials (FGMs) can be created under a centrifugal force. Centrifugal sintered-casting (CSC) method, proposed by the authors, is one of the fabrication methods of FGM under centrifugal force. This method is a combination of the centrifugal sintering method and centrifugal casting method. In this study, Al/diamond particle FGM was fabricated by the proposed method.

  6. Cerebral Hypoperfusion Precedes Nausea During Centrifugation

    NASA Technical Reports Server (NTRS)

    Serrador, Jorge M.; Schlegel, Todd T.; Black, F. Owen; Wood, Scott J.

    2004-01-01

    Nausea and motion sickness are important operational concerns for aviators and astronauts. Understanding underlying mechanisms associated with motion sickness may lead to new treatments. The goal of this work was to determine if cerebral blood flow changes precede the development of nausea in motion sick susceptible subjects. Cerebral flow velocity in the middle cerebral artery (transcranial Doppler), blood pressure (Finapres) and end-tidal CO2 were measured while subjects were rotated on a centrifuge (250 degrees/sec). Following 5 min of rotation, subjects were translated 0.504 m off-center, creating a +lGx centripetal acceleration in the nasal-occipital plane. Ten subjects completed the protocol without symptoms while 5 developed nausea (4 while 6ff-center and 1 while rotating on-center). Prior to nausea, subjects had significant increases in blood pressure (+13plus or minus 3 mmHg, P less than 0.05) and cerebrovascular resistance (+46 plus or minus 17%, P less than 0.05) and decreases in cerebral flow velocity both in the second (-13 plus or minus 4%) and last minute (-22 plus or minus 5%) before symptoms (P less than 0.05). In comparison, controls demonstrated no change in blood pressure or cerebrovascular resistance in the last minute of off-center rotation and only a 7 plus or minus 2% decrease in cerebral flow velocity. All subjects had significant hypocapnia (-3.8 plus or minus 0.4 mmHg, P less than 0.05), however this hypocapnia could not fully explain the cerebral hypoperfusion associated with the development of nausea. These data indicate that reductions in cerebral blood flow precede the development of nausea. Further work is necessary to determine what role cerebral hypoperfusion plays in motion sickness and whether cerebral hypoperfusion can be used to predict the development of nausea in susceptible individuals.

  7. Diameters and albedos of satellites of Uranus

    NASA Technical Reports Server (NTRS)

    Brown, R. H.; Cruikshank, D. P.; Morrison, D.

    1982-01-01

    Products of the masses of the five known satellites of Uranus, and estimates of their bulk densities and surface albedos, are used to infer their probable dimensions. Spectrophotometry has established the presence of water ice on the surfaces of all save Rhea, and the brightnesses of the satellites have been measured photoelectrically. The diameter measurements presented were made using a photometric/radiometric technique, whose recent recalibration, using independent solar system object measurements, has yielded absolute accuracies better than 5 per cent. The new albedo measurements show that Umbriel, Titania and Oberon are similar to the Jupiter moon Callisto, while Ariel resembles the Saturn moon Hyperion. The diameters of all four are similar to those of the large, icy Saturn satellites Rhea and Iapetus.

  8. Small diameter, deep bore optical inspection system

    DOEpatents

    Lord, David E.; Petrini, Richard R.; Carter, Gary W.

    1981-01-01

    An improved rod optic system for inspecting small diameter, deep bores. The system consists of a rod optic system utilizing a curved mirror at the end of the rod lens such that the optical path through the system is bent 90.degree. to minimize optical distortion in examining the sides of a curved bore. The system is particularly useful in the examination of small bores for corrosion, and is capable of examining 1/16 inch diameter and up to 4 inch deep drill holes, for example. The positioning of the curved mirror allows simultaneous viewing from shallow and right angle points of observation of the same artifact (such as corrosion) in the bore hole. The improved rod optic system may be used for direct eye sighting, or in combination with a still camera or a low-light television monitor; particularly low-light color television.

  9. Small diameter, deep bore optical inspection system

    DOEpatents

    Lord, D.E.; Petrini, R.R.; Carter, G.W.

    An improved rod optic system for inspecting small diameter, deep bores is described. The system consists of a rod optic system utilizing a curved mirror at the end of the rod lens such that the optical path through the system is bent 90/sup 0/ to minimize optical distortion in examing the sides of a curved bore. The system is particularly useful in the examination of small bores for corrosion, and is capable if examing 1/16 inch diameter and up to 4-inch deep drill holes, for example. The positioning of the curved mirror allows simultaneous viewing from shallow and righ angle points of observation of the same artifact (such as corrosion) in the bore hole. The improved rod optic system may be used for direct eye sighting, or in combination with a still camera or a low-light television monitor; particularly low-light color television.

  10. European Projects of Solar Diameter Monitoring

    NASA Astrophysics Data System (ADS)

    Sigismondi, Costantino; Bianda, Michele; Arnaud, Jean

    2008-10-01

    Three projects dealing with solar diameter evolution are presently in development. Historical and contemporary eclipses and planetary transits data collection and analysis, to cover potentially the last 5 centuries with an accuracy of few hundreds of arcsecond on diameter's measurements. The French space mission PICARD with a few milliarcseconds accuray. With PICARD-SOL instruments located at the plateau of Calern the role of the atmosphere in ground-based measurements will be clarified. CLAVIUS is a Swiss-Italian project based on drift-scan method, free from optical distortions, where hourly circles transits will be monitored with fast CMOS sensors in different wavebands. The will run at IRSOL Gregory-Coudé telescope.

  11. On finding minimum-diameter clique trees

    SciTech Connect

    Blair, J.R.S. . Dept. of Computer Science); Peyton, B.W. )

    1991-08-01

    It is well-known that any chordal graph can be represented as a clique tree (acyclic hypergraph, join tree). Since some chordal graphs have many distinct clique tree representations, it is interesting to consider which one is most desirable under various circumstances. A clique tree of minimum diameter (or height) is sometimes a natural candidate when choosing clique trees to be processed in a parallel computing environment. This paper introduces a linear time algorithm for computing a minimum-diameter clique tree. The new algorithm is an analogue of the natural greedy algorithm for rooting an ordinary tree in order to minimize its height. It has potential application in the development of parallel algorithms for both knowledge-based systems and the solution of sparse linear systems of equations. 31 refs., 7 figs.

  12. Monitoring the enrichment of the UF/sub 6/ in the pipework of a gas centrifuge enrichment plant

    SciTech Connect

    Packer, T.W.; Close, D.A.; Pratt, J.C.

    1987-01-01

    Research in the UK and the US has resulted in the development of a nondestructive assay instrument which can confirm the presence of low enriched uranium, on a rapid Go, No-Go basis, in cascade header pipework in the centrifuge enrichment plant at Capenhurst. The instrument is based on gamma-ray spectrometry and x-ray fluorescence analysis. It allows pipes, 120mm outer diameter, to be inspected in a total measurement time of approximately 30 minutes. This paper describes the techniques developed and includes the results obtained during a demonstration to, and preliminary in-plant measurements by, members of the IAEA and EURATOM Inspectorates at Capenhurst.

  13. New Large Diameter RF Complex Plasma Device

    NASA Astrophysics Data System (ADS)

    Meyer, John; Nosenko, Volodymyr; Thomas, Hubertus

    2016-10-01

    The Complex Plasma Research Group at the German Aerospace Center (DLR) in Oberpfaffenhofen has built a new large diameter rf plasma setup for dusty plasma experiments. The vacuum chamber is a stainless steel cylinder 0.90 m in diameter and 0.34 m in height with ports for viewing and measurement. A 0.85 m diameter plate in about the center serves as a powered electrode (13.56 MHz) with the chamber walls as the ground. It is pumped on by one of two Oerlikon turbo pumps with a pumping rate of 1100 l/s or 270 l/s. Argon gas is admitted into the chamber by an MKS mass flow meter and pumping is regulated by a butterfly valve to set pressure for experiments. A manual dropper is used to insert dust into the plasma. The dust is illuminated horizontally by a 660 nm 100 mW laser sheet and viewed from above by a Photron FASTCAM 1024 PCI camera. A vertical laser sheet of 635 nm will be used for side imaging. So far, single-layer plasma crystals of up to 15000 particles have been suspended. The particle velocity fluctuation spectra were measured and from these, the particle charge and screening length were calculated. Future experiments will explore the system-size dependence of the plasma crystal properties.

  14. Diameter-dependent hydrophobicity in carbon nanotubes

    NASA Astrophysics Data System (ADS)

    Kyakuno, Haruka; Fukasawa, Mamoru; Ichimura, Ryota; Matsuda, Kazuyuki; Nakai, Yusuke; Miyata, Yasumitsu; Saito, Takeshi; Maniwa, Yutaka

    2016-08-01

    Single-wall carbon nanotubes (SWCNTs) are a good model system that provides atomically smooth nanocavities. It has been reported that water-SWCNTs exhibit hydrophobicity depending on the temperature T and the SWCNT diameter D. SWCNTs adsorb water molecules spontaneously in their cylindrical pores around room temperature, whereas they exhibit a hydrophilic-hydrophobic transition or wet-dry transition (WDT) at a critical temperature Twd ≈ 220-230 K and above a critical diameter Dc ≈ 1.4-1.6 nm. However, details of the WDT phenomenon and its mechanism remain unknown. Here, we report a systematic experimental study involving X-ray diffraction, optical microscopy, and differential scanning calorimetry. It is found that water molecules inside thick SWCNTs (D > Dc) evaporate and condense into ice Ih outside the SWCNTs at Twd upon cooling, and the ice Ih evaporates and condenses inside the SWCNTs upon heating. On the other hand, residual water trapped inside the SWCNTs below Twd freezes. Molecular dynamics simulations indicate that upon lowering T, the hydrophobicity of thick SWCNTs increases without any structural transition, while the water inside thin SWCNTs (D < Dc) exhibits a structural transition, forming an ordered ice. This ice has a well-developed hydrogen bonding network adapting to the cylindrical pores of the SWCNTs. Thus, the unusual diameter dependence of the WDT is attributed to the adaptability of the structure of water to the pore dimension and shape.

  15. 29 mm Diameter Test Target Design Report

    SciTech Connect

    Woloshun, Keith Albert; Dale, Gregory E.; Olivas, Eric Richard; Naranjo, Angela Carol; Romero, Frank Patrick

    2016-08-15

    The Northstar target for Mo99 production is made up of Mo100 disks in a stack separated by coolant gaps for helium flow. A number of targets have been tested at ANL for both production of Mo99 and for thermal-hydraulic performance. These have all been with a 12 mm diameter target, even while the production goals have increased the diameter to now 29 mm. A 29 mm diameter target has been designed that is consistent with the ANL beam capabilities and the capabilities of the helium circulation system currently in use at ANL. This target is designed for 500 μA at 35 MeV electrons. While the plant design calls for 42 MeV, the chosen design point is more favorable and higher power given the limits of the ANL accelerator. The intended beam spot size is 12 mm FWHM, but the thermal analysis presented herein conservatively assumed a 10 mm FWHM beam, which results in a 44% higher beam current density at beam center.

  16. Liquid–liquid mixing studies in annular centrifugal contactors comparing stationary mixing vane options

    DOE PAGES

    Wardle, Kent E.

    2015-09-11

    Comparative studies of multiphase operation of an annular centrifugal contactor show the impact of housing stationary mixing vane configuration. A number of experimental results for several different mixing vane options are reported for operation of a 12.5 cm engineering-scale contactor unit. Fewer straight vanes give greater mixing-zone hold-up compared to curved vanes. Quantitative comparison of droplet size distribution also showed a significant decrease in mean diameter for four straight vanes versus eight curved vanes. This set of measurements gives a compelling case for careful consideration of mixing vane geometry when evaluating hydraulic operation and extraction process efficiency of annular centrifugalmore » contactors.« less

  17. Effects of ultra-clean and centrifugal filtration on rolling-element bearing life

    NASA Technical Reports Server (NTRS)

    Loewenthal, S. H.; Moyer, D. W.; Needelman, W. M.

    1981-01-01

    Fatigue tests were conducted on groups of 65-mm bore diameter deep-groove ball bearings in a MIL-L-23699 lubricant under two levels of filtration to determine the upper limit in bearing life under the strictest possible lubricant cleanliness conditions. Bearing fatigue lives, surface distress and weight loss were compared to previous bearing fatigue tests in contaminated and noncontaminated oil filters having absolute removal ratings of 3, 30, 49, and 105 microns, with lubricant and sump temperatures maintained at 347 K. Ultra clean lubrication was found to produce bearing fatigue lives that were approximately twice that obtained in previous tests with contaminated oil using 3 micron absolute filtration. It was also observed that the centrifugal oil filter has the same effectiveness as a 30 micron absolute filter in preventing surface damage.

  18. Hydraulic characterization of centrifugal pumps in He I near saturated conditions

    NASA Astrophysics Data System (ADS)

    Baudouy, B.; Takeda, M.; Van Sciver, S. W.

    The hydraulic characteristics of a variable speed liquid helium centrifugal pump in He I near saturated conditions (4.2 K and ˜100 kPa) are presented. Three different housings are tested, a simple impeller housing and two housings with an impeller with an associated screw inducer, to investigate the effect of the inducer and the effect of the diffuser throat diameter dimension on the performance of the pump. The three housings have been tested in an open loop without discharge line. The pressure difference across the pumps and the mass flow rates have been recorded for different pump speeds. We compare the pump performances with predicted values. For different inlet tube length, cavitation effects, that might occur near saturated conditions, were also investigated.

  19. [Casting faults and structural studies on bonded alloys comparing centrifugal castings and vacuum pressure castings].

    PubMed

    Fuchs, P; Küfmann, W

    1978-07-01

    The casting processes in use today such as centrifugal casting and vacuum pressure casting were compared with one another. An effort was made to answer the question whether the occurrence of shrink cavities and the mean diameter of the grain of the alloy is dependent on the method of casting. 80 crowns were made by both processes from the baked alloys Degudent Universal, Degudent N and the trial alloy 4437 of the firm Degusa. Slice sections were examined for macro and micro-porosity and the structural appearance was evaluated by linear analysis. Statistical analysis showed that casting faults and casting structure is independent of the method used and their causes must be found in the conditions of casting and the composition of the alloy.

  20. Scaling up debris-flow experiments on a centrifuge

    NASA Astrophysics Data System (ADS)

    Hung, C.; Capart, H.; Crone, T. J.; Grinspum, E.; Hsu, L.; Kaufman, D.; Li, L.; Ling, H.; Reitz, M. D.; Smith, B.; Stark, C. P.

    2013-12-01

    Boundary forces generated by debris flows can be powerful enough to erode bedrock and cause considerable damage to infrastructure during runout. Formulation of an erosion-rate law for debris flows is therefore a high priority, and it makes sense to build such a law around laboratory experiments. However, running experiments big enough to generate realistic boundary forces is a logistical challenge to say the least [1]. One alternative is to run table-top simulations with unnaturally weak but fast-eroding pseudo-bedrock, another is to extrapolate from micro-erosion of natural substrates driven by unnaturally weak impacts; hybrid-scale experiments have also been conducted [2]. Here we take a different approach in which we scale up granular impact forces by running our experiments under enhanced gravity in a geotechnical centrifuge [3]. Using a 40cm-diameter rotating drum [2] spun at up to 100g, we generate debris flows with an effective depth of over several meters. By varying effective gravity from 1g to 100g we explore the scaling of granular flow forces and the consequent bed and wall erosion rates. The velocity and density structure of these granular flows is monitored using laser sheets, high-speed video, and particle tracking [4], and the progressive erosion of the boundary surfaces is measured by laser scanning. The force structures and their fluctuations within the granular mass and at the boundaries are explored with contact dynamics numerical simulations that mimic the lab experimental conditions [5]. In this presentation we summarize these results and discuss how they can contribute to the formulation of debris-flow erosion law. [1] Major, J. J. (1997), Journal of Geology 105: 345-366, doi:10.1086/515930 [2] Hsu, L. (2010), Ph.D. thesis, University of California, Berkeley [3] Brucks, A., et al (2007), Physical Review E 75, 032301, doi:10.1103/PhysRevE.75.032301 [4] Spinewine, B., et al (2011), Experiments in Fluids 50: 1507-1525, doi: 10.1007/s00348

  1. Turbulent dispersion results from gel-sphere processes and application to centrifugal contactors

    SciTech Connect

    Haas, P.A.

    1986-07-01

    Three different devices using controlled velocities of organic liquids were applied to disperse aqueous solutions as drops. One consisted of simple tubes of small diameters. A second contained motionless mixer units inside large tubes. The third employed couette flow of the organic liquid between a cylindrical rotor and a stationary cylinder. These devices were applied to gel-sphere processes in which the liquid drops are converted into solid gel spheres of hydrated metal oxides. The gel-sphere products are good, strong spheres and allow good measurement of the sphere and the drop-size distributions. The drop diameters must be controlled and predictable to allow preparation of product spheres of the desired sizes. Empirical correlations were determined for application to the gel-sphere processes. The theory of turbulent dispersion based on eddy velocities has been developed by Kolmorogoff, Hinze, and others. Davies reviewed this theory and the agreement of theory with four types of dispersion devices for energy dissipation rates of 6 to 400,000 W/g. The gel-sphere results for drop-size distribution are for energy dissipation rates of 10/sup -3/ to 1.5 W/g. Those combined results support the theory of turbulence as the dispersion mechanism over a range of 10/sup 9/ for the rate of energy dissipation. The turbulent dispersion with Couette flow is the mechanism for mixing in an advanced design of centrifugal contactors for solvent extraction. The theory of turbulence is applied to predict drop sizes and mixing power for centrifugal contactors as developed at Oak Ridge National Laboratory (ORNL). 14 refs., 7 figs., 6 tabs.

  2. Large-scale and highly efficient synthesis of micro- and nano-fibers with controlled fiber morphology by centrifugal jet spinning for tissue regeneration

    NASA Astrophysics Data System (ADS)

    Ren, Liyun; Pandit, Vaibhav; Elkin, Joshua; Denman, Tyler; Cooper, James A.; Kotha, Shiva P.

    2013-02-01

    PLLA fibrous tissue scaffolds with controlled fiber nanoscale surface roughness are fabricated with a novel centrifugal jet spinning process. The centrifugal jet spinning technique is a highly efficient synthesis method for micron- to nano-sized fibers with a production rate up to 0.5 g min-1. During the centrifugal jet spinning process, a polymer solution jet is stretched by the centrifugal force of a rotating chamber. By engineering the rheological properties of the polymer solution, solvent evaporation rate and centrifugal force that are applied on the solution jet, polyvinylpyrrolidone (PVP) and poly(l-lactic acid) (PLLA) composite fibers with various diameters are fabricated. Viscosity measurements of polymer solutions allowed us to determine critical polymer chain entanglement limits that allow the generation of continuous fiber as opposed to beads or beaded fibers. Above a critical concentration at which polymer chains are partially or fully entangled, lower polymer concentrations and higher centrifugal forces resulted in thinner fibers. Etching of PVP from the PLLA-PVP composite fibers doped with increasing PVP concentrations yielded PLLA fibers with increasing nano-scale surface roughness and porosity, which increased the fiber hydrophilicity dramatically. Scanning electron micrographs of the etched composite fibers suggest that PVP and PLLA were co-contiguously phase separated within the composite fibers during spinning and nano-scale roughness features were created after the partial etching of PVP. To study the tissue regeneration efficacy of the engineered PLLA fiber matrix, human dermal fibroblasts are used to simulate partial skin graft. Fibers with increased PLLA surface roughness and porosity demonstrated a trend towards higher cell attachment and proliferation.PLLA fibrous tissue scaffolds with controlled fiber nanoscale surface roughness are fabricated with a novel centrifugal jet spinning process. The centrifugal jet spinning technique is a

  3. [The analytical setting of rotary speed of centrifuge rotor and centrifugation time in chemical, biochemical and microbiological practice].

    PubMed

    Zolotarev, K V

    2012-08-01

    The researchers happen to face with suspensions in their chemical, biochemical and microbiological practice. The suspensions are the disperse systems with solid dispersed phase and liquid dispersion medium and with dispersed phase particle size > 100 nm (10-7 m). Quite often the necessity occurs to separate solid particles from liquid. To use for this purpose the precipitation in gravitation field can make the process to progress too long. In this respect an effective mode is the precipitation in the field of centrifugal forces--the centrifugation. The rotary speed of centrifuge rotor and centrifugation time can be set analytically using regularities of general dynamics and hydrodynamics. To this effect, should be written and transformed the equation of First and Second Newton Laws for suspension particle being in the field of centrifugal forces and forces of resistance of liquid and vessel wall. The force of liquid resistance depends on particle motion condition in liquid. To determine the regimen the Archimedes and Reynolds numerical dimensionless criteria are to be applied. The article demonstrates the results of these transformations as analytical inverse ratio dependence of centrifugation time from rotary speed. The calculation of series of "rate-time" data permits to choose the optimal data pair on the assumption of centrifuge capacity and practical reasonability. The results of calculations are validated by actual experimental data hence the physical mathematical apparatus can be considered as effective one. The setting progress depends both from parameter (Reynolds criterion) and data series calculation. So, the most convenient way to apply this operation is the programming approach. The article proposes to use the program Microsoft Excel and VBA programming language for this purpose. The possibility to download the file from Internet to use it for fast solution is proposed.

  4. A fuzzy controlled three-phase centrifuge for waste separation

    SciTech Connect

    Parkinson, W.J.; Smith, R.E.; Miller, N.

    1998-02-01

    The three-phase centrifuge technology discussed in this paper was developed by Neal Miller, president of Centech, Inc. The three-phase centrifuge is an excellent device for cleaning up oil field and refinery wastes which are typically composed of hydrocarbons, water, and solids. The technology is unique. It turns the waste into salable oil, reusable water, and landfill-able solids. No secondary waste is produced. The problem is that only the inventor can set up and run the equipment well enough to provide an optimal cleanup. Demand for this device has far exceeded a one man operation. There is now a need for several centrifuges to be operated at different locations at the same time. This has produced a demand for an intelligent control system, one that could replace a highly skilled operator, or at least supplement the skills of a less experienced operator. The control problem is ideally suited to fuzzy logic, since the centrifuge is a highly complicated machine operated entirely by the skill and experience of the operator. A fuzzy control system was designed for and used with the centrifuge.

  5. Exosome enrichment of human serum using multiple cycles of centrifugation.

    PubMed

    Kim, Jeongkwon; Tan, Zhijing; Lubman, David M

    2015-09-01

    In this work, we compared the use of repeated cycles of centrifugation at conventional speeds for enrichment of exosomes from human serum compared to the use of ultracentrifugation (UC). After removal of cells and cell debris, a speed of 110 000 × g or 40 000 × g was used for the UC or centrifugation enrichment process, respectively. The enriched exosomes were analyzed using the bicinchoninic acid assay, 1D gel separation, transmission electron microscopy, Western blotting, and high-resolution LC-MS/MS analysis. It was found that a five-cycle repetition of UC or centrifugation is necessary for successful removal of nonexosomal proteins in the enrichment of exosomes from human serum. More significantly, 5× centrifugation enrichment was found to provide similar or better performance than 5× UC enrichment in terms of enriched exosome protein amount, Western blot band intensity for detection of CD-63, and numbers of identified exosome-related proteins and cluster of differentiation (CD) proteins. A total of 478 proteins were identified in the LC-MS/MS analyses of exosome proteins obtained from 5× UCs and 5× centrifugations including many important CD membrane proteins. The presence of previously reported exosome-related proteins including key exosome protein markers demonstrates the utility of this method for analysis of proteins in human serum.

  6. Development of a Feeder for Uninterrupted Centrifugation Studies

    NASA Technical Reports Server (NTRS)

    Mulenburg, Gerald M.; Vasques, Marilyn F.; Gundo, Daniel P.; Griffith, Jon B.; Wade, Charles E. (Technical Monitor)

    1994-01-01

    A specialized paste diet feeder was developed in support of a hypergravity (2G) centrifuge study. The centrifuge study was to be compared to a previously flown Russian Cosmos spaceflight so experimental parameters of the 14 day spaceflight had to be duplicated. In order to duplicate at hyper G an experiment that took place in weightlessness, all other conditions must be as identical as possible. Stopping the centrifuge to provide maintenance for the animals causes unacceptable changes in experimental research results. Thus the experimental protocol required the delivery of a designated amount of paste diet at regular intervals for a two week period without stopping the centrifuge. A centrifuge and a stationary control cage, each containing 10 laboratory rats, were fitted with feeders that were calibrated to provide 140 plus or minus 2g of paste diet every 6 hours. This paper describes development of the feeder design and results of its operation over the two week experiment. The design philosophy and details of the feeder system are provided with recommendations for future such devices.

  7. Centrifuges and Their Application for Biological Experiments in Space

    NASA Astrophysics Data System (ADS)

    Brinckmann, Enno

    2012-12-01

    The need for an in-orbit 1×g control originated from the fact that Space radiation or other environmental factors of Space flight could not be excluded as cause for the effects on biological systems that were mainly interpreted as effects of the weightlessness environment. Indeed, in many experiments the 1×g reference centrifuge on board revealed the same data as the 1×g controls on ground, proving the lack of gravity was causing the results. In other cases, the reference centrifuge data were intermediate or clearly different to the ground data which was either due to interrupted 1×g conditions on board or to other, sometimes not well understood factors. This triggered also the development of sophisticated hardware allowing the start, i.e. the transition from 1×g to 0×g, or the termination of the experiment without stopping the centrifuge. Recently developed facilities provide also a complete life support system on the centrifuge rotor. Besides the in-flight 1×g control, acceleration experiments required a centrifuge for determination of threshold values in orbit.

  8. Centrifugation Effects on Estrous Cycling, Mating Success and Pregnancy Outcome in Rats

    NASA Technical Reports Server (NTRS)

    Ronca, April E.; Rushing, Linda S.; Tou, Janet; Wade, Charles E.; Baer, Lisa A.

    2005-01-01

    We analyzed the effects of 2-g centrifugation on estrous cycling, mating success and pregnancy outcome in rats. Sexually mature female and male rats were assigned to either 2-g centrifuge or non-centrifuge conditions, and to non-breeding or breeding conditions. In non-breeding females, estrous cycles were analyzed by examining vaginal cytology before and for 35 days during centrifugation. Breeding females were time-mated following 7 days of adaptation to centrifugation. Following adaptation to centrifugation, estrous cycle duration over a five-cycle period was similar in centrifuged and non-centrifuged females. Identical numbers of centrifuged and non-centrifuged females conceived, however centrifuged females took four-times longer than controls to achieve conception. Births occurred at the normal gestational length. Pup birth weight and postnatal survival were p<0.05 reduced in centrifuged as compared to non-centrifuged groups. In conclusion, 2-g centrifugation had no effect on estrous cycle length or the probably of becoming pregnant but delayed conception and diminished pregnancy outcome.

  9. Centrifugation effects on estrous cycle, mating success and pregnancy outcome in rats

    NASA Astrophysics Data System (ADS)

    Ronca, April E.; Rushing, Linda; Tou, Janet; Wade, Charles E.; Baer, Lisa A.

    2005-08-01

    We analyzed the effects of 2-g centrifugation on estrous cycling, mating success and pregnancy outcome in rats. Sexually mature female and male rats were assigned to either 2-g centrifuge or non-centrifuge conditions, and to non-breeding or breeding conditions. In non-breeding females, estrous cycles were analyzed by examining vaginal cytology before and for 35 days during centrifugation. Breeding females were time-mated following 7 days of adaptation to centrifugation. Following adaptation to centrifugation, estrous cycle duration over a five-cycle period was similar in centrifuged and non-centrifuged females. Identical numbers of centrifuged and non-centrifuged females conceived, however centrifuged females took four-times longer than controls to achieve conception. Births occurred at the normal gestational length. Pup birth weight and postnatal survival were p<0.05 reduced in centrifuged as compared to non-centrifuged groups. In conclusion, 2-g centrifugation had no effect on estrus cycle length or the probably of becoming pregnant but delayed conception and diminished pregnancy outcome.

  10. Variable diameter wind turbine rotor blades

    DOEpatents

    Jamieson, Peter McKeich; Hornzee-Jones, Chris; Moroz, Emilian M.; Blakemore, Ralph W.

    2005-12-06

    A system and method for changing wind turbine rotor diameters to meet changing wind speeds and control system loads is disclosed. The rotor blades on the wind turbine are able to adjust length by extensions nested within or containing the base blade. The blades can have more than one extension in a variety of configurations. A cable winching system, a hydraulic system, a pneumatic system, inflatable or elastic extensions, and a spring-loaded jack knife deployment are some of the methods of adjustment. The extension is also protected from lightning by a grounding system.

  11. The diameter and albedo of 1943 Anteros

    NASA Technical Reports Server (NTRS)

    Veeder, G. J.; Tedesco, E. F.; Tholen, D. J.; Tokunaga, A.; Matthews, K.; Neugebauer, G.; Soifer, B. T.; Kowal, C.

    1981-01-01

    The results of broadband visual and infrared photometry of the Apollo-Amor asteroid 1943 Anteros during its 1980 apparition are reported. By means of a radiometric model, a diameter of 2.3 + or - 0.2 km and a visual geometric albedo of 0.13 + or - 0.03 is calculated. The albedo and reflectance spectrum of Anteros imply that it is a type S asteroid. Thus, Anteros may have a silicate surface similar to other Apollo-Amor asteroids as well as some stony-iron meteorites.

  12. A Variable Diameter Short Haul Civil Tiltrotor

    NASA Technical Reports Server (NTRS)

    Wang, James M.; Jones, Christopher T.; Nixon, Mark W.

    1999-01-01

    The Short-Haul-Civil-tiltrotor (SHCT) component of the NASA Aviation System Capacity Program is an effort to develop the technologies needed for a potential 40-passenger civil tiltrotor. The variable diameter tiltrotor (VDTR) is a Sikorsky concept aimed at improving tiltrotor hover and cruise performance currently limited by disk loading that is much higher in hover than conventional helicopter, and much lower in cruise than turbo-prop systems. This paper describes the technical merits of using a VDTR on a SHCT aircraft. The focus will be the rotor design.

  13. A 30-cm diameter argon ion source

    NASA Technical Reports Server (NTRS)

    Sovey, J. S.

    1976-01-01

    A 30 cm diameter argon ion source was evaluated. Ion source beam currents up to 4a were extracted with ion energies ranging from 0.2 to 1.5 KeV. An ion optics scaling relation was developed for predicting ion beam extraction capability as a function of total extraction voltage, gas type, and screen grid open area. Ignition and emission characteristics of several hollow cathode geometries were assessed for purposes of defining discharge chamber and neutralizer cathodes. Also presented are ion beam profile characteristics which exhibit broad beam capability well suited for ion beam sputtering applications.

  14. Thread gauge for measuring thread pitch diameters

    DOEpatents

    Brewster, A.L.

    1985-11-19

    A thread gauge which attaches to a vernier caliper to measure the thread pitch diameter of both externally threaded and internally threaded parts is disclosed. A pair of anvils are externally threaded with threads having the same pitch as those of the threaded part. Each anvil is mounted on a stem having a ball on which the anvil can rotate to properly mate with the parts to which the anvils are applied. The stems are detachably secured to the caliper blades by attachment collars having keyhole openings for receiving the stems and caliper blades. A set screw is used to secure each collar on its caliper blade. 2 figs.

  15. Thread gauge for measuring thread pitch diameters

    DOEpatents

    Brewster, Albert L.

    1985-01-01

    A thread gauge which attaches to a vernier caliper to measure the thread pitch diameter of both externally threaded and internally threaded parts. A pair of anvils are externally threaded with threads having the same pitch as those of the threaded part. Each anvil is mounted on a stem having a ball on which the anvil can rotate to properly mate with the parts to which the anvils are applied. The stems are detachably secured to the caliper blades by attachment collars having keyhole openings for receiving the stems and caliper blades. A set screw is used to secure each collar on its caliper blade.

  16. Characterization of 100 mm Diameter 4H-Silicon Carbide CrystalsWith Extremely Low Basal Plane Dislocation Density

    SciTech Connect

    M Dudley; N Zhang; Y Zhang; B Raghothamachar; S Byrappa; G Choi; E Drachev; M Loboda

    2011-12-31

    Synchrotron White Beam X-ray Topography (SWBXT) studies are presented of basal plane dislocation (BPD) configurations and behavior in a new generation of 100mm diameter, 4H-SiC wafers with extremely low BPD densities (3-4 x 10{sup 2} cm{sup -2}). The conversion of non-screw oriented, glissile BPDs into sessile threading edge dislocations (TEDs) is observed to provide pinning points for the operation of single ended Frank-Read sources. In some regions, once converted TEDs are observed to re-convert back into BPDs in a repetitive process which provides multiple BPD pinning points.

  17. Measurement of Diameter Changes during Irradiation Testing

    SciTech Connect

    Davis, K. L.; Knudson, D. L.; Crepeau, J. C.; Solstad, S.

    2015-03-01

    New materials are being considered for fuel, cladding, and structures in advanced and existing nuclear reactors. Such materials can experience significant dimensional and physical changes during irradiation. Currently in the US, such changes are measured by repeatedly irradiating a specimen for a specified period of time and then removing it from the reactor for evaluation. The time and labor to remove, examine, and return irradiated samples for each measurement makes this approach very expensive. In addition, such techniques provide limited data and handling may disturb the phenomena of interest. In-pile detection of changes in geometry is sorely needed to understand real-time behavior during irradiation testing of fuels and materials in high flux US Material and Test Reactors (MTRs). This paper presents development results of an advanced Linear Variable Differential Transformer-based test rig capable of detecting real-time changes in diameter of fuel rods or material samples during irradiation in US MTRs. This test rig is being developed at the Idaho National Laboratory and will provide experimenters with a unique capability to measure diameter changes associated with fuel and cladding swelling, pellet-clad interaction, and crud buildup.

  18. Centrifuge Techniques and Apparatus for Transport Experiments in Porous Media

    SciTech Connect

    Earl D. Mattson; Carl D. Paler; Robert W. Smith; Markus Flury

    2010-06-01

    This paper describes experimental approaches and apparatus that we have developed to study solute and colloid transport in porous media using Idaho National Laboratory's 2-m radius centrifuge. The ex-perimental techniques include water flux scaling with applied acceleration at the top of the column and sub-atmospheric pressure control at the column base, automation of data collection, and remote experimental con-trol over the internet. These apparatus include a constant displacement piston pump, a custom designed liquid fraction collector based on switching valve technology, and modified moisture monitoring equipment. Suc-cessful development of these experimental techniques and equipment is illustrated through application to transport of a conservative tracer through unsaturated sand column, with centrifugal acceleration up to 40 gs. Development of such experimental equipment that can withstand high accelerations enhances the centrifuge technique to conduct highly controlled unsaturated solute/colloid transport experiments and allows in-flight liquid sample collection of the effluent.

  19. Oscillatory Counter-Centrifugation: Effects of History and Lift Forces

    NASA Astrophysics Data System (ADS)

    Nadim, Ali

    2014-11-01

    This work is co-authored with my doctoral student Shujing Xu and is dedicated to the memory of my doctoral advisor Howard Brenner who enjoyed thought experiments related to rotating systems. Oscillatory Counter-Centrifugation refers to our theoretical discovery that within a liquid-filled container that rotates in an oscillatory manner about a fixed axis as a rigid body, a suspended particle can be made to migrate on average in the direction opposite to that of ordinary centrifugation. That is, a heavy (or light) particle can move toward (or away from) the rotation axis, when the frequency of oscillations is high enough. In this work we analyze the effects of the Basset history force and the Saffman lift force on particle trajectories and find that the counter-centrifugation phenomenon persists even when these forces are active.

  20. Centrifugally activated bearing for high-speed rotating machinery

    DOEpatents

    Post, R.F.

    1994-02-15

    A centrifugally activated bearing is disclosed. The bearing includes an annular member that extends laterally and radially from a central axis. A rotating member that rotates about the central axis relative to the annular member is also included. The rotating member has an interior chamber that surrounds the central axis and in which the annular member is suspended. Furthermore, the interior chamber has a concave shape for retaining a lubricant therein while the rotating member is at rest and for retaining a lubricant therein while the rotating member is rotating. The concave shape is such that while the rotating member is rotating a centrifugal force causes a lubricant to be forced away from the central axis to form a cylindrical surface having an axis collinear with the central axis. This centrifugally displaced lubricant provides restoring forces to counteract lateral displacement during operation. 4 figures.

  1. Operation effectiveness of wells by enhancing the electric- centrifugal pump

    NASA Astrophysics Data System (ADS)

    Zyatikov, P. N.; Kozyrev, I. N.; Deeva, V. S.

    2016-09-01

    We present the method to improve the operation effectiveness of wells by enhancing the electric-centrifugal pump. Some of the best ways to extend the electric-centrifugal pumps operating lifetime is using today's techniques as well as additional protective equipment as a part of the electric-centrifugal pump. In paper it is shown that high corrosiveness of formation fluid (a multi-component medium composed of oil, produced water, free and dissolved gases) is a major cause of failures of downhole equipment. Coil tubing is the most efficient technology to deal with this problem. The experience of coil tubing operations has proved that high-quality bottom hole cleaning saving the cost of operation due to a decreased failure rate of pumps associated with ejection of mechanical impurity.

  2. Centrifugally activated bearing for high-speed rotating machinery

    DOEpatents

    Post, Richard F.

    1994-01-01

    A centrifugally activated bearing is disclosed. The bearing includes an annular member that extends laterally and radially from a central axis. A rotating member that rotates about the central axis relative to the annular member is also included. The rotating member has an interior chamber that surrounds the central axis and in which the annular member is suspended. Furthermore, the interior chamber has a concave shape for retaining a lubricant therein while the rotating member is at rest and for retaining a lubricant therein while the rotating member is rotating. The concave shape is such that while the rotating member is rotating a centrifugal force causes a lubricant to be forced away from the central axis to form a cylindrical surface having an axis collinear with the central axis. This centrifugally displaced lubricant provides restoring forces to counteract lateral displacement during operation.

  3. Design Optimization of a Centrifugal Fan with Splitter Blades

    NASA Astrophysics Data System (ADS)

    Heo, Man-Woong; Kim, Jin-Hyuk; Kim, Kwang-Yong

    2015-05-01

    Multi-objective optimization of a centrifugal fan with additionally installed splitter blades was performed to simultaneously maximize the efficiency and pressure rise using three-dimensional Reynolds-averaged Navier-Stokes equations and hybrid multi-objective evolutionary algorithm. Two design variables defining the location of splitter, and the height ratio between inlet and outlet of impeller were selected for the optimization. In addition, the aerodynamic characteristics of the centrifugal fan were investigated with the variation of design variables in the design space. Latin hypercube sampling was used to select the training points, and response surface approximation models were constructed as surrogate models of the objective functions. With the optimization, both the efficiency and pressure rise of the centrifugal fan with splitter blades were improved considerably compared to the reference model.

  4. Solvent-free cleaning using a centrifugal cryogenic pellet accelerator

    SciTech Connect

    Haines, J.R.; Fisher, P.W.; Foster, C.A.

    1995-06-01

    An advanced centrifuge that accelerates frozen CO{sub 2} pellets to high speeds for surface cleaning and paint removal is being developed at the Oak Ridge National Laboratory. The centrifuge-based accelerator was designed, fabricated, and tested under a program sponsored by the Warner Robins Air Logistics Center, Robins Air Force Base, Georgia. In comparison to the more conventional compressed air ``sandblast`` pellet accelerators, the centrifugal accelerator system can achieve higher pellet speeds, has precise speed control, and is more than ten times as energy efficient. Furthermore, the use of frozen CO{sub 2} pellets instead of conventional metal, plastic, sand, or other abrasive materials that remain solid at room temperature, minimizes the waste stream. This apparatus has been used to demonstrate cleaning of various surfaces, including removal of paint, oxide coatings, metal coatings, organic coatings, and oil and grease coatings from a variety of surfaces. The design and operation of the apparatus is discussed.

  5. Passively Shunted Piezoelectric Damping of Centrifugally-Loaded Plates

    NASA Technical Reports Server (NTRS)

    Duffy, Kirsten P.; Provenza, Andrew J.; Trudell, Jeffrey J.; Min, James B.

    2009-01-01

    Researchers at NASA Glenn Research Center have been investigating shunted piezoelectric circuits as potential damping treatments for turbomachinery rotor blades. This effort seeks to determine the effects of centrifugal loading on passively-shunted piezoelectric - damped plates. Passive shunt circuit parameters are optimized for the plate's third bending mode. Tests are performed both non-spinning and in the Dynamic Spin Facility to verify the analysis, and to determine the effectiveness of the damping under centrifugal loading. Results show that a resistive shunt circuit will reduce resonant vibration for this configuration. However, a tuned shunt circuit will be required to achieve the desired damping level. The analysis and testing address several issues with passive shunt circuit implementation in a rotating system, including piezoelectric material integrity under centrifugal loading, shunt circuit implementation, and tip mode damping.

  6. High-throughput and high-yield fabrication of uniaxially-aligned chitosan-based nanofibers by centrifugal electrospinning.

    PubMed

    Erickson, Ariane E; Edmondson, Dennis; Chang, Fei-Chien; Wood, Dave; Gong, Alex; Levengood, Sheeny Lan; Zhang, Miqin

    2015-12-10

    The inability to produce large quantities of nanofibers has been a primary obstacle in advancement and commercialization of electrospinning technologies, especially when aligned nanofibers are desired. Here, we present a high-throughput centrifugal electrospinning (HTP-CES) system capable of producing a large number of highly-aligned nanofiber samples with high-yield and tunable diameters. The versatility of the design was revealed when bead-less nanofibers were produced from copolymer chitosan/polycaprolactone (C-PCL) solutions despite variations in polymer blend composition or spinneret needle gauge. Compared to conventional electrospinning techniques, fibers spun with the HTP-CES not only exhibited superior alignment, but also better diameter uniformity. Nanofiber alignment was quantified using Fast Fourier Transform (FFT) analysis. In addition, a concave correlation between the needle diameter and resultant fiber diameter was identified. This system can be easily scaled up for industrial production of highly-aligned nanofibers with tunable diameters that can potentially meet the requirements for various engineering and biomedical applications.

  7. High-throughput and high-yield fabrication of uniaxially-aligned chitosan-based nanofibers by centrifugal electrospinning

    PubMed Central

    Erickson, Ariane E.; Edmondson, Dennis; Chang, Fei-Chien; Wood, Dave; Gong, Alex; Levengood, Sheeny Lan; Zhang, Miqin

    2016-01-01

    The inability to produce large quantities of nanofibers has been a primary obstacle in advancement and commercialization of electrospinning technologies, especially when aligned nanofibers are desired. Here, we present a high-throughput centrifugal electrospinning (HTP-CES) system capable of producing a large number of highly-aligned nanofiber samples with high-yield and tunable diameters. The versatility of the design was revealed when bead-less nanofibers were produced from copolymer chitosan/polycaprolactone (C-PCL) solutions despite variations in polymer blend composition or spinneret needle gauge. Compared to conventional electrospinning techniques, fibers spun with the HTP-CES not only exhibited superior alignment, but also better diameter uniformity. Nanofiber alignment was quantified using Fast Fourier Transform (FFT) analysis. In addition, a concave correlation between the needle diameter and resultant fiber diameter was identified. This system can be easily scaled up for industrial production of highly-aligned nanofibers with tunable diameters that can potentially meet the requirements for various engineering and biomedical applications. PMID:26428148

  8. Control of centrifugal blood pump based on the motor current.

    PubMed

    Iijima, T; Inamoto, T; Nogawa, M; Takatani, S

    1997-07-01

    In this study, centrifugal pump performance was examined in a mock circulatory loop to derive an automatic pump rotational speed (rpm) control method. The pivot bearing supported sealless centrifugal pump was placed in the left ventricular apex to aorta bypass mode. The pneumatic pulsatile ventricle was used to simulate the natural ventricle. To simulate the suction effect in the ventricle, a collapsible rubber tube was placed in the inflow port of the centrifugal pump in series with the apex of the simulated ventricle. Experimentally, the centrifugal pump speed (rpm) was gradually increased to simulate the suction effect. The pump flow through the centrifugal pump measured by an electromagnetic flowmeter, the aortic pressure, and the motor current were continuously digitized at 100 Hz and stored in a personal computer. The analysis of the cross-spectral density between the pump flow and motor current waveforms revealed that 2 waveforms were highly correlated at the frequency range between 0 and 4 Hz, with the coherence and phase angles being close to 1.0 and 0 degree, respectively. The fast Fourier transform analysis of the motor current indicated that the second harmonic component of the motor current power density increased with the occurrence of the suction effect in the circuit. The ratio of the fundamental to the second harmonic component decreased less than 1.3 as the suction effect developed in the circuit. It is possible to detect and prevent the suction effect of the centrifugal blood pump in the natural ventricle through analysis of the motor current waveform.

  9. Centrifugal inertia effects in two-phase face seal films

    NASA Technical Reports Server (NTRS)

    Basu, P.; Hughes, W. F.; Beeler, R. M.

    1987-01-01

    A simplified, semianalytical model has been developed to analyze the effect of centrifugal inertia in two-phase face seals. The model is based on the assumption of isothermal flow through the seal, but at an elevated temperature, and takes into account heat transfer and boiling. Using this model, seal performance curves are obtained with water as the working fluid. It is shown that the centrifugal inertia of the fluid reduces the load-carrying capacity dramatically at high speeds and that operational instability exists under certain conditions. While an all-liquid seal may be starved at speeds higher than a 'critical' value, leakage always occurs under boiling conditions.

  10. Apparatus and method for centrifugation and robotic manipulation of samples

    NASA Technical Reports Server (NTRS)

    Vellinger, John C. (Inventor); Ormsby, Rachel A. (Inventor); Kennedy, David J. (Inventor); Thomas, Nathan A. (Inventor); Shulthise, Leo A. (Inventor); Kurk, Michael A. (Inventor); Metz, George W. (Inventor)

    2007-01-01

    A device for centrifugation and robotic manipulation of specimen samples, including incubating eggs, and uses thereof are provided. The device may advantageously be used for the incubation of avian, reptilian or any type of vertebrate eggs. The apparatus comprises a mechanism for holding samples individually, rotating them individually, rotating them on a centrifuge collectively, injecting them individually with a fixative or other chemical reagent, and maintaining them at controlled temperature, relative humidity and atmospheric composition. The device is applicable to experiments involving entities other than eggs, such as invertebrate specimens, plants, microorganisms and molecular systems.

  11. The effect of gas fraction on centrifugal pump

    NASA Astrophysics Data System (ADS)

    Zhu, Z. T.; Wang, Y.; Zhao, L. F.; Ning, C.; Xie, S. F.; Liu, Z. C.

    2015-01-01

    In order to study the multiphase flow field in M125 centrifugal pump, three-dimensional modeling was used for internal flow through three-dimensional software Pro/E. Then based on SST turbulence model combining with Rayleigh-Plesset cavitation model, and structured grid to simulate the hydraulic characteristics of volute and impeller within different gas conditions. The velocity, pressure and gas volume fraction distributions of the interior flow field of volute and impeller were obtained and analyzed, which revealed the effect of gas fractions on the flow characteristic of the centrifugal pump.

  12. The use of centrifugation to study early Drosophila embryogenesis

    NASA Technical Reports Server (NTRS)

    Abbott, M. K.; Spooner, B. S. (Principal Investigator)

    1993-01-01

    By the end of 10th nuclear cycle, the somatic nuclei of the Drosophila embryo have migrated to the periphery of the egg. Centrifugation of embryos did not result in the displacement of these nuclei, since cytoskeletal elements anchor them to the cortex. But, mild centrifugal forces displace the centrally located, nascent yolk nuclei. If this increased sensitivity to hypergravity occurs before the beginning of nuclear differentiation during cycle 8, when the nascent yolk and somatic nuclei physically separate, then it would mark the earliest functional difference between these two lineages.

  13. 24. RW Meyer Sugar Mill: 18761889. Centrifugal inner basket, 1879. ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    24. RW Meyer Sugar Mill: 1876-1889. Centrifugal inner basket, 1879. Manufacturer, unknown. Supplied by Honolulu Iron Works, Honolulu, Hawaii, 1879. View: After sugar was granulated and cooled it was dried and drained, completely separating the sugar crystals from the molasses, in the centrifugal. Revolving at 1200 rpm the sugar charge was forced outward with the molasses flying through the holes in the brass lining. Dried sugar was left behind in the inner basket and was dug out by hand. - R. W. Meyer Sugar Mill, State Route 47, Kualapuu, Maui County, HI

  14. Multiplexed single-molecule force spectroscopy using a centrifuge

    PubMed Central

    Yang, Darren; Ward, Andrew; Halvorsen, Ken; Wong, Wesley P.

    2016-01-01

    We present a miniature centrifuge force microscope (CFM) that repurposes a benchtop centrifuge for high-throughput single-molecule experiments with high-resolution particle tracking, a large force range, temperature control and simple push-button operation. Incorporating DNA nanoswitches to enable repeated interrogation by force of single molecular pairs, we demonstrate increased throughput, reliability and the ability to characterize population heterogeneity. We perform spatiotemporally multiplexed experiments to collect 1,863 bond rupture statistics from 538 traceable molecular pairs in a single experiment, and show that 2 populations of DNA zippers can be distinguished using per-molecule statistics to reduce noise. PMID:26984516

  15. On the characteristics of centrifugal-reciprocating machines. [cryogenic coolers

    NASA Technical Reports Server (NTRS)

    Higa, W. H.

    1980-01-01

    A method of compressing helium gas for cryogenic coolers is presented which uses centrifugal force to reduce the forces on the connecting rod and crankshaft in the usual reciprocating compressor. This is achieved by rotating the piston-cylinder assembly at a speed sufficient for the centrifugal force on the piston to overcome the compressional force due to the working fluid. The rotating assembly is dynamically braked in order to recharge the working space with fluid. The intake stroke consists of decelerating the rotating piston-cylinder assembly and the exhaust stroke consists of accelerating the assembly.

  16. Deep eutectic solvents in countercurrent and centrifugal partition chromatography.

    PubMed

    Roehrer, Simon; Bezold, Franziska; García, Eva Marra; Minceva, Mirjana

    2016-02-19

    Deep eutectic solvents (DESs) were evaluated as solvents in centrifugal partition chromatography, a liquid-liquid chromatography separation technology. To this end, the partition coefficients of ten natural compounds of different hydrophobicity were determined in non-aqueous biphasic systems containing DES. The influence of the composition of DESs and the presence of water in the biphasic system on the partition coefficient were also examined. In addition, several process relevant physical properties of the biphasic system, such as the density and viscosity of the phases, were measured. A mixture of three to four hydrophobic compounds was successfully separated in a centrifugal partition extractor using a heptane/ethanol/DES biphasic system.

  17. Secondary Containment Design for a High Speed Centrifuge

    SciTech Connect

    Snyder, K.W.

    1999-03-01

    Secondary containment for high speed rotating machinery, such as a centrifuge, is extremely important for operating personnel safety. Containment techniques can be very costly, ungainly and time consuming to construct. A novel containment concept is introduced which is fabricated out of modular sections of polycarbonate glazed into a Unistrut metal frame. A containment study for a high speed centrifuge is performed which includes the development of parameters for secondary containment design. The Unistrut/polycarbonate shield framing concept is presented including design details and proof testing procedures. The economical fabrication and modularity of the design indicates a usefulness for this shielding system in a wide variety of containment scenarios.

  18. Large-diameter glory-hole drilling: Evolution from 12- to 20-ft diameter

    SciTech Connect

    Shields, R.

    1994-06-01

    To drill for oil and gas in shallow, ice-infested waters, a hole needs to be excavated in the seafloor to protect subsea blowout preventers (BOP's) from ice-scour damage. Canadian Marine Drilling pioneered the use of large-diameter glory-hole drilling systems by designing, building, and patenting a 12-ft (3.7-m)-diameter prototype bit system, a 17-ft (5.2-m)-diameter upgrade, a 20-ft (6.1-m)-diameter standard system, and a 20-ft (6.1-m)-diameter enhanced system. The enhanced bit design incorporates high-pressure jetting, boulder storage, pilot-hole centering, and other features that allow a 36-in (0.91-m) hole to be drilled through the body of the bit. An optional feature is the ability to drill and case the glory hole simultaneously. To date, penetration rates up to 4.5 ft/hr (1.37 m/h) in soils with a shear strength 5,000 lbf/ft[sup 2] (239 kPa) have been obtained. Glory-hole drilling times have been reduced from more than 20 days in 1978 to approximately 1[1/2] days since 1986.

  19. Experimental and Theoretical Study on Circular Disk Particles Suspended in Centrifugal and Non-Centrifugal Force Environments

    SciTech Connect

    Torii, Shuichi; Watanabe, Yoshimi; Tanaka, Satoyuki; Yano, Toshiaki; Iino, Naoko

    2008-02-15

    Theoretical and experimental studies are performed on suspension particle motion in Centrifugal and Non-Centrifugal Force Environment, i.e., in both an axially rotating drum and a stable liquid tank. The particle velocity of circular disks is measured by PTV (Particle Tracking Velocimetry) method and is predicted by BBO (Basset-Boussinesq-Ossen) equation. It is found that (1) as time progresses, one side of the disk in the axially rotating drum is attracted toward the drum wall and its velocity is affected by the rotating speed, (2) when the particle moves in the Stokes' regime, its velocity is linearly increased with the distance from the center of the drum, (3) in contrast, the autorotation of the disk occurs in the non-centrifugal force field, and (4) the corresponding drag coefficient in the low Reynolds number region is in good agreement with the theoretical value of the sphere.

  20. Determination for the Entrapment Criterion of Non-metallic Inclusions by the Solidification Front During Steel Centrifugal Continuous Casting

    NASA Astrophysics Data System (ADS)

    Wang, Qiangqiang; Zhang, Lifeng

    2016-06-01

    In the current study, the three-dimensional fluid flow, heat transfer, and solidification in steel centrifugal continuous casting strands were simulated. The volume of fluid model was used to solve the multiphase phenomena between the molten steel and the air. The entrapment and final distribution of inclusions in the solidified shell were studied with the discussion on the effect of rotation behavior of the caster system. Main results indicate that after applying the rotation of the shell, the fluid flow transformed from a recirculation flow to a rotation flow in the mold region and was driven to flow around in the casting direction. As the distance below the meniscus increased, the distribution of the tangential speed of the flow and the centrifugal force along one diameter of the strand became symmetrical gradually. The jet flow from the nozzle hardly impinged on the same location on the shell due to the rotation of the shell during solidification. Thus, the shell thickness on the same height was uniform around, and the thinning shell and a hot spot on the surface of shell were avoided. Both of the measurement and the calculation about the distribution of oxide inclusions along the radial direction indicated the number of inclusions at the side and the center was more than that at the quarter on the cross section of billet. With a larger diameter, inclusions tended to be entrapped toward the center area of the billet.

  1. Development of fine diameter mullite fiber

    NASA Technical Reports Server (NTRS)

    Long, W. G.

    1974-01-01

    Results are presented of a program to develop and evaluate mullite fiber with a mean diameter under two microns. The two micron fiber is produced by a blowing process at room temperature from a low viscosity (10-25 poise) solution. The blown fiber was evaluated for dimensional stability in thermal cycling to 1371 C, and was equivalent to the 5 micron spun B and W mullite fiber. An additive study was conducted to evaluate substitutes for the boron. Three levels of chromium, lithium fluoride, and magnesium were added to the standard composition in place of boron and the fiber produced was evaluated for chemical and dimensional stability in thermal cycling to 1371 C. The magnesium was the most chemically stable, but the chrome additive imparted the best dimensional stability.

  2. Five meter diameter conical furlable antenna

    NASA Technical Reports Server (NTRS)

    Fortenberry, J. W.; Freeland, R. E.; Moore, D. M.

    1976-01-01

    An investigation was made to demonstrate that a 5-meter-diameter, furlable, conical reflector antenna utilizing a line source feed can be fabricated utilizing composite materials and to prove that the antenna can function mechanically and electrically as prototype flight hardware. The design, analysis, and testing of the antenna are described. An RF efficiency of 55% at 8.5 GHz and a surface error of 0.64 mm rms were chosen as basic design requirements. Actual test measurements yielded an efficiency of 53% (49.77 dB gain) and a surface error of 0.61 mm rms. Atmospherically induced corrosion of the reflector mesh resulted in the RF performance degradation. An assessment of the antenna as compared to the current state of the art technology was made. This assessment included cost, surface accuracy and RF performance, structural and mechanical characteristics, and possible applications.

  3. Thirty-centimeter-diameter ion milling source

    NASA Technical Reports Server (NTRS)

    Robinson, R. S.

    1978-01-01

    A 30-cm beam diameter ion source has been designed and fabricated for micromachining and sputtering applications. An argon ion current density of 1 mA/cu cm at 500 eV ion energy was selected as a design operating condition. The completed ion source met the design criteria at this operating condition with a uniform and well-collimated beam having an average variation in current density of + or - 5% over the center of 20 cm of the beam. This ion source has a multipole magnetic field that employs permanent magnets between permeable pole pieces. Langmuir probe surveys of the source plasma support the design concepts of a multipole field and a circumferential cathode to enhance plasma uniformity.

  4. Stemming selection for large-diameter blastholes

    SciTech Connect

    Eloranta, J.

    1994-12-31

    Proper selection of stemming has a profound effect on blast performance. This paper describes several methods of evaluating stemming performance in 16-inch blastholes. Tests are done on stemming ranging in size from nominal 1/4 inch crushed rock up to railroad ballast size rock (2 1/2 inch > diameter < 3/4 inch). Concrete plugs (both pre-cast and poured) are evaluated as well as air decking. A Red lake Lo-cam and a velocity of detonation recorder (VODR) are used to estimate stemming retention time and stemming ejection velocities. Downstream productivity rates including: shovel digging rates, crusher speed and crusher hangup counts are used to estimate fragmentation results. Digital image analysis is used to estimate size distributions.

  5. Fire protection covering for small diameter missiles

    NASA Technical Reports Server (NTRS)

    Riccitiello, S. R.; Sawko, P. M. (Inventor)

    1979-01-01

    Flexible intumescent protection sheeting of unusually uniform thickness were prepared from epoxy-polysulfide compositions, containing microfibers and the ammonium salt of 1,4-nitroaniline-2-sulfonic acid, as disclosed in U.S. Pat. No. 3,663,464, except that an ammonium salt particle size in the order of 5 to 8 microns and a fiber size of about 1/128th inch in length and 3 to 5 microns in diameter were found critical to obtain the required density of 1.46 to 1.50 g/cc. The insulation sheeting was prepared by a continuous process involving vacuum mixing, calendering, and curing under very strict conditions which depend to some extent upon the thickness of the sheet produced.

  6. The Maryland Centrifugal Experiment (MCX): Centrifugal Confinement and Velocity Shear Stabilization of Plasmas in Shaped Open Magnetic Systems

    SciTech Connect

    Hassam, Adil; Ellis, Richard F.

    2012-01-01

    The Maryland Centrifugal Experiment (MCX) Project has investigated the concepts of centrifugal plasma confinement and stabilization of instabilities by velocity shear. The basic requirement is supersonic plasma rotation about a shaped, open magnetic field. Overall, the MCX Project attained three primary goals that were set out at the start of the project. First, supersonic rotation at Mach number upto 2.5 was obtained. Second, turbulence from flute interchange modes was found considerably reduced from conventional. Third, plasma pressure was contained along the field, as evidenced by density drops of x10 from the center to the mirror throats.

  7. Effects of centrifugation stress on pituitary-gonadal function in male rats

    NASA Technical Reports Server (NTRS)

    Gray, G. D.; Smith, E. R.; Damassa, D. A.; Davidson, J. M.

    1980-01-01

    The effects of centrifugation for various lengths of time on circulating levels of luteinizing hormone (LH) and testosterone in male rats were investigated. In a chronic 52-day experiment, centrifugation at 4.1 G significantly reduced LH and testosterone levels for the entire period. Centrifugation at 2.3 G had less effect inasmuch as LH levels were not significantly decreased and testosterone levels were significantly reduced only during the first few days of centrifugation. In more acute experiments, centrifugation at 4.1 G for 4 h resulted in reduced testosterone levels, whereas centrifugation for 15 min did not significantly alter the hormone levels. These results indicate that centrifugation can decrease circulating LH and testosterone levels if the gravitational force is of sufficient magnitude and is maintained for a period of hours. Chronic centrifugation may also inhibit the acute excitatory response of LH to handling and ether stress.

  8. Factors in the Design of Centrifugal Type Injection Valves for Oil Engines

    NASA Technical Reports Server (NTRS)

    Joachim, W F; Beardsley, E G

    1928-01-01

    This research was undertaken in connection with a general study of the application of the fuel injection engine to aircraft. The purpose of the investigation was to determine the effect of four important factors in the design of a centrifugal type automatic injection valve on the penetration, general shape, and distribution of oil sprays. The general method employed was to record the development of single sprays by means of special high-speed photographic apparatus capable of taking 25 consecutive pictures of the moving spray at a rate of 4,000 per second. Investigations were made concerning the effects on spray characteristics, of the helix angle of helical grooves, the ratio of the cross-sectional area of the orifice to that of the grooves, the ratio of orifice length to diameter, and the position of the seat. Maximum spray penetration was obtained with a ratio of orifice length to diameter of about 1.5. Slightly greater penetration was obtained with the seat directly before the orifice.

  9. Improvement of hemolysis in a centrifugal blood pump with hydrodynamic bearings and semi-open impeller.

    PubMed

    Kosaka, Ryo; Yamane, Takashi; Maruyama, Osamu; Nishida, Masahiro; Yada, Toru; Saito, Sakae; Hirai, Shusaku

    2007-01-01

    We have developed a centrifugal blood pump with hydrodynamic bearings and semi-open impeller, and evaluated the levitation performance test and the hemolysis test. This pump is operated without any complicated control circuit and displacement-sensing module. The casing diameter is 74 mm and the height is 38 mm including flanges for volts. The weight is 251 g and the volume is 159 cm3. By changing the stator relative position against the rotor, the levitation characteristics of the impeller can be adjusted. The diameter of impeller is 36 mm and the height is 25 mm. The impeller is levitated by the thrust bearing of spiral groove type and a radial bearing of herringbone type. The pump performance was evaluated through the levitation performance test and the hemolysis test. As a result, the normalized index of hemolysis (NIH) was reduced from 0.72 g/100 L to 0.024 g/100 L corresponding to the changes of the groove direction of the hydrodynamic bearing and the expansion of the bearing gap. During these studies, we confirmed that the hemolytic property was improved by balancing the fluid dynamic force and the magnetic force.

  10. Geotechnical Centrifuge Experiments to Evaluate Piping in Foundation Soils

    DTIC Science & Technology

    2014-05-01

    Catalogue of scaling laws and similitude questions in geotechnical centrifuge modeling. IJPMG International Journal of Physical Modeling in...Technology. Sellmeijer, J. B., and M. A. Koenders. 1991. A mathematical model for piping. Applied Mathematical Modeling 15(11-12):646–651. van Beek, V

  11. Design of a piezoelectric shaker for centrifuge testing

    NASA Technical Reports Server (NTRS)

    Canclini, J. G.; Henderson, J. M.

    1979-01-01

    The design of a prototype piezoelectric shaker and its development to date is described. Although certain design problems remain to be solved, the piezoelectric system shows promise for adaptation to a larger payload system, such as the proposed geotechnical centrifuge at the Ames Research Center.

  12. Fluid forces on rotating centrifugal impeller with whirling motion

    NASA Technical Reports Server (NTRS)

    Shoji, H.; Ohashi, H.

    1980-01-01

    Fluid forces on a centrifugal impeller, whose rotating axis whirls with a constant speed, were calculated by using unsteady potential theory. Calculations were performed for various values of whirl speed, number of impeller blades and angle of blades. Specific examples as well as significant results are given.

  13. Quasi-steady centrifuge method for unsaturated hydraulic properties

    USGS Publications Warehouse

    Caputo, M.C.; Nimmo, J.R.

    2005-01-01

    [1] We have developed the quasi-steady centrifuge (QSC) method as a variation of the steady state centrifuge method that can be implemented simply and inexpensively with greater versatility in terms of sample size and other features. It achieves these advantages by somewhat relaxing the criterion for steadiness of flow through the sample. This compromise entails an increase in measurement uncertainty but to a degree that is tolerable in most applications. We have tested this new approach with an easily constructed apparatus to establish a quasi-steady flow of water in unsaturated porous rock samples spinning in a centrifuge, obtaining measurements of unsaturated hydraulic conductivity and water retention that agree with results of other methods. The QSC method is adaptable to essentially any centrifuge suitable for hydrogeologic applications, over a wide range of sizes and operating speeds. The simplified apparatus and greater adaptability of this method expands the potential for exploring situations that are common in nature but have been the subject of few laboratory investigations. Copyright 2005 by the American Geophysical Union.

  14. Prediction of performance of centrifugal pumps during starts under pressure

    NASA Technical Reports Server (NTRS)

    Rostafinski, W.

    1969-01-01

    Method which calculates start-up characteristics of centrifugal pumps reveals a capacity to predict pressure drop characteristics of pumps with vaned diffusers. Calculations are based on pump geometry, design-point flow, speed, and pressure rise, and the pump characteristic within range of approximately ten percent of the design-point flow.

  15. Latex micro-balloon pumping in centrifugal microfluidic platforms.

    PubMed

    Aeinehvand, Mohammad Mahdi; Ibrahim, Fatimah; Harun, Sulaiman Wadi; Al-Faqheri, Wisam; Thio, Tzer Hwai Gilbert; Kazemzadeh, Amin; Madou, Marc

    2014-03-07

    Centrifugal microfluidic platforms have emerged as point-of-care diagnostic tools. However, the unidirectional nature of the centrifugal force limits the available space for multi-step processes on a single microfluidic disc. To overcome this limitation, a passive pneumatic pumping method actuated at high rotational speeds has been previously proposed to pump liquid against the centrifugal force. In this paper, a novel micro-balloon pumping method that relies on elastic energy stored in a latex membrane is introduced. It operates at low rotational speeds and pumps a larger volume of liquid towards the centre of the disc. Two different micro-balloon pumping mechanisms have been designed to study the pump performance at a range of rotational frequencies from 0 to 1500 rpm. The behaviour of the micro-balloon pump on the centrifugal microfluidic platforms has been theoretically analysed and compared with the experimental data. The experimental data show that the developed pumping method dramatically decreases the required rotational speed to pump liquid compared to the previously developed pneumatic pumping methods. It also shows that within a range of rotational speed, a desirable volume of liquid can be stored and pumped by adjusting the size of the micro-balloon.

  16. Measurements of the rotordynamic shroud forces for centrifugal pumps

    NASA Technical Reports Server (NTRS)

    Guinzburg, A.; Brennen, C. E.; Acosta, A. J.; Caughey, T. K.

    1990-01-01

    An experiment was designed to measure the rotordynamic shroud forces on a centrifugal pump impeller. The measurements were done for various whirl/impeller speed ratios and for different flow rates. A destabilizing tangential force was measured for small positive whirl ratios and this force decreased with increasing flow rate.

  17. Liquid egg white pasteurization using a centrifugal UV irradiator

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Studies are lacking on UV nonthermal pasteurization of liquid egg white (LEW). The objective of this study was to inactivate Escherichia coli using a UV irradiator that centrifugally formed a thin film of LEW on the inside of a rotating cylinder. The LEW was inoculated with E. coli K12 to approximat...

  18. DEMONSTRATION BULLETIN: THE PLASMA CENTRIFUGAL FURNACE RETECH, INC.

    EPA Science Inventory

    The plasma centrifugal furnace is a thermal technology which uses the heat generated from a plasma torch to decontaminate metal and organic contaminated waste. This is accomplished by melting metal-bearing solids and, in the process, thermally destroying organic contaminants. The...

  19. Pasteurization of Grapefruit Juice using a Centrifugal Ultraviolet Light Device

    Technology Transfer Automated Retrieval System (TEKTRAN)

    The pharmaceutical industry uses UV devices to nonthermally inactivate viruses in liquids. To overcome the low penetration depth of UV in some liquids, such as serum plasma, thin films are formed by centrifugal force. Liquid foods also have low UV penetration depths. Studies are lacking on nontherma...

  20. Application of antioxidants and centrifugation for cryopreservation of boar spermatozoa.

    PubMed

    Zhang, Wei; Yi, Kangle; Chen, Chao; Hou, Xiaofeng; Zhou, Xu

    2012-06-01

    Although cryopreserved boar semen has been available since 1975, a major breakthrough in commercial application has not yet occurred due to the high susceptibility of boar spermatozoa to damage during cryopreservation and the complicated process required for deep freezing. In recent years, the application of antioxidants during the cryopreservation of boar semen has been the subject of considerable research aimed at improving the quality of post-thaw semen. Centrifugation is necessary before using cryopreservation protocols for freezing boar spermatozoa. Studies of the effect of different centrifugation regimens on boar sperm recovery, yield and cryosurvival have made significant contributions. Therefore this review elucidates results of recent applications of various antioxidants and centrifugation regimens used in efforts to improve cryopreservation of boar spermatozoa. This review is intended to enhance understanding of the roles of these antioxidants and centrifugation regimens with respect to mechanisms that increase resistance to cryodamage of boar spermatozoa. In addition, the discussion addresses the need for developing an objective evaluation of effectiveness and estimating the prospect of application of new techniques for the cryopreservation of boar semen and its use in artificial insemination.

  1. Ocular torsion before and after 1 hour centrifugation.

    PubMed

    Groen, E; De Graaf, B; Bles, W; Bos, J E

    1996-01-01

    To assess a possible otolith contribution to effects observed following prolonged exposure to hypergravity, we used video oculography to measure ocular torsion during static and dynamic conditions of lateral body tilt (roll) before and after 1 h of centrifugation with a Gx-load of 3 G. Static tilt (from 0 to 57 degrees to either side) showed a 10% decrease in otolith-induced ocular torsion after centrifugation. This implies a reduced gain of the otolith function. The dynamic condition consisted of sinusoidal body roll (frequency 0.25 Hz, amplitude 45 degrees) about an earth horizontal and about an earth vertical axis (respectively, "with" and "without" otolith stimulation). Before centrifugation the gain of the slow component velocity (SCV) was significantly lower "with" otolith stimulation than "without" otolith stimulation. Apparently, the contribution of the otoliths counteracts the ocular torsion response generated by the semicircular canals. Therefore, the observed increase in SCV gain in the condition "with" otolith stimulation after centrifugation, seems in correspondence with the decreased otolith gain in the static condition.

  2. Demonstration of Reduced Gas Pressure in a Centrifugal Field.

    ERIC Educational Resources Information Center

    Fischer, Fred; Wild, R. L.

    1979-01-01

    Describes a simple demonstration that shows the change in molecular density and the reduction in pressure of air in a centrifugal field. Uses two circular disks with the same radius and rotating with the same angular velocity, in loose mutual contact, around their symmetry axis. (GA)

  3. Effect of chronic centrifugation on body composition in the rat.

    NASA Technical Reports Server (NTRS)

    Pitts, G. C.; Bull, L. S.; Oyama, J.

    1972-01-01

    Two groups of adult female rats were chronically centrifuged for 60 days (2.76 G, 4.15 G, controls at 1.00 G). Live weights of centrifugal rats decreased about 20 g (6%) per Delta 1 G above control. This weight loss comprised reductions in both body fat and fat-free body weight (FFBW) as determined by body-composition studies on eight rats per group killed at the end of centrifugation. Of nine components constituting the FFBW, only skeletal muscle, liver, and heart changed significantly in weight. Chemical composition showed reductions (compared with controls) in the fat fraction of most components and increases in the water fraction of liver and gut. Identical measurements were made on the remaining eight rats per group killed 43 days after return to 1 G. Neither centrifuged group had reached the control body-weight level at this time. No statistically significant effect of previous G level was found in any of the body-composition parameters. The possible involvment of physiological regulation was considered.

  4. Unshrouded Centrifugal Turbopump Impeller Design Methodology

    NASA Technical Reports Server (NTRS)

    Prueger, George H.; Williams, Morgan; Chen, Wei-Chung; Paris, John; Williams, Robert; Stewart, Eric

    2001-01-01

    Turbopump weight continues to be a dominant parameter in the trade space for reduction of engine weight. Space Shuttle Main Engine weight distribution indicates that the turbomachinery make up approximately 30% of the total engine weight. Weight reduction can be achieved through the reduction of envelope of the turbopump. Reduction in envelope relates to an increase in turbopump speed and an increase in impeller head coefficient. Speed can be increased until suction performance limits are achieved on the pump or due to alternate constraints the turbine or bearings limit speed. Once the speed of the turbopump is set the impeller tip speed sets the minimum head coefficient of the machine. To reduce impeller diameter the head coefficient must be increased. A significant limitation with increasing head coefficient is that the slope of the head-flow characteristic is affected and this can limit engine throttling range. Unshrouded impellers offer a design option for increased turbopump speed without increasing the impeller head coefficient. However, there are several issues with regard to using an unshrouded impeller: there is a pump performance penalty due to the front open face recirculation flow, there is a potential pump axial thrust problem from the unbalanced front open face and the back shroud face, and since test data is very limited for this configuration, there is uncertainty in the magnitude and phase of the rotordynamic forces due to the front impeller passage. The purpose of the paper is to discuss the design of an unshrouded impeller and to examine the hydrodynamic performance, axial thrust, and rotordynamic performance. The design methodology will also be discussed. This work will help provide some guidelines for unshrouded impeller design.

  5. Return to Flying Duties Following Centrifuge or Vibration Exposures

    NASA Technical Reports Server (NTRS)

    Scheuring, Richard A.; Clarke, Jonathan; Jones, Jeffrey A.

    2009-01-01

    Introduction: In an effort to determine the human performance limits for vibration in spacecraft being developed by NASA, astronauts were evaluated during a simulated launch profile in a centrifuge/vibration environment and separate vibration-only simulation. Current USAF and Army standards for return to flight following centrifuge exposures require 12-24 hours to pass before a crewmember may return to flying duties. There are no standards on vibration exposures and return to flying duties. Based on direct observation and provocative neurological testing of the astronauts, a new standard for return to flying duties following centrifuge and/or vibration exposures was established. Methods: 13 astronaut participants were exposed to simulated launch profiles in a + 3.5 Gx bias centrifuge/vibration environment and separately on a vibration table at the NASA-Ames Research Center. Each subject had complete neurological evaluations pre- and post-exposure for the centrifuge/vibration runs with the NASA neurological function rating scale (NFRS). Subjects who participated in the vibration-only exposures had video oculography performed with provocative maneuvers in addition to the NFRS. NFRS evaluations occurred immediately following each exposure and at 1 hour post-run. Astronauts who remained symptomatic at 1 hour had repeat NFRS performed at 1 hour intervals until the crewmember was asymptomatic. Results: Astronauts in the centrifuge/vibration study averaged a 3-5 point increase in NFRS scores immediately following exposure but returned to baseline 3 hours post-run. Subjects exposed to the vibration-only simulation had a 1-3 point increase following exposure and returned to baseline within 1-2 hours. Pre- and post- vibration exposure video oculography did not reveal any persistent ocular findings with provocative testing 1 hour post-exposure. Discussion: Based on direct observations and objective measurement of neurological function in astronauts following simulated launch

  6. Diverse Representations of Olfactory Information in Centrifugal Feedback Projections

    PubMed Central

    Osakada, Fumitaka; Tarabrina, Anna; Kizer, Erin; Callaway, Edward M.; Gage, Fred H.; Sejnowski, Terrence J.

    2016-01-01

    Although feedback or centrifugal projections from higher processing centers of the brain to peripheral regions have long been known to play essential functional roles, the anatomical organization of these connections remains largely unknown. Using a virus-based retrograde labeling strategy and 3D whole-brain reconstruction methods, we mapped the spatial organization of centrifugal projections from two olfactory cortical areas, the anterior olfactory nucleus (AON) and the piriform cortex, to the granule cell layer of the main olfactory bulb in the mouse. Both regions are major recipients of information from the bulb and are the largest sources of feedback to the bulb, collectively constituting circuits essential for olfactory coding and olfactory behavior. We found that, although ipsilateral inputs from the AON were uniformly distributed, feedback from the contralateral AON had a strong ventral bias. In addition, we observed that centrifugally projecting neurons were spatially clustered in the piriform cortex, in contrast to the distributed feedforward axonal inputs that these cells receive from the principal neurons of the bulb. Therefore, information carried from the bulb to higher processing structures by anatomically stereotypic projections is likely relayed back to the bulb by organizationally distinct feedback projections that may reflect different coding strategies and therefore different functional roles. SIGNIFICANCE STATEMENT Principles of anatomical organization, sometimes instantiated as “maps” in the mammalian brain, have provided key insights into the structure and function of circuits in sensory systems. Generally, these characterizations focus on projections from early sensory processing areas to higher processing structures despite considerable evidence that feedback or centrifugal projections often constitute major conduits of information flow. Our results identify structure in the organization of centrifugal feedback projections to the

  7. 21 CFR 864.9285 - Automated cell-washing centrifuge for immuno-hematology.

    Code of Federal Regulations, 2014 CFR

    2014-04-01

    ... 21 Food and Drugs 8 2014-04-01 2014-04-01 false Automated cell-washing centrifuge for immuno... Establishments That Manufacture Blood and Blood Products § 864.9285 Automated cell-washing centrifuge for immuno-hematology. (a) Identification. An automated cell-washing centrifuge for immuno-hematology is a device...

  8. 21 CFR 864.9285 - Automated cell-washing centrifuge for immuno-hematology.

    Code of Federal Regulations, 2012 CFR

    2012-04-01

    ... 21 Food and Drugs 8 2012-04-01 2012-04-01 false Automated cell-washing centrifuge for immuno... Establishments That Manufacture Blood and Blood Products § 864.9285 Automated cell-washing centrifuge for immuno-hematology. (a) Identification. An automated cell-washing centrifuge for immuno-hematology is a device...

  9. 21 CFR 864.9285 - Automated cell-washing centrifuge for immuno-hematology.

    Code of Federal Regulations, 2013 CFR

    2013-04-01

    ... 21 Food and Drugs 8 2013-04-01 2013-04-01 false Automated cell-washing centrifuge for immuno... Establishments That Manufacture Blood and Blood Products § 864.9285 Automated cell-washing centrifuge for immuno-hematology. (a) Identification. An automated cell-washing centrifuge for immuno-hematology is a device...

  10. 77 FR 65360 - Grant of Authority for Subzone Status (Centrifugal and Submersible Pumps); Auburn, NY

    Federal Register 2010, 2011, 2012, 2013, 2014

    2012-10-26

    ... Foreign-Trade Zones Board Grant of Authority for Subzone Status (Centrifugal and Submersible Pumps... subzone at the centrifugal and submersible pump manufacturing and warehousing facilities of Xylem Water... activity related to the manufacturing of centrifugal and submersible pumps and related controllers at...

  11. Cycle-powered short radius (1.9M) centrifuge: exercise vs. passive acceleration

    NASA Technical Reports Server (NTRS)

    Greenleaf, J. E.; Gundo, D. P.; Watenpaugh, D. E.; Mulenburg, G. M.; Marchman, N.; Looft-Wilson, R.; Hargens, A. R.

    1996-01-01

    A human-powered short-arm centrifuge is described. This centrifuge could be used during spaceflight to provide +Gz acceleration while subjects performed exercise, thus supplying two forms of weightlessness countermeasures. Results from a study of cardiovascular responses while using the centrifuge are presented.

  12. 21 CFR 864.9275 - Blood bank centrifuge for in vitro diagnostic use.

    Code of Federal Regulations, 2013 CFR

    2013-04-01

    ... 21 Food and Drugs 8 2013-04-01 2013-04-01 false Blood bank centrifuge for in vitro diagnostic use... Manufacture Blood and Blood Products § 864.9275 Blood bank centrifuge for in vitro diagnostic use. (a) Identification. A blood bank centrifuge for in vitro diagnostic use is a device used only to separate blood...

  13. 21 CFR 864.9275 - Blood bank centrifuge for in vitro diagnostic use.

    Code of Federal Regulations, 2012 CFR

    2012-04-01

    ... 21 Food and Drugs 8 2012-04-01 2012-04-01 false Blood bank centrifuge for in vitro diagnostic use... Manufacture Blood and Blood Products § 864.9275 Blood bank centrifuge for in vitro diagnostic use. (a) Identification. A blood bank centrifuge for in vitro diagnostic use is a device used only to separate blood...

  14. 21 CFR 864.9275 - Blood bank centrifuge for in vitro diagnostic use.

    Code of Federal Regulations, 2011 CFR

    2011-04-01

    ... 21 Food and Drugs 8 2011-04-01 2011-04-01 false Blood bank centrifuge for in vitro diagnostic use... Manufacture Blood and Blood Products § 864.9275 Blood bank centrifuge for in vitro diagnostic use. (a) Identification. A blood bank centrifuge for in vitro diagnostic use is a device used only to separate blood...

  15. 21 CFR 864.9275 - Blood bank centrifuge for in vitro diagnostic use.

    Code of Federal Regulations, 2014 CFR

    2014-04-01

    ... 21 Food and Drugs 8 2014-04-01 2014-04-01 false Blood bank centrifuge for in vitro diagnostic use... Manufacture Blood and Blood Products § 864.9275 Blood bank centrifuge for in vitro diagnostic use. (a) Identification. A blood bank centrifuge for in vitro diagnostic use is a device used only to separate blood...

  16. 21 CFR 864.9275 - Blood bank centrifuge for in vitro diagnostic use.

    Code of Federal Regulations, 2010 CFR

    2010-04-01

    ... 21 Food and Drugs 8 2010-04-01 2010-04-01 false Blood bank centrifuge for in vitro diagnostic use... Manufacture Blood and Blood Products § 864.9275 Blood bank centrifuge for in vitro diagnostic use. (a) Identification. A blood bank centrifuge for in vitro diagnostic use is a device used only to separate blood...

  17. 40 CFR Appendix - Alternative Organic HAP Emissions Limits for Open Molding, Centrifugal Casting, and SMC...

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... Limits for Open Molding, Centrifugal Casting, and SMC Manufacturing Operations Where the Standards Are..., Table 5 Alternative Organic HAP Emissions Limits for Open Molding, Centrifugal Casting, and SMC... casting—CR/HS 3,4 A vent system that moves heated air through the mold 27 lb/ton. 8. Centrifugal...

  18. 40 CFR Appendix - Alternative Organic HAP Emissions Limits for Open Molding, Centrifugal Casting, and SMC...

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ... Limits for Open Molding, Centrifugal Casting, and SMC Manufacturing Operations Where the Standards Are..., Table 5 Alternative Organic HAP Emissions Limits for Open Molding, Centrifugal Casting, and SMC... casting—CR/HS 3,4 A vent system that moves heated air through the mold 27 lb/ton. 8. Centrifugal...

  19. 40 CFR Appendix - Alternative Organic HAP Emissions Limits for Open Molding, Centrifugal Casting, and SMC...

    Code of Federal Regulations, 2012 CFR

    2012-07-01

    ... Limits for Open Molding, Centrifugal Casting, and SMC Manufacturing Operations Where the Standards Are..., Subpt. WWWW, Table 5 Alternative Organic HAP Emissions Limits for Open Molding, Centrifugal Casting, and... casting—CR/HS 3,4 A vent system that moves heated air through the mold 27 lb/ton. 8. Centrifugal...

  20. 40 CFR Appendix - Alternative Organic HAP Emissions Limits for Open Molding, Centrifugal Casting, and SMC...

    Code of Federal Regulations, 2013 CFR

    2013-07-01

    ... Limits for Open Molding, Centrifugal Casting, and SMC Manufacturing Operations Where the Standards Are..., Subpt. WWWW, Table 5 Alternative Organic HAP Emissions Limits for Open Molding, Centrifugal Casting, and... casting—CR/HS 3,4 A vent system that moves heated air through the mold 27 lb/ton. 8. Centrifugal...

  1. 21 CFR 864.9285 - Automated cell-washing centrifuge for immuno-hematology.

    Code of Federal Regulations, 2011 CFR

    2011-04-01

    ... 21 Food and Drugs 8 2011-04-01 2011-04-01 false Automated cell-washing centrifuge for immuno... Establishments That Manufacture Blood and Blood Products § 864.9285 Automated cell-washing centrifuge for immuno-hematology. (a) Identification. An automated cell-washing centrifuge for immuno-hematology is a device...

  2. 21 CFR 864.9285 - Automated cell-washing centrifuge for immuno-hematology.

    Code of Federal Regulations, 2010 CFR

    2010-04-01

    ... 21 Food and Drugs 8 2010-04-01 2010-04-01 false Automated cell-washing centrifuge for immuno... Establishments That Manufacture Blood and Blood Products § 864.9285 Automated cell-washing centrifuge for immuno-hematology. (a) Identification. An automated cell-washing centrifuge for immuno-hematology is a device...

  3. Development of large diameter carbon monofilament

    NASA Technical Reports Server (NTRS)

    Jacob, B.; Neltri, R. D.

    1973-01-01

    A process for preparing large diameter carbon-boron monofilament was developed. The process involves chemical vapor depositing a carbon-boron alloy monofilament from a BCl3, CH4, and H2 gas mixture onto a carbon substrate. Amorphous alloys were formed when gaseous mixtures containing greater than 20 percent methane (80 percent BCl3) were used. The longest uninterrupted lengths of carbon-boron monofilament were produced using a CH4/BCl3 gas ratio of 2.34. It was found that the properties of the carbon-boron alloy monofilament improved when the carbon substrate was precleaned in chlorine. The highest strength monofilament was attained when a CH4/BCl3 gas volume ratio of 0.44 was 28 million N/sq cm (40 million psi). While the highest strengths were attained in this run, the 0.44 gas ratio and other CH4/BCl3 ratios less than 2.34 would not yield long runs. Runs using these ratios were usually terminated because of a break in the monofilament within the reactor. It is felt better process control could probably be achieved by varying the amount of hydrogen; the BCl3/H2 ratio was kept constant in these studies.

  4. The 15 cm diameter ion thruster research

    NASA Technical Reports Server (NTRS)

    Wilbur, P. J.

    1974-01-01

    The startup reliability of a 15 cm diameter mercury bombardment ion thruster which employs a pulsed high voltage tickler electrode on the main and neutralizer cathodes is examined. Startup of the thruster is achieved 100% of the time on the main cathode and 98.7% of the time on the neutralizer cathode over a 3640 cycle test. The thruster was started from a 20 C initial condition and operated for an hour at a 600 mA beam current. An energy efficiency of 75% and a propellant utilization efficiency of 77% was achieved over the complete cycle. The effect of a single cusp magnetic field thruster length on its performance is discussed. Guidelines are formulated for the shaping of magnetic field lines in thrusters. A model describing double ion production in mercury discharges is presented. The production route is shown to occur through the single ionic ground state. Photographs of the interior of an operating-hollow cathode are presented. A cathode spot is shown to be present if the cathode is free of low work-function surfaces. The spot is observed if a low work-function oxide coating is applied to the cathode insert. Results show that low work-function oxide coatings tend to migrate during thruster operation.

  5. Determination of strength behaviour of slope supported by vegetated crib walls using centrifuge model testing

    NASA Astrophysics Data System (ADS)

    Sudan Acharya, Madhu

    2010-05-01

    The crib retaining structures made of wooden/bamboo logs with live plants inside are called vegetative crib walls which are now becoming popular due to their advantages over conventional civil engineering walls. Conventionally, wooden crib walls were dimensioned based on past experiences. At present, there are several guidelines and design standards for machine finished wooden crib walls, but only few guidelines for the design and construction of vegetative log crib walls are available which are generally not sufficient for an economic engineering design of such walls. Analytical methods are generally used to determine the strength of vegetated crib retaining walls. The crib construction is analysed statically by satisfying the condition of static equilibrium with acceptable level of safety. The crib wall system is checked for internal and external stability using conventional monolithic and silo theories. Due to limitations of available theories, the exact calculation of the strength of vegetated wooden/bamboo crib wall cannot be made in static calculation. Therefore, experimental measurements are generally done to verify the static analysis. In this work, a model crib construction (1:20) made of bamboo elements is tested in the centrifuge machine to determine the strength behaviour of the slope supported by vegetated crib retaining wall. A geotechnical centrifuge is used to conduct model tests to study geotechnical problems such as the strength, stiffness and bearing capacity of different structures, settlement of embankments, stability of slopes, earth retaining structures etc. Centrifuge model testing is particularly well suited to modelling geotechnical events because the increase in gravitational force creates stresses in the model that are equivalent to the much larger prototype and hence ensures that the mechanisms of ground movements observed in the tests are realistic. Centrifuge model testing provides data to improve our understanding of basic mechanisms

  6. Crystal-melt interface shape of Czochralski-grown large diameter germanium crystals

    NASA Technical Reports Server (NTRS)

    Roth, M.; Azoulay, M.; Gafni, G.; Mizrachi, M.

    1990-01-01

    Crystal-melt interface shapes of 100 to 200 mm diameter 111-line Ge grown by the Czochralski technique have been examined using the method of fast withdrawal from the melt. Initially, the interface shape is convex, then transforms gradually into a sigmoidal shape, becomes nearly planar at about one third of the final crystal length, and finally assumes a concave profile with progressively increasing curvature. The nearly planar interface has a double-facet structure, with an annular facet at the edge of the crystal in addition to the central (111) facet. Formation of the annular facet is accompanied by a giant oscillation of the pull rate when the maximum average pull rate is exceeded. Such oscillation is detrimental to crystal quality, since it introduces a region of high dislocation density. An average pull rate maximum of 2 cm/h has been found to allow for a smooth growth of 200 mm diameter crystals. The origin of the pull rate perturbation is discussed in terms of an instantaneous change in the equilibrium shape of the meniscus.

  7. Behavior of large diameter wire ropes

    SciTech Connect

    Raoof, M.; Kraincanic, I.

    1995-12-31

    The paper reviews the recent theoretical work of the present authors as regards the prediction of the 2 {times} 2 stiffness matrix describing axial/torsional coupling of large diameter wire ropes. The theoretical analysis is based on results from a previously reported orthotropic sheet model which enables one to obtain estimates of the coefficients in the 2 {times} 2 stiffness matrix describing the axial/torsional coupling of the constituent spiral strands. The proposed model can (unlike previously available theories for wire ropes) cater for the presence of interwire friction and the various wire rope stiffness coefficients corresponding to both no-slip and full-slip regimes can be calculated. The no-slip regime corresponds to cases when an axially preloaded wire rope experiences cyclic variations of external load which are small enough not to induce initiation of gross interwire slippage within the constituent spiral strands. For sufficiently large values of range/mean axial load ratios, on the other hand, gross interwire slippage takes place and the effects of interwire friction on wire rope stiffness coefficients will be negligibly small compared with the effects due to the force changes in the wires themselves. Theoretical models have been developed for two types of wire ropes, i.e., those with an independent wire rope core (IWRC) or the types with a fiber core: the salient features for both approaches are reviewed with an emphasis on the characteristics of various wire rope constructions. In addition, experimental results from other sources are found to provide encouraging support for the theoretical predictions in a number of areas.

  8. Mockup Small-Diameter Air Distribution System

    SciTech Connect

    A. Poerschke and A. Rudd

    2016-05-01

    This report investigates the feasibility of using a home-run manifold small-diameter duct system to provide space conditioning air to individual thermal zones in a low-load home. This compact layout allows duct systems to be brought easily within conditioned space via interior partition walls. Centrally locating the air hander unit in the house significantly reduces duct lengths. The plenum box is designed so that each connected duct receives an equal amount of airflow, regardless of the duct position on the box. Furthermore, within a reasonable set of length restrictions, each duct continues to receive similar airflow. The design method uses an additive approach to reach the total needed zonal airflow. Once the cubic feet per minute needed to satisfy the thermal load of a zone has been determined, the total number of duct runs to a zone can be calculated by dividing the required airflow by the standard airflow from each duct. The additive approach greatly simplifies the design effort and reduces the potential for duct design mistakes to be made. Measured results indicate that this plenum design can satisfy the heating load. However, the total airflow falls short of satisfying the cooling load in a hypothetical building. Static pressure inside the plenum box of 51.5 Pa limited the total airflow of the attached mini-split heat pump blower, thus limiting the total thermal capacity. Fan energy consumption is kept to 0.16 to 0.22 watt/CFM by using short duct runs and smooth duct material.

  9. Shaft/shaft-seal interface characteristics of a multiple disk centrifugal blood pump.

    PubMed

    Manning, K B; Miller, G E

    1999-06-01

    A multiple disk centrifugal pump (MDCP) is under investigation as a potential left ventricular assist device. As is the case with most shaft driven pumps, leakage problems around the shaft/shaft seal interface are of major interest. If leakage were to occur during or after implantation, potential events such as blood loss, clotting, blood damage, and/or infections might result in adverse effects for the patient. Because these effects could be quite disastrous, potential shaft and shaft seal materials have been investigated to determine the most appropriate course to limit these effects. Teflon and nylon shaft seals were analyzed as potential candidates along with a stainless steel shaft and a Melonite coated shaft. The materials and shafts were evaluated under various time durations (15, 30, 45, and 60 min), motor speeds (800, 1,000, 1,200, and 1,400 rpm), and outer diameters (1/2 and 3/4 inches). The motor speed and geometrical configurations were typical for the MDCP under normal physiologic conditions. An air and water study was conducted to analyze the inner diameter wear, the inner temperature values, and the outer temperature values. Statistical comparisons were computed for the shaft seal materials, the shafts, and the outer diameters along with the inner and outer temperatures. The conclusions made from the results indicate that both the tested shaft seal materials and shaft materials are not ideal candidates to be used for the MDCP. Teflon experienced a significant amount of wear in air and water studies. Nylon did experience little wear, but heat generation was an evident problem. A water study on nylon was not conducted because of its molecular structure.

  10. Ocular Counter-Rolling During Centrifugation and Static Tilt

    NASA Technical Reports Server (NTRS)

    Cohen, Bernard; Clement, Gilles; Moore, Steven; Curthoys, Ian; Dai, Mingjia; Koizuka, Izumi; Kubo, Takeshi; Raphan, Theodore

    2003-01-01

    Activation of the gravity sensors in the inner ear-the otoliths-generates reflexes that act to maintain posture and gaze. Ocular counter-rolling (OCR) is an example of such a reflex. When the head is tilted to the side, the eyes rotate around the line of sight in the opposite direction (i.e., counter-rolling). While turning comers, undergoing centrifugation, or making side-to-side tilting head movements, the OCR reflex orients the eyes towards the sum of the accelerations from body movements and gravity. Deconditioning of otolith-mediated reflexes following adaptation to microgravity has been proposed as the basis of many of the postural, locomotor, and gaze control problems experienced by returning astronauts. Evidence suggests that OCR is reduced postflight in about 75% of astronauts tested; but the data are sparse, primarily due to difficulties in recording rotational eye movements. During the Neurolab mission, a short-arm human centrifuge was flown that generated sustained sideways accelerations of 0.5-G and one-G to the head and upper body. This produces OCR; and so for the first time, the responses to sustained centrifugation could be studied without the influence of Earth's gravity on the results. This allowed us to determine the relative importance of sideways and vertical acceleration in the generation of OCR. This also provided the first test of the effects of exposure to artificial gravity in space on postflight otolith-ocular reflexes. There was little difference between the responses to centrifugation in microgravity and on Earth. In both conditions, the induced OCR was roughly proportional to the applied acceleration, with the OCR magnitude during 0.5-G centrifugation approximately 60% of that generated during one-G centrifugation. The overall mean OCR from the four payload crewmembers in response to one-G of sideways acceleration was 5.7 plus or minus 1.1 degree (mean and SD) on Earth. Inflight one-G centrifugation generated 5.7 plus or minus 1

  11. Instability of Reference Diameter in the Evaluation of Stenosis After Coronary Angioplasty: Percent Diameter Stenosis Overestimates Dilative Effects Due to Reference Diameter Reduction

    SciTech Connect

    Hirami, Ryouichi; Iwasaki, Kohichiro; Kusachi, Shozo; Murakami, Takashi; Hina, Kazuyoshi; Matano, Shigeru; Murakami, Masaaki; Kita, Toshimasa; Sakakibara, Noburu; Tsuji, Takao

    2000-03-15

    Purpose: To examine changes in the reference segment luminal diameter after coronary angioplasty.Methods: Sixty-one patients with stable angina pectoris or old myocardial infarction were examined. Coronary angiograms were recorded before coronary angioplasty (pre-angioplasty) and immediately after (post-angioplasty), as well as 3 months after. Artery diameters were measured on cine-film using quantitative coronary angiographic analysis.Results: The diameters of the proximal segment not involved in the balloon inflation and segments in the other artery did not change significantly after angioplasty, but the reference segment diameter significantly decreased (4.7%). More than 10% luminal reduction was observed in seven patients (11%) and more than 5% reduction was observed in 25 patients (41%). More than 5% underestimation of the stenosis was observed in 22 patients (36%) when the post-angioplasty reference diameter was used as the reference diameter, compared with when the pre-angioplasty measurement was used and more than 10% underestimation was observed in five patients (8%).Conclusion: This study indicated that evaluation by percent diameter stenosis, with the reference diameter from immediately after angioplasty, overestimates the dilative effects of coronary angioplasty, and that it is thus better to evaluate the efficacy of angioplasty using the absolute diameter in addition to percent luminal stenosis.

  12. Extrusion of small-diameter, thin-wall tungsten tubing

    NASA Technical Reports Server (NTRS)

    Blankenship, C. P.; Gyorgak, C. A.

    1967-01-01

    Small-diameter, thin-wall seamless tubing of tungsten has been fabricated in lengths of up to 10 feet by hot extrusion over a floating mandrel. Extrusion of 0.50-inch-diameter tubing over 0.4-inch-diameter mandrels was accomplished at temperatures ranging from 3000 degrees to 4000 degrees F.

  13. The simulation and performance of a centrifugal chiller

    NASA Astrophysics Data System (ADS)

    Jackson, W. L.; Chen, F. C.; Hwang, B. C.

    A computer simulation model was developed to analyze the performance of a water-cooled centrifugal chiller. The model is based on a heat pump thermodynamic cycle and empirical correlations for the performance of the system components. The system simulated is composed of a variable-speed centrifugal compressor with a hot-gas bypass option for capacity control, two shell-and-tube heat exchangers, and an expansion device. The model was validated and calibrated against the experimental test results of a 125-ton chiller. The performance of a similar chiller system at various operating conditions and design modifications was analyzed. System performance comparisons were made between a baseline case, cases with high-performance heat exchanger tubes and compressor motor, and various variable-speed compressor operating strategies. It was found that significant performance improvement can be realized by using variable-speed drive and on-demand control strategy.

  14. Analysis of the reliability of submersible centrifugal electric pumping systems

    SciTech Connect

    Shilyaev, V.A.; Solodovnikov, G.G.; Vikhman, R.G.; Koshelev, V.A.; Zhitina, G.S.; Chirkova, N.I.

    1987-01-01

    A modern submersible centrifugal electric pumping system (SCEPS) for oil production consists of a submersible part which includes a centrifugal pump, an electric motor, a hydroprotection arrangement, a cable line, and an aboveground part that includes a control station and a transformer. The author discusses the mean service life of the submersible part of the SCEPS as the most important parameter of reliability of the SCEPS. The effect of the operating factors is assessed by calculating the mean service life of the submersible part of the typical SCEPS, making allowance for failures resulting from all causes. The mean operating time until failure of the submersible part of the new SCEPS due to design and technological error was determined.

  15. Core temperature of tailless rats exposed to centrifugation

    NASA Technical Reports Server (NTRS)

    Monson, C. B.; Oyama, J.

    1984-01-01

    The role of the tail in the altered thermoregulation of rats during acute exposure to hypergravity was investigated, using groups of rats of two ages: 55 days (young) and 138 days (old). Rectal and foot temperature changes were measured in intact and tailless rats subjected to 1 h centrifugation of 2.8 G, with preceding (1 h) and following (1-3 h) 1 G periods. At 22 C, the loss of body heat from the tail per se does not measurably contribute to the hypothermia induced by hypergravity. However, the heat loss from the feet was greater in the tailless rats than in the intact rats from the young group of animals, although there was no significant difference between the tailless and intact rats in the old animal group. It is concluded that the inhibition of heat production is a significant factor in the hypothermia of centrifuged tailless rats, as it has been previously shown to be in the intact animals.

  16. Optimization of centrifugal pump cavitation performance based on CFD

    NASA Astrophysics Data System (ADS)

    Xie, S. F.; Wang, Y.; Liu, Z. C.; Zhu, Z. T.; Ning, C.; Zhao, L. F.

    2015-01-01

    In order to further improve the cavitation performance of a centrifugal pump, slots on impeller blade near inlet were studied and six groups of hydraulic model were designed. Base on cavitating flow feature inside a centrifugal pump, bubble growth and implosion are calculated from the Rayleigh-Plesset equation which describes the dynamic behavior of spherical bubble and RNG κ-epsilon model was employed to simulate and analyze the internal two-phase flow of the model pump under the same conditions. The simulation results show that slots on blade near inlet could improve the cavitation performance and cavitation performance improvement of the second group was more obvious. Under the same conditions, the pressure on the back of blade near inlet was higher than the pressure on the back of unmodified blade near inlet, and energy distribution in the flow channel between the two blades was more uniform with a small change of head.

  17. Analysis of cantilever NEMS in centrifugal-fluidic systems

    NASA Astrophysics Data System (ADS)

    Mohsen-Nia, Mohsen; Abadian, Fateme; Abadian, Naeime; Dehkordi, Keivan Mosaiebi; Keivani, Maryam; Abadyan, Mohamadreza

    2016-07-01

    Electromechanical nanocantilevers are promising for using as sensors/detectors in centrifugal-fluidic systems. For this application, the presence of angular speed and electrolyte environment should be considered in the theoretical analysis. Herein, the pull-in instability of the nanocantilever incorporating the effects of angular velocity and liquid media is investigated using a size-dependent continuum theory. Using d’Alembert principle, the angular speed is transformed into an equivalent centrifugal force. The electrochemical and dispersion forces are incorporated considering the corrections due to the presence of electrolyte media. Two different approaches, i.e., the Rayleigh-Ritz method (RRM) and proposing a lumped parameter model (LPM), were applied to analyze the system. The models are validated with the results presented in literature. Impacts of the angular velocity, electrolyte media, dispersion forces, and size effect on the instability characteristics of the nanocantilever are discussed.

  18. Probing biomechanical properties with a centrifugal force quartz crystal microbalance.

    PubMed

    Webster, Aaron; Vollmer, Frank; Sato, Yuki

    2014-10-21

    Application of force on biomolecules has been instrumental in understanding biofunctional behaviour from single molecules to complex collections of cells. Current approaches, for example, those based on atomic force microscopy or magnetic or optical tweezers, are powerful but limited in their applicability as integrated biosensors. Here we describe a new force-based biosensing technique based on the quartz crystal microbalance. By applying centrifugal forces to a sample, we show it is possible to repeatedly and non-destructively interrogate its mechanical properties in situ and in real time. We employ this platform for the studies of micron-sized particles, viscoelastic monolayers of DNA and particles tethered to the quartz crystal microbalance surface by DNA. Our results indicate that, for certain types of samples on quartz crystal balances, application of centrifugal force both enhances sensitivity and reveals additional mechanical and viscoelastic properties.

  19. Reverse-Tangent Injection in a Centrifugal Compressor

    NASA Technical Reports Server (NTRS)

    Skoch, Gary J.

    2007-01-01

    Injection of working fluid into a centrifugal compressor in the reverse tangent direction has been invented as a way of preventing flow instabilities (stall and surge) or restoring stability when stall or surge has already commenced. The invention applies, in particular, to a centrifugal compressor, the diffuser of which contains vanes that divide the flow into channels oriented partly radially and partly tangentially. In reverse-tangent injection, a stream or jet of the working fluid (the fluid that is compressed) is injected into the vaneless annular region between the blades of the impeller and the vanes of the diffuser. As used here, "reverse" signifies that the injected flow opposes (and thereby reduces) the tangential component of the velocity of the impeller discharge. At the same time, the injected jet acts to increase the radial component of the velocity of the impeller discharge.

  20. Improved Monodispersity of Plasmonic Nanoantennas via Centrifugal Processing

    SciTech Connect

    Tyler, Timothy P.; Henry, A.I.; Van Duyne, Richard P.; Hersam, Mark C.

    2011-02-03

    Noble metal nanoparticle clusters underlie a variety of plasmonic devices and measurements including surface-enhanced Raman spectroscopy (SERS). Because of the strong dependence of plasmonic properties on nanoparticle cluster aggregation state, the elimination of non-SERS-active structures and the refinement of the nanoparticle cluster population are critical to realizing uniform and reproducible structures for plasmonic nanoantenna applications such as SERS-based sensors. In this Letter, we report a centrifugal sorting technique for gold core/silica shell nanoparticles that host SERS reporter molecules at the gold/silica interface. The relatively massive nanoparticle clusters are sorted by sedimentation coefficient via centrifugation in a high-viscosity density gradient medium, iodixanol, which yields solutions that contain a preponderance of one aggregation state and a diminished monomer population, as determined by transmission electron microscopy, extinction spectroscopy, and SERS. A quantitative analysis of the nanoparticle sedimentation coefficients is presented, thus allowing this approach to be predictably generalized to other nanoparticle systems.

  1. Hemocompatibility of a hydrodynamic levitation centrifugal blood pump.

    PubMed

    Yamane, Takashi; Maruyama, Osamu; Nishida, Masahiro; Kosaka, Ryo; Sugiyama, Daisuke; Miyamoto, Yusuke; Kawamura, Hiroshi; Kato, Takahisa; Sano, Takeshi; Okubo, Takeshi; Sankai, Yoshiyuki; Shigeta, Osamu; Tsutsui, Tatsuo

    2007-01-01

    A noncontact type centrifugal pump without any complicated control or sensing modules has been developed as a long-term implantable artificial heart. Centrifugal pumps with impellers levitated by original hydrodynamic bearings were designed and have been modified through numerical analyses and in vitro tests. The hemolysis level was reduced by changing the pressure distribution around the impeller and subsequently expanding the bearing gap. Thrombus formation in the bearing was examined with in vitro thrombogenesis tests and was reduced by changing the groove shapes to increase the bearing-gap flow to 3% of the external flow. Unnecessary vortices around the vanes were also eliminated by changing the number of vanes from four to six.

  2. Evaluation of Argonne 9-cm and 10-cm Annular Centrifugal Contactors for SHINE Solution Processing

    SciTech Connect

    Wardle, Kent E.; Pereira, Candido; Vandegrift, George

    2015-02-01

    Work is in progress to evaluate the SHINE Medical Technologies process for producing Mo-99 for medical use from the fission of dissolved low-enriched uranium (LEU). This report addresses the use of Argonne annular centrifugal contactors for periodic treatment of the process solution. In a letter report from FY 2013, Pereira and Vandegrift compared the throughput and physical footprint for the two contactor options available from CINC Industries: the V-02 and V-05, which have rotor diameters of 5 cm and 12.7 cm, respectively. They suggested that an intermediately sized “Goldilocks” contactor might provide a better balance between throughput and footprint to meet the processing needs for the uranium extraction (UREX) processing of the SHINE solution to remove undesired fission products. Included with the submission of this letter report are the assembly drawings for two Argonne-design contactors that are in this intermediate range—9-cm and 10-cm rotors, respectively. The 9-cm contactor (drawing number CE-D6973A, stamped February 15, 1978) was designed as a single-stage unit and built and tested in the late 1970s along with other size units, both smaller and larger. In subsequent years, a significant effort to developed annular centrifugal contactors was undertaken to support work at Hanford implementing the transuranic extraction (TRUEX) process. These contactors had a 10-cm rotor diameter and were fully designed as multistage units with four stages per assembly (drawing number CMT-E1104, stamped March 14, 1990). From a technology readiness perspective, these 10-cm units are much farther ahead in the design progression and, therefore, would require significantly less re-working to make them ready for UREX deployment. Additionally, the overall maximum throughput of ~12 L/min is similar to that of the 9-cm unit (10 L/min), and the former could be efficiently operated over much of the same range of throughput. As a result, only the 10-cm units are considered here

  3. A Large Radius Human Centrifuge: The Human Hypergravity Havitat

    NASA Astrophysics Data System (ADS)

    van Loon, J. J. W. A.

    2008-06-01

    Life on Earth has developed at unit gravity, 9.81 m/s2, but how would plants and animals have evolved on a larger planet, i.e. larger than Earth? We are able to address this question simply by studies using centrifuges. In the past decades numerous experiments have been performed on cells, plants and animals grown for longer durations, even multi generations, under hypergravity conditions. Based on these studies we have gained interesting insights in the physiological process of these systems when exposed to artificial gravity. Animals and plants adapt themselves to this new high-g environment. Information of adaptation to hyper-g in mammals is interesting, or maybe even proof vital, for future human space flight programs especially in light of long duration missions to Moon and Mars. We know from long duration animal studies that numerous physiological processes and structures like muscles, bones, neuro-vestibular, or the cardiovascular system are affected. However, humans have never been exposed to a hyper-g environment for long durations. Human studies are mostly in the order of hours at most. Current work on human centrifuges is all focused on short arm systems to apply artificial gravity in long duration space missions. In this paper we want to address the possible usefulness of a large radius human centrifuge on Earth, or even on Moon or Mars, for both basic research and possible applications. In such a centrifuge a group of humans may be exposed to hypergravity for, in principle, an unlimited period of time.

  4. At 1050 Gallery, Block 12, two centrifugal pumps, Buffalo Pumps, ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    At 1050 Gallery, Block 12, two centrifugal pumps, Buffalo Pumps, Buffalo, NY, driven by Allis Chalmers motors (size 3 HSO, head 230, 120 cpm, 1750, rpm, Impulse dia. 15) installed in the 1960s and used for water-cooling system for 230-kv cable; the cables have been removed and the pumps are not currently used. - Columbia Basin Project, Grand Coulee Dam & Franklin D. Roosevelt Lake, Across Columbia River, Southeast of Town of Grand Coulee, Grand Coulee, Grant County, WA

  5. Liquid rocket engine centrifugal flow turbopumps. [design criteria

    NASA Technical Reports Server (NTRS)

    1973-01-01

    Design criteria and recommended practices are discussed for the following configurations selected from the design sequence of a liquid rocket engine centrifugal flow turbopump: (1) pump performance including speed, efficiency, and flow range; (2) impeller; (3) housing; and (4) thrust balance system. Hydrodynamic, structural, and mechanical problems are addressed for the achievement of required pump performance within the constraints imposed by the engine/turbopump system. Materials and fabrication specifications are also discussed.

  6. Conditions to obtain reliable high strength alumina via centrifugal casting

    SciTech Connect

    Huisman, W.; Graule, T.; Gauckler, L.J.

    1995-09-01

    Electrostatically stabilized alumina suspensions with high solids content of up to 58 vol% were consolidated into near-net-shape parts via centrifugal casting. High density green bodies showed excellent sintering kinetics leading to {ge} 99.5% of theoretical density (TD) at lowered temperatures compared to isostatic pressing. Four point bend strengths of 540 MPa with Weibull moduli of up to 24 were achieved using commercial {alpha}-alurnina powders.

  7. Laser tracker TSPI uncertainty quantification via centrifuge trajectory

    NASA Astrophysics Data System (ADS)

    Romero, Edward; Paez, Thomas; Brown, Timothy; Miller, Timothy

    2009-08-01

    Sandia National Laboratories currently utilizes two laser tracking systems to provide time-space-position-information (TSPI) and high speed digital imaging of test units under flight. These laser trackers have been in operation for decades under the premise of theoretical accuracies based on system design and operator estimates. Advances in optical imaging and atmospheric tracking technology have enabled opportunities to provide more precise six degree of freedom measurements from these trackers. Applying these technologies to the laser trackers requires quantified understanding of their current errors and uncertainty. It was well understood that an assortment of variables contributed to laser tracker uncertainty but the magnitude of these contributions was not quantified and documented. A series of experiments was performed at Sandia National Laboratories large centrifuge complex to quantify TSPI uncertainties of Sandia National Laboratories laser tracker III. The centrifuge was used to provide repeatable and economical test unit trajectories of a test-unit to use for TSPI comparison and uncertainty analysis. On a centrifuge, testunits undergo a known trajectory continuously with a known angular velocity. Each revolution may represent an independent test, which may be repeated many times over for magnitudes of data practical for statistical analysis. Previously these tests were performed at Sandia's rocket sled track facility but were found to be costly with challenges in the measurement ground truth TSPI. The centrifuge along with on-board measurement equipment was used to provide known ground truth position of test units. This paper discusses the experimental design and techniques used to arrive at measures of laser tracker error and uncertainty.

  8. Centrifugal Blower for Personal Air Ventilation System (PAVS) - Phase 1

    DTIC Science & Technology

    2015-02-01

    axial blower design was chosen to achieve the highest possible efficiency within the size constraints of the system. The blower is able to deliver 10...of the blower were used to minimize losses and increase efficiency through adjustments of the specific blower geometry. CFD outputs included the...functionality. 15. SUBJECT TERMS COOLING SBIR REPORTS AXIAL FLOW FANS OFF THE SHELF EQUIPMENT BLOWERS LIGHTWEIGHT CENTRIFUGAL FORCE

  9. Human Disorientation as a Factor in Spacecraft Centrifuge Design

    DTIC Science & Technology

    2002-09-01

    from the rotation of the 58 J.L. Meriam and L.G. Kraige, Engineering Mechanics Vol. 2: Dynamics, 2nd Edition, New York: John Wiley and Sons, 1986...McGraw-Hill, 1983, p. 39 60 Meriam and Kraige, Dynamics, p. 350 61 Wells and Slusher, p. 64 102 centrifuge). This force appears as either an...64 Milsum, p. 187 65 Meriam and Kraige, Dynamics, p. 630 66 Meriam and Kraige, Engineering Mechanics Vol. 1

  10. Prenatal centrifugation: A model for fetal programming of adult weight?

    NASA Astrophysics Data System (ADS)

    Baer, Lisa A.; Rushing, Linda; Wade, Charles E.; Ronca, April E.

    2005-08-01

    'Fetal programming' is a newly emerging field that is revealing astounding insights into the prenatal origins of adult disease, including metabolic, endocrine, and cardiovascular pathophysiology. In the present study, we tested the hypothesis that rat pups conceived, gestated and born at 2-g have significantly reduced birth weights and increased adult body weights as compared to 1-g controls. Offspring were produced by mating young adult male and female rats that were adapted to 2-g centrifugation. Female rats underwent conception, pregnancy and birth at 2-g. Newborn pups in the 2-g condition were removed from the centrifuge and fostered to non-manipulated, newly parturient dams maintained at 1-g. Comparisons were made with 1-g stationary controls, also cross- fostered at birth. As compared to 1-g controls, birth weights of pups gestated and born at 2-g were significantly reduced. Pup body weights were significantly reduced until Postnatal day (P)12. Beginning on P63, body weights of 2-g-gestated offspring exceeded those of 1-g controls by 7-10%. Thus, prenatal rearing at 2-g restricts neonatal growth and increases adult body weight. Collectively, these data support the hypothesis that 2-g centrifugation alters the intrauterine milieu, thereby inducing persistent changes in adult phenotype.

  11. Massively Parallel Single-Molecule Manipulation Using Centrifugal Force

    NASA Astrophysics Data System (ADS)

    Wong, Wesley; Halvorsen, Ken

    2011-03-01

    Precise manipulation of single molecules has led to remarkable insights in physics, chemistry, biology, and medicine. However, two issues that have impeded the widespread adoption of these techniques are equipment cost and the laborious nature of making measurements one molecule at a time. To meet these challenges, we have developed an approach that enables massively parallel single- molecule force measurements using centrifugal force. This approach is realized in the centrifuge force microscope, an instrument in which objects in an orbiting sample are subjected to a calibration-free, macroscopically uniform force- field while their micro-to-nanoscopic motions are observed. We demonstrate high- throughput single-molecule force spectroscopy with this technique by performing thousands of rupture experiments in parallel, characterizing force-dependent unbinding kinetics of an antibody-antigen pair in minutes rather than days. Currently, we are taking steps to integrate high-resolution detection, fluorescence, temperature control and a greater dynamic range in force. With significant benefits in efficiency, cost, simplicity, and versatility, single-molecule centrifugation has the potential to expand single-molecule experimentation to a wider range of researchers and experimental systems.

  12. Low-molecular weight plasma proteome analysis using centrifugal ultrafiltration.

    PubMed

    Greening, David W; Simpson, Richard J

    2011-01-01

    The low-molecular weight fraction (LMF) of the human plasma proteome is an invaluable source of biological information, especially in the context of identifying plasma-based biomarkers of disease. This protocol outlines a standardized procedure for the rapid/reproducible LMF profiling of human plasma samples using centrifugal ultrafiltration fractionation, followed by 1D-SDS-PAGE separation and nano-LC-MS/MS. Ultrafiltration is a convective process that uses anisotropic semipermeable membranes to separate macromolecular species on the basis of size. We have optimized centrifugal ultrafiltration for plasma fractionation with respect to buffer and solvent composition, centrifugal force, duration and temperature to facilitate >95% recovery, and enrichment of low-M (r) components from human plasma. Using this protocol, >260 unique peptides can be identified from a single plasma profiling experiment using 100 μL of plasma (Greening and Simpson, J Proteomics 73:637-648, 2010). The efficacy of this method is demonstrated by the identification, for the first time, of several plasma proteins (e.g., protein KIAA0649 (Q9Y4D3), rheumatoid factor D5, serine protease inhibitor A3, and transmembrane adapter protein PAG) previously not reported in extant high-confidence Human Proteome Organization Plasma Proteome Project datasets.

  13. Stress analysis of bolted joints under centrifugal force

    NASA Astrophysics Data System (ADS)

    Imura, Makoto; Iizuka, Motonobu; Nakae, Shigeki; Mori, Takeshi; Koyama, Takayuki

    2014-06-01

    Our objective is to develop a long-life rotary machine for synchronous generators and motors. To do this, it is necessary to design a high-strength bolted joint, which is responsible for fixing a salient pole on a rotor shaft. While the rotary machine is in operation, not only centrifugal force but also moment are loaded on a bolted joint, because a point of load is eccentric to a centre of a bolt. We tried to apply the theory proposed in VDI2230-Blatt1 to evaluate the bolted joint under eccentric force, estimate limited centrifugal force, which is the cause of partial separation between the pole and the rotor shaft, and then evaluate additional tension of a bolt after the partial separation has occurred. We analyzed the bolted joint by FEM, and defined load introduction factor in that case. Additionally, we investigated the effect of the variation of bolt preload on the partial separation. We did a full scale experiment with a prototype rotor to reveal the variation of bolt preload against tightening torque. After that, we verified limited centrifugal force and the strength of the bolted joint by the VDI2230-Blatt1 theory and FEM considering the variation of bolt preload. Finally, we could design a high-strength bolted joint verified by the theoretical study and FEM analysis.

  14. Modelling of horizontal centrifugal casting of work roll

    NASA Astrophysics Data System (ADS)

    Xu, Zhian; Song, Nannan; Tol, Rob Val; Luan, Yikun; Li, Dianzhong

    2012-07-01

    A numerical model to simulate horizontal centrifugal roll castings is presented in this paper. In order to simulate the flow fluid and solidification of horizontal centrifugal roll casting correctly, the model uses a body fitted mesh technique to represent the geometry. This new method maps a plate layer mesh to a circular mesh. The smooth body fitted mesh method gives more accurate calculation results for cylindrical geometries. A velocity depending on the angular velocity and inner radius of the mould is set up as a velocity boundary condition. The fluid flow coupled with heat transfer and solidification in a rapidly rotating roll is simulated. A gravity free falling method is applied as a pouring condition. A moveable pouring system is also used in the simulations. High speed steel is used to produce the work roll. Two different gating positions and a moveable gating system are simulated in this paper. Results show that the position of pouring system has a significant influence on the temperature distribution. The temperature distribution at a fixed central pouring system is more favourable than the distribution from a side pouring system. A moving gating system method is a better way to obtain a uniform temperature field in centrifugal casting and offers an alternative for existing techniques.

  15. Centrifuge: rapid and sensitive classification of metagenomic sequences

    PubMed Central

    Song, Li; Breitwieser, Florian P.

    2016-01-01

    Centrifuge is a novel microbial classification engine that enables rapid, accurate, and sensitive labeling of reads and quantification of species on desktop computers. The system uses an indexing scheme based on the Burrows-Wheeler transform (BWT) and the Ferragina-Manzini (FM) index, optimized specifically for the metagenomic classification problem. Centrifuge requires a relatively small index (4.2 GB for 4078 bacterial and 200 archaeal genomes) and classifies sequences at very high speed, allowing it to process the millions of reads from a typical high-throughput DNA sequencing run within a few minutes. Together, these advances enable timely and accurate analysis of large metagenomics data sets on conventional desktop computers. Because of its space-optimized indexing schemes, Centrifuge also makes it possible to index the entire NCBI nonredundant nucleotide sequence database (a total of 109 billion bases) with an index size of 69 GB, in contrast to k-mer-based indexing schemes, which require far more extensive space. PMID:27852649

  16. Assessment and mitigation of DNA loss utilizing centrifugal filtration devices.

    PubMed

    Doran, Ashley E; Foran, David R

    2014-11-01

    Maximizing DNA recovery during its isolation can be vital in forensic casework, particularly when DNA yields are expected to be low, such as from touch samples. Many forensic laboratories utilize centrifugal filtration devices to purify and concentrate the DNA; however, DNA loss has been reported when using them. In this study, all centrifugal filtration devices tested caused substantial DNA loss, affecting low molecular weight DNA (PCR product) somewhat more than high molecular weight DNA. Strategies for mitigating DNA loss were then examined, including pre-treatment with glucose, glycogen, silicone (RainX(®)), bovine serum albumin, yeast RNA, or high molecular weight DNA. The length of pre-treatment and UV irradiation of pre-treatment reagents were also investigated. Pre-treatments with glucose and glycogen resulted in little or no improvement in DNA recovery, and most or all DNA was lost after silicone pre-treatment. Devices pre-treated with BSA produced irregular and uninterpretable quantitative PCR amplification curves for the DNA and internal PCR control. On the other hand, nucleic acid pre-treatments greatly improved recovery of all DNAs. Pre-treatment time and its UV irradiation did not influence DNA recovery. Overall, the results show that centrifugal filtration devices trap DNA, yet their proper pre-treatment can circumvent that loss, which is critical in the case of low copy forensic DNA samples.

  17. Effect of centrifugal forces on dimensional error of bored shapes

    NASA Astrophysics Data System (ADS)

    Arsuaga, M.; de Lacalle, L. N. López; Lobato, R.; Urbikain, G.; Campa, F.

    2012-04-01

    Boring operations of deep holes with a slender boring bar are often hindered by the precision because of their low static stiffness and high deformations. Because of that, it is not possible to remove much larger depths of cuts than the nose radius of the tool, unlike the case of turning and face milling operations, and consequently, the relationship between the cutting force distribution, tool geometry, feed rate and depth of cut becomes non-linear and complex. This problem gets worse when working with a rotating boring head where apart from the cutting forces and the variation of the inclination angle because of shape boring, the bar and head are affected by de centrifugal forces. The centrifugal forces, and therefore the centrifugal deflection, will vary as a function of the rotating speed, boring bar mass distribution and variable radial position of the bar in shape boring. Taking in to account all this effects, a load and deformation model was created. This model has been experimentally validated to use as a corrector factor of the radial position of the U axis in the boring head.

  18. Centrifugal Microfluidic System for Nucleic Acid Amplification and Detection

    PubMed Central

    Miao, Baogang; Peng, Niancai; Li, Lei; Li, Zheng; Hu, Fei; Zhang, Zengming; Wang, Chaohui

    2015-01-01

    We report here the development of a rapid PCR microfluidic system comprising a double-shaft turntable and centrifugal-based disc that rapidly drives the PCR mixture between chambers set at different temperatures, and the bidirectional flow improved the space utilization of the disc. Three heating resistors and thermistors maintained uniform, specific temperatures for the denaturation, annealing, and extension steps of the PCR. Infrared imaging showed that there was little thermal interference between reaction chambers; the system enabled the cycle number and reaction time of each step to be independently adjusted. To validate the function and efficiency of the centrifugal microfluidic system, a 350-base pair target gene from the hepatitis B virus was amplified and quantitated by fluorescence detection. By optimizing the cycling parameters, the reaction time was reduced to 32 min as compared to 120 min for a commercial PCR machine. DNA samples with concentrations ranging from 10 to 106 copies/mL could be quantitatively analyzed using this system. This centrifugal-based microfluidic platform is a useful system and possesses industrialization potential that can be used for portable diagnostics. PMID:26556354

  19. Estimation of genetic parameters for wool fiber diameter measures.

    PubMed

    Iman, N Y; Johnson, C L; Russell, W C; Stobart, R H

    1992-04-01

    Genetic and phenotypic correlations and heritability estimates of side, britch, and core diameters; side and britch CV; side and britch diameter difference; and clean fleece weight were investigated using 385 western white-faced ewes produced by 50 sires and maintained at two locations on a selection study. Data were analyzed using analysis of variance procedures, and effects in the final model included breed of sire-selection line combination, sire within breed-selection line, and location. Heritabilities were estimated by paternal half-sib analysis. Sires within breed-selection line represented a significant source of variation for all traits studied. Location had a significant effect on side diameter, side and britch diameter difference, and clean fleece weight. Age of ewe only affected clean fleece weight. Phenotypic and genetic correlations among side, britch, and core diameter measures were high and positive. Phenotypic correlations ranged from .68 to .75 and genetic correlations ranged from .74 to .89. The genetic correlations between side and britch diameter difference and side diameter or core diameter were small (-.16 and .28, respectively). However, there was a stronger genetic correlation between side and britch diameter difference and britch diameter (.55). Heritability of the difference between side and britch diameter was high (.46 +/- .16) and similar to heritability estimates reported for other wool traits. Results of this study indicate that relatively rapid genetic progress through selection for fiber diameter should be possible. In addition, increased uniformity in fiber diameter should be possible through selection for either side and britch diameter difference or side or britch CV.

  20. Crown diameters of the deciduous teeth of Taiwanese.

    PubMed

    Liu, H H; Dung, S Z; Yang, Y H

    2000-06-01

    The purposes of this study were (1) to characterize the crown diameters of the deciduous teeth of Taiwanese; (2) to compare the differences in the deciduous crown diameters between different populations. The results might provide odontometric information in making preformed stainless steel crowns of the Chinese population. Study casts of 90 children (51 boys and 39 girls) of aged 3 to 6 years were used in this study. The maximum mesiodistal crown diameter (the greatest distance between the contact points of the approximal surfaces) and the buccolingual crown diameter (the greatest distance at a right angle to the mesiodistal measurement) were obtained by using an electronic digital caliper. Significant differences between antimeres were found in the mesiodistal diameters of maxillary canine and maxillary molars (p < 0.001) as well as in the buccolingual diameters of mandibular molars (p < 0.05). Excellent correlations between the antimeres of the corresponding teeth were found (r = 0.70 to 0.96). Boys generally had larger crown diameters than girls with the exception of mesiodistal diameters of maxillary and mandibular canines, and mandibular lateral incisor, whereas the statistically significant gender difference was only found in the buccolingual diameter of mandibular second molar (p < 0.05). The higher the percentage of sexual dimorphism, the larger the gender differences. The percentage of sexual dimorphism ranged from 0.09 to 1.94 for mesiodistal diameters and 0.04 to 2.86 for buccolingual diameters. The mandibular second molar was the most dimorphic tooth. Variations in the crown diameters of the deciduous teeth existed among and within different populations. Deciduous mesiodistal crown diameters of Taiwanese were, in general, smaller than those of Australian aborigines, Taiwan Chinese aborigines, and Hong Kong Chinese, but larger than those of American whites. When considering the buccolingual crown diameters, our data were significantly smaller than those

  1. Microstructures of Al-Al3Ti functionally graded materials fabricated by centrifugal solid-particle method and centrifugal in situ method

    NASA Astrophysics Data System (ADS)

    Watanabe, Yoshimi; Zhou, Qi; Sato, Hisashi; Fujii, Toshiyuki; Inamura, Tomonari

    2017-01-01

    Methods of fabrication by centrifugal casting for functionally graded materials (FGMs) can be classified into two categories on the basis of the relationship between the process temperature and the liquidus temperature of a master alloy. They are the centrifugal solid-particle method and centrifugal in situ method, which could be carried out at process temperatures lower and higher than the liquidus temperature of the master alloy, respectively. In a previous study, it was found that the microstructures of Al-Al3Ti FGMs fabricated by the centrifugal in situ method processed at 1600 °C were different from those fabricated by the centrifugal solid-particle method processed at 800 °C. Although it is expected that the FGMs fabricated by the centrifugal in situ method processed at approximately the liquidus temperature should show extraordinary microstructures, those microstructures have not been observed. In this study, the microstructures of Al-Al3Ti FGMs fabricated at 1000 °C (centrifugal solid-particle method) and 1200 °C (centrifugal in situ method) were investigated.

  2. Water Drainage from Unsaturated Soils in a Centrifuge Permeameter

    NASA Astrophysics Data System (ADS)

    Ornelas, G.; McCartney, J.; Zhang, M.

    2013-12-01

    This study involves an analysis of water drainage from an initially saturated silt layer in a centrifuge permeameter to evaluate the hydraulic properties of the soil layer in unsaturated conditions up to the point where the water phase becomes discontinuous. These properties include the soil water retention curve (SWRC) and the hydraulic conductivity function (HCF). The hydraulic properties of unsaturated silt are used in soil-atmosphere interaction models that take into account the role of infiltration and evaporation of water from soils due to atmospheric interaction. These models are often applied in slope stability analyses, landfill cover design, aquifer recharge analyses, and agricultural engineering. The hydraulic properties are also relevant to recent research concerning geothermal heating and cooling, as they can be used to assess the insulating effects of soil around underground heat exchangers. This study employs a high-speed geotechnical centrifuge to increase the self-weight of a compacted silt specimen atop a filter plate. Under a centrifuge acceleration of N times earth's gravity, the concept of geometric similitude indicates that the water flow process in a small-scale soil layer will be similar to those in a soil layer in the field that is N times thicker. The centrifuge acceleration also results in an increase in the hydraulic gradient across the silt specimen, which causes water to flow out of the pores following Darcy's law. The drainage test was performed until the rate of liquid water flow out of the soil layer slowed to a negligible level, which corresponds to the transition point at which further water flow can only occur due to water vapor diffusion following Fick's law. The data from the drainage test in the centrifuge were used to determine the SWRC and HCF at different depths in the silt specimen, which compared well with similar properties defined using other laboratory tests. The transition point at which liquid water flow stopped (and

  3. Estimation of changes in dynamic hydraulic force in a magnetically suspended centrifugal blood pump with transient computational fluid dynamics analysis.

    PubMed

    Masuzawa, Toru; Ohta, Akiko; Tanaka, Nobuatu; Qian, Yi; Tsukiya, Tomonori

    2009-01-01

    The effect of the hydraulic force on magnetically levitated (maglev) pumps should be studied carefully to improve the suspension performance and the reliability of the pumps. A maglev centrifugal pump, developed at Ibaraki University, was modeled with 926 376 hexahedral elements for computational fluid dynamics (CFD) analyses. The pump has a fully open six-vane impeller with a diameter of 72.5 mm. A self-bearing motor suspends the impeller in the radial direction. The maximum pressure head and flow rate were 250 mmHg and 14 l/min, respectively. First, a steady-state analysis was performed using commercial code STAR-CD to confirm the model's suitability by comparing the results with the real pump performance. Second, transient analysis was performed to estimate the hydraulic force on the levitated impeller. The impeller was rotated in steps of 1 degrees using a sliding mesh. The force around the impeller was integrated at every step. The transient analysis revealed that the direction of the radial force changed dynamically as the vane's position changed relative to the outlet port during one circulation, and the magnitude of this force was about 1 N. The current maglev pump has sufficient performance to counteract this hydraulic force. Transient CFD analysis is not only useful for observing dynamic flow conditions in a centrifugal pump but is also effective for obtaining information about the levitation dynamics of a maglev pump.

  4. Coupling centrifuge modeling and laser ablation inductively coupled plasma mass spectrometry to determine contaminant retardation in clays.

    PubMed

    Timms, Wendy; Hendry, M Jim; Muise, Jason; Kerrich, Robert

    2009-02-15

    Quantifying the retardation (Rd) of reactive solutes as they migrate through low-permeability clay-rich media is difficult, thus motivating this study to assess the viability of combining centrifuge modeling and laser ablation inductively coupled plasma mass spectrometry (LA-ICP-MS) techniques. An influent solution containing Cl-, trace metals, and lanthanide species flowed at 1.0 mL x h(-1) through an undisturbed clay-rich core sample (33 mm diameter x 50 mm long) mounted in a UFA Beckman centrifuge operating at 3000 rpm (N factor = 876 g). During the 87 day experiment the hydraulic conductivity of the core was 3.4 x 10(-10) m x s(-1). Effluent breakthrough data indicate the Rd of Tl to be 10; incomplete breakthrough (non-steady-state) data for 145Nd and 171Yb suggest Rd values of >75 and >85, respectively. At the completion of the transport experiment, longitudinal sections of the core solid were analyzed for 145Nd and 171Yb using a Cetac laser ablation system coupled with an ICP-MS. The longitudinal core sections yielded Rd values of >10000 for 145Nd and 171Yb. This study demonstrates coupling these techniques can provide Rd values for a wide range of reactive solutes with relatively rapid testing of small-scale, low hydraulic conductivity core samples.

  5. Extraction of soil solution by drainage centrifugation-effects of centrifugal force and time of centrifugation on soil moisture recovery and solute concentration in soil moisture of loess subsoils.

    PubMed

    Fraters, Dico; Boom, Gerard J F L; Boumans, Leo J M; de Weerd, Henk; Wolters, Monique

    2017-02-01

    The solute concentration in the subsoil beneath the root zone is an important parameter for leaching assessment. Drainage centrifugation is considered a simple and straightforward method of determining soil solution chemistry. Although several studies have been carried out to determine whether this method is robust, hardly any results are available for loess subsoils. To study the effect of centrifugation conditions on soil moisture recovery and solute concentration, we sampled the subsoil (1.5-3.0 m depth) at commercial farms in the loess region of the Netherlands. The effect of time (20, 35, 60, 120 and 240 min) on recovery was studied at two levels of the relative centrifugal force (733 and 6597g). The effect of force on recovery was studied by centrifugation for 35 min at 117, 264, 733, 2932, 6597 and 14,191g. All soil moisture samples were chemically analysed. This study shows that drainage centrifugation offers a robust, reproducible and standardised way for determining solute concentrations in mobile soil moisture in silt loam subsoils. The centrifugal force, rather than centrifugation time, has a major effect on recovery. The maximum recovery for silt loams at field capacity is about 40%. Concentrations of most solutes are fairly constant with an increasing recovery, as most solutes, including nitrate, did not show a change in concentration with an increasing recovery.

  6. Fiber diameter distributions in the chinchilla's ampullary nerves

    NASA Technical Reports Server (NTRS)

    Hoffman, Larry F.; Honrubia, Vicente

    2002-01-01

    A morphometric study of the chinchilla's ampullary nerves was conducted to produce an unbiased accounting of the diameter distribution of their constituent fibers. Diameter analyses were determined from 1 microm plastic-embedded nerve sections taken at a plane immediately proximal to the sensory epithelium. We found these nerves to be composed of 2094+/-573 fibers, having diameters that ranged from 0.5 to 8 microm. The distributions of diameters were positively skewed, where approximately 75% of the fibers were found to have diameters less than 3.5 microm. An analysis of the spatial distribution of diameters within the nerve section revealed that the lateralmost areas of the nerve contained larger fractions of fibers within the smallest diameter quintiles, and the central area harbored greater proportions of the larger diameter quintiles. However, significant fractions of all quintiles were found in all areas. These data were integrated with available data of Fernandez et al. (1998) to produce diameter estimates of calyx, dimorphic, and bouton morphology subpopulations. In view of a general relationship between diameter, innervation locus, and an afferent's physiologic characteristics, these data provide the basis for developing a perspective for the in situ distribution of afferent response dynamics.

  7. Photodynamic therapy for Barrett's esophagus using a 20-mm diameter light-delivery balloon

    NASA Astrophysics Data System (ADS)

    Panjehpour, Masoud; Overholt, Bergein F.; Phan, Mary N.; Haydek, John M.; Robinson, Amy R.

    2002-06-01

    Background and Objective: Patients with high grade dysplasia (HGD) in Barrett's esophagus are at a high risk for developing esophageal adenocarcinoma. Esophagectomy is the standard treatment for such patients. The objective of this study was to evaluate the safety and efficacy of photodynamic therapy (PDT) using an improved light delivery balloon for ablation of Barrett's esophagus with high grade dysplasia and/or early cancer. Materials and Methods: 20 patients with HGD or early cancer (19 with HGD, 1 with T1 cancer) received 2 mg/kg of porfimer sodium, intravenously. Two to three days after the injection, laser light was delivered using a cylindrical diffuser inserted inside a 20-mm diameter reflective esophageal PDT balloon. Initially, the balloon was inflated to a pressure of 80 mm Hg. The balloon pressure was gradually reduced to 30 mm Hg. A KTP/dye laser at 630 nm was used as the light source. Light dose of 115 J/cm was delivered at an intensity of 270 mw/cm. Nodules were pre- treated with an extra 50 J/cm using a short diffuser inserted through the scope. Patients were maintained on PPI therapy to keep the gastric pH higher than 4. Eighteen patients required one treatment, while two patients were treated twice. Follow-up consisted of endoscopy with four quadrant biopsies at every 2 cm of the treated area. Thermal ablation was used to treat small residual islands on the follow-ups. The follow-up endoscopies ranged from 6 to 17 months. Results: On follow-up endoscopy, 12 patients had complete replacement of their Barrett's mucosa with neosquamous mucosa. Five patients had residual non-dysplastic Barrett's mucosa, one had indefinite dysplasia, two had low grad dysplasia. There were no residual HGD or cancers. The average length of Barrett's was reduced from 5.4 cm to 1.2 cm. High balloon pressure resulted in wide variation in PDT response among patients. Lower balloon pressures resulted in more consistent destruction of Barrett's mucosa among patients. Five

  8. ESA Parabolic Flight, Drop Tower and Centrifuge Opportunities for University Students

    NASA Astrophysics Data System (ADS)

    Callens, Natacha; Ventura-Traveset, Javier; Zornoza Garcia-Andrade, Eduardo; Gomez-Calero, Carlos; van Loon, Jack J. W. A.; Pletser, Vladimir; Kufner, Ewald; Krause, Jutta; Lindner, Robert; Gai, Frederic; Eigenbrod, Christian

    The European Space Agency (ESA) Education Office was established in 1998 with the purpose of motivating young people to study science, engineering and technology subjects and to ensure a qualified workforce for ESA and the European space sector in the future. To this end the ESA Education Office is supporting several hands-on activities including small student satellites and student experiments on sounding rockets, high altitude balloons as well as microgravity and hypergravity platforms. This paper is intended to introduce three new ESA Education Office hands-on activities called "Fly Your Thesis!", "Drop Your Thesis!" and "Spin Your Thesis!". These activities give re-spectively access to aircraft parabolic flight, drop tower and centrifuge campaigns to European students. These educational programmes offer university students the unique opportunity to design, build, and eventually perform, in microgravity or hypergravity, a scientific or techno-logical experiment which is linked to their syllabus. During the "Fly Your Thesis!" campaigns, the students accompany their experiments onboard the A300 Zero-G aircraft, operated by the company Novespace, based in Bordeaux, France, for a series of three flights of 30 parabolas each, with each parabola providing about 20s of microgravity [1]. "Drop Your Thesis!" campaigns are held in the ZARM Drop Tower, in Bremen, Germany. The installation delivers 4.74s of microgravity in dropping mode and 9.3s in the catapulting mode [2]. Research topics such as fluid physics, fundamental physics, combustion, biology, material sciences, heat transfer, astrophysics, chemistry or biochemistry can greatly benefit from using microgravity platforms. "Spin Your Thesis!" campaigns take place in the Large Diameter Centrifuge (LDC) facility, at ESTEC, Noordwijk, in the Netherlands. This facility offers an acceleration from 1 to 20 times Earth's gravity [3]. The use of hypergravity allows completing the scientific picture of how gravity has an

  9. X-ray tomographic imaging of Al/SiC p functionally graded composites fabricated by centrifugal casting

    NASA Astrophysics Data System (ADS)

    Velhinho, A.; Sequeira, P. D.; Martins, Rui; Vignoles, G.; Braz Fernandes, F.; Botas, J. D.; Rocha, L. A.

    2003-01-01

    The present work refers to an X-ray microtomography experiment aiming at the elucidation of some aspects regarding particle distribution in SiC-particle-reinforced functionally graded aluminium composites. Precursor composites were produced by rheocasting. These were then molten and centrifugally cast to obtain the functionally graded composites. From these, cylindrical samples, around 1 mm in diameter, were extracted, which were then irradiated with a X-ray beam produced at the European Synchrotron Radiation Facility. The 3-D images were obtained in edge-detection mode. A segmentation procedure has been adapted in order to separate the pores and SiC particles from the Al matrix. Preliminary results on the particle and pore distributions are presented.

  10. Compound planetary hydro-mechanical transmission with speed-responsive centrifugal clutch means

    SciTech Connect

    Smith, R.R.

    1986-02-04

    This patent describes a power transmission consisting of a first sun gear constituting a first drive, a ring gear constituting a driven output, a number of first non-orbiting planet gears arranged between the first sun gear and ring gear to constitute a first driving connection. A second sun gear constitutes a second drive, the second sun gear having a different rotation axis than the first sun gear. A number of second non-orbiting planet gears individually are rotatable on the same axis as the first planet gears. The second planet gears are meshed with the second sun gear to be driven. Each of the second planet gears have a different diameter whereby each second planet gear has a different rotational speed. Each also has a centrifugal clutch arranged between each of the first planet gears and the associated second planet gear. When each first planet gear attains a predetermined rotational speed, a second driving connection is established from each second planet gear to the associated first planet gear.

  11. Effect of diffuser vane shape on the performance of a centrifugal compressor stage

    NASA Astrophysics Data System (ADS)

    Reddy, T. Ch Siva; Ramana Murty, G. V.; Prasad, M. V. S. S. S. M.

    2014-04-01

    The present paper reports the results of experimental investigations on the effect of diffuser vane shape on the performance of a centrifugal compressor stage. These studies were conducted on the chosen stage having a backward curved impeller of 500 mm tip diameter and 24.5 mm width and its design flow coefficient is ϕd=0.0535. Three different low solidity diffuser vane shapes namely uncambered aerofoil, constant thickness flat plate and circular arc cambered constant thickness plate were chosen as the variants for diffuser vane shape and all the three shapes have the same thickness to chord ratio (t/c=0.1). Flow coefficient, polytropic efficiency, total head coefficient, power coefficient and static pressure recovery coefficient were chosen as the parameters for evaluating the effect of diffuser vane shape on the stage performance. The results show that there is reasonable improvement in stage efficiency and total head coefficient with the use of the chosen diffuser vane shapes as compared to conventional vaneless diffuser. It is also noticed that the aero foil shaped LSD has shown better performance when compared to flat plate and circular arc profiles. The aerofoil vane shape of the diffuser blade is seen to be tolerant over a considerable range of incidence.

  12. A compact highly efficient and low hemolytic centrifugal blood pump with a magnetically levitated impeller.

    PubMed

    Asama, Junichi; Shinshi, Tadahiko; Hoshi, Hideo; Takatani, Setsuo; Shimokohbe, Akira

    2006-03-01

    A magnetically levitated (maglev) centrifugal blood pump (CBP), intended for use as a ventricular assist device, needs to be highly durable and reliable for long-term use without any mechanical failure. Furthermore, maglev CBPs should be small enough to be implanted into patients of various size and weight. We have developed a compact maglev CBP employing a two-degree-of-freedom controlled magnetic bearing, with a magnetically suspended impeller directly driven by an internal brushless direct current (DC) motor. The magnetic bearing actively controls the radial motion of the impeller and passively supports axial and angular motions using a permanent magnet embedded in the impeller. The overall dimensions of the maglev CBP are 65 mm in diameter and 40 mm in height. The total power consumption and pump efficiency for pumping 6 L/min against a head pressure of 105 mm Hg were 6.5 W and 21%, respectively. To evaluate the characteristics of the maglev CBP when subjected to a disturbance, excitation of the base, simulating the movement of the patient in various directions, and the sudden interception of the outlet tube connected with the pump in a mock circulatory loop, simulating an unexpected kink and emergent clamp during a heart surgery, were tested by monitoring the five-degree-of-freedom motion of the impeller. Furthermore, the hemolytic characteristics of the maglev CBP were compared with those of the Medtronic Biomedicus BPX-80, which demonstrated the superiority of the maglev CBP.

  13. Development of a Compact Maglev Centrifugal Blood Pump Enclosed in a Titanium Housing

    NASA Astrophysics Data System (ADS)

    Pai, Chi Nan; Shinshi, Tadahiko; Asama, Junichi; Takatani, Setsuo; Shimokohbe, Akira

    A compact centrifugal blood pump consisting of a controlled two-degrees-of-freedom radial magnetic bearing and a brushless DC motor enclosed in a titanium housing has been developed for use as an implantable ventricular assist device. The magnetic bearing also supports axial and angular motions of the impeller via a magnetic coupling. The top housing is made of pure titanium, while the impeller and the stator are coated with pure titanium and Ti-6Al-7Nb, respectively, to improve the biocompatibility of the pump. The combination of pure titanium and titanium alloy was chosen because of the sensitivity of eddy current type displacement sensors through the intervening conducting wall. The dimensions of the pump are 69.0 mm in diameter and 28.5 mm in height. During a pump performance test, axial shifting of the impeller due to hydraulic forces led to variations in the rotational positioning signal, causing loss of control of the rotational speed. This problem was solved by conditioning the rotational positioning signal. With a flow rate of 5 l/min against a head pressure of 100 mmHg, the power consumption and efficiency of the pump were 5.5 W and 20%, respectively. Furthermore, the hemolysis of the blood pump was 43.6% lower when compared to that of a commercially available pump.

  14. A compact centrifugal blood pump for extracorporeal circulation: design and performance.

    PubMed

    Tanaka, S; Yamamoto, S; Yamakoshi, K; Kamiya, A

    1987-08-01

    A new compact centrifugal blood pump driven by a miniature DC servomotor has been designed for use for short-term extra corporeal and cardiac-assisted circulation. The impeller of the pump was connected directly to the motor by using a simple-gear coupling. The shaft for the impeller was sealed from blood by both a V-ring and a seal bearing. Either pulsatile or nonpusatile flow was produced by controlling the current supply to the motor. The pump characteristics and the degree of hemolysis were evaluated with regard to the configuration of the impeller with a 38-mm outer diameter in vitro tests; the impeller having the blade angles at the inlet of 20 deg and at the outlet of 50 deg was the most appropriate as a blood pump. The performance in an operation, hemolysis and thrombus formation in the pump were assessed by a left ventricular bypass experiment in dogs. It was suggested by this study that this prototype pump appears promising for use not only in animal experiments but also in clinical application.

  15. Centrifugation as a countermeasure during bed rest and dry immersion: What has been learned?

    PubMed Central

    Clément, G.; Paloski, W.H.; Rittweger, J.; Linnarsson, D.; Bareille, M.P.; Mulder, E.; Wuyts, F.L.; Zange, J.

    2016-01-01

    Objectives: We review the studies that have evaluated intermittent short-radius centrifugation as a potential countermeasure for cardiovascular, musculoskeletal, and sensorimotor deconditioning in simulated weightlessness. Methods: The findings from 18 experimental protocols that have used bed rest and dry immersion for comparing the protective effects of centrifugation versus standing upright or walking, and the effects of continuous vs. periodic exposure to centrifugation are discussed. Results: Centrifugation for as little as 30 min per day was found to be effective in mitigating orthostatic intolerance and strength in postural muscle after 5 days of bed rest, but it was not effective in mitigating plasma volume loss. Conclusion: To determine the optimal prescription for centrifugation as a countermeasure, we recommend further studies using (a) bed rest of longer duration, (b) individualized prescriptions of centrifugation combined with exercise, and (c) functional performance tests. PMID:27282452

  16. Influence of blade angle distribution along leading edge on cavitation performance of a centrifugal pump

    NASA Astrophysics Data System (ADS)

    Xu, Y.; Tan, L.; Cao, S. L.; Wang, Y. C.; Meng, G.; Qu, W. S.

    2015-01-01

    The influence of blade angle distribution along leading edge on cavitation performance of centrifugal pumps is analysed in the present paper. Three sets of blade angle distribution along leading edge for three blade inlet angles are chosen to design nine centrifugal pump impellers. The RNG k-epsilon turbulence model and the Zwart-Gerber-Belamri cavitation model are employed to simulate the cavitation flows in centrifugal pumps with different impellers and the same volute. The numerical results are compared with the experimental data, and the comparison proves that the numerical simulation can accurately predict the cavitation performance of centrifugal pumps. On the basis of the numerical simulations, the pump head variations with pump inlet pressure, and the flow details in centrifugal pump are revealed to demonstrate the influence of blade angle distribution along leading edge on cavitation performances of centrifugal pumps.

  17. Bioreactor-free tissue engineering: directed tissue assembly by centrifugal casting.

    PubMed

    Mironov, Vladimir; Kasyanov, Vladimir; Markwald, Roger R; Prestwich, Glenn D

    2008-02-01

    Casting is a process by which a material is introduced into a mold while it is liquid, allowed to solidify in a predefined shape inside the mold, and then removed to give a fabricated object, part or casing. Centrifugal casting could be defined as a process of molding using centrifugal forces. Although the centrifugal casting technology has a long history in metal manufacturing and in the plastics industry, only recently has this technology attracted the attention of tissue engineers. Initially, centrifugation was used to optimize cell seeding on a solid scaffold. More recently, centrifugal casting has been used to create tubular scaffolds and both tubular and flat multilayered, living tissue constructs. These newer applications were enabled by a new class of biocompatible in situ crosslinkable hydrogels that mimic the extracellular matrix. Herein the authors summarize the state of the art of centrifugal casting technology in tissue engineering, they outline associated technological challenges, and they discuss the potential future for clinical applications.

  18. Feasibility of a miniature centrifugal rotary blood pump for low-flow circulation in children and infants.

    PubMed

    Takatani, Setsuo; Hoshi, Hideo; Tajima, Kennichi; Ohuchi, Katsuhiro; Nakamura, Makoto; Asama, Junichio; Shimshi, Tadahiko; Yoshikawa, Masaharu

    2005-01-01

    In this study, a seal-less, tiny centrifugal rotary blood pump was designed for low-flow circulatory support in children and infants. The design was targeted to yield a compact and priming volume of 5 ml with a flow rate of 0.5-4 l/min against a head pressure of 40-100 mm Hg. To meet the design requirements, the first prototype had an impeller diameter of 30 mm with six straight vanes. The impeller was supported with a needle-type hydrodynamic bearing and was driven with a six-pole radial magnetic driver. The external pump dimensions included a pump head height of 20 mm, diameter of 49 mm, and priming volume of 5 ml. The weight was 150 g, including the motor driver. In the mock circulatory loop, using fresh porcine blood, the pump yielded a flow of 0.5-4.0 l/min against a head pressure of 40-100 mm Hg at a rotational speed of 1800-4000 rpm using 1/4" inflow and outflow conduits. The maximum flow and head pressure of 5.25 l/min and 244 mm Hg, respectively, were obtained at a rotational speed of 4400 rpm. The maximum electrical-to-hydraulic efficiency occurred at a flow rate of 1.5-3.5 l/min and at a rotational speed of 2000-4400 rpm. The normalized index of hemolysis, which was evaluated using fresh porcine blood, was 0.0076 g/100 l with the impeller in the down-mode and a bearing clearance of 0.1 mm. Further refinement in the bearing and magnetic coupler are required to improve the hemolytic performance of the pump. The durability of the needle-type hydrodynamic bearing and antithrombotic performance of the pump will be performed before clinical applications. The tiny centrifugal blood pump meets the flow requirements necessary to support the circulation of pediatric patients.

  19. Arterial diameter measurement using high resolution ultrasonography: in vitro validation.

    PubMed

    Brum, Javier; Bia, Daniel; Benech, Nicolas; Balay, Guillermo; Armentano, Ricardo L; Negreira, Carlos

    2011-01-01

    Simultaneous measurement of pressure and diameter in blood vessels or vascular prosthesis is of great importance in cardiovascular research. Knowledge of diameter changes as response to intravascular pressure is the basis to estimate the biomechanical properties of blood vessel. In this work a new method to quantify arterial diameter based in high resolution ultrasonography is proposed. Measurements on an arterial phantom placed on a cardiovascular simulator were performed. The results were compared to sonomicrometry measurements considered as gold standard technique. The obtained results indicate that the new method ensure an optimal diameter quantification. This method presents two main advantages respect to sonomicrometry: is noninvasive and the vessel wall strain can be measured directly.

  20. Diameter Controlled of Carbon Nanotubes Synthesized on Nanoporous Silicon Support

    NASA Astrophysics Data System (ADS)

    Asli, N. A.; Shamsudin, M. S.; Maryam, M.; Yusop, S. F. M.; Suriani, A. B.; Rusop, M.; Abdullah, S.

    2013-06-01

    Carbon nanotubes (CNTs) have been successfully synthesized on nanoporous silicon template (NPSiT) using botanical source, camphor oil. Diameter of CNTs synthesized was controlled by pore size of NPSiT prepared by photo-electrochemical anodization method. The diameter of CNTs grown on different NPSiT corresponded to the pore diameter of NPSiT. FESEM images showed self-organized bundles of fiber-like structures of CNTs with diameter of around 20nm which were successfully grown directly on nanoporous silicon while raman spectra obtained ratio of ID/IG at 0.67.