Science.gov

Sample records for 2-d cellular networks

  1. Nanostructured cellular networks.

    PubMed

    Moriarty, P; Taylor, M D R; Brust, M

    2002-12-01

    Au nanocrystals spin-coated onto silicon from toluene form cellular networks. A quantitative statistical crystallography analysis shows that intercellular correlations drive the networks far from statistical equilibrium. Spin-coating from hexane does not produce cellular structure, yet a strong correlation is retained in the positions of nanocrystal aggregates. Mechanisms based on Marangoni convection alone cannot account for the variety of patterns observed, and we argue that spinodal decomposition plays an important role in foam formation.

  2. 2D-CELL: image processing software for extraction and analysis of 2-dimensional cellular structures

    NASA Astrophysics Data System (ADS)

    Righetti, F.; Telley, H.; Leibling, Th. M.; Mocellin, A.

    1992-01-01

    2D-CELL is a software package for the processing and analyzing of photographic images of cellular structures in a largely interactive way. Starting from a binary digitized image, the programs extract the line network (skeleton) of the structure and determine the graph representation that best models it. Provision is made for manually correcting defects such as incorrect node positions or dangling bonds. Then a suitable algorithm retrieves polygonal contours which define individual cells — local boundary curvatures are neglected for simplicity. Using elementary analytical geometry relations, a range of metric and topological parameters describing the population are then computed, organized into statistical distributions and graphically displayed.

  3. Scaling analysis of 2D fractal cellular structures

    NASA Astrophysics Data System (ADS)

    Schliecker, Gudrun

    2001-01-01

    The correlations between topological and metric properties of fractal tessellations are analysed. To this end, Sierpinski cellular structures are constructed for different geometries related to Sierpinski gaskets and to the Apollonian packing of discs. For these geometries, the properties of the distribution of the cells' areas and topologies can be derived analytically. In all cases, an algebraic increase of the cell's average area with its number of neighbours is obtained. This property, unknown from natural cellular structures, confirms previous observations in numerical studies of Voronoi tessellations generated by fractal point sets. In addition, a simple rigorous scaling resp. multiscaling properties relating the shapes and the sizes of the cells are found.

  4. MSAT and cellular hybrid networking

    NASA Technical Reports Server (NTRS)

    Baranowsky, Patrick W., II

    1993-01-01

    Westinghouse Electric Corporation is developing both the Communications Ground Segment and the Series 1000 Mobile Phone for American Mobile Satellite Corporation's (AMSC's) Mobile Satellite (MSAT) system. The success of the voice services portion of this system depends, to some extent, upon the interoperability of the cellular network and the satellite communication circuit switched communication channels. This paper will describe the set of user-selectable cellular interoperable modes (cellular first/satellite second, etc.) provided by the Mobile Phone and described how they are implemented with the ground segment. Topics including roaming registration and cellular-to-satellite 'seamless' call handoff will be discussed, along with the relevant Interim Standard IS-41 Revision B Cellular Radiotelecommunications Intersystem Operations and IOS-553 Mobile Station - Land Station Compatibility Specification.

  5. Duality Between Spin Networks and the 2D Ising Model

    NASA Astrophysics Data System (ADS)

    Bonzom, Valentin; Costantino, Francesco; Livine, Etera R.

    2016-06-01

    The goal of this paper is to exhibit a deep relation between the partition function of the Ising model on a planar trivalent graph and the generating series of the spin network evaluations on the same graph. We provide respectively a fermionic and a bosonic Gaussian integral formulation for each of these functions and we show that they are the inverse of each other (up to some explicit constants) by exhibiting a supersymmetry relating the two formulations. We investigate three aspects and applications of this duality. First, we propose higher order supersymmetric theories that couple the geometry of the spin networks to the Ising model and for which supersymmetric localization still holds. Secondly, after interpreting the generating function of spin network evaluations as the projection of a coherent state of loop quantum gravity onto the flat connection state, we find the probability distribution induced by that coherent state on the edge spins and study its stationary phase approximation. It is found that the stationary points correspond to the critical values of the couplings of the 2D Ising model, at least for isoradial graphs. Third, we analyze the mapping of the correlations of the Ising model to spin network observables, and describe the phase transition on those observables on the hexagonal lattice. This opens the door to many new possibilities, especially for the study of the coarse-graining and continuum limit of spin networks in the context of quantum gravity.

  6. Adaptation algorithms for 2-D feedforward neural networks.

    PubMed

    Kaczorek, T

    1995-01-01

    The generalized weight adaptation algorithms presented by J.G. Kuschewski et al. (1993) and by S.H. Zak and H.J. Sira-Ramirez (1990) are extended for 2-D madaline and 2-D two-layer feedforward neural nets (FNNs).

  7. Micromechanics of cellularized biopolymer networks

    PubMed Central

    Jones, Christopher A. R.; Cibula, Matthew; Feng, Jingchen; Krnacik, Emma A.; McIntyre, David H.; Levine, Herbert; Sun, Bo

    2015-01-01

    Collagen gels are widely used in experiments on cell mechanics because they mimic the extracellular matrix in physiological conditions. Collagen gels are often characterized by their bulk rheology; however, variations in the collagen fiber microstructure and cell adhesion forces cause the mechanical properties to be inhomogeneous at the cellular scale. We study the mechanics of type I collagen on the scale of tens to hundreds of microns by using holographic optical tweezers to apply pN forces to microparticles embedded in the collagen fiber network. We find that in response to optical forces, particle displacements are inhomogeneous, anisotropic, and asymmetric. Gels prepared at 21 °C and 37 °C show qualitative difference in their micromechanical characteristics. We also demonstrate that contracting cells remodel the micromechanics of their surrounding extracellular matrix in a strain- and distance-dependent manner. To further understand the micromechanics of cellularized extracellular matrix, we have constructed a computational model which reproduces the main experiment findings. PMID:26324923

  8. 2D photonic crystal complete band gap search using a cyclic cellular automaton refination

    NASA Astrophysics Data System (ADS)

    González-García, R.; Castañón, G.; Hernández-Figueroa, H. E.

    2014-11-01

    We present a refination method based on a cyclic cellular automaton (CCA) that simulates a crystallization-like process, aided with a heuristic evolutionary method called differential evolution (DE) used to perform an ordered search of full photonic band gaps (FPBGs) in a 2D photonic crystal (PC). The solution is proposed as a combinatorial optimization of the elements in a binary array. These elements represent the existence or absence of a dielectric material surrounded by air, thus representing a general geometry whose search space is defined by the number of elements in such array. A block-iterative frequency-domain method was used to compute the FPBGs on a PC, when present. DE has proved to be useful in combinatorial problems and we also present an implementation feature that takes advantage of the periodic nature of PCs to enhance the convergence of this algorithm. Finally, we used this methodology to find a PC structure with a 19% bandgap-to-midgap ratio without requiring previous information of suboptimal configurations and we made a statistical study of how it is affected by disorder in the borders of the structure compared with a previous work that uses a genetic algorithm.

  9. 2D pattern evolution constrained by complex network dynamics

    NASA Astrophysics Data System (ADS)

    da Rocha, L. E. C.; Costa, L. da F.

    2007-03-01

    Complex networks have established themselves in recent years as being particularly suitable and flexible for representing and modelling several complex natural and artificial systems. In the same time in which the structural intricacies of such networks are being revealed and understood, efforts have also been directed at investigating how such connectivity properties define and constrain the dynamics of systems unfolding on such structures. However, less attention has been focused on hybrid systems, i.e. involving more than one type of network and/or dynamics. Several real systems present such an organization, e.g. the dynamics of a disease coexisting with the dynamics of the immune system. The current paper investigates a specific system involving diffusive (linear and nonlinear) dynamics taking place in a regular network while interacting with a complex network of defensive agents following Erdös Rényi (ER) and Barabási Albert (BA) graph models with moveable nodes. More specifically, the complex network is expected to control, and if possible, to extinguish the diffusion of some given unwanted process (e.g. fire, oil spilling, pest dissemination, and virus or bacteria reproduction during an infection). Two types of pattern evolution are considered: Fick and Gray Scott. The nodes of the defensive network then interact with the diffusing patterns and communicate between themselves in order to control the diffusion. The main findings include the identification of higher efficiency for the BA control networks and the presence of relapses in the case of the ER model.

  10. Magnetic anisotropy of metal functionalized phthalocyanine 2D networks

    NASA Astrophysics Data System (ADS)

    Zhu, Guojun; Zhang, Yun; Xiao, Huaping; Cao, Juexian

    2016-06-01

    The magnetic anisotropy of metal including Cr, Mn, Fe, Co, Mo, Tc, Ru, Rh, W, Re, Os, Ir atoms functionalized phthalocyanine networks have been investigated with first-principles calculations. The magnetic moments can be expressed as 8-n μB with n the electronic number of outmost d shell in the transition metals. The huge magnetocrystalline anisotropy energy (MAE) is obtained by torque method. Especially, the MAE of Re functionalized phthalocyanine network is about 20 meV with an easy axis perpendicular to the plane of phthalocyanine network. The MAE is further manipulated by applying the external biaxial strain. It is found that the MAE is linear increasing with the external strain in the range of -2% to 2%. Our results indicate an effective approach to modulate the MAE for practical application.

  11. Active transport and cluster formation on 2D networks.

    PubMed

    Greulich, P; Santen, L

    2010-06-01

    We introduce a model for active transport on inhomogeneous networks embedded in a diffusive environment which is motivated by vesicular transport on actin filaments. In the presence of a hard-core interaction, particle clusters are observed that exhibit an algebraically decaying distribution in a large parameter regime, indicating the existence of clusters on all scales. The scale-free behavior can be understood by a mechanism promoting preferential attachment of particles to large clusters. The results are compared with a diffusion-limited aggregation model and active transport on a regular network. For both models we observe aggregation of particles to clusters which are characterized by a finite size scale if the relevant time scales and particle densities are considered. PMID:20556462

  12. Construction and repair of highly ordered 2D covalent networks by chemical equilibrium regulation.

    PubMed

    Guan, Cui-Zhong; Wang, Dong; Wan, Li-Jun

    2012-03-21

    The construction of well-ordered 2D covalent networks via the dehydration of di-borate aromatic molecules was successfully realized through introducing a small amount of water into a closed reaction system to regulate the chemical equilibrium.

  13. Properties of interacting 2D chiral tensor network states

    NASA Astrophysics Data System (ADS)

    Bradlyn, Barry; Dubail, Jerome; Read, Nicholas

    2015-03-01

    In a recent paper, Dubail and Read gave a construction for free fermion tensor network states(TNSs) in the chiral p + ip and ν = 1 Chern insulator topological phases in two dimensions, and gave a generalization to Laughlin-like states. However, on general principles these free fermion states must be ground states of gapless local Hamiltonians. In this talk, we address the issue of the energy gap in the interacting states, with a particular focus on the ν = 1 / 2 bosonic Laughlin-like TNS. Through a combination of analytic and numerical arguments, we will show that these states too have gapless local parent Hamiltonians. Nevertheless, we will explore to what degree they can be used as numerical approximations to gapped phases.

  14. Properties of 2D Chiral Tensor Network States

    NASA Astrophysics Data System (ADS)

    Bradlyn, Barry; Dubail, Jerome; Read, Nicholas

    2014-03-01

    States that can be represented as a sum over local auxiliary degress of freedom are known as tensor network states (TNSs). In a recent paper, Dubail and Read gave a construction for free fermion TNSs in the chiral p + ip and ν = 1 Chern insulator topological phases in two dimensions, and gave a generalization to Laughlin-like states. However, on general principles these free fermion states must be ground states of gapless local Hamiltonians. In this talk, we address the issue of what topological properties persist in these gapless states. We show analytically that the DC Hall conductivity for the ν = 1 Chern insulator TNS is quantized, although the conductivity tensor at finite frequency suffers from non-analytic corrections. Additionally, we investigate the issue of the energy gap for the interacting ν = 1 / 2 Laughlin-like TNS through Monte Carlo simulations.

  15. Remote Energy Monitoring System via Cellular Network

    NASA Astrophysics Data System (ADS)

    Yunoki, Shoji; Tamaki, Satoshi; Takada, May; Iwaki, Takashi

    Recently, improvement on power saving and cost efficiency by monitoring the operation status of various facilities over the network has gained attention. Wireless network, especially cellular network, has advantage in mobility, coverage, and scalability. On the other hand, it has disadvantage of low reliability, due to rapid changes in the available bandwidth. We propose a transmission control scheme based on data priority and instantaneous available bandwidth to realize a highly reliable remote monitoring system via cellular network. We have developed our proposed monitoring system and evaluated the effectiveness of our scheme, and proved it reduces the maximum transmission delay of sensor status to 1/10 compared to best effort transmission.

  16. Optimal design of 2D digital filters based on neural networks

    NASA Astrophysics Data System (ADS)

    Wang, Xiao-hua; He, Yi-gang; Zheng, Zhe-zhao; Zhang, Xu-hong

    2005-02-01

    Two-dimensional (2-D) digital filters are widely useful in image processing and other 2-D digital signal processing fields,but designing 2-D filters is much more difficult than designing one-dimensional (1-D) ones.In this paper, a new design approach for designing linear-phase 2-D digital filters is described,which is based on a new neural networks algorithm (NNA).By using the symmetry of the given 2-D magnitude specification,a compact express for the magnitude response of a linear-phase 2-D finite impulse response (FIR) filter is derived.Consequently,the optimal problem of designing linear-phase 2-D FIR digital filters is turned to approximate the desired 2-D magnitude response by using the compact express.To solve the problem,a new NNA is presented based on minimizing the mean-squared error,and the convergence theorem is presented and proved to ensure the designed 2-D filter stable.Three design examples are also given to illustrate the effectiveness of the NNA-based design approach.

  17. Inferring cellular networks – a review

    PubMed Central

    Markowetz, Florian; Spang, Rainer

    2007-01-01

    In this review we give an overview of computational and statistical methods to reconstruct cellular networks. Although this area of research is vast and fast developing, we show that most currently used methods can be organized by a few key concepts. The first part of the review deals with conditional independence models including Gaussian graphical models and Bayesian networks. The second part discusses probabilistic and graph-based methods for data from experimental interventions and perturbations. PMID:17903286

  18. 2D spatially controlled polymer micro patterning for cellular behavior studies

    NASA Astrophysics Data System (ADS)

    Dinca, V.; Palla-Papavlu, A.; Paraico, I.; Lippert, T.; Wokaun, A.; Dinescu, M.

    2011-04-01

    A simple and effective method to functionalize glass surfaces that enable polymer micropatterning and subsequent spatially controlled adhesion of cells is reported in this paper. The method involves the application of laser induced forward transfer (LIFT) to achieve polymer patterning in a single step onto cell repellent substrates (i.e. polyethyleneglycol (PEG)). This approach was used to produce micron-size polyethyleneimine (PEI)-patterns alternating with cell-repellent areas. The focus of this work is the ability of SH-SY5Y human neuroblastoma cells to orient, migrate, and produce organized cellular arrangements on laser generated PEI patterns.

  19. Intracellular ROS mediates gas plasma-facilitated cellular transfection in 2D and 3D cultures.

    PubMed

    Xu, Dehui; Wang, Biqing; Xu, Yujing; Chen, Zeyu; Cui, Qinjie; Yang, Yanjie; Chen, Hailan; Kong, Michael G

    2016-06-14

    This study reports the potential of cold atmospheric plasma (CAP) as a versatile tool for delivering oligonucleotides into mammalian cells. Compared to lipofection and electroporation methods, plasma transfection showed a better uptake efficiency and less cell death in the transfection of oligonucleotides. We demonstrated that the level of extracellular aqueous reactive oxygen species (ROS) produced by gas plasma is correlated with the uptake efficiency and that this is achieved through an increase of intracellular ROS levels and the resulting increase in cell membrane permeability. This finding was supported by the use of ROS scavengers, which reduced CAP-based uptake efficiency. In addition, we found that cold atmospheric plasma could transfer oligonucleotides such as siRNA and miRNA into cells even in 3D cultures, thus suggesting the potential for unique applications of CAP beyond those provided by standard transfection techniques. Together, our results suggest that cold plasma might provide an efficient technique for the delivery of siRNA and miRNA in 2D and 3D culture models.

  20. Intracellular ROS mediates gas plasma-facilitated cellular transfection in 2D and 3D cultures

    PubMed Central

    Xu, Dehui; Wang, Biqing; Xu, Yujing; Chen, Zeyu; Cui, Qinjie; Yang, Yanjie; Chen, Hailan; Kong, Michael G.

    2016-01-01

    This study reports the potential of cold atmospheric plasma (CAP) as a versatile tool for delivering oligonucleotides into mammalian cells. Compared to lipofection and electroporation methods, plasma transfection showed a better uptake efficiency and less cell death in the transfection of oligonucleotides. We demonstrated that the level of extracellular aqueous reactive oxygen species (ROS) produced by gas plasma is correlated with the uptake efficiency and that this is achieved through an increase of intracellular ROS levels and the resulting increase in cell membrane permeability. This finding was supported by the use of ROS scavengers, which reduced CAP-based uptake efficiency. In addition, we found that cold atmospheric plasma could transfer oligonucleotides such as siRNA and miRNA into cells even in 3D cultures, thus suggesting the potential for unique applications of CAP beyond those provided by standard transfection techniques. Together, our results suggest that cold plasma might provide an efficient technique for the delivery of siRNA and miRNA in 2D and 3D culture models. PMID:27296089

  1. Intracellular ROS mediates gas plasma-facilitated cellular transfection in 2D and 3D cultures.

    PubMed

    Xu, Dehui; Wang, Biqing; Xu, Yujing; Chen, Zeyu; Cui, Qinjie; Yang, Yanjie; Chen, Hailan; Kong, Michael G

    2016-01-01

    This study reports the potential of cold atmospheric plasma (CAP) as a versatile tool for delivering oligonucleotides into mammalian cells. Compared to lipofection and electroporation methods, plasma transfection showed a better uptake efficiency and less cell death in the transfection of oligonucleotides. We demonstrated that the level of extracellular aqueous reactive oxygen species (ROS) produced by gas plasma is correlated with the uptake efficiency and that this is achieved through an increase of intracellular ROS levels and the resulting increase in cell membrane permeability. This finding was supported by the use of ROS scavengers, which reduced CAP-based uptake efficiency. In addition, we found that cold atmospheric plasma could transfer oligonucleotides such as siRNA and miRNA into cells even in 3D cultures, thus suggesting the potential for unique applications of CAP beyond those provided by standard transfection techniques. Together, our results suggest that cold plasma might provide an efficient technique for the delivery of siRNA and miRNA in 2D and 3D culture models. PMID:27296089

  2. Higher-Order Neural Networks Applied to 2D and 3D Object Recognition

    NASA Technical Reports Server (NTRS)

    Spirkovska, Lilly; Reid, Max B.

    1994-01-01

    A Higher-Order Neural Network (HONN) can be designed to be invariant to geometric transformations such as scale, translation, and in-plane rotation. Invariances are built directly into the architecture of a HONN and do not need to be learned. Thus, for 2D object recognition, the network needs to be trained on just one view of each object class, not numerous scaled, translated, and rotated views. Because the 2D object recognition task is a component of the 3D object recognition task, built-in 2D invariance also decreases the size of the training set required for 3D object recognition. We present results for 2D object recognition both in simulation and within a robotic vision experiment and for 3D object recognition in simulation. We also compare our method to other approaches and show that HONNs have distinct advantages for position, scale, and rotation-invariant object recognition. The major drawback of HONNs is that the size of the input field is limited due to the memory required for the large number of interconnections in a fully connected network. We present partial connectivity strategies and a coarse-coding technique for overcoming this limitation and increasing the input field to that required by practical object recognition problems.

  3. WD40 proteins propel cellular networks.

    PubMed

    Stirnimann, Christian U; Petsalaki, Evangelia; Russell, Robert B; Müller, Christoph W

    2010-10-01

    Recent findings indicate that WD40 domains play central roles in biological processes by acting as hubs in cellular networks; however, they have been studied less intensely than other common domains, such as the kinase, PDZ or SH3 domains. As suggested by various interactome studies, they are among the most promiscuous interactors. Structural studies suggest that this property stems from their ability, as scaffolds, to interact with diverse proteins, peptides or nucleic acids using multiple surfaces or modes of interaction. A general scaffolding role is supported by the fact that no WD40 domain has been found with intrinsic enzymatic activity despite often being part of large molecular machines. We discuss the WD40 domain distributions in protein networks and structures of WD40-containing assemblies to demonstrate their versatility in mediating critical cellular functions.

  4. Adaptive reorganization of 2D molecular nanoporous network induced by coadsorbed guest molecule.

    PubMed

    Zheng, Qing-Na; Wang, Lei; Zhong, Yu-Wu; Liu, Xuan-He; Chen, Ting; Yan, Hui-Juan; Wang, Dong; Yao, Jian-Nian; Wan, Li-Jun

    2014-03-25

    The ordered array of nanovoids in nanoporous networks, such as honeycomb, Kagome, and square, provides a molecular template for the accommodation of "guest molecules". Compared with the commonly studied guest molecules featuring high symmetry evenly incorporated into the template, guest molecules featuring lower symmetry are rare to report. Herein, we report the formation of a distinct patterned superlattice of guest molecules by selective trapping of guest molecules into the honeycomb network of trimesic acid (TMA). Two distinct surface patterns have been achieved by the guest inclusion induced adaptive reconstruction of a 2D molecular nanoporous network. The honeycomb networks can synergetically tune the arrangement upon inclusion of the guest molecules with different core size but similar peripherals groups, resulting in a trihexagonal Kagome or triangular patterns.

  5. Cellular recurrent deep network for image registration

    NASA Astrophysics Data System (ADS)

    Alam, M.; Vidyaratne, L.; Iftekharuddin, Khan M.

    2015-09-01

    Image registration using Artificial Neural Network (ANN) remains a challenging learning task. Registration can be posed as a two-step problem: parameter estimation and actual alignment/transformation using the estimated parameters. To date ANN based image registration techniques only perform the parameter estimation, while affine equations are used to perform the actual transformation. In this paper, we propose a novel deep ANN based image rigid registration that combines parameter estimation and transformation as a simultaneous learning task. Our previous work shows that a complex universal approximator known as Cellular Simultaneous Recurrent Network (CSRN) can successfully approximate affine transformations with known transformation parameters. This study introduces a deep ANN that combines a feed forward network with a CSRN to perform full rigid registration. Layer wise training is used to pre-train feed forward network for parameter estimation and followed by a CSRN for image transformation respectively. The deep network is then fine-tuned to perform the final registration task. Our result shows that the proposed deep ANN architecture achieves comparable registration accuracy to that of image affine transformation using CSRN with known parameters. We also demonstrate the efficacy of our novel deep architecture by a performance comparison with a deep clustered MLP.

  6. Cellular automata modelling of biomolecular networks dynamics.

    PubMed

    Bonchev, D; Thomas, S; Apte, A; Kier, L B

    2010-01-01

    The modelling of biological systems dynamics is traditionally performed by ordinary differential equations (ODEs). When dealing with intracellular networks of genes, proteins and metabolites, however, this approach is hindered by network complexity and the lack of experimental kinetic parameters. This opened the field for other modelling techniques, such as cellular automata (CA) and agent-based modelling (ABM). This article reviews this emerging field of studies on network dynamics in molecular biology. The basics of the CA technique are discussed along with an extensive list of related software and websites. The application of CA to networks of biochemical reactions is exemplified in detail by the case studies of the mitogen-activated protein kinase (MAPK) signalling pathway, the FAS-ligand (FASL)-induced and Bcl-2-related apoptosis. The potential of the CA method to model basic pathways patterns, to identify ways to control pathway dynamics and to help in generating strategies to fight with cancer is demonstrated. The different line of CA applications presented includes the search for the best-performing network motifs, an analysis of importance for effective intracellular signalling and pathway cross-talk. PMID:20373215

  7. Simulation and analysis of solute transport in 2D fracture/pipe networks: the SOLFRAC program.

    PubMed

    Bodin, Jacques; Porel, Gilles; Delay, Fred; Ubertosi, Fabrice; Bernard, Stéphane; de Dreuzy, Jean-Raynald

    2007-01-01

    The Time Domain Random Walk (TDRW) method has been recently developed by Delay and Bodin [Delay, F. and Bodin, J., 2001. Time domain random walk method to simulate transport by advection-dispersion and matrix diffusion in fracture networks. Geophys. Res. Lett., 28(21): 4051-4054.] and Bodin et al. [Bodin, J., Porel, G. and Delay, F., 2003c. Simulation of solute transport in discrete fracture networks using the time domain random walk method. Earth Planet. Sci. Lett., 6566: 1-8.] for simulating solute transport in discrete fracture networks. It is assumed that the fracture network can reasonably be represented by a network of interconnected one-dimensional pipes (i.e. flow channels). Processes accounted for are: (1) advection and hydrodynamic dispersion in the channels, (2) matrix diffusion, (3) diffusion into stagnant zones within the fracture planes, (4) sorption reactions onto the fracture walls and in the matrix, (5) linear decay, and (6) mass sharing at fracture intersections. The TDRW method is handy and very efficient in terms of computation costs since it allows for the one-step calculation of the particle residence time in each bond of the network. This method has been programmed in C++, and efforts have been made to develop an efficient and user-friendly software, called SOLFRAC. This program is freely downloadable at the URL (labo.univ-poitiers.fr/hydrasa/intranet/telechargement.htm). It calculates solute transport into 2D pipe networks, while considering different types of injections and different concepts of local dispersion within each flow channel. Post-simulation analyses are also available, such as the mean velocity or the macroscopic dispersion at the scale of the entire network. The program may be used to evaluate how a given transport mechanism influences the macroscopic transport behaviour of fracture networks. It may also be used, as is the case, e.g., with analytical solutions, to interpret laboratory or field tracer test experiments performed

  8. Developing an effective 2-D urban flood inundation model for city emergency management based on cellular automata

    NASA Astrophysics Data System (ADS)

    Liu, L.; Liu, Y.; Wang, X.; Yu, D.; Liu, K.; Huang, H.; Hu, G.

    2015-03-01

    Flash floods have occurred frequently in the urban areas of southern China. An effective process-oriented urban flood inundation model is urgently needed for urban storm-water and emergency management. This study develops an efficient and flexible cellular automaton (CA) model to simulate storm-water runoff and the flood inundation process during extreme storm events. The process of infiltration, inlets discharge and flow dynamics can be simulated with little preprocessing on commonly available basic urban geographic data. In this model, a set of gravitational diverging rules are implemented to govern the water flow in a rectangular template of three cells by three cells of a raster layer. The model is calibrated by one storm event and validated by another in a small urban catchment in Guangzhou of southern China. The depth of accumulated water at the catchment outlet is interpreted from street-monitoring closed-circuit television (CCTV) videos and verified by on-site survey. A good level of agreement between the simulated process and the reality is reached for both storm events. The model reproduces the changing extent and depth of flooded areas at the catchment outlet with an accuracy of 4 cm in water depth. Comparisons with a physically based 2-D model (FloodMap) show that the model is capable of effectively simulating flow dynamics. The high computational efficiency of the CA model can meet the needs of city emergency management.

  9. Optimal flux patterns in cellular metabolic networks

    NASA Astrophysics Data System (ADS)

    Almaas, Eivind

    2007-06-01

    The availability of whole-cell-level metabolic networks of high quality has made it possible to develop a predictive understanding of bacterial metabolism. Using the optimization framework of flux balance analysis, I investigate the metabolic response and activity patterns to variations in the availability of nutrient and chemical factors such as oxygen and ammonia by simulating 30 000 random cellular environments. The distribution of reaction fluxes is heavy tailed for the bacteria H. pylori and E. coli, and the eukaryote S. cerevisiae. While the majority of flux balance investigations has relied on implementations of the simplex method, it is necessary to use interior-point optimization algorithms to adequately characterize the full range of activity patterns on metabolic networks. The interior-point activity pattern is bimodal for E. coli and S. cerevisiae, suggesting that most metabolic reactions are either in frequent use or are rarely active. The trimodal activity pattern of H. pylori indicates that a group of its metabolic reactions (20%) are active in approximately half of the simulated environments. Constructing the high-flux backbone of the network for every environment, there is a clear trend that the more frequently a reaction is active, the more likely it is a part of the backbone. Finally, I briefly discuss the predicted activity patterns of the central carbon metabolic pathways for the sample of random environments.

  10. Optimal flux patterns in cellular metabolic networks

    SciTech Connect

    Almaas, E

    2007-01-20

    The availability of whole-cell level metabolic networks of high quality has made it possible to develop a predictive understanding of bacterial metabolism. Using the optimization framework of flux balance analysis, I investigate metabolic response and activity patterns to variations in the availability of nutrient and chemical factors such as oxygen and ammonia by simulating 30,000 random cellular environments. The distribution of reaction fluxes is heavy-tailed for the bacteria H. pylori and E. coli, and the eukaryote S. cerevisiae. While the majority of flux balance investigations have relied on implementations of the simplex method, it is necessary to use interior-point optimization algorithms to adequately characterize the full range of activity patterns on metabolic networks. The interior-point activity pattern is bimodal for E. coli and S. cerevisiae, suggesting that most metabolic reaction are either in frequent use or are rarely active. The trimodal activity pattern of H. pylori indicates that a group of its metabolic reactions (20%) are active in approximately half of the simulated environments. Constructing the high-flux backbone of the network for every environment, there is a clear trend that the more frequently a reaction is active, the more likely it is a part of the backbone. Finally, I briefly discuss the predicted activity patterns of the central-carbon metabolic pathways for the sample of random environments.

  11. Confinement properties of 2D porous molecular networks on metal surfaces.

    PubMed

    Müller, Kathrin; Enache, Mihaela; Stöhr, Meike

    2016-04-20

    Quantum effects that arise from confinement of electronic states have been extensively studied for the surface states of noble metals. Utilizing small artificial structures for confinement allows tailoring of the surface properties and offers unique opportunities for applications. So far, examples of surface state confinement include thin films, artificial nanoscale structures, vacancy and adatom islands, self-assembled 1D chains, vicinal surfaces, quantum dots and quantum corrals. In this review we summarize recent achievements in changing the electronic structure of surfaces by adsorption of nanoporous networks whose design principles are based on the concepts of supramolecular chemistry. Already in 1993, it was shown that quantum corrals made from Fe atoms on a Cu(1 1 1) surface using single atom manipulation with a scanning tunnelling microscope confine the Shockley surface state. However, since the atom manipulation technique for the construction of corral structures is a relatively time consuming process, the fabrication of periodic two-dimensional (2D) corral structures is practically impossible. On the other side, by using molecular self-assembly extended 2D porous structures can be achieved in a parallel process, i.e. all pores are formed at the same time. The molecular building blocks are usually held together by non-covalent interactions like hydrogen bonding, metal coordination or dipolar coupling. Due to the reversibility of the bond formation defect-free and long-range ordered networks can be achieved. However, recently also examples of porous networks formed by covalent coupling on the surface have been reported. By the choice of the molecular building blocks, the dimensions of the network (pore size and pore to pore distance) can be controlled. In this way, the confinement properties of the individual pores can be tuned. In addition, the effect of the confined state on the hosting properties of the pores will be discussed in this review article

  12. Confinement properties of 2D porous molecular networks on metal surfaces

    NASA Astrophysics Data System (ADS)

    Müller, Kathrin; Enache, Mihaela; Stöhr, Meike

    2016-04-01

    Quantum effects that arise from confinement of electronic states have been extensively studied for the surface states of noble metals. Utilizing small artificial structures for confinement allows tailoring of the surface properties and offers unique opportunities for applications. So far, examples of surface state confinement include thin films, artificial nanoscale structures, vacancy and adatom islands, self-assembled 1D chains, vicinal surfaces, quantum dots and quantum corrals. In this review we summarize recent achievements in changing the electronic structure of surfaces by adsorption of nanoporous networks whose design principles are based on the concepts of supramolecular chemistry. Already in 1993, it was shown that quantum corrals made from Fe atoms on a Cu(1 1 1) surface using single atom manipulation with a scanning tunnelling microscope confine the Shockley surface state. However, since the atom manipulation technique for the construction of corral structures is a relatively time consuming process, the fabrication of periodic two-dimensional (2D) corral structures is practically impossible. On the other side, by using molecular self-assembly extended 2D porous structures can be achieved in a parallel process, i.e. all pores are formed at the same time. The molecular building blocks are usually held together by non-covalent interactions like hydrogen bonding, metal coordination or dipolar coupling. Due to the reversibility of the bond formation defect-free and long-range ordered networks can be achieved. However, recently also examples of porous networks formed by covalent coupling on the surface have been reported. By the choice of the molecular building blocks, the dimensions of the network (pore size and pore to pore distance) can be controlled. In this way, the confinement properties of the individual pores can be tuned. In addition, the effect of the confined state on the hosting properties of the pores will be discussed in this review article.

  13. A Wireless Communications Laboratory on Cellular Network Planning

    ERIC Educational Resources Information Center

    Dawy, Z.; Husseini, A.; Yaacoub, E.; Al-Kanj, L.

    2010-01-01

    The field of radio network planning and optimization (RNPO) is central for wireless cellular network design, deployment, and enhancement. Wireless cellular operators invest huge sums of capital on deploying, launching, and maintaining their networks in order to ensure competitive performance and high user satisfaction. This work presents a lab…

  14. 2D image classification for 3D anatomy localization: employing deep convolutional neural networks

    NASA Astrophysics Data System (ADS)

    de Vos, Bob D.; Wolterink, Jelmer M.; de Jong, Pim A.; Viergever, Max A.; Išgum, Ivana

    2016-03-01

    Localization of anatomical regions of interest (ROIs) is a preprocessing step in many medical image analysis tasks. While trivial for humans, it is complex for automatic methods. Classic machine learning approaches require the challenge of hand crafting features to describe differences between ROIs and background. Deep convolutional neural networks (CNNs) alleviate this by automatically finding hierarchical feature representations from raw images. We employ this trait to detect anatomical ROIs in 2D image slices in order to localize them in 3D. In 100 low-dose non-contrast enhanced non-ECG synchronized screening chest CT scans, a reference standard was defined by manually delineating rectangular bounding boxes around three anatomical ROIs -- heart, aortic arch, and descending aorta. Every anatomical ROI was automatically identified using a combination of three CNNs, each analyzing one orthogonal image plane. While single CNNs predicted presence or absence of a specific ROI in the given plane, the combination of their results provided a 3D bounding box around it. Classification performance of each CNN, expressed in area under the receiver operating characteristic curve, was >=0.988. Additionally, the performance of ROI localization was evaluated. Median Dice scores for automatically determined bounding boxes around the heart, aortic arch, and descending aorta were 0.89, 0.70, and 0.85 respectively. The results demonstrate that accurate automatic 3D localization of anatomical structures by CNN-based 2D image classification is feasible.

  15. Bernstein copula approach to model direction-length dependency for 2D discrete fracture network simulation

    NASA Astrophysics Data System (ADS)

    Mendoza-Torres, F.; Diaz-Viera, M. A.

    2015-12-01

    In many natural fractured porous media, such as aquifers, soils, oil and geothermal reservoirs, fractures play a crucial role in their flow and transport properties. An approach that has recently gained popularity for modeling fracture systems is the Discrete Fracture Network (DFN) model. This approach consists in applying a stochastic boolean simulation method, also known as object simulation method, where fractures are represented as simplified geometric objects (line segments in 2D and polygons in 3D). One of the shortcomings of this approach is that it usually does not consider the dependency relationships that may exist between the geometric properties of fractures (direction, length, aperture, etc), that is, each property is simulated independently. In this work a method for modeling such dependencies by copula theory is introduced. In particular, a nonparametric model using Bernstein copulas for direction-length fracture dependency in 2D is presented. The application of this method is illustrated in a case study for a fractured rock sample from a carbonate reservoir outcrop.

  16. Some tensor-network diagnostics for a class of 2D SPT states with internal symmetry

    NASA Astrophysics Data System (ADS)

    Prakash, Abhishodh; Wei, Tzu-Chieh

    We demonstrate some diagnostic techniques to characterize certain 2D tensor network states with internal symmetries that are classified by the third group cohomology of the symmetry group. We use the discussions of Else et al. [Phys. Rev. B 90, 235137 (2014)] to extract data that determines the phase of matter from the tensors that make up a specific class of wave functions. This is possible because the symmetry transformation at the `physical' level, which is of product form, translates to a symmetry in the `virtual' level which may no longer be of product form. An appropriate analysis of the virtual-space symmetry helps us obtain the topological information (the 3-cocycle twist) that places the wave function in the classification scheme. This reproduces the results of Chen et al. [Phys. Rev. B 87,155114 (2013)] without using projection operators in merging two 'Matrix Product Operators' of the symmetry representation of two group actions.

  17. Toward IMRT 2D dose modeling using artificial neural networks: A feasibility study

    SciTech Connect

    Kalantzis, Georgios; Vasquez-Quino, Luis A.; Zalman, Travis; Pratx, Guillem; Lei, Yu

    2011-10-15

    Purpose: To investigate the feasibility of artificial neural networks (ANN) to reconstruct dose maps for intensity modulated radiation treatment (IMRT) fields compared with those of the treatment planning system (TPS). Methods: An artificial feed forward neural network and the back-propagation learning algorithm have been used to replicate dose calculations of IMRT fields obtained from PINNACLE{sup 3} v9.0. The ANN was trained with fluence and dose maps of IMRT fields for 6 MV x-rays, which were obtained from the amorphous silicon (a-Si) electronic portal imaging device of Novalis TX. Those fluence distributions were imported to the TPS and the dose maps were calculated on the horizontal midpoint plane of a water equivalent homogeneous cylindrical virtual phantom. Each exported 2D dose distribution from the TPS was classified into two clusters of high and low dose regions, respectively, based on the K-means algorithm and the Euclidian metric in the fluence-dose domain. The data of each cluster were divided into two sets for the training and validation phase of the ANN, respectively. After the completion of the ANN training phase, 2D dose maps were reconstructed by the ANN and isodose distributions were created. The dose maps reconstructed by ANN were evaluated and compared with the TPS, where the mean absolute deviation of the dose and the {gamma}-index were used. Results: A good agreement between the doses calculated from the TPS and the trained ANN was achieved. In particular, an average relative dosimetric difference of 4.6% and an average {gamma}-index passing rate of 93% were obtained for low dose regions, and a dosimetric difference of 2.3% and an average {gamma}-index passing rate of 97% for high dose region. Conclusions: An artificial neural network has been developed to convert fluence maps to corresponding dose maps. The feasibility and potential of an artificial neural network to replicate complex convolution kernels in the TPS for IMRT dose calculations

  18. Inversion of 2-D DC resistivity data using rapid optimization and minimal complexity neural network

    NASA Astrophysics Data System (ADS)

    Singh, U. K.; Tiwari, R. K.; Singh, S. B.

    2010-02-01

    The backpropagation (BP) artificial neural network (ANN) technique of optimization based on steepest descent algorithm is known to be inept for its poor performance and does not ensure global convergence. Nonlinear and complex DC resistivity data require efficient ANN model and more intensive optimization procedures for better results and interpretations. Improvements in the computational ANN modeling process are described with the goals of enhancing the optimization process and reducing ANN model complexity. Well-established optimization methods, such as Radial basis algorithm (RBA) and Levenberg-Marquardt algorithms (LMA) have frequently been used to deal with complexity and nonlinearity in such complex geophysical records. We examined here the efficiency of trained LMA and RB networks by using 2-D synthetic resistivity data and then finally applied to the actual field vertical electrical resistivity sounding (VES) data collected from the Puga Valley, Jammu and Kashmir, India. The resulting ANN reconstruction resistivity results are compared with the result of existing inversion approaches, which are in good agreement. The depths and resistivity structures obtained by the ANN methods also correlate well with the known drilling results and geologic boundaries. The application of the above ANN algorithms proves to be robust and could be used for fast estimation of resistive structures for other complex earth model also.

  19. Dispersive dielectric and conductive effects in 2D resistor--capacitor networks

    SciTech Connect

    Hamou, R F F; Macdonald, Ross J.; Tuncer, Enis

    2009-01-01

    How to predict and better understand the effective properties of disordered material mixtures has been a long-standing problem in different research fields, especially in condensed matter physics. In order to address this subject and achieve a better understanding of the frequency-dependent properties of these systems, a large 2D L x L square structure of resistors and capacitors was used to calculate the immittance response of a network formed by random filling of binary conductor/insulator phases with 1000 O resistors and 10 nF capacitors. The effects of percolating clusters on the immittance response were studied statistically through the generation of 10 000 different random network samples at the percolation threshold. The scattering of the imaginary part of the immittance near the dc limit shows a clear separation between the responses of percolating and non-percolating samples, with the gap between their distributions dependent on both network size and applied frequency. These results could be used to monitor connectivity in composite materials. The effects of the content and structure of the percolating path on the nature of the observed dispersion were investigated, with special attention paid to the geometrical fractal concept of the backbone and its influence on the behavior of relaxation-time distributions. For three different resistor-capacitor proportions, the appropriateness of many fitting models was investigated for modeling and analyzing individual resistor-capacitor network dispersed frequency responses using complex-nonlinear-least-squares fitting. Several remarkable new features were identified, including a useful duality relationship and the need for composite fitting models rather than either a simple power law or a single Davidson-Cole one. Good fits of data for fully percolating random networks required two dispersive fitting models in parallel or series, with a cutoff at short times of the distribution of relaxation times of one of them

  20. Optimizing Cellular Networks Enabled with Renewal Energy via Strategic Learning.

    PubMed

    Sohn, Insoo; Liu, Huaping; Ansari, Nirwan

    2015-01-01

    An important issue in the cellular industry is the rising energy cost and carbon footprint due to the rapid expansion of the cellular infrastructure. Greening cellular networks has thus attracted attention. Among the promising green cellular network techniques, the renewable energy-powered cellular network has drawn increasing attention as a critical element towards reducing carbon emissions due to massive energy consumption in the base stations deployed in cellular networks. Game theory is a branch of mathematics that is used to evaluate and optimize systems with multiple players with conflicting objectives and has been successfully used to solve various problems in cellular networks. In this paper, we model the green energy utilization and power consumption optimization problem of a green cellular network as a pilot power selection strategic game and propose a novel distributed algorithm based on a strategic learning method. The simulation results indicate that the proposed algorithm achieves correlated equilibrium of the pilot power selection game, resulting in optimum green energy utilization and power consumption reduction. PMID:26167934

  1. Optimizing Cellular Networks Enabled with Renewal Energy via Strategic Learning

    PubMed Central

    Sohn, Insoo; Liu, Huaping; Ansari, Nirwan

    2015-01-01

    An important issue in the cellular industry is the rising energy cost and carbon footprint due to the rapid expansion of the cellular infrastructure. Greening cellular networks has thus attracted attention. Among the promising green cellular network techniques, the renewable energy-powered cellular network has drawn increasing attention as a critical element towards reducing carbon emissions due to massive energy consumption in the base stations deployed in cellular networks. Game theory is a branch of mathematics that is used to evaluate and optimize systems with multiple players with conflicting objectives and has been successfully used to solve various problems in cellular networks. In this paper, we model the green energy utilization and power consumption optimization problem of a green cellular network as a pilot power selection strategic game and propose a novel distributed algorithm based on a strategic learning method. The simulation results indicate that the proposed algorithm achieves correlated equilibrium of the pilot power selection game, resulting in optimum green energy utilization and power consumption reduction. PMID:26167934

  2. Environmental Monitoring using Measurements from Cellular Network Infrastructure

    NASA Astrophysics Data System (ADS)

    David, N.; Gao, O. H.

    2015-12-01

    Accurate measurements of atmospheric parameters at ground level are fundamentally essential for hazard warning, meteorological forecasting and for various applications in agriculture, hydrology, transportation and more. The accuracy of existing instruments, however, is often limited as a result of technical and practical constraints. Existing technologies such as satellite systems cover large areas but may experience lack of precision at near surface level. On the other hand, ground based in-situ sensors often suffer from low spatial representativity. In addition, these conventional monitoring instruments are costly to implement and maintain. At frequencies of tens of GHz, various atmospheric hydrometeors affect microwave beams, causing perturbations to radio signals. Consequently, commercial wireless links that constitute the infrastructure for data transport between cellular base stations can be considered as a built in environmental monitoring facility (Messer et al., Science, 2006). These microwave links are widely deployed worldwide at surface level altitudes and can provide measurements of various atmospheric phenomena. The implementation costs are minimal since the infrastructure is already situated in the field. This technique has been shown to be applicable for 2D rainfall monitoring (e.g. Overeem et al., PNAS, 2013; Liberman et al., AMT, 2014) and potentially for water vapor observations (David et al., ACP, 2009; Chwala et al., Atmos. Res., 2013). Moreover, it has been recently shown that the technology has strong potential for detection of fog and estimation of its intensity (David et al., JGR-Atmos., 2013; David et al., BAMS, 2014). The research conducted to this point forms the basis for the initiation of a research project in this newly emerging field at the School of Civil and Environmental Engineering of Cornell University. The presentation will provide insights into key capabilities of the novel approach. The potential to monitor various

  3. Facial Sketch Synthesis Using 2D Direct Combined Model-Based Face-Specific Markov Network.

    PubMed

    Tu, Ching-Ting; Chan, Yu-Hsien; Chen, Yi-Chung

    2016-08-01

    A facial sketch synthesis system is proposed, featuring a 2D direct combined model (2DDCM)-based face-specific Markov network. In contrast to the existing facial sketch synthesis systems, the proposed scheme aims to synthesize sketches, which reproduce the unique drawing style of a particular artist, where this drawing style is learned from a data set consisting of a large number of image/sketch pairwise training samples. The synthesis system comprises three modules, namely, a global module, a local module, and an enhancement module. The global module applies a 2DDCM approach to synthesize the global facial geometry and texture of the input image. The detailed texture is then added to the synthesized sketch in a local patch-based manner using a parametric 2DDCM model and a non-parametric Markov random field (MRF) network. Notably, the MRF approach gives the synthesized results an appearance more consistent with the drawing style of the training samples, while the 2DDCM approach enables the synthesis of outcomes with a more derivative style. As a result, the similarity between the synthesized sketches and the input images is greatly improved. Finally, a post-processing operation is performed to enhance the shadowed regions of the synthesized image by adding strong lines or curves to emphasize the lighting conditions. The experimental results confirm that the synthesized facial images are in good qualitative and quantitative agreement with the input images as well as the ground-truth sketches provided by the same artist. The representing power of the proposed framework is demonstrated by synthesizing facial sketches from input images with a wide variety of facial poses, lighting conditions, and races even when such images are not included in the training data set. Moreover, the practical applicability of the proposed framework is demonstrated by means of automatic facial recognition tests. PMID:27244737

  4. Realization problem of multi-layer cellular neural networks.

    PubMed

    Ban, Jung-Chao; Chang, Chih-Hung

    2015-10-01

    This paper investigates whether the output space of a multi-layer cellular neural network can be realized via a single layer cellular neural network in the sense of the existence of finite-to-one map from one output space to the other. Whenever such realization exists, the phenomena exhibited in the output space of the revealed single layer cellular neural network is at most a constant multiple of the phenomena exhibited in the output space of the original multi-layer cellular neural network. Meanwhile, the computation complexity of a single layer system is much less than the complexity of a multi-layer system. Namely, one can trade the precision of the results for the execution time. We remark that a routine extension of the proposed methodology in this paper can be applied to the substitution of hidden spaces although the detailed illustration is omitted.

  5. Shunting inhibitory cellular neural networks with chaotic external inputs

    NASA Astrophysics Data System (ADS)

    Akhmet, M. U.; Fen, M. O.

    2013-06-01

    Taking advantage of external inputs, it is shown that shunting inhibitory cellular neural networks behave chaotically. The analysis is based on the Li-Yorke definition of chaos. Appropriate illustrations which support the theoretical results are depicted.

  6. Shunting inhibitory cellular neural networks with chaotic external inputs.

    PubMed

    Akhmet, M U; Fen, M O

    2013-06-01

    Taking advantage of external inputs, it is shown that shunting inhibitory cellular neural networks behave chaotically. The analysis is based on the Li-Yorke definition of chaos. Appropriate illustrations which support the theoretical results are depicted.

  7. Formats and Network Protocols for Browser Access to 2D Raster Data

    NASA Astrophysics Data System (ADS)

    Plesea, L.

    2015-12-01

    Tiled web maps in browsers are a major success story, forming the foundation of many current web applications. Enabling tiled data access is the next logical step, and is likely to meet with similar success. Many ad-hoc approaches have already started to appear, and something similar is explored within the Open Geospatial Consortium. One of the main obstacles in making browser data access a reality is the lack of a well-known data format. This obstacle also represents an opportunity to analyze the requirements and possible candidates, applying lessons learned from web tiled image services and protocols. Similar to the image counterpart, a web tile raster data format needs to have good intrinsic compression and be able to handle high byte count data types including floating point. An overview of a possible solution to the format problem, a 2D data raster compression algorithm called Limited Error Raster Compression (LERC) will be presented. In addition to the format, best practices for high request rate HTTP services also need to be followed. In particular, content delivery network (CDN) caching suitability needs to be part of any design, not an after-thought. Last but not least, HTML 5 browsers will certainly be part of any solution since they provide improved access to binary data, as well as more powerful ways to view and interact with the data in the browser. In a simple but relevant application, digital elevation model (DEM) raster data is served as LERC compressed data tiles which are used to generate terrain by a HTML5 scene viewer.

  8. Extracting insight from noisy cellular networks.

    PubMed

    Landry, Christian R; Levy, Emmanuel D; Abd Rabbo, Diala; Tarassov, Kirill; Michnick, Stephen W

    2013-11-21

    Network biologists attempt to extract meaningful relationships among genes or their products from very noisy data. We argue that what we categorize as noisy data may sometimes reflect noisy biology and therefore may shield a hidden meaning about how networks evolve and how matter is organized in the cell. We present practical solutions, based on existing evolutionary and biophysical concepts, through which our understanding of cell biology can be enormously enriched. PMID:24267884

  9. Extracting insight from noisy cellular networks.

    PubMed

    Landry, Christian R; Levy, Emmanuel D; Abd Rabbo, Diala; Tarassov, Kirill; Michnick, Stephen W

    2013-11-21

    Network biologists attempt to extract meaningful relationships among genes or their products from very noisy data. We argue that what we categorize as noisy data may sometimes reflect noisy biology and therefore may shield a hidden meaning about how networks evolve and how matter is organized in the cell. We present practical solutions, based on existing evolutionary and biophysical concepts, through which our understanding of cell biology can be enormously enriched.

  10. A new small-world network created by Cellular Automata

    NASA Astrophysics Data System (ADS)

    Ruan, Yuhong; Li, Anwei

    2016-08-01

    In this paper, we generate small-world networks by the Cellular Automaton based on starting with one-dimensional regular networks. Besides the common properties of small-world networks with small average shortest path length and large clustering coefficient, the small-world networks generated in this way have other properties: (i) The edges which are cut in the regular network can be controlled that whether the edges are reconnected or not, and (ii) the number of the edges of the small-world network model equals the number of the edges of the original regular network. In other words, the average degree of the small-world network model equals to the average degree of the original regular network.

  11. Optimal Prediction by Cellular Signaling Networks

    NASA Astrophysics Data System (ADS)

    Becker, Nils B.; Mugler, Andrew; ten Wolde, Pieter Rein

    2015-12-01

    Living cells can enhance their fitness by anticipating environmental change. We study how accurately linear signaling networks in cells can predict future signals. We find that maximal predictive power results from a combination of input-noise suppression, linear extrapolation, and selective readout of correlated past signal values. Single-layer networks generate exponential response kernels, which suffice to predict Markovian signals optimally. Multilayer networks allow oscillatory kernels that can optimally predict non-Markovian signals. At low noise, these kernels exploit the signal derivative for extrapolation, while at high noise, they capitalize on signal values in the past that are strongly correlated with the future signal. We show how the common motifs of negative feedback and incoherent feed-forward can implement these optimal response functions. Simulations reveal that E. coli can reliably predict concentration changes for chemotaxis, and that the integration time of its response kernel arises from a trade-off between rapid response and noise suppression.

  12. Estimation of 3-D pore network coordination number of rocks from watershed segmentation of a single 2-D image

    NASA Astrophysics Data System (ADS)

    Rabbani, Arash; Ayatollahi, Shahab; Kharrat, Riyaz; Dashti, Nader

    2016-08-01

    In this study, we have utilized 3-D micro-tomography images of real and synthetic rocks to introduce two mathematical correlations which estimate the distribution parameters of 3-D coordination number using a single 2-D cross-sectional image. By applying a watershed segmentation algorithm, it is found that the distribution of 3-D coordination number is acceptably predictable by statistical analysis of the network extracted from 2-D images. In this study, we have utilized 25 volumetric images of rocks in order to propose two mathematical formulas. These formulas aim to approximate the average and standard deviation of coordination number in 3-D pore networks. Then, the formulas are applied for five independent test samples to evaluate the reliability. Finally, pore network flow modeling is used to find the error of absolute permeability prediction using estimated and measured coordination numbers. Results show that the 2-D images are considerably informative about the 3-D network of the rocks and can be utilized to approximate the 3-D connectivity of the porous spaces with determination coefficient of about 0.85 that seems to be acceptable considering the variety of the studied samples.

  13. Personal communication in traditional cellular networks

    NASA Astrophysics Data System (ADS)

    Neuer, Ellwood I.

    1996-01-01

    The purpose of this paper is to describe the flow of calls through the mobile network as it applies to the operation of Basic and Enhanced Services. Included in the discussion is the overall network layout, the physical connections between the network entities, and the signaling protocols which allow the entities to be integrated. The specific functionality of the applications and services are not detailed as the specific implementation varies from vendor to vendor and from service provider to service provider. The Enhanced Services Platform is installed in a service providers network in order to offer mobile subscribers services and applications which would otherwise not be available. The service providers' objective is to increase revenue/subscriber, increase subscriber loyalty/decrease churn, and build competitive advantages through differentiation. The services provided on the Enhanced Services platform can be viewed as either Basic or Enhanced. For the purpose of this paper, Basic Services refers to Numeric Paging, Call Answering, and Voice Messaging while Enhanced Services refers to FAX Messaging, One Number Service, Voice Dialing and other Voice Recognition applications, Information Services including FAX on Demand, and Automated Call Routing.

  14. Channel modeling for fifth generation cellular networks and wireless sensor networks

    NASA Astrophysics Data System (ADS)

    Torabi, Amir

    In view of exponential growth in data traffic demand, the wireless communications industry has aimed to increase the capacity of existing networks by 1000 times over the next 20 years. A combination of extreme cell densification, more bandwidth, and higher spectral efficiency is needed to support the data traffic requirements for fifth generation (5G) cellular communications. In this research, the potential improvements achieved by using three major 5G enabling technologies (i.e., small cells, millimeter-wave spectrum, and massive MIMO) in rural and urban environments are investigated. This work develops SPM and KA-based ray models to investigate the impact of geometrical parameters on terrain-based multiuser MIMO channel characteristic. Moreover, a new directional 3D channel model is developed for urban millimeter-wave (mmW) small cells. Path-loss, spatial correlation, coverage distance, and coherence length are studied in urban areas. Exploiting physical optics (PO) and geometric optics (GO) solutions, closed form expressions are derived for spatial correlation. Achievable spatial diversity is evaluated using horizontal and vertical linear arrays as well as planar 2D arrays. In another study, a versatile near-ground field prediction model is proposed to facilitate accurate wireless sensor network (WSN) simulations. Monte Carlo simulations are used to investigate the effects of antenna height, frequency of operation, polarization, and terrain dielectric and roughness properties on WSNs performance.

  15. Increasing cellular coverage within integrated terrestrial/satellite mobile networks

    NASA Technical Reports Server (NTRS)

    Castro, Jonathan P.

    1995-01-01

    When applying the hierarchical cellular concept, the satellite acts as giant umbrella cell covering a region with some terrestrial cells. If a mobile terminal traversing the region arrives to the border-line or limits of a regular cellular ground service, network transition occurs and the satellite system continues the mobile coverage. To adequately assess the boundaries of service of a mobile satellite system an a cellular network within an integrated environment, this paper provides an optimized scheme to predict when a network transition may be necessary. Under the assumption of a classified propagation phenomenon and Lognormal shadowing, the study applies an analytical approach to estimate the location of a mobile terminal based on a reception of the signal strength emitted by a base station.

  16. Template learning of cellular neural network using genetic programming.

    PubMed

    Radwan, Elsayed; Tazaki, Eiichiro

    2004-08-01

    A new learning algorithm for space invariant Uncoupled Cellular Neural Network is introduced. Learning is formulated as an optimization problem. Genetic Programming has been selected for creating new knowledge because they allow the system to find new rules both near to good ones and far from them, looking for unknown good control actions. According to the lattice Cellular Neural Network architecture, Genetic Programming will be used in deriving the Cloning Template. Exploration of any stable domain is possible by the current approach. Details of the algorithm are discussed and several application results are shown.

  17. Modeling integrated cellular machinery using hybrid Petri-Boolean networks.

    PubMed

    Berestovsky, Natalie; Zhou, Wanding; Nagrath, Deepak; Nakhleh, Luay

    2013-01-01

    The behavior and phenotypic changes of cells are governed by a cellular circuitry that represents a set of biochemical reactions. Based on biological functions, this circuitry is divided into three types of networks, each encoding for a major biological process: signal transduction, transcription regulation, and metabolism. This division has generally enabled taming computational complexity dealing with the entire system, allowed for using modeling techniques that are specific to each of the components, and achieved separation of the different time scales at which reactions in each of the three networks occur. Nonetheless, with this division comes loss of information and power needed to elucidate certain cellular phenomena. Within the cell, these three types of networks work in tandem, and each produces signals and/or substances that are used by the others to process information and operate normally. Therefore, computational techniques for modeling integrated cellular machinery are needed. In this work, we propose an integrated hybrid model (IHM) that combines Petri nets and Boolean networks to model integrated cellular networks. Coupled with a stochastic simulation mechanism, the model simulates the dynamics of the integrated network, and can be perturbed to generate testable hypotheses. Our model is qualitative and is mostly built upon knowledge from the literature and requires fine-tuning of very few parameters. We validated our model on two systems: the transcriptional regulation of glucose metabolism in human cells, and cellular osmoregulation in S. cerevisiae. The model produced results that are in very good agreement with experimental data, and produces valid hypotheses. The abstract nature of our model and the ease of its construction makes it a very good candidate for modeling integrated networks from qualitative data. The results it produces can guide the practitioner to zoom into components and interconnections and investigate them using such more

  18. Designed Proteins To Modulate Cellular Networks

    PubMed Central

    Cortajarena, Aitziber L.; Liu, Tina Y.; Hochstrasser, Mark; Regan, Lynne

    2012-01-01

    A major challenge of protein design is to create useful new proteins that interact specifically with biological targets in living cells. Such binding modules have many potential applications, including the targeted perturbation of protein networks. As a general approach to create such modules, we designed a library with approximately 109 different binding specificities based on a small 3-tetratricopeptide repeat (TPR) motif framework. We employed a novel strategy, based on split GFP reassembly, to screen the library for modules with the desired binding specificity. Using this approach, we identified modules that bind tightly and specifically to Dss1, a small human protein that interacts with the tumor suppressor protein BRCA2. We showed that these modules also bind the yeast homologue of Dss1, Sem1. Furthermore, we demonstrated that these modules inhibit Sem1 activity in yeast. This strategy will be generally applicable to make novel genetically encoded tools for systems/synthetic biology applications. PMID:20020775

  19. Millimeter-Wave Evolution for 5G Cellular Networks

    NASA Astrophysics Data System (ADS)

    Sakaguchi, Kei; Tran, Gia Khanh; Shimodaira, Hidekazu; Nanba, Shinobu; Sakurai, Toshiaki; Takinami, Koji; Siaud, Isabelle; Strinati, Emilio Calvanese; Capone, Antonio; Karls, Ingolf; Arefi, Reza; Haustein, Thomas

    Triggered by the explosion of mobile traffic, 5G (5th Generation) cellular network requires evolution to increase the system rate 1000 times higher than the current systems in 10 years. Motivated by this common problem, there are several studies to integrate mm-wave access into current cellular networks as multi-band heterogeneous networks to exploit the ultra-wideband aspect of the mm-wave band. The authors of this paper have proposed comprehensive architecture of cellular networks with mm-wave access, where mm-wave small cell basestations and a conventional macro basestation are connected to Centralized-RAN (C-RAN) to effectively operate the system by enabling power efficient seamless handover as well as centralized resource control including dynamic cell structuring to match the limited coverage of mm-wave access with high traffic user locations via user-plane/control-plane splitting. In this paper, to prove the effectiveness of the proposed 5G cellular networks with mm-wave access, system level simulation is conducted by introducing an expected future traffic model, a measurement based mm-wave propagation model, and a centralized cell association algorithm by exploiting the C-RAN architecture. The numerical results show the effectiveness of the proposed network to realize 1000 times higher system rate than the current network in 10 years which is not achieved by the small cells using commonly considered 3.5 GHz band. Furthermore, the paper also gives latest status of mm-wave devices and regulations to show the feasibility of using mm-wave in the 5G systems.

  20. Application of GA in optimization of pore network models generated by multi-cellular growth algorithms

    NASA Astrophysics Data System (ADS)

    Jamshidi, Saeid; Boozarjomehry, Ramin Bozorgmehry; Pishvaie, Mahmoud Reza

    2009-10-01

    In pore network modeling, the void space of a rock sample is represented at the microscopic scale by a network of pores connected by throats. Construction of a reasonable representation of the geometry and topology of the pore space will lead to a reliable prediction of the properties of porous media. Recently, the theory of multi-cellular growth (or L-systems) has been used as a flexible tool for generation of pore network models which do not require any special information such as 2D SEM or 3D pore space images. In general, the networks generated by this method are irregular pore network models which are inherently closer to the complicated nature of the porous media rather than regular lattice networks. In this approach, the construction process is controlled only by the production rules that govern the development process of the network. In this study, genetic algorithm has been used to obtain the optimum values of the uncertain parameters of these production rules to build an appropriate irregular lattice network capable of the prediction of both static and hydraulic information of the target porous medium.

  1. Geometric Bioinspired Networks for Recognition of 2-D and 3-D Low-Level Structures and Transformations.

    PubMed

    Bayro-Corrochano, Eduardo; Vazquez-Santacruz, Eduardo; Moya-Sanchez, Eduardo; Castillo-Munis, Efrain

    2016-10-01

    This paper presents the design of radial basis function geometric bioinspired networks and their applications. Until now, the design of neural networks has been inspired by the biological models of neural networks but mostly using vector calculus and linear algebra. However, these designs have never shown the role of geometric computing. The question is how biological neural networks handle complex geometric representations involving Lie group operations like rotations. Even though the actual artificial neural networks are biologically inspired, they are just models which cannot reproduce a plausible biological process. Until now researchers have not shown how, using these models, one can incorporate them into the processing of geometric computing. Here, for the first time in the artificial neural networks domain, we address this issue by designing a kind of geometric RBF using the geometric algebra framework. As a result, using our artificial networks, we show how geometric computing can be carried out by the artificial neural networks. Such geometric neural networks have a great potential in robot vision. This is the most important aspect of this contribution to propose artificial geometric neural networks for challenging tasks in perception and action. In our experimental analysis, we show the applicability of our geometric designs, and present interesting experiments using 2-D data of real images and 3-D screw axis data. In general, our models should be used to process different types of inputs, such as visual cues, touch (texture, elasticity, temperature), taste, and sound. One important task of a perception-action system is to fuse a variety of cues coming from the environment and relate them via a sensor-motor manifold with motor modules to carry out diverse reasoned actions. PMID:26340785

  2. Geometric Bioinspired Networks for Recognition of 2-D and 3-D Low-Level Structures and Transformations.

    PubMed

    Bayro-Corrochano, Eduardo; Vazquez-Santacruz, Eduardo; Moya-Sanchez, Eduardo; Castillo-Munis, Efrain

    2016-10-01

    This paper presents the design of radial basis function geometric bioinspired networks and their applications. Until now, the design of neural networks has been inspired by the biological models of neural networks but mostly using vector calculus and linear algebra. However, these designs have never shown the role of geometric computing. The question is how biological neural networks handle complex geometric representations involving Lie group operations like rotations. Even though the actual artificial neural networks are biologically inspired, they are just models which cannot reproduce a plausible biological process. Until now researchers have not shown how, using these models, one can incorporate them into the processing of geometric computing. Here, for the first time in the artificial neural networks domain, we address this issue by designing a kind of geometric RBF using the geometric algebra framework. As a result, using our artificial networks, we show how geometric computing can be carried out by the artificial neural networks. Such geometric neural networks have a great potential in robot vision. This is the most important aspect of this contribution to propose artificial geometric neural networks for challenging tasks in perception and action. In our experimental analysis, we show the applicability of our geometric designs, and present interesting experiments using 2-D data of real images and 3-D screw axis data. In general, our models should be used to process different types of inputs, such as visual cues, touch (texture, elasticity, temperature), taste, and sound. One important task of a perception-action system is to fuse a variety of cues coming from the environment and relate them via a sensor-motor manifold with motor modules to carry out diverse reasoned actions.

  3. A 2D zinc-organic network being easily exfoliated into isolated sheets

    NASA Astrophysics Data System (ADS)

    Yu, Guihong; Li, Ruiqing; Leng, Zhihua; Gan, Shucai

    2016-08-01

    A metal-organic aggregate, namely {Zn2Cl2(BBC)}n (BBC = 4,4‧,4‧‧-(benzene-1,3,5-triyl-tris(benzene-4,1-diyl))tribenzoate) was obtained by solvothermal synthesis. Its structure is featured with the Zn2(COO)3 paddle-wheels with two chloride anions on axial positions and hexagonal pores in the layers. The exclusion of water in the precursor and the solvent plays a crucial role in the formation of target compound. This compound can be easily dissolved in alkaline solution and exfoliated into isolated sheets, which shows a novel way for the preparation of 2D materials.

  4. Tuning the resonance properties of 2D carbon nanotube networks towards a mechanical resonator

    NASA Astrophysics Data System (ADS)

    Zhan, Haifei; Zhang, Guiyong; Zhang, Baocheng; Bell, John M.; Gu, Yuantong

    2015-08-01

    The capabilities of the mechanical resonator-based nanosensors in detecting ultra-small mass or force shifts have driven a continuing exploration of the palette of nanomaterials for such application purposes. Based on large-scale molecular dynamics simulations, we have assessed the applicability of a new class of carbon nanomaterials for nanoresonator usage, i.e. the single-wall carbon nanotube (SWNT) network. It is found that SWNT networks inherit excellent mechanical properties from the constituent SWNTs, possessing a high natural frequency. However, although a high quality factor is suggested from the simulation results, it is hard to obtain an unambiguous Q-factor due to the existence of vibration modes in addition to the dominant mode. The nonlinearities resulting from these extra vibration modes are found to exist uniformly under various testing conditions including different initial actuations and temperatures. Further testing shows that these modes can be effectively suppressed through the introduction of axial strain, leading to an extremely high quality factor in the order of 109 estimated from the SWNT network with 2% tensile strain. Additional studies indicate that the carbon rings connecting the SWNTs can also be used to alter the vibrational properties of the resulting network. This study suggests that the SWNT network can be a good candidate for applications as nanoresonators.

  5. The role of actin networks in cellular mechanosensing

    NASA Astrophysics Data System (ADS)

    Azatov, Mikheil

    Physical processes play an important role in many biological phenomena, such as wound healing, organ development, and tumor metastasis. During these processes, cells constantly interact with and adapt to their environment by exerting forces to mechanically probe the features of their surroundings and generating appropriate biochemical responses. The mechanisms underlying how cells sense the physical properties of their environment are not well understood. In this thesis, I present my studies to investigate cellular responses to the stiffness and topography of the environment. In order to sense the physical properties of their environment, cells dynamically reorganize the structure of their actin cytoskeleton, a dynamic network of biopolymers, altering the shape and spatial distribution of protein assemblies. Several observations suggest that proteins that crosslink actin filaments may play an important role in cellular mechanosensitivity. Palladin is an actin-crosslinking protein that is found in the lamellar actin network, stress fibers and focal adhesions, cellular structures that are critical for mechanosensing of the physical environment. By virtue of its close interactions with these structures in the cell, palladin may play an important role in cell mechanics. However, the role of actin crosslinkers in general, and palladin in particular, in cellular force generation and mechanosensing is not well known. I have investigated the role of palladin in regulating the plasticity of the actin cytoskeleton and cellular force generation in response to alterations in substrate stiffness. I have shown that the expression levels of palladin modulate the forces exerted by cells and their ability to sense substrate stiffness. Perturbation experiments also suggest that palladin levels in cells altered myosin motor activity. These results suggest that the actin crosslinkers, such as palladin, and myosin motors coordinate for optimal cell function and to prevent aberrant

  6. Power Versus Spectrum 2-D Sensing in Energy Harvesting Cognitive Radio Networks

    NASA Astrophysics Data System (ADS)

    Zhang, Yanyan; Han, Weijia; Li, Di; Zhang, Ping; Cui, Shuguang

    2015-12-01

    Energy harvester based cognitive radio is a promising solution to address the shortage of both spectrum and energy. Since the spectrum access and power consumption patterns are interdependent, and the power value harvested from certain environmental sources are spatially correlated, the new power dimension could provide additional information to enhance the spectrum sensing accuracy. In this paper, the Markovian behavior of the primary users is considered, based on which we adopt a hidden input Markov model to specify the primary vs. secondary dynamics in the system. Accordingly, we propose a 2-D spectrum and power (harvested) sensing scheme to improve the primary user detection performance, which is also capable of estimating the primary transmit power level. Theoretical and simulated results demonstrate the effectiveness of the proposed scheme, in term of the performance gain achieved by considering the new power dimension. To the best of our knowledge, this is the first work to jointly consider the spectrum and power dimensions for the cognitive primary user detection problem.

  7. Topological defect formation in 1D and 2D spin chains realized by network of optical parametric oscillators

    NASA Astrophysics Data System (ADS)

    Hamerly, Ryan; Inaba, Kensuke; Inagaki, Takahiro; Takesue, Hiroki; Yamamoto, Yoshihisa; Mabuchi, Hideo

    2016-09-01

    A network of optical parametric oscillators (OPOs) is used to simulate classical Ising and XY spin chains. The collective nonlinear dynamics of this network, driven by quantum noise rather than thermal fluctuations, seeks out the Ising/XY ground state as the system transitions from below to above the lasing threshold. We study the behavior of this “Ising machine” for three canonical problems: a 1D ferromagnetic spin chain, a 2D square lattice and problems where next-nearest-neighbor couplings give rise to frustration. If the pump turn-on time is finite, topological defects form (domain walls for the Ising model, winding number and vortices for XY) and their density can be predicted from a numerical model involving a linear “growth stage” and a nonlinear “saturation stage”. These predictions are compared against recent data for a 10,000-spin 1D Ising machine.

  8. Dynamic force measurement of rearrangements in a 2D network of droplets

    NASA Astrophysics Data System (ADS)

    Barkley, Solomon; Backholm, Matilda; Dalnoki-Veress, Kari

    2015-03-01

    The interaction between two liquid droplets in an immiscible liquid is well understood. However, the emulsions relevant to biological and industrial processes involve high concentrations of these droplets, and multi-body effects cannot be ignored. As droplets rearrange in response to a disturbance, the importance of individual pair-wise interactions between droplets changes with the geometry of neighbours. Here we report on an experimental setup consisting of a two- dimensional network of monodisperse droplets stabilized with a surfactant. The system is studied with micropipette deflection, which permits direct measurement of forces along with simultaneous imaging of the droplet network. One micropipette is used to apply a tensile or compressive force to the droplet cluster, while a second pipette acts as a force-transducing cantilever, deflecting in response to rearrangements of the droplets.

  9. 2D networks of rhombic-shaped fused dehydrobenzo[12]annulenes: structural variations under concentration control.

    PubMed

    Tahara, Kazukuni; Okuhata, Satoshi; Adisoejoso, Jinne; Lei, Shengbin; Fujita, Takumi; De Feyter, Steven; Tobe, Yoshito

    2009-12-01

    A series of alkyl- and alkoxy-substituted rhombic-shaped bisDBA derivatives 1a-d, 2a, and 2b were synthesized for the purpose of the formation of porous networks at the 1,2,4-trichlorobenzene (TCB)/graphite interface. Depending on the alkyl-chain length and the solute concentration, bisDBAs exhibit five network structures, three porous structures (porous A, B, and C), and two nonporous structures (nonporous D and E), which are attributed to their rhombic core shape and the position of the substituents. BisDBAs 1a and 1b with the shorter alkyl chains favorably form a porous structure, whereas bisDBAs 1c and 1d with the longer alkyl chains are prone to form nonporous structures. However, upon dilution, nonporous structures are typically transformed into porous ones, a trend that can be understood by the effect of surface coverage, molecular density, and intermolecular interactions on the system's enthalpy. Furthermore, porous structures are stabilized by the coadsorption of solvent molecules. The most intriguing porous structure, the Kagome pattern, was formed for all compounds at least to some extent, and the size of its triangular and hexagonal pores could be tuned by the alkyl-chain length. The present study proves that the concentration control is a powerful and general tool for the construction of porous networks at the liquid-solid interface.

  10. Contact transfer length investigation of a 2D nanoparticle network by scanning probe microscopy.

    PubMed

    Ruiz-Vargas, Carlos S; Reissner, Patrick A; Wagner, Tino; Wyss, Roman M; Park, Hyung Gyu; Stemmer, Andreas

    2015-09-11

    Nanoparticle network devices find growing application in sensing and electronics. One recurring challenge in the design and fabrication of this class of devices is ensuring a stable interface via robust yet unobstructive electrodes. A figure of merit which dictates the minimum electrode overlap required for optimal charge injection into the network is the contact transfer length. However, we find that traditional contact characterization using the transmission line model, an indirect method which requires extrapolation, is insufficient for network devices. Instead, we apply Kelvin probe force microscopy to characterize the contact resistance by imaging the surface potential with nanometer resolution. We then use scanning probe lithography to directly investigate the contact transfer length. We have determined the transfer length in graphene contacted devices to be 200-400 nm, thus apt for further device reduction which is often necessary for on-site sensing applications. Simulations from a two-dimensional resistor model support our observations and are expected to be an important tool for further optimizing the design of nanoparticle-based devices. PMID:26291069

  11. Using Cellular Communication Networks To Detect Air Pollution.

    PubMed

    David, Noam; Gao, H Oliver

    2016-09-01

    Accurate real time monitoring of atmospheric conditions at ground level is vital for hazard warning, meteorological forecasting, and various environmental applications required for public health and safety. However, conventional monitoring facilities are costly and often insufficient, for example, since they are not representative of the larger space and are not deployed densely enough in the field. There have been numerous scientific works showing the ability of commercial microwave links that comprise the data transmission infrastructure in cellular communication networks to monitor hydrometeors as a potential complementary solution. However, despite the large volume of research carried out in this emerging field during the past decade, no study has shown the ability of the system to provide critical information regarding air quality. Here we reveal the potential for identifying atmospheric conditions prone to air pollution by detecting temperature inversions that trap pollutants at ground level. The technique is based on utilizing standard signal measurements from an existing cellular network during routine operation. PMID:27490182

  12. Using Cellular Communication Networks To Detect Air Pollution.

    PubMed

    David, Noam; Gao, H Oliver

    2016-09-01

    Accurate real time monitoring of atmospheric conditions at ground level is vital for hazard warning, meteorological forecasting, and various environmental applications required for public health and safety. However, conventional monitoring facilities are costly and often insufficient, for example, since they are not representative of the larger space and are not deployed densely enough in the field. There have been numerous scientific works showing the ability of commercial microwave links that comprise the data transmission infrastructure in cellular communication networks to monitor hydrometeors as a potential complementary solution. However, despite the large volume of research carried out in this emerging field during the past decade, no study has shown the ability of the system to provide critical information regarding air quality. Here we reveal the potential for identifying atmospheric conditions prone to air pollution by detecting temperature inversions that trap pollutants at ground level. The technique is based on utilizing standard signal measurements from an existing cellular network during routine operation.

  13. Cellular Automata with network incubation in information technology diffusion

    NASA Astrophysics Data System (ADS)

    Guseo, Renato; Guidolin, Mariangela

    2010-06-01

    Innovation diffusion of network goods determines direct network externalities that depress sales for long periods and delay full benefits. We model this effect through a multiplicative dynamic market potential driven by a latent individual threshold embedded in a special Cellular Automata representation. The corresponding mean field approximation of its aggregate version is a Riccati equation with a closed form solution. This allows the detection of a change-point time separating an incubation period from a subsequent take-off due to a collective threshold (critical mass). Weighted nonlinear least squares are the main inferential methodology. An application is analysed with reference to USA fax machine diffusion.

  14. Network Medicine: From Cellular Networks to the Human Diseasome

    NASA Astrophysics Data System (ADS)

    Barabasi, Albert-Laszlo

    2014-03-01

    Given the functional interdependencies between the molecular components in a human cell, a disease is rarely a consequence of an abnormality in a single gene, but reflects the perturbations of the complex intracellular network. The tools of network science offer a platform to explore systematically not only the molecular complexity of a particular disease, leading to the identification of disease modules and pathways, but also the molecular relationships between apparently distinct (patho)phenotypes. Advances in this direction not only enrich our understanding of complex systems, but are also essential to identify new disease genes, to uncover the biological significance of disease-associated mutations identified by genome-wide association studies and full genome sequencing, and to identify drug targets and biomarkers for complex diseases.

  15. Tensegrity II. How structural networks influence cellular information processing networks

    NASA Technical Reports Server (NTRS)

    Ingber, Donald E.

    2003-01-01

    The major challenge in biology today is biocomplexity: the need to explain how cell and tissue behaviors emerge from collective interactions within complex molecular networks. Part I of this two-part article, described a mechanical model of cell structure based on tensegrity architecture that explains how the mechanical behavior of the cell emerges from physical interactions among the different molecular filament systems that form the cytoskeleton. Recent work shows that the cytoskeleton also orients much of the cell's metabolic and signal transduction machinery and that mechanical distortion of cells and the cytoskeleton through cell surface integrin receptors can profoundly affect cell behavior. In particular, gradual variations in this single physical control parameter (cell shape distortion) can switch cells between distinct gene programs (e.g. growth, differentiation and apoptosis), and this process can be viewed as a biological phase transition. Part II of this article covers how combined use of tensegrity and solid-state mechanochemistry by cells may mediate mechanotransduction and facilitate integration of chemical and physical signals that are responsible for control of cell behavior. In addition, it examines how cell structural networks affect gene and protein signaling networks to produce characteristic phenotypes and cell fate transitions during tissue development.

  16. Hybrid Spectral Efficient Cellular Network Deployment to Reduce RF Pollution

    NASA Astrophysics Data System (ADS)

    Katiyar, Sumit; K. Jain, R.; K. Agrawal, N.

    2012-09-01

    As the mobile telecommunication systems are growing tremendously all over the world, the numbers of handheld and base stations are also rapidly growing and it became very popular to see these base stations distributed everywhere in the neighborhood and on roof tops which has caused a considerable amount of panic to the public in Palestine concerning wither the radiated electromagnetic fields from these base stations may cause any health effect or hazard. Recently UP High Court in India ordered for removal of BTS towers from residential area, it has created panic among cellular communication network designers too. Green cellular networks could be a solution for the above problem. This paper deals with green cellular networks with the help of multi-layer overlaid hierarchical structure (macro / micro / pico / femto cells). Macrocell for area coverage, micro for pedestrian and a slow moving traffic while pico for indoor use and femto for individual high capacity users. This could be the answer of the problem of energy conservation and enhancement of spectral density also.

  17. Probing Magnetism in 2D Molecular Networks after in Situ Metalation by Transition Metal Atoms.

    PubMed

    Schouteden, K; Ivanova, Ts; Li, Z; Iancu, V; Janssens, E; Van Haesendonck, C

    2015-03-19

    Metalated molecules are the ideal building blocks for the bottom-up fabrication of, e.g., two-dimensional arrays of magnetic particles for spintronics applications. Compared to chemical synthesis, metalation after network formation by an atom beam can yield a higher degree of control and flexibility and allows for mixing of different types of magnetic atoms. We report on successful metalation of tetrapyridyl-porphyrins (TPyP) by Co and Cr atoms, as demonstrated by scanning tunneling microscopy experiments. For the metalation, large periodic networks formed by the TPyP molecules on a Ag(111) substrate are exposed in situ to an atom beam. Voltage-induced dehydrogenation experiments support the conclusion that the porphyrin macrocycle of the TPyP molecule incorporates one transition metal atom. The newly synthesized Co-TPyP and Cr-TPyP complexes exhibit striking differences in their electronic behavior, leading to a magnetic character for Cr-TPyP only as evidenced by Kondo resonance measurements.

  18. Fracture network evaluation program (FraNEP): A software for analyzing 2D fracture trace-line maps

    NASA Astrophysics Data System (ADS)

    Zeeb, Conny; Gomez-Rivas, Enrique; Bons, Paul D.; Virgo, Simon; Blum, Philipp

    2013-10-01

    Fractures, such as joints, faults and veins, strongly influence the transport of fluids through rocks by either enhancing or inhibiting flow. Techniques used for the automatic detection of lineaments from satellite images and aerial photographs, LIDAR technologies and borehole televiewers significantly enhanced data acquisition. The analysis of such data is often performed manually or with different analysis software. Here we present a novel program for the analysis of 2D fracture networks called FraNEP (Fracture Network Evaluation Program). The program was developed using Visual Basic for Applications in Microsoft Excel™ and combines features from different existing software and characterization techniques. The main novelty of FraNEP is the possibility to analyse trace-line maps of fracture networks applying the (1) scanline sampling, (2) window sampling or (3) circular scanline and window method, without the need of switching programs. Additionally, binning problems are avoided by using cumulative distributions, rather than probability density functions. FraNEP is a time-efficient tool for the characterisation of fracture network parameters, such as density, intensity and mean length. Furthermore, fracture strikes can be visualized using rose diagrams and a fitting routine evaluates the distribution of fracture lengths. As an example of its application, we use FraNEP to analyse a case study of lineament data from a satellite image of the Oman Mountains.

  19. Detecting 2D symmetry-protected topological phases with the tensor-network method

    NASA Astrophysics Data System (ADS)

    Huang, Ching-Yu; Wei, Tzu-Chieh

    Symmetry-protected topological (SPT) phases exhibit nontrivial order if symmetry is respected but are adiabatically connected to the trivial product phase if symmetry is not respected. However, unlike the symmetry breaking phase, there is no local order parameter for SPT phases. Here we employ a tensor-network method to compute the topological invariants characterized by the simulated modular S and T matrices proposed by Hung and Wen to study a transition in a one-parameter family of wavefunctions which are Z2 symmetric. The studied wavefunctions are in some sense the SPT analog of Z2 topological states under a string tension. The numerically obtained S and T matrices are able to characterize the two different phases and identify the transition point.

  20. Reverse engineering cellular networks with information theoretic methods.

    PubMed

    Villaverde, Alejandro F; Ross, John; Banga, Julio R

    2013-01-01

    Building mathematical models of cellular networks lies at the core of systems biology. It involves, among other tasks, the reconstruction of the structure of interactions between molecular components, which is known as network inference or reverse engineering. Information theory can help in the goal of extracting as much information as possible from the available data. A large number of methods founded on these concepts have been proposed in the literature, not only in biology journals, but in a wide range of areas. Their critical comparison is difficult due to the different focuses and the adoption of different terminologies. Here we attempt to review some of the existing information theoretic methodologies for network inference, and clarify their differences. While some of these methods have achieved notable success, many challenges remain, among which we can mention dealing with incomplete measurements, noisy data, counterintuitive behaviour emerging from nonlinear relations or feedback loops, and computational burden of dealing with large data sets.

  1. Mechanics of composite actin networks: in vitro and cellular perspectives

    NASA Astrophysics Data System (ADS)

    Upadhyaya, Arpita

    2014-03-01

    Actin filaments and associated actin binding proteins play an essential role in governing the mechanical properties of eukaryotic cells. Even though cells have multiple actin binding proteins (ABPs) that exist simultaneously to maintain the structural and mechanical integrity of the cellular cytoskeleton, how these proteins work together to determine the properties of actin networks is not well understood. The ABP, palladin, is essential for the integrity of cell morphology and movement during development. Palladin coexists with alpha-actinin in stress fibers and focal adhesions and binds to both actin and alpha-actinin. To obtain insight into how mutually interacting actin crosslinking proteins modulate the properties of actin networks, we have characterized the micro-structure and mechanics of actin networks crosslinked with palladin and alpha-actinin. Our studies on composite networks of alpha-actinin/palladin/actin show that palladin and alpha-actinin synergistically determine network viscoelasticity. We have further examined the role of palladin in cellular force generation and mechanosensing. Traction force microscopy revealed that TAFs are sensitive to substrate stiffness as they generate larger forces on substrates of increased stiffness. Contrary to expectations, knocking down palladin increased the forces generated by cells, and also inhibited the ability to sense substrate stiffness for very stiff gels. This was accompanied by significant differences in the actin organization and adhesion dynamics of palladin knock down cells. Perturbation experiments also suggest altered myosin activity in palladin KD cells. Our results suggest that the actin crosslinkers such as palladin and myosin motors coordinate for optimal cell function and to prevent aberrant behavior as in cancer metastasis.

  2. Country-wide rainfall maps from cellular communication networks.

    PubMed

    Overeem, Aart; Leijnse, Hidde; Uijlenhoet, Remko

    2013-02-19

    Accurate and timely surface precipitation measurements are crucial for water resources management, agriculture, weather prediction, climate research, as well as ground validation of satellite-based precipitation estimates. However, the majority of the land surface of the earth lacks such data, and in many parts of the world the density of surface precipitation gauging networks is even rapidly declining. This development can potentially be counteracted by using received signal level data from the enormous number of microwave links used worldwide in commercial cellular communication networks. Along such links, radio signals propagate from a transmitting antenna at one base station to a receiving antenna at another base station. Rain-induced attenuation and, subsequently, path-averaged rainfall intensity can be retrieved from the signal's attenuation between transmitter and receiver. Here, we show how one such a network can be used to retrieve the space-time dynamics of rainfall for an entire country (The Netherlands, ∼35,500 km(2)), based on an unprecedented number of links (∼2,400) and a rainfall retrieval algorithm that can be applied in real time. This demonstrates the potential of such networks for real-time rainfall monitoring, in particular in those parts of the world where networks of dedicated ground-based rainfall sensors are often virtually absent. PMID:23382210

  3. Country-wide rainfall maps from cellular communication networks

    PubMed Central

    Overeem, Aart; Leijnse, Hidde; Uijlenhoet, Remko

    2013-01-01

    Accurate and timely surface precipitation measurements are crucial for water resources management, agriculture, weather prediction, climate research, as well as ground validation of satellite-based precipitation estimates. However, the majority of the land surface of the earth lacks such data, and in many parts of the world the density of surface precipitation gauging networks is even rapidly declining. This development can potentially be counteracted by using received signal level data from the enormous number of microwave links used worldwide in commercial cellular communication networks. Along such links, radio signals propagate from a transmitting antenna at one base station to a receiving antenna at another base station. Rain-induced attenuation and, subsequently, path-averaged rainfall intensity can be retrieved from the signal’s attenuation between transmitter and receiver. Here, we show how one such a network can be used to retrieve the space–time dynamics of rainfall for an entire country (The Netherlands, ∼35,500 km2), based on an unprecedented number of links (∼2,400) and a rainfall retrieval algorithm that can be applied in real time. This demonstrates the potential of such networks for real-time rainfall monitoring, in particular in those parts of the world where networks of dedicated ground-based rainfall sensors are often virtually absent. PMID:23382210

  4. Modeling a Nonlinear Liquid Level System by Cellular Neural Networks

    NASA Astrophysics Data System (ADS)

    Hernandez-Romero, Norberto; Seck-Tuoh-Mora, Juan Carlos; Gonzalez-Hernandez, Manuel; Medina-Marin, Joselito; Flores-Romero, Juan Jose

    This paper presents the analogue simulation of a nonlinear liquid level system composed by two tanks; the system is controlled using the methodology of exact linearization via state feedback by cellular neural networks (CNNs). The relevance of this manuscript is to show how a block diagram representing the analogue modeling and control of a nonlinear dynamical system, can be implemented and regulated by CNNs, whose cells may contain numerical values or arithmetic and control operations. In this way the dynamical system is modeled by a set of local-interacting elements without need of a central supervisor.

  5. GPM ground validation via commercial cellular networks: an exploratory approach

    NASA Astrophysics Data System (ADS)

    Rios Gaona, Manuel Felipe; Overeem, Aart; Leijnse, Hidde; Brasjen, Noud; Uijlenhoet, Remko

    2016-04-01

    The suitability of commercial microwave link networks for ground validation of GPM (Global Precipitation Measurement) data is evaluated here. Two state-of-the-art rainfall products are compared over the land surface of the Netherlands for a period of 7 months, i.e., rainfall maps from commercial cellular communication networks and Integrated Multi-satellite Retrievals for GPM (IMERG). Commercial microwave link networks are nowadays the core component in telecommunications worldwide. Rainfall rates can be retrieved from measurements of attenuation between transmitting and receiving antennas. If adequately set up, these networks enable rainfall monitoring tens of meters above the ground at high spatiotemporal resolutions (temporal sampling of seconds to tens of minutes, and spatial sampling of hundreds of meters to tens of kilometers). The GPM mission is the successor of TRMM (Tropical Rainfall Measurement Mission). For two years now, IMERG offers rainfall estimates across the globe (180°W - 180°E and 60°N - 60°S) at spatiotemporal resolutions of 0.1° x 0.1° every 30 min. These two data sets are compared against a Dutch gauge-adjusted radar data set, considered to be the ground truth given its accuracy, spatiotemporal resolution and availability. The suitability of microwave link networks in satellite rainfall evaluation is of special interest, given the independent character of this technique, its high spatiotemporal resolutions and availability. These are valuable assets for water management and modeling of floods, landslides, and weather extremes; especially in places where rain gauge networks are scarce or poorly maintained, or where weather radar networks are too expensive to acquire and/or maintain.

  6. Sources of Uncertainty in Rainfall Maps from Cellular Communication Networks

    NASA Astrophysics Data System (ADS)

    Rios Gaona, Manuel Felipe; Overeem, Aart; Leijnse, Hidde; Uijlenhoet, Remko

    2015-04-01

    and quantify the sources of uncertainty in such rainfall maps, but also to test the actual and optimal performance of one commercial microwave network from one of the cellular providers in The Netherlands.

  7. Cellular telephone-based wide-area radiation detection network

    DOEpatents

    Craig, William W.; Labov, Simon E.

    2009-06-09

    A network of radiation detection instruments, each having a small solid state radiation sensor module integrated into a cellular phone for providing radiation detection data and analysis directly to a user. The sensor module includes a solid-state crystal bonded to an ASIC readout providing a low cost, low power, light weight compact instrument to detect and measure radiation energies in the local ambient radiation field. In particular, the photon energy, time of event, and location of the detection instrument at the time of detection is recorded for real time transmission to a central data collection/analysis system. The collected data from the entire network of radiation detection instruments are combined by intelligent correlation/analysis algorithms which map the background radiation and detect, identify and track radiation anomalies in the region.

  8. Network modeling of membrane-based artificial cellular systems

    NASA Astrophysics Data System (ADS)

    Freeman, Eric C.; Philen, Michael K.; Leo, Donald J.

    2013-04-01

    Computational models are derived for predicting the behavior of artificial cellular networks for engineering applications. The systems simulated involve the use of a biomolecular unit cell, a multiphase material that incorporates a lipid bilayer between two hydrophilic compartments. These unit cells may be considered building blocks that enable the fabrication of complex electrochemical networks. These networks can incorporate a variety of stimuli-responsive biomolecules to enable a diverse range of multifunctional behavior. Through the collective properties of these biomolecules, the system demonstrates abilities that recreate natural cellular phenomena such as mechanotransduction, optoelectronic response, and response to chemical gradients. A crucial step to increase the utility of these biomolecular networks is to develop mathematical models of their stimuli-responsive behavior. While models have been constructed deriving from the classical Hodgkin-Huxley model focusing on describing the system as a combination of traditional electrical components (capacitors and resistors), these electrical elements do not sufficiently describe the phenomena seen in experiment as they are not linked to the molecular scale processes. From this realization an advanced model is proposed that links the traditional unit cell parameters such as conductance and capacitance to the molecular structure of the system. Rather than approaching the membrane as an isolated parallel plate capacitor, the model seeks to link the electrical properties to the underlying chemical characteristics. This model is then applied towards experimental cases in order that a more complete picture of the underlying phenomena responsible for the desired sensing mechanisms may be constructed. In this way the stimuli-responsive characteristics may be understood and optimized.

  9. Optimizing the bulk modulus of low-density cellular networks.

    PubMed

    Durand, Marc

    2005-07-01

    We present an alternative derivation of upper-bounds for the bulk modulus of both two-dimensional and three-dimensional cellular materials. For two-dimensional materials, we recover exactly the expression of the Hashin-Shtrikman (HS) upper-bound in the low-density limit, while for three-dimensional materials we even improve the HS bound. Furthermore, we establish necessary and sufficient conditions on the cellular structure for maximizing the bulk modulus, for a given solid volume fraction. The conditions are found to be exactly those under which the electrical (or thermal) conductivity of the material reaches its maximal value as well. These results provide a set of straightforward criteria allowing us to address the design of optimized cellular materials, and shed light on recent studies of structures with both maximal bulk modulus and maximal conductivity. Finally, we discuss the specific case of spring networks, and analyze the compatibility of the criteria presented here with the geometrical constraints caused by minimization of surface energy in a real foam.

  10. Perturbation Biology: Inferring Signaling Networks in Cellular Systems

    PubMed Central

    Miller, Martin L.; Gauthier, Nicholas P.; Jing, Xiaohong; Kaushik, Poorvi; He, Qin; Mills, Gordon; Solit, David B.; Pratilas, Christine A.; Weigt, Martin; Braunstein, Alfredo; Pagnani, Andrea; Zecchina, Riccardo; Sander, Chris

    2013-01-01

    We present a powerful experimental-computational technology for inferring network models that predict the response of cells to perturbations, and that may be useful in the design of combinatorial therapy against cancer. The experiments are systematic series of perturbations of cancer cell lines by targeted drugs, singly or in combination. The response to perturbation is quantified in terms of relative changes in the measured levels of proteins, phospho-proteins and cellular phenotypes such as viability. Computational network models are derived de novo, i.e., without prior knowledge of signaling pathways, and are based on simple non-linear differential equations. The prohibitively large solution space of all possible network models is explored efficiently using a probabilistic algorithm, Belief Propagation (BP), which is three orders of magnitude faster than standard Monte Carlo methods. Explicit executable models are derived for a set of perturbation experiments in SKMEL-133 melanoma cell lines, which are resistant to the therapeutically important inhibitor of RAF kinase. The resulting network models reproduce and extend known pathway biology. They empower potential discoveries of new molecular interactions and predict efficacious novel drug perturbations, such as the inhibition of PLK1, which is verified experimentally. This technology is suitable for application to larger systems in diverse areas of molecular biology. PMID:24367245

  11. Assessing the weather monitoring capabilities of cellular microwave link networks

    NASA Astrophysics Data System (ADS)

    Fencl, Martin; Vrzba, Miroslav; Rieckermann, Jörg; Bareš, Vojtěch

    2016-04-01

    Using of microwave links for rainfall monitoring was suggested already by (Atlas and Ulbrich, 1977). However, this technique attracted broader attention of scientific community only in the recent decade, with the extensive growth of cellular microwave link (CML) networks, which form the backbone of today's cellular telecommunication infrastructure. Several studies have already shown that CMLs can be conveniently used as weather sensors and have potential to provide near-ground path-integrated observations of rainfall but also humidity or fog. However, although research is still focusing on algorithms to improve the weather sensing capabilities (Fencl et al., 2015), it is not clear how to convince cellular operators to provide the power levels of their network. One step in this direction is to show in which regions or municipalities the networks are sufficiently dense to provide/develop good services. In this contribution we suggest a standardized approach to evaluate CML networks in terms of rainfall observation and to identify suitable regions for CML rainfall monitoring. We estimate precision of single CML based on its sensitivity to rainfall, i.e. as a function of frequency, polarization and path length. Capability of a network to capture rainfall spatial patterns is estimated from the CML coverage and path lengths considering that single CML provides path-integrated rain rates. We also search for suitable predictors for regions where no network topologies are available. We test our approach on several European networks and discuss the results. Our results show that CMLs are very dense in urban areas (> 1 CML/km2), but less in rural areas (< 0.02 CML/km2). We found a strong correlation between a population and CML network density (e.g. R2 = 0.97 in Czech Republic), thus population could be a simple proxy to identify suitable regions for CML weather monitoring. To enable a simple and efficient assessment of the CML monitoring potential for any region worldwide

  12. Countrywide rainfall maps from a commercial cellular telecommunication network

    NASA Astrophysics Data System (ADS)

    Overeem, A.; Leijnse, H.; Uijlenhoet, R.

    2012-12-01

    Accurate rainfall observations with high spatial and temporal resolutions are needed for hydrological applications, agriculture, meteorology, and climate monitoring. However, the majority of the land surface of the earth lacks accurate rainfall information. Many countries do not have continuously operating weather radars, and have no or few rain gauges. A new development is rainfall estimation from microwave links of commercial cellular telecommunication networks. Such networks cover large parts of the land surface of the earth and have a high density, especially in urban areas. The estimation of rainfall using commercial microwave links could therefore become a valuable source of information. The data produced by microwave links is essentially a by-product of the communication between mobile telephones. Rainfall attenuates the electromagnetic signals transmitted from one telephone tower to another. By measuring the received power at one end of a microwave link as a function of time, the path-integrated attenuation due to rainfall can be calculated. Previous studies have shown that average rainfall intensities over the length of a link can be derived from the path-integrated attenuation. A dataset from a commercial microwave link network over the Netherlands is analyzed, containing data from an unprecedented number of links (1500) covering the land surface of the Netherlands (35500 km2). This dataset consists of 24 days with substantial rainfall in June - September 2011. A rainfall retrieval algorithm is presented to derive rainfall intensities from the microwave link data, which have a temporal resolution of 15 min. Rainfall maps (1 km spatial resolution) are generated from these rainfall intensities using Kriging. This algorithm is suited for real-time application, and is calibrated on a subset (12 days) of the dataset. The other 12 days in the dataset are used to validate the algorithm. Both calibration and validation are done using gauge-adjusted radar data

  13. Allosteric pathway identification through network analysis: from molecular dynamics simulations to interactive 2D and 3D graphs.

    PubMed

    Allain, Ariane; Chauvot de Beauchêne, Isaure; Langenfeld, Florent; Guarracino, Yann; Laine, Elodie; Tchertanov, Luba

    2014-01-01

    Allostery is a universal phenomenon that couples the information induced by a local perturbation (effector) in a protein to spatially distant regulated sites. Such an event can be described in terms of a large scale transmission of information (communication) through a dynamic coupling between structurally rigid (minimally frustrated) and plastic (locally frustrated) clusters of residues. To elaborate a rational description of allosteric coupling, we propose an original approach - MOdular NETwork Analysis (MONETA) - based on the analysis of inter-residue dynamical correlations to localize the propagation of both structural and dynamical effects of a perturbation throughout a protein structure. MONETA uses inter-residue cross-correlations and commute times computed from molecular dynamics simulations and a topological description of a protein to build a modular network representation composed of clusters of residues (dynamic segments) linked together by chains of residues (communication pathways). MONETA provides a brand new direct and simple visualization of protein allosteric communication. A GEPHI module implemented in the MONETA package allows the generation of 2D graphs of the communication network. An interactive PyMOL plugin permits drawing of the communication pathways between chosen protein fragments or residues on a 3D representation. MONETA is a powerful tool for on-the-fly display of communication networks in proteins. We applied MONETA for the analysis of communication pathways (i) between the main regulatory fragments of receptors tyrosine kinases (RTKs), KIT and CSF-1R, in the native and mutated states and (ii) in proteins STAT5 (STAT5a and STAT5b) in the phosphorylated and the unphosphorylated forms. The description of the physical support for allosteric coupling by MONETA allowed a comparison of the mechanisms of (a) constitutive activation induced by equivalent mutations in two RTKs and (b) allosteric regulation in the activated and non

  14. Myosin lever arm directs collective motion on cellular actin network

    PubMed Central

    Hariadi, Rizal F.; Cale, Mario; Sivaramakrishnan, Sivaraj

    2014-01-01

    The molecular motor myosin teams up to drive muscle contraction, membrane traffic, and cell division in biological cells. Myosin function in cells emerges from the interaction of multiple motors tethered to a scaffold, with surrounding actin filaments organized into 3D networks. Despite the importance of myosin function, the influence of intermotor interactions on collective motion remains poorly understood. In this study, we used precisely engineered myosin assemblies to examine emergence in collective myosin movement. We report that tethering multiple myosin VI motors, but not myosin V motors, modifies their movement trajectories on keratocyte actin networks. Single myosin V and VI dimers display similar skewed trajectories, albeit in opposite directions, when traversing the keratocyte actin network. In contrast, tethering myosin VI motors, but not myosin V motors, progressively straightens the trajectories with increasing myosin number. Trajectory shape of multimotor scaffolds positively correlates with the stiffness of the myosin lever arm. Swapping the flexible myosin VI lever arm for the relatively rigid myosin V lever increases trajectory skewness, and vice versa. A simplified model of coupled motor movement demonstrates that the differences in flexural rigidity of the two myosin lever arms is sufficient to account for the differences in observed behavior of groups of myosin V and VI motors. In accordance with this model trajectory, shapes for scaffolds containing both myosin V and VI are dominated by the myosin with a stiffer lever arm. Our findings suggest that structural features unique to each myosin type may confer selective advantages in cellular functions. PMID:24591646

  15. A rigorous framework for multiscale simulation of stochastic cellular networks

    PubMed Central

    Chevalier, Michael W.; El-Samad, Hana

    2009-01-01

    Noise and stochasticity are fundamental to biology and derive from the very nature of biochemical reactions where thermal motion of molecules translates into randomness in the sequence and timing of reactions. This randomness leads to cell-cell variability even in clonal populations. Stochastic biochemical networks are modeled as continuous time discrete state Markov processes whose probability density functions evolve according to a chemical master equation (CME). The CME is not solvable but for the simplest cases, and one has to resort to kinetic Monte Carlo techniques to simulate the stochastic trajectories of the biochemical network under study. A commonly used such algorithm is the stochastic simulation algorithm (SSA). Because it tracks every biochemical reaction that occurs in a given system, the SSA presents computational difficulties especially when there is a vast disparity in the timescales of the reactions or in the number of molecules involved in these reactions. This is common in cellular networks, and many approximation algorithms have evolved to alleviate the computational burdens of the SSA. Here, we present a rigorously derived modified CME framework based on the partition of a biochemically reacting system into restricted and unrestricted reactions. Although this modified CME decomposition is as analytically difficult as the original CME, it can be naturally used to generate a hierarchy of approximations at different levels of accuracy. Most importantly, some previously derived algorithms are demonstrated to be limiting cases of our formulation. We apply our methods to biologically relevant test systems to demonstrate their accuracy and efficiency. PMID:19673546

  16. Myosin lever arm directs collective motion on cellular actin network.

    PubMed

    Hariadi, Rizal F; Cale, Mario; Sivaramakrishnan, Sivaraj

    2014-03-18

    The molecular motor myosin teams up to drive muscle contraction, membrane traffic, and cell division in biological cells. Myosin function in cells emerges from the interaction of multiple motors tethered to a scaffold, with surrounding actin filaments organized into 3D networks. Despite the importance of myosin function, the influence of intermotor interactions on collective motion remains poorly understood. In this study, we used precisely engineered myosin assemblies to examine emergence in collective myosin movement. We report that tethering multiple myosin VI motors, but not myosin V motors, modifies their movement trajectories on keratocyte actin networks. Single myosin V and VI dimers display similar skewed trajectories, albeit in opposite directions, when traversing the keratocyte actin network. In contrast, tethering myosin VI motors, but not myosin V motors, progressively straightens the trajectories with increasing myosin number. Trajectory shape of multimotor scaffolds positively correlates with the stiffness of the myosin lever arm. Swapping the flexible myosin VI lever arm for the relatively rigid myosin V lever increases trajectory skewness, and vice versa. A simplified model of coupled motor movement demonstrates that the differences in flexural rigidity of the two myosin lever arms is sufficient to account for the differences in observed behavior of groups of myosin V and VI motors. In accordance with this model trajectory, shapes for scaffolds containing both myosin V and VI are dominated by the myosin with a stiffer lever arm. Our findings suggest that structural features unique to each myosin type may confer selective advantages in cellular functions.

  17. Long-range alignments of single fullerenes by site-selective inclusion into a double-cavity 2D open network.

    PubMed

    Piot, Luc; Silly, Fabien; Tortech, Ludovic; Nicolas, Yohann; Blanchard, Philippe; Roncali, Jean; Fichou, Denis

    2009-09-16

    We show by means of STM that C(60) molecules can be trapped into specific sites of a 2D double-cavity open network, thus forming long-range alignments of single molecules. Since only one of the two cavities has the right size to host C(60), the smallest cavity remains empty and is thus available to trap additional species of smaller size. This novel 2D supramolecular network opens new perspectives in the design of multicomponent guest-host architectures with electronic functionalities. PMID:19462948

  18. Low-cost chemiresistive sensor for volatile amines based on a 2D network of a zinc(II) Schiff-base complex

    NASA Astrophysics Data System (ADS)

    Mirabella, S.; Oliveri, I. P.; Ruffino, F.; Maccarrone, G.; Di Bella, S.

    2016-10-01

    A marked chemiresistive behavior is revealed in a nanostructured material obtained by spin-coating a solution of a bis(salycilaldiminato)Zn(II) Schiff-base (ZnSB) complex. The resulting submicron 2D network exhibits reversible changes in absorbance and resistance under the cycles of absorption and desorption of a volatile amine. These results are explained in terms of a Lewis donor-acceptor interaction between the ZnSB (acceptor) and the chemisorbed amine (donor). The 2D network of ZnSB was employed as a sensing element to fabricate a low-cost device for the volatile amines detection, showing promising results for food spoilage detection.

  19. Mesoscale assembly of chemically modified graphene into complex cellular networks

    NASA Astrophysics Data System (ADS)

    Barg, Suelen; Perez, Felipe Macul; Ni, Na; Do Vale Pereira, Paula; Maher, Robert C.; Garcia-Tuñon, Esther; Eslava, Salvador; Agnoli, Stefano; Mattevi, Cecilia; Saiz, Eduardo

    2014-07-01

    The widespread technological introduction of graphene beyond electronics rests on our ability to assemble this two-dimensional building block into three-dimensional structures for practical devices. To achieve this goal we need fabrication approaches that are able to provide an accurate control of chemistry and architecture from nano to macroscopic levels. Here, we describe a versatile technique to build ultralight (density ≥1 mg cm-3) cellular networks based on the use of soft templates and the controlled segregation of chemically modified graphene to liquid interfaces. These novel structures can be tuned for excellent conductivity; versatile mechanical response (elastic-brittle to elastomeric, reversible deformation, high energy absorption) and organic absorption capabilities (above 600 g per gram of material). The approach can be used to uncover the basic principles that will guide the design of practical devices that by combining unique mechanical and functional performance will generate new technological opportunities.

  20. Mesoscale assembly of chemically modified graphene into complex cellular networks

    PubMed Central

    Barg, Suelen; Perez, Felipe Macul; Ni, Na; do Vale Pereira, Paula; Maher, Robert C.; Garcia-Tuñon, Esther; Eslava, Salvador; Agnoli, Stefano; Mattevi, Cecilia; Saiz, Eduardo

    2014-01-01

    The widespread technological introduction of graphene beyond electronics rests on our ability to assemble this two-dimensional building block into three-dimensional structures for practical devices. To achieve this goal we need fabrication approaches that are able to provide an accurate control of chemistry and architecture from nano to macroscopic levels. Here, we describe a versatile technique to build ultralight (density ≥1 mg cm−3) cellular networks based on the use of soft templates and the controlled segregation of chemically modified graphene to liquid interfaces. These novel structures can be tuned for excellent conductivity; versatile mechanical response (elastic-brittle to elastomeric, reversible deformation, high energy absorption) and organic absorption capabilities (above 600 g per gram of material). The approach can be used to uncover the basic principles that will guide the design of practical devices that by combining unique mechanical and functional performance will generate new technological opportunities. PMID:24999766

  1. Country-wide rainfall maps from cellular communication networks

    NASA Astrophysics Data System (ADS)

    Leijnse, Hidde; Overeem, Aart; Uijlenhoet, Remko

    2013-04-01

    Accurate rainfall observations with high spatial and temporal resolutions are needed for hydrological applications, agriculture, meteorology, and climate monitoring. However, the majority of the land surface of the earth lacks accurate rainfall information and the number of rain gauges is even severely declining in Europe, South-America, and Africa. This calls for alternative sources of rainfall information. Various studies have shown that microwave links from operational cellular telecommunication networks may be employed for rainfall monitoring. Such networks cover 20% of the land surface of the earth and have a high density, especially in urban areas. The basic principle of rainfall monitoring using microwave links is as follows. Rainfall attenuates the electromagnetic signals transmitted from one telephone tower to another. By measuring the received power at one end of a microwave link as a function of time, the path-integrated attenuation due to rainfall can be calculated. Previous studies have shown that average rainfall intensities over the length of a link can be derived from the path-integrated attenuation. Here we show how one cellular telecommunication network can be used to retrieve the space-time dynamics of rainfall for an entire country. A dataset from a commercial microwave link network over the Netherlands is analyzed, containing data from an unprecedented number of links (2400) covering the land surface of the Netherlands (35500 km2). This dataset consists of 24 days with substantial rainfall in June - September 2011. A rainfall retrieval algorithm is presented to derive rainfall intensities from the microwave link data, which have a temporal resolution of 15 min. Rainfall maps (1 km spatial resolution) are generated from these rainfall intensities using Kriging. This algorithm is suited for real-time application, and is calibrated on a subset (12 days) of the dataset. The other 12 days in the dataset are used to validate the algorithm. Both

  2. Dehydration induced 2D-to-3D crystal-to-crystal network re-assembly and ferromagnetism tuning within two chiral copper(II)-tartrate coordination polymers.

    PubMed

    Liu, Yen-Hsiang; Lee, Szu-Hsuan; Chiang, Jung-Chun; Chen, Po-Chen; Chien, Po-Hsiu; Yang, Chen-I

    2013-12-28

    The synthesis of two homochiral l-tartrate-copper(II) coordination polymers, [Cu2(C4H4O6)2(H2O)2·xH2O]n (1), and [Cu(C4H4O6)]n (2), under hydrothermal conditions, is reported. Compound 1 adopts a 2D layered network structure with a space group of P21, while compound 2 features a 3D network structure with a space group P21212. Interestingly, the 2D layered structure of compound 1 can undergo a crystal-to-crystal network reassembly, with the formation of the 3D network structure of compound 2 under dehydration conditions. Variable temperature and field magnetic studies reveal the existence of a distinct ferromagnetic interaction between Cu(2+) ions as the result of distinct syn-anti carboxylate bridging coordination modes.

  3. Video sequence compression via supervised training on cellular neural networks.

    PubMed

    Rodríguez, L; Zufiria, P J; Berzal, J A

    1997-02-01

    In this paper, a novel approach for video sequence compression using Cellular Neural Networks (CNN's) is presented. CNN's are nets characterized by local interconnections between neurons (usually called cells), and can be modeled as dynamical systems. From among many different types, a CNN model operating in discrete-time (DT-CNN) has been chosen, its parameters being defined so that they are shared among all the cells in the network. The compression process proposed in this work is based on the possibility of replicating a given video sequence as a trajectory generated by the DT-CNN. In order for the CNN to follow a prescribed trajectory, a supervised training algorithm is implemented. Compression is achieved due to the fact that all the information contained in the sequence can be stored into a small number of parameters and initial conditions once training is stopped. Different improvements upon the basic formulation are analyzed and issues such as feasibility and complexity of the compression problem are also addressed. Finally, some examples with real video sequences illustrate the applicability of the method.

  4. Computational design of soft materials for the capture of Cs-137 in contaminated environments: From 2D covalent cucurbituril networks to 3D supramolecular materials

    NASA Astrophysics Data System (ADS)

    Pichierri, Fabio

    2016-08-01

    Using computational quantum chemistry methods we design novel 2D and 3D soft materials made of cucurbituril macrocycles covalently connected with each other via rigid linkers. Such covalent cucurbituril networks might be useful for the capture of radioactive Cs-137 (present as Cs+) in the contaminated environment.

  5. Rainfall maps from cellular communication networks: Assessing uncertainties

    NASA Astrophysics Data System (ADS)

    Rios Gaona, Manuel Felipe; Overeem, Aart; Leijnse, Hidde; Uijlenhoet, Remko

    2014-05-01

    Several studies show the potential applicability of commercial cellular communication networks in the retrieval of rainfall fields, sometimes even for an entire country. The key principle of rainfall monitoring using microwave links is based on the attenuation, due to rainfall, of the electromagnetic signals transmitted from one telephone tower to another. By measuring the received power at one end of a microwave link, as a function of time, the path-averaged rainfall intensity can be estimated. This study focuses on the quality of country-wide rainfall maps derived from commercial microwave link data compared to a quality-controlled gauge-adjusted radar rainfall data set, considered as ground-truth. Part of the differences can be attributed to the interpolation methodology, as well as to the much higher spatial resolution (≡38.000 pixels of 0.9 by 0.9 km2) of the radar data compared to the relatively low density of the microwave link network (≡1700 microwave links with an average length of 3.1 km). The magnitude of these factors is assessed by simulating microwave link rainfall depths from the radar rainfall data set. The Ordinary-Kriging (OK) methodology is used to obtain rainfall maps based on the simulated and real microwave link data. This work quantifies what percentage of the errors in link-based rainfall maps can be attributed to the interpolation methodology itself and the limited spatial density of the microwave link network. Moreover, the spatial distribution of the error in rainfall maps is quantified in relation to the spatial density and temporally variable availability of links, which is highly relevant since the microwave link data are non-uniformly distributed in space or time. Finally, the applicability of the OK-methodology is tested over Dutch areas with different spatial densities of commercial microwave links.

  6. Sources of uncertainty in rainfall maps from cellular communication networks

    NASA Astrophysics Data System (ADS)

    Rios Gaona, M. F.; Overeem, A.; Leijnse, H.; Uijlenhoet, R.

    2015-03-01

    ground truth). Thus, we were able to not only identify and quantify the sources of uncertainty in such rainfall maps, but also to test the actual and optimal performance of one commercial microwave network from one of the cellular providers in the Netherlands.

  7. Using cellular network diagrams to interpret large-scale datasets: past progress and future challenges

    NASA Astrophysics Data System (ADS)

    Karp, Peter D.; Latendresse, Mario; Paley, Suzanne

    2011-03-01

    Cellular networks are graphs of molecular interactions within the cell. Thanks to the confluence of genome sequencing and bioinformatics, scientists are now able to reconstruct cellular network models for more than 1,000 organisms. A variety of bioinformatics tools have been developed to support the visualization and navigation of cellular network data. Another important application is the use of cellular network diagrams to visualize and interpret large-scale datasets, such as gene-expression data. We present the Cellular Overview, a network visualization tool developed at SRI International (SRI) to support visualization, navigation, and interpretation of large-scale datasets on metabolic networks. Different variations of the diagram have been generated algorithmically for more than 1,000 organisms. We discuss the graphical design of the diagram and its interactive capabilities.

  8. Radio Resource Allocation on Complex 4G Wireless Cellular Networks

    NASA Astrophysics Data System (ADS)

    Psannis, Kostas E.

    2015-09-01

    In this article we consider the heuristic algorithm which improves step by step wireless data delivery over LTE cellular networks by using the total transmit power with the constraint on users’ data rates, and the total throughput with the constraints on the total transmit power as well as users’ data rates, which are jointly integrated into a hybrid-layer design framework to perform radio resource allocation for multiple users, and to effectively decide the optimal system parameter such as modulation and coding scheme (MCS) in order to adapt to the varying channel quality. We propose new heuristic algorithm which balances the accessible data rate, the initial data rates of each user allocated by LTE scheduler, the priority indicator which signals delay- throughput- packet loss awareness of the user, and the buffer fullness by achieving maximization of radio resource allocation for multiple users. It is noted that the overall performance is improved with the increase in the number of users, due to multiuser diversity. Experimental results illustrate and validate the accuracy of the proposed methodology.

  9. Hierarchical Interference Mitigation for Massive MIMO Cellular Networks

    NASA Astrophysics Data System (ADS)

    Liu, An; Lau, Vincent

    2014-09-01

    We propose a hierarchical interference mitigation scheme for massive MIMO cellular networks. The MIMO precoder at each base station (BS) is partitioned into an inner precoder and an outer precoder. The inner precoder controls the intra-cell interference and is adaptive to local channel state information (CSI) at each BS (CSIT). The outer precoder controls the inter-cell interference and is adaptive to channel statistics. Such hierarchical precoding structure reduces the number of pilot symbols required for CSI estimation in massive MIMO downlink and is robust to the backhaul latency. We study joint optimization of the outer precoders, the user selection, and the power allocation to maximize a general concave utility which has no closed-form expression. We first apply random matrix theory to obtain an approximated problem with closed-form objective. We show that the solution of the approximated problem is asymptotically optimal with respect to the original problem as the number of antennas per BS grows large. Then using the hidden convexity of the problem, we propose an iterative algorithm to find the optimal solution for the approximated problem. We also obtain a low complexity algorithm with provable convergence. Simulations show that the proposed design has significant gain over various state-of-the-art baselines.

  10. Modeling and Analysis of Granite Matrix Pore Structure and Hydraulic Characteristics in 2D and 3D Networks

    NASA Astrophysics Data System (ADS)

    Gvozdik, L.; Polak, M.; Zaruba, J.; Vanecek, M.

    2010-12-01

    A geological environment labeled as a Granite massif represents in terms of groundwater flow and transport a distinct hydrogeological environment from that of sedimentary basins, the characterisation of which is generally more complex and uncertain. Massifs are composed of hard crystalline rocks with the very low effective porosity. Due to their rheological properties such rocks are predisposed to brittle deformation resulting from changes in stress conditions. Our specific research project (Research on the influence of intergrangular porosity on deep geological disposal: geological formations, methodology and the development of measurement apparatus) is focussed on the problem of permeable zones within apparently undisturbed granitic rock matrix. The project including the both laboratory and in-situ tracer tests study migration along and through mineral grains in fresh and altered granite. The objective of the project is to assess whether intergranular porosity is a general characteristic of the granitic rock matrix or subject to significant evolution resulting from geochemical and/or hydrogeochemical processes, geotechnical and/or mechanical processes. Moreover, the research is focussed on evaluating methods quantifying intergranular porosity by both physical testing and mathematical modelling using verified standard hydrological software tools. Groundwater flow in microfractures and intergranular pores in granite rock matrix were simulated in three standard hydrogeological modeling programs with completely different conceptual approaches: MODFLOW (Equivalent Continuum concept), FEFLOW (Discrete Fracture and Equivalent Continuum concepts) and NAPSAC (Discrete Fracture Network concept). Specialized random fracture generators were used for creation of several 2D and 3D models in each of the chosen program. Percolation characteristics of these models were tested and analyzed. Several scenarios of laboratory tests of the rock samples permeability made in triaxial

  11. Network signatures of cellular immortalization in human lymphoblastoid cell lines

    SciTech Connect

    Shim, Sung-Mi; Jung, So-Young; Nam, Hye-Young; Kim, Hye-Ryun; Lee, Mee-Hee; Kim, Jun-Woo; Han, Bok-Ghee; Jeon, Jae-Pil

    2013-11-15

    Highlights: •We identified network signatures of LCL immortalization from transcriptomic profiles. •More than 41% of DEGs are possibly regulated by miRNAs in LCLs. •MicroRNA target genes in LCLs are involved in apoptosis and immune-related functions. •This approach is useful to find functional miRNA targets in specific cell conditions. -- Abstract: Human lymphoblastoid cell line (LCL) has been used as an in vitro cell model in genetic and pharmacogenomic studies, as well as a good model for studying gene expression regulatory machinery using integrated genomic analyses. In this study, we aimed to identify biological networks of LCL immortalization from transcriptomic profiles of microRNAs and their target genes in LCLs. We first selected differentially expressed genes (DEGs) and microRNAs (DEmiRs) between early passage LCLs (eLCLs) and terminally differentiated late passage LCLs (tLCLs). The in silico and correlation analysis of these DEGs and DEmiRs revealed that 1098 DEG–DEmiR pairs were found to be positively (n = 591 pairs) or negatively (n = 507 pairs) correlated with each other. More than 41% of DEGs are possibly regulated by miRNAs in LCL immortalizations. The target DEGs of DEmiRs were enriched for cellular functions associated with apoptosis, immune response, cell death, JAK–STAT cascade and lymphocyte activation while non-miRNA target DEGs were over-represented for basic cell metabolisms. The target DEGs correlated negatively with miR-548a-3p and miR-219-5p were significantly associated with protein kinase cascade, and the lymphocyte proliferation and apoptosis, respectively. In addition, the miR-106a and miR-424 clusters located in the X chromosome were enriched in DEmiR–mRNA pairs for LCL immortalization. In this study, the integrated transcriptomic analysis of LCLs could identify functional networks of biologically active microRNAs and their target genes involved in LCL immortalization.

  12. Network motifs in integrated cellular networks of transcription-regulation and protein-protein interaction

    NASA Astrophysics Data System (ADS)

    Yeger-Lotem, Esti; Sattath, Shmuel; Kashtan, Nadav; Itzkovitz, Shalev; Milo, Ron; Pinter, Ron Y.; Alon, Uri; Margalit, Hanah

    2004-04-01

    Genes and proteins generate molecular circuitry that enables the cell to process information and respond to stimuli. A major challenge is to identify characteristic patterns in this network of interactions that may shed light on basic cellular mechanisms. Previous studies have analyzed aspects of this network, concentrating on either transcription-regulation or protein-protein interactions. Here we search for composite network motifs: characteristic network patterns consisting of both transcription-regulation and protein-protein interactions that recur significantly more often than in random networks. To this end we developed algorithms for detecting motifs in networks with two or more types of interactions and applied them to an integrated data set of protein-protein interactions and transcription regulation in Saccharomyces cerevisiae. We found a two-protein mixed-feedback loop motif, five types of three-protein motifs exhibiting coregulation and complex formation, and many motifs involving four proteins. Virtually all four-protein motifs consisted of combinations of smaller motifs. This study presents a basic framework for detecting the building blocks of networks with multiple types of interactions.

  13. When are two multi-layer cellular neural networks the same?

    PubMed

    Ban, Jung-Chao; Chang, Chih-Hung

    2016-07-01

    This paper aims to characterize whether a multi-layer cellular neural network is of deep architecture; namely, when can an n-layer cellular neural network be replaced by an m-layer cellular neural network for mnetwork is revealed.

  14. Predict drug-protein interaction in cellular networking.

    PubMed

    Xiao, Xuan; Min, Jian-Liang; Wang, Pu; Chou, Kuo-Chen

    2013-01-01

    Involved with many diseases such as cancer, diabetes, neurodegenerative, inflammatory and respiratory disorders, GPCRs (G-protein-coupled receptors) are the most frequent targets for drug development: over 50% of all prescription drugs currently on the market are actually acting by targeting GPCRs directly or indirectly. Found in every living thing and nearly all cells, ion channels play crucial roles for many vital functions in life, such as heartbeat, sensory transduction, and central nervous system response. Their dysfunction may have significant impact to human health, and hence ion channels are deemed as "the next GPCRs". To develop GPCR-targeting or ion-channel-targeting drugs, the first important step is to identify the interactions between potential drug compounds with the two kinds of protein receptors in the cellular networking. In this minireview, we are to introduce two predictors. One is called iGPCR-Drug accessible at http://www.jci-bioinfo.cn/iGPCR-Drug/; the other called iCDI-PseFpt at http://www.jci-bioinfo.cn/iCDI-PseFpt. The former is for identifying the interactions of drug compounds with GPCRs; while the latter for that with ion channels. In both predictors, the drug compound was formulated by the two-dimensional molecular fingerprint, and the protein receptor by the pseudo amino acid composition generated with the grey model theory, while the operation engine was the fuzzy K-nearest neighbor algorithm. For the convenience of most experimental pharmaceutical and medical scientists, a step-bystep guide is provided on how to use each of the two web-servers to get the desired results without the need to follow the complicated mathematics involved originally for their establishment. PMID:23889048

  15. Predict drug-protein interaction in cellular networking.

    PubMed

    Xiao, Xuan; Min, Jian-Liang; Wang, Pu; Chou, Kuo-Chen

    2013-01-01

    Involved with many diseases such as cancer, diabetes, neurodegenerative, inflammatory and respiratory disorders, GPCRs (G-protein-coupled receptors) are the most frequent targets for drug development: over 50% of all prescription drugs currently on the market are actually acting by targeting GPCRs directly or indirectly. Found in every living thing and nearly all cells, ion channels play crucial roles for many vital functions in life, such as heartbeat, sensory transduction, and central nervous system response. Their dysfunction may have significant impact to human health, and hence ion channels are deemed as "the next GPCRs". To develop GPCR-targeting or ion-channel-targeting drugs, the first important step is to identify the interactions between potential drug compounds with the two kinds of protein receptors in the cellular networking. In this minireview, we are to introduce two predictors. One is called iGPCR-Drug accessible at http://www.jci-bioinfo.cn/iGPCR-Drug/; the other called iCDI-PseFpt at http://www.jci-bioinfo.cn/iCDI-PseFpt. The former is for identifying the interactions of drug compounds with GPCRs; while the latter for that with ion channels. In both predictors, the drug compound was formulated by the two-dimensional molecular fingerprint, and the protein receptor by the pseudo amino acid composition generated with the grey model theory, while the operation engine was the fuzzy K-nearest neighbor algorithm. For the convenience of most experimental pharmaceutical and medical scientists, a step-bystep guide is provided on how to use each of the two web-servers to get the desired results without the need to follow the complicated mathematics involved originally for their establishment.

  16. A new approach to the structural features of the Aegean Sea: Cellular neural network

    NASA Astrophysics Data System (ADS)

    Aydogan, Davut; Elmas, Ali; Albora, A. Muhittin; Ucan, Osman N.

    2005-03-01

    In this study, structural features in the Aegean Sea were investigated by application of Cellular Neural Network (CNN) and Cross-Correlation methods to the gravity anomaly map. CNN is a stochastic image processing technique, which is based on template optimization using neighbourhood relationships of pixels, and probabilistic properties of two-Dimensional (2-D) input data. The performance of CNN can be evaluated by various interesting real applications in geophysics such as edge detection, data enhancement and separation of regional/residual potential anomaly maps. In this study, CNN is used in edge detection of geological bodies closer to the surface, which are masked by other structures with various depths and dimensions. CNN was first tested for (prismatic) synthetic examples and satisfactory results were obtained. Subsequently, CNN/Cross-Correlation maps and bathymetric features were evaluated together to obtain a new structural map for most of the Aegean Sea. In our structural map, the locations of the faults and basins are generally in accordance with the previous maps from restricted areas based on seismic data. In the southern and southeastern parts of the Aegean Sea, E-W trending faults cut NE-SW trending basins and faults, similar to on-shore Western Anatolia. Also, in the western, central and northern parts of the Aegean Sea, all of these structures are truncated by NE-trending faults.

  17. Design mobile satellite system architecture as an integral part of the cellular access digital network

    NASA Technical Reports Server (NTRS)

    Chien, E. S. K.; Marinho, J. A.; Russell, J. E., Sr.

    1988-01-01

    The Cellular Access Digital Network (CADN) is the access vehicle through which cellular technology is brought into the mainstream of the evolving integrated telecommunications network. Beyond the integrated end-to-end digital access and per call network services provisioning of the Integrated Services Digital Network (ISDN), the CADN engenders the added capability of mobility freedom via wireless access. One key element of the CADN network architecture is the standard user to network interface that is independent of RF transmission technology. Since the Mobile Satellite System (MSS) is envisioned to not only complement but also enhance the capabilities of the terrestrial cellular telecommunications network, compatibility and interoperability between terrestrial cellular and mobile satellite systems are vitally important to provide an integrated moving telecommunications network of the future. From a network standpoint, there exist very strong commonalities between the terrestrial cellular system and the mobile satellite system. Therefore, the MSS architecture should be designed as an integral part of the CADN. This paper describes the concept of the CADN, the functional architecture of the MSS, and the user-network interface signaling protocols.

  18. Analysis of blocking rate and bandwidth usage of mobile IPTV services in wireless cellular networks.

    PubMed

    Li, Mingfu

    2014-01-01

    Mobile IPTV services over wireless cellular networks become more and more popular, owing to the significant growth in access bandwidth of wireless cellular networks such as 3G/4G and WiMAX. However, the spectrum resources of wireless cellular networks is rare. How to enhance the spectral efficiency of mobile networks becomes an important issue. Unicast, broadcast, and multicast are the most important transport schemes for offering mobile IPTV services over wireless cellular networks. Therefore, bandwidth usages and blocking rates of unicast, broadcast, and multicast IPTV services were analyzed and compared in this paper. Simulations were also conducted to validate the analytical results. Numerical results demonstrate that the presented analysis is correct, and multicast scheme achieves the best bandwidth usage and blocking rate performance, relative to the other two schemes. PMID:25379521

  19. Analysis of Blocking Rate and Bandwidth Usage of Mobile IPTV Services in Wireless Cellular Networks

    PubMed Central

    Li, Mingfu

    2014-01-01

    Mobile IPTV services over wireless cellular networks become more and more popular, owing to the significant growth in access bandwidth of wireless cellular networks such as 3G/4G and WiMAX. However, the spectrum resources of wireless cellular networks is rare. How to enhance the spectral efficiency of mobile networks becomes an important issue. Unicast, broadcast, and multicast are the most important transport schemes for offering mobile IPTV services over wireless cellular networks. Therefore, bandwidth usages and blocking rates of unicast, broadcast, and multicast IPTV services were analyzed and compared in this paper. Simulations were also conducted to validate the analytical results. Numerical results demonstrate that the presented analysis is correct, and multicast scheme achieves the best bandwidth usage and blocking rate performance, relative to the other two schemes. PMID:25379521

  20. Analysis of blocking rate and bandwidth usage of mobile IPTV services in wireless cellular networks.

    PubMed

    Li, Mingfu

    2014-01-01

    Mobile IPTV services over wireless cellular networks become more and more popular, owing to the significant growth in access bandwidth of wireless cellular networks such as 3G/4G and WiMAX. However, the spectrum resources of wireless cellular networks is rare. How to enhance the spectral efficiency of mobile networks becomes an important issue. Unicast, broadcast, and multicast are the most important transport schemes for offering mobile IPTV services over wireless cellular networks. Therefore, bandwidth usages and blocking rates of unicast, broadcast, and multicast IPTV services were analyzed and compared in this paper. Simulations were also conducted to validate the analytical results. Numerical results demonstrate that the presented analysis is correct, and multicast scheme achieves the best bandwidth usage and blocking rate performance, relative to the other two schemes.

  1. Stress-induced rearrangements of cellular networks: Consequences for protection and drug design.

    PubMed

    Szalay, Máté S; Kovács, István A; Korcsmáros, Tamás; Böde, Csaba; Csermely, Péter

    2007-07-31

    The complexity of the cells can be described and understood by a number of networks such as protein-protein interaction, cytoskeletal, organelle, signalling, gene transcription and metabolic networks. All these networks are highly dynamic producing continuous rearrangements in their links, hubs, network-skeleton and modules. Here we describe the adaptation of cellular networks after various forms of stress causing perturbations, congestions and network damage. Chronic stress decreases link-density, decouples or even quarantines modules, and induces an increased competition between network hubs and bridges. Extremely long or strong stress may induce a topological phase transition in the respective cellular networks, which switches the cell to a completely different mode of cellular function. We summarize our initial knowledge on network restoration after stress including the role of molecular chaperones in this process. Finally, we discuss the implications of stress-induced network rearrangements in diseases and ageing, and propose therapeutic approaches both to increase the robustness and help the repair of cellular networks. PMID:17433306

  2. Traffic Driven Analysis of Cellular and WiFi Networks

    ERIC Educational Resources Information Center

    Paul, Utpal Kumar

    2012-01-01

    Since the days Internet traffic proliferated, measurement, monitoring and analysis of network traffic have been critical to not only the basic understanding of large networks, but also to seek improvements in resource management, traffic engineering and security. At the current times traffic in wireless local and wide area networks are facing…

  3. Effects of cellular homeostatic intrinsic plasticity on dynamical and computational properties of biological recurrent neural networks.

    PubMed

    Naudé, Jérémie; Cessac, Bruno; Berry, Hugues; Delord, Bruno

    2013-09-18

    Homeostatic intrinsic plasticity (HIP) is a ubiquitous cellular mechanism regulating neuronal activity, cardinal for the proper functioning of nervous systems. In invertebrates, HIP is critical for orchestrating stereotyped activity patterns. The functional impact of HIP remains more obscure in vertebrate networks, where higher order cognitive processes rely on complex neural dynamics. The hypothesis has emerged that HIP might control the complexity of activity dynamics in recurrent networks, with important computational consequences. However, conflicting results about the causal relationships between cellular HIP, network dynamics, and computational performance have arisen from machine-learning studies. Here, we assess how cellular HIP effects translate into collective dynamics and computational properties in biological recurrent networks. We develop a realistic multiscale model including a generic HIP rule regulating the neuronal threshold with actual molecular signaling pathways kinetics, Dale's principle, sparse connectivity, synaptic balance, and Hebbian synaptic plasticity (SP). Dynamic mean-field analysis and simulations unravel that HIP sets a working point at which inputs are transduced by large derivative ranges of the transfer function. This cellular mechanism ensures increased network dynamics complexity, robust balance with SP at the edge of chaos, and improved input separability. Although critically dependent upon balanced excitatory and inhibitory drives, these effects display striking robustness to changes in network architecture, learning rates, and input features. Thus, the mechanism we unveil might represent a ubiquitous cellular basis for complex dynamics in neural networks. Understanding this robustness is an important challenge to unraveling principles underlying self-organization around criticality in biological recurrent neural networks.

  4. Effects of cellular homeostatic intrinsic plasticity on dynamical and computational properties of biological recurrent neural networks.

    PubMed

    Naudé, Jérémie; Cessac, Bruno; Berry, Hugues; Delord, Bruno

    2013-09-18

    Homeostatic intrinsic plasticity (HIP) is a ubiquitous cellular mechanism regulating neuronal activity, cardinal for the proper functioning of nervous systems. In invertebrates, HIP is critical for orchestrating stereotyped activity patterns. The functional impact of HIP remains more obscure in vertebrate networks, where higher order cognitive processes rely on complex neural dynamics. The hypothesis has emerged that HIP might control the complexity of activity dynamics in recurrent networks, with important computational consequences. However, conflicting results about the causal relationships between cellular HIP, network dynamics, and computational performance have arisen from machine-learning studies. Here, we assess how cellular HIP effects translate into collective dynamics and computational properties in biological recurrent networks. We develop a realistic multiscale model including a generic HIP rule regulating the neuronal threshold with actual molecular signaling pathways kinetics, Dale's principle, sparse connectivity, synaptic balance, and Hebbian synaptic plasticity (SP). Dynamic mean-field analysis and simulations unravel that HIP sets a working point at which inputs are transduced by large derivative ranges of the transfer function. This cellular mechanism ensures increased network dynamics complexity, robust balance with SP at the edge of chaos, and improved input separability. Although critically dependent upon balanced excitatory and inhibitory drives, these effects display striking robustness to changes in network architecture, learning rates, and input features. Thus, the mechanism we unveil might represent a ubiquitous cellular basis for complex dynamics in neural networks. Understanding this robustness is an important challenge to unraveling principles underlying self-organization around criticality in biological recurrent neural networks. PMID:24048833

  5. Automatic classification of pulmonary peri-fissural nodules in computed tomography using an ensemble of 2D views and a convolutional neural network out-of-the-box.

    PubMed

    Ciompi, Francesco; de Hoop, Bartjan; van Riel, Sarah J; Chung, Kaman; Scholten, Ernst Th; Oudkerk, Matthijs; de Jong, Pim A; Prokop, Mathias; van Ginneken, Bram

    2015-12-01

    In this paper, we tackle the problem of automatic classification of pulmonary peri-fissural nodules (PFNs). The classification problem is formulated as a machine learning approach, where detected nodule candidates are classified as PFNs or non-PFNs. Supervised learning is used, where a classifier is trained to label the detected nodule. The classification of the nodule in 3D is formulated as an ensemble of classifiers trained to recognize PFNs based on 2D views of the nodule. In order to describe nodule morphology in 2D views, we use the output of a pre-trained convolutional neural network known as OverFeat. We compare our approach with a recently presented descriptor of pulmonary nodule morphology, namely Bag of Frequencies, and illustrate the advantages offered by the two strategies, achieving performance of AUC = 0.868, which is close to the one of human experts. PMID:26458112

  6. Automatic classification of pulmonary peri-fissural nodules in computed tomography using an ensemble of 2D views and a convolutional neural network out-of-the-box.

    PubMed

    Ciompi, Francesco; de Hoop, Bartjan; van Riel, Sarah J; Chung, Kaman; Scholten, Ernst Th; Oudkerk, Matthijs; de Jong, Pim A; Prokop, Mathias; van Ginneken, Bram

    2015-12-01

    In this paper, we tackle the problem of automatic classification of pulmonary peri-fissural nodules (PFNs). The classification problem is formulated as a machine learning approach, where detected nodule candidates are classified as PFNs or non-PFNs. Supervised learning is used, where a classifier is trained to label the detected nodule. The classification of the nodule in 3D is formulated as an ensemble of classifiers trained to recognize PFNs based on 2D views of the nodule. In order to describe nodule morphology in 2D views, we use the output of a pre-trained convolutional neural network known as OverFeat. We compare our approach with a recently presented descriptor of pulmonary nodule morphology, namely Bag of Frequencies, and illustrate the advantages offered by the two strategies, achieving performance of AUC = 0.868, which is close to the one of human experts.

  7. On Window Control Algorithm over Wireless Cellular Networks with Large Delay Variation

    NASA Astrophysics Data System (ADS)

    Lee, Ho-Jin; Byun, Hee-Jung; Lim, Jong-Tae

    In addition to high bit error rates, large and sudden variations in delay often occur in wireless cellular networks. The delay can be several times the typical round-trip time, which can cause the spurious timeout. In this letter, we propose a new window control algorithm to improve TCP performance in wireless cellular networks with large delay variation and high bit error rates. Simulation results illustrate that our proposal improves the performance of TCP in terms of fairness and link utilization.

  8. Cues for cellular assembly of vascular elastin networks

    NASA Astrophysics Data System (ADS)

    Kothapalli, Chandrasekhar R.

    Elastin, a structural protein distributed in the extracellular matrix of vascular tissues is critical to the maintenance of vascular mechanics, besides regulation of cell-signaling pathways involved in injury response and morphogenesis. Thus, congenital absence or disease-mediated degradation of vascular elastin and its malformation within native vessels due to innately poor elastin synthesis by adult vascular cells compromise vascular homeostasis. Current elastin regenerative strategies using tissue engineering principles are limited by the progressive destabilization of tropoelastin mRNA expression in adult vascular cells and the unavailability of scaffolds that can provide cellular cues necessary to up-regulate elastin synthesis and regenerate faithful mimics of native elastin. Since our earlier studies demonstrated the elastogenic utility of hyaluronan (HA)-based cues, we have currently sought to identify a unique set of culture conditions based on HA fragments (0.756-2000 kDa), growth factors (TGF-beta1, IGF-1) and other biomolecules (Cu2+ ions, LOX), which will together enhance synthesis, crosslinking, maturation and fibrous elastin matrix formation by adult SMCs, under both healthy and inflammatory conditions. It was observed that TGF-beta1 (1 ng/mL) together with HA oligomers (0.2 microg/mL) synergistically suppressed SMC proliferation, enhanced tropoelastin (8-fold) and matrix elastin synthesis (5.5-fold), besides improving matrix yield (4.5-fold), possibly by increasing production and activity of lysyl oxidase (LOX). Though addition of IGF-1 alone did not offer any advantage, HA fragments (20-200 kDa) in the presence of IGF-1 stimulated tropoelastin and soluble elastin synthesis more than 2.2-fold, with HMW HA contributing for ˜5-fold increase in crosslinked matrix elastin synthesis. Similarly, 0.1 M of Cu2+ ions, alone or together with HA fragments stimulated synthesis of tropoelastin (4-fold) and crosslinked matrix elastin (4.5-fold), via increases in

  9. Participatory sensing as an enabler for self-organisation in future cellular networks

    NASA Astrophysics Data System (ADS)

    Imran, Muhammad Ali; Imran, Ali; Onireti, Oluwakayode

    2013-12-01

    In this short review paper we summarise the emerging challenges in the field of participatory sensing for the self-organisation of the next generation of wireless cellular networks. We identify the potential of participatory sensing in enabling the self-organisation, deployment optimisation and radio resource management of wireless cellular networks. We also highlight how this approach can meet the future goals for the next generation of cellular system in terms of infrastructure sharing, management of multiple radio access techniques, flexible usage of spectrum and efficient management of very small data cells.

  10. Simulating Quantitative Cellular Responses Using Asynchronous Threshold Boolean Network Ensembles

    EPA Science Inventory

    With increasing knowledge about the potential mechanisms underlying cellular functions, it is becoming feasible to predict the response of biological systems to genetic and environmental perturbations. Due to the lack of homogeneity in living tissues it is difficult to estimate t...

  11. Tools and Models for Integrating Multiple Cellular Networks

    SciTech Connect

    Gerstein, Mark

    2015-11-06

    In this grant, we have systematically investigated the integrated networks, which are responsible for the coordination of activity between metabolic pathways in prokaryotes. We have developed several computational tools to analyze the topology of the integrated networks consisting of metabolic, regulatory, and physical interaction networks. The tools are all open-source, and they are available to download from Github, and can be incorporated in the Knowledgebase. Here, we summarize our work as follow. Understanding the topology of the integrated networks is the first step toward understanding its dynamics and evolution. For Aim 1 of this grant, we have developed a novel algorithm to determine and measure the hierarchical structure of transcriptional regulatory networks [1]. The hierarchy captures the direction of information flow in the network. The algorithm is generally applicable to regulatory networks in prokaryotes, yeast and higher organisms. Integrated datasets are extremely beneficial in understanding the biology of a system in a compact manner due to the conflation of multiple layers of information. Therefore for Aim 2 of this grant, we have developed several tools and carried out analysis for integrating system-wide genomic information. To make use of the structural data, we have developed DynaSIN for protein-protein interactions networks with various dynamical interfaces [2]. We then examined the association between network topology with phenotypic effects such as gene essentiality. In particular, we have organized E. coli and S. cerevisiae transcriptional regulatory networks into hierarchies. We then correlated gene phenotypic effects by tinkering with different layers to elucidate which layers were more tolerant to perturbations [3]. In the context of evolution, we also developed a workflow to guide the comparison between different types of biological networks across various species using the concept of rewiring [4], and Furthermore, we have developed

  12. A 2-D Pore-Network Model of the Drying of Single-Component Liquids in Porous Media

    SciTech Connect

    Yortsos, Yanic C.; Yiotis, A.G.; Stubos, A.K.; Boundovis, A.G.

    2000-01-20

    The drying of liquid-saturated porous media is typically approaching using macroscopic continuum models involving phenomenological coefficients. Insight on these coefficients can be obtained by a more fundamental study at the pore- and pore-network levels. In this report, a model based on pore-network representation of porous media that accounts for various process at the pore-scale is presented. These include mass transfer by advection and diffusion in the gas phase, viscous flow in liquid and gas phases and capillary effects at the gas-liquid menisci in the pore throats.

  13. Retrieval algorithm for rainfall mapping from microwave links in a cellular communication network

    NASA Astrophysics Data System (ADS)

    Overeem, Aart; Uijlenhoet, Remko; Leijnse, Hidde

    2016-04-01

    Microwave links in commercial cellular communication networks hold a promise for areal rainfall monitoring and could complement rainfall estimates from ground-based weather radars, rain gauges, and satellites. It has been shown that country-wide rainfall maps can be derived from the signal attenuations of microwave links in such a network. We present a rainfall retrieval algorithm, which is employed to obtain rainfall maps from microwave links in a cellular communication network. We compare these rainfall maps to gauge-adjusted radar rainfall maps. The microwave link data set, as well as the developed code, a package in the open source scripting language "R", are freely available at GitHub (https://github.com/overeem11/RAINLINK). The purpose of this presentation is to promote rainfall mapping utilizing microwave links from cellular communication networks as an alternative or complementary means for continental-scale rainfall monitoring.

  14. Quantifying Uncertainties in Rainfall Maps from Cellular Communication Networks

    NASA Astrophysics Data System (ADS)

    Uijlenhoet, R.; Rios Gaona, M. F.; Overeem, A.; Leijnse, H.

    2014-12-01

    The core idea behind rainfall retrievals from commercial microwave link networks is to measure the decrease in power due to attenuation of the electromagnetic signal by raindrops along the link path. Accurate rainfall measurements are of vital importance in hydrological applications, for instance, flash-flood early-warning systems, agriculture, and climate modeling. Hence, such an alternative technique fulfills the need for measurements with higher resolution in time and space, especially in places where standard rain gauge-networks are scarce or poorly maintained. Rainfall estimation via commercial microwave link networks, at country-wide scales, has recently been demonstrated. Despite their potential applicability in rainfall estimation at higher spatiotemporal resolutions, the uncertainties present in link-based rainfall maps are not yet fully comprehended. Now we attempt to quantify the inherent sources of uncertainty present in interpolated maps computed from commercial microwave link rainfall retrievals. In order to disentangle these sources of uncertainty we identified four main sources of error: 1) microwave link measurements, 2) availability of microwave link measurements, 3) spatial distribution of the network, and 4) interpolation methodology. We computed more than 1000 rainfall fields, for The Netherlands, from real and simulated microwave link data. These rainfall fields were compared to quality-controlled gauge-adjusted radar rainfall maps considered as ground-truth. Thus we were able to quantify the contribution of errors in microwave link measurements to the overall uncertainty. The actual performance of the commercial microwave link network is affected by the intermittent availability of the links, not only in time but also in space. We simulated a fully-operational network in time and space, and thus we quantified the role of the availability of microwave link measurements to the overall uncertainty. This research showed that the largest source of

  15. Reverse engineering cellular decisions for hybrid reconfigurable network modeling

    NASA Astrophysics Data System (ADS)

    Blair, Howard A.; Saranak, Jureepan; Foster, Kenneth W.

    2011-06-01

    Cells as microorganisms and within multicellular organisms make robust decisions. Knowing how these complex cells make decisions is essential to explain, predict or mimic their behavior. The discovery of multi-layer multiple feedback loops in the signaling pathways of these modular hybrid systems suggests their decision making is sophisticated. Hybrid systems coordinate and integrate signals of various kinds: discrete on/off signals, continuous sensory signals, and stochastic and continuous fluctuations to regulate chemical concentrations. Such signaling networks can form reconfigurable networks of attractors and repellors giving them an extra level of organization that has resilient decision making built in. Work on generic attractor and repellor networks and on the already identified feedback networks and dynamic reconfigurable regulatory topologies in biological cells suggests that biological systems probably exploit such dynamic capabilities. We present a simple behavior of the swimming unicellular alga Chlamydomonas that involves interdependent discrete and continuous signals in feedback loops. We show how to rigorously verify a hybrid dynamical model of a biological system with respect to a declarative description of a cell's behavior. The hybrid dynamical systems we use are based on a unification of discrete structures and continuous topologies developed in prior work on convergence spaces. They involve variables of discrete and continuous types, in the sense of type theory in mathematical logic. A unification such as afforded by convergence spaces is necessary if one wants to take account of the affect of the structural relationships within each type on the dynamics of the system.

  16. Resource Management in QoS-Aware Wireless Cellular Networks

    ERIC Educational Resources Information Center

    Zhang, Zhi

    2011-01-01

    Emerging broadband wireless networks that support high speed packet data with heterogeneous quality of service (QoS) requirements demand more flexible and efficient use of the scarce spectral resource. Opportunistic scheduling exploits the time-varying, location-dependent channel conditions to achieve multiuser diversity. In this work, we study…

  17. Application of Cellular Automata to Detection of Malicious Network Packets

    ERIC Educational Resources Information Center

    Brown, Robert L.

    2014-01-01

    A problem in computer security is identification of attack signatures in network packets. An attack signature is a pattern of bits that characterizes a particular attack. Because there are many kinds of attacks, there are potentially many attack signatures. Furthermore, attackers may seek to avoid detection by altering the attack mechanism so that…

  18. Stackelberg Game Based Power Allocation for Physical Layer Security of Device-to-device Communication Underlaying Cellular Networks

    NASA Astrophysics Data System (ADS)

    Qu, Junyue; Cai, Yueming; Wu, Dan; Chen, Hualiang

    2014-05-01

    The problem of power allocation for device-to-device (D2D) underlay communication to improve physical layer security is addressed. Specifically, to improve the secure communication of the cellular users, we introduce a Stackelberg game for allocating the power of the D2D link under a total power constraint and a rate constraint at the D2D pair. In the introduced Stackelberg game the D2D pair works as a seller and the cellular UEs work as buyers. Firstly, because the interference signals from D2D pair are unknown to both the legitimate receiver and the illegitimate eavesdropper, it is possible that a cellular UE decline to participate in the introduced Stackelberg game. So the condition under which a legitimate user will participate in the introduced Stackelberg game is discussed. Then, based on the Stackelberg game, we propose a semi-distributed power allocation algorithm, which is proved to conclude after finite-time iterations. In the end, some simulations are presented to verify the performance improvement in the physical layer security of cellular UEs using the proposed power allocation algorithm. We can determine that with the proposed algorithm, while the D2D pair's communication demand is met, the physical layer security of cellular UEs can be improved.

  19. Design, Surface Treatment, Cellular Plating, and Culturing of Modular Neuronal Networks Composed of Functionally Inter-connected Circuits.

    PubMed

    Kanner, Sivan; Bisio, Marta; Cohen, Gilad; Goldin, Miri; Tedesco, Marieteresa; Hanein, Yael; Ben-Jacob, Eshel; Barzilai, Ari; Chiappalone, Michela; Bonifazi, Paolo

    2015-04-15

    The brain operates through the coordinated activation and the dynamic communication of neuronal assemblies. A major open question is how a vast repertoire of dynamical motifs, which underlie most diverse brain functions, can emerge out of a fixed topological and modular organization of brain circuits. Compared to in vivo studies of neuronal circuits which present intrinsic experimental difficulties, in vitro preparations offer a much larger possibility to manipulate and probe the structural, dynamical and chemical properties of experimental neuronal systems. This work describes an in vitro experimental methodology which allows growing of modular networks composed by spatially distinct, functionally interconnected neuronal assemblies. The protocol allows controlling the two-dimensional (2D) architecture of the neuronal network at different levels of topological complexity. A desired network patterning can be achieved both on regular cover slips and substrate embedded micro electrode arrays. Micromachined structures are embossed on a silicon wafer and used to create biocompatible polymeric stencils, which incorporate the negative features of the desired network architecture. The stencils are placed on the culturing substrates during the surface coating procedure with a molecular layer for promoting cellular adhesion. After removal of the stencils, neurons are plated and they spontaneously redirected to the coated areas. By decreasing the inter-compartment distance, it is possible to obtain either isolated or interconnected neuronal circuits. To promote cell survival, cells are co-cultured with a supporting neuronal network which is located at the periphery of the culture dish. Electrophysiological and optical recordings of the activity of modular networks obtained respectively by using substrate embedded micro electrode arrays and calcium imaging are presented. While each module shows spontaneous global synchronizations, the occurrence of inter-module synchronization

  20. Cellular network entropy as the energy potential in Waddington's differentiation landscape.

    PubMed

    Banerji, Christopher R S; Miranda-Saavedra, Diego; Severini, Simone; Widschwendter, Martin; Enver, Tariq; Zhou, Joseph X; Teschendorff, Andrew E

    2013-10-24

    Differentiation is a key cellular process in normal tissue development that is significantly altered in cancer. Although molecular signatures characterising pluripotency and multipotency exist, there is, as yet, no single quantitative mark of a cellular sample's position in the global differentiation hierarchy. Here we adopt a systems view and consider the sample's network entropy, a measure of signaling pathway promiscuity, computable from a sample's genome-wide expression profile. We demonstrate that network entropy provides a quantitative, in-silico, readout of the average undifferentiated state of the profiled cells, recapitulating the known hierarchy of pluripotent, multipotent and differentiated cell types. Network entropy further exhibits dynamic changes in time course differentiation data, and in line with a sample's differentiation stage. In disease, network entropy predicts a higher level of cellular plasticity in cancer stem cell populations compared to ordinary cancer cells. Importantly, network entropy also allows identification of key differentiation pathways. Our results are consistent with the view that pluripotency is a statistical property defined at the cellular population level, correlating with intra-sample heterogeneity, and driven by the degree of signaling promiscuity in cells. In summary, network entropy provides a quantitative measure of a cell's undifferentiated state, defining its elevation in Waddington's landscape.

  1. Logical Modeling and Dynamical Analysis of Cellular Networks

    PubMed Central

    Abou-Jaoudé, Wassim; Traynard, Pauline; Monteiro, Pedro T.; Saez-Rodriguez, Julio; Helikar, Tomáš; Thieffry, Denis; Chaouiya, Claudine

    2016-01-01

    The logical (or logic) formalism is increasingly used to model regulatory and signaling networks. Complementing these applications, several groups contributed various methods and tools to support the definition and analysis of logical models. After an introduction to the logical modeling framework and to several of its variants, we review here a number of recent methodological advances to ease the analysis of large and intricate networks. In particular, we survey approaches to determine model attractors and their reachability properties, to assess the dynamical impact of variations of external signals, and to consistently reduce large models. To illustrate these developments, we further consider several published logical models for two important biological processes, namely the differentiation of T helper cells and the control of mammalian cell cycle. PMID:27303434

  2. Logical Modeling and Dynamical Analysis of Cellular Networks.

    PubMed

    Abou-Jaoudé, Wassim; Traynard, Pauline; Monteiro, Pedro T; Saez-Rodriguez, Julio; Helikar, Tomáš; Thieffry, Denis; Chaouiya, Claudine

    2016-01-01

    The logical (or logic) formalism is increasingly used to model regulatory and signaling networks. Complementing these applications, several groups contributed various methods and tools to support the definition and analysis of logical models. After an introduction to the logical modeling framework and to several of its variants, we review here a number of recent methodological advances to ease the analysis of large and intricate networks. In particular, we survey approaches to determine model attractors and their reachability properties, to assess the dynamical impact of variations of external signals, and to consistently reduce large models. To illustrate these developments, we further consider several published logical models for two important biological processes, namely the differentiation of T helper cells and the control of mammalian cell cycle.

  3. Dynamical modeling and analysis of large cellular regulatory networks

    NASA Astrophysics Data System (ADS)

    Bérenguier, D.; Chaouiya, C.; Monteiro, P. T.; Naldi, A.; Remy, E.; Thieffry, D.; Tichit, L.

    2013-06-01

    The dynamical analysis of large biological regulatory networks requires the development of scalable methods for mathematical modeling. Following the approach initially introduced by Thomas, we formalize the interactions between the components of a network in terms of discrete variables, functions, and parameters. Model simulations result in directed graphs, called state transition graphs. We are particularly interested in reachability properties and asymptotic behaviors, which correspond to terminal strongly connected components (or "attractors") in the state transition graph. A well-known problem is the exponential increase of the size of state transition graphs with the number of network components, in particular when using the biologically realistic asynchronous updating assumption. To address this problem, we have developed several complementary methods enabling the analysis of the behavior of large and complex logical models: (i) the definition of transition priority classes to simplify the dynamics; (ii) a model reduction method preserving essential dynamical properties, (iii) a novel algorithm to compact state transition graphs and directly generate compressed representations, emphasizing relevant transient and asymptotic dynamical properties. The power of an approach combining these different methods is demonstrated by applying them to a recent multilevel logical model for the network controlling CD4+ T helper cell response to antigen presentation and to a dozen cytokines. This model accounts for the differentiation of canonical Th1 and Th2 lymphocytes, as well as of inflammatory Th17 and regulatory T cells, along with many hybrid subtypes. All these methods have been implemented into the software GINsim, which enables the definition, the analysis, and the simulation of logical regulatory graphs.

  4. Intrinsic Cellular Properties and Connectivity Density Determine Variable Clustering Patterns in Randomly Connected Inhibitory Neural Networks

    PubMed Central

    Rich, Scott; Booth, Victoria; Zochowski, Michal

    2016-01-01

    The plethora of inhibitory interneurons in the hippocampus and cortex play a pivotal role in generating rhythmic activity by clustering and synchronizing cell firing. Results of our simulations demonstrate that both the intrinsic cellular properties of neurons and the degree of network connectivity affect the characteristics of clustered dynamics exhibited in randomly connected, heterogeneous inhibitory networks. We quantify intrinsic cellular properties by the neuron's current-frequency relation (IF curve) and Phase Response Curve (PRC), a measure of how perturbations given at various phases of a neurons firing cycle affect subsequent spike timing. We analyze network bursting properties of networks of neurons with Type I or Type II properties in both excitability and PRC profile; Type I PRCs strictly show phase advances and IF curves that exhibit frequencies arbitrarily close to zero at firing threshold while Type II PRCs display both phase advances and delays and IF curves that have a non-zero frequency at threshold. Type II neurons whose properties arise with or without an M-type adaptation current are considered. We analyze network dynamics under different levels of cellular heterogeneity and as intrinsic cellular firing frequency and the time scale of decay of synaptic inhibition are varied. Many of the dynamics exhibited by these networks diverge from the predictions of the interneuron network gamma (ING) mechanism, as well as from results in all-to-all connected networks. Our results show that randomly connected networks of Type I neurons synchronize into a single cluster of active neurons while networks of Type II neurons organize into two mutually exclusive clusters segregated by the cells' intrinsic firing frequencies. Networks of Type II neurons containing the adaptation current behave similarly to networks of either Type I or Type II neurons depending on network parameters; however, the adaptation current creates differences in the cluster dynamics

  5. Covalent Titanium(IV)-Aryloxide Network Materials: 4,4‧-Biphenoxide 3D and Polyphenolic 2D Motifs

    NASA Astrophysics Data System (ADS)

    Tanski, Joseph M.; Lobkovsky, Emil B.; Wolczanski, Peter

    2000-06-01

    The three- and two-dimensional covalent metal-organic network (CMON) compounds {[Ti(μ1,6:η2,η1-4,4‧-OC12H8O)0.5(μ1,6:η2,η1-4,4‧-OC12H8O)(OiPr)(HOiPr)]2·THF}n (1) and {[Ti(μ1,3-1,3-OC6H4O)(μ-1,3-OC6H4OH)(1,3-OC6H4OH) (HOiPr)]2}n (2) were synthesized by treatment of Ti(OiPr)4 with 4,4‧-dihydroxybiphenyl in THF and resorcinol in CS2, respectively, at 100°C. Diffraction data was collected at the Cornell High Energy Synchrotron Source (CHESS) because of the small, weakly diffracting nature of the crystals. 1 (C26H31O5.5Ti, monoclinic, P21, a=10.137(2), b=15.988(3), c=15.745(3), β=107.76(3)°, Z=4, R=0.0858) and 2 (C21H22O7Ti, monoclinic, P21/c, a=11.955(2), b=16.275(3), c=11.028(2), β=113.25(3)°, Z=4, R=0.0550) are both based upon similar edge-sharing bioctahedral dititanium building blocks, (i.e., Ti2(μ-OAr)2). Six connections per dititanium unit constrain the structural motif of 1 to be base-centered. Four μ1,3-diphenoxides per dititanium core in 2 connect to provide a rectangular net, but the regiochemistry of resorcinol ultimately restricts its dimensionality. The structures suggest design elements based on the number and geometry of connecting organic linkages.

  6. Rainfall measurements from cellular networks microwave links : an alternative ground reference for satellite validation and hydrology in Africa .

    NASA Astrophysics Data System (ADS)

    Gosset, Marielle; cazenave, frederic; Zougmore, françois; Doumounia, Ali; kacou, Modeste

    2015-04-01

    In many part of the Tropics the ground based gauge networks are sparse, often degrading and accessing this data for monitoring rainfall or for validating satellite products is sometime difficult. Here, an alternative rainfall measuring technique is proposed and tested in West Africa. It is based on using commercial microwave links from cellular telephone networks to detect and quantify rainfall. Rainfall monitoring based on commercial terrestrial microwave links has been tested for the first time in Burkina Faso, in Sahel. The rainfall regime is characterized by intense rainfall intensities brought by mesoscale Convective systems (MCS), generated by deep organized convection. The region is subjected to drought as well as dramatic floods associated with the intense rainfall provided by a few MCSs. The hydrometeorological risk is increasing and need to be monitored. In collaboration with the national cellular phone operator, Telecel Faso, the attenuation on 29 km long microwave links operating at 7 GHz was monitored at 1s time rate for the monsoon season 2012. The time series of attenuation is transformed into rain rates and compared with rain gauge data. The method is successful in quantifying rainfall: 95% of the rainy days are detected. The correlation with the daily raingauge series is 0.8 and the season bias is 5%. The correlation at the 5 min time step within each event is also high. We will present the quantitative results, discuss the uncertainties and compare the time series and the 2D maps with those derived from a polarimetric radar. The results demonstrate the potential interest of exploiting national and regional wireless telecommunication networks to provide rainfall maps for various applications : urban hydrology, agro-hydrological risk monitoring, satellite validation and development of combined rainfall products. We will also present the outcome of the first international Rain Cell Africa workshop held in Ouagadougou early 2015.

  7. iGPCR-drug: a web server for predicting interaction between GPCRs and drugs in cellular networking.

    PubMed

    Xiao, Xuan; Min, Jian-Liang; Wang, Pu; Chou, Kuo-Chen

    2013-01-01

    Involved in many diseases such as cancer, diabetes, neurodegenerative, inflammatory and respiratory disorders, G-protein-coupled receptors (GPCRs) are among the most frequent targets of therapeutic drugs. It is time-consuming and expensive to determine whether a drug and a GPCR are to interact with each other in a cellular network purely by means of experimental techniques. Although some computational methods were developed in this regard based on the knowledge of the 3D (dimensional) structure of protein, unfortunately their usage is quite limited because the 3D structures for most GPCRs are still unknown. To overcome the situation, a sequence-based classifier, called "iGPCR-drug", was developed to predict the interactions between GPCRs and drugs in cellular networking. In the predictor, the drug compound is formulated by a 2D (dimensional) fingerprint via a 256D vector, GPCR by the PseAAC (pseudo amino acid composition) generated with the grey model theory, and the prediction engine is operated by the fuzzy K-nearest neighbour algorithm. Moreover, a user-friendly web-server for iGPCR-drug was established at http://www.jci-bioinfo.cn/iGPCR-Drug/. For the convenience of most experimental scientists, a step-by-step guide is provided on how to use the web-server to get the desired results without the need to follow the complicated math equations presented in this paper just for its integrity. The overall success rate achieved by iGPCR-drug via the jackknife test was 85.5%, which is remarkably higher than the rate by the existing peer method developed in 2010 although no web server was ever established for it. It is anticipated that iGPCR-Drug may become a useful high throughput tool for both basic research and drug development, and that the approach presented here can also be extended to study other drug - target interaction networks.

  8. Mitochondria: the cellular hub of the dynamic coordinated network.

    PubMed

    Yin, Fei; Cadenas, Enrique

    2015-04-20

    Mitochondria are the powerhouses of the eukaryotic cell. After billions of years of evolution, mitochondria have adaptively integrated into the symbiont. Such integration is not only evidenced by the consolidation of genetic information, that is, the transfer of most mitochondrial genes into the nucleus, but also manifested by the functional recombination by which mitochondria participate seamlessly in various cellular processes. In the past decade, the field of mitochondria biology has been focused on the dynamic and interactive features of these semiautonomous organelles. Aspects of a complex multilayer quality control system coordinating mitochondrial function and environmental changes are being uncovered and refined. This Forum summarizes the recent progress of these critical topics, with a focus on the dynamic quality control of mitochondrial reticulum, including their biogenesis, dynamic remodeling, and degradation, as well as the homeostasis of the mitochondrial proteome. These diverse but interconnected mechanisms are found to be critical in the maintenance of a functional, efficient, and responsive mitochondrial population and could therefore become therapeutic targets in numerous mitochondrion-implicated disorders.

  9. Proportional Fair Scheduling for Multicast Services in Wireless Cellular Networks

    NASA Astrophysics Data System (ADS)

    Koh, Chung Ha; Kim, Young Yong

    Recently, there has been extensive research on resource allocation schemes for multicast services that would satisfy the requirements of multimedia traffic. Although several schemes have been proposed to improve the performance of individual multicast groups, it is not easy to achieve both throughput efficiency and user fairness. In this study, we propose a new multicast scheduling scheme for achieving proportional fair (PF) allocation in wireless cellular systems. The basic idea of PF is to schedule the user whose corresponding instantaneous channel quality is the highest relative to the average channel condition over a given time scale. We first extend the PF metric to the extent that the scheduler can reflect the user's varying channel gain, and fairness, not only in the unicast case, but also in multicast transmissions. A multicast PF scheme maximizes the summation of the logarithmic average rate of all multicasting users. Thus, it improves the fairness to mobile users when compared to max-rate allocation, because the logarithmic rate gives more weight to lower rate users, while achieving high throughput. Moreover, the proposed scheme is less complex than max-rate allocation.

  10. A Mathematical Model to study the Dynamics of Epithelial Cellular Networks

    PubMed Central

    Abate, Alessandro; Vincent, Stéphane; Dobbe, Roel; Silletti, Alberto; Master, Neal; Axelrod, Jeffrey D.; Tomlin, Claire J.

    2013-01-01

    Epithelia are sheets of connected cells that are essential across the animal kingdom. Experimental observations suggest that the dynamical behavior of many single-layered epithelial tissues has strong analogies with that of specific mechanical systems, namely large networks consisting of point masses connected through spring-damper elements and undergoing the influence of active and dissipating forces. Based on this analogy, this work develops a modeling framework to enable the study of the mechanical properties and of the dynamic behavior of large epithelial cellular networks. The model is built first by creating a network topology that is extracted from the actual cellular geometry as obtained from experiments, then by associating a mechanical structure and dynamics to the network via spring-damper elements. This scalable approach enables running simulations of large network dynamics: the derived modeling framework in particular is predisposed to be tailored to study general dynamics (for example, morphogenesis) of various classes of single-layered epithelial cellular networks. In this contribution we test the model on a case study of the dorsal epithelium of the Drosophila melanogaster embryo during early dorsal closure (and, less conspicuously, germband retraction). PMID:23221083

  11. Exponential synchronization for fuzzy cellular neural networks with time-varying delays and nonlinear impulsive effects.

    PubMed

    Pu, Hao; Liu, Yanmin; Jiang, Haijun; Hu, Cheng

    2015-08-01

    In this paper, the globally exponential synchronization of delayed fuzzy cellular neural networks with nonlinear impulsive effects are concerned. By utilizing inequality techniques and Lyapunov functional method, some sufficient conditions on the exponential synchronization are obtained based on [Formula: see text]-norm. Finally, a simulation example is given to illustrate the effectiveness of the theoretical results.

  12. A methodology for linking 2D overland flow models with the sewer network model SWMM 5.1 based on dynamic link libraries.

    PubMed

    Leandro, Jorge; Martins, Ricardo

    2016-01-01

    Pluvial flooding in urban areas is characterized by a gradually varying inundation process caused by surcharge of the sewer manholes. Therefore urban flood models need to simulate the interaction between the sewer network and the overland flow in order to accurately predict the flood inundation extents. In this work we present a methodology for linking 2D overland flow models with the storm sewer model SWMM 5. SWMM 5 is a well-known free open-source code originally developed in 1971. The latest major release saw its structure re-written in C ++ allowing it to be compiled as a command line executable or through a series of calls made to function inside a dynamic link library (DLL). The methodology developed herein is written inside the same DLL in C + +, and is able to simulate the bi-directional interaction between both models during simulation. Validation is done in a real case study with an existing urban flood coupled model. The novelty herein is that the new methodology can be added to SWMM without the need for editing SWMM's original code. Furthermore, it is directly applicable to other coupled overland flow models aiming to use SWMM 5 as the sewer network model. PMID:27332848

  13. Cooperative Game-Based Energy Efficiency Management over Ultra-Dense Wireless Cellular Networks.

    PubMed

    Li, Ming; Chen, Pengpeng; Gao, Shouwan

    2016-09-13

    Ultra-dense wireless cellular networks have been envisioned as a promising technique for handling the explosive increase of wireless traffic volume. With the extensive deployment of small cells in wireless cellular networks, the network spectral efficiency (SE) is improved with the use of limited frequency. However, the mutual inter-tier and intra-tier interference between or among small cells and macro cells becomes serious. On the other hand, more chances for potential cooperation among different cells are introduced. Energy efficiency (EE) has become one of the most important problems for future wireless networks. This paper proposes a cooperative bargaining game-based method for comprehensive EE management in an ultra-dense wireless cellular network, which highlights the complicated interference influence on energy-saving challenges and the power-coordination process among small cells and macro cells. Especially, a unified EE utility with the consideration of the interference mitigation is proposed to jointly address the SE, the deployment efficiency (DE), and the EE. In particular, closed-form power-coordination solutions for the optimal EE are derived to show the convergence property of the algorithm. Moreover, a simplified algorithm is presented to reduce the complexity of the signaling overhead, which is significant for ultra-dense small cells. Finally, numerical simulations are provided to illustrate the efficiency of the proposed cooperative bargaining game-based and simplified schemes.

  14. Cooperative Game-Based Energy Efficiency Management over Ultra-Dense Wireless Cellular Networks.

    PubMed

    Li, Ming; Chen, Pengpeng; Gao, Shouwan

    2016-01-01

    Ultra-dense wireless cellular networks have been envisioned as a promising technique for handling the explosive increase of wireless traffic volume. With the extensive deployment of small cells in wireless cellular networks, the network spectral efficiency (SE) is improved with the use of limited frequency. However, the mutual inter-tier and intra-tier interference between or among small cells and macro cells becomes serious. On the other hand, more chances for potential cooperation among different cells are introduced. Energy efficiency (EE) has become one of the most important problems for future wireless networks. This paper proposes a cooperative bargaining game-based method for comprehensive EE management in an ultra-dense wireless cellular network, which highlights the complicated interference influence on energy-saving challenges and the power-coordination process among small cells and macro cells. Especially, a unified EE utility with the consideration of the interference mitigation is proposed to jointly address the SE, the deployment efficiency (DE), and the EE. In particular, closed-form power-coordination solutions for the optimal EE are derived to show the convergence property of the algorithm. Moreover, a simplified algorithm is presented to reduce the complexity of the signaling overhead, which is significant for ultra-dense small cells. Finally, numerical simulations are provided to illustrate the efficiency of the proposed cooperative bargaining game-based and simplified schemes. PMID:27649170

  15. Identification of driving network of cellular differentiation from single sample time course gene expression data

    NASA Astrophysics Data System (ADS)

    Chen, Ye; Wolanyk, Nathaniel; Ilker, Tunc; Gao, Shouguo; Wang, Xujing

    Methods developed based on bifurcation theory have demonstrated their potential in driving network identification for complex human diseases, including the work by Chen, et al. Recently bifurcation theory has been successfully applied to model cellular differentiation. However, there one often faces a technical challenge in driving network prediction: time course cellular differentiation study often only contains one sample at each time point, while driving network prediction typically require multiple samples at each time point to infer the variation and interaction structures of candidate genes for the driving network. In this study, we investigate several methods to identify both the critical time point and the driving network through examination of how each time point affects the autocorrelation and phase locking. We apply these methods to a high-throughput sequencing (RNA-Seq) dataset of 42 subsets of thymocytes and mature peripheral T cells at multiple time points during their differentiation (GSE48138 from GEO). We compare the predicted driving genes with known transcription regulators of cellular differentiation. We will discuss the advantages and limitations of our proposed methods, as well as potential further improvements of our methods.

  16. Cooperative Game-Based Energy Efficiency Management over Ultra-Dense Wireless Cellular Networks

    PubMed Central

    Li, Ming; Chen, Pengpeng; Gao, Shouwan

    2016-01-01

    Ultra-dense wireless cellular networks have been envisioned as a promising technique for handling the explosive increase of wireless traffic volume. With the extensive deployment of small cells in wireless cellular networks, the network spectral efficiency (SE) is improved with the use of limited frequency. However, the mutual inter-tier and intra-tier interference between or among small cells and macro cells becomes serious. On the other hand, more chances for potential cooperation among different cells are introduced. Energy efficiency (EE) has become one of the most important problems for future wireless networks. This paper proposes a cooperative bargaining game-based method for comprehensive EE management in an ultra-dense wireless cellular network, which highlights the complicated interference influence on energy-saving challenges and the power-coordination process among small cells and macro cells. Especially, a unified EE utility with the consideration of the interference mitigation is proposed to jointly address the SE, the deployment efficiency (DE), and the EE. In particular, closed-form power-coordination solutions for the optimal EE are derived to show the convergence property of the algorithm. Moreover, a simplified algorithm is presented to reduce the complexity of the signaling overhead, which is significant for ultra-dense small cells. Finally, numerical simulations are provided to illustrate the efficiency of the proposed cooperative bargaining game-based and simplified schemes. PMID:27649170

  17. The Electrophysiological MEMS Device with Micro Channel Array for Cellular Network Analysis

    NASA Astrophysics Data System (ADS)

    Tonomura, Wataru; Kurashima, Toshiaki; Takayama, Yuzo; Moriguchi, Hiroyuki; Jimbo, Yasuhiko; Konishi, Satoshi

    This paper describes a new type of MCA (Micro Channel Array) for simultaneous multipoint measurement of cellular network. Presented MCA employing the measurement principles of the patch-clamp technique is designed for advanced neural network analysis which has been studied by co-authors using 64ch MEA (Micro Electrode Arrays) system. First of all, sucking and clamping of cells through channels of developed MCA is expected to improve electrophysiological signal detections. Electrophysiological sensing electrodes integrated around individual channels of MCA by using MEMS (Micro Electro Mechanical System) technologies are electrically isolated for simultaneous multipoint measurement. In this study, we tested the developed MCA using the non-cultured rat's cerebral cortical slice and the hippocampal neurons. We could measure the spontaneous action potential of the slice simultaneously at multiple points and culture the neurons on developed MCA. Herein, we describe the experimental results together with the design and fabrication of the electrophysiological MEMS device with MCA for cellular network analysis.

  18. A self-learning call admission control scheme for CDMA cellular networks.

    PubMed

    Liu, Derong; Zhang, Yi; Zhang, Huaguang

    2005-09-01

    In the present paper, a call admission control scheme that can learn from the network environment and user behavior is developed for code division multiple access (CDMA) cellular networks that handle both voice and data services. The idea is built upon a novel learning control architecture with only a single module instead of two or three modules in adaptive critic designs (ACDs). The use of adaptive critic approach for call admission control in wireless cellular networks is new. The call admission controller can perform learning in real-time as well as in offline environments and the controller improves its performance as it gains more experience. Another important contribution in the present work is the choice of utility function for the present self-learning control approach which makes the present learning process much more efficient than existing learning control methods. The performance of our algorithm will be shown through computer simulation and compared with existing algorithms. PMID:16252828

  19. Retrieval algorithm for rainfall mapping from microwave links in a cellular communication network

    NASA Astrophysics Data System (ADS)

    Overeem, Aart; Leijnse, Hidde; Uijlenhoet, Remko

    2016-06-01

    Microwave links in commercial cellular communication networks hold a promise for areal rainfall monitoring and could complement rainfall estimates from ground-based weather radars, rain gauges, and satellites. It has been shown that country-wide (≈ 35 500 km2) 15 min rainfall maps can be derived from the signal attenuations of approximately 2400 microwave links in such a network. Here we give a detailed description of the employed rainfall retrieval algorithm. Moreover, the documented, modular, and user-friendly code (a package in the scripting language "R") is made available, including a 2-day data set of approximately 2600 commercial microwave links from the Netherlands. The purpose of this paper is to promote rainfall mapping utilising microwave links from cellular communication networks as an alternative or complementary means for continental-scale rainfall monitoring.

  20. Cellular automata with object-oriented features for parallel molecular network modeling.

    PubMed

    Zhu, Hao; Wu, Yinghui; Huang, Sui; Sun, Yan; Dhar, Pawan

    2005-06-01

    Cellular automata are an important modeling paradigm for studying the dynamics of large, parallel systems composed of multiple, interacting components. However, to model biological systems, cellular automata need to be extended beyond the large-scale parallelism and intensive communication in order to capture two fundamental properties characteristic of complex biological systems: hierarchy and heterogeneity. This paper proposes extensions to a cellular automata language, Cellang, to meet this purpose. The extended language, with object-oriented features, can be used to describe the structure and activity of parallel molecular networks within cells. Capabilities of this new programming language include object structure to define molecular programs within a cell, floating-point data type and mathematical functions to perform quantitative computation, message passing capability to describe molecular interactions, as well as new operators, statements, and built-in functions. We discuss relevant programming issues of these features, including the object-oriented description of molecular interactions with molecule encapsulation, message passing, and the description of heterogeneity and anisotropy at the cell and molecule levels. By enabling the integration of modeling at the molecular level with system behavior at cell, tissue, organ, or even organism levels, the program will help improve our understanding of how complex and dynamic biological activities are generated and controlled by parallel functioning of molecular networks. Index Terms-Cellular automata, modeling, molecular network, object-oriented. PMID:16117022

  1. Modeling approaches for qualitative and semi-quantitative analysis of cellular signaling networks

    PubMed Central

    2013-01-01

    A central goal of systems biology is the construction of predictive models of bio-molecular networks. Cellular networks of moderate size have been modeled successfully in a quantitative way based on differential equations. However, in large-scale networks, knowledge of mechanistic details and kinetic parameters is often too limited to allow for the set-up of predictive quantitative models. Here, we review methodologies for qualitative and semi-quantitative modeling of cellular signal transduction networks. In particular, we focus on three different but related formalisms facilitating modeling of signaling processes with different levels of detail: interaction graphs, logical/Boolean networks, and logic-based ordinary differential equations (ODEs). Albeit the simplest models possible, interaction graphs allow the identification of important network properties such as signaling paths, feedback loops, or global interdependencies. Logical or Boolean models can be derived from interaction graphs by constraining the logical combination of edges. Logical models can be used to study the basic input–output behavior of the system under investigation and to analyze its qualitative dynamic properties by discrete simulations. They also provide a suitable framework to identify proper intervention strategies enforcing or repressing certain behaviors. Finally, as a third formalism, Boolean networks can be transformed into logic-based ODEs enabling studies on essential quantitative and dynamic features of a signaling network, where time and states are continuous. We describe and illustrate key methods and applications of the different modeling formalisms and discuss their relationships. In particular, as one important aspect for model reuse, we will show how these three modeling approaches can be combined to a modeling pipeline (or model hierarchy) allowing one to start with the simplest representation of a signaling network (interaction graph), which can later be refined to

  2. Modeling approaches for qualitative and semi-quantitative analysis of cellular signaling networks.

    PubMed

    Samaga, Regina; Klamt, Steffen

    2013-01-01

    A central goal of systems biology is the construction of predictive models of bio-molecular networks. Cellular networks of moderate size have been modeled successfully in a quantitative way based on differential equations. However, in large-scale networks, knowledge of mechanistic details and kinetic parameters is often too limited to allow for the set-up of predictive quantitative models.Here, we review methodologies for qualitative and semi-quantitative modeling of cellular signal transduction networks. In particular, we focus on three different but related formalisms facilitating modeling of signaling processes with different levels of detail: interaction graphs, logical/Boolean networks, and logic-based ordinary differential equations (ODEs). Albeit the simplest models possible, interaction graphs allow the identification of important network properties such as signaling paths, feedback loops, or global interdependencies. Logical or Boolean models can be derived from interaction graphs by constraining the logical combination of edges. Logical models can be used to study the basic input-output behavior of the system under investigation and to analyze its qualitative dynamic properties by discrete simulations. They also provide a suitable framework to identify proper intervention strategies enforcing or repressing certain behaviors. Finally, as a third formalism, Boolean networks can be transformed into logic-based ODEs enabling studies on essential quantitative and dynamic features of a signaling network, where time and states are continuous.We describe and illustrate key methods and applications of the different modeling formalisms and discuss their relationships. In particular, as one important aspect for model reuse, we will show how these three modeling approaches can be combined to a modeling pipeline (or model hierarchy) allowing one to start with the simplest representation of a signaling network (interaction graph), which can later be refined to logical

  3. A new cellular nonlinear network emulation on FPGA for EEG signal processing in epilepsy

    NASA Astrophysics Data System (ADS)

    Müller, Jens; Müller, Jan; Tetzlaff, Ronald

    2011-05-01

    For processing of EEG signals, we propose a new architecture for the hardware emulation of discrete-time Cellular Nonlinear Networks (DT-CNN). Our results show the importance of a high computational accuracy in EEG signal prediction that cannot be achieved with existing analogue VLSI circuits. The refined architecture of the processing elements and its resource schedule, the cellular network structure with local couplings, the FPGA-based embedded system containing the DT-CNN, and the data flow in the entire system will be discussed in detail. The proposed DT-CNN design has been implemented and tested on an Xilinx FPGA development platform. The embedded co-processor with a multi-threading kernel is utilised for control and pre-processing tasks and data exchange to the host via Ethernet. The performance of the implemented DT-CNN has been determined for a popular example and compared to that of a conventional computer.

  4. Application of neural networks to channel assignment for cellular CDMA networks with multiple services and mobile base stations

    NASA Astrophysics Data System (ADS)

    Hortos, William S.

    1996-03-01

    The use of artificial neural networks to the channel assignment problem for cellular code- division multiple access (CDMA) telecommunications systems is considered. CDMA takes advantage of voice activity and spatial isolation because its capacity is only interference limited, unlike time-division multiple access (TDMA) and frequency-division multiple access (FDMA) where capacities are bandwidth limited. Any reduction in interference in CDMA translates linearly into increased capacity. FDMA and TDMA use a frequency reuse pattern as a method to increase capacity, while CDMA reuses the same frequency for all cells and gains a reuse efficiency by means of orthogonal codes. The latter method can improve system capacity by factors of four to six over digital TDMA or FDMA. Cellular carriers are planning to provide multiple communication services using CDMA in the next generation cellular system infrastructure. The approach of this study is the use of neural network methods for automatic and local network control, based on traffic behavior in specific cell cites and demand history. The goal is to address certain problems associated with the management of mobile and personal communication services in a cellular radio communications environment. In planning a cellular radio network, the operator assigns channels to the radio cells so that the probability of the processed carrier-to-interference ratio, CII, exceeding a predefined value is sufficiently low. The RF propagation, determined from the topography and infrastructure in the operating area, is used in conjunction with the densities of expected communications traffic to formulate interference constraints. These constraints state which radio cells may use the same code (channel) or adjacent channels at a time. The traffic loading and the number of service grades can also be used to calculate the number of required channels (codes) for each cell. The general assignment problem is the task of assigning the required number

  5. Measuring information flow in cellular networks by the systems biology method through microarray data.

    PubMed

    Chen, Bor-Sen; Li, Cheng-Wei

    2015-01-01

    In general, it is very difficult to measure the information flow in a cellular network directly. In this study, based on an information flow model and microarray data, we measured the information flow in cellular networks indirectly by using a systems biology method. First, we used a recursive least square parameter estimation algorithm to identify the system parameters of coupling signal transduction pathways and the cellular gene regulatory network (GRN). Then, based on the identified parameters and systems theory, we estimated the signal transductivities of the coupling signal transduction pathways from the extracellular signals to each downstream protein and the information transductivities of the GRN between transcription factors in response to environmental events. According to the proposed method, the information flow, which is characterized by signal transductivity in coupling signaling pathways and information transductivity in the GRN, can be estimated by microarray temporal data or microarray sample data. It can also be estimated by other high-throughput data such as next-generation sequencing or proteomic data. Finally, the information flows of the signal transduction pathways and the GRN in leukemia cancer cells and non-leukemia normal cells were also measured to analyze the systematic dysfunction in this cancer from microarray sample data. The results show that the signal transductivities of signal transduction pathways change substantially from normal cells to leukemia cancer cells.

  6. A New Cellular Architecture for Information Retrieval from Sensor Networks through Embedded Service and Security Protocols.

    PubMed

    Shahzad, Aamir; Landry, René; Lee, Malrey; Xiong, Naixue; Lee, Jongho; Lee, Changhoon

    2016-06-14

    Substantial changes have occurred in the Information Technology (IT) sectors and with these changes, the demand for remote access to field sensor information has increased. This allows visualization, monitoring, and control through various electronic devices, such as laptops, tablets, i-Pads, PCs, and cellular phones. The smart phone is considered as a more reliable, faster and efficient device to access and monitor industrial systems and their corresponding information interfaces anywhere and anytime. This study describes the deployment of a protocol whereby industrial system information can be securely accessed by cellular phones via a Supervisory Control And Data Acquisition (SCADA) server. To achieve the study goals, proprietary protocol interconnectivity with non-proprietary protocols and the usage of interconnectivity services are considered in detail. They support the visualization of the SCADA system information, and the related operations through smart phones. The intelligent sensors are configured and designated to process real information via cellular phones by employing information exchange services between the proprietary protocol and non-proprietary protocols. SCADA cellular access raises the issue of security flaws. For these challenges, a cryptography-based security method is considered and deployed, and it could be considered as a part of a proprietary protocol. Subsequently, transmission flows from the smart phones through a cellular network.

  7. A New Cellular Architecture for Information Retrieval from Sensor Networks through Embedded Service and Security Protocols

    PubMed Central

    Shahzad, Aamir; Landry, René; Lee, Malrey; Xiong, Naixue; Lee, Jongho; Lee, Changhoon

    2016-01-01

    Substantial changes have occurred in the Information Technology (IT) sectors and with these changes, the demand for remote access to field sensor information has increased. This allows visualization, monitoring, and control through various electronic devices, such as laptops, tablets, i-Pads, PCs, and cellular phones. The smart phone is considered as a more reliable, faster and efficient device to access and monitor industrial systems and their corresponding information interfaces anywhere and anytime. This study describes the deployment of a protocol whereby industrial system information can be securely accessed by cellular phones via a Supervisory Control And Data Acquisition (SCADA) server. To achieve the study goals, proprietary protocol interconnectivity with non-proprietary protocols and the usage of interconnectivity services are considered in detail. They support the visualization of the SCADA system information, and the related operations through smart phones. The intelligent sensors are configured and designated to process real information via cellular phones by employing information exchange services between the proprietary protocol and non-proprietary protocols. SCADA cellular access raises the issue of security flaws. For these challenges, a cryptography-based security method is considered and deployed, and it could be considered as a part of a proprietary protocol. Subsequently, transmission flows from the smart phones through a cellular network. PMID:27314351

  8. A New Cellular Architecture for Information Retrieval from Sensor Networks through Embedded Service and Security Protocols.

    PubMed

    Shahzad, Aamir; Landry, René; Lee, Malrey; Xiong, Naixue; Lee, Jongho; Lee, Changhoon

    2016-01-01

    Substantial changes have occurred in the Information Technology (IT) sectors and with these changes, the demand for remote access to field sensor information has increased. This allows visualization, monitoring, and control through various electronic devices, such as laptops, tablets, i-Pads, PCs, and cellular phones. The smart phone is considered as a more reliable, faster and efficient device to access and monitor industrial systems and their corresponding information interfaces anywhere and anytime. This study describes the deployment of a protocol whereby industrial system information can be securely accessed by cellular phones via a Supervisory Control And Data Acquisition (SCADA) server. To achieve the study goals, proprietary protocol interconnectivity with non-proprietary protocols and the usage of interconnectivity services are considered in detail. They support the visualization of the SCADA system information, and the related operations through smart phones. The intelligent sensors are configured and designated to process real information via cellular phones by employing information exchange services between the proprietary protocol and non-proprietary protocols. SCADA cellular access raises the issue of security flaws. For these challenges, a cryptography-based security method is considered and deployed, and it could be considered as a part of a proprietary protocol. Subsequently, transmission flows from the smart phones through a cellular network. PMID:27314351

  9. An Asynchronous Recurrent Network of Cellular Automaton-Based Neurons and Its Reproduction of Spiking Neural Network Activities.

    PubMed

    Matsubara, Takashi; Torikai, Hiroyuki

    2016-04-01

    Modeling and implementation approaches for the reproduction of input-output relationships in biological nervous tissues contribute to the development of engineering and clinical applications. However, because of high nonlinearity, the traditional modeling and implementation approaches encounter difficulties in terms of generalization ability (i.e., performance when reproducing an unknown data set) and computational resources (i.e., computation time and circuit elements). To overcome these difficulties, asynchronous cellular automaton-based neuron (ACAN) models, which are described as special kinds of cellular automata that can be implemented as small asynchronous sequential logic circuits have been proposed. This paper presents a novel type of such ACAN and a theoretical analysis of its excitability. This paper also presents a novel network of such neurons, which can mimic input-output relationships of biological and nonlinear ordinary differential equation model neural networks. Numerical analyses confirm that the presented network has a higher generalization ability than other major modeling and implementation approaches. In addition, Field-Programmable Gate Array-implementations confirm that the presented network requires lower computational resources.

  10. Copper enhances cellular and network excitabilities, and improves temporal processing in the rat hippocampus.

    PubMed

    Maureira, Carlos; Letelier, Juan Carlos; Alvarez, Osvaldo; Delgado, Ricardo; Vergara, Cecilia

    2015-12-01

    Copper, an ion with many important metabolic functions, has also been proposed to have a role as modulator on neuronal function, mostly based on its effects on voltage- and neurotransmitter-gated conductance as well as on neurological symptoms of patients with altered copper homeostasis. Nevertheless, the mechanisms by which copper exerts its neuromodulatory effects have not been clearly established in a functional neuronal network. Using rat hippocampus slices as a neuronal network model, the effects of copper in the range of 10-100 nm were tested on the intrinsic, synaptic and network properties of the CA1 region. Most of the previously described effects of this cation were in the micromolar range of copper concentrations. The current results indicate that copper is a multifaceted neuromodulator, having effects that may be grouped into two categories: (i) activity enhancement, by modulating synaptic communication and action potential (AP) conductances; and (ii) temporal processing and correlation extraction, by improving reliability and depressing inhibition. Specifically it was found that copper hyperpolarizes AP firing threshold, enhances neuronal and network excitability, modifies CA3-CA1 pathway gain, enhances the frequency of spontaneous synaptic events, decreases inhibitory network activity, and improves AP timing reliability. Moreover, copper chelation by bathocuproine decreases spontaneous network spiking activity. These results allow the proposal that copper affects the network activity from cellular to circuit levels on a moment-by-moment basis, and should be considered a crucial functional component of hippocampal neuronal circuitry.

  11. Motion Adaptive Vertical Handoff in Cellular/WLAN Heterogeneous Wireless Network

    PubMed Central

    Ma, Lin; Xu, Yubin; Fu, Yunhai

    2014-01-01

    In heterogeneous wireless network, vertical handoff plays an important role for guaranteeing quality of service and overall performance of network. Conventional vertical handoff trigger schemes are mostly developed from horizontal handoff in homogeneous cellular network. Basically, they can be summarized as hysteresis-based and dwelling-timer-based algorithms, which are reliable on avoiding unnecessary handoff caused by the terminals dwelling at the edge of WLAN coverage. However, the coverage of WLAN is much smaller compared with cellular network, while the motion types of terminals can be various in a typical outdoor scenario. As a result, traditional algorithms are less effective in avoiding unnecessary handoff triggered by vehicle-borne terminals with various speeds. Besides that, hysteresis and dwelling-timer thresholds usually need to be modified to satisfy different channel environments. For solving this problem, a vertical handoff algorithm based on Q-learning is proposed in this paper. Q-learning can provide the decider with self-adaptive ability for handling the terminals' handoff requests with different motion types and channel conditions. Meanwhile, Neural Fuzzy Inference System (NFIS) is embedded to retain a continuous perception of the state space. Simulation results verify that the proposed algorithm can achieve lower unnecessary handoff probability compared with the other two conventional algorithms. PMID:24741347

  12. Phase transitions in pancreatic islet cellular networks and implications for type-1 diabetes

    NASA Astrophysics Data System (ADS)

    Stamper, I. J.; Jackson, Elais; Wang, Xujing

    2014-01-01

    In many aspects the onset of a chronic disease resembles a phase transition in a complex dynamic system: Quantitative changes accumulate largely unnoticed until a critical threshold is reached, which causes abrupt qualitative changes of the system. In this study we examine a special case, the onset of type-1 diabetes (T1D), a disease that results from loss of the insulin-producing pancreatic islet β cells. Within each islet, the β cells are electrically coupled to each other via gap-junctional channels. This intercellular coupling enables the β cells to synchronize their insulin release, thereby generating the multiscale temporal rhythms in blood insulin that are critical to maintaining blood glucose homeostasis. Using percolation theory we show how normal islet function is intrinsically linked to network connectivity. In particular, the critical amount of β-cell death at which the islet cellular network loses site percolation is consistent with laboratory and clinical observations of the threshold loss of β cells that causes islet functional failure. In addition, numerical simulations confirm that the islet cellular network needs to be percolated for β cells to synchronize. Furthermore, the interplay between site percolation and bond strength predicts the existence of a transient phase of islet functional recovery after onset of T1D and introduction of treatment, potentially explaining the honeymoon phenomenon. Based on these results, we hypothesize that the onset of T1D may be the result of a phase transition of the islet β-cell network.

  13. The translational machinery is an optimized molecular network that affects cellular homoeostasis and disease.

    PubMed

    Kazana, Eleanna; von der Haar, Tobias

    2014-02-01

    Translation involves interactions between mRNAs, ribosomes, tRNAs and a host of translation factors. Emerging evidence on the eukaryotic translational machinery indicates that these factors are organized in a highly optimized network, in which the levels of the different factors are finely matched to each other. This optimal factor network is essential for producing proteomes that result in optimal fitness, and perturbations to the optimal network that significantly affect translational activity therefore result in non-optimal proteomes, fitness losses and disease. On the other hand, experimental evidence indicates that translation and cell growth are relatively robust to perturbations, and viability can be maintained even upon significant damage to individual translation factors. How the eukaryotic translational machinery is optimized, and how it can maintain optimization in the face of changing internal parameters, are open questions relevant to the interaction between translation and cellular disease states.

  14. Issues for the integration of satellite and terrestrial cellular networks for mobile communications

    NASA Astrophysics Data System (ADS)

    Delre, Enrico; Mistretta, Ignazio; Dellipriscoli, Francesco; Settimo, Franco

    1991-09-01

    Satellite and terrestrial cellular systems naturally complement each other for land mobile communications, even though present systems have been developed independently. The main advantages of the integrated system are a faster wide area coverage, a better management of overloading traffic conditions, an extension to geographical areas not covered by the terrestrial network and, in perspective, the provision of only one integrated system for all mobile communications (land, aeronautical, and maritime). To achieve these goals, as far as possible the same protocols of the terrestrial network should be used also for the satellite network. Discussed here are the main issues arising from the requirements of the main integrated system. Some results are illustrated, and possible future improvements due to technical solutions are presented.

  15. Optimal design of sewer networks using cellular automata-based hybrid methods: Discrete and continuous approaches

    NASA Astrophysics Data System (ADS)

    Afshar, M. H.; Rohani, M.

    2012-01-01

    In this article, cellular automata based hybrid methods are proposed for the optimal design of sewer networks and their performance is compared with some of the common heuristic search methods. The problem of optimal design of sewer networks is first decomposed into two sub-optimization problems which are solved iteratively in a two stage manner. In the first stage, the pipe diameters of the network are assumed fixed and the nodal cover depths of the network are determined by solving a nonlinear sub-optimization problem. A cellular automata (CA) method is used for the solution of the optimization problem with the network nodes considered as the cells and their cover depths as the cell states. In the second stage, the nodal cover depths calculated from the first stage are fixed and the pipe diameters are calculated by solving a second nonlinear sub-optimization problem. Once again a CA method is used to solve the optimization problem of the second stage with the pipes considered as the CA cells and their corresponding diameters as the cell states. Two different updating rules are derived and used for the CA of the second stage depending on the treatment of the pipe diameters. In the continuous approach, the pipe diameters are considered as continuous variables and the corresponding updating rule is derived mathematically from the original objective function of the problem. In the discrete approach, however, an adhoc updating rule is derived and used taking into account the discrete nature of the pipe diameters. The proposed methods are used to optimally solve two sewer network problems and the results are presented and compared with those obtained by other methods. The results show that the proposed CA based hybrid methods are more efficient and effective than the most powerful search methods considered in this work.

  16. Dynamic circadian protein-protein interaction networks predict temporal organization of cellular functions.

    PubMed

    Wallach, Thomas; Schellenberg, Katja; Maier, Bert; Kalathur, Ravi Kiran Reddy; Porras, Pablo; Wanker, Erich E; Futschik, Matthias E; Kramer, Achim

    2013-03-01

    Essentially all biological processes depend on protein-protein interactions (PPIs). Timing of such interactions is crucial for regulatory function. Although circadian (~24-hour) clocks constitute fundamental cellular timing mechanisms regulating important physiological processes, PPI dynamics on this timescale are largely unknown. Here, we identified 109 novel PPIs among circadian clock proteins via a yeast-two-hybrid approach. Among them, the interaction of protein phosphatase 1 and CLOCK/BMAL1 was found to result in BMAL1 destabilization. We constructed a dynamic circadian PPI network predicting the PPI timing using circadian expression data. Systematic circadian phenotyping (RNAi and overexpression) suggests a crucial role for components involved in dynamic interactions. Systems analysis of a global dynamic network in liver revealed that interacting proteins are expressed at similar times likely to restrict regulatory interactions to specific phases. Moreover, we predict that circadian PPIs dynamically connect many important cellular processes (signal transduction, cell cycle, etc.) contributing to temporal organization of cellular physiology in an unprecedented manner. PMID:23555304

  17. Segmentation algorithm via Cellular Neural/Nonlinear Network: implementation on Bio-inspired hardware platform

    NASA Astrophysics Data System (ADS)

    Karabiber, Fethullah; Vecchio, Pietro; Grassi, Giuseppe

    2011-12-01

    The Bio-inspired (Bi-i) Cellular Vision System is a computing platform consisting of sensing, array sensing-processing, and digital signal processing. The platform is based on the Cellular Neural/Nonlinear Network (CNN) paradigm. This article presents the implementation of a novel CNN-based segmentation algorithm onto the Bi-i system. Each part of the algorithm, along with the corresponding implementation on the hardware platform, is carefully described through the article. The experimental results, carried out for Foreman and Car-phone video sequences, highlight the feasibility of the approach, which provides a frame rate of about 26 frames/s. Comparisons with existing CNN-based methods show that the conceived approach is more accurate, thus representing a good trade-off between real-time requirements and accuracy.

  18. Cellular network formation of hydrophobic alkanethiol capped gold nanoparticles on mica surface mediated by water islands.

    PubMed

    John, Neena S; Raina, Gargi; Sharma, Ashutosh; Kulkarni, Giridhar U

    2010-09-01

    Dendritic and cellular networks of nanoparticles are known to form commonly either by random diffusion-limited aggregation or by solvent evaporation dynamics. Using alkanethiol capped gold nanoparticles deposited on mica imaged under ambient and controlled water vapor conditions by atomic force microscope and in situ scanning electron microscope, respectively, we show a third mechanism in action. The cellular network consisting of open and closed polygons is formed by the nucleation and lateral growth of adsorbed water islands, the contact lines of which push the randomly distributed hydrophobic nanoparticles along the growth directions, eventually leading to the polygonal structure formation as the boundaries of the growing islands meet. Such nanoparticle displacement has been possible due to the weakly adhering nature of the hydrophilic substrate, mica. These results demonstrate an important but hitherto neglected effect of adsorbed water in the structure formation on hydrophilic substrates and provide a facile tool for the fabrication of nanoparticle networks without specific particle or substrate modifications and without a tight control on particle deposition conditions during the solvent evaporation. PMID:20831330

  19. Cellular Signaling Networks Function as Generalized Wiener-Kolmogorov Filters to Suppress Noise

    NASA Astrophysics Data System (ADS)

    Hinczewski, Michael; Thirumalai, D.

    2014-10-01

    Cellular signaling involves the transmission of environmental information through cascades of stochastic biochemical reactions, inevitably introducing noise that compromises signal fidelity. Each stage of the cascade often takes the form of a kinase-phosphatase push-pull network, a basic unit of signaling pathways whose malfunction is linked with a host of cancers. We show that this ubiquitous enzymatic network motif effectively behaves as a Wiener-Kolmogorov optimal noise filter. Using concepts from umbral calculus, we generalize the linear Wiener-Kolmogorov theory, originally introduced in the context of communication and control engineering, to take nonlinear signal transduction and discrete molecule populations into account. This allows us to derive rigorous constraints for efficient noise reduction in this biochemical system. Our mathematical formalism yields bounds on filter performance in cases important to cellular function—such as ultrasensitive response to stimuli. We highlight features of the system relevant for optimizing filter efficiency, encoded in a single, measurable, dimensionless parameter. Our theory, which describes noise control in a large class of signal transduction networks, is also useful both for the design of synthetic biochemical signaling pathways and the manipulation of pathways through experimental probes such as oscillatory input.

  20. Three Years of Country-Wide Rainfall Maps from Cellular Communication Networks

    NASA Astrophysics Data System (ADS)

    Overeem, Aart; Rios Gaona, Manuel Felipe; Leijnse, Hidde; Uijlenhoet, Remko

    2015-04-01

    Accurate rainfall observations with high spatial and temporal resolutions are needed for hydrological applications, agriculture, meteorology, and climate monitoring. However, the majority of the land surface of the earth lacks accurate rainfall information and the number of rain gauges is even severely declining in Europe, South-America, and Africa. This calls for alternative sources of rainfall information. Various studies have shown that microwave links from operational cellular communication networks may be used for rainfall monitoring. Such networks cover 20% of the land surface of the earth and have a high density, especially in urban areas. The basic principle of rainfall estimation using microwave links is as follows. Rainfall attenuates the electromagnetic signals transmitted from one telephone tower to another. By measuring the received power at one end of a microwave link as a function of time, the path-integrated attenuation due to rainfall can be calculated, which can be converted to average rainfall intensities over the length of a link. This is particularly interesting for those countries where few surface rainfall observations are available. A data set from a commercial microwave link network over the Netherlands is analyzed. The data set runs from January 2011 - January 2014 and consists of roughly 2,000 links covering the land surface of the Netherlands (35,500 square kilometers). From this 3-year data set country-wide rainfall maps are retrieved, which are compared to a gauge-adjusted radar data set. The ability of cellular communication networks to estimate rainfall is studied for different temporal and spatial scales (including the catchment scale). To summarize, the results further confirm the potential of these networks for rainfall monitoring for hydrological applications.

  1. Three Years of Country-Wide Rainfall Maps from Cellular Communication Networks

    NASA Astrophysics Data System (ADS)

    Uijlenhoet, R.; Overeem, A.; Leijnse, H.; Rios Gaona, M. F.

    2014-12-01

    Accurate rainfall observations with high spatial and temporal resolutions are needed for hydrological applications, agriculture, meteorology, and climate monitoring. However, the majority of the land surface of the earth lacks accurate rainfall information and the number of rain gauges is even severely declining in Europe, South-America, and Africa. This calls for alternative sources of rainfall information. Various studies have shown that microwave links from operational cellular communication networks may be used for rainfall monitoring. Such networks cover 20% of the land surface of the earth and have a high density, especially in urban areas. The basic principle of rainfall estimation using microwave links is as follows. Rainfall attenuates the electromagnetic signals transmitted from one telephone tower to another. By measuring the received power at one end of a microwave link as a function of time, the path-integrated attenuation due to rainfall can be calculated, which can be converted to average rainfall intensities over the length of a link. This is particularly interesting for those countries where few surface rainfall observations are available. A data set from a commercial microwave link network over the Netherlands is analyzed. The data set runs from January 2011 - January 2014 and consists of roughly 2000 links covering the land surface of the Netherlands (35,500 square kilometers). From this 3-year data set country-wide rainfall maps are retrieved, which are compared to a gauge-adjusted radar data set. The ability of cellular communication networks to estimate rainfall is studied for different temporal and spatial scales, as well as for several air temperature classes. Case studies are presented to investigate the performance of the algorithm during snow and sleet and to show the influence of dew formation on the antennas on the received signal levels. To summarize, the results further confirm the potential of these networks for rainfall monitoring.

  2. Functional recognition imaging using artificial neural networks: applications to rapid cellular identification via broadband electromechanical response.

    PubMed

    Nikiforov, M P; Reukov, V V; Thompson, G L; Vertegel, A A; Guo, S; Kalinin, S V; Jesse, S

    2009-10-01

    Functional recognition imaging in scanning probe microscopy (SPM) using artificial neural network identification is demonstrated. This approach utilizes statistical analysis of complex SPM responses at a single spatial location to identify the target behavior, which is reminiscent of associative thinking in the human brain, obviating the need for analytical models. We demonstrate, as an example of recognition imaging, rapid identification of cellular organisms using the difference in electromechanical activity over a broad frequency range. Single-pixel identification of model Micrococcus lysodeikticus and Pseudomonas fluorescens bacteria is achieved, demonstrating the viability of the method.

  3. New color image encryption algorithm based on compound chaos mapping and hyperchaotic cellular neural network

    NASA Astrophysics Data System (ADS)

    Li, Jinqing; Bai, Fengming; Di, Xiaoqiang

    2013-01-01

    We propose an image encryption/decryption algorithm based on chaotic control parameter and hyperchaotic system with the composite permutation-diffusion structure. Compound chaos mapping is used to generate control parameters in the permutation stage. The high correlation between pixels is shuffled. In the diffusion stage, compound chaos mapping of different initial condition and control parameter generates the diffusion parameters, which are applied to hyperchaotic cellular neural networks. The diffusion key stream is obtained by this process and implements the pixels' diffusion. Compared with the existing methods, both simulation and statistical analysis of our proposed algorithm show that the algorithm has a good performance against attacks and meets the corresponding security level.

  4. Functional Recognition Imaging Using Artificial Neural Networks: Applications to Rapid Cellular Identification by Broadband Electromechanical Response

    PubMed Central

    Nikiforov, M.P.; Reukov, V.V.; Thompson, G.L.; Vertegel, A.A.; Guo, S.; Jesse, S.; Kalinin, S.V.

    2010-01-01

    Functional recognition imaging in Scanning Probe Microscopy (SPM) using artificial neural network identification is demonstrated. This approach utilizes statistical analysis of complex SPM responses to identify the target behavior, reminiscent of associative thinking in the human brain and obviating the need for analytical models. As an example of recognition imaging, we demonstrate rapid identification of cellular organisms using difference in electromechanical activity in a broad frequency range. Single-pixel identification of model Micrococcus lysodeikticus and Pseudomonas fluorescens bacteria is achieved, demonstrating the viability of the method. PMID:19752493

  5. Mobility-Aware Caching and Computation Offloading in 5G Ultra-Dense Cellular Networks

    PubMed Central

    Chen, Min; Hao, Yixue; Qiu, Meikang; Song, Jeungeun; Wu, Di; Humar, Iztok

    2016-01-01

    Recent trends show that Internet traffic is increasingly dominated by content, which is accompanied by the exponential growth of traffic. To cope with this phenomena, network caching is introduced to utilize the storage capacity of diverse network devices. In this paper, we first summarize four basic caching placement strategies, i.e., local caching, Device-to-Device (D2D) caching, Small cell Base Station (SBS) caching and Macrocell Base Station (MBS) caching. However, studies show that so far, much of the research has ignored the impact of user mobility. Therefore, taking the effect of the user mobility into consideration, we proposes a joint mobility-aware caching and SBS density placement scheme (MS caching). In addition, differences and relationships between caching and computation offloading are discussed. We present a design of a hybrid computation offloading and support it with experimental results, which demonstrate improved performance in terms of energy cost. Finally, we discuss the design of an incentive mechanism by considering network dynamics, differentiated user’s quality of experience (QoE) and the heterogeneity of mobile terminals in terms of caching and computing capabilities. PMID:27347975

  6. Mobility-Aware Caching and Computation Offloading in 5G Ultra-Dense Cellular Networks.

    PubMed

    Chen, Min; Hao, Yixue; Qiu, Meikang; Song, Jeungeun; Wu, Di; Humar, Iztok

    2016-01-01

    Recent trends show that Internet traffic is increasingly dominated by content, which is accompanied by the exponential growth of traffic. To cope with this phenomena, network caching is introduced to utilize the storage capacity of diverse network devices. In this paper, we first summarize four basic caching placement strategies, i.e., local caching, Device-to-Device (D2D) caching, Small cell Base Station (SBS) caching and Macrocell Base Station (MBS) caching. However, studies show that so far, much of the research has ignored the impact of user mobility. Therefore, taking the effect of the user mobility into consideration, we proposes a joint mobility-aware caching and SBS density placement scheme (MS caching). In addition, differences and relationships between caching and computation offloading are discussed. We present a design of a hybrid computation offloading and support it with experimental results, which demonstrate improved performance in terms of energy cost. Finally, we discuss the design of an incentive mechanism by considering network dynamics, differentiated user's quality of experience (QoE) and the heterogeneity of mobile terminals in terms of caching and computing capabilities. PMID:27347975

  7. Evolving Transport Networks With Cellular Automata Models Inspired by Slime Mould.

    PubMed

    Tsompanas, Michail-Antisthenis I; Sirakoulis, Georgios Ch; Adamatzky, Andrew I

    2015-09-01

    Man-made transport networks and their design are closely related to the shortest path problem and considered amongst the most debated problems of computational intelligence. Apart from using conventional or bio-inspired computer algorithms, many researchers tried to solve this kind of problem using biological computing substrates, gas-discharge solvers, prototypes of a mobile droplet, and hot ice computers. In this aspect, another example of biological computer is the plasmodium of acellular slime mould Physarum polycephalum (P. polycephalum), which is a large single cell visible by an unaided eye and has been proven as a reliable living substrate for implementing biological computing devices for computational geometry, graph-theoretical problems, and optimization and imitation of transport networks. Although P. polycephalum is easy to experiment with, computing devices built with the living slime mould are extremely slow; it takes slime mould days to execute a computation. Consequently, mapping key computing mechanisms of the slime mould onto silicon would allow us to produce efficient bio-inspired computing devices to tackle with hard to solve computational intelligence problems like the aforementioned. Toward this direction, a cellular automaton (CA)-based, Physarum-inspired, network designing model is proposed. This novel CA-based model is inspired by the propagating strategy, the formation of tubular networks, and the computing abilities of the plasmodium of P. polycephalum. The results delivered by the CA model demonstrate a good match with several previously published results of experimental laboratory studies on imitation of man-made transport networks with P. polycephalum. Consequently, the proposed CA model can be used as a virtual, easy-to-access, and biomimicking laboratory emulator that will economize large time periods needed for biological experiments while producing networks almost identical to the tubular networks of the real-slime mould.

  8. Cellular telephone-based radiation sensor and wide-area detection network

    DOEpatents

    Craig, William W.; Labov, Simon E.

    2006-12-12

    A network of radiation detection instruments, each having a small solid state radiation sensor module integrated into a cellular phone for providing radiation detection data and analysis directly to a user. The sensor module includes a solid-state crystal bonded to an ASIC readout providing a low cost, low power, light weight compact instrument to detect and measure radiation energies in the local ambient radiation field. In particular, the photon energy, time of event, and location of the detection instrument at the time of detection is recorded for real time transmission to a central data collection/analysis system. The collected data from the entire network of radiation detection instruments are combined by intelligent correlation/analysis algorithms which map the background radiation and detect, identify and track radiation anomalies in the region.

  9. Stability analysis of switched cellular neural networks: A mode-dependent average dwell time approach.

    PubMed

    Huang, Chuangxia; Cao, Jie; Cao, Jinde

    2016-10-01

    This paper addresses the exponential stability of switched cellular neural networks by using the mode-dependent average dwell time (MDADT) approach. This method is quite different from the traditional average dwell time (ADT) method in permitting each subsystem to have its own average dwell time. Detailed investigations have been carried out for two cases. One is that all subsystems are stable and the other is that stable subsystems coexist with unstable subsystems. By employing Lyapunov functionals, linear matrix inequalities (LMIs), Jessen-type inequality, Wirtinger-based inequality, reciprocally convex approach, we derived some novel and less conservative conditions on exponential stability of the networks. Comparing to ADT, the proposed MDADT show that the minimal dwell time of each subsystem is smaller and the switched system stabilizes faster. The obtained results extend and improve some existing ones. Moreover, the validness and effectiveness of these results are demonstrated through numerical simulations.

  10. Attractivity analysis of memristor-based cellular neural networks with time-varying delays.

    PubMed

    Guo, Zhenyuan; Wang, Jun; Yan, Zheng

    2014-04-01

    This paper presents new theoretical results on the invariance and attractivity of memristor-based cellular neural networks (MCNNs) with time-varying delays. First, sufficient conditions to assure the boundedness and global attractivity of the networks are derived. Using state-space decomposition and some analytic techniques, it is shown that the number of equilibria located in the saturation regions of the piecewise-linear activation functions of an n-neuron MCNN with time-varying delays increases significantly from 2(n) to 2(2n2)+n) (2(2n2) times) compared with that without a memristor. In addition, sufficient conditions for the invariance and local or global attractivity of equilibria or attractive sets in any designated region are derived. Finally, two illustrative examples are given to elaborate the characteristics of the results in detail.

  11. Using prior knowledge from cellular pathways and molecular networks for diagnostic specimen classification

    PubMed Central

    2016-01-01

    For many complex diseases, an earlier and more reliable diagnosis is considered a key prerequisite for developing more effective therapies to prevent or delay disease progression. Classical statistical learning approaches for specimen classification using omics data, however, often cannot provide diagnostic models with sufficient accuracy and robustness for heterogeneous diseases like cancers or neurodegenerative disorders. In recent years, new approaches for building multivariate biomarker models on omics data have been proposed, which exploit prior biological knowledge from molecular networks and cellular pathways to address these limitations. This survey provides an overview of these recent developments and compares pathway- and network-based specimen classification approaches in terms of their utility for improving model robustness, accuracy and biological interpretability. Different routes to translate omics-based multifactorial biomarker models into clinical diagnostic tests are discussed, and a previous study is presented as example. PMID:26141830

  12. Using prior knowledge from cellular pathways and molecular networks for diagnostic specimen classification.

    PubMed

    Glaab, Enrico

    2016-05-01

    For many complex diseases, an earlier and more reliable diagnosis is considered a key prerequisite for developing more effective therapies to prevent or delay disease progression. Classical statistical learning approaches for specimen classification using omics data, however, often cannot provide diagnostic models with sufficient accuracy and robustness for heterogeneous diseases like cancers or neurodegenerative disorders. In recent years, new approaches for building multivariate biomarker models on omics data have been proposed, which exploit prior biological knowledge from molecular networks and cellular pathways to address these limitations. This survey provides an overview of these recent developments and compares pathway- and network-based specimen classification approaches in terms of their utility for improving model robustness, accuracy and biological interpretability. Different routes to translate omics-based multifactorial biomarker models into clinical diagnostic tests are discussed, and a previous study is presented as example.

  13. Long term country-wide rainfall monitoring employing cellular communication networks

    NASA Astrophysics Data System (ADS)

    Overeem, Aart; Leijnse, Hidde; Uijlenhoet, Remko

    2013-04-01

    Accurate rainfall observations with high spatial and temporal resolutions are needed for hydrological applications, agriculture, meteorology, and climate monitoring. However, the majority of the land surface of the earth lacks accurate rainfall information and the number of rain gauges is even severely declining in Europe, South-America, and Africa. This calls for alternative sources of rainfall information. Various studies have shown that microwave links from operational cellular telecommunication networks may be employed for rainfall monitoring. Such networks cover 20% of the land surface of the earth and have a high density, especially in urban areas. The basic principle of rainfall monitoring using microwave links is as follows. Rainfall attenuates the electromagnetic signals transmitted from one telephone tower to another. By measuring the received power at one end of a microwave link as a function of time, the path-integrated attenuation due to rainfall can be calculated. Previous studies have shown that average rainfall intensities over the length of a link can be derived from the path-integrated attenuation. This is particularly interesting for those countries where few surface rainfall observations are available. Here we present preliminary results of long term country-wide rainfall monitoring employing cellular communication networks. A dataset from a commercial microwave link network over the Netherlands is analyzed, containing data from an unprecedented number of links (~ 2000) covering the land surface of the Netherlands (35500 square kilometres). This dataset spans from January 2011 through October 2012. Daily rainfall maps (1 km spatial resolution) are derived from the microwave link data and compared to maps from a gauge-adjusted radar dataset. The performance of the rainfall retrieval algorithm will be investigated, particularly a possible seasonal dependence.

  14. Decentralized Dynamic Sub-Carrier Assignment for OFDMA-Based Adhoc and Cellular Networks

    NASA Astrophysics Data System (ADS)

    Nguyen, Van-Duc; Haas, Harald; Kyamakya, Kyandoghere; Chedjou, Jean-Chamerlain; Nguyen, Tien-Hoa; Yoon, Seokho; Choo, Hyunseung

    In this paper, a novel decentralised dynamic sub-carrier assignment (DSA) algorithm for orthogonal frequency division multiple access (OFDMA)-based adhoc and cellular networks operating in time division duplexing (TDD) mode is proposed to solve the hidden and exposed node problem in media access control (MAC). This method reduces the co-channel interference (CCI), and thus increases the overall throughput of the network. Reduced CCI and increased throughput can be achieved, if time and frequency selectivity of the multi-path fading channel and the channel reciprocity offered by the TDD are fully exploited. The time and frequency selectivity of the channel are usually the main problem in mobile communication. However, in the context of channel assignment for OFDMA-based networks in TDD mode, the time and frequency selectivity of the channel are the key to reduce the interference. In the proposed channel assignment mechanism, several clusters of sub-carriers are assigned for data transmission between a transmitter and a receiver only if the corresponding channels of those sub-carriers linking this transmitter to potential victim receivers are deeply faded. In addition, the proposed algorithm works in a fully decentralised fashion and, therefore, it is able to effectively support ad hoc and multihop communication as well as network self-organisation. Numerical results show that the throughput obtained by the proposed approach for a given quality of service is higher than those of the conventional methods in any precondition of adhoc geographic scenario.

  15. Effect of crystals and fibrous network polymer additives on cellular morphology of microcellular foams

    NASA Astrophysics Data System (ADS)

    Miyamoto, Ryoma; Utano, Tatsumi; Yasuhara, Shunya; Ishihara, Shota; Ohshima, Masahiro

    2015-05-01

    In this study, the core-back foam injection molding was used for preparing microcelluar polypropylene (PP) foam with either a 1,3:2,4 bis-O-(4-methylbenzylidene)-D-sorbitol gelling agent (Gel-all MD) or a fibros network polymer additive (Metablen 3000). Both agent and addiive could effectively control the celluar morphology in foams but somehow different ways. In course of cooling the polymer with Gel-all MD in the mold caity, the agent enhanced the crystal nucleation and resulted in the large number of small crystals. The crystals acted as effective bubble nucleation agent in foaming process. Thus, the agent reduced the cell size and increased the cell density, drastically. Furthermore, the small crystals provided an inhomogenuity to the expanding cell wall and produced the high open cell content with nano-scale fibril structure. Gell-all as well as Metablene 3000 formed a gel-like fibrous network in melt. The network increased the elongational viscosity and tended to prevent the cell wall from breaking up. The foaming temperature window was widened by the presence of the network. Especially, the temperature window where the macro-fibrous structure was formed was expanded to the higher temperature. The effects of crystal nucleating agent and PTFE on crystals' size and number, viscoelsticity, rheological propreties of PP and cellular morphology were compared and thorougly investigated.

  16. The yeast galactose network as a quantitative model for cellular memory

    PubMed Central

    Stockwell, Sarah R.; Landry, Christian R.; Rifkin, Scott A.

    2014-01-01

    Recent experiments have revealed surprising behavior in the yeast galactose (GAL) pathway, one of the preeminent systems for studying gene regulation. Under certain circumstances, yeast cells display memory of their prior nutrient environments. We distinguish two kinds of cellular memory discovered by quantitative investigations of the GAL network and present a conceptual framework for interpreting new experiments and current ideas on GAL memory. Reinduction memory occurs when cells respond transcriptionally to one environment, shut down the response during several generations in a second environment, then respond faster and with less cell-to-cell variation when returned to the first environment. Persistent memory describes a long-term, arguably stable response in which cells adopt a bimodal or unimodal distribution of induction levels depending on their preceding environment. Deep knowledge of how the yeast GAL pathway responds to different sugar environments has enabled rapid progress in uncovering the mechanisms behind GAL memory, which include cytoplasmic inheritance of inducer proteins and positive feedback loops among regulatory genes. This network of genes, long used to study gene regulation, is now emerging as a model system for cellular memory. PMID:25328105

  17. ComPPI: a cellular compartment-specific database for protein–protein interaction network analysis

    PubMed Central

    Veres, Daniel V.; Gyurkó, Dávid M.; Thaler, Benedek; Szalay, Kristóf Z.; Fazekas, Dávid; Korcsmáros, Tamás; Csermely, Peter

    2015-01-01

    Here we present ComPPI, a cellular compartment-specific database of proteins and their interactions enabling an extensive, compartmentalized protein–protein interaction network analysis (URL: http://ComPPI.LinkGroup.hu). ComPPI enables the user to filter biologically unlikely interactions, where the two interacting proteins have no common subcellular localizations and to predict novel properties, such as compartment-specific biological functions. ComPPI is an integrated database covering four species (S. cerevisiae, C. elegans, D. melanogaster and H. sapiens). The compilation of nine protein–protein interaction and eight subcellular localization data sets had four curation steps including a manually built, comprehensive hierarchical structure of >1600 subcellular localizations. ComPPI provides confidence scores for protein subcellular localizations and protein–protein interactions. ComPPI has user-friendly search options for individual proteins giving their subcellular localization, their interactions and the likelihood of their interactions considering the subcellular localization of their interacting partners. Download options of search results, whole-proteomes, organelle-specific interactomes and subcellular localization data are available on its website. Due to its novel features, ComPPI is useful for the analysis of experimental results in biochemistry and molecular biology, as well as for proteome-wide studies in bioinformatics and network science helping cellular biology, medicine and drug design. PMID:25348397

  18. Condition monitoring of 3G cellular networks through competitive neural models.

    PubMed

    Barreto, Guilherme A; Mota, João C M; Souza, Luis G M; Frota, Rewbenio A; Aguayo, Leonardo

    2005-09-01

    We develop an unsupervised approach to condition monitoring of cellular networks using competitive neural algorithms. Training is carried out with state vectors representing the normal functioning of a simulated CDMA2000 network. Once training is completed, global and local normality profiles (NPs) are built from the distribution of quantization errors of the training state vectors and their components, respectively. The global NP is used to evaluate the overall condition of the cellular system. If abnormal behavior is detected, local NPs are used in a component-wise fashion to find abnormal state variables. Anomaly detection tests are performed via percentile-based confidence intervals computed over the global and local NPs. We compared the performance of four competitive algorithms [winner-take-all (WTA), frequency-sensitive competitive learning (FSCL), self-organizing map (SOM), and neural-gas algorithm (NGA)] and the results suggest that the joint use of global and local NPs is more efficient and more robust than current single-threshold methods.

  19. Global optimization of data quality checks on 2-D and 3-D networks of GPR cross-well tomographic data for automatic correction of unknown well deviations

    SciTech Connect

    Sassen, D. S.; Peterson, J. E.

    2010-03-15

    .g. Bautu et al., 2006). In the technique of algebraic reconstruction tomography (ART), which is used herein for the travel time inversion (Peterson et al., 1985), a small relaxation parameter will smooth imaging artifacts caused by data errors at the expense of resolution and contrast (Figure 2). However, large data errors such as unaccounted well deviations cannot be adequately suppressed through inversion weighting schemes. Previously, problems with tomograms were treated manually. However, in large data sets and/or networks of data sets, trial and error changes to well geometries become increasingly difficult and ineffective. Mislocation of the transmitter and receiver stations of GPR cross-well tomography data sets can lead to serious imaging artifacts if not accounted for prior to inversion. Previously, problems with tomograms have been treated manually prior to inversion. In large data sets and/or networks of tomographic data sets, trial and error changes to well geometries become increasingly difficult and ineffective. Our approach is to use cross-well data quality checks and a simplified model of borehole deviation with particle swarm optimization (PSO) to automatically correct for source and receiver locations prior to tomographic inversion. We present a simple model of well deviation, which is designed to minimize potential corruption of actual data trends. We also provide quantitative quality control measures based on minimizing correlations between take-off angle and apparent velocity, and a quality check on the continuity of velocity between adjacent wells. This methodology is shown to be accurate and robust for simple 2-D synthetic test cases. Plus, we demonstrate the method on actual field data where it is compared to deviation logs. This study shows the promise for automatic correction of well deviations in GPR tomographic data. Analysis of synthetic data shows that very precise estimates of well deviation can be made for small deviations, even in the

  20. Path planning on cellular nonlinear network using active wave computing technique

    NASA Astrophysics Data System (ADS)

    Yeniçeri, Ramazan; Yalçın, Müstak E.

    2009-05-01

    This paper introduces a simple algorithm to solve robot path finding problem using active wave computing techniques. A two-dimensional Cellular Neural/Nonlinear Network (CNN), consist of relaxation oscillators, has been used to generate active waves and to process the visual information. The network, which has been implemented on a Field Programmable Gate Array (FPGA) chip, has the feature of being programmed, controlled and observed by a host computer. The arena of the robot is modelled as the medium of the active waves on the network. Active waves are employed to cover the whole medium with their own dynamics, by starting from an initial point. The proposed algorithm is achieved by observing the motion of the wave-front of the active waves. Host program first loads the arena model onto the active wave generator network and command to start the generation. Then periodically pulls the network image from the generator hardware to analyze evolution of the active waves. When the algorithm is completed, vectorial data image is generated. The path from any of the pixel on this image to the active wave generating pixel is drawn by the vectors on this image. The robot arena may be a complicated labyrinth or may have a simple geometry. But, the arena surface always must be flat. Our Autowave Generator CNN implementation which is settled on the Xilinx University Program Virtex-II Pro Development System is operated by a MATLAB program running on the host computer. As the active wave generator hardware has 16, 384 neurons, an arena with 128 × 128 pixels can be modeled and solved by the algorithm. The system also has a monitor and network image is depicted on the monitor simultaneously.

  1. Country-wide rainfall maps from a commercial cellular telephone network

    NASA Astrophysics Data System (ADS)

    Overeem, A.; Leijnse, H.; Uijlenhoet, R.

    2012-04-01

    Accurate rainfall observations with high spatial and temporal resolutions are needed for many applications, for instance, as input for hydrological models. Weather radars often provide data with sufficient spatial and temporal resolution, but usually need adjustment. In general, only few rain gauge measurements are available to adjust the radar data in real-time, for example, each hour. Physically based methods, such as a VPR correction, can be valuable and hold a promise. However, they are not always performed in real-time yet and can be difficult to implement. The estimation of rainfall using microwave links from commercial cellular telephone networks is a new and potentially valuable source of information. Such networks cover large parts of the land surface of the earth and have a high density. The data produced by the microwave links in such networks is essentially a by-product of the communication between mobile telephones. Rainfall attenuates the electromagnetic signals transmitted from one telephone tower to another. By measuring the received power at one end of a microwave link as a function of time, the path-integrated attenuation due to rainfall can be calculated. Previous studies have shown that average rainfall intensities over the length of a link can be derived from the path-integrated attenuation. A recent study of us shows that urban rainfall can be estimated from commercial microwave link data for the Rotterdam region, a densely-populated delta city in the Netherlands. A data set from a commercial microwave link network over the Netherlands is analyzed, containing approximately 1500 links covering the land surface of the Netherlands (35500 km2). This data set consists of several days with extreme rainfall in June, July and August 2011. A methodology is presented to derive rainfall intensities and daily rainfall depths from the microwave link data, which have a temporal resolution of 15 min. The magnitude and dynamics of these rainfall intensities

  2. Aniso2D

    2005-07-01

    Aniso2d is a two-dimensional seismic forward modeling code. The earth is parameterized by an X-Z plane in which the seismic properties Can have monoclinic with x-z plane symmetry. The program uses a user define time-domain wavelet to produce synthetic seismograms anrwhere within the two-dimensional media.

  3. Towards 2D nanocomposites

    NASA Astrophysics Data System (ADS)

    Jang, Hyun-Sook; Yu, Changqian; Hayes, Robert; Granick, Steve

    2015-03-01

    Polymer vesicles (``polymersomes'') are an intriguing class of soft materials, commonly used to encapsulate small molecules or particles. Here we reveal they can also effectively incorporate nanoparticles inside their polymer membrane, leading to novel ``2D nanocomposites.'' The embedded nanoparticles alter the capacity of the polymersomes to bend and to stretch upon external stimuli.

  4. Knowledge-guided fuzzy logic modeling to infer cellular signaling networks from proteomic data

    PubMed Central

    Liu, Hui; Zhang, Fan; Mishra, Shital Kumar; Zhou, Shuigeng; Zheng, Jie

    2016-01-01

    Modeling of signaling pathways is crucial for understanding and predicting cellular responses to drug treatments. However, canonical signaling pathways curated from literature are seldom context-specific and thus can hardly predict cell type-specific response to external perturbations; purely data-driven methods also have drawbacks such as limited biological interpretability. Therefore, hybrid methods that can integrate prior knowledge and real data for network inference are highly desirable. In this paper, we propose a knowledge-guided fuzzy logic network model to infer signaling pathways by exploiting both prior knowledge and time-series data. In particular, the dynamic time warping algorithm is employed to measure the goodness of fit between experimental and predicted data, so that our method can model temporally-ordered experimental observations. We evaluated the proposed method on a synthetic dataset and two real phosphoproteomic datasets. The experimental results demonstrate that our model can uncover drug-induced alterations in signaling pathways in cancer cells. Compared with existing hybrid models, our method can model feedback loops so that the dynamical mechanisms of signaling networks can be uncovered from time-series data. By calibrating generic models of signaling pathways against real data, our method supports precise predictions of context-specific anticancer drug effects, which is an important step towards precision medicine. PMID:27774993

  5. Proof-of-Concept of a Millimeter-Wave Integrated Heterogeneous Network for 5G Cellular

    PubMed Central

    Okasaka, Shozo; Weiler, Richard J.; Keusgen, Wilhelm; Pudeyev, Andrey; Maltsev, Alexander; Karls, Ingolf; Sakaguchi, Kei

    2016-01-01

    The fifth-generation mobile networks (5G) will not only enhance mobile broadband services, but also enable connectivity for a massive number of Internet-of-Things devices, such as wireless sensors, meters or actuators. Thus, 5G is expected to achieve a 1000-fold or more increase in capacity over 4G. The use of the millimeter-wave (mmWave) spectrum is a key enabler to allowing 5G to achieve such enhancement in capacity. To fully utilize the mmWave spectrum, 5G is expected to adopt a heterogeneous network (HetNet) architecture, wherein mmWave small cells are overlaid onto a conventional macro-cellular network. In the mmWave-integrated HetNet, splitting of the control plane (CP) and user plane (UP) will allow continuous connectivity and increase the capacity of the mmWave small cells. mmWave communication can be used not only for access linking, but also for wireless backhaul linking, which will facilitate the installation of mmWave small cells. In this study, a proof-of-concept (PoC) was conducted to demonstrate the practicality of a prototype mmWave-integrated HetNet, using mmWave technologies for both backhaul and access. PMID:27571074

  6. Network, cellular, and molecular mechanisms underlying long-term memory formation.

    PubMed

    Carasatorre, Mariana; Ramírez-Amaya, Víctor

    2013-01-01

    The neural network stores information through activity-dependent synaptic plasticity that occurs in populations of neurons. Persistent forms of synaptic plasticity may account for long-term memory storage, and the most salient forms are the changes in the structure of synapses. The theory proposes that encoding should use a sparse code and evidence suggests that this can be achieved through offline reactivation or by sparse initial recruitment of the network units. This idea implies that in some cases the neurons that underwent structural synaptic plasticity might be a subpopulation of those originally recruited; However, it is not yet clear whether all the neurons recruited during acquisition are the ones that underwent persistent forms of synaptic plasticity and responsible for memory retrieval. To determine which neural units underlie long-term memory storage, we need to characterize which are the persistent forms of synaptic plasticity occurring in these neural ensembles and the best hints so far are the molecular signals underlying structural modifications of the synapses. Structural synaptic plasticity can be achieved by the activity of various signal transduction pathways, including the NMDA-CaMKII and ACh-MAPK. These pathways converge with the Rho family of GTPases and the consequent ERK 1/2 activation, which regulates multiple cellular functions such as protein translation, protein trafficking, and gene transcription. The most detailed explanation may come from models that allow us to determine the contribution of each piece of this fascinating puzzle that is the neuron and the neural network.

  7. Proof-of-Concept of a Millimeter-Wave Integrated Heterogeneous Network for 5G Cellular.

    PubMed

    Okasaka, Shozo; Weiler, Richard J; Keusgen, Wilhelm; Pudeyev, Andrey; Maltsev, Alexander; Karls, Ingolf; Sakaguchi, Kei

    2016-01-01

    The fifth-generation mobile networks (5G) will not only enhance mobile broadband services, but also enable connectivity for a massive number of Internet-of-Things devices, such as wireless sensors, meters or actuators. Thus, 5G is expected to achieve a 1000-fold or more increase in capacity over 4G. The use of the millimeter-wave (mmWave) spectrum is a key enabler to allowing 5G to achieve such enhancement in capacity. To fully utilize the mmWave spectrum, 5G is expected to adopt a heterogeneous network (HetNet) architecture, wherein mmWave small cells are overlaid onto a conventional macro-cellular network. In the mmWave-integrated HetNet, splitting of the control plane (CP) and user plane (UP) will allow continuous connectivity and increase the capacity of the mmWave small cells. mmWave communication can be used not only for access linking, but also for wireless backhaul linking, which will facilitate the installation of mmWave small cells. In this study, a proof-of-concept (PoC) was conducted to demonstrate the practicality of a prototype mmWave-integrated HetNet, using mmWave technologies for both backhaul and access.

  8. A quantitative chaperone interaction network reveals the architecture of cellular protein homeostasis pathways

    PubMed Central

    Taipale, Mikko; Tucker, George; Peng, Jian; Krykbaeva, Irina; Lin, Zhen-Yuan; Larsen, Brett; Choi, Hyungwon; Berger, Bonnie; Gingras, Anne-Claude; Lindquist, Susan

    2014-01-01

    Chaperones are abundant cellular proteins that promote the folding and function of their substrate proteins (clients). In vivo, chaperones also associate with a large and diverse set of co-factors (co-chaperones) that regulate their specificity and function. However, how these co-chaperones regulate protein folding and whether they have chaperone-independent biological functions is largely unknown. We have combined mass spectrometry and quantitative high-throughput LUMIER assays to systematically characterize the chaperone/co-chaperone/client interaction network in human cells. We uncover hundreds of novel chaperone clients, delineate their participation in specific co-chaperone complexes, and establish a surprisingly distinct network of protein/protein interactions for co-chaperones. As a salient example of the power of such analysis, we establish that NUDC family co-chaperones specifically associate with structurally related but evolutionarily distinct β-propeller folds. We provide a framework for deciphering the proteostasis network, its regulation in development and disease, and expand the use of chaperones as sensors for drug/target engagement. PMID:25036637

  9. Proof-of-Concept of a Millimeter-Wave Integrated Heterogeneous Network for 5G Cellular.

    PubMed

    Okasaka, Shozo; Weiler, Richard J; Keusgen, Wilhelm; Pudeyev, Andrey; Maltsev, Alexander; Karls, Ingolf; Sakaguchi, Kei

    2016-01-01

    The fifth-generation mobile networks (5G) will not only enhance mobile broadband services, but also enable connectivity for a massive number of Internet-of-Things devices, such as wireless sensors, meters or actuators. Thus, 5G is expected to achieve a 1000-fold or more increase in capacity over 4G. The use of the millimeter-wave (mmWave) spectrum is a key enabler to allowing 5G to achieve such enhancement in capacity. To fully utilize the mmWave spectrum, 5G is expected to adopt a heterogeneous network (HetNet) architecture, wherein mmWave small cells are overlaid onto a conventional macro-cellular network. In the mmWave-integrated HetNet, splitting of the control plane (CP) and user plane (UP) will allow continuous connectivity and increase the capacity of the mmWave small cells. mmWave communication can be used not only for access linking, but also for wireless backhaul linking, which will facilitate the installation of mmWave small cells. In this study, a proof-of-concept (PoC) was conducted to demonstrate the practicality of a prototype mmWave-integrated HetNet, using mmWave technologies for both backhaul and access. PMID:27571074

  10. Network, cellular, and molecular mechanisms underlying long-term memory formation.

    PubMed

    Carasatorre, Mariana; Ramírez-Amaya, Víctor

    2013-01-01

    The neural network stores information through activity-dependent synaptic plasticity that occurs in populations of neurons. Persistent forms of synaptic plasticity may account for long-term memory storage, and the most salient forms are the changes in the structure of synapses. The theory proposes that encoding should use a sparse code and evidence suggests that this can be achieved through offline reactivation or by sparse initial recruitment of the network units. This idea implies that in some cases the neurons that underwent structural synaptic plasticity might be a subpopulation of those originally recruited; However, it is not yet clear whether all the neurons recruited during acquisition are the ones that underwent persistent forms of synaptic plasticity and responsible for memory retrieval. To determine which neural units underlie long-term memory storage, we need to characterize which are the persistent forms of synaptic plasticity occurring in these neural ensembles and the best hints so far are the molecular signals underlying structural modifications of the synapses. Structural synaptic plasticity can be achieved by the activity of various signal transduction pathways, including the NMDA-CaMKII and ACh-MAPK. These pathways converge with the Rho family of GTPases and the consequent ERK 1/2 activation, which regulates multiple cellular functions such as protein translation, protein trafficking, and gene transcription. The most detailed explanation may come from models that allow us to determine the contribution of each piece of this fascinating puzzle that is the neuron and the neural network. PMID:22976275

  11. Firing patterns in a random network cellular automata model of the brain

    NASA Astrophysics Data System (ADS)

    Acedo, L.; Lamprianidou, E.; Moraño, J.-A.; Villanueva-Oller, J.; Villanueva, R.-J.

    2015-10-01

    One of the main challenges in the simulation of even reduced areas of the brain is the presence of a large number of neurons and a large number of connections among them. Even from a theoretical point of view, the behaviour of dynamical models of complex networks with high connectivity is unknown, precisely because the cost of computation is still unaffordable and it will likely be in the near future. In this paper we discuss the simulation of a cellular automata network model of the brain including up to one million sites with a maximum average of three hundred connections per neuron. This level of connectivity was achieved thanks to a distributed computing environment based on the BOINC (Berkeley Open Infrastructure for Network Computing) platform. Moreover, in this work we consider the interplay among excitatory neurons (which induce the excitation of their neighbours) and inhibitory neurons (which prevent resting neurons from firing and induce firing neurons to pass to the refractory state). Our objective is to classify the normal (noisy but asymptotically constant patterns) and the abnormal (high oscillations with spindle-like behaviour) patterns of activity in the model brain and their stability and parameter ranges in order to determine the role of excitatory and inhibitory compensatory effects in healthy and diseased individuals.

  12. Mesh2d

    2011-12-31

    Mesh2d is a Fortran90 program designed to generate two-dimensional structured grids of the form [x(i),y(i,j)] where [x,y] are grid coordinates identified by indices (i,j). The x(i) coordinates alone can be used to specify a one-dimensional grid. Because the x-coordinates vary only with the i index, a two-dimensional grid is composed in part of straight vertical lines. However, the nominally horizontal y(i,j0) coordinates along index i are permitted to undulate or otherwise vary. Mesh2d also assignsmore » an integer material type to each grid cell, mtyp(i,j), in a user-specified manner. The complete grid is specified through three separate input files defining the x(i), y(i,j), and mtyp(i,j) variations.« less

  13. Viral Replication Protein Inhibits Cellular Cofilin Actin Depolymerization Factor to Regulate the Actin Network and Promote Viral Replicase Assembly

    PubMed Central

    Kovalev, Nikolay; de Castro Martín, Isabel Fernández; Barajas, Daniel; Risco, Cristina; Nagy, Peter D.

    2016-01-01

    RNA viruses exploit host cells by co-opting host factors and lipids and escaping host antiviral responses. Previous genome-wide screens with Tomato bushy stunt virus (TBSV) in the model host yeast have identified 18 cellular genes that are part of the actin network. In this paper, we show that the p33 viral replication factor interacts with the cellular cofilin (Cof1p), which is an actin depolymerization factor. Using temperature-sensitive (ts) Cof1p or actin (Act1p) mutants at a semi-permissive temperature, we find an increased level of TBSV RNA accumulation in yeast cells and elevated in vitro activity of the tombusvirus replicase. We show that the large p33 containing replication organelle-like structures are located in the close vicinity of actin patches in yeast cells or around actin cable hubs in infected plant cells. Therefore, the actin filaments could be involved in VRC assembly and the formation of large viral replication compartments containing many individual VRCs. Moreover, we show that the actin network affects the recruitment of viral and cellular components, including oxysterol binding proteins and VAP proteins to form membrane contact sites for efficient transfer of sterols to the sites of replication. Altogether, the emerging picture is that TBSV, via direct interaction between the p33 replication protein and Cof1p, controls cofilin activities to obstruct the dynamic actin network that leads to efficient subversion of cellular factors for pro-viral functions. In summary, the discovery that TBSV interacts with cellular cofilin and blocks the severing of existing filaments and the formation of new actin filaments in infected cells opens a new window to unravel the way by which viruses could subvert/co-opt cellular proteins and lipids. By regulating the functions of cofilin and the actin network, which are central nodes in cellular pathways, viruses could gain supremacy in subversion of cellular factors for pro-viral functions. PMID:26863541

  14. Smart-Pixel Array Processors Based on Optimal Cellular Neural Networks for Space Sensor Applications

    NASA Technical Reports Server (NTRS)

    Fang, Wai-Chi; Sheu, Bing J.; Venus, Holger; Sandau, Rainer

    1997-01-01

    A smart-pixel cellular neural network (CNN) with hardware annealing capability, digitally programmable synaptic weights, and multisensor parallel interface has been under development for advanced space sensor applications. The smart-pixel CNN architecture is a programmable multi-dimensional array of optoelectronic neurons which are locally connected with their local neurons and associated active-pixel sensors. Integration of the neuroprocessor in each processor node of a scalable multiprocessor system offers orders-of-magnitude computing performance enhancements for on-board real-time intelligent multisensor processing and control tasks of advanced small satellites. The smart-pixel CNN operation theory, architecture, design and implementation, and system applications are investigated in detail. The VLSI (Very Large Scale Integration) implementation feasibility was illustrated by a prototype smart-pixel 5x5 neuroprocessor array chip of active dimensions 1380 micron x 746 micron in a 2-micron CMOS technology.

  15. Pesticide residue screening using a novel artificial neural network combined with a bioelectric cellular biosensor.

    PubMed

    Ferentinos, Konstantinos P; Yialouris, Costas P; Blouchos, Petros; Moschopoulou, Georgia; Kintzios, Spyridon

    2013-01-01

    We developed a novel artificial neural network (ANN) system able to detect and classify pesticide residues. The novel ANN is coupled, in a customized way, to a cellular biosensor operation based on the bioelectric recognition assay (BERA) and able to simultaneously assay eight samples in three minutes. The novel system was developed using the data (time series) of the electrophysiological responses of three different cultured cell lines against three different pesticide groups (carbamates, pyrethroids, and organophosphates). Using the novel system, we were able to classify correctly the presence of the investigated pesticide groups with an overall success rate of 83.6%. Considering that only 70,000-80,000 samples are annually tested in Europe with current conventional technologies (an extremely minor fraction of the actual screening needs), the system reported in the present study could contribute to a screening system milestone for the future landscape in food safety control.

  16. Multiscale Systems Analysis of Root Growth and Development: Modeling Beyond the Network and Cellular Scales

    PubMed Central

    Band, Leah R.; Fozard, John A.; Godin, Christophe; Jensen, Oliver E.; Pridmore, Tony; Bennett, Malcolm J.; King, John R.

    2012-01-01

    Over recent decades, we have gained detailed knowledge of many processes involved in root growth and development. However, with this knowledge come increasing complexity and an increasing need for mechanistic modeling to understand how those individual processes interact. One major challenge is in relating genotypes to phenotypes, requiring us to move beyond the network and cellular scales, to use multiscale modeling to predict emergent dynamics at the tissue and organ levels. In this review, we highlight recent developments in multiscale modeling, illustrating how these are generating new mechanistic insights into the regulation of root growth and development. We consider how these models are motivating new biological data analysis and explore directions for future research. This modeling progress will be crucial as we move from a qualitative to an increasingly quantitative understanding of root biology, generating predictive tools that accelerate the development of improved crop varieties. PMID:23110897

  17. Adaptive call admission control and resource allocation in multi server wireless/cellular network

    NASA Astrophysics Data System (ADS)

    Jain, Madhu; Mittal, Ragini

    2016-11-01

    The ever increasing demand of the subscribers has put pressure on the capacity of wireless networks around the world. To utilize the scare resources, in the present paper we propose an optimal allocation scheme for an integrated wireless/cellular model with handoff priority and handoff guarantee services. The suggested algorithm optimally allocates the resources in each cell and dynamically adjust threshold to control the admission. To give the priority to handoff calls over the new calls, the provision of guard channels and subrating scheme is taken into consideration. The handoff voice call may balk and renege from the system while waiting in the buffer. An iterative algorithm is implemented to generate the arrival rate of the handoff calls in each cell. Various performance indices are established in term of steady state probabilities. The sensitivity analysis has also been carried out to examine the tractability of algorithms and to explore the effects of system descriptors on the performance indices.

  18. Convergence and attractivity of memristor-based cellular neural networks with time delays.

    PubMed

    Qin, Sitian; Wang, Jun; Xue, Xiaoping

    2015-03-01

    This paper presents theoretical results on the convergence and attractivity of memristor-based cellular neural networks (MCNNs) with time delays. Based on a realistic memristor model, an MCNN is modeled using a differential inclusion. The essential boundedness of its global solutions is proven. The state of MCNNs is further proven to be convergent to a critical-point set located in saturated region of the activation function, when the initial state locates in a saturated region. It is shown that the state convergence time period is finite and can be quantitatively estimated using given parameters. Furthermore, the positive invariance and attractivity of state in non-saturated regions are also proven. The simulation results of several numerical examples are provided to substantiate the results.

  19. A novel method to assess human population exposure induced by a wireless cellular network.

    PubMed

    Varsier, Nadège; Plets, David; Corre, Yoann; Vermeeren, Günter; Joseph, Wout; Aerts, Sam; Martens, Luc; Wiart, Joe

    2015-09-01

    This paper presents a new metric to evaluate electromagnetic exposure induced by wireless cellular networks. This metric takes into account the exposure induced by base station antennas as well as exposure induced by wireless devices to evaluate average global exposure of the population in a specific geographical area. The paper first explains the concept and gives the formulation of the Exposure Index (EI). Then, the EI computation is illustrated through simple phone call scenarios (indoor office, in train) and a complete macro urban data long-term evolution scenario showing how, based on simulations, radio-planning predictions, realistic population statistics, user traffic data, and specific absorption rate calculations can be combined to assess the index. Bioelectromagnetics. 36:451-463, 2015. © 2015 Wiley Periodicals, Inc. PMID:26113174

  20. Modeling of trophospheric ozone concentrations using genetically trained multi-level cellular neural networks

    NASA Astrophysics Data System (ADS)

    Ozcan, H. Kurtulus; Bilgili, Erdem; Sahin, Ulku; Ucan, O. Nuri; Bayat, Cuma

    2007-09-01

    Tropospheric ozone concentrations, which are an important air pollutant, are modeled by the use of an artificial intelligence structure. Data obtained from air pollution measurement stations in the city of Istanbul are utilized in constituting the model. A supervised algorithm for the evaluation of ozone concentration using a genetically trained multi-level cellular neural network (ML-CNN) is introduced, developed, and applied to real data. A genetic algorithm is used in the optimization of CNN templates. The model results and the actual measurement results are compared and statistically evaluated. It is observed that seasonal changes in ozone concentrations are reflected effectively by the concentrations estimated by the multilevel-CNN model structure, with a correlation value of 0.57 ascertained between actual and model results. It is shown that the multilevel-CNN modeling technique is as satisfactory as other modeling techniques in associating the data in a complex medium in air pollution applications.

  1. A novel method to assess human population exposure induced by a wireless cellular network.

    PubMed

    Varsier, Nadège; Plets, David; Corre, Yoann; Vermeeren, Günter; Joseph, Wout; Aerts, Sam; Martens, Luc; Wiart, Joe

    2015-09-01

    This paper presents a new metric to evaluate electromagnetic exposure induced by wireless cellular networks. This metric takes into account the exposure induced by base station antennas as well as exposure induced by wireless devices to evaluate average global exposure of the population in a specific geographical area. The paper first explains the concept and gives the formulation of the Exposure Index (EI). Then, the EI computation is illustrated through simple phone call scenarios (indoor office, in train) and a complete macro urban data long-term evolution scenario showing how, based on simulations, radio-planning predictions, realistic population statistics, user traffic data, and specific absorption rate calculations can be combined to assess the index. Bioelectromagnetics. 36:451-463, 2015. © 2015 Wiley Periodicals, Inc.

  2. Multiscale systems analysis of root growth and development: modeling beyond the network and cellular scales.

    PubMed

    Band, Leah R; Fozard, John A; Godin, Christophe; Jensen, Oliver E; Pridmore, Tony; Bennett, Malcolm J; King, John R

    2012-10-01

    Over recent decades, we have gained detailed knowledge of many processes involved in root growth and development. However, with this knowledge come increasing complexity and an increasing need for mechanistic modeling to understand how those individual processes interact. One major challenge is in relating genotypes to phenotypes, requiring us to move beyond the network and cellular scales, to use multiscale modeling to predict emergent dynamics at the tissue and organ levels. In this review, we highlight recent developments in multiscale modeling, illustrating how these are generating new mechanistic insights into the regulation of root growth and development. We consider how these models are motivating new biological data analysis and explore directions for future research. This modeling progress will be crucial as we move from a qualitative to an increasingly quantitative understanding of root biology, generating predictive tools that accelerate the development of improved crop varieties.

  3. Global detection of live virtual machine migration based on cellular neural networks.

    PubMed

    Xie, Kang; Yang, Yixian; Zhang, Ling; Jing, Maohua; Xin, Yang; Li, Zhongxian

    2014-01-01

    In order to meet the demands of operation monitoring of large scale, autoscaling, and heterogeneous virtual resources in the existing cloud computing, a new method of live virtual machine (VM) migration detection algorithm based on the cellular neural networks (CNNs), is presented. Through analyzing the detection process, the parameter relationship of CNN is mapped as an optimization problem, in which improved particle swarm optimization algorithm based on bubble sort is used to solve the problem. Experimental results demonstrate that the proposed method can display the VM migration processing intuitively. Compared with the best fit heuristic algorithm, this approach reduces the processing time, and emerging evidence has indicated that this new approach is affordable to parallelism and analog very large scale integration (VLSI) implementation allowing the VM migration detection to be performed better. PMID:24959631

  4. Two years of country-wide rainfall maps employing cellular communication networks

    NASA Astrophysics Data System (ADS)

    Uijlenhoet, Remko; Overeem, Aart; Leijnse, Hidde; Rios Gaona, Manuel Felipe

    2014-05-01

    Accurate rainfall observations with high spatial and temporal resolutions are needed for hydrological applications, agriculture, meteorology, and climate monitoring. However, the majority of the land surface of the earth lacks accurate rainfall information and the number of rain gauges is even severely declining in Europe, South-America, and Africa. This calls for alternative sources of rainfall information. Various studies have shown that microwave links from operational cellular telecommunication networks may be employed for rainfall monitoring. Such networks cover 20% of the land surface of the earth and have a high density, especially in urban areas. The basic principle of rainfall monitoring using microwave links is as follows. Rainfall attenuates the electromagnetic signals transmitted from one telephone tower to another. By measuring the received power at one end of a microwave link as a function of time, the path-integrated attenuation due to rainfall can be calculated. Previous studies have shown that average rainfall intensities over the length of a link can be derived from the path-integrated attenuation. This is particularly interesting for those countries where few surface rainfall observations are available. Here we present almost two years of country-wide rainfall maps employing cellular communication networks. A data set from a commercial microwave link network over the Netherlands is analyzed, containing data from an unprecedented number of links (~ 2000) covering the land surface of the Netherlands (35500 square kilometers). This data set almost completely covers the years 2011 and 2012. Fifteen-minute and daily rainfall maps (1 km spatial resolution) are derived from the microwave link data and compared to maps from a gauge-adjusted radar data set. The performance of the rainfall retrieval algorithm will be studied, particularly differences in time and space. Time series of air temperature and snow from automatic weather stations, operated by the

  5. BioJazz: in silico evolution of cellular networks with unbounded complexity using rule-based modeling.

    PubMed

    Feng, Song; Ollivier, Julien F; Swain, Peter S; Soyer, Orkun S

    2015-10-30

    Systems biologists aim to decipher the structure and dynamics of signaling and regulatory networks underpinning cellular responses; synthetic biologists can use this insight to alter existing networks or engineer de novo ones. Both tasks will benefit from an understanding of which structural and dynamic features of networks can emerge from evolutionary processes, through which intermediary steps these arise, and whether they embody general design principles. As natural evolution at the level of network dynamics is difficult to study, in silico evolution of network models can provide important insights. However, current tools used for in silico evolution of network dynamics are limited to ad hoc computer simulations and models. Here we introduce BioJazz, an extendable, user-friendly tool for simulating the evolution of dynamic biochemical networks. Unlike previous tools for in silico evolution, BioJazz allows for the evolution of cellular networks with unbounded complexity by combining rule-based modeling with an encoding of networks that is akin to a genome. We show that BioJazz can be used to implement biologically realistic selective pressures and allows exploration of the space of network architectures and dynamics that implement prescribed physiological functions. BioJazz is provided as an open-source tool to facilitate its further development and use. Source code and user manuals are available at: http://oss-lab.github.io/biojazz and http://osslab.lifesci.warwick.ac.uk/BioJazz.aspx.

  6. Intragranular cellular segregation network structure strengthening 316L stainless steel prepared by selective laser melting

    NASA Astrophysics Data System (ADS)

    Zhong, Yuan; Liu, Leifeng; Wikman, Stefan; Cui, Daqing; Shen, Zhijian

    2016-03-01

    A feasibility study was performed to fabricate ITER In-Vessel components by Selective Laser Melting (SLM) supported by Fusion for Energy (F4E). Almost fully dense 316L stainless steel (SS316L) components were prepared from gas-atomized powder and with optimized SLM processing parameters. Tensile tests and Charpy-V tests were carried out at 22 °C and 250 °C and the results showed that SLM SS316L fulfill the RCC-MR code. Microstructure characterization reveals the presence of hierarchical macro-, micro- and nano-structures in as-built samples that were very different from SS316L microstructures prepared by other established methods. The formation of a characteristic intragranular cellular segregation network microstructure appears to contribute to the increase of yield strength without losing ductility. Silicon oxide nano-inclusions were formed during the SLM process that generated a micro-hardness fluctuation in the building direction. The combined influence of a cellular microstructure and the nano-inclusions constraints the size of ductile dimples to nano-scale. The crack propagation is hindered by a pinning effect that improves the defect-tolerance of the SLM SS316L. This work proves that it was possible to manufacture SS316L with properties suitable for ITER First Wall panels. Further studies on irradiation properties of SLM SS316L and manufacturing of larger real-size components are needed.

  7. Functional connectivity estimation over large networks at cellular resolution based on electrophysiological recordings and structural prior

    PubMed Central

    Ullo, Simona; Nieus, Thierry R.; Sona, Diego; Maccione, Alessandro; Berdondini, Luca; Murino, Vittorio

    2014-01-01

    Despite many structural and functional aspects of the brain organization have been extensively studied in neuroscience, we are still far from a clear understanding of the intricate structure-function interactions occurring in the multi-layered brain architecture, where billions of different neurons are involved. Although structure and function can individually convey a large amount of information, only a combined study of these two aspects can probably shade light on how brain circuits develop and operate at the cellular scale. Here, we propose a novel approach for refining functional connectivity estimates within neuronal networks using the structural connectivity as prior. This is done at the mesoscale, dealing with thousands of neurons while reaching, at the microscale, an unprecedented cellular resolution. The High-Density Micro Electrode Array (HD-MEA) technology, combined with fluorescence microscopy, offers the unique opportunity to acquire structural and functional data from large neuronal cultures approaching the granularity of the single cell. In this work, an advanced method based on probabilistic directional features and heat propagation is introduced to estimate the structural connectivity from the fluorescence image while functional connectivity graphs are obtained from the cross-correlation analysis of the spiking activity. Structural and functional information are then integrated by reweighting the functional connectivity graph based on the structural prior. Results show that the resulting functional connectivity estimates are more coherent with the network topology, as compared to standard measures purely based on cross-correlations and spatio-temporal filters. We finally use the obtained results to gain some insights on which features of the functional activity are more relevant to characterize actual neuronal interactions. PMID:25477790

  8. Functional connectivity estimation over large networks at cellular resolution based on electrophysiological recordings and structural prior.

    PubMed

    Ullo, Simona; Nieus, Thierry R; Sona, Diego; Maccione, Alessandro; Berdondini, Luca; Murino, Vittorio

    2014-01-01

    Despite many structural and functional aspects of the brain organization have been extensively studied in neuroscience, we are still far from a clear understanding of the intricate structure-function interactions occurring in the multi-layered brain architecture, where billions of different neurons are involved. Although structure and function can individually convey a large amount of information, only a combined study of these two aspects can probably shade light on how brain circuits develop and operate at the cellular scale. Here, we propose a novel approach for refining functional connectivity estimates within neuronal networks using the structural connectivity as prior. This is done at the mesoscale, dealing with thousands of neurons while reaching, at the microscale, an unprecedented cellular resolution. The High-Density Micro Electrode Array (HD-MEA) technology, combined with fluorescence microscopy, offers the unique opportunity to acquire structural and functional data from large neuronal cultures approaching the granularity of the single cell. In this work, an advanced method based on probabilistic directional features and heat propagation is introduced to estimate the structural connectivity from the fluorescence image while functional connectivity graphs are obtained from the cross-correlation analysis of the spiking activity. Structural and functional information are then integrated by reweighting the functional connectivity graph based on the structural prior. Results show that the resulting functional connectivity estimates are more coherent with the network topology, as compared to standard measures purely based on cross-correlations and spatio-temporal filters. We finally use the obtained results to gain some insights on which features of the functional activity are more relevant to characterize actual neuronal interactions. PMID:25477790

  9. Turning gold into 'junk': transposable elements utilize central proteins of cellular networks.

    PubMed

    Abrusán, György; Szilágyi, András; Zhang, Yang; Papp, Balázs

    2013-03-01

    The numerous discovered cases of domesticated transposable element (TE) proteins led to the recognition that TEs are a significant source of evolutionary innovation. However, much less is known about the reverse process, whether and to what degree the evolution of TEs is influenced by the genome of their hosts. We addressed this issue by searching for cases of incorporation of host genes into the sequence of TEs and examined the systems-level properties of these genes using the Saccharomyces cerevisiae and Drosophila melanogaster genomes. We identified 51 cases where the evolutionary scenario was the incorporation of a host gene fragment into a TE consensus sequence, and we show that both the yeast and fly homologues of the incorporated protein sequences have central positions in the cellular networks. An analysis of selective pressure (Ka/Ks ratio) detected significant selection in 37% of the cases. Recent research on retrovirus-host interactions shows that virus proteins preferentially target hubs of the host interaction networks enabling them to take over the host cell using only a few proteins. We propose that TEs face a similar evolutionary pressure to evolve proteins with high interacting capacities and take some of the necessary protein domains directly from their hosts.

  10. Trans-species learning of cellular signaling systems with bimodal deep belief networks

    PubMed Central

    Chen, Lujia; Cai, Chunhui; Chen, Vicky; Lu, Xinghua

    2015-01-01

    Motivation: Model organisms play critical roles in biomedical research of human diseases and drug development. An imperative task is to translate information/knowledge acquired from model organisms to humans. In this study, we address a trans-species learning problem: predicting human cell responses to diverse stimuli, based on the responses of rat cells treated with the same stimuli. Results: We hypothesized that rat and human cells share a common signal-encoding mechanism but employ different proteins to transmit signals, and we developed a bimodal deep belief network and a semi-restricted bimodal deep belief network to represent the common encoding mechanism and perform trans-species learning. These ‘deep learning’ models include hierarchically organized latent variables capable of capturing the statistical structures in the observed proteomic data in a distributed fashion. The results show that the models significantly outperform two current state-of-the-art classification algorithms. Our study demonstrated the potential of using deep hierarchical models to simulate cellular signaling systems. Availability and implementation: The software is available at the following URL: http://pubreview.dbmi.pitt.edu/TransSpeciesDeepLearning/. The data are available through SBV IMPROVER website, https://www.sbvimprover.com/challenge-2/overview, upon publication of the report by the organizers. Contact: xinghua@pitt.edu Supplementary information: Supplementary data are available at Bioinformatics online. PMID:25995230

  11. Energy-Efficient Crowdsensing of Human Mobility and Signal Levels in Cellular Networks.

    PubMed

    Foremski, Paweł; Gorawski, Michał; Grochla, Krzysztof; Polys, Konrad

    2015-09-02

    The paper presents a practical application of the crowdsensing idea to measure human mobility and signal coverage in cellular networks. Currently, virtually everyone is carrying a mobile phone, which may be used as a sensor to gather research data by measuring, e.g., human mobility and radio signal levels. However, many users are unwilling to participate in crowdsensing experiments. This work begins with the analysis of the barriers for engaging people in crowdsensing. A survey showed that people who agree to participate in crowdsensing expect a minimum impact on their battery lifetime and phone usage habits. To address these requirements, this paper proposes an application for measuring the location and signal strength data based on energy-efficient GPS tracking, which allows one to perform the measurements of human mobility and radio signal levels with minimum energy utilization and without any engagement of the user. The method described combines measurements from the accelerometer with effective management of the GPS to monitor the user mobility with the decrease in battery lifetime by approximately 20%. To show the applicability of the proposed platform, the sample results of signal level distribution and coverage maps gathered for an LTE network and representing human mobility are shown.

  12. An empirical Bayesian approach for model-based inference of cellular signaling networks

    PubMed Central

    2009-01-01

    Background A common challenge in systems biology is to infer mechanistic descriptions of biological process given limited observations of a biological system. Mathematical models are frequently used to represent a belief about the causal relationships among proteins within a signaling network. Bayesian methods provide an attractive framework for inferring the validity of those beliefs in the context of the available data. However, efficient sampling of high-dimensional parameter space and appropriate convergence criteria provide barriers for implementing an empirical Bayesian approach. The objective of this study was to apply an Adaptive Markov chain Monte Carlo technique to a typical study of cellular signaling pathways. Results As an illustrative example, a kinetic model for the early signaling events associated with the epidermal growth factor (EGF) signaling network was calibrated against dynamic measurements observed in primary rat hepatocytes. A convergence criterion, based upon the Gelman-Rubin potential scale reduction factor, was applied to the model predictions. The posterior distributions of the parameters exhibited complicated structure, including significant covariance between specific parameters and a broad range of variance among the parameters. The model predictions, in contrast, were narrowly distributed and were used to identify areas of agreement among a collection of experimental studies. Conclusion In summary, an empirical Bayesian approach was developed for inferring the confidence that one can place in a particular model that describes signal transduction mechanisms and for inferring inconsistencies in experimental measurements. PMID:19900289

  13. Energy-Efficient Crowdsensing of Human Mobility and Signal Levels in Cellular Networks

    PubMed Central

    Foremski, Paweł; Gorawski, Michał; Grochla, Krzysztof; Polys, Konrad

    2015-01-01

    The paper presents a practical application of the crowdsensing idea to measure human mobility and signal coverage in cellular networks. Currently, virtually everyone is carrying a mobile phone, which may be used as a sensor to gather research data by measuring, e.g., human mobility and radio signal levels. However, many users are unwilling to participate in crowdsensing experiments. This work begins with the analysis of the barriers for engaging people in crowdsensing. A survey showed that people who agree to participate in crowdsensing expect a minimum impact on their battery lifetime and phone usage habits. To address these requirements, this paper proposes an application for measuring the location and signal strength data based on energy-efficient GPS tracking, which allows one to perform the measurements of human mobility and radio signal levels with minimum energy utilization and without any engagement of the user. The method described combines measurements from the accelerometer with effective management of the GPS to monitor the user mobility with the decrease in battery lifetime by approximately 20%. To show the applicability of the proposed platform, the sample results of signal level distribution and coverage maps gathered for an LTE network and representing human mobility are shown. PMID:26340633

  14. Cellular Nonlinear Networks for the emergence of perceptual states: application to robot navigation control.

    PubMed

    Arena, Paolo; De Fiore, Sebastiano; Patané, Luca

    2009-01-01

    In this paper a new general purpose perceptual control architecture, based on nonlinear neural lattices, is presented and applied to solve robot navigation tasks. Insects show the ability to react to certain stimuli with simple reflexes, using direct sensory-motor pathways, which can be considered as basic behaviors, inherited and pre-wired. Relevant brain centres, known as Mushroom Bodies (MB) and Central Complex (CX) were recently identified in insects: though their functional details are not yet fully understood, it is known that they provide secondary pathways allowing the emergence of cognitive behaviors. These are gained through the coordination of the basic abilities to satisfy the insect's needs. Taking inspiration from this evidence, our architecture modulates, through a reinforcement learning, a set of competitive and concurrent basic behaviors in order to accomplish the task assigned through a reward function. The core of the architecture is constituted by the so-called Representation layer, used to create a concise picture of the current environment situation, fusing together different stimuli for the emergence of perceptual states. These perceptual states are steady state solutions of lattices of Reaction-Diffusion Cellular Nonlinear Networks (RD-CNN), designed to show Turing patterns. The exploitation of the dynamics of the multiple equilibria of the network is emphasized through the adaptive shaping of the basins of attraction for each emerged pattern. New experimental campaigns on standard robotic platforms are reported to demonstrate the potentiality and the effectiveness of the approach. PMID:19596552

  15. Cellular Nonlinear Networks for the emergence of perceptual states: application to robot navigation control.

    PubMed

    Arena, Paolo; De Fiore, Sebastiano; Patané, Luca

    2009-01-01

    In this paper a new general purpose perceptual control architecture, based on nonlinear neural lattices, is presented and applied to solve robot navigation tasks. Insects show the ability to react to certain stimuli with simple reflexes, using direct sensory-motor pathways, which can be considered as basic behaviors, inherited and pre-wired. Relevant brain centres, known as Mushroom Bodies (MB) and Central Complex (CX) were recently identified in insects: though their functional details are not yet fully understood, it is known that they provide secondary pathways allowing the emergence of cognitive behaviors. These are gained through the coordination of the basic abilities to satisfy the insect's needs. Taking inspiration from this evidence, our architecture modulates, through a reinforcement learning, a set of competitive and concurrent basic behaviors in order to accomplish the task assigned through a reward function. The core of the architecture is constituted by the so-called Representation layer, used to create a concise picture of the current environment situation, fusing together different stimuli for the emergence of perceptual states. These perceptual states are steady state solutions of lattices of Reaction-Diffusion Cellular Nonlinear Networks (RD-CNN), designed to show Turing patterns. The exploitation of the dynamics of the multiple equilibria of the network is emphasized through the adaptive shaping of the basins of attraction for each emerged pattern. New experimental campaigns on standard robotic platforms are reported to demonstrate the potentiality and the effectiveness of the approach.

  16. Measurement and interpolation uncertainties in rainfall maps from cellular communication networks

    NASA Astrophysics Data System (ADS)

    Rios Gaona, M. F.; Overeem, A.; Leijnse, H.; Uijlenhoet, R.

    2015-08-01

    compared against quality-controlled gauge-adjusted radar rainfall fields (assumed to be the ground truth). Thus, we were able to not only identify and quantify the sources of uncertainty in such rainfall maps, but also test the actual and optimal performance of one commercial microwave network from one of the cellular providers in the Netherlands. Errors in microwave link measurements were found to be the source that contributes most to the overall uncertainty.

  17. Protein-protein interaction networks identify targets which rescue the MPP+ cellular model of Parkinson’s disease

    NASA Astrophysics Data System (ADS)

    Keane, Harriet; Ryan, Brent J.; Jackson, Brendan; Whitmore, Alan; Wade-Martins, Richard

    2015-11-01

    Neurodegenerative diseases are complex multifactorial disorders characterised by the interplay of many dysregulated physiological processes. As an exemplar, Parkinson’s disease (PD) involves multiple perturbed cellular functions, including mitochondrial dysfunction and autophagic dysregulation in preferentially-sensitive dopamine neurons, a selective pathophysiology recapitulated in vitro using the neurotoxin MPP+. Here we explore a network science approach for the selection of therapeutic protein targets in the cellular MPP+ model. We hypothesised that analysis of protein-protein interaction networks modelling MPP+ toxicity could identify proteins critical for mediating MPP+ toxicity. Analysis of protein-protein interaction networks constructed to model the interplay of mitochondrial dysfunction and autophagic dysregulation (key aspects of MPP+ toxicity) enabled us to identify four proteins predicted to be key for MPP+ toxicity (P62, GABARAP, GBRL1 and GBRL2). Combined, but not individual, knockdown of these proteins increased cellular susceptibility to MPP+ toxicity. Conversely, combined, but not individual, over-expression of the network targets provided rescue of MPP+ toxicity associated with the formation of autophagosome-like structures. We also found that modulation of two distinct proteins in the protein-protein interaction network was necessary and sufficient to mitigate neurotoxicity. Together, these findings validate our network science approach to multi-target identification in complex neurological diseases.

  18. Protein-protein interaction networks identify targets which rescue the MPP+ cellular model of Parkinson’s disease

    PubMed Central

    Keane, Harriet; Ryan, Brent J.; Jackson, Brendan; Whitmore, Alan; Wade-Martins, Richard

    2015-01-01

    Neurodegenerative diseases are complex multifactorial disorders characterised by the interplay of many dysregulated physiological processes. As an exemplar, Parkinson’s disease (PD) involves multiple perturbed cellular functions, including mitochondrial dysfunction and autophagic dysregulation in preferentially-sensitive dopamine neurons, a selective pathophysiology recapitulated in vitro using the neurotoxin MPP+. Here we explore a network science approach for the selection of therapeutic protein targets in the cellular MPP+ model. We hypothesised that analysis of protein-protein interaction networks modelling MPP+ toxicity could identify proteins critical for mediating MPP+ toxicity. Analysis of protein-protein interaction networks constructed to model the interplay of mitochondrial dysfunction and autophagic dysregulation (key aspects of MPP+ toxicity) enabled us to identify four proteins predicted to be key for MPP+ toxicity (P62, GABARAP, GBRL1 and GBRL2). Combined, but not individual, knockdown of these proteins increased cellular susceptibility to MPP+ toxicity. Conversely, combined, but not individual, over-expression of the network targets provided rescue of MPP+ toxicity associated with the formation of autophagosome-like structures. We also found that modulation of two distinct proteins in the protein-protein interaction network was necessary and sufficient to mitigate neurotoxicity. Together, these findings validate our network science approach to multi-target identification in complex neurological diseases. PMID:26608097

  19. Ligand-controlled assembly of Cd(II) coordination polymers based on mixed ligands of naphthalene-dicarboxylate and dipyrido[3,2-d:2‧,3‧-f]quinoxaline: From 0D+1D cocrystal, 2D rectangular network (4,4), to 3D PtS-type architecture

    NASA Astrophysics Data System (ADS)

    Liu, Guocheng; Chen, Yongqiang; Wang, Xiuli; Chen, Baokuan; Lin, Hongyan

    2009-03-01

    Three novel Cd(II) coordination polymers, namely, [Cd(Dpq)(1,8-NDC)(H 2O) 2][Cd(Dpq)(1,8-NDC)]·2H 2O ( 1), [Cd(Dpq)(1,4-NDC)(H 2O)] ( 2), and [Cd(Dpq)(2,6-NDC)] ( 3) have been obtained from hydrothermal reactions of cadmium(II) nitrate with the mixed ligands dipyrido [3,2-d:2',3'-f]quinoxaline (Dpq) and three structurally related naphthalene-dicarboxylate ligands [1,8-naphthalene-dicarboxylic acid (1,8-H 2NDC), 1,4-naphthalene-dicarboxylic acid (1,4-H 2NDC), and 2,6-naphthalene-dicarboxylic acid (2,6-H 2NDC)]. Single-crystal X-ray diffraction analysis reveals that the three polymers exhibit novel structures due to different naphthalene-dicarboxylic acid. Compound 1 is a novel cocrystal of left- and right-handed helical chains and binuclear complexes and ultimately packed into a 3D supramolecular structure through hydrogen bonds and π- π stacking interactions. Compound 2 shows a 2D rectangular network (4,4) bridged by 1,4-NDC with two kinds of coordination modes and ultimately packed into a 3D supramolecular structure through inter-layer π- π stacking interactions. Compound 3 is a new 3D coordination polymer with distorted PtS-type network. In addition, the title compounds exhibit blue/green emission in solid state at room temperature.

  20. Ligand-controlled assembly of Cd(II) coordination polymers based on mixed ligands of naphthalene-dicarboxylate and dipyrido[3,2-d:2',3'-f]quinoxaline: From 0D+1D cocrystal, 2D rectangular network (4,4), to 3D PtS-type architecture

    SciTech Connect

    Liu Guocheng; Chen Yongqiang; Wang Xiuli Chen Baokuan; Lin Hongyan

    2009-03-15

    Three novel Cd(II) coordination polymers, namely, [Cd(Dpq)(1,8-NDC)(H{sub 2}O){sub 2}][Cd(Dpq)(1,8-NDC)].2H{sub 2}O (1), [Cd(Dpq)(1,4-NDC)(H{sub 2}O)] (2), and [Cd(Dpq)(2,6-NDC)] (3) have been obtained from hydrothermal reactions of cadmium(II) nitrate with the mixed ligands dipyrido [3,2-d:2',3'-f]quinoxaline (Dpq) and three structurally related naphthalene-dicarboxylate ligands [1,8-naphthalene-dicarboxylic acid (1,8-H{sub 2}NDC), 1,4-naphthalene-dicarboxylic acid (1,4-H{sub 2}NDC), and 2,6-naphthalene-dicarboxylic acid (2,6-H{sub 2}NDC)]. Single-crystal X-ray diffraction analysis reveals that the three polymers exhibit novel structures due to different naphthalene-dicarboxylic acid. Compound 1 is a novel cocrystal of left- and right-handed helical chains and binuclear complexes and ultimately packed into a 3D supramolecular structure through hydrogen bonds and {pi}-{pi} stacking interactions. Compound 2 shows a 2D rectangular network (4,4) bridged by 1,4-NDC with two kinds of coordination modes and ultimately packed into a 3D supramolecular structure through inter-layer {pi}-{pi} stacking interactions. Compound 3 is a new 3D coordination polymer with distorted PtS-type network. In addition, the title compounds exhibit blue/green emission in solid state at room temperature. - Graphical abstract: Three novel Cd(II) compounds have been synthesized under hydrothermal conditions exhibiting a systematic variation of architecture by the employment of three structurally related naphthalene-dicarboxylate ligands.

  1. Simulation of Cardiac Arrhythmias Using a 2D Heterogeneous Whole Heart Model.

    PubMed

    Balakrishnan, Minimol; Chakravarthy, V Srinivasa; Guhathakurta, Soma

    2015-01-01

    Simulation studies of cardiac arrhythmias at the whole heart level with electrocardiogram (ECG) gives an understanding of how the underlying cell and tissue level changes manifest as rhythm disturbances in the ECG. We present a 2D whole heart model (WHM2D) which can accommodate variations at the cellular level and can generate the ECG waveform. It is shown that, by varying cellular-level parameters like the gap junction conductance (GJC), excitability, action potential duration (APD) and frequency of oscillations of the auto-rhythmic cell in WHM2D a large variety of cardiac arrhythmias can be generated including sinus tachycardia, sinus bradycardia, sinus arrhythmia, sinus pause, junctional rhythm, Wolf Parkinson White syndrome and all types of AV conduction blocks. WHM2D includes key components of the electrical conduction system of the heart like the SA (Sino atrial) node cells, fast conducting intranodal pathways, slow conducting atriovenctricular (AV) node, bundle of His cells, Purkinje network, atrial, and ventricular myocardial cells. SA nodal cells, AV nodal cells, bundle of His cells, and Purkinje cells are represented by the Fitzhugh-Nagumo (FN) model which is a reduced model of the Hodgkin-Huxley neuron model. The atrial and ventricular myocardial cells are modeled by the Aliev-Panfilov (AP) two-variable model proposed for cardiac excitation. WHM2D can prove to be a valuable clinical tool for understanding cardiac arrhythmias.

  2. Simulation of Cardiac Arrhythmias Using a 2D Heterogeneous Whole Heart Model

    PubMed Central

    Balakrishnan, Minimol; Chakravarthy, V. Srinivasa; Guhathakurta, Soma

    2015-01-01

    Simulation studies of cardiac arrhythmias at the whole heart level with electrocardiogram (ECG) gives an understanding of how the underlying cell and tissue level changes manifest as rhythm disturbances in the ECG. We present a 2D whole heart model (WHM2D) which can accommodate variations at the cellular level and can generate the ECG waveform. It is shown that, by varying cellular-level parameters like the gap junction conductance (GJC), excitability, action potential duration (APD) and frequency of oscillations of the auto-rhythmic cell in WHM2D a large variety of cardiac arrhythmias can be generated including sinus tachycardia, sinus bradycardia, sinus arrhythmia, sinus pause, junctional rhythm, Wolf Parkinson White syndrome and all types of AV conduction blocks. WHM2D includes key components of the electrical conduction system of the heart like the SA (Sino atrial) node cells, fast conducting intranodal pathways, slow conducting atriovenctricular (AV) node, bundle of His cells, Purkinje network, atrial, and ventricular myocardial cells. SA nodal cells, AV nodal cells, bundle of His cells, and Purkinje cells are represented by the Fitzhugh-Nagumo (FN) model which is a reduced model of the Hodgkin-Huxley neuron model. The atrial and ventricular myocardial cells are modeled by the Aliev-Panfilov (AP) two-variable model proposed for cardiac excitation. WHM2D can prove to be a valuable clinical tool for understanding cardiac arrhythmias. PMID:26733873

  3. Noise-robust realization of Turing-complete cellular automata by using neural networks with pattern representation

    NASA Astrophysics Data System (ADS)

    Oku, Makito; Aihara, Kazuyuki

    2010-11-01

    A modularly-structured neural network model is considered. Each module, which we call a ‘cell’, consists of two parts: a Hopfield neural network model and a multilayered perceptron. An array of such cells is used to simulate the Rule 110 cellular automaton with high accuracy even when all the units of neural networks are replaced by stochastic binary ones. We also find that noise not only degrades but also facilitates computation if the outputs of multilayered perceptrons are below the threshold required to update the states of the cells, which is a stochastic resonance in computation.

  4. Simultaneous imaging of the topography and electrochemical activity of a 2D carbon nanotube network using a dual functional L-shaped nanoprobe.

    PubMed

    Lee, Eunjoo; Sung, Jungwoo; An, Taechang; Shin, Heungjoo; Nam, Hong Gil; Lim, Geunbae

    2015-05-01

    The application of nanomaterials for biosensors and fuel cells is becoming more common, but it requires an understanding of the relationship between the structure and electrochemical characteristics of the materials at the nanoscale. Herein, we report the development of scanning electrochemical microscopy-atomic force microscopy (SECM-AFM) nanoprobes for collecting spatially resolved data regarding the electrochemical activity of nanomaterials such as carbon nanotube (CNT) networks. The fabrication of the nanoprobe begins with the integration of a CNT-bundle wire into a conventional AFM probe followed by the deposition of an insulating layer and cutting of the probe end. In addition, a protrusive insulating tip is integrated at the end of the insulated CNT-bundle wire to maintain a constant distance between the nanoelectrode and the substrate; this yields an L-shaped nanoprobe. The resulting nanoprobes produced well-fitted maps of faradaic current data with less than 300 nm spatial resolution and topographical images of CNT networks owing to the small effective distance (of the order of tens of nanometers) between the electrode and the substrate. Electrochemical imaging using the L-shaped nanoprobe revealed that the electrochemical activity of the CNT network is not homogeneous and provided further understanding of the relationship between the topography and electrochemical characteristics of CNT networks.

  5. Astrocytic gap junctional networks suppress cellular damage in an in vitro model of ischemia

    SciTech Connect

    Shinotsuka, Takanori; Yasui, Masato; Nuriya, Mutsuo

    2014-02-07

    Highlights: • Astrocytes exhibit characteristic changes in [Ca{sup 2+}]{sub i} under OGD. • Astrocytic [Ca{sup 2+}]{sub i} increase is synchronized with a neuronal anoxic depolarization. • Gap junctional couplings protect neurons as well as astrocytes during OGD. - Abstract: Astrocytes play pivotal roles in both the physiology and the pathophysiology of the brain. They communicate with each other via extracellular messengers as well as through gap junctions, which may exacerbate or protect against pathological processes in the brain. However, their roles during the acute phase of ischemia and the underlying cellular mechanisms remain largely unknown. To address this issue, we imaged changes in the intracellular calcium concentration ([Ca{sup 2+}]{sub i}) in astrocytes in mouse cortical slices under oxygen/glucose deprivation (OGD) condition using two-photon microscopy. Under OGD, astrocytes showed [Ca{sup 2+}]{sub i} oscillations followed by larger and sustained [Ca{sup 2+}]{sub i} increases. While the pharmacological blockades of astrocytic receptors for glutamate and ATP had no effect, the inhibitions of gap junctional intercellular coupling between astrocytes significantly advanced the onset of the sustained [Ca{sup 2+}]{sub i} increase after OGD exposure. Interestingly, the simultaneous recording of the neuronal membrane potential revealed that the onset of the sustained [Ca{sup 2+}]{sub i} increase in astrocytes was synchronized with the appearance of neuronal anoxic depolarization. Furthermore, the blockade of gap junctional coupling resulted in a concurrent faster appearance of neuronal depolarizations, which remain synchronized with the sustained [Ca{sup 2+}]{sub i} increase in astrocytes. These results indicate that astrocytes delay the appearance of the pathological responses of astrocytes and neurons through their gap junction-mediated intercellular network under OGD. Thus, astrocytic gap junctional networks provide protection against tissue damage

  6. Adiponectin fine-tuning of liver regeneration dynamics revealed through cellular network modelling.

    PubMed

    Correnti, Jason M; Cook, Daniel; Aksamitiene, Edita; Swarup, Aditi; Ogunnaike, Babatunde; Vadigepalli, Rajanikanth; Hoek, Jan B

    2015-01-15

    Following partial hepatectomy, the liver initiates a regenerative programme involving hepatocyte priming and replication driven by the coordinated actions of cytokine and growth factors. We investigated the mechanisms underlying adiponectin's (Adn) regulation of liver regeneration through modulation of these mediators. Adn(-/-) mice showed delayed onset of hepatocyte replication, but accelerated cell cycle progression relative to wild-type mice, suggesting Adn has multiple effects fine-tuning the kinetics of liver regeneration. We developed a computational model describing the molecular and physiological kinetics of liver regeneration in Adn(-/-) mice. We employed this computational model to evaluate the underlying regulatory mechanisms. Our analysis predicted that Adn is required for an efficient early cytokine response to partial hepatectomy, but is inhibitory to later growth factor actions. Consistent with this prediction, Adn knockout reduced hepatocyte responses to interleukin-6 during the priming phase, but enhanced growth factor levels through peak hepatocyte replication. By contrast, supraphysiological concentrations of Adn resulting from rosiglitazone treatment suppressed regeneration by reducing growth factor levels during S phase, consistent with computational predictions. Together, these results revealed that Adn fine-tunes the progression of liver regeneration through dynamically modulating molecular mediator networks and cellular interactions within the liver.

  7. Data fusion and classification using a hybrid intrinsic cellular inference network

    NASA Astrophysics Data System (ADS)

    Woodley, Robert; Walenz, Brett; Seiffertt, John; Robinette, Paul; Wunsch, Donald

    2010-04-01

    Hybrid Intrinsic Cellular Inference Network (HICIN) is designed for battlespace decision support applications. We developed an automatic method of generating hypotheses for an entity-attribute classifier. The capability and effectiveness of a domain specific ontology was used to generate automatic categories for data classification. Heterogeneous data is clustered using an Adaptive Resonance Theory (ART) inference engine on a sample (unclassified) data set. The data set is the Lahman baseball database. The actual data is immaterial to the architecture, however, parallels in the data can be easily drawn (i.e., "Team" maps to organization, "Runs scored/allowed" to Measure of organization performance (positive/negative), "Payroll" to organization resources, etc.). Results show that HICIN classifiers create known inferences from the heterogonous data. These inferences are not explicitly stated in the ontological description of the domain and are strictly data driven. HICIN uses data uncertainty handling to reduce errors in the classification. The uncertainty handling is based on subjective logic. The belief mass allows evidence from multiple sources to be mathematically combined to increase or discount an assertion. In military operations the ability to reduce uncertainty will be vital in the data fusion operation.

  8. A universal concept based on cellular neural networks for ultrafast and flexible solving of differential equations.

    PubMed

    Chedjou, Jean Chamberlain; Kyamakya, Kyandoghere

    2015-04-01

    This paper develops and validates a comprehensive and universally applicable computational concept for solving nonlinear differential equations (NDEs) through a neurocomputing concept based on cellular neural networks (CNNs). High-precision, stability, convergence, and lowest-possible memory requirements are ensured by the CNN processor architecture. A significant challenge solved in this paper is that all these cited computing features are ensured in all system-states (regular or chaotic ones) and in all bifurcation conditions that may be experienced by NDEs.One particular quintessence of this paper is to develop and demonstrate a solver concept that shows and ensures that CNN processors (realized either in hardware or in software) are universal solvers of NDE models. The solving logic or algorithm of given NDEs (possible examples are: Duffing, Mathieu, Van der Pol, Jerk, Chua, Rössler, Lorenz, Burgers, and the transport equations) through a CNN processor system is provided by a set of templates that are computed by our comprehensive templates calculation technique that we call nonlinear adaptive optimization. This paper is therefore a significant contribution and represents a cutting-edge real-time computational engineering approach, especially while considering the various scientific and engineering applications of this ultrafast, energy-and-memory-efficient, and high-precise NDE solver concept. For illustration purposes, three NDE models are demonstratively solved, and related CNN templates are derived and used: the periodically excited Duffing equation, the Mathieu equation, and the transport equation. PMID:25794380

  9. A universal concept based on cellular neural networks for ultrafast and flexible solving of differential equations.

    PubMed

    Chedjou, Jean Chamberlain; Kyamakya, Kyandoghere

    2015-04-01

    This paper develops and validates a comprehensive and universally applicable computational concept for solving nonlinear differential equations (NDEs) through a neurocomputing concept based on cellular neural networks (CNNs). High-precision, stability, convergence, and lowest-possible memory requirements are ensured by the CNN processor architecture. A significant challenge solved in this paper is that all these cited computing features are ensured in all system-states (regular or chaotic ones) and in all bifurcation conditions that may be experienced by NDEs.One particular quintessence of this paper is to develop and demonstrate a solver concept that shows and ensures that CNN processors (realized either in hardware or in software) are universal solvers of NDE models. The solving logic or algorithm of given NDEs (possible examples are: Duffing, Mathieu, Van der Pol, Jerk, Chua, Rössler, Lorenz, Burgers, and the transport equations) through a CNN processor system is provided by a set of templates that are computed by our comprehensive templates calculation technique that we call nonlinear adaptive optimization. This paper is therefore a significant contribution and represents a cutting-edge real-time computational engineering approach, especially while considering the various scientific and engineering applications of this ultrafast, energy-and-memory-efficient, and high-precise NDE solver concept. For illustration purposes, three NDE models are demonstratively solved, and related CNN templates are derived and used: the periodically excited Duffing equation, the Mathieu equation, and the transport equation.

  10. A Proposal for Energy-Efficient Cellular Neural Network Based on Spintronic Devices

    NASA Astrophysics Data System (ADS)

    Pan, Chenyun; Naeemi, Azad

    2016-09-01

    Due to the massive parallel computing capability and outstanding image and signal processing performance, cellular neural network (CNN) is one promising type of non-Boolean computing system that can outperform the traditional digital logic computation and mitigate the physical scaling limit of the conventional CMOS technology. The CNN was originally implemented by VLSI analog technologies with operational amplifiers and operational transconductance amplifiers as neurons and synapses, respectively, which are power and area consuming. In this paper, we propose a hybrid structure to implement the CNN with magnetic components and CMOS peripherals with a complete driving and sensing circuitry. In addition, we propose a digitally programmable magnetic synapse that can achieve both positive and negative values of the templates. After rigorous performance analyses and comparisons, optimal energy is achieved based on various design parameters, including the driving voltage and the CMOS driving size. At a comparable footprint area and operation speed, a spintronic CNN is projected to achieve more than one order of magnitude energy reduction per operation compared to its CMOS counterpart.

  11. Memristor-based cellular nonlinear/neural network: design, analysis, and applications.

    PubMed

    Duan, Shukai; Hu, Xiaofang; Dong, Zhekang; Wang, Lidan; Mazumder, Pinaki

    2015-06-01

    Cellular nonlinear/neural network (CNN) has been recognized as a powerful massively parallel architecture capable of solving complex engineering problems by performing trillions of analog operations per second. The memristor was theoretically predicted in the late seventies, but it garnered nascent research interest due to the recent much-acclaimed discovery of nanocrossbar memories by engineers at the Hewlett-Packard Laboratory. The memristor is expected to be co-integrated with nanoscale CMOS technology to revolutionize conventional von Neumann as well as neuromorphic computing. In this paper, a compact CNN model based on memristors is presented along with its performance analysis and applications. In the new CNN design, the memristor bridge circuit acts as the synaptic circuit element and substitutes the complex multiplication circuit used in traditional CNN architectures. In addition, the negative differential resistance and nonlinear current-voltage characteristics of the memristor have been leveraged to replace the linear resistor in conventional CNNs. The proposed CNN design has several merits, for example, high density, nonvolatility, and programmability of synaptic weights. The proposed memristor-based CNN design operations for implementing several image processing functions are illustrated through simulation and contrasted with conventional CNNs. Monte-Carlo simulation has been used to demonstrate the behavior of the proposed CNN due to the variations in memristor synaptic weights.

  12. The potential of cellular network infrastructures for sudden rainfall monitoring in dry climate regions

    NASA Astrophysics Data System (ADS)

    David, N.; Alpert, P.; Messer, H.

    2013-09-01

    Monitoring of precipitation and in particular sudden rain, in rural dry climate regions, is a subject of great significance in several weather related processes such as soil erosion, flash flooding, triggering epidemics and more. The rainfall monitoring facilities in these regions and as a result precipitation data are, however, commonly, severely lacking. As was recently shown, cellular networks infrastructures supply high resolution precipitation measurements at ground level while often being situated in dry areas, covering large parts of these climatic zones. The potential found in these systems to provide early monitoring and essential precipitation information, directly from arid regions, based on standard measurements of commercial microwave links, is exemplified here over the Negev and the Southern Judean desert, South Israel. We present the results of two different rainfall events occurred in these regions. It is shown that the microwave system measured precipitation between at least 50 min (in case 1) and at least 1 h and 40 min (in case 2) before each of the sparse rain gauges. During each case, the radar system, located relatively far from the arid sites, provided measurements from heights of at least 1500 m and 2000 m above surface, respectively. A third case study demonstrates a relative advantage of microwave links to measure precipitation intensity with respect to the radar system, over an area of complex topography located in northeastern Israel, which is relatively far (~ 150 km) from the radar.

  13. Modeling urban land use changes in Lanzhou based on artificial neural network and cellular automata

    NASA Astrophysics Data System (ADS)

    Xu, Xibao; Zhang, Jianming; Zhou, Xiaojian

    2008-10-01

    This paper presented a model to simulate urban land use changes based on artificial neural network (ANN) and cellular automata (CA). The model was scaled down at the intra-urban level with subtle land use categorization, developed with Matlab 7.2 and loosely coupled with GIS. Urban land use system is a very complicated non-linear social system influenced by many factors. In this paper, four aspects of a totality 17 factors, including physical, social-economic, neighborhoods and policy, were considered synthetically. ANN was proposed as a solution of CA model calibration through its training to acquire the multitudinous parameters as a substitute for the complex transition rules. A stochastic perturbation parameter v was added into the model, and five different scenarios with different values of v and the threshold were designed for simulations and predictions to explore their effects on urban land use changes. Simulations of 2005 and predictions of 2015 under the five different scenarios were made and evaluated. Finally, the advantages and disadvantages of the model were discussed.

  14. Adiponectin fine-tuning of liver regeneration dynamics revealed through cellular network modeling.

    PubMed

    Correnti, Jason M; Cook, Daniel; Aksamitiene, Edita; Swarup, Aditi; Ogunnaike, Babatunde; Vadigepalli, Rajanikanth; Hoek, Jan B

    2014-11-10

    Following partial hepatectomy, the liver initiates a regenerative program involving hepatocyte priming and replication driven by coordinated cytokine and growth factor actions. We investigated the mechanisms underlying Adiponectin's (Adn) regulation of liver regeneration through modulation of these mediators. Adn-/- mice showed delayed onset of hepatocyte replication, but accelerated cell cycle progression relative to wild-type mice, suggesting Adn has multiple effects fine-tuning the kinetics of liver regeneration. We developed a computational model describing the molecular and physiological kinetics of liver regeneration in Adn-/- mice. We employed this computational model to evaluate the underlying regulatory mechanisms. Our analysis predicted that Adn is required for an efficient early cytokine response to partial hepatectomy, but is inhibitory to later growth factor actions. Consistent with this prediction, Adn knockout reduced hepatocyte responses to IL-6 during the priming phase, but enhanced growth factor levels through peak hepatocyte replication. By contrast, supraphysiological concentrations of Adn resulting from rosiglitazone treatment suppressed regeneration by reducing growth factor levels during S phase, consistent with computational predictions. Together, these results revealed that Adn fine-tunes the progression of liver regeneration through dynamically modulating molecular mediator networks and cellular interactions within the liver. This article is protected by copyright. All rights reserved.

  15. Spatio-temporal analysis of brain electrical activity in epilepsy based on cellular nonlinear networks

    NASA Astrophysics Data System (ADS)

    Gollas, Frank; Tetzlaff, Ronald

    2009-05-01

    Epilepsy is the most common chronic disorder of the nervous system. Generally, epileptic seizures appear without foregoing sign or warning. The problem of detecting a possible pre-seizure state in epilepsy from EEG signals has been addressed by many authors over the past decades. Different approaches of time series analysis of brain electrical activity already are providing valuable insights into the underlying complex dynamics. But the main goal the identification of an impending epileptic seizure with a sufficient specificity and reliability, has not been achieved up to now. An algorithm for a reliable, automated prediction of epileptic seizures would enable the realization of implantable seizure warning devices, which could provide valuable information to the patient and time/event specific drug delivery or possibly a direct electrical nerve stimulation. Cellular Nonlinear Networks (CNN) are promising candidates for future seizure warning devices. CNN are characterized by local couplings of comparatively simple dynamical systems. With this property these networks are well suited to be realized as highly parallel, analog computer chips. Today available CNN hardware realizations exhibit a processing speed in the range of TeraOps combined with low power consumption. In this contribution new algorithms based on the spatio-temporal dynamics of CNN are considered in order to analyze intracranial EEG signals and thus taking into account mutual dependencies between neighboring regions of the brain. In an identification procedure Reaction-Diffusion CNN (RD-CNN) are determined for short segments of brain electrical activity, by means of a supervised parameter optimization. RD-CNN are deduced from Reaction-Diffusion Systems, which usually are applied to investigate complex phenomena like nonlinear wave propagation or pattern formation. The Local Activity Theory provides a necessary condition for emergent behavior in RD-CNN. In comparison linear spatio

  16. 2D MI-DRAGON: a new predictor for protein-ligands interactions and theoretic-experimental studies of US FDA drug-target network, oxoisoaporphine inhibitors for MAO-A and human parasite proteins.

    PubMed

    Prado-Prado, Francisco; García-Mera, Xerardo; Escobar, Manuel; Sobarzo-Sánchez, Eduardo; Yañez, Matilde; Riera-Fernandez, Pablo; González-Díaz, Humberto

    2011-12-01

    There are many pairs of possible Drug-Proteins Interactions that may take place or not (DPIs/nDPIs) between drugs with high affinity/non-affinity for different proteins. This fact makes expensive in terms of time and resources, for instance, the determination of all possible ligands-protein interactions for a single drug. In this sense, we can use Quantitative Structure-Activity Relationships (QSAR) models to carry out rational DPIs prediction. Unfortunately, almost all QSAR models predict activity against only one target. To solve this problem we can develop multi-target QSAR (mt-QSAR) models. In this work, we introduce the technique 2D MI-DRAGON a new predictor for DPIs based on two different well-known software. We use the software MARCH-INSIDE (MI) to calculate 3D structural parameters for targets and the software DRAGON was used to calculated 2D molecular descriptors all drugs showing known DPIs present in the Drug Bank (US FDA benchmark dataset). Both classes of parameters were used as input of different Artificial Neural Network (ANN) algorithms to seek an accurate non-linear mt-QSAR predictor. The best ANN model found is a Multi-Layer Perceptron (MLP) with profile MLP 21:21-31-1:1. This MLP classifies correctly 303 out of 339 DPIs (Sensitivity = 89.38%) and 480 out of 510 nDPIs (Specificity = 94.12%), corresponding to training Accuracy = 92.23%. The validation of the model was carried out by means of external predicting series with Sensitivity = 92.18% (625/678 DPIs; Specificity = 90.12% (730/780 nDPIs) and Accuracy = 91.06%. 2D MI-DRAGON offers a good opportunity for fast-track calculation of all possible DPIs of one drug enabling us to re-construct large drug-target or DPIs Complex Networks (CNs). For instance, we reconstructed the CN of the US FDA benchmark dataset with 855 nodes 519 drugs+336 targets). We predicted CN with similar topology (observed and predicted values of average distance are equal to 6.7 vs. 6.6). These CNs can be used to explore

  17. An Easily Accessible Self-Healing Transparent Film Based on a 2D Supramolecular Network of Hydrogen-Bonding Interactions between Polymeric Chains.

    PubMed

    Roy, Nabarun; Tomović, Željko; Buhler, Eric; Lehn, Jean-Marie

    2016-09-12

    Self-healing polymers hold great promise for the future, enhancing in particular the longevity of polymeric materials. We describe a self-healing covalent polymer, presenting an extensive array of hydrogen-bonding sites based on the combination of urea, urethane, and bis-acyl-hydrazine units. Solvent-cast thin-films prepared by polycondensation of a commercially available dihydrazide and a diisocyanate prepolymer exhibited excellent room temperature autonomous healing with almost full recovery of mechanical properties when two parts of a cut film were overlapped and gently pressed together. This autonomous healing upon damage may be attributed to the supramolecular dynamics of multiple lateral inter-chain hydrogen-bonding interactions between the polymer chains. The solid-state structure of a model compound incorporating the same structural backbone corroborates the existence of an extensive two-dimensional supramolecular hydrogen-bonding network. PMID:27226034

  18. Impedance matching network for high frequency ultrasonic transducer for cellular applications.

    PubMed

    Kim, Min Gon; Yoon, Sangpil; Kim, Hyung Ham; Shung, K Kirk

    2016-02-01

    An approach for the design of an impedance matching network (IMN) for high frequency ultrasonic transducers with large apertures based on impedance analysis for cellular applications is presented in this paper. The main objectives were to maximize energy transmission from the excitation source to the ultrasonic transducers for cell manipulation and to achieve low input parameters for the safe operation of an ultrasonic transducer because the piezoelectric material in high frequency ultrasonic transducers is prone to breakage due to its being extremely thin. Two ultrasonic transducers, which were made of lithium niobate single crystal with the thickness of 15 μm, having apertures of 4.3 mm (fnumber=1.23) and 2.6mm (fnumber=0.75) were tested. L-type IMN was selected for high sensitivity and compact design of the ultrasonic transducers. The target center frequency was chosen as the frequency where the electrical admittance (|Y|) and phase angle (θz) from impedance analysis was maximal and zero, respectively. The reference center frequency and reference echo magnitude were selected as the center frequency and echo magnitude, measured by pulse-echo testing, of the ultrasonic transducer without IMN. Initial component values and topology of IMN were determined using the Smith chart, and pulse-echo testing was analyzed to verify the performance of the ultrasonic transducers with and without IMN. After several iterations between changing component values and topology of IMN, and pulse-echo measurement of the ultrasonic transducer with IMN, optimized component values and topology of IMN were chosen when the measured center frequency from pulse-echo testing was comparable to the target frequency, and the measured echo magnitude was at least 30% larger than the reference echo magnitude. Performance of an ultrasonic transducer with and without IMN was tested by observing a tangible dent on the surface of a plastic petridish and single cell response after an acoustic pulse was

  19. Five inorganic–organic hybrids based on Keggin polyanion [SiMo{sub 12}O{sub 40}]{sup 4−}: From 0D to 2D network

    SciTech Connect

    Yu, Xiao-Yang; Cui, Xiao-Bing; Lu, Jing; Luo, Yu-Hui; Zhang, Hong; Gao, Wei-Ping

    2014-01-15

    Five new inorganic–organic hybrids based on 4,4′-bipyridine and Keggin-type polyoxometalate [SiMo{sub 12}O{sub 40}]{sup 4−}, (SiMo{sub 12}O{sub 40})(H{sub 2}bipy){sub 2}·2H{sub 2}O (1), [Cu(Hbipy){sub 4}(HSiMo{sub 12}O{sub 40})(SiMo{sub 12}O{sub 40})](H{sub 2}bipy){sub 0.5}·7H{sub 2}O (2), [Cu{sub 2}(Hbipy){sub 6}(bipy)(SiMo{sub 12}O{sub 40}){sub 3}](Hbipy){sub 2}·6H{sub 2}O (3), [Cu(bipy){sub 2}(SiMo{sub 12}O{sub 40})](H{sub 2}bipy)·2H{sub 2}O (4) and [Cu{sub 2}(bipy){sub 4}(H{sub 2}O){sub 4}](SiMo{sub 12}O{sub 40})·13H{sub 2}O (5) (bipy=4,4′-bipyridine), have been hydrothermally synthesized. 1 consists of H{sub 2}bipy{sup 2+} and [SiMo{sub 12}O{sub 40}]{sup 4−} units. In 2, two [SiMo{sub 12}O{sub 40}]{sup 4−} are bridged by [Cu(Hbipy){sub 4}]{sup 6+} to form a [Cu(Hbipy){sub 4}(SiMo{sub 12}O{sub 40}){sub 2}]{sup 2−} dimmer. In 3, [SiMo{sub 12}O{sub 40}]{sup 4−} polyanions acting as bidentated bridging ligands and monodentated auxiliary ligands connect [Cu{sub 2}(Hbipy){sub 6}(bipy)]{sup 8+} units into a 1D zigzag chain. In 4, [SiMo{sub 12}O{sub 40}]{sup 4−} polyanions bridge neighboring 1D [Cu(bipy){sub 2}]{sup 2+} double chains into a 2D extended layer. In 5, [SiMo{sub 12}O{sub 40}]{sup 4−} polyanions acting as templates site alternately upon the grids from both sides of the square grid [Cu{sub 2}(bipy){sub 4}(H{sub 2}O){sub 4}]{sup 4+} layer. In addition, the electrochemical behaviors of 1, 3 and 4 and the photocatalysis property of 1 have been investigated. - Graphical abstract: Five new compounds based on [SiMo{sub 12}O{sub 40}]{sup 4−} have been successfully generated. [SiMo{sub 12}O{sub 40}]{sup 4−} anions play different roles in the structures of the five compounds. Display Omitted - Highlights: • Five new compounds based on [SiMo{sub 12}O{sub 40}]{sup 4−} have been generated. • [SiMo{sub 12}O{sub 40}]{sup 4−} anions play different roles in the five structures. • The electrochemical behaviors of 1, 3 and 4 have been

  20. Geometric phase transition in the cellular network of the pancreatic islets may underlie the onset of type 1diabetes

    NASA Astrophysics Data System (ADS)

    Wang, Xujing

    Living systems are characterized by complexity in structure and emergent dynamic orders. In many aspects the onset of a chronic disease resembles phase transition in a dynamic system: quantitative changes accumulate largely unnoticed until a critical threshold is reached, which causes abrupt qualitative changes of the system. In this study we investigate this idea in a real example, the insulin-producing pancreatic islet β-cells and the onset of type 1 diabetes. Within each islet, the β-cells are electrically coupled to each other, and function as a network with synchronized actions. Using percolation theory we show how normal islet function is intrinsically linked to network connectivity, and the critical point where the islet cellular network loses site percolation, is consistent with laboratory and clinical observations of the threshold β-cell loss that causes islet functional failure. Numerical simulations confirm that the islet cellular network needs to be percolated for β-cells to synchronize. Furthermore, the interplay between site percolation and bond strength predicts the existence of a transient phase of islet functional recovery after disease onset and introduction of treatment, potentially explaining a long time mystery in the clinical study of type 1 diabetes: the honeymoon phenomenon. Based on these results, we hypothesized that the onset of T1D may be the result of a phase transition of the islet β-cell network. We further discuss the potential applications in identifying disease-driving factors, and the critical parameters that are predictive of disease onset.

  1. Self-organization in phase separation of a lyotropic liquid crystal into cellular, network and droplet morphologies.

    PubMed

    Iwashita, Yasutaka; Tanaka, Hajime

    2006-02-01

    Phase separation is one of the most fundamental physical phenomena that controls the morphology of heterogeneous structures. Phase separation of a binary mixture of simple liquids produces only two morphologies: a bicontinuous or a droplet structure in the case of a symmetric or an asymmetric composition, respectively. For complex fluids, there is a possibility to produce other interesting morphologies. We found that a network structure of the minority phase can also be induced transiently on phase separation if the dynamics of the minority phase are much slower than those of the majority phase. Here we induce a cellular structure of the minority phase intentionally with the help of its smectic ordering, using phase separation of a lyotropic liquid crystal into the isotropic and smectic phase. We can control the three morphologies, cellular, network and droplet structures, solely by changing the heating rate. We demonstrate that the kinetic interplay between phase separation and smectic ordering is a key to the morphological selection. This may provide a new route to the formation of network and cellular morphologies in soft materials.

  2. High divergent 2D grating

    NASA Astrophysics Data System (ADS)

    Wang, Jin; Ma, Jianyong; Zhou, Changhe

    2014-11-01

    A 3×3 high divergent 2D-grating with period of 3.842μm at wavelength of 850nm under normal incidence is designed and fabricated in this paper. This high divergent 2D-grating is designed by the vector theory. The Rigorous Coupled Wave Analysis (RCWA) in association with the simulated annealing (SA) is adopted to calculate and optimize this 2D-grating.The properties of this grating are also investigated by the RCWA. The diffraction angles are more than 10 degrees in the whole wavelength band, which are bigger than the traditional 2D-grating. In addition, the small period of grating increases the difficulties of fabrication. So we fabricate the 2D-gratings by direct laser writing (DLW) instead of traditional manufacturing method. Then the method of ICP etching is used to obtain the high divergent 2D-grating.

  3. Temperature dependent structural variation from 2D supramolecular network to 3D interpenetrated metal–organic framework: In situ cleavage of S–S and C–S bonds

    SciTech Connect

    Ugale, Bharat; Singh, Divyendu; Nagaraja, C.M.

    2015-03-15

    Two new Zn(II)–organic compounds, [Zn(muco)(dbds){sub 2}(H{sub 2}O){sub 2}] (1) and [Zn(muco)(dbs)] (2) (where, muco=trans, trans-muconate dianion, dbds=4,4′-dipyridyldisulfide and dbs=4,4′-dipyridylsulfide) have been synthesized from same precursors but at two different temperatures. Both the compounds have been characterized by single-crystal X-ray diffraction, powder X-ray diffraction, elemental analysis, IR spectroscopy, thermal analysis and photoluminescence studies. Compound 1 prepared at room temperature possesses a molecular structure extended to 2D supramolecular network through (H–O…H) hydrogen-bonding interactions. Compound 2, obtained at high temperature (100 °C) shows a 3-fold interpenetrating 3D framework constituted by an in situ generated dbs linker by the cleavage of S–S and C–S bonds of dbds linker. Thus, the influence of reaction temperature on the formation of two structural phases has been demonstrated. Both 1 and 2 exhibit ligand based luminescence emission owing to n→π⁎ and π→π⁎ transitions and also high thermal stabilities. - Graphical abstract: The influence of temperature on the formation of two structural phases, a 2D supramolecular network and a 3D 3-fold interpenetrating framework has been demonstrated and their luminescence emission is measured. - Highlights: • Two new Zn(II)–organic compounds were synthesized by tuning reaction temperatures. • Temperature induced in situ generation of dbs linker has been observed. • The compounds exhibit high thermal stability and luminescence emission properties. • The effect of temperature on structure, dimension and topology has been presented.

  4. The involvement of the interleukin-1 Receptor-Associated Kinases (IRAKs) in cellular signaling networks controlling inflammation

    PubMed Central

    Ringwood, Lorna; Li, Liwu

    2008-01-01

    Innate immunity and inflammation plays a key role in host defense and wound healing. However, Excessive or altered inflammatory processes can contribute to severe and diverse human diseases including cardiovascular disease, diabetes and cancer. The interleukin-1 receptor associated kinases (IRAKs) are critically involved in the regulation of intra-cellular signaling networks controlling inflammation. Collective studies indicate that IRAKs are present in many cell types, and can mediate signals from various cell receptors including Toll-Like-Receptors (TLRs). Consequently, diverse downstream signaling processes can be elicited following the activation of various IRAKs. Given the critical and complex roles IRAK proteins play, it is not surprising that genetic variations in human IRAK genes have been found to be linked with various human inflammatory diseases. This review intends to summarize the recent advances regarding the regulations of various IRAK proteins and their cellular functions in mediating inflammatory signaling processes. PMID:18249132

  5. Mechanical models of the cellular cytoskeletal network for the analysis of intracellular mechanical properties and force distributions: a review.

    PubMed

    Chen, Ting-Jung; Wu, Chia-Ching; Su, Fong-Chin

    2012-12-01

    The cytoskeleton, which is the major mechanical component of cells, supports the cell body and regulates the cellular motility to assist the cell in performing its biological functions. Several cytoskeletal network models have been proposed to investigate the mechanical properties of cells. This review paper summarizes these models with a focus on the prestressed cable network, the semi-flexible chain network, the open-cell foam, the tensegrity, and the granular models. The components, material parameters, types of connection joints, tension conditions, and the advantages and disadvantages of each model are evaluated from a structural and biological point of view. The underlying mechanisms that are associated with the morphological changes of spreading cells are expected to be simulated using a cytoskeletal model; however, it is still paid less attention most likely due to the lack of a suitable cytoskeletal model that can accurately model the spreading process. In this review article, the established cytoskeletal models are hoped to provide useful information for the development of future cytoskeletal models with different degrees of cell attachment for the study of the mechanical mechanisms underlying the cellular behaviors in response to external stimulations. PMID:23062682

  6. Alterations of a Cellular Cholesterol Metabolism Network Are a Molecular Feature of Obesity-Related Type 2 Diabetes and Cardiovascular Disease.

    PubMed

    Ding, Jingzhong; Reynolds, Lindsay M; Zeller, Tanja; Müller, Christian; Lohman, Kurt; Nicklas, Barbara J; Kritchevsky, Stephen B; Huang, Zhiqing; de la Fuente, Alberto; Soranzo, Nicola; Settlage, Robert E; Chuang, Chia-Chi; Howard, Timothy; Xu, Ning; Goodarzi, Mark O; Chen, Y-D Ida; Rotter, Jerome I; Siscovick, David S; Parks, John S; Murphy, Susan; Jacobs, David R; Post, Wendy; Tracy, Russell P; Wild, Philipp S; Blankenberg, Stefan; Hoeschele, Ina; Herrington, David; McCall, Charles E; Liu, Yongmei

    2015-10-01

    Obesity is linked to type 2 diabetes (T2D) and cardiovascular diseases; however, the underlying molecular mechanisms remain unclear. We aimed to identify obesity-associated molecular features that may contribute to obesity-related diseases. Using circulating monocytes from 1,264 Multi-Ethnic Study of Atherosclerosis (MESA) participants, we quantified the transcriptome and epigenome. We discovered that alterations in a network of coexpressed cholesterol metabolism genes are a signature feature of obesity and inflammatory stress. This network included 11 BMI-associated genes related to sterol uptake (↑LDLR, ↓MYLIP), synthesis (↑SCD, FADS1, HMGCS1, FDFT1, SQLE, CYP51A1, SC4MOL), and efflux (↓ABCA1, ABCG1), producing a molecular profile expected to increase intracellular cholesterol. Importantly, these alterations were associated with T2D and coronary artery calcium (CAC), independent from cardiometabolic factors, including serum lipid profiles. This network mediated the associations between obesity and T2D/CAC. Several genes in the network harbored C-phosphorus-G dinucleotides (e.g., ABCG1/cg06500161), which overlapped Encyclopedia of DNA Elements (ENCODE)-annotated regulatory regions and had methylation profiles that mediated the associations between BMI/inflammation and expression of their cognate genes. Taken together with several lines of previous experimental evidence, these data suggest that alterations of the cholesterol metabolism gene network represent a molecular link between obesity/inflammation and T2D/CAC.

  7. Systematic Reverse Engineering of Network Topologies: A Case Study of Resettable Bistable Cellular Responses

    PubMed Central

    Mondal, Debasish; Dougherty, Edward; Mukhopadhyay, Abhishek; Carbo, Adria; Yao, Guang; Xing, Jianhua

    2014-01-01

    A focused theme in systems biology is to uncover design principles of biological networks, that is, how specific network structures yield specific systems properties. For this purpose, we have previously developed a reverse engineering procedure to identify network topologies with high likelihood in generating desired systems properties. Our method searches the continuous parameter space of an assembly of network topologies, without enumerating individual network topologies separately as traditionally done in other reverse engineering procedures. Here we tested this CPSS (continuous parameter space search) method on a previously studied problem: the resettable bistability of an Rb-E2F gene network in regulating the quiescence-to-proliferation transition of mammalian cells. From a simplified Rb-E2F gene network, we identified network topologies responsible for generating resettable bistability. The CPSS-identified topologies are consistent with those reported in the previous study based on individual topology search (ITS), demonstrating the effectiveness of the CPSS approach. Since the CPSS and ITS searches are based on different mathematical formulations and different algorithms, the consistency of the results also helps cross-validate both approaches. A unique advantage of the CPSS approach lies in its applicability to biological networks with large numbers of nodes. To aid the application of the CPSS approach to the study of other biological systems, we have developed a computer package that is available in Information S1. PMID:25170839

  8. Systematic reverse engineering of network topologies: a case study of resettable bistable cellular responses.

    PubMed

    Mondal, Debasish; Dougherty, Edward; Mukhopadhyay, Abhishek; Carbo, Adria; Yao, Guang; Xing, Jianhua

    2014-01-01

    A focused theme in systems biology is to uncover design principles of biological networks, that is, how specific network structures yield specific systems properties. For this purpose, we have previously developed a reverse engineering procedure to identify network topologies with high likelihood in generating desired systems properties. Our method searches the continuous parameter space of an assembly of network topologies, without enumerating individual network topologies separately as traditionally done in other reverse engineering procedures. Here we tested this CPSS (continuous parameter space search) method on a previously studied problem: the resettable bistability of an Rb-E2F gene network in regulating the quiescence-to-proliferation transition of mammalian cells. From a simplified Rb-E2F gene network, we identified network topologies responsible for generating resettable bistability. The CPSS-identified topologies are consistent with those reported in the previous study based on individual topology search (ITS), demonstrating the effectiveness of the CPSS approach. Since the CPSS and ITS searches are based on different mathematical formulations and different algorithms, the consistency of the results also helps cross-validate both approaches. A unique advantage of the CPSS approach lies in its applicability to biological networks with large numbers of nodes. To aid the application of the CPSS approach to the study of other biological systems, we have developed a computer package that is available in Information S1.

  9. Position and Velocity Tracking in Cellular Networks Using the Kalman Filter

    SciTech Connect

    Olama, Mohammed M; Djouadi, Seddik M; Kuruganti, Phani Teja

    2009-01-01

    Access to the right information anytime, anywhere is becoming the new driving force for the information technology revolution. The 'right' information's relevance is based on the user's profile and his/her current geographical position and/or time. Location Based Service (LBS) is an innovative technology that provides information or makes information available based on the geographical location of the mobile user. Analysts predict that LBSs will lead to new applications, generating billions of US dollars worldwide (Leite, 2001; Searle, 2001). The need for an efficient and accurate mobile station (MS) positioning system is growing day by day. The ability to pinpoint the location of an individual has an obvious and vital value in the context of emergency services (Chan, 2003; Olama et al., 2008). Pinpointing the location of people and other valuable assets also opens the door to a new world of previously unimagined information services and m-commerce probabilities. For example, availability of services like 'Where is the nearest ATM?', 'Check traffic conditions on the highway on my route', 'Find a parking lot nearby', as well as answers to 'Where is my advisor?', and 'Where is my car?' will be an everyday rule in our lives (Charalambous & Panayiotou, 2004). A technology independent LBS architecture can be considered as comprised by three main parts (Girodon, 2002): A user requesting information, a mobile network operator and its partners, and several content providers (e.g. data, maps). The subscriber requests a personalized service dependant on his geographic location. The system will ask the Location Services Manager (which is in charge of handling requests, i.e., send/receive to the Location Calculator and the Content Providers) to pinpoint the location of the mobile. The Location Services Manager (LSM), using the Location Calculator, will ask the Content Provider (CP) to supply qualified information according to the mobile's geographical position. The LSM will

  10. Network models for 2D disordered superconductors

    NASA Astrophysics Data System (ADS)

    Kagalovsky, Victor; Horovitz, Baruch; Avishai, Yshai

    2004-04-01

    We study new random matrix symmetry classes which arise in models of non-interacting quasi-particles in disordered superconductors. Within the Altland-Zirnbauer classification scheme these are class C (with time-reversal symmetry broken and spin-rotaion invariance intact), and class D where both symmetries are broken. Preliminary studies of the two remaining symmetry classes CI and DIII are briefly mentioned. New results are presented pertaining to the 3d realization of class C, which, physically, corresponds to a layered superconductor.

  11. Ultrafast 2D IR microscopy

    PubMed Central

    Baiz, Carlos R.; Schach, Denise; Tokmakoff, Andrei

    2014-01-01

    We describe a microscope for measuring two-dimensional infrared (2D IR) spectra of heterogeneous samples with μm-scale spatial resolution, sub-picosecond time resolution, and the molecular structure information of 2D IR, enabling the measurement of vibrational dynamics through correlations in frequency, time, and space. The setup is based on a fully collinear “one beam” geometry in which all pulses propagate along the same optics. Polarization, chopping, and phase cycling are used to isolate the 2D IR signals of interest. In addition, we demonstrate the use of vibrational lifetime as a contrast agent for imaging microscopic variations in molecular environments. PMID:25089490

  12. Exact quantification of cellular robustness in genome-scale metabolic networks

    PubMed Central

    Gerstl, Matthias P.; Klamt, Steffen; Jungreuthmayer, Christian; Zanghellini, Jürgen

    2016-01-01

    Motivation: Robustness, the ability of biological networks to uphold their functionality in spite of perturbations, is a key characteristic of all living systems. Although several theoretical approaches have been developed to formalize robustness, it still eludes an exact quantification. Here, we present a rigorous and quantitative approach for the structural robustness of metabolic networks by measuring their ability to tolerate random reaction (or gene) knockouts. Results: In analogy to reliability theory, based on an explicit consideration of all possible knockout sets, we exactly quantify the probability of failure for a given network function (e.g. growth). This measure can be computed if the network’s minimal cut sets (MSCs) are known. We show that even in genome-scale metabolic networks the probability of (network) failure can be reliably estimated from MSCs with lowest cardinalities. We demonstrate the applicability of our theory by analyzing the structural robustness of multiple Enterobacteriaceae and Blattibacteriaceae and show a dramatically low structural robustness for the latter. We find that structural robustness develops from the ability to proliferate in multiple growth environments consistent with experimentally found knowledge. Conclusion: The probability of (network) failure provides thus a reliable and easily computable measure of structural robustness and redundancy in (genome-scale) metabolic networks. Availability and implementation: Source code is available under the GNU General Public License at https://github.com/mpgerstl/networkRobustnessToolbox. Contact: juergen.zanghellini@boku.ac.at Supplementary information: Supplementary data are available at Bioinformatics online. PMID:26543173

  13. Rainfall monitoring based on microwave links from cellular telecommunication networks: First results from a West African test bed

    NASA Astrophysics Data System (ADS)

    Doumounia, Ali; Gosset, Marielle; Cazenave, Frederic; Kacou, Modeste; Zougmore, François

    2014-08-01

    Rainfall monitoring based on commercial terrestrial microwave links is tested for the first time in Burkina Faso, in Sahelian West Africa. In collaboration with one national cellular phone operator, Telecel Faso, the attenuation on a 29 km long microwave link operating at 7 GHz was monitored at 1 s time rate for the monsoon season 2012. The time series of attenuation is transformed into rain rates and compared with rain gauge data. The method is successful in quantifying rainfall: 95% of the rainy days are detected. The correlation with the daily rain gauge series is 0.8, and the season bias is 6%. The correlation at the 5 min time step within each event is also high. These results demonstrate the potential interest of exploiting national and regional wireless telecommunication networks for monitoring rainfall in Africa, where operational rain gauge networks are degrading and the hydrometeorological risk increasing.

  14. Mitigating Handoff Call Dropping in Wireless Cellular Networks: A Call Admission Control Technique

    NASA Astrophysics Data System (ADS)

    Ekpenyong, Moses Effiong; Udoh, Victoria Idia; Bassey, Udoma James

    2016-06-01

    Handoff management has been an important but challenging issue in the field of wireless communication. It seeks to maintain seamless connectivity of mobile users changing their points of attachment from one base station to another. This paper derives a call admission control model and establishes an optimal step-size coefficient (k) that regulates the admission probability of handoff calls. An operational CDMA network carrier was investigated through the analysis of empirical data collected over a period of 1 month, to verify the performance of the network. Our findings revealed that approximately 23 % of calls in the existing system were lost, while 40 % of the calls (on the average) were successfully admitted. A simulation of the proposed model was then carried out under ideal network conditions to study the relationship between the various network parameters and validate our claim. Simulation results showed that increasing the step-size coefficient degrades the network performance. Even at optimum step-size (k), the network could still be compromised in the presence of severe network crises, but our model was able to recover from these problems and still functions normally.

  15. AnisWave 2D

    2004-08-01

    AnisWave2D is a 2D finite-difference code for a simulating seismic wave propagation in fully anisotropic materials. The code is implemented to run in parallel over multiple processors and is fully portable. A mesh refinement algorithm has been utilized to allow the grid-spacing to be tailored to the velocity model, avoiding the over-sampling of high-velocity materials that usually occurs in fixed-grid schemes.

  16. A cardiac electrical activity model based on a cellular automata system in comparison with neural network model.

    PubMed

    Khan, Muhammad Sadiq Ali; Yousuf, Sidrah

    2016-03-01

    Cardiac Electrical Activity is commonly distributed into three dimensions of Cardiac Tissue (Myocardium) and evolves with duration of time. The indicator of heart diseases can occur randomly at any time of a day. Heart rate, conduction and each electrical activity during cardiac cycle should be monitor non-invasively for the assessment of "Action Potential" (regular) and "Arrhythmia" (irregular) rhythms. Many heart diseases can easily be examined through Automata model like Cellular Automata concepts. This paper deals with the different states of cardiac rhythms using cellular automata with the comparison of neural network also provides fast and highly effective stimulation for the contraction of cardiac muscles on the Atria in the result of genesis of electrical spark or wave. The specific formulated model named as "States of automaton Proposed Model for CEA (Cardiac Electrical Activity)" by using Cellular Automata Methodology is commonly shows the three states of cardiac tissues conduction phenomena (i) Resting (Relax and Excitable state), (ii) ARP (Excited but Absolutely refractory Phase i.e. Excited but not able to excite neighboring cells) (iii) RRP (Excited but Relatively Refractory Phase i.e. Excited and able to excite neighboring cells). The result indicates most efficient modeling with few burden of computation and it is Action Potential during the pumping of blood in cardiac cycle.

  17. Beta Cell Formation in vivo Through Cellular Networking, Integration and Processing (CNIP) in Wild Type Adult Mice.

    PubMed

    Doiron, Bruno; Hu, Wenchao; DeFronzo, Ralph A

    2016-01-01

    Insulin replacement therapy is essential in type 1 diabetic individuals and is required in ~40- 50% of type 2 diabetics during their lifetime. Prior attempts at beta cell regeneration have relied upon pancreatic injury to induce beta cell proliferation, dedifferentiation and activation of the embryonic pathway, or stem cell replacement. We report an alternative method to transform adult non-stem (somatic) cells into pancreatic beta cells. The Cellular Networking, Integration and Processing (CNIP) approach targets cellular mechanisms involved in pancreatic function in the organ's adult state and utilizes a synergistic mechanism that integrates three important levels of cellular regulation to induce beta cell formation: (i) glucose metabolism, (ii) membrane receptor function, and (iii) gene transcription. The aim of the present study was to induce pancreatic beta cell formation in vivo in adult animals without stem cells and without dedifferentiating cells to recapitulate the embryonic pathway as previously published (1-3). Our results employing CNIP demonstrate that: (i) insulin secreting cells can be generated in adult pancreatic tissue in vivo and circumvent the problem of generating endocrine (glucagon and somatostatin) cells that exert deleterious effects on glucose homeostasis, and (ii) longterm normalization of glucose tolerance and insulin secretion can be achieved in a wild type diabetic mouse model. The CNIP cocktail has the potential to be used as a preventative or therapeutic treatment or cure for both type 1 and type 2 diabetes. PMID:26696016

  18. A cardiac electrical activity model based on a cellular automata system in comparison with neural network model.

    PubMed

    Khan, Muhammad Sadiq Ali; Yousuf, Sidrah

    2016-03-01

    Cardiac Electrical Activity is commonly distributed into three dimensions of Cardiac Tissue (Myocardium) and evolves with duration of time. The indicator of heart diseases can occur randomly at any time of a day. Heart rate, conduction and each electrical activity during cardiac cycle should be monitor non-invasively for the assessment of "Action Potential" (regular) and "Arrhythmia" (irregular) rhythms. Many heart diseases can easily be examined through Automata model like Cellular Automata concepts. This paper deals with the different states of cardiac rhythms using cellular automata with the comparison of neural network also provides fast and highly effective stimulation for the contraction of cardiac muscles on the Atria in the result of genesis of electrical spark or wave. The specific formulated model named as "States of automaton Proposed Model for CEA (Cardiac Electrical Activity)" by using Cellular Automata Methodology is commonly shows the three states of cardiac tissues conduction phenomena (i) Resting (Relax and Excitable state), (ii) ARP (Excited but Absolutely refractory Phase i.e. Excited but not able to excite neighboring cells) (iii) RRP (Excited but Relatively Refractory Phase i.e. Excited and able to excite neighboring cells). The result indicates most efficient modeling with few burden of computation and it is Action Potential during the pumping of blood in cardiac cycle. PMID:27087101

  19. The dynamic and geometric phase transition in the cellular network of pancreatic islet

    NASA Astrophysics Data System (ADS)

    Wang, Xujing

    2013-03-01

    The pancreatic islet is a micro-organ that contains several thousands of endocrine cells, majority of which being the insulin releasing β - cells . - cellsareexcitablecells , andarecoupledtoeachother through gap junctional channels. Here, using percolation theory, we investigate the role of network structure in determining the dynamics of the β-cell network. We show that the β-cell synchronization depends on network connectivity. More specifically, as the site occupancy is reducing, initially the β-cell synchronization is barely affected, until it reaches around a critical value, where the synchronization exhibit a sudden rapid decline, followed by an slow exponential tail. This critical value coincides with the critical site open probability for percolation transition. The dependence over bond strength is similar, exhibiting critical-behavior like dependence around a certain value of bond strength. These results suggest that the β-cell network undergoes a dynamic phase transition when the network is percolated. We further apply the findings to study diabetes. During the development of diabetes, the β - cellnetworkconnectivitydecreases . Siteoccupancyreducesfromthe reducing β-cell mass, and the bond strength is increasingly impaired from β-cell stress and chronic hyperglycemia. We demonstrate that the network dynamics around the percolation transition explain the disease dynamics around onset, including a long time mystery in diabetes, the honeymoon phenomenon.

  20. Cellular: Toward personal communications

    NASA Astrophysics Data System (ADS)

    Heffernan, Stuart

    1991-09-01

    The cellular industry is one of the fastest growing segment of the telecommunications industry. With an estimated penetration rate of 20 percent in the near future, cellular is becoming an ubiquitous telecommunications service in the U.S. In this paper we will examine the major advancements in the cellular industry: customer equipment, cellular networks, engineering tools, customer support, and nationwide seamless service.

  1. Opinion evolution based on cellular automata rules in small world networks

    NASA Astrophysics Data System (ADS)

    Shi, Xiao-Ming; Shi, Lun; Zhang, Jie-Fang

    2010-03-01

    In this paper, we apply cellular automata rules, which can be given by a truth table, to human memory. We design each memory as a tracking survey mode that keeps the most recent three opinions. Each cellular automata rule, as a personal mechanism, gives the final ruling in one time period based on the data stored in one's memory. The key focus of the paper is to research the evolution of people's attitudes to the same question. Based on a great deal of empirical observations from computer simulations, all the rules can be classified into 20 groups. We highlight the fact that the phenomenon shown by some rules belonging to the same group will be altered within several steps by other rules in different groups. It is truly amazing that, compared with the last hundreds of presidential voting in America, the eras of important events in America's history coincide with the simulation results obtained by our model.

  2. Coverage extension and balancing the transmitted power of the moving relay node at LTE-A cellular network.

    PubMed

    Aldhaibani, Jaafar A; Yahya, Abid; Ahmad, R Badlishah

    2014-01-01

    The poor capacity at cell boundaries is not enough to meet the growing demand and stringent design which required high capacity and throughput irrespective of user's location in the cellular network. In this paper, we propose new schemes for an optimum fixed relay node (RN) placement in LTE-A cellular network to enhance throughput and coverage extension at cell edge region. The proposed approach mitigates interferences between all nodes and ensures optimum utilization with the optimization of transmitted power. Moreover, we proposed a new algorithm to balance the transmitted power of moving relay node (MR) over cell size and providing required SNR and throughput at the users inside vehicle along with reducing the transmitted power consumption by MR. The numerical analysis along with the simulation results indicates that an improvement in capacity for users is 40% increment at downlink transmission from cell capacity. Furthermore, the results revealed that there is saving nearly 75% from transmitted power in MR after using proposed balancing algorithm. ATDI simulator was used to verify the numerical results, which deals with real digital cartographic and standard formats for terrain.

  3. A New Approach for Border Detection of the Dumluca (Turkey) Iron Ore Area: Wavelet Cellular Neural Networks

    NASA Astrophysics Data System (ADS)

    Albora, A. Muhittin; Bal, Abdullah; Ucan, Osman N.

    2007-01-01

    Anomaly analysis is used for various geophysics applications such as determination of geophysical structure's location and border detections. Besides the classical geophysical techniques, artificial intelligence based image processing algorithms have been found attractive for geophysical anomaly analysis. Recently, cellular neural networks (CNN) have been applied to geophysical data and satisfactory results are reported. CNN provides fast and parallel computational capability for geophysical image processing applications due to its filtering structure. The behavior of CNN is defined by two template matrices that are adjusted by a properly supervised learning algorithm. After training stage for geophysical data, Bouguer anomaly maps can be processed and analyzed sequentially. In this paper, CNN learning and processing capability have been improved, combining Wavelet functions and backpropagation learning algorithms. The new architecture is denoted as Wavelet-Cellular Neural networks (Wave-CNN) and it is employed to analyze Bouguer anomaly maps which are important to extract useful information in geophysics. At first, Wave-CNN performance is tested on synthetic geophysical data, which are created by a computer environment. Then, Bouguer anomaly maps of the Dumluca iron ore field have been analyzed and results are reported in comparison to real drilling results.

  4. Coverage Extension and Balancing the Transmitted Power of the Moving Relay Node at LTE-A Cellular Network

    PubMed Central

    Aldhaibani, Jaafar A.; Yahya, Abid; Ahmad, R. Badlishah

    2014-01-01

    The poor capacity at cell boundaries is not enough to meet the growing demand and stringent design which required high capacity and throughput irrespective of user's location in the cellular network. In this paper, we propose new schemes for an optimum fixed relay node (RN) placement in LTE-A cellular network to enhance throughput and coverage extension at cell edge region. The proposed approach mitigates interferences between all nodes and ensures optimum utilization with the optimization of transmitted power. Moreover, we proposed a new algorithm to balance the transmitted power of moving relay node (MR) over cell size and providing required SNR and throughput at the users inside vehicle along with reducing the transmitted power consumption by MR. The numerical analysis along with the simulation results indicates that an improvement in capacity for users is 40% increment at downlink transmission from cell capacity. Furthermore, the results revealed that there is saving nearly 75% from transmitted power in MR after using proposed balancing algorithm. ATDI simulator was used to verify the numerical results, which deals with real digital cartographic and standard formats for terrain. PMID:24672378

  5. A modified size-dependent core-shell model and its application in the wave propagation of square cellular networks

    NASA Astrophysics Data System (ADS)

    Xu, Xiao-Jian; Wang, Ya-Chuan; Wang, Bo; Zhang, Kai

    2016-06-01

    We propose a modified core-shell model to depict the size-dependent elastic properties of materials with several different cross-sections. By using the Young-Laplace equation, a modified Euler-Bernoulli equation, which has taken a power-law relation between the bulk and surface moduli into account, is derived. A finite element method of the modified Euler-Bernoulli equation is formulated, and assembled to investigate the dispersion relations of the infinite two-dimensional periodic square cellular networks. The effectiveness of the proposed core-shell model is verified by comparing with results of the experiments and the molecular dynamics simulations available in the literature. Numerical results show that surface effects play an important role on the cellular networks with small diameters, large aspect ratios and high wave frequencies. Meanwhile, the analytical expressions for the size-dependent elastic modulus may be useful for the study of the size-dependent elasticity of materials and structures at small length scales.

  6. Robust synchronization analysis in nonlinear stochastic cellular networks with time-varying delays, intracellular perturbations and intercellular noise.

    PubMed

    Chen, Po-Wei; Chen, Bor-Sen

    2011-08-01

    Naturally, a cellular network consisted of a large amount of interacting cells is complex. These cells have to be synchronized in order to emerge their phenomena for some biological purposes. However, the inherently stochastic intra and intercellular interactions are noisy and delayed from biochemical processes. In this study, a robust synchronization scheme is proposed for a nonlinear stochastic time-delay coupled cellular network (TdCCN) in spite of the time-varying process delay and intracellular parameter perturbations. Furthermore, a nonlinear stochastic noise filtering ability is also investigated for this synchronized TdCCN against stochastic intercellular and environmental disturbances. Since it is very difficult to solve a robust synchronization problem with the Hamilton-Jacobi inequality (HJI) matrix, a linear matrix inequality (LMI) is employed to solve this problem via the help of a global linearization method. Through this robust synchronization analysis, we can gain a more systemic insight into not only the robust synchronizability but also the noise filtering ability of TdCCN under time-varying process delays, intracellular perturbations and intercellular disturbances. The measures of robustness and noise filtering ability of a synchronized TdCCN have potential application to the designs of neuron transmitters, on-time mass production of biochemical molecules, and synthetic biology. Finally, a benchmark of robust synchronization design in Escherichia coli repressilators is given to confirm the effectiveness of the proposed methods. PMID:21624379

  7. iCDI-PseFpt: identify the channel-drug interaction in cellular networking with PseAAC and molecular fingerprints.

    PubMed

    Xiao, Xuan; Min, Jian-Liang; Wang, Pu; Chou, Kuo-Chen

    2013-11-21

    Many crucial functions in life, such as heartbeat, sensory transduction and central nervous system response, are controlled by cell signalings via various ion channels. Therefore, ion channels have become an excellent drug target, and study of ion channel-drug interaction networks is an important topic for drug development. However, it is both time-consuming and costly to determine whether a drug and a protein ion channel are interacting with each other in a cellular network by means of experimental techniques. Although some computational methods were developed in this regard based on the knowledge of the 3D (three-dimensional) structure of protein, unfortunately their usage is quite limited because the 3D structures for most protein ion channels are still unknown. With the avalanche of protein sequences generated in the post-genomic age, it is highly desirable to develop the sequence-based computational method to address this problem. To take up the challenge, we developed a new predictor called iCDI-PseFpt, in which the protein ion-channel sample is formulated by the PseAAC (pseudo amino acid composition) generated with the gray model theory, the drug compound by the 2D molecular fingerprint, and the operation engine is the fuzzy K-nearest neighbor algorithm. The overall success rate achieved by iCDI-PseFpt via the jackknife cross-validation was 87.27%, which is remarkably higher than that by any of the existing predictors in this area. As a user-friendly web-server, iCDI-PseFpt is freely accessible to the public at the website http://www.jci-bioinfo.cn/iCDI-PseFpt/. Furthermore, for the convenience of most experimental scientists, a step-by-step guide is provided on how to use the web-server to get the desired results without the need to follow the complicated math equations presented in the paper just for its integrity. It has not escaped our notice that the current approach can also be used to study other drug-target interaction networks.

  8. The role of glutathione reductase and related enzymes on cellular redox homoeostasis network.

    PubMed

    Couto, Narciso; Wood, Jennifer; Barber, Jill

    2016-06-01

    In this review article we examine the role of glutathione reductase in the regulation, modulation and maintenance of cellular redox homoeostasis. Glutathione reductase is responsible for maintaining the supply of reduced glutathione; one of the most abundant reducing thiols in the majority of cells. In its reduced form, glutathione plays key roles in the cellular control of reactive oxygen species. Reactive oxygen species act as intracellular and extracellular signalling molecules and complex cross talk between levels of reactive oxygen species, levels of oxidised and reduced glutathione and other thiols, and antioxidant enzymes such as glutathione reductase determine the most suitable conditions for redox control within a cell or for activation of programmed cell death. Additionally, we discuss the translation and expression of glutathione reductase in a number of organisms including yeast and humans. In yeast and human cells, a single gene expresses more than one form of glutathione reductase, destined for residence in the cytoplasm or for translocation to different organelles; in plants, however, two genes encoding this protein have been described. In general, insects and kinetoplastids (a group of protozoa, including Plasmodia and Trypanosoma) do not express glutathione reductase or glutathione biosynthetic enzymes. Instead, they express either the thioredoxin system or the trypanothione system. The thioredoxin system is also present in organisms that have the glutathione system and there may be overlapping functions with cross-talk between the two systems. Finally we evaluate therapeutic targets to overcome oxidative stress associated cellular disorders.

  9. An Arabidopsis WDR protein coordinates cellular networks involved in light, stress response and hormone signals.

    PubMed

    Chuang, Huey-Wen; Feng, Ji-Huan; Feng, Yung-Lin; Wei, Miam-Ju

    2015-12-01

    The WD-40 repeat (WDR) protein acts as a scaffold for protein interactions in various cellular events. An Arabidopsis WDR protein exhibited sequence similarity with human WDR26, a scaffolding protein implicated in H2O2-induced cell death in neural cells. The AtWDR26 transcript was induced by auxin, abscisic acid (ABA), ethylene (ET), osmostic stress and salinity. The expression of AtWDR26 was regulated by light, and seed germination of the AtWDR26 overexpression (OE) and seedling growth of the T-DNA knock-out (KO) exhibited altered sensitivity to light. Root growth of the OE seedlings increased tolerance to ZnSO4 and NaCl stresses and were hypersensitive to inhibition of osmotic stress. Seedlings of OE and KO altered sensitivities to multiple hormones. Transcriptome analysis of the transgenic plants overexpressing AtWDR26 showed that genes involved in the chloroplast-related metabolism constituted the largest group of the up-regulated genes. AtWDR26 overexpression up-regulated a large number of genes related to defense cellular events including biotic and abiotic stress response. Furthermore, several members of genes functioning in the regulation of Zn homeostasis, and hormone synthesis and perception of auxin and JA were strongly up-regulated in the transgenic plants. Our data provide physiological and transcriptional evidence for AtWDR26 role in hormone, light and abiotic stress cellular events.

  10. Analysis of the local organization and dynamics of cellular actin networks

    PubMed Central

    Luo, Weiwei; Yu, Cheng-han; Lieu, Zi Zhao; Allard, Jun; Mogilner, Alex; Sheetz, Michael P.

    2013-01-01

    A ctin filaments, with the aid of multiple accessory proteins, self-assemble into a variety of network patterns. We studied the organization and dynamics of the actin network in nonadhesive regions of cells bridging fibronectin-coated adhesive strips. The network was formed by actin nodes associated with and linked by myosin II and containing the formin disheveled-associated activator of morphogenesis 1 (DAAM1) and the cross-linker filamin A (FlnA). After Latrunculin A (LatA) addition, actin nodes appeared to be more prominent and demonstrated drift-diffusion motion. Superresolution microscopy revealed that, in untreated cells, DAAM1 formed patches with a similar spatial arrangement to the actin nodes. Node movement (diffusion coefficient and velocity) in LatA-treated cells was dependent on the level and activity of myosin IIA, DAAM1, and FlnA. Based on our results, we developed a computational model of the dynamic formin-filamin-actin asters that can self-organize into a contractile actomyosin network. We suggest that such networks are critical for connecting distant parts of the cell to maintain the mechanical coherence of the cytoplasm. PMID:24081490

  11. Reconstruction of cellular signal transduction networks using perturbation assays and linear programming.

    PubMed

    Knapp, Bettina; Kaderali, Lars

    2013-01-01

    Perturbation experiments for example using RNA interference (RNAi) offer an attractive way to elucidate gene function in a high throughput fashion. The placement of hit genes in their functional context and the inference of underlying networks from such data, however, are challenging tasks. One of the problems in network inference is the exponential number of possible network topologies for a given number of genes. Here, we introduce a novel mathematical approach to address this question. We formulate network inference as a linear optimization problem, which can be solved efficiently even for large-scale systems. We use simulated data to evaluate our approach, and show improved performance in particular on larger networks over state-of-the art methods. We achieve increased sensitivity and specificity, as well as a significant reduction in computing time. Furthermore, we show superior performance on noisy data. We then apply our approach to study the intracellular signaling of human primary nave CD4(+) T-cells, as well as ErbB signaling in trastuzumab resistant breast cancer cells. In both cases, our approach recovers known interactions and points to additional relevant processes. In ErbB signaling, our results predict an important role of negative and positive feedback in controlling the cell cycle progression.

  12. From Cellular Attractor Selection to Adaptive Signal Control for Traffic Networks

    NASA Astrophysics Data System (ADS)

    Tian, Daxin; Zhou, Jianshan; Sheng, Zhengguo; Wang, Yunpeng; Ma, Jianming

    2016-03-01

    The management of varying traffic flows essentially depends on signal controls at intersections. However, design an optimal control that considers the dynamic nature of a traffic network and coordinates all intersections simultaneously in a centralized manner is computationally challenging. Inspired by the stable gene expressions of Escherichia coli in response to environmental changes, we explore the robustness and adaptability performance of signalized intersections by incorporating a biological mechanism in their control policies, specifically, the evolution of each intersection is induced by the dynamics governing an adaptive attractor selection in cells. We employ a mathematical model to capture such biological attractor selection and derive a generic, adaptive and distributed control algorithm which is capable of dynamically adapting signal operations for the entire dynamical traffic network. We show that the proposed scheme based on attractor selection can not only promote the balance of traffic loads on each link of the network but also allows the global network to accommodate dynamical traffic demands. Our work demonstrates the potential of bio-inspired intelligence emerging from cells and provides a deep understanding of adaptive attractor selection-based control formation that is useful to support the designs of adaptive optimization and control in other domains.

  13. From Cellular Attractor Selection to Adaptive Signal Control for Traffic Networks

    PubMed Central

    Tian, Daxin; Zhou, Jianshan; Sheng, Zhengguo; Wang, Yunpeng; Ma, Jianming

    2016-01-01

    The management of varying traffic flows essentially depends on signal controls at intersections. However, design an optimal control that considers the dynamic nature of a traffic network and coordinates all intersections simultaneously in a centralized manner is computationally challenging. Inspired by the stable gene expressions of Escherichia coli in response to environmental changes, we explore the robustness and adaptability performance of signalized intersections by incorporating a biological mechanism in their control policies, specifically, the evolution of each intersection is induced by the dynamics governing an adaptive attractor selection in cells. We employ a mathematical model to capture such biological attractor selection and derive a generic, adaptive and distributed control algorithm which is capable of dynamically adapting signal operations for the entire dynamical traffic network. We show that the proposed scheme based on attractor selection can not only promote the balance of traffic loads on each link of the network but also allows the global network to accommodate dynamical traffic demands. Our work demonstrates the potential of bio-inspired intelligence emerging from cells and provides a deep understanding of adaptive attractor selection-based control formation that is useful to support the designs of adaptive optimization and control in other domains. PMID:26972968

  14. Adaptive handoff algorithms based on self-organizing neural networks to enhance the quality of service of nonstationary traffic in heirarchical cellular networks

    NASA Astrophysics Data System (ADS)

    Hortos, William S.

    2000-03-01

    Third-generation (3G) wireless networks, based on a hierarchical cellular structure, support tiered levels of multimedia services. These services can be categorized as real-time and delay-sensitive, or non-real-time and delay- insensitive. Each call carries demand for one or more services in parallel; each with a guaranteed quality of service (QoS). Roaming is handled by handoff procedures between base stations (BSs) and the mobile subscribers (MSs) within the network. Metrics such as the probabilities of handoff failure, dropped calls and blocked calls; handoff transition time; and handoff rate are used to evaluate the handoff schemes, which also directly affects QoS. Previous researchers have proposed a fuzzy logic system (FLS) with neural encoding of the rule base and probabilistic neural network to solve the handoff decision as a pattern recognition problem in the set of MS signal measurements and mobility amid fading path uncertainties. Both neural approaches evalute only voice traffic in a closed, single- layer network of uniform cells. This paper proposed a new topology-preserving, self-organizing neural network (SONN) for both handoff and admission control as part of an overall resource allocation (RA) problem to support QoS in a three- layer, wideband CDMA HCS with dynamic loading of multimedia services. MS profiles include simultaneous service requirements, which are mapped to a new set of variables, defined in terms of the network radio resources (RRs). Simulations of the new SONN-based algorithms under various operating scenarios of MS mobility, dynamic loading, active set size, and RR bounds, using published traffic models of 3G services, compare their performance with earlier approaches.

  15. Actin-binding proteins: the long road to understanding the dynamic landscape of cellular actin networks.

    PubMed

    Lappalainen, Pekka

    2016-08-15

    The actin cytoskeleton supports a vast number of cellular processes in nonmuscle cells. It is well established that the organization and dynamics of the actin cytoskeleton are controlled by a large array of actin-binding proteins. However, it was only 40 years ago that the first nonmuscle actin-binding protein, filamin, was identified and characterized. Filamin was shown to bind and cross-link actin filaments into higher-order structures and contribute to phagocytosis in macrophages. Subsequently many other nonmuscle actin-binding proteins were identified and characterized. These proteins regulate almost all steps of the actin filament assembly and disassembly cycles, as well as the arrangement of actin filaments into diverse three-dimensional structures. Although the individual biochemical activities of most actin-regulatory proteins are relatively well understood, knowledge of how these proteins function together in a common cytoplasm to control actin dynamics and architecture is only beginning to emerge. Furthermore, understanding how signaling pathways and mechanical cues control the activities of various actin-binding proteins in different cellular, developmental, and pathological processes will keep researchers busy for decades. PMID:27528696

  16. Hierarchical random cellular neural networks for system-level brain-like signal processing.

    PubMed

    Kozma, Robert; Puljic, Marko

    2013-09-01

    Sensory information processing and cognition in brains are modeled using dynamic systems theory. The brain's dynamic state is described by a trajectory evolving in a high-dimensional state space. We introduce a hierarchy of random cellular automata as the mathematical tools to describe the spatio-temporal dynamics of the cortex. The corresponding brain model is called neuropercolation which has distinct advantages compared to traditional models using differential equations, especially in describing spatio-temporal discontinuities in the form of phase transitions. Phase transitions demarcate singularities in brain operations at critical conditions, which are viewed as hallmarks of higher cognition and awareness experience. The introduced Monte-Carlo simulations obtained by parallel computing point to the importance of computer implementations using very large-scale integration (VLSI) and analog platforms.

  17. Video Medical Interpretation over 3G Cellular Networks: A Feasibility Study

    PubMed Central

    Williamson, Deborah; Sterrett, James; Detzler, Isabel; Ackerman, Michael

    2011-01-01

    Abstract Objective: To test the feasibility of using cell phone technology to provide video medical interpretation services at a distance. Materials and Methods: Alternative cell phone services were researched and videoconferencing technologies were tried out to identify video products and telecommunication services needed to meet video medical interpretation requirements. The video and telecommunication technologies were tried out in a pharmacy setting and compared with use of the telephone. Results: Outcomes were similar to findings in previous research involving video medical interpretation with higher bandwidth and video quality. Patients appreciated the interpretation service no matter how it is provided, while health providers and interpreters preferred video. Conclusion: It is possible to provide video medical interpretation services via cellular communication using lower bandwidth videoconferencing technology that provides sufficient quality, at least in pharmacy settings. However, a number of issues need to be addressed to ensure quality of service. PMID:22011055

  18. DYNA2D96. Explicit 2-D Hydrodynamic FEM Program

    SciTech Connect

    Whirley, R.G.

    1992-04-01

    DYNA2D is a vectorized, explicit, two-dimensional, axisymmetric and plane strain finite element program for analyzing the large deformation dynamic and hydrodynamic response of inelastic solids. DYNA2D contains 13 material models and 9 equations of state (EOS) to cover a wide range of material behavior. The material models implemented in all machine versions are: elastic, orthotropic elastic, kinematic/isotropic elastic plasticity, thermoelastoplastic, soil and crushable foam, linear viscoelastic, rubber, high explosive burn, isotropic elastic-plastic, temperature-dependent elastic-plastic. The isotropic and temperature-dependent elastic-plastic models determine only the deviatoric stresses. Pressure is determined by one of 9 equations of state including linear polynomial, JWL high explosive, Sack Tuesday high explosive, Gruneisen, ratio of polynomials, linear polynomial with energy deposition, ignition and growth of reaction in HE, tabulated compaction, and tabulated.

  19. Altered Protein Networks and Cellular Pathways in Severe West Nile Disease in Mice

    PubMed Central

    Fraisier, Christophe; Camoin, Luc; Lim, Stéphanie; Bakli, Mahfoud; Belghazi, Maya; Fourquet, Patrick; Granjeaud, Samuel; Osterhaus, Ab D. M. E.; Koraka, Penelope; Martina, Byron; Almeras, Lionel

    2013-01-01

    Background The recent West Nile virus (WNV) outbreaks in developed countries, including Europe and the United States, have been associated with significantly higher neuropathology incidence and mortality rate than previously documented. The changing epidemiology, the constant risk of (re-)emergence of more virulent WNV strains, and the lack of effective human antiviral therapy or vaccines makes understanding the pathogenesis of severe disease a priority. Thus, to gain insight into the pathophysiological processes in severe WNV infection, a kinetic analysis of protein expression profiles in the brain of WNV-infected mice was conducted using samples prior to and after the onset of clinical symptoms. Methodology/Principal Findings To this end, 2D-DIGE and gel-free iTRAQ labeling approaches were combined, followed by protein identification by mass spectrometry. Using these quantitative proteomic approaches, a set of 148 proteins with modified abundance was identified. The bioinformatics analysis (Ingenuity Pathway Analysis) of each protein dataset originating from the different time-point comparisons revealed that four major functions were altered during the course of WNV-infection in mouse brain tissue: i) modification of cytoskeleton maintenance associated with virus circulation; ii) deregulation of the protein ubiquitination pathway; iii) modulation of the inflammatory response; and iv) alteration of neurological development and neuronal cell death. The differential regulation of selected host protein candidates as being representative of these biological processes were validated by western blotting using an original fluorescence-based method. Conclusion/Significance This study provides novel insights into the in vivo kinetic host reactions against WNV infection and the pathophysiologic processes involved, according to clinical symptoms. This work offers useful clues for anti-viral research and further evaluation of early biomarkers for the diagnosis and prevention

  20. 2-D or not 2-D, that is the question: A Northern California test

    SciTech Connect

    Mayeda, K; Malagnini, L; Phillips, W S; Walter, W R; Dreger, D

    2005-06-06

    Reliable estimates of the seismic source spectrum are necessary for accurate magnitude, yield, and energy estimation. In particular, how seismic radiated energy scales with increasing earthquake size has been the focus of recent debate within the community and has direct implications on earthquake source physics studies as well as hazard mitigation. The 1-D coda methodology of Mayeda et al. has provided the lowest variance estimate of the source spectrum when compared against traditional approaches that use direct S-waves, thus making it ideal for networks that have sparse station distribution. The 1-D coda methodology has been mostly confined to regions of approximately uniform complexity. For larger, more geophysically complicated regions, 2-D path corrections may be required. The complicated tectonics of the northern California region coupled with high quality broadband seismic data provides for an ideal ''apples-to-apples'' test of 1-D and 2-D path assumptions on direct waves and their coda. Using the same station and event distribution, we compared 1-D and 2-D path corrections and observed the following results: (1) 1-D coda results reduced the amplitude variance relative to direct S-waves by roughly a factor of 8 (800%); (2) Applying a 2-D correction to the coda resulted in up to 40% variance reduction from the 1-D coda results; (3) 2-D direct S-wave results, though better than 1-D direct waves, were significantly worse than the 1-D coda. We found that coda-based moment-rate source spectra derived from the 2-D approach were essentially identical to those from the 1-D approach for frequencies less than {approx}0.7-Hz, however for the high frequencies (0.7{le} f {le} 8.0-Hz), the 2-D approach resulted in inter-station scatter that was generally 10-30% smaller. For complex regions where data are plentiful, a 2-D approach can significantly improve upon the simple 1-D assumption. In regions where only 1-D coda correction is available it is still preferable over 2

  1. Assembling global maps of cellular function through integrative analysis of physical and genetic networks

    PubMed Central

    Srivas, Rohith; Hannum, Gregory; Ruscheinski, Johannes; Ono, Keiichiro; Wang, Peng-Liang; Smoot, Michael; Ideker, Trey

    2012-01-01

    To take full advantage of high-throughput genetic and physical interaction mapping projects, the raw interactions must first be assembled into models of cell structure and function. PanGIA (for physical and genetic interaction alignment) is a plug-in for the bioinformatics platform Cytoscape, designed to integrate physical and genetic interactions into hierarchical module maps. PanGIA identifies ‘modules’ as sets of proteins whose physical and genetic interaction data matches that of known protein complexes. Higher-order functional cooperativity and redundancy is identified by enrichment for genetic interactions across modules. This protocol begins with importing interaction networks into Cytoscape, followed by filtering and basic network visualization. Next, PanGIA is used to infer a set of modules and their functional inter-relationships. This module map is visualized in a number of intuitive ways, and modules are tested for functional enrichment and overlap with known complexes. The full protocol can be completed between 10 and 30 min, depending on the size of the data set being analyzed. PMID:21886098

  2. An integrative model of the cardiovascular system coupling heart cellular mechanics with arterial network hemodynamics.

    PubMed

    Kim, Young-Tae; Lee, Jeong Sang; Youn, Chan-Hyun; Choi, Jae-Sung; Shim, Eun Bo

    2013-08-01

    The current study proposes a model of the cardiovascular system that couples heart cell mechanics with arterial hemodynamics to examine the physiological role of arterial blood pressure (BP) in left ventricular hypertrophy (LVH). We developed a comprehensive multiphysics and multiscale cardiovascular model of the cardiovascular system that simulates physiological events, from membrane excitation and the contraction of a cardiac cell to heart mechanics and arterial blood hemodynamics. Using this model, we delineated the relationship between arterial BP or pulse wave velocity and LVH. Computed results were compared with existing clinical and experimental observations. To investigate the relationship between arterial hemodynamics and LVH, we performed a parametric study based on arterial wall stiffness, which was obtained in the model. Peak cellular stress of the left ventricle and systolic blood pressure (SBP) in the brachial and central arteries also increased; however, further increases were limited for higher arterial stiffness values. Interestingly, when we doubled the value of arterial stiffness from the baseline value, the percentage increase of SBP in the central artery was about 6.7% whereas that of the brachial artery was about 3.4%. It is suggested that SBP in the central artery is more critical for predicting LVH as compared with other blood pressure measurements.

  3. MOSS2D V1

    2001-01-31

    This software reduces the data from two-dimensional kSA MOS program, k-Space Associates, Ann Arbor, MI. Initial MOS data is recorded without headers in 38 columns, with one row of data per acquisition per lase beam tracked. The final MOSS 2d data file is reduced, graphed, and saved in a tab-delimited column format with headers that can be plotted in any graphing software.

  4. From molecular interaction to acute promyelocytic leukemia: Calculating leukemogenesis and remission from endogenous molecular-cellular network

    PubMed Central

    Yuan, Ruoshi; Zhu, Xiaomei; Radich, Jerald P.; Ao, Ping

    2016-01-01

    Acute promyelocytic leukemia (APL) remains the best example of a malignancy that can be cured clinically by differentiation therapy. We demonstrate that APL may emerge from a dynamical endogenous molecular-cellular network obtained from normal, non-cancerous molecular interactions such as signal transduction and translational regulation under physiological conditions. This unifying framework, which reproduces APL, normal progenitor, and differentiated granulocytic phenotypes as different robust states from the network dynamics, has the advantage to study transition between these states, i.e. critical drivers for leukemogenesis and targets for differentiation. The simulation results quantitatively reproduce microarray profiles of NB4 and HL60 cell lines in response to treatment and normal neutrophil differentiation, and lead to new findings such as biomarkers for APL and additional molecular targets for arsenic trioxide therapy. The modeling shows APL and normal states mutually suppress each other, both in “wiring” and in dynamical cooperation. Leukemogenesis and recovery under treatment may be a consequence of spontaneous or induced transitions between robust states, through “passes” or “dragging” by drug effects. Our approach rationalizes leukemic complexity and constructs a platform towards extending differentiation therapy by performing “dry” molecular biology experiments. PMID:27098097

  5. Morphogenesis in sea urchin embryos: linking cellular events to gene regulatory network states

    PubMed Central

    Lyons, Deidre; Kaltenbach, Stacy; McClay, David R.

    2013-01-01

    Gastrulation in the sea urchin begins with ingression of the primary mesenchyme cells (PMCs) at the vegetal pole of the embryo. After entering the blastocoel the PMCs migrate, form a syncitium, and synthesize the skeleton of the embryo. Several hours after the PMCs ingress the vegetal plate buckles to initiate invagination of the archenteron. That morphogenetic process occurs in several steps. The non-skeletogenic cells produce the initial inbending of the vegetal plate. Endoderm cells then rearrange and extend the length of the gut across the blastocoel to a target near the animal pole. Finally, cells that will form part of the midgut and hindgut are added to complete gastrulation. Later, the stomodeum invaginates from the oral ectoderm and fuses with the foregut to complete the archenteron. In advance of, and during these morphogenetic events an increasingly complex gene regulatory network controls the specification and the cell biological events that conduct the gastrulation movements. PMID:23801438

  6. The p53 network: Cellular and systemic DNA damage responses in aging and cancer

    PubMed Central

    Reinhardt, H. Christian; Schumacher, Björn

    2014-01-01

    Genome instability contributes to cancer development and accelerates age-related pathologies as evidenced by a variety of congenital cancer susceptibility and progeroid syndromes that are caused by defects in genome maintenance mechanisms. DNA damage response pathways that are mediated through the tumor suppressor p53 play an important role in the cell intrinsic responses to genome instability, including a transient cell cycle arrest, senescence and apoptosis. Both senescence and apoptosis are powerful tumor suppressive pathways preventing the uncontrolled proliferation of transformed cells. However, both pathways can potentially deplete stem and progenitor cell pools, thus promoting tissue degeneration and organ failure, which are both hallmarks of aging. p53 signaling is also involved in mediating non-cell autonomous interactions with the innate immune system and in the systemic adjustments during the aging process. The network of p53 target genes thus functions as an important regulator of cancer prevention and the physiology of aging. PMID:22265392

  7. Multimode fibers in millimeter-wave evolution for 5G cellular networks

    NASA Astrophysics Data System (ADS)

    Vázquez, C.; Montero, D. S.; Ponce, W.; Lallana, P. C.; Larrabeiti, D.; Montalvo, J.; Tapetado, A.; Pinzón, P. J.

    2016-02-01

    Small-cell and cloud-RAN systems along with the use of the millimeter-wave band have been considered as promising solutions to meet the capacity demand of the future wireless access networks. Radio over Multimode fibers (RoMMF) can play a role in the integrated optical-wireless access systems for next-generation wireless communications, mainly in within-building environments. The numerical results show the effectiveness of MMF to transmit at 60 GHz band with 7- GHz bandwidth for different link lengths and refractive index profiles under restricted mode launching and using narrow linewidth sources. The integration with optically powered remote antenna units is also proposed based on the large core effective area of MMF. Temperature impairments and graded index plastic optical fiber transmission are also discussed.

  8. Evolving gene regulation networks into cellular networks guiding adaptive behavior: an outline how single cells could have evolved into a centralized neurosensory system

    PubMed Central

    Fritzsch, Bernd; Jahan, Israt; Pan, Ning; Elliott, Karen L.

    2014-01-01

    Understanding the evolution of the neurosensory system of man, able to reflect on its own origin, is one of the major goals of comparative neurobiology. Details of the origin of neurosensory cells, their aggregation into central nervous systems and associated sensory organs, their localized patterning into remarkably different cell types aggregated into variably sized parts of the central nervous system begin to emerge. Insights at the cellular and molecular level begin to shed some light on the evolution of neurosensory cells, partially covered in this review. Molecular evidence suggests that high mobility group (HMG) proteins of pre-metazoans evolved into the definitive Sox [SRY (sex determining region Y)-box] genes used for neurosensory precursor specification in metazoans. Likewise, pre-metazoan basic helix-loop-helix (bHLH) genes evolved in metazoans into the group A bHLH genes dedicated to neurosensory differentiation in bilaterians. Available evidence suggests that the Sox and bHLH genes evolved a cross-regulatory network able to synchronize expansion of precursor populations and their subsequent differentiation into novel parts of the brain or sensory organs. Molecular evidence suggests metazoans evolved patterning gene networks early and not dedicated to neuronal development. Only later in evolution were these patterning gene networks tied into the increasing complexity of diffusible factors, many of which were already present in pre-metazoans, to drive local patterning events. It appears that the evolving molecular basis of neurosensory cell development may have led, in interaction with differentially expressed patterning genes, to local network modifications guiding unique specializations of neurosensory cells into sensory organs and various areas of the central nervous system. PMID:25416504

  9. Human Papillomavirus Deregulates the Response of a Cellular Network Comprising of Chemotactic and Proinflammatory Genes

    PubMed Central

    Karim, Rezaul; Meyers, Craig; Backendorf, Claude; Ludigs, Kristina; Offringa, Rienk; van Ommen, Gert-Jan B.; Melief, Cornelis J. M.; van der Burg, Sjoerd H.; Boer, Judith M.

    2011-01-01

    Despite the presence of intracellular pathogen recognition receptors that allow infected cells to attract the immune system, undifferentiated keratinocytes (KCs) are the main targets for latent infection with high-risk human papilloma viruses (hrHPVs). HPV infections are transient but on average last for more than one year suggesting that HPV has developed means to evade host immunity. To understand how HPV persists, we studied the innate immune response of undifferentiated human KCs harboring episomal copies of HPV16 and 18 by genome-wide expression profiling. Our data showed that the expression of the different virus-sensing receptors was not affected by the presence of HPV. Poly(I:C) stimulation of the viral RNA receptors TLR3, PKR, MDA5 and RIG-I, the latter of which indirectly senses viral DNA through non-self RNA polymerase III transcripts, showed dampening in downstream signalling of these receptors by HPVs. Many of the genes downregulated in HPV-positive KCs involved components of the antigen presenting pathway, the inflammasome, the production of antivirals, pro-inflammatory and chemotactic cytokines, and components downstream of activated pathogen receptors. Notably, gene and/or protein interaction analysis revealed the downregulation of a network of genes that was strongly interconnected by IL-1β, a crucial cytokine to activate adaptive immunity. In summary, our comprehensive expression profiling approach revealed that HPV16 and 18 coordinate a broad deregulation of the keratinocyte's inflammatory response, and contributes to the understanding of virus persistence. PMID:21423754

  10. Structurally Dynamic Cellular Networks as Models for Planck Scale Physics and the Quantum Vacuum

    NASA Astrophysics Data System (ADS)

    Requardt, Manfred

    Starting from the working hypothesis that both physics and the corresponding mathematics have to be described by means of discrete concepts on the Planck scale, one of the many problems one has to face in this enterprise is to find the discrete protoforms of the building blocks of our ordinary continuum physics and mathematics. We regard these continuum concepts and continuum space-time (S-T) in particular as being emergent, coarse-grained and derived relative to an underlying erratic and disordered microscopic substratum which is expected to play by quite different rules. A central role in our analysis is played by a geometric renormalization group which creates (among other things) a kind of sparse translocal network of correlations in classical continuous space-time and underlies in our view such mysterious phenomena as holography and the black hole entropy-area law. The same point of view holds for quantum theory which we also regard as a low-energy, coarse-grained continuum theory, being emergent from something more fundamental.

  11. A Dynamic Programming Approach for Base Station Sleeping in Cellular Networks

    NASA Astrophysics Data System (ADS)

    Gong, Jie; Zhou, Sheng; Niu, Zhisheng

    The energy consumption of the information and communication technology (ICT) industry, which has become a serious problem, is mostly due to the network infrastructure rather than the mobile terminals. In this paper, we focus on reducing the energy consumption of base stations (BSs) by adjusting their working modes (active or sleep). Specifically, the objective is to minimize the energy consumption while satisfying quality of service (QoS, e.g., blocking probability) requirement and, at the same time, avoiding frequent mode switching to reduce signaling and delay overhead. The problem is modeled as a dynamic programming (DP) problem, which is NP-hard in general. Based on cooperation among neighboring BSs, a low-complexity algorithm is proposed to reduce the size of state space as well as that of action space. Simulations demonstrate that, with the proposed algorithm, the active BS pattern well meets the time variation and the non-uniform spatial distribution of system traffic. Moreover, the tradeoff between the energy saving from BS sleeping and the cost of switching is well balanced by the proposed scheme.

  12. Incorporation of aggrecan in interpenetrating network hydrogels to improve cellular performance for cartilage tissue engineering.

    PubMed

    Ingavle, Ganesh C; Frei, Anthony W; Gehrke, Stevin H; Detamore, Michael S

    2013-06-01

    Interpenetrating network (IPN) hydrogels were recently introduced to the cartilage tissue engineering literature, with the approach of encapsulating cells in thermally gelling agarose that is then soaked in a poly(ethylene glycol) diacrylate (PEGDA) solution, which is then photopolymerized. These IPNs possess significantly enhanced mechanical performance desirable for cartilage regeneration, potentially allowing patients to return to weight-bearing activities quickly after surgical implantation. In an effort to improve cell viability and performance, inspiration was drawn from previous studies that have elicited positive chondrogenic responses to aggrecan, the proteoglycan largely responsible for the compressive stiffness of cartilage. Aggrecan was incorporated into the IPNs in conservative concentrations (40 μg/mL), and its effect was contrasted with the incorporation of chondroitin sulfate (CS), the primary glycosaminoglycan associated with aggrecan. Aggrecan was incorporated by physical entrapment within agarose and methacrylated CS was incorporated by copolymerization with PEGDA. The IPNs incorporating aggrecan or CS exhibited over 50% viability with encapsulated chondrocytes after 6 weeks. Both aggrecan and CS improved cell viability by 15.6% and 20%, respectively, relative to pure IPNs at 6 weeks culture time. In summary, we have introduced the novel approach of including a raw material from cartilage, namely aggrecan, to serve as a bioactive signal to cells encapsulated in IPN hydrogels for cartilage tissue engineering, which led to improved performance of encapsulated chondrocytes. PMID:23379843

  13. Ultra-Porous Nanoparticle Networks: A Biomimetic Coating Morphology for Enhanced Cellular Response and Infiltration

    PubMed Central

    Nasiri, Noushin; Ceramidas, Anthony; Mukherjee, Shayanti; Panneerselvan, Anitha; Nisbet, David R.; Tricoli, Antonio

    2016-01-01

    Orthopedic treatments are amongst the most common cause of surgery and are responsible for a large share of global healthcare expenditures. Engineering materials that can hasten bone integration will improve the quality of life of millions of patients per year and reduce associated medical costs. Here, we present a novel hierarchical biomimetic coating that mimics the inorganic constituent of mammalian bones with the aim of improving osseointegration of metallic implants. We exploit the thermally-driven self-organization of metastable core-shell nanoparticles during their aerosol self-assembly to rapidly fabricate robust, ultra-porous nanoparticle networks (UNN) of crystalline hydroxyapatite (HAp). Comparative analysis of the response of osteoblast cells to the ultra-porous nanostructured HAp surfaces and to the spin coated HAp surfaces revealed superior osseointegrative properties of the UNN coatings with significant cell and filopodia infiltration. This flexible synthesis approach for the engineering of UNN HAp coatings on titanium implants provides a platform technology to study the bone-implant interface for improved osseointegration and osteoconduction. PMID:27076035

  14. Incorporation of Aggrecan in Interpenetrating Network Hydrogels to Improve Cellular Performance for Cartilage Tissue Engineering

    PubMed Central

    Ingavle, Ganesh C.; Frei, Anthony W.; Gehrke, Stevin H.

    2013-01-01

    Interpenetrating network (IPN) hydrogels were recently introduced to the cartilage tissue engineering literature, with the approach of encapsulating cells in thermally gelling agarose that is then soaked in a poly(ethylene glycol) diacrylate (PEGDA) solution, which is then photopolymerized. These IPNs possess significantly enhanced mechanical performance desirable for cartilage regeneration, potentially allowing patients to return to weight-bearing activities quickly after surgical implantation. In an effort to improve cell viability and performance, inspiration was drawn from previous studies that have elicited positive chondrogenic responses to aggrecan, the proteoglycan largely responsible for the compressive stiffness of cartilage. Aggrecan was incorporated into the IPNs in conservative concentrations (40 μg/mL), and its effect was contrasted with the incorporation of chondroitin sulfate (CS), the primary glycosaminoglycan associated with aggrecan. Aggrecan was incorporated by physical entrapment within agarose and methacrylated CS was incorporated by copolymerization with PEGDA. The IPNs incorporating aggrecan or CS exhibited over 50% viability with encapsulated chondrocytes after 6 weeks. Both aggrecan and CS improved cell viability by 15.6% and 20%, respectively, relative to pure IPNs at 6 weeks culture time. In summary, we have introduced the novel approach of including a raw material from cartilage, namely aggrecan, to serve as a bioactive signal to cells encapsulated in IPN hydrogels for cartilage tissue engineering, which led to improved performance of encapsulated chondrocytes. PMID:23379843

  15. Mapping the Hsp90 Genetic Network Reveals Ergosterol Biosynthesis and Phosphatidylinositol-4-Kinase Signaling as Core Circuitry Governing Cellular Stress

    PubMed Central

    O’Meara, Teresa R.; Valaei, Seyedeh Fereshteh; Diezmann, Stephanie; Cowen, Leah E.

    2016-01-01

    Candida albicans is a leading human fungal pathogen that causes life-threatening systemic infections. A key regulator of C. albicans stress response, drug resistance, morphogenesis, and virulence is the molecular chaperone Hsp90. Targeting Hsp90 provides a powerful strategy to treat fungal infections, however, the therapeutic utility of current inhibitors is compromised by toxicity due to inhibition of host Hsp90. To identify components of the Hsp90-dependent circuitry governing virulence and drug resistance that are sufficiently divergent for selective targeting in the pathogen, we pioneered chemical genomic profiling of the Hsp90 genetic network in C. albicans. Here, we screen mutant collections covering ~10% of the genome for hypersensitivity to Hsp90 inhibition in multiple environmental conditions. We identify 158 HSP90 chemical genetic interactors, most of which are important for growth only in specific environments. We discovered that the sterol C-22 desaturase gene ERG5 and the phosphatidylinositol-4-kinase (PI4K) gene STT4 are HSP90 genetic interactors under multiple conditions, suggesting a function upstream of Hsp90. By systematic analysis of the ergosterol biosynthetic cascade, we demonstrate that defects in ergosterol biosynthesis induce cellular stress that overwhelms Hsp90’s functional capacity. By analysis of the phosphatidylinositol pathway, we demonstrate that there is a genetic interaction between the PI4K Stt4 and Hsp90. We also establish that Stt4 is required for normal actin polarization through regulation of Wal1, and suggest a model in which defects in actin remodeling induces stress that creates a cellular demand for Hsp90 that exceeds its functional capacity. Consistent with this model, actin inhibitors are synergistic with Hsp90 inhibitors. We highlight new connections between Hsp90 and virulence traits, demonstrating that Erg5 and Stt4 enable activation of macrophage pyroptosis. This work uncovers novel circuitry regulating Hsp90

  16. Competing coexisting phases in 2D water

    PubMed Central

    Zanotti, Jean-Marc; Judeinstein, Patrick; Dalla-Bernardina, Simona; Creff, Gaëlle; Brubach, Jean-Blaise; Roy, Pascale; Bonetti, Marco; Ollivier, Jacques; Sakellariou, Dimitrios; Bellissent-Funel, Marie-Claire

    2016-01-01

    The properties of bulk water come from a delicate balance of interactions on length scales encompassing several orders of magnitudes: i) the Hydrogen Bond (HBond) at the molecular scale and ii) the extension of this HBond network up to the macroscopic level. Here, we address the physics of water when the three dimensional extension of the HBond network is frustrated, so that the water molecules are forced to organize in only two dimensions. We account for the large scale fluctuating HBond network by an analytical mean-field percolation model. This approach provides a coherent interpretation of the different events experimentally (calorimetry, neutron, NMR, near and far infra-red spectroscopies) detected in interfacial water at 160, 220 and 250 K. Starting from an amorphous state of water at low temperature, these transitions are respectively interpreted as the onset of creation of transient low density patches of 4-HBonded molecules at 160 K, the percolation of these domains at 220 K and finally the total invasion of the surface by them at 250 K. The source of this surprising behaviour in 2D is the frustration of the natural bulk tetrahedral local geometry and the underlying very significant increase in entropy of the interfacial water molecules. PMID:27185018

  17. Competing coexisting phases in 2D water

    NASA Astrophysics Data System (ADS)

    Zanotti, Jean-Marc; Judeinstein, Patrick; Dalla-Bernardina, Simona; Creff, Gaëlle; Brubach, Jean-Blaise; Roy, Pascale; Bonetti, Marco; Ollivier, Jacques; Sakellariou, Dimitrios; Bellissent-Funel, Marie-Claire

    2016-05-01

    The properties of bulk water come from a delicate balance of interactions on length scales encompassing several orders of magnitudes: i) the Hydrogen Bond (HBond) at the molecular scale and ii) the extension of this HBond network up to the macroscopic level. Here, we address the physics of water when the three dimensional extension of the HBond network is frustrated, so that the water molecules are forced to organize in only two dimensions. We account for the large scale fluctuating HBond network by an analytical mean-field percolation model. This approach provides a coherent interpretation of the different events experimentally (calorimetry, neutron, NMR, near and far infra-red spectroscopies) detected in interfacial water at 160, 220 and 250 K. Starting from an amorphous state of water at low temperature, these transitions are respectively interpreted as the onset of creation of transient low density patches of 4-HBonded molecules at 160 K, the percolation of these domains at 220 K and finally the total invasion of the surface by them at 250 K. The source of this surprising behaviour in 2D is the frustration of the natural bulk tetrahedral local geometry and the underlying very significant increase in entropy of the interfacial water molecules.

  18. A 181 GOPS AKAZE Accelerator Employing Discrete-Time Cellular Neural Networks for Real-Time Feature Extraction.

    PubMed

    Jiang, Guangli; Liu, Leibo; Zhu, Wenping; Yin, Shouyi; Wei, Shaojun

    2015-01-01

    This paper proposes a real-time feature extraction VLSI architecture for high-resolution images based on the accelerated KAZE algorithm. Firstly, a new system architecture is proposed. It increases the system throughput, provides flexibility in image resolution, and offers trade-offs between speed and scaling robustness. The architecture consists of a two-dimensional pipeline array that fully utilizes computational similarities in octaves. Secondly, a substructure (block-serial discrete-time cellular neural network) that can realize a nonlinear filter is proposed. This structure decreases the memory demand through the removal of data dependency. Thirdly, a hardware-friendly descriptor is introduced in order to overcome the hardware design bottleneck through the polar sample pattern; a simplified method to realize rotation invariance is also presented. Finally, the proposed architecture is designed in TSMC 65 nm CMOS technology. The experimental results show a performance of 127 fps in full HD resolution at 200 MHz frequency. The peak performance reaches 181 GOPS and the throughput is double the speed of other state-of-the-art architectures. PMID:26404305

  19. A cellular nonlinear network: real-time technology for the analysis of microfluidic phenomena in blood vessels

    NASA Astrophysics Data System (ADS)

    Sapuppo, F.; Bucolo, M.; Intaglietta, M.; Fortuna, L.; Arena, P.

    2006-02-01

    A new approach to the observation and analysis of dynamic structural and functional parameters in the microcirculation is described. The new non-invasive optical system is based on cellular nonlinear networks (CNNs), highly integrated analogue processor arrays whose processing elements, the cells, interact directly within a finite local neighbourhood. CNNs, thanks to their parallel processing feature and spatially distributed structure, are widely used to solve high-speed image processing and recognition problems and in the description and modelling of biological dynamics through the solution of time continuous partial differential equations (PDEs). They are therefore considered extremely suitable for spatial-temporal dynamic characterization of fluidic phenomena at micrometric to nanometric scales, such as blood flow in microvessels and its interaction with the cells of the vessel wall. A CNN universal machine (CNN-UM) structure was used to implement, via simulation and hardware (ACE16k), the algorithms to determine the functional capillarity density (FCD) and red blood cell velocity (RBCV) in capillaries obtained by intravital microscopy during in vivo experiments on hamsters. The system exploits the moving particles to distinguish the functional capillaries from the stationary background. This information is used to reconstruct a map and to calculate the velocity of the moving objects.

  20. A 181 GOPS AKAZE Accelerator Employing Discrete-Time Cellular Neural Networks for Real-Time Feature Extraction

    PubMed Central

    Jiang, Guangli; Liu, Leibo; Zhu, Wenping; Yin, Shouyi; Wei, Shaojun

    2015-01-01

    This paper proposes a real-time feature extraction VLSI architecture for high-resolution images based on the accelerated KAZE algorithm. Firstly, a new system architecture is proposed. It increases the system throughput, provides flexibility in image resolution, and offers trade-offs between speed and scaling robustness. The architecture consists of a two-dimensional pipeline array that fully utilizes computational similarities in octaves. Secondly, a substructure (block-serial discrete-time cellular neural network) that can realize a nonlinear filter is proposed. This structure decreases the memory demand through the removal of data dependency. Thirdly, a hardware-friendly descriptor is introduced in order to overcome the hardware design bottleneck through the polar sample pattern; a simplified method to realize rotation invariance is also presented. Finally, the proposed architecture is designed in TSMC 65 nm CMOS technology. The experimental results show a performance of 127 fps in full HD resolution at 200 MHz frequency. The peak performance reaches 181 GOPS and the throughput is double the speed of other state-of-the-art architectures. PMID:26404305

  1. Decoding genome-wide GadEWX-transcriptional regulatory networks reveals multifaceted cellular responses to acid stress in Escherichia coli.

    PubMed

    Seo, Sang Woo; Kim, Donghyuk; O'Brien, Edward J; Szubin, Richard; Palsson, Bernhard O

    2015-01-01

    The regulators GadE, GadW and GadX (which we refer to as GadEWX) play a critical role in the transcriptional regulation of the glutamate-dependent acid resistance (GDAR) system in Escherichia coli K-12 MG1655. However, the genome-wide regulatory role of GadEWX is still unknown. Here we comprehensively reconstruct the genome-wide GadEWX transcriptional regulatory network and RpoS involvement in E. coli K-12 MG1655 under acidic stress. Integrative data analysis reveals that GadEWX regulons consist of 45 genes in 31 transcription units and 28 of these genes were associated with RpoS-binding sites. We demonstrate that GadEWX directly and coherently regulate several proton-generating/consuming enzymes with pairs of negative-feedback loops for pH homeostasis. In addition, GadEWX regulate genes with assorted functions, including molecular chaperones, acid resistance, stress response and other regulatory activities. These results show how GadEWX simultaneously coordinate many cellular processes to produce the overall response of E. coli to acid stress. PMID:26258987

  2. Decoding genome-wide GadEWX-transcriptional regulatory networks reveals multifaceted cellular responses to acid stress in Escherichia coli

    PubMed Central

    Seo, Sang Woo; Kim, Donghyuk; O'Brien, Edward J.; Szubin, Richard; Palsson, Bernhard O.

    2015-01-01

    The regulators GadE, GadW and GadX (which we refer to as GadEWX) play a critical role in the transcriptional regulation of the glutamate-dependent acid resistance (GDAR) system in Escherichia coli K-12 MG1655. However, the genome-wide regulatory role of GadEWX is still unknown. Here we comprehensively reconstruct the genome-wide GadEWX transcriptional regulatory network and RpoS involvement in E. coli K-12 MG1655 under acidic stress. Integrative data analysis reveals that GadEWX regulons consist of 45 genes in 31 transcription units and 28 of these genes were associated with RpoS-binding sites. We demonstrate that GadEWX directly and coherently regulate several proton-generating/consuming enzymes with pairs of negative-feedback loops for pH homeostasis. In addition, GadEWX regulate genes with assorted functions, including molecular chaperones, acid resistance, stress response and other regulatory activities. These results show how GadEWX simultaneously coordinate many cellular processes to produce the overall response of E. coli to acid stress. PMID:26258987

  3. Unparticle example in 2D.

    PubMed

    Georgi, Howard; Kats, Yevgeny

    2008-09-26

    We discuss what can be learned about unparticle physics by studying simple quantum field theories in one space and one time dimension. We argue that the exactly soluble 2D theory of a massless fermion coupled to a massive vector boson, the Sommerfield model, is an interesting analog of a Banks-Zaks model, approaching a free theory at high energies and a scale-invariant theory with nontrivial anomalous dimensions at low energies. We construct a toy standard model coupling to the fermions in the Sommerfield model and study how the transition from unparticle behavior at low energies to free particle behavior at high energies manifests itself in interactions with the toy standard model particles.

  4. Energy Efficient IoT Data Collection in Smart Cities Exploiting D2D Communications.

    PubMed

    Orsino, Antonino; Araniti, Giuseppe; Militano, Leonardo; Alonso-Zarate, Jesus; Molinaro, Antonella; Iera, Antonio

    2016-06-08

    Fifth Generation (5G) wireless systems are expected to connect an avalanche of "smart" objects disseminated from the largest "Smart City" to the smallest "Smart Home". In this vision, Long Term Evolution-Advanced (LTE-A) is deemed to play a fundamental role in the Internet of Things (IoT) arena providing a large coherent infrastructure and a wide wireless connectivity to the devices. However, since LTE-A was originally designed to support high data rates and large data size, novel solutions are required to enable an efficient use of radio resources to convey small data packets typically exchanged by IoT applications in "smart" environments. On the other hand, the typically high energy consumption required by cellular communications is a serious obstacle to large scale IoT deployments under cellular connectivity as in the case of Smart City scenarios. Network-assisted Device-to-Device (D2D) communications are considered as a viable solution to reduce the energy consumption for the devices. The particular approach presented in this paper consists in appointing one of the IoT smart devices as a collector of all data from a cluster of objects using D2D links, thus acting as an aggregator toward the eNodeB. By smartly adapting the Modulation and Coding Scheme (MCS) on the communication links, we will show it is possible to maximize the radio resource utilization as a function of the total amount of data to be sent. A further benefit that we will highlight is the possibility to reduce the transmission power when a more robust MCS is adopted. A comprehensive performance evaluation in a wide set of scenarios will testify the achievable gains in terms of energy efficiency and resource utilization in the envisaged D2D-based IoT data collection.

  5. Energy Efficient IoT Data Collection in Smart Cities Exploiting D2D Communications.

    PubMed

    Orsino, Antonino; Araniti, Giuseppe; Militano, Leonardo; Alonso-Zarate, Jesus; Molinaro, Antonella; Iera, Antonio

    2016-01-01

    Fifth Generation (5G) wireless systems are expected to connect an avalanche of "smart" objects disseminated from the largest "Smart City" to the smallest "Smart Home". In this vision, Long Term Evolution-Advanced (LTE-A) is deemed to play a fundamental role in the Internet of Things (IoT) arena providing a large coherent infrastructure and a wide wireless connectivity to the devices. However, since LTE-A was originally designed to support high data rates and large data size, novel solutions are required to enable an efficient use of radio resources to convey small data packets typically exchanged by IoT applications in "smart" environments. On the other hand, the typically high energy consumption required by cellular communications is a serious obstacle to large scale IoT deployments under cellular connectivity as in the case of Smart City scenarios. Network-assisted Device-to-Device (D2D) communications are considered as a viable solution to reduce the energy consumption for the devices. The particular approach presented in this paper consists in appointing one of the IoT smart devices as a collector of all data from a cluster of objects using D2D links, thus acting as an aggregator toward the eNodeB. By smartly adapting the Modulation and Coding Scheme (MCS) on the communication links, we will show it is possible to maximize the radio resource utilization as a function of the total amount of data to be sent. A further benefit that we will highlight is the possibility to reduce the transmission power when a more robust MCS is adopted. A comprehensive performance evaluation in a wide set of scenarios will testify the achievable gains in terms of energy efficiency and resource utilization in the envisaged D2D-based IoT data collection. PMID:27338385

  6. Energy Efficient IoT Data Collection in Smart Cities Exploiting D2D Communications

    PubMed Central

    Orsino, Antonino; Araniti, Giuseppe; Militano, Leonardo; Alonso-Zarate, Jesus; Molinaro, Antonella; Iera, Antonio

    2016-01-01

    Fifth Generation (5G) wireless systems are expected to connect an avalanche of “smart” objects disseminated from the largest “Smart City” to the smallest “Smart Home”. In this vision, Long Term Evolution-Advanced (LTE-A) is deemed to play a fundamental role in the Internet of Things (IoT) arena providing a large coherent infrastructure and a wide wireless connectivity to the devices. However, since LTE-A was originally designed to support high data rates and large data size, novel solutions are required to enable an efficient use of radio resources to convey small data packets typically exchanged by IoT applications in “smart” environments. On the other hand, the typically high energy consumption required by cellular communications is a serious obstacle to large scale IoT deployments under cellular connectivity as in the case of Smart City scenarios. Network-assisted Device-to-Device (D2D) communications are considered as a viable solution to reduce the energy consumption for the devices. The particular approach presented in this paper consists in appointing one of the IoT smart devices as a collector of all data from a cluster of objects using D2D links, thus acting as an aggregator toward the eNodeB. By smartly adapting the Modulation and Coding Scheme (MCS) on the communication links, we will show it is possible to maximize the radio resource utilization as a function of the total amount of data to be sent. A further benefit that we will highlight is the possibility to reduce the transmission power when a more robust MCS is adopted. A comprehensive performance evaluation in a wide set of scenarios will testify the achievable gains in terms of energy efficiency and resource utilization in the envisaged D2D-based IoT data collection. PMID:27338385

  7. A New Blind 2D-RAKE Receiver Based on CMA Criteria for Spread Spectrum Systems Suitable for Software Defined Radio Architecture

    NASA Astrophysics Data System (ADS)

    Takayama, Kei; Kamiya, Yukihiro; Fujii, Takeo; Suzuki, Yasuo

    Spread Spectrum (SS) has been widely used for various wireless systems such as cellular systems, wireless local area network (LAN) and so on. Using multiple antennas at the receiver, two-dimensional (2D) RAKE is realized over the time- and the space-domain. However, it should be noted that the 2D-RAKE receiver must detect the bit timing prior to the RAKE combining. In case of deep fading, it is often difficult to detect it due to low signal-to-noise power ratio (SNR). To solve this problem, we propose a new blind 2D-RAKE receiver based on the constant modulus algorithm (CMA). Since it does not need a priori bit timing detection, it is possible to compensate frequency selective fading even in very low SNR environments. The proposed method is particularly suitable for the software defined radio (SDR) architecture. The performance of the proposed method is investigated through computer simulations.

  8. NKG2D ligands mediate immunosurveillance of senescent cells.

    PubMed

    Sagiv, Adi; Burton, Dominick G A; Moshayev, Zhana; Vadai, Ezra; Wensveen, Felix; Ben-Dor, Shifra; Golani, Ofra; Polic, Bojan; Krizhanovsky, Valery

    2016-02-01

    Cellular senescence is a stress response mechanism that limits tumorigenesis and tissue damage. Induction of cellular senescence commonly coincides with an immunogenic phenotype that promotes self-elimination by components of the immune system, thereby facilitating tumor suppression and limiting excess fibrosis during wound repair. The mechanisms by which senescent cells regulate their immune surveillance are not completely understood. Here we show that ligands of an activating Natural Killer (NK) cell receptor (NKG2D), MICA and ULBP2 are consistently up-regulated following induction of replicative senescence, oncogene-induced senescence and DNA damage - induced senescence. MICA and ULBP2 proteins are necessary for efficient NK-mediated cytotoxicity towards senescent fibroblasts. The mechanisms regulating the initial expression of NKG2D ligands in senescent cells are dependent on a DNA damage response, whilst continuous expression of these ligands is regulated by the ERK signaling pathway. In liver fibrosis, the accumulation of senescent activated stellate cells is increased in mice lacking NKG2D receptor leading to increased fibrosis. Overall, our results provide new insights into the mechanisms regulating the expression of immune ligands in senescent cells and reveal the importance of NKG2D receptor-ligand interaction in protecting against liver fibrosis. PMID:26878797

  9. Dendritic type, accessory cells within the mammalian thymic microenvironment. Antigen presentation in the dendritic neuro-endocrine-immune cellular network.

    PubMed

    Bodey, B; Bodey, B; Kaiser, H E

    1997-01-01

    During mammalian ontogenesis, the thymic "pure" endodermal epithelial anlage develops and differentiates into a complex cellular microenvironment. Beginning the 7-8th week of intrauterine development, thymic epithelial cells chemotactically regulate (induce) numerous waves of migration of stem cells into the thymus, including the CD34+, yolk sac-derived, committed hematopoietic stem cells. In vitro experiments have established that CD34+ CD38dim human thymocytes differentiate into T lymphocytes when co-cultured with mouse fetal thymic organs. Hematopoietic stem cells for myeloid and thymic stromal dendritic cells (DCs) are present within the minute population of CD34+ progenitors within the mammalian thymus. The common myeloid, DC, natural killer (NK) and T lymphocyte progenitors have also been identified within the CD34+ stem cell population in the human thymus. Interactions between the endocrine and immune systems have been reported in various regions of the mammalian body including the anterior pituitary (AP), the skin, and the central (thymus) and peripheral lymphatic system. The network of bone marrow derived DCs is a part of the reticuloendothelial system (RES) and DCs represent the cellular mediators of these regulatory endocrine-immune interactions. Folliculo-stellate cells (FSC) in the AP, Langerhans cells (LCs) in the skin and lymphatic system, "veiled" cells, lympho-dendritic and interdigitating cells (IDCs) in a number of tissues comprising the lymphatic system are the cell types of the DC meshwork of "professional" antigen presenting cells (APCs). Most of these cells express the immunocytochemical markers S-100, CD1. CD45, CD54, F418, MHC class I and II antigens, Fc and complement receptors. FSCs are non-hormone secreting cells which communicate directly with hormone producing cells, a form of neuro-endocrine-immune regulation. As a result, an attenuation of secretory responses follows stimulation of these cells. FSCs are also the cells in the AP

  10. Modeling land use and land cover changes in a vulnerable coastal region using artificial neural networks and cellular automata.

    PubMed

    Qiang, Yi; Lam, Nina S N

    2015-03-01

    As one of the most vulnerable coasts in the continental USA, the Lower Mississippi River Basin (LMRB) region has endured numerous hazards over the past decades. The sustainability of this region has drawn great attention from the international, national, and local communities, wanting to understand how the region as a system develops under intense interplay between the natural and human factors. A major problem in this deltaic region is significant land loss over the years due to a combination of natural and human factors. The main scientific and management questions are what factors contribute to the land use land cover (LULC) changes in this region, can we model the changes, and how would the LULC look like in the future given the current factors? This study analyzed the LULC changes of the region between 1996 and 2006 by utilizing an artificial neural network (ANN) to derive the LULC change rules from 15 human and natural variables. The rules were then used to simulate future scenarios in a cellular automation model. A stochastic element was added in the model to represent factors that were not included in the current model. The analysis was conducted for two sub-regions in the study area for comparison. The results show that the derived ANN models could simulate the LULC changes with a high degree of accuracy (above 92 % on average). A total loss of 263 km(2) in wetlands from 2006 to 2016 was projected, whereas the trend of forest loss will cease. These scenarios provide useful information to decision makers for better planning and management of the region. PMID:25647797

  11. Modeling land use and land cover changes in a vulnerable coastal region using artificial neural networks and cellular automata.

    PubMed

    Qiang, Yi; Lam, Nina S N

    2015-03-01

    As one of the most vulnerable coasts in the continental USA, the Lower Mississippi River Basin (LMRB) region has endured numerous hazards over the past decades. The sustainability of this region has drawn great attention from the international, national, and local communities, wanting to understand how the region as a system develops under intense interplay between the natural and human factors. A major problem in this deltaic region is significant land loss over the years due to a combination of natural and human factors. The main scientific and management questions are what factors contribute to the land use land cover (LULC) changes in this region, can we model the changes, and how would the LULC look like in the future given the current factors? This study analyzed the LULC changes of the region between 1996 and 2006 by utilizing an artificial neural network (ANN) to derive the LULC change rules from 15 human and natural variables. The rules were then used to simulate future scenarios in a cellular automation model. A stochastic element was added in the model to represent factors that were not included in the current model. The analysis was conducted for two sub-regions in the study area for comparison. The results show that the derived ANN models could simulate the LULC changes with a high degree of accuracy (above 92 % on average). A total loss of 263 km(2) in wetlands from 2006 to 2016 was projected, whereas the trend of forest loss will cease. These scenarios provide useful information to decision makers for better planning and management of the region.

  12. Color tunable and near white-light emission of two solvent-induced 2D lead(II) coordination networks based on a rigid ligand 1-tetrazole-4-imidazole-benzene.

    PubMed

    Chen, Jun; Zhang, Qing; Liu, Zhi-Fa; Wang, Shuai-Hua; Xiao, Yu; Li, Rong; Xu, Jian-Gang; Zhao, Ya-Ping; Zheng, Fa-Kun; Guo, Guo-Cong

    2015-06-01

    Two new lead(II) coordination polymers, [Pb(NO3)(tzib)]n (1) and [Pb(tzib)2]n (2), were successfully synthesized from the reaction of a rigid ligand 1-tetrazole-4-imidazole-benzene (Htzib) and lead(II) nitrate in different solvents. The obtained polymers have been characterized by single-crystal X-ray diffraction analyses, which show that both polymers feature 2D layer structures. The inorganic anion nitrate in 1 shows a μ2-κO3:κO3 bridging mode to connect adjacent lead ions into a zigzag chain, and then the organic ligands tzib(-) join the neighboring chains into a 2D layer by a μ3-κN1:κN2:κN6 connection mode. In 2, there are two different bridging modes of the tzib(-) ligand: μ3-κN1:κN2:κN6 and μ3-κN1:κN6 to coordinate the lead ions into a 2D layer structure. Interestingly, both polymers displayed broadband emissions covering the entire visible spectra, which could be tunable to near white-light emission by varying excitation wavelengths. PMID:25952460

  13. Extraction of Individual Filaments from 2D Confocal Microscopy Images of Flat Cells.

    PubMed

    Basu, Saurav; Chi Liu; Rohde, Gustavo Kunde

    2015-01-01

    A crucial step in understanding the architecture of cells and tissues from microscopy images, and consequently explain important biological events such as wound healing and cancer metastases, is the complete extraction and enumeration of individual filaments from the cellular cytoskeletal network. Current efforts at quantitative estimation of filament length distribution, architecture and orientation from microscopy images are predominantly limited to visual estimation and indirect experimental inference. Here we demonstrate the application of a new algorithm to reliably estimate centerlines of biological filament bundles and extract individual filaments from the centerlines by systematically disambiguating filament intersections. We utilize a filament enhancement step followed by reverse diffusion based filament localization and an integer programming based set combination to systematically extract accurate filaments automatically from microscopy images. Experiments on simulated and real confocal microscope images of flat cells (2D images) show efficacy of the new method.

  14. An overview of 2D DIGE analysis of marine (environmental) bacteria.

    PubMed

    Rabus, Ralf

    2012-01-01

    Microbes are the "unseen majority" of living organisms on Earth and main drivers of the biogeochemical cycles in marine and most other environments. Their significance for an intact biosphere is bringing environmental bacteria increasingly into the focus of genome-based science. Proteomics is playing a prominent role for providing a molecular understanding of how these microbes work and for identifying the key biocatalysts involved in the major biogeochemical processes. This overview describes the major insights obtained from two-dimensional difference gel electrophoresis (2D DIGE) analyses of specific degradation pathways, complex metabolic networks, cellular processes, and regulatory patterns in the marine aerobic heterotrophs Rhodopirellula baltica SH1 (Planctomycetes) and Phaeobacter gallaeciensis DSM 17395 (Roseobacter clade) and the anaerobic aromatic compound degrader Aromatoleum aromaticum EbN1 (Betaproteobacteria). PMID:22311773

  15. T2D@ZJU: a knowledgebase integrating heterogeneous connections associated with type 2 diabetes mellitus.

    PubMed

    Yang, Zhenzhong; Yang, Jihong; Liu, Wei; Wu, Leihong; Xing, Li; Wang, Yi; Fan, Xiaohui; Cheng, Yiyu

    2013-01-01

    Type 2 diabetes mellitus (T2D), affecting >90% of the diabetic patients, is one of the major threats to human health. A comprehensive understanding of the mechanisms of T2D at molecular level is essential to facilitate the related translational research. Here, we introduce a comprehensive and up-to-date knowledgebase for T2D, i.e. T2D@ZJU. T2D@ZJU contains three levels of heterogeneous connections associated with T2D, which is retrieved from pathway databases, protein-protein interaction databases and literature, respectively. In current release, T2D@ZJU contains 1078 T2D related entities such as proteins, protein complexes, drugs and others together with their corresponding relationships, which include 3069 manually curated connections, 14,893 protein-protein interactions and 26,716 relationships identified by text-mining technology. Moreover, T2D@ZJU provides a user-friendly web interface for users to browse and search data. A Cytoscape Web-based interactive network browser is available to visualize the corresponding network relationships between T2D-related entities. The functionality of T2D@ZJU is shown by means of several case studies. Database URL: http://tcm.zju.edu.cn/t2d.

  16. A Single Chance to Contact Multiple Targets: Distinct Osteocyte Morphotypes Shed Light on the Cellular Mechanism Ensuring the Robust Formation of Osteocytic Networks.

    PubMed

    Fritz, Alan; Bertin, Ariana; Hanna, Patricia; Nualart, Francisco; Marcellini, Sylvain

    2016-07-01

    The formation of the complex osteocytic network relies on the emission of long cellular processes involved in communication, mechanical strain sensing, and bone turnover control. Newly deposited osteocytic processes rapidly become trapped within the calcifying matrix, and, therefore, they must adopt their definitive conformation and contact their targets in a single morphogenetic event. However, the cellular mechanisms ensuring the robustness of this unique mode of morphogenesis remain unknown. To address this issue, we examined the developing calvaria of the amphibian Xenopus tropicalis by confocal, two-photon, and super-resolution imaging, and described flattened osteocytes lying within a woven bone structured in lamellae of randomly oriented collagen fibers. While most cells emit peripheral and perpendicular processes, we report two osteocytes morphotypes, located at different depth within the bone matrix and exhibiting distinct number and orientation of perpendicular cell processes. We show that this pattern is conserved with the chick Gallus gallus and suggest that the cellular microenvironment, and more particularly cell-cell contact, plays a fundamental role in the induction and stabilization of osteocytic processes. We propose that this intrinsic property might have been evolutionarily selected for its ability to robustly generate self-organizing osteocytic networks harbored by the wide variety of bone shapes and architectures found in extant and extinct vertebrates. PMID:27381191

  17. Perspectives for spintronics in 2D materials

    NASA Astrophysics Data System (ADS)

    Han, Wei

    2016-03-01

    The past decade has been especially creative for spintronics since the (re)discovery of various two dimensional (2D) materials. Due to the unusual physical characteristics, 2D materials have provided new platforms to probe the spin interaction with other degrees of freedom for electrons, as well as to be used for novel spintronics applications. This review briefly presents the most important recent and ongoing research for spintronics in 2D materials.

  18. Quantitative 2D liquid-state NMR.

    PubMed

    Giraudeau, Patrick

    2014-06-01

    Two-dimensional (2D) liquid-state NMR has a very high potential to simultaneously determine the absolute concentration of small molecules in complex mixtures, thanks to its capacity to separate overlapping resonances. However, it suffers from two main drawbacks that probably explain its relatively late development. First, the 2D NMR signal is strongly molecule-dependent and site-dependent; second, the long duration of 2D NMR experiments prevents its general use for high-throughput quantitative applications and affects its quantitative performance. Fortunately, the last 10 years has witnessed an increasing number of contributions where quantitative approaches based on 2D NMR were developed and applied to solve real analytical issues. This review aims at presenting these recent efforts to reach a high trueness and precision in quantitative measurements by 2D NMR. After highlighting the interest of 2D NMR for quantitative analysis, the different strategies to determine the absolute concentrations from 2D NMR spectra are described and illustrated by recent applications. The last part of the manuscript concerns the recent development of fast quantitative 2D NMR approaches, aiming at reducing the experiment duration while preserving - or even increasing - the analytical performance. We hope that this comprehensive review will help readers to apprehend the current landscape of quantitative 2D NMR, as well as the perspectives that may arise from it.

  19. Multiscale modeling of cellular epigenetic states: stochasticity in molecular networks, chromatin folding in cell nuclei, and tissue pattern formation of cells

    PubMed Central

    Liang, Jie; Cao, Youfang; Gürsoy, Gamze; Naveed, Hammad; Terebus, Anna; Zhao, Jieling

    2016-01-01

    Genome sequences provide the overall genetic blueprint of cells, but cells possessing the same genome can exhibit diverse phenotypes. There is a multitude of mechanisms controlling cellular epigenetic states and that dictate the behavior of cells. Among these, networks of interacting molecules, often under stochastic control, depending on the specific wirings of molecular components and the physiological conditions, can have a different landscape of cellular states. In addition, chromosome folding in three-dimensional space provides another important control mechanism for selective activation and repression of gene expression. Fully differentiated cells with different properties grow, divide, and interact through mechanical forces and communicate through signal transduction, resulting in the formation of complex tissue patterns. Developing quantitative models to study these multi-scale phenomena and to identify opportunities for improving human health requires development of theoretical models, algorithms, and computational tools. Here we review recent progress made in these important directions. PMID:27480462

  20. Multiscale Modeling of Cellular Epigenetic States: Stochasticity in Molecular Networks, Chromatin Folding in Cell Nuclei, and Tissue Pattern Formation of Cells.

    PubMed

    Liang, Jie; Cao, Youfang; Gursoy, Gamze; Naveed, Hammad; Terebus, Anna; Zhao, Jieling

    2015-01-01

    Genome sequences provide the overall genetic blueprint of cells, but cells possessing the same genome can exhibit diverse phenotypes. There is a multitude of mechanisms controlling cellular epigenetic states and that dictate the behavior of cells. Among these, networks of interacting molecules, often under stochastic control, depending on the specific wirings of molecular components and the physiological conditions, can have a different landscape of cellular states. In addition, chromosome folding in three-dimensional space provides another important control mechanism for selective activation and repression of gene expression. Fully differentiated cells with different properties grow, divide, and interact through mechanical forces and communicate through signal transduction, resulting in the formation of complex tissue patterns. Developing quantitative models to study these multi-scale phenomena and to identify opportunities for improving human health requires development of theoretical models, algorithms, and computational tools. Here we review recent progress made in these important directions.

  1. Staring 2-D hadamard transform spectral imager

    DOEpatents

    Gentry, Stephen M.; Wehlburg, Christine M.; Wehlburg, Joseph C.; Smith, Mark W.; Smith, Jody L.

    2006-02-07

    A staring imaging system inputs a 2D spatial image containing multi-frequency spectral information. This image is encoded in one dimension of the image with a cyclic Hadamarid S-matrix. The resulting image is detecting with a spatial 2D detector; and a computer applies a Hadamard transform to recover the encoded image.

  2. Global Exponential Stability of Almost Periodic Solution for Neutral-Type Cohen-Grossberg Shunting Inhibitory Cellular Neural Networks with Distributed Delays and Impulses

    PubMed Central

    Xu, Lijun; Jiang, Qi; Gu, Guodong

    2016-01-01

    A kind of neutral-type Cohen-Grossberg shunting inhibitory cellular neural networks with distributed delays and impulses is considered. Firstly, by using the theory of impulsive differential equations and the contracting mapping principle, the existence and uniqueness of the almost periodic solution for the above system are obtained. Secondly, by constructing a suitable Lyapunov functional, the global exponential stability of the unique almost periodic solution is also investigated. The work in this paper improves and extends some results in recent years. As an application, an example and numerical simulations are presented to demonstrate the feasibility and effectiveness of the main results. PMID:27190502

  3. Hydrothermal syntheses and characterization of two novel luminescent Cadmium(II) frameworks: From 1D infinite triple Cd-(trz)-Cd bridges to a rare I2O0 network with 2D Cd-Br-Cd inorganic connectivity

    NASA Astrophysics Data System (ADS)

    Liu, Shi Xin; Li, Jian Hui; Wang, You You; Wu, Xiang Xia; Huo, Jian Zhong; Ding, Bin; Wang, Xiu Guang; Zhu, Zhao Zhou; Xia, Jun

    2015-05-01

    Using the 4-substituted-1,2,4-triazole derivate ligand 4-p-tolyl-1,2,4-triazole (L), two novel luminescent Cadmium(II) frameworks, namely {[Cd(μ2-L)3]·(NO3)2·L}n (1) and [Cd1.5(μ2-L)(μ2-Br)2(μ3-Br)]n (2) have been isolated under hydrothermal conditions. The structural analysis reveals that 1 presents a one-dimensional (1D) chain structural motif containing novel infinite triple Cd-(trz)-Cd bridges (triply trz-bridged M-M species). While 2 presents a rare I2O0 type framework, in which the infinite 2D Cd-Br-Cd inorganic connectivity with a 4-connected Kagome topology can be observed. The FT-IR, PXRD and thermal stabilities of 1-2 have investigated. The solid-state photo-luminescent spectra of organic ligand L and 1-2 also have been measured indicating strong emission bands.

  4. 2D materials for nanophotonic devices

    NASA Astrophysics Data System (ADS)

    Xu, Renjing; Yang, Jiong; Zhang, Shuang; Pei, Jiajie; Lu, Yuerui

    2015-12-01

    Two-dimensional (2D) materials have become very important building blocks for electronic, photonic, and phononic devices. The 2D material family has four key members, including the metallic graphene, transition metal dichalcogenide (TMD) layered semiconductors, semiconducting black phosphorous, and the insulating h-BN. Owing to the strong quantum confinements and defect-free surfaces, these atomically thin layers have offered us perfect platforms to investigate the interactions among photons, electrons and phonons. The unique interactions in these 2D materials are very important for both scientific research and application engineering. In this talk, I would like to briefly summarize and highlight the key findings, opportunities and challenges in this field. Next, I will introduce/highlight our recent achievements. We demonstrated atomically thin micro-lens and gratings using 2D MoS2, which is the thinnest optical component around the world. These devices are based on our discovery that the elastic light-matter interactions in highindex 2D materials is very strong. Also, I would like to introduce a new two-dimensional material phosphorene. Phosphorene has strongly anisotropic optical response, which creates 1D excitons in a 2D system. The strong confinement in phosphorene also enables the ultra-high trion (charged exciton) binding energies, which have been successfully measured in our experiments. Finally, I will briefly talk about the potential applications of 2D materials in energy harvesting.

  5. Internal Photoemission Spectroscopy of 2-D Materials

    NASA Astrophysics Data System (ADS)

    Nguyen, Nhan; Li, Mingda; Vishwanath, Suresh; Yan, Rusen; Xiao, Shudong; Xing, Huili; Cheng, Guangjun; Hight Walker, Angela; Zhang, Qin

    Recent research has shown the great benefits of using 2-D materials in the tunnel field-effect transistor (TFET), which is considered a promising candidate for the beyond-CMOS technology. The on-state current of TFET can be enhanced by engineering the band alignment of different 2D-2D or 2D-3D heterostructures. Here we present the internal photoemission spectroscopy (IPE) approach to determine the band alignments of various 2-D materials, in particular SnSe2 and WSe2, which have been proposed for new TFET designs. The metal-oxide-2-D semiconductor test structures are fabricated and characterized by IPE, where the band offsets from the 2-D semiconductor to the oxide conduction band minimum are determined by the threshold of the cube root of IPE yields as a function of photon energy. In particular, we find that SnSe2 has a larger electron affinity than most semiconductors and can be combined with other semiconductors to form near broken-gap heterojunctions with low barrier heights which can produce a higher on-state current. The details of data analysis of IPE and the results from Raman spectroscopy and spectroscopic ellipsometry measurements will also be presented and discussed.

  6. 2D materials: to graphene and beyond.

    PubMed

    Mas-Ballesté, Rubén; Gómez-Navarro, Cristina; Gómez-Herrero, Julio; Zamora, Félix

    2011-01-01

    This review is an attempt to illustrate the different alternatives in the field of 2D materials. Graphene seems to be just the tip of the iceberg and we show how the discovery of alternative 2D materials is starting to show the rest of this iceberg. The review comprises the current state-of-the-art of the vast literature in concepts and methods already known for isolation and characterization of graphene, and rationalizes the quite disperse literature in other 2D materials such as metal oxides, hydroxides and chalcogenides, and metal-organic frameworks.

  7. Interaction between cellular voltage-sensitive conductance and network parameters in a model of neocortex can generate epileptiform bursting.

    SciTech Connect

    van Drongelen, W.; Lee, H. C.; Koch, H.; Elsen, F.; Carroll, M. S.; Hereld, M.; Stevens, R. L.; Mathematics and Computer Science; Univ. of Chicago

    2004-01-01

    We examined the effects of both intrinsic neuronal membrane properties and network parameters on oscillatory activity in a model of neocortex. A scalable network model with six different cell types was built with the pGENESIS neural simulator. The neocortical network consisted of two types of pyramidal cells and four types of inhibitory interneurons. All cell types contained both fast sodium and delayed rectifier potassium channels for generation of action potentials. A subset of the pyramidal neurons contained an additional slow inactivating (persistent) sodium current (NaP). The neurons with the NaP current showed spontaneous bursting activity in the absence of external stimulation. The model also included a routine to calculate a simulated electroencephalogram (EEG) trace from the population activity. This revealed emergent network behavior which ranged from desynchronized activity to different types of seizure-like bursting patterns. At settings with weaker excitatory network effects, the propensity to generate seizure-like behavior increased. Strong excitatory network connectivity destroyed oscillatory behavior, whereas weak connectivity enhanced the relative importance of the spontaneously bursting cells. Our findings are in contradiction with the general opinion that strong excitatory synaptic and/or insufficient inhibition effects are associated with seizure initiation, but are in agreement with previously reported behavior in neocortex.

  8. Probing Cellular and Molecular Mechanisms of Cigarette Smoke-Induced Immune Response in the Progression of Chronic Obstructive Pulmonary Disease Using Multiscale Network Modeling

    PubMed Central

    Pan, Zhichao; Yu, Haishan; Liao, Jie-Lou

    2016-01-01

    Chronic obstructive pulmonary disease (COPD) is a chronic inflammatory disorder characterized by progressive destruction of lung tissues and airway obstruction. COPD is currently the third leading cause of death worldwide and there is no curative treatment available so far. Cigarette smoke (CS) is the major risk factor for COPD. Yet, only a relatively small percentage of smokers develop the disease, showing that disease susceptibility varies significantly among smokers. As smoking cessation can prevent the disease in some smokers, quitting smoking cannot halt the progression of COPD in others. Despite extensive research efforts, cellular and molecular mechanisms of COPD remain elusive. In particular, the disease susceptibility and smoking cessation effects are poorly understood. To address these issues in this work, we develop a multiscale network model that consists of nodes, which represent molecular mediators, immune cells and lung tissues, and edges describing the interactions between the nodes. Our model study identifies several positive feedback loops and network elements playing a determinant role in the CS-induced immune response and COPD progression. The results are in agreement with clinic and laboratory measurements, offering novel insight into the cellular and molecular mechanisms of COPD. The study in this work also provides a rationale for targeted therapy and personalized medicine for the disease in future. PMID:27669518

  9. 2-d Finite Element Code Postprocessor

    1996-07-15

    ORION is an interactive program that serves as a postprocessor for the analysis programs NIKE2D, DYNA2D, TOPAZ2D, and CHEMICAL TOPAZ2D. ORION reads binary plot files generated by the two-dimensional finite element codes currently used by the Methods Development Group at LLNL. Contour and color fringe plots of a large number of quantities may be displayed on meshes consisting of triangular and quadrilateral elements. ORION can compute strain measures, interface pressures along slide lines, reaction forcesmore » along constrained boundaries, and momentum. ORION has been applied to study the response of two-dimensional solids and structures undergoing finite deformations under a wide variety of large deformation transient dynamic and static problems and heat transfer analyses.« less

  10. Matrix models of 2d gravity

    SciTech Connect

    Ginsparg, P.

    1991-01-01

    These are introductory lectures for a general audience that give an overview of the subject of matrix models and their application to random surfaces, 2d gravity, and string theory. They are intentionally 1.5 years out of date.

  11. Matrix models of 2d gravity

    SciTech Connect

    Ginsparg, P.

    1991-12-31

    These are introductory lectures for a general audience that give an overview of the subject of matrix models and their application to random surfaces, 2d gravity, and string theory. They are intentionally 1.5 years out of date.

  12. Brittle damage models in DYNA2D

    SciTech Connect

    Faux, D.R.

    1997-09-01

    DYNA2D is an explicit Lagrangian finite element code used to model dynamic events where stress wave interactions influence the overall response of the system. DYNA2D is often used to model penetration problems involving ductile-to-ductile impacts; however, with the advent of the use of ceramics in the armor-anti-armor community and the need to model damage to laser optics components, good brittle damage models are now needed in DYNA2D. This report will detail the implementation of four brittle damage models in DYNA2D, three scalar damage models and one tensor damage model. These new brittle damage models are then used to predict experimental results from three distinctly different glass damage problems.

  13. Chemical Approaches to 2D Materials.

    PubMed

    Samorì, Paolo; Palermo, Vincenzo; Feng, Xinliang

    2016-08-01

    Chemistry plays an ever-increasing role in the production, functionalization, processing and applications of graphene and other 2D materials. This special issue highlights a selection of enlightening chemical approaches to 2D materials, which nicely reflect the breadth of the field and convey the excitement of the individuals involved in it, who are trying to translate graphene and related materials from the laboratory into a real, high-impact technology. PMID:27478083

  14. Chemical Approaches to 2D Materials.

    PubMed

    Samorì, Paolo; Palermo, Vincenzo; Feng, Xinliang

    2016-08-01

    Chemistry plays an ever-increasing role in the production, functionalization, processing and applications of graphene and other 2D materials. This special issue highlights a selection of enlightening chemical approaches to 2D materials, which nicely reflect the breadth of the field and convey the excitement of the individuals involved in it, who are trying to translate graphene and related materials from the laboratory into a real, high-impact technology.

  15. Equine Infectious Anemia Virus Gag Assembly and Export Are Directed by Matrix Protein through trans-Golgi Networks and Cellular Vesicles

    PubMed Central

    Zhang, Zeli; Ma, Jian; Zhang, Xiang; Su, Chao; Yao, Qiu-Cheng

    2015-01-01

    ABSTRACT Gag intracellular assembly and export are very important processes for lentiviruses replication. Previous studies have demonstrated that equine infectious anemia virus (EIAV) matrix (MA) possesses distinct phosphoinositide affinity compared with HIV-1 MA and that phosphoinositide-mediated targeting to peripheral and internal membranes is a critical factor in EIAV assembly and release. In this study, we compared the cellular assembly sites of EIAV and HIV-1. We observed that the assembly of EIAV particles occurred on interior cellular membranes, while HIV-1 was targeted to the plasma membrane (PM) for assembly. Then, we determined that W7 and K9 in the EIAV MA N terminus were essential for Gag assembly and release but did not affect the cellular distribution of Gag. The replacement of EIAV MA with HIV-1 MA directed chimeric Gag to the PM but severely impaired Gag release. MA structural analysis indicated that the EIAV and HIV-1 MAs had similar spatial structures but that helix 1 of the EIAV MA was closer to loop 2. Further investigation indicated that EIAV Gag accumulated in the trans-Golgi network (TGN) but not the early and late endosomes. The 9 N-terminal amino acids of EIAV MA harbored the signal that directed Gag to the TGN membrane system. Additionally, we demonstrated that EIAV particles were transported to the extracellular space by the cellular vesicle system. This type of EIAV export was not associated with multivesicular bodies or microtubule depolymerization but could be inhibited by the actin-depolymerizing drug cytochalasin D, suggesting that dynamic actin depolymerization may be associated with EIAV production. IMPORTANCE In previous studies, EIAV Gag was reported to localize to both the cell interior and the plasma membrane. Here, we demonstrate that EIAV likely uses the TGN as the assembly site in contrast to HIV-1, which is targeted to the PM for assembly. These distinct assembly features are determined by the MA domain. We also identified

  16. Glitter in a 2D monolayer.

    PubMed

    Yang, Li-Ming; Dornfeld, Matthew; Frauenheim, Thomas; Ganz, Eric

    2015-10-21

    We predict a highly stable and robust atomically thin gold monolayer with a hexagonal close packed lattice stabilized by metallic bonding with contributions from strong relativistic effects and aurophilic interactions. We have shown that the framework of the Au monolayer can survive 10 ps MD annealing simulations up to 1400 K. The framework is also able to survive large motions out of the plane. Due to the smaller number of bonds per atom in the 2D layer compared to the 3D bulk we observe significantly enhanced energy per bond (0.94 vs. 0.52 eV per bond). This is similar to the increase in bond strength going from 3D diamond to 2D graphene. It is a non-magnetic metal, and was found to be the global minima in the 2D space. Phonon dispersion calculations demonstrate high kinetic stability with no negative modes. This 2D gold monolayer corresponds to the top monolayer of the bulk Au(111) face-centered cubic lattice. The close-packed lattice maximizes the aurophilic interactions. We find that the electrons are completely delocalized in the plane and behave as 2D nearly free electron gas. We hope that the present work can inspire the experimental fabrication of novel free standing 2D metal systems.

  17. 2d index and surface operators

    NASA Astrophysics Data System (ADS)

    Gadde, Abhijit; Gukov, Sergei

    2014-03-01

    In this paper we compute the superconformal index of 2d (2, 2) supersymmetric gauge theories. The 2d superconformal index, a.k.a. flavored elliptic genus, is computed by a unitary matrix integral much like the matrix integral that computes the 4d superconformal index. We compute the 2d index explicitly for a number of examples. In the case of abelian gauge theories we see that the index is invariant under flop transition and under CY-LG correspondence. The index also provides a powerful check of the Seiberg-type duality for non-abelian gauge theories discovered by Hori and Tong. In the later half of the paper, we study half-BPS surface operators in = 2 super-conformal gauge theories. They are engineered by coupling the 2d (2, 2) supersymmetric gauge theory living on the support of the surface operator to the 4d = 2 theory, so that different realizations of the same surface operator with a given Levi type are related by a 2d analogue of the Seiberg duality. The index of this coupled system is computed by using the tools developed in the first half of the paper. The superconformal index in the presence of surface defect is expected to be invariant under generalized S-duality. We demonstrate that it is indeed the case. In doing so the Seiberg-type duality of the 2d theory plays an important role.

  18. The role of the Parkinson's disease gene PARK9 in essential cellular pathways and the manganese homeostasis network in yeast.

    PubMed

    Chesi, Alessandra; Kilaru, Austin; Fang, Xiaodong; Cooper, Antony A; Gitler, Aaron D

    2012-01-01

    YPK9 (Yeast PARK9; also known as YOR291W) is a non-essential yeast gene predicted by sequence to encode a transmembrane P-type transport ATPase. However, its substrate specificity is unknown. Mutations in the human homolog of YPK9, ATP13A2/PARK9, have been linked to genetic forms of early onset parkinsonism. We previously described a strong genetic interaction between Ypk9 and another Parkinson's disease (PD) protein α-synuclein in multiple model systems, and a role for Ypk9 in manganese detoxification in yeast. In humans, environmental exposure to toxic levels of manganese causes a syndrome similar to PD and is thus an environmental risk factor for the disease. How manganese contributes to neurodegeneration is poorly understood. Here we describe multiple genome-wide screens in yeast aimed at defining the cellular function of Ypk9 and the mechanisms by which it protects cells from manganese toxicity. In physiological conditions, we found that Ypk9 genetically interacts with essential genes involved in cellular trafficking and the cell cycle. Deletion of Ypk9 sensitizes yeast cells to exposure to excess manganese. Using a library of non-essential gene deletions, we screened for additional genes involved in tolerance to excess manganese exposure, discovering several novel pathways involved in manganese homeostasis. We defined the dependence of the deletion strain phenotypes in the presence of manganese on Ypk9, and found that Ypk9 deletion modifies the manganese tolerance of only a subset of strains. These results confirm a role for Ypk9 in manganese homeostasis and illuminates cellular pathways and biological processes in which Ypk9 likely functions. PMID:22457822

  19. The iron-sulfur cluster assembly network component NARFL is a key element in the cellular defense against oxidative stress.

    PubMed

    Corbin, Monique V; Rockx, Davy A P; Oostra, Anneke B; Joenje, Hans; Dorsman, Josephine C

    2015-12-01

    Aim of this study was to explore cellular changes associated with increased resistance to atmospheric oxygen using high-resolution DNA and RNA profiling combined with functional studies. Two independently selected oxygen-resistant substrains of HeLa cells (capable of proliferating at >80% O2, i.e. hyperoxia) were compared with their parental cells (adapted to growth at 20% O2, but unable to grow at >80% O2). A striking consistent alteration found to be associated with the oxygen-resistant state appeared to be an amplified and overexpressed region on chromosome 16p13.3 harboring 21 genes. The driver gene of this amplification was identified by functional studies as NARFL, which encodes a component of the cytosolic iron-sulfur cluster assembly system. In line with this result we found the cytosolic c-aconitase activity as well as the nuclear protein RTEL1, both Fe-S dependent proteins, to be protected by NARFL overexpression under hyperoxia. In addition, we observed a protective effect of NARFL against hyperoxia-induced loss of sister-chromatid cohesion. NARFL thus appeared to be a key factor in the cellular defense against hyperoxia-induced oxidative stress in human cells. Our findings suggest that new insight into age-related degenerative processes may come from studies that specifically address the involvement of iron-sulfur proteins.

  20. Dephosphorylation of MAP2D enhances its binding to vimentin in preovulatory ovarian granulosa cells.

    PubMed

    Flynn, Maxfield P; Fiedler, Sarah E; Karlsson, Amelia B; Carr, Daniel W; Maizels, Evelyn T; Hunzicker-Dunn, Mary

    2016-08-01

    Preovulatory granulosa cells express the low-molecular-mass MAP2D variant of microtubule-associated protein 2 (MAP2). Activation of the luteinizing hormone choriogonadotropin receptor by human choriogonadotropin (hCG) promotes dephosphorylation of MAP2D on Thr256 and Thr259. We sought to evaluate the association of MAP2D with the cytoskeleton, and the effect of hCG on this association. MAP2D partially colocalized, as assessed by confocal immunofluorescence microscopy, with the vimentin intermediate filament and microtubule cytoskeletons in naive cells. In vitro binding studies showed that MAP2D bound directly to vimentin and β-tubulin. Phosphorylation of recombinant MAP2D on Thr256 and Thr259, which mimics the phosphorylation status of MAP2D in naive cells, reduces binding of MAP2D to vimentin and tubulin by two- and three-fold, respectively. PKA-dependent phosphorylation of vimentin (Ser32 and Ser38) promoted binding of vimentin to MAP2D and increased contraction of granulosa cells with reorganization of vimentin filaments and MAP2D from the periphery into a thickened layer surrounding the nucleus and into prominent cellular extensions. Chemical disruption of vimentin filament organization increased progesterone production. Taken together, these results suggest that hCG-stimulated dephosphorylation of MAP2D at Thr256 and Thr259, phosphorylation of vimentin at Ser38 and Ser72, and the resulting enhanced binding of MAP2D to vimentin might contribute to the progesterone synthetic response required for ovulation.

  1. Orthotropic Piezoelectricity in 2D Nanocellulose

    NASA Astrophysics Data System (ADS)

    García, Y.; Ruiz-Blanco, Yasser B.; Marrero-Ponce, Yovani; Sotomayor-Torres, C. M.

    2016-10-01

    The control of electromechanical responses within bonding regions is essential to face frontier challenges in nanotechnologies, such as molecular electronics and biotechnology. Here, we present Iβ-nanocellulose as a potentially new orthotropic 2D piezoelectric crystal. The predicted in-layer piezoelectricity is originated on a sui-generis hydrogen bonds pattern. Upon this fact and by using a combination of ab-initio and ad-hoc models, we introduce a description of electrical profiles along chemical bonds. Such developments lead to obtain a rationale for modelling the extended piezoelectric effect originated within bond scales. The order of magnitude estimated for the 2D Iβ-nanocellulose piezoelectric response, ~pm V‑1, ranks this material at the level of currently used piezoelectric energy generators and new artificial 2D designs. Such finding would be crucial for developing alternative materials to drive emerging nanotechnologies.

  2. Orthotropic Piezoelectricity in 2D Nanocellulose

    PubMed Central

    García, Y.; Ruiz-Blanco, Yasser B.; Marrero-Ponce, Yovani; Sotomayor-Torres, C. M.

    2016-01-01

    The control of electromechanical responses within bonding regions is essential to face frontier challenges in nanotechnologies, such as molecular electronics and biotechnology. Here, we present Iβ-nanocellulose as a potentially new orthotropic 2D piezoelectric crystal. The predicted in-layer piezoelectricity is originated on a sui-generis hydrogen bonds pattern. Upon this fact and by using a combination of ab-initio and ad-hoc models, we introduce a description of electrical profiles along chemical bonds. Such developments lead to obtain a rationale for modelling the extended piezoelectric effect originated within bond scales. The order of magnitude estimated for the 2D Iβ-nanocellulose piezoelectric response, ~pm V−1, ranks this material at the level of currently used piezoelectric energy generators and new artificial 2D designs. Such finding would be crucial for developing alternative materials to drive emerging nanotechnologies. PMID:27708364

  3. 2D microwave imaging reflectometer electronics

    SciTech Connect

    Spear, A. G.; Domier, C. W. Hu, X.; Muscatello, C. M.; Ren, X.; Luhmann, N. C.; Tobias, B. J.

    2014-11-15

    A 2D microwave imaging reflectometer system has been developed to visualize electron density fluctuations on the DIII-D tokamak. Simultaneously illuminated at four probe frequencies, large aperture optics image reflections from four density-dependent cutoff surfaces in the plasma over an extended region of the DIII-D plasma. Localized density fluctuations in the vicinity of the plasma cutoff surfaces modulate the plasma reflections, yielding a 2D image of electron density fluctuations. Details are presented of the receiver down conversion electronics that generate the in-phase (I) and quadrature (Q) reflectometer signals from which 2D density fluctuation data are obtained. Also presented are details on the control system and backplane used to manage the electronics as well as an introduction to the computer based control program.

  4. Optical modulators with 2D layered materials

    NASA Astrophysics Data System (ADS)

    Sun, Zhipei; Martinez, Amos; Wang, Feng

    2016-04-01

    Light modulation is an essential operation in photonics and optoelectronics. With existing and emerging technologies increasingly demanding compact, efficient, fast and broadband optical modulators, high-performance light modulation solutions are becoming indispensable. The recent realization that 2D layered materials could modulate light with superior performance has prompted intense research and significant advances, paving the way for realistic applications. In this Review, we cover the state of the art of optical modulators based on 2D materials, including graphene, transition metal dichalcogenides and black phosphorus. We discuss recent advances employing hybrid structures, such as 2D heterostructures, plasmonic structures, and silicon and fibre integrated structures. We also take a look at the future perspectives and discuss the potential of yet relatively unexplored mechanisms, such as magneto-optic and acousto-optic modulation.

  5. Examining the process of de novo gene birth: an educational primer on "integration of new genes into cellular networks, and their structural maturation".

    PubMed

    Frietze, Seth; Leatherman, Judith

    2014-03-01

    New genes that arise from modification of the noncoding portion of a genome rather than being duplicated from parent genes are called de novo genes. These genes, identified by their brief evolution and lack of parent genes, provide an opportunity to study the timeframe in which emerging genes integrate into cellular networks, and how the characteristics of these genes change as they mature into bona fide genes. An article by G. Abrusán provides an opportunity to introduce students to fundamental concepts in evolutionary and comparative genetics and to provide a technical background by which to discuss systems biology approaches when studying the evolutionary process of gene birth. Basic background needed to understand the Abrusán study and details on comparative genomic concepts tailored for a classroom discussion are provided, including discussion questions and a supplemental exercise on navigating a genome database.

  6. Inkjet printing of 2D layered materials.

    PubMed

    Li, Jiantong; Lemme, Max C; Östling, Mikael

    2014-11-10

    Inkjet printing of 2D layered materials, such as graphene and MoS2, has attracted great interests for emerging electronics. However, incompatible rheology, low concentration, severe aggregation and toxicity of solvents constitute critical challenges which hamper the manufacturing efficiency and product quality. Here, we introduce a simple and general technology concept (distillation-assisted solvent exchange) to efficiently overcome these challenges. By implementing the concept, we have demonstrated excellent jetting performance, ideal printing patterns and a variety of promising applications for inkjet printing of 2D layered materials. PMID:25169938

  7. Inkjet printing of 2D layered materials.

    PubMed

    Li, Jiantong; Lemme, Max C; Östling, Mikael

    2014-11-10

    Inkjet printing of 2D layered materials, such as graphene and MoS2, has attracted great interests for emerging electronics. However, incompatible rheology, low concentration, severe aggregation and toxicity of solvents constitute critical challenges which hamper the manufacturing efficiency and product quality. Here, we introduce a simple and general technology concept (distillation-assisted solvent exchange) to efficiently overcome these challenges. By implementing the concept, we have demonstrated excellent jetting performance, ideal printing patterns and a variety of promising applications for inkjet printing of 2D layered materials.

  8. Molecular crime and cellular punishment: active detoxification of misfolded and aggregated proteins in the cell by the chaperone and protease networks.

    PubMed

    Hinault, Marie-Pierre; Goloubinoff, Pierre

    2007-01-01

    Labile or mutation-sensitised proteins may spontaneously convert into aggregation-prone conformations that may be toxic and infectious. This hazardous behavior, which can be described as a form of "molecular criminality", can be actively counteracted in the cell by a network of molecular chaperone and proteases. Similar to law enforcement agents, molecular chaperones and proteases can specifically identify, apprehend, unfold and thus neutralize "criminal" protein conformers, allowing them to subsequently refold into harmless functional proteins. Irreversibly damaged polypeptides that have lost the ability to natively refold are preferentially degraded by highly controlled ATP-consuming proteases. Damaged proteins that escape proteasomal degradation can also be "incarcerated" into dense amyloids, "evicted" from the cell, or internally "exiled" to the lysosome to be hydrolysed and recycled. Thus, remarkable parallels exist between molecular and human forms of criminality, as well as in the cellular and social responses to various forms of crime. Yet, differences also exist: whereas programmed death is the preferred solution chosen by aged and aggregation-stressed cells, collective suicide is seldom chosen by lawless societies. Significantly, there is no cellular equivalent for the role of familial care and of education in general, which is so crucial to the proper shaping of functional persons in the society. Unlike in the cell, humanism introduces a bias against radical solutions such as capital punishment, favouring crime prevention, reeducation and social reinsertion of criminals.

  9. Parallel stitching of 2D materials

    DOE PAGES

    Ling, Xi; Wu, Lijun; Lin, Yuxuan; Ma, Qiong; Wang, Ziqiang; Song, Yi; Yu, Lili; Huang, Shengxi; Fang, Wenjing; Zhang, Xu; et al

    2016-01-27

    Diverse parallel stitched 2D heterostructures, including metal–semiconductor, semiconductor–semiconductor, and insulator–semiconductor, are synthesized directly through selective “sowing” of aromatic molecules as the seeds in the chemical vapor deposition (CVD) method. Lastly, the methodology enables the large-scale fabrication of lateral heterostructures, which offers tremendous potential for its application in integrated circuits.

  10. Parallel Stitching of 2D Materials.

    PubMed

    Ling, Xi; Lin, Yuxuan; Ma, Qiong; Wang, Ziqiang; Song, Yi; Yu, Lili; Huang, Shengxi; Fang, Wenjing; Zhang, Xu; Hsu, Allen L; Bie, Yaqing; Lee, Yi-Hsien; Zhu, Yimei; Wu, Lijun; Li, Ju; Jarillo-Herrero, Pablo; Dresselhaus, Mildred; Palacios, Tomás; Kong, Jing

    2016-03-23

    Diverse parallel stitched 2D heterostructures, including metal-semiconductor, semiconductor-semiconductor, and insulator-semiconductor, are synthesized directly through selective "sowing" of aromatic molecules as the seeds in the chemical vapor deposition (CVD) method. The methodology enables the large-scale fabrication of lateral heterostructures, which offers tremendous potential for its application in integrated circuits.

  11. C/EBPγ Is a Critical Regulator of Cellular Stress Response Networks through Heterodimerization with ATF4.

    PubMed

    Huggins, Christopher J; Mayekar, Manasi K; Martin, Nancy; Saylor, Karen L; Gonit, Mesfin; Jailwala, Parthav; Kasoji, Manjula; Haines, Diana C; Quiñones, Octavio A; Johnson, Peter F

    2015-12-14

    The integrated stress response (ISR) controls cellular adaptations to nutrient deprivation, redox imbalances, and endoplasmic reticulum (ER) stress. ISR genes are upregulated in stressed cells, primarily by the bZIP transcription factor ATF4 through its recruitment to cis-regulatory C/EBP:ATF response elements (CAREs) together with a dimeric partner of uncertain identity. Here, we show that C/EBPγ:ATF4 heterodimers, but not C/EBPβ:ATF4 dimers, are the predominant CARE-binding species in stressed cells. C/EBPγ and ATF4 associate with genomic CAREs in a mutually dependent manner and coregulate many ISR genes. In contrast, the C/EBP family members C/EBPβ and C/EBP homologous protein (CHOP) were largely dispensable for induction of stress genes. Cebpg(-/-) mouse embryonic fibroblasts (MEFs) proliferate poorly and exhibit oxidative stress due to reduced glutathione levels and impaired expression of several glutathione biosynthesis pathway genes. Cebpg(-/-) mice (C57BL/6 background) display reduced body size and microphthalmia, similar to ATF4-null animals. In addition, C/EBPγ-deficient newborns die from atelectasis and respiratory failure, which can be mitigated by in utero exposure to the antioxidant, N-acetyl-cysteine. Cebpg(-/-) mice on a mixed strain background showed improved viability but, upon aging, developed significantly fewer malignant solid tumors than WT animals. Our findings identify C/EBPγ as a novel antioxidant regulator and an obligatory ATF4 partner that controls redox homeostasis in normal and cancerous cells.

  12. Cellular Protein WDR11 Interacts with Specific Herpes Simplex Virus Proteins at the trans-Golgi Network To Promote Virus Replication

    PubMed Central

    Taylor, Kathryne E.

    2015-01-01

    ABSTRACT It has recently been proposed that the herpes simplex virus (HSV) protein ICP0 has cytoplasmic roles in blocking antiviral signaling and in promoting viral replication in addition to its well-known proteasome-dependent functions in the nucleus. However, the mechanisms through which it produces these effects remain unclear. While investigating this further, we identified a novel cytoplasmic interaction between ICP0 and the poorly characterized cellular protein WDR11. During an HSV infection, WDR11 undergoes a dramatic change in localization at late times in the viral replication cycle, moving from defined perinuclear structures to a dispersed cytoplasmic distribution. While this relocation was not observed during infection with viruses other than HSV-1 and correlated with efficient HSV-1 replication, the redistribution was found to occur independently of ICP0 expression, instead requiring viral late gene expression. We demonstrate for the first time that WDR11 is localized to the trans-Golgi network (TGN), where it interacts specifically with some, but not all, HSV virion components, in addition to ICP0. Knockdown of WDR11 in cultured human cells resulted in a modest but consistent decrease in yields of both wild-type and ICP0-null viruses, in the supernatant and cell-associated fractions, without affecting viral gene expression. Although further study is required, we propose that WDR11 participates in viral assembly and/or secondary envelopment. IMPORTANCE While the TGN has been proposed to be the major site of HSV-1 secondary envelopment, this process is incompletely understood, and in particular, the role of cellular TGN components in this pathway is unknown. Additionally, little is known about the cellular functions of WDR11, although the disruption of this protein has been implicated in multiple human diseases. Therefore, our finding that WDR11 is a TGN-resident protein that interacts with specific viral proteins to enhance viral yields improves both

  13. Model of cellular and network mechanisms for odor-evoked temporal patterning in the locust antennal lobe.

    PubMed

    Bazhenov, M; Stopfer, M; Rabinovich, M; Abarbanel, H D; Sejnowski, T J; Laurent, G

    2001-05-01

    Locust antennal lobe (AL) projection neurons (PNs) respond to olfactory stimuli with sequences of depolarizing and hyperpolarizing epochs, each lasting hundreds of milliseconds. A computer simulation of an AL network was used to test the hypothesis that slow inhibitory connections between local neurons (LNs) and PNs are responsible for temporal patterning. Activation of slow inhibitory receptors on PNs by the same GABAergic synapses that underlie fast oscillatory synchronization of PNs was sufficient to shape slow response modulations. This slow stimulus- and neuron-specific patterning of AL activity was resistant to blockade of fast inhibition. Fast and slow inhibitory mechanisms at synapses between LNs and PNs can thus form dynamical PN assemblies whose elements synchronize transiently and oscillate collectively, as observed not only in the locust AL, but also in the vertebrate olfactory bulb.

  14. High-resolution genome-wide scan of genes, gene-networks and cellular systems impacting the yeast ionome

    PubMed Central

    2012-01-01

    Background To balance the demand for uptake of essential elements with their potential toxicity living cells have complex regulatory mechanisms. Here, we describe a genome-wide screen to identify genes that impact the elemental composition (‘ionome’) of yeast Saccharomyces cerevisiae. Using inductively coupled plasma – mass spectrometry (ICP-MS) we quantify Ca, Cd, Co, Cu, Fe, K, Mg, Mn, Mo, Na, Ni, P, S and Zn in 11890 mutant strains, including 4940 haploid and 1127 diploid deletion strains, and 5798 over expression strains. Results We identified 1065 strains with an altered ionome, including 584 haploid and 35 diploid deletion strains, and 446 over expression strains. Disruption of protein metabolism or trafficking has the highest likelihood of causing large ionomic changes, with gene dosage also being important. Gene over expression produced more extreme ionomic changes, but over expression and loss of function phenotypes are generally not related. Ionomic clustering revealed the existence of only a small number of possible ionomic profiles suggesting fitness tradeoffs that constrain the ionome. Clustering also identified important roles for the mitochondria, vacuole and ESCRT pathway in regulation of the ionome. Network analysis identified hub genes such as PMR1 in Mn homeostasis, novel members of ionomic networks such as SMF3 in vacuolar retrieval of Mn, and cross-talk between the mitochondria and the vacuole. All yeast ionomic data can be searched and downloaded at http://www.ionomicshub.org. Conclusions Here, we demonstrate the power of high-throughput ICP-MS analysis to functionally dissect the ionome on a genome-wide scale. The information this reveals has the potential to benefit both human health and agriculture. PMID:23151179

  15. A microRNA network regulates proliferative timing and extracellular matrix synthesis during cellular quiescence in fibroblasts

    PubMed Central

    2012-01-01

    Background Although quiescence (reversible cell cycle arrest) is a key part in the life history and fate of many mammalian cell types, the mechanisms of gene regulation in quiescent cells are poorly understood. We sought to clarify the role of microRNAs as regulators of the cellular functions of quiescent human fibroblasts. Results Using microarrays, we discovered that the expression of the majority of profiled microRNAs differed between proliferating and quiescent fibroblasts. Fibroblasts induced into quiescence by contact inhibition or serum starvation had similar microRNA profiles, indicating common changes induced by distinct quiescence signals. By analyzing the gene expression patterns of microRNA target genes with quiescence, we discovered a strong regulatory function for miR-29, which is downregulated with quiescence. Using microarrays and immunoblotting, we confirmed that miR-29 targets genes encoding collagen and other extracellular matrix proteins and that those target genes are induced in quiescence. In addition, overexpression of miR-29 resulted in more rapid cell cycle re-entry from quiescence. We also found that let-7 and miR-125 were upregulated in quiescent cells. Overexpression of either one alone resulted in slower cell cycle re-entry from quiescence, while the combination of both together slowed cell cycle re-entry even further. Conclusions microRNAs regulate key aspects of fibroblast quiescence including the proliferative state of the cells as well as their gene expression profiles, in particular, the induction of extracellular matrix proteins in quiescent fibroblasts. PMID:23259597

  16. C/EBPγ Is a Critical Regulator of Cellular Stress Response Networks through Heterodimerization with ATF4

    PubMed Central

    Huggins, Christopher J.; Mayekar, Manasi K.; Martin, Nancy; Saylor, Karen L.; Gonit, Mesfin; Jailwala, Parthav; Kasoji, Manjula; Haines, Diana C.; Quiñones, Octavio A.

    2015-01-01

    The integrated stress response (ISR) controls cellular adaptations to nutrient deprivation, redox imbalances, and endoplasmic reticulum (ER) stress. ISR genes are upregulated in stressed cells, primarily by the bZIP transcription factor ATF4 through its recruitment to cis-regulatory C/EBP:ATF response elements (CAREs) together with a dimeric partner of uncertain identity. Here, we show that C/EBPγ:ATF4 heterodimers, but not C/EBPβ:ATF4 dimers, are the predominant CARE-binding species in stressed cells. C/EBPγ and ATF4 associate with genomic CAREs in a mutually dependent manner and coregulate many ISR genes. In contrast, the C/EBP family members C/EBPβ and C/EBP homologous protein (CHOP) were largely dispensable for induction of stress genes. Cebpg−/− mouse embryonic fibroblasts (MEFs) proliferate poorly and exhibit oxidative stress due to reduced glutathione levels and impaired expression of several glutathione biosynthesis pathway genes. Cebpg−/− mice (C57BL/6 background) display reduced body size and microphthalmia, similar to ATF4-null animals. In addition, C/EBPγ-deficient newborns die from atelectasis and respiratory failure, which can be mitigated by in utero exposure to the antioxidant, N-acetyl-cysteine. Cebpg−/− mice on a mixed strain background showed improved viability but, upon aging, developed significantly fewer malignant solid tumors than WT animals. Our findings identify C/EBPγ as a novel antioxidant regulator and an obligatory ATF4 partner that controls redox homeostasis in normal and cancerous cells. PMID:26667036

  17. Application of 2D Non-Graphene Materials and 2D Oxide Nanostructures for Biosensing Technology

    PubMed Central

    Shavanova, Kateryna; Bakakina, Yulia; Burkova, Inna; Shtepliuk, Ivan; Viter, Roman; Ubelis, Arnolds; Beni, Valerio; Starodub, Nickolaj; Yakimova, Rositsa; Khranovskyy, Volodymyr

    2016-01-01

    The discovery of graphene and its unique properties has inspired researchers to try to invent other two-dimensional (2D) materials. After considerable research effort, a distinct “beyond graphene” domain has been established, comprising the library of non-graphene 2D materials. It is significant that some 2D non-graphene materials possess solid advantages over their predecessor, such as having a direct band gap, and therefore are highly promising for a number of applications. These applications are not limited to nano- and opto-electronics, but have a strong potential in biosensing technologies, as one example. However, since most of the 2D non-graphene materials have been newly discovered, most of the research efforts are concentrated on material synthesis and the investigation of the properties of the material. Applications of 2D non-graphene materials are still at the embryonic stage, and the integration of 2D non-graphene materials into devices is scarcely reported. However, in recent years, numerous reports have blossomed about 2D material-based biosensors, evidencing the growing potential of 2D non-graphene materials for biosensing applications. This review highlights the recent progress in research on the potential of using 2D non-graphene materials and similar oxide nanostructures for different types of biosensors (optical and electrochemical). A wide range of biological targets, such as glucose, dopamine, cortisol, DNA, IgG, bisphenol, ascorbic acid, cytochrome and estradiol, has been reported to be successfully detected by biosensors with transducers made of 2D non-graphene materials. PMID:26861346

  18. Application of 2D Non-Graphene Materials and 2D Oxide Nanostructures for Biosensing Technology.

    PubMed

    Shavanova, Kateryna; Bakakina, Yulia; Burkova, Inna; Shtepliuk, Ivan; Viter, Roman; Ubelis, Arnolds; Beni, Valerio; Starodub, Nickolaj; Yakimova, Rositsa; Khranovskyy, Volodymyr

    2016-01-01

    The discovery of graphene and its unique properties has inspired researchers to try to invent other two-dimensional (2D) materials. After considerable research effort, a distinct "beyond graphene" domain has been established, comprising the library of non-graphene 2D materials. It is significant that some 2D non-graphene materials possess solid advantages over their predecessor, such as having a direct band gap, and therefore are highly promising for a number of applications. These applications are not limited to nano- and opto-electronics, but have a strong potential in biosensing technologies, as one example. However, since most of the 2D non-graphene materials have been newly discovered, most of the research efforts are concentrated on material synthesis and the investigation of the properties of the material. Applications of 2D non-graphene materials are still at the embryonic stage, and the integration of 2D non-graphene materials into devices is scarcely reported. However, in recent years, numerous reports have blossomed about 2D material-based biosensors, evidencing the growing potential of 2D non-graphene materials for biosensing applications. This review highlights the recent progress in research on the potential of using 2D non-graphene materials and similar oxide nanostructures for different types of biosensors (optical and electrochemical). A wide range of biological targets, such as glucose, dopamine, cortisol, DNA, IgG, bisphenol, ascorbic acid, cytochrome and estradiol, has been reported to be successfully detected by biosensors with transducers made of 2D non-graphene materials.

  19. Processing the Bouguer anomaly map of Biga and the surrounding area by the cellular neural network: application to the southwestern Marmara region

    NASA Astrophysics Data System (ADS)

    Aydogan, D.

    2007-04-01

    An image processing technique called the cellular neural network (CNN) approach is used in this study to locate geological features giving rise to gravity anomalies such as faults or the boundary of two geologic zones. CNN is a stochastic image processing technique based on template optimization using the neighborhood relationships of cells. These cells can be characterized by a functional block diagram that is typical of neural network theory. The functionality of CNN is described in its entirety by a number of small matrices (A, B and I) called the cloning template. CNN can also be considered to be a nonlinear convolution of these matrices. This template describes the strength of the nearest neighbor interconnections in the network. The recurrent perceptron learning algorithm (RPLA) is used in optimization of cloning template. The CNN and standard Canny algorithms were first tested on two sets of synthetic gravity data with the aim of checking the reliability of the proposed approach. The CNN method was compared with classical derivative techniques by applying the cross-correlation method (CC) to the same anomaly map as this latter approach can detect some features that are difficult to identify on the Bouguer anomaly maps. This approach was then applied to the Bouguer anomaly map of Biga and its surrounding area, in Turkey. Structural features in the area between Bandirma, Biga, Yenice and Gonen in the southwest Marmara region are investigated by applying the CNN and CC to the Bouguer anomaly map. Faults identified by these algorithms are generally in accordance with previously mapped surface faults. These examples show that the geologic boundaries can be detected from Bouguer anomaly maps using the cloning template approach. A visual evaluation of the outputs of the CNN and CC approaches is carried out, and the results are compared with each other. This approach provides quantitative solutions based on just a few assumptions, which makes the method more

  20. Stochastic Inversion of 2D Magnetotelluric Data

    SciTech Connect

    Chen, Jinsong

    2010-07-01

    The algorithm is developed to invert 2D magnetotelluric (MT) data based on sharp boundary parametrization using a Bayesian framework. Within the algorithm, we consider the locations and the resistivity of regions formed by the interfaces are as unknowns. We use a parallel, adaptive finite-element algorithm to forward simulate frequency-domain MT responses of 2D conductivity structure. Those unknown parameters are spatially correlated and are described by a geostatistical model. The joint posterior probability distribution function is explored by Markov Chain Monte Carlo (MCMC) sampling methods. The developed stochastic model is effective for estimating the interface locations and resistivity. Most importantly, it provides details uncertainty information on each unknown parameter. Hardware requirements: PC, Supercomputer, Multi-platform, Workstation; Software requirements C and Fortan; Operation Systems/version is Linux/Unix or Windows

  1. Explicit 2-D Hydrodynamic FEM Program

    1996-08-07

    DYNA2D* is a vectorized, explicit, two-dimensional, axisymmetric and plane strain finite element program for analyzing the large deformation dynamic and hydrodynamic response of inelastic solids. DYNA2D* contains 13 material models and 9 equations of state (EOS) to cover a wide range of material behavior. The material models implemented in all machine versions are: elastic, orthotropic elastic, kinematic/isotropic elastic plasticity, thermoelastoplastic, soil and crushable foam, linear viscoelastic, rubber, high explosive burn, isotropic elastic-plastic, temperature-dependent elastic-plastic. Themore » isotropic and temperature-dependent elastic-plastic models determine only the deviatoric stresses. Pressure is determined by one of 9 equations of state including linear polynomial, JWL high explosive, Sack Tuesday high explosive, Gruneisen, ratio of polynomials, linear polynomial with energy deposition, ignition and growth of reaction in HE, tabulated compaction, and tabulated.« less

  2. Stochastic Inversion of 2D Magnetotelluric Data

    2010-07-01

    The algorithm is developed to invert 2D magnetotelluric (MT) data based on sharp boundary parametrization using a Bayesian framework. Within the algorithm, we consider the locations and the resistivity of regions formed by the interfaces are as unknowns. We use a parallel, adaptive finite-element algorithm to forward simulate frequency-domain MT responses of 2D conductivity structure. Those unknown parameters are spatially correlated and are described by a geostatistical model. The joint posterior probability distribution function ismore » explored by Markov Chain Monte Carlo (MCMC) sampling methods. The developed stochastic model is effective for estimating the interface locations and resistivity. Most importantly, it provides details uncertainty information on each unknown parameter. Hardware requirements: PC, Supercomputer, Multi-platform, Workstation; Software requirements C and Fortan; Operation Systems/version is Linux/Unix or Windows« less

  3. Static & Dynamic Response of 2D Solids

    1996-07-15

    NIKE2D is an implicit finite-element code for analyzing the finite deformation, static and dynamic response of two-dimensional, axisymmetric, plane strain, and plane stress solids. The code is fully vectorized and available on several computing platforms. A number of material models are incorporated to simulate a wide range of material behavior including elasto-placicity, anisotropy, creep, thermal effects, and rate dependence. Slideline algorithms model gaps and sliding along material interfaces, including interface friction, penetration and single surfacemore » contact. Interactive-graphics and rezoning is included for analyses with large mesh distortions. In addition to quasi-Newton and arc-length procedures, adaptive algorithms can be defined to solve the implicit equations using the solution language ISLAND. Each of these capabilities and more make NIKE2D a robust analysis tool.« less

  4. Static & Dynamic Response of 2D Solids

    SciTech Connect

    Lin, Jerry

    1996-07-15

    NIKE2D is an implicit finite-element code for analyzing the finite deformation, static and dynamic response of two-dimensional, axisymmetric, plane strain, and plane stress solids. The code is fully vectorized and available on several computing platforms. A number of material models are incorporated to simulate a wide range of material behavior including elasto-placicity, anisotropy, creep, thermal effects, and rate dependence. Slideline algorithms model gaps and sliding along material interfaces, including interface friction, penetration and single surface contact. Interactive-graphics and rezoning is included for analyses with large mesh distortions. In addition to quasi-Newton and arc-length procedures, adaptive algorithms can be defined to solve the implicit equations using the solution language ISLAND. Each of these capabilities and more make NIKE2D a robust analysis tool.

  5. Explicit 2-D Hydrodynamic FEM Program

    SciTech Connect

    Lin, Jerry

    1996-08-07

    DYNA2D* is a vectorized, explicit, two-dimensional, axisymmetric and plane strain finite element program for analyzing the large deformation dynamic and hydrodynamic response of inelastic solids. DYNA2D* contains 13 material models and 9 equations of state (EOS) to cover a wide range of material behavior. The material models implemented in all machine versions are: elastic, orthotropic elastic, kinematic/isotropic elastic plasticity, thermoelastoplastic, soil and crushable foam, linear viscoelastic, rubber, high explosive burn, isotropic elastic-plastic, temperature-dependent elastic-plastic. The isotropic and temperature-dependent elastic-plastic models determine only the deviatoric stresses. Pressure is determined by one of 9 equations of state including linear polynomial, JWL high explosive, Sack Tuesday high explosive, Gruneisen, ratio of polynomials, linear polynomial with energy deposition, ignition and growth of reaction in HE, tabulated compaction, and tabulated.

  6. 2D photonic-crystal optomechanical nanoresonator.

    PubMed

    Makles, K; Antoni, T; Kuhn, A G; Deléglise, S; Briant, T; Cohadon, P-F; Braive, R; Beaudoin, G; Pinard, L; Michel, C; Dolique, V; Flaminio, R; Cagnoli, G; Robert-Philip, I; Heidmann, A

    2015-01-15

    We present the optical optimization of an optomechanical device based on a suspended InP membrane patterned with a 2D near-wavelength grating (NWG) based on a 2D photonic-crystal geometry. We first identify by numerical simulation a set of geometrical parameters providing a reflectivity higher than 99.8% over a 50-nm span. We then study the limitations induced by the finite value of the optical waist and lateral size of the NWG pattern using different numerical approaches. The NWG grating, pierced in a suspended InP 265-nm thick membrane, is used to form a compact microcavity involving the suspended nanomembrane as an end mirror. The resulting cavity has a waist size smaller than 10 μm and a finesse in the 200 range. It is used to probe the Brownian motion of the mechanical modes of the nanomembrane. PMID:25679837

  7. Compact 2-D graphical representation of DNA

    NASA Astrophysics Data System (ADS)

    Randić, Milan; Vračko, Marjan; Zupan, Jure; Novič, Marjana

    2003-05-01

    We present a novel 2-D graphical representation for DNA sequences which has an important advantage over the existing graphical representations of DNA in being very compact. It is based on: (1) use of binary labels for the four nucleic acid bases, and (2) use of the 'worm' curve as template on which binary codes are placed. The approach is illustrated on DNA sequences of the first exon of human β-globin and gorilla β-globin.

  8. 2D materials: Graphene and others

    NASA Astrophysics Data System (ADS)

    Bansal, Suneev Anil; Singh, Amrinder Pal; Kumar, Suresh

    2016-05-01

    Present report reviews the recent advancements in new atomically thick 2D materials. Materials covered in this review are Graphene, Silicene, Germanene, Boron Nitride (BN) and Transition metal chalcogenides (TMC). These materials show extraordinary mechanical, electronic and optical properties which make them suitable candidates for future applications. Apart from unique properties, tune-ability of highly desirable properties of these materials is also an important area to be emphasized on.

  9. Layer Engineering of 2D Semiconductor Junctions.

    PubMed

    He, Yongmin; Sobhani, Ali; Lei, Sidong; Zhang, Zhuhua; Gong, Yongji; Jin, Zehua; Zhou, Wu; Yang, Yingchao; Zhang, Yuan; Wang, Xifan; Yakobson, Boris; Vajtai, Robert; Halas, Naomi J; Li, Bo; Xie, Erqing; Ajayan, Pulickel

    2016-07-01

    A new concept for junction fabrication by connecting multiple regions with varying layer thicknesses, based on the thickness dependence, is demonstrated. This type of junction is only possible in super-thin-layered 2D materials, and exhibits similar characteristics as p-n junctions. Rectification and photovoltaic effects are observed in chemically homogeneous MoSe2 junctions between domains of different thicknesses. PMID:27136275

  10. Realistic and efficient 2D crack simulation

    NASA Astrophysics Data System (ADS)

    Yadegar, Jacob; Liu, Xiaoqing; Singh, Abhishek

    2010-04-01

    Although numerical algorithms for 2D crack simulation have been studied in Modeling and Simulation (M&S) and computer graphics for decades, realism and computational efficiency are still major challenges. In this paper, we introduce a high-fidelity, scalable, adaptive and efficient/runtime 2D crack/fracture simulation system by applying the mathematically elegant Peano-Cesaro triangular meshing/remeshing technique to model the generation of shards/fragments. The recursive fractal sweep associated with the Peano-Cesaro triangulation provides efficient local multi-resolution refinement to any level-of-detail. The generated binary decomposition tree also provides efficient neighbor retrieval mechanism used for mesh element splitting and merging with minimal memory requirements essential for realistic 2D fragment formation. Upon load impact/contact/penetration, a number of factors including impact angle, impact energy, and material properties are all taken into account to produce the criteria of crack initialization, propagation, and termination leading to realistic fractal-like rubble/fragments formation. The aforementioned parameters are used as variables of probabilistic models of cracks/shards formation, making the proposed solution highly adaptive by allowing machine learning mechanisms learn the optimal values for the variables/parameters based on prior benchmark data generated by off-line physics based simulation solutions that produce accurate fractures/shards though at highly non-real time paste. Crack/fracture simulation has been conducted on various load impacts with different initial locations at various impulse scales. The simulation results demonstrate that the proposed system has the capability to realistically and efficiently simulate 2D crack phenomena (such as window shattering and shards generation) with diverse potentials in military and civil M&S applications such as training and mission planning.

  11. 2D Spinodal Decomposition in Forced Turbulence

    NASA Astrophysics Data System (ADS)

    Fan, Xiang; Diamond, Patrick; Chacon, Luis; Li, Hui

    2015-11-01

    Spinodal decomposition is a second order phase transition for binary fluid mixture, from one thermodynamic phase to form two coexisting phases. The governing equation for this coarsening process below critical temperature, Cahn-Hilliard Equation, is very similar to 2D MHD Equation, especially the conserved quantities have a close correspondence between each other, so theories for MHD turbulence are used to study spinodal decomposition in forced turbulence. Domain size is increased with time along with the inverse cascade, and the length scale can be arrested by a forced turbulence with direct cascade. The two competing mechanisms lead to a stabilized domain size length scale, which can be characterized by Hinze Scale. The 2D spinodal decomposition in forced turbulence is studied by both theory and simulation with ``pixie2d.'' This work focuses on the relation between Hinze scale and spectra and cascades. Similarities and differences between spinodal decomposition and MHD are investigated. Also some transport properties are studied following MHD theories. This work is supported by the Department of Energy under Award Number DE-FG02-04ER54738.

  12. MAGNUM-2D computer code: user's guide

    SciTech Connect

    England, R.L.; Kline, N.W.; Ekblad, K.J.; Baca, R.G.

    1985-01-01

    Information relevant to the general use of the MAGNUM-2D computer code is presented. This computer code was developed for the purpose of modeling (i.e., simulating) the thermal and hydraulic conditions in the vicinity of a waste package emplaced in a deep geologic repository. The MAGNUM-2D computer computes (1) the temperature field surrounding the waste package as a function of the heat generation rate of the nuclear waste and thermal properties of the basalt and (2) the hydraulic head distribution and associated groundwater flow fields as a function of the temperature gradients and hydraulic properties of the basalt. MAGNUM-2D is a two-dimensional numerical model for transient or steady-state analysis of coupled heat transfer and groundwater flow in a fractured porous medium. The governing equations consist of a set of coupled, quasi-linear partial differential equations that are solved using a Galerkin finite-element technique. A Newton-Raphson algorithm is embedded in the Galerkin functional to formulate the problem in terms of the incremental changes in the dependent variables. Both triangular and quadrilateral finite elements are used to represent the continuum portions of the spatial domain. Line elements may be used to represent discrete conduits. 18 refs., 4 figs., 1 tab.

  13. Engineering light outcoupling in 2D materials.

    PubMed

    Lien, Der-Hsien; Kang, Jeong Seuk; Amani, Matin; Chen, Kevin; Tosun, Mahmut; Wang, Hsin-Ping; Roy, Tania; Eggleston, Michael S; Wu, Ming C; Dubey, Madan; Lee, Si-Chen; He, Jr-Hau; Javey, Ali

    2015-02-11

    When light is incident on 2D transition metal dichalcogenides (TMDCs), it engages in multiple reflections within underlying substrates, producing interferences that lead to enhancement or attenuation of the incoming and outgoing strength of light. Here, we report a simple method to engineer the light outcoupling in semiconducting TMDCs by modulating their dielectric surroundings. We show that by modulating the thicknesses of underlying substrates and capping layers, the interference caused by substrate can significantly enhance the light absorption and emission of WSe2, resulting in a ∼11 times increase in Raman signal and a ∼30 times increase in the photoluminescence (PL) intensity of WSe2. On the basis of the interference model, we also propose a strategy to control the photonic and optoelectronic properties of thin-layer WSe2. This work demonstrates the utilization of outcoupling engineering in 2D materials and offers a new route toward the realization of novel optoelectronic devices, such as 2D LEDs and solar cells.

  14. Optical cellular processor architecture. 1: Principles.

    PubMed

    Taboury, J; Wang, J M; Chavel, P; Devos, F; Garda, P

    1988-05-01

    General characteristics and advantages of 2-D optical cellular processors are listed and discussed, with reference to the concepts of cellular automata, symbolic substitution, and neural nets. The role of optical interconnections and of quasilinear processing combining linear array operations and pointwise nonlinearities is highlighted. An architecture for optical implementation of cellular automata is introduced; it features high density 3-D optical shift-invariant interconnections and programmability of the interconnection pattern through adequate use of holographic connectors.

  15. Design and characterization of low-loss 2D grating couplers for silicon photonics integrated circuits

    NASA Astrophysics Data System (ADS)

    Lacava, C.; Carrol, L.; Bozzola, A.; Marchetti, R.; Minzioni, P.; Cristiani, I.; Fournier, M.; Bernabe, S.; Gerace, D.; Andreani, L. C.

    2016-03-01

    We present the characterization of Silicon-on-insulator (SOI) photonic-crystal based 2D grating-couplers (2D-GCs) fabricated by CEA-Leti in the frame of the FP7 Fabulous project, which is dedicated to the realization of devices and systems for low-cost and high-performance passives-optical-networks. On the analyzed samples different test structures are present, including 2D-GC connected to another 2D-GC by different waveguides (in a Mach-Zehnder like configuration), and 2D-GC connected to two separate 2D-GCs, so as to allow a complete assessment of different parameters. Measurements were carried out using a tunable laser source operating in the extended telecom bandwidth and a fiber-based polarization controlling system at the input of device-under-test. The measured data yielded an overall fiber-to-fiber loss of 7.5 dB for the structure composed by an input 2D-GC connected to two identical 2D-GCs. This value was obtained at the peak wavelength of the grating, and the 3-dB bandwidth of the 2D-GC was assessed to be 43 nm. Assuming that the waveguide losses are negligible, so as to make a worst-case analysis, the coupling efficiency of the single 2D-GC results to be equal to -3.75 dB, constituting, to the best of our knowledge, the lowest value ever reported for a fully CMOS compatible 2D-GC. It is worth noting that both the obtained values are in good agreement with those expected by the numerical simulations performed using full 3D analysis by Lumerical FDTD-solutions.

  16. GBL-2D Version 1.0: a 2D geometry boolean library.

    SciTech Connect

    McBride, Cory L. (Elemental Technologies, American Fort, UT); Schmidt, Rodney Cannon; Yarberry, Victor R.; Meyers, Ray J.

    2006-11-01

    This report describes version 1.0 of GBL-2D, a geometric Boolean library for 2D objects. The library is written in C++ and consists of a set of classes and routines. The classes primarily represent geometric data and relationships. Classes are provided for 2D points, lines, arcs, edge uses, loops, surfaces and mask sets. The routines contain algorithms for geometric Boolean operations and utility functions. Routines are provided that incorporate the Boolean operations: Union(OR), XOR, Intersection and Difference. A variety of additional analytical geometry routines and routines for importing and exporting the data in various file formats are also provided. The GBL-2D library was originally developed as a geometric modeling engine for use with a separate software tool, called SummitView [1], that manipulates the 2D mask sets created by designers of Micro-Electro-Mechanical Systems (MEMS). However, many other practical applications for this type of software can be envisioned because the need to perform 2D Boolean operations can arise in many contexts.

  17. Periodically sheared 2D Yukawa systems

    SciTech Connect

    Kovács, Anikó Zsuzsa; Hartmann, Peter; Donkó, Zoltán

    2015-10-15

    We present non-equilibrium molecular dynamics simulation studies on the dynamic (complex) shear viscosity of a 2D Yukawa system. We have identified a non-monotonic frequency dependence of the viscosity at high frequencies and shear rates, an energy absorption maximum (local resonance) at the Einstein frequency of the system at medium shear rates, an enhanced collective wave activity, when the excitation is near the plateau frequency of the longitudinal wave dispersion, and the emergence of significant configurational anisotropy at small frequencies and high shear rates.

  18. ENERGY LANDSCAPE OF 2D FLUID FORMS

    SciTech Connect

    Y. JIANG; ET AL

    2000-04-01

    The equilibrium states of 2D non-coarsening fluid foams, which consist of bubbles with fixed areas, correspond to local minima of the total perimeter. (1) The authors find an approximate value of the global minimum, and determine directly from an image how far a foam is from its ground state. (2) For (small) area disorder, small bubbles tend to sort inwards and large bubbles outwards. (3) Topological charges of the same sign repel while charges of opposite sign attract. (4) They discuss boundary conditions and the uniqueness of the pattern for fixed topology.

  19. Image processing with cellular nonlinear networks implemented on field-programmable gate arrays for real-time applications in nuclear fusion

    NASA Astrophysics Data System (ADS)

    Palazzo, S.; Murari, A.; Vagliasindi, G.; Arena, P.; Mazon, D.; de Maack, A.; Jet-Efda Contributors

    2010-08-01

    In the past years cameras have become increasingly common tools in scientific applications. They are now quite systematically used in magnetic confinement fusion, to the point that infrared imaging is starting to be used systematically for real-time machine protection in major devices. However, in order to guarantee that the control system can always react rapidly in case of critical situations, the time required for the processing of the images must be as predictable as possible. The approach described in this paper combines the new computational paradigm of cellular nonlinear networks (CNNs) with field-programmable gate arrays and has been tested in an application for the detection of hot spots on the plasma facing components in JET. The developed system is able to perform real-time hot spot recognition, by processing the image stream captured by JET wide angle infrared camera, with the guarantee that computational time is constant and deterministic. The statistical results obtained from a quite extensive set of examples show that this solution approximates very well an ad hoc serial software algorithm, with no false or missed alarms and an almost perfect overlapping of alarm intervals. The computational time can be reduced to a millisecond time scale for 8 bit 496×560-sized images. Moreover, in our implementation, the computational time, besides being deterministic, is practically independent of the number of iterations performed by the CNN—unlike software CNN implementations.

  20. Review of quantitative phase-digital holographic microscopy: promising novel imaging technique to resolve neuronal network activity and identify cellular biomarkers of psychiatric disorders

    PubMed Central

    Marquet, Pierre; Depeursinge, Christian; Magistretti, Pierre J.

    2014-01-01

    Abstract. Quantitative phase microscopy (QPM) has recently emerged as a new powerful quantitative imaging technique well suited to noninvasively explore a transparent specimen with a nanometric axial sensitivity. In this review, we expose the recent developments of quantitative phase-digital holographic microscopy (QP-DHM). Quantitative phase-digital holographic microscopy (QP-DHM) represents an important and efficient quantitative phase method to explore cell structure and dynamics. In a second part, the most relevant QPM applications in the field of cell biology are summarized. A particular emphasis is placed on the original biological information, which can be derived from the quantitative phase signal. In a third part, recent applications obtained, with QP-DHM in the field of cellular neuroscience, namely the possibility to optically resolve neuronal network activity and spine dynamics, are presented. Furthermore, potential applications of QPM related to psychiatry through the identification of new and original cell biomarkers that, when combined with a range of other biomarkers, could significantly contribute to the determination of high risk developmental trajectories for psychiatric disorders, are discussed. PMID:26157976

  1. Formation and properties of a terpyridine-based 2D MOF on the surface of water

    NASA Astrophysics Data System (ADS)

    Koitz, Ralph; Hutter, Jürg; Iannuzzi, Marcella

    2016-06-01

    Two-dimensional networks inspired by graphene are of prime importance in nanoscience. We present a computational study of an infinite molecular sheet confined on a water surface to assess its properties and formation mechanism. Terpyridine-based ligand molecules are interlinked by Zn ions to form an extended 2D metal-organic framework. We show that the network is stable on the water surface, and that the substrate affects the dynamic properties of the sheet, exhibiting a confining effect and flattening the sheet by 30%. We use metadynamics to characterize the process of network formation and breaking and determine an intra-network binding energy of 143 kJ mol‑1. Based on this mechanistic insight we propose that the 2D network strength can be tuned by varying the rigidity of the ligand through its chemical structure.

  2. WFR-2D: an analytical model for PWAS-generated 2D ultrasonic guided wave propagation

    NASA Astrophysics Data System (ADS)

    Shen, Yanfeng; Giurgiutiu, Victor

    2014-03-01

    This paper presents WaveFormRevealer 2-D (WFR-2D), an analytical predictive tool for the simulation of 2-D ultrasonic guided wave propagation and interaction with damage. The design of structural health monitoring (SHM) systems and self-aware smart structures requires the exploration of a wide range of parameters to achieve best detection and quantification of certain types of damage. Such need for parameter exploration on sensor dimension, location, guided wave characteristics (mode type, frequency, wavelength, etc.) can be best satisfied with analytical models which are fast and efficient. The analytical model was constructed based on the exact 2-D Lamb wave solution using Bessel and Hankel functions. Damage effects were inserted in the model by considering the damage as a secondary wave source with complex-valued directivity scattering coefficients containing both amplitude and phase information from wave-damage interaction. The analytical procedure was coded with MATLAB, and a predictive simulation tool called WaveFormRevealer 2-D was developed. The wave-damage interaction coefficients (WDICs) were extracted from harmonic analysis of local finite element model (FEM) with artificial non-reflective boundaries (NRB). The WFR-2D analytical simulation results were compared and verified with full scale multiphysics finite element models and experiments with scanning laser vibrometer. First, Lamb wave propagation in a pristine aluminum plate was simulated with WFR-2D, compared with finite element results, and verified by experiments. Then, an inhomogeneity was machined into the plate to represent damage. Analytical modeling was carried out, and verified by finite element simulation and experiments. This paper finishes with conclusions and suggestions for future work.

  3. Microwave Assisted 2D Materials Exfoliation

    NASA Astrophysics Data System (ADS)

    Wang, Yanbin

    Two-dimensional materials have emerged as extremely important materials with applications ranging from energy and environmental science to electronics and biology. Here we report our discovery of a universal, ultrafast, green, solvo-thermal technology for producing excellent-quality, few-layered nanosheets in liquid phase from well-known 2D materials such as such hexagonal boron nitride (h-BN), graphite, and MoS2. We start by mixing the uniform bulk-layered material with a common organic solvent that matches its surface energy to reduce the van der Waals attractive interactions between the layers; next, the solutions are heated in a commercial microwave oven to overcome the energy barrier between bulk and few-layers states. We discovered the minutes-long rapid exfoliation process is highly temperature dependent, which requires precise thermal management to obtain high-quality inks. We hypothesize a possible mechanism of this proposed solvo-thermal process; our theory confirms the basis of this novel technique for exfoliation of high-quality, layered 2D materials by using an as yet unknown role of the solvent.

  4. Multienzyme Inkjet Printed 2D Arrays.

    PubMed

    Gdor, Efrat; Shemesh, Shay; Magdassi, Shlomo; Mandler, Daniel

    2015-08-19

    The use of printing to produce 2D arrays is well established, and should be relatively facile to adapt for the purpose of printing biomaterials; however, very few studies have been published using enzyme solutions as inks. Among the printing technologies, inkjet printing is highly suitable for printing biomaterials and specifically enzymes, as it offers many advantages. Formulation of the inkjet inks is relatively simple and can be adjusted to a variety of biomaterials, while providing nonharmful environment to the enzymes. Here we demonstrate the applicability of inkjet printing for patterning multiple enzymes in a predefined array in a very straightforward, noncontact method. Specifically, various arrays of the enzymes glucose oxidase (GOx), invertase (INV) and horseradish peroxidase (HP) were printed on aminated glass surfaces, followed by immobilization using glutardialdehyde after printing. Scanning electrochemical microscopy (SECM) was used for imaging the printed patterns and to ascertain the enzyme activity. The successful formation of 2D arrays consisting of enzymes was explored as a means of developing the first surface confined enzyme based logic gates. Principally, XOR and AND gates, each consisting of two enzymes as the Boolean operators, were assembled, and their operation was studied by SECM. PMID:26214072

  5. Brane brick models and 2 d (0 , 2) triality

    NASA Astrophysics Data System (ADS)

    Franco, Sebastián; Lee, Sangmin; Seong, Rak-Kyeong

    2016-05-01

    We provide a brane realization of 2 d (0 , 2) Gadde-Gukov-Putrov triality in terms of brane brick models. These are Type IIA brane configurations that are T-dual to D1-branes over singular toric Calabi-Yau 4-folds. Triality translates into a local transformation of brane brick models, whose simplest representative is a cube move. We present explicit examples and construct their triality networks. We also argue that the classical mesonic moduli space of brane brick model theories, which corresponds to the probed Calabi-Yau 4-fold, is invariant under triality. Finally, we discuss triality in terms of phase boundaries, which play a central role in connecting Calabi-Yau 4-folds to brane brick models.

  6. Canard configured aircraft with 2-D nozzle

    NASA Technical Reports Server (NTRS)

    Child, R. D.; Henderson, W. P.

    1978-01-01

    A closely-coupled canard fighter with vectorable two-dimensional nozzle was designed for enhanced transonic maneuvering. The HiMAT maneuver goal of a sustained 8g turn at a free-stream Mach number of 0.9 and 30,000 feet was the primary design consideration. The aerodynamic design process was initiated with a linear theory optimization minimizing the zero percent suction drag including jet effects and refined with three-dimensional nonlinear potential flow techniques. Allowances were made for mutual interference and viscous effects. The design process to arrive at the resultant configuration is described, and the design of a powered 2-D nozzle model to be tested in the LRC 16-foot Propulsion Wind Tunnel is shown.

  7. 2D Electrostatic Actuation of Microshutter Arrays

    NASA Technical Reports Server (NTRS)

    Burns, Devin E.; Oh, Lance H.; Li, Mary J.; Kelly, Daniel P.; Kutyrev, Alexander S.; Moseley, Samuel H.

    2015-01-01

    Electrostatically actuated microshutter arrays consisting of rotational microshutters (shutters that rotate about a torsion bar) were designed and fabricated through the use of models and experiments. Design iterations focused on minimizing the torsional stiffness of the microshutters, while maintaining their structural integrity. Mechanical and electromechanical test systems were constructed to measure the static and dynamic behavior of the microshutters. The torsional stiffness was reduced by a factor of four over initial designs without sacrificing durability. Analysis of the resonant behavior of the microshutters demonstrates that the first resonant mode is a torsional mode occurring around 3000 Hz. At low vacuum pressures, this resonant mode can be used to significantly reduce the drive voltage necessary for actuation requiring as little as 25V. 2D electrostatic latching and addressing was demonstrated using both a resonant and pulsed addressing scheme.

  8. 2D Electrostatic Actuation of Microshutter Arrays

    NASA Technical Reports Server (NTRS)

    Burns, Devin E.; Oh, Lance H.; Li, Mary J.; Jones, Justin S.; Kelly, Daniel P.; Zheng, Yun; Kutyrev, Alexander S.; Moseley, Samuel H.

    2015-01-01

    An electrostatically actuated microshutter array consisting of rotational microshutters (shutters that rotate about a torsion bar) were designed and fabricated through the use of models and experiments. Design iterations focused on minimizing the torsional stiffness of the microshutters, while maintaining their structural integrity. Mechanical and electromechanical test systems were constructed to measure the static and dynamic behavior of the microshutters. The torsional stiffness was reduced by a factor of four over initial designs without sacrificing durability. Analysis of the resonant behavior of the microshutter arrays demonstrates that the first resonant mode is a torsional mode occurring around 3000 Hz. At low vacuum pressures, this resonant mode can be used to significantly reduce the drive voltage necessary for actuation requiring as little as 25V. 2D electrostatic latching and addressing was demonstrated using both a resonant and pulsed addressing scheme.

  9. 2D quantum gravity from quantum entanglement.

    PubMed

    Gliozzi, F

    2011-01-21

    In quantum systems with many degrees of freedom the replica method is a useful tool to study the entanglement of arbitrary spatial regions. We apply it in a way that allows them to backreact. As a consequence, they become dynamical subsystems whose position, form, and extension are determined by their interaction with the whole system. We analyze, in particular, quantum spin chains described at criticality by a conformal field theory. Its coupling to the Gibbs' ensemble of all possible subsystems is relevant and drives the system into a new fixed point which is argued to be that of the 2D quantum gravity coupled to this system. Numerical experiments on the critical Ising model show that the new critical exponents agree with those predicted by the formula of Knizhnik, Polyakov, and Zamolodchikov.

  10. Graphene suspensions for 2D printing

    NASA Astrophysics Data System (ADS)

    Soots, R. A.; Yakimchuk, E. A.; Nebogatikova, N. A.; Kotin, I. A.; Antonova, I. V.

    2016-04-01

    It is shown that, by processing a graphite suspension in ethanol or water by ultrasound and centrifuging, it is possible to obtain particles with thicknesses within 1-6 nm and, in the most interesting cases, 1-1.5 nm. Analogous treatment of a graphite suspension in organic solvent yields eventually thicker particles (up to 6-10 nm thick) even upon long-term treatment. Using the proposed ink based on graphene and aqueous ethanol with ethylcellulose and terpineol additives for 2D printing, thin (~5 nm thick) films with sheet resistance upon annealing ~30 MΩ/□ were obtained. With the ink based on aqueous graphene suspension, the sheet resistance was ~5-12 kΩ/□ for 6- to 15-nm-thick layers with a carrier mobility of ~30-50 cm2/(V s).

  11. Metrology for graphene and 2D materials

    NASA Astrophysics Data System (ADS)

    Pollard, Andrew J.

    2016-09-01

    The application of graphene, a one atom-thick honeycomb lattice of carbon atoms with superlative properties, such as electrical conductivity, thermal conductivity and strength, has already shown that it can be used to benefit metrology itself as a new quantum standard for resistance. However, there are many application areas where graphene and other 2D materials, such as molybdenum disulphide (MoS2) and hexagonal boron nitride (h-BN), may be disruptive, areas such as flexible electronics, nanocomposites, sensing and energy storage. Applying metrology to the area of graphene is now critical to enable the new, emerging global graphene commercial world and bridge the gap between academia and industry. Measurement capabilities and expertise in a wide range of scientific areas are required to address this challenge. The combined and complementary approach of varied characterisation methods for structural, chemical, electrical and other properties, will allow the real-world issues of commercialising graphene and other 2D materials to be addressed. Here, examples of metrology challenges that have been overcome through a multi-technique or new approach are discussed. Firstly, the structural characterisation of defects in both graphene and MoS2 via Raman spectroscopy is described, and how nanoscale mapping of vacancy defects in graphene is also possible using tip-enhanced Raman spectroscopy (TERS). Furthermore, the chemical characterisation and removal of polymer residue on chemical vapour deposition (CVD) grown graphene via secondary ion mass spectrometry (SIMS) is detailed, as well as the chemical characterisation of iron films used to grow large domain single-layer h-BN through CVD growth, revealing how contamination of the substrate itself plays a role in the resulting h-BN layer. In addition, the role of international standardisation in this area is described, outlining the current work ongoing in both the International Organization of Standardization (ISO) and the

  12. CYP2D6*36 gene arrangements within the cyp2d6 locus: association of CYP2D6*36 with poor metabolizer status.

    PubMed

    Gaedigk, Andrea; Bradford, L Dianne; Alander, Sarah W; Leeder, J Steven

    2006-04-01

    Unexplained cases of CYP2D6 genotype/phenotype discordance continue to be discovered. In previous studies, several African Americans with a poor metabolizer phenotype carried the reduced function CYP2D6*10 allele in combination with a nonfunctional allele. We pursued the possibility that these alleles harbor either a known sequence variation (i.e., CYP2D6*36 carrying a gene conversion in exon 9 along the CYP2D6*10-defining 100C>T single-nucleotide polymorphism) or novel sequences variation(s). Discordant cases were evaluated by long-range polymerase chain reaction (PCR) to test for gene rearrangement events, and a 6.6-kilobase pair PCR product encompassing the CYP2D6 gene was cloned and entirely sequenced. Thereafter, allele frequencies were determined in different study populations comprising whites, African Americans, and Asians. Analyses covering the CYP2D7 to 2D6 gene region established that CYP2D6*36 did not only exist as a gene duplication (CYP2D6*36x2) or in tandem with *10 (CYP2D6*36+*10), as previously reported, but also by itself. This "single" CYP2D6*36 allele was found in nine African Americans and one Asian, but was absent in the whites tested. Ultimately, the presence of CYP2D6*36 resolved genotype/phenotype discordance in three cases. We also discovered an exon 9 conversion-positive CYP2D6*4 gene in a duplication arrangement (CYP2D6*4Nx2) and a CYP2D6*4 allele lacking 100C>T (CYP2D6*4M) in two white subjects. The discovery of an allele that carries only one CYP2D6*36 gene copy provides unequivocal evidence that both CYP2D6*36 and *36x2 are associated with a poor metabolizer phenotype. Given a combined frequency of between 0.5 and 3% in African Americans and Asians, genotyping for CYP2D6*36 should improve the accuracy of genotype-based phenotype prediction in these populations.

  13. Mechanical loading and the synthesis of 1,25(OH)2D in primary human osteoblasts.

    PubMed

    van der Meijden, K; Bakker, A D; van Essen, H W; Heijboer, A C; Schulten, E A J M; Lips, P; Bravenboer, N

    2016-02-01

    local vitamin D metabolism in primary human osteoblasts. Our results suggest that 1,25(OH)2D3 and mechanical loading, both stimuli of the differentiation of osteoblasts, interact at the cellular level.

  14. iDrug-Target: predicting the interactions between drug compounds and target proteins in cellular networking via benchmark dataset optimization approach.

    PubMed

    Xiao, Xuan; Min, Jian-Liang; Lin, Wei-Zhong; Liu, Zi; Cheng, Xiang; Chou, Kuo-Chen

    2015-01-01

    Information about the interactions of drug compounds with proteins in cellular networking is very important for drug development. Unfortunately, all the existing predictors for identifying drug-protein interactions were trained by a skewed benchmark data-set where the number of non-interactive drug-protein pairs is overwhelmingly larger than that of the interactive ones. Using this kind of highly unbalanced benchmark data-set to train predictors would lead to the outcome that many interactive drug-protein pairs might be mispredicted as non-interactive. Since the minority interactive pairs often contain the most important information for drug design, it is necessary to minimize this kind of misprediction. In this study, we adopted the neighborhood cleaning rule and synthetic minority over-sampling technique to treat the skewed benchmark datasets and balance the positive and negative subsets. The new benchmark datasets thus obtained are called the optimized benchmark datasets, based on which a new predictor called iDrug-Target was developed that contains four sub-predictors: iDrug-GPCR, iDrug-Chl, iDrug-Ezy, and iDrug-NR, specialized for identifying the interactions of drug compounds with GPCRs (G-protein-coupled receptors), ion channels, enzymes, and NR (nuclear receptors), respectively. Rigorous cross-validations on a set of experiment-confirmed datasets have indicated that these new predictors remarkably outperformed the existing ones for the same purpose. To maximize users' convenience, a public accessible Web server for iDrug-Target has been established at http://www.jci-bioinfo.cn/iDrug-Target/ , by which users can easily get their desired results. It has not escaped our notice that the aforementioned strategy can be widely used in many other areas as well.

  15. A new inversion method for (T2, D) 2D NMR logging and fluid typing

    NASA Astrophysics Data System (ADS)

    Tan, Maojin; Zou, Youlong; Zhou, Cancan

    2013-02-01

    One-dimensional nuclear magnetic resonance (1D NMR) logging technology has some significant limitations in fluid typing. However, not only can two-dimensional nuclear magnetic resonance (2D NMR) provide some accurate porosity parameters, but it can also identify fluids more accurately than 1D NMR. In this paper, based on the relaxation mechanism of (T2, D) 2D NMR in a gradient magnetic field, a hybrid inversion method that combines least-squares-based QR decomposition (LSQR) and truncated singular value decomposition (TSVD) is examined in the 2D NMR inversion of various fluid models. The forward modeling and inversion tests are performed in detail with different acquisition parameters, such as magnetic field gradients (G) and echo spacing (TE) groups. The simulated results are discussed and described in detail, the influence of the above-mentioned observation parameters on the inversion accuracy is investigated and analyzed, and the observation parameters in multi-TE activation are optimized. Furthermore, the hybrid inversion can be applied to quantitatively determine the fluid saturation. To study the effects of noise level on the hybrid method and inversion results, the numerical simulation experiments are performed using different signal-to-noise-ratios (SNRs), and the effect of different SNRs on fluid typing using three fluid models are discussed and analyzed in detail.

  16. 2D and 3D Mechanobiology in Human and Nonhuman Systems.

    PubMed

    Warren, Kristin M; Islam, Md Mydul; LeDuc, Philip R; Steward, Robert

    2016-08-31

    Mechanobiology involves the investigation of mechanical forces and their effect on the development, physiology, and pathology of biological systems. The human body has garnered much attention from many groups in the field, as mechanical forces have been shown to influence almost all aspects of human life ranging from breathing to cancer metastasis. Beyond being influential in human systems, mechanical forces have also been shown to impact nonhuman systems such as algae and zebrafish. Studies of nonhuman and human systems at the cellular level have primarily been done in two-dimensional (2D) environments, but most of these systems reside in three-dimensional (3D) environments. Furthermore, outcomes obtained from 3D studies are often quite different than those from 2D studies. We present here an overview of a select group of human and nonhuman systems in 2D and 3D environments. We also highlight mechanobiological approaches and their respective implications for human and nonhuman physiology. PMID:27214883

  17. 2D and 3D Mechanobiology in Human and Nonhuman Systems.

    PubMed

    Warren, Kristin M; Islam, Md Mydul; LeDuc, Philip R; Steward, Robert

    2016-08-31

    Mechanobiology involves the investigation of mechanical forces and their effect on the development, physiology, and pathology of biological systems. The human body has garnered much attention from many groups in the field, as mechanical forces have been shown to influence almost all aspects of human life ranging from breathing to cancer metastasis. Beyond being influential in human systems, mechanical forces have also been shown to impact nonhuman systems such as algae and zebrafish. Studies of nonhuman and human systems at the cellular level have primarily been done in two-dimensional (2D) environments, but most of these systems reside in three-dimensional (3D) environments. Furthermore, outcomes obtained from 3D studies are often quite different than those from 2D studies. We present here an overview of a select group of human and nonhuman systems in 2D and 3D environments. We also highlight mechanobiological approaches and their respective implications for human and nonhuman physiology.

  18. Radiofrequency Spectroscopy and Thermodynamics of Fermi Gases in the 2D to Quasi-2D Dimensional Crossover

    NASA Astrophysics Data System (ADS)

    Cheng, Chingyun; Kangara, Jayampathi; Arakelyan, Ilya; Thomas, John

    2016-05-01

    We tune the dimensionality of a strongly interacting degenerate 6 Li Fermi gas from 2D to quasi-2D, by adjusting the radial confinement of pancake-shaped clouds to control the radial chemical potential. In the 2D regime with weak radial confinement, the measured pair binding energies are in agreement with 2D-BCS mean field theory, which predicts dimer pairing energies in the many-body regime. In the qausi-2D regime obtained with increased radial confinement, the measured pairing energy deviates significantly from 2D-BCS theory. In contrast to the pairing energy, the measured radii of the cloud profiles are not fit by 2D-BCS theory in either the 2D or quasi-2D regimes, but are fit in both regimes by a beyond mean field polaron-model of the free energy. Supported by DOE, ARO, NSF, and AFOSR.

  19. Phase Engineering of 2D Tin Sulfides.

    PubMed

    Mutlu, Zafer; Wu, Ryan J; Wickramaratne, Darshana; Shahrezaei, Sina; Liu, Chueh; Temiz, Selcuk; Patalano, Andrew; Ozkan, Mihrimah; Lake, Roger K; Mkhoyan, K A; Ozkan, Cengiz S

    2016-06-01

    Tin sulfides can exist in a variety of phases and polytypes due to the different oxidation states of Sn. A subset of these phases and polytypes take the form of layered 2D structures that give rise to a wide host of electronic and optical properties. Hence, achieving control over the phase, polytype, and thickness of tin sulfides is necessary to utilize this wide range of properties exhibited by the compound. This study reports on phase-selective growth of both hexagonal tin (IV) sulfide SnS2 and orthorhombic tin (II) sulfide SnS crystals with diameters of over tens of microns on SiO2 substrates through atmospheric pressure vapor-phase method in a conventional horizontal quartz tube furnace with SnO2 and S powders as the source materials. Detailed characterization of each phase of tin sulfide crystals is performed using various microscopy and spectroscopy methods, and the results are corroborated by ab initio density functional theory calculations. PMID:27099950

  20. Phase Engineering of 2D Tin Sulfides.

    PubMed

    Mutlu, Zafer; Wu, Ryan J; Wickramaratne, Darshana; Shahrezaei, Sina; Liu, Chueh; Temiz, Selcuk; Patalano, Andrew; Ozkan, Mihrimah; Lake, Roger K; Mkhoyan, K A; Ozkan, Cengiz S

    2016-06-01

    Tin sulfides can exist in a variety of phases and polytypes due to the different oxidation states of Sn. A subset of these phases and polytypes take the form of layered 2D structures that give rise to a wide host of electronic and optical properties. Hence, achieving control over the phase, polytype, and thickness of tin sulfides is necessary to utilize this wide range of properties exhibited by the compound. This study reports on phase-selective growth of both hexagonal tin (IV) sulfide SnS2 and orthorhombic tin (II) sulfide SnS crystals with diameters of over tens of microns on SiO2 substrates through atmospheric pressure vapor-phase method in a conventional horizontal quartz tube furnace with SnO2 and S powders as the source materials. Detailed characterization of each phase of tin sulfide crystals is performed using various microscopy and spectroscopy methods, and the results are corroborated by ab initio density functional theory calculations.

  1. Ultra-Rapid 2-D and 3-D Laser Microprinting of Proteins

    NASA Astrophysics Data System (ADS)

    Scott, Mark Andrew

    When viewed under the microscope, biological tissues reveal an exquisite microarchitecture. These complex patterns arise during development, as cells interact with a multitude of chemical and mechanical cues in the surrounding extracellular matrix. Tissue engineers have sought for decades to repair or replace damaged tissue, often relying on porous scaffolds as an artificial extracellular matrix to support cell development. However, these grafts are unable to recapitulate the complexity of the in vivo environment, limiting our ability to regenerate functional tissue. Biomedical engineers have developed several methods for printing two- and three-dimensional patterns of proteins for studying and directing cell development. Of these methods, laser microprinting of proteins has shown the most promise for printing sub-cellular resolution gradients of cues, but the photochemistry remains too slow to enable large-scale applications for screening and therapeutics In this work, we demonstrate a novel high-speed photochemistry based on multi-photon photobleaching of fluorescein, and we build the fastest 2-D and 3-D laser microprinter for proteins to date. First, we show that multiphoton photobleaching of a deoxygenated solution of biotin-4-fluorescein onto a PEG monolayer with acrylate end-group can enable print speeds of almost 20 million pixels per second at 600 nanometer resolution. We discovered that the mechanism of fluorescein photobleaching evolves from a 2-photon to 3- and 4-photon regime at higher laser intensities, unlocking faster printing kinetics. Using this 2-D printing system, we develop a novel triangle-ratchet method for directing the polarization of single hippocampal neurons. This ability to determine which neurite becomes an axon, and which neuritis become dendrites is an essential step for developing defined in vitro neural networks. Next, we modify our multiphoton photobleaching system to print in three dimensions. For the first time, we demonstrate 3

  2. Malignant transformation in a defined genetic background: proteome changes displayed by 2D-PAGE

    PubMed Central

    2010-01-01

    Background Cancer arises from normal cells through the stepwise accumulation of genetic alterations. Cancer development can be studied by direct genetic manipulation within experimental models of tumorigenesis. Thereby, confusion by the genetic heterogeneity of patients can be circumvented. Moreover, identification of the critical changes that convert a pre-malignant cell into a metastatic, therapy resistant tumor cell, however, is one necessary step to develop effective and selective anti-cancer drugs. Thus, for the current study a cell culture model for malignant transformation was used: Primary human fibroblasts of the BJ strain were sequentially transduced with retroviral vectors encoding the genes for hTERT (cell line BJ-T), simian virus 40 early region (SV40 ER, cell line BJ-TE) and H-Ras V12 (cell line BJ-TER). Results The stepwise malignant transformation of human fibroblasts was analyzed on the protein level by differential proteome analysis. We observed 39 regulated protein spots and therein identified 67 different proteins. The strongest change of spot patterns was detected due to integration of SV40 ER. Among the proteins being significantly regulated during the malignant transformation process well known proliferating cell nuclear antigen (PCNA) as well as the chaperones mitochondrial heat shock protein 75 kDa (TRAP-1) and heat shock protein HSP90 were identified. Moreover, we find out, that TRAP-1 is already up-regulated by means of SV40 ER expression instead of H-Ras V12. Furthermore Peroxiredoxin-6 (PRDX6), Annexin A2 (p36), Plasminogen activator inhibitor 2 (PAI-2) and Keratin type II cytoskeletal 7 (CK-7) were identified to be regulated. For some protein candidates we confirmed our 2D-PAGE results by Western Blot. Conclusion These findings give further hints for intriguing interactions between the p16-RB pathway, the mitochondrial chaperone network and the cytoskeleton. In summary, using a cell culture model for malignant transformation analyzed

  3. 2-D Animation's Not Just for Mickey Mouse.

    ERIC Educational Resources Information Center

    Weinman, Lynda

    1995-01-01

    Discusses characteristics of two-dimensional (2-D) animation; highlights include character animation, painting issues, and motion graphics. Sidebars present Silicon Graphics animations tools and 2-D animation programs for the desktop computer. (DGM)

  4. The Mammalian Orthologs of Drosophila Lgd, CC2D1A and CC2D1B, Function in the Endocytic Pathway, but Their Individual Loss of Function Does Not Affect Notch Signalling

    PubMed Central

    Drusenheimer, Nadja; Migdal, Bernhard; Jäckel, Sandra; Tveriakhina, Lena; Scheider, Kristina; Schulz, Katharina; Gröper, Jieny; Köhrer, Karl; Klein, Thomas

    2015-01-01

    CC2D1A and CC2D1B belong to the evolutionary conserved Lgd protein family with members in all multi-cellular animals. Several functions such as centrosomal cleavage, involvement in signalling pathways, immune response and synapse maturation have been described for CC2D1A. Moreover, the Drosophila melanogaster ortholog Lgd was shown to be involved in the endosomal trafficking of the Notch receptor and other transmembrane receptors and physically interacts with the ESCRT-III component Shrub/CHMP4. To determine if this function is conserved in mammals we generated and characterized Cc2d1a and Cc2d1b conditional knockout mice. While Cc2d1b deficient mice displayed no obvious phenotype, we found that Cc2d1a deficient mice as well as conditional mutants that lack CC2D1A only in the nervous system die shortly after birth due to respiratory distress. This finding confirms the suspicion that the breathing defect is caused by the central nervous system. However, an involvement in centrosomal function could not be confirmed in Cc2d1a deficient MEF cells. To analyse an influence on Notch signalling, we generated intestine specific Cc2d1a mutant mice. These mice did not display any alterations in goblet cell number, proliferating cell number or expression of the Notch reporter Hes1-emGFP, suggesting that CC2D1A is not required for Notch signalling. However, our EM analysis revealed that the average size of endosomes of Cc2d1a mutant cells, but not Cc2d1b mutant cells, is increased, indicating a defect in endosomal morphogenesis. We could show that CC2D1A and its interaction partner CHMP4B are localised on endosomes in MEF cells, when the activity of the endosomal protein VPS4 is reduced. This indicates that CC2D1A cycles between the cytosol and the endosomal membrane. Additionally, in rescue experiments in D. melanogaster, CC2D1A and CC2D1B were able to functionally replace Lgd. Altogether our data suggest a functional conservation of the Lgd protein family in the ESCRT

  5. Generates 2D Input for DYNA NIKE & TOPAZ

    SciTech Connect

    Hallquist, J. O.; Sanford, Larry

    1996-07-15

    MAZE is an interactive program that serves as an input and two-dimensional mesh generator for DYNA2D, NIKE2D, TOPAZ2D, and CHEMICAL TOPAZ2D. MAZE also generates a basic template for ISLAND input. MAZE has been applied to the generation of input data to study the response of two-dimensional solids and structures undergoing finite deformations under a wide variety of large deformation transient dynamic and static problems and heat transfer analyses.

  6. MAZE96. Generates 2D Input for DYNA NIKE & TOPAZ

    SciTech Connect

    Sanford, L.; Hallquist, J.O.

    1992-02-24

    MAZE is an interactive program that serves as an input and two-dimensional mesh generator for DYNA2D, NIKE2D, TOPAZ2D, and CHEMICAL TOPAZ2D. MAZE also generates a basic template for ISLAND input. MAZE has been applied to the generation of input data to study the response of two-dimensional solids and structures undergoing finite deformations under a wide variety of large deformation transient dynamic and static problems and heat transfer analyses.

  7. 2d PDE Linear Symmetric Matrix Solver

    1983-10-01

    ICCG2 (Incomplete Cholesky factorized Conjugate Gradient algorithm for 2d symmetric problems) was developed to solve a linear symmetric matrix system arising from a 9-point discretization of two-dimensional elliptic and parabolic partial differential equations found in plasma physics applications, such as resistive MHD, spatial diffusive transport, and phase space transport (Fokker-Planck equation) problems. These problems share the common feature of being stiff and requiring implicit solution techniques. When these parabolic or elliptic PDE''s are discretized withmore » finite-difference or finite-element methods,the resulting matrix system is frequently of block-tridiagonal form. To use ICCG2, the discretization of the two-dimensional partial differential equation and its boundary conditions must result in a block-tridiagonal supermatrix composed of elementary tridiagonal matrices. The incomplete Cholesky conjugate gradient algorithm is used to solve the linear symmetric matrix equation. Loops are arranged to vectorize on the Cray1 with the CFT compiler, wherever possible. Recursive loops, which cannot be vectorized, are written for optimum scalar speed. For matrices lacking symmetry, ILUCG2 should be used. Similar methods in three dimensions are available in ICCG3 and ILUCG3. A general source containing extensions and macros, which must be processed by a pre-compiler to obtain the standard FORTRAN source, is provided along with the standard FORTRAN source because it is believed to be more readable. The pre-compiler is not included, but pre-compilation may be performed by a text editor as described in the UCRL-88746 Preprint.« less

  8. 2d PDE Linear Asymmetric Matrix Solver

    1983-10-01

    ILUCG2 (Incomplete LU factorized Conjugate Gradient algorithm for 2d problems) was developed to solve a linear asymmetric matrix system arising from a 9-point discretization of two-dimensional elliptic and parabolic partial differential equations found in plasma physics applications, such as plasma diffusion, equilibria, and phase space transport (Fokker-Planck equation) problems. These equations share the common feature of being stiff and requiring implicit solution techniques. When these parabolic or elliptic PDE''s are discretized with finite-difference or finite-elementmore » methods, the resulting matrix system is frequently of block-tridiagonal form. To use ILUCG2, the discretization of the two-dimensional partial differential equation and its boundary conditions must result in a block-tridiagonal supermatrix composed of elementary tridiagonal matrices. A generalization of the incomplete Cholesky conjugate gradient algorithm is used to solve the matrix equation. Loops are arranged to vectorize on the Cray1 with the CFT compiler, wherever possible. Recursive loops, which cannot be vectorized, are written for optimum scalar speed. For problems having a symmetric matrix ICCG2 should be used since it runs up to four times faster and uses approximately 30% less storage. Similar methods in three dimensions are available in ICCG3 and ILUCG3. A general source, containing extensions and macros, which must be processed by a pre-compiler to obtain the standard FORTRAN source, is provided along with the standard FORTRAN source because it is believed to be more readable. The pre-compiler is not included, but pre-compilation may be performed by a text editor as described in the UCRL-88746 Preprint.« less

  9. Position control using 2D-to-2D feature correspondences in vision guided cell micromanipulation.

    PubMed

    Zhang, Yanliang; Han, Mingli; Shee, Cheng Yap; Ang, Wei Tech

    2007-01-01

    Conventional camera calibration that utilizes the extrinsic and intrinsic parameters of the camera and the objects has certain limitations for micro-level cell operations due to the presence of hardware deviations and external disturbances during the experimental process, thereby invalidating the extrinsic parameters. This invalidation is often neglected in macro-world visual servoing and affects the visual image processing quality, causing deviation from the desired position in micro-level cell operations. To increase the success rate of vision guided biological micromanipulations, a novel algorithm monitoring the changing image pattern of the manipulators including the injection micropipette and cell holder is designed and implemented based on 2 dimensional (2D)-to 2D feature correspondences and can adjust the manipulator and perform position control simultaneously. When any deviation is found, the manipulator is retracted to the initial focusing plane before continuing the operation.

  10. A Planar Quantum Transistor Based on 2D-2D Tunneling in Double Quantum Well Heterostructures

    SciTech Connect

    Baca, W.E.; Blount, M.A.; Hafich, M.J.; Lyo, S.K.; Moon, J.S.; Reno, J.L.; Simmons, J.A.; Wendt, J.R.

    1998-12-14

    We report on our work on the double electron layer tunneling transistor (DELTT), based on the gate-control of two-dimensional -- two-dimensional (2D-2D) tunneling in a double quantum well heterostructure. While previous quantum transistors have typically required tiny laterally-defined features, by contrast the DELTT is entirely planar and can be reliably fabricated in large numbers. We use a novel epoxy-bond-and-stop-etch (EBASE) flip-chip process, whereby submicron gating on opposite sides of semiconductor epitaxial layers as thin as 0.24 microns can be achieved. Because both electron layers in the DELTT are 2D, the resonant tunneling features are unusually sharp, and can be easily modulated with one or more surface gates. We demonstrate DELTTs with peak-to-valley ratios in the source-drain I-V curve of order 20:1 below 1 K. Both the height and position of the resonant current peak can be controlled by gate voltage over a wide range. DELTTs with larger subband energy offsets ({approximately} 21 meV) exhibit characteristics that are nearly as good at 77 K, in good agreement with our theoretical calculations. Using these devices, we also demonstrate bistable memories operating at 77 K. Finally, we briefly discuss the prospects for room temperature operation, increases in gain, and high-speed.

  11. 'Brukin2D': a 2D visualization and comparison tool for LC-MS data

    PubMed Central

    Tsagkrasoulis, Dimosthenis; Zerefos, Panagiotis; Loudos, George; Vlahou, Antonia; Baumann, Marc; Kossida, Sophia

    2009-01-01

    Background Liquid Chromatography-Mass Spectrometry (LC-MS) is a commonly used technique to resolve complex protein mixtures. Visualization of large data sets produced from LC-MS, namely the chromatogram and the mass spectra that correspond to its compounds is the focus of this work. Results The in-house developed 'Brukin2D' software, built in Matlab 7.4, which is presented here, uses the compound data that are exported from the Bruker 'DataAnalysis' program, and depicts the mean mass spectra of all the chromatogram compounds from one LC-MS run, in one 2D contour/density plot. Two contour plots from different chromatograph runs can then be viewed in the same window and automatically compared, in order to find their similarities and differences. The results of the comparison can be examined through detailed mass quantification tables, while chromatogram compound statistics are also calculated during the procedure. Conclusion 'Brukin2D' provides a user-friendly platform for quick, easy and integrated view of complex LC-MS data. The software is available at . PMID:19534737

  12. Inhibition of human cytochrome P450 2D6 (CYP2D6) by methadone.

    PubMed Central

    Wu, D; Otton, S V; Sproule, B A; Busto, U; Inaba, T; Kalow, W; Sellers, E M

    1993-01-01

    1. In microsomes prepared from three human livers, methadone competitively inhibited the O-demethylation of dextromethorphan, a marker substrate for CYP2D6. The apparent Ki value of methadone ranged from 2.5 to 5 microM. 2. Two hundred and fifty-two (252) white Caucasians, including 210 unrelated healthy volunteers and 42 opiate abusers undergoing treatment with methadone were phenotyped using dextromethorphan as the marker drug. Although the frequency of poor metabolizers was similar in both groups, the extensive metabolizers among the opiate abusers tended to have higher O-demethylation metabolic ratios and to excrete less of the dose as dextromethorphan metabolites than control extensive metabolizer subjects. These data suggest inhibition of CYP2D6 by methadone in vivo as well. 3. Because methadone is widely used in the treatment of opiate abuse, inhibition of CYP2D6 activity in these patients might contribute to exaggerated response or unexpected toxicity from drugs that are substrates of this enzyme. PMID:8448065

  13. Correlated Electron Phenomena in 2D Materials

    NASA Astrophysics Data System (ADS)

    Lambert, Joseph G.

    In this thesis, I present experimental results on coherent electron phenomena in layered two-dimensional materials: single layer graphene and van der Waals coupled 2D TiSe2. Graphene is a two-dimensional single-atom thick sheet of carbon atoms first derived from bulk graphite by the mechanical exfoliation technique in 2004. Low-energy charge carriers in graphene behave like massless Dirac fermions, and their density can be easily tuned between electron-rich and hole-rich quasiparticles with electrostatic gating techniques. The sharp interfaces between regions of different carrier densities form barriers with selective transmission, making them behave as partially reflecting mirrors. When two of these interfaces are set at a separation distance within the phase coherence length of the carriers, they form an electronic version of a Fabry-Perot cavity. I present measurements and analysis of multiple Fabry-Perot modes in graphene with parallel electrodes spaced a few hundred nanometers apart. Transition metal dichalcogenide (TMD) TiSe2 is part of the family of materials that coined the term "materials beyond graphene". It contains van der Waals coupled trilayer stacks of Se-Ti-Se. Many TMD materials exhibit a host of interesting correlated electronic phases. In particular, TiSe2 exhibits chiral charge density waves (CDW) below TCDW ˜ 200 K. Upon doping with copper, the CDW state gets suppressed with Cu concentration, and CuxTiSe2 becomes superconducting with critical temperature of T c = 4.15 K. There is still much debate over the mechanisms governing the coexistence of the two correlated electronic phases---CDW and superconductivity. I will present some of the first conductance spectroscopy measurements of proximity coupled superconductor-CDW systems. Measurements reveal a proximity-induced critical current at the Nb-TiSe2 interfaces, suggesting pair correlations in the pure TiSe2. The results indicate that superconducting order is present concurrently with CDW in

  14. CYP2D7 Sequence Variation Interferes with TaqMan CYP2D6*15 and *35 Genotyping

    PubMed Central

    Riffel, Amanda K.; Dehghani, Mehdi; Hartshorne, Toinette; Floyd, Kristen C.; Leeder, J. Steven; Rosenblatt, Kevin P.; Gaedigk, Andrea

    2016-01-01

    TaqMan™ genotyping assays are widely used to genotype CYP2D6, which encodes a major drug metabolizing enzyme. Assay design for CYP2D6 can be challenging owing to the presence of two pseudogenes, CYP2D7 and CYP2D8, structural and copy number variation and numerous single nucleotide polymorphisms (SNPs) some of which reflect the wild-type sequence of the CYP2D7 pseudogene. The aim of this study was to identify the mechanism causing false-positive CYP2D6*15 calls and remediate those by redesigning and validating alternative TaqMan genotype assays. Among 13,866 DNA samples genotyped by the CompanionDx® lab on the OpenArray platform, 70 samples were identified as heterozygotes for 137Tins, the key SNP of CYP2D6*15. However, only 15 samples were confirmed when tested with the Luminex xTAG CYP2D6 Kit and sequencing of CYP2D6-specific long range (XL)-PCR products. Genotype and gene resequencing of CYP2D6 and CYP2D7-specific XL-PCR products revealed a CC>GT dinucleotide SNP in exon 1 of CYP2D7 that reverts the sequence to CYP2D6 and allows a TaqMan assay PCR primer to bind. Because CYP2D7 also carries a Tins, a false-positive mutation signal is generated. This CYP2D7 SNP was also responsible for generating false-positive signals for rs769258 (CYP2D6*35) which is also located in exon 1. Although alternative CYP2D6*15 and *35 assays resolved the issue, we discovered a novel CYP2D6*15 subvariant in one sample that carries additional SNPs preventing detection with the alternate assay. The frequency of CYP2D6*15 was 0.1% in this ethnically diverse U.S. population sample. In addition, we also discovered linkage between the CYP2D7 CC>GT dinucleotide SNP and the 77G>A (rs28371696) SNP of CYP2D6*43. The frequency of this tentatively functional allele was 0.2%. Taken together, these findings emphasize that regardless of how careful genotyping assays are designed and evaluated before being commercially marketed, rare or unknown SNPs underneath primer and/or probe regions can impact

  15. CYP2D7 Sequence Variation Interferes with TaqMan CYP2D6 (*) 15 and (*) 35 Genotyping.

    PubMed

    Riffel, Amanda K; Dehghani, Mehdi; Hartshorne, Toinette; Floyd, Kristen C; Leeder, J Steven; Rosenblatt, Kevin P; Gaedigk, Andrea

    2015-01-01

    TaqMan™ genotyping assays are widely used to genotype CYP2D6, which encodes a major drug metabolizing enzyme. Assay design for CYP2D6 can be challenging owing to the presence of two pseudogenes, CYP2D7 and CYP2D8, structural and copy number variation and numerous single nucleotide polymorphisms (SNPs) some of which reflect the wild-type sequence of the CYP2D7 pseudogene. The aim of this study was to identify the mechanism causing false-positive CYP2D6 (*) 15 calls and remediate those by redesigning and validating alternative TaqMan genotype assays. Among 13,866 DNA samples genotyped by the CompanionDx® lab on the OpenArray platform, 70 samples were identified as heterozygotes for 137Tins, the key SNP of CYP2D6 (*) 15. However, only 15 samples were confirmed when tested with the Luminex xTAG CYP2D6 Kit and sequencing of CYP2D6-specific long range (XL)-PCR products. Genotype and gene resequencing of CYP2D6 and CYP2D7-specific XL-PCR products revealed a CC>GT dinucleotide SNP in exon 1 of CYP2D7 that reverts the sequence to CYP2D6 and allows a TaqMan assay PCR primer to bind. Because CYP2D7 also carries a Tins, a false-positive mutation signal is generated. This CYP2D7 SNP was also responsible for generating false-positive signals for rs769258 (CYP2D6 (*) 35) which is also located in exon 1. Although alternative CYP2D6 (*) 15 and (*) 35 assays resolved the issue, we discovered a novel CYP2D6 (*) 15 subvariant in one sample that carries additional SNPs preventing detection with the alternate assay. The frequency of CYP2D6 (*) 15 was 0.1% in this ethnically diverse U.S. population sample. In addition, we also discovered linkage between the CYP2D7 CC>GT dinucleotide SNP and the 77G>A (rs28371696) SNP of CYP2D6 (*) 43. The frequency of this tentatively functional allele was 0.2%. Taken together, these findings emphasize that regardless of how careful genotyping assays are designed and evaluated before being commercially marketed, rare or unknown SNPs underneath primer

  16. Mechanical characterization of 2D, 2D stitched, and 3D braided/RTM materials

    NASA Technical Reports Server (NTRS)

    Deaton, Jerry W.; Kullerd, Susan M.; Portanova, Marc A.

    1993-01-01

    Braided composite materials have potential for application in aircraft structures. Fuselage frames, floor beams, wing spars, and stiffeners are examples where braided composites could find application if cost effective processing and damage tolerance requirements are met. Another important consideration for braided composites relates to their mechanical properties and how they compare to the properties of composites produced by other textile composite processes being proposed for these applications. Unfortunately, mechanical property data for braided composites do not appear extensively in the literature. Data are presented in this paper on the mechanical characterization of 2D triaxial braid, 2D triaxial braid plus stitching, and 3D (through-the-thickness) braid composite materials. The braided preforms all had the same graphite tow size and the same nominal braid architectures, (+/- 30 deg/0 deg), and were resin transfer molded (RTM) using the same mold for each of two different resin systems. Static data are presented for notched and unnotched tension, notched and unnotched compression, and compression after impact strengths at room temperature. In addition, some static results, after environmental conditioning, are included. Baseline tension and compression fatigue results are also presented, but only for the 3D braided composite material with one of the resin systems.

  17. Gravitational Wave Signals from 2D and 3D Core Collapse Supernova Explosions

    NASA Astrophysics Data System (ADS)

    Yakunin, Konstantin; Mezzacappa, Anthony; Marronetti, Pedro; Bruenn, Stephen; Hix, W. Raphael; Lentz, Eric J.; Messer, O. E. Bronson; Harris, J. Austin; Endeve, Eirik; Blondin, John

    2016-03-01

    We study two- and three-dimensional (2D and 3D) core-collapse supernovae (CCSN) using our first-principles CCSN simulations performed with the neutrino hydrodynamics code CHIMERA. The following physics is included: Newtonian hydrodynamics with a nuclear equation of state capable of describing matter in both NSE and non-NSE, MGFLD neutrino transport with realistic neutrino interactions, an effective GR gravitational potential, and a nuclear reaction network. Both our 2D and 3D models achieve explosion, which in turn enables us to determine their complete gravitational wave signals. In this talk, we present them, and we analyze the similarities and differences between the 2D and 3D signals.

  18. Preliminary Analysis of the efficacy of Artificial neural Network (ANN) and Cellular Automaton (CA) based Land Use Models in Urban Land-Use Planning

    NASA Astrophysics Data System (ADS)

    Harun, R.

    2013-05-01

    This research provides an opportunity of collaboration between urban planners and modellers by providing a clear theoretical foundations on the two most widely used urban land use models, and assessing the effectiveness of applying the models in urban planning context. Understanding urban land cover change is an essential element for sustainable urban development as it affects ecological functioning in urban ecosystem. Rapid urbanization due to growing inclination of people to settle in urban areas has increased the complexities in predicting that at what shape and size cities will grow. The dynamic changes in the spatial pattern of urban landscapes has exposed the policy makers and environmental scientists to great challenge. But geographic science has grown in symmetry to the advancements in computer science. Models and tools are developed to support urban planning by analyzing the causes and consequences of land use changes and project the future. Of all the different types of land use models available in recent days, it has been found by researchers that the most frequently used models are Cellular Automaton (CA) and Artificial Neural Networks (ANN) models. But studies have demonstrated that the existing land use models have not been able to meet the needs of planners and policy makers. There are two primary causes identified behind this prologue. First, there is inadequate understanding of the fundamental theories and application of the models in urban planning context i.e., there is a gap in communication between modellers and urban planners. Second, the existing models exclude many key drivers in the process of simplification of the complex urban system that guide urban spatial pattern. Thus the models end up being effective in assessing the impacts of certain land use policies, but cannot contribute in new policy formulation. This paper is an attempt to increase the knowledge base of planners on the most frequently used land use model and also assess the

  19. Mapping and Identification of the Urine Proteome of Prostate Cancer Patients by 2D PAGE/MS

    PubMed Central

    Kiprijanovska, Sanja; Stavridis, Sotir; Stankov, Oliver; Komina, Selim; Petrusevska, Gordana; Polenakovic, Momir; Davalieva, Katarina

    2014-01-01

    Proteome analysis of the urine has shown that urine contains disease-specific information for a variety of urogenital system disorders, including prostate cancer (PCa). The aim of this study was to determine the protein components of urine from PCa patients. Urine from 8 patients with clinically and histologically confirmed PCa was analyzed by conventional 2D PAGE. The MS identification of the most prominent 125 spots from the urine map revealed 45 distinct proteins. According to Gene Ontology, the identified proteins are involved in a variety of biological processes, majority of them are secreted (71%), and half of them are enzymes or transporters. Comparison with the normal urine proteome revealed 11 proteins distinctive for PCa. Using Ingenuity Pathways Analysis, we have found 3 proteins (E3 ubiquitin-protein ligase rififylin, tumor protein D52, and thymidine phosphorylase) associated with cellular growth and proliferation (p = 8.35 × 10−4 − 3.41 × 10−2). The top network of functional associations between 11 proteins was Cell Death and Survival, Cell-To-Cell Signaling and Interaction, and System Development and Function (p = 10−30). In summary, we have created an initial proteomic map of PCa patient's urine. The results from this study provide some leads to understand the molecular bases of prostate cancer. PMID:25215235

  20. Phosphoproteomic analysis of wild-type and antimony-resistant Leishmania braziliensis lines by 2D-DIGE technology.

    PubMed

    Moreira, Douglas de Souza; Pescher, Pascale; Laurent, Christine; Lenormand, Pascal; Späth, Gerald F; Murta, Silvane M F

    2015-09-01

    Protein phosphorylation is one of the most studied post-translational modifications that is involved in different cellular events in Leishmania. In this study, we performed a comparative phosphoproteomics analysis of potassium antimonyl tartrate (SbIII)-resistant and -susceptible lines of Leishmania braziliensis using a 2D-DIGE approach followed by MS. In order to investigate the differential phosphoprotein abundance associated with the drug-induced stress response and SbIII-resistance mechanisms, we compared nontreated and SbIII-treated samples of each line. Pair wise comparisons revealed a total of 116 spots that showed a statistically significant difference in phosphoprotein abundance, including 11 and 34 spots specifically correlated with drug treatment and resistance, respectively. We identified 48 different proteins distributed into seven biological process categories. The category "protein folding/chaperones and stress response" is mainly implicated in response to SbIII treatment, while the categories "antioxidant/detoxification," "metabolic process," "RNA/DNA processing," and "protein biosynthesis" are modulated in the case of antimony resistance. Multiple sequence alignments were performed to validate the conservation of phosphorylated residues in nine proteins identified here. Western blot assays were carried out to validate the quantitative phosphoproteome analysis. The results revealed differential expression level of three phosphoproteins in the lines analyzed. This novel study allowed us to profile the L. braziliensis phosphoproteome, identifying several potential candidates for biochemical or signaling networks associated with antimony resistance phenotype in this parasite.

  1. Computational Screening of 2D Materials for Photocatalysis.

    PubMed

    Singh, Arunima K; Mathew, Kiran; Zhuang, Houlong L; Hennig, Richard G

    2015-03-19

    Two-dimensional (2D) materials exhibit a range of extraordinary electronic, optical, and mechanical properties different from their bulk counterparts with potential applications for 2D materials emerging in energy storage and conversion technologies. In this Perspective, we summarize the recent developments in the field of solar water splitting using 2D materials and review a computational screening approach to rapidly and efficiently discover more 2D materials that possess properties suitable for solar water splitting. Computational tools based on density-functional theory can predict the intrinsic properties of potential photocatalyst such as their electronic properties, optical absorbance, and solubility in aqueous solutions. Computational tools enable the exploration of possible routes to enhance the photocatalytic activity of 2D materials by use of mechanical strain, bias potential, doping, and pH. We discuss future research directions and needed method developments for the computational design and optimization of 2D materials for photocatalysis.

  2. Synthetic Covalent and Non-Covalent 2D Materials.

    PubMed

    Boott, Charlotte E; Nazemi, Ali; Manners, Ian

    2015-11-16

    The creation of synthetic 2D materials represents an attractive challenge that is ultimately driven by their prospective uses in, for example, electronics, biomedicine, catalysis, sensing, and as membranes for separation and filtration. This Review illustrates some recent advances in this diverse field with a focus on covalent and non-covalent 2D polymers and frameworks, and self-assembled 2D materials derived from nanoparticles, homopolymers, and block copolymers.

  3. Parametric study of double cellular detonation structure

    NASA Astrophysics Data System (ADS)

    Khasainov, B.; Virot, F.; Presles, H.-N.; Desbordes, D.

    2013-05-01

    A parametric numerical study is performed of a detonation cellular structure in a model gaseous explosive mixture whose decomposition occurs in two successive exothermic reaction steps with markedly different characteristic times. Kinetic and energetic parameters of both reactions are varied in a wide range in the case of one-dimensional steady and two-dimensional (2D) quasi-steady self-supported detonations. The range of governing parameters of both exothermic steps is defined where a "marked" double cellular structure exists. It is shown that the two-level cellular structure is completely governed by the kinetic parameters and the local overdrive ratio of the detonation front propagating inside large cells. Furthermore, since it is quite cumbersome to use detailed chemical kinetics in unsteady 2D case, the proposed work should help to identify the mixtures and the domain of their equivalence ratio where double detonation structure could be observed.

  4. Evolving detectors of 2D patterns on a simulated CAM-Brain machine: an evolvable hardware tool for building a 75-million-neuron artificial brain

    NASA Astrophysics Data System (ADS)

    de Garis, Hugo; Korkin, Michael; Guttikonda, Padma; Cooley, Donald

    2000-11-01

    This paper presents some simulation results of the evolution of 2D visual pattern recognizers to be implemented very shortly on real hardware, namely the 'CAM-Brain Machine' (CBM), an FPGA based piece of evolvable hardware which implements a genetic algorithm (GA) to evolve a 3D cellular automata (CA) based neural network circuit module, of approximately 1,000 neurons, in about a second, i.e. a complete run of a GA, with 10,000s of circuit growths and performance evaluations. Up to 65,000 of these modules, each of which is evolved with a humanly specified function, can be downloaded into a large RAM space, and interconnected according to humanly specified gvdvips -o SPIE-2000.ps SPIE-2000 artificial brain architectures. This RAM, containing an artificial brain with up to 75 million neurons, is then updated by the CBM at a rate of 130 billion CA cells per second. Such speeds will enable real time control of robots and hopefully the birth of a new research field that we call 'brain building.' The first such artificial brain, to be built at STARLAB in 2000 and beyond, will be used to control the behaviors of a life sized kitten robot called 'Robokitty.' This kitten robot will need 2D pattern recognizers in the visual section of its artificial brain. This paper presents simulation results on the evolvability and generalization properties of such recognizers.

  5. A Geometric Boolean Library for 2D Objects

    2006-01-05

    The 2D Boolean Library is a collection of C++ classes -- which primarily represent 2D geometric data and relationships, and routines -- which contain algorithms for 2D geometric Boolean operations and utility functions. Classes are provided for 2D points, lines, arcs, edgeuses, loops, surfaces and mask sets. Routines are provided that incorporate the Boolean operations Union(OR), XOR, Intersection and Difference. Various analytical geometry routines and routines for importing and exporting the data in various filemore » formats, are also provided in the library.« less

  6. VizieR Online Data Catalog: The 2dF Galaxy Redshift Survey (2dFGRS) (2dFGRS Team, 1998-2003)

    NASA Astrophysics Data System (ADS)

    Colless, M.; Dalton, G.; Maddox, S.; Sutherland, W.; Norberg, P.; Cole, S.; Bland-Hawthorn, J.; Bridges, T.; Cannon, R.; Collins, C.; Couch, W.; Cross, N.; Deeley, K.; de Propris, R.; Driver, S. P.; Efstathiou, G.; Ellis, R. S.; Frenk, C. S.; Glazebrook, K.; Jackson, C.; Lahav, O.; Lewis, I.; Lumsden, S.; Madgwick, D.; Peacock, J. A.; Peterson, B. A.; Price, I.; Seaborne, M.; Taylor, K.

    2007-11-01

    The 2dF Galaxy Redshift Survey (2dFGRS) is a major spectroscopic survey taking full advantage of the unique capabilities of the 2dF facility built by the Anglo-Australian Observatory. The 2dFGRS is integrated with the 2dF QSO survey (2QZ, Cat. VII/241). The 2dFGRS obtained spectra for 245591 objects, mainly galaxies, brighter than a nominal extinction-corrected magnitude limit of bJ=19.45. Reliable (quality>=3) redshifts were obtained for 221414 galaxies. The galaxies cover an area of approximately 1500 square degrees selected from the extended APM Galaxy Survey in three regions: a North Galactic Pole (NGP) strip, a South Galactic Pole (SGP) strip, and random fields scattered around the SGP strip. Redshifts are measured from spectra covering 3600-8000 Angstroms at a two-pixel resolution of 9.0 Angstrom and a median S/N of 13 per pixel. All redshift identifications are visually checked and assigned a quality parameter Q in the range 1-5; Q>=3 redshifts are 98.4% reliable and have an rms uncertainty of 85 km/s. The overall redshift completeness for Q>=3 redshifts is 91.8% but this varies with magnitude from 99% for the brightest galaxies to 90% for objects at the survey limit. The 2dFGRS data base is available on the World Wide Web at http://www.mso.anu.edu.au/2dFGRS/. (6 data files).

  7. 2-D Path Corrections for Local and Regional Coda Waves: A Test of Transportability

    SciTech Connect

    Mayeda, K M; Malagnini, L; Phillips, W S; Walter, W R; Dreger, D S; Morasca, P

    2005-07-13

    Reliable estimates of the seismic source spectrum are necessary for accurate magnitude, yield, and energy estimation. In particular, how seismic radiated energy scales with increasing earthquake size has been the focus of recent debate within the community and has direct implications on earthquake source physics studies as well as hazard mitigation. The 1-D coda methodology of Mayeda et al. [2003] has provided the lowest variance estimate of the source spectrum when compared against traditional approaches that use direct S-waves, thus making it ideal for networks that have sparse station distribution. The 1-D coda methodology has been mostly confined to regions of approximately uniform complexity. For larger, more geophysically complicated regions, 2-D path corrections may be required. We will compare performance of 1-D versus 2-D path corrections in a variety of regions. First, the complicated tectonics of the northern California region coupled with high quality broadband seismic data provides for an ideal ''apples-to-apples'' test of 1-D and 2-D path assumptions on direct waves and their coda. Next, we will compare results for the Italian Alps using high frequency data from the University of Genoa. For Northern California, we used the same station and event distribution and compared 1-D and 2-D path corrections and observed the following results: (1) 1-D coda results reduced the amplitude variance relative to direct S-waves by roughly a factor of 8 (800%); (2) Applying a 2-D correction to the coda resulted in up to 40% variance reduction from the 1-D coda results; (3) 2-D direct S-wave results, though better than 1-D direct waves, were significantly worse than the 1-D coda. We found that coda-based moment-rate source spectra derived from the 2-D approach were essentially identical to those from the 1-D approach for frequencies less than {approx}0.7-Hz, however for the high frequencies (0.7 {le} f {le} 8.0-Hz), the 2-D approach resulted in inter-station scatter

  8. Responsive ionic liquid-polymer 2D photonic crystal gas sensors.

    PubMed

    Smith, Natasha L; Hong, Zhenmin; Asher, Sanford A

    2014-12-21

    We developed novel air-stable 2D polymerized photonic crystal (2DPC) sensing materials for visual detection of gas phase analytes such as water and ammonia by utilizing a new ionic liquid, ethylguanidine perchlorate (EGP) as the mobile phase. Because of the negligible ionic liquid vapor pressure these 2DPC sensors are indefinitely air stable and, therefore, can be used to sense atmospheric analytes. 2D arrays of ~640 nm polystyrene nanospheres were attached to the surface of crosslinked poly(hydroxyethyl methacrylate) (pHEMA)-based polymer networks dispersed in EGP. The wavelength of the bright 2D photonic crystal diffraction depends sensitively on the 2D array particle spacing. The volume phase transition response of the EGP-pHEMA system to water vapor or gaseous ammonia changes the 2DPC particle spacing, enabling the visual determination of the analyte concentration. Water absorbed by EGP increases the Flory-Huggins interaction parameter, which shrinks the polymer network and causes a blue shift in the diffracted light. Ammonia absorbed by the EGP deprotonates the pHEMA-co-acrylic acid carboxyl groups, swelling the polymer which red shifts the diffracted light.

  9. KPLS-RWBFNN model for MFL 2D defect profile reconstruction

    NASA Astrophysics Data System (ADS)

    Xu, Chao; Wang, Changlong; Ji, Fengzhu

    2013-03-01

    Kernel partial least squares (KPLS) is normally very efficient for tackling nonlinear systems by mapping an original input space into a high-dimensional feature space and creating a linear PLS model in the feature space. Unlike other nonlinear PLS techniques, KPLS does not entail any nonlinear optimisation procedures. However, due to the linear inner model of PLS, KPLS is still inappropriate for describing the significant nonlinear characteristic data structure while dealing with complex physical systems in practical situations. Under this circumstance, radial wavelet basic function neural network (RWBFNN) can replace the linear inner model of PLS in the nonlinear kernel-based algorithm. Thus, KPLS-RWBFNN model is proposed in this paper and applied to multi-resolution approximation reconstruction of 2D defect profiles in magnetic flux leakage testing. The reconstructions of 2D defect profiles by this method are implemented, and the comparisons among reconstructions by KPLS, RWBFNN and the proposed approach are also undertaken. Meanwhile, the reconstructions of 2D defects by RWBFNN and the proposed approach at different SNR are also executed. The results indicate that KPLS-RWBFNN model could simplify the structure of the network while holding well-behaved generalisation and multi-resolution approximation and predict the 2D defect profiles accurately and rapidly with good robustness.

  10. Photo-electroactive ternary chalcogenido-indate-stannates with a unique 2-D porous structure.

    PubMed

    Wu, Jing; Pu, Ya-Yang; Zhao, Xiao-Wei; Qian, Li-Wen; Bian, Guo-Qing; Zhu, Qin-Yu; Dai, Jie

    2015-03-14

    A lot of ternary In-Sb-Q (Q = S, Se) chalcogenido-metalates with amines or complex cations have been recently reported for their diverse structures, however, such a type of In-Sn-Q chalcogenido-metalate has been rarely announced. Herein, we report a series of 2-D In-Sn-Q compounds prepared using a metal-phenanthroline cationic template, [M(Phen)3](In2Sn2Q8)·(amine)·nH2O (M = Ni(II), Fe(II) or Co(II); amine = cyclohexylamine (Cha) or 1,6-diaminohexane (Dah); Q = S or Se). Their anions are isostructural and a 2-D porous network with large 16-tetrahedron-rings. The 2-D network joint of In-Sn-Q is a (In/Sn)3Q3 six-membered ring, which is different from the Sn3Q4 pseudosemicube of most 2-D Sn-Q binary compounds. The materials exhibit photocurrent response properties measured using a photo-electrochemical cell. The result shows that (1) the selenides exhibit more intense photocurrents than the sulfides and (2) the current intensity is related to the metal-phenanthroline cations. PMID:25653182

  11. Klassifikation von Standardebenen in der 2D-Echokardiographie mittels 2D-3D-Bildregistrierung

    NASA Astrophysics Data System (ADS)

    Bergmeir, Christoph; Subramanian, Navneeth

    Zum Zweck der Entwicklung eines Systems, das einen unerfahrenen Anwender von Ultraschall (US) zur Aufnahme relevanter anatomischer Strukturen leitet, untersuchen wir die Machbarkeit von 2D-US zu 3D-CT Registrierung. Wir verwenden US-Aufnahmen von Standardebenen des Herzens, welche zu einem 3D-CT-Modell registriert werden. Unser Algorithmus unterzieht sowohl die US-Bilder als auch den CT-Datensatz Vorverarbeitungsschritten, welche die Daten durch Segmentierung auf wesentliche Informationen in Form von Labein für Muskel und Blut reduzieren. Anschließend werden diese Label zur Registrierung mittels der Match-Cardinality-Metrik genutzt. Durch mehrmaliges Registrieren mit verschiedenen Initialisierungen ermitteln wir die im US-Bild sichtbare Standardebene. Wir evaluierten die Methode auf sieben US-Bildern von Standardebenen. Fünf davon wurden korrekt zugeordnet.

  12. Epitaxial 2D SnSe2/ 2D WSe2 van der Waals Heterostructures.

    PubMed

    Aretouli, Kleopatra Emmanouil; Tsoutsou, Dimitra; Tsipas, Polychronis; Marquez-Velasco, Jose; Aminalragia Giamini, Sigiava; Kelaidis, Nicolaos; Psycharis, Vassilis; Dimoulas, Athanasios

    2016-09-01

    van der Waals heterostructures of 2D semiconductor materials can be used to realize a number of (opto)electronic devices including tunneling field effect devices (TFETs). It is shown in this work that high quality SnSe2/WSe2 vdW heterostructure can be grown by molecular beam epitaxy on AlN(0001)/Si(111) substrates using a Bi2Se3 buffer layer. A valence band offset of 0.8 eV matches the energy gap of SnSe2 in such a way that the VB edge of WSe2 and the CB edge of SnSe2 are lined up, making this materials combination suitable for (nearly) broken gap TFETs. PMID:27537619

  13. CVMAC 2D Program: A method of converting 3D to 2D

    SciTech Connect

    Lown, J.

    1990-06-20

    This paper presents the user with a method of converting a three- dimensional wire frame model into a technical illustration, detail, or assembly drawing. By using the 2D Program, entities can be mapped from three-dimensional model space into two-dimensional model space, as if they are being traced. Selected entities to be mapped can include circles, arcs, lines, and points. This program prompts the user to digitize the view to be mapped, specify the layers in which the new two-dimensional entities will reside, and select the entities, either by digitizing or windowing. The new two-dimensional entities are displayed in a small view which the program creates in the lower left corner of the drawing. 9 figs.

  14. 2D Four-Channel Perfect Reconstruction Filter Bank Realized with the 2D Lattice Filter Structure

    NASA Astrophysics Data System (ADS)

    Sezen, S.; Ertüzün, A.

    2006-12-01

    A novel orthogonal 2D lattice structure is incorporated into the design of a nonseparable 2D four-channel perfect reconstruction filter bank. The proposed filter bank is obtained by using the polyphase decomposition technique which requires the design of an orthogonal 2D lattice filter. Due to constraint of perfect reconstruction, each stage of this lattice filter bank is simply parameterized by two coefficients. The perfect reconstruction property is satisfied regardless of the actual values of these parameters and of the number of the lattice stages. It is also shown that a separable 2D four-channel perfect reconstruction lattice filter bank can be constructed from the 1D lattice filter and that this is a special case of the proposed 2D lattice filter bank under certain conditions. The perfect reconstruction property of the proposed 2D lattice filter approach is verified by computer simulations.

  15. Functional characterization of CYP2D6 enhancer polymorphisms

    PubMed Central

    Wang, Danxin; Papp, Audrey C.; Sun, Xiaochun

    2015-01-01

    CYP2D6 metabolizes nearly 25% of clinically used drugs. Genetic polymorphisms cause large inter-individual variability in CYP2D6 enzyme activity and are currently used as biomarker to predict CYP2D6 metabolizer phenotype. Previously, we had identified a region 115 kb downstream of CYP2D6 as enhancer for CYP2D6, containing two completely linked single nucleotide polymorphisms (SNPs), rs133333 and rs5758550, associated with enhanced transcription. However, the enhancer effect on CYP2D6 expression, and the causative variant, remained to be ascertained. To characterize the CYP2D6 enhancer element, we applied chromatin conformation capture combined with the next-generation sequencing (4C assays) and chromatin immunoprecipitation with P300 antibody, in HepG2 and human primary culture hepatocytes. The results confirmed the role of the previously identified enhancer region in CYP2D6 expression, expanding the number of candidate variants to three highly linked SNPs (rs133333, rs5758550 and rs4822082). Among these, only rs5758550 demonstrated regulating enhancer activity in a reporter gene assay. Use of clustered regularly interspaced short palindromic repeats mediated genome editing in HepG2 cells targeting suspected enhancer regions decreased CYP2D6 mRNA expression by 70%, only upon deletion of the rs5758550 region. These results demonstrate robust effects of both the enhancer element and SNP rs5758550 on CYP2D6 expression, supporting consideration of rs5758550 for CYP2D6 genotyping panels to yield more accurate phenotype prediction. PMID:25381333

  16. An Incompressible 2D Didactic Model with Singularity and Explicit Solutions of the 2D Boussinesq Equations

    NASA Astrophysics Data System (ADS)

    Chae, Dongho; Constantin, Peter; Wu, Jiahong

    2014-09-01

    We give an example of a well posed, finite energy, 2D incompressible active scalar equation with the same scaling as the surface quasi-geostrophic equation and prove that it can produce finite time singularities. In spite of its simplicity, this seems to be the first such example. Further, we construct explicit solutions of the 2D Boussinesq equations whose gradients grow exponentially in time for all time. In addition, we introduce a variant of the 2D Boussinesq equations which is perhaps a more faithful companion of the 3D axisymmetric Euler equations than the usual 2D Boussinesq equations.

  17. Integrating Mobile Multimedia into Textbooks: 2D Barcodes

    ERIC Educational Resources Information Center

    Uluyol, Celebi; Agca, R. Kagan

    2012-01-01

    The major goal of this study was to empirically compare text-plus-mobile phone learning using an integrated 2D barcode tag in a printed text with three other conditions described in multimedia learning theory. The method examined in the study involved modifications of the instructional material such that: a 2D barcode was used near the text, the…

  18. Efficient Visible Quasi-2D Perovskite Light-Emitting Diodes.

    PubMed

    Byun, Jinwoo; Cho, Himchan; Wolf, Christoph; Jang, Mi; Sadhanala, Aditya; Friend, Richard H; Yang, Hoichang; Lee, Tae-Woo

    2016-09-01

    Efficient quasi-2D-structure perovskite light-emitting diodes (4.90 cd A(-1) ) are demonstrated by mixing a 3D-structured perovskite material (methyl ammonium lead bromide) and a 2D-structured perovskite material (phenylethyl ammonium lead bromide), which can be ascribed to better film uniformity, enhanced exciton confinement, and reduced trap density. PMID:27334788

  19. CYP2D6: novel genomic structures and alleles

    PubMed Central

    Kramer, Whitney E.; Walker, Denise L.; O’Kane, Dennis J.; Mrazek, David A.; Fisher, Pamela K.; Dukek, Brian A.; Bruflat, Jamie K.; Black, John L.

    2010-01-01

    Objective CYP2D6 is a polymorphic gene. It has been observed to be deleted, to be duplicated and to undergo recombination events involving the CYP2D7 pseudogene and surrounding sequences. The objective of this study was to discover the genomic structure of CYP2D6 recombinants that interfere with clinical genotyping platforms that are available today. Methods Clinical samples containing rare homozygous CYP2D6 alleles, ambiguous readouts, and those with duplication signals and two different alleles were analyzed by long-range PCR amplification of individual genes, PCR fragment analysis, allele-specific primer extension assay, and DNA sequencing to characterize alleles and genomic structure. Results Novel alleles, genomic structures, and the DNA sequence of these structures are described. Interestingly, in 49 of 50 DNA samples that had CYP2D6 gene duplications or multiplications where two alleles were detected, the chromosome containing the duplication or multiplication had identical tandem alleles. Conclusion Several new CYP2D6 alleles and genomic structures are described which will be useful for CYP2D6 genotyping. The findings suggest that the recombination events responsible for CYP2D6 duplications and multiplications are because of mechanisms other than interchromosomal crossover during meiosis. PMID:19741566

  20. Efficient Visible Quasi-2D Perovskite Light-Emitting Diodes.

    PubMed

    Byun, Jinwoo; Cho, Himchan; Wolf, Christoph; Jang, Mi; Sadhanala, Aditya; Friend, Richard H; Yang, Hoichang; Lee, Tae-Woo

    2016-09-01

    Efficient quasi-2D-structure perovskite light-emitting diodes (4.90 cd A(-1) ) are demonstrated by mixing a 3D-structured perovskite material (methyl ammonium lead bromide) and a 2D-structured perovskite material (phenylethyl ammonium lead bromide), which can be ascribed to better film uniformity, enhanced exciton confinement, and reduced trap density.

  1. 2D materials and van der Waals heterostructures.

    PubMed

    Novoselov, K S; Mishchenko, A; Carvalho, A; Castro Neto, A H

    2016-07-29

    The physics of two-dimensional (2D) materials and heterostructures based on such crystals has been developing extremely fast. With these new materials, truly 2D physics has begun to appear (for instance, the absence of long-range order, 2D excitons, commensurate-incommensurate transition, etc.). Novel heterostructure devices--such as tunneling transistors, resonant tunneling diodes, and light-emitting diodes--are also starting to emerge. Composed from individual 2D crystals, such devices use the properties of those materials to create functionalities that are not accessible in other heterostructures. Here we review the properties of novel 2D crystals and examine how their properties are used in new heterostructure devices.

  2. Van der Waals stacked 2D layered materials for optoelectronics

    NASA Astrophysics Data System (ADS)

    Zhang, Wenjing; Wang, Qixing; Chen, Yu; Wang, Zhuo; Wee, Andrew T. S.

    2016-06-01

    The band gaps of many atomically thin 2D layered materials such as graphene, black phosphorus, monolayer semiconducting transition metal dichalcogenides and hBN range from 0 to 6 eV. These isolated atomic planes can be reassembled into hybrid heterostructures made layer by layer in a precisely chosen sequence. Thus, the electronic properties of 2D materials can be engineered by van der Waals stacking, and the interlayer coupling can be tuned, which opens up avenues for creating new material systems with rich functionalities and novel physical properties. Early studies suggest that van der Waals stacked 2D materials work exceptionally well, dramatically enriching the optoelectronics applications of 2D materials. Here we review recent progress in van der Waals stacked 2D materials, and discuss their potential applications in optoelectronics.

  3. Metadata Standard and Data Exchange Specifications to Describe, Model, and Integrate Complex and Diverse High-Throughput Screening Data from the Library of Integrated Network-based Cellular Signatures (LINCS).

    PubMed

    Vempati, Uma D; Chung, Caty; Mader, Chris; Koleti, Amar; Datar, Nakul; Vidović, Dušica; Wrobel, David; Erickson, Sean; Muhlich, Jeremy L; Berriz, Gabriel; Benes, Cyril H; Subramanian, Aravind; Pillai, Ajay; Shamu, Caroline E; Schürer, Stephan C

    2014-06-01

    The National Institutes of Health Library of Integrated Network-based Cellular Signatures (LINCS) program is generating extensive multidimensional data sets, including biochemical, genome-wide transcriptional, and phenotypic cellular response signatures to a variety of small-molecule and genetic perturbations with the goal of creating a sustainable, widely applicable, and readily accessible systems biology knowledge resource. Integration and analysis of diverse LINCS data sets depend on the availability of sufficient metadata to describe the assays and screening results and on their syntactic, structural, and semantic consistency. Here we report metadata specifications for the most important molecular and cellular components and recommend them for adoption beyond the LINCS project. We focus on the minimum required information to model LINCS assays and results based on a number of use cases, and we recommend controlled terminologies and ontologies to annotate assays with syntactic consistency and semantic integrity. We also report specifications for a simple annotation format (SAF) to describe assays and screening results based on our metadata specifications with explicit controlled vocabularies. SAF specifically serves to programmatically access and exchange LINCS data as a prerequisite for a distributed information management infrastructure. We applied the metadata specifications to annotate large numbers of LINCS cell lines, proteins, and small molecules. The resources generated and presented here are freely available.

  4. Investigating the specific core genetic-and-epigenetic networks of cellular mechanisms involved in human aging in peripheral blood mononuclear cells

    PubMed Central

    Li, Cheng-Wei; Wang, Wen-Hsin; Chen, Bor-Sen

    2016-01-01

    Aging is an inevitable part of life for humans, and slowing down the aging process has become a main focus of human endeavor. Here, we applied a systems biology approach to construct protein-protein interaction networks, gene regulatory networks, and epigenetic networks, i.e. genetic and epigenetic networks (GENs), of elderly individuals and young controls. We then compared these GENs to extract aging mechanisms using microarray data in peripheral blood mononuclear cells, microRNA (miRNA) data, and database mining. The core GENs of elderly individuals and young controls were obtained by applying principal network projection to GENs based on Principal Component Analysis. By comparing the core networks, we identified that to overcome the accumulated mutation of genes in the aging process the transcription factor JUN can be activated by stress signals, including the MAPK signaling, T-cell receptor signaling, and neurotrophin signaling pathways through DNA methylation of BTG3, G0S2, and AP2B1 and the regulations of mir-223 let-7d, and mir-130a. We also address the aging mechanisms in old men and women. Furthermore, we proposed that drugs designed to target these DNA methylated genes or miRNAs may delay aging. A multiple drug combination comprising phenylalanine, cholesterol, and palbociclib was finally designed for delaying the aging process. PMID:26895224

  5. Estrogen-Induced Cholestasis Leads to Repressed CYP2D6 Expression in CYP2D6-Humanized Mice

    PubMed Central

    Pan, Xian

    2015-01-01

    Cholestasis activates bile acid receptor farnesoid X receptor (FXR) and subsequently enhances hepatic expression of small heterodimer partner (SHP). We previously demonstrated that SHP represses the transactivation of cytochrome P450 2D6 (CYP2D6) promoter by hepatocyte nuclear factor (HNF) 4α. In this study, we investigated the effects of estrogen-induced cholestasis on CYP2D6 expression. Estrogen-induced cholestasis occurs in subjects receiving estrogen for contraception or hormone replacement, or in susceptible women during pregnancy. In CYP2D6-humanized transgenic (Tg-CYP2D6) mice, cholestasis triggered by administration of 17α-ethinylestradiol (EE2) at a high dose led to 2- to 3-fold decreases in CYP2D6 expression. This was accompanied by increased hepatic SHP expression and subsequent decreases in the recruitment of HNF4α to CYP2D6 promoter. Interestingly, estrogen-induced cholestasis also led to increased recruitment of estrogen receptor (ER) α, but not that of FXR, to Shp promoter, suggesting a predominant role of ERα in transcriptional regulation of SHP in estrogen-induced cholestasis. EE2 at a low dose (that does not cause cholestasis) also increased SHP (by ∼50%) and decreased CYP2D6 expression (by 1.5-fold) in Tg-CYP2D6 mice, the magnitude of differences being much smaller than that shown in EE2-induced cholestasis. Taken together, our data indicate that EE2-induced cholestasis increases SHP and represses CYP2D6 expression in Tg-CYP2D6 mice in part through ERα transactivation of Shp promoter. PMID:25943116

  6. Targeted fluorescence imaging enhanced by 2D materials: a comparison between 2D MoS2 and graphene oxide.

    PubMed

    Xie, Donghao; Ji, Ding-Kun; Zhang, Yue; Cao, Jun; Zheng, Hu; Liu, Lin; Zang, Yi; Li, Jia; Chen, Guo-Rong; James, Tony D; He, Xiao-Peng

    2016-08-01

    Here we demonstrate that 2D MoS2 can enhance the receptor-targeting and imaging ability of a fluorophore-labelled ligand. The 2D MoS2 has an enhanced working concentration range when compared with graphene oxide, resulting in the improved imaging of both cell and tissue samples.

  7. A 2-D Model to Predict Time Development of Scour below Pipelines with Spoiler

    NASA Astrophysics Data System (ADS)

    Alam, M. S.; Cheng, Liang

    2010-05-01

    A lattice Boltzmann 2-D scour model is developed in order to predict time development of scour around offshore pipelines with spoiler. The fluid flow is captured employing Lattice Boltzmann method and the scour model is designed with the combination of multi-particle Cellular Automata technique and threshold of sediment entrainment technique available in literature. It is revealed that the proposed hybrid model is robust enough to predict evolution of bed profiles for flow and scour underneath offshore pipelines considering various orientation and length of spoiler attached.

  8. A comparison of 1D and 2D LSTM architectures for the recognition of handwritten Arabic

    NASA Astrophysics Data System (ADS)

    Yousefi, Mohammad Reza; Soheili, Mohammad Reza; Breuel, Thomas M.; Stricker, Didier

    2015-01-01

    In this paper, we present an Arabic handwriting recognition method based on recurrent neural network. We use the Long Short Term Memory (LSTM) architecture, that have proven successful in different printed and handwritten OCR tasks. Applications of LSTM for handwriting recognition employ the two-dimensional architecture to deal with the variations in both vertical and horizontal axis. However, we show that using a simple pre-processing step that normalizes the position and baseline of letters, we can make use of 1D LSTM, which is faster in learning and convergence, and yet achieve superior performance. In a series of experiments on IFN/ENIT database for Arabic handwriting recognition, we demonstrate that our proposed pipeline can outperform 2D LSTM networks. Furthermore, we provide comparisons with 1D LSTM networks trained with manually crafted features to show that the automatically learned features in a globally trained 1D LSTM network with our normalization step can even outperform such systems.

  9. Efficient 2D MRI relaxometry using compressed sensing

    NASA Astrophysics Data System (ADS)

    Bai, Ruiliang; Cloninger, Alexander; Czaja, Wojciech; Basser, Peter J.

    2015-06-01

    Potential applications of 2D relaxation spectrum NMR and MRI to characterize complex water dynamics (e.g., compartmental exchange) in biology and other disciplines have increased in recent years. However, the large amount of data and long MR acquisition times required for conventional 2D MR relaxometry limits its applicability for in vivo preclinical and clinical MRI. We present a new MR pipeline for 2D relaxometry that incorporates compressed sensing (CS) as a means to vastly reduce the amount of 2D relaxation data needed for material and tissue characterization without compromising data quality. Unlike the conventional CS reconstruction in the Fourier space (k-space), the proposed CS algorithm is directly applied onto the Laplace space (the joint 2D relaxation data) without compressing k-space to reduce the amount of data required for 2D relaxation spectra. This framework is validated using synthetic data, with NMR data acquired in a well-characterized urea/water phantom, and on fixed porcine spinal cord tissue. The quality of the CS-reconstructed spectra was comparable to that of the conventional 2D relaxation spectra, as assessed using global correlation, local contrast between peaks, peak amplitude and relaxation parameters, etc. This result brings this important type of contrast closer to being realized in preclinical, clinical, and other applications.

  10. Practical Algorithm For Computing The 2-D Arithmetic Fourier Transform

    NASA Astrophysics Data System (ADS)

    Reed, Irving S.; Choi, Y. Y.; Yu, Xiaoli

    1989-05-01

    Recently, Tufts and Sadasiv [10] exposed a method for computing the coefficients of a Fourier series of a periodic function using the Mobius inversion of series. They called this method of analysis the Arithmetic Fourier Transform(AFT). The advantage of the AFT over the FN 1' is that this method of Fourier analysis needs only addition operations except for multiplications by scale factors at one stage of the computation. The disadvantage of the AFT as they expressed it originally is that it could be used effectively only to compute finite Fourier coefficients of a real even function. To remedy this the AFT developed in [10] is extended in [11] to compute the Fourier coefficients of both the even and odd components of a periodic function. In this paper, the improved AFT [11] is extended to a two-dimensional(2-D) Arithmetic Fourier Transform for calculating the Fourier Transform of two-dimensional discrete signals. This new algorithm is based on both the number-theoretic method of Mobius inversion of double series and the complex conjugate property of Fourier coefficients. The advantage of this algorithm over the conventional 2-D FFT is that the corner-turning problem needed in a conventional 2-D Discrete Fourier Transform(DFT) can be avoided. Therefore, this new 2-D algorithm is readily suitable for VLSI implementation as a parallel architecture. Comparing the operations of 2-D AFT of a MxM 2-D data array with the conventional 2-D FFT, the number of multiplications is significantly reduced from (2log2M)M2 to (9/4)M2. Hence, this new algorithm is faster than the FFT algorithm. Finally, two simulation results of this new 2-D AFT algorithm for 2-D artificial and real images are given in this paper.

  11. SmartCell, a framework to simulate cellular processes that combines stochastic approximation with diffusion and localisation: analysis of simple networks.

    PubMed

    Ander, M; Beltrao, P; Di Ventura, B; Ferkinghoff-Borg, J; Foglierini, M; Kaplan, A; Lemerle, C; Tomás-Oliveira, I; Serrano, L

    2004-06-01

    SmartCell has been developed to be a general framework for modelling and simulation of diffusion-reaction networks in a whole-cell context. It supports localisation and diffusion by using a mesoscopic stochastic reaction model. The SmartCell package can handle any cell geometry, considers different cell compartments, allows localisation of species, supports DNA transcription and translation, membrane diffusion and multistep reactions, as well as cell growth. Moreover, different temporal and spatial constraints can be applied to the model. A GUI interface that facilitates model making is also available. In this work we discuss limitations and advantages arising from the approach used in SmartCell and determine the impact of localisation on the behaviour of simple well-defined networks, previously analysed with differential equations. Our results show that this factor might play an important role in the response of networks and cannot be neglected in cell simulations.

  12. Adaptive stochastic cellular automata: Applications

    NASA Astrophysics Data System (ADS)

    Qian, S.; Lee, Y. C.; Jones, R. D.; Barnes, C. W.; Flake, G. W.; O'Rourke, M. K.; Lee, K.; Chen, H. H.; Sun, G. Z.; Zhang, Y. Q.; Chen, D.; Giles, C. L.

    1990-09-01

    The stochastic learning cellular automata model has been applied to the problem of controlling unstable systems. Two example unstable systems studied are controlled by an adaptive stochastic cellular automata algorithm with an adaptive critic. The reinforcement learning algorithm and the architecture of the stochastic CA controller are presented. Learning to balance a single pole is discussed in detail. Balancing an inverted double pendulum highlights the power of the stochastic CA approach. The stochastic CA model is compared to conventional adaptive control and artificial neural network approaches.

  13. Integrative omics reveals MYCN as a global suppressor of cellular signalling and enables network-based therapeutic target discovery in neuroblastoma

    PubMed Central

    Fey, Dirk; Iljin, Kristiina; Mehta, Jai Prakash; Killick, Kate; Whilde, Jenny; Turriziani, Benedetta; Haapa-Paananen, Saija; Fey, Vidal; Fischer, Matthias; Westermann, Frank; Henrich, Kai-Oliver; Bannert, Steffen; Higgins, Desmond G.; Kolch, Walter

    2015-01-01

    Despite intensive study, many mysteries remain about the MYCN oncogene's functions. Here we focus on MYCN's role in neuroblastoma, the most common extracranial childhood cancer. MYCN gene amplification occurs in 20% of cases, but other recurrent somatic mutations are rare. This scarcity of tractable targets has hampered efforts to develop new therapeutic options. We employed a multi-level omics approach to examine MYCN functioning and identify novel therapeutic targets for this largely un-druggable oncogene. We used systems medicine based computational network reconstruction and analysis to integrate a range of omic techniques: sequencing-based transcriptomics, genome-wide chromatin immunoprecipitation, siRNA screening and interaction proteomics, revealing that MYCN controls highly connected networks, with MYCN primarily supressing the activity of network components. MYCN's oncogenic functions are likely independent of its classical heterodimerisation partner, MAX. In particular, MYCN controls its own protein interaction network by transcriptionally regulating its binding partners. Our network-based approach identified vulnerable therapeutically targetable nodes that function as critical regulators or effectors of MYCN in neuroblastoma. These were validated by siRNA knockdown screens, functional studies and patient data. We identified β-estradiol and MAPK/ERK as having functional cross-talk with MYCN and being novel targetable vulnerabilities of MYCN-amplified neuroblastoma. These results reveal surprising differences between the functioning of endogenous, overexpressed and amplified MYCN, and rationalise how different MYCN dosages can orchestrate cell fate decisions and cancerous outcomes. Importantly, this work describes a systems-level approach to systematically uncovering network based vulnerabilities and therapeutic targets for multifactorial diseases by integrating disparate omic data types. PMID:26673823

  14. 2D electron cyclotron emission imaging at ASDEX Upgrade (invited)

    SciTech Connect

    Classen, I. G. J.; Boom, J. E.; Vries, P. C. de; Suttrop, W.; Schmid, E.; Garcia-Munoz, M.; Schneider, P. A.; Tobias, B.; Domier, C. W.; Luhmann, N. C. Jr.; Donne, A. J. H.; Jaspers, R. J. E.; Park, H. K.; Munsat, T.

    2010-10-15

    The newly installed electron cyclotron emission imaging diagnostic on ASDEX Upgrade provides measurements of the 2D electron temperature dynamics with high spatial and temporal resolution. An overview of the technical and experimental properties of the system is presented. These properties are illustrated by the measurements of the edge localized mode and the reversed shear Alfven eigenmode, showing both the advantage of having a two-dimensional (2D) measurement, as well as some of the limitations of electron cyclotron emission measurements. Furthermore, the application of singular value decomposition as a powerful tool for analyzing and filtering 2D data is presented.

  15. Comparison of 2D and 3D gamma analyses

    SciTech Connect

    Pulliam, Kiley B.; Huang, Jessie Y.; Howell, Rebecca M.; Followill, David; Kry, Stephen F.; Bosca, Ryan; O’Daniel, Jennifer

    2014-02-15

    Purpose: As clinics begin to use 3D metrics for intensity-modulated radiation therapy (IMRT) quality assurance, it must be noted that these metrics will often produce results different from those produced by their 2D counterparts. 3D and 2D gamma analyses would be expected to produce different values, in part because of the different search space available. In the present investigation, the authors compared the results of 2D and 3D gamma analysis (where both datasets were generated in the same manner) for clinical treatment plans. Methods: Fifty IMRT plans were selected from the authors’ clinical database, and recalculated using Monte Carlo. Treatment planning system-calculated (“evaluated dose distributions”) and Monte Carlo-recalculated (“reference dose distributions”) dose distributions were compared using 2D and 3D gamma analysis. This analysis was performed using a variety of dose-difference (5%, 3%, 2%, and 1%) and distance-to-agreement (5, 3, 2, and 1 mm) acceptance criteria, low-dose thresholds (5%, 10%, and 15% of the prescription dose), and data grid sizes (1.0, 1.5, and 3.0 mm). Each comparison was evaluated to determine the average 2D and 3D gamma, lower 95th percentile gamma value, and percentage of pixels passing gamma. Results: The average gamma, lower 95th percentile gamma value, and percentage of passing pixels for each acceptance criterion demonstrated better agreement for 3D than for 2D analysis for every plan comparison. The average difference in the percentage of passing pixels between the 2D and 3D analyses with no low-dose threshold ranged from 0.9% to 2.1%. Similarly, using a low-dose threshold resulted in a difference between the mean 2D and 3D results, ranging from 0.8% to 1.5%. The authors observed no appreciable differences in gamma with changes in the data density (constant difference: 0.8% for 2D vs 3D). Conclusions: The authors found that 3D gamma analysis resulted in up to 2.9% more pixels passing than 2D analysis. It must

  16. Recent advances in 2D materials for photocatalysis.

    PubMed

    Luo, Bin; Liu, Gang; Wang, Lianzhou

    2016-04-01

    Two-dimensional (2D) materials have attracted increasing attention for photocatalytic applications because of their unique thickness dependent physical and chemical properties. This review gives a brief overview of the recent developments concerning the chemical synthesis and structural design of 2D materials at the nanoscale and their applications in photocatalytic areas. In particular, recent progress on the emerging strategies for tailoring 2D material-based photocatalysts to improve their photo-activity including elemental doping, heterostructure design and functional architecture assembly is discussed.

  17. Two 2D silver(I) coordination polymers derived from mixed ligands: Syntheses, structures, photoluminescent and thermal properties

    NASA Astrophysics Data System (ADS)

    Liu, Fu-Jing; Sun, Di; Li, Yun-Hua; Hao, Hong-Jun; Huang, Rong-Bin; Zheng, Lan-Sun

    2011-07-01

    Two isomers of the aminobenzonitrile were reacted with Ag 2O and phthalic acid under ultrasonic condition, yielding two coordination polymers (CPs) of the formula [Ag 2( o-abn)(pa)] n ( 1) and [Ag 4( m-abn)(pa) 2] n ( 2). They have been characterized by elemental analysis, IR spectrum and single crystal X-ray diffraction. Both complexes 1 and 2 are 2D sheet structures which contain two different Ag(I) aggregates, 1D silver helical chain and 2D silver sheet for 1 and 2, respectively. The o-abn in 1 adopts a rare tridentate μ 3- N, N' N' mode to bridge the neighboring 1D silver chains to form a 2D coordination network, while the m-abn ligand just acts as a monodentate N-donor in 2 and does not contribute to the extension of the 2D silver sheet to the higher dimensionality. As the change of the relative position of amino and cyano groups of the aminobenzonitrile ligand, the dimensionality of the Ag(I) aggregates in 1 and 2 increases from 1D to 2D, which indicates that the relative positions of amino and cyano groups of aminobenzonitrile play an important role in the formation of the diverse Ag(I) aggregates, as a consequence, different 2D coordination networks are produced. Additionally, results about emissive behaviors and thermal stabilities of them are discussed.

  18. CC2D1A Regulates Human Intellectual and Social Function as well as NF-κB Signaling Homeostasis

    PubMed Central

    Manzini, M. Chiara; Xiong, Lan; Shaheen, Ranad; Tambunan, Dimira E.; Di Costanzo, Stefania; Mitisalis, Vanessa; Tischfield, David J.; Cinquino, Antonella; Ghaziuddin, Mohammed; Christian, Mehtab; Jiang, Qin; Laurent, Sandra; Nanjiani, Zohair A.; Rasheed, Saima; Hill, R. Sean; Lizarraga, Sofia B.; Gleason, Danielle; Sabbagh, Diya; Salih, Mustafa A.; Alkuraya, Fowzan S.; Walsh, Christopher A.

    2015-01-01

    SUMMARY Autism spectrum disorder (ASD) and intellectual disability (ID) are often comorbid, but the extent to which they share common genetic causes remains controversial. Here, we present two autosomal-recessive “founder” mutations in the CC2D1A gene causing fully penetrant cognitive phenotypes, including mild-to-severe ID, ASD, as well as seizures, suggesting shared developmental mechanisms. CC2D1A regulates multiple intracellular signaling pathways, and we found its strongest effect to be on the transcription factor nuclear factor κB (NF-κB). Cc2d1a gain and loss of function both increase activation of NF-κB, revealing a critical role of Cc2d1a in homeostatic control of intra-cellular signaling. Cc2d1a knockdown in neurons reduces dendritic complexity and increases NF-κB activity, and the effects of Cc2d1a depletion can be rescued by inhibiting NF-κB activity. Homeostatic regulation of neuronal signaling pathways provides a mechanism whereby common founder mutations could manifest diverse symptoms in different patients. PMID:25066123

  19. Highly Omnidirectional and Frequency Controllable Carbon/Polyaniline-based 2D and 3D Monopole Antenna.

    PubMed

    Shin, Keun-Young; Kim, Minkyu; Lee, James S; Jang, Jyongsik

    2015-01-01

    Highly omnidirectional and frequency controllable carbon/polyaniline (C/PANI)-based, two- (2D) and three-dimensional (3D) monopole antennas were fabricated using screen-printing and a one-step, dimensionally confined hydrothermal strategy, respectively. Solvated C/PANI was synthesized by low-temperature interfacial polymerization, during which strong π-π interactions between graphene and the quinoid rings of PANI resulted in an expanded PANI conformation with enhanced crystallinity and improved mechanical and electrical properties. Compared to antennas composed of pristine carbon or PANI-based 2D monopole structures, 2D monopole antennas composed of this enhanced hybrid material were highly efficient and amenable to high-frequency, omnidirectional electromagnetic waves. The mean frequency of C/PANI fiber-based 3D monopole antennas could be controlled by simply cutting and stretching the antenna. These antennas attained high peak gain (3.60 dBi), high directivity (3.91 dBi) and radiation efficiency (92.12%) relative to 2D monopole antenna. These improvements were attributed the high packing density and aspect ratios of C/PANI fibers and the removal of the flexible substrate. This approach offers a valuable and promising tool for producing highly omnidirectional and frequency-controllable, carbon-based monopole antennas for use in wireless networking communications on industrial, scientific, and medical (ISM) bands. PMID:26338090

  20. Highly Omnidirectional and Frequency Controllable Carbon/Polyaniline-based 2D and 3D Monopole Antenna

    PubMed Central

    Shin, Keun-Young; Kim, Minkyu; Lee, James S.; Jang, Jyongsik

    2015-01-01

    Highly omnidirectional and frequency controllable carbon/polyaniline (C/PANI)-based, two- (2D) and three-dimensional (3D) monopole antennas were fabricated using screen-printing and a one-step, dimensionally confined hydrothermal strategy, respectively. Solvated C/PANI was synthesized by low-temperature interfacial polymerization, during which strong π–π interactions between graphene and the quinoid rings of PANI resulted in an expanded PANI conformation with enhanced crystallinity and improved mechanical and electrical properties. Compared to antennas composed of pristine carbon or PANI-based 2D monopole structures, 2D monopole antennas composed of this enhanced hybrid material were highly efficient and amenable to high-frequency, omnidirectional electromagnetic waves. The mean frequency of C/PANI fiber-based 3D monopole antennas could be controlled by simply cutting and stretching the antenna. These antennas attained high peak gain (3.60 dBi), high directivity (3.91 dBi) and radiation efficiency (92.12%) relative to 2D monopole antenna. These improvements were attributed the high packing density and aspect ratios of C/PANI fibers and the removal of the flexible substrate. This approach offers a valuable and promising tool for producing highly omnidirectional and frequency-controllable, carbon-based monopole antennas for use in wireless networking communications on industrial, scientific, and medical (ISM) bands. PMID:26338090

  1. Highly Omnidirectional and Frequency Controllable Carbon/Polyaniline-based 2D and 3D Monopole Antenna

    NASA Astrophysics Data System (ADS)

    Shin, Keun-Young; Kim, Minkyu; Lee, James S.; Jang, Jyongsik

    2015-09-01

    Highly omnidirectional and frequency controllable carbon/polyaniline (C/PANI)-based, two- (2D) and three-dimensional (3D) monopole antennas were fabricated using screen-printing and a one-step, dimensionally confined hydrothermal strategy, respectively. Solvated C/PANI was synthesized by low-temperature interfacial polymerization, during which strong π-π interactions between graphene and the quinoid rings of PANI resulted in an expanded PANI conformation with enhanced crystallinity and improved mechanical and electrical properties. Compared to antennas composed of pristine carbon or PANI-based 2D monopole structures, 2D monopole antennas composed of this enhanced hybrid material were highly efficient and amenable to high-frequency, omnidirectional electromagnetic waves. The mean frequency of C/PANI fiber-based 3D monopole antennas could be controlled by simply cutting and stretching the antenna. These antennas attained high peak gain (3.60 dBi), high directivity (3.91 dBi) and radiation efficiency (92.12%) relative to 2D monopole antenna. These improvements were attributed the high packing density and aspect ratios of C/PANI fibers and the removal of the flexible substrate. This approach offers a valuable and promising tool for producing highly omnidirectional and frequency-controllable, carbon-based monopole antennas for use in wireless networking communications on industrial, scientific, and medical (ISM) bands.

  2. Modelling mammalian cellular quiescence

    PubMed Central

    Yao, Guang

    2014-01-01

    Cellular quiescence is a reversible non-proliferating state. The reactivation of ‘sleep-like’ quiescent cells (e.g. fibroblasts, lymphocytes and stem cells) into proliferation is crucial for tissue repair and regeneration and a key to the growth, development and health of higher multicellular organisms, such as mammals. Quiescence has been a primarily phenotypic description (i.e. non-permanent cell cycle arrest) and poorly studied. However, contrary to the earlier thinking that quiescence is simply a passive and dormant state lacking proliferating activities, recent studies have revealed that cellular quiescence is actively maintained in the cell and that it corresponds to a collection of heterogeneous states. Recent modelling and experimental work have suggested that an Rb-E2F bistable switch plays a pivotal role in controlling the quiescence–proliferation balance and the heterogeneous quiescent states. Other quiescence regulatory activities may crosstalk with and impinge upon the Rb-E2F bistable switch, forming a gene network that controls the cells’ quiescent states and their dynamic transitions to proliferation in response to noisy environmental signals. Elucidating the dynamic control mechanisms underlying quiescence may lead to novel therapeutic strategies that re-establish normal quiescent states, in a variety of hyper- and hypo-proliferative diseases, including cancer and ageing. PMID:24904737

  3. Alloyed 2D Metal-Semiconductor Atomic Layer Junctions.

    PubMed

    Kim, Ah Ra; Kim, Yonghun; Nam, Jaewook; Chung, Hee-Suk; Kim, Dong Jae; Kwon, Jung-Dae; Park, Sang Won; Park, Jucheol; Choi, Sun Young; Lee, Byoung Hun; Park, Ji Hyeon; Lee, Kyu Hwan; Kim, Dong-Ho; Choi, Sung Mook; Ajayan, Pulickel M; Hahm, Myung Gwan; Cho, Byungjin

    2016-03-01

    Heterostructures of compositionally and electronically variant two-dimensional (2D) atomic layers are viable building blocks for ultrathin optoelectronic devices. We show that the composition of interfacial transition region between semiconducting WSe2 atomic layer channels and metallic NbSe2 contact layers can be engineered through interfacial doping with Nb atoms. WxNb1-xSe2 interfacial regions considerably lower the potential barrier height of the junction, significantly improving the performance of the corresponding WSe2-based field-effect transistor devices. The creation of such alloyed 2D junctions between dissimilar atomic layer domains could be the most important factor in controlling the electronic properties of 2D junctions and the design and fabrication of 2D atomic layer devices.

  4. Emerging and potential opportunities for 2D flexible nanoelectronics

    NASA Astrophysics Data System (ADS)

    Zhu, Weinan; Park, Saungeun; Akinwande, Deji

    2016-05-01

    The last 10 years have seen the emergence of two-dimensional (2D) nanomaterials such as graphene, transition metal dichalcogenides (TMDs), and black phosphorus (BP) among the growing portfolio of layered van der Waals thin films. Graphene, the prototypical 2D material has advanced rapidly in device, circuit and system studies that has resulted in commercial large-area applications. In this work, we provide a perspective of the emerging and potential translational applications of 2D materials including semiconductors, semimetals, and insulators that comprise the basic material set for diverse nanosystems. Applications include RF transceivers, smart systems, the so-called internet of things, and neurotechnology. We will review the DC and RF electronic performance of graphene and BP thin film transistors. 2D materials at sub-um channel length have so far enabled cut-off frequencies from baseband to 100GHz suitable for low-power RF and sub-THz concepts.

  5. 2D hexagonal quaternion Fourier transform in color image processing

    NASA Astrophysics Data System (ADS)

    Grigoryan, Artyom M.; Agaian, Sos S.

    2016-05-01

    In this paper, we present a novel concept of the quaternion discrete Fourier transform on the two-dimensional hexagonal lattice, which we call the two-dimensional hexagonal quaternion discrete Fourier transform (2-D HQDFT). The concept of the right-side 2D HQDFT is described and the left-side 2-D HQDFT is similarly considered. To calculate the transform, the image on the hexagonal lattice is described in the tensor representation when the image is presented by a set of 1-D signals, or splitting-signals which can be separately processed in the frequency domain. The 2-D HQDFT can be calculated by a set of 1-D quaternion discrete Fourier transforms (QDFT) of the splitting-signals.

  6. Technical Review of the UNET2D Hydraulic Model

    SciTech Connect

    Perkins, William A.; Richmond, Marshall C.

    2009-05-18

    The Kansas City District of the US Army Corps of Engineers is engaged in a broad range of river management projects that require knowledge of spatially-varied hydraulic conditions such as velocities and water surface elevations. This information is needed to design new structures, improve existing operations, and assess aquatic habitat. Two-dimensional (2D) depth-averaged numerical hydraulic models are a common tool that can be used to provide velocity and depth information. Kansas City District is currently using a specific 2D model, UNET2D, that has been developed to meet the needs of their river engineering applications. This report documents a tech- nical review of UNET2D.

  7. Double resonance rotational spectroscopy of CH2D+

    NASA Astrophysics Data System (ADS)

    Töpfer, Matthias; Jusko, Pavol; Schlemmer, Stephan; Asvany, Oskar

    2016-09-01

    Context. Deuterated forms of CH are thought to be responsible for deuterium enrichment in lukewarm astronomical environments. There is no unambiguous detection of CH2D+ in space to date. Aims: Four submillimetre rotational lines of CH2D+ are documented in the literature. Our aim is to present a complete dataset of highly resolved rotational lines, including millimetre (mm) lines needed for a potential detection. Methods: We used a low-temperature ion trap and applied a novel IR-mm-wave double resonance method to measure the rotational lines of CH2D+. Results: We measured 21 low-lying (J ≤ 4) rotational transitions of CH2D+ between 23 GHz and 1.1 THz with accuracies close to 2 ppb.

  8. Alloyed 2D Metal-Semiconductor Atomic Layer Junctions.

    PubMed

    Kim, Ah Ra; Kim, Yonghun; Nam, Jaewook; Chung, Hee-Suk; Kim, Dong Jae; Kwon, Jung-Dae; Park, Sang Won; Park, Jucheol; Choi, Sun Young; Lee, Byoung Hun; Park, Ji Hyeon; Lee, Kyu Hwan; Kim, Dong-Ho; Choi, Sung Mook; Ajayan, Pulickel M; Hahm, Myung Gwan; Cho, Byungjin

    2016-03-01

    Heterostructures of compositionally and electronically variant two-dimensional (2D) atomic layers are viable building blocks for ultrathin optoelectronic devices. We show that the composition of interfacial transition region between semiconducting WSe2 atomic layer channels and metallic NbSe2 contact layers can be engineered through interfacial doping with Nb atoms. WxNb1-xSe2 interfacial regions considerably lower the potential barrier height of the junction, significantly improving the performance of the corresponding WSe2-based field-effect transistor devices. The creation of such alloyed 2D junctions between dissimilar atomic layer domains could be the most important factor in controlling the electronic properties of 2D junctions and the design and fabrication of 2D atomic layer devices. PMID:26839956

  9. ORION96. 2-d Finite Element Code Postprocessor

    SciTech Connect

    Sanford, L.A.; Hallquist, J.O.

    1992-02-02

    ORION is an interactive program that serves as a postprocessor for the analysis programs NIKE2D, DYNA2D, TOPAZ2D, and CHEMICAL TOPAZ2D. ORION reads binary plot files generated by the two-dimensional finite element codes currently used by the Methods Development Group at LLNL. Contour and color fringe plots of a large number of quantities may be displayed on meshes consisting of triangular and quadrilateral elements. ORION can compute strain measures, interface pressures along slide lines, reaction forces along constrained boundaries, and momentum. ORION has been applied to study the response of two-dimensional solids and structures undergoing finite deformations under a wide variety of large deformation transient dynamic and static problems and heat transfer analyses.

  10. Phylogenetic tree construction based on 2D graphical representation

    NASA Astrophysics Data System (ADS)

    Liao, Bo; Shan, Xinzhou; Zhu, Wen; Li, Renfa

    2006-04-01

    A new approach based on the two-dimensional (2D) graphical representation of the whole genome sequence [Bo Liao, Chem. Phys. Lett., 401(2005) 196.] is proposed to analyze the phylogenetic relationships of genomes. The evolutionary distances are obtained through measuring the differences among the 2D curves. The fuzzy theory is used to construct phylogenetic tree. The phylogenetic relationships of H5N1 avian influenza virus illustrate the utility of our approach.

  11. Generating a 2D Representation of a Complex Data Structure

    NASA Technical Reports Server (NTRS)

    James, Mark

    2006-01-01

    A computer program, designed to assist in the development and debugging of other software, generates a two-dimensional (2D) representation of a possibly complex n-dimensional (where n is an integer >2) data structure or abstract rank-n object in that other software. The nature of the 2D representation is such that it can be displayed on a non-graphical output device and distributed by non-graphical means.

  12. Anisotropic 2D Materials for Tunable Hyperbolic Plasmonics.

    PubMed

    Nemilentsau, Andrei; Low, Tony; Hanson, George

    2016-02-12

    Motivated by the recent emergence of a new class of anisotropic 2D materials, we examine their electromagnetic modes and demonstrate that a broad class of the materials can host highly directional hyperbolic plasmons. Their propagation direction can be manipulated on the spot by gate doping, enabling hyperbolic beam reflection, refraction, and bending. The realization of these natural 2D hyperbolic media opens up a new avenue in dynamic control of hyperbolic plasmons not possible in the 3D version.

  13. A simultaneous 2D/3D autostereo workstation

    NASA Astrophysics Data System (ADS)

    Chau, Dennis; McGinnis, Bradley; Talandis, Jonas; Leigh, Jason; Peterka, Tom; Knoll, Aaron; Sumer, Aslihan; Papka, Michael; Jellinek, Julius

    2012-03-01

    We present a novel immersive workstation environment that scientists can use for 3D data exploration and as their everyday 2D computer monitor. Our implementation is based on an autostereoscopic dynamic parallax barrier 2D/3D display, interactive input devices, and a software infrastructure that allows client/server software modules to couple the workstation to scientists' visualization applications. This paper describes the hardware construction and calibration, software components, and a demonstration of our system in nanoscale materials science exploration.

  14. QUENCH2D. Two-Dimensional IHCP Code

    SciTech Connect

    Osman, A.; Beck, J.V.

    1995-01-01

    QUENCH2D* is developed for the solution of general, non-linear, two-dimensional inverse heat transfer problems. This program provides estimates for the surface heat flux distribution and/or heat transfer coefficient as a function of time and space by using transient temperature measurements at appropriate interior points inside the quenched body. Two-dimensional planar and axisymmetric geometries such as turnbine disks and blades, clutch packs, and many other problems can be analyzed using QUENCH2D*.

  15. Designing 2D arrays for SHM of planar structures: a review

    NASA Astrophysics Data System (ADS)

    Stepinski, Tadeusz; Ambrozinski, Lukasz; Uhl, Tadeusz

    2013-04-01

    Monitoring structural integrity of large planar structures that aims at detecting and localizing impact or damage at any point of the structure requires normally a relatively dense network of uniformly distributed ultrasonic sensors. 2-D ultrasonic phased arrays, due to their beam-steering capability and all azimuth angle coverage are a very promising tool for structural health monitoring (SHM) of plate-like structures using Lamb waves (LW). Linear phased arrays that have been proposed for that purpose, produce mirrored image characterized by azimuth dependent resolution, which prevents unequivocal damage localization. 2D arrays do not have this drawback and they are even capable of mode selectivity when generating and receiving LWs. Performance of 2D arrays depends on their topology as well as the number of elements (transducers) used and their spacing in terms of wavelength. In this paper we propose a consistent methodology for three-step: theoretical, numerical and experimental investigation of a diversity of 2D array topologies in SHM applications. In the first step, the theoretical evaluation is performed using frequency-dependent structure transfer function (STF). STF that defines linear propagation of different LWs modes through the dispersive medium enables theoretical investigation of the particular array performance for a predefined tone-burst excitation signal. A dedicated software tool has been developed for the numerical evaluation of 2D array directional characteristics (beampattern) in a specific structure. The simulations are performed using local interaction simulation approach (LISA), implemented using NVIDIA CUDA graphical computation unit (GPU), which enables time-efficient 3D simulations of LWs propagation. Beampatterns of a 2D array can be to some extend evaluated analytically and using numerical simulations; in most cases, however, they require experimental verification. Using scanning laser vibrometer is proposed for that purpose, in a setup

  16. Simulating MEMS Chevron Actuator for Strain Engineering 2D Materials

    NASA Astrophysics Data System (ADS)

    Vutukuru, Mounika; Christopher, Jason; Bishop, David; Swan, Anna

    2D materials pose an exciting paradigm shift in the world of electronics. These crystalline materials have demonstrated high electric and thermal conductivities and tensile strength, showing great potential as the new building blocks of basic electronic circuits. However, strain engineering 2D materials for novel devices remains a difficult experimental feat. We propose the integration of 2D materials with MEMS devices to investigate the strain dependence on material properties such as electrical and thermal conductivity, refractive index, mechanical elasticity, and band gap. MEMS Chevron actuators, provides the most accessible framework to study strain in 2D materials due to their high output force displacements for low input power. Here, we simulate Chevron actuators on COMSOL to optimize actuator design parameters and accurately capture the behavior of the devices while under the external force of a 2D material. Through stationary state analysis, we analyze the response of the device through IV characteristics, displacement and temperature curves. We conclude that the simulation precisely models the real-world device through experimental confirmation, proving that the integration of 2D materials with MEMS is a viable option for constructing novel strain engineered devices. The authors acknowledge support from NSF DMR1411008.

  17. Integration of mobile satellite and cellular systems

    NASA Technical Reports Server (NTRS)

    Drucker, Elliott H.; Estabrook, Polly; Pinck, Deborah; Ekroot, Laura

    1993-01-01

    By integrating the ground based infrastructure component of a mobile satellite system with the infrastructure systems of terrestrial 800 MHz cellular service providers, a seamless network of universal coverage can be established. Users equipped for both cellular and satellite service can take advantage of a number of features made possible by such integration, including seamless handoff and universal roaming. To provide maximum benefit at lowest posible cost, the means by which these systems are integrated must be carefully considered. Mobile satellite hub stations must be configured to efficiently interface with cellular Mobile Telephone Switching Offices (MTSO's), and cost effective mobile units that provide both cellular and satellite capability must be developed.

  18. Integration of mobile satellite and cellular systems

    NASA Astrophysics Data System (ADS)

    Drucker, Elliott H.; Estabrook, Polly; Pinck, Deborah; Ekroot, Laura

    By integrating the ground based infrastructure component of a mobile satellite system with the infrastructure systems of terrestrial 800 MHz cellular service providers, a seamless network of universal coverage can be established. Users equipped for both cellular and satellite service can take advantage of a number of features made possible by such integration, including seamless handoff and universal roaming. To provide maximum benefit at lowest posible cost, the means by which these systems are integrated must be carefully considered. Mobile satellite hub stations must be configured to efficiently interface with cellular Mobile Telephone Switching Offices (MTSO's), and cost effective mobile units that provide both cellular and satellite capability must be developed.

  19. Systematic Verification of Upstream Regulators of a Computable Cellular Proliferation Network Model on Non-Diseased Lung Cells Using a Dedicated Dataset

    PubMed Central

    Belcastro, Vincenzo; Poussin, Carine; Gebel, Stephan; Mathis, Carole; Schlage, Walter K.; Lichtner, Rosemarie B.; Quadt-Humme, Sibille; Wagner, Sandra; Hoeng, Julia; Peitsch, Manuel C.

    2013-01-01

    We recently constructed a computable cell proliferation network (CPN) model focused on lung tissue to unravel complex biological processes and their exposure-related perturbations from molecular profiling data. The CPN consists of edges and nodes representing upstream controllers of gene expression largely generated from transcriptomics datasets using Reverse Causal Reasoning (RCR). Here, we report an approach to biologically verify the correctness of upstream controller nodes using a specifically designed, independent lung cell proliferation dataset. Normal human bronchial epithelial cells were arrested at G1/S with a cell cycle inhibitor. Gene expression changes and cell proliferation were captured at different time points after release from inhibition. Gene set enrichment analysis demonstrated cell cycle response specificity via an overrepresentation of proliferation related gene sets. Coverage analysis of RCR-derived hypotheses returned statistical significance for cell cycle response specificity across the whole model as well as for the Growth Factor and Cell Cycle sub-network models. PMID:23926424

  20. Cellular mechanics and motility

    NASA Astrophysics Data System (ADS)

    Hénon, Sylvie; Sykes, Cécile

    2015-10-01

    cross-linked or branched networks. It is a highly dynamical system in which filaments are able to elongate or slide one on the other with the contribution of very active cellular proteins like molecular motors. The versatile properties of this cytoskeleton ensure the diversity of mechanical behaviors to explain cell rigidity as well as cell motility.