Science.gov

Sample records for 2-d diesel fuel

  1. Reformulated diesel fuel

    DOEpatents

    McAdams, Hiramie T [Carrollton, IL; Crawford, Robert W [Tucson, AZ; Hadder, Gerald R [Oak Ridge, TN; McNutt, Barry D [Arlington, VA

    2006-03-28

    Reformulated diesel fuels for automotive diesel engines which meet the requirements of ASTM 975-02 and provide significantly reduced emissions of nitrogen oxides (NO.sub.x) and particulate matter (PM) relative to commercially available diesel fuels.

  2. Low emissions diesel fuel

    DOEpatents

    Compere, Alicia L.; Griffith, William L.; Dorsey, George F.; West, Brian H.

    1998-01-01

    A method and matter of composition for controlling NO.sub.x emissions from existing diesel engines. The method is achieved by adding a small amount of material to the diesel fuel to decrease the amount of NO.sub.x produced during combustion. Specifically, small amounts, less than about 1%, of urea or a triazine compound (methylol melamines) are added to diesel fuel. Because urea and triazine compounds are generally insoluble in diesel fuel, microemulsion technology is used to suspend or dissolve the urea or triazine compound in the diesel fuel. A typical fuel formulation includes 5% t-butyl alcohol, 4.5% water, 0.5% urea or triazine compound, 9% oleic acid, and 1% ethanolamine. The subject invention provides improved emissions in heavy diesel engines without the need for major modifications.

  3. Low emissions diesel fuel

    DOEpatents

    Compere, A.L.; Griffith, W.L.; Dorsey, G.F.; West, B.H.

    1998-05-05

    A method and matter of composition for controlling NO{sub x} emissions from existing diesel engines. The method is achieved by adding a small amount of material to the diesel fuel to decrease the amount of NO{sub x} produced during combustion. Specifically, small amounts, less than about 1%, of urea or a triazine compound (methylol melamines) are added to diesel fuel. Because urea and triazine compounds are generally insoluble in diesel fuel, microemulsion technology is used to suspend or dissolve the urea or triazine compound in the diesel fuel. A typical fuel formulation includes 5% t-butyl alcohol, 4.5% water, 0.5% urea or triazine compound, 9% oleic acid, and 1% ethanolamine. The subject invention provides improved emissions in heavy diesel engines without the need for major modifications.

  4. Making premium diesel fuel

    SciTech Connect

    Pipenger, G.

    1997-02-01

    For refiners, extra processing and blending is a practical, though not always easy, option for improving diesel fuel properties; however, it entails compromises. For example, ignition quality can be improved by including more paraffins, but this negatively impacts the required low-temperature operability properties. Another example is adding aromatics to increase the diesel`s Btu value, but aromatics burn poorly and tend to cause smoking. Due to these and other types of diametrical trade-offs, the scope of distillate processing and fuels blending at the refinery is often very limited. Therefore, fuel additives are rapidly becoming the only alternative for obtaining the superior quality necessary in a premium diesel fuel. If stabilizers, dispersants and other fuel additive components are used in the additive package, the product can be marketed as a premium diesel fuel additive. Engines using this additive-treated fuel will consistently have less emissions, produce optimum power from the fuel energy conversion process and perform to design specifications. And the user will truly have a premium diesel fuel. The paper discusses detergent additives, cetane or ignition improvers, fuel stabilizers, cold weather additives, and lubricity additives.

  5. Diesel Mechanics: Fuel Systems.

    ERIC Educational Resources Information Center

    Foutes, William

    This publication is the third in a series of three texts for a diesel mechanics curriculum. Its purpose is to teach the concepts related to fuel injection systems in a diesel trade. The text contains eight units. Each instructional unit includes some or all of these basic components: unit and specific (performance) objectives, suggested activities…

  6. DIESEL FUEL LUBRICATION

    SciTech Connect

    Qu, Jun

    2012-01-01

    The diesel fuel injector and pump systems contain many sliding interfaces that rely for lubrication upon the fuels. The combination of the poor fuel lubricity and extremely tight geometric clearance between the plunger and bore makes the diesel fuel injector vulnerable to scuffing damage that severely limits the engine life. In order to meet the upcoming stricter diesel emission regulations and higher engine efficiency requirements, further fuel refinements that will result in even lower fuel lubricity due to the removal of essential lubricating compounds, more stringent operation conditions, and tighter geometric clearances are needed. These are expected to increase the scuffing and wear vulnerability of the diesel fuel injection and pump systems. In this chapter, two approaches are discussed to address this issue: (1) increasing fuel lubricity by introducing effective lubricity additives or alternative fuels, such as biodiesel, and (2) improving the fuel injector scuffing-resistance by using advanced materials and/or surface engineering processes. The developing status of the fuel modification approach is reviewed to cover topics including fuel lubricity origins, lubricity improvers, alternative fuels, and standard fuel lubricity tests. The discussion of the materials approach is focused on the methodology development for detection of the onset of scuffing and evaluation of the material scuffing characteristics.

  7. Fuel for diesel engine

    SciTech Connect

    Mori, M.

    1983-09-20

    A fuel is disclosed for a diesel engine which comprises a mixture of (A) an alcohol, (B) gas oil and (C) castor oil, wherein the contents of the respective components satisfy requirements represented by the following formulae: 0% by volume < A 80% by volume, 10% by volume B < 50% by volume, and 10% by volume C < 50% by volume.

  8. Diesel engine fuel systems

    SciTech Connect

    Not Available

    1994-01-01

    The film shows the basic structure of diesel systems, including the parts and operation of injectors and fuel pumps. It discusses Bosch, General Motors, and Excello Equipment. This title has been declared obsolete for use within the sponsoring agency, but may have content value for educational use.

  9. Diesel engine fuel systems

    SciTech Connect

    1994-12-31

    The film shows the basic structure of diesel systems, including the parts and operation of injectors and fuel pumps. It discusses Bosch, General Motors, and Excello Equipment. This title has been declared obsolete for use within the sponsoring agency, but may have content value for educational use.

  10. 'Vegetable' substitutes for diesel fuel

    SciTech Connect

    Not Available

    1981-07-22

    Research programs in the US, Brazil, South Africa and the Philippines on efforts to find a vegetable oil substitute for diesel fuel are reported. A narrowing price gap with diesel fuel and a favourable energy balance improve the prospects for such fuels. Much of the current work is centered on blends, rather than the use of the pure oil.

  11. Reformulated diesel fuel and method

    DOEpatents

    McAdams, Hiramie T [Carrollton, IL; Crawford, Robert W [Tucson, AZ; Hadder, Gerald R [Oak Ridge, TN; McNutt, Barry D [Arlington, VA

    2006-08-22

    A method for mathematically identifying at least one diesel fuel suitable for combustion in an automotive diesel engine with significantly reduced emissions and producible from known petroleum blendstocks using known refining processes, including the use of cetane additives (ignition improvers) and oxygenated compounds.

  12. Compression ignition engine fuel properties of a used sunflower oil-diesel fuel blend

    SciTech Connect

    Oezaktas, T.

    2000-05-01

    Vegetable oils may be used with dilution modification technique as an alternative diesel fuel. In this study, a used sunflower oil-diesel fuel blend (20:80 {nu}/{nu}%) was investigated in a Pancar Motor E-108-type diesel engine to observe engine characteristics and exhaust emission. The effect of the compression ratio on ignition delay characteristics and smoke emissions of blend fuel was determined in this CFR engine. The results of fuel blends were compared with the reference grade No. 2-D diesel fuel.

  13. Alternative diesel fuel study on four different types of vegetable oils of Turkish origin

    SciTech Connect

    Oezaktas, T.; Cigizoglu, K.B.; Karaosmanoglu, F.

    1997-02-01

    Four different types of vegetable oils of Turkish origin (sunflower, corn, soybean, and olive oil) were blended with grade 2-D diesel fuel at a ratio of 20/80 (v/v). Blends were investigated in a diesel engine with a precombustion chamber at speeds between 1,200 and 2,100 rpm. Vegetable oils, diesel fuel, and fuel blends were characterized according to standard test methods. It was found that for short-term use, the fuel blends have engine characteristics similar to the baseline diesel fuel. Fuel blends also display less smoke emissions than diesel fuel.

  14. Soyoil-ethanol microemulsions as diesel fuel

    SciTech Connect

    Goering, C.E.; Schwab, A.W.; Campion, R.M.; Pryde, E.H.

    1983-01-01

    Hybrid fuels, formed by microemulsifying aqueous ethanol in soybean oil, were evaluated by burning them in a diesel engine. No. 2 diesel fuel was also burned to provide baseline data. The hybrid fuels performed nearly as well as No. 2 diesel despite having lower cetane numbers and less energy content. At present, the hybrid fuels are more expensive than No. 2 diesel fuel and their effect on engine durability is unknown.

  15. Diesel fuels from vegetable oils

    SciTech Connect

    Schwab, A.W.; Bagby, M.O.; Freedman, B.

    1986-03-01

    Vegetable oils have heat contents approximately 90% that of diesel fuel and are potential alternate fuel candidates. A major obstacle deterring their use in the direct-injection diesel engine is their inherent high viscosities which are nearly 10 times that of diesel fuel. Solution to the viscosity problem has been approached in three ways: 1) microemulsification, 2) pyrolysis, and 3) transesterification. Microemulsification with short chain alcohols such as methanol and ethanol yields fuels that are clear, thermodynamically stable liquid systems with viscosities near the ASTM specified range for number2 diesel fuel. These micellar systems may be formulated ionically or nonionically. The alcohols are attractive from an economic as well as a renewable resource viewpoint. Methanol has an economic advantage over ethanol, and it can be derived from a large variety of base stocks. These include biomass, municipal waste, natural gas being flared at refineries and from coal. Pyrolysis of vegetable oils is another approach to lowering their viscosity. Soybean and safflower oils were thermally decomposed in both air and nitrogen to obtain fuels for the diesel engine. Using standard ASTM distillation conditions, yields of pyrolysis products were about 75%. GS-MS analysis of the distillates showed the presence of alkanes, alkenes, aromatics, and carboxylic acids with carbon numbers ranging from 4 to more than 20. Fuel properties of the thermal decomposition products were substantially improved as evaluated by lower viscosities and higher cetane numbers compared to the unpyrrolyzed vegetable oils. Simple esters from transesterification of vegetable oils perform well in engine tests, and thus show good promise as an alternative or emergency fuel for diesel engines.

  16. Diesel combustion and emissions formation using multiple 2-D imaging diagnostics

    SciTech Connect

    Dec, J.E.

    1997-12-31

    Understanding how emissions are formed during diesel combustion is central to developing new engines that can comply with increasingly stringent emission standards while maintaining or improving performance levels. Laser-based planar imaging diagnostics are uniquely capable of providing the temporally and spatially resolved information required for this understanding. Using an optically accessible research engine, a variety of two-dimensional (2-D) imaging diagnostics have been applied to investigators of direct-injection (DI) diesel combustion and emissions formation. These optical measurements have included the following laser-sheet imaging data: Mie scattering to determine liquid-phase fuel distributions, Rayleigh scattering for quantitative vapor-phase-fuel/air mixture images, laser induced incandescence (LII) for relative soot concentrations, simultaneous LII and Rayleigh scattering for relative soot particle-size distributions, planar laser-induced fluorescence (PLIF) to obtain early PAH (polyaromatic hydrocarbon) distributions, PLIF images of the OH radical that show the diffusion flame structure, and PLIF images of the NO radical showing the onset of NO{sub x} production. In addition, natural-emission chemiluminescence images were obtained to investigate autoignition. The experimental setup is described, and the image data showing the most relevant results are presented. Then the conceptual model of diesel combustion is summarized in a series of idealized schematics depicting the temporal and spatial evolution of a reacting diesel fuel jet during the time period investigated. Finally, recent PLIF images of the NO distribution are presented and shown to support the timing and location of NO formation hypothesized from the conceptual model.

  17. ENVIRONMENTAL TECHNOLOGY VERIFICATION REPORT: ENVIROFUELS DIESEL FUEL CATALYZER FUEL ADDITIVE

    EPA Science Inventory

    EPA's Environmental Technology Verification Program has tested EnviroFuels diesel fuel additive, called the Diesel Fuel Catalyzer. EnviroFuels has stated that heavy-duty on and off road diesel engines are the intended market for the catalyzer. Preliminary tests conducted indicate...

  18. Biodiesel and Other Renewable Diesel Fuels

    SciTech Connect

    Not Available

    2006-11-01

    Present federal tax incentives apply to certain types of biomass-derived diesel fuels, which in energy policy and tax laws are described either as renewable diesel or biodiesel. To understand the distinctions between these diesel types it is necessary to understand the technologies used to produce them and the properties of the resulting products. This fact sheet contains definitions of renewable and biodiesel and discusses the processes used to convert biomass to diesel fuel and the properties of biodiesel and renewable diesel fuels.

  19. 30 CFR 75.1906 - Transport of diesel fuel.

    Code of Federal Regulations, 2014 CFR

    2014-07-01

    ... 30 Mineral Resources 1 2014-07-01 2014-07-01 false Transport of diesel fuel. 75.1906 Section 75... HEALTH MANDATORY SAFETY STANDARDS-UNDERGROUND COAL MINES Diesel-Powered Equipment § 75.1906 Transport of diesel fuel. (a) Diesel fuel shall be transported only by diesel fuel transportation units or in...

  20. 30 CFR 75.1906 - Transport of diesel fuel.

    Code of Federal Regulations, 2013 CFR

    2013-07-01

    ... 30 Mineral Resources 1 2013-07-01 2013-07-01 false Transport of diesel fuel. 75.1906 Section 75... HEALTH MANDATORY SAFETY STANDARDS-UNDERGROUND COAL MINES Diesel-Powered Equipment § 75.1906 Transport of diesel fuel. (a) Diesel fuel shall be transported only by diesel fuel transportation units or in...

  1. 30 CFR 75.1906 - Transport of diesel fuel.

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... 30 Mineral Resources 1 2010-07-01 2010-07-01 false Transport of diesel fuel. 75.1906 Section 75... HEALTH MANDATORY SAFETY STANDARDS-UNDERGROUND COAL MINES Diesel-Powered Equipment § 75.1906 Transport of diesel fuel. (a) Diesel fuel shall be transported only by diesel fuel transportation units or in...

  2. 30 CFR 75.1901 - Diesel fuel requirements.

    Code of Federal Regulations, 2012 CFR

    2012-07-01

    ... 30 Mineral Resources 1 2012-07-01 2012-07-01 false Diesel fuel requirements. 75.1901 Section 75... HEALTH MANDATORY SAFETY STANDARDS-UNDERGROUND COAL MINES Diesel-Powered Equipment § 75.1901 Diesel fuel requirements. (a) Diesel-powered equipment shall be used underground only with a diesel fuel having a...

  3. 30 CFR 75.1901 - Diesel fuel requirements.

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... 30 Mineral Resources 1 2010-07-01 2010-07-01 false Diesel fuel requirements. 75.1901 Section 75... HEALTH MANDATORY SAFETY STANDARDS-UNDERGROUND COAL MINES Diesel-Powered Equipment § 75.1901 Diesel fuel requirements. (a) Diesel-powered equipment shall be used underground only with a diesel fuel having a...

  4. 30 CFR 75.1901 - Diesel fuel requirements.

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ... 30 Mineral Resources 1 2011-07-01 2011-07-01 false Diesel fuel requirements. 75.1901 Section 75... HEALTH MANDATORY SAFETY STANDARDS-UNDERGROUND COAL MINES Diesel-Powered Equipment § 75.1901 Diesel fuel requirements. (a) Diesel-powered equipment shall be used underground only with a diesel fuel having a...

  5. 30 CFR 75.1906 - Transport of diesel fuel.

    Code of Federal Regulations, 2012 CFR

    2012-07-01

    ... 30 Mineral Resources 1 2012-07-01 2012-07-01 false Transport of diesel fuel. 75.1906 Section 75... diesel fuel. (a) Diesel fuel shall be transported only by diesel fuel transportation units or in safety... fuel storage facilities. (c) Safety cans that leak must be promptly removed from the mine. (d)...

  6. Effect of some Turkish vegetable oil-diesel fuel blends on exhaust emissions

    SciTech Connect

    Ergeneman, M.; Oezaktas, T.; Cigizoglu, K.B.; Karaosmanoglu, F.; Arslan, E.

    1997-10-01

    For different types of vegetable oils of Turkish origin (sunflower, corn, soybean, and olive oil) were blended with grade No. 2-D diesel fuel at a ratio of 20/80 (v/v). The effect of the compression ratio on exhaust emissions is investigated in an American Society for Testing and Materials (ASTM)-cooperative fuel research (CFR) engine working with the mentioned fuel blends and a baseline diesel fuel. A decrease in soot, CO, CO{sub 2}, and HC emissions and an increase in NO{sub x} emissions have been observed for fuel blends compared to diesel fuel.

  7. Natural gas fueling of diesel engines

    SciTech Connect

    1996-11-01

    The focus of work performed by University of British Columbia researchers was on high-pressure (late cycle) injection of NG ignited by a pilot diesel-liquid injection(diesel/gas combustion). This was compared to the case of 100% liquid diesel (baseline diesel) fueling at the same load and speed. In typical direct-injected and conventionally fueled diesel engines, fuel is injected a few degrees before the end of the compression stroke into 750--900 K air in which it vaporizes, mixed with air, and auto ignites less than 2 ms after injection begins. The objectives of the researchers` work were to investigate the ignition delay and combustion duration of diesel/gas combustion by observing diesel and diesel/gas ignition sites and flame structure; determining ignition delay and combustion duration with pilot-diesel and natural gas injections; determining whether the pilot liquid flame is substantially influenced by the gas injection; and considering whether pilot-diesel/gas combustion is dominated by premixed or diffusion combustion.

  8. Effect of fuel aromaticity on diesel emissions

    SciTech Connect

    Barbella, R.; Ciajolo, A.; D'Anna, A. ); Bertoli, C. )

    1989-09-01

    The effect of the fuel aromatic content on soot and heavy hydrocarbon emissions from a single-cylinder direct-injection diesel engine has been investigated burning a pure paraffinic fuel (n-tetradecane), a tetradecane-toluene mixture (70-30 vol%) and two diesel oils with different aromatic content. All experiments were at various air-fuel ratios with constant engine speed and injection timing advance. The detailed chemical analysis of exhaust heavy hydrocarbons in terms of mass percentage of paraffins, monoaromatics, polyaromatics and polar compounds, and the gas chromatography-mass spectrometry of each hydrocarbon class have been compared with the original fuel analyses in order to discriminate the unburned fuel compounds from the combustion-formed products. The soot emission rate has been found to be independent of the fuel aromatic content, but the fuel affects the quality and quantity of heavy hydrocarbon emission. Low amounts of heavy hydrocarbons, mainly partially oxidized compounds, are emitted from tetradecane combustion, whereas diesel fuel oils produced high emissions of heavy hydrocarbons, mainly unburned fuel compounds. The emission of polynuclear aromatic hydrocarbons (PAH) from tetradecane and tetradecane-toluene diesel combustion indicates that these compounds are combustion-formed products, but unburned fuel PAH are the main components of PAH emitted by the diesel fuel oils.

  9. 40 CFR 79.33 - Motor vehicle diesel fuel.

    Code of Federal Regulations, 2012 CFR

    2012-07-01

    ... 40 Protection of Environment 17 2012-07-01 2012-07-01 false Motor vehicle diesel fuel. 79.33... (CONTINUED) REGISTRATION OF FUELS AND FUEL ADDITIVES Designation of Fuels and Additives § 79.33 Motor vehicle diesel fuel. (a) The following fuels commonly or commercially known or sold as motor vehicle diesel...

  10. 40 CFR 79.33 - Motor vehicle diesel fuel.

    Code of Federal Regulations, 2013 CFR

    2013-07-01

    ... 40 Protection of Environment 17 2013-07-01 2013-07-01 false Motor vehicle diesel fuel. 79.33... (CONTINUED) REGISTRATION OF FUELS AND FUEL ADDITIVES Designation of Fuels and Additives § 79.33 Motor vehicle diesel fuel. (a) The following fuels commonly or commercially known or sold as motor vehicle diesel...

  11. 40 CFR 79.33 - Motor vehicle diesel fuel.

    Code of Federal Regulations, 2014 CFR

    2014-07-01

    ... 40 Protection of Environment 17 2014-07-01 2014-07-01 false Motor vehicle diesel fuel. 79.33... (CONTINUED) REGISTRATION OF FUELS AND FUEL ADDITIVES Designation of Fuels and Additives § 79.33 Motor vehicle diesel fuel. (a) The following fuels commonly or commercially known or sold as motor vehicle diesel...

  12. 40 CFR 79.33 - Motor vehicle diesel fuel.

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... 40 Protection of Environment 16 2010-07-01 2010-07-01 false Motor vehicle diesel fuel. 79.33... (CONTINUED) REGISTRATION OF FUELS AND FUEL ADDITIVES Designation of Fuels and Additives § 79.33 Motor vehicle diesel fuel. (a) The following fuels commonly or commercially known or sold as motor vehicle diesel...

  13. 40 CFR 79.33 - Motor vehicle diesel fuel.

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ... 40 Protection of Environment 16 2011-07-01 2011-07-01 false Motor vehicle diesel fuel. 79.33... (CONTINUED) REGISTRATION OF FUELS AND FUEL ADDITIVES Designation of Fuels and Additives § 79.33 Motor vehicle diesel fuel. (a) The following fuels commonly or commercially known or sold as motor vehicle diesel...

  14. Utilization of alternative fuels in diesel engines

    NASA Technical Reports Server (NTRS)

    Lestz, S. A.

    1984-01-01

    Performance and emission data are collected for various candidate alternate fuels and compare these data to that for a certified petroleum based number two Diesel fuel oil. Results for methanol, ethanol, four vegetable oils, two shale derived oils, and two coal derived oils are reported. Alcohol fumigation does not appear to be a practical method for utilizing low combustion quality fuels in a Diesel engine. Alcohol fumigation enhances the bioactivity of the emitted exhaust particles. While it is possible to inject many synthetic fuels using the engine stock injection system, wholly acceptable performance is only obtained from a fuel whose specifications closely approach those of a finished petroleum based Diesel oil. This is illustrated by the contrast between the poor performance of the unupgraded coal derived fuel blends and the very good performance of the fully refined shale derived fuel.

  15. Diesel injector carbonization by three alternative fuels

    SciTech Connect

    Goodrum, J.W.; Patel, V.C.; McClendon, R.W.

    1996-05-01

    Three alternative diesel fuels were screened by analysis of fuel injector tip deposits. The test engines were operated on the Peterson (torque) test cycle; the average carbon deposit volume on an injector tip was measured by a computer vision method. Relative coke deposit quantity was obtained by area analysis of injector tip images. Repetitive image areas varied less than 1%. Coke deposit areas for repetitive fuel tests also varied less than 1%. Injector coking tendencies of tested fuels decreased in the following order: peanut oil, no. 2 diesel, tricaprylin, and tributyrin/no. 2 diesel blend. The observed dependence of the relative coke quantity on fuel type was consistent with the results from a photographic technique used previously for fuel screening. 10 refs., 2 figs., 2 tabs.

  16. 46 CFR 169.615 - Diesel fuel systems.

    Code of Federal Regulations, 2013 CFR

    2013-10-01

    ... 46 Shipping 7 2013-10-01 2013-10-01 false Diesel fuel systems. 169.615 Section 169.615 Shipping... Machinery and Electrical Fuel Systems § 169.615 Diesel fuel systems. (a) Except as provided in paragraph (b) each diesel fuel system must meet the requirements of § 56.50-75 of this chapter. (b) Each vessel of...

  17. 46 CFR 169.615 - Diesel fuel systems.

    Code of Federal Regulations, 2012 CFR

    2012-10-01

    ... 46 Shipping 7 2012-10-01 2012-10-01 false Diesel fuel systems. 169.615 Section 169.615 Shipping... Machinery and Electrical Fuel Systems § 169.615 Diesel fuel systems. (a) Except as provided in paragraph (b) each diesel fuel system must meet the requirements of § 56.50-75 of this chapter. (b) Each vessel of...

  18. 46 CFR 169.615 - Diesel fuel systems.

    Code of Federal Regulations, 2010 CFR

    2010-10-01

    ... 46 Shipping 7 2010-10-01 2010-10-01 false Diesel fuel systems. 169.615 Section 169.615 Shipping... Machinery and Electrical Fuel Systems § 169.615 Diesel fuel systems. (a) Except as provided in paragraph (b) each diesel fuel system must meet the requirements of § 56.50-75 of this chapter. (b) Each vessel of...

  19. 46 CFR 169.615 - Diesel fuel systems.

    Code of Federal Regulations, 2011 CFR

    2011-10-01

    ... 46 Shipping 7 2011-10-01 2011-10-01 false Diesel fuel systems. 169.615 Section 169.615 Shipping... Machinery and Electrical Fuel Systems § 169.615 Diesel fuel systems. (a) Except as provided in paragraph (b) each diesel fuel system must meet the requirements of § 56.50-75 of this chapter. (b) Each vessel of...

  20. Peanut oil as an emergency diesel fuel

    SciTech Connect

    Goodrum, J.W.

    1983-06-01

    Two elements of an emergency fuel system are discussed. A CeCoCo mechanical oil expeller's efficiency is related to temperature, moisture, and pressure conditions. Durability test on 20:80 and 80:20 peanut oil: diesel blends show injector coking and effects on exhaust temperature, specific fuel, and crankcase oil.

  1. Combustion of liquid fuels in diesel engine

    NASA Technical Reports Server (NTRS)

    Alt, Otto

    1924-01-01

    Hitherto, definite specifications have always been made for fuel oils and they have been classified as more or less good or non-utilizable. The present aim, however, is to build Diesel engines capable of using even the poorest liquid fuels and especially the waste products of the oil industry, without special chemical or physical preparation.

  2. Peanut, soybean and cottonseed oil as diesel fuels

    SciTech Connect

    Mazed, M.A.; Summers, J.D.; Batchelder, D.G.

    1985-09-01

    Two single cylinder diesel engines burning three vegetable oils, and their blends with diesel fuel, were evaluated and compared to engines burning a reference diesel fuel (Phillips No. 2). Tests were conducted determining power output, fuel consumption, thermal efficiency and exhaust smoke. Using the three vegetable oils and their blends with No. 2 diesel fuel, maximum changes of 5%, 14%, 10%, and 40% were observed in power, fuel consumption by mass, thermal efficiency, and exhaust smoke, respectively. 41 references.

  3. Broadened diesel fuel specifications for rail applications

    SciTech Connect

    Cataldi, C.R.

    1988-01-01

    As the demand for distillate products increases, petroleum refiners find it increasingly expensive to meet the traditional specifications for jet and diesel fuels. Because those costs eventually show up in the price of fuel, the railroad industry has a diesel fuel research program to identify broadened specification fuels that cost less than standard fuels and which do not adversely affect engine performance or maintenance cost. Laboratory tests concentrated on cetane number, distillation range, and viscosity. The tests included 72 hours at idle speed, engine performance, and 500-hour endurance tests. Long-term field tests have verified the laboratory findings that cetane number can be reduced to 32 and 90 percent distillation point increased to 700/sup 0/F. Several railroads now have over three years of experience with broadened specification fuels in normal operations with no reported problems. With formal tests, some railroads have also relaxed their winter specifications for pour and cloud points.

  4. Ethanol-diesel fuel blends -- a review.

    PubMed

    Hansen, Alan C; Zhang, Qin; Lyne, Peter W L

    2005-02-01

    Ethanol is an attractive alternative fuel because it is a renewable bio-based resource and it is oxygenated, thereby providing the potential to reduce particulate emissions in compression-ignition engines. In this review the properties and specifications of ethanol blended with diesel fuel are discussed. Special emphasis is placed on the factors critical to the potential commercial use of these blends. These factors include blend properties such as stability, viscosity and lubricity, safety and materials compatibility. The effect of the fuel on engine performance, durability and emissions is also considered. The formulation of additives to correct certain key properties and maintain blend stability is suggested as a critical factor in ensuring fuel compatibility with engines. However, maintaining vehicle safety with these blends may entail fuel tank modifications. Further work is required in specifying acceptable fuel characteristics, confirming the long-term effects on engine durability, and ensuring safety in handling and storing ethanol-diesel blends. PMID:15474927

  5. 40 CFR 80.590 - What are the product transfer document requirements for motor vehicle diesel fuel, NRLM diesel...

    Code of Federal Regulations, 2012 CFR

    2012-07-01

    ... C3 vessels. Note that 40 CFR part 1043 specifies requirements for documenting fuel transfers to... requirements for motor vehicle diesel fuel, NRLM diesel fuel, heating oil, ECA marine fuel, and other... the product transfer document requirements for motor vehicle diesel fuel, NRLM diesel fuel,...

  6. 40 CFR 80.602 - What records must be kept by entities in the NRLM diesel fuel, ECA marine fuel, and diesel fuel...

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ... in the NRLM diesel fuel, ECA marine fuel, and diesel fuel additive production, importation, and... (CONTINUED) AIR PROGRAMS (CONTINUED) REGULATION OF FUELS AND FUEL ADDITIVES Motor Vehicle Diesel Fuel... fuel additive production, importation, and distribution systems? (a) Records that must be kept...

  7. 40 CFR 80.602 - What records must be kept by entities in the NRLM diesel fuel, ECA marine fuel, and diesel fuel...

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... in the NRLM diesel fuel, ECA marine fuel, and diesel fuel additive production, importation, and... (CONTINUED) AIR PROGRAMS (CONTINUED) REGULATION OF FUELS AND FUEL ADDITIVES Motor Vehicle Diesel Fuel... fuel additive production, importation, and distribution systems? (a) Records that must be kept...

  8. 7 CFR 3201.13 - Diesel fuel additives.

    Code of Federal Regulations, 2013 CFR

    2013-01-01

    ... 7 Agriculture 15 2013-01-01 2013-01-01 false Diesel fuel additives. 3201.13 Section 3201.13... Designated Items § 3201.13 Diesel fuel additives. (a) Definition. (1) Any substance, other than one composed solely of carbon and/or hydrogen, that is intentionally added to diesel fuel (including any added to...

  9. 40 CFR 69.51 - Motor vehicle diesel fuel.

    Code of Federal Regulations, 2012 CFR

    2012-07-01

    ... motor vehicle diesel fuel standards and dye provisions under 40 CFR 80.520 and associated requirements... diesel fuel standards and dye provisions under 40 CFR 80.520 and associated requirements, provided that... under 40 CFR 69.52(c), (d), and (e) for commingled motor vehicle and non-motor vehicle diesel fuel:...

  10. 40 CFR 69.51 - Motor vehicle diesel fuel.

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ... motor vehicle diesel fuel standards and dye provisions under 40 CFR 80.520 and associated requirements... diesel fuel standards and dye provisions under 40 CFR 80.520 and associated requirements, provided that... under 40 CFR 69.52(c), (d), and (e) for commingled motor vehicle and non-motor vehicle diesel fuel:...

  11. 7 CFR 3201.13 - Diesel fuel additives.

    Code of Federal Regulations, 2012 CFR

    2012-01-01

    ... 7 Agriculture 15 2012-01-01 2012-01-01 false Diesel fuel additives. 3201.13 Section 3201.13... Designated Items § 3201.13 Diesel fuel additives. (a) Definition. (1) Any substance, other than one composed solely of carbon and/or hydrogen, that is intentionally added to diesel fuel (including any added to...

  12. 40 CFR 69.51 - Motor vehicle diesel fuel.

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... motor vehicle diesel fuel standards and dye provisions under 40 CFR 80.520 and associated requirements... diesel fuel standards and dye provisions under 40 CFR 80.520 and associated requirements, provided that... under 40 CFR 69.52(c), (d), and (e) for commingled motor vehicle and non-motor vehicle diesel fuel:...

  13. 40 CFR 69.51 - Motor vehicle diesel fuel.

    Code of Federal Regulations, 2013 CFR

    2013-07-01

    ... motor vehicle diesel fuel standards and dye provisions under 40 CFR 80.520 and associated requirements... diesel fuel standards and dye provisions under 40 CFR 80.520 and associated requirements, provided that... under 40 CFR 69.52(c), (d), and (e) for commingled motor vehicle and non-motor vehicle diesel fuel:...

  14. 40 CFR 69.51 - Motor vehicle diesel fuel.

    Code of Federal Regulations, 2014 CFR

    2014-07-01

    ... motor vehicle diesel fuel standards and dye provisions under 40 CFR 80.520 and associated requirements... diesel fuel standards and dye provisions under 40 CFR 80.520 and associated requirements, provided that... under 40 CFR 69.52(c), (d), and (e) for commingled motor vehicle and non-motor vehicle diesel fuel:...

  15. Isoprenoid based alternative diesel fuel

    DOEpatents

    Lee, Taek Soon; Peralta-Yahya, Pamela; Keasling, Jay D.

    2015-08-18

    Fuel compositions are provided comprising a hydrogenation product of a monocyclic sesquiterpene (e.g., hydrogenated bisabolene) and a fuel additive. Methods of making and using the fuel compositions are also disclosed. ##STR00001##

  16. Emissions from Trucks using Fischer-Tropsch Diesel Fuel

    SciTech Connect

    Paul Norton; Keith Vertin; Brent Bailey; Nigel N. Clark; Donald W. Lyons; Stephen Goguen; James Eberhardt

    1998-10-19

    The Fischer-Tropsch (F-T) catalytic conversion process can be used to synthesize diesel fuels from a variety of feedstocks, including coal, natural gas and biomass. Synthetic diesel fuels can have very low sulfur and aromatic content, and excellent autoignition characteristics. Moreover, Fischer-Tropsch diesel fuels may also be economically competitive with California B- diesel fuel if produced in large volumes. overview of Fischer-Tropsch diesel fuel production and engine emissions testing is presented. Previous engine laboratory tests indicate that F-T diesel is a promising alternative fuel because it can be used in unmodified diesel engines, and substantial exhaust emissions reductions can be realized. The authors have performed preliminary tests to assess the real-world performance of F-T diesel fuels in heavy-duty trucks. Seven White-GMC Class 8 trucks equipped with Caterpillar 10.3 liter engines were tested using F-T diesel fuel. Vehicle emissions tests were performed using West Virginia University's unique transportable chassis dynamometer. The trucks were found to perform adequately on neat F-T diesel fuel. Compared to a California diesel fuel baseline, neat F-T diesel fuel emitted about 12% lower oxides of nitrogen (NOx) and 24% lower particulate matter over a five-mile driving cycle.

  17. IMPACT OF DME-DIESEL FUEL BLEND PROPERTIES ON DIESEL FUEL INJECTION SYSTEMS

    SciTech Connect

    Elana M. Chapman; Andre L. Boehman; Kimberly Wain; Wallis Lloyd; Joseph M. Perez; Donald Stiver; Joseph Conway

    2002-07-01

    The objectives of this research program are to develop information on lubricity and viscosity improvers and their impact on the wear mechanisms in fuel injectors operating on blends of dimethyl ether (DME) and diesel fuel. This project complements another ongoing project titled ''Development of a Dimethyl Ether (DME)-Fueled Shuttle Bus Demonstration Project''. The objectives of that research and demonstration program are to convert a campus shuttle bus to operation on dimethyl ether, a potential ultra-clean alternative diesel fuel. To accomplish this objective, this project includes laboratory evaluation of a fuel conversion strategy, as well as, field demonstration of the DME-fueled shuttle bus. Since DME is a fuel with no lubricity (i.e., it does not possess the lubricating quality of diesel fuel), conventional fuel delivery and fuel injection systems are not compatible with dimethyl ether. Therefore, to operate a diesel engine on DME one must develop a fuel-tolerant injection system, or find a way to provide the necessary lubricity to the DME. In the shuttle bus project, they have chosen the latter strategy in order to achieve the objective with minimal need to modify the engine. The strategy is to blend DME with diesel fuel, to obtain the necessary lubricity to protect the fuel injection system and to achieve low emissions. In this project, they have sought to develop methods for extending the permissible DME content in the DME-diesel blends without experiencing rapid injector failure due to wear. To date, the activities have covered two areas: development of a high-pressure lubricity test apparatus for studies of lubricity and viscosity improvers and development of an injector durability stand for evaluation of wear rates in fuel injectors. This report provides summaries of the progress toward completion of both experimental systems and a summary of the plan for completion of the project objectives.

  18. Diesel Fuel Systems. Teacher Edition (Revised).

    ERIC Educational Resources Information Center

    Clark, Elton; Huston, Jane, Ed.

    This module is one of a series of teaching guides that cover diesel mechanics. The module contains six instructional units that cover the following topics: (1) introduction to fuel injection systems and components; (2) injection nozzles; (3) distributor type injection pumps; (4) unit injectors; (5) in-line injection pumps; and (6) pressure timed…

  19. Diesel fuel by fermentation of wastes

    SciTech Connect

    Pierce, S.M.; Wayman, M.

    1983-01-11

    An improved diesel fuel which is entirely capable of preparation from renewable resources. The fuel comprises a blend of fermentation produced butanol and fermentation produced glycerides. The substrates useful for the butanol fermentation are conventional industrial waste products, such as cheese whey and low value carbohydrate containing waste materials such as corn cobs, wood chips, etc. Similar substrate materials are used in the fermentation or growth culture of glyceride producing microbes.

  20. Fuel injectors for diesel engines

    SciTech Connect

    Hsu, B.D.

    1992-07-28

    This patent describes a system for delivering a coal-water slurry fuel into an internal combustion engine. It comprises: means for delivering the fuel into the engine at predetermined time intervals during the engine's operating cycle; a coal-water slurry source operatively connected t the fuel delivery means; and means for adding replenishment water, operatively connected to the fuel delivery means and a source of replenishment water, to residual fuel in the system between operating cycles, the replenishment water comprising about 70% water and about 30% water soluble lubricant, such that the replenishment water dilutes the residual fuel, purges dried coal particle and reduces clogging.

  1. Liquid fuel reformer development: Autothermal reforming of Diesel fuel

    SciTech Connect

    Pereira, C.; Bae, J-M.; Ahmed, S.; Krumpelt, M.

    2000-07-24

    Argonne National Laboratory is developing a process to convert hydrocarbon fuels to clean hydrogen feeds for a polymer electrolyte fuel cell. The process incorporates an autothermal reforming catalyst that can process hydrocarbon feeds at lower temperatures than existing commercial catalysts. The authors have tested the catalyst with three diesel-type fuels: hexadecane, certified low-sulfur grade 1 diesel, and a standard grade 2 diesel. Hexadecane yielded products containing 60% hydrogen on a dry, nitrogen-free basis at 850 C, while maximum hydrogen product yields for the two diesel fuels were near 50%. Residual products in all cases included CO, CO{sub 2}, ethane, and methane. Further studies with grade 1 diesel showed improved conversion as the water:fuel ratio was increased from 1 to 2 at 850 C. Soot formation was reduced when the oxygen:carbon ratio was maintained at 1 at 850 C. There were no significant changes in hydrogen yield as the space velocity and the oxygen:fuel ratio were varied. Tests with a microchannel monolithic catalyst yielded similar or improved hydrogen levels at higher space velocities than with extruded pellets in a packed bed.

  2. Coal-fueled diesel locomotive test

    SciTech Connect

    Hsu, B.D.; McDowell, R.E.; Confer, G.L.; Basic, S.L.

    1993-01-01

    The biggest challenges to the development of a commercially-acceptable coal-fueled diesel-electric locomotive are integrating all systems into a working unit that can be operated in railroad service. This involves mainly the following three systems: (1) the multi-cylinder coal-fueled diesel engine, (2) the locomotive and engine controls, and (3) the CWS fuel supply system. Consequently, a workable 12-cylinder coal-fueled diesel engine was considered necessary at this stage to evolve the required locomotive support systems, in addition to gaining valuable multi-cylinder engine operating experience. The CWS fuel used during this project was obtained from Otisca, Inc. (Syracuse, NY). It was prepared from micronized and deashed Kentucky Blue Gem coal to 49.0% coal loading by weight, with less than 1% ash and 5 micron mean diameter particle size. Its higher heating value was analyzed at approximately 34630 kJ/k. Anti-agglomerating additive Triton X-114 was added to the CWS at GE Transportation Systems at 2% of coal weight. The nature of the Otisca CWS fuel makes it inherently more difficult to store, pump, and inject than diesel fuel, since concepts which govern Newtonian or normally viscous liquids do not apply entirely to CWS. Otisca CWS tends to be unstable and to settle in tanks and lines after a period of time, making it necessary to provide a means of agitation during storage. To avoid long term settling problems and to minimize losses, piping velocities were designed to be in the 60-90 m/min range.

  3. Rapeseed and safflower oils as diesel fuels

    SciTech Connect

    Peterson, C.L.; Haines, H.; Chase, C.

    1993-12-31

    During the past decade the US has become increasingly dependent upon imported oil to meet our energy demands. Nearly 50 percent of our US consumption of petroleum is imported. Research has shown that agricultural crops can be used to reduce this dependence. Vegetable oil as an alternative fuel has been under study at the Univ. of Idaho since 1979. Since then the Idaho research team has pioneered the use of rapeseed oil as a diesel fuel substitute. Idaho`s interdisciplinary team includes plant breeding, plant modification, process development and scale-up, engine testing, and economics. Researchers in Montana have studied safflower oil as a potential diesel fuel replacement since 1983. This project, aimed for use of safflower oil in railroad engines, involves genetics, agronomics, economics and contract engine testing.

  4. 30 CFR 75.1905 - Dispensing of diesel fuel.

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ... must not be dispensed to the fuel tank of diesel-powered equipment while the equipment engine is... 30 Mineral Resources 1 2011-07-01 2011-07-01 false Dispensing of diesel fuel. 75.1905 Section 75... HEALTH MANDATORY SAFETY STANDARDS-UNDERGROUND COAL MINES Diesel-Powered Equipment § 75.1905 Dispensing...

  5. 30 CFR 75.1905 - Dispensing of diesel fuel.

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... must not be dispensed to the fuel tank of diesel-powered equipment while the equipment engine is... 30 Mineral Resources 1 2010-07-01 2010-07-01 false Dispensing of diesel fuel. 75.1905 Section 75... HEALTH MANDATORY SAFETY STANDARDS-UNDERGROUND COAL MINES Diesel-Powered Equipment § 75.1905 Dispensing...

  6. 30 CFR 75.1905 - Dispensing of diesel fuel.

    Code of Federal Regulations, 2014 CFR

    2014-07-01

    ... must not be dispensed to the fuel tank of diesel-powered equipment while the equipment engine is... 30 Mineral Resources 1 2014-07-01 2014-07-01 false Dispensing of diesel fuel. 75.1905 Section 75... HEALTH MANDATORY SAFETY STANDARDS-UNDERGROUND COAL MINES Diesel-Powered Equipment § 75.1905 Dispensing...

  7. 30 CFR 75.1905 - Dispensing of diesel fuel.

    Code of Federal Regulations, 2013 CFR

    2013-07-01

    ... must not be dispensed to the fuel tank of diesel-powered equipment while the equipment engine is... 30 Mineral Resources 1 2013-07-01 2013-07-01 false Dispensing of diesel fuel. 75.1905 Section 75... HEALTH MANDATORY SAFETY STANDARDS-UNDERGROUND COAL MINES Diesel-Powered Equipment § 75.1905 Dispensing...

  8. 30 CFR 75.1905 - Dispensing of diesel fuel.

    Code of Federal Regulations, 2012 CFR

    2012-07-01

    ... must not be dispensed to the fuel tank of diesel-powered equipment while the equipment engine is... 30 Mineral Resources 1 2012-07-01 2012-07-01 false Dispensing of diesel fuel. 75.1905 Section 75... HEALTH MANDATORY SAFETY STANDARDS-UNDERGROUND COAL MINES Diesel-Powered Equipment § 75.1905 Dispensing...

  9. Diesel fuel detergent additive performance and assessment

    SciTech Connect

    Vincent, M.W.; Papachristos, M.J.; Williams, D.; Burton, J.

    1994-10-01

    Diesel fuel detergent additives are increasingly linked with high quality automotive diesel fuels. Both in Europe and in the USA, field problems associated with fuel injector coking or fouling have been experienced. In Europe indirect injection (IDI) light duty engines used in passenger cars were affected, while in the USA, a direct injection (DI) engine in heavy duty truck applications experienced field problems. In both cases, a fuel additive detergent performance test has evolved using an engine linked with the original field problem, although engine design modifications employed by the manufacturers have ensured improved operation in service. Increasing awareness of the potential for injector nozzle coking to cause deterioration in engine performance is coupled with a need to meet ever more stringent exhaust emissions legislation. These two requirements indicate that the use of detergency additives will continue to be associated with high quality diesel fuels. The paper examines detergency performance evaluated in a range of IDI and DI engines and correlates performance in the two most widely recognised test engines, namely the Peugeot 1.9 litre IDI, and Cummins L10 DI engines. 17 refs., 18 figs., 5 tabs.

  10. PCR+ In Diesel Fuels and Emissions Research

    SciTech Connect

    McAdams, H.T.

    2002-04-15

    In past work for the U.S. Department of Energy (DOE) and Oak Ridge National Laboratory (ORNL), PCR+ was developed as an alternative methodology for building statistical models. PCR+ is an extension of Principal Components Regression (PCR), in which the eigenvectors resulting from Principal Components Analysis (PCA) are used as predictor variables in regression analysis. The work was motivated by the observation that most heavy-duty diesel (HDD) engine research was conducted with test fuels that had been ''concocted'' in the laboratory to vary selected fuel properties in isolation from each other. This approach departs markedly from the real world, where the reformulation of diesel fuels for almost any purpose leads to changes in a number of interrelated properties. In this work, we present new information regarding the problems encountered in the conventional approach to model-building and how the PCR+ method can be used to improve research on the relationship between fuel characteristics and engine emissions. We also discuss how PCR+ can be applied to a variety of other research problems related to diesel fuels.

  11. Diesel fueled ship propulsion fuel cell demonstration project

    SciTech Connect

    Kumm, W.H.

    1996-12-31

    The paper describes the work underway to adapt a former US Navy diesel electric drive ship as a 2.4 Megawatt fuel cell powered, US Coast Guard operated, demonstrator. The Project will design the new configuration, and then remove the four 600 kW diesel electric generators and auxiliaries. It will design, build and install fourteen or more nominal 180 kW diesel fueled molten carbonate internal reforming direct fuel cells (DFCs). The USCG cutter VINDICATOR has been chosen. The adaptation will be carried out at the USCG shipyard at Curtis Bay, MD. A multi-agency (state and federal) cooperative project is now underway. The USCG prime contractor, AEL, is performing the work under a Phase III Small Business Innovation Research (SBIR) award. This follows their successful completion of Phases I and II under contract to the US Naval Sea Systems (NAVSEA) from 1989 through 1993 which successfully demonstrated the feasibility of diesel fueled DFCs. The demonstrated marine propulsion of a USCG cutter will lead to commercial, naval ship and submarine applications as well as on-land applications such as diesel fueled locomotives.

  12. Support vector machine to predict diesel engine performance and emission parameters fueled with nano-particles additive to diesel fuel

    NASA Astrophysics Data System (ADS)

    Ghanbari, M.; Najafi, G.; Ghobadian, B.; Mamat, R.; Noor, M. M.; Moosavian, A.

    2015-12-01

    This paper studies the use of adaptive Support Vector Machine (SVM) to predict the performance parameters and exhaust emissions of a diesel engine operating on nanodiesel blended fuels. In order to predict the engine parameters, the whole experimental data were randomly divided into training and testing data. For SVM modelling, different values for radial basis function (RBF) kernel width and penalty parameters (C) were considered and the optimum values were then found. The results demonstrate that SVM is capable of predicting the diesel engine performance and emissions. In the experimental step, Carbon nano tubes (CNT) (40, 80 and 120 ppm) and nano silver particles (40, 80 and 120 ppm) with nanostructure were prepared and added as additive to the diesel fuel. Six cylinders, four-stroke diesel engine was fuelled with these new blended fuels and operated at different engine speeds. Experimental test results indicated the fact that adding nano particles to diesel fuel, increased diesel engine power and torque output. For nano-diesel it was found that the brake specific fuel consumption (bsfc) was decreased compared to the net diesel fuel. The results proved that with increase of nano particles concentrations (from 40 ppm to 120 ppm) in diesel fuel, CO2 emission increased. CO emission in diesel fuel with nano-particles was lower significantly compared to pure diesel fuel. UHC emission with silver nano-diesel blended fuel decreased while with fuels that contains CNT nano particles increased. The trend of NOx emission was inverse compared to the UHC emission. With adding nano particles to the blended fuels, NOx increased compared to the net diesel fuel. The tests revealed that silver & CNT nano particles can be used as additive in diesel fuel to improve complete combustion of the fuel and reduce the exhaust emissions significantly.

  13. IMPACT OF DME-DIESEL FUEL BLEND PROPERTIES ON DIESEL FUEL INJECTION SYSTEMS

    SciTech Connect

    Elana M. Chapman; Andre Boehman; Kimberly Wain; Wallis Lloyd; Joseph M. Perez; Donald Stiver; Joseph Conway

    2004-04-01

    The objectives of this research program are to develop information on lubricity and viscosity improvers and their impact on the wear mechanisms in fuel injectors operating on blends of dimethyl ether (DME) and diesel fuel. Since DME is a fuel with no lubricity (i.e., it does not possess the lubricating quality of diesel fuel), conventional fuel delivery and fuel injection systems are not compatible with dimethyl ether. Therefore, to operate a diesel engine on DME one must develop a fuel-tolerant injection system, or find a way to provide the necessary lubricity to the DME. In the shuttle bus project, we have chosen the latter strategy in order to achieve the objective with minimal need to modify the engine. Our strategy is to blend DME with diesel fuel, to obtain the necessary lubricity to protect the fuel injection system and to achieve low emissions. In this project, we have sought to develop methods for extending the permissible DME content in the DME-diesel blends without experiencing rapid injector failure due to wear. Our activities have covered three areas: examination of the impact of lubricity additives on the viscosity of DME, development of a high-pressure lubricity test apparatus for studies of lubricity and viscosity improvers and development of an injector durability stand for evaluation of wear rates in fuel injectors. The first two of these areas have resulted in valuable information about the limitations of lubricity and viscosity additives that are presently available in terms of their impact on the viscosity of DME and on wear rates on injector hardware. The third area, that of development of an injector durability test stand, has not resulted in a functioning experiment. Some information is provided in this report to identify the remaining tasks that need to be performed to make the injector stand operational. The key observations from the work are that when blended at 25 wt.% in either diesel fuel or Biodiesel fuel, DME requires more than 5 wt

  14. Straight Vegetable Oil as a Diesel Fuel?

    SciTech Connect

    2014-01-01

    Biodiesel, a renewable fuel produced from animal fats or vegetable oils, is popular among many vehicle owners and fleet managers seeking to reduce emissions and support U.S. energy security. Questions sometimes arise about the viability of fueling vehicles with straight vegetable oil (SVO), or waste oils from cooking and other processes, without intermediate processing. But SVO and waste oils differ from biodiesel (and conventional diesel) in some important ways and are generally not considered acceptable vehicle fuels for large-scale or long-term use.

  15. Exhaust emissions of DI diesel engine using unconventional fuels

    NASA Astrophysics Data System (ADS)

    Sudrajad, Agung; Ali, Ismail; Hamdan, Hazmie; Hamzah, Mohd. Herzwan

    2012-06-01

    Optimization of using waste plastic and tire disposal fuel on diesel engine were observed. The experimental project was comparison between using both of unconventional fuel and base diesel fuel. The engine experiment was conducted with YANMAR TF120 single cylinder four stroke diesel engine set-up at variable engine speed at 2100, 1900, 1700, 1500 and 1300 rpm. The data have been taken at each point of engine speed during the stabilized engine-operating regime. Measurement of emissions parameters at different engine speed conditions have generally indicated lower in emission COfor waste plastic fuel, lower NOx for tire disposal fuel and lower SOx for diesel fuel.

  16. Adapting ethanol fuels to diesel engines

    SciTech Connect

    Not Available

    1981-08-01

    During the 2nd International Alcohol Symposium 1977, Daimler-Benz reported on the advantages and disadvantages of the various methods of using ethanol in originally diesel-operated commercial vehicles, and especially about the first results in the field of adapting the ethanol fuel to the requirements of conventional diesel engines. Investigations to this effect were continued by Daimler-Benz AG, Stuttgart, and Mercedes-Benz of Brasil in coordination with competent Brazilian government departments. The development effort is primarily adapted to Brazilian conditions, since ethanol fuel is intended as a long-term project in this country. This report is presented under headings - auto-ignition; durability tests; remedial measures; the injection systems; ethanol quality.

  17. IMPACT OF DME-DIESEL FUEL BLEND PROPERTIES ON DIESEL FUEL INJECTION SYSTEMS

    SciTech Connect

    Elana M. Chapman; Andre Boehman; Kimberly Wain; Wallis Lloyd; Joseph M. Perez; Donald Stiver; Joseph Conway

    2003-06-01

    The objectives of this research program are to develop information on lubricity and viscosity improvers and their impact on the wear mechanisms in fuel injectors operating on blends of dimethyl ether (DME) and diesel fuel. Since DME is a fuel with no lubricity (i.e., it does not possess the lubricating quality of diesel fuel), conventional fuel delivery and fuel injection systems are not compatible with dimethyl ether. Therefore, to operate a diesel engine on DME one must develop a fuel-tolerant injection system, or find a way to provide the necessary lubricity to the DME. In the shuttle bus project, we have chosen the latter strategy in order to achieve the objective with minimal need to modify the engine. Our strategy is to blend DME with diesel fuel, to obtain the necessary lubricity to protect the fuel injection system and to achieve low emissions. In this project, we have sought to develop methods for extending the permissible DME content in the DME-diesel blends without experiencing rapid injector failure due to wear. To date, our activities have covered three areas: examination of the impact of lubricity additives on the viscosity of DME, development of a high-pressure lubricity test apparatus for studies of lubricity and viscosity improvers and development of an injector durability stand for evaluation of wear rates in fuel injectors. This report provides summaries of the progress toward evaluation of the viscosity impacts of lubricity additives, completion of both experimental systems and a summary of the plan for completion of the project objectives.

  18. Advanced diesel electronic fuel injection and turbocharging

    NASA Astrophysics Data System (ADS)

    Beck, N. J.; Barkhimer, R. L.; Steinmeyer, D. C.; Kelly, J. E.

    1993-12-01

    The program investigated advanced diesel air charging and fuel injection systems to improve specific power, fuel economy, noise, exhaust emissions, and cold startability. The techniques explored included variable fuel injection rate shaping, variable injection timing, full-authority electronic engine control, turbo-compound cooling, regenerative air circulation as a cold start aid, and variable geometry turbocharging. A Servojet electronic fuel injection system was designed and manufactured for the Cummins VTA-903 engine. A special Servojet twin turbocharger exhaust system was also installed. A series of high speed combustion flame photos was taken using the single cylinder optical engine at Michigan Technological University. Various fuel injection rate shapes and nozzle configurations were evaluated. Single-cylinder bench tests were performed to evaluate regenerative inlet air heating techniques as an aid to cold starting. An exhaust-driven axial cooling air fan was manufactured and tested on the VTA-903 engine.

  19. 40 CFR 80.8 - Sampling methods for gasoline, diesel fuel, fuel additives, and renewable fuels.

    Code of Federal Regulations, 2014 CFR

    2014-07-01

    ... of the Federal Register under 5 U.S.C. 552(a) and 1 CFR part 51. To enforce any edition other than... 40 Protection of Environment 17 2014-07-01 2014-07-01 false Sampling methods for gasoline, diesel... Provisions § 80.8 Sampling methods for gasoline, diesel fuel, fuel additives, and renewable fuels....

  20. Sunflower oil methyl ester as diesel fuel

    SciTech Connect

    Hassett, D.J.; Hasan, R.A.

    1982-01-01

    Methyl ester formation represents one approach to overcome the problems associated with the relatively high viscosity of sunflower oil when used as a diesel fuel replacement. Sunflower oil methyl ester is being prepared at the University of North Dakota Engieering Experiment Station. Physical and chemical properties of this material at varying levels of refinement and purity will be used to define fuel properties. Engine testing is being carried out to determine if the fouling characteristics of methyl ester are significantly less than those of sunflower oil. 1 figure, 1 table.

  1. Combustion Characteristics of a Diesel Engine Using Propanol Diesel Fuel Blends

    NASA Astrophysics Data System (ADS)

    Muthaiyan, Pugazhvadivu; Gomathinayagam, Sankaranarayanan

    2016-03-01

    The objective of the work is to study the use of propanol diesel blends as alternative fuel in a single cylinder diesel engine. In this work, four different propanol diesel blends containing 10, 15, 20 and 25 % propanol in diesel by volume were used as fuels. Load tests were conducted on the diesel engine and the combustion parameters such as cylinder gas pressure, ignition delay, rate of heat release and rate of pressure rise were investigated. The engine performance and emission characteristics were also studied. The propanol diesel blends showed longer ignition delay, higher rates of heat release and pressure rise. The thermal efficiency of the engine decreased marginally with the use of fuel blends. The propanol diesel blends decreased the CO, NOX and smoke emissions of the engine considerably.

  2. Combustion Characteristics of a Diesel Engine Using Propanol Diesel Fuel Blends

    NASA Astrophysics Data System (ADS)

    Muthaiyan, Pugazhvadivu; Gomathinayagam, Sankaranarayanan

    2016-07-01

    The objective of the work is to study the use of propanol diesel blends as alternative fuel in a single cylinder diesel engine. In this work, four different propanol diesel blends containing 10, 15, 20 and 25 % propanol in diesel by volume were used as fuels. Load tests were conducted on the diesel engine and the combustion parameters such as cylinder gas pressure, ignition delay, rate of heat release and rate of pressure rise were investigated. The engine performance and emission characteristics were also studied. The propanol diesel blends showed longer ignition delay, higher rates of heat release and pressure rise. The thermal efficiency of the engine decreased marginally with the use of fuel blends. The propanol diesel blends decreased the CO, NOX and smoke emissions of the engine considerably.

  3. 46 CFR 56.50-75 - Diesel fuel systems.

    Code of Federal Regulations, 2011 CFR

    2011-10-01

    ... 46 Shipping 2 2011-10-01 2011-10-01 false Diesel fuel systems. 56.50-75 Section 56.50-75 Shipping... APPURTENANCES Design Requirements Pertaining to Specific Systems § 56.50-75 Diesel fuel systems. (a) Vessels greater than 100 gross tons. (1) The diesel fuel system shall comply with §§ 56.50-60, 56.50-85, and...

  4. 46 CFR 56.50-75 - Diesel fuel systems.

    Code of Federal Regulations, 2012 CFR

    2012-10-01

    ... 46 Shipping 2 2012-10-01 2012-10-01 false Diesel fuel systems. 56.50-75 Section 56.50-75 Shipping... APPURTENANCES Design Requirements Pertaining to Specific Systems § 56.50-75 Diesel fuel systems. (a) Vessels greater than 100 gross tons. (1) The diesel fuel system shall comply with §§ 56.50-60, 56.50-85, and...

  5. 46 CFR 56.50-75 - Diesel fuel systems.

    Code of Federal Regulations, 2013 CFR

    2013-10-01

    ... 46 Shipping 2 2013-10-01 2013-10-01 false Diesel fuel systems. 56.50-75 Section 56.50-75 Shipping... APPURTENANCES Design Requirements Pertaining to Specific Systems § 56.50-75 Diesel fuel systems. (a) Vessels greater than 100 gross tons. (1) The diesel fuel system shall comply with §§ 56.50-60, 56.50-85, and...

  6. 46 CFR 56.50-75 - Diesel fuel systems.

    Code of Federal Regulations, 2010 CFR

    2010-10-01

    ... 46 Shipping 2 2010-10-01 2010-10-01 false Diesel fuel systems. 56.50-75 Section 56.50-75 Shipping... APPURTENANCES Design Requirements Pertaining to Specific Systems § 56.50-75 Diesel fuel systems. (a) Vessels greater than 100 gross tons. (1) The diesel fuel system shall comply with §§ 56.50-60, 56.50-85, and...

  7. 46 CFR 56.50-75 - Diesel fuel systems.

    Code of Federal Regulations, 2014 CFR

    2014-10-01

    ... 46 Shipping 2 2014-10-01 2014-10-01 false Diesel fuel systems. 56.50-75 Section 56.50-75 Shipping... APPURTENANCES Design Requirements Pertaining to Specific Systems § 56.50-75 Diesel fuel systems. (a) Vessels greater than 100 gross tons. (1) The diesel fuel system shall comply with §§ 56.50-60, 56.50-85, and...

  8. Biodiesel: The clean, green fuel for diesel engines (fact sheet)

    SciTech Connect

    Tyson, K.S.

    2000-04-11

    Natural, renewable resources such as vegetable oils and recycled restaurant greases can be chemically transformed into clean-burning biodiesel fuels. As its name implies, biodiesel is like diesel fuel except that it's organically produced. It's also safe for the environment, biodegradable, and produces significantly less air pollution than diesel fuel.

  9. 46 CFR 58.50-10 - Diesel fuel tanks.

    Code of Federal Regulations, 2013 CFR

    2013-10-01

    ... 46 Shipping 2 2013-10-01 2013-10-01 false Diesel fuel tanks. 58.50-10 Section 58.50-10 Shipping COAST GUARD, DEPARTMENT OF HOMELAND SECURITY (CONTINUED) MARINE ENGINEERING MAIN AND AUXILIARY MACHINERY AND RELATED SYSTEMS Independent Fuel Tanks § 58.50-10 Diesel fuel tanks. (a) Construction. (1) Tanks may be of either cylindrical or...

  10. 46 CFR 169.615 - Diesel fuel systems.

    Code of Federal Regulations, 2014 CFR

    2014-10-01

    ... 46 Shipping 7 2014-10-01 2014-10-01 false Diesel fuel systems. 169.615 Section 169.615 Shipping COAST GUARD, DEPARTMENT OF HOMELAND SECURITY (CONTINUED) NAUTICAL SCHOOLS SAILING SCHOOL VESSELS Machinery and Electrical Fuel Systems § 169.615 Diesel fuel systems. (a) Except as provided in paragraph...

  11. AUTOMOTIVE DIESEL MAINTENANCE 1. UNIT III, MAINTAINING THE FUEL SYSTEM--DETROIT DIESEL ENGINE.

    ERIC Educational Resources Information Center

    Human Engineering Inst., Cleveland, OH.

    THIS MODULE OF A 30-MODULE COURSE IS DESIGNED TO DEVELOP AN UNDERSTANDING OF THE OPERATION AND MAINTENANCE OF THE DIESEL ENGINE FUEL SYSTEM. TOPICS ARE (1) PURPOSE OF THE FUEL SYSTEM, (2) TRACING THE FUEL FLOW, (3) MINOR COMPONENTS OF THE FUEL SYSTEM, (4) MAINTENANCE TIPS, (5) CONSTRUCTION AND FUNCTION OF THE FUEL INJECTORS, AND (6)…

  12. Renewable synthetic diesel fuel from triglycerides and organic waste materials

    SciTech Connect

    Hillard, J.C.; Strassburger, R.S.

    1986-03-01

    A renewable, synthetic diesel fuel has been developed that employs ethanol and organic waste materials. These organic materials, such as soybean oil or animal fats, are hydrolized to yield a mixture of solid soap like materials and glycerol. These soaps, now soluble in ethanol, are blended with ethanol; the glycerol is nitrated and added as well as castor oil when necessary. The synthetic fuel is tailored to match petroleum diesel fuel in viscosity, lubricity and cetane quality and, therefore, does not require any engine modifications. Testing in a laboratory engine and in a production Oldsmobile Cutlass has revealed that this synthetic fuel is superior to petroleum diesel fuel in vehicle efficiency, cetane quality, combustion noise, cold start characteristics, exhaust odor and emissions. Performance characteristics are indistinguishable from those of petroleum diesel fuel. These soaps are added to improve the calorific value, lubricity and cetane quality of the ethanol. The glycerol from the hydrolysis process is nitrated and added to the ethanol as an additional cetane quality improver. Caster oil is added to the fuel when necessary to match the viscosity and lubricity of petroleum diesel fuel as well as to act as a corrosion inhibitor, thereby, precluding any engine modifications. The cetane quality of the synthetic fuel is better than that of petroleum diesel as the fuel carries its own oxygen. The synthetic fuel is also completely miscible with petroleum diesel.

  13. 7 CFR 2902.13 - Diesel fuel additives.

    Code of Federal Regulations, 2011 CFR

    2011-01-01

    ... 7 Agriculture 15 2011-01-01 2011-01-01 false Diesel fuel additives. 2902.13 Section 2902.13 Agriculture Regulations of the Department of Agriculture (Continued) OFFICE OF ENERGY POLICY AND NEW USES... of carbon and/or hydrogen, that is intentionally added to diesel fuel (including any added to a...

  14. 7 CFR 3201.13 - Diesel fuel additives.

    Code of Federal Regulations, 2014 CFR

    2014-01-01

    ... 7 Agriculture 15 2014-01-01 2014-01-01 false Diesel fuel additives. 3201.13 Section 3201.13 Agriculture Regulations of the Department of Agriculture (Continued) OFFICE OF PROCUREMENT AND PROPERTY... Designated Items § 3201.13 Diesel fuel additives. (a) Definition. (1) Any substance, other than one...

  15. Maximizing the stability of pyrolysis oil/diesel fuel emulsions

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Several emulsions consisting of biomass pyrolysis oil (bio-oil) in diesel fuel were produced and analyzed for stability over time. An ultrasonic probe was used to generate microscopic droplets of bio-oil suspended in diesel fuel, and this emulsion was stabilized using surfactant chemicals. The most...

  16. 46 CFR 169.627 - Compartments containing diesel fuel tanks.

    Code of Federal Regulations, 2014 CFR

    2014-10-01

    ... 46 Shipping 7 2014-10-01 2014-10-01 false Compartments containing diesel fuel tanks. 169.627 Section 169.627 Shipping COAST GUARD, DEPARTMENT OF HOMELAND SECURITY (CONTINUED) NAUTICAL SCHOOLS SAILING SCHOOL VESSELS Machinery and Electrical Ventilation § 169.627 Compartments containing diesel fuel...

  17. 46 CFR 169.627 - Compartments containing diesel fuel tanks.

    Code of Federal Regulations, 2010 CFR

    2010-10-01

    ... 46 Shipping 7 2010-10-01 2010-10-01 false Compartments containing diesel fuel tanks. 169.627 Section 169.627 Shipping COAST GUARD, DEPARTMENT OF HOMELAND SECURITY (CONTINUED) NAUTICAL SCHOOLS SAILING SCHOOL VESSELS Machinery and Electrical Ventilation § 169.627 Compartments containing diesel fuel...

  18. 46 CFR 169.627 - Compartments containing diesel fuel tanks.

    Code of Federal Regulations, 2012 CFR

    2012-10-01

    ... 46 Shipping 7 2012-10-01 2012-10-01 false Compartments containing diesel fuel tanks. 169.627 Section 169.627 Shipping COAST GUARD, DEPARTMENT OF HOMELAND SECURITY (CONTINUED) NAUTICAL SCHOOLS SAILING SCHOOL VESSELS Machinery and Electrical Ventilation § 169.627 Compartments containing diesel fuel...

  19. 46 CFR 169.627 - Compartments containing diesel fuel tanks.

    Code of Federal Regulations, 2011 CFR

    2011-10-01

    ... 46 Shipping 7 2011-10-01 2011-10-01 false Compartments containing diesel fuel tanks. 169.627 Section 169.627 Shipping COAST GUARD, DEPARTMENT OF HOMELAND SECURITY (CONTINUED) NAUTICAL SCHOOLS SAILING SCHOOL VESSELS Machinery and Electrical Ventilation § 169.627 Compartments containing diesel fuel...

  20. The organic composition of diesel particulate matter, diesel fuel and engine oil of a non-road diesel generator.

    PubMed

    Liang, Fuyan; Lu, Mingming; Keener, Tim C; Liu, Zifei; Khang, Soon-Jai

    2005-10-01

    Diesel-powered equipment is known to emit significant quantities of fine particulate matter to the atmosphere. Numerous organic compounds can be adsorbed onto the surfaces of these inhalable particles, among which polycyclic aromatic hydrocarbons (PAHs) are considered potential occupational carcinogens. Guidelines have been established by various agencies regarding diesel emissions and various control technologies are under development. The purpose of this study is to identify, quantify and compare the organic compounds in diesel particulate matter (DPM) with the diesel fuel and engine oil used in a non-road diesel generator. Approximately 90 organic compounds were quantified (with molecular weight ranging from 120 to 350), which include alkanes, PAHs, alkylated PAHs, alkylbenzenes and alkanoic acids. The low sulfur diesel fuel contains 61% alkanes and 7.1% of PAHs. The identifiable portion of the engine oil contains mainly the alkanoic and benzoic acids. The composition of DPM suggests that they may be originated from unburned diesel fuel, engine oil evaporation and combustion generated products. Compared with diesel fuel, DPM contains fewer fractions of alkanes and more PAH compounds, with the shift toward higher molecular weight ones. The enrichment of compounds with higher molecular weight in DPM may be combustion related (pyrogenic). PMID:16193170

  1. Vegetable oil or diesel fuel-a flexible option

    SciTech Connect

    Suda, K.J.

    1984-01-01

    Vegetable oils provide diesel engine performance similar to that obtained with diesel fuel, and this has been documented in many prior publications. Because they are potentially interchangeable with diesel fuel, interest has focused on vegetable oils as short-range alternate fuels. However, engine durability when burning vegetable oils may be adversely affected depending on the type of combustion system employed. Laboratory and field experimental tests have identified the prechamber engine as having the greatest short-range potential for using vegetable oil fuels.

  2. High Performance Diesel Fueled Cabin Heater

    SciTech Connect

    Butcher, Tom

    2001-08-05

    Recent DOE-OHVT studies show that diesel emissions and fuel consumption can be greatly reduced at truck stops by switching from engine idle to auxiliary-fired heaters. Brookhaven National Laboratory (BNL) has studied high performance diesel burner designs that address the shortcomings of current low fire-rate burners. Initial test results suggest a real opportunity for the development of a truly advanced truck heating system. The BNL approach is to use a low pressure, air-atomized burner derived form burner designs used commonly in gas turbine combustors. This paper reviews the design and test results of the BNL diesel fueled cabin heater. The burner design is covered by U.S. Patent 6,102,687 and was issued to U.S. DOE on August 15, 2000.The development of several novel oil burner applications based on low-pressure air atomization is described. The atomizer used is a pre-filming, air blast nozzle of the type commonly used in gas turbine combustion. The air pressure used can b e as low as 1300 Pa and such pressure can be easily achieved with a fan. Advantages over conventional, pressure-atomized nozzles include ability to operate at low input rates without very small passages and much lower fuel pressure requirements. At very low firing rates the small passage sizes in pressure swirl nozzles lead to poor reliability and this factor has practically constrained these burners to firing rates over 14 kW. Air atomization can be used very effectively at low firing rates to overcome this concern. However, many air atomizer designs require pressures that can be achieved only with a compressor, greatly complicating the burner package and increasing cost. The work described in this paper has been aimed at the practical adaptation of low-pressure air atomization to low input oil burners. The objective of this work is the development of burners that can achieve the benefits of air atomization with air pressures practically achievable with a simple burner fan.

  3. The use of saponified vegetable oil distillates/ethanol microcellular solution as a diesel fuel

    SciTech Connect

    Savage, L.D.; Birell, S.; Goering, C.E.

    1988-01-01

    Vegetable oils are considered possible replacement fuels for diesel engines; however, past research has shown that long term engine durability is adversely affected by the use of these fuels. Most researchers have attempted to reduce the problems associated with vegetable oil fuels either by the formation of vegetable oil/diesel blends or the esterfication of the vegetable oils. In this investigation of an alternative approach, the performance of saponified soybean oil/aqueous ethanol microcellular solutions were tested in a single-cylinder, direct injection, air-cooled diesel engine. The products of the pyrolytic distillation of crude soybean oil were mixed with 150 proof ethanol in the ratio of 4:1 by volume and saponified with anhydrous ammonia gas. This ''parent fuel'' was then diluted with 150 proof ethanol to obtain two test fuels, one with 30 percent ethanol concentration and the other with 40 percent ethanol concentration. The fuels were used in the engine under various loads at two speeds, and the performance was compared to the performance using No. 2-D commercial diesel fuel.

  4. 26 CFR 48.4082-2 - Diesel fuel and kerosene; notice required for dyed fuel.

    Code of Federal Regulations, 2013 CFR

    2013-04-01

    ... dyed fuel. 48.4082-2 Section 48.4082-2 Internal Revenue INTERNAL REVENUE SERVICE, DEPARTMENT OF THE... required for dyed fuel. (a) In general. A legible and conspicuous notice stating “DYED DIESEL FUEL... facility where it sells dyed diesel fuel for use by its buyer. A legible and conspicuous notice...

  5. 26 CFR 48.4082-1 - Diesel fuel and kerosene; exemption for dyed fuel.

    Code of Federal Regulations, 2013 CFR

    2013-04-01

    ... 26 Internal Revenue 16 2013-04-01 2013-04-01 false Diesel fuel and kerosene; exemption for dyed..., Tread Rubber, and Taxable Fuel Taxable Fuel § 48.4082-1 Diesel fuel and kerosene; exemption for dyed... kerosene satisfies the dyeing and marking requirements of paragraphs (b), (c), and (d) of this section....

  6. 26 CFR 48.4082-2 - Diesel fuel and kerosene; notice required for dyed fuel.

    Code of Federal Regulations, 2012 CFR

    2012-04-01

    ... dyed fuel. 48.4082-2 Section 48.4082-2 Internal Revenue INTERNAL REVENUE SERVICE, DEPARTMENT OF THE... required for dyed fuel. (a) In general. A legible and conspicuous notice stating “DYED DIESEL FUEL... facility where it sells dyed diesel fuel for use by its buyer. A legible and conspicuous notice...

  7. 26 CFR 48.4082-1 - Diesel fuel and kerosene; exemption for dyed fuel.

    Code of Federal Regulations, 2011 CFR

    2011-04-01

    ... 26 Internal Revenue 16 2011-04-01 2011-04-01 false Diesel fuel and kerosene; exemption for dyed..., Tread Rubber, and Taxable Fuel Taxable Fuel § 48.4082-1 Diesel fuel and kerosene; exemption for dyed... kerosene satisfies the dyeing and marking requirements of paragraphs (b), (c), and (d) of this section....

  8. 26 CFR 48.4082-1 - Diesel fuel and kerosene; exemption for dyed fuel.

    Code of Federal Regulations, 2010 CFR

    2010-04-01

    ... 26 Internal Revenue 16 2010-04-01 2010-04-01 true Diesel fuel and kerosene; exemption for dyed..., Tread Rubber, and Taxable Fuel Taxable Fuel § 48.4082-1 Diesel fuel and kerosene; exemption for dyed... kerosene satisfies the dyeing and marking requirements of paragraphs (b), (c), and (d) of this section....

  9. 26 CFR 48.4082-2 - Diesel fuel and kerosene; notice required for dyed fuel.

    Code of Federal Regulations, 2010 CFR

    2010-04-01

    ... dyed fuel. 48.4082-2 Section 48.4082-2 Internal Revenue INTERNAL REVENUE SERVICE, DEPARTMENT OF THE... required for dyed fuel. (a) In general. A legible and conspicuous notice stating “DYED DIESEL FUEL... facility where it sells dyed diesel fuel for use by its buyer. A legible and conspicuous notice...

  10. 26 CFR 48.4082-1 - Diesel fuel and kerosene; exemption for dyed fuel.

    Code of Federal Regulations, 2012 CFR

    2012-04-01

    ... 26 Internal Revenue 16 2012-04-01 2012-04-01 false Diesel fuel and kerosene; exemption for dyed..., Tread Rubber, and Taxable Fuel Taxable Fuel § 48.4082-1 Diesel fuel and kerosene; exemption for dyed... kerosene satisfies the dyeing and marking requirements of paragraphs (b), (c), and (d) of this section....

  11. 26 CFR 48.4082-2 - Diesel fuel and kerosene; notice required for dyed fuel.

    Code of Federal Regulations, 2011 CFR

    2011-04-01

    ... dyed fuel. 48.4082-2 Section 48.4082-2 Internal Revenue INTERNAL REVENUE SERVICE, DEPARTMENT OF THE... required for dyed fuel. (a) In general. A legible and conspicuous notice stating “DYED DIESEL FUEL... facility where it sells dyed diesel fuel for use by its buyer. A legible and conspicuous notice...

  12. 7 CFR 2902.13 - Diesel fuel additives.

    Code of Federal Regulations, 2010 CFR

    2010-01-01

    ... vehicle's fuel system) and that is not intentionally removed prior to sale or use. (2) Neat biodiesel, also referred to as B100, when used as an additive. Diesel fuel additive does not mean neat biodiesel when used as a fuel or blended biodiesel fuel (e.g., B20). (b) Minimum biobased content. The...

  13. 40 CFR 80.602 - What records must be kept by entities in the NRLM diesel fuel, ECA marine fuel, and diesel fuel...

    Code of Federal Regulations, 2014 CFR

    2014-07-01

    ... yellow 124 content or dye solvent red 164 content of NRLM diesel fuel, ECA marine fuel, NRLM diesel fuel... index or aromatics content, dye solvent red 164, marker solvent yellow 124 (as applicable), and the... with solvent yellow 124. (5) For foreign refiners and importers of their fuel, the designations...

  14. 40 CFR 80.602 - What records must be kept by entities in the NRLM diesel fuel, ECA marine fuel, and diesel fuel...

    Code of Federal Regulations, 2013 CFR

    2013-07-01

    ... yellow 124 content or dye solvent red 164 content of NRLM diesel fuel, ECA marine fuel, NRLM diesel fuel... index or aromatics content, dye solvent red 164, marker solvent yellow 124 (as applicable), and the... with solvent yellow 124. (5) For foreign refiners and importers of their fuel, the designations...

  15. Pneumonia caused by diesel fuel aspiration.

    PubMed

    Haciomeroglu, Osman; Ekinci, Gulbanu Horzum; Ongel, Esra Akkutuk; Kavas, Murat; Burunsuzoglu, Bunyamin; Ozel, Yasemin; Yilmaz, Adnan

    2014-11-01

    An 18 years old Turkish boy was admitted to hospital due to cough, chest pain and shortness of breath for 4 days. Twentyfour hours before the onset of symptoms, the patient had accidentally aspirated diesel while siphoning from the fuel tank of a car. On admission, he was febrile and tachypnoeic. There were fine crackles on auscultation of the lungs. Chest X-ray revealed bilateral infiltration in the lower lung zones. Arterial blood gas analysis showed pH of 7.42, PaO2 of 45.6 mmHg, PaCO2 of 41.3 mmHg and oxygen saturation of 85.2%. He was treated with course of corticosteroid, antibiotic and oxygen supplementation. Chest X-ray showed near-complete resolution 2 weeks after discharge. PMID:25518800

  16. Effect of sunflower oil on a diesel fuel system

    SciTech Connect

    Kucera, H.; Schunk, S.; Pratt, G.

    1982-05-01

    A typical farm tractor diesel fuel system (injection pump, fuel lines, filters and injectors) was tested on a test stand at various temperatures using sunflower oil, diesel fuel, and mixtures of the two as fuels. Measurements taken included fuel volume delivered by the injector line pressure at the injector, pressure drop across the filter, transfer pump pressure, and fuel injection timing. Results indicate that low percentages of sunflower oil may be used successfully in the system under summer conditions. Design changes to the system may be necessary for higher percentages of sunflower oil and cold conditions.

  17. 30 CFR 75.1905-1 - Diesel fuel piping systems.

    Code of Federal Regulations, 2013 CFR

    2013-07-01

    ... 30 Mineral Resources 1 2013-07-01 2013-07-01 false Diesel fuel piping systems. 75.1905-1 Section 75.1905-1 Mineral Resources MINE SAFETY AND HEALTH ADMINISTRATION, DEPARTMENT OF LABOR COAL MINE SAFETY AND HEALTH MANDATORY SAFETY STANDARDS-UNDERGROUND COAL MINES Diesel-Powered Equipment §...

  18. 30 CFR 75.1905-1 - Diesel fuel piping systems.

    Code of Federal Regulations, 2012 CFR

    2012-07-01

    ... 30 Mineral Resources 1 2012-07-01 2012-07-01 false Diesel fuel piping systems. 75.1905-1 Section 75.1905-1 Mineral Resources MINE SAFETY AND HEALTH ADMINISTRATION, DEPARTMENT OF LABOR COAL MINE SAFETY AND HEALTH MANDATORY SAFETY STANDARDS-UNDERGROUND COAL MINES Diesel-Powered Equipment §...

  19. 30 CFR 75.1905-1 - Diesel fuel piping systems.

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ... 30 Mineral Resources 1 2011-07-01 2011-07-01 false Diesel fuel piping systems. 75.1905-1 Section 75.1905-1 Mineral Resources MINE SAFETY AND HEALTH ADMINISTRATION, DEPARTMENT OF LABOR COAL MINE SAFETY AND HEALTH MANDATORY SAFETY STANDARDS-UNDERGROUND COAL MINES Diesel-Powered Equipment §...

  20. 30 CFR 75.1905-1 - Diesel fuel piping systems.

    Code of Federal Regulations, 2014 CFR

    2014-07-01

    ... 30 Mineral Resources 1 2014-07-01 2014-07-01 false Diesel fuel piping systems. 75.1905-1 Section 75.1905-1 Mineral Resources MINE SAFETY AND HEALTH ADMINISTRATION, DEPARTMENT OF LABOR COAL MINE SAFETY AND HEALTH MANDATORY SAFETY STANDARDS-UNDERGROUND COAL MINES Diesel-Powered Equipment §...

  1. 30 CFR 75.1906 - Transport of diesel fuel.

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ... transporting safety cans containing diesel fuel must have at least two multipurpose, dry chemical type (ABC) fire extinguishers, listed or approved by a nationally recognized independent testing laboratory and... HEALTH MANDATORY SAFETY STANDARDS-UNDERGROUND COAL MINES Diesel-Powered Equipment § 75.1906 Transport...

  2. 40 CFR 80.536 - How are NRLM diesel fuel credits used and transferred?

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... 40 Protection of Environment 16 2010-07-01 2010-07-01 false How are NRLM diesel fuel credits used... (CONTINUED) AIR PROGRAMS (CONTINUED) REGULATION OF FUELS AND FUEL ADDITIVES Motor Vehicle Diesel Fuel; Nonroad, Locomotive, and Marine Diesel Fuel; and ECA Marine Fuel Temporary Compliance Option § 80.536...

  3. 40 CFR 80.531 - How are motor vehicle diesel fuel credits generated?

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... 40 Protection of Environment 16 2010-07-01 2010-07-01 false How are motor vehicle diesel fuel... (CONTINUED) AIR PROGRAMS (CONTINUED) REGULATION OF FUELS AND FUEL ADDITIVES Motor Vehicle Diesel Fuel; Nonroad, Locomotive, and Marine Diesel Fuel; and ECA Marine Fuel Temporary Compliance Option § 80.531...

  4. 40 CFR 80.554 - What compliance options are available to NRLM diesel fuel small refiners?

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... to NRLM diesel fuel small refiners? 80.554 Section 80.554 Protection of Environment ENVIRONMENTAL PROTECTION AGENCY (CONTINUED) AIR PROGRAMS (CONTINUED) REGULATION OF FUELS AND FUEL ADDITIVES Motor Vehicle Diesel Fuel; Nonroad, Locomotive, and Marine Diesel Fuel; and ECA Marine Fuel Small Refiner...

  5. 40 CFR 80.535 - How are NRLM diesel fuel credits generated?

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... 40 Protection of Environment 16 2010-07-01 2010-07-01 false How are NRLM diesel fuel credits... PROGRAMS (CONTINUED) REGULATION OF FUELS AND FUEL ADDITIVES Motor Vehicle Diesel Fuel; Nonroad, Locomotive, and Marine Diesel Fuel; and ECA Marine Fuel Temporary Compliance Option § 80.535 How are NRLM...

  6. 40 CFR 80.532 - How are motor vehicle diesel fuel credits used and transferred?

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... 40 Protection of Environment 16 2010-07-01 2010-07-01 false How are motor vehicle diesel fuel... AGENCY (CONTINUED) AIR PROGRAMS (CONTINUED) REGULATION OF FUELS AND FUEL ADDITIVES Motor Vehicle Diesel Fuel; Nonroad, Locomotive, and Marine Diesel Fuel; and ECA Marine Fuel Temporary Compliance Option §...

  7. 40 CFR 80.512 - May an importer treat diesel fuel as blendstock?

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... 40 Protection of Environment 16 2010-07-01 2010-07-01 false May an importer treat diesel fuel as... PROGRAMS (CONTINUED) REGULATION OF FUELS AND FUEL ADDITIVES Motor Vehicle Diesel Fuel; Nonroad, Locomotive, and Marine Diesel Fuel; and ECA Marine Fuel General Information § 80.512 May an importer treat...

  8. 40 CFR 80.554 - What compliance options are available to NRLM diesel fuel small refiners?

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ... to NRLM diesel fuel small refiners? 80.554 Section 80.554 Protection of Environment ENVIRONMENTAL PROTECTION AGENCY (CONTINUED) AIR PROGRAMS (CONTINUED) REGULATION OF FUELS AND FUEL ADDITIVES Motor Vehicle Diesel Fuel; Nonroad, Locomotive, and Marine Diesel Fuel; and ECA Marine Fuel Small Refiner...

  9. 40 CFR 80.512 - May an importer treat diesel fuel as blendstock?

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ... 40 Protection of Environment 16 2011-07-01 2011-07-01 false May an importer treat diesel fuel as... PROGRAMS (CONTINUED) REGULATION OF FUELS AND FUEL ADDITIVES Motor Vehicle Diesel Fuel; Nonroad, Locomotive, and Marine Diesel Fuel; and ECA Marine Fuel General Information § 80.512 May an importer treat...

  10. 40 CFR 80.532 - How are motor vehicle diesel fuel credits used and transferred?

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ... 40 Protection of Environment 16 2011-07-01 2011-07-01 false How are motor vehicle diesel fuel... AGENCY (CONTINUED) AIR PROGRAMS (CONTINUED) REGULATION OF FUELS AND FUEL ADDITIVES Motor Vehicle Diesel Fuel; Nonroad, Locomotive, and Marine Diesel Fuel; and ECA Marine Fuel Temporary Compliance Option §...

  11. 40 CFR 80.535 - How are NRLM diesel fuel credits generated?

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ... 40 Protection of Environment 16 2011-07-01 2011-07-01 false How are NRLM diesel fuel credits... PROGRAMS (CONTINUED) REGULATION OF FUELS AND FUEL ADDITIVES Motor Vehicle Diesel Fuel; Nonroad, Locomotive, and Marine Diesel Fuel; and ECA Marine Fuel Temporary Compliance Option § 80.535 How are NRLM...

  12. 40 CFR 80.531 - How are motor vehicle diesel fuel credits generated?

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ... 40 Protection of Environment 16 2011-07-01 2011-07-01 false How are motor vehicle diesel fuel... (CONTINUED) AIR PROGRAMS (CONTINUED) REGULATION OF FUELS AND FUEL ADDITIVES Motor Vehicle Diesel Fuel; Nonroad, Locomotive, and Marine Diesel Fuel; and ECA Marine Fuel Temporary Compliance Option § 80.531...

  13. 40 CFR 80.536 - How are NRLM diesel fuel credits used and transferred?

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ... 40 Protection of Environment 16 2011-07-01 2011-07-01 false How are NRLM diesel fuel credits used... (CONTINUED) AIR PROGRAMS (CONTINUED) REGULATION OF FUELS AND FUEL ADDITIVES Motor Vehicle Diesel Fuel; Nonroad, Locomotive, and Marine Diesel Fuel; and ECA Marine Fuel Temporary Compliance Option § 80.536...

  14. High-alcohol microemulsion fuel performance in a diesel engine

    SciTech Connect

    West, B.H.; Compere, A.L.; Griffith, W.L.

    1990-01-01

    Incidence of methanol use in diesel engines is increasing rapidly due to the potential to reduce both diesel particulate emissions and petroleum consumption. Because simple alcohols and conventional diesel fuel are normally immiscible, most tests to date have used neat to near-neat alcohol, or blends incorporating surfactants or other alcohols. Alcohol's poor ignition quality usually necssitates the use of often expensive cetane enhancers, full-time glow plugs, or spark assist. Reported herein are results of screening tests of clear microemulsion and micellar fuels which contain 10 to 65% C{sub 1}--C{sub 4} alcohol. Ignition performance and NO emissions were measured for clear, stable fuel blends containing alcohols, diesel fuel and additives such as alkyl nitrates, acrylic acids, and several vegetable oil derivatives. Using a diesel engine calibrated with reference fuels, cetane numbers for fifty four blends were estimated. The apparent cetane numbers ranged from around 20 to above 50 with the majority between 30 and 45. Emissions of nitric oxide were measured for a few select fuels and were found to be 10 to 20% lower than No. 2 diesel fuel. 36 refs., 87 figs., 8 tabs.

  15. [98e]-Catalytic reforming of gasoline and diesel fuel

    SciTech Connect

    Pereira, C.; Wilkenhoener, R.; Ahmed, S.; Krumpelt, M.

    2000-02-29

    Argonne National Laboratory is developing a fuel processor for converting liquid hydrocarbon fuels to a hydrogen-rich product suitable for a polymer electrolyte fuel cell stack. The processor uses an autothermal reformer to convert the feed to a mixture of hydrogen, carbon dioxide, carbon monoxide and water with trace quantities of other components. The carbon monoxide in the product gas is then converted to carbon dioxide in water-gas shift and preferential oxidation reactors. Fuels that have been tested include standard and low-sulfur gasoline and diesel fuel, and Fischer-Tropsch fuels. Iso-octane and n-hexadecane were also examined as surrogates for gasoline and diesel, respectively. Complete conversion of gasoline was achieved at 750 C in a microreactor over a novel catalyst developed at Argonne. Diesel fuel was completely converted at 850 C over this same catalyst. Product streams contained greater than 60% hydrogen on a dry, nitrogen-free basis with iso-octane, gasoline, and n-hexadecane. For a diesel fuel, product streams contained >50% hydrogen on a dry, nitrogen-free basis. The catalyst activity did not significantly decrease over >16 hours operation with the diesel fuel feed. Coke formation was not observed. The carbon monoxide fraction of the product gas could be reduced to as low as 1% on a dry, nitrogen-free basis when the water-gas shift reactors were used in tandem with the reformer.

  16. Effect of carbon coating on scuffing performance in diesel fuels

    SciTech Connect

    Ajayi, O. O.; Alzoubi, M. F.; Erdemir, A.; Fenske, G. R.

    2000-06-29

    Low-sulfur and low-aromatic diesel fuels are being introduced in order to reduce various types of emissions in diesel engines to levels in compliance with current and impending US federal regulations. The low lubricity of these fuels, however, poses major reliability and durability problems for fuel injection components that depend on diesel fuel for their lubrication. In the present study, the authors evaluated the scuff resistance of surfaces in regular diesel fuel containing 500 ppm sulfur and in Fischer-Tropsch synthetic diesel fuel containing no sulfur or aromatics. Tests were conducted with the high frequency reciprocating test rig (HFRR) using 52100 steel balls and H-13 tool-steel flats with and without Argonne's special carbon coatings. Test results showed that the sulfur-containing fuels provide about 20% higher scuffing resistance than does fuel without sulfur. Use of the carbon coating on the flat increased scuffing resistance in both regular and synthetic fuels by about ten times, as measured by the contact severity index at scuffing. Scuffing failure in tests conducted with coated surfaces did not occur until the coating had been removed by the two distinct mechanisms of spalling and wear.

  17. Engine tests using high-sulfur diesel fuel. Final report

    SciTech Connect

    Frame, E.A.; Moon, R.B.

    1980-09-01

    This report covers the engine test evaluation of an organo-zinc additive for its effectiveness in combating the deleterious effects of using high-sulfur diesel fuel in a two-cycle U.S. Army diesel engine. The report also covers the 6V-53T testing of a preservative engine oil which in previous testing had shown promise in controlling the effects of using high-sulfur fuel.

  18. 40 CFR 80.581 - What are the batch testing and sample retention requirements for motor vehicle diesel fuel, NRLM...

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... retention requirements for motor vehicle diesel fuel, NRLM diesel fuel, and ECA marine fuel? 80.581 Section...) REGULATION OF FUELS AND FUEL ADDITIVES Motor Vehicle Diesel Fuel; Nonroad, Locomotive, and Marine Diesel Fuel; and ECA Marine Fuel Sampling and Testing § 80.581 What are the batch testing and sample...

  19. 40 CFR 80.581 - What are the batch testing and sample retention requirements for motor vehicle diesel fuel, NRLM...

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ... retention requirements for motor vehicle diesel fuel, NRLM diesel fuel, and ECA marine fuel? 80.581 Section...) REGULATION OF FUELS AND FUEL ADDITIVES Motor Vehicle Diesel Fuel; Nonroad, Locomotive, and Marine Diesel Fuel; and ECA Marine Fuel Sampling and Testing § 80.581 What are the batch testing and sample...

  20. 30. Launch Area, Generator Building, interior view showing diesel fuel ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    30. Launch Area, Generator Building, interior view showing diesel fuel tank, fuel pump (foreground) and fuel lines leading to power-generating units (removed) VIEW NORTHWEST - NIKE Missile Battery PR-79, Launch Area, East Windsor Road south of State Route 101, Foster, Providence County, RI

  1. 30 CFR 75.1902 - Underground diesel fuel storage-general requirements.

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... 30 Mineral Resources 1 2010-07-01 2010-07-01 false Underground diesel fuel storage-general... LABOR COAL MINE SAFETY AND HEALTH MANDATORY SAFETY STANDARDS-UNDERGROUND COAL MINES Diesel-Powered Equipment § 75.1902 Underground diesel fuel storage—general requirements. (a) All diesel fuel must be...

  2. 26 CFR 48.6427-8 - Diesel fuel and kerosene; claims by ultimate purchasers.

    Code of Federal Regulations, 2012 CFR

    2012-04-01

    ... other than as a fuel in a propulsion engine of a diesel-powered highway vehicle; or (D) Used as a fuel... fuel was used other than as a fuel in a propulsion engine of a diesel-powered highway vehicle (thus... propulsion engine of a diesel-powered highway vehicle and the use of the fuel for residential heating is...

  3. 26 CFR 48.6427-8 - Diesel fuel and kerosene; claims by ultimate purchasers.

    Code of Federal Regulations, 2013 CFR

    2013-04-01

    ... other than as a fuel in a propulsion engine of a diesel-powered highway vehicle; or (D) Used as a fuel... fuel was used other than as a fuel in a propulsion engine of a diesel-powered highway vehicle (thus... propulsion engine of a diesel-powered highway vehicle and the use of the fuel for residential heating is...

  4. 26 CFR 48.6427-8 - Diesel fuel and kerosene; claims by ultimate purchasers.

    Code of Federal Regulations, 2011 CFR

    2011-04-01

    ... other than as a fuel in a propulsion engine of a diesel-powered highway vehicle; or (D) Used as a fuel... fuel was used other than as a fuel in a propulsion engine of a diesel-powered highway vehicle (thus... propulsion engine of a diesel-powered highway vehicle and the use of the fuel for residential heating is...

  5. 26 CFR 48.4082-4 - Diesel fuel and kerosene; back-up tax.

    Code of Federal Regulations, 2012 CFR

    2012-04-01

    ... propulsion engine of a diesel-powered highway vehicle (other than a diesel-powered bus) of— (i) Any diesel... 26 Internal Revenue 16 2012-04-01 2012-04-01 false Diesel fuel and kerosene; back-up tax. 48.4082..., and Taxable Fuel Taxable Fuel § 48.4082-4 Diesel fuel and kerosene; back-up tax. (a) Imposition of...

  6. Improvement of fuel injection system of locomotive diesel engine.

    PubMed

    Li, Minghai; Cui, Hongjiang; Wang, Juan; Guan, Ying

    2009-01-01

    The traditional locomotive diesels are usually designed for the performance of rated condition and much fuel will be consumed. A new plunger piston matching parts of fuel injection pump and injector nozzle matching parts were designed. The experimental results of fuel injection pump test and diesel engine show that the fuel consumption rate can be decreased a lot in the most of the working conditions. The forced lubrication is adopted for the new injector nozzle matching parts, which can reduce failure rate and increase service life. The design has been patented by Chinese State Patent Office. PMID:25084413

  7. Effects of mixing system and pilot fuel quality on diesel-biogas dual fuel engine performance.

    PubMed

    Bedoya, Iván Darío; Arrieta, Andrés Amell; Cadavid, Francisco Javier

    2009-12-01

    This paper describes results obtained from CI engine performance running on dual fuel mode at fixed engine speed and four loads, varying the mixing system and pilot fuel quality, associated with fuel composition and cetane number. The experiments were carried out on a power generation diesel engine at 1500 m above sea level, with simulated biogas (60% CH(4)-40% CO(2)) as primary fuel, and diesel and palm oil biodiesel as pilot fuels. Dual fuel engine performance using a naturally aspirated mixing system and diesel as pilot fuel was compared with engine performance attained with a supercharged mixing system and biodiesel as pilot fuel. For all loads evaluated, was possible to achieve full diesel substitution using biogas and biodiesel as power sources. Using the supercharged mixing system combined with biodiesel as pilot fuel, thermal efficiency and substitution of pilot fuel were increased, whereas methane and carbon monoxide emissions were reduced. PMID:19683439

  8. Hydrogen Gas as a Fuel in Direct Injection Diesel Engine

    NASA Astrophysics Data System (ADS)

    Dhanasekaran, Chinnathambi; Mohankumar, Gabriael

    2016-04-01

    Hydrogen is expected to be one of the most important fuels in the near future for solving the problem caused by the greenhouse gases, for protecting environment and saving conventional fuels. In this study, a dual fuel engine of hydrogen and diesel was investigated. Hydrogen was conceded through the intake port, and simultaneously air and diesel was pervaded into the cylinder. Using electronic gas injector and electronic control unit, the injection timing and duration varied. In this investigation, a single cylinder, KIRLOSKAR AV1, DI Diesel engine was used. Hydrogen injection timing was fixed at TDC and injection duration was timed for 30°, 60°, and 90° crank angles. The injection timing of diesel was fixed at 23° BTDC. When hydrogen is mixed with inlet air, emanation of HC, CO and CO2 decreased without any emission (exhaustion) of smoke while increasing the brake thermal efficiency.

  9. Diesel cogeneration plant using oxygen enriched air and emulsified fuels

    SciTech Connect

    Marciniak, T.J.; Cole, R.L.; Sekar, R.R.; Stodolsky, F. ); Eustis, J.N. )

    1990-01-01

    The investigation of oxygen-enriched combustion of alternative fuels in diesel engines at Argonne National Laboratory (ANL) is based on information gathered from two previous Department of Energy programs. The first was the slow-speed diesel engine program which used fuels such as coal-water slurry and coal derived liquid fuels in a slow speed diesel engine. The second was the development of membrane oxygen separation equipment. The results of these programs indicated that using the new membrane oxygen enrichment technology with medium- and high-speed diesel engines would do two things. First, oxygen enrichment could reduce some emissions from stationary diesel engines, particularly smoke, particulates and hydrocarbons while significantly increasing power output. The second, was that it might be possible to use less expensive liquid fuels such as No. 4, No. 6 and residual oil emulsified with water in medium- to high-speed diesel engines. The water would (1) help to eliminate the undesirable increase in nitrogen oxide production when enriched oxygen is used, and (2) by reducing the viscosity of the heavier liquid fuels, make them easier to use in smaller industrial cogeneration applications. This program consists of four steps: preliminary feasibility study, exploratory experiments, system development, and demonstration and commercialization of an industrial cogeneration system. 3 refs., 13 figs.

  10. 40 CFR 600.206-93 - Calculation and use of fuel economy values for gasoline-fueled, diesel-fueled, electric, alcohol...

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... values for gasoline-fueled, diesel-fueled, electric, alcohol-fueled, natural gas-fueled, alcohol dual fuel, and natural gas dual fuel vehicle configurations. 600.206-93 Section 600.206-93 Protection of... gasoline-fueled, diesel-fueled, electric, alcohol-fueled, natural gas-fueled, alcohol dual fuel,...

  11. Vegetable oil or diesel fuel-a flexible option

    SciTech Connect

    Suda, K.J.

    1984-02-01

    Vegetable oils provide diesel engine performance similar to that obtained with diesel fuel, and this has been documented in many prior publications. Because they are potentially interchangeable with diesel fuel, interest has focused on vegetable oils as short-range alternate fuels. However, engine durability when burning vegetable oils may be adversely affected depending on the type of combustion system employed. Laboratory and field experimental tests have identified the prechamber engine as having the greatest short-range potential for using vegetable oil fuels. Performance and durability at low engine ratings are essentially the same as expected for operation on diesel fuel. However, at high engine ratings piston ring and cylinder linear wear are greater than expected for operation on diesel fuel. A laboratory program was successfully completed which resulted in a combustion system that would allow the higher rated prechamber engines to achieve normal life when burning 100% soybean oil. Fluid model tests utilizing high speed photography, single-cylinder engine tests utilizing fuel tracers, and a 200-hour multicylinder durability test were included. Extended endurance tests and experience with other vegetable oils are still required.

  12. Vegetable oils: Precombustion characteristics and performance as diesel fuels

    SciTech Connect

    Bagby, M.O.

    1986-03-01

    Vegetable oils show technical promise as alternative fuels for diesel engines and have good potential as emergency fuels. Realistically, vegetable oils cause a number of problems when used in direct-injection diesel engines, generally attributable to inefficient combustion. At least partially responsible for poor combustion of neat vegetable oils are their high viscosity and non-volatility. To improve combustion several somewhat empirical approaches involving both chemical and physical modifications have been investigated by endurance tests in a variety of engines. Using the EMA 200 h engine screening test, several fuels show technical promise. These include methyl, ethyl, and butyl esters; high-oleic oils:diesel blend (1:3); diesel:soybean oil:butanol:cetane improver (33:33:33:1); and microemulsion fuels (diesel:soybean oil:190 proff ethanol:butanol, 50:25:5:20) and (soybean oil:methanol:2-octanol:cetane improver, 53:13:33:1). Using a pressure vessel, fuel injection system, and high speed motion picture camera, fuel injection characteristics of vegetable oils, e.g., soybean, sunflower, cottonseed, and peanut, have been observed in a quiescent nitrogen atmosphere at 480/sup 0/C and 4.1MPa. Their injection and atomization characteristics are markedly different from those of petroleum derived diesel fuels. Heating the vegetable oils to lower their viscosities increased spray penetration rate, reduced spray cone angles, and resulted in spray characteristics resembling those of diesel fuel. Significant chemical changes occurred following injection. Samples collected at about 400 microseconds after the injection event consisted of appreciable quantities of C/sub 4/-C/sub 16/ hydrocarbons, and free carboxyl groups were present.

  13. Control of autothermal reforming reactor of diesel fuel

    NASA Astrophysics Data System (ADS)

    Dolanc, Gregor; Pregelj, Boštjan; Petrovčič, Janko; Pasel, Joachim; Kolb, Gunther

    2016-05-01

    In this paper a control system for autothermal reforming reactor for diesel fuel is presented. Autothermal reforming reactors and the pertaining purification reactors are used to convert diesel fuel into hydrogen-rich reformate gas, which is then converted into electricity by the fuel cell. The purpose of the presented control system is to control the hydrogen production rate and the temperature of the autothermal reforming reactor. The system is designed in such a way that the two control loops do not interact, which is required for stable operation of the fuel cell. The presented control system is a part of the complete control system of the diesel fuel cell auxiliary power unit (APU).

  14. 40 CFR 80.524 - What sulfur content standard applies to motor vehicle diesel fuel downstream of the refinery or...

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ... to motor vehicle diesel fuel downstream of the refinery or importer? 80.524 Section 80.524 Protection... FUELS AND FUEL ADDITIVES Motor Vehicle Diesel Fuel; Nonroad, Locomotive, and Marine Diesel Fuel; and ECA Marine Fuel Motor Vehicle Diesel Fuel Standards and Requirements § 80.524 What sulfur content...

  15. [Particle emission characteristics of diesel bus fueled with bio-diesel].

    PubMed

    Lou, Di-Ming; Chen, Feng; Hu, Zhi-Yuan; Tan, Pi-Qiang; Hu, Wei

    2013-10-01

    With the use of the Engine Exhaust Particle Sizer (EEPS), a study on the characteristics of particle emissions was carried out on a China-IV diesel bus fueled with blends of 5% , 10% , 20% , 50% bio-diesel transformed from restaurant waste oil and China-IV diesel (marked separately by BD5, BD10, BD20, BD50), pure bio-diesel (BD100) and pure diesel (BD0). The results indicated that particulate number (PN) and mass (PM) emissions of bio-diesel blends increased with the increase in bus speed and acceleration; with increasing bio-diesel content, particulate emissions displayed a relevant declining trend. In different speed ranges, the size distribution of particulate number emissions (PNSD) was bimodal; in different acceleration ranges, PNSD showed a gradual transition from bimodal shape to unimodal when bus operation was switched from decelerating to accelerating status. Bio-diesel blends with higher mixture ratios showed significant reduction in PN emissions for accumulated modes, and the particulate number emission peaks moved towards smaller sizes; but little change was obtained in PN emissions for nuclei modes; reduction also occurred in particle geometric diameter (Dg). PMID:24364288

  16. Experimental study on particulate and NOx emissions of a diesel engine fueled with ultra low sulfur diesel, RME-diesel blends and PME-diesel blends.

    PubMed

    Zhu, Lei; Zhang, Wugao; Liu, Wei; Huang, Zhen

    2010-02-01

    Ultra low sulfur diesel and two different kinds of biodiesel fuels blended with baseline diesel fuel in 5% and 20% v/v were tested in a Cummins 4BTA direct injection diesel engine, with a turbocharger and an intercooler. Experiments were conducted under five engine loads at two steady speeds (1500 rpm and 2500 rpm). The study aims at investigating the engine performance, NO(x) emission, smoke opacity, PM composition, PM size distribution and comparing the impacts of low sulfur content of biodiesel with ULSD on the particulate emission. The results indicate that, compared to base diesel fuel, the increase of biodiesel in blends could cause certain increase in both brake specific fuel consumption and brake thermal efficiency. Compared with baseline diesel fuel, the biodiesel blends bring about more NO(x) emissions. With the proportion of biodiesel increase in blends, the smoke opacity decreases, while total particle number concentration increases. Meanwhile the ULSD gives lower NO(x) emissions, smoke opacity and total number concentration than those of baseline diesel fuel. In addition, the percentages of SOF and sulfate in particulates increase with biodiesel in blends, while the dry soot friction decreases obviously. Compared with baseline diesel fuel, the biodiesel blends increase the total nucleation number concentration, while ULSD reduces the total nucleation number concentration effectively, although they all have lower sulfur content. It means that, for ULSD, the lower sulfur content is the dominant factor for suppressing nucleation particles formation, while for biodiesel blends, lower volatile, lower aromatic content and higher oxygen content of biodiesel are key factors for improving the nucleation particles formation. The results demonstrate that the higher NO(x) emission and total nucleation number concentration are considered as the big obstacles of the application of biodiesel in diesel engine. PMID:19913283

  17. Eucalyptus Biodiesel as an Alternative to Diesel Fuel: Preparation and Tests on DI Diesel Engine

    PubMed Central

    Tarabet, Lyes; Loubar, Khaled; Lounici, Mohand Said; Hanchi, Samir; Tazerout, Mohand

    2012-01-01

    Nowadays, the increasing oil consumption throughout the world induces crucial economical, security, and environmental problems. As a result, intensive researches are undertaken to find appropriate substitution to fossil fuels. In view of the large amount of eucalyptus trees present in arid areas, we focus in this study on the investigation of using eucalyptus biodiesel as fuel in diesel engine. Eucalyptus oil is converted by transesterification into biodiesel. Eucalyptus biodiesel characterization shows that the physicochemical properties are comparable to those of diesel fuel. In the second phase, a single cylinder air-cooled, DI diesel engine was used to test neat eucalyptus biodiesel and its blends with diesel fuel in various ratios (75, 50, and 25 by v%) at several engine loads. The engine combustion parameters such as peak pressure, rate of pressure rise, and heat release rate are determined. Performances and exhaust emissions are also evaluated at all operating conditions. Results show that neat eucalyptus biodiesel and its blends present significant improvements of carbon monoxide, unburned hydrocarbon, and particulates emissions especially at high loads with equivalent performances to those of diesel fuel. However, the NOx emissions are slightly increased when the biodiesel content is increased in the blend. PMID:22675246

  18. Eucalyptus biodiesel as an alternative to diesel fuel: preparation and tests on DI diesel engine.

    PubMed

    Tarabet, Lyes; Loubar, Khaled; Lounici, Mohand Said; Hanchi, Samir; Tazerout, Mohand

    2012-01-01

    Nowadays, the increasing oil consumption throughout the world induces crucial economical, security, and environmental problems. As a result, intensive researches are undertaken to find appropriate substitution to fossil fuels. In view of the large amount of eucalyptus trees present in arid areas, we focus in this study on the investigation of using eucalyptus biodiesel as fuel in diesel engine. Eucalyptus oil is converted by transesterification into biodiesel. Eucalyptus biodiesel characterization shows that the physicochemical properties are comparable to those of diesel fuel. In the second phase, a single cylinder air-cooled, DI diesel engine was used to test neat eucalyptus biodiesel and its blends with diesel fuel in various ratios (75, 50, and 25 by v%) at several engine loads. The engine combustion parameters such as peak pressure, rate of pressure rise, and heat release rate are determined. Performances and exhaust emissions are also evaluated at all operating conditions. Results show that neat eucalyptus biodiesel and its blends present significant improvements of carbon monoxide, unburned hydrocarbon, and particulates emissions especially at high loads with equivalent performances to those of diesel fuel. However, the NOx emissions are slightly increased when the biodiesel content is increased in the blend. PMID:22675246

  19. [Emission characteristics of a diesel car fueled with coal based Fischer-Tropsch (F-T) diesel and fossil diesel blends].

    PubMed

    Hu, Zhi-Yuan; Cheng, Liang; Tan, Pi-Qiang; Lou, Di-Ming

    2012-11-01

    According to the first type test cycle of China national standard GB 18352.3-2005, the CO, NO(x), HC, PM and CO2 emission characteristics of a PASSAT diesel car fueled with Shanghai local IV diesel, coal based Fischer-Tropsch (F-T) diesel, and the blends of coal based F-T diesel and Shanghai local IV diesel up to 10% and 50% by volume were analyzed respectively. And the environmental impacts such as decreased air quality, health impact, photochemical ozone, global warming, and acidification that could be caused by CO, NO(x), HC, PM and CO2 emission of the diesel car were also assessed. The results showed that under GB 18352.3-2005 No. 1 test driving cycle, which consisted of four urban driving cycles and one extra urban driving cycle, the CO, HC, PM and CO2 emissions were released mainly in the urban driving cycles whereas the NO(x) emissions occurred mainly in the extra urban driving cycle. Compared with Shanghai local IV diesel, all of the CO, NO(x), HC, PM and CO2 emissions of the diesel car decreased to different extents when fueled with coal based F-T diesel blends. Moreover, the aerosol generation potential, global warming potential and acidification potential of F-T diesel fueled diesel car were also reduced. To sum up, coal based F-T diesel would be one of the alternative fuels to diesel in China. PMID:23323400

  20. 40 CFR 80.510 - What are the standards and marker requirements for NRLM diesel fuel and ECA marine fuel?

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... vehicle or nonroad diesel engine (including locomotive, or marine diesel engines). (4) Except as provided for in paragraph (i) of this section, any diesel fuel, other than jet fuel or kerosene that is... engine (except for locomotive or marine diesel engines). (4) Except as provided for in paragraph (i)...

  1. 40 CFR 600.206-93 - Calculation and use of fuel economy values for gasoline-fueled, diesel-fueled, electric, alcohol...

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ... values for gasoline-fueled, diesel-fueled, electric, alcohol-fueled, natural gas-fueled, alcohol dual fuel, and natural gas dual fuel vehicle configurations. 600.206-93 Section 600.206-93 Protection of... for gasoline-fueled, diesel-fueled, electric, alcohol-fueled, natural gas-fueled, alcohol dual...

  2. Utilization of Alcohol Fuel in Spark Ignition and Diesel Engines.

    ERIC Educational Resources Information Center

    Berndt, Don; Stengel, Ron

    These five units comprise a course intended to prepare and train students to conduct alcohol fuel utilization seminars in spark ignition and diesel engines. Introductory materials include objectives and a list of instructor requirements. The first four units cover these topics: ethanol as an alternative fuel (technical and economic advantages,…

  3. Nitrogen oxide removal using diesel fuel and a catalyst

    DOEpatents

    Vogtlin, George E.; Goerz, David A.; Hsiao, Mark; Merritt, Bernard T.; Penetrante, Bernie M.; Reynolds, John G.; Brusasco, Ray

    2000-01-01

    Hydrocarbons, such as diesel fuel, are added to internal combustion engine exhaust to reduce exhaust NO.sub.x in the presence of a amphoteric catalyst support material. Exhaust NO.sub.x reduction of at least 50% in the emissions is achieved with the addition of less than 5% fuel as a source of the hydrocarbons.

  4. Viscosity of diesel engine fuel oil under pressure

    NASA Technical Reports Server (NTRS)

    Hersey, Mayo D

    1929-01-01

    In the development of Diesel engine fuel injection systems it is necessary to have an approximate knowledge of the absolute viscosity of the fuel oil under high hydrostatic pressures. This report presents the results of experimental tests conducted by Mr. Jackson Newton Shore, utilizing the A.S.M.E. high pressure equipment.

  5. Five Kilowatt Solid Oxide Fuel Cell/Diesel Reformer

    SciTech Connect

    Dennis Witmer; Thomas Johnson

    2008-12-31

    Reducing fossil fuel consumption both for energy security and for reduction in global greenhouse emissions has been a major goal of energy research in the US for many years. Fuel cells have been proposed as a technology that can address both these issues--as devices that convert the energy of a fuel directly into electrical energy, they offer low emissions and high efficiencies. These advantages are of particular interest to remote power users, where grid connected power is unavailable, and most electrical power comes from diesel electric generators. Diesel fuel is the fuel of choice because it can be easily transported and stored in quantities large enough to supply energy for small communities for extended periods of time. This projected aimed to demonstrate the operation of a solid oxide fuel cell on diesel fuel, and to measure the resulting efficiency. Results from this project have been somewhat encouraging, with a laboratory breadboard integration of a small scale diesel reformer and a Solid Oxide Fuel Cell demonstrated in the first 18 months of the project. This initial demonstration was conducted at INEEL in the spring of 2005 using a small scale diesel reformer provided by SOFCo and a fuel cell provided by Acumentrics. However, attempts to integrate and automate the available technology have not proved successful as yet. This is due both to the lack of movement on the fuel processing side as well as the rather poor stack lifetimes exhibited by the fuel cells. Commercial product is still unavailable, and precommercial devices are both extremely expensive and require extensive field support.

  6. Pyrolytic Waste Plastic Oil and Its Diesel Blend: Fuel Characterization

    PubMed Central

    Sultana, M.; Al-Mamun, M. R.; Hasan, M. R.

    2016-01-01

    The authors introduced waste plastic pyrolysis oil (WPPO) as an alternative fuel characterized in detail and compared with conventional diesel. High density polyethylene, HDPE, was pyrolyzed in a self-designed stainless steel laboratory reactor to produce useful fuel products. HDPE waste was completely pyrolyzed at 330–490°C for 2-3 hours to obtain solid residue, liquid fuel oil, and flammable gaseous hydrocarbon products. Comparison of the fuel properties to the petrodiesel fuel standards ASTM D 975 and EN 590 revealed that the synthetic product was within all specifications. Notably, the fuel properties included a kinematic viscosity (40°C) of 1.98 cSt, density of 0.75 gm/cc, sulphur content of 0.25 (wt%), and carbon residue of 0.5 (wt%), and high calorific value represented significant enhancements over those of conventional petroleum diesel fuel. PMID:27433168

  7. Pyrolytic Waste Plastic Oil and Its Diesel Blend: Fuel Characterization.

    PubMed

    Khan, M Z H; Sultana, M; Al-Mamun, M R; Hasan, M R

    2016-01-01

    The authors introduced waste plastic pyrolysis oil (WPPO) as an alternative fuel characterized in detail and compared with conventional diesel. High density polyethylene, HDPE, was pyrolyzed in a self-designed stainless steel laboratory reactor to produce useful fuel products. HDPE waste was completely pyrolyzed at 330-490°C for 2-3 hours to obtain solid residue, liquid fuel oil, and flammable gaseous hydrocarbon products. Comparison of the fuel properties to the petrodiesel fuel standards ASTM D 975 and EN 590 revealed that the synthetic product was within all specifications. Notably, the fuel properties included a kinematic viscosity (40°C) of 1.98 cSt, density of 0.75 gm/cc, sulphur content of 0.25 (wt%), and carbon residue of 0.5 (wt%), and high calorific value represented significant enhancements over those of conventional petroleum diesel fuel. PMID:27433168

  8. Temperature characteristics for PTC material heating diesel fuel

    NASA Astrophysics Data System (ADS)

    Gu, Lefeng; Li, Xiaolu; Wang, Jun; Li, Ying; Li, Ming

    2010-08-01

    This paper gives a way which utilizes the PTC (Positive Temperature Coefficient) material to preheat diesel fuel in the injector in order to improve the cold starting and emissions of engine. A new injector is also designed. In order to understand the preheating process in this new injector, a dynamic temperature testing system combined with the MSP430F149 data acquisition system is developed for PTC material heating diesel fuel. Especially, the corresponding software and hardware circuits are explained. The temperature of diesel fuel preheating by PTC ceramics is measured under different voltages and distances, which Curie point is 75 °C. Diesel fuel is heated by self-defined temperature around the Curie point of PTC ceramics. The diesel fuel temperature rises rapidly in 2 minutes of the beginning, then can reach 60 °C within 5 minutes as its distance is 5mm away from the surface of PTC ceramics. However, there are a lot of fundamental studies and technology to be resolved in order to apply PTC material in the injector successfully.

  9. DEEP DESULFURIZATION OF DIESEL FUELS BY A NOVEL INTEGRATED APPROACH

    SciTech Connect

    Xiaoliang Ma; Uday Turaga; Shingo Watanabe; Subramani Velu; Chunshan Song

    2004-05-01

    The overall objective of this project is to explore a new desulfurization system concept, which consists of efficient separation of the refractory sulfur compounds from diesel fuel by selective adsorption, and effective hydrodesulfurization of the concentrated fraction of the refractory sulfur compounds in diesel fuels. Our approaches focused on (1) selecting and developing new adsorbents for selective adsorption of sulfur or sulfur compounds in commercial diesel fuel; (2) conducting the adsorption desulfurization of model fuels and real diesel fuels by the selective-adsorption-for-removing-sulfur (PSUSARS) process over various developed adsorbents, and examining the adsorptive desulfurization performance of various adsorbents; (3) developing and evaluating the regeneration methods for various spent adsorbent; (4) developing new catalysts for hydrodesulfurization of the refractory sulfur existing in the commercial diesel fuel; (5) on the basis of the fundamental understanding of the adsorptive performance and regeneration natures of the adsorbents, further confirming and improving the conceptual design of the novel PSU-SARS process for deep desulfurization of diesel fuel Three types of adsorbents, the metal-chloride-based adsorbents, the activated nickel-based adsorbents and the metal-sulfide-based adsorbents, have been developed for selective adsorption desulfurization of liquid hydrocarbons. All of three types of the adsorbents exhibit the significant selectivity for sulfur compounds, including alkyl dibenzothiophenes (DBTs), in diesel fuel. Adsorption desulfurization of real diesel fuels (regular diesel fuel (DF), S: 325 ppmw; low sulfur diesel fuel (LSD-I), S: 47 ppmw) over the nickel-based adsorbents (A-2 and A-5) has been conducted at different conditions by using a flowing system. The adsorption capacity of DF over A-2 corresponding to an outlet sulfur level of 30 ppmw is 2.8 mg-S/g-A. The adsorption capacity of LSD-I over A-5 corresponding to the break

  10. Diesel fuel to dc power: Navy & Marine Corps Applications

    SciTech Connect

    Bloomfield, D.P.

    1996-12-31

    During the past year Analytic Power has tested fuel cell stacks and diesel fuel processors for US Navy and Marine Corps applications. The units are 10 kW demonstration power plants. The USN power plant was built to demonstrate the feasibility of diesel fueled PEM fuel cell power plants for 250 kW and 2.5 MW shipboard power systems. We designed and tested a ten cell, 1 kW USMC substack and fuel processor. The complete 10 kW prototype power plant, which has application to both power and hydrogen generation, is now under construction. The USN and USMC fuel cell stacks have been tested on both actual and simulated reformate. Analytic Power has accumulated operating experience with autothermal reforming based fuel processors operating on sulfur bearing diesel fuel, jet fuel, propane and natural gas. We have also completed the design and fabrication of an advanced regenerative ATR for the USMC. One of the significant problems with small fuel processors is heat loss which limits its ability to operate with the high steam to carbon ratios required for coke free high efficiency operation. The new USMC unit specifically addresses these heat transfer issues. The advances in the mill programs have been incorporated into Analytic Power`s commercial units which are now under test.

  11. Emissions of fuel metals content from a diesel vehicle engine

    NASA Astrophysics Data System (ADS)

    Wang, Ya-Fen; Huang, Kuo-Lin; Li, Chun-Teh; Mi, Hsiao-Hsuan; Luo, Jih-Haur; Tsai, Perng-Jy

    This study was set out to assess the characteristics and significance of metal contents emitted from diesel engines. We found that the emitted concentrations of crust elements (including Al, Ca, Fe, Mg, and Si) were much higher than those of anthropogenic elements (including Ag, Ba, Cd, Co, Cr, Cu, Mn, Mo, Ni, Pb, Sb, Sr, Ti, V, and Zn) from diesel vehicle engine exhausts under the transient-cycle condition. The emission concentrations of particulate matters from diesel vehicle engine were inversely proportional to the specified engine speeds. To the contrary, the increase of engine speeds resulted in increase of fractions of metal contents in particulate matters. We conducted simple linear regression analysis to relate the emission rates of the metal contents in vehicle exhaust to the consumption rates of metal contents in diesel fuel. This study yielded R2=0.999 which suggests that the emission of the metal contents in vehicle exhaust could be fully explained by the consumption of metal contents in diesel fuel. For illustration, we found that the annual emission rates of both crust and anthropogenic elements from all diesel engine vehicles (=269 000 and 58 700 kg yr -1, respectively) were significantly higher than those from the coal power plant, electrical arc furnace, and coke oven (=90 100 and 1660 kg yr -1, 2060 and 173 kg yr -1, and 60 500 and 3740 kg yr -1, respectively) in Taiwan area. The relatively high amount of metal contents emitted from diesel engines strongly suggests that the measurement on the control of metal contents in diesel fuel should be taken in the future.

  12. 40 CFR 80.592 - What records must be kept by entities in the motor vehicle diesel fuel and diesel fuel additive...

    Code of Federal Regulations, 2013 CFR

    2013-07-01

    ... assurance testing program, and any sampling and testing for cetane index, aromatics content, solvent yellow 124 content or dye solvent red 164 content of motor vehicle diesel fuel or motor vehicle diesel...

  13. 40 CFR 80.592 - What records must be kept by entities in the motor vehicle diesel fuel and diesel fuel additive...

    Code of Federal Regulations, 2014 CFR

    2014-07-01

    ... assurance testing program, and any sampling and testing for cetane index, aromatics content, solvent yellow 124 content or dye solvent red 164 content of motor vehicle diesel fuel or motor vehicle diesel...

  14. Inhaled Diesel Emissions Generated with Cerium Oxide Nanoparticle Fuel Additive Induce Adverse Pulmonary and Systemic Effects

    EPA Science Inventory

    Diesel exhaust (DE) exposure induces adverse cardiopulmonary effects. Cerium oxide nanoparticles added to diesel fuel (DECe) increases fuel burning efficiency but leads to altered emission characteristics and potentially altered health effects. Here, we evaluated whether DECe res...

  15. Diesel fuel burner for diesel emissions control system

    DOEpatents

    Webb, Cynthia C.; Mathis, Jeffrey A.

    2006-04-25

    A burner for use in the emissions system of a lean burn internal combustion engine. The burner has a special burner head that enhances atomization of the burner fuel. Its combustion chamber is designed to be submersed in the engine exhaust line so that engine exhaust flows over the outer surface of the combustion chamber, thereby providing efficient heat transfer.

  16. Diesel fuel sulfur and cylinder liner wear of a heavy-duty diesel engine

    SciTech Connect

    Weiss, E.K.J.; Busenthuer, B.B.; Hardenberg, H.O.

    1987-01-01

    Cylinder liner wear of a heavy-duty diesel engine was measured by means of radionuclide technology to identify the combined effects of diesel fuel sulfur and coolant temperature under engine operating conditions. Higher cylinder liner wear results from increasing load and decreasing engine speed. At low cooling temperatures, i.e, during engine cold start and warm-up, any reduction of the sulfur content leads to substantially reduced wear. At normal operational coolant temperatures, however, the effect of sulfur is extremely small. At higher than normal operating temperatures, diesel fuels with very low sulfur content, e.g. 0.05%, lead to increased wear, when compared with those of usual sulfur levels of 0.3 to 0.5%.

  17. Coal-fueled diesel: Technology development: Final report

    SciTech Connect

    Leonard, G.; Hsu, B.; Flynn, P.

    1989-03-01

    This project consisted of four tasks: (1) to determine if CWM could be ignited and burned rapidly enough for operation in a 1000-rpm diesel engine, (2) to demonstrate that a durable CWM-fueled engine could in principle be developed, (3) to assess current emissions control technology to determine the feasibility of cleaning the exhaust of a CWM-fueled diesel locomotive, and (4) to conduct an economic analysis to determine the attractiveness of powering US locomotives with CWM. 34 refs., 125 figs., 28 tabs.

  18. Recent Progress in the Development of Diesel Surrogate Fuels

    SciTech Connect

    Pitz, W J; Mueller, C J

    2009-12-09

    There has been much recent progress in the area of surrogate fuels for diesel. In the last few years, experiments and modeling have been performed on higher molecular weight components of relevance to diesel fuel such as n-hexadecane (n-cetane) and 2,2,4,4,6,8,8-heptamethylnonane (iso-cetane). Chemical kinetic models have been developed for all the n-alkanes up to 16 carbon atoms. Also, there has been much experimental and modeling work on lower molecular weight surrogate components such as n-decane and n-dodecane that are most relevant to jet fuel surrogates, but are also relevant to diesel surrogates where simulation of the full boiling point range is desired. For two-ring compounds, experimental work on decalin and tetralin recently has been published. For multi-component surrogate fuel mixtures, recent work on modeling of these mixtures and comparisons to real diesel fuel is reviewed. Detailed chemical kinetic models for surrogate fuels are very large in size. Significant progress also has been made in improving the mechanism reduction tools that are needed to make these large models practicable in multi-dimensional reacting flow simulations of diesel combustion. Nevertheless, major research gaps remain. In the case of iso-alkanes, there are experiments and modeling work on only one of relevance to diesel: iso-cetane. Also, the iso-alkanes in diesel are lightly branched and no detailed chemical kinetic models or experimental investigations are available for such compounds. More components are needed to fill out the iso-alkane boiling point range. For the aromatic class of compounds, there has been no new work for compounds in the boiling point range of diesel. Most of the new work has been on alkyl aromatics that are of the range C7 to C8, below the C10 to C20 range that is needed. For the chemical class of cycloalkanes, experiments and modeling on higher molecular weight components are warranted. Finally for multi-component surrogates needed to treat real

  19. Recent Progress in the Development of Diesel Surrogate Fuels

    SciTech Connect

    Pitz, W J

    2009-09-04

    There has been much recent progress in the area of surrogate fuels for diesel. In the last few years, experiments and modeling have been performed on higher molecular weight components of relevance to diesel fuel such as n-hexadecane (n-cetane) and 2,2,4,4,6,8,8-heptamethylnonane (iso-cetane). Chemical kinetic models have been developed for all the n-alkanes up to 16 carbon atoms. Also, there has been much experimental and modeling work on lower molecular weight surrogate components such as n-decane and do-decane which are most relevant to jet fuel surrogates, but are also relevant to diesel surrogates where simulation of the full boiling point range is desired. For the cycloalkanes, experimental work on decalin and tetralin recently has been published. For multi-component surrogate fuel mixtures, recent work on modeling of these mixtures and comparisons to real diesel fuel is reviewed. Detailed chemical kinetic models for surrogate fuels are very large in size. Significant progress also has been made in improving the mechanism reduction tools that are needed to make these large models practicable in multidimensional reacting flow simulations of diesel combustion. Nevertheless, major research gaps remain. In the case of iso-alkanes, there are experiments and modeling work on only one of relevance to diesel: iso-cetane. Also, the iso-alkanes in diesel are lightly branched and no detailed chemical kinetic models or experimental investigations are available for such compounds. More components are needed to fill out the iso-alkane boiling point range. For the aromatic class of compounds, there has been no new work for compounds in the boiling point range of diesel. Most of the new work has been on alkyl aromatics that are of the range C7 to C8, below the C10 to C20 range that is needed. For the chemical class of cycloalkanes, experiments and modeling on higher molecular weight components are warranted. Finally for multi-component surrogates needed to treat real diesel

  20. 40 CFR 80.500 - What are the implementation dates for the motor vehicle diesel fuel sulfur control program?

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ... the motor vehicle diesel fuel sulfur control program? 80.500 Section 80.500 Protection of Environment... Motor Vehicle Diesel Fuel; Nonroad, Locomotive, and Marine Diesel Fuel; and ECA Marine Fuel General Information § 80.500 What are the implementation dates for the motor vehicle diesel fuel sulfur...

  1. 40 CFR 80.500 - What are the implementation dates for the motor vehicle diesel fuel sulfur control program?

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... the motor vehicle diesel fuel sulfur control program? 80.500 Section 80.500 Protection of Environment... Motor Vehicle Diesel Fuel; Nonroad, Locomotive, and Marine Diesel Fuel; and ECA Marine Fuel General Information § 80.500 What are the implementation dates for the motor vehicle diesel fuel sulfur...

  2. Long term performance of a sunflower oil/diesel fuel blend

    SciTech Connect

    Ziejewski, M.; Kaufman, K.R.

    1982-05-01

    The purpose of this project was to study the effects of a 50 percent blend by volume of sunflower oil in No. 2 diesel fuel used in a diesel test engine of current design. Specifically, this investigation covered the effect of the fuel blend on engine durability and the functioning of the different fuels in the diesel engine injection system.

  3. 30 CFR 57.19013 - Diesel- and other fuel-injection-powered hoists.

    Code of Federal Regulations, 2012 CFR

    2012-07-01

    ... NONMETAL MINES Personnel Hoisting Hoists § 57.19013 Diesel- and other fuel-injection-powered hoists. Where any diesel or similar fuel-injection engine is used to power a hoist, the engine shall be equipped... 30 Mineral Resources 1 2012-07-01 2012-07-01 false Diesel- and other fuel-injection-powered...

  4. 30 CFR 56.19013 - Diesel- and other fuel-injection-powered hoists.

    Code of Federal Regulations, 2012 CFR

    2012-07-01

    ... MINES Personnel Hoisting Hoists § 56.19013 Diesel- and other fuel-injection-powered hoists. Where any diesel or similar fuel-injection engine is used to power a hoist, the engine shall be equipped with a... 30 Mineral Resources 1 2012-07-01 2012-07-01 false Diesel- and other fuel-injection-powered...

  5. 40 CFR 69.52 - Non-motor vehicle diesel fuel.

    Code of Federal Regulations, 2013 CFR

    2013-07-01

    .... (3) Nonroad, locomotive, or marine diesel fuel (NRLM) has the meaning given in 40 CFR 80.2. (4) Heating oil has the meaning given in 40 CFR 80.2. (b) Applicability. NRLM diesel fuel and heating oil that... 124 requirements, under 40 CFR 80.510(d) through (f). (3) Exempt NRLM diesel fuel and heating oil...

  6. 30 CFR 57.19013 - Diesel- and other fuel-injection-powered hoists.

    Code of Federal Regulations, 2014 CFR

    2014-07-01

    ... NONMETAL MINES Personnel Hoisting Hoists § 57.19013 Diesel- and other fuel-injection-powered hoists. Where any diesel or similar fuel-injection engine is used to power a hoist, the engine shall be equipped... 30 Mineral Resources 1 2014-07-01 2014-07-01 false Diesel- and other fuel-injection-powered...

  7. 30 CFR 56.19013 - Diesel- and other fuel-injection-powered hoists.

    Code of Federal Regulations, 2014 CFR

    2014-07-01

    ... MINES Personnel Hoisting Hoists § 56.19013 Diesel- and other fuel-injection-powered hoists. Where any diesel or similar fuel-injection engine is used to power a hoist, the engine shall be equipped with a... 30 Mineral Resources 1 2014-07-01 2014-07-01 false Diesel- and other fuel-injection-powered...

  8. 40 CFR 69.52 - Non-motor vehicle diesel fuel.

    Code of Federal Regulations, 2014 CFR

    2014-07-01

    .... (3) Nonroad, locomotive, or marine diesel fuel (NRLM) has the meaning given in 40 CFR 80.2. (4) Heating oil has the meaning given in 40 CFR 80.2. (b) Applicability. NRLM diesel fuel and heating oil that... 124 requirements, under 40 CFR 80.510(d) through (f). (3) Exempt NRLM diesel fuel and heating oil...

  9. 40 CFR 69.52 - Non-motor vehicle diesel fuel.

    Code of Federal Regulations, 2012 CFR

    2012-07-01

    .... (3) Nonroad, locomotive, or marine diesel fuel (NRLM) has the meaning given in 40 CFR 80.2. (4) Heating oil has the meaning given in 40 CFR 80.2. (b) Applicability. NRLM diesel fuel and heating oil that... 124 requirements, under 40 CFR 80.510(d) through (f). (3) Exempt NRLM diesel fuel and heating oil...

  10. 40 CFR 69.52 - Non-motor vehicle diesel fuel.

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ...) Heating oil has the meaning given in 40 CFR 80.2. (b) Applicability. NRLM diesel fuel and heating oil that... 124 requirements, under 40 CFR 80.510(d) through (f). (3) Exempt NRLM diesel fuel and heating oil must... heating oil shall include the language specified in 40 CFR 80.590(a) applicable to undyed diesel fuel...

  11. 40 CFR 69.52 - Non-motor vehicle diesel fuel.

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ...) Heating oil has the meaning given in 40 CFR 80.2. (b) Applicability. NRLM diesel fuel and heating oil that... 124 requirements, under 40 CFR 80.510(d) through (f). (3) Exempt NRLM diesel fuel and heating oil must... heating oil shall include the language specified in 40 CFR 80.590(a) applicable to undyed diesel fuel...

  12. System for operating solid oxide fuel cell generator on diesel fuel

    NASA Technical Reports Server (NTRS)

    Singh, Prabhu (Inventor); George, Raymond A. (Inventor)

    1997-01-01

    A system is provided for operating a solid oxide fuel cell generator on diesel fuel. The system includes a hydrodesulfurizer which reduces the sulfur content of commercial and military grade diesel fuel to an acceptable level. Hydrogen which has been previously separated from the process stream is mixed with diesel fuel at low pressure. The diesel/hydrogen mixture is then pressurized and introduced into the hydrodesulfurizer. The hydrodesulfurizer comprises a metal oxide such as ZnO which reacts with hydrogen sulfide in the presence of a metal catalyst to form a metal sulfide and water. After desulfurization, the diesel fuel is reformed and delivered to a hydrogen separator which removes most of the hydrogen from the reformed fuel prior to introduction into a solid oxide fuel cell generator. The separated hydrogen is then selectively delivered to the diesel/hydrogen mixer or to a hydrogen storage unit. The hydrogen storage unit preferably comprises a metal hydride which stores hydrogen in solid form at low pressure. Hydrogen may be discharged from the metal hydride to the diesel/hydrogen mixture at low pressure upon demand, particularly during start-up and shut-down of the system.

  13. Sulfur removal from diesel fuel-contaminated methanol.

    SciTech Connect

    Lee, S. H. D.; Kumar, R.; Krumpelt, M.; Chemical Engineering

    2002-03-01

    Methanol is considered to be a potential on-board fuel for fuel cell-powered vehicles. In current distribution systems for liquid fuels used in the transportation sector, commodity methanol can occasionally become contaminated with the sulfur in diesel fuel or gasoline. This sulfur would poison the catalytic materials used in fuel reformers for fuel cells. We tested the removal of this sulfur by means of ten activated carbons (AC) that are commercially available. Tests were conducted with methanol doped with 1 vol.% grade D-2 diesel fuel containing 0.29% sulfur, which was present essentially as 33-35 wt.% benzothiophenes (BTs) and 65-67 wt.% dibenzothiophenes (DBT). In general, coconut shell-based carbons activated by high-temperature steam were more effective at sulfur removal than coal-based carbons. Equilibrium sorption data showed linear increase in sulfur capture with the increase of sulfur concentration in methanol. Both types of carbons had similar breakthrough characteristics, with the dynamic sorption capacity of each being about one-third of its equilibrium sorption capacity. Results of this study suggest that a fixed-bed sorber of granular AC can be used, such as in refueling stations, for the removal of sulfur in diesel fuel-contaminated methanol.

  14. Comparative analysis of the long-term performance of a diesel engine on vegetable oil based alternate fuels

    SciTech Connect

    Ziejewski, M.; Goettler, H.; Pratt, G.L.

    1986-01-01

    A 25-75 blend (v/v) of alkali-refined sunflower oil and diesel fuel, a 25-75 blend (v/v) of high oleic safflower oil and diesel fuel, a non-ionic sunflower oil-aqueous ethanol microemulsion, and a methyl ester of sunflower oil were evaluated as fuels in a direct injected, turbo-charged, intercooled, 4-cylinder Allis-Chalmers diesel engine during 200-hour EMA cycle laboratory screening endurance tests. Engine performance on Phillips 2-D reference fuel served as baseline for the experimental fuels. The experiment was conducted to develop prediction equations to determine the effects of alternate fuels on long-term engine performance. Least squares regression procedures were used to analyze long-term effects the test fuels had on engine performance and to simultaneously compare the test fuels. Several variables were used to measure engine performance. These response variables were volumetric fuel flow, energy input, power output, brake specific energy consumption, exhaust temperature and exhaust smoke. The predictor variables were time of the EMA cycle and fuel type. Two multivariate tests were performed in this analysis. The first tested the significance of time on the response variable. The second tested the fuel effect. Both tests were significant. The results of the univariate regressions indicated that time had a significant effect only on exhaust temperature. In all other cases, time was not a factor. However, significant difference in the intercepts of the prediction equations were found between tested fuels.

  15. Novel injector techniques for coal-fueled diesel engines

    SciTech Connect

    Badgley, P.R.

    1992-09-01

    This report, entitled Novel Injector Techniques for Coal-Fueled Diesel Engines,'' describes the progress and findings of a research program aimed at development of a dry coal powder fuel injector in conjunction with the Thermal Ignition Combustion System (TICS) concept to achieve autoignition of dry powdered coal in a single-cylinder high speed diesel engine. The basic program consisted of concept selection, analysis and design, bench testing and single cylinder engine testing. The coal injector concept which was selected was a one moving part dry-coal-powder injector utilizing air blast injection. Adiabatics has had previous experience running high speed diesel engines on both direct injected directed coal-water-slurry (CWS) fuel and also with dry coal powder aspirated into the intake air. The Thermal Ignition Combustion System successfully ignited these fuels at all speeds and loads without requiring auxiliary ignition energy such as pilot diesel fuel, heated intake air or glow or spark plugs. Based upon this prior experience, it was shown that the highest efficiency and fastest combustion was with the dry coal, but that the use of aspiration of coal resulted in excessive coal migration into the engine lubrication system. Based upon a desire of DOE to utilize a more modern test engine, the previous naturally-aspirated Caterpillar model 1Y73 single cylinder engine was replaced with a turbocharged (by use of shop air compressor and back pressure control valve) single cylinder version of the Cummins model 855 engine.

  16. Detailed Chemical Kinetic Modeling of Diesel Combustion with Oxygenated Fuels

    SciTech Connect

    Curran, H J; Fisher, E M; Glaude, P-A; Marinov, N M; Pitz, W J; Westbrook, C K; Flynn, P F; Durrett, R P; zur Loye, A O; Akinyemi, O C; Dryer, F L

    2000-01-11

    Emission standards for diesel engines in vehicles have been steadily reduced in recent years, and a great deal of research and development effort has been focused on reducing particulate and nitrogen oxide emissions. One promising approach to reducing emissions involves the addition of oxygen to the fuel, generally by adding an oxygenated compound to the normal diesel fuel. Miyamoto et al. [1] showed experimentally that particulate levels can be significantly reduced by adding oxygenated species to the fuel. They found the Bosch smoke number (a measure of the particulate or soot levels in diesel exhaust) falls from about 55% for conventional diesel fuel to less than 1% when the oxygen content of the fuel is above about 25% by mass, as shown in Figure 1. It has been well established that addition of oxygenates to automotive fuel, including both diesel fuel as well as gasoline, reduces NOx and CO emissions by reducing flame temperatures. This is the basis for addition of oxygenates to produce reformulated gasoline in selected portions of the country. Of course, this is also accompanied by a slight reduction in fuel economy. A new overall picture of diesel combustion has been developed by Dec [2], in which laser diagnostic studies identified stages in diesel combustion that had not previously been recognized. These stages are summarized in Figure 2. The evolution of the diesel spray is shown, starting as a liquid jet that vaporizes and entrains hot air from the combustion chamber. This relatively steady process continues as long as fuel is being injected. In particular, Dec showed that the fuel spray vaporizes and mixes with air and products of earlier combustion to provide a region in which a gas phase, premixed fuel-rich ignition and burn occurs. The products of this ignition are then observed experimentally to lead rapidly to formation of soot particles, which subsequently are consumed in a diffusion flame. Recently, Flynn et al. [3] used a chemical kinetic and

  17. Environmental analysis of present and future fuels in 2D simple model marine gas tubines

    NASA Astrophysics Data System (ADS)

    El Gohary, M. Morsy

    2013-12-01

    Increased worldwide concerns about fossil fuel costs and effects on the environment lead many governments and scientific societies to consider the hydrogen as the fuel of the future. Many researches have been made to assess the suitability of using the hydrogen gas as fuel for internal combustion engines and gas turbines; this suitability was assessed from several viewpoints including the combustion characteristics, the fuel production and storage and also the thermodynamic cycle changes with the application of hydrogen instead of ordinary fossil fuels. This paper introduces the basic environmental differences happening when changing the fuel of a marine gas turbine from marine diesel fuel to gaseous hydrogen for the same power output. Environmentally, the hydrogen is the best when the CO2 emissions are considered, zero carbon dioxide emissions can be theoretically attained. But when the NOx emissions are considered, the hydrogen is not the best based on the unit heat input. The hydrogen produces 270% more NOx than the diesel case without any control measures. This is primarily due to the increased air flow rate bringing more nitrogen into the combustion chamber and the increased combustion temperature (10% more than the diesel case). Efficient and of course expensive NOx control measures are a must to control these emissions levels.

  18. Influence of vegetable oil based alternate fuels on residue deposits and components wear in a diesel engine

    SciTech Connect

    Ziejewski, M.; Goettler, H.; Pratt, G.L.

    1986-01-01

    A 25-75 blend (v/v) of alkali-refined sunflower oil and diesel fuel, a 25-75 blend (v/v) of high oleic safflower oil and diesel fuel, a non-ionic sunflower oil-aqueous ethanol microemulsion, and a methyl ester of sunflower oil were evaluated as fuels in a direct injected, turbocharged, intercooled, 4-cylinder Allis-Chalmers diesel engine during a 200-hour EMA cycle laboratory screening endurance test. Engine performance on Phillips 2-D reference fuel served as baseline for the experimental fuels. This investigation employed an analysis of variance to compare CRC carbon and lacquer ratings and wear of engine parts for all tested fuels. The paper deals with carbon and lacquer formation and its effect on long-term engine performance as experienced during the operation with the alternate fuels. Significantly heavier deposits than for the diesel fuel were observed for the microemulsion and 25-75 sunflower oil blend. particularly on the exhaust and intake valve stems, on the piston lands, and in the piston grooves. In all tests engine wear was not significant. The final dimensions of the measured elements did not exceed the manufacturer's initial parts specifications.

  19. Investigation of the intermediate oxidation regime of Diesel fuel

    SciTech Connect

    Al-Hamamre, Z.; Trimis, D.

    2009-09-15

    A very high temperature fuel-air mixture is necessary for the thermal partial oxidation process of hydrocarbon fuels in order to have a high reaction temperature which accelerate the reaction kinetics. For Diesel fuel and due to the ignition delay time behavior, different oxidation behavior can be realized at different preheating temperatures. In this work, the intermediate oxidation region of Diesel fuel is investigated. By making use of the ignition delay time behavior, an vaporizer like tube reactor is constructed in order to enable a very high preheating temperature without the risk of self-ignition in a time-independent experiment. The oxidation behavior of Diesel fuel in air is investigated numerically and experimentally. In the numerical part, the ignition delay time was estimated using CHEMIKIN tools for different air-fuel mixtures at different temperatures. The evaporation behavior of the Diesel fuel-air mixtures are investigated at relatively high air preheating temperatures ranging from 500 C up to 680 C. The amount of the process air was varied from an air ratio {lambda} = 0.35 to {lambda} = 0.6. The experiments are also performed with N{sub 2} as an evaporation media and compared with those performed with air to detect any temperature increase in the case of Diesel-air mixtures. The amount of heat release in the low chemistry region as well as in the intermediate region is calculated for the case of Diesel/air mixtures. The experiments show that four different oxidation region of Diesel fuel can be distinguished depending on air inlet temperatures and on the air ratio. At a temperature lower than 723 K (450 C), no chemical reaction takes place. The cool flame reactions start at temperatures above 723 K (450 C). However, no stable cool flame can be achieved unless the air preheating temperature reached about 753 K (480 C). The cool flame region is extended up to about 873 K (600 C), at which the intermediate regime started. This regime stabilized to a

  20. Production, characterization and fuel properties of alternative diesel fuel from pyrolysis of waste plastic grocery bags

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Pyrolysis of HDPE waste grocery bags followed by distillation resulted in a liquid hydrocarbon mixture that consisted of saturated aliphatic paraffins (96.8%), aliphatic olefins (2.6%), and aromatics (0.6%) that corresponded to the boiling range of conventional petroleum diesel fuel (#1 diesel 182–2...

  1. 40 CFR 80.510 - What are the standards and marker requirements for NRLM diesel fuel and ECA marine fuel?

    Code of Federal Regulations, 2012 CFR

    2012-07-01

    ... 40 Protection of Environment 17 2012-07-01 2012-07-01 false What are the standards and marker requirements for NRLM diesel fuel and ECA marine fuel? 80.510 Section 80.510 Protection of Environment ENVIRONMENTAL PROTECTION AGENCY (CONTINUED) AIR PROGRAMS (CONTINUED) REGULATION OF FUELS AND FUEL ADDITIVES Motor Vehicle Diesel Fuel;...

  2. 30 CFR 75.1905-1 - Diesel fuel piping systems.

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... as dry systems, unless an automatic shutdown is incorporated that prevents accidental loss or... storage facility. (h) The diesel fuel piping system must not be located in a borehole with electric power... entry as electric cables or power lines. Where it is necessary for piping systems to cross...

  3. Other Alternative Diesel Fuels from Vegetable Oils and Animal Fats

    Technology Transfer Automated Retrieval System (TEKTRAN)

    The energy crises of the 1970’s and early 1980’s provided impetus for developing alternative diesel fuels from vegetable oils and animal fats. Other driving forces may be derived from the Clean Air Act and its amendments and farmers desire to develop new uses for surplus agricultural commodities. ...

  4. 40 CFR 80.527 - Under what conditions may motor vehicle diesel fuel subject to the 15 ppm sulfur standard be...

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... vehicle diesel fuel subject to the 15 ppm sulfur standard be downgraded to motor vehicle diesel fuel... PROTECTION AGENCY (CONTINUED) AIR PROGRAMS (CONTINUED) REGULATION OF FUELS AND FUEL ADDITIVES Motor Vehicle Diesel Fuel; Nonroad, Locomotive, and Marine Diesel Fuel; and ECA Marine Fuel Motor Vehicle Diesel...

  5. 40 CFR 80.527 - Under what conditions may motor vehicle diesel fuel subject to the 15 ppm sulfur standard be...

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ... vehicle diesel fuel subject to the 15 ppm sulfur standard be downgraded to motor vehicle diesel fuel... PROTECTION AGENCY (CONTINUED) AIR PROGRAMS (CONTINUED) REGULATION OF FUELS AND FUEL ADDITIVES Motor Vehicle Diesel Fuel; Nonroad, Locomotive, and Marine Diesel Fuel; and ECA Marine Fuel Motor Vehicle Diesel...

  6. DEEP DESULFURIZATION OF DIESEL FUELS BY A NOVEL INTEGRATED APPROACH

    SciTech Connect

    Xiaoliang Ma; Lu Sun; Chunshan Song

    2001-09-01

    Due to the increasingly stricter regulations for deep reduction of fuel sulfur content, development of new deep desulfurization processes for liquid transport fuels has become one of the major challenges to the refining industry and to the production of hydrocarbon fuels for fuel cell applications. The sulfur compounds in the current transport fuels corresponding to the S level of 350-500 ppm account for only about 0.12-0.25 wt % of the fuel. The conventional hydrotreating approaches will need to increase catalyst bed volume at high-temperature and high-pressure conditions for treating 100 % of the whole fuel in order to convert the fuel mass of less than 0.25 wt %. In the present study, we are exploring a novel adsorption process for desulfurization at low temperatures, which can effectively reduce the sulfur content in gasoline, jet fuel and diesel fuel at low investment and operating cost to meet the needs for ultra-clean transportation fuels and for fuel cell applications. Some adsorbents were prepared in this study for selective adsorption of sulfur compounds in the fuels. The adsorption experiments were conducted by using a model fuel and real fuels. The results show that the adsorbent (A-1) with a transition metal compound has a significant selectivity for sulfur compounds with a saturated adsorption capacity of {approx}0.12 mol of sulfur compounds per mol of the metal compound. Most sulfur compounds existing in the current commercial gasoline, jet fuel and diesel fuel can be removed by the adsorption using adsorbent A-1. On the basis of the preliminary results, a novel concept for integrated process for deep desulfurization of liquid hydrocarbons was proposed.

  7. Emission Characteristics of a Diesel Engine Operating with In-Cylinder Gasoline and Diesel Fuel Blending

    SciTech Connect

    Prikhodko, Vitaly Y; Curran, Scott; Barone, Teresa L; Lewis Sr, Samuel Arthur; Storey, John Morse; Cho, Kukwon; Wagner, Robert M; Parks, II, James E

    2010-01-01

    Advanced combustion regimes such as homogeneous charge compression ignition (HCCI) and premixed charge compression ignition (PCCI) offer benefits of reduced nitrogen oxides (NOx) and particulate matter (PM) emissions. However, these combustion strategies often generate higher carbon monoxide (CO) and hydrocarbon (HC) emissions. In addition, aldehydes and ketone emissions can increase in these modes. In this study, the engine-out emissions of a compression-ignition engine operating in a fuel reactivity- controlled PCCI combustion mode using in-cylinder blending of gasoline and diesel fuel have been characterized. The work was performed on a 1.9-liter, 4-cylinder diesel engine outfitted with a port fuel injection system to deliver gasoline to the engine. The engine was operated at 2300 rpm and 4.2 bar brake mean effective pressure (BMEP) with the ratio of gasoline to diesel fuel that gave the highest engine efficiency and lowest emissions. Engine-out emissions for aldehydes, ketones and PM were compared with emissions from conventional diesel combustion. Sampling and analysis was carried out following micro-tunnel dilution of the exhaust. Particle geometric mean diameter, number-size distribution, and total number concentration were measured by a scanning mobility particle sizer (SMPS). For the particle mass measurements, samples were collected on Teflon-coated quartz-fiber filters and analyzed gravimetrically. Gaseous aldehydes and ketones were sampled using dinitrophenylhydrazine-coated solid phase extraction cartridges and the extracts were analyzed by liquid chromatography/mass spectrometry (LC/MS). In addition, emissions after a diesel oxidation catalyst (DOC) were also measured to investigate the destruction of CO, HC and formaldehydes by the catalyst.

  8. Performance and emissions characteristics of a naturally aspirated diesel engine with vegetable oil fuels - 2

    SciTech Connect

    Humke, A.L.; Barsic, N.J.

    1981-01-01

    A naturally aspirated, direct injected diesel engine was used to evaluate the performance and emissions characteristics of a crude soybean oil, a 50 percent (by volume) mixture of crude soybean oil and no. 2 diesel fuel, and a degummed soybean oil. The data were compared with previous tests conducted on the same engine using diesel fuel, crude sunflower oil and a 50 percent mixture of crude sunflower oil and diesel fuel. 18 refs.

  9. Fuel effects on flame lift-off under diesel conditions

    SciTech Connect

    Persson, Helena; Andersson, Oeivind; Egnell, Rolf

    2011-01-15

    An apparent relation between the lift-off length under diesel conditions and the ignition quality of a fuel has previously been reported. To cast light on the underlying mechanism, the current study aims to separate flame lift-off effects of the chemical ignition delay from those of other fuel properties under diesel conditions. Flame lift-off was measured in an optical diesel engine by high-speed video imaging of OH-chemiluminescence. Fuel and ambient-gas properties were varied during the experiment. Only a weak correlation was found between ignition delay and lift-off length. The data indicate that this correlation is due to a common, stronger correlation with the ambient oxygen concentration. The chemical ignition delay and the fuel type had similar, weak effects on the lift-off length. A recently proposed mechanism for lift-off stabilization was used to interpret the results. It assumes that reactants approaching the lift-off position of the jet are mixed with high-temperature products found along the edges of the flame, which trigger autoignition. In this picture, the fuel effect is most likely due to differences in the amount of mixing with high-temperature products that is required for autoignition. In the current experiment, all lift-off effects seem to arise from variations in the reactant and product temperatures, induced by fuel and ambient properties. (author)

  10. Combustion characteristics of a turbocharged DI compression ignition engine fueled with petroleum diesel fuels and biodiesel.

    PubMed

    Canakci, Mustafa

    2007-04-01

    In this study, the combustion characteristics and emissions of two different petroleum diesel fuels (No. 1 and No. 2) and biodiesel from soybean oil were compared. The tests were performed at steady state conditions in a four-cylinder turbocharged DI diesel engine at full load at 1400-rpm engine speed. The experimental results compared with No. 2 diesel fuel showed that biodiesel provided significant reductions in PM, CO, and unburned HC, the NO(x) increased by 11.2%. Biodiesel had a 13.8% increase in brake-specific fuel consumption due to its lower heating value. However, using No. 1 diesel fuel gave better emission results, NO(x) and brake-specific fuel consumption reduced by 16.1% and 1.2%, respectively. The values of the principal combustion characteristics of the biodiesel were obtained between two petroleum diesel fuels. The results indicated that biodiesel may be blended with No. 1 diesel fuel to be used without any modification on the engine. PMID:16822672

  11. Advanced Petroleum-Based Fuels -- Diesel Emissions Control Project (APBF-DEC)

    SciTech Connect

    Not Available

    2003-03-01

    Annual progress report of the Advanced Petroleum-based fuels-Diesel Emissions Control Project. Contains information on 5 test projects to determine the best combinations of low-sulfur diesel fuels, lubricants, diesel engines, and emission control systems to meet projected emissions standards.

  12. Diesel Fuel from Used Frying Oil

    PubMed Central

    Buczek, Bronislaw

    2014-01-01

    New conversion technologies of used edible oils and waste animal fats into a biofuel appropriate for use in standard diesel engines have been developed, taking into consideration environmental requirements and improvement in the economics of current trans-esterification technologies. The variation in the properties of substrates made from used rape oil after treatment with mixed adsorbents (active carbon, magnesium silicate) was studied in this work. The obtained results are compared with the quality requirements for the substrates used in Vogel & Noot GmbH technology for transesterification of oils and fats. PMID:24574908

  13. Mathematical modeling of diesel fuel hydrotreating

    NASA Astrophysics Data System (ADS)

    Tataurshikov, A.; Ivanchina, E.; Krivtcova, N.; Krivtsov, E.; Syskina, A.

    2015-11-01

    Hydrotreating of the diesel fraction with the high initial sulfur content of 1,4 mass% is carried out in the flow-through laboratory setup with the industrial GKD-202 catalyst at various process temperature. On the basis of the experimental data the regularities of the hydrogenation reactions are revealed, and the formalized scheme of sulfur-containing components (sulfides, benzothiophenes, and dibenzothiophenes) transformations is made. The mathematical model of hydrotreating process is developed, the constant values for the reaction rate of hydrodesulfurization of the specified components are calculated.

  14. Visualization of supersonic diesel fuel jets using a shadowgraph technique

    NASA Astrophysics Data System (ADS)

    Pianthong, Kulachate; Behnia, Masud; Milton, Brian E.

    2001-04-01

    High-speed liquid jets have been widely used to cut or penetrate material. It has been recently conjectured that the characteristics of high-speed fuel jets may also be of benefit to engines requiring direct fuel injection into the combustion chamber. Important factors are combustion efficiency and emission control enhancement for better atomization. Fundamental studies of very high velocity liquid jets are therefore very important. The characteristics and behavior of supersonic liquid jets have been studied with the aid of a shadowgraph technique. The high-speed liquid jet (in the supersonic range) is generated by the use of a vertical, single stage powder gun. The performance of the launcher and its relation to the jet exit velocity, with a range of nozzle shapes, has been examined. This paper presents the visual evidence of supersonic diesel fuel jets (velocity around 2000 m/s) investigated by the shadowgraph method. An Argon jet has been used as a light source. With a rise time of 0.07 microseconds, light duration of 0.2 microseconds and the use of high speed Polaroid film, the shadowgraph method can effectively capture the hypersonic diesel fuel jet and its strong leading edge shock waves. This provides a clearer picture of each stage of the generation of hypersonic diesel fuel jets and makes the study of supersonic diesel fuel jet characteristics and the potential for auto-ignition possible. Also, in the experiment, a pressure relief section has been used to minimize the compressed air or blast wave ahead of the projectile. However, the benefit of using a pressure relief section in the design is not clearly known. To investigate this effect, additional experiments have been performed with the use of the shadowgraph method, showing the projectile leaving and traveling inside the nozzle at a velocity around 1100 m/s.

  15. 40 CFR 80.603 - What are the pre-compliance reporting requirements for NRLM diesel fuel?

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... requirements for NRLM diesel fuel? 80.603 Section 80.603 Protection of Environment ENVIRONMENTAL PROTECTION AGENCY (CONTINUED) AIR PROGRAMS (CONTINUED) REGULATION OF FUELS AND FUEL ADDITIVES Motor Vehicle Diesel Fuel; Nonroad, Locomotive, and Marine Diesel Fuel; and ECA Marine Fuel Recordkeeping and...

  16. 40 CFR 80.593 - What are the reporting requirements for refiners and importers of motor vehicle diesel fuel...

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... for refiners and importers of motor vehicle diesel fuel subject to temporary refiner relief standards... PROGRAMS (CONTINUED) REGULATION OF FUELS AND FUEL ADDITIVES Motor Vehicle Diesel Fuel; Nonroad, Locomotive, and Marine Diesel Fuel; and ECA Marine Fuel Recordkeeping and Reporting Requirements § 80.593 What...

  17. 40 CFR 80.594 - What are the pre-compliance reporting requirements for motor vehicle diesel fuel?

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... requirements for motor vehicle diesel fuel? 80.594 Section 80.594 Protection of Environment ENVIRONMENTAL PROTECTION AGENCY (CONTINUED) AIR PROGRAMS (CONTINUED) REGULATION OF FUELS AND FUEL ADDITIVES Motor Vehicle Diesel Fuel; Nonroad, Locomotive, and Marine Diesel Fuel; and ECA Marine Fuel Recordkeeping and...

  18. 40 CFR 80.552 - What compliance options are available to motor vehicle diesel fuel small refiners?

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... to motor vehicle diesel fuel small refiners? 80.552 Section 80.552 Protection of Environment ENVIRONMENTAL PROTECTION AGENCY (CONTINUED) AIR PROGRAMS (CONTINUED) REGULATION OF FUELS AND FUEL ADDITIVES Motor Vehicle Diesel Fuel; Nonroad, Locomotive, and Marine Diesel Fuel; and ECA Marine Fuel...

  19. 40 CFR 80.594 - What are the pre-compliance reporting requirements for motor vehicle diesel fuel?

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ... requirements for motor vehicle diesel fuel? 80.594 Section 80.594 Protection of Environment ENVIRONMENTAL PROTECTION AGENCY (CONTINUED) AIR PROGRAMS (CONTINUED) REGULATION OF FUELS AND FUEL ADDITIVES Motor Vehicle Diesel Fuel; Nonroad, Locomotive, and Marine Diesel Fuel; and ECA Marine Fuel Recordkeeping and...

  20. 40 CFR 80.593 - What are the reporting requirements for refiners and importers of motor vehicle diesel fuel...

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ... for refiners and importers of motor vehicle diesel fuel subject to temporary refiner relief standards... PROGRAMS (CONTINUED) REGULATION OF FUELS AND FUEL ADDITIVES Motor Vehicle Diesel Fuel; Nonroad, Locomotive, and Marine Diesel Fuel; and ECA Marine Fuel Recordkeeping and Reporting Requirements § 80.593 What...

  1. 40 CFR 80.603 - What are the pre-compliance reporting requirements for NRLM diesel fuel?

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ... requirements for NRLM diesel fuel? 80.603 Section 80.603 Protection of Environment ENVIRONMENTAL PROTECTION AGENCY (CONTINUED) AIR PROGRAMS (CONTINUED) REGULATION OF FUELS AND FUEL ADDITIVES Motor Vehicle Diesel Fuel; Nonroad, Locomotive, and Marine Diesel Fuel; and ECA Marine Fuel Recordkeeping and...

  2. 40 CFR 80.552 - What compliance options are available to motor vehicle diesel fuel small refiners?

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ... to motor vehicle diesel fuel small refiners? 80.552 Section 80.552 Protection of Environment ENVIRONMENTAL PROTECTION AGENCY (CONTINUED) AIR PROGRAMS (CONTINUED) REGULATION OF FUELS AND FUEL ADDITIVES Motor Vehicle Diesel Fuel; Nonroad, Locomotive, and Marine Diesel Fuel; and ECA Marine Fuel...

  3. Construction of combustion models for rapeseed methyl ester bio-diesel fuel for internal combustion engine applications.

    PubMed

    Golovitchev, Valeri I; Yang, Junfeng

    2009-01-01

    Bio-diesel fuels are non-petroleum-based diesel fuels consisting of long chain alkyl esters produced by the transesterification of vegetable oils, that are intended for use (neat or blended with conventional fuels) in unmodified diesel engines. There have been few reports of studies proposing theoretical models for bio-diesel combustion simulations. In this study, we developed combustion models based on ones developed previously. We compiled the liquid fuel properties, and the existing detailed mechanism of methyl butanoate ester (MB, C(5)H(10)O(2)) oxidation was supplemented by sub-mechanisms for two proposed fuel constituent components, C(7)H(16) and C(7)H(8)O (and then, by mp2d, C(4)H(6)O(2) and propyne, C(3)H(4)) to represent the combustion model for rapeseed methyl ester described by the chemical formula, C(19)H(34)O(2) (or C(19)H(36)O(2)). The main fuel vapor thermal properties were taken as those of methyl palmitate C(19)H(36)O(2) in the NASA polynomial form of the Burcat database. The special global reaction was introduced to "crack" the main fuel into its constituent components. This general reaction included 309 species and 1472 reactions, including soot and NO(x) formation processes. The detailed combustion mechanism was validated using shock-tube ignition-delay data under diesel engine conditions. For constant volume and diesel engine (Volvo D12C) combustion modeling, this mechanism could be reduced to 88 species participating in 363 reactions. PMID:19409477

  4. [Effects of fuel properties on the performance of a typical Euro IV diesel engine].

    PubMed

    Chen, Wen-miao; Wang, Jian-xin; Shuai, Shi-jin

    2008-09-01

    With the purpose of establishing diesel fuel standard for China National 4th Emission Standard, as one part of Beijing "Auto-Oil" programme, engine performance test has been done on a typical Euro IV diesel engine using eight diesel fuels with different fuel properties. Test results show that, fuel properties has little effect on power, fuel consumption, and in-cylinder combustion process of tested Euro IV diesel engine; sulfate in PM and gaseous SO2 emissions increase linearly with diesel sulfur content increase; cetane number increase cause BSFC and PM reduce and NOx increase; T90 decrease cause NOx reduce while PM shows trend of reduce. Prediction equations of tested Euro IV diesel engine's ESC cycle NOx and PM emissions before SCR response to diesel fuel sulfur content, cetane number, T90 and aromatics have been obtained using linear regression method on the base of test results. PMID:19068662

  5. Utilization of sunflower seed oil as a renewable fuel for diesel engines

    SciTech Connect

    Bruwer, J.J.; van der Boshoff, B.; Hugo, F.J.C.; Fuls, J.; Hawkins, C.; van der Walt, A.N.; Engelbrecht, A.; du Plessis, L.M.

    1981-01-01

    Research, using several makes of diesel engine, showed that sunflower seed oil, and particularly an ethyl ester mixture, has the potential to extend diesel fuel provided solutions are found for injector coking problems. (MHR)

  6. Impacts of Biodiesel Fuel Blends Oil Dilution on Light-Duty Diesel Engine Operation

    SciTech Connect

    Thornton, M. J.; Alleman, T. L.; Luecke, J.; McCormick, R. L.

    2009-08-01

    Assesses oil dilution impacts on a diesel engine operating with a diesel particle filter, NOx storage, a selective catalytic reduction emission control system, and a soy-based 20% biodiesel fuel blend.

  7. 26 CFR 48.4082-3 - Diesel fuel and kerosene; visual inspection devices. [Reserved

    Code of Federal Regulations, 2010 CFR

    2010-04-01

    ... 26 Internal Revenue 16 2010-04-01 2010-04-01 true Diesel fuel and kerosene; visual inspection devices. 48.4082-3 Section 48.4082-3 Internal Revenue INTERNAL REVENUE SERVICE, DEPARTMENT OF THE TREASURY..., Tread Rubber, and Taxable Fuel Taxable Fuel § 48.4082-3 Diesel fuel and kerosene; visual...

  8. 26 CFR 48.4082-3 - Diesel fuel and kerosene; visual inspection devices. [Reserved

    Code of Federal Regulations, 2011 CFR

    2011-04-01

    ... 26 Internal Revenue 16 2011-04-01 2011-04-01 false Diesel fuel and kerosene; visual inspection devices. 48.4082-3 Section 48.4082-3 Internal Revenue INTERNAL REVENUE SERVICE, DEPARTMENT OF THE TREASURY..., Tread Rubber, and Taxable Fuel Taxable Fuel § 48.4082-3 Diesel fuel and kerosene; visual...

  9. 26 CFR 48.4082-4 - Diesel fuel and kerosene; back-up tax.

    Code of Federal Regulations, 2010 CFR

    2010-04-01

    ... 26 Internal Revenue 16 2010-04-01 2010-04-01 true Diesel fuel and kerosene; back-up tax. 48.4082-4 Section 48.4082-4 Internal Revenue INTERNAL REVENUE SERVICE, DEPARTMENT OF THE TREASURY (CONTINUED..., and Taxable Fuel Taxable Fuel § 48.4082-4 Diesel fuel and kerosene; back-up tax. (a) Imposition of...

  10. 26 CFR 48.4082-4 - Diesel fuel and kerosene; back-up tax.

    Code of Federal Regulations, 2013 CFR

    2013-04-01

    ... 26 Internal Revenue 16 2013-04-01 2013-04-01 false Diesel fuel and kerosene; back-up tax. 48.4082-4 Section 48.4082-4 Internal Revenue INTERNAL REVENUE SERVICE, DEPARTMENT OF THE TREASURY (CONTINUED..., and Taxable Fuel Taxable Fuel § 48.4082-4 Diesel fuel and kerosene; back-up tax. (a) Imposition of...

  11. 40 CFR 80.521 - What are the standards and identification requirements for diesel fuel additives?

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... identification requirements for diesel fuel additives? 80.521 Section 80.521 Protection of Environment ENVIRONMENTAL PROTECTION AGENCY (CONTINUED) AIR PROGRAMS (CONTINUED) REGULATION OF FUELS AND FUEL ADDITIVES... requirements for diesel fuel additives? (a) Except as provided in paragraph (b) of this section, any...

  12. 40 CFR 80.521 - What are the standards and identification requirements for diesel fuel additives?

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ... identification requirements for diesel fuel additives? 80.521 Section 80.521 Protection of Environment ENVIRONMENTAL PROTECTION AGENCY (CONTINUED) AIR PROGRAMS (CONTINUED) REGULATION OF FUELS AND FUEL ADDITIVES... requirements for diesel fuel additives? (a) Except as provided in paragraph (b) of this section, any...

  13. Simultaneous determination of hydrocarbon renewable diesel, biodiesel and petroleum diesel contents in diesel fuel blends using near infrared (NIR) spectroscopy and chemometrics.

    PubMed

    Alves, Julio Cesar Laurentino; Poppi, Ronei Jesus

    2013-11-01

    Highly polluting fuels based on non-renewable resources such as fossil fuels need to be replaced with potentially less polluting renewable fuels derived from vegetable or animal biomass, these so-called biofuels, are a reality nowadays and many countries have started the challenge of increasing the use of different types of biofuels, such as ethanol and biodiesel (fatty acid alkyl esters), often mixed with petroleum derivatives, such as gasoline and diesel, respectively. The quantitative determination of these fuel blends using simple, fast and low cost methods based on near infrared (NIR) spectroscopy combined with chemometric methods has been reported. However, advanced biofuels based on a mixture of hydrocarbons or a single hydrocarbon molecule, such as farnesane (2,6,10-trimethyldodecane), a hydrocarbon renewable diesel, can also be used in mixtures with biodiesel and petroleum diesel fuel and the use of NIR spectroscopy for the quantitative determination of a ternary fuel blend of these two hydrocarbon-based fuels and biodiesel can be a useful tool for quality control. This work presents a development of an analytical method for the quantitative determination of hydrocarbon renewable diesel (farnesane), biodiesel and petroleum diesel fuel blends using NIR spectroscopy combined with chemometric methods, such as partial least squares (PLS) and support vector machines (SVM). This development leads to a more accurate, simpler, faster and cheaper method when compared to the standard reference method ASTM D6866 and with the main advantage of providing the individual quantification of two different biofuels in a mixture with petroleum diesel fuel. Using the developed PLS model the three fuel blend components were determined simultaneously with values of root mean square error of prediction (RMSEP) of 0.25%, 0.19% and 0.38% for hydrocarbon renewable diesel, biodiesel and petroleum diesel, respectively, the values obtained were in agreement with those suggested by

  14. 40 CFR 80.550 - What is the definition of a motor vehicle diesel fuel small refiner or a NRLM diesel fuel small...

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ...) Produces diesel fuel at a refinery by processing crude oil through refinery processing units; and (2... periods from January 1, 1999, to January 1, 2000; and (3) Had an average crude oil capacity less than or... diesel fuel at a refinery by processing crude oil through refinery processing units; (2) Employed...

  15. 40 CFR 80.550 - What is the definition of a motor vehicle diesel fuel small refiner or a NRLM diesel fuel small...

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ...) Produces diesel fuel at a refinery by processing crude oil through refinery processing units; and (2... periods from January 1, 1999, to January 1, 2000; and (3) Had an average crude oil capacity less than or... diesel fuel at a refinery by processing crude oil through refinery processing units; (2) Employed...

  16. 40 CFR 80.590 - What are the product transfer document requirements for motor vehicle diesel fuel, NRLM diesel...

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ... C3 vessels. Note that 40 CFR part 1043 specifies requirements for documenting fuel transfers to... 30, 2010, “High Sulfur Dyed Nonroad, Locomotive, or Marine Engine Diesel fuel—sulfur content may... engines or nonroad diesel engine equipment. Each visit by the mobile refueler to a location shall...

  17. 40 CFR 80.590 - What are the product transfer document requirements for motor vehicle diesel fuel, NRLM diesel...

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... C3 vessels. Note that 40 CFR part 1043 specifies requirements for documenting fuel transfers to... under § 80.598(a) and (b), for example, “500 ppm sulfur NRLM diesel fuel”, or “jet fuel”; and whether... 30, 2010, “High Sulfur Dyed Nonroad, Locomotive, or Marine Engine Diesel fuel—sulfur content...

  18. 40 CFR 80.590 - What are the product transfer document requirements for motor vehicle diesel fuel, NRLM diesel...

    Code of Federal Regulations, 2014 CFR

    2014-07-01

    ... C3 vessels. Note that 40 CFR part 1043 specifies requirements for documenting fuel transfers to... 30, 2010, “High Sulfur Dyed Nonroad, Locomotive, or Marine Engine Diesel fuel—sulfur content may... engines or nonroad diesel engine equipment. Each visit by the mobile refueler to a location shall...

  19. 40 CFR 80.590 - What are the product transfer document requirements for motor vehicle diesel fuel, NRLM diesel...

    Code of Federal Regulations, 2013 CFR

    2013-07-01

    ... C3 vessels. Note that 40 CFR part 1043 specifies requirements for documenting fuel transfers to... 30, 2010, “High Sulfur Dyed Nonroad, Locomotive, or Marine Engine Diesel fuel—sulfur content may... engines or nonroad diesel engine equipment. Each visit by the mobile refueler to a location shall...

  20. Emissions from Buses with DDC 6V92 Engines Using Synthetic Diesel Fuel

    SciTech Connect

    Paul Norton; Keith Vertin; Nigel N. Clark; Donald W. Lyons; Mridul Gautam; Stephen Goguen; James Eberhardt

    1999-05-03

    Synthetic diesel fuel can be made from a variety of feedstocks, including coal, natural gas and biomass. Synthetic diesel fuels can have very low sulfur and aromatic content, and excellent autoignition characteristics. Moreover, synthetic diesel fuels may also economically competitive with California diesel fuel if .roduced in large volumes. Previous engine laboratory and field tests using a heavy-duty chassis dynamometer indicate that synthetic diesel fuel made using the Fischer-Tropsch (F-T) catalytic conversion process is a promising alternative fuel, because it can be used in unmodified diesel engines, and can reduce exhaust emissions substantially. The objective of this study was a preliminary assessment of the emissions from older model transit operated on Mossgas synthetic diesel fuel. The study compared emissions from transit buses operating on Federal no. 2 Diesel fuel, Mossgas synthetic diesel (MGSD), and a 50/50 blend of the two fuels. The buses were equipped with unmodified Detroit Diesel 6V92 2-stroke diesel engines. Six 40-foot buses were tested. Three of the buses had recently rebuilt engines and were equipped with an oxidation catalytic converter. Vehicle emissions measurements were performed using West Virginia University's unique transportable chassis dynamometer. The emissions were measured over the Central Business District (CBD) driving cycle. The buses performed well on both neat and blended MGSD fuel. Three buses without catalytic converters were tested. Compared to their emissions when operating on Federal no. 2 diesel fuel, these buses emitted an average of 5% lower oxides of nitrogen (NOx) and 20% lower particulate matter (PM) when operating on neat MGSD fuel. Catalyst equipped buses emitted an average of 8% lower NOx and 31% lower PM when operating on MGSD than when operating on Federal no. 2 diesel fuel.

  1. Tracing fuel component carbon in the emissions from diesel engines

    NASA Astrophysics Data System (ADS)

    Buchholz, Bruce A.; Mueller, Charles J.; Martin, Glen C.; Cheng, A. S.; Dibble, Robert W.; Frantz, Brian R.

    2004-08-01

    The addition of oxygenates to diesel fuel can reduce particulate emissions, but the underlying chemical pathways for the reductions are not well understood. While measurements of particulate matter (PM), unburned hydrocarbons (HC), and carbon monoxide (CO) are routine, determining the contribution of carbon atoms in the original fuel molecules to the formation of these undesired exhaust emissions has proven difficult. Renewable bio-derived fuels (ethanol or bio-diesel) containing a universal distribution of contemporary carbon are easily traced by accelerator mass spectrometry (AMS). These measurements provide general information about the emissions of bio-derived fuels. Another approach exploits synthetic organic chemistry to place 14C atoms in a specific bond position in a specific fuel molecule. The highly labeled fuel molecule is then diluted in 14C-free petroleum-derived stock to make a contemporary petroleum fuel suitable for tracing. The specific 14C atoms are then traced through the combustion event to determine whether they reside in PM, HC, CO, CO2, or other emission products. This knowledge of how specific molecular structures produce certain emissions can be used to refine chemical-kinetic combustion models and to optimize fuel composition to reduce undesired emissions. Due to the high sensitivity of the technique and the lack of appreciable 14C in fossil fuels, fuels for AMS experiments can be labeled with modern levels of 14C and still produce a strong signal. Since the fuel is not radioactive, emission tests can be conducted in any conventional engine lab, dynamometer facility, or on the open road.

  2. Tracing Fuel Component Carbon in the Emissions from Diesel Engines

    SciTech Connect

    Buchholz, B A; Mueller, C J; Martin, G C; Cheng, A S E; Dibble, R W; Frantz, B R

    2002-10-14

    The addition of oxygenates to diesel fuel can reduce particulate emissions, but the underlying chemical pathways for the reductions are not well understood. While measurements of particulate matter (PM), unburned hydrocarbons (HC), and carbon monoxide (CO) are routine, determining the contribution of carbon atoms in the original fuel molecules to the formation of these undesired exhaust emissions has proven difficult. Renewable bio-derived fuels (ethanol or bio-diesel) containing a universal distribution of contemporary carbon are easily traced by accelerator mass spectrometry (AMS). These measurements provide general information about the emissions of bio-derived fuels. Another approach exploits synthetic organic chemistry to place {sup 14}C atoms in a specific bond position in a specific fuel molecule. The highly labeled fuel molecule is then diluted in {sup 14}C-free petroleum-derived stock to make a contemporary petroleum fuel suitable for tracing. The specific {sup 14}C atoms are then traced through the combustion event to determine whether they reside in PM, HC, CO, CO{sub 2}, or other emission products. This knowledge of how specific molecular structures produce certain emissions can be used to refine chemical-kinetic combustion models and to optimize fuel composition to reduce undesired emissions. Due to the high sensitivity of the technique and the lack of appreciable {sup 14}C in fossil fuels, fuels for AMS experiments can be labeled with modern levels of {sup 14}C and still produce a strong signal. Since the fuel is not radioactive, emission tests can be conducted in any conventional engine lab, dynamometer facility, or on the open road.

  3. Fabrication of small-orifice fuel injectors for diesel engines.

    SciTech Connect

    Woodford, J. B.; Fenske, G. R.

    2005-04-08

    Diesel fuel injector nozzles with spray hole diameters of 50-75 {micro}m have been fabricated via electroless nickel plating of conventionally made nozzles. Thick layers of nickel are deposited onto the orifice interior surfaces, reducing the diameter from {approx}200 {micro}m to the target diameter. The nickel plate is hard, smooth, and adherent, and covers the orifice interior surfaces uniformly.

  4. Coal-fueled diesels for modular power generation

    SciTech Connect

    Wilson, R.P.; Rao, A.K.; Smith, W.C.

    1993-11-01

    Interest in coal-fueled heat engines revived after the sharp increase in the prices of natural gas and petroleum in the 1970`s. Based on the success of micronized coal water slurry combustion tests in an engine in the 1980`s, Morgantown Energy Technology Center (METC) of the US Department of Energy. initiated several programs for the development of advanced coal-fueled diesel and gas turbine engines for use in cogeneration, small utilities, industrial applications and transportation. Cooper-Bessemer and Arthur D. Little have been developing technology since 1985, under the sponsor of METC, to enable coal water slurry (CWS) to be utilized in large bore, medium-speed diesel engines. Modular power generation applications in the 10--100 MW size (each plant typically using from two to eight engines) are the target applications for the late 1990`s and beyond when, according to the US DOE and other projections, oil and natural gas prices are expected to escalate much more rapidly compared to the price of coal. As part of this program over 7.50 hours of prototype engine operation has been achieved on coal water slurry (CWS), including over 100 hours operation of a six-cylinder full scale engine with Integrated Emissions Control System in 1993. In this paper, the authors described the project cost of the CWS fuel used, the heat rate of the engine operating on CWS, the projected maintenance cost for various engine components, and the demonstrated low emissions characteristics of the coal diesel system.

  5. 40 CFR 80.604 - What are the annual reporting requirements for refiners and importers of NRLM diesel fuel?

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... requirements for refiners and importers of NRLM diesel fuel? 80.604 Section 80.604 Protection of Environment ENVIRONMENTAL PROTECTION AGENCY (CONTINUED) AIR PROGRAMS (CONTINUED) REGULATION OF FUELS AND FUEL ADDITIVES Motor Vehicle Diesel Fuel; Nonroad, Locomotive, and Marine Diesel Fuel; and ECA Marine...

  6. 40 CFR 80.604 - What are the annual reporting requirements for refiners and importers of NRLM diesel fuel?

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ... requirements for refiners and importers of NRLM diesel fuel? 80.604 Section 80.604 Protection of Environment ENVIRONMENTAL PROTECTION AGENCY (CONTINUED) AIR PROGRAMS (CONTINUED) REGULATION OF FUELS AND FUEL ADDITIVES Motor Vehicle Diesel Fuel; Nonroad, Locomotive, and Marine Diesel Fuel; and ECA Marine...

  7. Comparison of diesel exhaust emissions using JP-8 and low-sulfur diesel fuel. Interim report, March 1994-March 1995

    SciTech Connect

    Yost, D.M.; Montalvo, D.A.

    1995-11-01

    Comparative emission measurements were made in two dynamometer-based diesel engines using protocol specified by the U.S. Environmental Protection Agency (EPA) and the California Air Resources Board (CARB). A single JP-8 fuel with a sulfur level of 0.06 wt% was adjusted to sulfur levels of 0.11 and 0.26 wt%. The emission characteristics of the three fuels were compared to the 1994 EPA certification low-sulfur diesel fuel (sulfur level equal to 0.035 wt%) in the Detroit Diesel Corporation (DDC) 1991 prototype Series 60 diesel engine and in the General Motors (GM) 6.2L diesel engine. Comparisons were made using the hot-start transient portion of the heavy-duty diesel engine Federal Test Procedure. Results from the Army study show that the gaseous emissions for the DDC Series 60 engine using kerosene-based JP-8 fuel are essentially equal to values obtained with the 0.035 wt% sulfur EPA certification diesel fuel, and that an approximate sulfur level of 0.21 wt% in kerosene-type JP-8 fuel would be equivalent to the 0.035 wt% sulfur reference fuel. Similarly, the regulated gaseous emissions for the GM 6.2L engine using JP-8 fuel are essentially equal to the values obtained with the 0.035 wt% sulfur EPA reference fuel. All sulfur levels of kerosene-type JP-8 fuel up to the 0.30 wt% MIL-T-83133 specification maximum would be equivalent to a 0.035 wt% sulfur EPA reference fuel.

  8. Conversion of wood residues to diesel fuel

    SciTech Connect

    Kuester, J.L.

    1981-01-01

    The basic approach is indirect liquefaction, i.e., thermal gasification followed by catalytic liquefaction. The indirect approach results in separation of the oxygen in the biomass feedstock, i.e., oxygenated compounds do not appear in the liquid hydrocarbon fuel product. The general conversion scheme is shown. The process is capable of accepting a wide variety of feedstocks. Potential products include medium quality gas, normal propanol, paraffinic fuel and/or high octane gasoline. A flow diagram of the continuous laboratory unit is shown. A fluidized bed pyrolysis system is used for gasification. Capacity is about 10 lbs/h of feedstock. The pyrolyzer can be fluidized with recycle pyrolysis gas, steam or recycle liquefaction system off gas or some combination thereof. Tars are removed in a wet scrubber. Unseparated pyrolysis gases are utilized as feed to a modified Fischer-Tropsch reactor. The liquid condensate from the reactor consists of a normal propanol-water phase and a paraffinic hydrocarbon phase. The reactor can be operated to optimize for either product. If a high octane gasoline is desired, the paraffinic fuel is passed through a conventional catalytic reformer. The normal propanol could be used as a fuel extender if blended with the hydrocarbon fuel products. Off gases from the downstream reactors are of high quality due to the accumulation of low molecular weight paraffins.

  9. 26 CFR 48.4082-1T - Diesel fuel and kerosene; exemption for dyed fuel (temporary).

    Code of Federal Regulations, 2012 CFR

    2012-04-01

    ... 26 Internal Revenue 16 2012-04-01 2012-04-01 false Diesel fuel and kerosene; exemption for dyed...; exemption for dyed fuel (temporary). (a) through (c) . For further guidance, see § 48.4082-1(a) through (c). (d) Time and method for adding dye—(1) In general. Except as provided by paragraph (d)(6) of...

  10. 26 CFR 48.4082-1T - Diesel fuel and kerosene; exemption for dyed fuel (temporary).

    Code of Federal Regulations, 2011 CFR

    2011-04-01

    ... 26 Internal Revenue 16 2011-04-01 2011-04-01 false Diesel fuel and kerosene; exemption for dyed...; exemption for dyed fuel (temporary). (a) through (c) . For further guidance, see § 48.4082-1(a) through (c). (d) Time and method for adding dye—(1) In general. Except as provided by paragraph (d)(6) of...

  11. 26 CFR 48.4082-1T - Diesel fuel and kerosene; exemption for dyed fuel (temporary).

    Code of Federal Regulations, 2010 CFR

    2010-04-01

    ... 26 Internal Revenue 16 2010-04-01 2010-04-01 true Diesel fuel and kerosene; exemption for dyed...; exemption for dyed fuel (temporary). (a) through (c) . For further guidance, see § 48.4082-1(a) through (c). (d) Time and method for adding dye—(1) In general. Except as provided by paragraph (d)(6) of...

  12. 26 CFR 48.4082-1T - Diesel fuel and kerosene; exemption for dyed fuel (temporary).

    Code of Federal Regulations, 2013 CFR

    2013-04-01

    ... 26 Internal Revenue 16 2013-04-01 2013-04-01 false Diesel fuel and kerosene; exemption for dyed...; exemption for dyed fuel (temporary). (a) through (c) . For further guidance, see § 48.4082-1(a) through (c). (d) Time and method for adding dye—(1) In general. Except as provided by paragraph (d)(6) of...

  13. Gasification of diesel oil in supercritical water for fuel cells

    NASA Astrophysics Data System (ADS)

    Pinkwart, Karsten; Bayha, Thomas; Lutter, Wolfgang; Krausa, Michael

    Experiments have demonstrated the reforming of hydrocarbons in supercritical water. The hydrocarbons were reformed in a continuously operated tubular V4A reactor. The influences of four different commercial steam reforming catalysts were analysed. The experimental results showed that n-decane can be converted to a hydrogen-rich gas. Furthermore, experiments with diesel oil showed the possibility of fuel conversion at low temperature with commercial steam reforming catalysts. Low temperatures and the use of catalysts lead to inhibition of coke formation during the process. The supercritical reforming offers the possibility of a new low temperature hydrocarbon conversion process to hydrogen for fuel cell applications.

  14. Diesel particle filter and fuel effects on heavy-duty diesel engine emissions.

    PubMed

    Ratcliff, Matthew A; Dane, A John; Williams, Aaron; Ireland, John; Luecke, Jon; McCormick, Robert L; Voorhees, Kent J

    2010-11-01

    The impacts of biodiesel and a continuously regenerated (catalyzed) diesel particle filter (DPF) on the emissions of volatile unburned hydrocarbons, carbonyls, and particle associated polycyclic aromatic hydrocarbons (PAH) and nitro-PAH, were investigated. Experiments were conducted on a 5.9 L Cummins ISB, heavy-duty diesel engine using certification ultra-low-sulfur diesel (ULSD, S ≤ 15 ppm), soy biodiesel (B100), and a 20% blend thereof (B20). Against the ULSD baseline, B20 and B100 reduced engine-out emissions of measured unburned volatile hydrocarbons and PM associated PAH and nitro-PAH by significant percentages (40% or more for B20 and higher percentage for B100). However, emissions of benzene were unaffected by the presence of biodiesel and emissions of naphthalene actually increased for B100. This suggests that the unsaturated FAME in soy-biodiesel can react to form aromatic rings in the diesel combustion environment. Methyl acrylate and methyl 3-butanoate were observed as significant species in the exhaust for B20 and B100 and may serve as markers of the presence of biodiesel in the fuel. The DPF was highly effective at converting gaseous hydrocarbons and PM associated PAH and total nitro-PAH. However, conversion of 1-nitropyrene by the DPF was less than 50% for all fuels. Blending of biodiesel caused a slight reduction in engine-out emissions of acrolein, but otherwise had little effect on carbonyl emissions. The DPF was highly effective for conversion of carbonyls, with the exception of formaldehyde. Formaldehyde emissions were increased by the DPF for ULSD and B20. PMID:20886845

  15. 40 CFR 80.596 - How is a refinery motor vehicle diesel fuel volume baseline calculated?

    Code of Federal Regulations, 2013 CFR

    2013-07-01

    ... fuel volume baseline calculated? 80.596 Section 80.596 Protection of Environment ENVIRONMENTAL... Requirements § 80.596 How is a refinery motor vehicle diesel fuel volume baseline calculated? (a) For purposes of this subpart, a refinery's motor vehicle diesel fuel volume baseline is calculated using...

  16. 40 CFR 80.596 - How is a refinery motor vehicle diesel fuel volume baseline calculated?

    Code of Federal Regulations, 2014 CFR

    2014-07-01

    ... fuel volume baseline calculated? 80.596 Section 80.596 Protection of Environment ENVIRONMENTAL... Requirements § 80.596 How is a refinery motor vehicle diesel fuel volume baseline calculated? (a) For purposes of this subpart, a refinery's motor vehicle diesel fuel volume baseline is calculated using...

  17. 40 CFR 80.596 - How is a refinery motor vehicle diesel fuel volume baseline calculated?

    Code of Federal Regulations, 2012 CFR

    2012-07-01

    ... fuel volume baseline calculated? 80.596 Section 80.596 Protection of Environment ENVIRONMENTAL... Requirements § 80.596 How is a refinery motor vehicle diesel fuel volume baseline calculated? (a) For purposes of this subpart, a refinery's motor vehicle diesel fuel volume baseline is calculated using...

  18. 40 CFR 80.596 - How is a refinery motor vehicle diesel fuel volume baseline calculated?

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... fuel volume baseline calculated? 80.596 Section 80.596 Protection of Environment ENVIRONMENTAL... Requirements § 80.596 How is a refinery motor vehicle diesel fuel volume baseline calculated? (a) For purposes of this subpart, a refinery's motor vehicle diesel fuel volume baseline is calculated using...

  19. 40 CFR 80.596 - How is a refinery motor vehicle diesel fuel volume baseline calculated?

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ... fuel volume baseline calculated? 80.596 Section 80.596 Protection of Environment ENVIRONMENTAL... Requirements § 80.596 How is a refinery motor vehicle diesel fuel volume baseline calculated? (a) For purposes of this subpart, a refinery's motor vehicle diesel fuel volume baseline is calculated using...

  20. Rapid engine test to measure injector fouling in diesel engines using vegetable oil fuels

    SciTech Connect

    Korus, R.A.; Jaiduk, J.; Peterson, C.L.

    1985-11-01

    Short engine tests were used to determine the rate of carbon deposition on direct injection diesel nozzles. Winter rape, high-oleic and high-linoleic safflower blends with 50% diesel were tested for carbon deposit and compared to that with D-2 Diesel Control Fuel. Deposits were greatest with the most unsaturated fuel, high-linoleic safflower, and least with winter rape. All vegetable oil blends developed power similar to diesel fueled engines with a 6 to 8% greater fuel consumption. 8 references.

  1. Recovery Act. Solid Oxide Fuel Cell Diesel Auxilliary Power Unit Demonstration

    SciTech Connect

    Geiger, Gail E.

    2013-09-30

    Solid Oxide Fuel Cell Diesel Auxilliary Power Unit Demonstration Project. Summarizing development of Delphi’s next generation SOFC system as the core power plant to prove the viability of the market opportunity for a 3-5 kW diesel SOFC system. Report includes test and demonstration results from testing the diesel APU in a high visibility fleet customer vehicle application.

  2. FUEL FORMULATION EFFECTS ON DIESEL FUEL INJECTION, COMBUSTION, EMISSIONS AND EMISSION CONTROL

    SciTech Connect

    Boehman, A; Alam, M; Song, J; Acharya, R; Szybist, J; Zello, V; Miller, K

    2003-08-24

    This paper describes work under a U.S. DOE sponsored Ultra Clean Fuels project entitled ''Ultra Clean Fuels from Natural Gas,'' Cooperative Agreement No. DE-FC26-01NT41098. In this study we have examined the incremental benefits of moving from low sulfur diesel fuel and ultra low sulfur diesel fuel to an ultra clean fuel, Fischer-Tropsch diesel fuel produced from natural gas. Blending with biodiesel, B100, was also considered. The impact of fuel formulation on fuel injection timing, bulk modulus of compressibility, in-cylinder combustion processes, gaseous and particulate emissions, DPF regeneration temperature and urea-SCR NOx control has been examined. The primary test engine is a 5.9L Cummins ISB, which has been instrumented for in-cylinder combustion analysis and in-cylinder visualization with an engine videoscope. A single-cylinder engine has also been used to examine in detail the impacts of fuel formulation on injection timing in a pump-line-nozzle fueling system, to assist in the interpretation of results from the ISB engine.

  3. Thermal stabilized vegetable oil extended diesel fuels

    SciTech Connect

    Sweeney, W.M.; Lachowicz, D.R.

    1986-03-11

    A middle distillate fuel composition is described comprising: (a) a major portion of a middle distillate containing a hydrocarbon boiling in the middle distillate boiling range; (b) an extending portion of a vegetable oil; and (c) an effective thermal-stabilizing amount of a nitrogen-containing polymer prepared by reacting an ethylene/propylene copolymer with maleic anhydride, thereby forming a succinic anhydride, reacting the succinic anhydride, with an alcohol, thereby forming a succinate ester while leaving a portion of the succinic anhydride unreacted, and, reacting the succinate ester and the unreacted succinic anhydride with dimethylaminopropylamine, thereby forming a nitrogen-containing polymer.

  4. Dual-fueling of a prechamber diesel engine with natural gas

    SciTech Connect

    Song, S.; Hill, P.G.

    1985-10-01

    The feasibility of dual-fuel operation with natural gas in a prechamber diesel engine was studied with special emphasis on fuel consumption and cylinder pressure development. The effects of air restriction, pilot diesel flow rate, and injection timing were also investigated. Near full load the fuel energy consumption rate was close to that of straight diesel operation though at part load (in the absence of air restriction) the fuel energy consumption rate was relatively high. In the absence of injection timing adjustment the maximum power output of dual-fuel operation was severely limited by the maximum cylinder pressure. Retarding the injection timing is effective in reducing the maximum cylinder pressure to a safe level. The analysis of apparent energy release indicates the differences in combustion mechanism between auto-ignition of diesel fuel in straight diesel operation and propagation of flame fronts in dual-fuel operation.

  5. A NMR-Based Carbon-Type Analysis of Diesel Fuel Blends From Various Sources

    SciTech Connect

    Bays, J. Timothy; King, David L.

    2013-05-10

    In collaboration with participants of the Coordinating Research Council (CRC) Advanced Vehicle/Fuels/Lubricants (AVFL) Committee, and project AVFL-19, the characteristics of fuels from advanced and renewable sources were compared to commercial diesel fuels. The main objective of this study was to highlight similarities and differences among the fuel types, i.e. ULSD, renewables, and alternative fuels, and among fuels within the different fuel types. This report summarizes the carbon-type analysis from 1H and 13C{1H} nuclear magnetic resonance spectroscopy (NMR) of 14 diesel fuel samples. The diesel fuel samples come from diverse sources and include four commercial ultra-low sulfur diesel fuels (ULSD), one gas-to-liquid diesel fuel (GTL), six renewable diesel fuels (RD), two shale oil-derived diesel fuels, and one oil sands-derived diesel fuel. Overall, the fuels examined fall into two groups. The two shale oil-derived samples and the oil-sand-derived sample closely resemble the four commercial ultra-low sulfur diesels, with SO1 and SO2 most closely matched with ULSD1, ULSD2, and ULSD4, and OS1 most closely matched with ULSD3. As might be expected, the renewable diesel fuels, with the exception of RD3, do not resemble the ULSD fuels because of their very low aromatic content, but more closely resemble the gas-to-liquid sample (GTL) in this respect. RD3 is significantly different from the other renewable diesel fuels in that the aromatic content more closely resembles the ULSD fuels. Fused-ring aromatics are readily observable in the ULSD, SO, and OS samples, as well as RD3, and are noticeably absent in the remaining RD and GTL fuels. Finally, ULSD3 differs from the other ULSD fuels by having a significantly lower aromatic carbon content and higher cycloparaffinic carbon content. In addition to providing important comparative compositional information regarding the various diesel fuels, this report also provides important information about the capabilities of NMR

  6. Generation and characterization of diesel engine combustion emissions from petroleum diesel and soybean biodiesel fuels and application for inhalation exposure studies

    EPA Science Inventory

    Biodiesel made from the transesterification of plant- and anmal-derived oils is an important alternative fuel source for diesel engines. Although numerous studies have reported health effects associated with petroleum diesel emissions, information on biodiesel emissions are more ...

  7. AUTOMOTIVE DIESEL MAINTENANCE 1. UNIT XXII, I--MAINTAINING THE FUEL SYSTEM (PART I)--CUMMINS DIESEL ENGINE, II--UNDERSTANDING THE DIFFERENTIAL.

    ERIC Educational Resources Information Center

    Minnesota State Dept. of Education, St. Paul. Div. of Vocational and Technical Education.

    THIS MODULE OF A 30-MODULE COURSE IS DESIGNED TO DEVELOP AN UNDERSTANDING OF THE FUNCTION AND MAINTENANCE OF THE DIESEL ENGINE FUEL SYSTEM AND DIFFERENTIAL DRIVE UNITS USED IN DIESEL POWERED VEHICLES. TOPICS ARE (1) FUEL SYSTEM COMPARISONS, (2) FUEL SYSTEM SUPPLY COMPONENTS, (3) FUEL SUPPLY SECTION MAINTENANCE, (4) FUNCTION OF THE DIFFERENTIAL,…

  8. Performance of a diesel engine operating on raw coal-diesel fuel and solvent refined coal-diesel fuel slurries. Final report

    SciTech Connect

    Marshall, H.P.

    1980-03-01

    Performance tests using an 11 kW single cylinder diesel engine were made to determine the effects of three different micronized coal-fuel oil slurries being considered as alternative fuels. Slurries containing 20, 32, and 40%-wt micronized raw coal in No. 2 fuel oil were used. Results are presented indicating the changes in the concentrations of SO/sub X/ and NO/sub X/ in the exhaust, exhaust opacity, power and efficiency, and in wear rates relative to operation on fuel oil No. 2. The engine was operated for 10 h at full load and 1400 rpm on al fuels except the 40%-wt slurry. This test was discontinued because of extremely poor performance.

  9. Sensitivity and System Response of Pin Power Peaking in VVER-1000 Fuel Assembly Using TSUNAMI-2D

    NASA Astrophysics Data System (ADS)

    Frybort, J.

    2014-04-01

    Pin power peaking in a VVER-1000 fuel assembly and its sensitivity and uncertainty was analyzed by TSUNAMI-2D code. Several types of fuel assemblies were considered. They differ in number and position of gadolinium fuel pins. The calculations were repeated for several fuel compositions obtained by fuel depletion calculation. The results are quantified sensitivity data, which can be used for enrichment profiling.

  10. Tribological behavior of near-frictionless carbon coatings in high- and low-sulfur diesel fuels.

    SciTech Connect

    Alzoubi, M. F.; Ajayi, O. O.; Eryilmaz, O. L.; Ozturk, O.; Erdemir, A.; Fenske, G.

    2000-01-19

    The sulfur content in diesel fuel has a significant effect on diesel engine emissions, which are currently subject to environmental regulations. It has been observed that engine particulate and gaseous emissions are directly proportional to fuel sulfur content. With the introduction of low-sulfur fuels, significant reductions in emissions are expected. The process of sulfur reduction in petroleum-based diesel fuels also reduces the lubricity of the fuel, resulting in premature failure of fuel injectors. Thus, another means of preventing injector failures is needed for engines operating with low-sulfur diesel fuels. In this study, the authors evaluated a near-frictionless carbon (NFC) coating (developed at Argonne National Laboratory) as a possible solution to the problems associated with fuel injector failures in low-lubricity fuels. Tribological tests were conducted with NFC-coated and uncoated H13 and 52100 steels lubricated with high- and low- sulfur diesel fuels in a high-frequency reciprocating test machine. The test results showed that the NFC coatings reduced wear rates by a factor of 10 over those of uncoated steel surfaces. In low-sulfur diesel fuel, the reduction in wear rate was even greater (i.e., by a factor of 12 compared to that of uncoated test pairs), indicating that the NFC coating holds promise as a potential solution to wear problems associated with the use of low-lubricity diesel fuels.

  11. Coal-fueled diesel technology development emissions control

    NASA Astrophysics Data System (ADS)

    Vankleunen, W.; Kaldor, S.; Gal, E.; Mengel, M.; Arnold, M.

    1994-01-01

    General Electric Environmental Services, Inc. (GEESI), Emissions Control program activity ranged from control concept testing of 10 CFM slipstream from a coal-water-slurry (CWS) fuel single cylinder research diesel engine to the design, installation, and operation of a full-size emissions control system for a full-size CWS fuel diesel engine designed for locomotive operation. Early 10 CFM slipstream testing program activity was performed to determine emissions characteristics and to evaluate emissions control concepts such a barrier filtration, granular bed filtration, and cyclone particulate collection for reduction of particulate and gaseous emissions. Use of sorbent injection into the engine exhaust gas upstream of the barrier filter or use of sorbent media in the granular bed filter were found to provide reduction of exhaust gas SO2 and NO(x) in addition to collection of ash particulate. Emergence of the use of barrier filtration as a most practical emissions control concept disclosed a need to improve cleanability of the filter media in order to avoid reduction of turbocharger performance by excessive barrier filter pressure drop. The next progression of program activity, after the slipstream feasibility state, was 500 CFM cold flow testing of control system concepts. The successful completion of 500 CFM cold flow testing of the envelope filter led to a subsequent progression to a similar configuration envelope filter designed to operate at 500 CFM hot gas flow from the CWS fuel research diesel engine in the GETS engine test laboratory. This envelope filter included the design aspect proven by cold flow testing as well as optimization of the selection of the installed filter media.

  12. Coal-fueled diesel technology development Emissions Control

    SciTech Connect

    Van Kleunen, W.; Kaldor, S.; Gal, E.; Mengel, M.; Arnold, M.

    1994-01-01

    GEESI Emissions Control program activity ranged from control concept testing of 10 CFM slipstream from a CWS fuel single cylinder research diesel engine to the design, installation, and operation of a full-size Emissions Control system for a full-size CWS fuel diesel engine designed for locomotive operation.Early 10 CFM slipstream testing program activity was performed to determine Emissions Characteristics and to evaluate Emissions Control concepts such a Barrier filtration, Granular bed filtration, and Cyclone particulate collection for reduction of particulate and gaseous emissions. Use of sorbent injection into the engine exhaust gas upstream of the barrier filter or use of sorbent media in the granular bed filter were found to provide reduction of exhaust gas SO{sub 2} and NO{sub x} in addition to collection of ash particulate. Emergence of the use of barrier filtration as a most practical Emissions Control concept disclosed a need to improve cleanability of the filter media in order to avoid reduction of turbocharger performance by excessive barrier filter pressure drop. The next progression of program activity, after the slipstream feasibility state, was 500 CFM cold flow testing of control system concepts. The successful completion of 500 CFM cold flow testing of the Envelope Filter led to a subsequent progression to a similar configuration Envelope Filter designed to operate at 500 CFM hot gas flow from the CWS fuel research diesel engine in the GETS engine test laboratory. This Envelope Filter included the design aspect proven by cold flow testing as well as optimization of the selection of the installed filter media.

  13. Inhalation exposures of rats to aerosolized diesel fuel

    SciTech Connect

    Dalbey, W.; Lock, S.; Garfinkel, S.; Jenkins, R.; Holmberg, R.; Guerin, M.

    1982-01-01

    The toxicological effects of high concentrations of aerosolized, combusted diesel fuel are being investigated in Sprague-Dawley rats receiving whole-body inhalation exposures. Single exposure for 2 hours to 0.5 to 7 mg/1 resulted in a concentration-related decrease in respiratory frequency during exposure, transiently decreased responsiveness in a startle reflex assay just after exposure, and influx of granulocytes into lungs for several subsequent days. Repeated exposures (a total of 9) with varying aerosol concentration, duration, and frequency have resulted in altered pulmonary free cell number, pulmonary function, responsiveness in startle reflex assay, and histopathology.

  14. Hydrogen-fueled diesel engine without timed ignition

    NASA Technical Reports Server (NTRS)

    Homan, H. S.; De Boer, P. C. T.; Mclean, W. J.; Reynolds, R. K.

    1979-01-01

    Experiments were carried out to investigate the feasibility of converting a diesel engine to hydrogen-fueled operation without providing a timed ignition system. Use was made of a glow plug and a multiple-strike spark plug. The glow plug was found to provide reliable ignition and smooth engine operation. It caused the hydrogen to ignite almost immediately upon the start of injection. Indicated mean effective pressures were on the order of 1.3 MPa for equivalence ratios between 0.1 and 0.4 at a compression ratio of 18. This is significantly higher than the corresponding result obtained with diesel oil (about 0.6 MPa for equivalence ratios between 0.3 and 0.9). Indicated thermal efficiencies were on the order of 0.4 for hydrogen and 0.20-0.25 for diesel oil. Operation with the multiple-strike spark system yielded similar values for IMEP and efficiency, but gave rise to large cycle-to-cycle variations in the delay between the beginning of injection and ignition. Large ignition delays were associated with large amplitude pressure waves in the combustion chamber. The measured NO(x) concentrations in the exhaust gas were of the order of 50-100 ppm. This is significantly higher than the corresponding results obtained with premixed hydrogen and air at low equivalence ratios. Compression ignition could not be achieved even at a compression ratio of 29.

  15. Health Effects Associated with Inhalation Exposure to Diesel Emission Generated with and without CeO2 Nano Fuel Additive

    EPA Science Inventory

    Diesel exhaust (DE) exposure induces adverse cardiopulmonary effects. Addition of nano cerium (Ce) oxide additive to diesel fuel (DECe) increases fuel burning efficiency resulting in altered emission characteristics and potentially altered health effects. We hypothesized that inh...

  16. Performance and Emission Characteristics of Diesel Engine Fueled with Ethanol-Diesel Blends in Different Altitude Regions

    PubMed Central

    Lei, Jilin; Bi, Yuhua; Shen, Lizhong

    2011-01-01

    In order to investigate the effects ethanol-diesel blends and altitude on the performance and emissions of diesel engine, the comparative experiments were carried out on the bench of turbo-charged diesel engine fueled with pure diesel (as prototype) and ethanol-diesel blends (E10, E15, E20 and E30) under different atmospheric pressures (81 kPa, 90 kPa and 100 kPa). The experimental results indicate that the equivalent brake-specific fuel consumption (BSFC) of ethanol-diesel blends are better than that of diesel under different atmospheric pressures and that the equivalent BSFC gets great improvement with the rise of atmospheric pressure when the atmospheric pressure is lower than 90 kPa. At 81 kPa, both HC and CO emissions rise greatly with the increasing engine speeds and loads and addition of ethanol, while at 90 kPa and 100 kPa their effects on HC and CO emissions are slightest. The changes of atmospheric pressure and mix proportion of ethanol have no obvious effect on NOx emissions. Smoke emissions decrease obviously with the increasing percentage of ethanol in blends, especially atmospheric pressure below 90 kPa. PMID:21234367

  17. Combustion behaviors of a compression-ignition engine fueled with diesel/methanol blends under various fuel delivery advance angles.

    PubMed

    Huang, Zuohua; Lu, Hongbing; Jiang, Deming; Zeng, Ke; Liu, Bing; Zhang, Junqiang; Wang, Xibin

    2004-12-01

    A stabilized diesel/methanol blend was described and the basic combustion behaviors based on the cylinder pressure analysis was conducted in a compression-ignition engine. The study showed that increasing methanol mass fraction of the diesel/methanol blends would increase the heat release rate in the premixed burning phase and shorten the combustion duration of the diffusive burning phase. The ignition delay increased with the advancing of the fuel delivery advance angle for both the diesel fuel and the diesel/methanol blends. For a specific fuel delivery advance angle, the ignition delay increased with the increase of the methanol mass fraction (oxygen mass fraction) in the fuel blends and the behaviors were more obvious at low engine load and/or high engine speed. The rapid burn duration and the total combustion duration increased with the advancing of the fuel delivery advance angle. The centre of the heat release curve was close to the top-dead-centre with the advancing of the fuel delivery advance angle. Maximum cylinder gas pressure increased with the advancing of the fuel delivery advance angle, and the maximum cylinder gas pressure of the diesel/methanol blends gave a higher value than that of the diesel fuel. The maximum mean gas temperature remained almost unchanged or had a slight increase with the advancing of the fuel delivery advance angle, and it only slightly increased for the diesel/methanol blends compared to that of the diesel fuel. The maximum rate of pressure rise and the maximum rate of heat release increased with the advancing of the fuel delivery advance angle of the diesel/methanol blends and the value was highest for the diesel/methanol blends. PMID:15288277

  18. Emissions From Various Biodiesel Sources Compared to a Range of Diesel Fuels in DPF Equipped Diesel Engines

    SciTech Connect

    Williams, A.; Burton, J.; Christensen, E.; McCormick, R. L.; Tester, J.

    2011-01-01

    The purpose of this study was to measure the impact of various sources of petroleum-based and bio-based diesel fuels on regulated emissions and fuel economy in diesel particulate filter (DPF) equipped diesel engines. Two model year 2008 diesel engines were tested with nine fuels including a certification ultra-low sulfur diesel (ULSD), local ULSD, high aromatic ULSD, low aromatic ULSD, and twenty percent blends of biodiesel derived from algae, camelina, soy, tallow, and yellow grease. Regulated emissions were measured over the heavy duty diesel transient test cycle. Measurements were also made of DPF-out particle size distribution and total particle count from a 13-mode steady state test using a fast mobility particle sizer. Test engines were a 2008 Cummins ISB and a 2008 International Maxx Force 10, both equipped with actively regenerated DPFs. Fuel consumption was roughly 2% greater over the transient test cycle for the B20 blends versus certification ULSD in both engines, consistent with the slightly lower energy content of biodiesel. Unlike studies conducted on older model engines, these engines equipped with diesel oxidation catalysts and DPFs showed small or no measurable fuel effect on the tailpipe emissions of total hydrocarbons (THC), carbon monoxide (CO) and particulate matter (PM). No differences in particle size distribution or total particle count were seen in a comparison of certification ULSD and B20 soy, with the exception of engine idling conditions where B20 produced a small reduction in the number of nucleation mode particles. In the Cummins engine, B20 prepared from algae, camelina, soy, and tallow resulted in an approximately 2.5% increase in nitrogen oxides (NO{sub x}) compared to the base fuel. The International engine demonstrated a higher degree of variability for NO{sub x} emissions, and fuel effects could not be resolved (p > 0.05). The group of petroleum diesel test fuels produced a range of NO{sub x} emissions very similar to that

  19. Transition to Ultra-Low-Sulfur Diesel Fuel: Effects on Prices and Supply, The

    EIA Publications

    2001-01-01

    This report discusses the implications of the new regulations for vehicle fuel efficiency and examines the technology, production, distribution, and cost implications of supplying diesel fuel to meet the new standards.

  20. 46 CFR 119.470 - Ventilation of spaces containing diesel fuel tanks.

    Code of Federal Regulations, 2010 CFR

    2010-10-01

    ... 46 Shipping 4 2010-10-01 2010-10-01 false Ventilation of spaces containing diesel fuel tanks. 119... MACHINERY INSTALLATION Specific Machinery Requirements § 119.470 Ventilation of spaces containing diesel fuel tanks. (a) Unless provided with ventilation that complies with § 119.465 of this part, a...

  1. 46 CFR 182.470 - Ventilation of spaces containing diesel fuel tanks.

    Code of Federal Regulations, 2010 CFR

    2010-10-01

    ... ventilation installations in accordance with ABYC H-32 (incorporated by reference; see 46 CFR 175.600) will be... 46 Shipping 7 2010-10-01 2010-10-01 false Ventilation of spaces containing diesel fuel tanks. 182... Ventilation of spaces containing diesel fuel tanks. (a) Unless provided with ventilation that complies...

  2. 40 CFR 80.554 - What compliance options are available to NRLM diesel fuel small refiners?

    Code of Federal Regulations, 2012 CFR

    2012-07-01

    ..., 2014, and NRLM diesel fuel from crude oil from June 1, 2012 through May 31, 2014 that is subject to the... to 113 percent of BNRLM, and from July 1, 2013 through May 31, 2014 must be less than or equal to 96...) From June 1, 2010 through May 31, 2012, for NR diesel fuel, and from June 1, 2012 through May 31,...

  3. 40 CFR 80.554 - What compliance options are available to NRLM diesel fuel small refiners?

    Code of Federal Regulations, 2013 CFR

    2013-07-01

    ..., 2014, and NRLM diesel fuel from crude oil from June 1, 2012 through May 31, 2014 that is subject to the... to 113 percent of BNRLM, and from July 1, 2013 through May 31, 2014 must be less than or equal to 96...) From June 1, 2010 through May 31, 2012, for NR diesel fuel, and from June 1, 2012 through May 31,...

  4. Experimental Investigations on Conventional and Semi-Adiabatic Diesel Engine Using Simarouba Biodiesel as Fuel

    NASA Astrophysics Data System (ADS)

    Ravi, M. U.; Reddy, C. P.; Ravindranath, K.

    2013-04-01

    In view of fast depletion of fossil fuels and the rapid rate at which the fuel consumption is taking place all over the world, scientists are searching for alternate fuels for maintaining the growth industrially and economically. Hence search for alternate fuel(s) has become imminent. Out of the limited options for internal combustion engines, the bio diesel fuel appears to be the best. Many advanced countries are implementing several biodiesel initiatives and developmental programmes in order to become self sufficient and reduce the import bills. Biodiesel is biodegradable and renewable fuel with the potential to enhance the performance and reduce engine exhaust emissions. This is due to ready usage of existing diesel engines, fuel distribution pattern, reduced emission profiles, and eco-friendly properties of biodiesel. Simarouba biodiesel (SBD), the methyl ester of Simarouba oil is one such alternative fuel which can be used as substitute to conventional petro-diesel. The present work involves experimental investigation on the use of SBD blends as fuel in conventional diesel engine and semi-adiabatic diesel engine. The oil was triple filtered to eliminate particulate matter and then transesterified to obtain biodiesel. The project envisaged aims at conducting analysis of diesel with SBD blends (10, 20, 30 and 40 %) in conventional engine and semi-adiabatic engine. Also it was decided to vary the injection pressure (180, 190 and 200 bar) and observe its effect on performance and also suggest better value of injection pressure. The engine was made semi adiabatic by coating the piston crown with partially stabilized zirconia (PSZ). Kirloskar AV I make (3.67 kW) vertical, single cylinder, water cooled diesel engine coupled to an eddy current dynamometer with suitable measuring instrumentation/accessories used for the study. Experiments were initially carried out using pure diesel fuel to provide base line data. The test results were compared based on the performance

  5. 40 CFR 80.602 - What records must be kept by entities in the NRLM diesel fuel, ECA marine fuel, and diesel fuel...

    Code of Federal Regulations, 2012 CFR

    2012-07-01

    ... sampling and testing for sulfur content for a batch of NRLM diesel fuel produced or imported and subject to the 15 ppm sulfur standard or any sampling and testing for sulfur content as part of a quality assurance testing program, and any sampling and testing for cetane index, aromatics content, marker...

  6. 40 CFR 80.524 - What sulfur content standard applies to motor vehicle diesel fuel downstream of the refinery or...

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... to motor vehicle diesel fuel downstream of the refinery or importer? 80.524 Section 80.524 Protection... applies to motor vehicle diesel fuel downstream of the refinery or importer? (a) Except as provided in... standard of § 80.520(a) shall apply to all motor vehicle diesel fuel at any downstream location. (b)...

  7. 500 Watt Diesel Fueled TPV Portable Power Supply

    NASA Astrophysics Data System (ADS)

    Horne, W. E.; Morgan, M. D.; Sundaram, V. S.; Butcher, T.

    2003-01-01

    A test-bed 500 watt diesel fueled thermophotovoltaic (TPV) portable power supply is described. The goal of the design is a compact, rugged field portable unit weighing less than 15 pounds without fuel. The conversion efficiency goal is set at 15% fuel energy to electric energy delivered to an external load at 24 volts. A burner/recuperator system has been developed to meet the objectives of high combustion air preheat temperatures with a compact heat exchanger, low excess air operation, and high convective heat transfer rates to the silicon carbide emitter surface. The burner incorporates a air blast atomizer with 100% of the combustion air passing through the nozzle. Designed firing rate of 2900 watts at 0.07 gallons of oil per hour. This incorporates a single air supply dc motor/fan set and avoids the need for a system air compressor. The recuperator consists of three annular, concentric laminar flow passages. Heat from the combustion of the diesel fuel is both radiantly and convectively coupled to the inside wall of a cylindrical silicon carbide emitter. The outer wall of the emitter then radiates blackbody energy at the design temperature of 1400°C. The cylindrical emitter is enclosed in a quartz envelope that separates it from the photovoltaic (PV) cells. Spectral control is accomplished by a resonant mesh IR band-pass filter placed between the emitter and the PV array. The narrow band of energy transmitted by the filter is intercepted and converted to electricity by an array of GaSb PV cells. The array consists of 216 1-cm × 1-cm GaSb cells arranged into series and parallel arrays. An array of heat pipes couple the PV cell arrays to a heat exchanger which is cooled by forced air convection. A brief status of the key TPV technologies is presented followed by data characterizing the performance of the 500 watt TPV system.

  8. Survey of winter `93 low sulphur diesel fuels in the US

    SciTech Connect

    Cusano, C.M.; Flaherty, R.W.; Roush, A.N.

    1994-10-01

    Reports of disabling diesel engine seal failures which accompanied the introduction of low sulfur diesel fuel in October `93 prompted an indepth survey of diesel fuel chemical and physical properties. The purpose of the survey was to anticipate other possible problems which might arise with the newly introduced low sulfur fuels. The survey will produce a database containing over 1000 number 2 diesel fuels from various parts of the US. About 75% of the samples tested were on-highway low sulfur diesel fuels. Samples analyzed were from the D-A Lubricant Company, Cummins customers failures (truck fleets of various sizes), and a number of retail fueling stations. Properties under investigation are % Sulfur, Cloud/Pour Points, Viscosity, API Gravity, TAN/TBN, Boiling Range, Aromatics content, Heat Content, Lubricity, and Peroxide number. While each sample was not tested for all the properties listed, an adequate number of samples were tested to give a clear picture of diesel fuel properties for samples collected over a 5 month period. Diesel fuel speciation was helpful in providing an understanding of many of the differences noted for low sulfur fuels. 6 refs., 3 figs., 2 tabs.

  9. AUTOMOTIVE DIESEL MAINTENANCE L. UNIT XII, PART I--MAINTAINING THE FUEL SYSTEM (PART II), CUMMINS DIESEL ENGINE, PART II--UNIT INSTALLATION (ENGINE).

    ERIC Educational Resources Information Center

    Human Engineering Inst., Cleveland, OH.

    THIS MODULE OF A 30-MODULE COURSE IS DESIGNED TO DEVELOP AN UNDERSTANDING OF THE OPERATION AND MAINTENANCE OF THE DIESEL ENGINE FUEL SYSTEM AND THE PROCEDURES FOR DIESEL ENGINE INSTALLATION. TOPICS ARE FUEL FLOW CHARACTERISTICS, PTG FUEL PUMP, PREPARATION FOR INSTALLATION, AND INSTALLING ENGINE. THE MODULE CONSISTS OF A SELF-INSTRUCTIONAL BRANCH…

  10. Performance and emission parameters of single cylinder diesel engine using castor oil bio-diesel blended fuels

    NASA Astrophysics Data System (ADS)

    Rahimi, A.; Ghobadian, B.; Najafi, G.; Jaliliantabar, F.; Mamat, R.

    2015-12-01

    The purpose of this study is to investigate the performance and emission parameters of a CI single cylinder diesel engine operating on biodiesel-diesel blends (B0, B5, B10, B15 and E20: 20% biodiesel and 80% diesel by volume). A reactor was designed, fabricated and evaluated for biodiesel production. The results showed that increasing the biodiesel content in the blend fuel will increase the performance parameters and decrease the emission parameters. Maximum power was detected for B0 at 2650 rpm and maximum torque was belonged to B20 at 1600 rpm. The experimental results revealed that using biodiesel-diesel blended fuels increased the power and torque output of the engine. For biodiesel blends it was found that the specific fuel consumption (sfc) was decreased. B10 had the minimum amount for sfc. The concentration of CO2 and HC emissions in the exhaust pipe were measured and found to be decreased when biodiesel blends were introduced. This was due to the high oxygen percentage in the biodiesel compared to the net diesel fuel. In contrast, the concentration of CO and NOx was found to be increased when biodiesel is introduced.

  11. Performance, durability and low temperature evaluation of sunflower oil as a diesel fuel extender

    SciTech Connect

    Baranescu, R.A.; Lusco, J.J.

    1982-01-01

    The paper presents the results of a research project to evaluate performance and durability of direct injection turbocharged diesel engines using sunflower oil and blends thereof. Alcaline refined sunflower oil and three different blends of sunflower oil and diesel fuel were comparatively tested against No. 2 diesel fuel for: physical and chemical characteristics, fuel injection system performance, short term engine performance, propensity to nozzle deposits buildup, limited durability operation and low temperature starting capability. Results are presented for the various phases of the project and correlations between the fuel characteristics and engine accept-ability are discussed. 19 figures, 2 tables.

  12. 40 CFR 80.607 - What are the requirements for obtaining an exemption for diesel fuel or ECA marine fuel used for...

    Code of Federal Regulations, 2012 CFR

    2012-07-01

    ... program (including quantity, fuel properties, name, address, telephone number and contact person of the... obtaining an exemption for diesel fuel or ECA marine fuel used for research, development or testing purposes... PROGRAMS (CONTINUED) REGULATION OF FUELS AND FUEL ADDITIVES Motor Vehicle Diesel Fuel; Nonroad,...

  13. 40 CFR 80.607 - What are the requirements for obtaining an exemption for diesel fuel or ECA marine fuel used for...

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ... program (including quantity, fuel properties, name, address, telephone number and contact person of the... obtaining an exemption for diesel fuel or ECA marine fuel used for research, development or testing purposes... PROGRAMS (CONTINUED) REGULATION OF FUELS AND FUEL ADDITIVES Motor Vehicle Diesel Fuel; Nonroad,...

  14. 40 CFR 80.607 - What are the requirements for obtaining an exemption for diesel fuel or ECA marine fuel used for...

    Code of Federal Regulations, 2013 CFR

    2013-07-01

    ... program (including quantity, fuel properties, name, address, telephone number and contact person of the... obtaining an exemption for diesel fuel or ECA marine fuel used for research, development or testing purposes... PROGRAMS (CONTINUED) REGULATION OF FUELS AND FUEL ADDITIVES Motor Vehicle Diesel Fuel; Nonroad,...

  15. 40 CFR 80.607 - What are the requirements for obtaining an exemption for diesel fuel or ECA marine fuel used for...

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... program (including quantity, fuel properties, name, address, telephone number and contact person of the... obtaining an exemption for diesel fuel or ECA marine fuel used for research, development or testing purposes... PROGRAMS (CONTINUED) REGULATION OF FUELS AND FUEL ADDITIVES Motor Vehicle Diesel Fuel; Nonroad,...

  16. 40 CFR 80.607 - What are the requirements for obtaining an exemption for diesel fuel or ECA marine fuel used for...

    Code of Federal Regulations, 2014 CFR

    2014-07-01

    ... program (including quantity, fuel properties, name, address, telephone number and contact person of the... obtaining an exemption for diesel fuel or ECA marine fuel used for research, development or testing purposes... PROGRAMS (CONTINUED) REGULATION OF FUELS AND FUEL ADDITIVES Motor Vehicle Diesel Fuel; Nonroad,...

  17. Alternatives to Diesel Fuel in California - Fuel Cycle Energy and Emission Effects of Possible Replacements Due to the TAC Diesel Particulate Decision

    SciTech Connect

    Christopher L. Saraicks; Donald M. Rote; Frank Stodolsky; James J. Eberhardt

    2000-05-01

    Limitations on petroleum-based diesel fuel in California could occur pursuant to the 1998 declaration by California's Air Resources Board (CARB) that the particulate matter component of diesel exhaust is a carcinogen, therefore a toxic air contaminant (TAC) subject to the state's Proposition 65. It is the declared intention of CARB not to ban or restrict diesel fuel, per se, at this time. Assuming no total ban, Argonne National Laboratory (ANL) explored two feasible ''mid-course'' strategies, each of which results in some degree of (conventional) diesel displacement. In the first case, with substantial displacement of compression ignition by spark ignition engines, diesel fuel is assumed admissible for ignition assistance as a pilot fuel in natural gas (NG)-powered heavy-duty vehicles. Gasoline demand in California increases by 32.2 million liters (8.5 million gallons) per day overall, about 21 percent above projected 2010 baseline demand. Natural gas demand increases by 13.6 million diesel liter (3.6 million gallon) equivalents per day, about 7 percent above projected (total) consumption level. In the second case, ressionignition engines utilize substitutes for petroleum-based diesel having similar ignition and performance properties. For each case we estimated localized air emission plus generalized greenhouse gas and energy changes. Fuel replacement by di-methyl ether yields the greatest overall reduction in NOx emissions, though all scenarios bring about PM10 reductions relative to the 2010 baseline, with greatest reductions from the first case described above and the least from fuel replacement by Fischer-Tropsch synthetic diesel. Economic implications of vehicle and engine replacement were not formally evaluated.

  18. Alternatives to diesel fuel in California - fuel cycle energy and emission effects of possible replacements due to the TAC diesel particulate decision.

    SciTech Connect

    Saricks, C. L.; Rote, D. M.; Stodolsky, F.; Eberhardt, J. J.

    1999-12-03

    Limitations on petroleum-based diesel fuel in California could occur pursuant to the 1998 declaration by California's Air Resources Board (CARB) that the particulate matter component of diesel exhaust is a carcinogen, therefore a toxic air contaminant (TAC) subject to the state's Proposition 65. It is the declared intention of CARB not to ban or restrict diesel fuel per se, at this time. Assuming no total ban, Argonne National Laboratory (ANL) explored two feasible mid-course strategies, each of which results in some degree of (conventional) diesel displacement. In the first case, with substantial displacement of compression-ignition by spark-ignition engines, diesel fuel is assumed admissible for ignition assistance as a pilot fuel in natural gas (NG)-powered heavy-duty vehicles. Gasoline demand in California increases by 32.2 million liters (8.5 million gallons) per day overall, about 21% above projected 2010 baseline demand. Natural gas demand increases by 13.6 million diesel liter (3.6 million gallon) equivalents per day, about 7% above projected (total) consumption level. In the second case, compression-ignition engines utilize substitutes for petroleum-based diesel having similar ignition and performance properties. For each case the authors estimated localized air emission plus generalized greenhouse gas and energy changes. Fuel replacement by di-methyl ether yields the greatest overall reduction in NOX emissions, though all scenarios bring about PM{sub 10} reductions relative to the 2010 baseline, with greatest reductions from the first case described above and the least from fuel replacement by Fischer-Tropsch synthetic diesel. Economic implications of vehicle and engine replacement were not formally evaluated.

  19. Combustor exhaust emissions with air-atomizing splash-groove fuel injectors burning Jet A and Diesel number 2 fuels

    NASA Technical Reports Server (NTRS)

    Ingebo, R. D.; Norgren, C. T.

    1975-01-01

    Air-atomizing, splash-groove injectors were shown to improve primary-zone fuel spreading and reduce combustor exhaust emissions for Jet A and diesel number 2 fuels. With Jet A fuel large-orifice, splash-groove injectors the oxides-of-nitrogen emission index was reduced, but emissions of carbon monoxide, unburned hydrocarbons, or smoke were unaffected. Small-orifice, splash-groove injectors did not reduce oxides of nitrogen, but reduced the smoke number and carbon monoxide and unburned-hydrocarbon emission indices. With diesel number 2 fuel, the small-orifice, splash-groove injectors reduced oxides of nitrogen by 19 percent, smoke number by 28 percent, carbon monoxide by 75 percent, and unburned hydrocarbons by 50 percent. Smoke number and unburned hydrocarbons were twice as high with diesel number 2 as with Jet A fuel. Combustor blowout limits were similar for diesel number 2 and Jet A fuels.

  20. Increase in ozone due to the use of biodiesel fuel rather than diesel fuel.

    PubMed

    Thang, Phan Quang; Muto, Yusuke; Maeda, Yasuaki; Trung, Nguyen Quang; Itano, Yasuyuki; Takenaka, Norimichi

    2016-09-01

    The consumption of fuel by vehicles emits nitrogen oxides (NOx) and non-methane hydrocarbons (NMHCs) into the atmosphere, which are important ozone precursors. Ozone is formed as a secondary pollutant via photochemical processes and is not emitted directly into the atmosphere. In this paper, the ozone increase resulting from the use of biodiesel and diesel fuels was investigated, and the different ozone formation trends were experimentally evaluated. Known amounts of exhaust gas from a power generator operated using biodiesel and diesel fuels were added to ambient air. The quality of the ambient air, such as the initial NMHC and NOx concentrations, and the irradiation intensity have an effect on the ozone levels. When 30 cm(3) of biodiesel fuel exhaust gas (BFEG) or diesel fuel exhausted gas (DFEG) was added to 18 dm(3) of ambient air, the highest ratios of ozone increase from BFEG compared with DFEG in Japan and Vietnam were 31.2 and 42.8%, respectively, and the maximum ozone increases resulting from DFEG and BFEG compared with the ambient air in Japan were 17.4 and 26.4 ppb, respectively. The ozone increase resulting from the use of BFEG was large and significant compared to that from DFEG under all experimental conditions. The ozone concentration increased as the amount of added exhaust gas increased. The ozone increase from the Jatropha-BFEG was slightly higher than that from waste cooking oil-BFEG. PMID:27396671

  1. Particulate Emissions from the Combustion of Diesel Fuel with a Fuel-Borne Nanoparticulate Cerium Catalyst

    NASA Astrophysics Data System (ADS)

    Conny, J. M.; Willis, R. D.; Weinstein, J. P.; Krantz, T.; King, C.

    2013-12-01

    To address the adverse impacts on health and climate from the use of diesel-fueled vehicles, a number of technological solutions have been developed for reducing diesel soot emissions and to improve fuel economy. One such solution is the use fuel-borne metal oxide catalysts. Of current interest are commercially-available fuel additives consisting of nanoparticulate cerium oxide (CeO2). In response to the possible use of CeO2-containing fuels in on-road vehicles in the U.S., the Environmental Protection Agency is conducting research to address the potential toxicity and environmental effects of particulate CeO2 emitted with diesel soot. In this study, emissions from a diesel-fueled electric generator were size-segregated on polished silicon wafers in a nanoparticle cascade impactor. The diesel fuel contained 10 ppm Ce by weight in the form of crystalline CeO2 nanoparticles 4 nm to 7.5 nm in size. Primary CeO2 nanoparticles were observed in the diesel emissions as well as CeO2 aggregates encompassing a broad range of sizes up to at least 200 nm. We report the characterization of individual particles from the size-resolved samples with focused ion-beam scanning electron microscopy and energy-dispersive x-ray spectroscopy. Results show a dependency between the impactor size range and CeO2 agglomeration state: in the larger size fractions of the impactor (e.g., 560 nm to 1000 nm) CeO2 nanoparticles were predominantly attached to soot particles. In the smaller size fractions of the impactor (e.g., 100 nm to 320 nm), CeO2 aggregates tended to be larger and unattached to soot. The result is important because the deposition of CeO2 nanoparticles attached to soot particles in the lung or on environmental surfaces such as plant tissue will likely present different consequences than the deposition of unagglomerated CeO2 particles. Disclaimer The U.S. Environmental Protection Agency through its Office of Research and Development funded and collaborated in the research described

  2. 40 CFR 80.608 - What requirements apply to diesel fuel and ECA marine fuel for use in the Territories?

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... 40 Protection of Environment 16 2010-07-01 2010-07-01 false What requirements apply to diesel fuel and ECA marine fuel for use in the Territories? 80.608 Section 80.608 Protection of Environment ENVIRONMENTAL PROTECTION AGENCY (CONTINUED) AIR PROGRAMS (CONTINUED) REGULATION OF FUELS AND FUEL...

  3. 40 CFR 80.608 - What requirements apply to diesel fuel and ECA marine fuel for use in the Territories?

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ... 40 Protection of Environment 16 2011-07-01 2011-07-01 false What requirements apply to diesel fuel and ECA marine fuel for use in the Territories? 80.608 Section 80.608 Protection of Environment ENVIRONMENTAL PROTECTION AGENCY (CONTINUED) AIR PROGRAMS (CONTINUED) REGULATION OF FUELS AND FUEL...

  4. Comparison of Acute Health Effects From Exposures to Diesel and Biodiesel Fuel Emissions

    PubMed Central

    Mehus, Aaron A.; Reed, Rustin J.; Lee, Vivien S. T.; Littau, Sally R.; Hu, Chengcheng; Lutz, Eric A.

    2015-01-01

    Objective: To investigate the comparative acute health effects associated with exposures to diesel and 75% biodiesel/25% diesel (B75) blend fuel emissions. Methods: We analyzed multiple health endpoints in 48 healthy adults before and after exposures to diesel and B75 emissions in an underground mine setting—lung function, lung and systemic inflammation, novel biomarkers of exposure, and oxidative stress were assessed. Results: B75 reduced respirable diesel particulate matter by 20%. Lung function declined significantly more after exposure to diesel emissions. Lung inflammatory cells along with sputum and plasma inflammatory mediators increased significantly to similar levels with both exposures. Urinary 8-hydroxydeoxyguanosine, a marker of oxidative stress, was not significantly changed after either exposure. Conclusions: Use of B75 lowered respirable diesel particulate matter exposure and some associated acute health effects, although lung and systemic inflammation were not reduced compared with diesel use. PMID:26147538

  5. 40 CFR 80.30 - Liability for violations of diesel fuel control and prohibitions.

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... fuel control and prohibitions. 80.30 Section 80.30 Protection of Environment ENVIRONMENTAL PROTECTION AGENCY (CONTINUED) AIR PROGRAMS (CONTINUED) REGULATION OF FUELS AND FUEL ADDITIVES Controls and Prohibitions § 80.30 Liability for violations of diesel fuel control and prohibitions. (a) Violations...

  6. Coal-liquid fuel/diesel engine operating compatibility. Final report

    SciTech Connect

    Hoffman, J.G.; Martin, F.W.

    1983-09-01

    This work is intended to assess the possibilities of using coal-derived liquids (CDL) represented by a specific type (SRC II) and shale-derived distillate fuel in blends of petroleum-derived fuels in medium-speed, high-output, heavy-duty diesel engines. Conclusions are as follows: (1) Blends of solvent refined coal and diesel fuel may be handled safely by experienced diesel engine mechanics. (2) A serious corrosion problem was found in the fuel pump parts when operating with solvent refined coal blended with petroleum. It is expected that a metallurgy change can overcome this problem. (3) Proper selection of materials for the fuel system is required to permit handling coal-derived liquid fuels. (4) A medium speed, high horsepower, 4-cycle diesel engine can be operated on blends of solvent refined coal and petroleum without serious consequences save the fuel system corrosion previously mentioned. This is based on a single, short durability test. (5) As represented by the product evaluated, 100% shale-derived distillate fuel may be used in a medium speed, high horsepower, 4-cycle diesel engine without significant consequences. (6) The shale product evaluated may be blended with petroleum distillate or petroleum residual materials and used as a fuel for medium speed, high horsepower, 4-cycle diesel engines. 7 references, 24 figures, 20 tables.

  7. Proposed premium diesel fuel spec elicits calls for tougher, better defined parameters

    SciTech Connect

    Peckham, J.

    1998-01-01

    The debate over the definition of premium diesel fuel - what it is and what it should be - is heating up in industry circles. A number of automotive associations, additive makers and standards-setting organizations have jumped into the fray, and the fight is likely to turn volcanic when it comes down to deciding exactly what will constitute a premium diesel and how its properties will be measured. This story details some recent developments in and responses to the ongoing conflict. The Engine Manufacturers Association (EMA), representing 33 international diesel engine makers, recently launched a survey of U.S. diesel fuel marketers to see which ones will offer a fuel meeting EMA`s revised {open_quotes}FQP-1A{close_quotes} premium diesel fuel recommendations. Following the survey, EMA intends to publicize which companies offer such a fuel. The EMA premium fuel specifications are much tougher than the US standard ASTM D 975 fuel and tougher than the newly proposed {open_quotes}premium{close_quotes} diesel fuel from the National Conference of Weights & Measures (NCWM) task force. Earlier this year, Amoco became the first (and so far only) US refiner to offer a fuel meeting all the FQP specifications, but only in certain Midwest markets.

  8. Rheological properties of peanut oil-diesel fuel blends

    SciTech Connect

    Goodrum, J.W.; Law, S.E.

    1982-07-01

    Basic physical properties of peanut oil-diesel fuel blends were experimentally determined to help establish suitability for use in compression-ignition engines. For volumetric proportions of peanut oil ranging in 20 percent increments from 0 percent to 100 percent, the continuously varying properties at 21/sup 0/C were found to range as follows: heating value - 45.8 to 40.3 MJ/kg; specific gravity - 0.848 to 0.915; surface tension - 28.3 to 35.6 mN/m; and kinematic viscosity - 3.8 to 7.0 cSt. Dynamic viscosity measured as a function of shear rate over a 0/sup 0/C to 80/sup 0/C temperature range indicated nonNewtonian flow properties at shear rates less than 3/s.

  9. Coal-fueled diesel emissions control technology development

    SciTech Connect

    Cook, C.; Gal, E.; Mengel, M.; Van Kleunen, W.

    1993-03-01

    The objective of this project is to develop an emissions control system for a GE locomotive powered by a Coal Water Slurry (CWS) fuel diesel engine. The development effort is directed toward reducing particulate matter, SO{sub 2} and NO{sub x} emissions from the engine exhaust gas at 700--800F and 1-2 psig. The commercial system should be economically attractive while subject to limited space constraints. After testing various alternatives, a system composed of a barrier filter with sorbent injection ups was selected for controlling particulates, SO{sub 2} and NO{sub x} emissions. In bench scale and 500 acfm slip s tests, removal efficiencies greater than 90% for SO{sub 2} and 85% for NO{sub x} were achieved. Particulate emissions from the barrier filter are within NSPS limits.

  10. Coal-fueled diesel emissions control technology development

    SciTech Connect

    Cook, C.; Gal, E.; Mengel, M.; Van Kleunen, W.

    1993-01-01

    The objective of this project is to develop an emissions control system for a GE locomotive powered by a Coal Water Slurry (CWS) fuel diesel engine. The development effort is directed toward reducing particulate matter, SO[sub 2] and NO[sub x] emissions from the engine exhaust gas at 700--800F and 1-2 psig. The commercial system should be economically attractive while subject to limited space constraints. After testing various alternatives, a system composed of a barrier filter with sorbent injection ups was selected for controlling particulates, SO[sub 2] and NO[sub x] emissions. In bench scale and 500 acfm slip s tests, removal efficiencies greater than 90% for SO[sub 2] and 85% for NO[sub x] were achieved. Particulate emissions from the barrier filter are within NSPS limits.

  11. Double-crop sunflowers for agricultural diesel fuel

    SciTech Connect

    Glenn, T.L.; Keener, H.M.; Henry, J.E.; Triplett, G.B. Jr.

    1982-01-01

    Agronomic and engineering information on double-crop sunflower production, processing and utilization is presented. This and other available information is used to assess feasibility and future directions in the use of sunflower oil for agricultural diesel fuel in the US Eastern Corn Belt area. Double-cropping yields varied considerably due to precipitation extremes, plus different soil characteristics and management practices. Average expeller oil yields of 0.344 kg of oil per kg of moisture free seed were achieved with a feed rate of 125 kg per hour for a range in seed and processing conditions. Results from feasibility analyses suggest that sunflower oil can be grown in Ohio and processed in a community cooperative plant with a favorable energy ratio and marginal profitability. 3 figures, 4 tables.

  12. Soot and liquid-phase fuel distributions in a newly designed optically accessible D.I. diesel engine

    SciTech Connect

    Dec, J.E.; Espey, C.

    1993-10-01

    Two-dimensional (2-D) laser-sheet imaging has been used to examine the soot and liquid-phase fuel distributions in a newly designed, optically accessible, direct-injection Diesel engine of the heavy-duty size class. The design of this engine preserves the intake port geometry and basic dimensions of a Cummins N-series production engine. It also includes several unique features to provide considerable optical access. Liquid-phase fuel and soot distribution studies were conducted at a medium speed (1,200 rpm) using a Cummins closed-nozzle fuel injector. The scattering was used to obtain planar images of the liquid-phase fuel distribution. These images show that the leading edge of the liquid-phase portion of the fuel jet reaches a maximum length of 24 mm, which is about half the combustion bowl radius for this engine. Beyond this point virtually all the fuel has vaporized. Soot distribution measurements were made at a high load condition using three imaging diagnostics: natural flame luminosity, 2-D laser-induced incandescence, and 2-D elastic scattering. This investigation showed that the soot distribution in the combusting fuel jet develops through three stages. First, just after the onset of luminous combustion, soot particles are small and nearly uniformly distributed throughout the luminous region of the fuel jet. Second, after about 2 crank angle degrees a pattern develops of a higher soot concentration of larger sized particles in the head vortex region of the jet and a lower soot concentration of smaller sized particles upstream toward the injector. Third, after fuel injection ends, both the soot concentration and soot particle size increase rapidly in the upstream portion of the fuel jet.

  13. Some physiochemical tests of sunflower oil and no. 2 diesel oil as fuels

    SciTech Connect

    Ramdeen, P.; Backer, L.F.; Kaufman, K.R.; Kucera, H.L.; Moilanen, C.W.

    1982-05-01

    The suitability of sunflower oil as a fuel for diesel engines was evaluated by determining the physiochemical properties of sunflower oil, No. 2 diesel and blends of both. This evaluation was accomplished by determining the American Petroleum Institute (API) gravity, cetane rating, heat of combustion, kinematic viscosity, pour point, cloud point, and water content of these fuels using methods specified by the American Society of Testing Materials (ASTM) for diesel fuels. These tests for petroleum products are designed to standardize results so comparisons can be made from one laboratory to another.

  14. Improving low temperature properties of synthetic diesel fuels derived from oil shale. Alternative fuels utilization program

    SciTech Connect

    Frankenfeld, J.W.; Taylor, W.F.

    1980-11-01

    The ability of additives to improve the cold flow properties of shale oil derived fuels boiling in the diesel fuel range was evaluated. Because a commercial shale oil industry did not exist to provide actual samples of finished fuels, a representative range of hydroprocessed shale oil fractions was prepared for use in the additive testing work. Crude oil shale from Occidental Shale Company was fractionated to give three liquids in the diesel fuel boiling range. The initial boiling point in each case was 325/sup 0/F (163/sup 0/C). The final boiling points were 640/sup 0/F (338/sup 0/C), 670/sup 0/F (354/sup 0/C) and 700/sup 0/F (371/sup 0/F). Each fraction was hydrotreated to three different severities (800, 1200 and 1500 psi total pressure) over a Shell 324 nickel molybdate on alumina catalyst at 710 to 750/sup 0/F to afford 9 different model fuels. A variety of commercial and experimental additives were evaluated as cold flow improvers in the model fuels at treat levels of 0.04 to 0.4 wt %. Both the standard pour point test (ASTM D97) and a more severe low temperature flow test (LTFT) were employed. Reductions in pour points of up to 70/sup 0/F and improvements in LTFT temperatures up to 16/sup 0/F were achieved. It is concluded that flow improver additives can play an important role in improving the cold flow properties of future synthetic fuels of the diesel type derived from oil shale.

  15. 40 CFR 80.610 - What acts are prohibited under the diesel fuel sulfur program?

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ... under this subpart I and 40 CFR part 69, except as allowed by 40 CFR part 1043 for ECA marine fuel. (2... engine, including any locomotive or marine diesel engine. (b) Designation and volume balance violation... motor vehicle or model year 2011 or later nonroad diesel engine (except for locomotive or marine...

  16. Near-Road Modeling and Measurement of Particles Generated by Nanoparticle Diesel Fuel Additive Use

    EPA Science Inventory

    Cerium oxide (ceria) nanoparticles (n-Ce) are used as a fuel-borne catalyst in diesel engines to reduce particulate emissions, yet the environmental and human health impacts of the ceria-doped diesel exhaust aerosols are not well understood. To bridge the gap between emission mea...

  17. 30 CFR 75.1903 - Underground diesel fuel storage facilities and areas; construction and safety precautions.

    Code of Federal Regulations, 2013 CFR

    2013-07-01

    ... 30 Mineral Resources 1 2013-07-01 2013-07-01 false Underground diesel fuel storage facilities and areas; construction and safety precautions. 75.1903 Section 75.1903 Mineral Resources MINE SAFETY AND HEALTH ADMINISTRATION, DEPARTMENT OF LABOR COAL MINE SAFETY AND HEALTH MANDATORY SAFETY STANDARDS-UNDERGROUND COAL MINES Diesel-Powered Equipment...

  18. 40 CFR 80.29 - Controls and prohibitions on diesel fuel quality.

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... provided in 40 CFR 69.51, no person, including but not limited to, refiners, importers, distributors... motor vehicles, unless the diesel fuel: (1) Has a sulfur percentage, by weight, no greater than 0.05... for use in diesel motor vehicles and motor vehicle engines, and shall be subject to the...

  19. 40 CFR 80.610 - What acts are prohibited under the diesel fuel sulfur program?

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... under this subpart I and 40 CFR part 69, except as allowed by 40 CFR part 1043 for ECA marine fuel. (2... engine, including any locomotive or marine diesel engine. (b) Designation and volume balance violation... motor vehicle or model year 2011 or later nonroad diesel engine (except for locomotive or marine...

  20. 40 CFR 80.610 - What acts are prohibited under the diesel fuel sulfur program?

    Code of Federal Regulations, 2014 CFR

    2014-07-01

    ... under this subpart I and 40 CFR part 69, except as allowed by 40 CFR part 1043 for ECA marine fuel. (2..., offer for supply, store or transport heating oil for use in any nonroad diesel engine, including any locomotive or marine diesel engine. (b) Designation and volume balance violation. Produce, import,...

  1. 40 CFR 80.610 - What acts are prohibited under the diesel fuel sulfur program?

    Code of Federal Regulations, 2013 CFR

    2013-07-01

    ... under this subpart I and 40 CFR part 69, except as allowed by 40 CFR part 1043 for ECA marine fuel. (2..., offer for supply, store or transport heating oil for use in any nonroad diesel engine, including any locomotive or marine diesel engine. (b) Designation and volume balance violation. Produce, import,...

  2. 40 CFR 80.29 - Controls and prohibitions on diesel fuel quality.

    Code of Federal Regulations, 2013 CFR

    2013-07-01

    ... provided in 40 CFR 69.51, no person, including but not limited to, refiners, importers, distributors... 40 Protection of Environment 17 2013-07-01 2013-07-01 false Controls and prohibitions on diesel... Controls and prohibitions on diesel fuel quality. (a) Prohibited activities. Beginning October 1, 1993...

  3. 40 CFR 80.29 - Controls and prohibitions on diesel fuel quality.

    Code of Federal Regulations, 2014 CFR

    2014-07-01

    ... provided in 40 CFR 69.51, no person, including but not limited to, refiners, importers, distributors... 40 Protection of Environment 17 2014-07-01 2014-07-01 false Controls and prohibitions on diesel... Controls and prohibitions on diesel fuel quality. (a) Prohibited activities. Beginning October 1, 1993...

  4. ENVIRONMENTAL TECHNOLOGY VERIFICATION, TEST REPORT OF MOBILE SOURCE EMISSIONS CONTROL DEVICES/CLEAN DIESEL TECHNOLOGIES FUEL BORNE CATALYST WITH CLEANAIR SYSTEM'S DIESEL OXIDATION CATALYST

    EPA Science Inventory

    The Environmental Technology Verification report discusses the technology and performance of the Fuel-Borne Catalyst with CleanAir System's Diesel Oxidation Catalyst manufactured by Clean Diesel Technologies, Inc. The technology is a fuel-borne catalyst used in ultra low sulfur d...

  5. AUTOMOTIVE DIESEL MAINTENANCE 1. UNIT XXIII, I--MAINTAINING THE FUEL SYSTEM, PART II--CATERPILLAR DIESEL ENGINE, II--UNDERSTANDING STEERING SYSTEMS.

    ERIC Educational Resources Information Center

    Minnesota State Dept. of Education, St. Paul. Div. of Vocational and Technical Education.

    THIS MODULE OF A 30-MODULE COURSE IS DESIGNED TO DEVELOP AN UNDERSTANDING OF THE OPERATION AND MAINTENANCE OF THE DIESEL ENGINE FUEL INJECTION SYSTEM AND THE STEERING SYSTEM OF DIESEL POWERED VEHICLES. TOPICS ARE FUEL INJECTION SECTION, AND DESCRIPTION OF THE STEERING SYSTEM. THE MODULE CONSISTS OF A SELF-INSTRUCTIONAL BRANCH PROGRAMED TRAINING…

  6. 40 CFR 80.530 - Under what conditions can 500 ppm motor vehicle diesel fuel be produced or imported after May 31...

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... motor vehicle diesel fuel be produced or imported after May 31, 2006? 80.530 Section 80.530 Protection... FUELS AND FUEL ADDITIVES Motor Vehicle Diesel Fuel; Nonroad, Locomotive, and Marine Diesel Fuel; and ECA Marine Fuel Temporary Compliance Option § 80.530 Under what conditions can 500 ppm motor vehicle...

  7. 40 CFR 80.530 - Under what conditions can 500 ppm motor vehicle diesel fuel be produced or imported after May 31...

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ... motor vehicle diesel fuel be produced or imported after May 31, 2006? 80.530 Section 80.530 Protection... FUELS AND FUEL ADDITIVES Motor Vehicle Diesel Fuel; Nonroad, Locomotive, and Marine Diesel Fuel; and ECA Marine Fuel Temporary Compliance Option § 80.530 Under what conditions can 500 ppm motor vehicle...

  8. Fuels for Advanced Combustion Engines Research Diesel Fuels: Analysis of Physical and Chemical Properties

    SciTech Connect

    Gallant, Tom; Franz, Jim; Alnajjar, Mikhail; Storey, John Morse; Lewis Sr, Samuel Arthur; Sluder, Scott; Cannella, William C; Fairbridge, Craig; Hager, Darcy; Dettman, Heather; Luecke, Jon; Ratcliff, Matthew A.; Zigler, Brad

    2009-01-01

    The CRC Fuels for Advanced Combustion Engines working group has worked to identify a matrix of research diesel fuels for use in advanced combustion research applications. Nine fuels were specified and formulated to investigate the effects of cetane number aromatic content and 90% distillation fraction. Standard ASTM analyses were performed on the fuels as well as GC/MS and /u1H//u1/u3C NMR analyses and thermodynamic characterizations. Details of the actual results of the fuel formulations compared with the design values are presented, as well as results from standard analyses, such as heating value, viscosity and density. Cetane number characterizations were accomplished by using both the engine method and the Ignition Quality Tester (IQT/sT) apparatus.

  9. Fuel Property, Emission Test, and Operability Results from a Fleet of Class 6 Vehicles Operating on Gas-to-Liquid Fuel and Catalyzed Diesel Particle Filters

    SciTech Connect

    Alleman, T. L.; Eudy, L.; Miyasato, M.; Oshinuga, A.; Allison, S.; Corcoran, T.; Chatterjee, S.; Jacobs, T.; Cherrillo, R. A.; Clark, R.; Virrels, I.; Nine, R.; Wayne, S.; Lansing, R.

    2005-11-01

    A fleet of six 2001 International Class 6 trucks operating in southern California was selected for an operability and emissions study using gas-to-liquid (GTL) fuel and catalyzed diesel particle filters (CDPF). Three vehicles were fueled with CARB specification diesel fuel and no emission control devices (current technology), and three vehicles were fueled with GTL fuel and retrofit with Johnson Matthey's CCRT diesel particulate filter. No engine modifications were made.

  10. Adaptive neuro-fuzzy inference system (ANFIS) to predict CI engine parameters fueled with nano-particles additive to diesel fuel

    NASA Astrophysics Data System (ADS)

    Ghanbari, M.; Najafi, G.; Ghobadian, B.; Mamat, R.; Noor, M. M.; Moosavian, A.

    2015-12-01

    This paper studies the use of adaptive neuro-fuzzy inference system (ANFIS) to predict the performance parameters and exhaust emissions of a diesel engine operating on nanodiesel blended fuels. In order to predict the engine parameters, the whole experimental data were randomly divided into training and testing data. For ANFIS modelling, Gaussian curve membership function (gaussmf) and 200 training epochs (iteration) were found to be optimum choices for training process. The results demonstrate that ANFIS is capable of predicting the diesel engine performance and emissions. In the experimental step, Carbon nano tubes (CNT) (40, 80 and 120 ppm) and nano silver particles (40, 80 and 120 ppm) with nanostructure were prepared and added as additive to the diesel fuel. Six cylinders, four-stroke diesel engine was fuelled with these new blended fuels and operated at different engine speeds. Experimental test results indicated the fact that adding nano particles to diesel fuel, increased diesel engine power and torque output. For nano-diesel it was found that the brake specific fuel consumption (bsfc) was decreased compared to the net diesel fuel. The results proved that with increase of nano particles concentrations (from 40 ppm to 120 ppm) in diesel fuel, CO2 emission increased. CO emission in diesel fuel with nano-particles was lower significantly compared to pure diesel fuel. UHC emission with silver nano-diesel blended fuel decreased while with fuels that contains CNT nano particles increased. The trend of NOx emission was inverse compared to the UHC emission. With adding nano particles to the blended fuels, NOx increased compared to the net diesel fuel. The tests revealed that silver & CNT nano particles can be used as additive in diesel fuel to improve combustion of the fuel and reduce the exhaust emissions significantly.

  11. Thermal-oxidation stability of diesel fuels. Interim report, October 1983-January 1986

    SciTech Connect

    Stavinoha, L.L.; Barbee, J.G.; Yost, D.M.

    1986-02-01

    Injector fouling bench tests(IFBT) and modified Jet Fuel Thermal Oxidation Test(JFTOT, ASTMD 3241) were used to develop methodology for evaluating the thermal stability of diesel fuels. A new method for measuring the thickness of lacquer-type fuel deposits formed on test surfaces at elevated temperatures was developed and applied to a variety of fuels, both with and without MIL-S-53021(additive stabilizer package). The utility of this technique greatly expands the capability for exploring and defining diesel-fuel thermal stability with respect to both material and kinetic studies. Correlation of IFBT and JFTOT type tests including definitions of temperature, flow, test-surface metallurgy and fuel additive effects can now be performed to better understand diesel thermal stability and provide test methodology/test limit information for fuel-specification consideration.

  12. Evaluation of Exxon Donor Solvent (EDS) coal-derived liquid as utility diesel fuel. Final report

    SciTech Connect

    Heater, W.R.; Froh, T.W.; Ariga, S.; Baker, Q.A.; Piispanen, W.; Webb, P.; Trayser, D.; Keane, W.J.

    1983-10-01

    The program consisted of three phases: (I) characterization of the physical and chemical properties of EDS, (II) evaluation of EDS in a laboratory medium-speed diesel engine, and (III) evaluation of EDS in a low-speed diesel engine operating at a utility. The characteristics of high aromatic content and low cetane number that were found during Phase I made it unlikely that EDS could be used as a direct substitute for diesel fuel without engine modification to provide ignition assistance. Phase II was conducted on a 12-cylinder General Electric Company 7FDL diesel engine. Blends of up to 30% EDS and 70% 0.2 diesel fuel (DF-2) were successfully consumed. Dual fuel tests were also conducted on a single cylinder by injecting EDS through the existing engine fuel oil system and injecting DF-2 through an auxiliary nozzle as an ignition source. Acceptable operation was achieved using 5 to 10% pilot oil heat input. Phase III was conducted on a 16-cylinder Cooper-Bessemer LSV-16-GDT diesel engine at an EUC plant in Easton, Maryland. Blends of up to 66.7% EDS and 33.3% DF-2 were successfully consumed. Dual fuel tests were also conducted on a single cylinder by injecting EDS through the existing fuel oil system and using a natural-gas-fueled precombustion chamber as an ignition source. Acceptable operation was achieved using 3 to 6% pilot gas heat input. The program confirmed that it is feasible to consume significant proportions of EDS in a diesel engine, but more development is needed before EDS can be considered a viable alternative liquid fuel for diesel engines, and an industrial hygiene program is needed to assure safe handling of the fuel.

  13. 26 CFR 48.4041-0 - Applicability of regulations relating to diesel fuel after December 31, 1993.

    Code of Federal Regulations, 2010 CFR

    2010-04-01

    ... fuel after December 31, 1993. 48.4041-0 Section 48.4041-0 Internal Revenue INTERNAL REVENUE SERVICE... Special Fuels § 48.4041-0 Applicability of regulations relating to diesel fuel after December 31, 1993. Sections 48.4041-3 through 48.4041-17 do not apply to sales or uses of diesel fuel after December 31,...

  14. 40 CFR 80.591 - What are the product transfer document requirements for additives to be used in diesel fuel?

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ... requirements for additives to be used in diesel fuel? 80.591 Section 80.591 Protection of Environment ENVIRONMENTAL PROTECTION AGENCY (CONTINUED) AIR PROGRAMS (CONTINUED) REGULATION OF FUELS AND FUEL ADDITIVES... additives to be used in diesel fuel? (a) Except as provided in paragraphs (b) and (d) of this section,...

  15. 40 CFR 80.591 - What are the product transfer document requirements for additives to be used in diesel fuel?

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... requirements for additives to be used in diesel fuel? 80.591 Section 80.591 Protection of Environment ENVIRONMENTAL PROTECTION AGENCY (CONTINUED) AIR PROGRAMS (CONTINUED) REGULATION OF FUELS AND FUEL ADDITIVES... additives to be used in diesel fuel? (a) Except as provided in paragraphs (b) and (d) of this section,...

  16. Biodiesel: The use of vegetable oils and their derivatives as alternative diesel fuels

    SciTech Connect

    Knothe, G.; Bagby, M.O.

    1996-10-01

    Vegetable oils and their derivatives (especially methyl esters), commonly referred to as {open_quotes}biodiesel{close_quotes}, are prominent candidates as alternative diesel fuels. They have advanced from being purely experimental fuels to initial stages of commercialization. They are technically competitive with or offer technical advantages compared to conventional diesel fuel. Besides being a renewable resource, biodiesel reduces most emissions while engine performance and fuel economy are nearly identical compared to conventional fuels. Several problems, however, remain, which include economics, combustion, some emissions, lube oil contamination, and low-temperature properties. An overview on all the mentioned aspects of biodiesel will be presented.

  17. Measured effect of wind generation on the fuel consumption of an isolated diesel power system

    NASA Technical Reports Server (NTRS)

    Stiller, P. H.; Scott, G. W.; Shaltens, R. K.

    1983-01-01

    The Block Island Power Company (BIPCO), on Block Island, Rhode Island, operates an isolated electric power system consisting of diesel generation and an experimental wind turbine. The 150-kW wind turbine, designated MOD-OA by the U.S. Department of Energy is typically operated in parallel with two diesel generators to serve an average winter load of 350 kW. Wind generation serves up to 60 percent of the system demand depending on wind speed and total system load. Results of diesel fuel consumption measurements are given for the diesel units operated in parallel with the wind turbine and again without the wind turbine. The fuel consumption data are used to calculate the amount of fuel displaced by wind energy. Results indicate that the wind turbine displaced 25,700 lbs. of the diesel fuel during the test period, representing a calculated reduction in fuel consumption of 6.7 percent while generating 11 percent of the total electric energy. The amount of displaced fuel depends on operating conditions and system load. It is also shown that diesel engine throttle activity resulting from wind gusts which rapidly change the wind turbine output do not significantly influence fuel consumption.

  18. 30 CFR 75.1904 - Underground diesel fuel tanks and safety cans.

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... have liquid tight welded seams; (4) Not leak; and (5) For stationary tanks in permanent underground... for stationary tanks in permanent underground diesel fuel storage facilities and self-closing caps...

  19. 30 CFR 75.1904 - Underground diesel fuel tanks and safety cans.

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ... have liquid tight welded seams; (4) Not leak; and (5) For stationary tanks in permanent underground... for stationary tanks in permanent underground diesel fuel storage facilities and self-closing caps...

  20. Engineering evaluation of plant oils as diesel fuel. Final report. Vol. I

    SciTech Connect

    Engler, C.R.; Johnson, L.A.; Lepori, W.A.; Yarbrough, C.M.

    1983-09-13

    This project includes evaluations of cottonseed oils and sunflower oil ethyl esters in both direct injection and precombustion chamber design diesel engines. It is one part of a major research program at Texas A and M University to study the technical feasibility of using plant oils or animal fats as alternative diesel fuels. Goals for the overall program are to define physical and chemical characteristics and optimum processing methods required for high quality alternative diesel fuels from plant or animal oils and to investigate effects of engine design on alternative fuel performance. This report describes work done under the current contract which includes evaluations of cottonseed oils and sunflower oil interesterified with ethanol as alternative diesel fuels. 15 figures, 18 tables.

  1. 26 CFR 48.6427-8 - Diesel fuel and kerosene; claims by ultimate purchasers.

    Code of Federal Regulations, 2010 CFR

    2010-04-01

    ... sold during certain periods of extreme cold for blending with diesel fuel to be used for heating... vehicle (as defined in § 48.4081-1(b)). F used the remaining 50 gallons to heat F's residence. F filed...

  2. 77 FR 75868 - Regulation of Fuels and Fuel Additives: Modifications to the Transmix Provisions Under the Diesel...

    Federal Register 2010, 2011, 2012, 2013, 2014

    2012-12-26

    ..., 77 FR 61281, October 9, 2012. Regulation of Fuels and Fuel Additives: Modifications to Renewable Fuel Standard and Diesel Sulfur Programs, Notice of Proposed Rule, 77 FR 61313, October 9, 2012. \\3\\ Regulation..., Withdrawal of direct final rule, 77 FR 72746, December 6, 2012. In response to industry input, EPA...

  3. Characterization of particle size distribution from diesel engines fueled with palm-biodiesel blends and paraffinic fuel blends

    NASA Astrophysics Data System (ADS)

    Lin, Yuan-Chung; Lee, Chia-Fon; Fang, Tiegang

    Biodiesels are promoted as alternative fuels and their applications in diesel engines have been investigated by many researchers. However, the particle size distribution emitted from heavy-duty diesel engines fueled with palm-biodiesel blended with premium diesel fuel and paraffinic fuel blended with palm-biodiesel has seldom been addressed. Thus, five test fuels were used in this work to study the particle size distribution: D100 (premium diesel fuel), B100 (100% palm-biodiesel), B20 (20 vol% palm-biodiesel+80 vol% D100), BP9505 (95 vol% paraffinic fuel+5 vol% palm-biodiesel) and BP8020 (80 vol% paraffinic fuel+20 vol% palm-biodiesel). A Micro-Orifice Uniform Deposit Impactor (MOUDI) equipped with aluminum filters was used to collect size-resolved samples. Experimental results indicated that palm-biodiesel blends and paraffinic fuel blends could improve combustion efficiency in diesel engines, but pure palm-biodiesel could cause incomplete combustion. Adding palm-biodiesel to diesel fuel would slightly increase particles with diameter <0.31 μm but paraffinic fuel blends could decrease particles with diameter <1 μm. The mass median diameter of overall particles (MMD o) and σg,o are 0.439 μm and 3.88 for D100; 0.380 μm and 3.24 for B20; 0.465 μm and 4.22 for B100; 1.40 μm and 4.92 for BP9505; 1.46 μm and 2.25 for BP8020. There are more particles with low aerodynamic diameters (diameter <0.31 μm) in the exhaust of D100, B20 and B100 fuels. On the other hand, a greater fraction of particulate matter of BP9505 and BP8020 existed in coarse particles (diameter: 2.5-10 μm). Energy efficiency also increases significantly by 12.3-15.1% with the introduction of paraffinic fuel blends into the engine. Nevertheless, paraffinic fuel blends also reduce the emission of particulate matters by 36.0-38.4%. Carbon monoxide was decreased by 36.8-48.5%. Total hydrocarbon is 39.6-41.7% less than diesel fuel combustion. Nitrogen oxides emission is about 5% lower for paraffinic

  4. Semi-volatile and particulate emissions from the combustion of alternative diesel fuels.

    PubMed

    Sidhu, S; Graham, J; Striebich, R

    2001-01-01

    Motor vehicle emissions are a major anthropogenic source of air pollution and contribute to the deterioration of urban air quality. In this paper, we report results of a laboratory investigation of particle formation from four different alternative diesel fuels, namely, compressed natural gas (CNG), dimethyl ether (DME), biodiesel, and diesel, under fuel-rich conditions in the temperature range of 800-1200 degrees C at pressures of approximately 24 atm. A single pulse shock tube was used to simulate compression ignition (CI) combustion conditions. Gaseous fuels (CNG and DME) were exposed premixed in air while liquid fuels (diesel and biodiesel) were injected using a high-pressure liquid injector. The results of surface analysis using a scanning electron microscope showed that the particles formed from combustion of all four of the above-mentioned fuels had a mean diameter less than 0.1 microm. From results of gravimetric analysis and fuel injection size it was found that under the test conditions described above the relative particulate yields from CNG, DME, biodiesel, and diesel were 0.30%. 0.026%, 0.52%, and 0.51%, respectively. Chemical analysis of particles showed that DME combustion particles had the highest soluble organic fraction (SOF) at 71%, followed by biodiesel (66%), CNG (38%) and diesel (20%). This illustrates that in case of both gaseous and liquid fuels, oxygenated fuels have a higher SOF than non-oxygenated fuels. PMID:11219694

  5. Wear mechanism and wear prevention in coal-fueled diesel engines

    SciTech Connect

    Wakenell, J.F.; Fritz, S.G.; Schwalb, J.A.

    1991-07-01

    Over the past several years, interest has arisen in the development of coal-fired diesel engines for the purpose of efficiently utilizing the extensive coal reserves in the United States, and therefore reducing dependence on foreign oil. One process, which is being considered for use in producing clean coal fuel products involves mild gasification. This process produces by-products which can be further refined and, when blended with neat diesel fuel, used as an engine fuel. The purpose of this task was to test a blend of this coal liquid and diesel fuel (referred to as coal-lite) in an engine, and determine if any detrimental results were observed. This was done by performing a back-to-back performance and emission test of neat diesel fuel and the coal-lite fuel, followed by a 500-hour test of the coal-lite fuel, and completed by a back-to-back performance and emission test of the coal-lite fuel and neat diesel fuel.

  6. Wear mechanism and wear prevention in coal-fueled diesel engines. Task 7, Extended wear testing

    SciTech Connect

    Wakenell, J.F.; Fritz, S.G.; Schwalb, J.A.

    1991-07-01

    Over the past several years, interest has arisen in the development of coal-fired diesel engines for the purpose of efficiently utilizing the extensive coal reserves in the United States, and therefore reducing dependence on foreign oil. One process, which is being considered for use in producing clean coal fuel products involves mild gasification. This process produces by-products which can be further refined and, when blended with neat diesel fuel, used as an engine fuel. The purpose of this task was to test a blend of this coal liquid and diesel fuel (referred to as coal-lite) in an engine, and determine if any detrimental results were observed. This was done by performing a back-to-back performance and emission test of neat diesel fuel and the coal-lite fuel, followed by a 500-hour test of the coal-lite fuel, and completed by a back-to-back performance and emission test of the coal-lite fuel and neat diesel fuel.

  7. Systems study of vegetable oils and animal fats for use as substitute and emergency diesel fuels

    SciTech Connect

    Lipinsky, E.S.; McClure, T.A.; Kresovich, S.; Otis, J.L.; Wagner, C.K.; Trayser, D.A.; Applebaum, H.R.

    1981-10-01

    The principal findings are described as follows: leading issues, economic considerations, production potential for oilseed crops, oilseed processing, energy balance, diesel fuel and engine considerations, vegetable oil emissions, and research and development needs. The following appendices are included: profiles of selected vegetable oils and animal fats, economic information on vegetable oils and animal fats, the production potential for selected oilseed crops, the economics of vegetable oil recovery, and diesel fuel specifications and vegetable oil properties.

  8. 26 CFR 48.4082-4 - Diesel fuel and kerosene; back-up tax.

    Code of Federal Regulations, 2011 CFR

    2011-04-01

    ... 26 Internal Revenue 16 2011-04-01 2011-04-01 false Diesel fuel and kerosene; back-up tax. 48.4082-4 Section 48.4082-4 Internal Revenue INTERNAL REVENUE SERVICE, DEPARTMENT OF THE TREASURY (CONTINUED) MISCELLANEOUS EXCISE TAXES MANUFACTURERS AND RETAILERS EXCISE TAXES Motor Vehicles, Tires, Tubes, Tread Rubber, and Taxable Fuel Taxable Fuel...

  9. Laboratory endurance test of sunflower methyl esters for direct injected diesel engine fuel

    SciTech Connect

    Kaufman, K.; Ziejewski, M.

    1983-12-01

    A methyl ester of sunflower oil was durability tested using the test cycle recommended by the Alternate Fuels Committee of the Engine Manufacturer's Association. The results are compared to a baseline test using diesel fuel. Based on the results, the methyl ester fuel successfully completed the 200-hour durability test.

  10. Vegetable oils as an on the farm diesel fuel substitute: the North Carolina situation. Final report

    SciTech Connect

    Harwood, H.J.

    1981-06-01

    The state-of-the-art of using vegetable oil as a diesel fuel alternative is reviewed. Particular emphasis has been placed on using vegetable oil in farm vehicles as an emergency fuel which may be produced on-farm. The following are reviewed: the mechanical feasibility, on-farm fuel production, and economic analysis.

  11. Fuel properties of biodiesel/ultra-low sulfur diesel (ULSD) blends

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Biodiesel is an alternative fuel and fuel extender easily derived from vegetable oil or animal fat. In 2006, the U.S. Environmental Protection Agency mandated that maximum sulfur content of diesel fuels be reduced to 15 ppm to protect catalysts employed in exhaust after-treatment devices. Processi...

  12. Microbial deterioration of marine diesel fuel from oil shale. Final report

    SciTech Connect

    May M.E.; Neihof, R.A.

    1981-04-09

    Recurring problems with conventional ship fuels caused by microorganisms have prompted an evaluation of the susceptibility of a recently produced synthetic diesel fuel from oil shale to microbial contamination. The growth of typical microbial contaminants of hydrocarbon fuels has been determined over a four month period in two-phase systems consisting of fresh and sea water media overlaid with fuel. Anaerobic, sulfate-reducing bacteria and a yeast (Candida sp.) grew as well in the synthetic fuel as in fuel derived from petroleum. Growth of certain strains of the fungus, Cladosporium resinae, was initially delayed in the synthetic diesel fuel but after 8-13 weeks the growth was generally comparable to that in petroleum-derived fuel. This finding indicated that C. resinae may require time for adaptation to constituents in the oil shale fuel. Ultimately, however, it appears that the synthetic diesel fuel is likely to be as susceptible to microbial contamination as conventional diesel fuel has been. Experience acquired with available synthetic fuels shows that their ability to support growth of microbial contaminants varies widely depending on both the source of crude oil and the refining processes used.

  13. Environmental implications of iron fuel borne catalysts and their effects on diesel particulate formation and composition

    EPA Science Inventory

    Metal fuel borne catalysts can be used with diesel fuels to effectively reduce engine out particle mass emissions. Mixed with the fuel, the metals become incorporated as nanometer-scale occlusions with soot during its formation and are available to promote in-cylinder soot oxida...

  14. Testing of a Catalytic Partial Oxidation Diesel Reformer with a Solid Oxide Fuel Cell System

    SciTech Connect

    Lyman Frost; Bob Carrington; Rodger McKain; Dennis Witmer

    2005-03-01

    Rural Alaska currently uses diesel generator sets to produce much of its power. The high energy content of diesel (i.e. ~140,000 BTU per gallon) makes it the fuel of choice because this reduces the volume of fuel that must be transported, stored, and consumed in generating the power. There is an existing investment in infrastructure for the distribution and use of diesel fuel. Problems do exist, however, in that diesel generators are not very efficient in their use of diesel, maintenance levels can be rather high as systems age, and the environmental issues related to present diesel generators are of concern. The Arctic Energy Technology Development Laboratory at the University of Alaska -- Fairbanks is sponsoring a project to address the issues mentioned above. The project takes two successful systems, a diesel reformer and a tubular solid oxide fuel cell unit, and jointly tests those systems with the objective of producing a for-purpose diesel fueled solid oxide fuel cell system that can be deployed in rural Alaska. The reformer will convert the diesel to a mixture of carbon monoxide and hydrogen that can be used as a fuel by the fuel cell. The high temperature nature of the solid oxide fuel cell (SOFC is capable of using this mixture to generate electricity and provide usable heat with higher efficiency and lower emissions. The high temperature nature of the SOFC is more compatible with the arctic climate than are low temperature technologies such as the proton exchange membrane fuel cells. This paper will look at the interaction of a SOFC system that is designed to internally reform methane and a catalytic partial oxidation (CPOX) diesel reformer. The diesel reformer produces a reformate that is approximately 140 BTU per scf (after removal of much of the reformate water) as compared to a methane based reformate that is over twice that value in BTU content. The project also considers the effect of altitude since the test location will be at 4800 feet with the

  15. Greenhouse Gas and Noxious Emissions from Dual Fuel Diesel and Natural Gas Heavy Goods Vehicles.

    PubMed

    Stettler, Marc E J; Midgley, William J B; Swanson, Jacob J; Cebon, David; Boies, Adam M

    2016-02-16

    Dual fuel diesel and natural gas heavy goods vehicles (HGVs) operate on a combination of the two fuels simultaneously. By substituting diesel for natural gas, vehicle operators can benefit from reduced fuel costs and as natural gas has a lower CO2 intensity compared to diesel, dual fuel HGVs have the potential to reduce greenhouse gas (GHG) emissions from the freight sector. In this study, energy consumption, greenhouse gas and noxious emissions for five after-market dual fuel configurations of two vehicle platforms are compared relative to their diesel-only baseline values over transient and steady state testing. Over a transient cycle, CO2 emissions are reduced by up to 9%; however, methane (CH4) emissions due to incomplete combustion lead to CO2e emissions that are 50-127% higher than the equivalent diesel vehicle. Oxidation catalysts evaluated on the vehicles at steady state reduced CH4 emissions by at most 15% at exhaust gas temperatures representative of transient conditions. This study highlights that control of CH4 emissions and improved control of in-cylinder CH4 combustion are required to reduce total GHG emissions of dual fuel HGVs relative to diesel vehicles. PMID:26757000

  16. Influence of fatty acid methyl esters from hydroxylated vegetable oils on diesel fuel lubricity.

    PubMed

    Goodrum, John W; Geller, Daniel P

    2005-05-01

    Current and future regulations on the sulfur content of diesel fuel have led to a decrease in lubricity of these fuels. This decreased lubricity poses a significant problem as it may lead to wear and damage of diesel engines, primarily fuel injection systems. Vegetable oil based diesel fuel substitutes (biodiesel) have been shown to be clean and effective and may increase overall lubricity when added to diesel fuel at nominally low levels. Previous studies on castor oil suggest that its uniquely high level of the hydroxy fatty acid ricinoleic acid may impart increased lubricity to the oil and its derivatives as compared to other vegetable oils. Likewise, the developing oilseed Lesquerella may also increase diesel lubricity through its unique hydroxy fatty acid composition. This study examines the effect of castor and Lesquerella oil esters on the lubricity of diesel fuel using the High-Frequency Reciprocating Rig (HFRR) test and compares these results to those for the commercial vegetable oil derivatives soybean and rapeseed methyl esters. PMID:15607199

  17. Conversion of vegetable oils and animal fats into paraffinic cetane enhancers for diesel fuels

    SciTech Connect

    Wong, A.; Feng, Y.; Hogan, E.

    1995-11-01

    The two principal methods of producing biodiesel fuels are (a) transesterification of vegetable oils and animal fats with a monohydric alcohol, and (b) direct hydrotreating of tree oils, vegetable oils and animal fats. The patented hydrotreating technology is based on the catalytic processing of biomass oils and fats with hydrogen, under elevated temperature and pressure conditions. The typical mix of hydrotreated products is as follows: 5-15% light distillate (naphta), 40-60% middle distillate (cetane), 5-15% heavy distillate and 5-10% burner gas. The naptha fraction may be used as a gasoline supplement. The middle distillate is designed for use as a cetane booster for diesel fuels. Both heavy distillate and light hydrocarbon gases are usable as power boiler fuels. Typically, the cetane enhancer would be admixed with diesel fuel in the range of 5 to 30% by volume. This new diesel blend meets the essential quality characteristics of the basic diesel fuel, for direct use in diesel engines without any modifications. The basic hydrotreatment technology has been evaluated further in the laboratory on degummed soya oil, yellow grease and animal tallow. The preliminary findings suggest that the technology can provide efficient conversion of these materials into cetane enhancers for diesel fuels.

  18. Chemical composition of tall oil-based cetane enhancer for diesel fuels

    SciTech Connect

    Feng, Y.; Wong, A.; Monnier, J.

    1993-12-31

    Tall oil is a co-product of the manufacture of kraft softwood pulp. The principal constituents of tall oil are unsaturated C{sub 18} fatty acids, resin acids and unsaponifiables such as diterpenic alcohols/aldehydes. Tall oil has been shown to be an economical feedstock for the manufacture of cetane enhancer for diesel fuels, using the proprietary CANMET (Canada Centre for Mineral and Energy Technology) technology. Under a joint R&D project between Arbokem Inc./BC Chemicals Ltd. and CANMET, pilot plant tests were conducted recently at the CANMET Energy Research Labs. in Ottawa. The results showed that tall oil could by hydroprocessed efficiently to yield a valuable fuel blending agent. When this product was mixed with conventional diesel fuel, the cetane number of the diesel fuel increased linearly with the addition of the product. Chemical analysis including chromatography-mass spectrometry has confirmed high conversion of tall oil components into straight-chain alkanes. A small amount of cyclic hydrocarbons and sulphur components were present in the tall oil-based diesel enhancer. Preliminary results indicate that this type of cetane enhancer would provide additional technical benefits. The low aromatics content of the tall oil-based cetane enhancer would significantly reduce aromatics in the final diesel fuel blend. Diesel engines operating on such fuel blends would have a lower propensity to form particulates and NO{sub x}.

  19. Cold start fuel consumption of a diesel and a petrol car

    SciTech Connect

    Pearce, T.C.; Waters, M.H.L.

    1980-01-01

    Measurements have been made of the fuel consumption of a petrol and a diesel car when starting from cold. The cars were the 1.1 liter petrol VW Golf and the 1.5 liter diesel version, which have the same passenger accommodation and nearly identical road performance. It was found that the diesel car used less fuel in the warm-up period than the petrol, both when being driven at constant speed on a test track and with the engine idling and the car stationary. (Copyright (c) Crown Copyright 1980.)

  20. Emission reduction from a diesel engine fueled by pine oil biofuel using SCR and catalytic converter

    NASA Astrophysics Data System (ADS)

    Vallinayagam, R.; Vedharaj, S.; Yang, W. M.; Saravanan, C. G.; Lee, P. S.; Chua, K. J. E.; Chou, S. K.

    2013-12-01

    In this work, we propose pine oil biofuel, a renewable fuel obtained from the resins of pine tree, as a potential substitute fuel for a diesel engine. Pine oil is endowed with enhanced physical and thermal properties such as lower viscosity and boiling point, which enhances the atomization and fuel/air mixing process. However, the lower cetane number of the pine oil hinders its direct use in diesel engine and hence, it is blended in suitable proportions with diesel so that the ignition assistance could be provided by higher cetane diesel. Since lower cetane fuels are prone to more NOX formation, SCR (selective catalyst reduction), using urea as reducing agent, along with a CC (catalytic converter) has been implemented in the exhaust pipe. From the experimental study, the BTE (brake thermal efficiency) was observed to be increased as the composition of pine oil increases in the blend, with B50 (50% pine oil and 50% diesel) showing 7.5% increase over diesel at full load condition. The major emissions such as smoke, CO, HC and NOX were reduced by 70.1%, 67.5%, 58.6% and 15.2%, respectively, than diesel. Further, the average emissions of B50 with SCR and CC assembly were observed to be reduced, signifying the positive impact of pine oil biofuel on atmospheric environment. In the combustion characteristics front, peak heat release rate and maximum in-cylinder pressure were observed to be higher with longer ignition delay.

  1. Solar Reforming of Carbon Dioxide to Produce Diesel Fuel

    SciTech Connect

    Dennis Schuetzle; Robert Schuetzle

    2010-12-31

    This project focused on the demonstration of an innovative technology, referred to as the Sunexus CO2 Solar Reformer, which utilizes waste CO2 as a feedstock for the efficient and economical production of synthetic diesel fuel using solar thermal energy as the primary energy input. The Sunexus technology employs a two stage process for the conversion of CO2 to diesel fuel. A solar reforming system, including a specially designed reactor and proprietary CO2 reforming catalyst, was developed and used to convert captured CO2 rich gas streams into syngas (primarily hydrogen and carbon monoxide) using concentrated solar energy at high conversion efficiencies. The second stage of the system (which has been demonstrated under other funding) involves the direct conversion of the syngas into synthetic diesel fuel using a proprietary catalyst (Terra) previously developed and validated by Pacific Renewable Fuels and Chemicals (PRFC). The overall system energy efficiency for conversion of CO2 to diesel fuel is 74%, due to the use of solar energy. The results herein describe modeling, design, construction, and testing of the Sunexus CO2 Solar Reformer. Extensive parametric testing of the solar reformer and candidate catalysts was conducted and chemical kinetic models were developed. Laboratory testing of the Solar Reformer was successfully completed using various gas mixtures, temperatures, and gas flow rates/space velocities to establish performance metrics which can be employed for the design of commercial plants. A variety of laboratory tests were conducted including dry reforming (CO2 and CH{sub 4}), combination dry/steam reforming (CO2, CH{sub 4} & H{sub 2}O), and tri-reforming (CO2, CH{sub 4}, H{sub 2}O & O{sub 2}). CH{sub 4} and CO2 conversions averaged 95-100% and 50-90% per reformer cycle, respectively, depending upon the temperatures and gas space velocities. No formation of carbon deposits (coking) on the catalyst was observed in any of these tests. A 16 ft. diameter

  2. 40 CFR 80.511 - What are the per-gallon and marker requirements that apply to NRLM diesel fuel, ECA marine fuel...

    Code of Federal Regulations, 2014 CFR

    2014-07-01

    ... 40 Protection of Environment 17 2014-07-01 2014-07-01 false What are the per-gallon and marker requirements that apply to NRLM diesel fuel, ECA marine fuel, and heating oil downstream of the refiner or... marker requirements that apply to NRLM diesel fuel, ECA marine fuel, and heating oil downstream of...

  3. 40 CFR 80.511 - What are the per-gallon and marker requirements that apply to NRLM diesel fuel, ECA marine fuel...

    Code of Federal Regulations, 2013 CFR

    2013-07-01

    ... 40 Protection of Environment 17 2013-07-01 2013-07-01 false What are the per-gallon and marker requirements that apply to NRLM diesel fuel, ECA marine fuel, and heating oil downstream of the refiner or... marker requirements that apply to NRLM diesel fuel, ECA marine fuel, and heating oil downstream of...

  4. 40 CFR 80.511 - What are the per-gallon and marker requirements that apply to NRLM diesel fuel, ECA marine fuel...

    Code of Federal Regulations, 2012 CFR

    2012-07-01

    ... 40 Protection of Environment 17 2012-07-01 2012-07-01 false What are the per-gallon and marker requirements that apply to NRLM diesel fuel, ECA marine fuel, and heating oil downstream of the refiner or... marker requirements that apply to NRLM diesel fuel, ECA marine fuel, and heating oil downstream of...

  5. 40 CFR 80.511 - What are the per-gallon and marker requirements that apply to NRLM diesel fuel, ECA marine fuel...

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ... requirements that apply to NRLM diesel fuel, ECA marine fuel, and heating oil downstream of the refiner or... marker requirements that apply to NRLM diesel fuel, ECA marine fuel, and heating oil downstream of the... other than retail outlets or wholesale purchaser-consumer facilities, shall apply to all NRLM...

  6. 40 CFR 80.511 - What are the per-gallon and marker requirements that apply to NRLM diesel fuel, ECA marine fuel...

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... requirements that apply to NRLM diesel fuel, ECA marine fuel, and heating oil downstream of the refiner or... marker requirements that apply to NRLM diesel fuel, ECA marine fuel, and heating oil downstream of the... other than retail outlets or wholesale purchaser-consumer facilities, shall apply to all NRLM...

  7. Effects of water-emulsified fuel on a diesel engine generator's thermal efficiency and exhaust.

    PubMed

    Syu, Jin-Yuan; Chang, Yuan-Yi; Tseng, Chao-Heng; Yan, Yeou-Lih; Chang, Yu-Min; Chen, Chih-Chieh; Lin, Wen-Yinn

    2014-08-01

    Water-emulsified diesel has proven itself as a technically sufficient improvement fuel to improve diesel engine fuel combustion emissions and engine performance. However, it has seldom been used in light-duty diesel engines. Therefore, this paper focuses on an investigation into the thermal efficiency and pollution emission analysis of a light-duty diesel engine generator fueled with different water content emulsified diesel fuels (WD, including WD-0, WD-5, WD-10, and WD-15). In this study, nitric oxide, carbon monoxide, hydrocarbons, and carbon dioxide were analyzed by a vehicle emission gas analyzer and the particle size and number concentration were measured by an electrical low-pressure impactor. In addition, engine loading and fuel consumption were also measured to calculate the thermal efficiency. Measurement results suggested that water-emulsified diesel was useful to improve the thermal efficiency and the exhaust emission of a diesel engine. Obviously, the thermal efficiency was increased about 1.2 to 19.9%. In addition, water-emulsified diesel leads to a significant reduction of nitric oxide emission (less by about 18.3 to 45.4%). However the particle number concentration emission might be increased if the loading of the generator becomes lower than or equal to 1800 W. In addition, exhaust particle size distributions were shifted toward larger particles at high loading. The consequence of this research proposed that the water-emulsified diesel was useful to improve the engine performance and some of exhaust emissions, especially the NO emission reduction. Implications: The accumulated test results provide a good basis to resolve the corresponding pollutants emitted from a light-duty diesel engine generator. By measuring and analyzing transforms of exhaust pollutant from this engine generator, the effects of water-emulsified diesel fuel and loading on emission characteristics might be more clear. Understanding reduction of pollutant emissions during the use

  8. Vegetable oils and animal fats for diesel fuels: a systems study

    SciTech Connect

    Lipinsky, E.S.; Kresovich, S.; Wagner, C.K.; Appelbaum, H.R.; McClure, T.A.; Otis, J.L.; Trayser, D.A.

    1982-01-01

    This paper provided some information on the possible use of vegetable oils and animal fats as substitute fuels and as emergency diesel fuels in the United States. This paper is confined to using triglyceride fuels in agricultural, automotive, and highway transportation applications. Satisfactory substitution of petroleum-based diesel fuels with triglyceride-based fuels requires the development of an integrated system for the production, processing, and end use of the new fuels on a basis that is both technically attractive and economically rewarding to all of the elements of the system. The three subsystems, the farms that produce oilseed crops, the production of triglycerides and protein, and the manufacturers of the diesel engines and the owners of the present stock of auto-ignition engines, are discussed. It was concluded that vegetable oils and animal fats have substantial prospects as long-term substitutes for diesel fuels. If special auto-ignition engines were developed to handle vegetable oils, on-farm production and use might succeed. In the absence of such engine development, it is likely that large, centralized facilities to manufacture vegetable oils and their methylesters will be the successful processing route. Vegetable oils are likely to succeed first in geographical areas with benign climates. Vegetable oils and animal fats have limited prospects as diesel fuels for acute emergencies. The high viscosity of vegetable oils and the necessity to make substantial capital investments to obtain oils from oilseeds render the system relatively inflexible. 4 tables. (DP)

  9. Fuel Efficient Diesel Particulate Filter (DPF) Modeling and Development

    SciTech Connect

    Stewart, Mark L.; Gallant, Thomas R.; Kim, Do Heui; Maupin, Gary D.; Zelenyuk, Alla

    2010-08-01

    The project described in this report seeks to promote effective diesel particulate filter technology with minimum fuel penalty by enhancing fundamental understanding of filtration mechanisms through targeted experiments and computer simulations. The overall backpressure of a filtration system depends upon complex interactions of particulate matter and ash with the microscopic pores in filter media. Better characterization of these phenomena is essential for exhaust system optimization. The acicular mullite (ACM) diesel particulate filter substrate is under continuing development by Dow Automotive. ACM is made up of long mullite crystals which intersect to form filter wall framework and protrude from the wall surface into the DPF channels. ACM filters have been demonstrated to effectively remove diesel exhaust particles while maintaining relatively low backpressure. Modeling approaches developed for more conventional ceramic filter materials, such as silicon carbide and cordierite, have been difficult to apply to ACM because of properties arising from its unique microstructure. Penetration of soot into the high-porosity region of projecting crystal structures leads to a somewhat extended depth filtration mode, but with less dramatic increases in pressure drop than are normally observed during depth filtration in cordierite or silicon carbide filters. Another consequence is greater contact between the soot and solid surfaces, which may enhance the action of some catalyst coatings in filter regeneration. The projecting crystals appear to provide a two-fold benefit for maintaining low backpressures during filter loading: they help prevent soot from being forced into the throats of pores in the lower porosity region of the filter wall, and they also tend to support the forming filter cake, resulting in lower average cake density and higher permeability. Other simulations suggest that soot deposits may also tend to form at the tips of projecting crystals due to the axial

  10. 40 CFR 80.595 - How does a small or GPA refiner apply for a motor vehicle diesel fuel volume baseline for the...

    Code of Federal Regulations, 2014 CFR

    2014-07-01

    ... for a motor vehicle diesel fuel volume baseline for the purpose of extending their gasoline sulfur... PROGRAMS (CONTINUED) REGULATION OF FUELS AND FUEL ADDITIVES Motor Vehicle Diesel Fuel; Nonroad, Locomotive... a small or GPA refiner apply for a motor vehicle diesel fuel volume baseline for the purpose...

  11. Compatibility Assessment of Fuel System Elastomers with Bio-oil and Diesel Fuel

    DOE PAGESBeta

    Kass, Michael D.; Janke, Christopher J.; Connatser, Raynella M.; Lewis, Samuel A.; Keiser, James R.; Gaston, Katherine

    2016-07-12

    Here we report that bio-oil derived via fast pyrolysis is being developed as a renewable fuel option for petroleum distillates. The compatibility of neat bio-oil with six elastomer types was evaluated against the elastomer performance in neat diesel fuel, which served as the baseline. The elastomers included two fluorocarbons, six acrylonitrile butadiene rubbers (NBRs), and one type each of fluorosilicone, silicone, styrene butadiene rubber (SBR), polyurethane, and neoprene. Specimens of each material were exposed to the liquid and gaseous phases of the test fuels for 4 weeks at 60 °C, and properties in the wetted and dried states were measured.more » Exposure to bio-oil produced significant volume expansion in the fluorocarbons, NBRs, and fluorosilicone; however, excessive swelling (over 80%) was only observed for the two fluorocarbons and two NBR grades. The polyurethane specimens were completely degraded by the bio-oil. In contrast, both silicone and SBR exhibited lower swelling levels in bio-oil compared to neat diesel fuel. The implication is that, while polyurethane and fluorocarbon may not be acceptable seal materials for bio-oils, silicone may offer a lower cost alternative.« less

  12. Investigation of engine performance and emissions of a diesel engine with a blend of marine gas oil and synthetic diesel fuel.

    PubMed

    Nabi, Md Nurun; Hustad, Johan Einar

    2012-01-01

    This paper investigates diesel engine performance and exhaust emissions with marine gas oil (MGO) and a blend of MGO and synthetic diesel fuel. Ten per cent by volume of Fischer-Tropsch (FT), a synthetic diesel fuel, was added to MGO to investigate its influence on the diesel engine performance and emissions. The blended fuel was termed as FT10 fuel, while the neat (100 vol%) MGO was termed as MGO fuel. The experiments were conducted with a fourstroke, six-cylinder, turbocharged, direct injection, Scania DC 1102 diesel engine. It is interesting to note that all emissions including smoke (filter smoke number), total particulate matter (TPM), carbon monoxide (CO), total unburned hydrocarbon (THC), oxides of nitrogen (NOx) and engine noise were reduced with FT10 fuel compared with the MGO fuel. Diesel fine particle number and mass emissions were measured with an electrical low pressure impactor. Like other exhaust emissions, significant reductions in fine particles and mass emissions were observed with the FT10 fuel. The reduction was due to absence of sulphur and aromatic compounds in the FT fuel. In-cylinder gas pressure and engine thermal efficiency were identical for both FT10 and MGO fuels. PMID:22519083

  13. Development of a digital control unit to displace diesel fuel with natural gas

    SciTech Connect

    Talbott, A.D. |

    1997-03-01

    Full Circle Engineering (FCE), supported by the Colorado School of Mines (CSM), proposed a Small Business CRADA with Allied Signal Federal Manufacturing & Technologies/Kansas City (FM&T/KC) for the development of a fumigation digital control unit (DCU) that would allow the displacement of diesel fuel with natural gas. Nationwide, diesel trucks and buses consumed over 21 billion gallons of fuel in 1992. The development of systems that allow the use of alternative fuels, natural gas in particular, for transportation would significantly reduce emissions and pollutants. It would also help implement DOE`s mandate for energy security (use of domestic fuels) required by the Energy Policy Act (EPACT).

  14. Diesel fuel component contribution to engine emissions and performance. Final report

    SciTech Connect

    Erwin, J.; Ryan, T.W. III; Moulton, D.S.

    1994-11-01

    Contemporary diesel fuel is a blend of several refinery streams chosen to meet specifications. The need to increase yield of transportation fuel from crude oil has resulted in converting increased proportions of residual oil to lighter products. This conversion is accomplished by thermal, catalytic, and hydrocracking of high molecular weight materials rich in aromatic compounds. The current efforts to reformulate California diesel fuel for reduced emissions from existing engines is an example of another driving force affecting refining practice: regulations designed to reduce exhaust emissions. Although derived from petroleum crude oil, reformulated diesel fuel is an alternative to current specification-grade diesel fuel, and this alternative presents opportunities and questions to be resolved by fuel and engine research. Various concerned parties have argued that regulations for fuel reformulation have not been based on an adequate data base. Despite numerous studies, much ambiguity remains about the relationship of exhaust parameters to fuel composition, particularly for diesel fuel. In an effort to gather pertinent data, the automobile industry and the oil refiners have joined forces in the Air Quality Improvement Research Program (AUTO/OIL) to address this question for gasoline. The objective of that work is to define the relationship between gasoline composition and the magnitude and composition of the exhaust emissions. The results of the AUTO/OEL program will also be used, along with other data bases, to define the EPA {open_quotes}complex model{close_quotes} for reformulated gasolines. Valuable insights have been gained for compression ignition engines in the Coordinating Research Council`s VE-1 program, but no program similar to AUTO/OIL has been started for diesel fuel reformulation. A more detailed understanding of the fuel/performance relationship is a readily apparent need.

  15. Methodology for Formulating Diesel Surrogate Fuels with Accurate Compositional, Ignition-Quality, and Volatility Characteristics

    SciTech Connect

    Mueller, C. J.; Cannella, W. J.; Bruno, T. J.; Bunting, B.; Dettman, H. D.; Franz, J. A.; Huber, M. L.; Natarajan, M.; Pitz, W. J.; Ratcliff, M. A.; Wright, K.

    2012-06-21

    In this study, a novel approach was developed to formulate surrogate fuels having characteristics that are representative of diesel fuels produced from real-world refinery streams. Because diesel fuels typically consist of hundreds of compounds, it is difficult to conclusively determine the effects of fuel composition on combustion properties. Surrogate fuels, being simpler representations of these practical fuels, are of interest because they can provide a better understanding of fundamental fuel-composition and property effects on combustion and emissions-formation processes in internal-combustion engines. In addition, the application of surrogate fuels in numerical simulations with accurate vaporization, mixing, and combustion models could revolutionize future engine designs by enabling computational optimization for evolving real fuels. Dependable computational design would not only improve engine function, it would do so at significant cost savings relative to current optimization strategies that rely on physical testing of hardware prototypes. The approach in this study utilized the state-of-the-art techniques of {sup 13}C and {sup 1}H nuclear magnetic resonance spectroscopy and the advanced distillation curve to characterize fuel composition and volatility, respectively. The ignition quality was quantified by the derived cetane number. Two well-characterized, ultra-low-sulfur No.2 diesel reference fuels produced from refinery streams were used as target fuels: a 2007 emissions certification fuel and a Coordinating Research Council (CRC) Fuels for Advanced Combustion Engines (FACE) diesel fuel. A surrogate was created for each target fuel by blending eight pure compounds. The known carbon bond types within the pure compounds, as well as models for the ignition qualities and volatilities of their mixtures, were used in a multiproperty regression algorithm to determine optimal surrogate formulations. The predicted and measured surrogate-fuel properties were

  16. Effect of fuel formulation on soot properties and regeneration of diesel particulate filters

    NASA Astrophysics Data System (ADS)

    Song, Juhun

    A critical requirement for implementation of particulate filters on diesel applications is having a low "break even temperature" (BET), defined as the exhaust temperature at which particulate removal occurs at roughly the same rate as particulate deposition. This needs to occur at sufficiently low temperatures either to fit within the exhaust temperature range of the typical duty cycle for a diesel vehicle or to require a minimum of active regeneration. Since catalytic coating on the diesel particulate filter was used in this study, one important factor in lowering the BET is catalyst activity for NO conversion to NO2, which can be adversely affected by sulfur content in the fuel, because the sulfur dioxide generated during diesel combustion can poison catalyst activity. However, a second important factor that significantly affects DPF regeneration behavior is particulate reactivity, which is related to the chemical and physical properties of diesel particulates. Differences in diesel combustion characteristics and fuel formulation can be a source of variation in these soot properties. The first phase of this work considered low sulfur diesel fuel (325 ppm sulfur), ultra low sulfur fuel (15 ppm sulfur) and 20 wt.% biodiesel blends. The lowest break even temperature was observed for the 325 ppm sulfur fuel blended with 20 wt.% biodiesel, due in part to increased engine-out NOx emissions with the B20 blend, which shows that engine-out exhaust composition can be as or more important than sulfur content. Furthermore, examination of the soot generated with these fuels shows a variation in the nanostructure and the oxidative reactivity for soots derived from the different fuels. The second phase of work has been performed by adding neat alternative fuels such as Biodiesel (B100) and Fisch-Tropsch (FT) fuel. B100 soot displays a similar initial soot structure as soot from three other fuels, ultra low sulfur diesel, B20 (a 20 wt.% blend of biodiesel and ultra low sulfur

  17. Influence of Biofuel Additions on the Ignition Delay of Single Diesel Fuel Drops

    NASA Astrophysics Data System (ADS)

    Kopeika, A. K.; Golovko, V. V.; Zolotko, A. N.; Raslavičius, L.; Lubarskii, V. M.

    2015-07-01

    The behavior of single drops of two- and three-component mineral diesel fuel blends with ethanol and rapeseed oil methyl ester in a heated atmosphere has been investigated. With the use of the known quasi-stationary approach, the influence of the thermal properties of fuel blend components and their composition on the ignition delay time of the drop has been investigated. It has been established that under inert heating conditions of the drop, additions of low-boiling ethanol to diesel fuel should shorten the duration of the preignition period, and additions of rapeseed oil methyl ester should, on the contrary, prolong it. Analysis of the obtained data has made it possible to determine the optimal composition of the fuel blend for the most economical operation of the diesel. The prognostic estimates made are confirmed by laboratory experiments and bench tests of fuel blends.

  18. Dual-fuel natural gas/diesel engines: Technology, performance, and emissions

    NASA Astrophysics Data System (ADS)

    Turner, S. H.; Weaver, C. S.

    1994-11-01

    An investigation of current dual-fuel natural gas/diesel engine design, performance, and emissions was conducted. The most pressing technological problems associated with dual-fuel engine use were identified along with potential solutions. It was concluded that dual-fuel engines can achieve low NO(sub x) and particulate emissions while retaining fuel-efficiency and BMEP levels comparable to those of diesel engines. The investigation also examined the potential economic impact of dual-fuel engines in diesel-electric locomotives, marine vessels, farm equipment, construction, mining, and industrial equipment, and stand-alone electricity generation systems. Recommendations for further additional funding to support research, development, and demonstration in these applications were then presented.

  19. AUTOMOTIVE DIESEL MAINTENANCE 1. UNIT XIII, I--MAINTAINING THE FUEL SYSTEM (PART III), CUMMINS DIESEL ENGINES, II--RADIATOR SHUTTER SYSTEM.

    ERIC Educational Resources Information Center

    Human Engineering Inst., Cleveland, OH.

    THIS MODULE OF A 30-MODULE COURSE IS DESIGNED TO DEVELOP AN UNDERSTANDING OF THE CONSTRUCTION, OPERATION, AND MAINTENANCE OF THE DIESEL ENGINE FUEL AND RADIATOR SHUTTER SYSTEMS. TOPICS ARE (1) MORE ABOUT THE CUMMINS FUEL SYSTEM, (2) CALIBRATING THE PT FUEL PUMP, (3) CALIBRATING THE FUEL INJECTORS, (4) UNDERSTANDING THE SHUTTER SYSTEM, (5) THE…

  20. A method for the speciation of diesel fuel and the semi-volatile hydrocarbon fraction of diesel-fueled vehicle exhaust emissions

    SciTech Connect

    Hammerle, R.H.; Siegl, W.O.; Herrmann, H.M.; Wenclawiak, B.W.

    1995-12-31

    Although much has been learned in recent years about the atmospheric reactivity of the hydrocarbon (HC) emissions from gasoline-fueled vehicles, there is only a limited database of corresponding information for exhaust emissions from diesel-fueled vehicles. An assessment of exhaust reactivity requires speciation, or measurement of the individual species of the HC fraction. The HC exhaust emissions are a complex mixture of unburned and partially burned fuel components. Because diesel fuel contains a much higher molecular weight range (typically C{sub 9}-C{sub 26}) than gasoline (typically C{sub 5}-C{sub 12}), new methodology was required to accommodate the collection and analysis of the >C{sub 12} fraction of the HC exhaust. As part of a study of the effects of fuel and other factors on the chemical nature of diesel emissions, the authors have developed a method for the collection and analysis of the semi-volatile or heavy HC (>C{sub 12}) fraction of the exhaust. The method has a sensitivity for individual HC species of 0.2 ng/L of dilute exhaust. In this report they describe the method and its application to fuel and exhaust analysis. Speciation results are presented for two fuels and for the heavy hydrocarbon fraction of the exhaust from selected vehicle tests.

  1. 40 CFR 80.513 - What provisions apply to transmix processing facilities and pipelines that produce diesel fuel...

    Code of Federal Regulations, 2014 CFR

    2014-07-01

    ... processing facilities and pipelines that produce diesel fuel from pipeline interface? 80.513 Section 80.513... pipelines that produce diesel fuel from pipeline interface? For purposes of this section, transmix means a mixture of finished fuels, such as pipeline interface, that no longer meets the specifications for a...

  2. Predicting the Effects of Nano-Scale Cerium Additives in Diesel Fuel on Regional-Scale Air Quality

    EPA Science Inventory

    Diesel vehicles are a major source of air pollutant emissions. Fuel additives containing nanoparticulate cerium (nCe) are currently being used in some diesel vehicles to improve fuel efficiency. These fuel additives also reduce fine particulate matter (PM2.5) emissio...

  3. 40 CFR 80.592 - What records must be kept by entities in the motor vehicle diesel fuel and diesel fuel additive...

    Code of Federal Regulations, 2012 CFR

    2012-07-01

    ... sampling and testing for sulfur content for a batch of motor vehicle diesel fuel produced or imported and subject to the 15 ppm sulfur standard or any sampling and testing for sulfur content as part of a quality assurance testing program, and any sampling and testing for cetane index, aromatics content, solvent...

  4. 40 CFR 80.592 - What records must be kept by entities in the motor vehicle diesel fuel and diesel fuel additive...

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ... testing; and (iii) The results of the tests for sulfur content (including, where applicable, the test... sampling and testing for sulfur content for a batch of motor vehicle diesel fuel produced or imported and subject to the 15 ppm sulfur standard or any sampling and testing for sulfur content as part of a...

  5. 40 CFR 80.592 - What records must be kept by entities in the motor vehicle diesel fuel and diesel fuel additive...

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... testing; and (iii) The results of the tests for sulfur content (including, where applicable, the test... sampling and testing for sulfur content for a batch of motor vehicle diesel fuel produced or imported and subject to the 15 ppm sulfur standard or any sampling and testing for sulfur content as part of a...

  6. Diesel Surrogate Fuels for Engine Testing and Chemical-Kinetic Modeling: Compositions and Properties

    PubMed Central

    Mueller, Charles J.; Cannella, William J.; Bays, J. Timothy; Bruno, Thomas J.; DeFabio, Kathy; Dettman, Heather D.; Gieleciak, Rafal M.; Huber, Marcia L.; Kweon, Chol-Bum; McConnell, Steven S.; Pitz, William J.; Ratcliff, Matthew A.

    2016-01-01

    The primary objectives of this work were to formulate, blend, and characterize a set of four ultralow-sulfur diesel surrogate fuels in quantities sufficient to enable their study in single-cylinder-engine and combustion-vessel experiments. The surrogate fuels feature increasing levels of compositional accuracy (i.e., increasing exactness in matching hydrocarbon structural characteristics) relative to the single target diesel fuel upon which the surrogate fuels are based. This approach was taken to assist in determining the minimum level of surrogate-fuel compositional accuracy that is required to adequately emulate the performance characteristics of the target fuel under different combustion modes. For each of the four surrogate fuels, an approximately 30 L batch was blended, and a number of the physical and chemical properties were measured. This work documents the surrogate-fuel creation process and the results of the property measurements. PMID:27330248

  7. Estimating Impacts of Diesel Fuel Reformulation with Vector-based Blending

    SciTech Connect

    Hadder, G.R.

    2003-01-23

    The Oak Ridge National Laboratory Refinery Yield Model has been used to study the refining cost, investment, and operating impacts of specifications for reformulated diesel fuel (RFD) produced in refineries of the U.S. Midwest in summer of year 2010. The study evaluates different diesel fuel reformulation investment pathways. The study also determines whether there are refinery economic benefits for producing an emissions reduction RFD (with flexibility for individual property values) compared to a vehicle performance RFD (with inflexible recipe values for individual properties). Results show that refining costs are lower with early notice of requirements for RFD. While advanced desulfurization technologies (with low hydrogen consumption and little effect on cetane quality and aromatics content) reduce the cost of ultra low sulfur diesel fuel, these technologies contribute to the increased costs of a delayed notice investment pathway compared to an early notice investment pathway for diesel fuel reformulation. With challenging RFD specifications, there is little refining benefit from producing emissions reduction RFD compared to vehicle performance RFD. As specifications become tighter, processing becomes more difficult, blendstock choices become more limited, and refinery benefits vanish for emissions reduction relative to vehicle performance specifications. Conversely, the emissions reduction specifications show increasing refinery benefits over vehicle performance specifications as specifications are relaxed, and alternative processing routes and blendstocks become available. In sensitivity cases, the refinery model is also used to examine the impact of RFD specifications on the economics of using Canadian synthetic crude oil. There is a sizeable increase in synthetic crude demand as ultra low sulfur diesel fuel displaces low sulfur diesel fuel, but this demand increase would be reversed by requirements for diesel fuel reformulation.

  8. A fuel-based assessment of off-road diesel engine emissions.

    PubMed

    Kean, A J; Sawyer, R F; Harley, R A

    2000-11-01

    The use of diesel engines in off-road applications is a significant source of nitrogen oxides (NOx) and particulate matter (PM10). Such off-road applications include railroad locomotives, marine vessels, and equipment used for agriculture, construction, logging, and mining. Emissions from these sources are only beginning to be controlled. Due to the large number of these engines and their wide range of applications, total activity and emissions from these sources are uncertain. A method for estimating the emissions from off-road diesel engines based on the quantity of diesel fuel consumed is presented. Emission factors are normalized by fuel consumption, and total activity is estimated by the total fuel consumed. Total exhaust emissions from off-road diesel equipment (excluding locomotives and marine vessels) in the United States during 1996 have been estimated to be 1.2 x 10(9) kg NOx and 1.2 x 10(8) kg PM10. Emissions estimates published by the U.S. Environmental Protection Agency are 2.3 times higher for both NOx and exhaust PM10 emissions than estimates based directly on fuel consumption. These emissions estimates disagree mainly due to differences in activity estimates, rather than to differences in the emission factors. All current emission inventories for off-road engines are uncertain because of the limited in-use emissions testing that has been performed on these engines. Regional- and state-level breakdowns in diesel fuel consumption by off-road mobile sources are also presented. Taken together with on-road measurements of diesel engine emissions, results of this study suggest that in 1996, off-road diesel equipment (including agriculture, construction, logging, and mining equipment, but not locomotives or marine vessels) was responsible for 10% of mobile source NOx emissions nationally, whereas on-road diesel vehicles contributed 33%. PMID:11111337

  9. LNG (liquefied natural gas) as a fuel and refrigerant for diesel powered shrimp boats

    SciTech Connect

    Acker, G. Jr.; Brett, C.E.; Schaetzle, W.J.; Song, Y.K.

    1988-01-01

    A 3406-B Caterpillar and a 4.236 Perkins have been converted from their standard diesel configuration to dual-fuel engines. These engines operate using an aspirated charge of natural gas and a pilot charge of diesel fuel. The pilot is injected for combustion initiation, performing the same task as a spark plug in a spark ignition engine. Natural gas supplies 80% of the total heat addition at full load for both engines. The diesel fuel provides ignition, performs the function of idling the engine, and acts as a coolant for the injector tips. The diesel pilot setting remains constant throughout the operating range and provides a regular repeatable idle for the engine during no-load operation. A shrimp boat is being used to evaluate the dual-fuel system. The vessel normally carries 16000 1 of diesel fuel giving it a trip length of 14-21 days. To operate on natural gas with similar trip length requires liquification and cryogenic storage at -163/sup 0/C. This type of storage provides the necessary energy density needed for on board fuel storage. A 22 m shrimp boat will carry approximately 17000 1 of LNG in insulated tanks. Urethane insulation is used as both an insulator against heat leak and as a partial tank support structure.

  10. Impact of organosulfur content on diesel fuel stability and implications for carbon steel corrosion.

    PubMed

    Lyles, Christopher N; Aktas, Deniz F; Duncan, Kathleen E; Callaghan, Amy V; Stevenson, Bradley S; Suflita, Joseph M

    2013-06-01

    Ultralow sulfur diesel (ULSD) fuel has been integrated into the worldwide fuel infrastructure to help meet a variety of environmental regulations. However, desulfurization alters the properties of diesel fuel in ways that could potentially impact its biological stability. Fuel desulfurization might predispose ULSD to biodeterioration relative to sulfur-rich fuels and in marine systems accelerate rates of sulfate reduction, sulfide production, and carbon steel biocorrosion. To test such prospects, an inoculum from a seawater-compensated ballast tank was amended with fuel from the same ship or with refinery fractions of ULSD, low- (LSD), and high sulfur diesel (HSD) and monitored for sulfate depletion. The rates of sulfate removal in incubations amended with the refinery fuels were elevated relative to the fuel-unamended controls but statistically indistinguishable (∼50 μM SO4/day), but they were found to be roughly twice as fast (∼100 μM SO4/day) when the ship's own diesel was used as a source of carbon and energy. Thus, anaerobic hydrocarbon metabolism likely occurred in these incubations regardless of fuel sulfur content. Microbial community structure from each incubation was also largely independent of the fuel amendment type, based on molecular analysis of 16S rRNA sequences. Two other inocula known to catalyze anaerobic hydrocarbon metabolism showed no differences in fuel-associated sulfate reduction or methanogenesis rates between ULSD, LSD, and HSD. These findings suggest that the stability of diesel is independent of the fuel organosulfur compound status and reasons for the accelerated biocorrosion associated with the use of ULSD should be sought elsewhere. PMID:23614475

  11. AUTOMOTIVE DIESEL MAINTENANCE 1. UNIT XI, PART I--MAINTAINING THE FUEL SYSTEM (PART I), CUMMINS DIESEL ENGINES, PART II--UNIT REPLACEMENT (ENGINE).

    ERIC Educational Resources Information Center

    Human Engineering Inst., Cleveland, OH.

    THIS MODULE OF A 30-MODULE COURSE IS DESIGNED TO DEVELOP AN UNDERSTANDING OF DIFFERENCES BETWEEN TWO AND FOUR CYCLE ENGINES, THE OPERATION AND MAINTENANCE OF THE DIESEL ENGINE FUEL SYSTEM, AND THE PROCEDURES FOR DIESEL ENGINE REMOVAL. TOPICS ARE (1) REVIEW OF TWO CYCLE AND FOUR CYCLE CONCEPT, (2) SOME BASIC CHARACTERISTICS OF FOUR CYCLE ENGINES,…

  12. Exhaust Emissions and Fuel Properties of Partially Hydrogenated Soybean Oil Methyl Esters Blended with Ultra Low Sulfur Diesel Fuel

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Important fuel properties and emissions characteristics of blends (20 vol%) of soybean oil methyl esters (SME) and partially hydrogenated SME (PHSME) in ultra low sulfur diesel fuel (ULSD) were determined and compared with neat ULSD. The following changes in physical properties were noticed for B20...

  13. Development of OTM Syngas Process and Testing of Syngas Derived Ultra-clean Fuels in Diesel Engines and Fuel Cells

    SciTech Connect

    E.T. Robinson; James P. Meagher; Prasad Apte; Xingun Gui; Tytus R. Bulicz; Siv Aasland; Charles Besecker; Jack Chen Bart A. van Hassel; Olga Polevaya; Rafey Khan; Piyush Pilaniwalla

    2002-12-31

    This topical report summarizes work accomplished for the Program from November 1, 2001 to December 31, 2002 in the following task areas: Task 1: Materials Development; Task 2: Composite Development; Task 4: Reactor Design and Process Optimization; Task 8: Fuels and Engine Testing; 8.1 International Diesel Engine Program; 8.2 Nuvera Fuel Cell Program; and Task 10: Program Management. Major progress has been made towards developing high temperature, high performance, robust, oxygen transport elements. In addition, a novel reactor design has been proposed that co-produces hydrogen, lowers cost and improves system operability. Fuel and engine testing is progressing well, but was delayed somewhat due to the hiatus in program funding in 2002. The Nuvera fuel cell portion of the program was completed on schedule and delivered promising results regarding low emission fuels for transportation fuel cells. The evaluation of ultra-clean diesel fuels continues in single cylinder (SCTE) and multiple cylinder (MCTE) test rigs at International Truck and Engine. FT diesel and a BP oxygenate showed significant emissions reductions in comparison to baseline petroleum diesel fuels. Overall through the end of 2002 the program remains under budget, but behind schedule in some areas.

  14. The dieselization of America: An integrated strategy for future transportation fuels

    SciTech Connect

    Eberhardt, J.J.

    1997-12-31

    The Diesel Cycle engine has already established itself as the engine-of-choice for the heavy duty transport industry because of its fuel efficiency, durability, and reliability. In addition, it has also been shown to be capable of using alternative fuels, albeit at efficiencies lower than that achieved with petroleum-derived diesel fuel. Alternative fuel dedicated engines have not made significant penetration of the heavy duty truck market because truck fleet operators need a cost-competitive fuel and reliable supply and fueling infrastructure. In lieu of forcing diverse fuels from many diverse domestic feedstocks onto the end-users, the Office of Heavy Vehicle Technologies envisions that a future fuels strategy for the heavy duty transport sector is one where the diverse feedstocks are utilized to provide a single fuel specification (dispensed from the existing fueling infrastructure) that would run efficiently in a single high efficiency energy conversion device, the Diesel Cycle engine. In so doing, the US Commercial transport industry may gain a measure of security from the rapid fuel price increases by relying less on a single feedstock source to meet its increasing fuel requirements.

  15. Parametric performance of a turbojet engine combustor using jet A and A diesel fuel

    NASA Technical Reports Server (NTRS)

    Butze, H. F.; Humenik, F. M.

    1979-01-01

    The performance of a single-can JT8D combustor was evaluated with Jet A and a high-aromatic diesel fuel over a parametric range of combustor-inlet conditions. Performance parameters investigated were combustion efficiency, emissions of CO, unburned hydrocarbons, and NOx, as well as liner temperatures and smoke. At all conditions the use of diesel fuel instead of Jet A resulted in increases in smoke numbers and liner temperatures; gaseous emissions, on the other hand, did not differ significantly between the two fuels.

  16. Methylesters of plant oils as diesel fuels, either straight or in blends

    SciTech Connect

    Pischinger, G.H.; Siekmann, R.W.; Falcon, A.M.; Fernandes, F.R.

    1982-01-01

    Engine and vehicle tests were carried out with three alternative Diesel fuels: straight methylester of soybean oil (MESO), 75 to 25 gasoil-MESO blend, and 68-23-9 gasoil-MESO-ethanol (anhydrous) blend. Fuel-relevant characteristics of the three Diesel alternatives are given, together with the phase diagram of the ternary blend. Power, torque and volumetric brake specific fuel consumption in an unmodified IDI Diesel engine reflect mainly the net volumetric heating values. Smoke decreases with the presence of oxygenate compounds as does the emission of CO, as measured on the chassis dynamometer. A rigorous durability bench test on straight MESO shows results entirely within VW specifications. Analyses have indicated that, for IDI engines, no lube-oil problems are anticipated. Investigation of compatibility of MESO with fuel system material reveals considerable similarity to gasoil, but some items may require adaptation or even substitution. 3 figures, 9 tables.

  17. 40 CFR 600.206-86 - Calculation and use of fuel economy values for gasoline-fueled, diesel, and electric vehicle...

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... values for gasoline-fueled, diesel, and electric vehicle configurations. 600.206-86 Section 600.206-86... values for gasoline-fueled, diesel, and electric vehicle configurations. (a) Fuel economy values... exists for an electric vehicle configuration, all values for that vehicle configuration are...

  18. 40 CFR 600.206-86 - Calculation and use of fuel economy values for gasoline-fueled, diesel, and electric vehicle...

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ... values for gasoline-fueled, diesel, and electric vehicle configurations. 600.206-86 Section 600.206-86... economy values for gasoline-fueled, diesel, and electric vehicle configurations. (a) Fuel economy values... exists for an electric vehicle configuration, all values for that vehicle configuration are...

  19. Measuring the Effect of Fuel Structures and Blend Distribution on Diesel Emissions Using Isotope Tracing

    SciTech Connect

    Cheng, A S; Mueller, C J; Buchholz, B A; Dibble, R W

    2004-02-10

    Carbon atoms occupying specific positions within fuel molecules can be labeled and followed in emissions. Renewable bio-derived fuels possess a natural uniform carbon-14 ({sup 14}C) tracer several orders of magnitude above petroleum-derived fuels. These fuels can be used to specify sources of carbon in particulate matter (PM) or other emissions. Differences in emissions from variations in the distribution of a fuel component within a blend can also be measured. Using Accelerator Mass Spectrometry (AMS), we traced fuel components with biological {sup 14}C/C levels of 1 part in 10{sup 12} against a {sup 14}C-free petroleum background in PM and CO{sub 2}. Different carbon atoms in the ester structure of the diesel oxygenate dibutyl maleate displayed far different propensities to produce PM. Homogeneous cosolvent and heterogeneous emulsified ethanol-in-diesel blends produced significantly different PM despite having the same oxygen content in the fuel. Emulsified blends produced PM with significantly more volatile species. Although ethanol-derived carbon was less likely to produce PM than diesel fuel, it formed non-volatile structures when it resided in PM. The contribution of lubrication oil to PM was determined by measuring an isotopic difference between 100% bio-diesel and the PM it produced. Data produced by the experiments provides validation for combustion models.

  20. Usability of food industry waste oils as fuel for diesel engines.

    PubMed

    Winfried, Russ; Roland, Meyer-Pittroff; Alexander, Dobiasch; Jürgen, Lachenmaier-Kölch

    2008-02-01

    Two cogeneration units were each fitted with a prechamber (IDI) diesel engine in order to test the feasibility of using waste oils from the food industry as a fuel source, and additionally to test emissions generated by the combustion of these fuels. Esterified waste oils and animal fats as well as mustard oil were tested and compared to the more or less "common" fuels: diesel, rapeseed oil and rapeseed methyl ester. The results show that, in principle, each of these fuels is suitable for use in a prechamber diesel engine. Engine performance can be maintained at a constant level. Without catalytic conversion, the nitrogen oxides emissions were comparable. A significant reduction in NO(x) was achieved through the injection of urea. Combining a urea injection with the SCR catalytic converter reduced NO(x) emissions between 53% and 67%. The carbon monoxide emissions from waste oils are not significantly different from those of "common" fuels and can be reduced the same way as of hydrocarbon emissions, through utilization of a catalytic converter. The rate of carbon monoxide reduction by catalytic conversion was 84-86%. A lower hydrocarbon concentration was associated with fuels of agricultural origin. With the catalytic converter a reduction of 29-42% achieved. Each prechamber diesel engine exhibited its own characteristic exhaust, which was independent of fuel type. The selective catalytic reduction of the exhaust emissions can be realized without restriction using fuels of agricultural origin. PMID:17303316

  1. Evaluation of castor and lesquerella oil derivatives as additives in biodiesel and ultralow sulfur diesel fuels

    Technology Transfer Automated Retrieval System (TEKTRAN)

    The use of petroleum-derived additives is ubiquitous in fuels production, including biodiesel (BD) and ultra-low sulfur diesel (ULSD) fuels. Development and employment of domestically derived, biodegradable, renewable, and non-toxic additives is an attractive goal. As such, estolides (1, 2) and 2-...

  2. 40 CFR 80.610 - What acts are prohibited under the diesel fuel sulfur program?

    Code of Federal Regulations, 2012 CFR

    2012-07-01

    ... under this subpart I and 40 CFR part 69, except as allowed by 40 CFR part 1043 for ECA marine fuel. (2... 40 CFR part 1043. This prohibition is in addition to other prohibitions in this section. (f) Cause... diesel fuel sulfur program? 80.610 Section 80.610 Protection of Environment ENVIRONMENTAL...

  3. Diesel Fuel Sulfur Effects on the Performance of Lean NOx Catalysts

    SciTech Connect

    Ren, Shouxian

    2000-08-20

    Evaluate the effects of diesel fuel sulfur on the performance of low temperature and high temperature Lean-NOx Catalysts. Evaluate the effects of up to 250 hours of aging on the performance of the Lean-NOx Catalysts with different fuel sulfur contents.

  4. Testing and preformance measurement of straight vegetable oils as an alternative fuel for diesel engines

    NASA Astrophysics Data System (ADS)

    Lakshminarayanan, Arunachalam

    Rising fuel prices, growing energy demand, concerns over domestic energy security and global warming from greenhouse gas emissions have triggered the global interest in bio-energy and bio-fuel crop development. Backlash from these concerns can result in supply shocks of traditional fossil fuels and create immense economic pressure. It is thus widely argued that bio-fuels would particularly benefit developing countries by off-setting their dependencies on imported petroleum. Domestically, the transportation sector accounts for almost 40% of liquid fuel consumption, while on-farm application like tractors and combines for agricultural purposes uses close to an additional 18%. It is estimated that 40% of the farm budget can be attributed to the fuel costs. With the cost of diesel continuously rising, farmers are now looking at using Straight Vegetable Oil (SVO) as an alternative fuel by producing their own fuel crops. This study evaluates conventional diesel compared to the use of SVO like Camelina, Canola and Juncea grown on local farms in Colorado for their performance and emissions on a John Deere 4045 Tier-II engine. Additionally, physical properties like density and viscosity, metal/mineral content, and cold flow properties like CFPP and CP of these oils were measured using ASTM standards and compared to diesel. It was found that SVOs did not show significant differences compared to diesel fuel with regards to engine emissions, but did show an increase in thermal efficiency. Therefore, this study supports the continued development of SVO production as a viable alternative to diesel fuels, particularly for on-farm applications. The need for providing and developing a sustainable, economic and environmental friendly fuel alternative has taken an aggressive push which will require a strong multidisciplinary education in the field of bio-energy. Commercial bio-energy development has the potential to not only alleviate the energy concerns, but also to give renewed

  5. Locomotive applications of coal-fueled diesel and gas turbine engines

    SciTech Connect

    Braglia, B.L.; Poindexter, C.K. Jr.

    1986-03-01

    The potential now exists for using one of our most abundant energy resources as a locomotive fuel. Coal-fueled diesel and gas turbine locomotives have been shown to provide a significant economic benefit to this nation's railroads, measured in terms of internal rate of return. The performance of coal-fueled locomotives will be competitive with state of the art diesel-electric locomotives and may even offer the opportunity to enhance this performance (high horsepower gas turbines). A change to coal fuels must be accomplished without any accompanying detrimental impact on our environment. The largest changes caused by the reintroduction of coal fuels will occur in the infrastructure of this nation's railroads; coal fueling facilities, fuel tenders, and modified maintenance and operating practices will be required. 5 references, 2 figures, 1 table.

  6. Experimental clean combustor program: Diesel no. 2 fuel addendum, phase 3

    NASA Technical Reports Server (NTRS)

    Gleason, C. C.; Bahr, D. W.

    1979-01-01

    A CF6-50 engine equipped with an advanced, low emission, double annular combustor was operated 4.8 hours with No. 2 diesel fuel. Fourteen steady-state operating conditions ranging from idle to full power were investigated. Engine/combustor performance and exhaust emissions were obtained and compared to JF-5 fueled test results. With one exception, fuel effects were very small and in agreement with previously obtained combustor test rig results. At high power operating condition, the two fuels produced virtually the same peak metal temperatures and exhaust emission levels. At low power operating conditions, where only the pilot stage was fueled, smoke levels tended to be significantly higher with No. 2 diesel fuel. Additional development of this combustor concept is needed in the areas of exit temperature distribution, engine fuel control, and exhaust emission levels before it can be considered for production engine use.

  7. Progress report Idaho on-road test with vegetable oil as a diesel fuel

    SciTech Connect

    Reece, D.; Peterson, C.L.

    1993-12-31

    Biodiesel is among many biofuels being considered in the US for alternative fueled vehicles. The use of this fuel can reduce US dependence on imported oil and help improve air quality by reducing gaseous and particulate emissions. Researchers at the Department of Agricultural Engineering at the University of Idaho have pioneered rapeseed oil as a diesel fuel substitute. Although UI has conducted many laboratory and tractor tests using raw rapeseed oil and rape methyl ester (RME), these fuels have not been proven viable for on-road applications. A biodiesel demonstration project has been launched to show the use of biodiesel in on-road vehicles. Two diesel powered pickups are being tested on 20 percent biodiesel and 80 percent diesel. One is a Dodge 3/4-ton pickup powered by a Cummins 5.9 liter turbocharged and intercooled engine. This engine is direct injected and is being run on 20 percent RME and 80 percent diesel. The other pickup is a Ford, powered by a Navistar 7.3 liter, naturally aspirated engine. This engine has a precombustion chamber and is being operated on 20 percent raw rapeseed oil and 80 percent diesel. The engines themselves are unmodified, but modifications have been made to the vehicles for the convenience of the test. In order to give maximum vehicle range, fuel mixing is done on-board. Two tanks are provided, one for the diesel and one for the biodiesel. Electric fuel pumps supply fuel to a combining chamber for correct proportioning. The biodiesel fuel tanks are heated with a heat exchanger which utilizes engine coolant circulation.

  8. NOx reduction in diesel fuel flames by additions of water and CO{sub 2}

    SciTech Connect

    Li, S.C.

    1997-12-31

    Natural gas has the highest heating value per unit mass (50.1 MJ/kg, LHV) of any of the hydrocarbon fuels (e.g., butane, liquid diesel fuel, gasoline, etc.). Since it has the lowest carbon content per unit mass, combustion of natural gas produces much less carbon dioxide, soot particles, and oxide of nitrogen than combustion of liquid diesel fuel. In view of anticipated strengthening of regulations on pollutant emissions from diesel engines, alternative fuels, such as compressed natural gas (CNG) and liquefied natural gas (LNG) have been experimentally introduced to replace the traditional diesel fuels in heavy-duty trucks, transit buses, off-road vehicles, locomotives, and stationary engines. To help in applying natural gas in Diesel engines and increasing combustion efficiency, the emphasis of the present paper is placed on the detailed flame chemistry of methane-air combustion. The present work is the continued effort in finding better methods to reduce NO{sub x}. The goal is to identify a reliable chemical reaction mechanism for natural gas in both premixed and diffusion flames and to establish a systematic reduced mechanism which may be useful for large-scale numerical modeling of combustion behavior in natural gas engines.

  9. Polycyclic aromatic hydrocarbon exhaust emissions from different reformulated diesel fuels and engine operating conditions

    NASA Astrophysics Data System (ADS)

    Borrás, Esther; Tortajada-Genaro, Luis A.; Vázquez, Monica; Zielinska, Barbara

    2009-12-01

    The study of light-duty diesel engine exhaust emissions is important due to their impact on atmospheric chemistry and air pollution. In this study, both the gas and the particulate phase of fuel exhaust were analyzed to investigate the effects of diesel reformulation and engine operating parameters. The research was focused on polycyclic aromatic hydrocarbon (PAH) compounds on particulate phase due to their high toxicity. These were analyzed using a gas chromatography-mass spectrometry (GC-MS) methodology. Although PAH profiles changed for diesel fuels with low-sulfur content and different percentages of aromatic hydrocarbons (5-25%), no significant differences for total PAH concentrations were detected. However, rape oil methyl ester biodiesel showed a greater number of PAH compounds, but in lower concentrations (close to 50%) than the reformulated diesel fuels. In addition, four engine operating conditions were evaluated, and the results showed that, during cold start, higher concentrations were observed for high molecular weight PAHs than during idling cycle and that the acceleration cycles provided higher concentrations than the steady-state conditions. Correlations between particulate PAHs and gas phase products were also observed. The emission of PAH compounds from the incomplete combustion of diesel fuel depended greatly on the source of the fuel and the driving patterns.

  10. Near-frictionless carbon coatings for use in fuel injectors and pump systems operating with low-sulfur diesel fuels

    SciTech Connect

    Erdemir, A.; Ozturk, O.; Alzoubi, M.; Woodford, J.; Ajayi, L.; Fenske, G.

    2000-01-19

    While sulfur in diesel fuels helps reduce friction and prevents wear and galling in fuel pump and injector systems, it also creates environmental pollution in the form of hazardous particulates and SO{sub 2} emissions. The environmental concern is the driving force behind industry's efforts to come up with new alternative approaches to this problem. One such approach is to replace sulfur in diesel fuels with other chemicals that would maintain the antifriction and antiwear properties provided by sulfur in diesel fuels while at the same time reducing particulate emissions. A second alternative might be to surface-treat fuel injection parts (i.e., nitriding, carburizing, or coating the surfaces) to reduce or eliminate failures associated with the use of low-sulfur diesel fuels. This research explores the potential usefulness of a near-frictionless carbon (NFC) film developed at Argonne National Laboratory in alleviating the aforementioned problems. The lubricity of various diesel fuels (i.e., high-sulfur, 500 ppm; low sulfur, 140 ppm; ultra-clean, 3 ppm; and synthetic diesel or Fischer-Tropsch, zero sulfur) were tested by using both uncoated and NFC-coated 52100 steel specimens in a ball-on-three-disks and a high-frequency reciprocating wear-test rig. The test program was expanded to include some gasoline fuels as well (i.e., regular gasoline and indolene) to further substantiate the usefulness of the NFC coatings in low-sulfur gasoline environments. The results showed that the NFC coating was extremely effective in reducing wear and providing lubricity in low-sulfur or sulfur-free diesel and gasoline fuels. Specifically, depending on the wear test rig, test pair, and test media, the NFC films were able to reduce wear rates of balls and flats by factors of 8 to 83. These remarkable reductions in wear rates raise the prospect for using the ultra slick carbon coatings to alleviate problems that will be caused by the use of low sulfur diesel and gasoline fuels. Surfaces

  11. A comparison of emissions from vehicles fueled with diesel or compressed natural gas.

    PubMed

    Hesterberg, Thomas W; Lapin, Charles A; Bunn, William B

    2008-09-01

    A comprehensive comparison of emissions from vehicles fueled with diesel or compressed natural gas (CNG) was developed from 25 reports on transit buses, school buses, refuse trucks, and passenger cars. Emissions for most compounds were highest for untreated exhaust emissions and lowest for treated exhaust CNG buses without after-treatment had the highest emissions of carbon monoxide, hydrocarbons, nonmethane hydrocarbons (NMHC), volatile organic compounds (VOCs; e.g., benzene, butadiene, ethylene, etc.), and carbonyl compounds (e.g., formaldehyde, acetaldehyde, acrolein). Diesel buses without after-treatment had the highest emissions of particulate matter and polycyclic aromatic hydrocarbons (PAHs). Exhaust after-treatments reduced most emissions to similar levels in diesel and CNG buses. Nitrogen oxides (NO(x)) and carbon dioxide (CO2) emissions were similar for most vehicle types, fuels, and exhaust after-treatments with some exceptions. Diesel school buses had higher CO2 emissions than the CNG bus. CNG transit buses and passenger cars equipped with three-way catalysts had lower NO(x) emissions. Diesel buses equipped with traps had higher nitrogen dioxide emissions. Fuel economy was best in the diesel buses not equipped with exhaust after-treatment. PMID:18800512

  12. Control of aldehyde emissions in the diesel engines with alcoholic fuels.

    PubMed

    Krishna, M V S Murali; Varaprasad, C M; Reddy, C Venkata Ramana

    2006-01-01

    The major pollutants emitted from compression ignition (CI) engine with diesel as fuel are smoke and nitrogen oxides (NOx). When the diesel engine is run with alternate fuels, there is need to check alcohols (methanol or ethanol) and aldehydes also. Alcohols cannot be used directly in diesel engine and hence engine modification is essential as alcohols have low cetane number and high latent hear of vaporization. Hence, for use of alcohol in diesel engine, it needs hot combustion chamber, which is provided by low heat rejection (LHR) diesel engine with an air gap insulated piston with superni crown and air gap insulated liner with superni insert. In the present study, the pollution levels of aldehydes are reported with the use of methanol and ethanol as alternate fuels in LHR diesel engine with varying injection pressure, injection timings with different percentage of alcohol induction. The aldehydes (formaldehyde and acetaldehyde) in the exhaust were estimated by wet chemical technique with high performance liquid chromatograph (HPLC). Aldehyde emissions increased with an increase in alcohol induction. The LHR engine showed a decrease in aldehyde emissions when compared to conventional engine. However, the variation of injection pressure showed a marginal effect in reducing aldehydes, while advancing the injection timing reduced aldehyde emissions. PMID:17913204

  13. Effects of the biodiesel blend fuel on aldehyde emissions from diesel engine exhaust

    NASA Astrophysics Data System (ADS)

    Peng, Chiung-Yu; Yang, Hsi-Hsien; Lan, Cheng-Hang; Chien, Shu-Mei

    Interest in use of biodiesel fuels derived from vegetable oils or animal fats as alternative fuels for petroleum-based diesels has increased due to biodiesels having similar properties of those of diesels, and characteristics of renewability, biodegradability and potential beneficial effects on exhaust emissions. Generally, exhaust emissions of regulated pollutants are widely studied and the results favor biodiesels on CO, HC and particulate emissions; however, limited and inconsistent data are showed for unregulated pollutants, such as carbonyl compounds, which are also important indicators for evaluating available vehicle fuels. For better understanding biodiesel, this study examines the effects of the biodiesel blend fuel on aldehyde chemical emissions from diesel engine exhausts in comparison with those from the diesel fuel. Test engines (Mitsubishi 4M40-2AT1) with four cylinders, a total displacement of 2.84 L, maximum horsepower of 80.9 kW at 3700 rpm, and maximum torque of 217.6 N m at 2000 rpm, were mounted and operated on a Schenck DyNAS 335 dynamometer. Exhaust emission tests were performed several times for each fuel under the US transient cycle protocol from mileages of 0-80,000 km with an interval of 20,000 km, and two additional measurements were carried out at 40,000 and 80,000 km after maintenance, respectively. Aldehyde samples were collected from diluted exhaust by using a constant volume sampling system. Samples were extracted and analyzed by the HPLC/UV system. Dominant aldehydes of both fuels' exhausts are formaldehyde and acetaldehyde. These compounds together account for over 75% of total aldehyde emissions. Total aldehyde emissions for B20 (20% waste cooking oil biodiesel and 80% diesel) and diesel fuels are in the ranges of 15.4-26.9 mg bhp-h -1 and 21.3-28.6 mg bhp-h -1, respectively. The effects of increasing mileages and maintenance practice on aldehyde emissions are insignificant for both fuels. B20 generates slightly less emission than

  14. Comparison of emission indexes within a turbine combustor operated on diesel fuel or methanol

    SciTech Connect

    LaPointe, C.W.; Schultz, W.L.

    1980-01-01

    The emission index (grams of species per kilogram of fuel) field within a regenerative turbine combustor has been mapped using a water-cooled sampling probe. The probe employed a choked orifice to simultaneously determine the local temperature. Derived from measurements are: air-fuel ratio, combustion efficiency, average fuel velocity, and fuel distribution factor. Methods of averaging the discrete data are developed. A comparison of the data obtained when the combustor was operated on each of two fuels revealed that the use of methanol leads to lower nitric oxide but higher carbon monoxide emission than does the use of diesel fuel.

  15. Cold temperature diesel performance/combustion with Canadian low ignition quality fuels

    SciTech Connect

    Neill, W.S.; Wolf, W.M.; Webster, G.D.

    1986-01-01

    Three Canadian tar sands derived experimental diesel fuels with cetane numbers (CN) of 36, 31 and 26 and a reference fuel with a 47 CN were tested in a Deutz F1L511D, single cylinder, 4 stroke, naturally aspirated, diesel engine. Tests were performed with intake and cooling air temperatures of 0/sup 0/C and -12/sup 0/C over the entire engine operating range. Performance and combustion behaviour with the 36 CN fuel was marginally acceptable at 0/sup 0/C and unacceptable at -12/sup 0/C. High maximum combustion pressures and rates of combustion pressure rise were encountered at the low engine speed, high load condition with the experimental fuels. Poor combustion behaviour was also experienced with the two low CN fuels at light loads. Operation of this engine configuration with the 31 and 26 CN fuels is not recommended at 0/sup 0/C and lower intake air temperatures.

  16. Advanced diesel electronic fuel injection and turbocharging. Final report, July 1990-December 1993

    SciTech Connect

    Beck, N.J.; Barkhimer, R.L.; Steinmeyer, D.C.; Kelly, J.E.

    1993-12-01

    The program investigated advanced diesel air charging and fuel injection systems to improve specific power, fuel economy, noise, exhaust emissions, and cold startability. The techniques explored included variable fuel injection rate shaping, variable injection timing, full-authority electronic engine control, turbo-compound cooling, regenerative air circulation as a cold start aid, and variable geometry turbocharging. A Servojet electronic fuel injection system was designed and manufactured for the Cummins VTA-903 engine. A special Servojet twin turbocharger exhaust system was also installed. A series of high speed combustion flame photos was taken using the single cylinder optical engine at Michigan Technological University. Various fuel injection rate shapes and nozzle configurations were evaluated. Single-cylinder bench tests were performed to evaluate regenerative inlet air heating techniques as an aid to cold starting. An exhaust-driven axial cooling air fan was manufactured and tested on the VTA-903 engine. Electronic fuel injection, Turbocharging, Diesel combustion, Cold starting, Flame photography.

  17. Coal fueled diesel system for stationary power applications-technology development

    SciTech Connect

    1995-08-01

    The use of coal as a fuel for diesel engines dates back to the early days of the development of the engine. Dr. Diesel envisioned his concept as a multi-fuel engine, with coal a prime candidate due to the fact that it was Germany`s primary domestic energy resource. It is interesting that the focus on coal burning diesel engines appears to peak about every twenty years as shortages of other energy resources increase the economic attractiveness of using coal. This periodic interest in coal started in Germany with the work of Diesel in the timeframe 1898-1906. Pawlikowski carried on the work from 1916 to 1928. Two German companies commercialized the technology prior to and during World War II. The next flurry of activity occurred in the United States in the period from 1957-69, with work done at Southwest Research Institute, Virginia Polytechnical University, and Howard University. The current period of activity started in 1978 with work sponsored by the Conservation and Renewable Energy Branch of the US Department of Energy. This work was done at Southwest Research Institute and by ThermoElectron at Sulzer Engine in Switzerland. In 1982, the Fossil Energy Branch of the US Department of Energy, through the Morgantown Energy Technology Center (METC) initiated a concentrated effort to develop coal burning diesel and gas turbine engines. The diesel engine work in the METC sponsored program was performed at Arthur D. Little (Cooper-Bessemer as subcontractor), Bartlesville Energy Technology Center (now NIPER), Caterpillar, Detroit Diesel Corporation, General Motor Corporation (Electromotive Division), General Electric, Southwest Research Institute, and various universities and other research and development organizations. This DOE-METC coal engine RD & D initiative which spanned the 1982-1993 timeframe is the topic of this review document. The combustion of a coal-water fuel slurry in a diesel engine is described. The engine modifications necessary are discussed.

  18. Advanced Petroleum-Based Fuels--Diesel Emissions Control Project (APBF-DEC): Lubricants Project, Phase 1 Summary, July 2004

    SciTech Connect

    Not Available

    2004-07-01

    The Advanced Petroleum Based Fuels-Diesel Emission Control project is a government/industry collaborative project to identify the optimal combinations of low-sulfur diesel fuels, lubricants, diesel engines, and emission control systems to meet projected emission standards for the 2004-2010 time period. This summary describes the results of the first phase of the lubricants study investigating the impact on lubricant formulation on engine-out emissions.

  19. Transcriptome Changes in Douglas-fir (Pseudotsuga menziesii) Induced by Exposure to Diesel Emissions Generated with CeO2 Nanoparticle Fuel Additive

    EPA Science Inventory

    When cerium oxide nanoparticles are added to diesel fuel, fuel burning efficiency increases, producing emissions (DECe) with characteristics that differ from conventional diesel exhaust (DE). It has previously been shown that DECe induces more adverse pulmonary effects in rats on...

  20. Detection of diesel fuel leakage from underground storage tank using time domain reflectometry

    NASA Astrophysics Data System (ADS)

    Barnett, Daniel A.

    The Environmental Protection Agency (EPA) has established regulations concerning the construction and maintenance of an underground storage tank (UST) system. These regulations also define the means and methods required to detect potential leaks. Leak detection methods defined as "other methods" can be used if specific requirements are achieved. We find in our study time domain reflectometry (TDR) can be used to detect leaks from an UST. The magnitudes of reflections measured by the TDR technique are used to calculate electrical properties of the soil. We find the introduction of diesel fuel, a light non-aqueous phase liquid (LNAPL), into the soil alters the physical and chemical properties of the soil and subsequently the electrical properties. We demonstrate the measured variance of electrical properties can be correlated to the changes of diesel fuel concentration. We find diesel fuel can be detected and changes of concentration can be measured using TDR.

  1. OVERVIEW OF ADVANCED PETROLEUM-BASED FUELS-DIESEL EMISSIONS CONTROL PROGRAM (APBF-DEC)

    SciTech Connect

    Sverdrup, George M.

    2000-08-20

    The Advanced Petroleum-Based Fuels-Diesel Emissions Control Program (APBF-DEC) began in February 2000 and is supported by government agencies and industry. The purpose of the APBF-DEC program is to identify and evaluate the optimal combinations of fuels, lubricants, diesel engines, and emission control systems to meet the projected emission standards for the 2000 to 2010 time period. APBF-DEC is an outgrowth of the earlier Diesel Emission Control-Sulfur Effects Program (DECSE), whose objective is to determine the impact of the sulfur levels in fuel on emission control systems that could lower the emissions of NOx and particulate matter (PM) from diesel powered vehicles in the 2002 to 2004 period. Results from the DECSE studies of two emission control technologies-diesel particle filter (DPF) and NOx adsorber-will be used in the APBF-DEC program. These data are expected to provide initial information on emission control technology options and the effects of fuel properties (including additives) on the performance of emission control systems.

  2. A comparative study of the number and mass of fine particles emitted with diesel fuel and marine gas oil (MGO)

    NASA Astrophysics Data System (ADS)

    Nabi, Md. Nurun; Brown, Richard J.; Ristovski, Zoran; Hustad, Johan Einar

    2012-09-01

    The current investigation reports on diesel particulate matter emissions, with special interest in fine particles from the combustion of two base fuels. The base fuels selected were diesel fuel and marine gas oil (MGO). The experiments were conducted with a four-stroke, six-cylinder, direct injection diesel engine. The results showed that the fine particle number emissions measured by both SMPS and ELPI were higher with MGO compared to diesel fuel. It was observed that the fine particle number emissions with the two base fuels were quantitatively different but qualitatively similar. The gravimetric (mass basis) measurement also showed higher total particulate matter (TPM) emissions with the MGO. The smoke emissions, which were part of TPM, were also higher for the MGO. No significant changes in the mass flow rate of fuel and the brake-specific fuel consumption (BSFC) were observed between the two base fuels.

  3. 40 CFR 80.620 - What are the additional requirements for diesel fuel or distillates produced by foreign...

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... 40 Protection of Environment 16 2010-07-01 2010-07-01 false What are the additional requirements for diesel fuel or distillates produced by foreign refineries subject to a temporary refiner compliance option, hardship provisions, or motor vehicle or NRLM diesel fuel credit provisions? 80.620 Section 80.620 Protection of Environment...

  4. 40 CFR 80.500 - What are the implementation dates for the motor vehicle diesel fuel sulfur control program?

    Code of Federal Regulations, 2013 CFR

    2013-07-01

    ... the motor vehicle diesel fuel sulfur control program? 80.500 Section 80.500 Protection of Environment... Information § 80.500 What are the implementation dates for the motor vehicle diesel fuel sulfur control... sulfur content standard in § 80.520(c). (1) Beginning June 1, 2006, the sulfur content standard of §...

  5. 40 CFR 80.500 - What are the implementation dates for the motor vehicle diesel fuel sulfur control program?

    Code of Federal Regulations, 2014 CFR

    2014-07-01

    ... the motor vehicle diesel fuel sulfur control program? 80.500 Section 80.500 Protection of Environment... Information § 80.500 What are the implementation dates for the motor vehicle diesel fuel sulfur control... sulfur content standard in § 80.520(c). (1) Beginning June 1, 2006, the sulfur content standard of §...

  6. 77 FR 27451 - Permitting Guidance for Oil and Gas Hydraulic Fracturing Activities Using Diesel Fuels-Draft...

    Federal Register 2010, 2011, 2012, 2013, 2014

    2012-05-10

    ... AGENCY Permitting Guidance for Oil and Gas Hydraulic Fracturing Activities Using Diesel Fuels--Draft... oil- and gas-related hydraulic fracturing (HF) using diesel fuels where the U.S. Environmental... Safe Drinking Water Act (SDWA) and regulations regarding UIC permitting of oil and gas...

  7. Solid-phase bioremediation of diesel fuel-contaminated soil utilizing indigenous microorganisms

    SciTech Connect

    Cagnetta, P.J.; Laubacher, R.C.

    1995-12-31

    In the spring of 1993, R.E. Wright Environmental, Inc. (REWEI) was retained by BP Oil Company (BP) to evaluate the use of bioremediation technology to remediate approximately 3,000 cubic yards (yd{sup 3}) of soil impacted with diesel fuel. The impacted soil resulted from the release of several hundred gallons of diesel fuel from a ruptured valve on an aboveground pipeline within a terminal. The overland flow of the diesel fuel resulted in a significant area of soil being impacted by the fuel. Immediate response activities limited vertical migration of the fuel through the excavation and stockpiling of the surface-impacted soil. The nature of the contaminant -- an unweathered, refined petroleum product comprised primarily of alkanes of a medium chain length -- and the biodegradable nature of the diesel fuel made bioremediation a cost-effective and technically feasible remedial option. The objective of the project was to reduce the concentrations of the petroleum hydrocarbons to below the Pennsylvania Department of Environmental Protection (DEP) soil cleanup levels in order to reuse the soil on-site as fill. Basic agronomic principles were applied throughout all phases of the project in order to successfully biodegrade the hydrocarbon.

  8. 77 FR 61313 - Regulation of Fuels and Fuel Additives: Modifications to Renewable Fuel Standard and Diesel...

    Federal Register 2010, 2011, 2012, 2013, 2014

    2012-10-09

    ... Additives: Changes to Renewable Fuel Standard Program, 75 FR 14670, 14681 (March 26, 2010). \\3\\ See CAA... EISA to reduce or replace the use of fossil fuels.\\4\\ \\4\\ 75 FR 14670, 14687 (March 26, 2010). The... Fuel and Fuel Additives; Changes to Renewable Fuel Standard Program,'' 75 FR 14670, available at...

  9. Combustion characteristics of dry coal-powder-fueled adiabatic diesel engine: Final report

    SciTech Connect

    Kakwani, R.M.; Kamo, R.

    1989-01-01

    This report describes the progress and findings of a research program aimed at investigating the combustion characteristics of dry coal powder fueled diesel engine. During this program, significant achievements were made in overcoming many problems facing the coal-powder-fueled engine. The Thermal Ignition Combustion System (TICS) concept was used to enhance the combustion of coal powder fuel. The major coal-fueled engine test results and accomplishments are as follows: design, fabrication and engine testing of improved coal feed system for fumigation of coal powder to the intake air; design, fabrication and engine testing of the TICS chamber made from a superalloy material (Hastelloy X); design, fabrication and engine testing of wear resistant chrome oxide ceramic coated piston rings and cylinder liner; lubrication system was improved to separate coal particles from the contaminated lubricating oil; control of the ignition timing of fumigated coal powder by utilizing exhaust gas recirculation (EGR) and variable TICS chamber temperature; coal-fueled engine testing was conducted in two configurations: dual fuel (with diesel pilot) and 100% coal-fueled engine without diesel pilot or heated intake air; cold starting of the 100% coal-powder-fueled engine with a glow plug; and coal-fueled-engine was operated from 800 to 1800 rpm speed and idle to full load engine conditions.

  10. Feasibility of Producing and Using Biomass-Based Diesel and Jet Fuel in the United States

    SciTech Connect

    Milbrandt, A.; Kinchin, C.; McCormick, R.

    2013-12-01

    The study summarizes the best available public data on the production, capacity, cost, market demand, and feedstock availability for the production of biomass-based diesel and jet fuel. It includes an overview of the current conversion processes and current state-of-development for the production of biomass-based jet and diesel fuel, as well as the key companies pursuing this effort. Thediscussion analyzes all this information in the context of meeting the RFS mandate, highlights uncertainties for the future industry development, and key business opportunities.

  11. Coal-fueled diesel technology development. Final report, March 3, 1988--January 31, 1994

    SciTech Connect

    1994-01-31

    Since 1979, the US Department of Energy has been sponsoring Research and Development programs to use coal as a fuel for diesel engines. In 1984, under the partial sponsorship of the Burlington Northern and Norfolk Southern Railroads, GE completed a 30-month study on the economic viability of a coal-fueled locomotive. In response to a GE proposal to continue researching the economic and technical feasibility of a coal-fueled diesel engine for locomotives, DOE awarded a contract to GE Corporate Research and Development for a three-year program that began in March 1985 and was completed in 1988. That program was divided into two parts: an Economic Assessment Study and a Technical Feasibility Study. The Economic Assessment Study evaluated the benefits to be derived from development of a coal-fueled diesel engine. Seven areas and their economic impact on the use of coal-fueled diesels were examined; impact on railroad infrastructure, expected maintenance cost, environmental considerations, impact of higher capital costs, railroad training and crew costs, beneficiated coal costs for viable economics, and future cost of money. The Technical Feasibility Study used laboratory- and bench-scale experiments to investigate the combustion of coal. The major accomplishments of this study were the development of injection hardware for coal water slurry (CWS) fuel, successful testing of CWS fuel in a full-size, single-cylinder, medium-speed diesel engine, evaluation of full-scale engine wear rates with metal and ceramic components, and the characterization of gaseous and particulate emissions. Full combustion of CWS fuel was accomplished at full and part load with reasonable manifold conditions.

  12. Impact of Fuel Metal Impurities on the Durability of a Light-Duty Diesel Aftertreatment System

    SciTech Connect

    Williams, A.; Burton, J.; McCormick, R. L.; Toops, T.; Wereszczak, A. A.; Fox, E. E.; Lance, M. J.; Cavataio, G.; Dobson, D.; Warner, J.; Brezny, R.; Nguyen, K.; Brookshear, D. W.

    2013-04-01

    Alkali and alkaline earth metal impurities found in diesel fuels are potential poisons for diesel exhaust catalysts. A set of diesel engine production exhaust systems was aged to 150,000 miles. These exhaust systems included a diesel oxidation catalyst, selective catalytic reduction (SCR) catalyst, and diesel particulate filter (DPF). Four separate exhaust systems were aged, each with a different fuel: ultralow sulfur diesel containing no measureable metals, B20 (a common biodiesel blend) containing sodium, B20 containing potassium, and B20 containing calcium, which were selected to simulate the maximum allowable levels in B100 according to ASTM D6751. Analysis included Federal Test Procedure emissions testing, bench-flow reactor testing of catalyst cores, electron probe microanalysis (EPMA), and measurement of thermo-mechanical properties of the DPFs. EPMA imaging found that the sodium and potassium penetrated into the washcoat, while calcium remained on the surface. Bench-flow reactor experiments were used to measure the standard nitrogen oxide (NOx) conversion, ammonia storage, and ammonia oxidation for each of the aged SCR catalysts. Vehicle emissions tests were conducted with each of the aged catalyst systems using a chassis dynamometer. The vehicle successfully passed the 0.2 gram/mile NOx emission standard with each of the four aged exhaust systems.

  13. Combination of biodiesel-ethanol-diesel fuel blend and SCR catalyst assembly to reduce emissions from a heavy-duty diesel engine.

    PubMed

    Shi, Xiaoyan; Yu, Yunbo; He, Hong; Shuai, Shijin; Dong, Hongyi; Li, Rulong

    2008-01-01

    In this study, the efforts to reduce NOx and particulate matter (PM) emissions from a diesel engine using both ethanol-selective catalytic reduction (SCR) of NOx over an Ag/Al2O3 catalyst and a biodiesel-ethanol-diesel fuel blend (BE-diesel) on an engine bench test are discussed. Compared with diesel fuel, use of BE-diesel increased PM emissions by 14% due to the increase in the soluble organic fraction (SOF) of PM, but it greatly reduced the Bosch smoke number by 60%-80% according to the results from 13-mode test of European Stationary Cycle (ESC) test. The SCR catalyst was effective in NOx reduction by ethanol, and the NOx conversion was approximately 73%. Total hydrocarbons (THC) and CO emissions increased significantly during the SCR of NOx process. Two diesel oxidation catalyst (DOC) assemblies were used after Ag/Al2O3 converter to remove CO and HC. Different oxidation catalyst showed opposite effect on PM emission. The PM composition analysis revealed that the net effect of oxidation catalyst on total PM was an integrative effect on SOF reduction and sulfate formation of PM. The engine bench test results indicated that the combination of BE-diesel and a SCR catalyst assembly could provide benefits for NOx and PM emissions control even without using diesel particle filters (DPFs). PMID:18574958

  14. 40 CFR 80.595 - How does a small or GPA refiner apply for a motor vehicle diesel fuel volume baseline for the...

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ... for a motor vehicle diesel fuel volume baseline for the purpose of extending their gasoline sulfur... a small or GPA refiner apply for a motor vehicle diesel fuel volume baseline for the purpose of... duration of the GPA standards under § 80.540 must apply for a motor vehicle diesel fuel volume baseline...

  15. 40 CFR 80.595 - How does a small or GPA refiner apply for a motor vehicle diesel fuel volume baseline for the...

    Code of Federal Regulations, 2013 CFR

    2013-07-01

    ... for a motor vehicle diesel fuel volume baseline for the purpose of extending their gasoline sulfur... a small or GPA refiner apply for a motor vehicle diesel fuel volume baseline for the purpose of... duration of the GPA standards under § 80.540 must apply for a motor vehicle diesel fuel volume baseline...

  16. Blends of Fischer-Tropsch crude: A lower cost route to diesel fuel

    SciTech Connect

    Suppes, G.J.; Terry, J.; Burkhart, M.; Cupps, M.P.

    1998-12-31

    Fischer-Tropsch conversion of gasification products to liquid hydrocarbon fuel typically includes Fischer-Tropsch synthesis followed by refining (hydrocracking and distillation) of the syncrude into mostly diesel or kerosene with some naphtha (a feedstock for gasoline production). Refining is assumed necessary, possibly overlooking the exceptional fuel qualities of syncrude for more direct utilization as a compression-ignition (CI) fuel. This paper evaluates cetane number, viscosity, cloud point, and pour point properties of syncrude and blends of syncrude with blend stocks such as ethanol and diethyl ether. The results show that blends comprised primarily of syncrude are potentially good CI fuels with pour-point temperature depression being the largest development obstacle. The resulting blends may provide an alternative CI fuel which costs less than petroleum based diesel, depending on the feedstock and feedstock preparation costs. Particularly good market opportunities exist with Energy Policy Act (EPACT) applications.

  17. Properties and performance testing with blends of biomass alcohols, vegetable oils and diesel fuel

    SciTech Connect

    Vinyard, S.; Hawkins, L.; Renoll, E.S.; Bunt, R.C.; Goodling, J.S.

    1982-01-01

    This paper is a presentation of results from three related efforts to determine the technical feasibility of using alcohols and vegetable oils blended with Diesel oil as fuel for unmodified compression ignition engines. Several different vegetable oils were successfully tested in a single cylinder engine. Sunflower oil was blended from 50% to 80% by volume with Diesel fuel and used in a multicylinder engine. Thermophysical property data were gathered on pure and blended fuels and are reported. A spray parameter, epsilon, was found which would predict the necessary change in valve opening pressure to render the atomization of the new fuel similar to that for which the injection system was designed. Engine testing showed that fuel consumption was substantially reduced upon setting the injectors at the new VOP. 2 figures, 1 table.

  18. Effects of diesel fuel combustion-modifier additives on In-cylinder soot formation in a heavy-duty Dl diesel engine.

    SciTech Connect

    Musculus, Mark P. (Sandia National Laboratories, Livermore, CA); Dietz, Jeff

    2005-07-01

    Based on a phenomenological model of diesel combustion and pollutant-formation processes, a number of fuel additives that could potentially reduce in-cylinder soot formation by altering combustion chemistry have been identified. These fuel additives, or ''combustion modifiers'', included ethanol and ethylene glycol dimethyl ether, polyethylene glycol dinitrate (a cetane improver), succinimide (a dispersant), as well as nitromethane and another nitro-compound mixture. To better understand the chemical and physical mechanisms by which these combustion modifiers may affect soot formation in diesel engines, in-cylinder soot and diffusion flame lift-off were measured, using an optically-accessible, heavy-duty, direct-injection diesel engine. A line-of-sight laser extinction diagnostic was employed to measure the relative soot concentration within the diesel jets (''jetsoot'') as well as the rates of deposition of soot on the piston bowl-rim (''wall-soot''). An OH chemiluminescence imaging technique was utilized to measure the lift-off lengths of the diesel diffusion flames so that fresh oxygen entrainment rates could be compared among the fuels. Measurements were obtained at two operating conditions, using blends of a base commercial diesel fuel with various combinations of the fuel additives. The ethanol additive, at 10% by mass, reduced jet-soot by up to 15%, and reduced wall-soot by 30-40%. The other fuel additives also affected in-cylinder soot, but unlike the ethanol blends, changes in in-cylinder soot could be attributed solely to differences in the ignition delay. No statistically-significant differences in the diesel flame lift-off lengths were observed among any of the fuel additive formulations at the operating conditions examined in this study. Accordingly, the observed differences in in-cylinder soot among the fuel formulations cannot be attributed to differences in fresh oxygen entrainment upstream of the soot-formation zones after ignition.

  19. Suppressive subtractive hybridization libraries prepared from the digestive gland of the oyster Crassostrea brasiliana exposed to a diesel fuel water-accommodated fraction.

    PubMed

    Lüchmann, Karim Hahn; Mattos, Jacó Joaquim; Siebert, Marília Nardelli; Dorrington, Tarquin Stephen; Toledo-Silva, Guilherme; Stoco, Patricia Hermes; Grisard, Edmundo Carlos; Bainy, Afonso Celso Dias

    2012-06-01

    Diesel fuel can cause adverse effects in marine invertebrates by mechanisms that are not clearly understood. The authors used suppressive subtractive hybridization to identify genes up- and downregulated in Crassostrea brasiliana exposed to diesel fuel. Genes putatively involved in protein regulation, innate immune, and stress response, were altered by diesel challenge. Three genes regulated by diesel were validated by quantitative real-time polymerase chain reaction. This study sheds light on transcriptomic responses of oysters to diesel pollution. PMID:22505345

  20. Life-cycle assessment of diesel, natural gas and hydrogen fuel cell bus transportation systems

    NASA Astrophysics Data System (ADS)

    Ally, Jamie; Pryor, Trevor

    The Sustainable Transport Energy Programme (STEP) is an initiative of the Government of Western Australia, to explore hydrogen fuel cell technology as an alternative to the existing diesel and natural gas public transit infrastructure in Perth. This project includes three buses manufactured by DaimlerChrysler with Ballard fuel cell power sources operating in regular service alongside the existing natural gas and diesel bus fleets. The life-cycle assessment (LCA) of the fuel cell bus trial in Perth determines the overall environmental footprint and energy demand by studying all phases of the complete transportation system, including the hydrogen infrastructure, bus manufacturing, operation, and end-of-life disposal. The LCAs of the existing diesel and natural gas transportation systems are developed in parallel. The findings show that the trial is competitive with the diesel and natural gas bus systems in terms of global warming potential and eutrophication. Emissions that contribute to acidification and photochemical ozone are greater for the fuel cell buses. Scenario analysis quantifies the improvements that can be expected in future generations of fuel cell vehicles and shows that a reduction of greater than 50% is achievable in the greenhouse gas, photochemical ozone creation and primary energy demand impact categories.

  1. Novel injector techniques for coal-fueled diesel engines. Final report

    SciTech Connect

    Badgley, P.R.

    1992-09-01

    This report, entitled ``Novel Injector Techniques for Coal-Fueled Diesel Engines,`` describes the progress and findings of a research program aimed at development of a dry coal powder fuel injector in conjunction with the Thermal Ignition Combustion System (TICS) concept to achieve autoignition of dry powdered coal in a single-cylinder high speed diesel engine. The basic program consisted of concept selection, analysis and design, bench testing and single cylinder engine testing. The coal injector concept which was selected was a one moving part dry-coal-powder injector utilizing air blast injection. Adiabatics has had previous experience running high speed diesel engines on both direct injected directed coal-water-slurry (CWS) fuel and also with dry coal powder aspirated into the intake air. The Thermal Ignition Combustion System successfully ignited these fuels at all speeds and loads without requiring auxiliary ignition energy such as pilot diesel fuel, heated intake air or glow or spark plugs. Based upon this prior experience, it was shown that the highest efficiency and fastest combustion was with the dry coal, but that the use of aspiration of coal resulted in excessive coal migration into the engine lubrication system. Based upon a desire of DOE to utilize a more modern test engine, the previous naturally-aspirated Caterpillar model 1Y73 single cylinder engine was replaced with a turbocharged (by use of shop air compressor and back pressure control valve) single cylinder version of the Cummins model 855 engine.

  2. MAN B&W Diesel extends dual-fuel engine range up to 16 MW

    SciTech Connect

    Schaaf, H.

    1996-04-01

    In 1995, MAN B&W Diesel launched a dual-fuel version of the successful L + V (in-line and vee) configurations of the 32/40 diesel engine series, covering a power range between 2.4 and 7.2 MW. In 1996, the company is launching a dual-fuel version of the L + V 48/60 engine series, moving the power range of dual-fuel engines to 16.2 MW. With its new dual fuel type 32/40 DG and 48/60 DG engines, MAN B&W Diesel has designed prime movers offering a high efficiency at low operating costs, while simultaneously meeting the most stringent NO{sub x} emission limits without any exhaust gas after-treatment. These engines are based on the successful HFO-operated four-stroke diesel engines. They offer environment-friendly and, operating at high mean effective pressures, simultaneously cost effective propulsion alternatives, especially if natural gas is used as a fuel. Extension of the compatibility to permit further kinds of gas such as sewage gas to be used is being developed.

  3. Gas phase carbonyl compounds in ship emissions: Differences between diesel fuel and heavy fuel oil operation

    NASA Astrophysics Data System (ADS)

    Reda, Ahmed A.; Schnelle-Kreis, J.; Orasche, J.; Abbaszade, G.; Lintelmann, J.; Arteaga-Salas, J. M.; Stengel, B.; Rabe, R.; Harndorf, H.; Sippula, O.; Streibel, T.; Zimmermann, R.

    2014-09-01

    Gas phase emission samples of carbonyl compounds (CCs) were collected from a research ship diesel engine at Rostock University, Germany. The ship engine was operated using two different types of fuels, heavy fuel oil (HFO) and diesel fuel (DF). Sampling of CCs was performed from diluted exhaust using cartridges and impingers. Both sampling methods involved the derivatization of CCs with 2,4-Dinitrophenylhydrazine (DNPH). The CCs-hydrazone derivatives were analyzed by two analytical techniques: High Performance Liquid Chromatography-Diode Array Detector (HPLC-DAD) and Gas Chromatography-Selective Ion Monitoring-Mass Spectrometry (GC-SIM-MS). Analysis of DNPH cartridges by GC-SIM-MS method has resulted in the identification of 19 CCs in both fuel operations. These CCs include ten aliphatic aldehydes (formaldehyde, acetaldehyde, propanal, isobutanal, butanal, isopentanal, pentanal, hexanal, octanal, nonanal), three unsaturated aldehydes (acrolein, methacrolein, crotonaldehyde), three aromatic aldehyde (benzaldehyde, p-tolualdehyde, m,o-molualdehyde), two ketones (acetone, butanone) and one heterocyclic aldehyde (furfural). In general, all CCs under investigation were detected with higher emission factors in HFO than DF. The total carbonyl emission factor was determined and found to be 6050 and 2300 μg MJ-1 for the operation with HFO and DF respectively. Formaldehyde and acetaldehyde were found to be the dominant carbonyls in the gas phase of ship engine emission. Formaldehyde emissions factor varied from 3500 μg MJ-1 in HFO operation to 1540 μg MJ-1 in DF operation, which is 4-30 times higher than those of other carbonyls. Emission profile contribution of CCs showed also a different pattern between HFO and DF operation. The contribution of formaldehyde was found to be 58% of the emission profile of HFO and about 67% of the emission profile of DF. Acetaldehyde showed opposite behavior with higher contribution of 16% in HFO compared to 11% for DF. Heavier carbonyls

  4. Respiratory carcinogenicity of diesel-fuel emissions. Final report

    SciTech Connect

    Shefner, A.M.; Collins, B.R.; Fisks, A.; Graf, J.L.; Thompson, C.A.

    1985-01-01

    An experiment was carried out to compare the carcinogenicity of diesel exhaust particles (administered by fifteen weekly intratracheal instillations) to that of organic extracts of diesel particles, coke oven emissions, roofing tar condensate and cigarette smoke condensate. Appropriate solvent controls, untreated controls and positive controls were included in the design of the experiment. The overall incidence of respiratory tract tumors in any of the treatment groups was not significantly higher than in control hamsters. Similarly, there were no significant differences in the survival rates of hamsters treated with test materials from those of their respective controls. Hamsters treated with test materials generally showed significantly lower mean body weights than control animals. Treated hamsters generally showed a delay in time to reach maximum body weight when compared to hamsters in control group. Treatment of hamsters with test materials induced a variety of hyperplastic, proliferative and inflammatory lesions of the respiratory tract. The highest incidence rates and greatest severity of the lesions were induced by diesel exhaust particles and coke oven emissions. Diesel exhaust extract and benzo(a)pyrene were less reactive, and cigarette smoke condensate and roofing tar volatiles produced the lowest incidence of respiratory tract lesions.

  5. Methodology for Formulating Diesel Surrogate Fuels with Accurate Compositional, Ignition-Quality, and Volatility Characteristics

    SciTech Connect

    Mueller, Charles J.; Cannella, William J.; Bruno, Thomas J.; Bunting, Bruce G.; Dettman, Heather; Franz, James A.; Huber, Marcia L.; Natarajan, Mani; Pitz, William J.; Ratcliff, Matthew A.; Wright, Ken

    2012-07-26

    In this study, a novel approach was developed to formulate surrogate fuels having characteristics that are representative of diesel fuels produced from real-world refinery streams. Because diesel fuels typically consist of hundreds of compounds, it is difficult to conclusively determine the effects of fuel composition on combustion properties. Surrogate fuels, being simpler representations of these practical fuels, are of interest because they can provide a better understanding of fundamental fuel-composition and property effects on combustion and emissions-formation processes in internal-combustion engines. In addition, the application of surrogate fuels in numerical simulations with accurate vaporization, mixing, and combustion models could revolutionize future engine designs by enabling computational optimization for evolving real fuels. Dependable computational design would not only improve engine function, it would do so at significant cost savings relative to current optimization strategies that rely on physical testing of hardware prototypes. The approach in this study utilized the stateof- the-art techniques of 13C and 1H nuclear magnetic resonance spectroscopy and the advanced distillation curve to characterize fuel composition and volatility, respectively. The ignition quality was quantified by the derived cetane number. Two wellcharacterized, ultra-low-sulfur #2 diesel reference fuels produced from refinery streams were used as target fuels: a 2007 emissions certification fuel and a Coordinating Research Council (CRC) Fuels for Advanced Combustion Engines (FACE) diesel fuel. A surrogate was created for each target fuel by blending eight pure compounds. The known carbon bond types within the pure compounds, as well as models for the ignition qualities and volatilities of their mixtures, were used in a multiproperty regression algorithm to determine optimal surrogate formulations. The predicted and measured surrogate-fuel properties were quantitatively

  6. Optimizing photo-Fenton like process for the removal of diesel fuel from the aqueous phase

    PubMed Central

    2014-01-01

    Background In recent years, pollution of soil and groundwater caused by fuel leakage from old underground storage tanks, oil extraction process, refineries, fuel distribution terminals, improper disposal and also spills during transferring has been reported. Diesel fuel has created many problems for water resources. The main objectives of this research were focused on assessing the feasibility of using photo-Fenton like method using nano zero-valent iron (nZVI/UV/H2O2) in removing total petroleum hydrocarbons (TPH) and determining the optimal conditions using Taguchi method. Results The influence of different parameters including the initial concentration of TPH (0.1-1 mg/L), H2O2 concentration (5-20 mmole/L), nZVI concentration (10-100 mg/L), pH (3-9), and reaction time (15-120 min) on TPH reduction rate in diesel fuel were investigated. The variance analysis suggests that the optimal conditions for TPH reduction rate from diesel fuel in the aqueous phase are as follows: the initial TPH concentration equals to 0.7 mg/L, nZVI concentration 20 mg/L, H2O2 concentration equals to 5 mmol/L, pH 3, and the reaction time of 60 min and degree of significance for the study parameters are 7.643, 9.33, 13.318, 15.185 and 6.588%, respectively. The predicted removal rate in the optimal conditions was 95.8% and confirmed by data obtained in this study which was between 95-100%. Conclusion In conclusion, photo-Fenton like process using nZVI process may enhance the rate of diesel degradation in polluted water and could be used as a pretreatment step for the biological removal of TPH from diesel fuel in the aqueous phase. PMID:24955242

  7. FUELS IN SOIL TEST KIT: FIELD USE OF DIESEL DOG SOIL TEST KITS

    SciTech Connect

    Susan S. Sorini; John F. Schabron; Joseph F. Rovani, Jr.

    2002-09-30

    Western Research Institute (WRI) has developed a new commercial product ready for technology transfer, the Diesel Dog{reg_sign} Portable Soil Test Kit, for performing analysis of fuel-contaminated soils in the field. The technology consists of a method developed by WRI (U.S. Patents 5,561,065 and 5,976,883) and hardware developed by WRI that allows the method to be performed in the field (patent pending). The method is very simple and does not require the use of highly toxic reagents. The aromatic components in a soil extract are measured by absorption at 254 nm with a field-portable photometer. WRI added significant value to the technology by taking the method through the American Society for Testing and Materials (ASTM) approval and validation processes. The method is designated as ASTM Method D 5831-96, Standard Test Method for Screening Fuels in Soils. This ASTM designation allows the method to be used for federal compliance activities. In June 2001, the Diesel Dog technology won an American Chemical Society Regional Industrial Innovations Award. To gain field experience with the new technology, Diesel Dog kits have been used for a variety of site evaluation and cleanup activities. Information gained from these activities has led to improvements in hardware configurations and additional insight into correlating Diesel Dog results with results from laboratory methods. The Wyoming Department of Environmental Quality (DEQ) used Diesel Dog Soil Test Kits to guide cleanups at a variety of sites throughout the state. ENSR, of Acton, Massachusetts, used a Diesel Dog Portable Soil Test Kit to evaluate sites in the Virgin Islands and Georgia. ChemTrack and the U.S. Army Corps of Engineers successfully used a test kit to guide excavation at an abandoned FAA fuel-contaminated site near Fairbanks, Alaska. Barenco, Inc. is using a Diesel Dog Portable Soil Test Kit for site evaluations in Canada. A small spill of diesel fuel was cleaned up in Laramie, Wyoming using a Diesel

  8. Details of the Construction and Production of Fuel Pumps and Fuel Nozzles for the Airplane Diesel Engine

    NASA Technical Reports Server (NTRS)

    Lubenetsky, W S

    1936-01-01

    This report presents investigations into the design and construction of fuel pumps for diesel engines. The results of the pump tests on the engines showed that, with a good cut-off, accurate injection, assured by the proper adjustment of the pump elements, there is a decrease in the consumption of fuel and hence an increase in the rated power of the engine. Some of the aspects investigated include: cam profile, coefficient of discharge, and characteristics of the injection system.

  9. 40 CFR 80.8 - Sampling methods for gasoline and diesel fuel.

    Code of Federal Regulations, 2012 CFR

    2012-07-01

    ... Register in accordance with 5 U.S.C. 552(a) and 1 CFR part 51. Copies may be obtained from the American... 40 Protection of Environment 17 2012-07-01 2012-07-01 false Sampling methods for gasoline and... gasoline and diesel fuel. The sampling methods specified in this section shall be used to collect...

  10. 40 CFR 80.8 - Sampling methods for gasoline and diesel fuel.

    Code of Federal Regulations, 2013 CFR

    2013-07-01

    ... Register in accordance with 5 U.S.C. 552(a) and 1 CFR part 51. Copies may be obtained from the American... 40 Protection of Environment 17 2013-07-01 2013-07-01 false Sampling methods for gasoline and... gasoline and diesel fuel. The sampling methods specified in this section shall be used to collect...

  11. 40 CFR 80.532 - How are motor vehicle diesel fuel credits used and transferred?

    Code of Federal Regulations, 2014 CFR

    2014-07-01

    ... vehicle diesel fuel credits generated may be banked for use or transfer in a later compliance period or... compliance with the time period limitations for credit use in this subpart; (iii) Any credit transfer takes... credits are used; (iv) No credit may be transferred more than twice, as follows: The first transfer by...

  12. 40 CFR 80.532 - How are motor vehicle diesel fuel credits used and transferred?

    Code of Federal Regulations, 2012 CFR

    2012-07-01

    ... vehicle diesel fuel credits generated may be banked for use or transfer in a later compliance period or... compliance with the time period limitations for credit use in this subpart; (iii) Any credit transfer takes... credits are used; (iv) No credit may be transferred more than twice, as follows: The first transfer by...

  13. 40 CFR 80.532 - How are motor vehicle diesel fuel credits used and transferred?

    Code of Federal Regulations, 2013 CFR

    2013-07-01

    ... vehicle diesel fuel credits generated may be banked for use or transfer in a later compliance period or... compliance with the time period limitations for credit use in this subpart; (iii) Any credit transfer takes... credits are used; (iv) No credit may be transferred more than twice, as follows: The first transfer by...

  14. 40 CFR 80.30 - Liability for violations of diesel fuel control and prohibitions.

    Code of Federal Regulations, 2013 CFR

    2013-07-01

    ... transport or storage of diesel fuel by tank truck, such as appropriate guidance to drivers on compliance...) when it was delivered to the next party in the distribution system; (3) In any case in which a... standards of § 80.29(a) when it was delivered to the next party in the distribution system; (ii) That...

  15. 40 CFR 80.30 - Liability for violations of diesel fuel control and prohibitions.

    Code of Federal Regulations, 2014 CFR

    2014-07-01

    ... transport or storage of diesel fuel by tank truck, such as appropriate guidance to drivers on compliance...) when it was delivered to the next party in the distribution system; (3) In any case in which a... standards of § 80.29(a) when it was delivered to the next party in the distribution system; (ii) That...

  16. Economic implications of substituting plant oils for diesel fuel. Volume 2. Final report

    SciTech Connect

    Griffin, R.C.; Collins, G.S.; Lacewell, R.D.; Chang, H.C.

    1983-08-01

    This study of expected economic impacts of substituting plant oils for diesel fuel consisted of two components: (1) analysis of oilseed production and oilseed crushing capacity in the US and Texas and (2) simulation of impacts on US cropping patterns, crop prices, producer rent, and consumer surplus. The primary oilseed crops considered were soybeans, cottonseed, sunflowers, and peanuts. 19 references, 2 figures, 14 tables.

  17. Low-temperature pyrolysis of coal to produce diesel-fuel blends

    SciTech Connect

    Shafer, T.B.; Jett, O.J.; Wu, J.S.

    1982-10-01

    Low-temperature (623 to 773/sup 0/K) coal pyrolysis was investigated in a bench-scale retort. Factorially designed experiments were conducted to determine the effects of temperature, coal-particle size, and nitrogen flow rate on the yield of liquid products. Yield of condensable organic products relative to the proximate coal volatile matter increased by 3.1 and 6.4 wt % after increasing nitrogen purge flow rate from 0.465 to 1.68 L/min and retort temperature from 623 to 723/sup 0/K, respectively. The liquid product may be suitable for blending with diesel fuel. The viscosity and density of coal liquids produced at 723/sup 0/K were compared with those of diesel fuel. The coal liquids had a higher carbon-to-hydrogen ratio and a lower aliphatic-to-aromatic ratio than premium quality No. 2 diesel fuel. It was recommended that liquids from coal pyrolysis be blended with diesel fuel to determine stability of the mixture and performance of the blend in internal combustion engines.

  18. DETECTION OF ANDROGENIC ACTIVITY IN EMISSIONS FROM DIESEL FUEL AND BIOMASS COMBUSTION

    EPA Science Inventory

    The present study evaluated both diesel fuel exhaust and biomass (wood) burn extracts for androgen receptor¿mediated activity using MDA-kb2 cells, which contain an androgen-responsive promoter-luciferase reporter gene construct. This assay and analytical fractionization of the sa...

  19. Plasma technology for increase of operating high pressure fuel pump diesel engines

    NASA Astrophysics Data System (ADS)

    Solovev, R. Y.; Sharifullin, S. N.; Adigamov, N. R.

    2016-01-01

    This paper presents the results of a change in the service life of high pressure fuel pumps of diesel engines on the working surface of the plunger which a wear resistant dielectric plasma coatings based on silicon oxycarbonitride. Such coatings possess high wear resistance, chemical inertness and low friction.

  20. Diesel Emission Control -- Sulfur Effects (DECSE) Program; Phase I Interim Date Report No. 3: Diesel Fuel Sulfur Effects on Particulate Matter Emissions

    SciTech Connect

    DOE; ORNL; NREL; EMA; MECA

    1999-11-15

    The Diesel Emission Control-Sulfur Effects (DECSE) is a joint government/industry program to determine the impact of diesel fuel sulfur levels on emission control systems whose use could lower emissions of nitrogen oxides (NO{sub x}) and particulate matter (PM) from on-highway trucks in the 2002--2004 model years. Phase 1 of the program was developed with the following objectives in mind: (1) evaluate the effects of varying the level of sulfur content in the fuel on the emission reduction performance of four emission control technologies; and (2) measure and compare the effects of up to 250 hours of aging on selected devices for multiple levels of fuel sulfur content. This interim report covers the effects of diesel fuel sulfur level on particulate matter emissions for four technologies.

  1. AUTOMOTIVE DIESEL MAINTENANCE 1. UNIT XXIV, I--MAINTAINING THE FUEL SYSTEM PART III--CATERPILLAR DIESEL ENGINE, II--UNDERSTANDING THE VOLTAGE REGULATOR/ALTERNATOR.

    ERIC Educational Resources Information Center

    Minnesota State Dept. of Education, St. Paul. Div. of Vocational and Technical Education.

    THIS MODULE OF A 30-MODULE COURSE IS DESIGNED TO DEVELOP AN UNDERSTANDING OF THE OPERATION AND MAINTENANCE OF THE DIESEL ENGINE FUEL AND BATTERY CHARGING SYSTEM. TOPICS ARE (1) INJECTION TIMING CONTROLS, (2) GOVERNOR, (3) FUEL SYSTEM MAINTENANCE TIPS, (4) THE CHARGING SYSTEM, (5) REGULATING THE GENERATOR/ALTERNATOR, AND (6) CHARGING SYSTEM SERVICE…

  2. Dependence of the pour point of diesel fuels on the properties of the initial components

    NASA Technical Reports Server (NTRS)

    Ostashov, V. M.; Bobrovskiy, S. A.

    1979-01-01

    An analytical expression is obtained for the dependence of the pour point of diesel fuels on the pour point and weight relationship of the initial components. For determining the pour point of a multicomponent fuel mixture, it is assumed that the mixture of two components has the pour point of a separate equivalent component, then calculating the pour point of this equivalent component mixed with a third component, etc.

  3. 77 FR 61281 - Regulation of Fuels and Fuel Additives: Modifications to Renewable Fuel Standard and Diesel...

    Federal Register 2010, 2011, 2012, 2013, 2014

    2012-10-09

    ... Additives: Changes to Renewable Fuel Standard Program, 75 FR 14670, 14681 (March 26, 2010). \\4\\ See CAA... EISA to reduce or replace the use of fossil fuels.\\5\\ \\5\\ 75 FR 14670, 14687 (March 26, 2010). The... Renewable Fuel Standard Program,'' 75 FR 14670, available at...

  4. Diesel fuel processor for PEM fuel cells: Two possible alternatives (ATR versus SR)

    NASA Astrophysics Data System (ADS)

    Cutillo, A.; Specchia, S.; Antonini, M.; Saracco, G.; Specchia, V.

    There are large efforts in exploring the on-board reforming technologies, which would avoid the actual lack of hydrogen infrastructure and related safety issues. From this view point, the present work deals with the comparison between two different 10 kW e fuel processors (FP) systems for the production of hydrogen-rich fuel gas starting from diesel oil, based respectively on autothermal (ATR) and steam-reforming (SR) process and related CO clean-up technologies; the obtained hydrogen rich gas is fed to the PEMFC stack of an auxiliary power unit (APU). Based on a series of simulations with Matlab/Simulink, the two systems were compared in terms of FP and APU efficiency, hydrogen concentration fed to the FC, water balance and process scheme complexity. Notwithstanding a slightly higher process scheme complexity and a slightly more difficult water recovery, the FP based on the SR scheme, as compared to the ATR one, shows higher efficiency and larger hydrogen concentration for the stream fed to the PEMFC anode, which represent key issues for auxiliary power generation based on FCs as compared, e.g. to alternators.

  5. Soybean and Coconut Biodiesel Fuel Effects on Combustion Characteristics in a Light-Duty Diesel Engine

    SciTech Connect

    Han, Manbae; Cho, Kukwon; Sluder, Scott; Wagner, Robert M

    2008-01-01

    This study investigated the effects of soybean- and coconut-derived biodiesel fuels on combustion characteristics in a 1.7-liter direct injection, common rail diesel engine. Five sets of fuels were studied: 2007 ultra-low sulfur diesel (ULSD), 5% and 20% volumetric blends of soybean biodiesel with ULSD (soybean B5 and B20), and 5% and 20% volumetric blends of coconut biodiesel with ULSD (coconut B5 and B20). In conventional diesel combustion mode, particulate matter (PM) and nitrogen oxides (NO/dx) emissions were similar for all fuels studied except soybean B20. Soybean B20 produced the lowest PM but the highest NO/dx emissions. Compared with conventional diesel combustion mode, high efficiency clean combustion (HECC) mode, achieved by increased EGR and combustion phasing, significantly reduced both PM and NO/dx emissions for all fuels studied at the expense of higher hydrocarbon (HC) and carbon monoxide (CO) emissions and an increase in fuel consumption (less than 4%). ULSD, soybean B5, and coconut B5 showed no difference in exhaust emissions. However, PM emissions increased slightly for soybean B20 and coconut B20. NO/dx emissions increased significantly for soybean B20, while those for coconut B20 were comparable to ULSD. Differences in the chemical and physical properties of soybean and coconut biodiesel fuels compared with ULSD, such as higher fuel-borne oxygen, greater viscosity, and higher boiling temperatures, play a key role in combustion processes and, therefore, exhaust emissions. Furthermore, the highly unsaturated ester composition in soybean biodiesel can be another factor in the increase of NO/dx emissions.

  6. Economics of sunflower oil as an extender or substitute for diesel fuel

    SciTech Connect

    Helgeson, D.L.; Schaffner, L.W.

    1982-05-01

    The economics of sunflower oil as an extender or substitute for diesel fuel in US agriculture, with particular emphasis on North Dakota, is examined. A study of the spot market prices indicates that crude sunflower oil has moved closer competitively with bulk diesel prices. On the question of energy efficiency, it is estimated, that using current production and processing estimates, there is a positive net energy ratio of 5.78 to 1. Processing can take place at the commercial leveL, in intermediate sized plants or on-farm. Costs were analyzed for three sizes of farm presses. (Refs. 6).

  7. Fuel-lubricity requirements for diesel-injection systems. Interim report, Sep 90-Feb 91

    SciTech Connect

    Lacey, P.I.; Lestz, S.J.

    1991-02-01

    The U.S. Department of Defense has adopted the single fuel for the battlefield concept. Diesel fuel will be replace by JP-8/Jet A-1, which has both lower lubricity and viscosity. Currently, the tribological requirements of fuel-lubricated components in the injection system are unknown. As a result, no widely approved lubricity test or standard exists. Similar problems are currently faced in commercial applications where low-sulfur/aromatic fuels are being introduced. The present study details the wear mechanisms likely to exist with low lubricity fuels, with particular reference to injection equipment known to be fuel sensitive. The wear mechanism was found to ba a function of contact severity and may not be uniquely defined by a single test. A number of potentially viable lubricity tests is suggested, and fuel/additive components are recommended for wear reduction.

  8. The history, genotoxicity, and carcinogenicity of carbon-based fuels and their emissions. Part 3: diesel and gasoline.

    PubMed

    Claxton, Larry D

    2015-01-01

    Within this review the genotoxicity of diesel and gasoline fuels and emissions is placed in an historical context. New technologies have changed the composition of transportation methods considerably, reducing emissions of many of the components of health concern. The similarity of modern diesel and gasoline fuels and emissions to other carbonaceous fuels and emissions is striking. Recently an International Agency for Research on Cancer (IARC) Working Group concluded that there was sufficient evidence in humans for the carcinogenicity of diesel exhaust (Group 1). In addition, the Working Group found that diesel exhaust has "a positive association (limited evidence) with an increased risk of bladder cancer." Like most other carbonaceous fuel emissions, diesel and gasoline exhausts contain toxic levels of respirable particles (PM <2.5μm) and polycyclic aromatic hydrocarbons. However, the level of toxic components in exhausts from diesel and gasoline emissions has declined in certain regions over time because of changes in engine design, the development of better aftertreatment devices (e.g., catalysts), increased fuel economy, changes in the fuels and additives used, and greater regulation. Additional research and better exposure assessments are needed so that decision makers and the public can decide to what extent diesel and gasoline engines should be replaced. PMID:25795114

  9. Photochemical processing of diesel fuel emissions as a large secondary source of isocyanic acid (HNCO)

    NASA Astrophysics Data System (ADS)

    Link, M. F.; Friedman, B.; Fulgham, R.; Brophy, P.; Galang, A.; Jathar, S. H.; Veres, P.; Roberts, J. M.; Farmer, D. K.

    2016-04-01

    Isocyanic acid (HNCO) is a well-known air pollutant that affects human health. Biomass burning, smoking, and combustion engines are known HNCO sources, but recent studies suggest that secondary production in the atmosphere may also occur. We directly observed photochemical production of HNCO from the oxidative aging of diesel exhaust during the Diesel Exhaust Fuel and Control experiments at Colorado State University using acetate ionization time-of-flight mass spectrometry. Emission ratios of HNCO were enhanced, after 1.5 days of simulated atmospheric aging, from 50 to 230 mg HNCO/kg fuel at idle engine operating conditions. Engines operated at higher loads resulted in less primary and secondary HNCO formation, with emission ratios increasing from 20 to 40 mg HNCO/kg fuel under 50% load engine operating conditions. These results suggest that photochemical sources of HNCO could be more significant than primary sources in urban areas.

  10. Activity and structure of perovskites as diesel reforming catalysts for solid oxide fuel cells.

    SciTech Connect

    Liu, D.-J.; Krumpelt, M.; Chemical Engineering

    2005-01-01

    Recent progress in developing perovskite materials as more cost-effective catalysts in autothermal reforming (ATR) of diesel fuel to hydrogen-rich reformate for solid oxide fuel cell (SOFC) application is reported. Perovskite-type metal oxides with B sites partially exchanged by ruthenium were prepared and evaluated under ATR reaction conditions. The hydrogen yield, reforming efficiency, and CO{sub x} selectivity of these catalysts were investigated using diesel surrogate fuel with 50 ppm sulfur. The catalyst performances have approached or exceeded a benchmark, high-cost rhodium-based material. In parallel with the reactivity study, we also investigated the physical properties of B-site doped perovskites and their impact on the reforming performance using various characterization techniques such as BET, X-ray powder diffraction, temperature programmable reduction, scanning electron microscopy, and synchrotron X-ray absorption spectroscopy. We found that ruthenium is highly dispersed into perovskite lattice and its redox behavior is directly associated with reforming activity.

  11. Economic feasibility of diesel fuel substitutes from oilseeds in New York State

    SciTech Connect

    Lazarus, W.F.; Pitt, R.E.

    1984-11-01

    The feasibility of producing oilseeds for feed and for a diesel fuel substitute has primarily been discussed in terms of the major oilseed producing areas. The Northeast region of the United States is a major agricultural producing area which imports large quantities of soybean meal for cattle feed. This paper considers the technical and economic feasibility of producing oilseeds for feed and fuel in New York State, which is selected as a case study for the region. The possible crops considered for expanded production are sunflowers, soybeans, and flax. It is found that if enough oilseeds are grown to replace 25% of the diesel fuel used on farms, then at most 5% of the cropland would have to be converted to oilseeds, and meal would not be produced in excess of the amount currently used. The cost of producing oil is calculated as the cost of producing the seed plus the cost of processing minus the value of the meal. Enterprise budgets are developed for estimating oilseed production costs in New York State. The cost of processing is estimated for both an industrial-size plant, which does not now exist in New York, and a small on-farm plant. It is found that the diesel fuel and vegetable oil prices would have to rise substantially before oilseeds were produced in the Northeast region for feed and fuel. Moreover, the construction of an oilseed processing facility would not necessarily stimulate production of oilseeds in the region. 22 references.

  12. A Multicomponent Blend as a Diesel Fuel Surrogate for Compression Ignition Engine Applications

    SciTech Connect

    Pei, Yuanjiang; Mehl, Marco; Liu, Wei; Lu, Tianfeng; Pitz, William J.; Som, Sibendu

    2015-05-12

    A mixture of n-dodecane and m-xylene is investigated as a diesel fuel surrogate for compression ignition engine applications. Compared to neat n-dodecane, this binary mixture is more representative of diesel fuel because it contains an alkyl-benzene which represents an important chemical class present in diesel fuels. A detailed multi-component mechanism for n-dodecane and m-xylene was developed by combining a previously developed n-dodecane mechanism with a recently developed mechanism for xylenes. The xylene mechanism is shown to reproduce experimental ignition data from a rapid compression machine and shock tube, speciation data from the jet stirred reactor and flame speed data. This combined mechanism was validated by comparing predictions from the model with experimental data for ignition in shock tubes and for reactivity in a flow reactor. The combined mechanism, consisting of 2885 species and 11754 reactions, was reduced to a skeletal mechanism consisting 163 species and 887 reactions for 3D diesel engine simulations. The mechanism reduction was performed using directed relation graph (DRG) with expert knowledge (DRG-X) and DRG-aided sensitivity analysis (DRGASA) at a fixed fuel composition of 77% of n-dodecane and 23% m-xylene by volume. The sample space for the reduction covered pressure of 1 – 80 bar, equivalence ratio of 0.5 – 2.0, and initial temperature of 700 – 1600 K for ignition. The skeletal mechanism was compared with the detailed mechanism for ignition and flow reactor predictions. Finally, the skeletal mechanism was validated against a spray flame dataset under diesel engine conditions documented on the Engine Combustion Network (ECN) website. These multi-dimensional simulations were performed using a Representative Interactive Flame (RIF) turbulent combustion model. Encouraging results were obtained compared to the experiments with regards to the predictions of ignition delay and lift-off length at different ambient temperatures.

  13. Temperature effects on particulate emissions from DPF-equipped diesel trucks operating on conventional and biodiesel fuels

    EPA Science Inventory

    Two diesel trucks equipped with a particulate filter (DPF) were tested at two ambient temperatures (70oF and 20oF), fuels (ultra low sulfur diesel (ULSD) and biodiesel (B20)) and operating loads (a heavy and light weight). The test procedure included three driving cycles, a cold ...

  14. 77 FR 40354 - Permitting Guidance for Oil and Gas Hydraulic Fracturing Activities Using Diesel Fuels-Draft

    Federal Register 2010, 2011, 2012, 2013, 2014

    2012-07-09

    ... AGENCY Permitting Guidance for Oil and Gas Hydraulic Fracturing Activities Using Diesel Fuels--Draft... published on May 10, 2012, Permitting Guidance for Oil and Gas Hydraulic Fracturing Activities Using Diesel....gov @epa.gov. Mail: Permitting Guidance for Oil and Gas Hydraulic Fracturing Activities Using...

  15. Operation of marine diesel engines on biogenic fuels: modification of emissions and resulting climate effects.

    PubMed

    Petzold, Andreas; Lauer, Peter; Fritsche, Uwe; Hasselbach, Jan; Lichtenstern, Michael; Schlager, Hans; Fleischer, Fritz

    2011-12-15

    The modification of emissions of climate-sensitive exhaust compounds such as CO(2), NO(x), hydrocarbons, and particulate matter from medium-speed marine diesel engines was studied for a set of fossil and biogenic fuels. Applied fossil fuels were the reference heavy fuel oil (HFO) and the low-sulfur marine gas oil (MGO); biogenic fuels were palm oil, soybean oil, sunflower oil, and animal fat. Greenhouse gas (GHG) emissions related to the production of biogenic fuels were treated by means of a fuel life cycle analysis which included land use changes associated with the growth of energy plants. Emissions of CO(2) and NO(x) per kWh were found to be similar for fossil fuels and biogenic fuels. PM mass emission was reduced to 10-15% of HFO emissions for all low-sulfur fuels including MGO as a fossil fuel. Black carbon emissions were reduced significantly to 13-30% of HFO. Changes in emissions were predominantly related to particulate sulfate, while differences between low-sulfur fossil fuels and low-sulfur biogenic fuels were of minor significance. GHG emissions from the biogenic fuel life cycle (FLC) depend crucially on energy plant production conditions and have the potential of shifting the overall GHG budget from positive to negative compared to fossil fuels. PMID:22044020

  16. Bioelement status with oral administration of fish oil methyl ester and diesel fuel in male rats.

    PubMed

    Aksoy, Laçine; Tütüncü, Hakan; Alper, Yasemin; Büyükben, Ahmet

    2012-10-01

    This paper is a study on the effects on the amounts of trace elements in case of possible repeat accidental or environmental exposure with fish oil biodiesel. For this purpose, 35 male Wistar albino rats were used in the study. Rats were divided into five groups. The first group was determined as the control group. The rats in this group were gavaged orally with 250 mg/kg sunflower oil. The rats in the second and third groups were administered by oral gavage of 250 mg/kg (D1) and 500 mg/kg (D2) diesel fuel mixed with equal amounts of sunflower oil, respectively. The rats in the fourth group were administered by oral gavage of 250 mg/kg fish oil biodiesel (F1) and the rats in the fifth group were administered by oral gavage of 500 mg/kg fish oil biodiesel (F2), both mixed with equal amounts of sunflower oil. At the end of the study, bioelement concentrations in the serum and the kidney, lung, and liver tissues were measured using inductively coupled plasma-optical emission spectroscopy. It was observed that serum Ca, Mg, and Sr concentrations were significantly (p<0.001) higher and Cu concentration was significantly (p<0.01) higher in the control group than in the biodiesel groups. Kidney Mg concentration was significantly (p<0.01) lower in the control group than in the diesel groups. Kidney Mg concentration was significantly (p<0.001) lower in the D2 group than in the F2 group. Kidney Mg concentration was significantly (p<0.01) lower in the control group than in the diesel groups. Lung Cd, Co, Cu, Cr, Na, and Zn concentrations were different significantly higher in the control group than in the other groups. Liver Al concentration was different significantly higher in the control group than in the other groups. Liver Ca concentration was significantly (p<0.05) higher in the control group than in the biodiesel groups. Serum and lung tissue bioelements concentrations were lower in diesel and biodiesel groups than in control group. Due to consumption for biochemical

  17. Characterization of diesel emissions as a function of fuel variables. Final report September 1979-March 1981

    SciTech Connect

    Bykowski, B.B.

    1981-04-01

    Several properties of a refinery 'straight-run kerosene', which had a narrow boiling range approximating the middle of a No. 1 diesel fuel, were altered to study their effects on regulated and unregulated exhaust emissions. Eleven fuel blends, representing changes in nitrogen content, aromatic level, boiling point distribution, olefin content, and cetane number, were evaluated in a 1975 Mercedes-Benz 240D. Statistical analysis, including regression, was performed using selected fuel properties as independent variables. Higher aromatic levels were generally associated with increased emissions, while increased olefin levels were generally associated with decreased emissions.

  18. Adsorption and preconcentration of divalent metal ions in fossil fuels and biofuels: gasoline, diesel, biodiesel, diesel-like and ethanol by using chitosan microspheres and thermodynamic approach.

    PubMed

    Prado, Alexandre G S; Pescara, Igor C; Evangelista, Sheila M; Holanda, Matheus S; Andrade, Romulo D; Suarez, Paulo A Z; Zara, Luiz F

    2011-05-15

    Biodiesel and diesel-like have been obtained from soybean oil by transesterification and thermal cracking process, respectively. These biofuels were characterized as according to ANP standards by using specific ASTM methods. Ethanol, gasoline, and diesel were purchased from a gas station. Deacetylation degree of chitosan was determined by three distinct methods (conductimetry, FTIR and NMR), and the average degree was 78.95%. The chitosan microspheres were prepared from chitosan by split-coating and these spheres were crosslinked using glutaraldehyde. The surface area of microspheres was determined by BET method, and the surface area of crosslinked microspheres was 9.2m(2)g(-1). The adsorption isotherms of cooper, nickel and zinc on microspheres of chitosan were determined in petroleum derivatives (gasoline and diesel oil), as well as in biofuels (alcohol, biodiesel and diesel-like). The adsorption order in all fuels was: Cu>Ni>Zn. The elution tests presented the following preconcentration degrees: >4.5 to ethanol, >4.4 to gasoline, >4.0 to diesel, >3.8 to biodiesel and >3.6 to diesel-like. The application of chitosan microspheres in the metal ions preconcentration showed the potential of this biopolymer to enrich fuel sample in order to be analyzed by flame atomic absorption spectrometry. PMID:21482279

  19. Compound-specific isotope analysis of diesel fuels in a forensic investigation

    PubMed Central

    Muhammad, Syahidah A.; Frew, Russell D.; Hayman, Alan R.

    2015-01-01

    Compound-specific isotope analysis (CSIA) offers great potential as a tool to provide chemical evidence in a forensic investigation. Many attempts to trace environmental oil spills were successful where isotopic values were particularly distinct. However, difficulties arise when a large data set is analyzed and the isotopic differences between samples are subtle. In the present study, discrimination of diesel oils involved in a diesel theft case was carried out to infer the relatedness of the samples to potential source samples. This discriminatory analysis used a suite of hydrocarbon diagnostic indices, alkanes, to generate carbon and hydrogen isotopic data of the compositions of the compounds which were then processed using multivariate statistical analyses to infer the relatedness of the data set. The results from this analysis were put into context by comparing the data with the δ13C and δ2H of alkanes in commercial diesel samples obtained from various locations in the South Island of New Zealand. Based on the isotopic character of the alkanes, it is suggested that diesel fuels involved in the diesel theft case were distinguishable. This manuscript shows that CSIA when used in tandem with multivariate statistical analysis provide a defensible means to differentiate and source-apportion qualitatively similar oils at the molecular level. This approach was able to overcome confounding challenges posed by the near single-point source of origin, i.e., the very subtle differences in isotopic values between the samples. PMID:25774366

  20. Compound-Specific Isotope Analysis of Diesel Fuels in a Forensic Investigation

    NASA Astrophysics Data System (ADS)

    Muhammad, Syahidah; Frew, Russell; Hayman, Alan

    2015-02-01

    Compound-specific isotope analysis (CSIA) offers great potential as a tool to provide chemical evidence in a forensic investigation. Many attempts to trace environmental oil spills were successful where isotopic values were particularly distinct. However, difficulties arise when a large data set is analyzed and the isotopic differences between samples are subtle. In the present study, discrimination of diesel oils involved in a diesel theft case was carried out to infer the relatedness of the samples to potential source samples. This discriminatory analysis used a suite of hydrocarbon diagnostic indices, alkanes, to generate carbon and hydrogen isotopic data of the compositions of the compounds which were then processed using multivariate statistical analyses to infer the relatedness of the data set. The results from this analysis were put into context by comparing the data with the δ13C and δ2H of alkanes in commercial diesel samples obtained from various locations in the South Island of New Zealand. Based on the isotopic character of the alkanes, it is suggested that diesel fuels involved in the diesel theft case were distinguishable. This manuscript shows that CSIA when used in tandem with multivariate statistical analysis provide a defensible means to differentiate and source-apportion qualitatively similar oils at the molecular level. This approach was able to overcome confounding challenges posed by the near single-point source of origin i.e. the very subtle differences in isotopic values between the samples.

  1. Feasibility study of utilization of degummed soybean oil as a substitute for diesel fuel. Biomass alternative fuels program. Final report

    SciTech Connect

    Not Available

    1981-11-01

    The purpose of this project was to determine the economic and technological feasibility of producing a diesel oil substitute or extender from soybean oil. Existing technology was reviewed, to determine the minimum modification necessary for production of an acceptable fuel product. The information developed indicated that the degummed soybean oil produced by existing processing plants is theoretically suitable for use as a diesel fuel extender. This situation is very favorable to early commercialization of degummed soybean oil as a diesel fuel extender during the 1980's. Moreover, a large energy gain is realized when the soybean oil is utilized as fuel. Its heat of combustion is reported as 16,920 Btu per pound, or 130,000 Btu per gallon. Production of soybean oil consumes between 3000 and 5000 Btu per pound or 23,000 and 39,000 Btu per gallon. A resource availability study disclosed that the southeastern region of the United States produces approximately 260 million bushels of soybeans per year. In the same general area, fourteen extraction plants are operating, with a combined annual capacity of approximately 200 million bushels. Thus, regional production is sufficient to support the extraction capacity. Using an average figure of 1.5 gallons of oil per bushel of soybeans gives annual regional oil production of approximately 300 million gallons. An engine test plan was developed and implemented in this project. Data provide a preliminary indication that the blend containing one-third degummed soybean oil and two-thirds No. 2 diesel oil performed satisfactorily. Long term operation on the 50-50 blend is questionable. Detailed data and observations appear in the body of the report. The study also presents detailed engineering, financial, marketing, management and implementation plans for production of the proposed fuel blend, as well as a complete analysis of impacts. 4 references, 55 figures, 56 tables.

  2. Geochemical Effects of Microbial Degradation on a Long-term Diesel Fuel Spill

    NASA Astrophysics Data System (ADS)

    Hostettler, F. D.; Kolak, J. J.; Kvenvolden, K. A.

    2001-05-01

    Chronic spillage of diesel fuel in a railroad yard in Mandan, North Dakota, has resulted in an estimated subsurface accumulation of 1.5-3.0 million gallons of diesel product. Spillage occurred periodically from 1953 until 1991 when overflow containment trays were installed; recent recovery efforts have reclaimed about 0.5 million gallons from the subsurface. The main product plume floats on the water table at about 20 feet below ground surface, constrained within the clay and sand aquifer to an area of approximately 642,000 square feet. Thicknesses of free phase diesel product range up to five feet. Twenty diesel product samples collected from the plume were analyzed by gas chromatography/mass spectrometry to investigate the fate of the spilled fuel. Straight chain (n-) alkanes, typically C9-C26 in a bell-shaped distribution with a Cmax at about n-C15, are the dominant hydrocarbon species in fresh diesel fuel. Once in the environment biodegradation and/or weathering act to change this distribution. At Mandan n-alkanes are present in variable distributions caused by different stages of degradation, likely related to their residence time in the aquifer. The n-alkane distributions range from: (a) the full diesel suite, through (b) an intermediate state consisting of a narrow distribution of short-chain members with a C10 or C11 maximum, to (c) the complete loss of n-alkanes, leaving isoprenoids (regular branched-chain hydrocarbons) as the dominant aliphatic constituents. At many sites n-alkane patterns with several maxima are evident, indicating probable episodic inputs of the diesel fuel. An homologous series of n-alkylated cyclohexanes, compounds which are more resistant to degradation than n-alkanes, follows a similar trend of relative enrichment of shorter chain members with increasing degree of degradation. Although aerobic biodegradation and simple physical weathering are possible in this aquifer system, our results suggest that anaerobic biodegradation is the

  3. On-board diesel autothermal reforming for PEM fuel cells: Simulation and optimization

    SciTech Connect

    Cozzolino, Raffaello Tribioli, Laura

    2015-03-10

    Alternative power sources are nowadays the only option to provide a quick response to the current regulations on automotive pollutant emissions. Hydrogen fuel cell is one promising solution, but the nature of the gas is such that the in-vehicle conversion of other fuels into hydrogen is necessary. In this paper, autothermal reforming, for Diesel on-board conversion into a hydrogen-rich gas suitable for PEM fuel cells, has investigated using the simulation tool Aspen Plus. A steady-state model has been developed to analyze the fuel processor and the overall system performance. The components of the fuel processor are: the fuel reforming reactor, two water gas shift reactors, a preferential oxidation reactor and H{sub 2} separation unit. The influence of various operating parameters such as oxygen to carbon ratio, steam to carbon ratio, and temperature on the process components has been analyzed in-depth and results are presented.

  4. Fuel Properties of Biodiesel/Ultra-low Sulfur Diesel Blends

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Biodiesel is an alternative fuel and fuel extender made from transesterification of vegetable oils or animal fats with methanol or ethanol. The National Biodiesel Board estimated that biodiesel production in the United States increased from 250 million gal in 2006 to 450 million gal in 2007. In 20...

  5. Vegetable oil-based diesel fuels: Overview and current trends

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Since the energy crises of the 1970's and early 1980's, feedstocks and fuels with the potential to reduce dependence on petroleum-based energy and fuels have found increasing interest. Materials with triacylglycerols (triglycerides; esters of glycerol with fatty acids) as major components, such as ...

  6. Feasibility study of utilization of degummed soybean oil as a substitute for diesel fuel. Final report

    SciTech Connect

    Not Available

    1981-11-01

    The purpose of this project was to determine the economic and technological feasibility of producing a diesel oil substitute or extender from soybean oil. Existing technology was reviewed, to determine the minimum modification necessary for production of an acceptable fuel product. Current methods of oil extraction and refining were considered, as well as the products of those processes. The information developed indicated that the degummed soybean oil produced by existing processing plants is theoretically suitable for use as a diesel fuel extender. No modification of process design or equipment is required. This situation is very favorable to early commercialization of degummed soybean oil as a diesel fuel extender during the 1980's. Moreover, a large energy gain is realized when the soybean oil is utilized as fuel. Its heat of combustion is reported as 16,920 Btu per pound, or 130,000 Btu per gallon. Production of soybean oil consumes between 3000 and 5000 Btu per pound or 23,000 and 39,000 Btu per gallon. A resource availability study disclosed that the southeastern region of the United States produces approximately 260 million bushels of soybeans per year. In the same general area, fourteen extraction plants are operating, with a combined annual capacity of approximately 200 million bushels. Thus, regional production is sufficient to support the extraction capacity. Using an average figure of 1.5 gallons of oil per bushel of soybeans gives annual regional oil production of approximately 300 million gallons.

  7. On droplet combustion of biodiesel fuel mixed with diesel/alkanes in microgravity condition

    SciTech Connect

    Pan, Kuo-Long; Li, Je-Wei; Chen, Chien-Pei; Wang, Ching-Hua

    2009-10-15

    The burning characteristics of a biodiesel droplet mixed with diesel or alkanes such as dodecane and hexadecane were experimentally studied in a reduced-gravity environment so as to create a spherically symmetrical flame without the influence of natural convection due to buoyancy. Small droplets on the order of 500 {mu}m in diameter were initially injected via a piezoelectric technique onto the cross point intersected by two thin carbon fibers; these were prepared inside a combustion chamber that was housed in a drag shield, which was freely dropped onto a foam cushion. It was found that, for single component droplets, the tendency to form a rigid soot shell was relatively small for biodiesel fuel as compared to that exhibited by the other tested fuels. The soot created drifted away readily, showing a puffing phenomenon; this could be related to the distinct molecular structure of biodiesel leading to unique soot layers that were more vulnerable to oxidative reactivity as compared to the soot generated by diesel or alkanes. The addition of biodiesel to these more traditional fuels also presented better performance with respect to annihilating the soot shell, particularly for diesel. The burning rate generally follows that of multi-component fuels, by some means in terms of a lever rule, whereas the mixture of biodiesel and dodecane exhibits a somewhat nonlinear relation with the added fraction of dodecane. This might be related to the formation of a soot shell. (author)

  8. Swedish tests on rape-seed oil as an alternative to diesel fuel

    SciTech Connect

    Johansson, E.; Nordstroem, O.

    1982-01-01

    The cheapest version of Swedish rape-seed oil was chosen. First the rape-seed oil was mixed in different proportions with regular diesel fuel. A mixture of 1/3 rape-seed oil and 2/3 regular diesel fuel (R 33) was then selected for a long-term test. A Perkins 4.248 diesel engine was used for laboratory tests. Four regular farm tractors, owned and operated by farmers, and two tractors belonging to the Institute have been running on R 33. Each tractor was calibrated on a dynamometer according to Swedish and ISO-standards before they were operated on R 33. Since then the tractors have been regularly recalibrated. The test tractors have been operated on R 33 for more than 3400 h. An additional 1200 h have been covered by the laboratory test engine. None of the test tractors have hitherto required repairs due to the use of R 33, but some fuel filters have been replaced. Some fuel injectors have been cleaned due to deposits on the nozzles. 4 figures, 1 table.

  9. Experiments on Induction Times of Diesel-Fuels and its Surrogates

    NASA Astrophysics Data System (ADS)

    Eigenbrod, Christian; Reimert, Manfredo; Marks, Guenther; Rickmers, Peter; Klinkov, Konstantin; Moriue, Osamu

    Aiming for as low polluting combustion control as possible in Diesel-engines or gas-turbines, pre-vaporized and pre-mixed combustion at low mean temperature levels marks the goal. Low-est emissions of nitric-oxides are achievable at combustion temperatures associated to mixture ratios close to the lean flammability limit. In order to prevent local mixture ratios to be below the flammability limit (resulting in flame extinction or generation of unburned hydrocarbons and carbon-monoxide) or to be richer than required (resulting in more nitric-oxide than possi-ble), well-stirred conditioning is required. The time needed for spray generation, vaporization and turbulent mixing is limited through the induction time to self-ignition in a hot high-pressure ambiance. Therefore, detailed knowledge about the autoignition of fuels is a pre-requisit. Experiments were performed at the Bremen drop tower to investigate the self-ignition behavior of single droplets of fossil-Diesel oil, rapeseed-oil, Gas-to-Liquid (GTL) synthetic Diesel-oil and the fossil Diesel surrogates n-heptane, n-tetradecane, 50 n-tetradecane/ 50 1-methylnaphthalene as well as on the GTL-surrogates n-tetradecane / bicyclohexyl and n-tetradecane / 2,2,4,4,6,8,8-heptamethylnonane (iso-cetane). The rules for selection of the above fuels and the experimental results are presented and dis-cussed.

  10. Investigation of Bio-Diesel Fueled Engines under Low-Temperature Combustion Strategies

    SciTech Connect

    Chia-fon F. Lee; Alan C. Hansen

    2010-09-30

    In accordance with meeting DOE technical targets this research was aimed at developing and optimizing new fuel injection technologies and strategies for the combustion of clean burning renewable fuels in diesel engines. In addition a simultaneous minimum 20% improvement in fuel economy was targeted with the aid of this novel advanced combustion system. Biodiesel and other renewable fuels have unique properties that can be leveraged to reduce emissions and increase engine efficiency. This research is an investigation into the combustion characteristics of biodiesel and its impacts on the performance of a Low Temperature Combustion (LTC) engine, which is a novel engine configuration that incorporates technologies and strategies for simultaneously reducing NOx and particulate emissions while increasing engine efficiency. Generating fundamental knowledge about the properties of biodiesel and blends with petroleum-derived diesel and their impact on in-cylinder fuel atomization and combustion processes was an important initial step to being able to optimize fuel injection strategies as well as introduce new technologies. With the benefit of this knowledge experiments were performed on both optical and metal LTC engines in which combustion and emissions could be observed and measured under realistic conditions. With the aid these experiments and detailed combustion models strategies were identified and applied in order to improve fuel economy and simultaneously reduce emissions.

  11. Hybrid fuel cell/diesel generation total energy system, part 2

    NASA Technical Reports Server (NTRS)

    Blazek, C. F.

    1982-01-01

    Meeting the Goldstone Deep Space Communications Complex (DGSCC) electrical and thermal requirements with the existing system was compared with using fuel cells. Fuel cell technology selection was based on a 1985 time frame for installation. The most cost-effective fuel feedstock for fuel cell application was identified. Fuels considered included diesel oil, natural gas, methanol and coal. These fuel feedstocks were considered not only on the cost and efficiency of the fuel conversion process, but also on complexity and integration of the fuel processor on system operation and thermal energy availability. After a review of fuel processor technology, catalytic steam reformer technology was selected based on the ease of integration and the economics of hydrogen production. The phosphoric acid fuel cell was selected for application at the GDSCC due to its commercial readiness for near term application. Fuel cell systems were analyzed for both natural gas and methanol feedstock. The subsequent economic analysis indicated that a natural gas fueled system was the most cost effective of the cases analyzed.

  12. Coal-fueled high-speed diesel engine development

    SciTech Connect

    Kakwani, R. M.; Winsor, R. E.; Ryan, III, T. W.; Schwalb, J. A.; Wahiduzzaman, S.; Wilson, Jr., R. P.

    1991-11-01

    The objectives of this program are to study combustion feasibility by running Series 149 engine tests at high speeds with a fuel injection and combustion system designed for coal-water-slurry (CWS). The following criteria will be used to judge feasibility: (1) engine operation for sustained periods over the load range at speeds from 600 to 1900 rpm. The 149 engine for mine-haul trucks has a rated speed of 1900 rpm; (2) reasonable fuel economy and coal burnout rate; (3) reasonable cost of the engine design concept and CWS fuel compared to future oil prices.

  13. 40 CFR 80.513 - What provisions apply to transmix processing facilities and pipelines that produce diesel fuel...

    Code of Federal Regulations, 2013 CFR

    2013-07-01

    ... 40 Protection of Environment 17 2013-07-01 2013-07-01 false What provisions apply to transmix processing facilities and pipelines that produce diesel fuel from pipeline interface? 80.513 Section 80.513 Protection of Environment ENVIRONMENTAL PROTECTION AGENCY (CONTINUED) AIR PROGRAMS (CONTINUED) REGULATION OF FUELS AND FUEL ADDITIVES...

  14. Computation of neutron fluxes in clusters of fuel pins arranged in hexagonal assemblies (2D and 3D)

    SciTech Connect

    Prabha, H.; Marleau, G.

    2012-07-01

    For computations of fluxes, we have used Carvik's method of collision probabilities. This method requires tracking algorithms. An algorithm to compute tracks (in 2D and 3D) has been developed for seven hexagonal geometries with cluster of fuel pins. This has been implemented in the NXT module of the code DRAGON. The flux distribution in cluster of pins has been computed by using this code. For testing the results, they are compared when possible with the EXCELT module of the code DRAGON. Tracks are plotted in the NXT module by using MATLAB, these plots are also presented here. Results are presented with increasing number of lines to show the convergence of these results. We have numerically computed volumes, surface areas and the percentage errors in these computations. These results show that 2D results converge faster than 3D results. The accuracy on the computation of fluxes up to second decimal is achieved with fewer lines. (authors)

  15. An assessment of alternative diesel fuels: microbiological contamination and corrosion under storage conditions.

    PubMed

    Lee, Jason S; Ray, Richard I; Little, Brenda J

    2010-08-01

    Experiments were designed to evaluate the nature and extent of microbial contamination and the potential for microbiologically influenced corrosion of alloys exposed in a conventional high sulfur diesel (L100) and alternative fuels, including 100% biodiesel (B100), ultra-low sulfur diesel (ULSD) and blends of ULSD and B100 (B5 and B20). In experiments with additions of distilled water, all fuels supported biofilm formation. Changes in the water pH did not correlate with observations related to corrosion. In all exposures, aluminum 5052 was susceptible to pitting while stainless steel 304L exhibited passive behavior. Carbon steel exhibited uniform corrosion in ULSD and L100, and passive behavior in B5, B20, and B100. PMID:20628927

  16. Propagation at 10. mu. m through smoke produced by atmospheric combustion of diesel fuel

    SciTech Connect

    Bruce, C.W.; Richardson, N.M.

    1983-04-01

    Absorption and extinction due to the smoke produced by the atmospheric combustion of diesel fuel have been measured using a CO/sub 2/ laser spectrophone at a wavelength of 10.6 ..mu..m. The absorption coefficient normalized to the aerosol mass density is 0.84 +- 0.076 m/sup 2//g, and the total scattering coefficient (the difference between the extinction and absorption values) normalized in the same way is 0.15 +- 0.014 m/sup 2//g. The largely fibrous aerosol was found to be 80% carbon, with most of the remainder consisting of hydrocarbons which are comparatively transparent at 10.6 ..mu..m and physically resemble the unburned fuel. The normalized coefficients of this study approximate those of diesel automobile effluents. This is not surprising since the aerosol composition and morphology appear to be similar.

  17. Diesel Fueled SOFC for Class 7/Class 8 On-Highway Truck Auxiliary Power

    SciTech Connect

    Vesely, Charles John-Paul; Fuchs, Benjamin S.; Booten, Chuck W.

    2010-03-31

    The following report documents the progress of the Cummins Power Generation (CPG) Diesel Fueled SOFC for Class 7/Class 8 On-Highway Truck Auxiliary Power (SOFC APU) development and final testing under the U.S. Department of Energy (DOE) Energy Efficiency and Renewable Energy (EERE) contract DE-FC36-04GO14318. This report overviews and summarizes CPG and partner development leading to successful demonstration of the SOFC APU objectives and significant progress towards SOFC commercialization. Significant SOFC APU Milestones: Demonstrated: Operation meeting SOFC APU requirements on commercial Ultra Low Sulfur Diesel (ULSD) fuel. SOFC systems operating on dry CPOX reformate. Successful start-up and shut-down of SOFC APU system without inert gas purge. Developed: Low cost balance of plant concepts and compatible systems designs. Identified low cost, high volume components for balance of plant systems. Demonstrated efficient SOFC output power conditioning. Demonstrated SOFC control strategies and tuning methods.

  18. Permeation of gasoline, diesel, bioethanol (E85), and biodiesel (B20) fuels through six glove materials.

    PubMed

    Chin, Jo-Yu; Batterman, Stuart A

    2010-07-01

    Biofuels and conventional fuels differ in terms of their evaporation rates, permeation rates, and exhaust emissions, which can alter exposures of workers, especially those in the fuel refining and distribution industries. This study investigated the permeation of biofuels (bioethanol 85%, biodiesel 20%) and conventional petroleum fuels (gasoline and diesel) through gloves used in occupational settings (neoprene, nitrile, and Viton) and laboratories (latex, nitrile, and vinyl), as well as a standard reference material (neoprene sheet). Permeation rates and breakthrough times were measured using the American Society for Testing and Materials F739-99 protocol, and fuel and permeant compositions were measured by gas chromatography/mass spectrometry. In addition, we estimated exposures for three occupational scenarios and recommend chemical protective clothing suitable for use with motor fuels. Permeation rates and breakthrough times depended on the fuel-glove combination. Gasoline had the highest permeation rate among the four fuels. Bioethanol (85%) had breakthrough times that were two to three times longer than gasoline through neoprene, nitrile Sol-Vex, and the standard reference materials. Breakthrough times for biodiesel (20%) were slightly shorter than for diesel for the latex, vinyl, nitrile examination, and the standard neoprene materials. The composition of permeants differed from neat fuels, e.g., permeants were significantly enriched in the lighter aromatics including benzene. Viton was the best choice among the tested materials for the four fuels tested. Among the scenarios, fuel truck drivers had the highest uptake via inhalation based on the personal measurements available in the literature, and gasoline station attendants had highest uptake via dermal exposure if gloves were not worn. Appropriate selection and use of gloves can protect workers from dermal exposures; however, current recommendations from the National Institute for Occupational Safety and

  19. A techno-economic comparison of fuel processors utilizing diesel for solid oxide fuel cell auxiliary power units

    NASA Astrophysics Data System (ADS)

    Nehter, Pedro; Hansen, John Bøgild; Larsen, Peter Koch

    Ultra-low sulphur diesel (ULSD) is the preferred fuel for mobile auxiliary power units (APU). The commercial available technologies in the kW-range are combustion engine based gensets, achieving system efficiencies about 20%. Solid oxide fuel cells (SOFC) promise improvements with respect to efficiency and emission, particularly for the low power range. Fuel processing methods i.e., catalytic partial oxidation, autothermal reforming and steam reforming have been demonstrated to operate on diesel with various sulphur contents. The choice of fuel processing method strongly affects the SOFC's system efficiency and power density. This paper investigates the impact of fuel processing methods on the economical potential in SOFC APUs, taking variable and capital cost into account. Autonomous concepts without any external water supply are compared with anode recycle configurations. The cost of electricity is very sensitive on the choice of the O/C ratio and the temperature conditions of the fuel processor. A sensitivity analysis is applied to identify the most cost effective concept for different economic boundary conditions. The favourite concepts are discussed with respect to technical challenges and requirements operating in the presence of sulphur.

  20. Applicability of grid-net detection system for landfill leachate and diesel fuel release in the subsurface

    NASA Astrophysics Data System (ADS)

    Oh, Myounghak; Seo, Min Woo; Lee, Seunghak; Park, Junboum

    2008-02-01

    The grid-net system estimating the electrical conductivity changes was evaluated as a potential detection system for the leakage of diesel fuel and landfill leachate. Aspects of electrical conductivity changes were varied upon the type of contaminant. The electrical conductivity in the homogeneous mixtures of soil and landfill leachate linearly increased with the ionic concentration of pore fluid, which became more significant at higher volumetric water contents. However, the electrical conductivity in soil/diesel fuel mixture decreased with diesel fuel content and it was more significant at lower water contents. The electrode spacing should be determined by considering the type of contaminant to enhance the electrode sensitivity especially when two-electrode sensors are to be used. The electrode sensitivity for landfill leachate was constantly maintained regardless of the electrode spacings while that for the diesel fuel significantly increased at smaller electrode spacings. This is possibly due to the fact that the insulating barrier effect of the diesel fuel in non-aqueous phase was less predominant at large electrode spacing because electrical current can form the round-about paths over the volume with relatively small diesel fuel content. The model test results showed that the grid-net detection system can be used to monitor the leakage from waste landfill and underground storage tank sites. However, for a successful application of the detection system in the field, data under various field conditions should be accumulated.