An Integrative Model of Excitation Driven Fluid Flow in a 2D Uterine Channel
NASA Astrophysics Data System (ADS)
Maggio, Charles; Fauci, Lisa; Chrispell, John
2009-11-01
We present a model of intra-uterine fluid flow in a sagittal cross-section of the uterus by inducing peristalsis in a 2D channel. This is an integrative multiscale computational model that takes as input fluid viscosity, passive tissue properties of the uterine channel and a prescribed wave of membrane depolarization. This voltage pulse is coupled to a model of calcium dynamics inside a uterine smooth muscle cell, which in turn drives a kinetic model of myosin phosphorylation governing contractile muscle forces. Using the immersed boundary method, these muscle forces are communicated to a fluid domain to simulate the contractions which occur in a human uterus. An analysis of the effects of model parameters on the flow properties and emergent geometry of the peristaltic channel will be presented.
Pattern formation in 2D flow of non-Newtonian fluids
NASA Astrophysics Data System (ADS)
Shelley, Michael; Ljubinko; Kondic; Palffy-Muhoray, Peter
1997-03-01
We explore the dynamics of the interface between a gas and a non-Newtonian fluid in a Hele-Shaw cell. If gas expands into fluid, the interface is unstable (Saffman-Taylor instability). This instability leads to viscous fingering for Newtonian fluids, but can produce dendritic morphology for non-Newtonian ones. Our analysis is based on the formulation of modified Darcy's law (Kondic, Palffy-Muhoray, and Shelley, Phys. Rev. E 54), 4536 R, 1996., where the problem reduces to nonlinear boundary value problem for pressure field in the fluid. We perform full numerical simulation of the time evolution of the interface. In the flow regime where elastic effects are negligible, it is found that shear-thinning character of the fluid considerably influences the morphology of the interface. We hope to understand experimentally observed dendritic structure, which also appears in many related physical problems, such as directional solidification.
Masoumi, Nafiseh; Framanzad, F; Zamanian, Behnam; Seddighi, A S; Moosavi, M H; Najarian, S; Bastani, Dariush
2013-01-01
Many diseases are related to cerebrospinal fluid (CSF) hydrodynamics. Therefore, understanding the hydrodynamics of CSF flow and intracranial pressure is helpful for obtaining deeper knowledge of pathological processes and providing better treatments. Furthermore, engineering a reliable computational method is promising approach for fabricating in vitro models which is essential for inventing generic medicines. A Fluid-Solid Interaction (FSI)model was constructed to simulate CSF flow. An important problem in modeling the CSF flow is the diastolic back flow. In this article, using both rigid and flexible conditions for ventricular system allowed us to evaluate the effect of surrounding brain tissue. Our model assumed an elastic wall for the ventricles and a pulsatile CSF input as its boundary conditions. A comparison of the results and the experimental data was done. The flexible model gave better results because it could reproduce the diastolic back flow mentioned in clinical research studies. The previous rigid models have ignored the brain parenchyma interaction with CSF and so had not reported the back flow during the diastolic time. In this computational fluid dynamic (CFD) analysis, the CSF pressure and flow velocity in different areas were concordant with the experimental data.
Masoumi, Nafiseh; Framanzad, F; Zamanian, Behnam; Seddighi, A S; Moosavi, M H; Najarian, S; Bastani, Dariush
2013-01-01
Many diseases are related to cerebrospinal fluid (CSF) hydrodynamics. Therefore, understanding the hydrodynamics of CSF flow and intracranial pressure is helpful for obtaining deeper knowledge of pathological processes and providing better treatments. Furthermore, engineering a reliable computational method is promising approach for fabricating in vitro models which is essential for inventing generic medicines. A Fluid-Solid Interaction (FSI)model was constructed to simulate CSF flow. An important problem in modeling the CSF flow is the diastolic back flow. In this article, using both rigid and flexible conditions for ventricular system allowed us to evaluate the effect of surrounding brain tissue. Our model assumed an elastic wall for the ventricles and a pulsatile CSF input as its boundary conditions. A comparison of the results and the experimental data was done. The flexible model gave better results because it could reproduce the diastolic back flow mentioned in clinical research studies. The previous rigid models have ignored the brain parenchyma interaction with CSF and so had not reported the back flow during the diastolic time. In this computational fluid dynamic (CFD) analysis, the CSF pressure and flow velocity in different areas were concordant with the experimental data. PMID:25337330
NASA Astrophysics Data System (ADS)
Kim, Ho Jun; Lee, Hae June
2016-06-01
The wide applicability of capacitively coupled plasma (CCP) deposition has increased the interest in developing comprehensive numerical models, but CCP imposes a tremendous computational cost when conducting a transient analysis in a three-dimensional (3D) model which reflects the real geometry of reactors. In particular, the detailed flow features of reactive gases induced by 3D geometric effects need to be considered for the precise calculation of radical distribution of reactive species. Thus, an alternative inclusive method for the numerical simulation of CCP deposition is proposed to simulate a two-dimensional (2D) CCP model based on the 3D gas flow results by simulating flow, temperature, and species fields in a 3D space at first without calculating the plasma chemistry. A numerical study of a cylindrical showerhead-electrode CCP reactor was conducted for particular cases of SiH4/NH3/N2/He gas mixture to deposit a hydrogenated silicon nitride (SiN x H y ) film. The proposed methodology produces numerical results for a 300 mm wafer deposition reactor which agree very well with the deposition rate profile measured experimentally along the wafer radius.
ENERGY LANDSCAPE OF 2D FLUID FORMS
Y. JIANG; ET AL
2000-04-01
The equilibrium states of 2D non-coarsening fluid foams, which consist of bubbles with fixed areas, correspond to local minima of the total perimeter. (1) The authors find an approximate value of the global minimum, and determine directly from an image how far a foam is from its ground state. (2) For (small) area disorder, small bubbles tend to sort inwards and large bubbles outwards. (3) Topological charges of the same sign repel while charges of opposite sign attract. (4) They discuss boundary conditions and the uniqueness of the pattern for fixed topology.
Rheological Properties of Quasi-2D Fluids in Microgravity
NASA Technical Reports Server (NTRS)
Stannarius, Ralf; Trittel, Torsten; Eremin, Alexey; Harth, Kirsten; Clark, Noel; Maclennan, Joseph; Glaser, Matthew; Park, Cheol; Hall, Nancy; Tin, Padetha
2015-01-01
In recent years, research on complex fluids and fluids in restricted geometries has attracted much attention in the scientific community. This can be attributed not only to the development of novel materials based on complex fluids but also to a variety of important physical phenomena which have barely been explored. One example is the behavior of membranes and thin fluid films, which can be described by two-dimensional (2D) rheology behavior that is quite different from 3D fluids. In this study, we have investigated the rheological properties of freely suspended films of a thermotropic liquid crystal in microgravity experiments. This model system mimics isotropic and anisotropic quasi 2D fluids [46]. We use inkjet printing technology to dispense small droplets (inclusions) onto the film surface. The motion of these inclusions provides information on the rheological properties of the films and allows the study of a variety of flow instabilities. Flat films have been investigated on a sub-orbital rocket flight and curved films (bubbles) have been studied in the ISS project OASIS. Microgravity is essential when the films are curved in order to avoid sedimentation. The experiments yield the mobility of the droplets in the films as well as the mutual mobility of pairs of particles. Experimental results will be presented for 2D-isotropic (smectic-A) and 2D-nematic (smectic-C) phases.
NASA Astrophysics Data System (ADS)
Zhang, Y.; Ye, S.; Wu, J.
2013-12-01
Immiscible two-phase flows in fractured media are encountered in many engineering processes such as recovery of oil and gas, exploitation of geothermal energy, and groundwater contamination by immiscible chemicals. A two-dimensional rough wall parallel plate fracture model was set up and light transmission method (LTM) was applied to study two-phase flow system in fractured media. The fracture model stood with up and bottom flow and no flow on other two sides. A charge-coupled device (CCD) camera was used to monitor the migration of DNAPL and gas bubbles in the fracture model. To simulate two-phase system in fracture media, air was injected into the water saturated cell (C1) through the middle of the bottom and NAPL was injected into another water saturated cell (C2) through the middle of the top of the cell. The results show LTM was an effective way in monitoring the migration of DNAPL and gas bubbles in the fracture models. Gas moved upwards quickly to the top of C1 in the way of air bubbles generated at the injection position and formed a continuous distribution. The migration of TCE was controlled by its own weight and fracture aperture. TCE migrated to large aperture firstly when moving downwards, and intruded into smaller one with accumulation of TCE. Light Intensity-Saturation Models (LISMs) were developed to estimate the gas or NAPL saturation in two-phase system. The volume amount of infiltration of gas bubbles or NAPL could be estimated from light intensities by LISMs. There were strong correlations between the added and calculated amounts of gas or TCE. It is feasible to use the light transmission method to characterize the movement and spatial distribution of gas or NAPL in fractured media.
Lappala, E.G.; Healy, R.W.; Weeks, E.P.
1987-01-01
This report documents FORTRAN computer code for solving problems involving variably saturated single-phase flow in porous media. The flow equation is written with total hydraulic potential as the dependent variable, which allows straightforward treatment of both saturated and unsaturated conditions. The spatial derivatives in the flow equation are approximated by central differences, and time derivatives are approximated either by a fully implicit backward or by a centered-difference scheme. Nonlinear conductance and storage terms may be linearized using either an explicit method or an implicit Newton-Raphson method. Relative hydraulic conductivity is evaluated at cell boundaries by using either full upstream weighting, the arithmetic mean, or the geometric mean of values from adjacent cells. Nonlinear boundary conditions treated by the code include infiltration, evaporation, and seepage faces. Extraction by plant roots that is caused by atmospheric demand is included as a nonlinear sink term. These nonlinear boundary and sink terms are linearized implicitly. The code has been verified for several one-dimensional linear problems for which analytical solutions exist and against two nonlinear problems that have been simulated with other numerical models. A complete listing of data-entry requirements and data entry and results for three example problems are provided. (USGS)
Flow transitions in a 2D directional solidification model
NASA Technical Reports Server (NTRS)
Larroude, Philippe; Ouazzani, Jalil; Alexander, J. Iwan D.
1992-01-01
Flow transitions in a Two Dimensional (2D) model of crystal growth were examined using the Bridgman-Stockbarger me thod. Using a pseudo-spectral Chebyshev collocation method, the governing equations yield solutions which exhibit a symmetry breaking flow tansition and oscillatory behavior indicative of a Hopf bifurcation at higher values of Ra. The results are discussed from fluid dynamic viewpoint, and broader implications for process models are also addressed.
A new inversion method for (T2, D) 2D NMR logging and fluid typing
NASA Astrophysics Data System (ADS)
Tan, Maojin; Zou, Youlong; Zhou, Cancan
2013-02-01
One-dimensional nuclear magnetic resonance (1D NMR) logging technology has some significant limitations in fluid typing. However, not only can two-dimensional nuclear magnetic resonance (2D NMR) provide some accurate porosity parameters, but it can also identify fluids more accurately than 1D NMR. In this paper, based on the relaxation mechanism of (T2, D) 2D NMR in a gradient magnetic field, a hybrid inversion method that combines least-squares-based QR decomposition (LSQR) and truncated singular value decomposition (TSVD) is examined in the 2D NMR inversion of various fluid models. The forward modeling and inversion tests are performed in detail with different acquisition parameters, such as magnetic field gradients (G) and echo spacing (TE) groups. The simulated results are discussed and described in detail, the influence of the above-mentioned observation parameters on the inversion accuracy is investigated and analyzed, and the observation parameters in multi-TE activation are optimized. Furthermore, the hybrid inversion can be applied to quantitatively determine the fluid saturation. To study the effects of noise level on the hybrid method and inversion results, the numerical simulation experiments are performed using different signal-to-noise-ratios (SNRs), and the effect of different SNRs on fluid typing using three fluid models are discussed and analyzed in detail.
Flow past 2-D Hemispherical Rigid Canopies
NASA Astrophysics Data System (ADS)
Carnasciali, Maria-Isabel
2013-11-01
The flow past a 2-dimensional rigid hemispherical shape is investigated using PIV. Flow field measurements and images were generated with the use of a Thermoflow® apparatus. Results of this study are compared to prior work (APS DFD 2012 Session E9.00003) which employed CFD to investigate the flow in the near wake of hemispherical parachutes. The various sized gaps/open areas were positioned at distinct locations. The work presented here is part of a larger research project to investigate flow fields in deceleration devices and parachutes. Understanding the pitch-stability of parachutes is essential for accurate design and implementation of these deceleration devices but they present a difficult system to analyze. The flexibility of the parachute fabric results in large variations in the parachute geometry leading to complex fluid-structure interactions. Such flow, combined with flow through gaps and open areas, has been postulated to shed alternating vortices causing pitching/oscillations of the canopy. The results presented provide some insight into which geometric features affect vortex shedding and may enable the redesign of the baseline parachute to minimize instabilities.
Advecting Procedural Textures for 2D Flow Animation
NASA Technical Reports Server (NTRS)
Kao, David; Pang, Alex; Moran, Pat (Technical Monitor)
2001-01-01
This paper proposes the use of specially generated 3D procedural textures for visualizing steady state 2D flow fields. We use the flow field to advect and animate the texture over time. However, using standard texture advection techniques and arbitrary textures will introduce some undesirable effects such as: (a) expanding texture from a critical source point, (b) streaking pattern from the boundary of the flowfield, (c) crowding of advected textures near an attracting spiral or sink, and (d) absent or lack of textures in some regions of the flow. This paper proposes a number of strategies to solve these problems. We demonstrate how the technique works using both synthetic data and computational fluid dynamics data.
NASA Astrophysics Data System (ADS)
Erwee, M. W.; Reynolds, Q. G.; Zietsman, J. H.
2016-06-01
Furnace tap-holes vary in design depending on the type of furnace and process involved, but they share one common trait: The tap-hole must be opened and closed periodically. In general, tap-holes are plugged with refractory clay after tapping, thereby stopping the flow of molten material. Once a furnace is ready to be tapped, drilling and/or lancing with oxygen are typically used to remove tap-hole clay from the tap-hole. Lancing with oxygen is an energy-intensive, mostly manual process, which affects the performance and longevity of the tap-hole refractory material as well as the processes inside the furnace. Computational modeling offers an opportunity to gain insight into the possible effects of oxygen lancing on various aspects of furnace operation.
Mean flow and anisotropic cascades in decaying 2D turbulence
NASA Astrophysics Data System (ADS)
Liu, Chien-Chia; Cerbus, Rory; Gioia, Gustavo; Chakraborty, Pinaki
2015-11-01
Many large-scale atmospheric and oceanic flows are decaying 2D turbulent flows embedded in a non-uniform mean flow. Despite its importance for large-scale weather systems, the affect of non-uniform mean flows on decaying 2D turbulence remains unknown. In the absence of mean flow it is well known that decaying 2D turbulent flows exhibit the enstrophy cascade. More generally, for any 2D turbulent flow, all computational, experimental and field data amassed to date indicate that the spectrum of longitudinal and transverse velocity fluctuations correspond to the same cascade, signifying isotropy of cascades. Here we report experiments on decaying 2D turbulence in soap films with a non-uniform mean flow. We find that the flow transitions from the usual isotropic enstrophy cascade to a series of unusual and, to our knowledge, never before observed or predicted, anisotropic cascades where the longitudinal and transverse spectra are mutually independent. We discuss implications of our results for decaying geophysical turbulence.
F2D users manual: A two-dimensional compressible gas flow code
NASA Astrophysics Data System (ADS)
Suo-Anttila, A.
1993-08-01
The F2D computer code is a general purpose, two-dimensional, fully compressible thermal-fluids code that models most of the phenomena found in situations of coupled fluid flow and heat transfer. The code solves momentum, continuity, gas-energy, and structure-energy equations using a predictor-corrector solution algorithm. The corrector step includes a Poisson pressure equation. The finite difference form of the equation is presented along with a description of input and output. Several example problems are included that demonstrate the applicability of the code in problems ranging from free fluid flow, shock tubes, and flow in heated porous media.
F2D. A Two-Dimensional Compressible Gas Flow Code
Suo-Anttila, A.
1993-08-01
F2D is a general purpose, two dimensional, fully compressible thermal-fluids code that models most of the phenomena found in situations of coupled fluid flow and heat transfer. The code solves momentum, continuity, gas-energy, and structure-energy equations using a predictor-correction solution algorithm. The corrector step includes a Poisson pressure equation. The finite difference form of the equation is presented along with a description of input and output. Several example problems are included that demonstrate the applicability of the code in problems ranging from free fluid flow, shock tubes and flow in heated porous media.
F2D users manual: A two-dimensional compressible gas flow code
Suo-Anttila, A.
1993-08-01
The F2D computer code is a general purpose, two-dimensional, fully compressible thermal-fluids code that models most of the phenomena found in situations of coupled fluid flow and heat transfer. The code solves momentum, continuity, gas-energy, and structure-energy equations using a predictor-corrector solution algorithm. The corrector step includes a Poisson pressure equation. The finite difference form of the equation is presented along with a description of input and output. Several example problems are included that demonstrate the applicability of the code in problems ranging from free fluid flow, shock tubes and flow in heated porous media.
Cryogenic cavitating flow in 2D laval nozzle
NASA Astrophysics Data System (ADS)
Tani, Naoki; Nagashima, Toshio
2003-05-01
Cavitation is one of the troublesome problems in rocket turbo pumps, and since most of high-efficiency rocket propellants are cryogenic fluids, so called “thermodynamic effect” becomes more evident than in water. In the present study, numerical and experimental study of liquid nitrogen cavitation in 2D Laval nozzle was carried out, so that the influence of thermodynamic effect was examined. It was revealed that temperature and cavitation have strong inter-relationship with each other in thermo-sensitive cryogenic fluids.
Billeter, Thomas R.; Philipp, Lee D.; Schemmel, Richard R.
1976-01-01
A microwave fluid flow meter is described utilizing two spaced microwave sensors positioned along a fluid flow path. Each sensor includes a microwave cavity having a frequency of resonance dependent upon the static pressure of the fluid at the sensor locations. The resonant response of each cavity with respect to a variation in pressure of the monitored fluid is represented by a corresponding electrical output which can be calibrated into a direct pressure reading. The pressure drop between sensor locations is then correlated as a measure of fluid velocity. In the preferred embodiment the individual sensor cavities are strategically positioned outside the path of fluid flow and are designed to resonate in two distinct frequency modes yielding a measure of temperature as well as pressure. The temperature response can then be used in correcting for pressure responses of the microwave cavity encountered due to temperature fluctuations.
2D Mixed Convection Thermal Incompressible Viscous Flows
NASA Astrophysics Data System (ADS)
Bermudez, Blanca; Nicolas, Alfredo
2005-11-01
Mixed convection thermal incomprressible viscous fluid flows in rectangular cavities are presented. These kind of flows may be governed by the time-dependent Boussinesq approximation in terms of the stream function-vorticity variables formulation. The results are obtained with a simple numerical scheme based mainly on a fixed point iterative process applied to the non-linear system of elliptic equations that is obtained after a second order time discretization. Numerical experiments are reported for the problem of a cavity with fluid boundary motion on the top. Some results correspond to validation examples and others, to the best of our knowledge, correspond to new results. To show that the new results are correct, a mesh size and time independence studies are carried out, and the acceptable errors are measured point-wise. For the optimal mesh size and time step the final times when the steady state is reached, as solution from the unsteady problem, are reported; it should be seen that they are larger than the ones for natural convection which, physically speaking, show the agreement that mixed convection flows are more active than those of natural convection due to the fluid boundary motion on the top of the cavity. The flow parameters are: the Reynolds number, the Grashof number and the aspect ratio.
General Transient Fluid Flow Algorithm
1992-03-12
SALE2D calculates two-dimensional fluid flows at all speeds, from the incompressible limit to highly supersonic. An implicit treatment of the pressure calculation similar to that in the Implicit Continuous-fluid Eulerian (ICE) technique provides this flow speed flexibility. In addition, the computing mesh may move with the fluid in a typical Lagrangian fashion, be held fixed in an Eulerian manner, or move in some arbitrarily specified way to provide a continuous rezoning capability. This latitude resultsmore » from use of an Arbitrary Lagrangian-Eulerian (ALE) treatment of the mesh. The partial differential equations solved are the Navier-Stokes equations and the mass and internal energy equations. The fluid pressure is determined from an equation of state and supplemented with an artificial viscous pressure for the computation of shock waves. The computing mesh consists of a two-dimensional network of quadrilateral cells for either cylindrical or Cartesian coordinates, and a variety of user-selectable boundary conditions are provided in the program.« less
Magnetically stimulated fluid flow patterns
Martin, Jim; Solis, Kyle
2016-07-12
Sandia National Laboratories' Jim Martin and Kyle Solis explain research on the effects of magnetic fields on fluid flows and how they stimulate vigorous flows. Fluid flow is a necessary phenomenon in everything from reactors to cooling engines in cars.
Magnetically stimulated fluid flow patterns
Martin, Jim; Solis, Kyle
2014-03-06
Sandia National Laboratories' Jim Martin and Kyle Solis explain research on the effects of magnetic fields on fluid flows and how they stimulate vigorous flows. Fluid flow is a necessary phenomenon in everything from reactors to cooling engines in cars.
Creeping motion and deformation of liquid drops in flow through 2D model porous media
Fong, I. )
1988-01-01
The motion, deformation and breakup of immiscible drops suspended in low Reynolds number flow through cylinder arrays has been studied experimentally to assess the applicability of the 2D model as a prototype for 2-phase flow through porous media. Both Newtonian and non-Newtonian fluid systems are considered. The relationship between key flow and geometric parameters and the critical condition for breakup, the resulting drop site distribution and the drop mobility is investigated. It is observed that the headon impact of a drop with a cylinder is an effective precursor to severe drop deformation and even breakup. The sequence of flow leading to impact is also important in determining the effectiveness of impact to result in breakup. When many drops fragments are present, the interaction between nearby drops strongly influences the final disposition of the fragments. Fluid elasticity appears to enhance the elongation of drops to form strands, but also to stabilize the strand against breakup.
CAS2D- NONROTATING BLADE-TO-BLADE, STEADY, POTENTIAL TRANSONIC CASCADE FLOW ANALYSIS CODE
NASA Technical Reports Server (NTRS)
Dulikravich, D. S.
1994-01-01
An exact, full-potential-equation model for the steady, irrotational, homoentropic, and homoenergetic flow of a compressible, inviscid fluid through a two-dimensional planar cascade together with its appropriate boundary conditions has been derived. The CAS2D computer program numerically solves an artificially time-dependent form of the actual full-potential-equation, providing a nonrotating blade-to-blade, steady, potential transonic cascade flow analysis code. Comparisons of results with test data and theoretical solutions indicate very good agreement. In CAS2D, the governing equation is discretized by using type-dependent, rotated finite differencing and the finite area technique. The flow field is discretized by providing a boundary-fitted, nonuniform computational mesh. This mesh is generated by using a sequence of conformal mapping, nonorthogonal coordinate stretching, and local, isoparametric, bilinear mapping functions. The discretized form of the full-potential equation is solved iteratively by using successive line over relaxation. Possible isentropic shocks are captured by the explicit addition of an artificial viscosity in a conservative form. In addition, a four-level, consecutive, mesh refinement feature makes CAS2D a reliable and fast algorithm for the analysis of transonic, two-dimensional cascade flows. The results from CAS2D are not directly applicable to three-dimensional, potential, rotating flows through a cascade of blades because CAS2D does not consider the effects of the Coriolis force that would be present in the three-dimensional case. This program is written in FORTRAN IV for batch execution and has been implemented on an IBM 370 series computer with a central memory requirement of approximately 200K of 8 bit bytes. The CAS2D program was developed in 1980.
2-D traveling-wave patterns in binary fluid convection
Surko, C.M.; Porta, A.L.
1996-12-31
An overview is presented of recent experiments designed to study two-dimensional traveling-wave convection in binary fluid convection in a large aspect ratio container. Disordered patterns are observed when convection is initiated. As time proceeds, they evolve to more ordered patterns, consisting of several domains of traveling-waves separated by well-defined domain boundaries. The detailed character of the patterns depends sensitively on the Rayleigh number. Numerical techniques are described which were developed to provide a quantitative characterization of the traveling-wave patterns. Applications of complex demodulation techniques are also described, which make a detailed study of the structure and dynamics of the domain boundaries possible.
NATRAN2. Fluid Hammer Analysis 1D & 2D Systems
Shin, Y.W.; Valentin, R.A.
1992-03-03
NATRAN2 analyzes short-term pressure-pulse transients in a closed hydraulic system consisting of a two-dimensional axisymmetric domain connected to a one-dimensional piping network. The one-dimensional network may consist of series or parallel piping, pipe junctions, diameter discontinuities, junctions of three to six branches, closed ends, surge tanks, far ends, dummy junctions, acoustic impedance discontinuities, and rupture disks. By default, the working fluid is assumed to be liquid sodium without cavitation; but another working fluid can be specified in terms of its density, sonic speed, and viscosity. The source pressure pulse can arise from one of the following: a pressure-time function specified at some point in the two-dimensional domain, a pressure-time function or a sodium-water reaction specified at some point in the one-dimensional domain. The pressure pulse from a sodium-water reaction is assumed to be generated according to the dynamic model of Zaker and Salmon.
Improvement of a 2D numerical model of lava flows
NASA Astrophysics Data System (ADS)
Ishimine, Y.
2013-12-01
I propose an improved procedure that reduces an improper dependence of lava flow directions on the orientation of Digital Elevation Model (DEM) in two-dimensional simulations based on Ishihara et al. (in Lava Flows and Domes, Fink, JH eds., 1990). The numerical model for lava flow simulations proposed by Ishihara et al. (1990) is based on two-dimensional shallow water model combined with a constitutive equation for a Bingham fluid. It is simple but useful because it properly reproduces distributions of actual lava flows. Thus, it has been regarded as one of pioneer work of numerical simulations of lava flows and it is still now widely used in practical hazard prediction map for civil defense officials in Japan. However, the model include an improper dependence of lava flow directions on the orientation of DEM because the model separately assigns the condition for the lava flow to stop due to yield stress for each of two orthogonal axes of rectangular calculating grid based on DEM. This procedure brings a diamond-shaped distribution as shown in Fig. 1 when calculating a lava flow supplied from a point source on a virtual flat plane although the distribution should be circle-shaped. To improve the drawback, I proposed a modified procedure that uses the absolute value of yield stress derived from both components of two orthogonal directions of the slope steepness to assign the condition for lava flows to stop. This brings a better result as shown in Fig. 2. Fig. 1. (a) Contour plots calculated with the original model of Ishihara et al. (1990). (b) Contour plots calculated with a proposed model.
CFD code comparison for 2D airfoil flows
NASA Astrophysics Data System (ADS)
Sørensen, Niels N.; Méndez, B.; Muñoz, A.; Sieros, G.; Jost, E.; Lutz, T.; Papadakis, G.; Voutsinas, S.; Barakos, G. N.; Colonia, S.; Baldacchino, D.; Baptista, C.; Ferreira, C.
2016-09-01
The current paper presents the effort, in the EU AVATAR project, to establish the necessary requirements to obtain consistent lift over drag ratios among seven CFD codes. The flow around a 2D airfoil case is studied, for both transitional and fully turbulent conditions at Reynolds numbers of 3 × 106 and 15 × 106. The necessary grid resolution, domain size, and iterative convergence criteria to have consistent results are discussed, and suggestions are given for best practice. For the fully turbulent results four out of seven codes provide consistent results. For the laminar-turbulent transitional results only three out of seven provided results, and the agreement is generally lower than for the fully turbulent case.
Lagrangian statistics and flow topology in forced 2-D turbulence
Kadoch, B.; Del-Castillo-Negrete, Diego B; Bos, W.J.T.; Schneider, Kai
2011-01-01
A study of the relationship between Lagrangian statistics and flow topology in fluid turbulence is presented. The topology is characterized using the Weiss criterion, which provides a conceptually simple tool to partition the flow into topologically different regions: elliptic (vortex dominated), hyperbolic (deformation dominated), and intermediate (turbulent background). The flow corresponds to forced two-dimensional Navier-Stokes turbulence in doubly periodic and circular bounded domains, the latter with no-slip boundary conditions. In the double periodic domain, the probability density function (pdf) of the Weiss field exhibits a negative skewness consistent with the fact that in periodic domains the flow is dominated by coherent vortex structures. On the other hand, in the circular domain, the elliptic and hyperbolic regions seem to be statistically similar. We follow a Lagrangian approach and obtain the statistics by tracking large ensembles of passively advected tracers. The pdfs of residence time in the topologically different regions are computed introducing the Lagrangian Weiss field, i.e., the Weiss field computed along the particles' trajectories. In elliptic and hyperbolic regions, the pdfs of the residence time have self-similar algebraic decaying tails. In contrast, in the intermediate regions the pdf has exponential decaying tails. The conditional pdfs (with respect to the flow topology) of the Lagrangian velocity exhibit Gaussian-like behavior in the periodic and in the bounded domains. In contrast to the freely decaying turbulence case, the conditional pdfs of the Lagrangian acceleration in forced turbulence show a comparable level of intermittency in both the periodic and the bounded domains. The conditional pdfs of the Lagrangian curvature are characterized, in all cases, by self-similar power-law behavior with a decay exponent of order - 2.
In situ fluid typing and quantification with 1D and 2D NMR logging.
Sun, Boqin
2007-05-01
In situ nuclear magnetic resonance (NMR) fluid typing has recently gained momentum due to data acquisition and inversion algorithm enhancement of NMR logging tools. T(2) distributions derived from NMR logging contain information on bulk fluids and pore size distributions. However, the accuracy of fluid typing is greatly overshadowed by the overlap between T(2) peaks arising from different fluids with similar apparent T(2) relaxation times. Nevertheless, the shapes of T(2) distributions from different fluid components are often different and can be predetermined. Inversion with predetermined T(2) distributions allows us to perform fluid component decomposition to yield individual fluid volume ratios. Another effective method for in situ fluid typing is two-dimensional (2D) NMR logging, which results in proton population distribution as a function of T(2) relaxation time and fluid diffusion coefficient (or T(1) relaxation time). Since diffusion coefficients (or T(1) relaxation time) for different fluid components can be very different, it is relatively easy to separate oil (especially heavy oil) from water signal in a 2D NMR map and to perform accurate fluid typing. Combining NMR logging with resistivity and/or neutron/density logs provides a third method for in situ fluid typing. We shall describe these techniques with field examples. PMID:17466778
NASA Astrophysics Data System (ADS)
Vinsard, G.; Dufour, S.; Saatdjian, E.; Mota, J. P. B.
2016-03-01
Chaotic advection can effectively enhance the heat transfer rate between a boundary and fluids with high Prandtl number. These fluids are usually highly viscous and thus turbulent agitation is not a viable solution since the energy required to mix the fluid would be prohibitive. Here, we analyze previously obtained results on chaotic advection and heat transfer in two similar 2-D periodic flows and on their corresponding 3-D periodic flows when an axial velocity component is superposed. The two flows studied are the flow between eccentric rotating cylinders and the flow between confocal ellipses. For both of these flows the analysis is simplified because the Stokes equations can be solved analytically to obtain a closed form solution. For both 2-D periodic flows, we show that chaotic heat transfer is enhanced by the displacement of the saddle point location during one period. Furthermore, the enhancement by chaotic advection in the elliptical geometry is approximately double that obtained in the cylindrical geometry because there are two saddle points instead of one. We also explain why, for high eccentricity ratios, there is no heat transfer enhancement in the cylindrical geometry. When an axial velocity component is added to both of these flows so that they become 3-D, previous work has shown that there is an optimum modulation frequency for which chaotic advection and heat transfer enhancement is a maximum. Here we show that the optimum modulation frequency can be derived from results without an axial flow. We also explain by physical arguments other previously unanswered questions in the published data.
Numerical simulation of ( T 2, T 1) 2D NMR and fluid responses
NASA Astrophysics Data System (ADS)
Tan, Mao-Jin; Zou, You-Long; Zhang, Jin-Yan; Zhao, Xin
2012-12-01
One-dimensional nuclear magnetic resonance (1D NMR) logging technology is limited for fluid typing, while two-dimensional nuclear magnetic resonance (2D NMR) logging can provide more parameters including longitudinal relaxation time ( T 1) and transverse relaxation time ( T 2) relative to fluid types in porous media. Based on the 2D NMR relaxation mechanism in a gradient magnetic field, echo train simulation and 2D NMR inversion are discussed in detail. For 2D NMR inversion, a hybrid inversion method is proposed based on the damping least squares method (LSQR) and an improved truncated singular value decomposition (TSVD) algorithm. A series of spin echoes are first simulated with multiple waiting times ( T W s) in a gradient magnetic field for given fluid models and these synthesized echo trains are inverted by the hybrid method. The inversion results are consistent with given models. Moreover, the numerical simulation of various fluid models such as the gas-water, light oil-water, and vicious oil-water models were carried out with different echo spacings ( T E s) and T W s by this hybrid method. Finally, the influences of different signal-to-noise ratios (SNRs) on inversion results in various fluid models are studied. The numerical simulations show that the hybrid method and optimized observation parameters are applicable to fluid typing of gas-water and oil-water models.
NASA Technical Reports Server (NTRS)
Sheere, R. W.
1970-01-01
Fluid-flow restrictor has degree of restriction easily and accurately controlled during manufacture. Restrictor's flow channel is machined square thread around a solid slug which is shrink-fitted to cylindrical case. One end of case is closed, open end capped, and both ends tapped for tube fittings for fluid flow.
2-D Three Fluid Simulation of Upstreaming Ions Above Auroral Precipitation
NASA Astrophysics Data System (ADS)
Danielides, M. A.; Lummerzheim, D.; Otto, A.; Stevens, R. J.
2006-12-01
The ionosphere is a rich reservoir of charged particles from which a variable fraction is transported to the magnetosphere. An important transport phenomena is the formation of upward ion flow above auroral structure. A primary region of the outflow is not known, but contributions come from polar cap, dayside cusp/cleft region, auroral oval, or even from mid-latitudes. In the past global magnetospheric models and fluid codes were used to simulate large scale ion outflow above, e.g., the polar-cap aurora. However, satellites orbiting at low- altitudes have repeatingly detected localized ion outflow above the auroral oval. Ionosphere-magnetosphere coupling simulations gave first insides into the small-scale dynamics of aurora. The aim of this study is the investigation of coupled plasma and neutral dynamics in smaller scale aurora to explain the generation, structure, and dynamics of vertical ion upstream. We consider auroral electron precipitation at ionospheric heights in a 2-D three fluid ionospheric-magnetospheric coupling code (Otto and Zhu, 2003). Specially we examine the effects of the electron precipitation, heat conduction and heating in field- aligned current through coulomb collisions or turbulence causing: i) electron heating, ii) electron pressure gradients, and iii) upstreaming of ions through a resulting ambipolar electric field. Our first case studies are performed for different boundary conditions and for different auroral electron precipitation parameters (variation in characteristic auroral energy, auroral energy flux and horizontal scale). The results shall clarify how auroral precipitation can drive ions upwards. Finally we discuss the effect of ion drag and the interaction of the upstreaming ions with a stable neutral constituent. Otto, O. and H. Zhu, Fluid plasma simulation of coupled systems: Ionosphere and magnetosphere, Space Plasma Simulation. Edited by J. Buechner, C. Dum, and M. Scholer., Lecture Notes in Physics, vol. 615, p.193
McKay, Mark D.; Sweeney, Chad E.; Spangler, Jr., B. Samuel
1993-01-01
A flow meter and temperature measuring device comprising a tube with a body centered therein for restricting flow and a sleeve at the upper end of the tube to carry several channels formed longitudinally in the sleeve to the appropriate axial location where they penetrate the tube to allow pressure measurements and temperature measurements with thermocouples. The high pressure measurement is made using a channel penetrating the tube away from the body and the low pressure measurement is made at a location at the widest part of the body. An end plug seals the end of the device and holes at its upper end allow fluid to pass from the interior of the tube into a plenum. The channels are made by cutting grooves in the sleeve, the grooves widened at the surface of the sleeve and then a strip of sleeve material is welded to the grooves closing the channels. Preferably the sleeve is packed with powdered graphite before cutting the grooves and welding the strips.
McKay, M.D.; Sweeney, C.E.; Spangler, B.S. Jr.
1993-11-30
A flow meter and temperature measuring device are described comprising a tube with a body centered therein for restricting flow and a sleeve at the upper end of the tube to carry several channels formed longitudinally in the sleeve to the appropriate axial location where they penetrate the tube to allow pressure measurements and temperature measurements with thermocouples. The high pressure measurement is made using a channel penetrating the tube away from the body and the low pressure measurement is made at a location at the widest part of the body. An end plug seals the end of the device and holes at its upper end allow fluid to pass from the interior of the tube into a plenum. The channels are made by cutting grooves in the sleeve, the grooves widened at the surface of the sleeve and then a strip of sleeve material is welded to the grooves closing the channels. Preferably the sleeve is packed with powdered graphite before cutting the grooves and welding the strips. 7 figures.
NASA Astrophysics Data System (ADS)
Kawamura, E.; Lieberman, M. A.; Graves, D. B.
2014-12-01
A fast 2D axisymmetric fluid-analytical plasma reactor model using the finite elements simulation tool COMSOL is interfaced with a 1D particle-in-cell (PIC) code to study ion energy distributions (IEDs) in multi-frequency capacitive argon discharges. A bulk fluid plasma model, which solves the time-dependent plasma fluid equations for the ion continuity and electron energy balance, is coupled with an analytical sheath model, which solves for the sheath parameters. The time-independent Helmholtz equation is used to solve for the fields and a gas flow model solves for the steady-state pressure, temperature and velocity of the neutrals. The results of the fluid-analytical model are used as inputs to a PIC simulation of the sheath region of the discharge to obtain the IEDs at the target electrode. Each 2D fluid-analytical-PIC simulation on a moderate 2.2 GHz CPU workstation with 8 GB of memory took about 15-20 min. The multi-frequency 2D fluid-analytical model was compared to 1D PIC simulations of a symmetric parallel-plate discharge, showing good agreement. We also conducted fluid-analytical simulations of a multi-frequency argon capacitively coupled plasma (CCP) with a typical asymmetric reactor geometry at 2/60/162 MHz. The low frequency 2 MHz power controlled the sheath width and sheath voltage while the high frequencies controlled the plasma production. A standing wave was observable at the highest frequency of 162 MHz. We noticed that adding 2 MHz power to a 60 MHz discharge or 162 MHz to a dual frequency 2 MHz/60 MHz discharge can enhance the plasma uniformity. We found that multiple frequencies were not only useful for controlling IEDs but also plasma uniformity in CCP reactors.
Flow-induced 2D protein crystallization: characterization of the coupled interfacial and bulk flows.
Young, James E; Posada, David; Lopez, Juan M; Hirsa, Amir H
2015-05-14
Two-dimensional crystallization of the protein streptavidin, crystallizing below a biotinylated lipid film spread on a quiescent air-water interface is a well studied phenomenon. More recently, 2D crystallization induced by a shearing interfacial flow has been observed at film surface pressures significantly lower than those required in a quiescent system. Here, we quantify the interfacial and bulk flow associated with 2D protein crystallization through numerical modeling of the flow along with a Newtonian surface model. Experiments were conducted over a wide range of conditions resulting in a state diagram delineating the flow strength required to induce crystals for various surface pressures. Through measurements of the velocity profile at the air-water interface, we found that even in the cases where crystals are formed, the macroscopic flow at the interface is well described by the Newtonian model. However, the results show that even in the absence of any protein in the system, the viscous response of the biotinylated lipid film is complicated and strongly dependent on the strength of the flow. This observation suggests that the insoluble lipid film plays a key role in flow-induced 2D protein crystallization.
Acoustic concentration of particles in fluid flow
Ward, Michael D.; Kaduchak, Gregory
2010-11-23
An apparatus for acoustic concentration of particles in a fluid flow includes a substantially acoustically transparent membrane and a vibration generator that define a fluid flow path therebetween. The fluid flow path is in fluid communication with a fluid source and a fluid outlet and the vibration generator is disposed adjacent the fluid flow path and is capable of producing an acoustic field in the fluid flow path. The acoustic field produces at least one pressure minima in the fluid flow path at a predetermined location within the fluid flow path and forces predetermined particles in the fluid flow path to the at least one pressure minima.
Evolution of vortices in 2D boundary layer and in the Couette flow
NASA Astrophysics Data System (ADS)
Zametaev, Vladimir B.; Gorbushin, Anton R.
2016-10-01
A 2D incompressible laminar boundary layer and the Couette flow having the low velocity fluctuations are considered using asymptotic methods at high Reynolds number. Two classes of solutions for the first order inviscid perturbations have been derived. The integral-differential equation with initial data describing evolution of vortices in time have been solved numerically. It was found that the discontinuities are formed in a smooth solution for a vertical velocity component with the time increase. This first type solution explains instability mechanism in the Couette flow. The second class of solutions contains a singularity at the boundary layer bottom which reminds a source-sink with a variable intensity. The singularity can absorb the fluid from the main part of the boundary layer and eject it back with a possibly "new" vorticity.
Simulation of abrasive flow machining process for 2D and 3D mixture models
NASA Astrophysics Data System (ADS)
Dash, Rupalika; Maity, Kalipada
2015-12-01
Improvement of surface finish and material removal has been quite a challenge in a finishing operation such as abrasive flow machining (AFM). Factors that affect the surface finish and material removal are media viscosity, extrusion pressure, piston velocity, and particle size in abrasive flow machining process. Performing experiments for all the parameters and accurately obtaining an optimized parameter in a short time are difficult to accomplish because the operation requires a precise finish. Computational fluid dynamics (CFD) simulation was employed to accurately determine optimum parameters. In the current work, a 2D model was designed, and the flow analysis, force calculation, and material removal prediction were performed and compared with the available experimental data. Another 3D model for a swaging die finishing using AFM was simulated at different viscosities of the media to study the effects on the controlling parameters. A CFD simulation was performed by using commercially available ANSYS FLUENT. Two phases were considered for the flow analysis, and multiphase mixture model was taken into account. The fluid was considered to be a
CAS2D: FORTRAN program for nonrotating blade-to-blade, steady, potential transonic cascade flows
NASA Technical Reports Server (NTRS)
Dulikravich, D. S.
1980-01-01
An exact, full-potential-equation (FPE) model for the steady, irrotational, homentropic and homoenergetic flow of a compressible, homocompositional, inviscid fluid through two dimensional planar cascades of airfoils was derived, together with its appropriate boundary conditions. A computer program, CAS2D, was developed that numerically solves an artificially time-dependent form of the actual FPE. The governing equation was discretized by using type-dependent, rotated finite differencing and the finite area technique. The flow field was discretized by providing a boundary-fitted, nonuniform computational mesh. The mesh was generated by using a sequence of conforming mapping, nonorthogonal coordinate stretching, and local, isoparametric, bilinear mapping functions. The discretized form of the FPE was solved iteratively by using successive line overrelaxation. The possible isentropic shocks were correctly captured by adding explicitly an artificial viscosity in a conservative form. In addition, a three-level consecutive, mesh refinement feature makes CAS2D a reliable and fast algorithm for the analysis of transonic, two dimensional cascade flows.
Template Matching Using a Fluid Flow Model
NASA Astrophysics Data System (ADS)
Newman, William Curtis
Template matching is successfully used in machine recognition of isolated spoken words. In these systems a word is broken into frames (20 millisecond time slices) and the spectral characteristics of each frame are found. Thus, each word is represented as a 2-dimensional (2-D) function of spectral characteristic and frame number. An unknown word is recognized by matching its 2-D representation to previously stored example words, or templates, also in this 2-D form. A new model for this matching step will be introduced. The 2-D representations of the template and unknown are used to determine the shape of a volume of viscous fluid. This volume is broken up into many small elements. The unknown is changed into the template by allowing flows between the element boundaries. Finally the match between the template and unknown is determined by calculating a weighted squared sum of the flow values. The model also allows the relative flow resistance between the element boundaries to be changed. This is useful for characterizing the important features of a given template. The flow resistances are changed according to the gradient of a simple performance function. This performance function is evaluated using a set of training samples provided by the user. The model is applied to isolated word and single character recognition tasks. Results indicate the applications where this model works best.
Relaminarization of fluid flows
NASA Technical Reports Server (NTRS)
Narasimha, R.; Sreenivasan, K. R.
1979-01-01
The mechanisms of the relaminarization of turbulent flows are investigated with a view to establishing any general principles that might govern them. Three basic archetypes of reverting flows are considered: the dissipative type, the absorptive type, and the Richardson type exemplified by a turbulent boundary layer subjected to severe acceleration. A number of other different reverting flows are then considered in the light of the analysis of these archetypes, including radial Poiseuille flow, convex boundary layers, flows reverting by rotation, injection, and suction, as well as heated horizontal and vertical gas flows. Magnetohydrodynamic duct flows are also examined. Applications of flow reversion for turbulence control are discussed.
Fluid Flow Phenomena during Welding
Zhang, Wei
2011-01-01
MOLTEN WELD POOLS are dynamic. Liquid in the weld pool in acted on by several strong forces, which can result in high-velocity fluid motion. Fluid flow velocities exceeding 1 m/s (3.3 ft/s) have been observed in gas tungsten arc (GTA) welds under ordinary welding conditions, and higher velocities have been measured in submerged arc welds. Fluid flow is important because it affects weld shape and is related to the formation of a variety of weld defects. Moving liquid transports heat and often dominates heat transport in the weld pool. Because heat transport by mass flow depends on the direction and speed of fluid motion, weld pool shape can differ dramatically from that predicted by conductive heat flow. Temperature gradients are also altered by fluid flow, which can affect weld microstructure. A number of defects in GTA welds have been attributed to fluid flow or changes in fluid flow, including lack of penetration, top bead roughness, humped beads, finger penetration, and undercutting. Instabilities in the liquid film around the keyhole in electron beam and laser welds are responsible for the uneven penetration (spiking) characteristic of these types of welds.
Dynamics of fluid mixing in separated flows
NASA Astrophysics Data System (ADS)
Leder, A.
1991-05-01
Separated flows at high Re (>103) are highly turbulent. In some situations the turbulence generation and mixing processes associated with flow separation are desirable, e.g., in heat exchangers or in many chemical engineering applications. In others, e.g., stalled airfoils, separation must be avoided as it causes loss in pressure and kinetic energy. To control the phenomenon effectively, physical mechanisms of flow separation and related aspects, such as the growth of flow instabilities in shear layers, the process of vortex formation, and the dynamics of fluid mixing in recirculating flow regions, must be understood. In many cases numerical procedures, e.g., Navier-Stokes calculations including k-ɛ turbulence modeling, fail to predict real physical mechanisms in separated flows.1,2 Separated flows in the lee of bluff bodies have been studied for many years.3,4 However, accurate measurements of the magnitude and direction of velocities and the magnitude of the terms of the Reynolds stress tensor have been restricted by the unsuitability of the hot-wire anemometer in recirculating flows. The development of the pulsed-wire anemometer, flying hot-wire anemometer, and laser-Doppler anemometry (LDA) allows more reliable measurements also in turbulent separated flows.5-8 The aim of this paper is to investigate the dynamics of undisturbed fluid mixing in separated regions of 2-D, incompressible flows with visualization techniques and LDA. Measurements were performed with a vertical flat plate model, mounted in a closed-circuit wind tunnel at low blockage ratio. Because of the noninvasive character, optical techniques like LDA are more suitable to analyze complex fluid motions than pulsed-wire and flying-wire anemometry. The LDA system used to investigate turbulent flow structures consists of a two-channel version operating in backscatter mode and a specifically developed phase detector to extract phase-averaged information from recorded measurement ensembles.9 Endplates
Nieber, J.L.; Friedel, M.J.; Munir, H.M.
1994-01-01
This information circular describes a computer program called VARSAT2D, a comprehensive unsaturated fluid flow simulator developed by the U.S. Bureau of Mines. VARSAT2D solves for either a vertical or horizontal, transient or steady-state solution in variably saturated, heterogeneous, anisotropic porous media using the Galerkin finite-element approach. Simplex triangular elements are used. Moisture retention characteristics are described by specifying either the Brooks and Corey, Brutsaert, or Van Genuchten power functions, with hysteresis described using the Maulem independent domain model. Boundary conditions may include any combination of time-varying seepage, pressure along solution domain boundaries and/or at internal node points, unit hydraulic gradient at the lower boundary, and a uniform source and/or sink. The program should be a welcome addition for mining and environmental hydrologists, researchers, and engineers interested in modeling unsaturated fluid flow.
COYOTE: A computer program for 2-D reactive flow simulations
Cloutman, L.D.
1990-04-01
We describe the numerical algorithm used in the COYOTE two- dimensional, transient, Eulerian hydrodynamics program for reactive flows. The program has a variety of options that provide capabilities for a wide range of applications, and it is designed to be robust and relatively easy to use while maintaining adequate accuracy and efficiency to solve realistic problems. It is based on the ICE method, and it includes a general species and chemical reaction network for simulating reactive flows. It also includes swirl, turbulence transport models, and a nonuniform mesh capability. We describe several applications of the program. 33 refs., 4 figs.
2D VARIABLY SATURATED FLOWS: PHYSICAL SCALING AND BAYESIAN ESTIMATION
A novel dimensionless formulation for water flow in two-dimensional variably saturated media is presented. It shows that scaling physical systems requires conservation of the ratio between capillary forces and gravity forces. A direct result of this finding is that for two phys...
Insertable fluid flow passage bridgepiece and method
Jones, Daniel O.
2000-01-01
A fluid flow passage bridgepiece for insertion into an open-face fluid flow channel of a fluid flow plate is provided. The bridgepiece provides a sealed passage from a columnar fluid flow manifold to the flow channel, thereby preventing undesirable leakage into and out of the columnar fluid flow manifold. When deployed in the various fluid flow plates that are used in a Proton Exchange Membrane (PEM) fuel cell, bridgepieces of this invention prevent mixing of reactant gases, leakage of coolant or humidification water, and occlusion of the fluid flow channel by gasket material. The invention also provides a fluid flow plate assembly including an insertable bridgepiece, a fluid flow plate adapted for use with an insertable bridgepiece, and a method of manufacturing a fluid flow plate with an insertable fluid flow passage bridgepiece.
Chang, F.H.; Santee, G.E. Jr.; Mortensen, G.A.; Brockett, G.F.; Gross, M.B.; Silling, S.A.; Belytschko, T.
1981-03-01
This report, the second in a series of reports for RP-1065, describes the second step in the stepwise approach for developing the three-dimensional, nonlinear, fluid/structure interaction methodology to assess the hydroloads on a large PWR during the subcooled portions of a hypothetical LOCA. The second step in the methodology considers enhancements and special modifications to the 2D STEALTH-HYDRO computer program and the 2D WHAMSE computer program. The 2D STEALTH-HYDRO enhancements consist of a fluid-fluid coupling control-volume model and an orifice control-volume model. The enhancements to 2D WHAMSE include elimination of the implicit integration routines, material models, and structural elements not required for the hydroloads application. In addition the logic for coupling the 2D STEALTH-HYDRO computer program to the 2D WHAMSE computer program is discussed.
Flow Solver for Incompressible 2-D Drive Cavity
NASA Technical Reports Server (NTRS)
Kalb, Virginia L.
2008-01-01
This software solves the Navier-Stokes equations for the incompressible driven cavity flow problem. The code uses second-order finite differencing on a staggered grid using the Chorin projection method. The resulting intermediate Poisson equation is efficiently solved using the fast Fourier transform. Time stepping is done using fourth-order Runge-Kutta for stability at high Reynolds numbers. Features include check-pointing, periodic field snapshots, ongoing reporting of kinetic energy and changes between time steps, time histories at selected points, and optional streakline generation.
Roton Excitations and the Fluid-Solid Phase Transition in Superfluid 2D Yukawa Bosons
NASA Astrophysics Data System (ADS)
Molinelli, S.; Galli, D. E.; Reatto, L.; Motta, M.
2016-10-01
We compute several ground-state properties and the dynamical structure factor of a zero-temperature system of Bosons interacting with the 2D screened Coulomb (2D-SC) potential. We resort to the exact shadow path integral ground state (SPIGS) quantum Monte Carlo method to compute the imaginary-time correlation function of the model, and to the genetic algorithm via falsification of theories (GIFT) to retrieve the dynamical structure factor. We provide a detailed comparison of ground-state properties and collective excitations of 2D-SC and ^4He atoms. The roton energy of the 2D-SC system is an increasing function of density, and not a decreasing one as in ^4He. This result is in contrast with the view that the roton is the soft mode of the fluid-solid transition. We uncover a remarkable quasi-universality of backflow and of other properties when expressed in terms of the amount of short-range order as quantified by the height of the first peak of the static structure factor.
Roton Excitations and the Fluid-Solid Phase Transition in Superfluid 2D Yukawa Bosons
NASA Astrophysics Data System (ADS)
Molinelli, S.; Galli, D. E.; Reatto, L.; Motta, M.
2016-05-01
We compute several ground-state properties and the dynamical structure factor of a zero-temperature system of Bosons interacting with the 2D screened Coulomb (2D-SC) potential. We resort to the exact shadow path integral ground state (SPIGS) quantum Monte Carlo method to compute the imaginary-time correlation function of the model, and to the genetic algorithm via falsification of theories (GIFT) to retrieve the dynamical structure factor. We provide a detailed comparison of ground-state properties and collective excitations of 2D-SC and ^4 He atoms. The roton energy of the 2D-SC system is an increasing function of density, and not a decreasing one as in ^4 He. This result is in contrast with the view that the roton is the soft mode of the fluid-solid transition. We uncover a remarkable quasi-universality of backflow and of other properties when expressed in terms of the amount of short-range order as quantified by the height of the first peak of the static structure factor.
Fluid Physics of Foam Evolution and Flow
NASA Technical Reports Server (NTRS)
Aref, H.; Thoroddsen, S. T.; Sullivan, J. M.
2003-01-01
The grant supported theoretical, numerical and experimental work focused on the elucidation of the fluid physics of foam structure, evolution and flow. The experimental work concentrated on these subject areas: (a) Measurements of the speed of reconnections within a foam; (b) statistics of bubble rearrangements; and (c) three-dimensional reconstruction of the foam structure. On the numerical simulation and theory side our efforts concentrated on the subjects: (a) simulation techniques for 2D and 3D foams; (b) phase transition in a compressible foam; and (c) TCP structures.
Rotational fluid flow experiment
NASA Technical Reports Server (NTRS)
1991-01-01
This project which began in 1986 as part of the Worcester Polytechnic Institute (WPI) Advanced Space Design Program focuses on the design and implementation of an electromechanical system for studying vortex behavior in a microgravity environment. Most of the existing equipment was revised and redesigned by this project team, as necessary. Emphasis was placed on documentation and integration of the electrical and mechanical subsystems. Project results include reconfiguration and thorough testing of all hardware subsystems, implementation of an infrared gas entrainment detector, new signal processing circuitry for the ultrasonic fluid circulation device, improved prototype interface circuits, and software for overall control of experiment operation.
Integrated Coupling of Surface and Subsurface Flow with HYDRUS-2D
NASA Astrophysics Data System (ADS)
Hartmann, Anne; Šimůnek, Jirka; Wöhling, Thomas; Schütze, Niels
2016-04-01
of various model parameters on simulated overland flow (while considering or neglecting the effects of subsurface flow) was carried out to verify the applicability of the model to different problems. The model produced reasonable results in describing the diffusion wave approximation and its interactions with subsurface flow processes. The model could handle coupled surface-subsurface processes for conditions involving runoff generated by infiltration excess, saturation excess, or run-on, as well as a combination of these runoff generating processes. Several standard features of the HYDRUS 2D model, such as root water uptake and evaporation from the soil surface, as well as evaporation from runoff layer, can still be considered by the new model. The code required relatively small time steps when overland flow was active, resulting in long simulation times, and sometimes produced poor mass balance. The model nevertheless showed potential to be a useful tool for addressing various issues related to irrigation research and to natural generation of overland flow at the hillslope scale. Maxwell, R., Putti, M., Meyerhoff, S., Delf, J., Ferguson, I., Ivanov, V., Kim, J., Kolditz, O., Kollet, S., Kumar, M., Lopez, S., Niu, J., Paniconi, C., Park, Y.-J., Phanikumar, M., Shen, C., Sudicky, E., and Sulis, M. (2014). Surface-subsurface model intercomparison: A first set of benchmark results to diagnose integrated hydrology and feedbacks. Water Resourc. Res., 50:1531-1549. Šimůnek, J., van Genuchten, M. T., and Šejna, M. (2011). The HYDRUS Software Package for Simulating Two- and Three-Dimensional Movement of Water, Heat, and Multiple Solutes in Variably-Saturated Media. Technical Manual, Version 2.0, PC Progress, Prague, Czech Republic. Takizawa, K., Bazilevs Y., Tezduyar, T. E., Long, C.C., Marsden, A. L. and Schjodt.K., Patient-Specific Cardiovascular Fluid Mechanics Analysis with the ST and ALE-VMS Method in Idelsohn, S. R. (2014). Numerical Simulations of Coupled Problems
NASA Technical Reports Server (NTRS)
Kapoor, Kamlesh; Anderson, Bernhard H.; Shaw, Robert J.
1994-01-01
A two-dimensional computational code, PRLUS2D, which was developed for the reactive propulsive flows of ramjets and scramjets, was validated for two-dimensional shock-wave/turbulent-boundary-layer interactions. The problem of compression corners at supersonic speeds was solved using the RPLUS2D code. To validate the RPLUS2D code for hypersonic speeds, it was applied to a realistic hypersonic inlet geometry. Both the Baldwin-Lomax and the Chien two-equation turbulence models were used. Computational results showed that the RPLUS2D code compared very well with experimentally obtained data for supersonic compression corner flows, except in the case of large separated flows resulting from the interactions between the shock wave and turbulent boundary layer. The computational results compared well with the experiment results in a hypersonic NASA P8 inlet case, with the Chien two-equation turbulence model performing better than the Baldwin-Lomax model.
A Numerical Analysis of Sloshing Fluid in 2D Tanks with Baffles
NASA Astrophysics Data System (ADS)
Wu, C. H.; Chen, B. F.
2011-09-01
A tuned liquid damper (TLD) is one possible damping device of tall buildings under wind and earthquake excitations. A 2D tank with a vertically tank bottom-mounted baffle under horizontal excitation is studied in this work. The combination of time-independent finite difference method [1-3] and one-dimensional ghost cell approach was implemented to solve liquid sloshing in the baffled tank. The correlation between the movement of baffles and flow field due to liquid sloshing might to the clue to investigate the evolution of vortices around the baffle tip. We categorize the interaction process of vortices evolution into three phases: (1) Formation of separated shear layer and generation of vortices; (2) Formation of a vertical jet and shedding of vortices; (3) Interaction between shedding vortices and sloshing flow: the generation of snaky flow.
NASA Astrophysics Data System (ADS)
Sanmiguel-Rojas, Enrique; Ortega-Casanova, Joaquin; del Pino, Carlos; Fernandez-Feria, Ramon
2004-11-01
A method for generating a non-uniform cartesian grid for irregular two-dimensional (2D) geometries such that all the boundary points are regular mesh points is given. The resulting non-uniform grid is used to discretize the Navier-Stokes equations for 2D incompressible viscous flows using finite difference approximations. To that end, finite-difference approximations of the derivatives on a non-uniform mesh are given. We test the method with two different examples: the shallow water flow on a lake with irregular contour, and the pressure driven flow through an irregular array of circular cylinders.
Fluctuating Pressure Data from 2-D Nozzle Cold Flow Tests (Dual Bell)
NASA Technical Reports Server (NTRS)
Nesman, Tomas E.
2001-01-01
Rocket engines nozzle performance changes as a vehicle climbs through the atmosphere. An altitude compensating nozzle, ACN, is intended to improve on a fixed geometry bell nozzle that performs at optimum at only one trajectory point. In addition to nozzle performance, nozzle transient loads are an important consideration. Any nozzle experiences large transient toads when shocks pass through the nozzle at start and shutdown. Additional transient toads will occur at transitional flow conditions. The objectives of cold flow nozzle testing at MSFC are CFD benchmark / calibration and Unsteady flow / sideloads. Initial testing performed with 2-D inserts to 14" transonic wind tunnel. Recent review of 2-D data in preparation for nozzle test facility 3-D testing. This presentation shows fluctuating pressure data and some observations from 2-D dual-bell nozzle cold flow tests.
NASA Astrophysics Data System (ADS)
Meienberg, Kyle; Papaioannou, John; Park, Cheol; Glaser, Matt; Maclennan, Joe; Clark, Noel; Kuriabova, Tatiana; Powers, Thomas
2015-03-01
We observe directly the diffusion and aggregation of nanoparticles (buckyballs) embedded in thin, freely suspended smectic A liquid crystal films of 8CB using reflected light microscopy Individual buckyballs, initially homogeneously dispersed in the film, are too small to see but after some hours form nanoscale clusters. These, in turn, aggregate to form extended, micron-scale objects which diffuse in the film, enabling the measurement of 2D rotational and translational mobilities of inclusions with a wide variety of different shapes. The experimental mobilities are compared with predictions of the extended Saffman-Delbrück (SD) model used successfully to describe the diffusion of micron-sized objects in thin fluid membranes in a variety of experimental systems. This work was supported by NASA Grant No. NNX-13AQ81G, NSF MRSEC Grant No. DMR-0820579, and by NSF Grant No. CBET-0854108.
Solution-Adaptive Program for Computing 2D/Axi Viscous Flow
NASA Technical Reports Server (NTRS)
Wood, William A.
2003-01-01
A computer program solves the Navier- Stokes equations governing the flow of a viscous, compressible fluid in an axisymmetric or two-dimensional (2D) setting. To obtain solutions more accurate than those generated by prior such programs that utilize regular and/or fixed computational meshes, this program utilizes unstructured (that is, irregular triangular) computational meshes that are automatically adapted to solutions. The adaptation can refine to regions of high change in gradient or can be driven by a novel residual minimization technique. Starting from an initial mesh and a corresponding data structure, the adaptation of the mesh is controlled by use of minimization functional. Other improvements over prior such programs include the following: (1) Boundary conditions are imposed weakly; that is, following initial specification of solution values at boundary nodes, these values are relaxed in time by means of the same formulations as those used for interior nodes. (2) Eigenvalues are limited in order to suppress expansion shocks. (3) An upwind fluctuation-splitting distribution scheme applied to inviscid flux requires fewer operations and produces less artificial dissipation than does a finite-volume scheme, leading to greater accuracy of solutions.
Thin soap films are quasi-2D fluids and thick soap films are not
NASA Astrophysics Data System (ADS)
Vivek, Skanda; Weeks, Eric R.
2012-11-01
We use microrheology to measure the 2D (interfacial) viscosity of soap films. Microrheology uses the diffusive motion of tracer particles suspended in the soap film to infer the viscosity. Our particles are colloids of diameter d = 0 . 5 μm. We measure the interfacial viscosity of soap films ranging in thickness from h = 0 . 5 μm to 2.0 μm. The thickness of these films is measured using the infrared absorbance of the water based soap films, based on a previous setup [X. L. Wu, R. Levine, M. A. Rutgers, H. Kellay, W.I. Goldburg, Rev. Sci. Inst. 72, 2467 (2001)]. From the knowledge of the film thickness and the viscosity of the fluid used to make the film, we can infer the interfacial viscosity due to the surfactant layers at the film/air interfaces. Consistent results are found for thin films (h / d < 3) whereas for thicker films inconsistent and unphysical results are found indicating 3D effects begin to play a role. The transition from 2D to 3D properties as a function of h / d is sharp.
Ferroelectric Fluid Flow Control Valve
NASA Technical Reports Server (NTRS)
Jalink, Antony, Jr. (Inventor); Hellbaum, Richard F. (Inventor); Rohrbach, Wayne W. (Inventor)
1999-01-01
An active valve is controlled and driven by external electrical actuation of a ferroelectric actuator to provide for improved passage of the fluid during certain time periods and to provide positive closure of the valve during other time periods. The valve provides improved passage in the direction of flow and positive closure in the direction against the flow. The actuator is a dome shaped internally prestressed ferroelectric actuator having a curvature, said dome shaped actuator having a rim and an apex. and a dome height measured from a plane through said rim said apex that varies with an electric voltage applied between an inside and an outside surface of said dome shaped actuator.
Fluid flow electrophoresis in space
NASA Technical Reports Server (NTRS)
Griffin, R. N.
1975-01-01
Four areas relating to free-flow electrophoresis in space were investigated. The first was the degree of improvement over earthbound operations that might be expected. The second area of investigation covered the problems in developing a flowing buffer electrophoresis apparatus. The third area of investigation was the problem of testing on the ground equipment designed for use in space. The fourth area of investigation was the improvement to be expected in space for purification of biologicals. The results of some ground-based experiments are described. Other studies included cooling requirements in space, fluid sealing techniques, and measurement of voltage drop across membranes.
Extension and application of the Preissmann slot model to 2D transient mixed flows
NASA Astrophysics Data System (ADS)
Maranzoni, Andrea; Dazzi, Susanna; Aureli, Francesca; Mignosa, Paolo
2015-08-01
This paper presents an extension of the Preissmann slot concept for the modeling of highly transient two-dimensional (2D) mixed flows. The classic conservative formulation of the 2D shallow water equations for free surface flows is adapted by assuming that two fictitious vertical slots, aligned along the two Cartesian plane directions and normally intersecting, are added on the ceiling of each integration element. Accordingly, transitions between free surface and pressurized flow can be handled in a natural and straightforward way by using the same set of governing equations. The opportunity of coupling free surface and pressurized flows is actually useful not only in one-dimensional (1D) problems concerning sewer systems but also for modeling 2D flooding phenomena in which the pressurization of bridges, culverts, or other crossing hydraulic structures can be expected. Numerical simulations are performed by using a shock-capturing MUSCL-Hancock finite volume scheme combined with the FORCE (First-Order Centred) solver for the evaluation of the numerical fluxes. The validation of the mathematical model is accomplished on the basis of both exact solutions of 1D discontinuous initial value problems and reference radial solutions of idealized test cases with cylindrical symmetry. Furthermore, the capability of the model to deal with practical field-scale applications is assessed by simulating the transit of a bore under an arch bridge. Numerical results show that the proposed model is suitable for the prediction of highly transient 2D mixed flows.
Cerebrospinal fluid flow in adults.
Bradley, William G; Haughton, Victor; Mardal, Kent-Andre
2016-01-01
This chapter uses magnetic resonance imaging phase-contrast cerebrospinal fluid (CSF) flow measurements to predict which clinical normal-pressure hydrocephalus (NPH) patients will respond to shunting as well as which patients with Chiari I are likely to develop symptoms of syringomyelia. Symptomatic NPH patients with CSF flow (measured as the aqueductal CSF stroke volume) which is shown to be hyperdynamic (defined as twice normal) are quite likely to respond to ventriculoperitoneal shunting. The hyperdynamic CSF flow results from normal systolic brain expansion compressing the enlarged ventricles. When atrophy occurs, there is less brain expansion, decreased aqueductal CSF flow, and less likelihood of responding to shunting. It appears that NPH is a "two-hit" disease, starting as benign external hydrocephalus in infancy, followed by deep white-matter ischemia in late adulthood, which causes increased resistance to CSF outflow through the extracellular space of the brain. Using computational flow dynamics (CFD), CSF flow can be modeled at the foramen magnum and in the upper cervical spine. As in the case of NPH, hyperdynamic CSF flow appears to cause the signs and symptoms in Chiari I and can provide an additional indication for surgical decompression. CFD can also predict CSF pressures over the cardiac cycle. It has been hypothesized that elevated pressure pulses may be a significant etiologic factor in some cases of syringomyelia. PMID:27432684
NASA Astrophysics Data System (ADS)
Kazemifar, F.; Blois, G.; Kyritsis, D. C.; Christensen, K. T.
2014-11-01
We study the multiphase flow of water and liquid/supercritical CO2 in 2D porous micromodels, with the goal of developing a more complete understanding of pore-scale flow dynamics for the scenario of geological sequestration of carbon dioxide. Fluorescent microscopy and the micro-PIV technique are employed to simultaneously visualize both phases and obtain the velocity field in the aqueous phase. This technique provides a powerful tool for studying such flow systems and the results give valuable insight into flow processes at the pore scale. The fluid-fluid interface curvature from the images can be used to estimate the local capillary pressure. The velocity measurements illustrate active and passive flow pathways and circulation regions near the fluid-fluid interfaces induced by shear. Thin water films observed on the solid surfaces confirm the hydrophilic nature of the micromodels. The velocity of the said films is measured by particle tracking.
NASA Astrophysics Data System (ADS)
Kazemifar, F.; Blois, G.; Kyritsis, D. C.; Christensen, K. T.
2014-12-01
We study the multiphase flow of water and liquid/supercritical CO2 in 2D porous micromodels, with the goal of developing a more complete understanding of pore-scale flow dynamics for the scenario of geological sequestration of carbon dioxide. Fluorescent microscopy and the microscopic particle image velocimetry (micro-PIV) technique are employed to simultaneously visualize both phases and obtain the velocity field in the aqueous phase. This technique provides a powerful tool for studying such flow systems and the results give valuable insight into flow processes at the pore scale. The fluid-fluid interface curvature from the images can be used to estimate the local capillary pressure. The velocity measurements illustrate active and passive flow pathways and circulation regions near the fluid-fluid interfaces induced by shear. Thin water films observed on the solid surfaces confirm the hydrophilic nature of the micromodels. The velocity of the said films is measured by particle tracking.
The Sobolev Stability Threshold for 2D Shear Flows Near Couette
NASA Astrophysics Data System (ADS)
Bedrossian, Jacob; Vicol, Vlad; Wang, Fei
2016-08-01
We consider the 2D Navier-Stokes equation on T × R , with initial datum that is ɛ -close in H^N to a shear flow (U(y), 0), where Vert U(y) - yVert _{H^{N+4}} ≪ 1 and N>1 . We prove that if ɛ ≪ ν ^{1/2} , where ν denotes the inverse Reynolds number, then the solution of the Navier-Stokes equation remains ɛ -close in H^1 to (e^{t ν partial _{yy}}U(y),0) for all t>0 . Moreover, the solution converges to a decaying shear flow for times t ≫ ν ^{-1/3} by a mixing-enhanced dissipation effect, and experiences a transient growth of gradients. In particular, this shows that the stability threshold in finite regularity scales no worse than ν ^{1/2} for 2D shear flows close to the Couette flow.
Evaluation of 2D shallow-water model for spillway flow with a complex geometry
Technology Transfer Automated Retrieval System (TEKTRAN)
Although the two-dimensional (2D) shallow water model is formulated based on several assumptions such as hydrostatic pressure distribution and vertical velocity is negligible, as a simple alternative to the complex 3D model, it has been used to compute water flows in which these assumptions may be ...
Parallelized CCHE2D flow model with CUDA Fortran on Graphics Process Units
Technology Transfer Automated Retrieval System (TEKTRAN)
This paper presents the CCHE2D implicit flow model parallelized using CUDA Fortran programming technique on Graphics Processing Units (GPUs). A parallelized implicit Alternating Direction Implicit (ADI) solver using Parallel Cyclic Reduction (PCR) algorithm on GPU is developed and tested. This solve...
Use of finite volume radiation for predicting the Knudsen minimum in 2D channel flow
Malhotra, Chetan P.; Mahajan, Roop L.
2014-12-09
In an earlier paper we employed an analogy between surface-to-surface radiation and free-molecular flow to model Knudsen flow through tubes and onto planes. In the current paper we extend the analogy between thermal radiation and molecular flow to model the flow of a gas in a 2D channel across all regimes of rarefaction. To accomplish this, we break down the problem of gaseous flow into three sub-problems (self-diffusion, mass-motion and generation of pressure gradient) and use the finite volume method for modeling radiation through participating media to model the transport in each sub-problem as a radiation problem. We first model molecular self-diffusion in the stationary gas by modeling the transport of the molecular number density through the gas starting from the analytical asymptote for free-molecular flow to the kinetic theory limit of gaseous self-diffusion. We then model the transport of momentum through the gas at unit pressure gradient to predict Poiseuille flow and slip flow in the 2D gas. Lastly, we predict the generation of pressure gradient within the gas due to molecular collisions by modeling the transport of the forces generated due to collisions per unit volume of gas. We then proceed to combine the three radiation problems to predict flow of the gas over the entire Knudsen number regime from free-molecular to transition to continuum flow and successfully capture the Knudsen minimum at Kn ∼ 1.
Transient Wellbore Fluid Flow Model
1982-04-06
WELBORE is a code to solve transient, one-dimensional two-phase or single-phase non-isothermal fluid flow in a wellbore. The primary thermodynamic variables used in solving the equations are the pressure and specific energy. An equation of state subroutine provides the density, quality, and temperature. The heat loss out of the wellbore is calculated by solving a radial diffusion equation for the temperature changes outside the bore. The calculation is done at each node point in themore » wellbore.« less
Simulation of the flow and mass transfer for KDP crystals undergoing 2D translation during growth
NASA Astrophysics Data System (ADS)
Zhou, Chuan; Li, Mingwei; Hu, Zhitao; Yin, Huawei; Wang, Bangguo; Cui, Qidong
2016-09-01
In this study, a novel motion mode for crystals during growth, i.e., 2D translation, is proposed. Numerical simulations of flow and mass transfer are conducted for the growth of large-scale potassium dihydrogen phosphate (KDP) crystals subjected to the new motion mode. Surface supersaturation and shear stress are obtained as functions of the translational velocity, distance, size, orientation of crystals. The dependence of these two parameters on the flow fields around the crystals is also discussed. The thicknesses of the solute boundary layer varied with translational velocity are described. The characteristics of solution flow and surface supersaturation distribution are summarized, where it suggests that the morphological stability of a crystal surface can be enhanced if the proposed 2D translation is applied to crystal growth.
A depth-averaged 2-D model of flow and sediment transport in coastal waters
NASA Astrophysics Data System (ADS)
Sanchez, Alejandro; Wu, Weiming; Beck, Tanya M.
2016-11-01
A depth-averaged 2-D model has been developed to simulate unsteady flow and nonuniform sediment transport in coastal waters. The current motion is computed by solving the phase-averaged 2-D shallow water flow equations reformulated in terms of total-flux velocity, accounting for the effects of wave radiation stresses and general diffusion or mixing induced by current, waves, and wave breaking. The cross-shore boundary conditions are specified by assuming fully developed longshore current and wave setup that are determined using the reduced 1-D momentum equations. A 2-D wave spectral transformation model is used to calculate the wave height, period, direction, and radiation stresses, and a surface wave roller model is adopted to consider the effects of surface roller on the nearshore currents. The nonequilibrium transport of nonuniform total-load sediment is simulated, considering sediment entrainment by current and waves, the lag of sediment transport relative to the flow, and the hiding and exposure effect of nonuniform bed material. The flow and sediment transport equations are solved using an implicit finite volume method on a variety of meshes including nonuniform rectangular, telescoping (quadtree) rectangular, and hybrid triangular/quadrilateral meshes. The flow and wave models are integrated through a carefully designed steering process. The model has been tested in three field cases, showing generally good performance.
Fluid flows around nanoelectromechanical resonators
NASA Astrophysics Data System (ADS)
Svitelskiy, O.; Sauer, V.; Liu, N.; Vick, D.; Cheng, K. M.; Freeman, M. R.; Hiebert, W. K.
2012-02-01
To explore properties of fluids on a nanosize scale, we fabricated by a standard top down technique a series of nanoelectromechanical resonators (cantilevers and bridges) with widths w and thicknesses t from 100 to 500 nm; lengths l from 0.5 to 12 micron; and resonant frequencies f from 10 to 400 MHz. For the sake of purity of the experiment, the undercut in the widest (w=500 nm) devices was eliminated using the focused ion beam. To model the fluidic environment the devices were placed in the atmosphere of compressed gases (He, N2, CO2, Ar, H2) at pressures from vacuum up to 20 MPa, and in liquid CO2; their properties were studied by the real time stroboscopic optical interferometry. Thus, we fully explored the Newtonian and non-Newtonian flow damping models. Observing free molecular flow extending above atmospheric pressure, we find the fluid relaxation time model to be the best approximation throughout, but not beyond, the non-Newtonian regime, and both, vibrating spheres model and the model based on Knudsen number, to be valid in the viscous limit.
NASA Astrophysics Data System (ADS)
Kolb, Evelyne; Algarra, Nicolas; Vandembroucq, Damien; Lazarus, Arnaud
2015-11-01
We propose a new fluid/structure interaction in the unusual case of a dense granular medium flowing against an elastic fibre acting as a flexible intruder. We experimentally studied the deflection of a mylar flexible beam clamped at one side, the other free side facing a 2D granular flow in a horizontal cell moving at a constant velocity. We investigated the reconfiguration of the fibre as a function of the fibre's rigidity and of the granular packing fraction close but below the jamming in 2D. Imposing the fibre geometry like its length or thickness sets the critical buckling force the fibre is able to resist if it was not supported by lateral grains, while increasing the granular packing fraction might laterally consolidate the fibre and prevent it from buckling. But on the other side, the approach to jamming transition by increasing the granular packing fraction will be characterized by a dramatically increasing size of the cluster of connected grains forming a solid block acting against the fibre, which might promote the fibre's deflection. Thus, we investigated the granular flow fields, the fibre's deflexion as well as the forces experienced by the fibre and compared them with theoretical predictions from elastica for different loadings along the fibre. PMMH, CNRS UMR 7636, UPMC, ESPCI-ParisTech, 10 rue Vauquelin, 75231 Paris Cedex 05, France.
Anomalous diffusion of an ellipsoid in quasi-2D active fluids
NASA Astrophysics Data System (ADS)
Peng, Yi; Yang, Ou; Tang, Chao; Cheng, Xiang
Enhanced diffusion of a tracer particle is a unique feature in active fluids. Here, we studied the diffusion of an ellipsoid in a free-standing film of E. coli. Particle diffusion is linearly enhanced at low bacterial concentrations, whereas a non-linear enhancement is observed at high bacterial concentrations due to the giant fluctuation. More importantly, we uncover an anomalous coupling between the translational and rotational degrees of freedom that is strictly prohibited in the classical Brownian diffusion. Combining experiments with theoretical modeling, we show that such an anomaly arises from the stretching flow induced by the force dipole of swimming bacteria. Our work illustrates a novel universal feature of active matter and transforms the understanding of fundamental transport processes in microbiological systems. ACS Petroleum Research Fund #54168-DNI9, NSF Faculty Early Career Development Program, DMR-1452180.
Fluid Flow Experiment for Undergraduate Laboratory.
ERIC Educational Resources Information Center
Vilimpochapornkul, Viroj; Obot, Nsima T.
1986-01-01
The undergraduate fluid mechanics laboratory at Clarkson University consists of three experiments: mixing; drag measurements; and fluid flow and pressure drop measurements. The latter experiment is described, considering equipment needed, procedures used, and typical results obtained. (JN)
Simulation of Pyroclastic Flows of Colima Volcano, Mexico, Using the TITAN2D Program
NASA Astrophysics Data System (ADS)
Rupp, B.; Bursik, M.; Patra, A.; Pitman, B.; Bauer, A.; Nichita, C.; Saucedo, R.; Macias, J.
2003-04-01
A new numerical code for simulating granular avalanches, TITAN2D, was used to model block-and-ash flows from the 1991-1999 eruptions of Colima Volcano, Mexico. The block-and-ash flows were simulated on a gridded Digital Elevation Model(DEM), which was prepared and imported using a standard GIS function library (GRASS). The TITAN2D program is based upon a model for an incompressible Coulomb continuum, a 'shallow-water' granular flow. The conservation equations for mass and momentum are solved with a Coulomb-type friction term at the interface between the granular material and the basal surface. It is assumed that conservation of energy can be neglected to first order because the coarse grain size typical of the basal avalanche results in minimal thermal effects on avalanche propagation. The resulting hyperbolic system of equations is solved using a parallel, adaptive mesh, Godunov scheme. The Message Passing Interface (MPI) API allows for computing on multiple processors, which increases computational power, decreases computing time, and allows the use of large data sets. Adaptive gridding allows for the concentration of computing power on regions of special interest. Mesh refinement captures the leading edge of the avalanche, as well as locations where the topography changes rapidly. Mesh unrefinement is applied where solution values are relatively constant or small. There were thousands of rockfalls and numerous block-and-ash flows during the 1991-1999 eruptions of Colima Volcano, with volumes ranging from a few cubic meters to 10^6 m^3. We have records of numerous flows, which include volume, run out distance, deposit area, and in some cases a videotape record of flow propagation. The flows originated from a vent plugging dome, lava flows or minor column collapse. All flows followed cross-slope concavities on the upper edifice, and channels or relative topographic lows on the lower edifice. The flows propagated for distances up to 4 km from the source. We are
Investigation of the effect of wall friction on the flow rate in 2D and 3D Granular Flow
NASA Astrophysics Data System (ADS)
Carballo-Ramirez, Brenda; Pleau, Mollie; Easwar, Nalini; Birwa, Sumit; Shah, Neil; Tewari, Shubha
We have measured the mass flow rate of spherical steel spheres under gravity in vertical, straight-walled 2 and 3-dimensional hoppers, where the flow velocity is controlled by the opening size. Our measurements focus on the role of friction and its placement along the walls of the hopper. In the 2D case, an increase in the coefficient of static friction from μ = 0.2 to 0.6 is seen to decrease the flow rate significantly. We have changed the placement of frictional boundaries/regions from the front and back walls of the 2D hopper to the side walls and floor to investigate the relative importance of the different regions in determining the flow rate. Fits to the Beverloo equation show significant departure from the expected exponent of 1.5 in the case of 2D flow. In contrast, 3D flow rates do not show much dependence on wall friction and its placement. We compare the experimental data to numerical simulations of gravity driven hopper granular flow with varying frictional walls constructed using LAMMPS*. *http://lammps.sandia.gov Supported by NSF MRSEC DMR 0820506.
Fluid flow, mineral reactions, and metasomatism
Ferry, J.M.; Dipple, G.M. )
1991-03-01
A general model that relates fluid flow along a temnperature gradient to chemical reaction in rocks can be used to quantitatively interpret petrologic and geochemical data on metasomatism from ancient flow systems in terms of flow direction and time-integrated fluid flux. The model is applied to regional metamorphism, quartz veins, and a metasomatized ductile fault zone.
Moment Invariants for 2D Flow Fields via Normalization in Detail.
Bujack, Roxana; Hotz, Ingrid; Scheuermann, Gerik; Hitzer, Eckhard
2015-08-01
The analysis of 2D flow data is often guided by the search for characteristic structures with semantic meaning. One way to approach this question is to identify structures of interest by a human observer, with the goal of finding similar structures in the same or other datasets. The major challenges related to this task are to specify the notion of similarity and define respective pattern descriptors. While the descriptors should be invariant to certain transformations, such as rotation and scaling, they should provide a similarity measure with respect to other transformations, such as deformations. In this paper, we propose to use moment invariants as pattern descriptors for flow fields. Moment invariants are one of the most popular techniques for the description of objects in the field of image recognition. They have recently also been applied to identify 2D vector patterns limited to the directional properties of flow fields. Moreover, we discuss which transformations should be considered for the application to flow analysis. In contrast to previous work, we follow the intuitive approach of moment normalization, which results in a complete and independent set of translation, rotation, and scaling invariant flow field descriptors. They also allow to distinguish flow features with different velocity profiles. We apply the moment invariants in a pattern recognition algorithm to a real world dataset and show that the theoretical results can be extended to discrete functions in a robust way. PMID:26357255
Flow Quantification from 2D Phase Contrast MRI in Renal Arteries Using Clustering
NASA Astrophysics Data System (ADS)
Zöllner, Frank G.; Monnsen, Jan Ankar; Lundervold, Arvid; Rørvik, Jarle
We present an approach based on clustering to segment renal arteries from 2D PC Cine MR images to measure blood velocity and flow. Such information are important in grading renal artery stenosis and support the decision on surgical interventions like percutan transluminal angioplasty. Results show that the renal arteries could be extracted automatically and the corresponding velocity profiles could be calculated. Furthermore, the clustering could detect possible phase wrap effects automatically as well as differences in the blood flow patterns within the vessel.
Development of models for the two-dimensional, two-fluid code for sodium boiling NATOF-2D. [LMFBR
Zielinski, R.G.; Kazimi, M.S.
1981-09-01
Several features were incorporated into NATOF-2D, a two-dimensional, two fluid code developed at MIT for the purpose of analysis of sodium boiling transients under LMFBR conditions. They include improved interfacial mass, momentum and energy exchange rate models, and a cell-to-cell radial heat conduction mechanism which was calibrated by simulation of Westinghouse Blanket Heat Transfer Test Program Runs 544 and 545. Finally, a direct method of pressure field solution was implemented into a direct method of pressure field solution was implemented into NATOF-2D, replacing the iterative technique previously available, and resulted in substantially reduced computational costs.
Plane-wave transverse oscillation for high-frame-rate 2-D vector flow imaging.
Lenge, Matteo; Ramalli, Alessandro; Tortoli, Piero; Cachard, Christian; Liebgott, Hervé
2015-12-01
Transverse oscillation (TO) methods introduce oscillations in the pulse-echo field (PEF) along the direction transverse to the ultrasound propagation direction. This may be exploited to extend flow investigations toward multidimensional estimates. In this paper, the TOs are coupled with the transmission of plane waves (PWs) to reconstruct high-framerate RF images with bidirectional oscillations in the pulse-echo field. Such RF images are then processed by a 2-D phase-based displacement estimator to produce 2-D vector flow maps at thousands of frames per second. First, the capability of generating TOs after PW transmissions was thoroughly investigated by varying the lateral wavelength, the burst length, and the transmission frequency. Over the entire region of interest, the generated lateral wavelengths, compared with the designed ones, presented bias and standard deviation of -3.3 ± 5.7% and 10.6 ± 7.4% in simulations and experiments, respectively. The performance of the ultrafast vector flow mapping method was also assessed by evaluating the differences between the estimated velocities and the expected ones. Both simulations and experiments show overall biases lower than 20% when varying the beam-to-flow angle, the peak velocity, and the depth of interest. In vivo applications of the method on the common carotid and the brachial arteries are also presented. PMID:26670852
Plane-wave transverse oscillation for high-frame-rate 2-D vector flow imaging.
Lenge, Matteo; Ramalli, Alessandro; Tortoli, Piero; Cachard, Christian; Liebgott, Hervé
2015-12-01
Transverse oscillation (TO) methods introduce oscillations in the pulse-echo field (PEF) along the direction transverse to the ultrasound propagation direction. This may be exploited to extend flow investigations toward multidimensional estimates. In this paper, the TOs are coupled with the transmission of plane waves (PWs) to reconstruct high-framerate RF images with bidirectional oscillations in the pulse-echo field. Such RF images are then processed by a 2-D phase-based displacement estimator to produce 2-D vector flow maps at thousands of frames per second. First, the capability of generating TOs after PW transmissions was thoroughly investigated by varying the lateral wavelength, the burst length, and the transmission frequency. Over the entire region of interest, the generated lateral wavelengths, compared with the designed ones, presented bias and standard deviation of -3.3 ± 5.7% and 10.6 ± 7.4% in simulations and experiments, respectively. The performance of the ultrafast vector flow mapping method was also assessed by evaluating the differences between the estimated velocities and the expected ones. Both simulations and experiments show overall biases lower than 20% when varying the beam-to-flow angle, the peak velocity, and the depth of interest. In vivo applications of the method on the common carotid and the brachial arteries are also presented.
TRENT2D WG: a smart web infrastructure for debris-flow modelling and hazard assessment
NASA Astrophysics Data System (ADS)
Zorzi, Nadia; Rosatti, Giorgio; Zugliani, Daniel; Rizzi, Alessandro; Piffer, Stefano
2016-04-01
Mountain regions are naturally exposed to geomorphic flows, which involve large amounts of sediments and induce significant morphological modifications. The physical complexity of this class of phenomena represents a challenging issue for modelling, leading to elaborate theoretical frameworks and sophisticated numerical techniques. In general, geomorphic-flows models proved to be valid tools in hazard assessment and management. However, model complexity seems to represent one of the main obstacles to the diffusion of advanced modelling tools between practitioners and stakeholders, although the UE Flood Directive (2007/60/EC) requires risk management and assessment to be based on "best practices and best available technologies". Furthermore, several cutting-edge models are not particularly user-friendly and multiple stand-alone software are needed to pre- and post-process modelling data. For all these reasons, users often resort to quicker and rougher approaches, leading possibly to unreliable results. Therefore, some effort seems to be necessary to overcome these drawbacks, with the purpose of supporting and encouraging a widespread diffusion of the most reliable, although sophisticated, modelling tools. With this aim, this work presents TRENT2D WG, a new smart modelling solution for the state-of-the-art model TRENT2D (Armanini et al., 2009, Rosatti and Begnudelli, 2013), which simulates debris flows and hyperconcentrated flows adopting a two-phase description over a mobile bed. TRENT2D WG is a web infrastructure joining advantages offered by the software-delivering model SaaS (Software as a Service) and by WebGIS technology and hosting a complete and user-friendly working environment for modelling. In order to develop TRENT2D WG, the model TRENT2D was converted into a service and exposed on a cloud server, transferring computational burdens from the user hardware to a high-performing server and reducing computational time. Then, the system was equipped with an
A fast and accurate method to predict 2D and 3D aerodynamic boundary layer flows
NASA Astrophysics Data System (ADS)
Bijleveld, H. A.; Veldman, A. E. P.
2014-12-01
A quasi-simultaneous interaction method is applied to predict 2D and 3D aerodynamic flows. This method is suitable for offshore wind turbine design software as it is a very accurate and computationally reasonably cheap method. This study shows the results for a NACA 0012 airfoil. The two applied solvers converge to the experimental values when the grid is refined. We also show that in separation the eigenvalues remain positive thus avoiding the Goldstein singularity at separation. In 3D we show a flow over a dent in which separation occurs. A rotating flat plat is used to show the applicability of the method for rotating flows. The shown capabilities of the method indicate that the quasi-simultaneous interaction method is suitable for design methods for offshore wind turbine blades.
Field Evaluation of a Novel 2D Preferential Flow Snowpack Hydrology Model
NASA Astrophysics Data System (ADS)
Leroux, N.; Pomeroy, J. W.; Kinar, N. J.
2015-12-01
Accurate estimation of snowmelt flux is of primary importance for runoff hydrograph prediction, which is used for water management and flood forecasting. Lateral flows and preferential flow pathways in porous media flow have proven critical for improving soil and groundwater flow models, but though many physically-based layered snowmelt models have been developed, only 1D matrix flow is accounted for in these models. Therefore, there is a need for snowmelt models that include these processes so as to examine the potential to improve snowmelt hydrological modelling. A 2D model is proposed that enables an improved understanding of energy and water flows within deep heterogeneous snowpacks, including those on slopes. A dual pathway theory is presented that simulates the formation of preferential flow paths, vertical and lateral water flows through the snow matrix and flow fingers, internal energy fluxes, melt, wet snow metamorphism, and internal refreezing. The dual pathway model utilizes an explicit finite volume method to solve for the energy and water flux equations over a non-orthogonal grid. It was run and evaluated using in-situ data collected from snowpit - accessed gravimetric, thermometric, photographic, and dielectric observations and novel non-invasive acoustic observations of layering, temperature, flowpath geometry, density and wetness at the Fortress Mountain Snow Laboratory, Alberta, Canada. The melt of a natural snowpack was artificially generated after detailed observation of snowpack initial conditions such as snow layer properties, temperature, and liquid water content. Snowpack ablation and liquid water content distribution over time were then measured and used for model parameterization and validation. Energy available at the snow surface and soil slope angle were set as mondel inputs. Model verification was based on snowpack property evolution. The heterogeneous flow model can be an important tool to help understand snowmelt flow processes, how
Aspects of Turbulent Flow over 2D and 3D Bedforms
NASA Astrophysics Data System (ADS)
Venditti, J. G.; Church, M. A.
2004-05-01
Sediment transport in sand bedded alluvial channels is strongly conditioned by bedforms. Understanding the turbulent flow field over bedforms is crucial to understanding flow resistance in rivers. Most of the research on flow over bedforms has focused on straight crested, two-dimensional bedforms, and the characteristics of the turbulent flow field are fairly well understood. In contrast, few studies have examined flow over 3D bedforms, which typically have irregular heights, lengths, and crestlines. This paper reports on experiments undertaken to examine how 3D dune morphology affects the turbulent flow field and, ultimately, flow resistance. An experiment was designed to examine flow over fixed bedforms 0.45 m long and 25 mm high in a 0.5 m wide and 17 m long flume. In each experimental run, discharge and dune size were held constant, but the crest shape was varied. Flow over six bedform crest shapes was examined, including a 2D crest, a saddle shaped crest, a lobe shaped crest, a regular 3D crest alignment, an irregular 3D crest alignment and a sinuous crest. Measurements of velocity were made at a sampling rate of 50 Hz using an acoustic Doppler velocimeter at 350-500 points over a dune in each morphology. Three-dimensional bedforms significantly modify the flow field over a dune. Lobe shaped configurations cause lateral and vertical divergence of momentum and turbulent energy, thereby enhancing the level of turbulence compared to a 2D bedform. Saddle shaped crestlines cause lateral and vertical convergence of momentum and turbulent energy towards a small area in the lee, thereby reducing the level of turbulence. Other bedform morphologies (regular, irregular and sinuous crests) exhibited characteristics of both lobes and saddles, but the net effect was to reduce levels of turbulence. Total drag, calculated from spatially averaged Reynolds stress profiles, can be enhanced or reduced by as much as 50 %. These results suggest that current conceptions of bedforms
Value for controlling flow of cryogenic fluid
Knapp, Philip A.
1996-01-01
A valve is provided for accurately controlling the flow of cryogenic fluids such as liquid nitrogen. The valve comprises a combination of disc and needle valves affixed to a valve stem in such a manner that the disc and needle are free to rotate about the stem, but are constrained in lateral and vertical movements. This arrangement provides accurate and precise fluid flow control and positive fluid isolation.
Line relaxation methods for the solution of 2D and 3D compressible flows
NASA Technical Reports Server (NTRS)
Hassan, O.; Probert, E. J.; Morgan, K.; Peraire, J.
1993-01-01
An implicit finite element based algorithm for the compressible Navier-Stokes equations is outlined, and the solution of the resulting equation by a line relaxation on general meshes of triangles or tetrahedra is described. The problem of generating and adapting unstructured meshes for viscous flows is reexamined, and an approach for both 2D and 3D simulations is proposed. An efficient approach appears to be the use of an implicit/explicit procedure, with the implicit treatment being restricted to those regions of the mesh where viscous effects are known to be dominant. Numerical examples demonstrating the computational performance of the proposed techniques are given.
VISCOPLASTIC FLUID MODEL FOR DEBRIS FLOW ROUTING.
Chen, Cheng-lung
1986-01-01
This paper describes how a generalized viscoplastic fluid model, which was developed based on non-Newtonian fluid mechanics, can be successfully applied to routing a debris flow down a channel. The one-dimensional dynamic equations developed for unsteady clear-water flow can be used for debris flow routing if the flow parameters, such as the momentum (or energy) correction factor and the resistance coefficient, can be accurately evaluated. The writer's generalized viscoplastic fluid model can be used to express such flow parameters in terms of the rheological parameters for debris flow in wide channels. A preliminary analysis of the theoretical solutions reveals the importance of the flow behavior index and the so-called modified Froude number for uniformly progressive flow in snout profile modeling.
Heat transfer and fluid flow in microchannels
NASA Astrophysics Data System (ADS)
Mala, Ghulam Mohiuddin
Fluid flow and heat transfer characteristics in microchannels of different cross-sections; parallel plate, cylindrical and trapezoidal microchannels were studied. The trapezoidal microchannels were etched in silicon and glass by photolithographic techniques. The cylindrical microchannels of fused silica and stainless steel were readily available. Channels with depths of 18 μm to 300 μm were studied. The study was divided into three parts viz. theoretical modeling, numerical simulation and experimentation. Electrokinetic effects such as the effects of electrical double layer (EDL) at the solid-liquid interface and surface roughness effects were considered. An experimental apparatus was constructed and a procedure devised to measure the flow rate, pressure drop, temperatures and electrokinetic parameters like streaming potential, streaming current, and conductivity of the working fluid. Great care was taken so that the measurements were accurate and repeatable. For steady state laminar flow and heat transfer in microchannels, mathematical models were developed that consider the effects of electrical double layer and surface roughness at the microchannel walls. The non- linear, 2-D, Poisson-Boltzmann equation that describes the potential distribution at the solid liquid interface was solved numerically and results were compared with a linear approximate solution that overestimates the potential distribution for higher values of zeta potential. Effects of the EDL field at the solid-liquid interface, surface roughness at the microchannel walls and the channel size, on the velocity distribution, streaming potential, apparent viscosity, temperature distribution and heat transfer characteristics are discussed. The experimental results indicate significant departure in flow characteristics from the predictions of the Navier-Stokes equations, referred to as conventional theory. The difference between the experimental results and theoretical predictions decreases as the
Untangling tracer trajectories and clarifying coherence in 2D flows using braid theory
NASA Astrophysics Data System (ADS)
Filippi, Margaux; Atis, Séverine; Thiffeault, Jean-Luc; Budišić, Marko; Allshouse, Michael; Peacock, Thomas
2014-11-01
Interpreting ocean surface transport is crucial to many areas of oceanography, ranging from marine ecology to pollution management. To better understand surface mixing, we investigate a braid theory method to detect transport barriers bounding coherent structures in two-dimensional fluid flows. Whereas most existing techniques rely on an extensive spatiotemporal knowledge of the flow field, we seek to identify these structures from sparse data sets involving trajectories of a few tracer particles or floats. We present the results of model and laboratory experimental studies to test the robustness and applicability of the braid theory method, and discuss the potential applicability to oceanic data sets.
Self-Organization in 2D Traffic Flow Model with Jam-Avoiding Drive
NASA Astrophysics Data System (ADS)
Nagatani, Takashi
1995-04-01
A stochastic cellular automaton (CA) model is presented to investigate the traffic jam by self-organization in the two-dimensional (2D) traffic flow. The CA model is the extended version of the 2D asymmetric exclusion model to take into account jam-avoiding drive. Each site contains either a car moving to the up, a car moving to the right, or is empty. A up car can shift right with probability p ja if it is blocked ahead by other cars. It is shown that the three phases (the low-density phase, the intermediate-density phase and the high-density phase) appear in the traffic flow. The intermediate-density phase is characterized by the right moving of up cars. The jamming transition to the high-density jamming phase occurs with higher density of cars than that without jam-avoiding drive. The jamming transition point p 2c increases with the shifting probability p ja. In the deterministic limit of p ja=1, it is found that a new jamming transition occurs from the low-density synchronized-shifting phase to the high-density moving phase with increasing density of cars. In the synchronized-shifting phase, all up cars do not move to the up but shift to the right by synchronizing with the move of right cars. We show that the jam-avoiding drive has an important effect on the dynamical jamming transition.
Quasi-simultaneous interaction method for solving 2D boundary layer flows over plates and airfoils
NASA Astrophysics Data System (ADS)
Bijleveld, H. A.; Veldman, A. E. P.
2012-11-01
This paper studies unsteady 2D boundary layer flows over dented plates and a NACA 0012 airfoil. An inviscid flow is assumed to exist outside the boundary layer and is solved iteratively with the boundary layer flow together with the interaction method until a matching solution is achieved. Hereto a quasi-simultaneous interaction method is applied, in which the integral boundary layer equations are solved together with an interaction-law equation. The interaction-law equation is an approximation of the external flow and based on thin-airfoil theory. It is an algebraic relation between the velocity and displacement thickness. The interaction-law equation ensures that the eigenvalues of the system of equations do not have a sign change and that no singularities occur. Three numerical schemes are used to solve the boundary layer flow with the interaction method. These are: a standard scheme, a splitting method and a characteristics solver. All schemes use a finite difference discretization. The three schemes yield comparable results for the simulations carried out. The standard scheme is deviating most from the splitting and characteristics solvers. The results show that the eigenvalues remain positive, even in separation. As expected, the addition of the interaction-law equation prevents a sign change of the eigenvalues. The quasi-simultaneous interaction scheme is applicable to the three numerical schemes tested.
Solid-fluid transition in a granular shear flow.
Orpe, Ashish V; Khakhar, D V
2004-08-01
The rheology of a granular shear flow is studied in a quasi-2D rotating cylinder. Measurements are carried out near the midpoint along the length of the surface flowing layer where the flow is steady and nonaccelerating. Streakline photography and image analysis are used to obtain particle velocities and positions. Different particle sizes and rotational speeds are considered. We find a sharp transition in the apparent viscosity (eta) variation with rms velocity (u). Below the transition depth we find that the rms velocity decreases with depth and eta proportional to u(-1.5) for all the different cases studied. The material approaches an amorphous solidlike state deep in the layer. The velocity distribution is Maxwellian above the transition point and a Poisson velocity distribution is obtained deep in the layer. The results indicate a sharp transition from a fluid to a fluid + solid state with decreasing rms velocity.
A Tightly Coupled Particle-Fluid Model for DNA-Laden Flows in Complex Microscale Geometries
Trebotich, D; Miller, G H; Colella, P; Graves, D T; Martin, D F; Schwartz, P O
2004-11-18
We present a stable and convergent method for the computation of flows of DNA-laden fluids in microchannels with complex geometry. The numerical strategy combines a ball-rod model representation for polymers tightly coupled with a projection method for incompressible viscous flow. We use Cartesian grid embedded boundary methods to discretize the fluid equations in the presence of complex domain boundaries. A sample calculation is presented showing flow through a packed array microchannel in 2D.
NASA Astrophysics Data System (ADS)
Sohn, Jeong L.
1988-08-01
The purpose of the study is the evaluation of the numerical accuracy of FIDAP (Fluid Dynamics Analysis Package). Accordingly, four test problems in laminar and turbulent incompressible flows are selected and the computational results of these problems compared with other numerical solutions and/or experimental data. These problems include: (1) 2-D laminar flow inside a wall-driven cavity; (2) 2-D laminar flow over a backward-facing step; (3) 2-D turbulent flow over a backward-facing step; and (4) 2-D turbulent flow through a turn-around duct.
Visualizing vector field topology in fluid flows
NASA Technical Reports Server (NTRS)
Helman, James L.; Hesselink, Lambertus
1991-01-01
Methods of automating the analysis and display of vector field topology in general and flow topology in particular are discussed. Two-dimensional vector field topology is reviewed as the basis for the examination of topology in three-dimensional separated flows. The use of tangent surfaces and clipping in visualizing vector field topology in fluid flows is addressed.
NASA Astrophysics Data System (ADS)
Pan, Li-Hua; Hou, Peng-Fei; Chen, Jia-Yun
2016-08-01
The 2D steady-state solutions regarding the expressions of stress and strain for fluid-saturated, orthotropic, poroelastic plane are derived in this paper. For this object, the general solutions of the corresponding governing equation are first obtained and expressed in harmonic functions. Based on these compact general solutions, the suitable harmonic functions with undetermined constants for line fluid source in the interior of infinite poroelastic body and a line fluid source on the surface of semi-infinite poroelastic body are presented, respectively. The fundamental solutions can be obtained by substituting these functions into the general solution, and the undetermined constants can be obtained by the continuous conditions, equilibrium conditions and boundary conditions.
Method and Apparatus for Measuring Fluid Flow
NASA Technical Reports Server (NTRS)
Arndt, G. Dickey (Inventor); Nguyen, Thanh X. (Inventor); Carl, James R. (Inventor)
1997-01-01
Method and apparatus for making measurements on fluids related to their complex permeability are disclosed. A microwave probe is provided for exposure to the fluids. The probe can be non-intrusive or can also be positioned at the location where measurements are to be made. The impedance of the probe is determined. in part. by the complex dielectric constant of the fluids at the probe. A radio frequency signal is transmitted to the probe and the reflected signal is phase and amplitude detected at a rapid rate for the purpose of identifying the fluids. Multiple probes may be selectively positioned to monitor the behavior of the fluids including their flow rate. Fluids may be identified as between two or more different fluids as well as multiple phases of the same fluid based on differences between their complex permittivities.
Debris Flow Hazard Map Simulation using FLO-2D For Selected Areas in the Philippines
NASA Astrophysics Data System (ADS)
Khallil Ferrer, Peter; Llanes, Francesca; dela Resma, Marvee; Realino, Victoriano, II; Obrique, Julius; Ortiz, Iris Jill; Aquino, Dakila; Narod Eco, Rodrigo; Mahar Francisco Lagmay, Alfredo
2014-05-01
On December 4, 2012, Super Typhoon Bopha wreaked havoc in the southern region of Mindanao, leaving 1,067 people dead and causing USD 800 million worth of damage. Classified as a Category 5 typhoon by the Joint Typhoon Warning Center (JTWC), Bopha brought intense rainfall and strong winds that triggered landslides and debris flows, particularly in Barangay (village) Andap, New Bataan municipality, in the southern Philippine province of Compostela Valley. The debris flow destroyed school buildings and covered courts and an evacuation center. Compostela Valley also suffered the most casualties of any province: 612 out of a total of 1,067. In light of the disaster in Compostela, measures were immediately devised to improve available geohazard maps to raise public awareness about landslides and debris flows. A debris flow is a very rapid to extremely rapid flow of saturated non-plastic debris in a steep channel. They are generated when heavy rainfall saturates sediments, causing them to flow down river channels within an alluvial fan situated at the base of the slope of a mountain drainage network. Many rural communities in the Philippines, such as Barangay Andap, are situated at the apex of alluvial fans and in the path of potential debris flows. In this study, we conducted simulations of debris flows to assess the risks in inhabited areas throughout the Philippines and validated the results in the field, focusing on the provinces of Pangasinan and Aurora as primary examples. Watersheds that drain in an alluvial fan using a 10-m resolution Synthetic Aperture Radar (SAR)-derived Digital Elevation Model (DEM) was first delineated, and then a 1 in 100-year rain return rainfall scenario for the watershed was used to simulate debris flows using FLO-2D, a flood-routing software. The resulting simulations were used to generate debris flow hazard maps which are consistent with danger zones in alluvial fans delineated previously from satellite imagery and available DEMs. The
Focused fluid flow in passive continental margins.
Berndt, Christian
2005-12-15
Passive continental margins such as the Atlantic seaboard of Europe are important for society as they contain large energy resources, and they sustain ecosystems that are the basis for the commercial fish stock. The margin sediments are very dynamic environments. Fluids are expelled from compacting sediments, bottom water temperature changes cause gas hydrate systems to change their locations and occasionally large magmatic intrusions boil the pore water within the sedimentary basins, which is then expelled to the surface. The fluids that seep through the seabed at the tops of focused fluid flow systems have a crucial role for seabed ecology, and study of such fluid flow systems can also help in predicting the distribution of hydrocarbons in the subsurface and deciphering the climate record. Therefore, the study of focused fluid flow will become one of the most important fields in marine geology in the future.
Vlasov Fluid stability of a 2-D plasma with a linear magnetic field null
Kim, J.S.
1984-01-01
Vlasov Fluid stability of a 2-dimensional plasma near an O type magnetic null is investigated. Specifically, an elongated Z-pinch is considered, and applied to Field Reversed Configurations at Los Alamos National Laboratory by making a cylindrical approximation of the compact torus. The orbits near an elliptical O type null are found to be very complicated; the orbits are large and some are stochastic. The kinetic corrections to magnetohydrodynamics (MHD) are investigated by evaluating the expectation values of the growth rates of a Vlasov Fluid dispersion functional by using a set of trial functions based on ideal MHD. The dispersion functional involves fluid parts and orbit dependent parts. The latter involves phase integral of two time correlations. The phase integral is replaced by the time integral both for the regular and for the stochastic orbits. Two trial functions are used; one has a large displacement near the null and the other away from the null.
An Experimental Study of Flow Separation over 2D Transverse Grooves
NASA Astrophysics Data System (ADS)
Jones, Emily; Lang, Amy; Afroz, Farhana; Wheelus, Jennifer; Smith, Drew
2011-11-01
A shark's scales help to reduce drag over its body by controlling boundary layer separation over its skin. It is theorized that the scales bristle when encountering a reversing flow, thereby trapping vortices between the scales, creating a partial slip condition over the surface and inducing turbulence augmentation in the boundary layer. In an attempt to replicate and study these effects, a spinning cylinder was used in a water tunnel to induce separation over a flat plate with 2 millimeter square 2D transverse grooves. The results were compared to separation occurring over a flat plate without grooves using DPIV. The angular speed of the cylinder was varied. The observed delays in separation, changes in separation bubble shedding frequency and other effects upon the boundary layer are discussed.
Micro PIV measurements of turbulent flow over 2D structured roughness
NASA Astrophysics Data System (ADS)
Hartenberger, Joel; Perlin, Marc
2015-11-01
We investigate the turbulent boundary layer over surfaces with 2D spanwise square and triangular protrusions having nominal heights of 100 - 300 microns for Reynolds numbers ranging from Reτ ~ 1500 through Reτ ~ 4500 using a high speed, high magnification imaging system. Micro PIV analysis gives finely resolved velocity fields of the flow (on the order of 10 microns between vectors) enabling a detailed look at the inner region as well as the flow in the immediate vicinity of the roughness elements. Additionally, planar PIV with lower resolution is performed to capture the remainder of the boundary layer to the freestream flow. Varying the streamwise distance between individual roughness elements from one to ten times the nominal heights allows investigation of k-type and d-type roughness in both the transitionally rough and fully rough regimes. Preliminary results show a shift in the mean velocity profile similar to the results of previous studies. Turbulent statistics will be presented also. The authors would like to acknowledge the support of NAVSEA which funded this project through the Naval Engineering Education Center (NEEC).
A friction to flow constitutive law and its application to a 2-D modeling of earthquakes
NASA Astrophysics Data System (ADS)
Shimamoto, Toshihiko; Noda, Hiroyuki
2014-11-01
Establishment of a constitutive law from friction to high-temperature plastic flow has long been a challenging task for solving problems such as modeling earthquakes and plate interactions. Here we propose an empirical constitutive law that describes this transitional behavior using only friction and flow parameters, with good agreements with experimental data on halite shear zones. The law predicts steady state and transient behaviors, including the dependence of the shear resistance of fault on slip rate, effective normal stress, and temperature. It also predicts a change in velocity weakening to velocity strengthening with increasing temperature, similar to the changes recognized for quartz and granite gouge under hydrothermal conditions. A slight deviation from the steady state friction law due to the involvement of plastic deformation can cause a large change in the velocity dependence. We solved seismic cycles of a fault across the lithosphere with the law using a 2-D spectral boundary integral equation method, revealing dynamic rupture extending into the aseismic zone and rich evolution of interseismic creep including slow slip prior to earthquakes. Seismic slip followed by creep is consistent with natural pseudotachylytes overprinted with mylonitic deformation. Overall fault behaviors during earthquake cycles are insensitive to transient flow parameters. The friction-to-flow law merges "Christmas tree" strength profiles of the lithosphere and rate dependency fault models used for earthquake modeling on a unified basis. Strength profiles were drawn assuming a strain rate for the flow regime, but we emphasize that stress distribution evolves reflecting the fault behavior. A fault zone model was updated based on the earthquake modeling.
Engineering fluid flow using sequenced microstructures.
Amini, Hamed; Sollier, Elodie; Masaeli, Mahdokht; Xie, Yu; Ganapathysubramanian, Baskar; Stone, Howard A; Di Carlo, Dino
2013-01-01
Controlling the shape of fluid streams is important across scales: from industrial processing to control of biomolecular interactions. Previous approaches to control fluid streams have focused mainly on creating chaotic flows to enhance mixing. Here we develop an approach to apply order using sequences of fluid transformations rather than enhancing chaos. We investigate the inertial flow deformations around a library of single cylindrical pillars within a microfluidic channel and assemble these net fluid transformations to engineer fluid streams. As these transformations provide a deterministic mapping of fluid elements from upstream to downstream of a pillar, we can sequentially arrange pillars to apply the associated nested maps and, therefore, create complex fluid structures without additional numerical simulation. To show the range of capabilities, we present sequences that sculpt the cross-sectional shape of a stream into complex geometries, move and split a fluid stream, perform solution exchange and achieve particle separation. A general strategy to engineer fluid streams into a broad class of defined configurations in which the complexity of the nonlinear equations of fluid motion are abstracted from the user is a first step to programming streams of any desired shape, which would be useful for biological, chemical and materials automation.
Engineering fluid flow using sequenced microstructures
NASA Astrophysics Data System (ADS)
Amini, Hamed; Sollier, Elodie; Masaeli, Mahdokht; Xie, Yu; Ganapathysubramanian, Baskar; Stone, Howard A.; di Carlo, Dino
2013-05-01
Controlling the shape of fluid streams is important across scales: from industrial processing to control of biomolecular interactions. Previous approaches to control fluid streams have focused mainly on creating chaotic flows to enhance mixing. Here we develop an approach to apply order using sequences of fluid transformations rather than enhancing chaos. We investigate the inertial flow deformations around a library of single cylindrical pillars within a microfluidic channel and assemble these net fluid transformations to engineer fluid streams. As these transformations provide a deterministic mapping of fluid elements from upstream to downstream of a pillar, we can sequentially arrange pillars to apply the associated nested maps and, therefore, create complex fluid structures without additional numerical simulation. To show the range of capabilities, we present sequences that sculpt the cross-sectional shape of a stream into complex geometries, move and split a fluid stream, perform solution exchange and achieve particle separation. A general strategy to engineer fluid streams into a broad class of defined configurations in which the complexity of the nonlinear equations of fluid motion are abstracted from the user is a first step to programming streams of any desired shape, which would be useful for biological, chemical and materials automation.
NASA Astrophysics Data System (ADS)
Zheng, Liang; May, Dave; Gerya, Taras; Bostock, Michael
2016-08-01
Shear deformation, accompanied with fluid activity inside the subduction interface, is related to many tectonic energy-releasing events, including regular and slow earthquakes. We have numerically examined the fluid-rock interactions inside a deforming subduction interface using state-of-the-art 2-D hydromechanical numerical models, which incorporate the rock fracturing behavior as a plastic rheology which is dependent on the pore fluid pressure. Our modeling results suggest that two typical dynamical regimes of the deforming subduction interface exist, namely, a "coupled" and a "decoupled" regime. In the coupled regime the subduction interface is subdivided into multiple rigid blocks, each separated by a narrow shear zone inclined at an angle of 15-20° with respect to the slab surface. In contrast, in the decoupled regime the subduction interface is divided into two distinct layers moving relative to each other along a pervasive slab surface-parallel shear zone. Through a systematic parameter study, we observe that the tensile strength (cohesion) of the material within the subduction interface dictates the resulting style of deformation within the interface: high cohesion (~60 MPa) results in the coupled regime, while low cohesion (~10 MPa) leads to the decoupled regime. We also demonstrate that the lithostatic pressure and inflow/outflow fluid fluxes (i.e., fluid-fluxed boundary condition) influence the location and orientation of faults. Predictions from our numerical models are supported by experimental laboratory studies, geological data, and geophysical observations from modern subduction settings.
Analysis of High-Speed Rotating Flow in 2D Polar (r - θ)Coordinate
NASA Astrophysics Data System (ADS)
Pradhan, S.
2016-03-01
The generalized analytical model for the radial boundary layer in a high-speed rotating cylinder is formulated for studying the gas flow field due to insertion of mass, momentum and energy into the rotating cylinder in the polar (r - θ) plane. The analytical solution includes the sixth order differential equation for the radial boundary layer at the cylindrical curved surface in terms of master potential (χ) , which is derived from the equations of motion in a polar (r - θ) plane. The linearization approximation (Wood & Morton, J. Fluid Mech-1980; Pradhan & Kumaran, J. Fluid Mech-2011; Kumaran & Pradhan, J. Fluid Mech-2014) is used, where the equations of motion are truncated at linear order in the velocity and pressure disturbances to the base flow, which is a solid-body rotation. Additional assumptions in the analytical model include constant temperature in the base state (isothermal condition), and high Reynolds number, but there is no limitation on the stratification parameter. In this limit, the gas flow is restricted to a boundary layer of thickness (Re (1 / 3) R) at the wall of the cylinder. Here, the stratification parameter A = √ ((mΩ 2R2) / (2kB T)) . This parameter Ais the ratio of the peripheral speed, ΩR , to the most probable molecular speed, √(2 k_B T/m), the Reynolds number Re = (ρ _w ΩR2 / μ) , where m is the molecular mass, Ω and R are the rotational speed and radius of the cylinder, k_B is the Boltzmann constant, T is the gas temperature, ρ_w is the gas density at wall, and μ is the gas viscosity. The analytical solutions are then compared with direct simulation Monte Carlo (DSMC) simulations.
Fluid/structure interactions. Internal flows
NASA Astrophysics Data System (ADS)
Weaver, D. S.
1991-05-01
Flow-induced vibrations are found wherever structures are exposed to high velocity fluid flows. Internal flows are usually characterized by the close proximity of solid boundaries. There are surfaces against which separated flows may reattach, or from which pressure disturbances may be reflected resulting in acoustic resonance. When the fluid is a liquid, the close proximity of solid boundaries to a vibrating component can produce very high added mass effects. This paper presents three different experimental studies of flow-induced vibration problems associated with internal flows. The emphasis was on experimental techniques developed for understanding excitation mechanisms. In difficult flow-induced vibration problems, a useful experimental technique is flow visualization using a large scale model and strobe light triggered by the phenomenon being observed. This should be supported by point measurements of velocity and frequency spectra. When the flow excitation is associated with acoustic resonance, the sound can be fed back to enhance or eliminate the instability. This is potentially a very useful tool for studying and controlling fluid-structure interaction problems. Some flow-induced vibration problems involve a number of different excitation mechanisms and care must be taken to ensure that the mechanisms are properly identified. Artificially imposing structural vibrations or acoustic fields may induce flow structures not naturally present in the system.
Lattice Boltzmann methods for viscous fluid flows and for two-phase fluid flows
NASA Astrophysics Data System (ADS)
Inamuro, Takaji
2006-09-01
Lattice Boltzmann methods (LBMs) for viscous fluid flows and for two-phase fluid flows are presented. First, the LBMs for incompressible viscous fluid flows and for temperature fields are described. Then, we derive a lattice kinetic scheme (LKS) which is an improved scheme of the LBM. The LKS does not require any velocity distribution functions and is more stable than the LBMs. In addition, the LBM for two-phase fluid flows is presented. The method can simulate flows with the density ratio up to 1000. Numerical examples of unsteady flows in a three-dimensional porous structure, binary droplet collision and rising bubbles in a square duct are illustrated. It is expected that the LBMs (and LKS) will become promising numerical schemes for simulating complex fluid flows.
Apparatus for measuring fluid flow
Smith, J.E.; Thomas, D.G.
Flow measuring apparatus includes a support loop having strain gages mounted thereon and a drag means which is attached to one end of the support loop and which bends the sides of the support loop and induces strains in the strain gages when a flow stream impacts thereon.
Apparatus for measuring fluid flow
Smith, Jack E.; Thomas, David G.
1984-01-01
Flow measuring apparatus includes a support loop having strain gages mounted thereon and a drag means which is attached to one end of the support loop and which bends the sides of the support loop and induces strains in the strain gages when a flow stream impacts thereon.
Directed flow fluid rinse trough
Kempka, S.N.; Walters, R.N.
1996-07-02
Novel rinse troughs accomplish thorough uniform rinsing. The tanks are suitable for one or more essentially planar items having substantially the same shape. The troughs ensure that each surface is rinsed uniformly. The new troughs also require less rinse fluid to accomplish a thorough rinse than prior art troughs. 9 figs.
Directed flow fluid rinse trough
Kempka, Steven N.; Walters, Robert N.
1996-01-01
Novel rinse troughs accomplish thorough uniform rinsing. The tanks are suitable for one or more essentially planar items having substantially the same shape. The troughs ensure that each surface is rinsed uniformly. The new troughs also require less rinse fluid to accomplish a thorough rinse than prior art troughs.
Fluid Flow Within Fractured Porous Media
Crandall, D.M.; Ahmadi, G.; Smith, D.H.; Bromhal, G.S.
2006-10-01
Fractures provide preferential flow paths to subterranean fluid flows. In reservoir scale modeling of geologic flows fractures must be approximated by fairly simple formulations. Often this is accomplished by assuming fractures are parallel plates subjected to an applied pressure gradient. This is known as the cubic law. An induced fracture in Berea sandstone has been digitized to perform numerical flow simulations. A commercially available computational fluid dynamics software package has been used to solve the flow through this model. Single phase flows have been compared to experimental works in the literature to evaluate the accuracy with which this model can be applied. Common methods of fracture geometry classification are also calculated and compared to experimentally obtained values. Flow through regions of the fracture where the upper and lower fracture walls meet (zero aperture) are shown to induce a strong channeling effect on the flow. This model is expanded to include a domain of surrounding porous media through which the flow can travel. The inclusion of a realistic permeability in this media shows that the regions of small and zero apertures contribute to the greatest pressure losses over the fracture length and flow through the porous media is most prevalent in these regions. The flow through the fracture is shown to be the largest contributor to the net flow through the media. From this work, a novel flow relationship is proposed for flow through fractured media.
Proceedings of the fluid flow measurement
1995-12-31
This report presents reports which were presented at the Third International Symposium on Fluid Flow Measurement. Topics were concerned with metering, calibration, flow modeling, and gas properties. Individual reports have been processed separately for the United States Department of Energy databases.
Instrument continuously measures density of flowing fluids
NASA Technical Reports Server (NTRS)
Jacobs, R. B.; Macinko, J.; Miller, C. E.
1967-01-01
Electromechanical densitometer continuously measures the densities of either single-phase or two-phase flowing cryogenic fluids. Measurement is made on actual flow. The instrument operates on the principle that the mass of any vibrating system is a primary factor in determining the dynamic characteristics of the system.
Electromagnetic probe technique for fluid flow measurements
NASA Technical Reports Server (NTRS)
Arndt, G. D.; Carl, J. R.
1994-01-01
The probes described herein, in various configurations, permit the measurement of the volume fraction of two or more fluids flowing through a pipe. Each probe measures the instantaneous relative dielectric constant of the fluid in immediate proximity. As long as separation of the relative dielectric constant of the fluid is possible, several or even many fluids can be measured in the same flow stream. By using multiple probes, the velocity of each fluid can generally be determined as well as the distribution of each constituent in the pipe. The values are determined by statistical computation. There are many potential applications for probes of this type in industry and government. Possible NASA applications include measurements of helium/hydrazine flow during rocket tests at White Sands, liquid/gas flow in hydrogen or oxygen lines in Orbiter engines, and liquid/gaseous Freon flow in zero gravity tests with the KS135 aircraft at JSC. Much interest has been shown recently by the oil industry. In this a good method is needed to measure the fractions of oil, water, and natural gas flowing in a pipeline and the velocity of each. This particular problem involves an extension of what has been developed to date and our plans to solve this problem will be discussed herein.
Electromagnetic Probe Technique for Fluid Flow Measurements
NASA Technical Reports Server (NTRS)
Arndt, G. D.; Carl, J. R.; Nguyen, T. X.
1994-01-01
The probes described herein, in various configurations, permit the measurement of the volume fraction of two or more fluids flowing through a pipe. Each probe measures the instantaneous relative dielectric constant of the fluid in immediate proximity. As long as separation of the relative dielectric constants of each fluid is possible, several or even many fluids can be measured in the same flow steam. By using multiple probes, the velocity of each fluid can generally be determined as well as the distribution of each constituent in the pipe. The values are determined by statistical computation. There are many potential applications for probes of this type in industry and government. Possible NASA applications include measurements of helium/hydrazine flow during rocket tests at White Sands, liquid/gas flow in hydrogen or oxygen lines in Orbiter engines, and liquid/gaseous Freon flow in zero gravity tests with the KS135 aircraft at JSC. Much interest has been shown recently by the oil industry. In this industry, a good method is needed to measure the fractions of oil, water, and natural gas flowing in a pipeline and the velocity of each. This particular problem involves an extension of what has been developed to date and our plans and program to solve this problem will be discussed herein.
An investigation of design optimization using a 2-D viscous flow code with multigrid
NASA Technical Reports Server (NTRS)
Doria, Michael L.
1990-01-01
Computational fluid dynamics (CFD) codes have advanced to the point where they are effective analytical tools for solving flow fields around complex geometries. There is also a need for their use as a design tool to find optimum aerodynamic shapes. In the area of design, however, a difficulty arises due to the large amount of computer resources required by these codes. It is desired to streamline the design process so that a large number of design options and constraints can be investigated without overloading the system. There are several techniques which have been proposed to help streamline the design process. The feasibility of one of these techniques is investigated. The technique under consideration is the interaction of the geometry change with the flow calculation. The problem of finding the value of camber which maximizes the ratio of lift over drag for a particular airfoil is considered. In order to test out this technique, a particular optimization problem was tried. A NACA 0012 airfoil was considered at free stream Mach number of 0.5 with a zero angle of attack. Camber was added to the mean line of the airfoil. The goal was to find the value of camber for which the ratio of lift over drag is a maximum. The flow code used was FLOMGE which is a two dimensional viscous flow solver which uses multigrid to speed up convergence. A hyperbolic grid generation program was used to construct the grid for each value of camber.
Manifest: A computer program for 2-D flow modeling in Stirling machines
NASA Technical Reports Server (NTRS)
Gedeon, David
1989-01-01
A computer program named Manifest is discussed. Manifest is a program one might want to use to model the fluid dynamics in the manifolds commonly found between the heat exchangers and regenerators of Stirling machines; but not just in the manifolds - in the regenerators as well. And in all sorts of other places too, such as: in heaters or coolers, or perhaps even in cylinder spaces. There are probably nonStirling uses for Manifest also. In broad strokes, Manifest will: (1) model oscillating internal compressible laminar fluid flow in a wide range of two-dimensional regions, either filled with porous materials or empty; (2) present a graphics-based user-friendly interface, allowing easy selection and modification of region shape and boundary condition specification; (3) run on a personal computer, or optionally (in the case of its number-crunching module) on a supercomputer; and (4) allow interactive examination of the solution output so the user can view vector plots of flow velocity, contour plots of pressure and temperature at various locations and tabulate energy-related integrals of interest.
NASA Astrophysics Data System (ADS)
Mitsui, Y.; Hirahara, K.
2006-12-01
There have been a lot of studies that simulate large earthquakes occurring quasi-periodically at a subduction zone, based on the laboratory-derived rate-and-state friction law [eg. Kato and Hirasawa (1997), Hirose and Hirahara (2002)]. All of them assume that pore fluid pressure in the fault zone is constant. However, in the fault zone, pore fluid pressure changes suddenly, due to coseismic pore dilatation [Marone (1990)] and thermal pressurization [Mase and Smith (1987)]. If pore fluid pressure drops and effective normal stress rises, fault slip is decelerated. Inversely, if pore fluid pressure rises and effective normal stress drops, fault slip is accelerated. The effect of pore fluid may cause slow slip events and low-frequency tremor [Kodaira et al. (2004), Shelly et al. (2006)]. For a simple spring model, how pore dilatation affects slip instability was investigated [Segall and Rice (1995), Sleep (1995)]. When the rate of the slip becomes high, pore dilatation occurs and pore pressure drops, and the rate of the slip is restrained. Then the inflow of pore fluid recovers the pore pressure. We execute 2D earthquake cycle simulations at a subduction zone, taking into account such changes of pore fluid pressure following Segall and Rice (1995), in addition to the numerical scheme in Kato and Hirasawa (1997). We do not adopt hydrostatic pore pressure but excess pore pressure for initial condition, because upflow of dehydrated water seems to exist at a subduction zone. In our model, pore fluid is confined to the fault damage zone and flows along the plate interface. The smaller the flow rate is, the later pore pressure recovers. Since effective normal stress keeps larger, the fault slip is decelerated and stress drop becomes smaller. Therefore the smaller flow rate along the fault zone leads to the shorter earthquake recurrence time. Thus, not only the frictional parameters and the subduction rate but also the fault zone permeability affects the recurrence time of
A 2-D FEM thermal model to simulate water flow in a porous media: Campi Flegrei caldera case study
NASA Astrophysics Data System (ADS)
Romano, V.; Tammaro, U.; Capuano, P.
2012-05-01
Volcanic and geothermal aspects both exist in many geologically young areas. In these areas the heat transfer process is of fundamental importance, so that the thermal and fluid-dynamic processes characterizing a viscous fluid in a porous medium are very important to understand the complex dynamics of the these areas. The Campi Flegrei caldera, located west of the city of Naples, within the central-southern sector of the large graben of Campanian plain, is a region where both volcanic and geothermal phenomena are present. The upper part of the geothermal system can be considered roughly as a succession of volcanic porous material (tuff) saturated by a mixture formed mainly by water and carbon dioxide. We have implemented a finite elements approach in transient conditions to simulate water flow in a 2-D porous medium to model the changes of temperature in the geothermal system due to magmatic fluid inflow, accounting for a transient phase, not considered in the analytical solutions and fluid compressibility. The thermal model is described by means of conductive/convective equations, in which we propose a thermal source represented by a parabolic shape function to better simulate an increase of temperature in the central part (magma chamber) of a box, simulating the Campi Flegrei caldera and using more recent evaluations, from literature, for the medium's parameters (specific heat capacity, density, thermal conductivity, permeability). A best-fit velocity for the permeant is evaluated by comparing the simulated temperatures with those measured in wells drilled by Agip (Italian Oil Agency) in the 1980s in the framework of geothermal exploration. A few tens of days are enough to reach the thermal steady state, showing the quick response of the system to heat injection. The increase in the pressure due to the heat transport is then used to compute ground deformation, in particular the vertical displacements characteristics of the Campi Flegrei caldera behaviour. The
Heat Flow Partitioning Between Continents and Oceans - from 2D to 3D
NASA Astrophysics Data System (ADS)
Moresi, L. N.; Cooper, C. M.; Lenardic, A.
2010-12-01
Scalings derived from thermal network theory explain how the presence of continents can influence the Earth’s overall heat loss. Intuitively, it may seem that increasing the proportion of a planet’s surface area covered by continents would decrease the efficiency of heat transfer given that continents do not participate in convective overturn. However, this ignores the potential feedback between the insulating effect of continents and the temperature-dependent viscosity of the mantle (Lenardic et al, 2005, Cooper et al, 2007). When this feedback is considered, a clear regime exists in which the partial stagnation and insulation of the surface by buoyant continental crust can lead to an increase in heat flow compared to the uninsulated case. The numerical results used to verify the scalings have mostly been conducted in two dimensions in order to cover a very wide range of Rayleigh number, fraction of continental coverage, and continental thickness. However as more recent results show that the configuration of the crust also plays a role in determining the heat flow partitioning and global heat flow (See Lenardic et al, “Continents, Super-Continents, Mantle Thermal Mixing, and Mantle Thermal Isolation” in this session), we have begun to repeat this exhaustive and exhausting 2D study in 3D. Cooper, C.M., A. Lenardic, and L.-N. Moresi "Effects of continental insulation and the partioning of heat producing elements on the Earth's heat loss." Geophys. Res. Lett., 33 ,10.1029, 2006. Lenardic, A., L.-N. Moresi, A.M. Jellinek, and M. Manga "Continental insulation, mantle cooling, and the surface area of oceans and continents." Earth Planet. Sci. Lett., 234 ,317-333, 2005.
Fluid flow in crystallization processes
NASA Technical Reports Server (NTRS)
Brown, R. A.
1982-01-01
Investigations of the interactions of heat, mass, and momentum transport in crystal growth from the melt are described. Studies of the mall-scale floating zone process and on a prototype of the vertical Bridgman growth system were emphasized. In both systems detailed numerical calculations are used to dissect the interplay between fluid convection and dopant segregation. These calculations are based on finite element techniques that make feasible the complete solution of solidification problems which include convection. Other numerical methods were developed for solving thermal models of crystal growth processes with melt/gas menisci and for simulating the microscale instabilities in solidification interfaces.
Gabbour, Maya; Schnell, Susanne; Jarvis, Kelly; Robinson, Joshua D.; Markl, Michael
2015-01-01
Background Doppler echocardiography (echo) is the reference standard for blood flow velocity analysis, and two-dimensional (2-D) phase-contrast magnetic resonance imaging (MRI) is considered the reference standard for quantitative blood flow assessment. However, both clinical standard-of-care techniques are limited by 2-D acquisitions and single-direction velocity encoding and may make them inadequate to assess the complex three-dimensional hemodynamics seen in congenital heart disease. Four-dimensional flow MRI (4-D flow) enables qualitative and quantitative analysis of complex blood flow in the heart and great arteries. Objectives The objectives of this study are to compare 4-D flow with 2-D phase-contrast MRI for quantification of aortic and pulmonary flow and to evaluate the advantage of 4-D flow-based volumetric flow analysis compared to 2-D phase-contrast MRI and echo for peak velocity assessment in children and young adults. Materials and methods Two-dimensional phase-contrast MRI of the aortic root, main pulmonary artery (MPA), and right and left pulmonary arteries (RPA, LPA) and 4-D flow with volumetric coverage of the aorta and pulmonary arteries were performed in 50 patients (mean age: 13.1±6.4 years). Four-dimensional flow analyses included calculation of net flow and regurgitant fraction with 4-D flow analysis planes similarly positioned to 2-D planes. In addition, 4-D flow volumetric assessment of aortic root/ascending aorta and MPA peak velocities was performed and compared to 2-D phase-contrast MRI and echo. Results Excellent correlation and agreement were found between 2-D phase-contrast MRI and 4-D flow for net flow (r=0.97, P<0.001) and excellent correlation with good agreement was found for regurgitant fraction (r= 0.88, P<0.001) in all vessels. Two-dimensional phase-contrast MRI significantly underestimated aortic (P= 0.032) and MPA (P<0.001) peak velocities compared to echo, while volumetric 4-D flow analysis resulted in higher (aortic: P=0
Full 2D observation of water surface elevation from SWOT under different flow conditions
NASA Astrophysics Data System (ADS)
Domeneghetti, Alessio; Schumann, Guy; Rui, Wei; Durand, Michael; Pavelsky, Tamlin
2016-04-01
The upcoming Surface Water and Ocean Topography (SWOT) satellite mission is a joint project of NASA, Centre National d'Etudes Spatiales (CNES, France), the Canadian Space Agency, and the Space Agency of the UK that will provide a first global, high-resolution observation of ocean and terrestrial water surface heights. Characterized by an observation swath of 120 km and an orbit repeat interval of about 21 days, SWOT will provide unprecedented bi-dimensional observations of rivers wider than 50-100 m. Despite many research activities that have investigated potential uses of remotely sensed data from SWOT, potentials and limitations of the spatial observations provided by the satellite mission for flood modeling still remain poorly understood and investigated. In this study we present a first analysis of the spatial observation of water surface elevation that is expected from SWOT for a 140 km reach of the middle-lower portion of the Po River, in Northern Italy. The river stretch is characterized by a main channel varying from 200-500 m in width and a floodplain that can be as wide as 5 km and that is delimited by a system of major embankments. The reconstruction of the hydraulic behavior of the Po River is performed by means of a quasi-2d model built with detailed topographic and bathymetric information (LiDAR, 2 m resolution), while the simulation of the spatial observation sensed by SWOT is performed with a SWOT simulator that mimics the satellite sensor characteristics. Referring to water surface elevations associated with different flow conditions (maximum, minimum and average flow reproduced by means of the quasi-2d numerical model) this work provides a first characterization of the spatial observations provided by SWOT and highlights the strengths and limitations of the expected products. By referring to a real river reach the analysis provides a credible example of the type of spatial observations that will be available after launch of SWOT and offers a first
Patterns and flow in frictional fluid dynamics
Sandnes, B.; Flekkøy, E.G.; Knudsen, H.A.; Måløy, K.J.; See, H.
2011-01-01
Pattern-forming processes in simple fluids and suspensions have been studied extensively, and the basic displacement structures, similar to viscous fingers and fractals in capillary dominated flows, have been identified. However, the fundamental displacement morphologies in frictional fluids and granular mixtures have not been mapped out. Here we consider Coulomb friction and compressibility in the fluid dynamics, and discover surprising responses including highly intermittent flow and a transition to quasi-continuodynamics. Moreover, by varying the injection rate over several orders of magnitude, we characterize new dynamic modes ranging from stick-slip bubbles at low rate to destabilized viscous fingers at high rate. We classify the fluid dynamics into frictional and viscous regimes, and present a unified description of emerging morphologies in granular mixtures in the form of extended phase diagrams. PMID:21505444
Two-fluid equilibrium with flow: FLOW2
Guazzotto, L.; Betti, R.
2015-09-15
The effects of finite macroscopic velocities on axisymmetric ideal equilibria are examined using the two-fluid (ions and electrons) model. A new equilibrium solver, the code FLOW2, is introduced for the two-fluid model and used to investigate the importance of various flow patterns on the equilibrium of tight aspect ratio (NSTX) and regular tokamak (DIII-D) configurations. Several improvements to the understanding and calculation of two-fluid equilibria are presented, including an analytical and numerical proof of the single-fluid and static limits of the two-fluid model, a discussion of boundary conditions, a user-friendly free-function formulation, and the explicit evaluation of velocity components normal to magnetic surfaces.
MEANS FOR VISUALIZING FLUID FLOW PATTERNS
Lynch, F.E.; Palmer, L.D.; Poppendick, H.F.; Winn, G.M.
1961-05-16
An apparatus is given for determining both the absolute and relative velocities of a phosphorescent fluid flowing through a transparent conduit. The apparatus includes a source for exciting a narrow trsnsverse band of the fluid to phosphorescence, detecting means such as a camera located downstream from the exciting source to record the shape of the phosphorescent band as it passes, and a timer to measure the time elapsed between operation of the exciting source and operation of the camera.
Titan2D Based Pyroclastic Flows Hazard Maps for Santa Ana Volcano, El Salvador
NASA Astrophysics Data System (ADS)
Bajo, J. V.; Martinez-Hackert, B.; Escobar, C. D.; Gutierrez, R. E.
2009-05-01
Santa Ana Volcano is located in the Apaneca Volcanic Field located to the west of El Salvador, Central America. It is one the six active volcanoes monitor by the Servicios Nacionales de Estudios Territoriales (SNET) in El Salvador, out of twenty that are considered active in this small country by Smithsonian definition. The Santa Ana Volcano is surrounded by rural communities in its proximal areas and in its close distal areas by the second largest city of the country. On October 1st 2005, after a few months of increased fumarolic and seismic activity, it erupted generating a 10 km high steam and ash plume, reportedly seen by some aircraft and estimated using photography by SNET members. Ash was deposited to the west, north-west part of the country, following typical wind pattern for the region, as well as small pyroclastic flows and major lahars in its eastern part. Coffee plantations were lost, as was some crop of coffee in the following season. However, to the west the ash fertilized the land and resulted in an enhanced harvest of coffee beans. Only 2 people were killed from the Blast, thanks to the auto evacuation of proximal communities. Whilst the last eruption had a relatively low human life toll, a stronger eruption spells havoc almost certainly for the region. At this moment no exhaustive study and understanding exists of the pyroclastic flows generated by the Santa Ana Volcano nor a map for this particular hazard. This study proposes the use of Titan2D for those two purposes, using a DEM generated by the SNET using topographic maps as well as DEMs generated using Advanced Spaceborne Thermal Emission and Reflection Radiometer Images (ASTER).
NASA Astrophysics Data System (ADS)
Ocłoń, Paweł; Łopata, Stanisław; Nowak, Marzena
2014-09-01
This study presents a novel, simplified model for the time-efficient simulation of transient conjugate heat transfer in round tubes. The flow domain and the tube wall are modeled in 1D and 2D, respectively and empirical correlations are used to model the flow domain in 1D. The model is particularly useful when dealing with complex physics, such as flow boiling, which is the main focus of this study. The tube wall is assumed to have external fins. The flow is vertical upwards. Note that straightforward computational fluid dynamics (CFD) analysis of conjugate heat transfer in a system of tubes, leads to 3D modeling of fluid and solid domains. Because correlation is used and dimensionality reduced, the model is numerically more stable and computationally more time-efficient compared to the CFD approach. The benefit of the proposed approach is that it can be applied to large systems of tubes as encountered in many practical applications. The modeled equations are discretized in space using the finite volume method, with central differencing for the heat conduction equation in the solid domain, and upwind differencing of the convective term of the enthalpy transport equation in the flow domain. An explicit time discretization with forward differencing was applied to the enthalpy transport equation in the fluid domain. The conduction equation in the solid domain was time discretized using the Crank-Nicholson scheme. The model is applied in different boundary conditions and the predicted boiling patterns and temperature fields are discussed.
NASA Astrophysics Data System (ADS)
Ocłoń, Paweł; Łopata, Stanisław; Nowak, Marzena
2015-04-01
This study presents a novel, simplified model for the time-efficient simulation of transient conjugate heat transfer in round tubes. The flow domain and the tube wall are modeled in 1D and 2D, respectively and empirical correlations are used to model the flow domain in 1D. The model is particularly useful when dealing with complex physics, such as flow boiling, which is the main focus of this study. The tube wall is assumed to have external fins. The flow is vertical upwards. Note that straightforward computational fluid dynamics (CFD) analysis of conjugate heat transfer in a system of tubes, leads to 3D modeling of fluid and solid domains. Because correlation is used and dimensionality reduced, the model is numerically more stable and computationally more time-efficient compared to the CFD approach. The benefit of the proposed approach is that it can be applied to large systems of tubes as encountered in many practical applications. The modeled equations are discretized in space using the finite volume method, with central differencing for the heat conduction equation in the solid domain, and upwind differencing of the convective term of the enthalpy transport equation in the flow domain. An explicit time discretization with forward differencing was applied to the enthalpy transport equation in the fluid domain. The conduction equation in the solid domain was time discretized using the Crank-Nicholson scheme. The model is applied in different boundary conditions and the predicted boiling patterns and temperature fields are discussed.
Method and Apparatus for Measuring Fluid Flow
NASA Technical Reports Server (NTRS)
Arndt, G. Dickey (Inventor); Nguyen, Than X. (Inventor); Carl, James R. (Inventor)
1995-01-01
The invention is a method and apparatus for monitoring the presence, concentration, and the movement of fluids. It is based on utilizing electromagnetic measurements of the complex permittivity of the fluids for detecting and monitoring the fluid. More particularly the apparatus uses one or more microwave probes which are placed at the locations where the measurements are to be made. A radio frequency signal is transmitted to the probe and the reflected signal is phase and amplitude detected at a rapid rate for the purpose of identifying the fluids, based on their dielectric constant at the probe. The apparatus can be used for multiple purposes including measures of flow rates, turbulence, dispersion, fluid identification, and changes in flow conditions of multiple fluids or multiple states of a single fluid in a flowline or a holding container. The apparatus includes a probe consisting of two electrical conductors separated by an insulator. A radio frequency signal is communicated to the probe and is reflected back from the portion of the probe exposed to the fluid. The radio frequency signal also provides a reference signal. An oscillator generates a second signal which combined with each of the reference signal and the reflected signal to produce signals of lower frequencies to facilitate filtering and amplifying those signals. The two signals are then mixed in a detector to produce an output signal that is representative of the phase and amplitude change caused by the reflection of the signal at the probe exposed to the fluid. The detector may be a dual phase detector that provides two such output signals that are in phase quadrature. A phase shifter may be provided for selectively changing the phase of the reference signal to improve the sensitivity of at least one of the output signals for more accurate readings and/or for calibration purposes. The two outputs that are in quadrature with respect to each other may be simultaneously monitored to account for
Fluid Flow in An Evaporating Droplet
NASA Technical Reports Server (NTRS)
Hu, H.; Larson, R.
1999-01-01
Droplet evaporation is a common phenomenon in everyday life. For example, when a droplet of coffee or salt solution is dropped onto a surface and the droplet dries out, a ring of coffee or salt particles is left on the surface. This phenomenon exists not only in everyday life, but also in many practical industrial processes and scientific research and could also be used to assist in DNA sequence analysis, if the flow field in the droplet produced by the evaporation could be understood and predicted in detail. In order to measure the fluid flow in a droplet, small particles can be suspended into the fluid as tracers. From the ratio of gravitational force to Brownian force a(exp 4)(delta rho)(g)/k(sub B)T, we find that particle's tendency to settle is proportional to a(exp 4) (a is particle radius). So, to keep the particles from settling, the droplet size should be chosen to be in a range 0.1 -1.0 microns in experiments. For such small particles, the Brownian force will affect the motion of the particle preventing accurate measurement of the flow field. This problem could be overcome by using larger particles as tracers to measure fluid flow under microgravity since the gravitational acceleration g is then very small. For larger particles, Brownian force would hardly affect the motion of the particles. Therefore, accurate flow field could be determined from experiments in microgravity. In this paper, we will investigate the fluid flow in an evaporating droplet under normal gravity, and compare experiments to theories. Then, we will present our ideas about the experimental measurement of fluid flow in an evaporating droplet under microgravity.
Fluid flow meter for measuring the rate of fluid flow in a conduit
NASA Technical Reports Server (NTRS)
White, P. R. (Inventor)
1986-01-01
A tube fluid flow rate meter consists of a reservoir divided by flexible diaphragm into two separate isolated compartments. The incoming and outgoing tubes open into the compartments. The orifice is sized to allow maximum tube fluid flow. Opposing compression springs are secured within the two compartments on opposite sides of the orifice to maintain orifice position when the tube fluid pressure is zero. A tapered element is centered in, and extends through the orifice into the compartment, leaving an annular opening between the element and the perimeter of the oriface. The size varies as the diaphragm flexes with changes in the tube fluid pressure to change the fluid flow through the opening. The light source directs light upon the element which in turn scatters the light through the opening into the compartment. The light detector in the compartment senses the scattered light to generate a signal indicating the amount of fluid.
Geophysical Fluid Flow Cell (GFFC) Simulation
NASA Technical Reports Server (NTRS)
1999-01-01
These simulations of atmospheric flow use the same experimental parameters but started with slightly different initial conditions in the model. The simulations were part of data analysis for the Geophysical Fluid Flow Cell (GFFC), a planet in a test tube apparatus flown on Spacelab to mimic the atmospheres on gas giant planets and stars. (Credit: Dr. Tim Miller of Global Hydrology and Climate Center at the Marshall Space Flight Center)
Advanced designs for fluid flow visualization
NASA Technical Reports Server (NTRS)
1978-01-01
Research was carried out on existing and new designs for minimally intrusive measurement of flow fields in the Geophysical Fluid Flow Cell and the proposed Atmospheric General Circulation Experiment. The following topics are discussed: (1) identification and removal of foreign particles, (2) search for higher dielectric photochromic solutions, (3) selection of uv light source, (4) analysis of refractive techniques and (5) examination of fresnel lens applicability.
NASA Astrophysics Data System (ADS)
Meqbel, Naser; Weckmann, Ute; Muñoz, Gerard; Ritter, Oliver
2016-09-01
We report on a study to explore the deep electrical conductivity structure of the Dead Sea Basin (DSB) using magnetotelluric (MT) data collected along a transect across the DSB where the left lateral strike slip Dead Sea transform fault (DST) splits into two fault strands forming one of the largest pull-apart basins of the world. A very pronounced feature of our 2D inversion model is a deep, sub-vertical conductive zone beneath the DSB. The conductor extends through the entire crust and is sandwiched between highly resistive structures associated with Precambrian rocks of the basin flanks. The high electrical conductivity could be attributed to fluids released by dehydration of the uppermost mantle beneath the DSB, possibly in combination with fluids released by mid to low grade metamorphism in the lower crust and generation of hydrous minerals in the middle crust through retrograde metamorphism. Similar high conductivity zones associated with fluids have been reported from other large fault systems. The presence of fluids and hydrous minerals in the middle and lower crust could explain the required low friction coefficient of the DST along the eastern boundary of the Dead Sea basin and the high subsidence rate of basin sediments. 3D inversion models confirm the existence of a sub-vertical high conductivity structure underneath the DSB but its expression is far less pronounced. Instead, the 3D inversion model suggests a deepening of the conductive DSB sediments off-profile towards the south, reaching a maximum depth of approximately 12 km, which is consistent with other geophysical observations. At shallower levels, the 3D inversion model reveals salt diapirism as an upwelling of highly resistive structures, localized underneath the Al-Lisan Peninsula. The 3D model furthermore contains an E-W elongated conductive structure to the north-east of the Dead Sea basin. More MT data with better spatial coverage are required, however, to fully constrain the robustness of
Granular Materials Flows with Interstitial Fluid Effects
NASA Astrophysics Data System (ADS)
Hunt, M. L.; Brennen, C. E.; Campbell, C. S.
2002-11-01
In 1954, R.A. Bagnold published his seminal findings on the rheological properties of liquid-solid flows. We recently completed an extensive reevaluation of Bagnold's work, and our analysis and simulations indicate that the rheological measurements of Bagnold were affected significantly by secondary flows within the experimental apparatus. The concentric cylinder rheometer was designed by Bagnold to measure simultaneously the shear and normal forces for a wide range for solid concentrations, fluid viscosities and shear rates. As presented by Bagnold, the shear and normal forces depended linearly on the shear rate in the 'macroviscous' regime. As the grain-to-grain interactions increased in the 'grain inertia' regime, the stresses depended on the square of the shear rate and were independent of the fluid viscosity. These results, however, appear to be dictated by the design of the experimental facility. In Bagnold's experiments, the height (h) of the rheometer was relatively short compared to the spacing (t) between the rotating outer and stationary inner cylinder (h/t=4.6). Since the top and bottom end plates rotated with the outer cylinder, the flow contained two axisymmetric counter-rotating cells in which flow moved outward along the end plates and inward at the midheight of the annulus. These cells contribute significantly to the measured torque, and obscured any accurate measurements of the shear or normal stresses. Before doing the reevaluation of Bagnold's work, our research objective was to examine the effects of the interstitial fluid for flows in which the densities of the two phases were different. After reevaluating Bagnold's work, we redesigned our experimental facility to minimize secondary flow effects. Like Bagnold's facility, we use a concentric cylinder rheometer with a rotating outer wall. The inner cylinder also is able to rotate slightly but will also be restrained by flexible supports; the torque is measured from the deformation of the
Classification of the stratified fluid flows regimes around a square cylinder
NASA Astrophysics Data System (ADS)
Gushchin, V. A.; Matyushin, P. V.
2015-10-01
The 2D density stratified (in vertical direction) viscous fluid flows around a square cylinder with diameter d (moving in horizontal direction with the velocity U) have been simulated on the basis of the Navier-Stokes equations in the Boussinesq approximation. For solving of the Navier-Stokes equations the Splitting on physical factors Method for Incompressible Fluid flows (SMIF) with hybrid explicit finite difference scheme (second-order accuracy in space, minimum scheme viscosity and dispersion, monotonous) has been used. The numerical method SMIF has been successfully applied for solving of the different problems: 2D and 3D separated homogeneous and stratified fluid flows around a sphere and a circular cylinder; the flows with free surface including regimes with broken surface wave; the air, heat and mass transfer in the clean rooms. At the present paper the original refined classification of 2D stratified viscous fluid flow regimes around a square cylinder at Re ≤ 200 has been obtained and the interesting fluid flows with two hanging vortices in the wake and with two wavy hanging sheets of density (connected with two hanging vortices) have been investigated in details at Fr = 0.1, Re = 50, where Re = U.d/ν is the Reynolds number, Fr = U/(N.d) is the internal Froude number, ν is the kinematical viscosity coefficient, N is the buoyancy frequency.
Curious Fluid Flows: From Complex Fluid Breakup to Helium Wetting
NASA Astrophysics Data System (ADS)
Huisman, Fawn Mitsu
This work encompasses three projects; pinch-off dynamics in non-Newtonian fluids; helium wetting on alkali metals; and the investigation of quartz tuning forks as cryogenic pressure transducers. Chapter 1 discusses the breakup of a non-Newtonian yield stress fluid bridge. We measured the minimum neck radius, hmin, as a function of time and fit it to a power law with exponent n 1. We then compare n1 to exponent n2, obtained from a rotational rheometer using a Herschel-Bulkley model. We confirm n1=n2 for the widest variety of non-Newtonian fluids to date. When these fluids are diluted with a Newtonian fluid n1 does not equal n2. No current models predict that behavior, identifying a new class of fluid breakup. Chapter 2 presents the first chemical potential-temperature phase diagram of helium on lithium, sodium and gold, using a novel pressure measurement system. The growth and superfluid transition of a helium film on these substrates is measured via an oscillator for isotherms (fixed temperature, varying amount of helium gas), and quenches (fixed amount of helium gas, varying temperature). The chemical potential-temperature plot is similar for gold, lithium and sodium despite the large difference in the substrate binding energies. No signs of a 2-D liquid-vapor transition were seen. Chapter 3 discusses the creation of a 32.768 kHz quartz tuning fork in situ pressure transducer. Tuning forks are used to measure pressure at room temperature, but no work addresses their potential as cryogenic pressure transducers. We mapped out the behavior of a tuning fork as a function of pressure at 298, 7.0, 2.5, 1.6, 1.0 and 0.7 K by measuring the quality factor. The fork is sensitive to pressures above 0.1 mTorr, limiting its use as a pressure gauge at 0.6 K and below. The experimental curves were compared to a theoretical Q(P, T) function that was refined using the 298 K data. At cryogenic temperatures the formula breaks down in the viscous region and becomes inaccurate. The
Finite scale equations for compressible fluid flow
Margolin, Len G
2008-01-01
Finite-scale equations (FSE) describe the evolution of finite volumes of fluid over time. We discuss the FSE for a one-dimensional compressible fluid, whose every point is governed by the Navier-Stokes equations. The FSE contain new momentum and internal energy transport terms. These are similar to terms added in numerical simulation for high-speed flows (e.g. artificial viscosity) and for turbulent flows (e.g. subgrid scale models). These similarities suggest that the FSE may provide new insight as a basis for computational fluid dynamics. Our analysis of the FS continuity equation leads to a physical interpretation of the new transport terms, and indicates the need to carefully distinguish between volume-averaged and mass-averaged velocities in numerical simulation. We make preliminary connections to the other recent work reformulating Navier-Stokes equations.
The Geophysical Fluid Flow Cell Experiment
NASA Technical Reports Server (NTRS)
Hart, J. E.; Ohlsen, D.; Kittleman, S.; Borhani, N.; Leslie, F.; Miller, T.
1999-01-01
The Geophysical Fluid Flow Cell (GFFC) experiment performed visualizations of thermal convection in a rotating differentially heated spherical shell of fluid. In these experiments dielectric polarization forces are used to generate a radially directed buoyancy force. This enables the laboratory simulation of a number of geophysically and astrophysically important situations in which sphericity and rotation both impose strong constraints on global scale fluid motions. During USML-2 a large set of experiments with spherically symmetric heating were carried out. These enabled the determination of critical points for the transition to various forms of nonaxisymmetric convection and, for highly turbulent flows, the transition latitudes separating the different modes of motion. This paper presents a first analysis of these experiments as well as data on the general performance of the instrument during the USML-2 flight.
Fluid flow in free flow electrophoresis chamber in microgravity
NASA Astrophysics Data System (ADS)
Bello, Michail S.; Polezhaev, V. I.
1990-05-01
The paper is devoted to the approximate analysis and computer simulations of the viscous incompressible fluid flow in the free-flow electrophoresis chamber, parameters of which are similar to those of the Hele-Shaw cell. The buoyancy effects are assumed to be negligible and do not affect the fluid flow. Such a case corresponds to either electrophoretic separation in microgravity environment or to the electrophoresis in a rather thin chamber. The investigation is based on the Navier-Stokes equations averaged over the transverse coordinate. The streamlines of the steady flow were calculated for various values of the parameter alpha and the relative size of the inlet opening s. The parameter alpha characterizes the ratio of the fluid friction forces against chamber walls to the inertia forces. Three different regimes of the steady flow in the chamber could occur: irrotational flow and jetlike flow with and without secondary flows. The dependence of the entrance region length on the parameters alpha and s was obtained.
Approaches to Modeling Coupled Flow and Reaction in a 2-D Cementation Experiment
Steefel, Carl; Cochepin, B.; Trotignon, L.; Bildstein, O.; Steefel, C.; Lagneau, V.; van der Lee, J.
2008-04-01
Porosity evolution at reactive interfaces is a key process that governs the evolution and performances of many engineered systems that have important applications in earth and environmental sciences. This is the case, for example, at the interface between cement structures and clays in deep geological nuclear waste disposals. Although in a different transport regime, similar questions arise for permeable reactive barriers used for biogeochemical remediation in surface environments. The COMEDIE project aims at investigating the coupling between transport, hydrodynamics and chemistry when significant variations of porosity occur. The present work focuses on a numerical benchmark used as a design exercise for the future COMEDIE-2D experiment. The use of reactive transport simulation tools like Hytec and Crunch provides predictions of the physico-chemical evolutions that are expected during the future experiments in laboratory. Focus is given in this paper on the evolution during the simulated experiment of precipitate, permeability and porosity fields. A first case is considered in which the porosity is constant. Results obtained with Crunch and Hytec are in relatively good agreement. Differences are attributable to the models of reactive surface area taken into account for dissolution/precipitation processes. Crunch and Hytec simulations taking into account porosity variations are then presented and compared. Results given by the two codes are in qualitative agreement, with differences attributable in part to the models of reactive surface area for dissolution/precipitation processes. As a consequence, the localization of secondary precipitates predicted by Crunch leads to lower local porosities than for predictions obtained by Hytec and thus to a stronger coupling between flow and chemistry. This benchmark highlights the importance of the surface area model employed to describe systems in which strong porosity variations occur as a result of dissolution
A qualitative view of cryogenic fluid injection into high speed flows
NASA Technical Reports Server (NTRS)
Hendricks, R. C.; Schlumberger, J.; Proctor, M.
1991-01-01
The injection of supercritical pressure, subcritical temperature fluids, into a 2-D, ambient, static temperature and static pressure supersonic tunnel and free jet supersonic nitrogen flow field was observed. Observed patterns with fluid air were the same as those observed for fluid nitrogen injected into the tunnel at 90 deg to the supersonic flow. The nominal injection pressure was of 6.9 MPa and tunnel Mach number was 2.7. When injected directly into and opposing the tunnel exhaust flow, the observed patterns with fluid air were similar to those observed for fluid nitrogen but appeared more diffusive. Cryogenic injection creates a high density region within the bow shock wake but the standoff distance remains unchanged from the gaseous value. However, as the temperature reaches a critical value, the shock faded and advanced into the supersonic stream. For both fluids, nitrogen and air, the phenomena was completely reversible.
14 CFR 23.1095 - Carburetor deicing fluid flow rate.
Code of Federal Regulations, 2011 CFR
2011-01-01
... 14 Aeronautics and Space 1 2011-01-01 2011-01-01 false Carburetor deicing fluid flow rate. 23.1095... Induction System § 23.1095 Carburetor deicing fluid flow rate. (a) If a carburetor deicing fluid system is used, it must be able to simultaneously supply each engine with a rate of fluid flow, expressed...
14 CFR 23.1095 - Carburetor deicing fluid flow rate.
Code of Federal Regulations, 2012 CFR
2012-01-01
... 14 Aeronautics and Space 1 2012-01-01 2012-01-01 false Carburetor deicing fluid flow rate. 23.1095... Induction System § 23.1095 Carburetor deicing fluid flow rate. (a) If a carburetor deicing fluid system is used, it must be able to simultaneously supply each engine with a rate of fluid flow, expressed...
Granular Material Flows with Interstitial Fluid Effects
NASA Technical Reports Server (NTRS)
Hunt, Melany L.; Brennen, Christopher E.
2004-01-01
The research focused on experimental measurements of the rheological properties of liquid-solid and granular flows. In these flows, the viscous effects of the interstitial fluid, the inertia of the fluid and particles, and the collisional interactions of the particles may all contribute to the flow mechanics. These multiphase flows include industrial problems such as coal slurry pipelines, hydraulic fracturing processes, fluidized beds, mining and milling operation, abrasive water jet machining, and polishing and surface erosion technologies. In addition, there are a wide range of geophysical flows such as debris flows, landslides and sediment transport. In extraterrestrial applications, the study of transport of particulate materials is fundamental to the mining and processing of lunar and Martian soils and the transport of atmospheric dust (National Research Council 2000). The recent images from Mars Global Surveyor spacecraft dramatically depict the complex sand and dust flows on Mars, including dune formation and dust avalanches on the slip-face of dune surfaces. These Aeolian features involve a complex interaction of the prevailing winds and deposition or erosion of the sediment layer; these features make a good test bed for the verification of global circulation models of the Martian atmosphere.
SIMULATIONS OF 2D AND 3D THERMOCAPILLARY FLOWS BY A LEAST-SQUARES FINITE ELEMENT METHOD. (R825200)
Numerical results for time-dependent 2D and 3D thermocapillary flows are presented in this work. The numerical algorithm is based on the Crank-Nicolson scheme for time integration, Newton's method for linearization, and a least-squares finite element method, together with a matri...
NASA Astrophysics Data System (ADS)
Lopes Filho, Milton C.; Nussenzveig Lopes, Helena J.; Titi, Edriss S.; Zang, Aibin
2015-06-01
The second-grade fluid equations are a model for viscoelastic fluids, with two parameters: α > 0, corresponding to the elastic response, and , corresponding to viscosity. Formally setting these parameters to 0 reduces the equations to the incompressible Euler equations of ideal fluid flow. In this article we study the limits of solutions of the second-grade fluid system, in a smooth, bounded, two-dimensional domain with no-slip boundary conditions. This class of problems interpolates between the Euler- α model (), for which the authors recently proved convergence to the solution of the incompressible Euler equations, and the Navier-Stokes case ( α = 0), for which the vanishing viscosity limit is an important open problem. We prove three results. First, we establish convergence of the solutions of the second-grade model to those of the Euler equations provided , as α → 0, extending the main result in (Lopes Filho et al., Physica D 292(293):51-61, 2015). Second, we prove equivalence between convergence (of the second-grade fluid equations to the Euler equations) and vanishing of the energy dissipation in a suitably thin region near the boundary, in the asymptotic regime , as α → 0. This amounts to a convergence criterion similar to the well-known Kato criterion for the vanishing viscosity limit of the Navier-Stokes equations to the Euler equations. Finally, we obtain an extension of Kato's classical criterion to the second-grade fluid model, valid if , as . The proof of all these results relies on energy estimates and boundary correctors, following the original idea by Kato.
Using heteroclinic orbits to quantify topological entropy in fluid flows.
Sattari, Sulimon; Chen, Qianting; Mitchell, Kevin A
2016-03-01
Topological approaches to mixing are important tools to understand chaotic fluid flows, ranging from oceanic transport to the design of micro-mixers. Typically, topological entropy, the exponential growth rate of material lines, is used to quantify topological mixing. Computing topological entropy from the direct stretching rate is computationally expensive and sheds little light on the source of the mixing. Earlier approaches emphasized that topological entropy could be viewed as generated by the braiding of virtual, or "ghost," rods stirring the fluid in a periodic manner. Here, we demonstrate that topological entropy can also be viewed as generated by the braiding of ghost rods following heteroclinic orbits instead. We use the machinery of homotopic lobe dynamics, which extracts symbolic dynamics from finite-length pieces of stable and unstable manifolds attached to fixed points of the fluid flow. As an example, we focus on the topological entropy of a bounded, chaotic, two-dimensional, double-vortex cavity flow. Over a certain parameter range, the topological entropy is primarily due to the braiding of a period-three orbit. However, this orbit does not explain the topological entropy for parameter values where it does not exist, nor does it explain the excess of topological entropy for the entire range of its existence. We show that braiding by heteroclinic orbits provides an accurate computation of topological entropy when the period-three orbit does not exist, and that it provides an explanation for some of the excess topological entropy when the period-three orbit does exist. Furthermore, the computation of symbolic dynamics using heteroclinic orbits has been automated and can be used to compute topological entropy for a general 2D fluid flow. PMID:27036190
Using heteroclinic orbits to quantify topological entropy in fluid flows.
Sattari, Sulimon; Chen, Qianting; Mitchell, Kevin A
2016-03-01
Topological approaches to mixing are important tools to understand chaotic fluid flows, ranging from oceanic transport to the design of micro-mixers. Typically, topological entropy, the exponential growth rate of material lines, is used to quantify topological mixing. Computing topological entropy from the direct stretching rate is computationally expensive and sheds little light on the source of the mixing. Earlier approaches emphasized that topological entropy could be viewed as generated by the braiding of virtual, or "ghost," rods stirring the fluid in a periodic manner. Here, we demonstrate that topological entropy can also be viewed as generated by the braiding of ghost rods following heteroclinic orbits instead. We use the machinery of homotopic lobe dynamics, which extracts symbolic dynamics from finite-length pieces of stable and unstable manifolds attached to fixed points of the fluid flow. As an example, we focus on the topological entropy of a bounded, chaotic, two-dimensional, double-vortex cavity flow. Over a certain parameter range, the topological entropy is primarily due to the braiding of a period-three orbit. However, this orbit does not explain the topological entropy for parameter values where it does not exist, nor does it explain the excess of topological entropy for the entire range of its existence. We show that braiding by heteroclinic orbits provides an accurate computation of topological entropy when the period-three orbit does not exist, and that it provides an explanation for some of the excess topological entropy when the period-three orbit does exist. Furthermore, the computation of symbolic dynamics using heteroclinic orbits has been automated and can be used to compute topological entropy for a general 2D fluid flow.
Using heteroclinic orbits to quantify topological entropy in fluid flows
NASA Astrophysics Data System (ADS)
Sattari, Sulimon; Chen, Qianting; Mitchell, Kevin A.
2016-03-01
Topological approaches to mixing are important tools to understand chaotic fluid flows, ranging from oceanic transport to the design of micro-mixers. Typically, topological entropy, the exponential growth rate of material lines, is used to quantify topological mixing. Computing topological entropy from the direct stretching rate is computationally expensive and sheds little light on the source of the mixing. Earlier approaches emphasized that topological entropy could be viewed as generated by the braiding of virtual, or "ghost," rods stirring the fluid in a periodic manner. Here, we demonstrate that topological entropy can also be viewed as generated by the braiding of ghost rods following heteroclinic orbits instead. We use the machinery of homotopic lobe dynamics, which extracts symbolic dynamics from finite-length pieces of stable and unstable manifolds attached to fixed points of the fluid flow. As an example, we focus on the topological entropy of a bounded, chaotic, two-dimensional, double-vortex cavity flow. Over a certain parameter range, the topological entropy is primarily due to the braiding of a period-three orbit. However, this orbit does not explain the topological entropy for parameter values where it does not exist, nor does it explain the excess of topological entropy for the entire range of its existence. We show that braiding by heteroclinic orbits provides an accurate computation of topological entropy when the period-three orbit does not exist, and that it provides an explanation for some of the excess topological entropy when the period-three orbit does exist. Furthermore, the computation of symbolic dynamics using heteroclinic orbits has been automated and can be used to compute topological entropy for a general 2D fluid flow.
Flow behaviour of extremely bidisperse magnetizable fluids
NASA Astrophysics Data System (ADS)
Susan-Resiga, Daniela; Bica, Doina; Vékás, L.
2010-10-01
In this paper we investigated the rheological and magnetorheological behaviours of an extremely bidisperse (nano-micro) magnetizable fluid (sample D1) for comparison of a commercial magnetorheological fluid (MRF-140CG; LORD Co. (USA)) with the same magnetic solid volume fraction, using the Physica MCR-300 rheometer with a 20 mm diameter plate-plate magnetorheological cell (MRD180). D1 sample is a suspension of micrometer range Fe particles in a transformer oil based magnetic fluid as carrier. For both types of samples, the experimental data for zero and non-zero magnetic field conditions were fitted to equations derived from the Newtonian and Cross type flow equations, as well as the Herschel-Bulkley model. The main advantage of both rheological equations for the quantitative description of the magnetic field behaviour of samples is that they can be used in regular CFD codes to compute the flow properties of the magnetorheological fluid and of the bidisperse magnetizable fluid for practical applications.
Calculate pipeline flow of compressible fluids
Cochran, T.W.
1996-02-01
When designing plants, performing safety studies, and analyzing plant problems and opportunities, estimates of the flowrate of compressible fluids in pipelines are often required. In fact, the impact of piping systems on process plant economics is so great that the initial investment in piping systems for new installations has been estimated to range from 18 to 61% of the equipment costs and from 7 to 15% of the total cost of the installed plant. Likewise, operating (energy) and maintenance costs for piping systems are significant. Considering this, practical sizing and analysis methods for pipelines are essential. In sizing pipe for incompressible fluids (that is, liquids), the Darcy or Fanning equation is typically used with the appropriate friction-factor correlation. This analysis is greatly simplified by the constant fluid density. However, with compressible fluids (gases and vapors), density, and hence velocity, may change considerably from one end of the pipe to the other. This, along with the limitations imposed by choked flow, complicates the analysis. Here the authors analyze methods for determining compressible fluid flow that are rigorous enough to handle most industrial situations, yet simple enough to be easily programmed into a personal computer. The theory and derivation of the basic equations are described very well in texts by Levenspiel and Saad.
Ultrasonic fluid flow measurement method and apparatus
Kronberg, J.W.
1993-10-12
An apparatus for measuring the flow of a fluid in a pipe using ultrasonic waves. The apparatus comprises an ultrasonic generator, a lens for focusing the sound energy produced by the generator, and means for directing the focused energy into the side of the pipe through an opening and in a direction close to parallel to the long axis of the pipe. A cone carries the sound energy to the lens from the generator. Depending on the choice of materials, there may be a quarter-wave, acoustic impedance matching section between the generator and the cone to reduce the reflections of energy at the cone boundary. The lens material has an acoustic impedance similar to that of the cone material but a different sonic velocity so that the lens can converge the sound waves in the fluid. A transition section between the lens and the fluid helps to couple the energy to the fluid and assures it is directed as close to parallel to the fluid flow direction as possible. 3 figures.
Ultrasonic fluid flow measurement method and apparatus
Kronberg, James W.
1993-01-01
An apparatus for measuring the flow of a fluid in a pipe using ultrasonic waves. The apparatus comprises an ultrasonic generator, a lens for focusing the sound energy produced by the generator, and means for directing the focused energy into the side of the pipe through an opening and in a direction close to parallel to the long axis of the pipe. A cone carries the sound energy to the lens from the generator. Depending on the choice of materials, there may be a quarter-wave, acoustic impedance matching section between the generator and the cone to reduce the reflections of energy at the cone boundary. The lens material has an acoustic impedance similar to that of the cone material but a different sonic velocity so that the lens can converge the sound waves in the fluid. A transition section between the lens and the fluid helps to couple the energy to the fluid and assures it is directed as close to parallel to the fluid flow direction as possible.
2-Phase Fluid Flow & Heat Transport
1993-03-13
GEOTHER is a three-dimensional, geothermal reservoir simulation code. The model describes heat transport and flow of a single component, two-phase fluid in porous media. It is based on the continuity equations for steam and water, which are reduced to two nonlinear partial differential equations in which the dependent variables are fluid pressure and enthalpy. GEOTHER can be used to simulate the fluid-thermal interaction in rock that can be approximated by a porous media representation. Itmore » can simulate heat transport and the flow of compressed water, two-phase mixtures, and superheated steam in porous media over a temperature range of 10 to 300 degrees C. In addition, it can treat the conversion from single to two-phase flow, and vice versa. It can be used for evaluation of a near repository spatial scale and a time scale of a few years to thousands of years. The model can be used to investigate temperature and fluid pressure changes in response to thermal loading by waste materials.« less
Modeling Tools Predict Flow in Fluid Dynamics
NASA Technical Reports Server (NTRS)
2010-01-01
"Because rocket engines operate under extreme temperature and pressure, they present a unique challenge to designers who must test and simulate the technology. To this end, CRAFT Tech Inc., of Pipersville, Pennsylvania, won Small Business Innovation Research (SBIR) contracts from Marshall Space Flight Center to develop software to simulate cryogenic fluid flows and related phenomena. CRAFT Tech enhanced its CRUNCH CFD (computational fluid dynamics) software to simulate phenomena in various liquid propulsion components and systems. Today, both government and industry clients in the aerospace, utilities, and petrochemical industries use the software for analyzing existing systems as well as designing new ones."
Two-fluid Hydrodynamic Model for Fluid-Flow Simulation in Fluid-Solids Systems
1994-06-20
FLUFIX is a two-dimensional , transient, Eulerian, and finite-difference program, based on a two-fluid hydrodynamic model, for fluid flow simulation in fluid-solids systems. The software is written in a modular form using the Implicit Multi-Field (IMF) numerical technique. Quantities computed are the spatial distribution of solids loading, gas and solids velocities, pressure, and temperatures. Predicted are bubble formation, bed frequencies, and solids recirculation. Applications include bubbling and circulating atmospheric and pressurized fluidized bed reactors, combustors, gasifiers, and FCC (Fluid Catalytic Cracker) reactors.
Two-fluid Hydrodynamic Model for Fluid-Flow Simulation in Fluid-Solids Systems
1994-06-20
FLUFIX is a two-dimensional , transient, Eulerian, and finite-difference program, based on a two-fluid hydrodynamic model, for fluid flow simulation in fluid-solids systems. The software is written in a modular form using the Implicit Multi-Field (IMF) numerical technique. Quantities computed are the spatial distribution of solids loading, gas and solids velocities, pressure, and temperatures. Predicted are bubble formation, bed frequencies, and solids recirculation. Applications include bubbling and circulating atmospheric and pressurized fluidized bed reactors, combustors,more » gasifiers, and FCC (Fluid Catalytic Cracker) reactors.« less
Analysis of Fluid Flow over a Surface
NASA Technical Reports Server (NTRS)
McCloud, Peter L. (Inventor)
2013-01-01
A method, apparatus, and computer program product for modeling heat radiated by a structure. The flow of a fluid over a surface of a model of the structure is simulated. The surface has a plurality of surface elements. Heat radiated by the plurality of surface elements in response to the fluid flowing over the surface of the model of the structure is identified. An effect of heat radiated by at least a portion of the plurality of surface elements on each other is identified. A model of the heat radiated by the structure is created using the heat radiated by the plurality of surface elements and the effect of the heat radiated by at least a portion of the plurality of surface elements on each other.
Visualization periodic flows in a continuously stratified fluid.
NASA Astrophysics Data System (ADS)
Bardakov, R.; Vasiliev, A.
2012-04-01
To visualize the flow pattern of viscous continuously stratified fluid both experimental and computational methods were developed. Computational procedures were based on exact solutions of set of the fundamental equations. Solutions of the problems of flows producing by periodically oscillating disk (linear and torsion oscillations) were visualized with a high resolutions to distinguish small-scale the singular components on the background of strong internal waves. Numerical algorithm of visualization allows to represent both the scalar and vector fields, such as velocity, density, pressure, vorticity, stream function. The size of the source, buoyancy and oscillation frequency, kinematic viscosity of the medium effects were traced in 2D an 3D posing problems. Precision schlieren instrument was used to visualize the flow pattern produced by linear and torsion oscillations of strip and disk in a continuously stratified fluid. Uniform stratification was created by the continuous displacement method. The buoyancy period ranged from 7.5 to 14 s. In the experiments disks with diameters from 9 to 30 cm and a thickness of 1 mm to 10 mm were used. Different schlieren methods that are conventional vertical slit - Foucault knife, vertical slit - filament (Maksoutov's method) and horizontal slit - horizontal grating (natural "rainbow" schlieren method) help to produce supplementing flow patterns. Both internal wave beams and fine flow components were visualized in vicinity and far from the source. Intensity of high gradient envelopes increased proportionally the amplitude of the source. In domains of envelopes convergence isolated small scale vortices and extended mushroom like jets were formed. Experiments have shown that in the case of torsion oscillations pattern of currents is more complicated than in case of forced linear oscillations. Comparison with known theoretical model shows that nonlinear interactions between the regular and singular flow components must be taken
Piezoelectric energy harvesting in internal fluid flow.
Lee, Hyeong Jae; Sherrit, Stewart; Tosi, Luis Phillipe; Walkemeyer, Phillip; Colonius, Tim
2015-10-14
We consider piezoelectric flow energy harvesting in an internal flow environment with the ultimate goal powering systems such as sensors in deep oil well applications. Fluid motion is coupled to structural vibration via a cantilever beam placed in a converging-diverging flow channel. Two designs were considered for the electromechanical coupling: first; the cantilever itself is a piezoelectric bimorph; second; the cantilever is mounted on a pair of flextensional actuators. We experimentally investigated varying the geometry of the flow passage and the flow rate. Experimental results revealed that the power generated from both designs was similar; producing as much as 20 mW at a flow rate of 20 L/min. The bimorph designs were prone to failure at the extremes of flow rates tested. Finite element analysis (FEA) showed fatigue failure was imminent due to stress concentrations near the bimorph's clamped region; and that robustness could be improved with a stepped-joint mounting design. A similar FEA model showed the flextensional-based harvester had a resonant frequency of around 375 Hz and an electromechanical coupling of 0.23 between the cantilever and flextensional actuators in a vacuum. These values; along with the power levels demonstrated; are significant steps toward building a system design that can eventually deliver power in the Watts range to devices down within a well.
Piezoelectric energy harvesting in internal fluid flow.
Lee, Hyeong Jae; Sherrit, Stewart; Tosi, Luis Phillipe; Walkemeyer, Phillip; Colonius, Tim
2015-01-01
We consider piezoelectric flow energy harvesting in an internal flow environment with the ultimate goal powering systems such as sensors in deep oil well applications. Fluid motion is coupled to structural vibration via a cantilever beam placed in a converging-diverging flow channel. Two designs were considered for the electromechanical coupling: first; the cantilever itself is a piezoelectric bimorph; second; the cantilever is mounted on a pair of flextensional actuators. We experimentally investigated varying the geometry of the flow passage and the flow rate. Experimental results revealed that the power generated from both designs was similar; producing as much as 20 mW at a flow rate of 20 L/min. The bimorph designs were prone to failure at the extremes of flow rates tested. Finite element analysis (FEA) showed fatigue failure was imminent due to stress concentrations near the bimorph's clamped region; and that robustness could be improved with a stepped-joint mounting design. A similar FEA model showed the flextensional-based harvester had a resonant frequency of around 375 Hz and an electromechanical coupling of 0.23 between the cantilever and flextensional actuators in a vacuum. These values; along with the power levels demonstrated; are significant steps toward building a system design that can eventually deliver power in the Watts range to devices down within a well. PMID:26473879
Piezoelectric Energy Harvesting in Internal Fluid Flow
Lee, Hyeong Jae; Sherrit, Stewart; Tosi, Luis Phillipe; Walkemeyer, Phillip; Colonius, Tim
2015-01-01
We consider piezoelectric flow energy harvesting in an internal flow environment with the ultimate goal powering systems such as sensors in deep oil well applications. Fluid motion is coupled to structural vibration via a cantilever beam placed in a converging-diverging flow channel. Two designs were considered for the electromechanical coupling: first; the cantilever itself is a piezoelectric bimorph; second; the cantilever is mounted on a pair of flextensional actuators. We experimentally investigated varying the geometry of the flow passage and the flow rate. Experimental results revealed that the power generated from both designs was similar; producing as much as 20 mW at a flow rate of 20 L/min. The bimorph designs were prone to failure at the extremes of flow rates tested. Finite element analysis (FEA) showed fatigue failure was imminent due to stress concentrations near the bimorph’s clamped region; and that robustness could be improved with a stepped-joint mounting design. A similar FEA model showed the flextensional-based harvester had a resonant frequency of around 375 Hz and an electromechanical coupling of 0.23 between the cantilever and flextensional actuators in a vacuum. These values; along with the power levels demonstrated; are significant steps toward building a system design that can eventually deliver power in the Watts range to devices down within a well. PMID:26473879
Renormalizability of the gradient flow in the 2D O(N) non-linear sigma model
NASA Astrophysics Data System (ADS)
Makino, Hiroki; Suzuki, Hiroshi
2015-03-01
It is known that the gauge field and its composite operators evolved by the Yang-Mills gradient flow are ultraviolet (UV) finite without any multiplicative wave function renormalization. In this paper, we prove that the gradient flow in the 2D O(N) non-linear sigma model possesses a similar property: The flowed N-vector field and its composite operators are UV finite without multiplicative wave function renormalization. Our proof in all orders of perturbation theory uses a (2+1)-dimensional field theoretical representation of the gradient flow, which possesses local gauge invariance without gauge field. As an application of the UV finiteness of the gradient flow, we construct the energy-momentum tensor in the lattice formulation of the O(N) non-linear sigma model that automatically restores the correct normalization and the conservation law in the continuum limit.
Physical aspects of computing the flow of a viscous fluid
NASA Technical Reports Server (NTRS)
Mehta, U. B.
1984-01-01
One of the main themes in fluid dynamics at present and in the future is going to be computational fluid dynamics with the primary focus on the determination of drag, flow separation, vortex flows, and unsteady flows. A computation of the flow of a viscous fluid requires an understanding and consideration of the physical aspects of the flow. This is done by identifying the flow regimes and the scales of fluid motion, and the sources of vorticity. Discussions of flow regimes deal with conditions of incompressibility, transitional and turbulent flows, Navier-Stokes and non-Navier-Stokes regimes, shock waves, and strain fields. Discussions of the scales of fluid motion consider transitional and turbulent flows, thin- and slender-shear layers, triple- and four-deck regions, viscous-inviscid interactions, shock waves, strain rates, and temporal scales. In addition, the significance and generation of vorticity are discussed. These physical aspects mainly guide computations of the flow of a viscous fluid.
Fluid flow in a skewed annulus
Haci, M.; Cartalos, U.
1996-06-01
A novel, realistic treatment of annular flow in an oil well is developed. The fluid flow in an annulus with an inclined or S-shaped inner pipe is considered. The model covers laminar and turbulent flow regimes and the results are experimentally verified. The study predicts axial and angular velocities and frictional pressure losses. The frictional pressure losses are shown to be higher than in the corresponding concentric annulus when the inner pipe is severely S-shaped. However, for typical drilling well geometries, the frictional pressure losses are found to approach the eccentric annular predictions asymptotically. Thus, the study finds the average eccentricity of a vertical or near vertical well, which is a difficult parameter for the engineer to estimate. The results of the study are of practical importance where high annular frictional pressure losses are encountered, such as in slim holes and coiled tubing operations. The frictional pressure losses in complex annular geometries are presented in an easily usable form.
NASA Astrophysics Data System (ADS)
Gogoi, Bidyut B.
2016-07-01
We have recently analyzed the global two-dimensional (2D) stability of the staggered lid-driven cavity (LDC) flow with a higher order compact (HOC) approach. In the analysis, critical parameters are determined for both the parallel and anti-parallel motion of the lids and a detailed analysis has been carried out on either side of the critical values. In this article, we carry out an investigation of flow stabilities inside a two-sided cross lid-driven cavity with a pair of opposite lids moving in both parallel and anti-parallel directions. On discretization, the governing 2D Navier-Stokes (N-S) equations describing the steady flow and flow perturbations results in a generalized eigenvalue problem which is solved for determining the critical parameters on four different grids. Elaborate computation is performed for a wide range of Reynolds numbers (Re) on either side of the critical values in the range 200 ⩽ Re ⩽ 10000. For flows below the critical Reynolds number Rec, our numerical results are compared with established steady-state results and excellent agreement is obtained in all the cases. For Reynolds numbers above Rec, phase plane and spectral density analysis confirmed the existence of periodic, quasi-periodic, and stable flow patterns.
NASA Technical Reports Server (NTRS)
Thompson David S.; Soni, Bharat K.
2001-01-01
An integrated geometry/grid/simulation software package, ICEG2D, is being developed to automate computational fluid dynamics (CFD) simulations for single- and multi-element airfoils with ice accretions. The current version, ICEG213 (v2.0), was designed to automatically perform four primary functions: (1) generate a grid-ready surface definition based on the geometrical characteristics of the iced airfoil surface, (2) generate high-quality structured and generalized grids starting from a defined surface definition, (3) generate the input and restart files needed to run the structured grid CFD solver NPARC or the generalized grid CFD solver HYBFL2D, and (4) using the flow solutions, generate solution-adaptive grids. ICEG2D (v2.0) can be operated in either a batch mode using a script file or in an interactive mode by entering directives from a command line within a Unix shell. This report summarizes activities completed in the first two years of a three-year research and development program to address automation issues related to CFD simulations for airfoils with ice accretions. As well as describing the technology employed in the software, this document serves as a users manual providing installation and operating instructions. An evaluation of the software is also presented.
Quantitative evaluation fo cerebrospinal fluid shunt flow
Chervu, S.; Chervu, L.R.; Vallabhajosyula, B.; Milstein, D.M.; Shapiro, K.M.; Shulman, K.; Blaufox, M.D.
1984-01-01
The authors describe a rigorous method for measuring the flow of cerebrospinal fluid (CSF) in shunt circuits implanted for the relief of obstructive hydrocephalus. Clearance of radioactivity for several calibrated flow rates was determined with a Harvard infusion pump by injecting the Rickham reservoir of a Rickham-Holter valve system with 100 ..mu..Ci of Tc-99m as pertechnetate. The elliptical and the cylindrical Holter valves used as adjunct valves with the Rickham reservoir yielded two different regression lines when the clearances were plotted against flow rats. The experimental regression lines were used to determine the in vivo flow rates from clearances calculated after injecting the Rickham reservoirs of the patients. The unique clearance characteristics of the individual shunt systems available requires that calibration curves be derived for an entire system identical to one implanted in the patient being evaluated, rather than just the injected chamber. Excellent correlation between flow rates and the clinical findings supports the reliability of this method of quantification of CSF shunt flow, and the results are fully accepted by neurosurgeons.
A 2-D oscillating flow analysis in Stirling engine heat exchangers
NASA Technical Reports Server (NTRS)
Ahn, Kyung H.; Ibrahim, Mounir B.
1991-01-01
A two-dimensional oscillating flow analysis was conducted, simulating the gas flow inside Stirling heat exchangers. Both laminar and turbulent oscillating pipe flow were investigated numerically for Re(max) = 1920 (Va = 80), 10800 (Va = 272), 19300 (Va = 272), and 60800 (Va = 126). The results are compared with experimental results of previous investigators. Also, predictions of the flow regime on present oscillating flow conditions were checked by comparing velocity amplitudes and phase differences with those from laminar theory and quasi-steady profile. A high Reynolds number k-epsilon turbulence model was used for turbulent oscillating pipe flow. Finally, performance evaluation of the K-epsilon model was made to explore the applicability of quasi-steady turbulent models to unsteady oscillating flow analysis.
A 2-D oscillating flow analysis in Stirling engine heat exchangers
NASA Technical Reports Server (NTRS)
Ahn, Kyung H.; Ibrahim, Mounir B.
1991-01-01
A two dimensional oscillating flow analysis was conducted, simulating the gas flow inside Stirling heat exchangers. Both laminar and turbulent oscillating pipe flow were investigated numerically for Re(max) = 1920 (Va = 80), 10800 (Va = 272), 19300 (Va = 272), and 60800 (Va = 126). The results are compared with experimental results of previous investigators. Also, predictions of the flow regime on present oscillating flow conditions were checked by comparing velocity amplitudes and phase differences with those from laminar theory and quasi-steady profile. A high Reynolds number k-epsilon turbulence model was used for turbulent oscillating pipe flow. Finally, performance evaluation of the K-epsilon model was made to explore the applicability of quasi-steady turbulent models to unsteady oscillating flow analysis.
Fluid flow in solidifying monotectic alloys
NASA Technical Reports Server (NTRS)
Ecker, A.; Frazier, D. O.; Alexander, J. Iwan D.
1989-01-01
Use of a two-wavelength holographic technique results in a simultaneous determination of temperature and composition profiles during directional solidification in a system with a miscibility gap. The relationships among fluid flow, phase separation, and mass transport during the solidification of the monotectic alloy are discussed. The primary sources of fluid motion in this system are buoyancy and thermocapillary forces. These forces act together when phase separation results in the formation of droplets (this occurs at the solid-liquid interface and in the bulk melt). In the absence of phase separation, buoyancy results from density gradients related to temperature and compositional gradients in the single-phase bulk melt. The effects of buoyancy are especially evident in association with water- or ethanol-rich volumes created at the solid-liquid growth interface.
Fluid flow in solidifying monotectic alloys
NASA Astrophysics Data System (ADS)
Ecker, A.; Frazier, D. O.; Alexander, J. Iwan D.
1989-11-01
Use of a two-wavelength holographic technique results in a simultaneous determination of temperature and composition profiles during directional solidification in a system with a miscibility gap. A shadowgraph technique is employed for flow visualization. By these methods, flow regimes are identified and related to particular melt compositions. We discuss the relationships among fluid flow, phase separation, and mass transport during the solidification of the monotectic alloy. The primary sources of fluid motion in this system are buoyancy and thermocapillary forces. These forces act together when phase separation results in the formation of droplets (this occurs at the solid-liquid interface and in the bulk melt). While buoyancy forces arise due to density differences between the droplet and the host phase, thermocapillary forces (associated with temperature gradients in the droplet surface) may predominate. In the absence of phase separation, buoyancy results from density gradients related to temperature and compositional gradients in the single-phase bulk melt. The effects of buoyancy are especially evident in association with water- or ethanol-rich volumes created at the solid-liquid growth interface.
Fluid flow through packings of rotating obstacles
NASA Astrophysics Data System (ADS)
Oliveira, Rafael S.; Andrade, José S.; Andrade, Roberto F. S.
2015-03-01
We investigate through numerical simulation the nonstationary flow of a Newtonian fluid through a two-dimensional channel filled with an array of circular obstacles of distinct sizes. The disks may rotate around their respective centers, modeling a nonstationary, inhomogeneous porous medium. Obstacle sizes and positions are defined by the geometry of an Apollonian packing (AP). To allow for fluid flow, the radii of the disks are uniformly reduced by a factor 0.6 ≤s ≤0.8 for assemblies corresponding to the four first AP generations. The investigation is targeted to elucidate the main features of the rotating regime as compared to the fixed disk condition. It comprises the evaluation of the region of validity of Darcy's law as well as the study of the nonlinear hydraulic resistance as a function of the channel Reynolds number, the reduction factor s , and the AP generation. Depending on a combination of these factors, the resistance of rotating disks may be larger or smaller than that of the corresponding static case. We also analyze the flow redistribution in the interdisk channels as a result of the rotation pattern and characterize the angular velocity of the disks. Here, the striking feature is the emergence of a stable oscillatory behavior of the angular velocity for almost all disks that are inserted into the assemblies after the second generation.
Fluid flow dynamics in MAS systems.
Wilhelm, Dirk; Purea, Armin; Engelke, Frank
2015-08-01
The turbine system and the radial bearing of a high performance magic angle spinning (MAS) probe with 1.3mm-rotor diameter has been analyzed for spinning rates up to 67kHz. We focused mainly on the fluid flow properties of the MAS system. Therefore, computational fluid dynamics (CFD) simulations and fluid measurements of the turbine and the radial bearings have been performed. CFD simulation and measurement results of the 1.3mm-MAS rotor system show relatively low efficiency (about 25%) compared to standard turbo machines outside the realm of MAS. However, in particular, MAS turbines are mainly optimized for speed and stability instead of efficiency. We have compared MAS systems for rotor diameter of 1.3-7mm converted to dimensionless values with classical turbomachinery systems showing that the operation parameters (rotor diameter, inlet mass flow, spinning rate) are in the favorable range. This dimensionless analysis also supports radial turbines for low speed MAS probes and diagonal turbines for high speed MAS probes. Consequently, a change from Pelton type MAS turbines to diagonal turbines might be worth considering for high speed applications. CFD simulations of the radial bearings have been compared with basic theoretical values proposing considerably smaller frictional loss values. The discrepancies might be due to the simple linear flow profile employed for the theoretical model. Frictional losses generated inside the radial bearings result in undesired heat-up of the rotor. The rotor surface temperature distribution computed by CFD simulations show a large temperature gradient over the rotor. PMID:26073599
Flow Diode and Method for Controlling Fluid Flow Origin of the Invention
NASA Technical Reports Server (NTRS)
Dyson, Rodger W (Inventor)
2015-01-01
A flow diode configured to permit fluid flow in a first direction while preventing fluid flow in a second direction opposite the first direction is disclosed. The flow diode prevents fluid flow without use of mechanical closures or moving parts. The flow diode utilizes a bypass flowline whereby all fluid flow in the second direction moves into the bypass flowline having a plurality of tortuous portions providing high fluidic resistance. The portions decrease in diameter such that debris in the fluid is trapped. As fluid only travels in one direction through the portions, the debris remains trapped in the portions.
VFLOW2D - A Vorte-Based Code for Computing Flow Over Elastically Supported Tubes and Tube Arrays
WOLFE,WALTER P.; STRICKLAND,JAMES H.; HOMICZ,GREGORY F.; GOSSLER,ALBERT A.
2000-10-11
A numerical flow model is developed to simulate two-dimensional fluid flow past immersed, elastically supported tube arrays. This work is motivated by the objective of predicting forces and motion associated with both deep-water drilling and production risers in the oil industry. This work has other engineering applications including simulation of flow past tubular heat exchangers or submarine-towed sensor arrays and the flow about parachute ribbons. In the present work, a vortex method is used for solving the unsteady flow field. This method demonstrates inherent advantages over more conventional grid-based computational fluid dynamics. The vortex method is non-iterative, does not require artificial viscosity for stability, displays minimal numerical diffusion, can easily treat moving boundaries, and allows a greatly reduced computational domain since vorticity occupies only a small fraction of the fluid volume. A gridless approach is used in the flow sufficiently distant from surfaces. A Lagrangian remap scheme is used near surfaces to calculate diffusion and convection of vorticity. A fast multipole technique is utilized for efficient calculation of velocity from the vorticity field. The ability of the method to correctly predict lift and drag forces on simple stationary geometries over a broad range of Reynolds numbers is presented.
Flow rate measurement in aggressive conductive fluids
NASA Astrophysics Data System (ADS)
Dubovikova, Nataliia; Kolesnikov, Yuri; Karcher, Christian
2014-03-01
Two non-contact experimental methods of flow rate measurements for aggressive conductive liquids are described. The techniques are based on electromagnetic forces and Faraday's law: Lorentz force is induced inside moving conductive liquid under influence of variable magnetic field of permanent magnets. They are mounted along a liquid metal channel or (in case of the second method) inserted into rotated metal wheels. The force acts in the opposite of fluids' velocity direction and hence it is possible to measure reaction force of it that takes place according to Newton's law on magnetic field source - permanent magnets. And by knowing the force, which linearly depends on velocity, one can calculate mean flow rate of liquid. In addition experimental "dry" calibration and its results are described for one of the measurements' techniques.
Fluid flow through the larynx channel
NASA Astrophysics Data System (ADS)
Miller, J. A.; Pereira, J. C.; Thomas, D. W.
1988-03-01
The classic two-mass model of the larynx channel is extended by including the false vocal folds and the laryngeal ventricle. Several glottis profiles are postulated to exist which are the result of the forces applied to the mucus membrane due to intraglottal pressure variation. These profiles constrain the air flow which allows the formation of one or two "venae contractae". The location of these influences the pressure in the glottis and layrngeal ventricle and also gives rise to additional viscous losses as well as losses due to flow enlargement. Sampled waveforms are calculated from the model for volume velocity, glottal area, Reynolds number and fluid forces over the vocal folds for various profiles. Results show that the computed waveforms agree with physiological data [1,2] and that it is not necessary to use any empirical constants to match the simulation results. Also, the onset of phonation is shown to be possible either with abduction or adduction of the vocal folds.
Intravenous fluid flow meter concept for zero gravity environment
NASA Technical Reports Server (NTRS)
Miller, C. G.
1972-01-01
Measuring chamber, included in infusion-set tubing, and peristaltic flow meter concept can be incorporated into flow meter that measures fluid flow rates between 100 and 600 cu cm per hour and at the same time maintains sterilization.
Microscale imaging of cilia-driven fluid flow
Huang, Brendan K.; Choma, Michael A.
2015-01-01
Cilia-driven fluid flow is important for multiple processes in the body, including respiratory mucus clearance, gamete transport in the oviduct, right-left patterning in the embryonic node, and cerebrospinal fluid circulation. Multiple imaging techniques have been applied towards quantifying ciliary flow. Here we review common velocimetry methods of quantifying fluid flow. We then discuss four important optical modalities, including light microscopy, epifluorescence, confocal microscopy, and optical coherence tomography, that have been used to investigate cilia-driven flow. PMID:25417211
Unified slip boundary condition for fluid flows.
Thalakkottor, Joseph John; Mohseni, Kamran
2016-08-01
Determining the correct matching boundary condition is fundamental to our understanding of several everyday problems. Despite over a century of scientific work, existing velocity boundary conditions are unable to consistently explain and capture the complete physics associated with certain common but complex problems, such as moving contact lines and corner flows. The widely used Maxwell and Navier slip boundary conditions make an implicit assumption that velocity varies only in the wall normal direction. This makes their boundary condition inapplicable in the vicinity of contact lines and corner points, where velocity gradient exists both in the wall normal and wall tangential directions. In this paper, by identifying this implicit assumption we are able to extend Maxwell's slip model. Here, we present a generalized velocity boundary condition that shows that slip velocity is a function of not only the shear rate but also the linear strain rate. In addition, we present a universal relation for slip length, which shows that, for a general flow, slip length is a function of the principal strain rate. The universal relation for slip length along with the generalized velocity boundary condition provides a unified slip boundary condition to model a wide range of steady Newtonian fluid flows. We validate the unified slip boundary for simple Newtonian liquids by using molecular dynamics simulations and studying both the moving contact line and corner flow problems. PMID:27627398
Unified slip boundary condition for fluid flows
NASA Astrophysics Data System (ADS)
Thalakkottor, Joseph John; Mohseni, Kamran
2016-08-01
Determining the correct matching boundary condition is fundamental to our understanding of several everyday problems. Despite over a century of scientific work, existing velocity boundary conditions are unable to consistently explain and capture the complete physics associated with certain common but complex problems, such as moving contact lines and corner flows. The widely used Maxwell and Navier slip boundary conditions make an implicit assumption that velocity varies only in the wall normal direction. This makes their boundary condition inapplicable in the vicinity of contact lines and corner points, where velocity gradient exists both in the wall normal and wall tangential directions. In this paper, by identifying this implicit assumption we are able to extend Maxwell's slip model. Here, we present a generalized velocity boundary condition that shows that slip velocity is a function of not only the shear rate but also the linear strain rate. In addition, we present a universal relation for slip length, which shows that, for a general flow, slip length is a function of the principal strain rate. The universal relation for slip length along with the generalized velocity boundary condition provides a unified slip boundary condition to model a wide range of steady Newtonian fluid flows. We validate the unified slip boundary for simple Newtonian liquids by using molecular dynamics simulations and studying both the moving contact line and corner flow problems.
Bollache, Emilie; van Ooij, Pim; Powell, Alex; Carr, James; Markl, Michael; Barker, Alex J
2016-10-01
The purpose of this study was to compare aortic flow and velocity quantification using 4D flow MRI and 2D CINE phase-contrast (PC)-MRI with either one-directional (2D-1dir) or three-directional (2D-3dir) velocity encoding. 15 healthy volunteers (51 ± 19 years) underwent MRI including (1) breath-holding 2D-1dir and (2) free breathing 2D-3dir PC-MRI in planes orthogonal to the ascending (AA) and descending (DA) aorta, as well as (3) free breathing 4D flow MRI with full thoracic aorta coverage. Flow quantification included the co-registration of the 2D PC acquisition planes with 4D flow MRI data, AA and DA segmentation, and calculation of AA and DA peak systolic velocity, peak flow and net flow volume for all sequences. Additionally, the 2D-3dir velocity taking into account the through-plane component only was used to obtain results analogous to a free breathing 2D-1dir acquisition. Good agreement was found between 4D flow and 2D-3dir peak velocity (differences = -3 to 6 %), peak flow (-7 %) and net volume (-14 to -9 %). In contrast, breath-holding 2D-1dir measurements exhibited indices significantly lower than free breathing 2D-3dir and 2D-1dir (differences = -35 to -7 %, p < 0.05). Finally, high correlations (r ≥ 0.97) were obtained for indices estimated with or without eddy current correction, with the lowest correlation observed for net volume. 4D flow and 2D-3dir aortic hemodynamic indices were in concordance. However, differences between respiration state and 2D-1dir and 2D-3dir measurements indicate that reference values should be established according to the PC-MRI sequence, especially for the widely used net flow (e.g. stroke volume in the AA). PMID:27435230
Bollache, Emilie; van Ooij, Pim; Powell, Alex; Carr, James; Markl, Michael; Barker, Alex J
2016-10-01
The purpose of this study was to compare aortic flow and velocity quantification using 4D flow MRI and 2D CINE phase-contrast (PC)-MRI with either one-directional (2D-1dir) or three-directional (2D-3dir) velocity encoding. 15 healthy volunteers (51 ± 19 years) underwent MRI including (1) breath-holding 2D-1dir and (2) free breathing 2D-3dir PC-MRI in planes orthogonal to the ascending (AA) and descending (DA) aorta, as well as (3) free breathing 4D flow MRI with full thoracic aorta coverage. Flow quantification included the co-registration of the 2D PC acquisition planes with 4D flow MRI data, AA and DA segmentation, and calculation of AA and DA peak systolic velocity, peak flow and net flow volume for all sequences. Additionally, the 2D-3dir velocity taking into account the through-plane component only was used to obtain results analogous to a free breathing 2D-1dir acquisition. Good agreement was found between 4D flow and 2D-3dir peak velocity (differences = -3 to 6 %), peak flow (-7 %) and net volume (-14 to -9 %). In contrast, breath-holding 2D-1dir measurements exhibited indices significantly lower than free breathing 2D-3dir and 2D-1dir (differences = -35 to -7 %, p < 0.05). Finally, high correlations (r ≥ 0.97) were obtained for indices estimated with or without eddy current correction, with the lowest correlation observed for net volume. 4D flow and 2D-3dir aortic hemodynamic indices were in concordance. However, differences between respiration state and 2D-1dir and 2D-3dir measurements indicate that reference values should be established according to the PC-MRI sequence, especially for the widely used net flow (e.g. stroke volume in the AA).
Fluid Flow and Solidification Under Combined Action of Magnetic Fields and Microgravity
NASA Technical Reports Server (NTRS)
Li, B. Q.; Shu, Y.; Li, K.; deGroh, H. C.
2002-01-01
Mathematical models, both 2-D and 3-D, are developed to represent g-jitter induced fluid flows and their effects on solidification under combined action of magnetic fields and microgravity. The numerical model development is based on the finite element solution of governing equations describing the transient g-jitter driven fluid flows, heat transfer and solutal transport during crystal growth with and without an applied magnetic field in space vehicles. To validate the model predictions, a ground-based g-jitter simulator is developed using the oscillating wall temperatures where timely oscillating fluid flows are measured using a laser PIV system. The measurements are compared well with numerical results obtained from the numerical models. Results show that a combined action derived from magnetic damping and microgravity can be an effective means to control the melt flow and solutal transport in space single crystal growth systems.
Fluid Flow Patterns Derived from Bottom Simulating Reflections Offshore Southwestern Taiwan
NASA Astrophysics Data System (ADS)
Chen, L.; Wu, S.; Chi, W.; Liu, C.; Wang, Y.
2012-12-01
Fluid migration pattern is important for understanding the structural characteristics of a mountain belt and for hydrocarbon exploration. However, these patterns are difficult to measure on the seafloor. Using phase properties of the gas hydrates, we studied the fluid flow patterns offshore Southwestern Taiwan. Seismic explorations in this region show a wide-spread bottom-simulating-reflector (BSR), which is interpreted as the bottom of the gas hydrate stability zone. It provides us an opportunity to study possible fluid flow patterns at several hundred meters sub-bottom depths of the marine sediments. We used BSR-based geothermal gradient patterns to derive 1D vertical fluid flow models by analyzing the Péclet numbers. We found the regional fluid flow rates ranges from 6 cm/yr to 43 cm/yr and also discovered two prospect sites: Yung-An Ridge and Formosa Ridge in active and passive margins respectively. Next, we forward-modeled 2D steady-state temperature fields of these two sites to account for the topographic effects to compare with the BSR-based temperature. The discrepancy between the 2D conductive thermal model and the BSR-based temperature was interpreted as a result of fluid migration. We discovered our interpreted fluid migration patterns are pretty consistent with the regional structure, and the BSR-based temperatures are about 2~3oC higher than the conduction model near faults and chimney zones. We interpret that it is possible active dewatering inside the accretionary prism to allow fluid to migrate upward here. For Formosa Ridge in the passive margin, the BSR-based temperatures are about 4-5oC colder than the theoretical model, especially on the flanks. We interpret that cold seawater is moving into the ridge from the flanks, cooling the ridge, and then some of the fluid is expelled at the ridge top. The shallow temperature fields are strongly affected by 2D or even 3D topographic effects, but we can still gain much information regarding fluid flow
An experimental study of flow separation over a flat plate with 2D transverse grooves
NASA Astrophysics Data System (ADS)
Jones, Emily Michelle
Nature has long been an inspiration for research in engineering. In particular, the biological surfaces of aquatic swimmers have been studied for their potential as drag reducing surfaces. The hydrodynamic benefit of riblets, or grooves embedded parallel to the flow, which appear on many aquatic biological surfaces, have been well documented and implemented in practical engineering applications. However the skin of dolphins is embedded with grooves that run perpendicular to the flow of water over their bodies. It is theorized that the transverse grooves present on dolphin skin trap vortices between them, creating a partial slip condition over the surface and inducing turbulence augmentation in the boundary layer, thus controlling boundary layer separation over the dolphin's skin. Similarly, sharks are covered with scales that are flexible at the base and capable of bristling, forming grooves running transverse to the flow. It is theorized that the scales bristle when encountering a reversing flow, thereby trapping vortices between the scales and, similarly, delaying boundary layer separation. In an attempt to test this hypothesis and study these affects, a spinning cylinder was used in a water tunnel to induce separation over a flat plate with 2 mm, rectangular transverse grooves and sinusoidal grooves of similar scaling. The results were compared to tripped, turbulent boundary layer separation occurring over a flat plate without grooves using time-resolved particle image velocimetry. The strength of the adverse pressure gradient was varied, and the observed delay in flow separation and other affects upon the boundary layer are discussed.
NASA Astrophysics Data System (ADS)
Zhang, Wei; Markfort, Corey; Porté-Agel, Fernando
2014-05-01
Turbulent boundary-layer flows over complex topography have been extensively studied in the atmospheric sciences and wind engineering communities. The upwind turbulence level, the atmospheric thermal stability and the shape of the topography as well as surface characteristics play important roles in turbulent transport of momentum and scalar fluxes. However, to the best of our knowledge, atmospheric thermal stability has rarely been taken into account in laboratory simulations, particularly in wind-tunnel experiments. Extension of such studies in thermally-stratified wind tunnels will substantially advance our understanding of thermal stability effects on the physics of flow over complex topography. Additionally, high-resolution experimental data can be used for development of new parameterization of surface fluxes and validation of numerical models such as Large-Eddy Simulation (LES). A series of experiments of neutral and thermally-stratified boundary-layer flows over a wall-mounted 2-D block were conducted at the Saint Anthony Falls Laboratory boundary-layer wind tunnel. The 2-D block, with a width to height ratio of 2:1, occupied the lowest 25% of the turbulent boundary layer. Stable and convective boundary layers were simulated by independently controlling the temperature of air flow, the test section floor, and the wall-mounted block surfaces. Measurements using high-resolution Particle Image Velocimetry (PIV), x-wire/cold-wire anemometry, thermal-couples and surface heat flux sensors were made to quantify the turbulent properties and surface fluxes in distinct macroscopic flow regions, including the separation/recirculation zones, evolving shear layer and the asymptotic far wake. Emphasis will be put on addressing thermal stability effects on the spatial distribution of turbulent kinetic energy (TKE) and turbulent fluxes of momentum and scalar from the near to far wake region. Terms of the TKE budget equation are also inferred from measurements and
Numerical solution of 2D and 3D turbulent internal flow problems
NASA Astrophysics Data System (ADS)
Chen, Naixing; Xu, Yanji
1991-08-01
The paper describes a method for solving numerically two-dimensional or axisymmetric, and three-dimensional turbulent internal flow problems. The method is based on an implicit upwinding relaxation scheme with an arbitrarily shaped conservative control volume. The compressible Reynolds-averaged Navier-Stokes equations are solved with a two-equation turbulence model. All these equations are expressed by using a nonorthogonal curvilinear coordinate system. The method is applied to study the compressible internal flow in modern power installations. It has been observed that predictions for two-dimensional and three-dimensional channels show very good agreement with experimental results.
NASA Astrophysics Data System (ADS)
Zhang, Wei; Markfort, Corey; Porté-Agel, Fernando
2014-11-01
Turbulent flows over complex surface topography have been of great interest in the atmospheric science and wind engineering communities. The geometry of the topography, surface roughness and temperature characteristics as well as the atmospheric thermal stability play important roles in determining momentum and scalar flux distribution. Studies of turbulent flow over simplified topography models, under neutrally stratified boundary-layer conditions, have provided insights into fluid dynamics. However, atmospheric thermal stability has rarely been considered in laboratory experiments, e.g., wind-tunnel experiments. Series of wind-tunnel experiments of thermally-stratified boundary-layer flow over a surface-mounted 2-D block, in a well-controlled boundary-layer wind tunnel, will be presented. Measurements using high-resolution PIV, x-wire/cold-wire anemometry and surface heat flux sensors were conducted to quantify the turbulent flow properties, including the size of the recirculation zone, coherent vortex structures and the subsequent boundary layer recovery. Results will be shown to address thermal stability effects on momentum and scalar flux distribution in the wake, as well as dominant mechanism of turbulent kinetic energy generation and consumption. The authors gratefully acknowledge funding from the Swiss National Foundation (Grant 200021-132122), the National Science Foundation (Grant ATM-0854766) and NASA (Grant NNG06GE256).
Turbulence Measurements on a 2D NACA 0036 with Synthetic Jet Flow Control
NASA Technical Reports Server (NTRS)
Wilson, J. S.
2006-01-01
An active flow control experiment was conducted on a 2-ft chord NACA 0036 airfoil in a 3-ft by 4-ft Wind Tunnel at Re = 1 x 10(exp 6). The model was equipped with synthetic jet actuators at x/c = 0.30 and 0.65 that provided 120 Hz periodic excitation at a C(sub mu) 0.86% through 0.06-in wide slots. Three different slot con gurations were tested, including a baseline with no slots. Surface pressure data was collected to compare to previous tests and to combine with turbulence data to aid future CFD modeling efforts. Turbulence data, measured by hot-wire, was compared with and without flow control. Pressure data corroborates previous test data and provides more points for CFD validation. Hot-wire results showed ow control reduced the separated wake size and brought the high Reynolds stress shear layer closer to the airfoil surface. The position of this layer to the surface was altered more significantly than the magnitude of the peak stresses. Flow control was shown to increase turbulent energy in the attached boundary layer downstream of the slot but to have little effect upstream. These results provide further justification to continue assessing the potential of active flow control to reduce drag of helicopter airframe components.
MEAN FLOW AND TURBULENCE MEASUREMENTS AROUND A 2-D ARRAY OF BUILDINGS IN A WIND TUNNEL
In order to predict the dispersion of harmful materials released in or near an urban environment, it is important to first understand the complex flow patterns which result from the interaction of the wind with buildings and, more commonly, clusters of buildings. Recent advanc...
Lift force time delays on 2D and 3D wings in unsteady flows
NASA Astrophysics Data System (ADS)
Williams, David; Colling, Jesse; Quach, Vien; Colonius, Tim; Tadmor, Gilead
2008-11-01
Active flow control (AFC) used for enhancing the maneuverability of wings is usually applied during conditions of steady external flow. However, when the external flow is unsteady or the wing is maneuvering, then at least two time delays become important; namely, the time delay of the lift to changes in external flow, τf, and the time delay to changes in AFC actuation, τa. These time delays were measured in wind tunnel experiments using two- and three-dimensional wings in an oscillating freestream and with variable duty cycle actuation. Dimensionless freestream oscillation frequencies from k = 0.01 to k = 0.2 with amplitudes of 5 percent of the mean speed were used to characterize the system. As a demonstration of the important role of the two time constants, AFC is used to damp lift force oscillations occurring in an unsteady freestream using a feed forward control system. The instantaneous velocity provides input to a control algorithm which adjusts the duty cycle of the AFC actuator to suppress lift fluctuations.
Space Coffee Cup: Capillary Flow Driven Fluids in Space
Interested in learning more about how fluids react in Space? In this video, Professor Mark Weislogel, and Dr. Marshall Porterfield will discuss the Space Coffee Cup and Capillary Flow Driven Fluids...
Thermal and Fluid Flow Brazing Simulations
HOSKING, FLOYD MICHAEL; GIANOULAKIS,STEVEN E.; GIVLER,RICHARD C.; SCHUNK,P. RANDALL
1999-12-15
The thermal response of fixtured parts in a batch-type brazing furnace can require numerous, time-consuming development runs before an acceptable furnace schedule or joint design is established. Powerful computational simulation tools are being developed to minimize the required number of verification experiments, improve furnace throughput, and increase product yields. Typical furnace simulations are based on thermal, fluid flow, and structural codes that incorporate the fundamental physics of the brazing process. The use of massively parallel computing to predict furnace and joint-level responses is presented. Measured and computed data are compared. Temperature values are within 1-270 of the expected peak brazing temperature for different loading conditions. Sensitivity studies reveal that the thermal response is more sensitive to the thermal boundary conditions of the heating enclosure than variability y in the materials data. Braze flow simulations predict fillet geometry and free surface joint defects. Dynamic wetting conditions, interfacial reactions, and solidification structure add a high degree of uncertainty to the flow results.
2D models of gas flow and ice grain acceleration in Enceladus' vents using DSMC methods
NASA Astrophysics Data System (ADS)
Tucker, Orenthal J.; Combi, Michael R.; Tenishev, Valeriy M.
2015-09-01
The gas distribution of the Enceladus water vapor plume and the terminal speeds of ejected ice grains are physically linked to its subsurface fissures and vents. It is estimated that the gas exits the fissures with speeds of ∼300-1000 m/s, while the micron-sized grains are ejected with speeds comparable to the escape speed (Schmidt, J. et al. [2008]. Nature 451, 685-688). We investigated the effects of isolated axisymmetric vent geometries on subsurface gas distributions, and in turn, the effects of gas drag on grain acceleration. Subsurface gas flows were modeled using a collision-limiter Direct Simulation Monte Carlo (DSMC) technique in order to consider a broad range of flow regimes (Bird, G. [1994]. Molecular Gas Dynamics and the Direct Simulation of Gas Flows. Oxford University Press, Oxford; Titov, E.V. et al. [2008]. J. Propul. Power 24(2), 311-321). The resulting DSMC gas distributions were used to determine the drag force for the integration of ice grain trajectories in a test particle model. Simulations were performed for diffuse flows in wide channels (Reynolds number ∼10-250) and dense flows in narrow tubular channels (Reynolds number ∼106). We compared gas properties like bulk speed and temperature, and the terminal grain speeds obtained at the vent exit with inferred values for the plume from Cassini data. In the simulations of wide fissures with dimensions similar to that of the Tiger Stripes the resulting subsurface gas densities of ∼1014-1020 m-3 were not sufficient to accelerate even micron-sized ice grains to the Enceladus escape speed. In the simulations of narrow tubular vents with radii of ∼10 m, the much denser flows with number densities of 1021-1023 m-3 accelerated micron-sized grains to bulk gas speed of ∼600 m/s. Further investigations are required to understand the complex relationship between the vent geometry, gas source rate and the sizes and speeds of ejected grains.
Voss, Clifford I.; Provost, A.M.
2002-01-01
SUTRA (Saturated-Unsaturated Transport) is a computer program that simulates fluid movement and the transport of either energy or dissolved substances in a subsurface environment. This upgraded version of SUTRA adds the capability for three-dimensional simulation to the former code (Voss, 1984), which allowed only two-dimensional simulation. The code employs a two- or three-dimensional finite-element and finite-difference method to approximate the governing equations that describe the two interdependent processes that are simulated: 1) fluid density-dependent saturated or unsaturated ground-water flow; and 2) either (a) transport of a solute in the ground water, in which the solute may be subject to: equilibrium adsorption on the porous matrix, and both first-order and zero-order production or decay; or (b) transport of thermal energy in the ground water and solid matrix of the aquifer. SUTRA may also be used to simulate simpler subsets of the above processes. A flow-direction-dependent dispersion process for anisotropic media is also provided by the code and is introduced in this report. As the primary calculated result, SUTRA provides fluid pressures and either solute concentrations or temperatures, as they vary with time, everywhere in the simulated subsurface system. SUTRA flow simulation may be employed for two-dimensional (2D) areal, cross sectional and three-dimensional (3D) modeling of saturated ground-water flow systems, and for cross sectional and 3D modeling of unsaturated zone flow. Solute-transport simulation using SUTRA may be employed to model natural or man-induced chemical-species transport including processes of solute sorption, production, and decay. For example, it may be applied to analyze ground-water contaminant transport problems and aquifer restoration designs. In addition, solute-transport simulation with SUTRA may be used for modeling of variable-density leachate movement, and for cross sectional modeling of saltwater intrusion in
NASA Astrophysics Data System (ADS)
Cea, L.; Legout, C.; Darboux, F.; Esteves, M.; Nord, G.
2014-05-01
This paper presents a validation of a two-dimensional overland flow model using empirical laboratory data. Unlike previous publications in which model performance is evaluated as the ability to predict an outlet hydrograph, we use high resolution 2D water depth and velocity data to analyze to what degree the model is able to reproduce the spatial distribution of these variables. Several overland flow conditions over two impervious surfaces of the order of one square meter with different micro and macro-roughness characteristics are studied. The first surface is a simplified representation of a sinusoidal terrain with three crests and furrows, while the second one is a mould of a real agricultural seedbed terrain. We analyze four different bed friction parameterizations and we show that the performance of formulations which consider the transition between laminar, smooth turbulent and rough turbulent flow do not improve the results obtained with Manning or Keulegan formulas for rough turbulent flow. The simulations performed show that using Keulegan formula with a physically-based definition of the bed roughness coefficient, a two-dimensional shallow water model is able to reproduce satisfactorily the flow hydrodynamics. It is shown that, even if the resolution of the topography data and numerical mesh are high enough to include all the small scale features of the bed surface, the roughness coefficient must account for the macro-roughness characteristics of the terrain in order to correctly reproduce the flow hydrodynamics.
NASA Astrophysics Data System (ADS)
de Monserrat, Albert; Morgan, Jason P.; Taramón, Jorge M.; Hall, Robert
2016-04-01
This work focuses on improving current 2D numerical approaches to modeling the boundary conditions associated with computing accurate deformation and melting associated with continental rifting. Recent models primarily use far-field boundary conditions that have been used for decades with little assessment of their effects on asthenospheric flow beneath the rifting region. All are extremely oversimplified. All are likely to significantly shape the pattern of asthenospheric flow beneath the stretching lithosphere which is associated with pressure-release melting and rift volcanism. The choice of boundary conditions may lead to different predictions of asthenospheric flow and melting associated with lithospheric stretching and breakup. We also find that they may affect the mode of crustal stretching. Here we discuss a suite of numerical experiments using a Lagrangian formulation, that compare these choices to likely more realistic boundary condition choices like the analytical solution for flow associated with two diverging plates stretching over a finite-width region. We also compare embedded and nested meshes with a high-resolution 2-D region within a cartesian 'whole mantle cross-section' box. Our initial results imply that the choice of far-field boundary conditions does indeed significantly influence predicted melting distributions and melt volumes associated with continental breakup. For calculations including asthenospheric melting, the 'finite width plate spreading' and embedded rifting boundary condition treatments lead to significantly smaller BC-influenced signals when using high-resolution calculation regions of order ~1000 km wide and 600 km deep within a lower resolution box of the order of >5000 km wide and 2800 km. We recommend their use when models are attempting to resolve the effects of asthenosphere flow and melting. We also discuss several examples of typical numerical 'artifacts' related to 'edge convection' at the sides of the stretching region
A High Order Discontinuous Galerkin Method for 2D Incompressible Flows
NASA Technical Reports Server (NTRS)
Liu, Jia-Guo; Shu, Chi-Wang
1999-01-01
In this paper we introduce a high order discontinuous Galerkin method for two dimensional incompressible flow in vorticity streamfunction formulation. The momentum equation is treated explicitly, utilizing the efficiency of the discontinuous Galerkin method The streamfunction is obtained by a standard Poisson solver using continuous finite elements. There is a natural matching between these two finite element spaces, since the normal component of the velocity field is continuous across element boundaries. This allows for a correct upwinding gluing in the discontinuous Galerkin framework, while still maintaining total energy conservation with no numerical dissipation and total enstrophy stability The method is suitable for inviscid or high Reynolds number flows. Optimal error estimates are proven and verified by numerical experiments.
Film flows and self-organized patterns of 2D-localized structures
Frenkel, A.L.
1996-12-31
Films flowing down an inclined plane are considered. An unconventional perturbation approach is discussed. It yields the most general evolution equation for film thickness and the least restrictive conditions for its validity. Results of numerical simulations of the dissipative-dispersive evolution equation indicate that novel, more complex type of spatiotemporal patterns can exist for strange attractors of nonequilibrium systems. It is suggested that real-life experiments satisfying the validity conditions of this theory are possible.
Locally modified QUICK scheme for highly convective 2-D and 3-D flows
NASA Astrophysics Data System (ADS)
Leonard, B. P.
The positive and negative aspects of the QUICK scheme are discussed. QUICK is used in the bulk of the flow domain; however, when the local curvature of the convected variable exceeds a preset value, the algorithm switches to exponential upwinding or other compatible interpolation. Results are presented for the purely convective oblique-step test. A comparison is made between the sharp monotonic EULER-QUICK results and first-, second-, and third-order upwinding.
Numerical solution of 2D wet steam flow with non-equilibrium condensation and real thermodynamics
Hric, V.; Halama, J.
2015-03-10
An approach to modeling of wet steam flow with non-equilibrium condensation phenomenon is presented. The first part of our flow model is homogeneous Euler system of transport equations for mass, momentum and total energy of wet steam (mixture). The additional second part describes liquid phase via non-homogeneous system of transport equations for moments of droplets number distribution function and relies on corrected classical nucleation theory. Moment equations are closed by linearization of droplet growth rate model. All necessary relations for thermodynamic properties of steam are provided by IAPWS set of equations. However, properties of condensate are simply modeled by liquid saturation data. Two real equations of state are implemented. Recently developed CFD formulation for entropy (does not require iteration process) and so-called IAPWS special gas equation for Helmholtz energy (one iteration loop is necessary). Flow model is validated on converging-diverging supersonic nozzle with Barschdorff geometry. Simulations were performed by in-house CFD code based on finite volume method and stiff character of equations was solved by symmetrical time operator splitting. Achieved results satisfactorily agreed with experimental data.
Enhanced Kalman Filtering for a 2D CFD NS Wind Farm Flow Model
NASA Astrophysics Data System (ADS)
Doekemeijer, B. M.; van Wingerden, J. W.; Boersma, S.; Pao, L. Y.
2016-09-01
Wind turbines are often grouped together for financial reasons, but due to wake development this usually results in decreased turbine lifetimes and power capture, and thereby an increased levelized cost of energy (LCOE). Wind farm control aims to minimize this cost by operating turbines at their optimal control settings. Most state-of-the-art control algorithms are open-loop and rely on low fidelity, static flow models. Closed-loop control relying on a dynamic model and state observer has real potential to further decrease wind's LCOE, but is often too computationally expensive for practical use. In this paper two time-efficient Kalman filter (KF) variants are outlined incorporating the medium fidelity, dynamic flow model “WindFarmSimulator” (WFSim). This model relies on a discretized set of Navier-Stokes equations in two dimensions to predict the flow in wind farms at low computational cost. The filters implemented are an Ensemble KF and an Approximate KF. Simulations in which a high fidelity simulation model represents the true wind farm show that these filters are 101 —102 times faster than a regular KF with comparable or better performance, correcting for wake dynamics that are not modeled in WFSim (noticeably, wake meandering and turbine hub effects). This is a first big step towards real-time closed-loop control for wind farms.
Symplectically invariant flow equations for N = 2, D = 4 gauged supergravity with hypermultiplets
NASA Astrophysics Data System (ADS)
Klemm, Dietmar; Petri, Nicolò; Rabbiosi, Marco
2016-04-01
We consider N = 2 supergravity in four dimensions, coupled to an arbitrary number of vector- and hypermultiplets, where abelian isometries of the quaternionic hyperscalar target manifold are gauged. Using a static and spherically or hyperbolically symmetric ansatz for the fields, a one-dimensional effective action is derived whose variation yields all the equations of motion. By imposing a sort of Dirac charge quantization condition, one can express the complete scalar potential in terms of a superpotential and write the action as a sum of squares. This leads to first-order flow equations, that imply the second-order equations of motion. The first-order flow turns out to be driven by Hamilton's characteristic function in the Hamilton-Jacobi formalism, and contains among other contributions the superpotential of the scalars. We then include also magnetic gaugings and generalize the flow equations to a symplectically covariant form. Moreover, by rotating the charges in an appropriate way, an alternative set of non-BPS first-order equations is obtained that corresponds to a different squaring of the action. Finally, we use our results to derive the attractor equations for near-horizon geometries of extremal black holes.
On stability and turbulence of fluid flows
NASA Technical Reports Server (NTRS)
Heisenberg, Werner
1951-01-01
This investigation is divided into two parts, the treatment of the stability problem of fluid flows on the one hand, and that of the turbulent motion on the other. The first part summarizes all previous investigations under a unified point of view, that is, sets up as generally as possible the conditions under which a profile possesses unstable or stable characteristics, and indicates the methods for solution of the stability equation for any arbitrary velocity profile and for calculation of the critical Reynolds number for unstable profiles. In the second part, under certain greatly idealizing assumptions, differential equations for the turbulent motions are derived and from them qualitative information about several properties of the turbulent velocity distribution is obtained.
NASA Astrophysics Data System (ADS)
Ague, J. J.
2004-12-01
Fluids are generally expected to be driven upward in the deep parts of orogens, but permeability heterogeneity and anisotropy must also be considered to properly interpret fluid infiltration and kinetic reaction histories preserved in the rock record. This paper focuses on new 2-D models of Darcian fluid flow incorporating permeability contrasts between rock units, the permeability tensor, and reactive fluid sources (e.g., dehydration). Factor of ten contrasts between the minimum and maximum permeability values in anisotropic rocks can strongly divert flow, but contrasts of as little as a factor of two still influence flow behavior. The first example considers fluid flow in subduction zone mélange, Syros, Greece. Geochemical evidence suggests that the interiors of meta-mafic blocks of oceanic crust in the mélange underwent limited fluid-rock reaction, despite extensive dehydration and decarbonation of the subduction complex. Modeling shows that if the blocks have lower permeability than the surrounding serpentine-rich matrix, then flow is diverted around the blocks resulting in little infiltration except at block margins, consistent with field relations. In this way, the subducted oceanic crust could preserve little evidence of fluid infiltration, even though considerable flow occurred through the mélange. The largest fluid fluxes are concentrated in matrix where blocks are in close proximity, and this effect increases as the anisotropy of the matrix increases. The lack of fluid infiltration into blocks could account for the observed limited metamorphism and strong kinetic overstepping of reactions that in some cases allowed preservation of ocean-floor mineral assemblages even at blueschist-eclogite facies conditions. The second example examines fluid flow through a folded sequence in which the direction of maximum permeability is parallel to the folded layering, and is based on field relations of Barrovian metamorphic sequences in CT, USA, and Scotland. As the
Saffer, D.M.; Bekins, B.A.
1998-01-01
Down-hole geochemical anomalies encountered in active accretionary systems can be used to constrain the timing, rates, and localization of fluid flow. Here we combine a coupled flow and solute transport model with a kinetic model for smectite dehydration to better understand and quantify fluid flow in the Nankai accretionary complex offshore of Japan. Compaction of sediments and clay dehydration provide fluid sources which drive the model flow system. We explicitly include the consolidation rate of underthrust sediments in our calculations to evaluate the impact that variations in this unknown quantity have on pressure and chloride distribution. Sensitivity analysis of steady state pressure solutions constrains bulk and flow conduit permeabilities. Steady state simulations with 30% smectite in the incoming sedimentary sequence result in minimum chloride concentrations at site 808 of 550 mM, but measured chlorinity is as low as 447 mM. We simulate the transient effects of hydrofracture or a strain event by assuming an instantaneous permeability increase of 3-4 orders of magnitude along a flow conduit (in this case the de??collement), using steady state results as initial conditions. Transient results with an increase in de??collement permeability from 10-16 m2 to 10-13 m2 and 20% smectite reproduce the observed chloride profile at site 808 after 80-160 kyr. Modeled chloride concentrations are highly sensitive to the consolidation rate of underthrust sediments, such that rapid compaction of underthrust material leads to increased freshening. Pressures within the de??collement during transient simulations rise rapidly to a significant fraction of lithostatic and remain high for at least 160 kyr, providing a mechanism for maintaining high permeability. Flow rates at the deformation front for transient simulations are in good agreement with direct measurements, but steady state flow rates are 2-3 orders of magnitude smaller than observed. Fluid budget calculations
Fluid flow dynamics under location uncertainty
NASA Astrophysics Data System (ADS)
Mémin, Etienne
2014-03-01
We present a derivation of a stochastic model of Navier Stokes equations that relies on a decomposition of the velocity fields into a differentiable drift component and a time uncorrelated uncertainty random term. This type of decomposition is reminiscent in spirit to the classical Reynolds decomposition. However, the random velocity fluctuations considered here are not differentiable with respect to time, and they must be handled through stochastic calculus. The dynamics associated with the differentiable drift component is derived from a stochastic version of the Reynolds transport theorem. It includes in its general form an uncertainty dependent "subgrid" bulk formula that cannot be immediately related to the usual Boussinesq eddy viscosity assumption constructed from thermal molecular agitation analogy. This formulation, emerging from uncertainties on the fluid parcels location, explains with another viewpoint some subgrid eddy diffusion models currently used in computational fluid dynamics or in geophysical sciences and paves the way for new large-scales flow modelling. We finally describe an applications of our formalism to the derivation of stochastic versions of the Shallow water equations or to the definition of reduced order dynamical systems.
A coupled model of fluid flow in jointed rock
Swenson, Daniel; Martineau, Rick; James, Mark; Brown, Don
1991-01-01
We present a fully coupled model of fluid flow in jointed rock, where the fluid flow depends on the joint openings and the joint openings depend on the fluid pressure. The joints and rock blocks are modeled discretely using the finite element method. Solutions for the fluid and rock are obtained and iteration is performed until both solutions converge. Example applications include an examination of the effects of back-pressure on flow in a geothermal reservoir and transient fluid injection into a reservoir.
A knowledge-based approach to automated flow-field zoning for computational fluid dynamics
NASA Technical Reports Server (NTRS)
Vogel, Alison Andrews
1989-01-01
An automated three-dimensional zonal grid generation capability for computational fluid dynamics is shown through the development of a demonstration computer program capable of automatically zoning the flow field of representative two-dimensional (2-D) aerodynamic configurations. The applicability of a knowledge-based programming approach to the domain of flow-field zoning is examined. Several aspects of flow-field zoning make the application of knowledge-based techniques challenging: the need for perceptual information, the role of individual bias in the design and evaluation of zonings, and the fact that the zoning process is modeled as a constructive, design-type task (for which there are relatively few examples of successful knowledge-based systems in any domain). Engineering solutions to the problems arising from these aspects are developed, and a demonstration system is implemented which can design, generate, and output flow-field zonings for representative 2-D aerodynamic configurations.
NASA Astrophysics Data System (ADS)
Nale, J. P.; Gosain, A. K.; Khosa, R.
2015-12-01
Pinder River, one of major headstreams of River Ganga, originates in Pindari Glaciers of Kumaon Himalayas and after passing through rugged gorges meets Alaknanda at Karanprayag forming one of the five celestial confluences of Upper Ganga region. While other sub-basins of Upper Ganga are facing severe ecological losses, Pinder basin is still in its virginal state and is well known for its beautiful valleys besides being host to unique and rare biodiversity. A proposed 252 MW run-of-river hydroelectric project at Devsari on this river has been a major concern on account of its perceived potential for egregious environmental and social impacts. In this context, the study presented tries to analyse the expected changes in aquatic habitat conditions after this project is operational (with different operation policies). SWAT hydrological modelling platform has been used to derive stream flow simulations under various scenarios ranging from the present to the likely future conditions. To analyse the habitat conditions, a two dimensional hydraulic-habitat model 'River-2D', a module of iRIC software, is used. Snow trout has been identified as the target keystone species and its habitat preferences, in the form of flow depths, flow velocity and substrate condition, are obtained from diverse sources of related literature and are provided as Habitat Suitability Indices to River-2D. Bed morphology constitutes an important River-2D input and has been obtained, for the designated 1 km long study reach of Pinder upto Karanprayag, from a combination of actual field observations and supplemented by SRTM 1 Arc-Second Global digital elevation data. Monthly Weighted Usable Area for three different life stages (Spawning, Juvenile and Adult) of Snow Trout are obtained corresponding to seven different flow discharges ranging from 10 cumec to 1000 cumec. Comparing the present and proposed future river flow conditions obtained from SWAT modelling, losses in Weighted Usable Area, for the
Emergent Criticality and Ricci Flow in a 2D Frustrated Heisenberg Model
NASA Astrophysics Data System (ADS)
Orth, Peter P.
2014-03-01
In most systems that exhibit order at low temperatures, the order occurs in the elementary degrees of freedom such as spin or charge. Prominent examples are magnetic or superconducting states of matter. In contrast, emergent order describes the phenomenon where composite objects exhibit longer range correlations. Such emergent order has been suspected to occur in a range of correlated materials. One specific example are spin systems with competing interactions, where long-range discrete order in the relative orientation of spins may occur. Interestingly, this order parameter may induce other phase transitions as is the case for the nematic transition in the iron pnictides. In this talk, we introduce and discuss a system with emergent Z6 symmetry, a two-dimensional frustrated Heisenberg antiferromagnet on the windmill lattice consisting of interpenetrating honeycomb and triangular lattices. The multiple spin stiffnesses can be captured in terms of a four-dimensional metric tensor, and the renormalization group flow of the stiffnesses is described by the Ricci flow of the metric tensor. The key result is a decoupling of an emergent collective degree of freedom given by the relative phase of spins on different sublattices. In particular, our results reveal a sequence of two Berezinskii-Kosterlitz-Thouless phase transitions that bracket a critical phase.
Towards 2D field-flow fractionation - Vector separation over slanted open cavities
NASA Astrophysics Data System (ADS)
Bernate, Jorge A.; Yang, Mengfei; Zhao, Hong; Risbud, Sumedh; Paul, Colin; Dallas, Matthew; Konstantopoulos, Konstantinos; Drazer, German; Shaqfeh, Eric S. G.
2013-11-01
Planar microfluidic platforms for vector chromatography, in which different species fan out in different directions and can be continuously sorted, are particularly promising for the high throughput separation of multicomponent mixtures. We carry out a computational study of the vector separation of dilute suspensions of rigid and flexible particles transported by a pressure-driven flow over an array of slanted open cavities. The numerical scheme is based on a Stokes flow boundary integral equation method. The simulations are performed in a periodic system without lateral confinement, relevant to microfluidic devices with negligible recirculation in the main channel. We study the deflection of rigid spherical particles, of flexible capsules as a model of white and red blood cells, and of rigid discoidal particles as a model of platelets. We characterize the deflection of different particles as a function of their size, shape, shear elasticity, their release position, and the geometric parameters of the channel. The simulations provide insight into the separation mechanism and allow the optimization of specific devices depending on the application. Good agreement with experiments is observed.
Observing rearrangements in a 2D emulsion flowing through a hopper
NASA Astrophysics Data System (ADS)
Chen, Dandan; Desmond, Ken; Weeks, Eric R.
2010-03-01
Jamming in granular flow through a hopper has been well studied, and structures such as arches have been found in simulations both with and without friction, and in experiments with friction. To study if jamming can happen in other frictionless systems, we pump dense emulsions (oil in water) through a glass hopper. The oil droplets experience a viscous friction but do not have static friction acting between touching droplets, in contrast to granular particles. For easy imaging, we squeeze the droplets into quasi two-dimensional disks by injecting the emulsion into a thin chamber made from two parallel glass plates. Movies of the flow are taken from the top by a microscope. Due to the narrowing confinement in the hopper, droplets are forced to rearrange, and we observe topological changes such as T1 events. At the same time, the interdroplet forces are measured from the deformation of the droplets. By varying the hopper gap width and angle, we study how the constriction affects the particles' motions, and how this relates to the interdroplet forces.
Flow dichroism in critical colloidal fluids
Lenstra, T. A. J.; Dhont, J. K. G.
2001-06-01
Due to long-range correlations and slow dynamics of concentration fluctuations in the vicinity of the gas-liquid critical point, shear flow is very effective in distorting the microstructure of near-critical fluids. The anisotropic nature of the shear-field renders the microstructure highly anisotropic, leading to dichroism. Experiments on the dichroic behavior can thus be used to test theoretical predictions on microstructural order under shear flow conditions. We performed both static and dynamic dichroism and turbidity measurements on a colloid-polymer mixture, existing of silica spheres (radius 51 nm) and polydimethylsiloxane polymer (molar weight 204 kg/mol). Sufficiently far away from the critical point, in the mean-field region, the experimental data are in good agreement with theory. Very close to the critical point, beyond mean field, for which no theory exists yet, an unexpected decrease of dichroism on approach of the critical point is observed. Moreover, we do not observe critical slowing down of shear-induced dichroism, right up to the critical point, in contrast to the turbidity.
A Beam-Fourier Technique for the Numerical Investigation of 2D Nonlinear Convective Flows
NASA Astrophysics Data System (ADS)
Papanicolaou, N. C.
2011-11-01
In the current work, we develop a numerical method suitable for treating the problem of nonlinear two-dimensional flows in rectangular domains. For the spatial approximation we employ the Fourier-Galerkin approach. More specifically, our basis functions are products of trigonometric and Beam functions. This choice means that the solutions automatically satisfy the boundary and periodic conditions in the x and y directions respectively. The accuracy of the method is assessed by applying it to model problems which admit exact analytical solutions. The numerical and analytic solutions are found to be in good agreement. The convergence rate of the spectral coefficients is found to be fifth-order algebraic in the x-direction and y-direction, confirming the efficiency and speed of our technique.
2D transient granular flows over obstacles: experimental and numerical work
NASA Astrophysics Data System (ADS)
Juez, Carmelo; Caviedes-Voullième, Daniel; Murillo, Javier; García-Navarro, Pilar
2016-04-01
Landslides are an ubiquitous natural hazard, and therefore human infrastructure and settlements are often at risk in mountainous regions. In order to better understand and predict landslides, systematic studies of the phenomena need to be undertaken. In particular, computational tools which allow for analysis of field problems require to be thoroughly tested, calibrated and validated under controlled conditions. And to do so, it is necessary for such controlled experiments to be fully characterized in the same terms as the numerical model requires. This work presents an experimental study of dry granular flow over a rough bed with topography which resembles a mountain valley. It has an upper region with a very high slope. The geometry of the bed describes a fourth order polynomial curve, with a low point with zero slope, and afterwards a short region with adverse slope. Obstacles are present in the lower regions which are used as model geometries of human structures. The experiments consisted of a sudden release a mass of sand on the upper region, and allowing it to flow downslope. Furthermore, it has been frequent in previous studies to measure final states of the granular mass at rest, but seldom has transient data being provided, and never for the entire field. In this work we present transient measurements of the moving granular surfaces, obtained with a consumer-grade RGB-D sensor. The sensor, developed for the videogame industry, allows to measure the moving surface of the sand, thus obtaining elevation fields. The experimental results are very consistent and repeatable. The measured surfaces clearly show the distinctive features of the granular flow around the obstacles and allow to qualitatively describe the different flow patterns. More importantly, the quantitative description of the granular surface allows for benchmarking and calibration of predictive numerical models, key in scaling the small-scale experimental knowledge into the field. In addition, as
Response of Osteoblasts to the Stimulus of Fluid Flow.
Huang, Ling-Wei; Ren, Li; Yang, Peng-Fei; Shang, Peng
2015-01-01
Bone is an important porous tissue that supports the body, maintains calcium and phosphate homeostasis, protects vital organs, and houses bone marrow. The interaction between hydrostatic pressure and fluid phase, solid phase, cells, and vascular in bone makes bone inevitably bear baseline levels of fluid flow. Fluid flow plays an important role in regulating the proliferation, differentiation, distribution, and apoptosis of osteoblasts in bone. The effect of fluid flow on osteoblasts is dependent on time, velocity, and type. Some response of osteoblasts to fluid flow is closely related to the soluble factors secreted by the osteoblasts themselves or other types of bone cells. When the response is disordered, related bone diseases such as osteoporosis, osteoarthritis, and abnormal osteogenesis probably happen. In this article we review the current progress in the study of the response of osteoblasts to the direct and indirect stimulus of fluid flow and their roles in osteogenesis and related bone diseases.
Fluid flow plate for decreased density of fuel cell assembly
Vitale, Nicholas G.
1999-01-01
A fluid flow plate includes first and second outward faces. Each of the outward faces has a flow channel thereon for carrying respective fluid. At least one of the fluids serves as reactant fluid for a fuel cell of a fuel cell assembly. One or more pockets are formed between the first and second outward faces for decreasing density of the fluid flow plate. A given flow channel can include one or more end sections and an intermediate section. An interposed member can be positioned between the outward faces at an interface between an intermediate section, of one of the outward faces, and an end section, of that outward face. The interposed member can serve to isolate the reactant fluid from the opposing outward face. The intermediate section(s) of flow channel(s) on an outward face are preferably formed as a folded expanse.
Fluid flow and particle transport in mechanically ventilated airways. Part I. Fluid flow structures.
Van Rhein, Timothy; Alzahrany, Mohammed; Banerjee, Arindam; Salzman, Gary
2016-07-01
A large eddy simulation-based computational study of fluid flow and particle transport in upper tracheobronchial airways is carried out to investigate the effect of ventilation parameters on pulmonary fluid flow. Respiratory waveforms commonly used by commercial mechanical ventilators are used to study the effect of ventilation parameters and ventilation circuit on pulmonary fluid dynamics. A companion paper (Alzahrany et al. in Med Biol Eng Comput, 2014) reports our findings on the effect of the ventilation parameters and circuit on particle transport and aerosolized drug delivery. The endotracheal tube (ETT) was found to be an important geometric feature and resulted in a fluid jet that caused an increase in turbulence and created a recirculation zone with high wall shear stress in the main bronchi. Stronger turbulence was found in lower airways than would be found under normal breathing conditions due to the presence of the jet caused by the ETT. The pressure-controlled sinusoidal waveform induced the lowest wall shear stress on the airways wall. PMID:26563199
This study is a part of an ongoing research project that aims at assessing the environmental benefits of DNAPL removal. The laboratory part of the research project is to examine the functional relationship between DNAPL architecture, mass removal and contaminant mass flux in 2-D ...
NASA Astrophysics Data System (ADS)
Filipović, Vilim; Romić, Davor; Romić, Marija; Matijević, Lana; Mallmann, Fábio J. K.; Robinson, David A.
2016-04-01
Growing vegetables commercially requires intensive management and involves high irrigation demands and input of agrochemicals. Plastic mulch application in combination with drip irrigation is a common agricultural management technique practiced due to variety of benefits to the crop, mostly vegetable biomass production. However, the use of these techniques can result in various impacts on water and nutrient distribution in underlying soil and consequently affect nutrient leaching towards groundwater resources. The aim of this work is to estimate the effect of plastic mulch cover in combination with drip irrigation on water and nitrate dynamics in soil using HYDRUS-2D model. The field site was located in Croatian costal karst area on a Gleysol (WRB). The experiment was designed according to the split-plot design in three repetitions and was divided into plots with plastic mulch cover (MULCH) and control plots with bare soil (CONT). Each of these plots received applications of three levels of nitrogen fertilizer: 70, 140, and 210 kg per ha. All plots were equipped with drip irrigation and cropped with bell pepper (Capsicum annuum L. cv. Bianca F1). Lysimeters were installed at 90 cm depth in all plots and were used for monitoring the water and nitrate outflow. HYDRUS-2D was used for modeling the water and nitrogen outflow in the MULCH and CONT plots, implementing the proper boundary conditions. HYDRUS-2D simulated results showed good fitting to the field site observed data in both cumulative water and nitrate outflow, with high level of agreement. Water flow simulations produced model efficiency of 0.84 for CONT and 0.56 for MULCH plots, while nitrate simulations showed model efficiency ranging from 0.67 to 0.83 and from 0.70 to 0.93, respectively. Additional simulations were performed with the absence of the lysimeter, revealing faster transport of nitrates below drip line in the CONT plots, mostly because of the increased surface area subjected to precipitation
Encyclopedia of fluid mechanics. Volume 2 - Dynamics of single-fluid flows and mixing
NASA Astrophysics Data System (ADS)
Cheremisinoff, N. P.
Various papers on the dynamics of single-fluid flows and mixing are presented. The general topics addressed include: channel and free surface flows, mixing phenomena and practices, and fluid transport equipment. Individual papers discuss: statistics of deep water surface waves, unstable turbulent channel flow, hydraulic jumps and internal flows, wave attenuation in open channel flow, straight sediment stable channels, three-dimensional deep-water waves, estimating peak flows, hydrodynamics of laminar buoyant jets, impinging jets, hydrodynamics of confined coaxial jets, and turbulent mixing and diffusion of jets. Also addressed are: hydrodynamics of jets in cross flow, modelling turbulent jets in cross flow, batchwise jet mixing in tanks, stability of jets in liquid-liquid systems, jet mixing of fluids in vessels, mixing in loop reactors, backmixing in stirred vessels, industrial mixing equipment, pump classifications and design features, oscillating displacement pumps, fluid dynamics of inducers, hydrodynamics of outflow from vessels, and analysis of axial flow turbines.
NASA Technical Reports Server (NTRS)
Rodriguez, David L. (Inventor); Sturdza, Peter (Inventor)
2013-01-01
Fluid-flow simulation over a computer-generated aircraft surface is generated using inviscid and viscous simulations. A fluid-flow mesh of fluid cells is obtained. At least one inviscid fluid property for the fluid cells is determined using an inviscid fluid simulation that does not simulate fluid viscous effects. A set of intersecting fluid cells that intersects the aircraft surface are identified. One surface mesh polygon of the surface mesh is identified for each intersecting fluid cell. A boundary-layer prediction point for each identified surface mesh polygon is determined. At least one boundary-layer fluid property for each boundary-layer prediction point is determined using the at least one inviscid fluid property of the corresponding intersecting fluid cell and a boundary-layer simulation that simulates fluid viscous effects. At least one updated fluid property for at least one fluid cell is determined using the at least one boundary-layer fluid property and the inviscid fluid simulation.
Thermohydrodynamic Analysis of Cryogenic Liquid Turbulent Flow Fluid Film Bearings
NASA Technical Reports Server (NTRS)
SanAndres, Luis
1996-01-01
Computational programs developed for the thermal analysis of tilting and flexure-pad hybrid bearings, and the unsteady flow and transient response of a point mass rotor supported on fluid film bearings are described. The motion of a cryogenic liquid on the thin film annular region of a fluid film bearing is described by a set of mass and momentum conservation, and energy transport equations for the turbulent bulk-flow velocities and pressure, and accompanied by thermophysical state equations for evaluation of the fluid material properties. Zeroth-order equations describe the fluid flow field for a journal static equilibrium position, while first-order (linear) equations govern the fluid flow for small amplitude-journal center translational motions. Solution to the zeroth-order flow field equations provides the bearing flow rate, load capacity, drag torque and temperature rise. Solution to the first-order equations determines the rotordynamic force coefficients due to journal radial motions.
Testing the continuum mu(I) rheology for 2D granular flows on avalanches and collapse of columns
NASA Astrophysics Data System (ADS)
Lagrée, Pierre-Yves; Staron, Lydie; Popinet, Stéphane
2010-11-01
There is a large amount of experimental work dealing with dry granular flows (such as sand, glass beads, small rocks...) supporting the so called μ(I) rheology. This rheology states that the ratio of the tangential to the normal constraints behaves as a Coulomb like friction depending on the Inertial number (this number is the product of the grain size by the shear of the velocity divided by the square root of pressure divided by the grain density). Hence, we propose the implementation of this non newtonian rheology in a Navier Stokes Solver (the Gerris Flow Solver uses a finite-volume approach with the Volume-of-Fluid (VOF) method to describe variable-density two-phase flows). First we apply it on a steady infinite bi dimensional avalanching granular flow over a constant slope covered by a passive light fluid (it allows for a zero pressure boundary condition at the surface, bypassing an up to now difficulty which was to impose this condition on a unknown moving boundary). The classical analytical solution, known as Bagnold solution, is recovered numerically. Then the rheology is tested on the collapse of granular columns and quantitative comparisons with numerical simulations from Contact Dynamics are done.
Presentation of the MERC work-flow for the computation of a 2D radial reflector in a PWR
Clerc, T.; Hebert, A.; Leroyer, H.; Argaud, J. P.; Poncot, A.; Bouriquet, B.
2013-07-01
This paper presents a work-flow for computing an equivalent 2D radial reflector in a pressurized water reactor (PWR) core, in adequacy with a reference power distribution, computed with the method of characteristics (MOC) of the lattice code APOLLO2. The Multi-modelling Equivalent Reflector Computation (MERC) work-flow is a coherent association of the lattice code APOLLO2 and the core code COCAGNE, structured around the ADAO (Assimilation de Donnees et Aide a l'Optimisation) module of the SALOME platform, based on the data assimilation theory. This study leads to the computation of equivalent few-groups reflectors, that can be spatially heterogeneous, which have been compared to those obtained with the OPTEX similar methodology developed with the core code DONJON, as a first validation step. Subsequently, the MERC work-flow is used to compute the most accurate reflector in consistency with all the R and D choices made at Electricite de France (EDF) for the core modelling, in terms of number of energy groups and simplified transport solvers. We observe important reductions of the power discrepancies distribution over the core when using equivalent reflectors obtained with the MERC work-flow. (authors)
NASA Astrophysics Data System (ADS)
Suzuki, T.; Yamashita, T.
2015-12-01
We have constructed a framework associated with the interaction among heat, fluid pressure and inelastic pore creation, and found three nondimensional parameters, Su, Su' and Ta, which are related to the dilatancy effect, fluid flow effect and the upper limit of the dilatancy, respectively. Without fluid flow, they were found to generate two qualitatively different slip behaviors, acceleration case and spontaneous slip cessation case. In particular, the acceleration case shows the initial deceleration and later acceleration approaching the final high-speed slip. Between the deceleration and acceleration phases, we observe a transient state featured by low and approximately constant slip velocity. We employ the fluid flow effect here and give some implications for understanding the temporal evolution of seismic moments. For example, Ide et al. (2007) found that ordinary earthquakes and slow earthquakes have different forms of temporal evolutions of the seismic moments. In addition, Duputel et al. (2013) observed examples showing exceptional moment evolution behavior even among ordinary earthquakes. Yamashita and Suzuki (2011) successfully modeled the former result by introducing slip-induced dilatancy coupled with fluid flow, while the modeling of the latter remains unaccomplished. If we introduce the fluid flow, we observe only the acceleration case and the duration of the transient state is longer than that without the fluid flow. This can be a model for a slow earthquake if we assume a 2-D model, and the seismic moment of such an earthquake evolves in almost a quadratic function in time. On the other hand, for the acceleration case without the fluid flow, the seismic moment evolution is almost a cubic function. Moreover, for the spontaneous slip cessation case, it evolves with a quadratic or linear function. The framework explaining all the behaviors mentioned above has been obtained. Quantitative investigation on the nondimensional parameters will also be done.
14 CFR 23.1095 - Carburetor deicing fluid flow rate.
Code of Federal Regulations, 2010 CFR
2010-01-01
... Induction System § 23.1095 Carburetor deicing fluid flow rate. (a) If a carburetor deicing fluid system is.... (b) The fluid must be introduced into the air induction system— (1) Close to, and upstream of, the carburetor; and (2) So that it is equally distributed over the entire cross section of the induction...
Morin, Kristen T; Lenz, Michelle S; Labat, Caroline A; Tranquillo, Robert T
2015-05-01
Knowledge is limited about fluid flow in tissues containing engineered microvessels, which can be substantially different in topology than native capillary networks. A need exists for a computational model that allows for flow through tissues dense in nonpercolating and possibly nonperfusable microvessels to be efficiently evaluated. A finite difference (FD) model based on Poiseuille flow through a distribution of straight tubes acting as point sources and sinks, and Darcy flow through the interstitium, was developed to describe fluid flow through a tissue containing engineered microvessels. Accuracy of the FD model was assessed by comparison to a finite element (FE) model for the case of a single tube. Because the case of interest is a tissue with microvessels aligned with the flow, accuracy was also assessed in depth for a corresponding 2D FD model. The potential utility of the 2D FD model was then explored by correlating metrics of flow through the model tissue to microvessel morphometric properties. The results indicate that the model can predict the density of perfused microvessels based on parameters that can be easily measured. PMID:25424905
Some specific features of the NMR study of fluid flows
NASA Astrophysics Data System (ADS)
Davydov, V. V.
2016-07-01
Some specific features of studying fluid flows with a NMR spectrometer are considered. The consideration of these features in the NMR spectrometer design makes it possible to determine the relative concentrations of paramagnetic ions and measure the longitudinal and transverse relaxation times ( T 1 and T 2, respectively) in fluid flows with an error no larger than 0.5%. This approach allows one to completely avoid errors in determining the state of a fluid from measured relaxation constants T 1 and T 2, which is especially urgent when working with medical suspensions and biological solutions. The results of an experimental study of fluid flows are presented.
Fluid flow into vertical fractures from a point source
Clark, P.E.; Zhu, Q.
1995-03-01
Flow into a fracture from a point source recently has been the focus of attention in the petroleum industry. The suggestion has been made that, in this flow configuration, convection (gravity-driven flow) would dominate Stokes`-type settling for determining final proppant distribution. The theory is that when a dense fluid flows into a fracture filled with a less dense fluid from a point source, the density of the fluid will force it to the bottom of the fracture. This clearly happens when the two fluids have low viscosity. However, viscosity of both the fluid in the fracture and the displacing fluid and nonuniformities in the fracture influence displacement process significantly. Results presented in this study clearly show the effects of viscosity and fracture nonuniformity on the convective settling mechanism.
Poiseuille equation for steady flow of fractal fluid
NASA Astrophysics Data System (ADS)
Tarasov, Vasily E.
2016-07-01
Fractal fluid is considered in the framework of continuous models with noninteger dimensional spaces (NIDS). A recently proposed vector calculus in NIDS is used to get a description of fractal fluid flow in pipes with circular cross-sections. The Navier-Stokes equations of fractal incompressible viscous fluids are used to derive a generalization of the Poiseuille equation of steady flow of fractal media in pipe.
Method and apparatus for chemically altering fluids in continuous flow
Heath, W.O.; Virden, J.W. Jr.; Richardson, R.L.; Bergsman, T.M.
1993-10-19
The present invention relates to a continuous flow fluid reactor for chemically altering fluids. The reactor operates on standard frequency (50 to 60 Hz) electricity. The fluid reactor contains particles that are energized by the electricity to form a corona throughout the volume of the reactor and subsequently a non-equilibrium plasma that interacts with the fluid. Particles may form a fixed bed or a fluid bed. Electricity may be provided through electrodes or through an inductive coil. Fluids include gases containing exhaust products and organic fuels requiring oxidation. 4 figures.
Method and apparatus for chemically altering fluids in continuous flow
Heath, William O.; Virden, Jr., Judson W.; Richardson, R. L.; Bergsman, Theresa M.
1993-01-01
The present invention relates to a continuous flow fluid reactor for chemically altering fluids. The reactor operates on standard frequency (50 to 60 Hz) electricity. The fluid reactor contains particles that are energized by the electricity to form a corona throughout the volume of the reactor and subsequently a non-equilibrium plasma that interacts with the fluid. Particles may form a fixed bed or a fluid bed. Electricity may be provided through electrodes or through an inductive coil. Fluids include gases containing exhaust products and organic fuels requiring oxidation.
Friction-Induced Fluid Heating in Nanoscale Helium Flows
Li Zhigang
2010-05-21
We investigate the mechanism of friction-induced fluid heating in nanoconfinements. Molecular dynamics simulations are used to study the temperature variations of liquid helium in nanoscale Poiseuille flows. It is found that the fluid heating is dominated by different sources of friction as the external driving force is changed. For small external force, the fluid heating is mainly caused by the internal viscous friction in the fluid. When the external force is large and causes fluid slip at the surfaces of channel walls, the friction at the fluid-solid interface dominates over the internal friction in the fluid and is the major contribution to fluid heating. An asymmetric temperature gradient in the fluid is developed in the case of nonidentical walls and the general temperature gradient may change sign as the dominant heating factor changes from internal to interfacial friction with increasing external force.
Thermodynamics and flow-frames for dissipative relativistic fluids
Ván, P.; Biró, T. S.
2014-01-14
A general thermodynamic treatment of dissipative relativistic fluids is introduced, where the temperature four vector is not parallel to the velocity field of the fluid. Generic stability and kinetic equilibrium points out a particular thermodynamics, where the temperature vector is parallel to the enthalpy flow vector and the choice of the flow fixes the constitutive functions for viscous stress and heat. The linear stability of the homogeneous equilibrium is proved in a mixed particle-energy flow-frame.
TITAN2D simulations of pyroclastic flows at Cerro Machín Volcano, Colombia: Hazard implications
NASA Astrophysics Data System (ADS)
Murcia, H. F.; Sheridan, M. F.; Macías, J. L.; Cortés, G. P.
2010-03-01
Cerro Machín is a dacitic tuff ring located in the central part of the Colombian Andes. It lies at the southern end of the Cerro Bravo-Cerro Machín volcanic belt. This volcano has experienced at least six major explosive eruptions during the last 5000 years. These eruptions have generated pyroclastic flows associated with Plinian activity that have traveled up to 8 km from the crater, and pyroclastic flows associated with Vulcanian activity with shorter runouts of 5 km from the source. Today, some 21,000 people live within a 8 km radius of Cerro Machín. The volcano is active with fumaroles and has shown increasing seismic activity since 2004, and therefore represents a potentially increasing threat to the local population. To evaluate the possible effects of future eruptions that may generate pyroclastic density currents controlled by granular flow dynamics we performed flow simulations with the TITAN2D code. These simulations were run in all directions around the volcano, using the input parameters of the largest eruption reported. The results show that an eruption of 0.3 km 3 of pyroclastic flows from a collapsing Plinian column would travel up to 9 km from the vent, emplacing a deposit thicker than 60 m within the Toche River valley. Deposits >45 m thick can be expected in the valleys of San Juan, Santa Marta, and Azufral creeks, while 30 m thick deposits could accumulate within the drainages of the Tochecito, Bermellón, and Coello Rivers. A minimum area of 56 km 2 could be affected directly by this kind of eruption. In comparison, Vulcanian column-collapse pyroclastic flows of 0.1 km 3 would travel up to 6 km from the vent depositing >45 m thick debris inside the Toche River valley and more than 30 m inside the valleys of San Juan, Santa Marta, and Azufral creeks. The minimum area that could be affected directly by this kind of eruption is 33 km 2. The distribution and thickness of the deposits obtained by these simulations are consistent with the hazard
Finite Element Analysis of Magnetic Damping Effects on G-Jitter Induced Fluid Flow
NASA Technical Reports Server (NTRS)
Pan, Bo; Li, Ben Q.; deGroh, Henry C., III
1997-01-01
This paper reports some interim results on numerical modeling and analyses of magnetic damping of g-jitter driven fluid flow in microgravity. A finite element model is developed to represent the fluid flow, thermal and solute transport phenomena in a 2-D cavity under g-jitter conditions with and without an applied magnetic field. The numerical model is checked by comparing with analytical solutions obtained for a simple parallel plate channel flow driven by g-jitter in a transverse magnetic field. The model is then applied to study the effect of steady state g-jitter induced oscillation and on the solute redistribution in the liquid that bears direct relevance to the Bridgman-Stockbarger single crystal growth processes. A selection of computed results is presented and the results indicate that an applied magnetic field can effectively damp the velocity caused by g-jitter and help to reduce the time variation of solute redistribution.
Carozzi, S; Nasini, M G; Schelotto, C; Caviglia, P M; Barocci, S; Cantaluppi, A; Salit, M
1990-01-01
Previous in vitro studies showed that Ca++ and 1,25(OH)2D3 modulate peritoneal macrophage (PM0) antimicrobial activity in CAPD patients. Twenty-four CAPD patients were evaluated in vivo (12 who had never had peritonitis, and 12 with an overall peritonitis incidence of more than one episode per 8 patient/months), for the effects of different peritoneal dialysis fluids (PDF) and Ca++ concentrations (1.25, 1.75, and 2.25 mmol/L) on PM0: cytoplasmic Ca++ concentration; superoxide generation; leukotriene B4 (LTB4) release; and bacterial killing for Staphylococcus epidermidis. The same parameters were also evaluated after adding 1,25(OH)2D3 (0.25 microgram/L) to the PDF. Results showed a direct correlation between the PDF Ca++ concentration and PM0 Ca++ levels, superoxide and LTB4 generation, and bacterial killing such that, with 2.25 mmol/L of Ca++, these values were significantly higher than those seen with 1.75 mmol/L. The addition of 1,25(OH)2D3 potentiated the Ca(++)-induced effects. On the other hand, with PDF Ca++ levels of 1,25 mmol/L, an inhibition of the aforementioned parameters was seen. However, this effect was reversed by the addition of 1,25(OH)2D3. These in vivo results confirm the importance of Ca++ and 1,25(OH)2D3 in PM0 antibacterial function in CAPD patients, and may be useful in determining the prophylaxis and therapy of peritonitis.
The dynamical regime of fluid flow at the core surface
NASA Astrophysics Data System (ADS)
Bloxham, Jeremy
1988-06-01
An alternative method for determining the fluid motion immediately beneath the core-mantle boundary is presented which is based on solving the full nonlinear core motions problem. This method is used to examine three dynamical hypotheses about the flow: (1) the steady motions hypothesis; (2) the geostrophic hypothesis; and (3) the toroidal flow hypothesis. Better fits to the field are obtained with the toroidal flows than with geostrophic flows, casting considerable doubt on the validity of the geostrophic hypothesis. Additionally, some indication is found that failure of the frozen-flux approximation, a concomitant assumption, may be a serious obstacle to obtaining reliable maps of the core fluid flow.
Calculation of incompressible fluid flow through cambered blades
NASA Technical Reports Server (NTRS)
Hsu, C. C.
1970-01-01
Conformal mapping technique yields linear, approximate solutions for calculating flow of an incompressible fluid through staggered array of cambered blades for the cases of flow with partial cavitation and supercavitation. Lift and drag coefficients, cavitation number, cavity shape, and exit flow conditions can be determined.
Thermohydrodynamic analysis of cryogenic liquid turbulent flow fluid film bearings
NASA Technical Reports Server (NTRS)
Andres, Luis San
1993-01-01
A thermohydrodynamic analysis is presented and a computer code developed for prediction of the static and dynamic force response of hydrostatic journal bearings (HJB's), annular seals or damper bearing seals, and fixed arc pad bearings for cryogenic liquid applications. The study includes the most important flow characteristics found in cryogenic fluid film bearings such as flow turbulence, fluid inertia, liquid compressibility and thermal effects. The analysis and computational model devised allow the determination of the flow field in cryogenic fluid film bearings along with the dynamic force coefficients for rotor-bearing stability analysis.
SOLA-VOF. Transient Fluid Flow Free Boundaries
Nichols, B.D.; Hirt, C.W.; Hotchkiss, R.S.
1992-03-03
SOLA-VOF is a program for the solution of two-dimensional transient fluid flow with free boundaries, based on the concept of a fractional volume of fluid (VOF). Its basic mode of operation is for single fluid calculations having multiple free surfaces. However, SOLA-VOF can also be used for calculations involving two fluids separated by a sharp interface. In either case, the fluids may be treated as incompressible or as having limited compressibility. Surface tension forces with wall adhesion are permitted in both cases. Internal obstacles may be defined by blocking out any desired combination of cells in the mesh, which is composed of rectangular cells of variable size.
Sefidgar, Mostafa; Soltani, M; Raahemifar, Kaamran; Bazmara, Hossein
2015-01-01
A solid tumor is investigated as porous media for fluid flow simulation. Most of the studies use Darcy model for porous media. In Darcy model, the fluid friction is neglected and a few simplified assumptions are implemented. In this study, the effect of these assumptions is studied by considering Brinkman model. A multiscale mathematical method which calculates fluid flow to a solid tumor is used in this study to investigate how neglecting fluid friction affects the solid tumor simulation. The mathematical method involves processes such as blood flow through vessels and solute and fluid diffusion, convective transport in extracellular matrix, and extravasation from blood vessels. The sprouting angiogenesis model is used for generating capillary network and then fluid flow governing equations are implemented to calculate blood flow through the tumor-induced capillary network. Finally, the two models of porous media are used for modeling fluid flow in normal and tumor tissues in three different shapes of tumors. Simulations of interstitial fluid transport in a solid tumor demonstrate that the simplifications used in Darcy model affect the interstitial velocity and Brinkman model predicts a lower value for interstitial velocity than the values that Darcy model predicts.
Predictions of bubbly flows in vertical pipes using two-fluid models in CFDS-FLOW3D code
Banas, A.O.; Carver, M.B.; Unrau, D.
1995-09-01
This paper reports the results of a preliminary study exploring the performance of two sets of two-fluid closure relationships applied to the simulation of turbulent air-water bubbly upflows through vertical pipes. Predictions obtained with the default CFDS-FLOW3D model for dispersed flows were compared with the predictions of a new model (based on the work of Lee), and with the experimental data of Liu. The new model, implemented in the CFDS-FLOW3D code, included additional source terms in the {open_quotes}standard{close_quotes} {kappa}-{epsilon} transport equations for the liquid phase, as well as modified model coefficients and wall functions. All simulations were carried out in a 2-D axisymmetric format, collapsing the general multifluid framework of CFDS-FLOW3D to the two-fluid (air-water) case. The newly implemented model consistently improved predictions of radial-velocity profiles of both phases, but failed to accurately reproduce the experimental phase-distribution data. This shortcoming was traced to the neglect of anisotropic effects in the modelling of liquid-phase turbulence. In this sense, the present investigation should be considered as the first step toward the ultimate goal of developing a theoretically sound and universal CFD-type two-fluid model for bubbly flows in channels.
Unbalanced-flow, fluid-mixing plug with metering capabilities
NASA Technical Reports Server (NTRS)
England, John Dwight (Inventor); Kelley, Anthony R. (Inventor); Van Buskirk, Paul D. (Inventor)
2009-01-01
A fluid mixer plug has holes formed therethrough such that a remaining portion is closed to fluid flow. The plug's inlet face defines a central circuit region and a ring-shaped region with the ring-shaped region including at least some of the plug's remaining portion so-closed to fluid flow. This remaining portion or closed region at each radius R of the ring shaped region satisfies a radius independent, flow-based relationship. Entry openings are defined in the plug's inlet face in correspondence with the holes. The entry openings define an open flow area at each radius of the ring-shaped region. The open flow area at each such radius satisfies the inverse of the flow-based relationship defining the closed regions of the plug.
NASA Astrophysics Data System (ADS)
Dages, Cecile; Samouelian, Anatja; Lanoix, Marthe; Dollinger, Jeanne; Chakkour, Sara; Chovelon, Gabrielle; Trabelsi, Khouloud; Voltz, Marc
2015-04-01
Ditches are involved in the transfer of pesticide to surface and groundwaters (e.g. Louchart et al., 2001). Soil horizons underlying ditch beds may present specific soil characteristics compared to neighbouring field soils due to erosion/deposition processes, to the specific biological activities (rooting dynamic and animal habitat) in the ditches (e.g. Vaughan et al., 2008) and to management practices (burning, dredging, mowing,...). Moreover, in contrast to percolation processes in field soils that can be assumed to be mainly 1D vertical, those occurring in the ditch beds are by essence 2D or even 3D. Nevertheless, due to a lake of knowledge, these specific aspects of transfer within ditch beds are generally omitted for hydrological simulation at the catchment scale (Mottes et al., 2014). Accordingly, the aims of this study were i) to characterize subsurface solute transfer through ditch beds and ii) to determine equivalent hydraulic parameters of the ditch beds for use in catchment scale hydrological simulations. A complementary aim was to evaluate the error in predictions performed when percolation in ditches is assumed to be similar to that in the neighbouring field soil. First, bromide transfer experiments were performed on undisturbed soil column (15 cm long with a 15 cm inner-diameter), horizontally and vertically sampled within each soil horizon underlying a ditch bed and within the neighboring field. Columns were sampled at the Roujan catchment (Hérault, France), which belongs to the long term Mediterranean hydrological observatory OMERE (Voltz and Albergel, 2002). Second, for each column, a set of parameters was determined by inverse optimization with mobile-immobile or dual permeability models, with CXTFIT (Toride et al., 1999) or with HYDRUS (Simunek et al., 1998). Third, infiltration and percolation in the ditch was simulated by a 2D flow domain approach considering the 2D variation in hydraulic properties of the cross section of a ditch bed. Last
Apparatus for irradiating a continuously flowing stream of fluid
Speir, Leslie G.; Adams, Edwin L.
1984-01-01
An apparatus for irradiating a continuously flowing stream of fluid is diosed. The apparatus consists of a housing having a spherical cavity and a spherical moderator containing a radiation source positioned within the spherical cavity. The spherical moderator is of lesser diameter than the spherical cavity so as to define a spherical annular volume around the moderator. The housing includes fluid intake and output conduits which open onto the spherical cavity at diametrically opposite positions. Fluid flows through the cavity around the spherical moderator and is uniformly irradiated due to the 4.pi. radiation geometry. The irradiation source, for example a .sup.252 CF neutron source, is removable from the spherical moderator through a radial bore which extends outwardly to an opening on the outside of the housing. The radiation source may be routinely removed without interrupting the flow of fluid or breaching the containment of the fluid.
Feedback regulated induction heater for a flowing fluid
Migliori, Albert; Swift, Gregory W.
1985-01-01
A regulated induction heater for heating a stream of flowing fluid to a predetermined desired temperature. The heater includes a radiofrequency induction coil which surrounds a glass tube through which the fluid flows. A heating element consisting of a bundle of approximately 200 stainless steel capillary tubes located within the glass tube couples the output of the induction coil to the fluid. The temperature of the fluid downstream from the heating element is sensed with a platinum resistance thermometer, the output of which is applied to an adjustable proportional and integral feedback control circuit which regulates the power applied to the induction coil. The heater regulates the fluid temperature to within 0.005.degree. C. at a flow rate of 50 cm.sup.3 /second with a response time of less than 0.1 second, and can accommodate changes in heat load up to 1500 watts.
Feedback regulated induction heater for a flowing fluid
Migliori, A.; Swift, G.W.
1984-06-13
A regulated induction heater for heating a stream of flowing fluid to a predetermined desired temperature. The heater includes a radiofrequency induction coil which surrounds a glass tube through which the fluid flows. A heating element consisting of a bundle of approximately 200 stainless steel capillary tubes located within the glass tube couples the output of the induction coil to the fluid. The temperature of the fluid downstream from the heating element is sensed with a platinum resistance thermometer, the output of which is applied to an adjustable porportional and integral feedback control circuit which regulates the power applied to the induction coil. The heater regulates the fluid temperature to within 0.005/sup 0/C at a flow rate of 50 cm/sup 3//sec with a response time of less than 0.1 second, and can accommodate changes in heat load up to 1500 watts.
Superconfinement tailors fluid flow at microscales
Setu, Siti Aminah; Dullens, Roel P.A.; Hernández-Machado, Aurora; Pagonabarraga, Ignacio; Aarts, Dirk G.A.L.; Ledesma-Aguilar, Rodrigo
2015-01-01
Understanding fluid dynamics under extreme confinement, where device and intrinsic fluid length scales become comparable, is essential to successfully develop the coming generations of fluidic devices. Here we report measurements of advancing fluid fronts in such a regime, which we dub superconfinement. We find that the strong coupling between contact-line friction and geometric confinement gives rise to a new stability regime where the maximum speed for a stable moving front exhibits a distinctive response to changes in the bounding geometry. Unstable fronts develop into drop-emitting jets controlled by thermal fluctuations. Numerical simulations reveal that the dynamics in superconfined systems is dominated by interfacial forces. Henceforth, we present a theory that quantifies our experiments in terms of the relevant interfacial length scale, which in our system is the intrinsic contact-line slip length. Our findings show that length-scale overlap can be used as a new fluid-control mechanism in strongly confined systems. PMID:26073752
Destabilization of confined granular packings due to fluid flow
NASA Astrophysics Data System (ADS)
Monloubou, Martin; Sandnes, Bjørnar
2016-04-01
Fluid flow through granular materials can cause fluidization when fluid drag exceeds the frictional stress within the packing. Fluid driven failure of granular packings is observed in both natural and engineered settings, e.g. soil liquefaction and flowback of proppants during hydraulic fracturing operations. We study experimentally the destabilization and flow of an unconsolidated granular packing subjected to a point source fluid withdrawal using a model system consisting of a vertical Hele-Shaw cell containing a water-grain mixture. The fluid is withdrawn from the cell at a constant rate, and the emerging flow patterns are imaged in time-lapse mode. Using Particle Image Velocimetry (PIV), we show that the granular flow gets localized in a narrow channel down the center of the cell, and adopts a Gaussian velocity profile similar to those observed in dry grain flows in silos. We investigate the effects of the experimental parameters (flow rate, grain size, grain shape, fluid viscosity) on the packing destabilization, and identify the physical mechanisms responsible for the observed complex flow behaviour.
Laminar flow of two miscible fluids in a simple network
NASA Astrophysics Data System (ADS)
Karst, Casey M.; Storey, Brian D.; Geddes, John B.
2013-03-01
When a fluid comprised of multiple phases or constituents flows through a network, nonlinear phenomena such as multiple stable equilibrium states and spontaneous oscillations can occur. Such behavior has been observed or predicted in a number of networks including the flow of blood through the microcirculation, the flow of picoliter droplets through microfluidic devices, the flow of magma through lava tubes, and two-phase flow in refrigeration systems. While the existence of nonlinear phenomena in a network with many inter-connections containing fluids with complex rheology may seem unsurprising, this paper demonstrates that even simple networks containing Newtonian fluids in laminar flow can demonstrate multiple equilibria. The paper describes a theoretical and experimental investigation of the laminar flow of two miscible Newtonian fluids of different density and viscosity through a simple network. The fluids stratify due to gravity and remain as nearly distinct phases with some mixing occurring only by diffusion. This fluid system has the advantage that it is easily controlled and modeled, yet contains the key ingredients for network nonlinearities. Experiments and 3D simulations are first used to explore how phases distribute at a single T-junction. Once the phase separation at a single junction is known, a network model is developed which predicts multiple equilibria in the simplest of networks. The existence of multiple stable equilibria is confirmed experimentally and a criterion for existence is developed. The network results are generic and could be applied to or found in different physical systems.
Two-Fluid Equilibrium for Transonic Poloidal Flows
NASA Astrophysics Data System (ADS)
Guazzotto, Luca; Betti, Riccardo
2012-03-01
Much analytical and numerical work has been done in the past on ideal MHD equilibrium in the presence of macroscopic flow. In recent years, several authors have worked on equilibrium formulations for a two-fluid system, in which inertial ions and massless electrons are treated as distinct fluids. In this work, we present our approach to the formulation of the two-fluid equilibrium problem. Particular attention is given to the relation between the two-fluid equations and the equilibrium equations for the single-fluid ideal MHD system. Our purpose is to reconsider the results of one-fluid calculation with the more accurate two-fluid model, referring in particular to the so-called transonic discontinuities, which occur when the poloidal velocity spans a range crossing the poloidal sound speed (i.e., the sound speed reduced by a factor Bp/B). It is expected that the one-fluid discontinuity will be resolved into a sharp gradient region by the two-fluid model. Also, contrary to the ideal MHD case, in the two-fluid model the equations governing the equilibrium are elliptic in the whole range of interest for transonic equilibria. The numerical solution of the two-fluid system of equations is going to be based on a code built on the structure of the existing ideal-MHD code FLOW.
Collapsible sheath fluid reservoirs for flow cytometers
Mark, Graham A.
2000-01-01
The present invention is a container in the form of a single housing for holding fluid, including a first collapsible reservoir having a first valve. The first reservoir initially contains a volume of fluid. The container also includes a second reservoir, initially empty (or substantially empty), expandable to a second volume. The second reservoir has a second valve. As the volume of said first reservoir decreases, the volume of the second reservoir proportionally increases.
Performance of Magnetorheological Fluids Flowing Through Metal Foams
NASA Astrophysics Data System (ADS)
Liu, X. h.; Fu, Z. m.; Yao, X. y.; Li, F.
2011-01-01
If magnetorheological (MR) fluids are stored in porous materials, when excited by the external magnetic field, MR fluid will be drawn out and produce MR effect, which could be used to solve the following problems of the MR damper, such as the seal, volume and the cost of MR fluid damper. In this paper, the effect of structure of metal foams on the performance of MR fluid is investigated; the relationship between the penetrability and the porosity of the metal foams is measured, the change of MR fluid performance flowing though the metal foams is obtained. It shows that, after flowing through metal foams, the change of performance of MR fluid is about 2.5%. Compared to the sponge, the porous metal foams have the obvious advantages in high porosity and rigidity, which provide a convenient and low-cost way to design the MR damper.
Steady flow OF non-Newtonian fluids through rectangular ducts
Gao, S.X.; Hartnett, J.P. )
1993-03-01
The present paper contains a numerical study for the secondary flow of a Reiner-Rivlin non-Newtonian fluid in laminar flow through ducts of square and rectangular cross section. Finite difference methods are developed to obtain the primary flow, the secondary flow, and friction factor. The influence of the second normal stress coefficient, the Reynolds number, and the aspect ratio on the magnitude of the secondary flow are considered. In general, the effect of the secondary flow on the primary flow rate and friction factor is found to be negligible.
Centrifuge in space fluid flow visualization experiment
NASA Technical Reports Server (NTRS)
Arnold, William A.; Wilcox, William R.; Regel, Liya L.; Dunbar, Bonnie J.
1993-01-01
A prototype flow visualization system is constructed to examine buoyancy driven flows during centrifugation in space. An axial density gradient is formed by imposing a thermal gradient between the two ends of the test cell. Numerical computations for this geometry showed that the Prandtl number plays a limited part in determining the flow.
NASA Astrophysics Data System (ADS)
Hunt, J. C. R.
1981-05-01
The ways in which advances in fluid mechanics have led to improvements in engineering design are discussed, with attention to the stimulation of fluid mechanics research by industrial and environmental problems. The development of many practical uses of fluid flow without the benefit of scientific study is also emphasized. Among the topics discussed are vortices and coherent structures in turbulent flows, lubrication, jet and multiphase flows, the control and exploitation of waves, the effect of unsteady forces on structures, and dispersion phenomena. Among the practical achievements covered are the use of bluff shields to control separated flow over truck bodies and reduce aerodynamic drag, ink-jet printing, hovercraft stability, fluidized-bed combustion, the fluid/solid instabilities caused by air flow around a computer memory floppy disc, and various wind turbines.
Debris-flow deposition: Effects of pore-fluid pressure and friction concentrated at flow margins
Major, J.J.; Iverson, R.M.
1999-01-01
Measurements of pore-fluid pressure and total bed-normal stress at the base of several ???10 m3 experimental debris flows provide new insight into the process of debris-flow deposition. Pore-fluid pressures nearly sufficient to cause liquefaction were developed and maintained during flow mobilization and acceleration, persisted in debris-flow interiors during flow deceleration and deposition, and dissipated significantly only during postdepositional sediment consolidation. In contrast, leading edges of debris flows exhibited little or no positive pore-fluid pressure. Deposition therefore resulted from grain-contact friction and bed friction concentrated at flow margins. This finding contradicts models that invoke widespread decay of excess pore-fluid pressure, uniform viscoplastic yield strength, or pervasive grain-collision stresses to explain debris-flow deposition. Furthermore, the finding demonstrates that deposit thickness cannot be used to infer the strength of flowing debris.
Numerical model of water flow and solute accumulation in vertisols using HYDRUS 2D/3D code
NASA Astrophysics Data System (ADS)
Weiss, Tomáš; Dahan, Ofer; Turkeltub, Tuvia
2015-04-01
Keywords: dessication-crack-induced-salinization, preferential flow, conceptual model, numerical model, vadose zone, vertisols, soil water retention function, HYDRUS 2D/3D Vertisols cover a hydrologically very significant area of semi-arid regions often through which water infiltrates to groundwater aquifers. Understanding of water flow and solute accumulation is thus very relevant to agricultural activity and water resources management. Previous works suggest a conceptual model of dessication-crack-induced-salinization where salinization of sediment in the deep section of the vadose zone (up to 4 m) is induced by subsurface evaporation due to convective air flow in the dessication cracks. It suggests that the salinization is induced by the hydraulic gradient between the dry sediment in the vicinity of cracks (low potential) and the relatively wet sediment further from the main cracks (high potential). This paper presents a modified previously suggested conceptual model and a numerical model. The model uses a simple uniform flow approach but unconventionally prescribes the boundary conditions and the hydraulic parameters of soil. The numerical model is bound to one location close to a dairy farm waste lagoon, but the application of the suggested conceptual model could be possibly extended to all semi-arid regions with vertisols. Simulations were conducted using several modeling approaches with an ultimate goal of fitting the simulation results to the controlling variables measured in the field: temporal variation in water content across thick layer of unsaturated clay sediment (>10 m), sediment salinity and salinity the water draining down the vadose zone to the water table. The development of the model was engineered in several steps; all computed as forward solutions by try-and-error approach. The model suggests very deep instant infiltration of fresh water up to 12 m, which is also supported by the field data. The paper suggests prescribing a special atmospheric
Rising of a single Taylor drop in a stagnant liquid—2D laminar flow and axisymmetry limits
NASA Astrophysics Data System (ADS)
Direito, F. J. N.; Campos, J. B. L. M.; Miranda, J. M.
2016-05-01
A numerical (computational fluid dynamics (CFD)) study concerning the rise of individual liquid Taylor drops through vertical columns of stagnant heavier liquids is presented in this paper. CFD simulations were performed in Ansys Fluent, using its implementation of volume of fluid method, assuming the flow to be axisymmetric and laminar. Different physical conditions were tested, corresponding to different combinations of relevant dimensionless parameters and the numerical method was validated through experimental data available in the literature. The viscosity ratio between the lighter and the heavier liquid was within the range 0.01-40 and Eötvös number was between 8 and 30. Morton number was within the interval of 2.32 × 10-6-100. Froude number results were compared to data from a literature correlation. The accordance is acceptable for the ranges studied. Velocity profiles in significant regions are reported (drop nose, drop bottom and continuous phase liquid film). The influence of changing one dimensionless parameter alone was assessed. For small and large viscosity ratios, axisymmetric behavior is not a valid assumption.
NASA Astrophysics Data System (ADS)
Zhao, Gaiping; Wu, Jie; Xu, Shixiong; Collins, M. W.; Long, Quan; König, Carola S.; Jiang, Yuping; Wang, Jian; Padhani, A. R.
2007-10-01
A coupled intravascular transvascular interstitial fluid flow model is developed to study the distributions of blood flow and interstitial fluid pressure in solid tumor microcirculation based on a tumor-induced microvascular network. This is generated from a 2D nine-point discrete mathematical model of tumor angiogenesis and contains two parent vessels. Blood flow through the microvascular network and interstitial fluid flow in tumor tissues are performed by the extended Poiseuille’s law and Darcy’s law, respectively, transvascular flow is described by Starling’s law; effects of the vascular permeability and the interstitial hydraulic conductivity are also considered. The simulation results predict the heterogeneous blood supply, interstitial hypertension and low convection on the inside of the tumor, which are consistent with physiological observed facts. These results may provide beneficial information for anti-angiogenesis treatment of tumor and further clinical research.
Porous fluid flow enables oceanic subduction initiation on Earth
NASA Astrophysics Data System (ADS)
Dymkova, D.; Gerya, T.
2013-11-01
Although most of the presently active intra-oceanic subduction zones are relatively young and initiated during the Cenozoic, subduction initiation process remains poorly understood. Previous models of subduction initiation assumed excessive weakening of tectonic plate boundaries that does not reconcile with laboratory rock strength measurements. The weakening was assumed to be caused by fluids present along tectonic fractures; however no self-consistent solid-fluid model of subduction initiation has been developed so far. Here we present new numerical hydro-thermo-mechanical model of spontaneous intra-oceanic subduction initiation where solid rock deformation and fluid percolation are fully coupled. Based on 2-D numerical experiments, we demonstrate that although subduction fails to initiate under fluid-absent conditions, it can naturally start when porous fluid is present inside oceanic crust and along the plate boundaries. Fluid percolation is localized along spontaneously forming faults where high fluid pressure compensates lithostatic pressure, thus dramatically decreasing friction along the incipient subduction zone. Through the parametric study, we conclude that the most important parameter for subduction initiation is the solid matrix permeability. Paradoxical at first, lowering the permeability indeed favors subduction initiation by maintaining high fluid pressure and thus decreasing friction along active faults.
Analytical solution of two-fluid electro-osmotic flows of viscoelastic fluids.
Afonso, A M; Alves, M A; Pinho, F T
2013-04-01
This paper presents an analytical model that describes a two-fluid electro-osmotic flow of stratified fluids with Newtonian or viscoelastic rheological behavior. This is the principle of operation of an electro-osmotic two-fluid pump as proposed by Brask et al. [Tech. Proc. Nanotech., 1, 190-193, 2003], in which an electrically non-conducting fluid is transported by the interfacial dragging viscous force of a conducting fluid that is driven by electro-osmosis. The electric potential in the conducting fluid and the analytical steady flow solution of the two-fluid electro-osmotic stratified flow in a planar microchannel are presented by assuming a planar interface between the two immiscible fluids with Newtonian or viscoelastic rheological behavior. The effects of fluid rheology, shear viscosity ratio, holdup and interfacial zeta potential are analyzed to show the viability of this technique, where an enhancement of the flow rate is observed as the shear-thinning effects are increased.
A sensitivity equation approach to shape optimization in fluid flows
NASA Technical Reports Server (NTRS)
Borggaard, Jeff; Burns, John
1994-01-01
A sensitivity equation method to shape optimization problems is applied. An algorithm is developed and tested on a problem of designing optimal forebody simulators for a 2D, inviscid supersonic flow. The algorithm uses a BFGS/Trust Region optimization scheme with sensitivities computed by numerically approximating the linear partial differential equations that determine the flow sensitivities. Numerical examples are presented to illustrate the method.
Incipient subduction interface formation by coupling solid deformation and fluid flow
NASA Astrophysics Data System (ADS)
Gerya, Taras; Dymkova, Diana
2014-05-01
Although most of the presently active intra-oceanic subduction zones are relatively young and initiated during the Cenozoic, subduction initiation process associated with an incipient subduction interface formation remains poorly understood. We investigated incipient spontaneously initiating intra-oceanic subduction by exploring new numerical hydro-thermo-mechanical (HTM) model, in which solid rock deformation and fluid percolation are fully coupled. Based on 2-D numerical experiments, we demonstrate that subduction can naturally start in the presence of porous fluid inside oceanic crust and pre-existing fracture zones. During subduction initiation, fluid percolation is localized along a system of multiple listric propagating thrusts with coalescing nearly horizontal roots forming near the oceanic Moho of the forming subducting slab. These coalescing roots form incipient strongly hydrated subduction interface, which decouples upper and lower plates. High pressure of aqueous fluid flow, which spontaneously focuses along this interface, compensates lithostatic pressure, thus dramatically decreasing friction between the plates. Through the parametric study, we conclude that the most important parameter for the incipient subduction interface formation is the solid matrix permeability. Paradoxical at first, lowering the permeability indeed favors subduction initiation by maintaining high fluid pressure and thus decreasing friction along the active system of coalescent listric thrusts. Citation: Dymkova, D., and T. Gerya (2013), Porous fluid flow enables oceanic subduction initiation on Earth, Geophys. Res. Lett., 40, 5671-5676, doi:10.1002/2013GL057798.
Fluid pressure and flow as a cause of bone resorption
Fahlgren, Anna
2010-01-01
Background Unstable implants in bone become surrounded by an osteolytic zone. This is seen around loose screws, for example, but may also contribute to prosthetic loosening. Previous animal studies have shown that such zones can be induced by fluctuations in fluid pressure or flow, caused by implant instability. Method To understand the roles of pressure and flow, we describe the 3-dimensional distribution of osteolytic lesions in response to fluid pressure and flow in a previously reported rat model of aseptic loosening. 50 rats had a piston inserted in the proximal tibia, designed to produce 20 local spikes in fluid pressure of a clinically relevant magnitude (700 mmHg) twice a day. The spikes lasted for about 0.3 seconds. After 2 weeks, the pressure was measured in vivo, and the osteolytic lesions induced were studied using micro-CT scans. Results Most bone resorption occurred at pre-existing cavities within the bone in the periphery around the pressurized region, and not under the piston. This region is likely to have a higher fluid flow and less pressure than the area just beneath the piston. The velocity of fluid flow was estimated to be very high (roughly 20 mm/s). Interpretation The localization of the resorptive lesions suggests that high-velocity fluid flow is important for bone resorption induced by instability. PMID:20718695
Flow regimes for fluid injection into a confined porous medium
Zheng, Zhong; Guo, Bo; Christov, Ivan C.; Celia, Michael A.; Stone, Howard A.
2015-02-24
We report theoretical and numerical studies of the flow behaviour when a fluid is injected into a confined porous medium saturated with another fluid of different density and viscosity. For a two-dimensional configuration with point source injection, a nonlinear convection–diffusion equation is derived to describe the time evolution of the fluid–fluid interface. In the early time period, the fluid motion is mainly driven by the buoyancy force and the governing equation is reduced to a nonlinear diffusion equation with a well-known self-similar solution. In the late time period, the fluid flow is mainly driven by the injection, and the governing equation is approximated by a nonlinear hyperbolic equation that determines the global spreading rate; a shock solution is obtained when the injected fluid is more viscous than the displaced fluid, whereas a rarefaction wave solution is found when the injected fluid is less viscous. In the late time period, we also obtain analytical solutions including the diffusive term associated with the buoyancy effects (for an injected fluid with a viscosity higher than or equal to that of the displaced fluid), which provide the structure of the moving front. Numerical simulations of the convection–diffusion equation are performed; the various analytical solutions are verified as appropriate asymptotic limits, and the transition processes between the individual limits are demonstrated.
Flow regimes for fluid injection into a confined porous medium
Zheng, Zhong; Guo, Bo; Christov, Ivan C.; Celia, Michael A.; Stone, Howard A.
2015-02-24
We report theoretical and numerical studies of the flow behaviour when a fluid is injected into a confined porous medium saturated with another fluid of different density and viscosity. For a two-dimensional configuration with point source injection, a nonlinear convection–diffusion equation is derived to describe the time evolution of the fluid–fluid interface. In the early time period, the fluid motion is mainly driven by the buoyancy force and the governing equation is reduced to a nonlinear diffusion equation with a well-known self-similar solution. In the late time period, the fluid flow is mainly driven by the injection, and the governingmore » equation is approximated by a nonlinear hyperbolic equation that determines the global spreading rate; a shock solution is obtained when the injected fluid is more viscous than the displaced fluid, whereas a rarefaction wave solution is found when the injected fluid is less viscous. In the late time period, we also obtain analytical solutions including the diffusive term associated with the buoyancy effects (for an injected fluid with a viscosity higher than or equal to that of the displaced fluid), which provide the structure of the moving front. Numerical simulations of the convection–diffusion equation are performed; the various analytical solutions are verified as appropriate asymptotic limits, and the transition processes between the individual limits are demonstrated.« less
Physical ecology of fluid flow sensing in arthropods.
Casas, Jérôme; Dangles, Olivier
2010-01-01
Terrestrial and aquatic arthropods sense fluid flow in many behavioral and ecological contexts, using dedicated, highly sensitive mechanosensory hairs, which are often abundant. Strong similarities exist in the biomechanics of flow sensors and in the sensory ecology of insects, arachnids, and crustaceans in their respective fluid environments. We extend these considerations to flow in sand and its implications for flow sensing by arthropods inhabiting this granular medium. Finally, we highlight the need to merge the various findings of studies that have focused on different arthropods in different fluids. This could be achieved using the unique combination, for sensory ecology, of both a workable and well-accepted mathematical model for hair-based flow sensing, both in air and water, and microelectronic mechanical systems microtechnology to tinker with physical models.
Deployable Emergency Shutoff Device Blocks High-Velocity Fluid Flows
NASA Technical Reports Server (NTRS)
Nabors, Sammy A.
2015-01-01
NASA's Marshall Space Flight Center has developed a device and method for blocking the flow of fluid from an open pipe. Motivated by the sea-bed oil-drilling catastrophe in the Gulf of Mexico in 2010, NASA innovators designed the device to plug, control, and meter the flow of gases and liquids. Anchored with friction fittings, spikes, or explosively activated fasteners, the device is well-suited for harsh environments and high fluid velocities and pressures. With the addition of instrumentation, it can also be used as a variable area flow metering valve that can be set based upon flow conditions. With robotic additions, this patent-pending innovation can be configured to crawl into a pipe then anchor and activate itself to block or control fluid flow.
Bone tissue engineering: the role of interstitial fluid flow
NASA Technical Reports Server (NTRS)
Hillsley, M. V.; Frangos, J. A.
1994-01-01
It is well established that vascularization is required for effective bone healing. This implies that blood flow and interstitial fluid (ISF) flow are required for healing and maintenance of bone. The fact that changes in bone blood flow and ISF flow are associated with changes in bone remodeling and formation support this theory. ISF flow in bone results from transcortical pressure gradients produced by vascular and hydrostatic pressure, and mechanical loading. Conditions observed to alter flow rates include increases in venous pressure in hypertension, fluid shifts occurring in bedrest and microgravity, increases in vascularization during the injury-healing response, and mechanical compression and bending of bone during exercise. These conditions also induce changes in bone remodeling. Previously, we hypothesized that interstitial fluid flow in bone, and in particular fluid shear stress, serves to mediate signal transduction in mechanical loading- and injury-induced remodeling. In addition, we proposed that a lack or decrease of ISF flow results in the bone loss observed in disuse and microgravity. The purpose of this article is to review ISF flow in bone and its role in osteogenesis.
Capacitance Probe for Fluid Flow and Volume Measurements
NASA Technical Reports Server (NTRS)
Arndt, G. Dickey (Inventor); Nguyen, Thanh X. (Inventor); Carl, James R. (Inventor)
1997-01-01
Method and apparatus for making measurements on fluids are disclosed, including the use of a capacitive probe for measuring the flow volume of a material within a flow stream. The capacitance probe has at least two elongate electrodes and, in a specific embodiment of the invention, has three parallel elongate electrodes with the center electrode being an extension of the center conductor of a co-axial cable. A conductance probe is also provided to provide more accurate flow volume data in response to conductivity of the material within the flow stream. A preferred embodiment of the present invention provides for a gas flow stream through a micro-gravity environment that allows for monitoring a flow volume of a fluid sample, such as a urine sample, that is entrained within the gas flow stream.
Capacitance probe for fluid flow and volume measurements
NASA Technical Reports Server (NTRS)
Arndt, G. Dickey (Inventor); Nguyen, Thanh X. (Inventor); Carl, James R. (Inventor)
1995-01-01
Method and apparatus for making measurements on fluids are disclosed, including the use of a capacitive probe for measuring the flow volume of a material within a flow stream. The capacitance probe has at least two elongate electrodes and, in a specific embodiment of the invention, has three parallel elongate electrodes with the center electrode being an extension of the center conductor of a co-axial cable. A conductance probe is also provided to provide more accurate flow volume data in response to conductivity of the material within the flow stream. A preferred embodiment of the present invention provides for a gas flow stream through a microgravity environment that allows for monitoring a flow volume of a fluid sample, such as a urine sample, that is entrained within the gas flow stream.
Parallel-plate fluid flow systems for bone cell stimulation.
Huesa, Carmen; Helfrich, Miep H; Aspden, Richard M
2010-04-19
Bone responds to changes in its mechanical environment, but the mechanisms by which it does so are poorly understood. One hypothesis of mechanosensing in bone states that osteocytes can sense the flow of fluid through the canalicular system. To study this in vitro a number of fluid flow devices have been designed in which cells are placed between parallel plates in sealed chambers. Fluid flows through the chambers at controlled rates, most commonly driven by a peristaltic pump. In addition to fluid flow, high pressures have been observed in these chambers, but the effect of this on the cellular responses has generally been ignored or considered irrelevant, something challenged by recent cellular experiments using pressure only. We have, therefore, devised a system in which we can considerably reduce the pressure while maintaining the flow rate to enable study of their effects individually and in combination. As reducing pressure also reduces the risk of leaks in flow chambers, our system is suitable for real-time microscopical experiments. We present details of the new systems and of experiments with osteoblasts to illustrate the effects of fluid flow with and without additional pressure on the translocation of beta-catenin to the nucleus.
Axisymmetric flows from fluid injection into a confined porous medium
NASA Astrophysics Data System (ADS)
Guo, Bo; Zheng, Zhong; Celia, Michael A.; Stone, Howard A.
2016-02-01
We study the axisymmetric flows generated from fluid injection into a horizontal confined porous medium that is originally saturated with another fluid of different density and viscosity. Neglecting the effects of surface tension and fluid mixing, we use the lubrication approximation to obtain a nonlinear advection-diffusion equation that describes the time evolution of the sharp fluid-fluid interface. The flow behaviors are controlled by two dimensionless groups: M, the viscosity ratio of displaced fluid relative to injected fluid, and Γ, which measures the relative importance of buoyancy and fluid injection. For this axisymmetric geometry, the similarity solution involving R2/T (where R is the dimensionless radial coordinate and T is the dimensionless time) is an exact solution to the nonlinear governing equation for all times. Four analytical expressions are identified as asymptotic approximations (two of which are new solutions): (i) injection-driven flow with the injected fluid being more viscous than the displaced fluid (Γ ≪ 1 and M < 1) where we identify a self-similar solution that indicates a parabolic interface shape; (ii) injection-driven flow with injected and displaced fluids of equal viscosity (Γ ≪ 1 and M = 1), where we find a self-similar solution that predicts a distinct parabolic interface shape; (iii) injection-driven flow with a less viscous injected fluid (Γ ≪ 1 and M > 1) for which there is a rarefaction wave solution, assuming that the Saffman-Taylor instability does not occur at the reservoir scale; and (iv) buoyancy-driven flow (Γ ≫ 1) for which there is a well-known self-similar solution corresponding to gravity currents in an unconfined porous medium [S. Lyle et al. "Axisymmetric gravity currents in a porous medium," J. Fluid Mech. 543, 293-302 (2005)]. The various axisymmetric flows are summarized in a Γ-M regime diagram with five distinct dynamic behaviors including the four asymptotic regimes and an intermediate regime
Simulation of fluid flow inside a continuous slab-casting machine
NASA Astrophysics Data System (ADS)
Thomas, B. G.; Mika, L. J.; Najjar, F. M.
1990-04-01
A finite element model has been developed and applied to compute the fluid flow distribution inside the shell in the mold region of a continuous, steel slab-casting machine. The model was produced with the commercial program FIDAP, which allows this nonlinear, highly turbulent problem to be simulated using the K- ɛ turbulence model. It consists of separate two-dimensional (2-D) models of the nozzle and a section through the mold, facing the broad face. The predicted flow patterns and velocity fields show reasonable agreement with experimental observations and measurements conducted using a transparent plastic water model. The effects of nozzle angle, casting speed, mold width, and turbulence simulation parameters on the flow pattern have been investigated. The overall flow field is relatively insensitive to process parameters.
NASA Astrophysics Data System (ADS)
Chen, K.; You, Y.; Noblesse, F.
2016-07-01
Experiments are conducted in a linear stratified fluid with a momentum source modeled via a nozzle jet moving horizontally. The generation mechanism of the quasi-two-dimensional dipolar vortex streets is investigated and their evolution characteristics are analyzed. Observation shows that the formation of a dipolar vortex street requires a nonzero motion of the nozzle in addition to conditions of the Reynolds and Froude number (Re, Fr). The (Re, Fr) condition that the dipolar vortex streets can be generated is determined via experimental measurements. The explanation for the absence of such a vortex street can be the low energy of the jet and the strong body-effect disturbance of the solid nozzle. The dependence of the vortex street dimensionless formation time τ and the Strouhal number St on the Froude number Fr or the Reynolds number Re is analyzed. This analysis shows that τ and St appear to be independent of Re and approximately have power-law relations with Fr via data fitting. The exponents of Fr in the two power-law functions are -0.27 for τ and -0.21 for St, while the constant coefficients are 65 and 0.21.
Stability formalism of a flowing two-fluid plasma
NASA Astrophysics Data System (ADS)
Yamada, Hideaki; Katano, Takayuki; Ishida, Akio; Steinhauer, Loren C.
2003-04-01
An improved formalism for a stability analysis of flowing two-fluid equilibria with constant density is developed. The two-fluid formalism, in which the generalized vorticity of each species is introduced as characteristic quantity, extends the usual single-fluid formalism. A new relation between the perturbed generalized vorticity and the displacement is found for each species. The spectral formalism is developed for stability of axisymmetric equilibrium. The missing elements in the single-fluid analysis of Frieman and Rotenberg [Rev. Mod. Phys. 32, 898 (1960)] are identified.
Pulmonary fluid flow challenges for experimental and mathematical modeling.
Levy, Rachel; Hill, David B; Forest, M Gregory; Grotberg, James B
2014-12-01
Modeling the flow of fluid in the lungs, even under baseline healthy conditions, presents many challenges. The complex rheology of the fluids, interaction between fluids and structures, and complicated multi-scale geometry all add to the complexity of the problem. We provide a brief overview of approaches used to model three aspects of pulmonary fluid and flow: the surfactant layer in the deep branches of the lung, the mucus layer in the upper airway branches, and closure/reopening of the airway. We discuss models of each aspect, the potential to capture biological and therapeutic information, and open questions worthy of further investigation. We hope to promote multi-disciplinary collaboration by providing insights into mathematical descriptions of fluid-mechanics in the lung and the kinds of predictions these models can make. PMID:25096289
Pulmonary Fluid Flow Challenges for Experimental and Mathematical Modeling
Levy, Rachel; Hill, David B.; Forest, M. Gregory; Grotberg, James B.
2014-01-01
Modeling the flow of fluid in the lungs, even under baseline healthy conditions, presents many challenges. The complex rheology of the fluids, interaction between fluids and structures, and complicated multi-scale geometry all add to the complexity of the problem. We provide a brief overview of approaches used to model three aspects of pulmonary fluid and flow: the surfactant layer in the deep branches of the lung, the mucus layer in the upper airway branches, and closure/reopening of the airway. We discuss models of each aspect, the potential to capture biological and therapeutic information, and open questions worthy of further investigation. We hope to promote multi-disciplinary collaboration by providing insights into mathematical descriptions of fluid-mechanics in the lung and the kinds of predictions these models can make. PMID:25096289
Falkner-Skan Boundary Layer Flow of a Sisko Fluid
NASA Astrophysics Data System (ADS)
Khan, Masood; Shahzad, Azeem
2012-09-01
In this paper, we investigate the steady boundary layer flow of a non-Newtonian fluid, represented by a Sisko fluid, over a wedge in a moving fluid. The equations of motion are derived for boundary layer flow of an incompressible Sisko fluid using appropriate similarity variables. The governing equations are reduced to a single third-order highly nonlinear ordinary differential equation in the dimensionless stream function, which is then solved analytically using the homotopy analysis method. Some important parameters have been discussed by this study, which include the power law index n, the material parameter A, the wedge shape factor b, and the skin friction coefficient Cf. A comprehensive study is made between the results of the Sisko and the power-law fluids.
System and method measuring fluid flow in a conduit
Ortiz, Marcos German; Kidd, Terrel G.
1999-01-01
A system for measuring fluid mass flow in a conduit in which there exists a pressure differential in the fluid between at least two spaced-apart locations in the conduit. The system includes a first pressure transducer disposed in the side of the conduit at a first location for measuring pressure of fluid at that location, a second or more pressure transducers disposed in the side of the conduit at a second location, for making multiple measurements of pressure of fluid in the conduit at that location, and a computer for computing the average pressure of the multiple measurements at the second location and for computing flow rate of fluid in the conduit from the pressure measurement by the first pressure transducer and from the average pressure calculation of the multiple measurements.
System and method measuring fluid flow in a conduit
Ortiz, M.G.; Kidd, T.G.
1999-05-18
A system is described for measuring fluid mass flow in a conduit in which there exists a pressure differential in the fluid between at least two spaced-apart locations in the conduit. The system includes a first pressure transducer disposed in the side of the conduit at a first location for measuring pressure of fluid at that location, a second or more pressure transducers disposed in the side of the conduit at a second location, for making multiple measurements of pressure of fluid in the conduit at that location, and a computer for computing the average pressure of the multiple measurements at the second location and for computing flow rate of fluid in the conduit from the pressure measurement by the first pressure transducer and from the average pressure calculation of the multiple measurements. 3 figs.
Transonic Flows of Bethe-Zel'dovich-Thompson Fluids
NASA Astrophysics Data System (ADS)
Cramer, Mark; Andreyev, Aleksandr
2013-11-01
We examine steady transonic flows of Bethe-Zel'dovich-Thompson (BZT) fluids over thin turbine blades or airfoils. BZT fluids are ordinary fluids having a region of negative fundamental derivative over a finite range of pressures and temperatures in the single phase regime. We present the transonic small disturbance equation, shock jump conditions, and shock existence conditions capable of capturing the qualitative behavior of BZT fluids. The flux function is seen to be quartic in the pressure or density perturbation rather than the quadratic (convex) flux function of the perfect gas theory. We show how this nonconvex flux function can be used to predict and explain the complex flows possible. Numerical solutions using a successive line relaxation (SLR) scheme are presented. New results of interest include shock-splitting, collisions between expansion and compression shocks, two compressive bow shocks in supersonic flows, and the observation of as many as three normal stern shocks following an oblique trailing edge shock.
An Iterative CT Reconstruction Algorithm for Fast Fluid Flow Imaging.
Van Eyndhoven, Geert; Batenburg, K Joost; Kazantsev, Daniil; Van Nieuwenhove, Vincent; Lee, Peter D; Dobson, Katherine J; Sijbers, Jan
2015-11-01
The study of fluid flow through solid matter by computed tomography (CT) imaging has many applications, ranging from petroleum and aquifer engineering to biomedical, manufacturing, and environmental research. To avoid motion artifacts, current experiments are often limited to slow fluid flow dynamics. This severely limits the applicability of the technique. In this paper, a new iterative CT reconstruction algorithm for improved a temporal/spatial resolution in the imaging of fluid flow through solid matter is introduced. The proposed algorithm exploits prior knowledge in two ways. First, the time-varying object is assumed to consist of stationary (the solid matter) and dynamic regions (the fluid flow). Second, the attenuation curve of a particular voxel in the dynamic region is modeled by a piecewise constant function over time, which is in accordance with the actual advancing fluid/air boundary. Quantitative and qualitative results on different simulation experiments and a real neutron tomography data set show that, in comparison with the state-of-the-art algorithms, the proposed algorithm allows reconstruction from substantially fewer projections per rotation without image quality loss. Therefore, the temporal resolution can be substantially increased, and thus fluid flow experiments with faster dynamics can be performed.
Numerical modeling of fluid flow with rafts: An application to lava flows
NASA Astrophysics Data System (ADS)
Tsepelev, Igor; Ismail-Zadeh, Alik; Melnik, Oleg; Korotkii, Alexander
2016-07-01
Although volcanic lava flows do not significantly affect the life of people, its hazard is not negligible as hot lava kills vegetation, destroys infrastructure, and may trigger a flood due to melting of snow/ice. The lava flow hazard can be reduced if the flow patterns are known, and the complexity of the flow with debris is analyzed to assist in disaster risk mitigation. In this paper we develop three-dimensional numerical models of a gravitational flow of multi-phase fluid with rafts (mimicking rigid lava-crust fragments) on a horizontal and topographic surfaces to explore the dynamics and the interaction of lava flows. We have obtained various flow patterns and spatial distribution of rafts depending on conditions at the surface of fluid spreading, obstacles on the way of a fluid flow, raft landing scenarios, and the size of rafts. Furthermore, we analyze two numerical models related to specific lava flows: (i) a model of fluid flow with rafts inside an inclined channel, and (ii) a model of fluid flow from a single vent on an artificial topography, when the fluid density, its viscosity, and the effusion rate vary with time. Although the studied models do not account for lava solidification, crust formation, and its rupture, the results of the modeling may be used for understanding of flows with breccias before a significant lava cooling.
A study of momentum and zero-momentum flows in stratified fluids
NASA Astrophysics Data System (ADS)
Smirnov, Sergey Andreevich
The topic of the research conducted is closely related to the general fluid mechanics problem of formation and evolution of basic coherent vortex structures generated by various concentrated forcing (force, force doublet, force couple, etc.) in a viscous fluid under different environmental conditions (stratification, shear, etc.). The study is concentrated mostly on two aspects of this fundamental problem: (i) vortical flows generated in a stratified fluid by a moving concentrated source of momentum, and (ii) the role of background shear in the formation and evolution of vortical flows generated by a stationary concentrated source of momentum in a stratified fluid. Both aspects have not been addressed previously. A moving jet with controllable momentum flux (force) and negligible mass flux is employed to model the action of a concentrated ("point") momentum source in a stratified fluid. The structure of the resulting flow field is determined experimentally for three basic configurations: co-flow, counter-flow and cross-flow action of the source relative to the direction of its horizontal motion. In all three configurations, the source acts either impulsively or continuously. It is shown that, depending on the duration of force action, either one large dipolar eddy or a system of dipoles organized into a quasi-two-dimensional vortex street emerges in the flow. Critical conditions discriminating these two different flow regimes are found experimentally. The problem considered has no external length scale, and an internal scale is introduced from general principles. Using this scale, the proper Reynolds and Froude numbers are defined. The experimental results are explained using these parameters. A general analysis of the equation that describes the flow in the far field behind a localized forcing submerged into a uniformly moving homogeneous fluid is present. The general solution of the problem is derived in terms of the Laguerre and Hermite polynomials in 3D and 2D
Ye, Yu; Chiogna, Gabriele; Cirpka, Olaf; Grathwohl, Peter; Rolle, Massimo
2015-01-01
Dilution of solute plumes in groundwater strongly depends on transverse mixing. Thus, the correct parameterization of transverse dispersion is of critical importance for the quantitative description of solute transport. In this study we perform flow-through laboratory experiments to investigate the influence of transport dimensionality on transverse mixing. We present a high-resolution experimental setup to study solute dilution and transverse dispersion in three-dimensional porous media. We conduct multi-tracer experiments in the new 3-D setup and compare the results with the outcomes of analogous tracer experiments performed in a quasi 2-D system. We work under steady-state flow and transport conditions and consider a range of velocities relevant for groundwater flow (0.5-8 m/day). Transverse dispersion coefficients are determined from high-resolution concentration profiles at the outlet of the flow-through chambers (7×7 ports in the 3-D setup and 7 ports in the quasi 2-D system), considering conservative tracers with significantly different aqueous diffusion coefficients, namely fluorescein and dissolved oxygen. To quantify dilution in the 2-D and 3-D systems, we experimentally determine the flux-related dilution index using the flow rates and the concentrations measured at the inlet and outlet ports, and we propose semi-analytical expressions to predict its evolution with travel distance in uniform groundwater flow. The experimental results in the quasi 2-D and 3-D flow-through systems are consistent and show a compound-specific behavior of the transverse dispersion coefficient and its non-linear dependence on the seepage velocity in both setups. The degree of dilution and the compound-specific effects of transverse dispersion are considerably more pronounced in 3-D than in quasi 2-D transport systems.
NASA Astrophysics Data System (ADS)
Dolejš, D.
2012-04-01
Fluid flow through the Earth's lithosphere is an inevitable consequence of fluid production during sediment compaction, prograde metamorphic reactions, and magmatic degassing, in settings ranging from subducting zones, continental crust underplating to shallow magma chambers. In addition, high buoyancy and low viscosity of aqueous fluid in a rock environment make flow universally viable and efficient. Fluids are not preserved in their pathways and much of their evidence including chemical composition is often retrieved from mineral mode, chemical, or isotopic variations. Several important links, advantages and artifacts arising from dimensional consistency and from correlations with mineral-fluid thermodynamics are worthy to revisit. The magnitude of fluid-rock interaction is measured by the fluid-rock ratio (mfl3 mr-3) or a time-integrated fluid flux (mfl3 mr-2). These two measures differ by mr, the characteristic distance of alteration or front propagation, parallel to the flow direction. As a consequence, the fluid-rock ratios depend on spatial relationships between flow direction, temperature- and pressure-gradient orientation, and alteration zone or vein geometry. The reservoir ratios, which are required in mass-balance or phase-equilibrium calculations, can still be unambiguously defined when the above variables are scaled to the flow direction. Gradients in mole amounts of reaction progress or mineral precipitated, n, per unit temperature or pressure are directly related to standard reaction enthalpy and volume, respectively. The effects of pressure are commonly assumed to be negligible. Systematic evaluation of mineral solubilities, however, reveals that (i) dn/dT is nearly identical for a variety of phases and from subduction to collisional geotherms but minerals dissolving into charged species exhibit higher solubilities, therefore, yield greater reaction progress and lower fluid fluxes along low-dT /dzgeotherms; (ii) during lateral (isobaric) flow, dn
System proportions fluid-flow in response to demand signals
NASA Technical Reports Server (NTRS)
1966-01-01
Control system provides proportioned fluid flow rates in response to demand signals. It compares a digital signal, representing a flow demand, with a reference signal to yield a control voltage to one or more solenoid valves connected to orifices of a predetermined size.
Hydromechanical Modeling of Fluid Flow in the Lower Crust
NASA Astrophysics Data System (ADS)
Connolly, J.
2011-12-01
The lower crust lies within an ambiguous rheological regime between the brittle upper crust and ductile sub-lithospheric mantle. This ambiguity has allowed two schools of thought to develop concerning the nature of fluid flow in the lower crust. The classical school holds that lower crustal rocks are inviscid and that any fluid generated by metamorphic devolatilization is squeezed out of rocks as rapidly as it is produced. According to this school, permeability is a dynamic property and fluid flow is upward. In contrast, the modern school uses concepts from upper crustal hydrology that presume implicitly, if not explicitly, that rocks are rigid or, at most, brittle. For the modern school, the details of crustal permeability determine fluid flow and as these details are poorly known almost anything is possible. Reality, to the extent that it is reflected by inference from field studies, offers some support to both schools. In particular, evidence of significant lateral and channelized fluid flow are consistent with flow in rigid media, while evidence for short (104 - 105 y) grain-scale fluid-rock interaction during much longer metamorphic events, suggests that reaction-generated grain-scale permeability is sealed rapidly by compaction; a phenomenon that is also essential to prevent extensive retrograde metamorphism. These observations provide a compelling argument for recognizing in conceptual models of lower crustal fluid flow that rocks are neither inviscid nor rigid, but compact by viscous mechanisms on a finite time-scale. This presentation will review the principle consequences of, and obstacles to, incorporating compaction in such models. The role of viscous compaction in the lower crust is extraordinarily uncertain, but ignoring this uncertainty in models of lower crustal fluid flow does not make the models any more certain. Models inevitably invoke an initial steady state hydraulic regime. This initial steady state is critical to model outcomes because it
Fluid migration in the subduction zone: a coupled fluid flow approach
NASA Astrophysics Data System (ADS)
Wang, Hongliang; Huismans, Ritske; Rondenay, Stéphane
2016-04-01
Subduction zone are the main entry point of water into earth's mantle and play an important role in the global water cycle. The progressive release of water by metamorphic dehydration induce important physical-chemical process in the subduction zone, such as hydrous melting, hydration and weakening of the mantle wedge, creation of pore fluid pressures that may weaken the subduction interface and induce earthquakes. Most previous studies on the role of fluids in subduction zones assume vertical migration or migration according to the dynamic pressure in the solid matrix without considering the pore fluid pressure effect on the deformation of the solid matrix. Here we investigate this interaction by explicitly modeling two-phase coupled poro-plastic flow during subduction. In this approach, the fluid migrates by compaction and decompaction of the solid matrix and affects the subduction dynamics through pore fluid pressure dependent frictional-plastic yield. Our preliminary results indicate that: 1) the rate of fluid migration depends strongly on the permeability and the bulk viscosity of the solid matrix, 2) fluid transfer occurs preferentially along the slab and then propagates into the mantle wedge by viscous compaction driven fluid flow, 3) fluid transport from the surface to depth is a prerequisite for producing high fluid pore pressures and associated hydration induced weakening of the subduction zone interface.
A preliminary study to Assess Model Uncertainties in Fluid Flows
Marc Oliver Delchini; Jean C. Ragusa
2009-09-01
The goal of this study is to assess the impact of various flow models for a simplified primary coolant loop of a light water nuclear reactor. The various fluid flow models are based on the Euler equations with an additional friction term, gravity term, momentum source, and energy source. The geometric model is purposefully chosen simple and consists of a one-dimensional (1D) loop system in order to focus the study on the validity of various fluid flow approximations. The 1D loop system is represented by a rectangle; the fluid is heated up along one of the vertical legs and cooled down along the opposite leg. A pressurizer and a pump are included in the horizontal legs. The amount of energy transferred and removed from the system is equal in absolute value along the two vertical legs. The various fluid flow approximations are compressible vs. incompressible, and complete momentum equation vs. Darcy’s approximation. The ultimate goal is to compute the fluid flow models’ uncertainties and, if possible, to generate validity ranges for these models when applied to reactor analysis. We also limit this study to single phase flows with low-Mach numbers. As a result, sound waves carry a very small amount of energy in this particular case. A standard finite volume method is used for the spatial discretization of the system.
Flow over a membrane-covered, fluid-filled cavity
Mongeau, Luc; Frankel, Steven H.
2014-01-01
The flow-induced response of a membrane covering a fluid-filled cavity located in a section of a rigid-walled channel was explored using finite element analysis. The membrane was initially aligned with the channel wall and separated the channel fluid from the cavity fluid. As fluid flowed over the membrane-covered cavity, a streamwise-dependent transmural pressure gradient caused membrane deformation. This model has application to synthetic models of the vocal fold cover layer used in voice production research. In this paper, the model is introduced and responses of the channel flow, the membrane, and the cavity flow are summarized for a range of flow and membrane parameters. It is shown that for high values of cavity fluid viscosity, the intracavity pressure and the beam deflection both reached steady values. For combinations of low cavity viscosity and sufficiently large upstream pressures, large-amplitude membrane vibrations resulted. Asymmetric conditions were introduced by creating cavities on opposing sides of the channel and assigning different stiffness values to the two membranes. The asymmetry resulted in reduction in or cessation of vibration amplitude, depending on the degree of asymmetry, and in significant skewing of the downstream flow field. PMID:24723738
A numerical model for dynamic crustal-scale fluid flow
NASA Astrophysics Data System (ADS)
Sachau, Till; Bons, Paul; Gomez-Rivas, Enrique; Koehn, Daniel
2015-04-01
Fluid flow in the crust is often envisaged and modeled as continuous, yet minimal flow, which occurs over large geological times. This is a suitable approximation for flow as long as it is solely controlled by the matrix permeability of rocks, which in turn is controlled by viscous compaction of the pore space. However, strong evidence (hydrothermal veins and ore deposits) exists that a significant part of fluid flow in the crust occurs strongly localized in both space and time, controlled by the opening and sealing of hydrofractures. We developed, tested and applied a novel computer code, which considers this dynamic behavior and couples it with steady, Darcian flow controlled by the matrix permeability. In this dual-porosity model, fractures open depending on the fluid pressure relative to the solid pressure. Fractures form when matrix permeability is insufficient to accommodate fluid flow resulting from compaction, decompression (Staude et al. 2009) or metamorphic dehydration reactions (Weisheit et al. 2013). Open fractures can close when the contained fluid either seeps into the matrix or escapes by fracture propagation: mobile hydrofractures (Bons, 2001). In the model, closing and sealing of fractures is controlled by a time-dependent viscous law, which is based on the effective stress and on either Newtonian or non-Newtonian viscosity. Our simulations indicate that the bulk of crustal fluid flow in the middle to lower upper crust is intermittent, highly self-organized, and occurs as mobile hydrofractures. This is due to the low matrix porosity and permeability, combined with a low matrix viscosity and, hence, fast sealing of fractures. Stable fracture networks, generated by fluid overpressure, are restricted to the uppermost crust. Semi-stable fracture networks can develop in an intermediate zone, if a critical overpressure is reached. Flow rates in mobile hydrofractures exceed those in the matrix porosity and fracture networks by orders of magnitude
Fluid Flow Technology that Measures Up
NASA Technical Reports Server (NTRS)
2004-01-01
From 1994 to 1996, NASA s Marshall Space Flight Center conducted a Center Director's Discretionary Fund research effort to apply artificial intelligence technologies to the health management of plant equipment and space propulsion systems. Through this effort, NASA established a business relationship with Quality Monitoring and Control (QMC), of Kingwood, Texas, to provide hardware modeling and artificial intelligence tools. Very detailed and accurate Space Shuttle Main Engine (SSME) analysis and algorithms were jointly created, which identified several missing, critical instrumentation needs for adequately evaluating the engine health status. One of the missing instruments was a liquid oxygen (LOX) flow measurement. This instrument was missing since the original SSME included a LOX turbine flow meter that failed during a ground test, resulting in considerable damage for NASA. New balanced flow meter technology addresses this need with robust, safe, and accurate flow metering hardware.
Advances in modelling of biomimetic fluid flow at different scales
2011-01-01
The biomimetic flow at different scales has been discussed at length. The need of looking into the biological surfaces and morphologies and both geometrical and physical similarities to imitate the technological products and processes has been emphasized. The complex fluid flow and heat transfer problems, the fluid-interface and the physics involved at multiscale and macro-, meso-, micro- and nano-scales have been discussed. The flow and heat transfer simulation is done by various CFD solvers including Navier-Stokes and energy equations, lattice Boltzmann method and molecular dynamics method. Combined continuum-molecular dynamics method is also reviewed. PMID:21711847
Multigrid solutions of elliptic fluid flow problems
NASA Astrophysics Data System (ADS)
Wright, Nigel George
1988-06-01
An efficient FAS multigrid solution strategy is presented for the accurate and economic simulation of convection dominated flows. The use of a high-order approximation to the convective transport terms found in the governing equations of motion was investigated in conjunction with an unsegregated smoothing technique. Results are presented for a sequence of problems of increasing complexity requiring that careful attention be directed toward the proper treatment of different types of boundary condition. The classical two-dimensional problem of flow in a lid-driven cavity is investigated in depth for flows at Reynolds number of 100, 400 and 1000. This gives an extremely good indication of the power of a multigrid approach. Next, the solution methodology is applied to flow in a three-dimensional lid-driven cavity at different Reynolds numbers, with cross-reference being made to predictions obtained in the corresponding two-dimensional simulations, and to the flow over a step discontinuity in the case of an abruptly expanding channel. Although, at first sight, these problems appear to require only minor extensions to the existing approach, it is found that they are rather more idiosyncratic. Finally, the governing equations and numerical algorithm are extended to encompass the treatment of thermally driven flows. The solution to two such problems is presented and compared with corresponding results obtained by traditional methods.
Enhanced flow of core-softened fluids through narrow nanotubes
NASA Astrophysics Data System (ADS)
Bordin, José Rafael; Andrade, José S.; Diehl, Alexandre; Barbosa, Marcia C.
2014-05-01
We investigate through non-equilibrium molecular dynamic simulations the flow of anomalous fluids inside rigid nanotubes. Our results reveal an anomalous increase of the overall mass flux for nanotubes with sufficiently smaller radii. This is explained in terms of a transition from a single-file type of flow to the movement of an ordered-like fluid as the nanotube radius increases. The occurrence of a global minimum in the mass flux at this transition reflects the competition between the two characteristic length scales of the core-softened potential. Moreover, by increasing further the radius, another substantial change in the flow behavior, which becomes more evident at low temperatures, leads to a local minimum in the overall mass flux. Microscopically, this second transition is originated by the formation of a double-layer of flowing particles in the confined nanotube space. These nano-fluidic features give insights about the behavior of confined isotropic anomalous fluids.
A Causal, Covariant Theory of Dissipative Fluid Flow
NASA Astrophysics Data System (ADS)
Scofield, Dillon; Huq, Pablo
2015-04-01
The use of newtonian viscous dissipation theory in covariant fluid flow theories is known to lead to predictions that are inconsistent with the second law of thermodynamics and to predictions that are acausal. For instance, these problems effectively limit the covariant form of the Navier-Stokes theory (NST) to time-independent flow regimes. Thus the NST, the work horse of fluid dynamical theory, is limited in its ability to model time-dependent turbulent, stellar or thermonuclear flows. We show how such problems are avoided by a new geometrodynamical theory of fluids. This theory is based on a recent result of geometrodynamics showing current conservation implies gauge field creation, called the vortex field lemma and classification of flows by their Pfaff dimension. Experimental confirmation of the theory is reviewed.
FLUFIXMOD2. Two-fluid Hydrodynamic Model for Fluid-Flow Simulation in Fluid-Solids Systems
Lyczkowski, R.W.; Bouillard, J.X.; Folga, S.M.
1992-04-01
FLUFIX is a two-dimensional , transient, Eulerian, and finite-difference program, based on a two-fluid hydrodynamic model, for fluid flow simulation in fluid-solids systems. The software is written in a modular form using the Implicit Multi-Field (IMF) numerical technique. Quantities computed are the spatial distribution of solids loading, gas and solids velocities, pressure, and temperatures. Predicted are bubble formation, bed frequencies, and solids recirculation. Applications include bubbling and circulating atmospheric and pressurized fluidized bed reactors, combustors, gasifiers, and FCC (Fluid Catalytic Cracker) reactors.
Benchmarking computational fluid dynamics models for lava flow simulation
NASA Astrophysics Data System (ADS)
Dietterich, Hannah; Lev, Einat; Chen, Jiangzhi
2016-04-01
Numerical simulations of lava flow emplacement are valuable for assessing lava flow hazards, forecasting active flows, interpreting past eruptions, and understanding the controls on lava flow behavior. Existing lava flow models vary in simplifying assumptions, physics, dimensionality, and the degree to which they have been validated against analytical solutions, experiments, and natural observations. In order to assess existing models and guide the development of new codes, we conduct a benchmarking study of computational fluid dynamics models for lava flow emplacement, including VolcFlow, OpenFOAM, FLOW-3D, and COMSOL. Using the new benchmark scenarios defined in Cordonnier et al. (Geol Soc SP, 2015) as a guide, we model viscous, cooling, and solidifying flows over horizontal and sloping surfaces, topographic obstacles, and digital elevation models of natural topography. We compare model results to analytical theory, analogue and molten basalt experiments, and measurements from natural lava flows. Overall, the models accurately simulate viscous flow with some variability in flow thickness where flows intersect obstacles. OpenFOAM, COMSOL, and FLOW-3D can each reproduce experimental measurements of cooling viscous flows, and FLOW-3D simulations with temperature-dependent rheology match results from molten basalt experiments. We can apply these models to reconstruct past lava flows in Hawai'i and Saudi Arabia using parameters assembled from morphology, textural analysis, and eruption observations as natural test cases. Our study highlights the strengths and weaknesses of each code, including accuracy and computational costs, and provides insights regarding code selection.
Nanoscale Pore Imaging and Pore Scale Fluid Flow Modeling in Chalk
Tomutsa, Liviu; Silin, Dmitriy
2004-08-19
For many rocks of high economic interest such as chalk, diatomite, tight gas sands or coal, nanometer scale resolution is needed to resolve the 3D-pore structure, which controls the flow and trapping of fluids in the rocks. Such resolutions cannot be achieved with existing tomographic technologies. A new 3D imaging method, based on serial sectioning and using the Focused Ion Beam (FIB) technology has been developed. FIB allows for the milling of layers as thin as 10 nanometers by using accelerated Ga+ ions to sputter atoms from the sample surface. After each milling step, as a new surface is exposed, a 2D image of this surface is generated. Next, the 2D images are stacked to reconstruct the 3D pore or grain structure. Resolutions as high as 10 nm are achievable using such a technique. A new robust method of pore-scale fluid flow modeling has been developed and applied to sandstone and chalk samples. The method uses direct morphological analysis of the pore space to characterize the petrophysical properties of diverse formations. Not only petrophysical properties (porosity, permeability, relative permeability and capillary pressures) can be computed but also flow processes, such as those encountered in various IOR approaches, can be simulated. Petrophysical properties computed with the new method using the new FIB data will be presented. Present study is a part of the development of an Electronic Core Laboratory at LBNL/UCB.
Fluid flow through carbon nanotubes and graphene based nanostructures
NASA Astrophysics Data System (ADS)
Tahmassebi, Amirhessam
The investigation into the behavior of the fluids in nanoscale channels, such as carbon nanotubes leads us to a new approach in the field of nanoscience. This is referred to as nano-fluidics, which can be used in nano-scale filtering and as nano-pipes for conveying fluids. The behavior of fluids in nano-fluidic devices is very different from the corresponding behavior in microscopic and macroscopic channels. In this study, we investigate the fluid flow through carbon nanotubes and graphene based nanostructures using a molecular dynamics (MD) method at a constant temperature. Three different models were created which contain single-walled carbon nanotube, graphene, and a combination of both. Liquid argon is used as fluid in the system. In the previous investigations, they were considered bombarding the atoms towards the carbon nanotubes like bullets from a gun, and due to the interactions, they lost most of their momentum. Thus, the chance for the atoms to pass through the carbon nanotube was very low. Here, we employed a new approach using a moving graphene wall to push the argon fluid towards the confinements of the systems. By performing this method, we have tried to make a continuum flow to find out how the physical quantities such as, position, velocity, pressure, and energy change when the fluid flow reaches the confinements of the systems.
Fluid flow within reciprocating-engine cylinders
NASA Astrophysics Data System (ADS)
Awn, A. G.; Spalding, D. B.
The present investigation has the objective to demonstrate a method of predicting the flow within reciprocating-engine cylinders. The application of this approach can help the engine designer to increase the combustion efficiency and to reduce pollution. The considered method employs finite-difference equations similar to those used by Watkins (1973) and Chong et. al. (1976). The equations are, however, solved by a somewhat different method, and, in addition, an interface-tracking procedure is employed. The numerical procedure is further extended to investigate the scavenging flows in two-stroke engines. One problem studied in the investigation is concerned with the prediction of the velocity field in an engine cylinder during the harmonic motion of a flat-topped piston. A second problem involves the study of the flow behavior during the scavenging cycle in two-stroke engine cyclinders.
The fluid mechanics of continuous flow electrophoresis
NASA Astrophysics Data System (ADS)
Saville, D. A.
1990-11-01
The overall objective is to establish theoretically and confirm experimentally the ultimate capabilities of continuous flow electrophoresis chambers operating in an environment essentially free of particle sedimentation and buoyancy. The efforts are devoted to: (1) studying the effects of particle concentration on sample conductivity and dielectric constant. The dielectric constant and conductivity were identified as playing crucial roles in the behavior of the sample and on the resolving power and throughput of continuous flow devices; and (2) improving the extant mathematical models to predict flow fields and particle trajectories in continuous flow electrophoresis. A dielectric spectrometer was designed and built to measure the complex dielectric constant of a colloidal dispersion as a function of frequency between 500 Hz and 200 kHz. The real part of the signal can be related to the sample's conductivity and the imaginary part to its dielectric constant. Measurements of the dielectric constants of several different dispersions disclosed that the dielectric constants of dilute systems of the sort encountered in particle electrophoresis are much larger than would be expected based on the extant theory. Experiments were carried out to show that, in many cases, this behavior is due to the presence of a filamentary structure of small hairs on the particle surface. A technique for producing electrokinetically ideal synthetic latex particles by heat treating was developed. Given the ubiquitous nature of hairy surfaces with both cells and synthetic particles, it was deemed necessary to develop a theory to explain their behavior. A theory for electrophoretic mobility of hairy particles was developed. Finally, the extant computer programs for predicting the structure of electro-osmotically driven flows were extended to encompass flow channels with variable wall mobilities.
The fluid mechanics of continuous flow electrophoresis
NASA Technical Reports Server (NTRS)
Saville, D. A.
1990-01-01
The overall objective is to establish theoretically and confirm experimentally the ultimate capabilities of continuous flow electrophoresis chambers operating in an environment essentially free of particle sedimentation and buoyancy. The efforts are devoted to: (1) studying the effects of particle concentration on sample conductivity and dielectric constant. The dielectric constant and conductivity were identified as playing crucial roles in the behavior of the sample and on the resolving power and throughput of continuous flow devices; and (2) improving the extant mathematical models to predict flow fields and particle trajectories in continuous flow electrophoresis. A dielectric spectrometer was designed and built to measure the complex dielectric constant of a colloidal dispersion as a function of frequency between 500 Hz and 200 kHz. The real part of the signal can be related to the sample's conductivity and the imaginary part to its dielectric constant. Measurements of the dielectric constants of several different dispersions disclosed that the dielectric constants of dilute systems of the sort encountered in particle electrophoresis are much larger than would be expected based on the extant theory. Experiments were carried out to show that, in many cases, this behavior is due to the presence of a filamentary structure of small hairs on the particle surface. A technique for producing electrokinetically ideal synthetic latex particles by heat treating was developed. Given the ubiquitous nature of hairy surfaces with both cells and synthetic particles, it was deemed necessary to develop a theory to explain their behavior. A theory for electrophoretic mobility of hairy particles was developed. Finally, the extant computer programs for predicting the structure of electro-osmotically driven flows were extended to encompass flow channels with variable wall mobilities.
The origin of massive hydrothermal alterations: what drives fluid flow?
NASA Astrophysics Data System (ADS)
Gomez-Rivas, Enrique; Bons, Paul D.; Martín-Martín, Juan-Diego; Corbella, Mercè; Stafford, Sherry L.; Griera, Albert; Teixell, Antonio; Salas, Ramón; Travé, Anna
2014-05-01
Hydrothermal alterations form when fluids warmer than the host rocks flow through them dissolving and precipitating minerals. These fluids typically flow upwards from deeper geologic units using faults as major conduits. In some cases, hydrothermal alterations affect large (km-scale) rock volumes. One example of such process is the massive high-temperature dolostones that crop out at the Benicàssim outcrop analogue (Maestrat Basin, E Spain). In this area, seismic-scale fault-controlled stratabound dolostone bodies extend over several kilometres away from large-scale faults, replacing Lower Cretaceous limestones. The fluid responsible for such alteration is a seawater-derived brine that interacted with underlying Permian-Triassic and Paleozoic basement rocks. The estimated volume of fluid required to produce the Benicàssim dolomitization is huge, with fluid-rock ratios in the order of several tens to a few hundreds, depending on composition and reaction temperature (Gomez-Rivas et al., 2014). An open key question is what brought this warm fluid (80 - 150 ºC) upwards to a depth of less than 1 km, where the dolomitization reaction took place. The driving forces should have been able not only to provide sufficient fluid volumes at shallow depths but also to heat up the whole host rock, including the non-replaced limestones. There are two hyphoteses for driving a warm fluid upwards in the Maestrat Basin: (a) rapid release through faults of overpressured solutions in recurrent pulses and (b) thermal convection. We present a series of heat and fluid flow numerical simulations to constrain the dolomitization conditions under these two end-member cases. The results indicate that in a pulsating model the fluid must flow upwards at velocities higher than cm/s to keep their elevated temperature. Otherwise they cool down quickly, and the host rocks cannot be heated. Such velocities can be reached if the fluid flow velocity equals that of fracture propagation, as in mobile
Impulse-based methods for fluid flow
Cortez, R.
1995-05-01
A Lagrangian numerical method based on impulse variables is analyzed. A relation between impulse vectors and vortex dipoles with a prescribed dipole moment is presented. This relation is used to adapt the high-accuracy cutoff functions of vortex methods for use in impulse-based methods. A source of error in the long-time implementation of the impulse method is explained and two techniques for avoiding this error are presented. An application of impulse methods to the motion of a fluid surrounded by an elastic membrane is presented.
Active Learning in Fluid Mechanics: Youtube Tube Flow and Puzzling Fluids Questions
ERIC Educational Resources Information Center
Hrenya, Christine M.
2011-01-01
Active-learning exercises appropriate for a course in undergraduate fluid mechanics are presented. The first exercise involves an experiment in gravity-driven tube flow, with small groups of students partaking in a contest to predict the experimental flow rates using the mechanical energy balance. The second exercise takes the form of an…
Fluid dynamics following flow shut-off in bottle filling
NASA Astrophysics Data System (ADS)
Thete, Sumeet; Appathurai, Santosh; Gao, Haijing; Basaran, Osman
2012-11-01
Bottle filling is ubiquitous in industry. Examples include filling of bottles with shampoos and cleaners, engine oil and pharmaceuticals. In these examples, fluid flows out of a nozzle to fill bottles in an assembly line. Once the required volume of fluid has flowed out of the nozzle, the flow is shut off. However, an evolving fluid thread or string may remain suspended from the nozzle following flow shut-off and persist. This stringing phenomenon can be detrimental to a bottle filling operation because it can adversely affect line speed and filling accuracy by causing uncertainty in fill volume, product loss and undesirable marring of the bottles' exterior surfaces. The dynamics of stringing are studied numerically primarily by using the 1D, slender-jet approximation of the flow equations. A novel feature entails development and use of a new boundary condition downstream of the nozzle exit to expedite the computations. While the emphasis is on stringing of Newtonian fluids and use of 1D approximations, results will also be presented for situations where (a) the fluids are non-Newtonian and (b) the full set of equations are solved without invoking the 1D approximation. Phase diagrams will be presented that identify conditions for which stringing can be problematic.
Particle Deposition in a Two-Fluid Flow Environment
NASA Astrophysics Data System (ADS)
Yap, Yit Fatt; Goharzadeh, Afshin; Vargas, Francisco M.; John Chai, Chee Kiong
2014-11-01
The formation of particle deposit on surfaces occurs in many applications. For example, in the oil and gas industry, deposition of wax, hydrates and asphaltene reduces flows and clogs pipelines eventually if left untreated. Removal of the deposits is costly as it disrupts production. To further complicate the problem, the main flow carrying the depositing particles is often of a multi-phase nature. Successful mitigation effort requires good understanding and eventual prediction of the deposition process interacting within a multiphase flow environment. This work presents a model for prediction of particle deposition in a two-fluid flow environment. Modeling of the process is challenging as there are two unknown evolving interfaces, i.e. the fluid-fluid interface and the depositing front. Both interfaces are captured via the level-set method. The deposition at the depositing front is modeled as a first order reaction. The two immiscible fluids are modeled using the incompressible Navier-Stokes equations. Solution of the equations is implemented using a finite volume method. The model is then verified against known solutions. Preliminary results on deposition process in a two-fluid flow environment are presented. ADNOC R&D Oil-Sub Committee.
A GPU-accelerated flow solver for incompressible two-phase fluid flows
NASA Astrophysics Data System (ADS)
Codyer, Stephen; Raessi, Mehdi; Khanna, Gaurav
2011-11-01
We present a numerical solver for incompressible, immiscible, two-phase fluid flows that is accelerated by using Graphics Processing Units (GPUs). The Navier-Stokes equations are solved by the projection method, which involves solving a pressure Poisson problem at each time step. A second-order discretization of the Poisson problem leads to a sparse matrix with five and seven diagonals for two- and three-dimensional simulations, respectively. Running a serial linear algebra solver on a single CPU can take 50-99.9% of the total simulation time to solve the above system for pressure. To remove this bottleneck, we utilized the large parallelization capabilities of GPUs; we developed a linear algebra solver based on the conjugate gradient iterative method (CGIM) by using CUDA 4.0 libraries and compared its performance with CUSP, an open-source, GPU library for linear algebra. Compared to running the CGIM solver on a single CPU core, for a 2D case, our GPU solver yields speedups of up to 88x in solver time and 81x overall time on a single GPU card. In 3D cases, the speedups are up to 81x (solver) and 15x (overall). Speedup is faster at higher grid resolutions and our GPU solver outperforms CUSP. Current work examines the acceleration versus a parallel CGIM CPU solver.
Three dimensional simulation of fluid flow in X-ray CT images of porous media
NASA Astrophysics Data System (ADS)
Al-Omari, A.; Masad, E.
2004-11-01
A numerical scheme is developed in order to simulate fluid flow in three dimensional (3-D) microstructures. The governing equations for steady incompressible flow are solved using the semi-implicit method for pressure-linked equations (SIMPLE) finite difference scheme within a non-staggered grid system that represents the 3-D microstructure. This system allows solving the governing equations using only one computational cell. The numerical scheme is verified through simulating fluid flow in idealized 3-D microstructures with known closed form solutions for permeability. The numerical factors affecting the solution in terms of convergence and accuracy are also discussed. These factors include the resolution of the analysed microstructure and the truncation criterion. Fluid flow in 2-D X-ray computed tomography (CT) images of real porous media microstructure is also simulated using this numerical model. These real microstructures include field cores of asphalt mixes, laboratory linear kneading compactor (LKC) specimens, and laboratory Superpave gyratory compactor (SGC) specimens. The numerical results for the permeability of the real microstructures are compared with the results from closed form solutions. Copyright
NASA Astrophysics Data System (ADS)
Fujiwara, Kuniyo; Ukita, Yoshiaki; Asano, Toshifumi; Matsui, Katsuhiro; Takeo, Masahiro; Negoro, Seiji; Utsumi, Yuuichi
The vertical fluid flow operation and multifunctional fluid filter for the operation were proposed. We calculated the flow behaviour by FLUENT of the CFD software. The CFD analysis estimated the threshold pressure of flow transmission and efficiency of mixing and the results indicated that the vertical liquid transportation is useful and the good multi function as channel , valve , mixer and micro reactor of the filter we proposed. So we fabricated the filter by SR lithography and performed the flow transmission experiment. As the result, the calculated threshold pressure configurate the measured pressure. We demonstrated ring-opening reaction of the Catechol by Catechol 2,3-dioxygenase as the catalyst to evaluate the performance of mixing. It shows that the filter mixes the fluid efficiently and is enough to mix at five times transportation.
Encyclopedia of fluid mechanics. Volume 8 - Aerodynamics and compressible flows
NASA Astrophysics Data System (ADS)
Cheremisinoff, Nicholas P.
Advanced analytical methods for compressible flows and their application to specific engineering problems are discussed in chapters by leading experts. Topics addressed include fluid viscosity, laminar flow past semiinfinite bodies, the structure of turbulent boundary layers, homogeneous turbulence, turbulent shear flows and jets, vortex patterns on slender bodies, wake interference and vortex shedding, turbulent rough-wall skin friction and heat transfer, FEM iterative solutions of compressible flows, transient natural-convection flows, and direct-contact transfer processes with moving liquid droplets. Consideration is given to artificially thickening turbulent boundary layers, subsonic transitory stalled flows in diffusers, impeller-blade design for centrifugal and axial blowers, transonic cascade flows, high-speed turboprop noise, turbine-blade vibrations, compressible flow in valves, the performance of cryogenic pumps, the structure of turbulent dense-spray jets, and the dynamics of wind machines.
Program helps friction factor for non-Newtonian fluid flow
Ohen, H.A. )
1989-01-02
A Fortran program has been developed that gives more accurate predictions for shear rates, effective viscosity, Reynold's number, and hence the friction factor from which frictional pressure losses for flowing non-Newtonian fluids can be obtained. The method presented can handle flow in smooth pipes, transition, and fully rough zones of turbulence. Two mathematical models, namely the power law and the Bingham have been widely used with drilling fluids and cement slurries for relating shear stress to shear rate, the most popular being Bingham. However, most non-Newtonian fluids are not correctly represented by either of these models. In fact, experience has shown that the consistency curves of most non-Newtonian fluids fall in between those predicted by these models.
Method, apparatus and system for controlling fluid flow
McMurtrey, Ryan D.; Ginosar, Daniel M.; Burch, Joesph V.
2007-10-30
A system, apparatus and method of controlling the flow of a fluid are provided. In accordance with one embodiment of the present invention, a flow control device includes a valve having a flow path defined therethrough and a valve seat in communication with the flow path with a valve stem disposed in the valve seat. The valve stem and valve seat are cooperatively configured to cause mutual relative linear displacement thereof in response to rotation of the valve stem. A gear member is coupled with the rotary stem and a linear positioning member includes a portion which complementarily engages the gear member. Upon displacement of the linear positioning member along a first axis, the gear member and rotary valve stem are rotated about a second axis and the valve stem and valve seat are mutually linearly displaced to alter the flow of fluid through the valve.
NASA Astrophysics Data System (ADS)
Zhou, X.; Karimi-Fard, M.; Durlofsky, L.; Aydin, A.
2010-12-01
Impact of a wide variety of structural heterogeneities on fluid flow in an aeolian sandstone in the Valley of Fire State Park (NV), such as (1) dilatant fractures (joints), (2) shear fractures (faults), and (3) contraction/compaction structures (compaction bands), are considered. Each type of these structures has its own geometry, spacing, distribution, connectivity, and hydraulic properties, which either enhance or impede subsurface fluid flow. Permeability of these structures may, on average, be a few orders of magnitude higher or lower than those of the corresponding matrix rocks. In recent years, the influence of a single type of these heterogeneities on fluid flow has been studied individually, such as joints, compaction bands or faults. However, as different types of geological structures are commonly present together in the same rock volume, their combined effect requires a more detailed assessment. In this study, fluid flow simulations are performed using a special finite-volume discretization technique that was developed by Karimi-Fard et al. (2004; 2006). Using this approach, thin features such as fractures and compaction bands are represented as linear elements in unstructured 2D models and as planar elements in 3D models, which significantly reduces the total number of cells and simplifies grid generation. The cell geometric information and the cell-to-cell transmissibility obtained from this discretization technique are input to Stanford’s General Purpose Research Simulator (GPRS) for fluid flow simulation. To account for the effects of the various geological structures on subsurface flow, we perform permeability upscaling over regions corresponding to large-scale simulation grid blocks in order to obtain equivalent permeability components in two principal directions. We will focus on the following problems: (1) compaction bands of multisets; (2) compartmentalization of compaction bands of high-angle, low-angle and horizontal; (3) joints overprinting
Fluid flow sensing with ionic polymer-metal composites
NASA Astrophysics Data System (ADS)
Stalbaum, Tyler; Trabia, Sarah; Shen, Qi; Kim, Kwang J.
2016-04-01
Ionic polymer-metal composite (IPMC) actuators and sensors have been developed and modeled over the last two decades for use as soft-robotic deformable actuators and sensors. IPMC devices have been suggested for application as underwater actuators, energy harvesting devices, and medical devices such as in guided catheter insertion. Another interesting application of IPMCs in flow sensing is presented in this study. IPMC interaction with fluid flow is of interest to investigate the use of IPMC actuators as flow control devices and IPMC sensors as flow sensing devices. An organized array of IPMCs acting as interchanging sensors and actuators could potentially be designed for both flow measurement and control, providing an unparalleled tool in maritime operations. The underlying physics for this system include the IPMC ion transport and charge fundamental framework along with fluid dynamics to describe the flow around IPMCs. An experimental setup for an individual rectangular IPMC sensor with an externally controlled fluid flow has been developed to investigate this phenomenon and provide further insight into the design and application of this type of device. The results from this portion of the study include recommendations for IPMC device designs in flow control.
Flow lasers. [fluid mechanics of high power continuous output operations
NASA Technical Reports Server (NTRS)
Christiansen, W. H.; Russell, D. A.; Hertzberg, A.
1975-01-01
The present work reviews the fluid-mechanical aspects of high-power continuous-wave (CW) lasers. The flow characteristics of these devices appear as classical fluid-mechanical phenomena recast in a complicated interactive environment. The fundamentals of high-power lasers are reviewed, followed by a discussion of the N2-CO2 gas dynamic laser. Next, the HF/DF supersonic diffusion laser is described, and finally the CO electrical-discharge laser is discussed.
Studies of fluid flow indicators, Pacific margin of Costa Rica
Silver, E.; McAdoo, B. ); Langseth, M. ); Orange, D. )
1996-01-01
Seismic reflection profiles off Costa Rica image a decrease in thickness of the underthrust sedimentary section from the Middle America Trench, implying a significant reduction of porosity in the outer 3-5 km from the trench and a source of vent water through the wedge. We encountered no evidence of discrete fluid venting over the outer 3-5 km of this margin from dives using the ALVIN submersible or from heat flow measurements (based on absence of chemosynthetic vent communities and heat flow anomalies in this zone). Vent communities occur farther upslope, associated with a series of out-of-sequence thrusts, with two mud diapirs, and a mid-slope canyon. We infer that fracture permeability dominates in the out-of-sequence thrusts, upflow of fluid-rich muds in the diapir, and focusing of fluid flow in the canyon. Over 100 heat flow observations on the wedge and incoming COCOS plate showed a broad area of anomalously low heat flow (13 mW/m[sup 2]) seaward of the frontal thrust, whereas the expected heat flow for ocean crust of early Miocene age is seven times greater. The very low regional heat flow may reflect refrigeration by vigorous sea water flow through the upper crust pillow basalts. Heat flow increases to about 30 mW/m[sup 2] throughout the lower slope to mid-slope, implying a combination of widespread fluid venting, reheating of the cooled crust and frictional heating at the base of the wedge. The lack of discrete vents over the outer 3-5 km of the margin indicates diffuse flow and likely temporal episodicity, as this region has been aseismic since 1950.
Studies of fluid flow indicators, Pacific margin of Costa Rica
Silver, E.; McAdoo, B.; Langseth, M.; Orange, D.
1996-12-31
Seismic reflection profiles off Costa Rica image a decrease in thickness of the underthrust sedimentary section from the Middle America Trench, implying a significant reduction of porosity in the outer 3-5 km from the trench and a source of vent water through the wedge. We encountered no evidence of discrete fluid venting over the outer 3-5 km of this margin from dives using the ALVIN submersible or from heat flow measurements (based on absence of chemosynthetic vent communities and heat flow anomalies in this zone). Vent communities occur farther upslope, associated with a series of out-of-sequence thrusts, with two mud diapirs, and a mid-slope canyon. We infer that fracture permeability dominates in the out-of-sequence thrusts, upflow of fluid-rich muds in the diapir, and focusing of fluid flow in the canyon. Over 100 heat flow observations on the wedge and incoming COCOS plate showed a broad area of anomalously low heat flow (13 mW/m{sup 2}) seaward of the frontal thrust, whereas the expected heat flow for ocean crust of early Miocene age is seven times greater. The very low regional heat flow may reflect refrigeration by vigorous sea water flow through the upper crust pillow basalts. Heat flow increases to about 30 mW/m{sup 2} throughout the lower slope to mid-slope, implying a combination of widespread fluid venting, reheating of the cooled crust and frictional heating at the base of the wedge. The lack of discrete vents over the outer 3-5 km of the margin indicates diffuse flow and likely temporal episodicity, as this region has been aseismic since 1950.
Triangular spectral elements for incompressible fluid flow
NASA Technical Reports Server (NTRS)
Mavriplis, C.; Vanrosendale, John
1993-01-01
We discuss the use of triangular elements in the spectral element method for direct simulation of incompressible flow. Triangles provide much greater geometric flexibility than quadrilateral elements and are better conditioned and more accurate when small angles arise. We employ a family of tensor product algorithms for triangles, allowing triangular elements to be handled with comparable arithmetic complexity to quadrilateral elements. The triangular discretizations are applied and validated on the Poisson equation. These discretizations are then applied to the incompressible Navier-Stokes equations and a laminar channel flow solution is given. These new triangular spectral elements can be combined with standard quadrilateral elements, yielding a general and flexible high order method for complex geometries in two dimensions.
Fluid flow and chemical reaction kinetics in metamorphic systems
Lasaga, A.C.; Rye, D.M. )
1993-05-01
The treatment and effects of chemical reaction kinetics during metamorphism are developed along with the incorporation of fluid flow, diffusion, and thermal evolution. The interplay of fluid flow and surface reaction rates, the distinction between steady state and equilibrium, and the possible overstepping of metamorphic reactions are discussed using a simple analytic model. This model serves as an introduction to the second part of the paper, which develops a reaction model that solves the coupled temperature-fluid flow-chemical composition differential equations relevant to metamorphic processes. Consideration of stable isotopic evidence requires that such a kinetic model be considered for the chemical evolution of a metamorphic aureole. A general numerical scheme is discussed to handle the solution of the model. The results of this kinetic model allow us to reach several important conclusions regarding the factors controlling the chemical evolution of mineral assemblages during a metamorphic event. 41 refs., 19 figs., 5 tabs.
Fluid flow in nanopores: Accurate boundary conditions for carbon nanotubes
NASA Astrophysics Data System (ADS)
Sokhan, Vladimir P.; Nicholson, David; Quirke, Nicholas
2002-11-01
Steady-state Poiseuille flow of a simple fluid in carbon nanopores under a gravitylike force is simulated using a realistic empirical many-body potential model for carbon. Building on our previous study of slit carbon nanopores we show that fluid flow in a nanotube is also characterized by a large slip length. By analyzing temporal profiles of the velocity components of particles colliding with the wall we obtain values of the Maxwell coefficient defining the fraction of molecules thermalized by the wall and, for the first time, propose slip boundary conditions for smooth continuum surfaces such that they are equivalent in adsorption, diffusion, and fluid flow properties to fully dynamic atomistic models.
Multiphase Flow of Immiscible Fluids on Unstructured Moving Meshes.
Misztal, Marek K; Erleben, Kenny; Bargteil, Adam; Fursund, Jens; Christensen, Brian Bunch; Bærentzen, J Andreas; Bridson, Robert
2013-07-01
In this paper, we present a method for animating multiphase flow of immiscible fluids using unstructured moving meshes. Our underlying discretization is an unstructured tetrahedral mesh, the deformable simplicial complex (DSC), that moves with the flow in a Lagrangian manner. Mesh optimization operations improve element quality and avoid element inversion. In the context of multiphase flow, we guarantee that every element is occupied by a single fluid and, consequently, the interface between fluids is represented by a set of faces in the simplicial complex. This approach ensures that the underlying discretization matches the physics and avoids the additional book-keeping required in grid-based methods where multiple fluids may occupy the same cell. Our Lagrangian approach naturally leads us to adopt a finite element approach to simulation, in contrast to the finite volume approaches adopted by a majority of fluid simulation techniques that use tetrahedral meshes. We characterize fluid simulation as an optimization problem allowing for full coupling of the pressure and velocity fields and the incorporation of a second-order surface energy. We introduce a preconditioner based on the diagonal Schur complement and solve our optimization on the GPU. We provide the results of parameter studies as well as a performance analysis of our method, together with suggestions for performance optimization. PMID:23836703
Multiphase flow of immiscible fluids on unstructured moving meshes.
Misztal, Marek Krzysztof; Erleben, Kenny; Bargteil, Adam; Fursund, Jens; Christensen, Brian Bunch; Bærentzen, Jakob Andreas; Bridson, Robert
2014-01-01
In this paper, we present a method for animating multiphase flow of immiscible fluids using unstructured moving meshes. Our underlying discretization is an unstructured tetrahedral mesh, the deformable simplicial complex (DSC), that moves with the flow in a Lagrangian manner. Mesh optimization operations improve element quality and avoid element inversion. In the context of multiphase flow, we guarantee that every element is occupied by a single fluid and, consequently, the interface between fluids is represented by a set of faces in the simplicial complex. This approach ensures that the underlying discretization matches the physics and avoids the additional book-keeping required in grid-based methods where multiple fluids may occupy the same cell. Our Lagrangian approach naturally leads us to adopt a finite element approach to simulation, in contrast to the finite volume approaches adopted by a majority of fluid simulation techniques that use tetrahedral meshes. We characterize fluid simulation as an optimization problem allowing for full coupling of the pressure and velocity fields and the incorporation of a second-order surface energy. We introduce a preconditioner based on the diagonal Schur complement and solve our optimization on the GPU. We provide the results of parameter studies as well as a performance analysis of our method, together with suggestions for performance optimization. PMID:24201322
Apparatus for controlling fluid flow in a conduit wall
Glass, S. Jill; Nicolaysen, Scott D.; Beauchamp, Edwin K.
2003-05-13
A frangible rupture disk and mounting apparatus for use in blocking fluid flow, generally in a fluid conducting conduit such as a well casing, a well tubing string or other conduits within subterranean boreholes. The disk can also be utilized in above-surface pipes or tanks where temporary and controllable fluid blockage is required. The frangible rupture disk is made from a pre-stressed glass with controllable rupture properties wherein the strength distribution has a standard deviation less than approximately 5% from the mean strength. The frangible rupture disk has controllable operating pressures and rupture pressures.
Modeling and Direct Numerical Simulation of Ternary Fluid Flows
NASA Astrophysics Data System (ADS)
Kim, Jun-Seok; Lowengrub, John; Longmire, Ellen
2001-06-01
In this talk, we will present a physically-based model of flows involving three liquid components. The components may exhibit preferential miscibility with one another. The flows we consider are characterized by the presence of interfaces separating immiscible flow components with pinchoff and reconnection of interfaces being important features of the flow. In our model, these topological transitions are handled smoothly without explicit interface reconstruction. In addition, we model the diffusion of miscible components in the bulk and across the interfaces. To illustrate the method, we present numerical simulations of remediation of a contaminant-laden fluid using liquid/liquid extraction.
Rotation of a rod system containing inertial fluid flow
NASA Astrophysics Data System (ADS)
Sergeev, A. D.
2012-11-01
This paper considers a rod system for which it is possible to correctly formulate and solve the problem of three-dimensional motion in the physical space of an elastic pipeline area containing inertial incompressible fluid flow. The precession of the axis of an elastic pipeline along which inertial incompressible fluid flows is described, a physical phenomenon which has not been previously studied. With the use of rigid body dynamics, it was theoretically established that a three-dimensional dynamic process is possible in an open (exchanging mass with the environment) elastic-inertial rod system.
Magnetic resonance imaging the velocity vector components of fluid flow.
Feinberg, D A; Crooks, L E; Sheldon, P; Hoenninger, J; Watts, J; Arakawa, M
1985-12-01
Encoding the precession phase angle of proton nuclei for Fourier analysis has produced accurate measurement of fluid velocity vector components by MRI. A pair of identical gradient pulses separated in time by exactly 1/2 TE, are used to linearly encode the phase of flow velocity vector components without changing the phase of stationary nuclei. Two-dimensional Fourier transformation of signals gave velocity density images of laminar flow in angled tubes which were in agreement with the laws of vector addition. These velocity profile images provide a quantitative method for the investigation of fluid dynamics and hemodynamics. PMID:3880097
Chaos from Hopf bifurcation in a fluid flow experiment.
Langenberg, J; Pfister, G; Abshagen, J
2004-10-01
Results of an experimental study of a Hopf bifurcation with broken translation symmetry that organizes chaotic homoclinic dynamics from a T2 torus in a fluid flow as a direct consequence of physical boundaries are presented. It is shown that the central features of the theory of Hopf bifurcation in O(2)-symmetric systems where the translation symmetry is broken are robust and are appropriate to describe the appearance of modulated waves, homoclinic bifurcation, Takens-Bogdanov point, and chaotic dynamics in a fluid flow experiment.
Using artificial intelligence to control fluid flow computations
NASA Technical Reports Server (NTRS)
Gelsey, Andrew
1992-01-01
Computational simulation is an essential tool for the prediction of fluid flow. Many powerful simulation programs exist today. However, using these programs to reliably analyze fluid flow and other physical situations requires considerable human effort and expertise to set up a simulation, determine whether the output makes sense, and repeatedly run the simulation with different inputs until a satisfactory result is achieved. Automating this process is not only of considerable practical importance but will also significantly advance basic artificial intelligence (AI) research in reasoning about the physical world.
Balanced Flow Metering and Conditioning: Technology for Fluid Systems
NASA Technical Reports Server (NTRS)
Kelley, Anthony R.
2006-01-01
Revolutionary new technology that creates balanced conditions across the face of a multi-hole orifice plate has been developed, patented and exclusively licensed for commercialization. This balanced flow technology simultaneously measures mass flow rate, volumetric flow rate, and fluid density with little or no straight pipe run requirements. Initially, the balanced plate was a drop in replacement for a traditional orifice plate, but testing revealed substantially better performance as compared to the orifice plate such as, 10 times better accuracy, 2 times faster (shorter distance) pressure recovery, 15 times less acoustic noise energy generation, and 2.5 times less permanent pressure loss. During 2004 testing at MSFC, testing revealed several configurations of the balanced flow meter that match the accuracy of Venturi meters while having only slightly more permanent pressure loss. However, the balanced meter only requires a 0.25 inch plate and has no upstream or downstream straight pipe requirements. As a fluid conditioning device, the fluid usually reaches fully developed flow within 1 pipe diameter of the balanced conditioning plate. This paper will describe the basic balanced flow metering technology, provide performance details generated by testing to date and provide implementation details along with calculations required for differing degrees of flow metering accuracy.
On two-dimensional flows of compressible fluids
NASA Technical Reports Server (NTRS)
Bergman, Stefan
1945-01-01
This report is devoted to the study of two-dimensional steady motion of a compressible fluid. It is shown that the complete flow pattern around a closed obstacle cannot be obtained by the method of Chaplygin. In order to overcome this difficulty, a formula for the stream-function of a two-dimensional subsonic flow is derived. The formula involves an arbitrary function of a complex variable and yields all possible subsonic flow patterns of certain types. Conditions are given so that the flow pattern in the physical plane will represent a flow around a closed curve. The formula obtained can be employed for the approximate determination of a subsonic flow around an obstacle. The method can be extended to partially supersonic flows.
Dynamics of a fluid flow on Mars: lava or mud?
NASA Astrophysics Data System (ADS)
Wilson, L.; Mouginis-Mark, P. J.
2013-12-01
We have identified an enigmatic flow in S.W. Cerberus Fossae, Mars. The flow originates from an almost circular pit within a remnant of a yardang at 0.58 degrees N, 155.28 degrees E, within the lower unit of the Medusae Fossae Formation. The flow is ~42 km long and 0.5 to 2.0 km wide. The surface textures of the resulting deposit show that the material flowed in such a way that the various deformation patterns on its surface were generally preserved as it moved, only being distorted or disrupted when the flow encountered major topographic obstacles or was forced to make rapid changes of direction. This observation of a stiff, generally undeformed surface layer overlying a relatively mobile base suggests that, while it was moving, the fluid material flowed in a laminar, and possibly non-Newtonian, fashion. The least-complicated non-Newtonian fluids are Bingham plastics. On this basis we use measurements of flow width, length, thickness and substrate slope obtained from images, a DEM constructed from stereo pairs of Context Camera (CTX) images, and Mars Orbiter Laser Altimeter (MOLA) altimetry points to deduce the rheological properties of the fluid, treating it as both a Newtonian and a Bingham material for comparison. The Newtonian option requires the fluid to have a viscosity close to 100 Pa s and to have flowed everywhere in a turbulent fashion. The Bingham option requires laminar flow, a plastic viscosity close to 1 Pa s, and a yield strength of ~185 Pa. We compare these parameters values with those of various environmental fluids on Earth in an attempt to narrow the range of possible materials forming the martian flow. A mafic to ultramafic lava would fit the Newtonian option but the required turbulence does not seem consistent with the surface textures. The Bingham option satisfies the morphological constraint of laminar motion if the material is a mud flow consisting of ~40% water and ~60% silt-sized silicate solids. Elsewhere on Mars, deposits with similar
Fluid-flow-induced flutter of a flag
Argentina, Médéric; Mahadevan, L.
2005-01-01
We give an explanation for the onset of fluid-flow-induced flutter in a flag. Our theory accounts for the various physical mechanisms at work: the finite length and the small but finite bending stiffness of the flag, the unsteadiness of the flow, the added mass effect, and vortex shedding from the trailing edge. Our analysis allows us to predict a critical speed for the onset of flapping as well as the frequency of flapping. We find that in a particular limit corresponding to a low-density fluid flowing over a soft high-density flag, the flapping instability is akin to a resonance between the mode of oscillation of a rigid pivoted airfoil in a flow and a hinged-free elastic plate vibrating in its lowest mode. PMID:15684057
Fluid-flow-induced flutter of a flag.
Argentina, Médéric; Mahadevan, L
2005-02-01
We give an explanation for the onset of fluid-flow-induced flutter in a flag. Our theory accounts for the various physical mechanisms at work: the finite length and the small but finite bending stiffness of the flag, the unsteadiness of the flow, the added mass effect, and vortex shedding from the trailing edge. Our analysis allows us to predict a critical speed for the onset of flapping as well as the frequency of flapping. We find that in a particular limit corresponding to a low-density fluid flowing over a soft high-density flag, the flapping instability is akin to a resonance between the mode of oscillation of a rigid pivoted airfoil in a flow and a hinged-free elastic plate vibrating in its lowest mode.
Dense brushes of stiff polymers or filaments in fluid flow
NASA Astrophysics Data System (ADS)
Römer, F.; Fedosov, D. A.
2015-03-01
Dense filamentous brush-like structures are present in many biological interfacial systems (e.g., glycocalyx layer in blood vessels) to control their surface properties. Such structures can regulate the softness of a surface and modify fluid flow. In this letter, we propose a theoretical model which predicts quantitatively flow-induced deformation of a dense brush of stiff polymers or filaments, whose persistence length is larger or comparable to their contour length. The model is validated by detailed mesoscopic simulations and characterizes different contributions to brush deformation including hydrodynamic friction due to flow and steric excluded-volume interactions between grafted filaments. This theoretical model can be used to describe the effect of a stiff-polymer brush on fluid flow and to aid in the quantification of experiments.
Tactile soft-sparse mean fluid-flow imaging with a robotic whisker array.
Tuna, Cagdas; Jones, Douglas L; Kamalabadi, Farzad
2015-08-01
An array of whiskers is critical to many mammals to survive in their environment. However, current engineered systems generally employ vision, radar or sonar to explore the surroundings, not having sufficiently benefited from tactile perception. Inspired by the whisking animals, we present here a novel tomography-based tactile fluid-flow imaging technique for the reconstruction of surroundings with an artificial whisker array. The moment sensed at the whisker base is the weighted integral of the drag force per length, which is proportional to the relative velocity squared on a whisker segment. We demonstrate that the 2D cross-sectional mean fluid-flow velocity-field can be successfully mapped out by collecting moment measurements at different angular positions with the whisker array. We use a regularized version of the FOCal underdetermined system solver algorithm with a smoothness constraint to obtain soft-sparse static estimates of the 2D cross-sectional velocity-squared distribution. This new proposed approach has the strong potential to be an alternative environmental sensing technology, particularly in dark or murky environments. PMID:26241787
Tactile soft-sparse mean fluid-flow imaging with a robotic whisker array.
Tuna, Cagdas; Jones, Douglas L; Kamalabadi, Farzad
2015-08-04
An array of whiskers is critical to many mammals to survive in their environment. However, current engineered systems generally employ vision, radar or sonar to explore the surroundings, not having sufficiently benefited from tactile perception. Inspired by the whisking animals, we present here a novel tomography-based tactile fluid-flow imaging technique for the reconstruction of surroundings with an artificial whisker array. The moment sensed at the whisker base is the weighted integral of the drag force per length, which is proportional to the relative velocity squared on a whisker segment. We demonstrate that the 2D cross-sectional mean fluid-flow velocity-field can be successfully mapped out by collecting moment measurements at different angular positions with the whisker array. We use a regularized version of the FOCal underdetermined system solver algorithm with a smoothness constraint to obtain soft-sparse static estimates of the 2D cross-sectional velocity-squared distribution. This new proposed approach has the strong potential to be an alternative environmental sensing technology, particularly in dark or murky environments.
Production of Natural Gas and Fluid Flow in Tight Sand Reservoirs
Maria Cecilia Bravo
2006-06-30
This document reports progress of this research effort in identifying relationships and defining dependencies between macroscopic reservoir parameters strongly affected by microscopic flow dynamics and production well performance in tight gas sand reservoirs. These dependencies are investigated by identifying the main transport mechanisms at the pore scale that should affect fluids flow at the reservoir scale. A critical review of commercial reservoir simulators, used to predict tight sand gas reservoir, revealed that many are poor when used to model fluid flow through tight reservoirs. Conventional simulators ignore altogether or model incorrectly certain phenomena such as, Knudsen diffusion, electro-kinetic effects, ordinary diffusion mechanisms and water vaporization. We studied the effect of Knudsen's number in Klinkenberg's equation and evaluated the effect of different flow regimes on Klinkenberg's parameter b. We developed a model capable of explaining the pressure dependence of this parameter that has been experimentally observed, but not explained in the conventional formalisms. We demonstrated the relevance of this, so far ignored effect, in tight sands reservoir modeling. A 2-D numerical simulator based on equations that capture the above mentioned phenomena was developed. Dynamic implications of new equations are comprehensively discussed in our work and their relative contribution to the flow rate is evaluated. We performed several simulation sensitivity studies that evidenced that, in general terms, our formalism should be implemented in order to get more reliable tight sands gas reservoirs' predictions.
Experimental analysis on MR fluid channel flow dynamics with complex fluid-wall interactions
NASA Astrophysics Data System (ADS)
Nishiyama, Hideya; Takana, Hidemasa; Shinohara, Keisuke; Mizuki, Kotoe; Katagiri, Kazunari; Ohta, Makoto
2011-05-01
MR fluid plugging performance by aggregation of magnetized particles in MR fluid is recently expected to be one of the most promising applications in medical or safety devices, such as blood flow control, steam issuing shut-down valve and fuel supply control for automobile. In this study, dynamic response of MR fluid plugging and its breakdown in a pressure mode with complex fluid-wall interactions was experimentally investigated, considering the effects of magnetic flux density, wall surface structure, wall permeability and wall elasticity of tube. Higher endurance pressure is obtained for wall surface groove structure and for steel wall due to a strong anchoring effect by rigid cluster formation in a concave region and strong MR fluid column formation in a channel core region, respectively. Furthermore, MR fluid plugging performance and the fluid storage characteristic of PVA tube as a bio-material was clarified. Because of the large radial expansion of the tube at the applied magnetic region in a pressure mode, PVA tube shows unique characteristics, such as storing MR fluid under magnetic field and MR fluid jet issuing under releasing magnetic field.
Mitri, F G
2015-09-01
The classical Resonance Scattering Theory (RST) for plane waves in acoustics is generalized for the case of a 2D arbitrarily-shaped beam incident upon an elastic cylinder with arbitrary location that is immersed in a nonviscous fluid. The formulation is valid for an elastic (or viscoelastic) cylinder (or a cylindrical shell, a layered cylinder/shell, or a multilayered cylindrical shell, etc.) of any size and material. Partial-wave series expansions (PWSEs) for the incident, internal and scattered fields are derived, and numerical examples illustrate the theory. The wave-fields are expressed using a generalized PWSE involving the beam-shape coefficients (BSCs) and the scattering coefficients of the cylinder. When the beam is shifted off the center of the cylinder, the off-axial BSCs are evaluated by performing standard numerical integration. Acoustic resonance scattering directivity diagrams are calculated by subtracting an appropriate background from the expression of the scattered pressure field. The properties related to the arbitrary scattering of a zeroth-order quasi-Gaussian cylindrical beam (chosen as an example) by an elastic brass cylinder centered on the axis of wave propagation of the beam, and shifted off-axially are analyzed and discussed. Moreover, the total and resonance backscattering form function moduli are numerically computed, and the results discussed with emphasis on the contribution of the surface waves circumnavigating the cylinder circular surface to the resonance backscattering. Furthermore, the analysis is extended to derive general expressions for the axial and transverse acoustic radiation force functions for the cylinder in any 2D beam of arbitrary shape. Examples are provided for a zeroth-order quasi Gaussian cylindrical beam with different waist. Potential applications are in underwater and physical acoustics, however, ongoing research in biomedical ultrasound, non-destructive evaluation, imaging, manufacturing, instrumentation, and
Using a genetic algorithm to solve fluid-flow problems
Pryor, R.J. )
1990-06-01
Genetic algorithms are based on the mechanics of the natural selection and natural genetics processes. These algorithms are finding increasing application to a wide variety of engineering optimization and machine learning problems. In this paper, the authors demonstrate the use of a genetic algorithm to solve fluid flow problems. Specifically, the authors use the algorithm to solve the one-dimensional flow equations for a pipe.
Stability of axisymmetric swirl flows of viscous incompressible fluid
NASA Astrophysics Data System (ADS)
Aktershev, S. P.; Kuibin, P. A.
2013-09-01
A new method of solution to the problem of stability of the swirl flow of viscous incompressible fluid is developed. The method based on expansion of the required function into power series of radial coordinate allows an avoidance of difficulties related to numerical integration of the system of differential equations with a singular point. Stability of the Poiseuille flow in a rotating pipe is considered as an example.
Numerical modeling of fluid flow in solid tumors.
Soltani, M; Chen, P
2011-01-01
A mathematical model of interstitial fluid flow is developed, based on the application of the governing equations for fluid flow, i.e., the conservation laws for mass and momentum, to physiological systems containing solid tumors. The discretized form of the governing equations, with appropriate boundary conditions, is developed for a predefined tumor geometry. The interstitial fluid pressure and velocity are calculated using a numerical method, element based finite volume. Simulations of interstitial fluid transport in a homogeneous solid tumor demonstrate that, in a uniformly perfused tumor, i.e., one with no necrotic region, because of the interstitial pressure distribution, the distribution of drug particles is non-uniform. Pressure distribution for different values of necrotic radii is examined and two new parameters, the critical tumor radius and critical necrotic radius, are defined. Simulation results show that: 1) tumor radii have a critical size. Below this size, the maximum interstitial fluid pressure is less than what is generally considered to be effective pressure (a parameter determined by vascular pressure, plasma osmotic pressure, and interstitial osmotic pressure). Above this size, the maximum interstitial fluid pressure is equal to effective pressure. As a consequence, drugs transport to the center of smaller tumors is much easier than transport to the center of a tumor whose radius is greater than the critical tumor radius; 2) there is a critical necrotic radius, below which the interstitial fluid pressure at the tumor center is at its maximum value. If the tumor radius is greater than the critical tumor radius, this maximum pressure is equal to effective pressure. Above this critical necrotic radius, the interstitial fluid pressure at the tumor center is below effective pressure. In specific ranges of these critical sizes, drug amount and therefore therapeutic effects are higher because the opposing force, interstitial fluid pressure, is low in
Hu, Bin; Kieweg, Sarah L
2012-07-15
Gravity-driven thin film flow is of importance in many fields, as well as for the design of polymeric drug delivery vehicles, such as anti-HIV topical microbicides. There have been many prior works on gravity-driven thin films. However, the incorporation of surface tension effect has not been well studied for non-Newtonian fluids. After surface tension effect was incorporated into our 2D (i.e. 1D spreading) power-law model, we found that surface tension effect not only impacted the spreading speed of the microbicide gel, but also had an influence on the shape of the 2D spreading profile. We observed a capillary ridge at the front of the fluid bolus. Previous literature shows that the emergence of a capillary ridge is strongly related to the contact line fingering instability. Fingering instabilities during epithelial coating may change the microbicide gel distribution and therefore impact how well it can protect the epithelium. In this study, we focused on the capillary ridge in 2D flow and performed a series of simulations and showed how the capillary ridge height varies with other parameters, such as surface tension coefficient, inclination angle, initial thickness, and power-law parameters. As shown in our results, we found that capillary ridge height increased with higher surface tension, steeper inclination angle, bigger initial thickness, and more Newtonian fluids. This study provides the initial insights of how to optimize the flow and prevent the appearance of a capillary ridge and fingering instability.
A Generalized Fluid System Simulation Program to Model Flow Distribution in Fluid Networks
NASA Technical Reports Server (NTRS)
Majumdar, Alok; Bailey, John W.; Schallhorn, Paul; Steadman, Todd
1998-01-01
This paper describes a general purpose computer program for analyzing steady state and transient flow in a complex network. The program is capable of modeling phase changes, compressibility, mixture thermodynamics and external body forces such as gravity and centrifugal. The program's preprocessor allows the user to interactively develop a fluid network simulation consisting of nodes and branches. Mass, energy and specie conservation equations are solved at the nodes; the momentum conservation equations are solved in the branches. The program contains subroutines for computing "real fluid" thermodynamic and thermophysical properties for 33 fluids. The fluids are: helium, methane, neon, nitrogen, carbon monoxide, oxygen, argon, carbon dioxide, fluorine, hydrogen, parahydrogen, water, kerosene (RP-1), isobutane, butane, deuterium, ethane, ethylene, hydrogen sulfide, krypton, propane, xenon, R-11, R-12, R-22, R-32, R-123, R-124, R-125, R-134A, R-152A, nitrogen trifluoride and ammonia. The program also provides the options of using any incompressible fluid with constant density and viscosity or ideal gas. Seventeen different resistance/source options are provided for modeling momentum sources or sinks in the branches. These options include: pipe flow, flow through a restriction, non-circular duct, pipe flow with entrance and/or exit losses, thin sharp orifice, thick orifice, square edge reduction, square edge expansion, rotating annular duct, rotating radial duct, labyrinth seal, parallel plates, common fittings and valves, pump characteristics, pump power, valve with a given loss coefficient, and a Joule-Thompson device. The system of equations describing the fluid network is solved by a hybrid numerical method that is a combination of the Newton-Raphson and successive substitution methods. This paper also illustrates the application and verification of the code by comparison with Hardy Cross method for steady state flow and analytical solution for unsteady flow.
NASA Technical Reports Server (NTRS)
Thompson, David S.; Soni, Bharat K.
2000-01-01
An integrated software package, ICEG2D, was developed to automate computational fluid dynamics (CFD) simulations for single-element airfoils with ice accretion. ICEG2D is designed to automatically perform three primary functions: (1) generating a grid-ready, surface definition based on the geometrical characteristics of the iced airfoil surface, (2) generating a high-quality grid using the generated surface point distribution, and (3) generating the input and restart files needed to run the general purpose CFD solver NPARC. ICEG2D can be executed in batch mode using a script file or in an interactive mode by entering directives from a command line. This report summarizes activities completed in the first year of a three-year research and development program to address issues related to CFD simulations for aircraft components with ice accretion. Specifically, this document describes the technology employed in the software, the installation procedure, and a description of the operation of the software package. Validation of the geometry and grid generation modules of ICEG2D is also discussed.
Tracing fluid flow in geothermal reservoirs
Rose, P.E.; Adams, M.C.
1997-12-31
A family of fluorescent compounds, the polycyclic aromatic sulfonates, were evaluated for application in intermediate- and high-temperature geothermal reservoirs. Whereas the naphthalene sulfonates were found to be very thermally stable and reasonably detectable, the amino-substituted naphthalene sulfonates were found to be somewhat less thermally stable, but much more detectable. A tracer test was conducted at the Dixie Valley, Nevada, geothermal reservoir using one of the substituted naphthalene sulfonates, amino G, and fluorescein. Four of 9 production wells showed tracer breakthrough during the first 200 days of the test. Reconstructed tracer return curves are presented that correct for the thermal decay of tracer assuming an average reservoir temperature of 227{degrees}C. In order to examine the feasibility of using numerical simulation to model tracer flow, we developed simple, two-dimensional models of the geothermal reservoir using the numerical simulation programs TETRAD and TOUGH2. By fitting model outputs to measured return curves, we show that numerical reservoir simulations can be calibrated with the tracer data. Both models predict the same order of elution, approximate tracer concentrations, and return curve shapes. Using these results, we propose a method for using numerical models to design a tracer test.
Alternative experiments using the geophysical fluid flow cell
NASA Technical Reports Server (NTRS)
Hart, J. E.
1984-01-01
This study addresses the possibility of doing large scale dynamics experiments using the Geophysical Fluid Flow Cell. In particular, cases where the forcing generates a statically stable stratification almost everywhere in the spherical shell are evaluated. This situation is typical of the Earth's atmosphere and oceans. By calculating the strongest meridional circulation expected in the spacelab experiments, and testing its stability using quasi-geostrophic stability theory, it is shown that strongly nonlinear baroclinic waves on a zonally symmetric modified thermal wind will not occur. The Geophysical Fluid Flow Cell does not have a deep enough fluid layer to permit useful studies of large scale planetary wave processes arising from instability. It is argued, however, that by introducing suitable meridional barriers, a significant contribution to the understanding of the oceanic thermocline problem could be made.
Finite-scale equations for compressible fluid flow.
Margolin, L G
2009-07-28
Finite-scale equations (FSE) describe the evolution of finite volumes of fluid over time. We discuss the FSE for a one-dimensional compressible fluid, whose every point is governed by the Navier-Stokes equations. The FSE contain new momentum and internal energy transport terms. These are similar to terms added in numerical simulation for high-speed flows (e.g. artificial viscosity) and for turbulent flows (e.g. subgrid scale models). These similarities suggest that the FSE may provide new insight as a basis for computational fluid dynamics. Our analysis of the FS continuity equation leads to a physical interpretation of the new transport terms, and indicates the need to carefully distinguish between volume-averaged and mass-averaged velocities in numerical simulation. We make preliminary connections to the other recent work reformulating Navier-Stokes equations.
14 CFR 23.1095 - Carburetor deicing fluid flow rate.
Code of Federal Regulations, 2014 CFR
2014-01-01
... 14 Aeronautics and Space 1 2014-01-01 2014-01-01 false Carburetor deicing fluid flow rate. 23.1095 Section 23.1095 Aeronautics and Space FEDERAL AVIATION ADMINISTRATION, DEPARTMENT OF TRANSPORTATION... pounds per hour, of not less than 2.5 times the square root of the maximum continuous power of the...
Flow Curve Determination for Non-Newtonian Fluids.
ERIC Educational Resources Information Center
Tjahjadi, Mahari; Gupta, Santosh K.
1986-01-01
Describes an experimental program to examine flow curve determination for non-Newtonian fluids. Includes apparatus used (a modification of Walawender and Chen's set-up, but using a 50cc buret connected to a glass capillary through a Tygon tube), theoretical information, procedures, and typical results obtained. (JN)
14 CFR 23.1095 - Carburetor deicing fluid flow rate.
Code of Federal Regulations, 2013 CFR
2013-01-01
... 14 Aeronautics and Space 1 2013-01-01 2013-01-01 false Carburetor deicing fluid flow rate. 23.1095 Section 23.1095 Aeronautics and Space FEDERAL AVIATION ADMINISTRATION, DEPARTMENT OF TRANSPORTATION AIRCRAFT AIRWORTHINESS STANDARDS: NORMAL, UTILITY, ACROBATIC, AND COMMUTER CATEGORY AIRPLANES Powerplant Induction System § 23.1095...
Fluid flow and dissipation in intersecting counter-flow pipes
NASA Astrophysics Data System (ADS)
Pekkan, Kerem
2005-11-01
Intersecting pipe junctions are common in industrial and biomedical flows. For the later application, standard surgical connections of vessel lumens results a ``+'' shaped topology through a side-to-side or end-to-side anastomosis. Our earlier experimental/computational studies have compared different geometries quantifying the hydrodynamic power loss through the junction where dominant coherent structures are identified. In this study we have calculated the contribution of these structures to the total energy dissipation and its spatial distribution in the connection. A large set of idealized models are studied in which the basic geometric configuration is parametrically varied (from side-to-side to end-to-side anastomosis) which quantified the strength of the secondary flows and coherent structures as a function of the geometric configuration. Steady-state, 3D, incompressible computations are performed using the commercial CFD code FIDAP with unstructured tetrahedral grids. Selected cases are compared with the in-house code results (in Cartesian and structured grids). Grid verification and experimental validation with flow-vis and PIV are presented. Identifying the dissipation hot-spots will enable a targeted inverse design of the junction by reducing the degree of optimization with a focused parameter space.
Application of IR thermography for unsteady fluid-flow research
NASA Astrophysics Data System (ADS)
Koppel, Tiit; Lahdeniemi, Matti; Ekholm, Ari
1998-03-01
In the recent years the IR thermography technique has been sued successfully as a new contactless instrument for gas and fluid flow research in pipes and on the surface of a flat plate. It is well known that most energy changes in the flow take place in the boundary layer. This is in turn important for the intensity of convective heat transfer in pipe flows and enables to measure processes connected with energy changes in the flow from outside the pipe. Series of measurements of suddenly accelerated and pulsating pipe flow were made at Satakunta Polytechnic, Technology Pori, Finland. The theoretical criterion describing the transition from laminar to turbulent regime is found depending on the critical thickness of the boundary layer of suddenly accelerated flow. At the moment of transition of the 'plug' type flow into turbulent flow, the velocities in the wall region diminish and this can be detected using the IR thermography from the wall temperature changes. the experimental results of the mean velocity development and transition criteria correspond to the theoretical calculations. The changes of the internal structure of the flow affect the convective heat transfer and this in turn influences the pipe wall temperature. IR thermography measures pipe wall temperature changes and consequently we can detect flow structure changes in the boundary layer in the accelerated and decelerated phase of the pulsating pipe flow.
Localized microstructures induced by fluid flow in directional solidification.
Jamgotchian, H; Bergeon, N; Benielli, D; Voge, P; Billia, B; Guérin, R
2001-10-15
The dynamical process of microstructure localization by multiscale interaction between instabilities is uncovered in directional solidification of transparent alloy. As predicted by Chen and Davis, morphological instability of the interface is observed at inward flow-stagnation regions of the cellular convective field. Depending on the driving force of fluid flow, focus-type and honeycomb-type localized patterns form in the initial transient of solidification, that then evolves with time. In the case of solute-driven flow, the analysis of the onset of thermosolutal convection in initial transient of solidification enables a complete understanding of the dynamics and of the localization of morphological instability.
Modeling Fluid Flows in Distensible Tubes for Applications in Hemodynamics
NASA Astrophysics Data System (ADS)
Descovich, X.; Pontrelli, G.; Melchionna, S.; Succi, S.; Wassertheurer, S.
2013-05-01
We present a lattice Boltzmann (LB) model for the simulation of hemodynamic flows in the presence of compliant walls. The new scheme is based on the use of a continuous bounce-back boundary condition, as combined with a dynamic constitutive relation between the flow pressure at the wall and the resulting wall deformation. The method is demonstrated for the case of two-dimensional (axisymmetric) pulsatile flows, showing clear evidence of elastic wave propagation of the wall perturbation in response to the fluid pressure. The extension of the present two-dimensional axisymmetric formulation to more general three-dimensional geometries is currently under investigation.
Review of coaxial flow gas core nuclear rocket fluid mechanics
NASA Technical Reports Server (NTRS)
Weinstein, H.
1976-01-01
Almost all of the fluid mechanics research associated with the coaxial flow gas core reactor ended abruptly with the interruption of NASA's space nuclear program because of policy and budgetary considerations in 1973. An overview of program accomplishments is presented through a review of the experiments conducted and the analyses performed. Areas are indicated where additional research is required for a fuller understanding of cavity flow and of the factors which influence cold and hot flow containment. A bibliography is included with graphic material.
Instability of fluid flow over saturated porous medium
NASA Astrophysics Data System (ADS)
Lyubimova, Tatyana; Kolchanova, Ekaterina; Lyubimov, Dmitry
2013-04-01
We investigate the stability of a fluid flow over a saturated porous medium. The problem is of importance due to the applications to washing out of contaminants from the bottom layer of vegetation, whose properties are similar to the properties of porous medium. In the case of porous medium with the relatively high permeability and porosity the flow involves a part of the fluid saturating the porous medium, with the tangential fluid velocity drop occurring because of the resistance of the solid matrix. The drop leads to the instability analogous to Kelvin-Helmholtz one accompanied by the formation of travelling waves. In the present paper we consider a two-layer system consisting of a pure fluid layer and a porous layer saturated by the fluid located underneath. The system is bounded by a rigid surface at the bottom and a non-deformable free surface at the top. It is under the gravity and inclined at a slight angle to the horizontal axis. The boundary conditions at the interface between the fluid and porous layers are the continuity of fluid velocities and the balance of normal and tangential stresses taking into account the resistance of the solid matrix with respect to the fluid flow near the interface [1-2]. The problem is solved in the framework of the Brinkman model applying the classical shooting algorithm with orthogonalization. The stability boundaries of the stationary fluid flow over the saturated porous medium with respect to the small oscillatory perturbations are obtained for the various values of the Darcy number and the ratio of the porous layer thickness to the full thickness of the system d. It was shown that at the d > 0.5 with increasing the porous layer thickness (or with decreasing of the fluid layer thickness) the stability threshold rises. This is because of the fact that the instability is primarily caused by perturbations located in the fluid layer. At the d < 0.5 the reduction of the porous layer thickness leads to the stability threshold
NASA Astrophysics Data System (ADS)
Chen, J.-C.; Chuang, M.-R.; Jeng, C.-J.; Wang, J.-S.
2012-04-01
Taiwan is an island located in the subtropical zone where typhoons often bring heavy rainfall. Heavy rainfall, stream having steep slope, and weak geological condition resulted in a high susceptibility to debris flow. Especially, Typhoon Morakot struck southern Taiwan on August 8, 2009 with high rainfall intensity and accumulated rainfall as high as 2860 mm for 72 hours. Severe landslides and debris flow hazards were induced. In this work, debris-flow events caused by Typhoon Morakot in Shinfa Village of Liouguei District, where resulted in severe impacts to local communities, in southern Taiwan were selected for case study. A two-dimensional model (FLO-2D software) was used to simulate a debris flow, and the accuracy of the simulation, including flow depth, velocity, sediment, and inundation area, was analyzed in the case study. This study consists of three phases. In the first phase, debris flow data, including information on topography, rainfall and rheological parameters were compiled to establish a database of factors that influence debris flow. For the second phase, a numerical simulation was performed using FLO-2D with the results presented as area of debris-flow inundation, maximum deposit depth, and deposit volume. The simulation results were then compared with the aerial photos and the micro geomorphological study. Finally, suitable conditions for using this model and reasonable parameters needed for simulation are presented. In this study, parameters and processes needed for a numerical simulation method for debris flow routing and depositions are formulated to provide a reference for hazard zone mapping or debris-flow hazard mitigation.
ANFIS modeling for prediction of particle motions in fluid flows
NASA Astrophysics Data System (ADS)
Safdari, Arman; Kim, Kyung Chun
2015-11-01
Accurate dynamic analysis of parcel of solid particles driven in fluid flow system is of interest for many natural and industrial applications such as sedimentation process, study of cloud particles in atmosphere, etc. In this paper, numerical modeling of solid particles in incompressible flow using Eulerian-Lagrangian approach is carried out to investigate the dynamic behavior of particles in different flow conditions; channel and cavity flow. Although modern computers have been well developed, the high computational time and costs for this kind of problems are still demanded. The Lattice Boltzmann Method (LBM) is used to simulate fluid flows and combined with the Lagrangian approach to predict the motion of particles in the range of masses. Some particles are selected, and subjected to Adaptive-network-based fuzzy inference system (ANFIS) to predict the trajectory of moving solid particles. Using a hybrid learning procedure from computational particle movement, the ANFIS can construct an input-output mapping based on fuzzy if-then rules and stipulated computational fluid dynamics prediction pairs. The obtained results from ANFIS algorithm is validated and compared with the set of benchmark data provided based on point-like approach coupled with the LBM method.
Squeeze flow of a Carreau fluid during sphere impact
NASA Astrophysics Data System (ADS)
Uddin, J.; Marston, J. O.; Thoroddsen, S. T.
2012-07-01
We present results from a combined numerical and experimental investigation into the squeeze flow induced when a solid sphere impacts onto a thin, ultra-viscous film of non-Newtonian fluid. We examine both the sphere motion through the liquid as well as the fluid flow field in the region directly beneath the sphere during approach to a solid plate. In the experiments we use silicone oil as the model fluid, which is well-described by the Carreau model. We use high-speed imaging and particle tracking to achieve flow visualisation within the film itself and derive the corresponding velocity fields. We show that the radial velocity either diverges as the gap between the sphere and the wall diminishes (Ztip → 0) or that it reaches a maximum value and then decays rapidly to zero as the sphere comes to rest at a non-zero distance (Ztip = Zmin) away from the wall. The horizontal shear rate is calculated and is responsible for significant viscosity reduction during the approach of the sphere. Our model of this flow, based on lubrication theory, is solved numerically and compared to experimental trials. We show that our model is able to correctly describe the physical features of the flow observed in the experiments.
High frequency flow-structural interaction in dense subsonic fluids
NASA Technical Reports Server (NTRS)
Liu, Baw-Lin; Ofarrell, J. M.
1995-01-01
Prediction of the detailed dynamic behavior in rocket propellant feed systems and engines and other such high-energy fluid systems requires precise analysis to assure structural performance. Designs sometimes require placement of bluff bodies in a flow passage. Additionally, there are flexibilities in ducts, liners, and piping systems. A design handbook and interactive data base have been developed for assessing flow/structural interactions to be used as a tool in design and development, to evaluate applicable geometries before problems develop, or to eliminate or minimize problems with existing hardware. This is a compilation of analytical/empirical data and techniques to evaluate detailed dynamic characteristics of both the fluid and structures. These techniques have direct applicability to rocket engine internal flow passages, hot gas drive systems, and vehicle propellant feed systems. Organization of the handbook is by basic geometries for estimating Strouhal numbers, added mass effects, mode shapes for various end constraints, critical onset flow conditions, and possible structural response amplitudes. Emphasis is on dense fluids and high structural loading potential for fatigue at low subsonic flow speeds where high-frequency excitations are possible. Avoidance and corrective measure illustrations are presented together with analytical curve fits for predictions compiled from a comprehensive data base.
Map of fluid flow in fractal porous medium into fractal continuum flow.
Balankin, Alexander S; Elizarraraz, Benjamin Espinoza
2012-05-01
This paper is devoted to fractal continuum hydrodynamics and its application to model fluid flows in fractally permeable reservoirs. Hydrodynamics of fractal continuum flow is developed on the basis of a self-consistent model of fractal continuum employing vector local fractional differential operators allied with the Hausdorff derivative. The generalized forms of Green-Gauss and Kelvin-Stokes theorems for fractional calculus are proved. The Hausdorff material derivative is defined and the form of Reynolds transport theorem for fractal continuum flow is obtained. The fundamental conservation laws for a fractal continuum flow are established. The Stokes law and the analog of Darcy's law for fractal continuum flow are suggested. The pressure-transient equation accounting the fractal metric of fractal continuum flow is derived. The generalization of the pressure-transient equation accounting the fractal topology of fractal continuum flow is proposed. The mapping of fluid flow in a fractally permeable medium into a fractal continuum flow is discussed. It is stated that the spectral dimension of the fractal continuum flow d(s) is equal to its mass fractal dimension D, even when the spectral dimension of the fractally porous or fissured medium is less than D. A comparison of the fractal continuum flow approach with other models of fluid flow in fractally permeable media and the experimental field data for reservoir tests are provided.
Visualization of two-fluid flows of superfluid helium-4.
Guo, Wei; La Mantia, Marco; Lathrop, Daniel P; Van Sciver, Steven W
2014-03-25
Cryogenic flow visualization techniques have been proved in recent years to be a very powerful experimental method to study superfluid turbulence. Micron-sized solid particles and metastable helium molecules are specifically being used to investigate in detail the dynamics of quantum flows. These studies belong to a well-established, interdisciplinary line of inquiry that focuses on the deeper understanding of turbulence, one of the open problem of modern physics, relevant to many research fields, ranging from fluid mechanics to cosmology. Progress made to date is discussed, to highlight its relevance to a wider scientific community, and future directions are outlined. The latter include, e.g., detailed studies of normal-fluid turbulence, dissipative mechanisms, and unsteady/oscillatory flows.
Geometrodynamical Fluid Theory Applied to Dynamo Flows in Planetary Interiors
NASA Astrophysics Data System (ADS)
Lewis, Kayla; Miramontes, Diego; Scofield, Dillon
2015-11-01
Due to their reliance on a Newtonian viscous stress model, the traditional Navier-Stokes equations are of parabolic type; this in turn leads to acausal behavior of solutions to these equations, e.g., a localized disturbance at any point instantaneously affects the solution arbitrarily far away. Geometrodynamical fluid theory (GFT) avoids this problem through a relativistically covariant formulation of the flow equations. Using GFT, we derive the magnetohydrodynamic equations describing the balance of energy-momentum appropriate for dynamo flows in planetary interiors. These equations include interactions between magnetic and fluid vortex fields. We derive scaling laws from these equations and compare them with scaling laws derived from the traditional approach. Finally, we discuss implications of these scalings for flows in planetary dynamos.
Supersonic flows of a BZT fluid over thin airfoils
NASA Astrophysics Data System (ADS)
Bahmani, Fatemeh; Cramer, Mark
2013-11-01
We solve a quartic Burgers equation to describe the steady, two-dimensional, inviscid supersonic flow field of a Bethe-Zel'dovich-Thompson (BZT) fluid generated by thin airfoils or turbine blades. A parabolic arc airfoil has been considered. A motivation for this problem is to illustrate the complex flow patterns possible for simple airfoil shapes. The freestream state will be chosen so that the fundamental derivative of gas dynamics is negative for part or even all of the flow. The Burgers equation is solved using the WENO technique. This is the second motivation for this work to demonstrate that the WENO technique is well-suited to the study of BZT fluids. Phenomena of interest include the partial and complete disintegration of compression shocks, the formation of expansion shocks, and the collision of expansion and compression shocks. This work received support from National Science Foundation Grant CBET-0625015.
Neutron radigoraphy of fluid flow for geothermal energy research
Bingham, Philip R.; Polsky, Yarom; Anovitz, L.; Carmichael, Justin R.; Bilheux, Hassina Z; Jacobson, David; Hussey, Dan
2015-01-01
Enhanced geothermal systems seek to expand the potential for geothermal energy by engineering heat exchange systems within the earth. A neutron radiography imaging method has been developed for the study of fluid flow through rock under environmental conditions found in enhanced geothermal energy systems. For this method, a pressure vessel suitable for neutron radiography was designed and fabricated, modifications to imaging instrument setups were tested, multiple contrast agents were tested, and algorithms developed for tracking of flow. The method has shown success for tracking of single phase flow through a manufactured crack in a 3.81 cm (1.5 inch) diameter core within a pressure vessel capable of confinement up to 69 MPa (10,000 psi) using a particle tracking approach with bubbles of fluorocarbon-based fluid as the “particles” and imaging with 10 ms exposures.
Visualization of two-fluid flows of superfluid helium-4
Guo, Wei; La Mantia, Marco; Lathrop, Daniel P.; Van Sciver, Steven W.
2014-01-01
Cryogenic flow visualization techniques have been proved in recent years to be a very powerful experimental method to study superfluid turbulence. Micron-sized solid particles and metastable helium molecules are specifically being used to investigate in detail the dynamics of quantum flows. These studies belong to a well-established, interdisciplinary line of inquiry that focuses on the deeper understanding of turbulence, one of the open problem of modern physics, relevant to many research fields, ranging from fluid mechanics to cosmology. Progress made to date is discussed, to highlight its relevance to a wider scientific community, and future directions are outlined. The latter include, e.g., detailed studies of normal-fluid turbulence, dissipative mechanisms, and unsteady/oscillatory flows. PMID:24704871
3D topographic correction of the BSR heat flow and detection of focused fluid flow
NASA Astrophysics Data System (ADS)
He, Tao; Li, Hong-Lin; Zou, Chang-Chun
2014-06-01
The bottom-simulating reflector (BSR) is a seismic indicator of the bottom of a gas hydrate stability zone. Its depth can be used to calculate the seafloor surface heat flow. The calculated BSR heat flow variations include disturbances from two important factors: (1) seafloor topography, which focuses the heat flow over regions of concave topography and defocuses it over regions of convex topography, and (2) the focused warm fluid flow within the accretionary prism coming from depths deeper than BSR. The focused fluid flow can be detected if the contribution of the topography to the BSR heat flow is removed. However, the analytical equation cannot solve the topographic effect at complex seafloor regions. We prove that 3D finite element method can model the topographic effect on the regional background heat flow with high accuracy, which can then be used to correct the topographic effect and obtain the BSR heat flow under the condition of perfectly flat topography. By comparing the corrected BSR heat flow with the regional background heat flow, focused fluid flow regions can be detected that are originally too small and cannot be detected using present-day equipment. This method was successfully applied to the midslope region of northern Cascadia subducting margin. The results suggest that the Cucumber Ridge and its neighboring area are positive heat flow anomalies, about 10%-20% higher than the background heat flow after 3D topographic correction. Moreover, the seismic imaging associated the positive heat flow anomaly areas with seabed fracture-cavity systems. This suggests flow of warm gas-carrying fluids along these high-permeability pathways, which could result in higher gas hydrate concentrations.
NASA Astrophysics Data System (ADS)
Cerroni, D.; Fancellu, L.; Manservisi, S.; Menghini, F.
2016-06-01
In this work we propose to study the behavior of a solid elastic object that interacts with a multiphase flow. Fluid structure interaction and multiphase problems are of great interest in engineering and science because of many potential applications. The study of this interaction by coupling a fluid structure interaction (FSI) solver with a multiphase problem could open a large range of possibilities in the investigation of realistic problems. We use a FSI solver based on a monolithic approach, while the two-phase interface advection and reconstruction is computed in the framework of a Volume of Fluid method which is one of the more popular algorithms for two-phase flow problems. The coupling between the FSI and VOF algorithm is efficiently handled with the use of MEDMEM libraries implemented in the computational platform Salome. The numerical results of a dam break problem over a deformable solid are reported in order to show the robustness and stability of this numerical approach.
FLUENT/BFC - A general purpose fluid flow modeling program for all flow speeds
NASA Astrophysics Data System (ADS)
Dvinsky, Arkady S.
FLUENT/BFC is a fluid flow modeling program for a variety of applications. Current capabilities of the program include laminar and turbulent flows, subsonic and supersonic viscous flows, incompressible flows, time-dependent and stationary flows, isothermal flows and flows with heat transfer, Newtonian and power-law fluids. The modeling equations in the program have been written in coordinate system invariant form to accommodate the use of boundary-conforming, generally nonorthogonal coordinate systems. The boundary-conforming coordinate system can be generated using both an internal grid generator, which is an integral part of the code, and external application-specific grid generators. The internal grid generator is based on a solution of a system of elliptic partial differential equations and can produce grids for a wide variety of two- and three-dimensional geometries.
Flow in the well: computational fluid dynamics is essential in flow chamber construction
Franke, Jörg; Frank, Wolfram; Schroten, Horst
2007-01-01
A perfusion system was developed to generate well defined flow conditions within a well of a standard multidish. Human vein endothelial cells were cultured under flow conditions and cell response was analyzed by microscopy. Endothelial cells became elongated and spindle shaped. As demonstrated by computational fluid dynamics (CFD), cells were cultured under well defined but time varying shear stress conditions. A damper system was introduced which reduced pulsatile flow when using volumetric pumps. The flow and the wall shear stress distribution were analyzed by CFD for the steady and unsteady flow field. Usage of the volumetric pump caused variations of the wall shear stresses despite the controlled fluid environment and introduction of a damper system. Therefore the use of CFD analysis and experimental validation is critical in developing flow chambers and studying cell response to shear stress. The system presented gives an effortless flow chamber setup within a 6-well standard multidish. PMID:19002993
Noninvasive characterization of a flowing multiphase fluid using ultrasonic interferometry
Sinha, Dipen N.
2007-06-12
An apparatus for noninvasively monitoring the flow and/or the composition of a flowing liquid using ultrasound is described. The position of the resonance peaks for a fluid excited by a swept-frequency ultrasonic signal have been found to change frequency both in response to a change in composition and in response to a change in the flow velocity thereof. Additionally, the distance between successive resonance peaks does not change as a function of flow, but rather in response to a change in composition. Thus, a measurement of both parameters (resonance position and resonance spacing), once calibrated, permits the simultaneous determination of flow rate and composition using the apparatus and method of the present invention.
Noninvasive characterization of a flowing multiphase fluid using ultrasonic interferometry
Sinha, Dipen N.
2003-11-11
An apparatus for noninvasively monitoring the flow and/or the composition of a flowing liquid using ultrasound is described. The position of the resonance peaks for a fluid excited by a swept-frequency ultrasonic signal have been found to change frequency both in response to a change in composition and in response to a change in the flow velocity thereof. Additionally, the distance between successive resonance peaks does not change as a function of flow, but rather in response to a change in composition. Thus, a measurement of both parameters (resonance position and resonance spacing), once calibrated, permits the simultaneous determination of flow rate and composition using the apparatus and method of the present invention.
Noninvasive Characterization Of A Flowing Multiphase Fluid Using Ultrasonic Interferometry
Sinha, Dipen N.
2005-05-10
An apparatus for noninvasively monitoring the flow and/or the composition of a flowing liquid using ultrasound is described. The position of the resonance peaks for a fluid excited by a swept-frequency ultrasonic signal have been found to change frequency both in response to a change in composition and in response to a change in the flow velocity thereof. Additionally, the distance between successive resonance peaks does not change as a function of flow, but rather in response to a change in composition. Thus, a measurement of both parameters (resonance position and resonance spacing), once calibrated, permits the simultaneous determination of flow rate and composition using the apparatus and method of the present invention.
Seafloor Geomorphology as a Possible Indicator to Fluid Flow.
NASA Astrophysics Data System (ADS)
Greene, H. G.; Paull, C. K.
2002-12-01
Multibeam bathymetric data collected by MBARI and the USGS show numerous features marking the seafloor along parts of the California continental margin that suggest they may have been generated by offshore groundwater discharge or would be logical sites for focused fluid venting. These features include pockmarks, carbonate build-ups, steep slide-scars, and depression-studded rills. In addition, the heads of submarine canyons located near the Outer Santa Cruz Basin (northwest of Santa Cruz) and the Santa Maria Basin (near Point Conception), exhibit collapsed features that could result from the flow and possible venting of gas-charged fluids that escaped from a hydrocarbon reservoir. These areas are all associated with either major hydrocarbon reservoirs or onshore groundwater basins and aquifers that may crop out on the seafloor. ROV observations using MBARI's Ventana and Tiburon vehicles were conducted in five areas (Ascension slope northwest of Santa Cruz, Monterey Bay, the Point Lobos pockmark field, northern Santa Barbara Channel and San Pedro-Long Beach slope) where these features occur. While little evidence of active fluid flow was found, some methane-derived carbonates consistent with past flow were discovered. Although some of the morphologic features suggestive of a fluid-induced origin lie on the continental shelf and may have formed during a low-stand of sea level, many features are located on the continental slope and most likely formed in the marine environment.
NASA Astrophysics Data System (ADS)
Kratzke, Jonas; Rengier, Fabian; Weis, Christian; Beller, Carsten J.; Heuveline, Vincent
2016-04-01
Initiation and development of cardiovascular diseases can be highly correlated to specific biomechanical parameters. To examine and assess biomechanical parameters, numerical simulation of cardiovascular dynamics has the potential to complement and enhance medical measurement and imaging techniques. As such, computational fluid dynamics (CFD) have shown to be suitable to evaluate blood velocity and pressure in scenarios, where vessel wall deformation plays a minor role. However, there is a need for further validation studies and the inclusion of vessel wall elasticity for morphologies being subject to large displacement. In this work, we consider a fluid-structure interaction (FSI) model including the full elasticity equation to take the deformability of aortic wall soft tissue into account. We present a numerical framework, in which either a CFD study can be performed for less deformable aortic segments or an FSI simulation for regions of large displacement such as the aortic root and arch. Both of the methods are validated by means of an aortic phantom experiment. The computational results are in good agreement with 2D phase-contrast magnetic resonance imaging (PC-MRI) velocity measurements as well as catheter-based pressure measurements. The FSI simulation shows a characteristic vessel compliance effect on the flow field induced by the elasticity of the vessel wall, which the CFD model is not capable of. The in vitro validated FSI simulation framework can enable the computation of complementary biomechanical parameters such as the stress distribution within the vessel wall.
Gravity-Driven Thin Film Flow of an Ellis Fluid
Kheyfets, Vitaly O.
2014-01-01
The thin film lubrication approximation has been studied extensively for moving contact lines of Newtonian fluids. However, many industrial and biological applications of the thin film equation involve shear-thinning fluids, which often also exhibit a Newtonian plateau at low shear. This study presents new numerical simulations of the three-dimensional (i.e. two-dimensional spreading), constant-volume, gravity-driven, free surface flow of an Ellis fluid. The numerical solution was validated with a new similarity solution, compared to previous experiments, and then used in a parametric study. The parametric study centered around rheological data for an example biological application of thin film flow: topical drug delivery of anti-HIV microbicide formulations, e.g. hydroxyethylcellulose (HEC) polymer solutions. The parametric study evaluated how spreading length and front velocity saturation depend on Ellis parameters. A lower concentration polymer solution with smaller zero shear viscosity (η0), τ1/2, and λ values spread further. However, when comparing any two fluids with any possible combinations of Ellis parameters, the impact of changing one parameter on spreading length depends on the direction and magnitude of changes in the other two parameters. In addition, the isolated effect of the shear-thinning parameter, λ, on the front velocity saturation depended on τ1/2. This study highlighted the relative effects of the individual Ellis parameters, and showed that the shear rates in this flow were in both the shear-thinning and plateau regions of rheological behavior, emphasizing the importance of characterizing the full range of shear-rates in rheological measurements. The validated numerical model and parametric study provides a useful tool for future steps to optimize flow of a fluid with rheological behavior well-described by the Ellis constitutive model, in a range of industrial and biological applications. PMID:25309029
Gravity-Driven Thin Film Flow of an Ellis Fluid.
Kheyfets, Vitaly O; Kieweg, Sarah L
2013-12-01
The thin film lubrication approximation has been studied extensively for moving contact lines of Newtonian fluids. However, many industrial and biological applications of the thin film equation involve shear-thinning fluids, which often also exhibit a Newtonian plateau at low shear. This study presents new numerical simulations of the three-dimensional (i.e. two-dimensional spreading), constant-volume, gravity-driven, free surface flow of an Ellis fluid. The numerical solution was validated with a new similarity solution, compared to previous experiments, and then used in a parametric study. The parametric study centered around rheological data for an example biological application of thin film flow: topical drug delivery of anti-HIV microbicide formulations, e.g. hydroxyethylcellulose (HEC) polymer solutions. The parametric study evaluated how spreading length and front velocity saturation depend on Ellis parameters. A lower concentration polymer solution with smaller zero shear viscosity (η 0), τ 1/2, and λ values spread further. However, when comparing any two fluids with any possible combinations of Ellis parameters, the impact of changing one parameter on spreading length depends on the direction and magnitude of changes in the other two parameters. In addition, the isolated effect of the shear-thinning parameter, λ, on the front velocity saturation depended on τ 1/2. This study highlighted the relative effects of the individual Ellis parameters, and showed that the shear rates in this flow were in both the shear-thinning and plateau regions of rheological behavior, emphasizing the importance of characterizing the full range of shear-rates in rheological measurements. The validated numerical model and parametric study provides a useful tool for future steps to optimize flow of a fluid with rheological behavior well-described by the Ellis constitutive model, in a range of industrial and biological applications. PMID:25309029
Pulsatile flow of power-law fluid model for blood flow under periodic body acceleration.
Chaturani, P; Palanisamy, V
1990-01-01
A mathematical model has been proposed to study the pulsatile flow of a power-law fluid through rigid circular tubes under the influence of a periodic body acceleration. Numerical solutions have been obtained by using finite difference method. The accuracy of the numerical procedure has been checked by comparing the obtained numerical results with other numerical and analytical solutions. It is found that the agreement between them is quite good. Interaction of non-Newtonian nature of fluid with the body acceleration has been investigated by using the physiological data for two particular cases (coronary and femoral arteries). The axial velocity, fluid acceleration, wall shear stress and instantaneous volume flow rate have been computed and their variations with different parameters have been analyzed. The following important observations have been made: (i) The velocity and acceleration profiles can have more than one maxima, this is in contrast with usual parabolic profiles where they have only one maximum at the axis. As n increases, the maxima shift towards the axis; (ii) For the flow with no body acceleration, the amplitude of both, wall shear and flow rate, increases with n, whereas for the flow with body acceleration, the amplitude of wall shear (flow rate) increases (decreases) as n increases; (iii) In the absence of body acceleration, pseudoplastic (dilatant) fluids, with low frequency pulsations, have higher (lower) value of maximum flow rate Qmax than Newtonian fluids, whereas for high frequencies, opposite behavior has been observed; for flow with body acceleration pulsations gives higher (lower) value of Qmax for pseudoplastic (dilatant) fluids than Newtonian fluids.
Deformation and Fluid Flow in the Etendeka Plateau, NW Namibia
NASA Astrophysics Data System (ADS)
Salomon, Eric; Koehn, Daniel; Passchier, Cees; Davis, Jennifer; Salvona, Aron; Chung, Peter
2014-05-01
We studied deformation bands in sandstone and breccia veins in overlying basalts of the Etendeka Plateau, NW Namibia, regarding their development and history of fluid flow within. The studied deformation bands can be divided into disaggregation bands and cataclastic bands. The former appear to develop in unsorted sandstone, whereas the latter form in well sorted sandstone. We estimated the porosity of the bands and host rock in thin sections using a simple image analysis software (ImageJ). Results show, that no or only a minor decrease in porosity occur in disaggregation bands, while the porosity in cataclastic bands is decreased by up to 82 % with respect to the host rock. These observations are in agreement with results of existing studies (e.g. Fossen et al., 2007). Hence the cataclastic bands form a seal to fluid flow in the host rock, yet it is observed in outcrops that deformation bands can develop into open fractures which in turn increase the permeability of the rock. Breccia veins in the overlying basalts show intense fracturing where the basalt is locally fractured into elongated chips. Mineral precipitation in these breccia veins indicates a hydrothermal origin of the fluids since the precipitates consist of extremely fine-grained quartz aggregates. Secondary mineralization with large crystals indicates that a long-lived fluid circulation through tubular networks was active at a later stage, which eventually sealed the veins completely. We propose that the Etendeka basalts on top of the sandstone formation produced a localized deformation along deformation bands and heated up fluid below the lavas. At a later stage fluid pressures were either high enough to break through the basalt or fracturing due to ongoing extension produced fluid pathways. References Fossen, H., Schultz, R., Shipton, Z. and Mair, K. (2007). Deformation bands in sandstone: a review. J. Geol. Soc., 164, 755-769.
Fluid-Structure Interaction in Internal Physiological Flows
NASA Astrophysics Data System (ADS)
Heil, Matthias; Hazel, Andrew L.
2011-01-01
We provide a selective review of recent progress in the analysis of several physiological and physiologically inspired fluid-structure interaction problems, our aim being to explain the underlying physical mechanisms that cause the observed behaviors. Specifically, we discuss recent studies of self-excited oscillations in collapsible tubes, focusing primarily on studies of an idealized model system, the Starling resistor -- a device used in most laboratory experiments. We next review studies of a particular physiological, flow-induced oscillation: vocal-fold oscillations during phonation. Finally, we discuss the closure and reopening of pulmonary airways, physiological fluid-structure interaction problems that also involve the airways' liquid lining.
NASA Astrophysics Data System (ADS)
Decaix, J.; Alligné, S.; Nicolet, C.; Avellan, F.; Münch, C.
2015-12-01
1D hydro-electric models are useful to predict dynamic behaviour of hydro-power plants. Regarding vortex rope and cavitation surge in Francis turbines, the 1D models require some inputs that can be provided by numerical simulations. In this paper, a 2D cavitating Venturi is considered. URANS computations are performed to investigate the dynamic behaviour of the cavitation sheet depending on the frequency variation of the outlet pressure. The results are used to calibrate and to assess the reliability of the 1D models.
Fluid mechanics of nodal flow due to embryonic primary cilia.
Smith, D J; Blake, J R; Gaffney, E A
2008-05-01
Breaking of left-right symmetry is crucial in vertebrate development. The role of cilia-driven flow has been the subject of many recent publications, but the underlying mechanisms remain controversial. At approximately 8 days post-fertilization, after the establishment of the dorsal-ventral and anterior-posterior axes, a depressed structure is found on the ventral side of mouse embryos, termed the ventral node. Within the node, 'whirling' primary cilia, tilted towards the posterior, drive a flow implicated in the initial left-right signalling asymmetry. However, the underlying fluid mechanics have not been fully and correctly explained until recently and accurate characterization is required in determining how the flow triggers the downstream signalling cascades. Using the approximation of resistive force theory, we show how the flow is produced and calculate the optimal configuration to cause maximum flow, showing excellent agreement with in vitro measurements and numerical simulation, and paralleling recent analogue experiments. By calculating numerical solutions of the slender body theory equations, we present time-dependent physically based fluid dynamics simulations of particle pathlines in flows generated by large arrays of beating cilia, showing the far-field radial streamlines predicted by the theory.
Particle hopping vs. fluid-dynamical models for traffic flow
Nagel, K.
1995-12-31
Although particle hopping models have been introduced into traffic science in the 19509, their systematic use has only started recently. Two reasons for this are, that they are advantageous on modem computers, and that recent theoretical developments allow analytical understanding of their properties and therefore more confidence for their use. In principle, particle hopping models fit between microscopic models for driving and fluiddynamical models for traffic flow. In this sense, they also help closing the conceptual gap between these two. This paper shows connections between particle hopping models and traffic flow theory. It shows that the hydrodynamical limits of certain particle hopping models correspond to the Lighthill-Whitham theory for traffic flow, and that only slightly more complex particle hopping models produce already the correct traffic jam dynamics, consistent with recent fluid-dynamical models for traffic flow. By doing so, this paper establishes that, on the macroscopic level, particle hopping models are at least as good as fluid-dynamical models. Yet, particle hopping models have at least two advantages over fluid-dynamical models: they straightforwardly allow microscopic simulations, and they include stochasticity.
A Rayleigh-Plesset based transport model for cryogenic fluid cavitating flow computations
NASA Astrophysics Data System (ADS)
Shi, SuGuo; Wang, GuoYu; Hu, ChangLi
2014-04-01
The present article focuses on modeling issues to simulate cryogenic fluid cavitating flows. A revised cavitation model, in which the thermal effect is considered, is derivated and established based on Kubota model. Cavitating flow computations are conducted around an axisymmetric ogive and a 2D quarter caliber hydrofoil in liquid nitrogen implementing the revised model and Kubota model coupled with energy equation and dynamically updating the fluid physical properties, respecitively. The results show that the revised cavitation model can better describe the mass transport process in the cavitation process in cryogenic fluids. Compared with Kubota model, the revised model can reflect the observed "frosty" appearance within the cavity. The cavity length becomes shorter and it can capture the temperature and pressure depressions more consistently in the cavitating region, particularly at the rear of the cavity. The evaporation rate decreases, and while the magnitude of the condensation rate becomes larger because of the thermal effect terms in the revised model compared with the results obtained by the Kubota model.
Yuan, Dan; Zhang, Jun; Yan, Sheng; Peng, Gangrou; Zhao, Qianbin; Alici, Gursel; Du, Hejun; Li, Weihua
2016-08-01
In this work, particle lateral migration in sample-sheath flow of viscoelastic fluid and Newtonian fluid was experimentally investigated. The 4.8-μm micro-particles were dispersed in a polyethylene oxide (PEO) viscoelastic solution, and then the solution was injected into a straight rectangular channel with a deionised (DI) water Newtonian sheath flow. Micro-particles suspended in PEO solution migrated laterally to a DI water stream, but migration in the opposite direction from a DI water stream to a PEO solution stream or from one DI water stream to another DI water stream could not be achieved. The lateral migration of particles depends on the viscoelastic properties of the sample fluids. Furthermore, the effects of channel length, flow rate, and PEO concentration were studied. By using viscoelastic sample flow and Newtonian sheath flow, a selective particle lateral migration can be achieved in a simple straight channel, without any external force fields. This particle lateral migration technique could be potentially used in solution exchange fields such as automated cell staining and washing in microfluidic platforms, and holds numerous biomedical applications. PMID:27140330
Field-flow orientation effects in magnetorheological fluids
NASA Astrophysics Data System (ADS)
Baltimore, Craig Victor
Magnetorheological (MR) materials are suspensions of micron-sized magnetically polarized particles in a liquid medium. When subject to magnetic fields, these particles form a micro-structure which endow the MR material with solid-like properties. Devices constructed with MR materials can achieve controllable force levels that have use in vibration mitigation. The orientation of the magnetic field is a key design parameter. To date research and device development has been concerned with MR material flow perpendicular the applied magnetic field. This relationship of material flow to applied magnetic field is known as perpendicular field/flow. This emphasis on perpendicular field/flow application describes only a limited view of MR material behavior. This work makes original contributions to the magnetorheological research literature through experimentation in MR material flow parallel to the applied magnetic field. This relationship of MR material flowing parallel to an applied magnetic field is known as parallel field/flow. These experiments show the high magnitudes of flux density associated with perpendicular field/flow are difficult to achieve in parallel field/flow. These low flux densities do not create a strong reordering of MR material micro-structure. The net effect is, in parallel field/flow application, that a visco-elastic behavior describes the response as opposed to Bingham behavior. This work also analyzes the experimental data to demonstrate the decrease in device response time, for parallel field/flow orientations, due to the elimination of the iron magnetic circuit (typical in perpendicular field/flow applications). MR fluid material properties are determined through Poiseuille flow.
Nanometer-scale imaging and pore-scale fluid flow modeling inchalk
Tomutsa, Liviu; Silin, Dmitriy; Radmilovich, Velimir
2005-08-23
For many rocks of high economic interest such as chalk,diatomite, tight gas sands or coal, nanometer scale resolution is neededto resolve the 3D-pore structure, which controls the flow and trapping offluids in the rocks. Such resolutions cannot be achieved with existingtomographic technologies. A new 3D imaging method, based on serialsectioning and using the Focused Ion Beam (FIB) technology has beendeveloped. FIB allows for the milling of layers as thin as 10 nanometersby using accelerated Ga+ ions to sputter atoms from the sample surface.After each milling step, as a new surface is exposed, a 2D image of thissurface is generated. Next, the 2D images are stacked to reconstruct the3D pore or grain structure. Resolutions as high as 10 nm are achievableusing this technique. A new image processing method uses directmorphological analysis of the pore space to characterize thepetrophysical properties of diverse formations. In addition to estimationof the petrophysical properties (porosity, permeability, relativepermeability and capillary pressures), the method is used for simulationof fluid displacement processes, such as those encountered in variousimproved oil recovery (IOR) approaches. Computed with the new methodcapillary pressure curves are in good agreement with laboratory data. Themethod has also been applied for visualization of the fluid distributionat various saturations from the new FIB data.
Magneto-polar fluid flow through a porous medium of variable permeability in slip flow regime
NASA Astrophysics Data System (ADS)
Gaur, P. K.; Jha, A. K.; Sharma, R.
2016-05-01
A theoretical study is carried out to obtain an analytical solution of free convective heat transfer for the flow of a polar fluid through a porous medium with variable permeability bounded by a semi-infinite vertical plate in a slip flow regime. A uniform magnetic field acts perpendicular to the porous surface. The free stream velocity follows an exponentially decreasing small perturbation law. Using the approximate method the expressions for the velocity, microrotation, and temperature are obtained. Further, the results of the skin friction coefficient, the couple stress coefficient and the rate of heat transfer at the wall are presented with various values of fluid properties and flow conditions.
Device and method for measuring multi-phase fluid flow in a conduit using an elbow flow meter
Ortiz, Marcos G.; Boucher, Timothy J.
1997-01-01
A system for measuring fluid flow in a conduit. The system utilizes pressure transducers disposed generally in line upstream and downstream of the flow of fluid in a bend in the conduit. Data from the pressure transducers is transmitted to a microprocessor or computer. The pressure differential measured by the pressure transducers is then used to calculate the fluid flow rate in the conduit. Control signals may then be generated by the microprocessor or computer to control flow, total fluid dispersed, (in, for example, an irrigation system), area of dispersal or other desired effect based on the fluid flow in the conduit.
Device and method for measuring multi-phase fluid flow in a conduit using an elbow flow meter
Ortiz, M.G.; Boucher, T.J.
1997-06-24
A system is described for measuring fluid flow in a conduit. The system utilizes pressure transducers disposed generally in line upstream and downstream of the flow of fluid in a bend in the conduit. Data from the pressure transducers is transmitted to a microprocessor or computer. The pressure differential measured by the pressure transducers is then used to calculate the fluid flow rate in the conduit. Control signals may then be generated by the microprocessor or computer to control flow, total fluid dispersed, (in, for example, an irrigation system), area of dispersal or other desired effect based on the fluid flow in the conduit. 2 figs.
Tatsuya Matsumoto; Akihiro Uchibori; Ryo Akasaka; Toshinori Seki; Shyuji Kaminishi; Koji Morita; Kenji Fukuda
2002-07-01
In order to develop analytical tools for the analyses of multi dimensional two-phase flow in channels with obstacles, the modified drift flux model has been applied. Numerical simulations of multi dimensional gas-liquid two-phase flow in a channel, with some kinds of obstacles inserted to simulate a simple sub-channel in the fuel bundle, were carried out. Analytical results were compared with experiments, to show the validity of the modified drift flux model. Experiments were carried out with using an apparatus of 2-D/3-D rectangular box with a perforated plate or a horizontal plate with slit hole or a vertical rod inserted. Nitrogen gas-water adiabatic two phase flow was circulated in the box. The apparatus was made of acrylic resin plates and be able to make the flow inside visualized. Two-phase flow pattern were recorded with a high-speed video camera and the mass flow rate of nitrogen gas was measured with a digital gas-mass flow meter. Comparisons between the experimental results and the numerical ones showed good agreements, thus it was verified the model would be applied for predicting flows in more complex geometry with obstacles. (authors)
Governing equations for electro-conjugate fluid flow
NASA Astrophysics Data System (ADS)
Hosoda, K.; Takemura, K.; Fukagata, K.; Yokota, S.; Edamura, K.
2013-12-01
An electro-conjugation fluid (ECF) is a kind of dielectric liquid, which generates a powerful flow when high DC voltage is applied with tiny electrodes. This study deals with the derivation of the governing equations for electro-conjugate fluid flow based on the Korteweg-Helmholtz (KH) equation which represents the force in dielectric liquid subjected to high DC voltage. The governing equations consist of the Gauss's law, charge conservation with charge recombination, the KH equation, the continuity equation and the incompressible Navier-Stokes equations. The KH equation consists of coulomb force, dielectric constant gradient force and electrostriction force. The governing equation gives the distribution of electric field, charge density and flow velocity. In this study, direct numerical simulation (DNS) is used in order to get these distribution at arbitrary time. Successive over-relaxation (SOR) method is used in analyzing Gauss's law and constrained interpolation pseudo-particle (CIP) method is used in analyzing charge conservation with charge recombination. The third order Runge-Kutta method and conservative second-order-accurate finite difference method is used in analyzing the Navier-Stokes equations with the KH equation. This study also deals with the measurement of ECF ow generated with a symmetrical pole electrodes pair which are made of 0.3 mm diameter piano wire. Working fluid is FF-1EHA2 which is an ECF family. The flow is observed from the both electrodes, i.e., the flow collides in between the electrodes. The governing equation successfully calculates mean flow velocity in between the collector pole electrode and the colliding region by the numerical simulation.
Colonization, competition, and dispersal of pathogens in fluid flow networks.
Siryaporn, Albert; Kim, Minyoung Kevin; Shen, Yi; Stone, Howard A; Gitai, Zemer
2015-05-01
The colonization of bacteria in complex fluid flow networks, such as those found in host vasculature, remains poorly understood. Recently, it was reported that many bacteria, including Bacillus subtilis [1], Escherichia coli [2], and Pseudomonas aeruginosa [3, 4], can move in the opposite direction of fluid flow. Upstream movement results from the interplay between fluid shear stress and bacterial motility structures, and such rheotactic-like behavior is predicted to occur for a wide range of conditions [1]. Given the potential ubiquity of upstream movement, its impact on population-level behaviors within hosts could be significant. Here, we find that P. aeruginosa communities use a diverse set of motility strategies, including a novel surface-motility mechanism characterized by counter-advection and transverse diffusion, to rapidly disperse throughout vasculature-like flow networks. These motility modalities give P. aeruginosa a selective growth advantage, enabling it to self-segregate from other human pathogens such as Proteus mirabilis and Staphylococcus aureus that outcompete P. aeruginosa in well-mixed non-flow environments. We develop a quantitative model of bacterial colonization in flow networks, confirm our model in vivo in plant vasculature, and validate a key prediction that colonization and dispersal can be inhibited by modifying surface chemistry. Our results show that the interaction between flow mechanics and motility structures shapes the formation of mixed-species communities and suggest a general mechanism by which bacteria could colonize hosts. Furthermore, our results suggest novel strategies for tuning the composition of multi-species bacterial communities in hosts, preventing inappropriate colonization in medical devices, and combatting bacterial infections. PMID:25843031
Tranchida, Peter Q; Franchina, Flavio A; Zoccali, Mariosimone; Bonaccorsi, Ivana; Cacciola, Francesco; Mondello, Luigi
2013-09-01
The present contribution is focused on the measurement of the analytical sensitivity attained in untargeted/targeted MS/MS experiments, performed using flow-modulator comprehensive 2D and 1D GC. The comprehensive 2D experiment was performed by diverting part of the high flow (circa 80%) to flush the accumulation loop (about 28 mL/min) to waste, to reduce the gas flow entering the ion source. 1D analyses were performed through: (i) unmodulated and (ii) single column applications. An equivalent temperature program was applied in the modulated and unmodulated analyses, while a faster one was employed in the single column one. In all application types, the (same) triple quadrupole instrument was operated in the full-scan and multiple reaction monitoring modes. A genuine sweet orange oil and the same sample spiked with 20 phytosanitary compounds were employed to reach the research objective. The results highlight the problems related to the flow modulation-MS combination. Specifically, it was found that sensitivity was on average three to four times higher in unmodulated and optimized single-column applications. PMID:23868497
NASA Astrophysics Data System (ADS)
Wu, C.; Chang, T.
2010-12-01
A new method in describing the multifractal characteristics of intermittent events was introduced by Cheng and Wu [Chang T. and Wu C.C., Physical Rev, E77, 045401(R), 2008]. The procedure provides a natural connection between the rank-ordered spectrum and the idea of one-parameter scaling for monofractals. This technique has been demonstrated using results obtained from a 2D MHD simulation. It has also been successfully applied to in-situ solar wind observations [Chang T., Wu, C.C. and Podesta, J., AIP Conf Proc. 1039, 75, 2008], and the broadband electric field oscillations from the auroral zone [Tam, S.W.Y. et al., Physical Rev, E81, 036414, 2010]. We take the next step in this procedure. By using the ROMA spectra and the scaled probability distribution functions (PDFs), raw PDFs can be calculated, which can be compared directly with PDFs from observations or simulation results. In addition to 2D MHD simulation results and in-situ solar wind observation, we show clearly using the ROMA analysis the multifractal character of the 3D fluid simulation data obtained from the JHU turbulence database cluster at http://turbulence.pha.jhu.edu. In particular, we show the scaling of the non-symmetrical PDF for the parallel-velocity fluctuations of this 3D fluid data.
3D High-Resolution Seismic Imaging of Fluid Flow Anomalies on the Norwegian Continental Shelf
NASA Astrophysics Data System (ADS)
Planke, S.; Eriksen, F. N.; Eriksen, O. K.; Myklebust, R.; Stokke, H. H.
2015-12-01
Fluid flow anomalies are common on the Norwegian Continental Shelf. Such features are imaged by multiple P-Cable high resolution seismic 2D lines and 3D cubes in the Norwegian Barents Sea. P-Cable is a high resolution 3D seismic system consisting of multiple streamers attached to a cross cable that is towed perpendicular to the vessels steaming direction. The short offset, high frequency source and closely spaced streamers facilitates for excellent vertical and horizontal resolution that provides key information for understanding the sub-surface. Recent data have been broadband processed, and the method has proven to enhance the imaging of the sub-surface significantly. Barents Sea P-Cable surveys have targeted shallow fluid anomalies in the uppermost ca. 500 meters of the sub-surface. New data have been acquired in 2012, 2014 and 2015. The most recent data focus on the southeast part of the Norwegian Barents Sea where P-Cable data give a new insight into the subsurface not provided by conventional seismic data in the region. Geologically, the Barents Sea region is characterized by Paleozoic and Mesozoic siliciclastic successions overlaid in most areas by a thin cover of Cenozoic glacial sediments. Hydrocarbon-rich Jurassic and Triassic sequences are locally situated in the shallow sub-surface as a result of extensive late Cenozoic uplift and erosion. The unloading has been reported to reactivate and create new faults in addition to initiate further migration of fluids in the sub-surface (Chand et al., 2012). The presence of shallow hydrocarbon systems creates an optimal setting for imaging fluid flow anomalies with high resolution 3D seismic data. The Barents Sea P-Cable data image a range of fluid related features such as cross-cutting reflections and bright spots, chimney structures, acoustic masking, pockmarks and mud volcanoes.
Using confined bacteria as building blocks to generate fluid flow.
Gao, Zhiyong; Li, He; Chen, Xiao; Zhang, H P
2015-12-21
In many technological applications, materials are transported by fluid flow at micro/nanometer scales. Conventionally, macroscopic apparatuses, such as syringe pumps, are used to drive the flow. This work explores the possibility of utilizing motile bacteria as microscopic pumps. We used micro-fabricated structures to confine smooth-swimming bacteria in a prescribed configuration. The flagella of confined bacteria rotate to collectively generate flow that can transport materials along designed trajectories. Different structures are combined to realize complex functions, such as collection or dispersion of particles. Experimental findings are reproduced in numerical simulations. Our method opens new ways to generate transport flow at the micrometer scale and to drive bio-hybrid devices. PMID:26496967
Highly simplified lateral flow-based nucleic acid sample preparation and passive fluid flow control
Cary, Robert E.
2015-12-08
Highly simplified lateral flow chromatographic nucleic acid sample preparation methods, devices, and integrated systems are provided for the efficient concentration of trace samples and the removal of nucleic acid amplification inhibitors. Methods for capturing and reducing inhibitors of nucleic acid amplification reactions, such as humic acid, using polyvinylpyrrolidone treated elements of the lateral flow device are also provided. Further provided are passive fluid control methods and systems for use in lateral flow assays.
A heterogeneous computing environment for simulating astrophysical fluid flows
NASA Technical Reports Server (NTRS)
Cazes, J.
1994-01-01
In the Concurrent Computing Laboratory in the Department of Physics and Astronomy at Louisiana State University we have constructed a heterogeneous computing environment that permits us to routinely simulate complicated three-dimensional fluid flows and to readily visualize the results of each simulation via three-dimensional animation sequences. An 8192-node MasPar MP-1 computer with 0.5 GBytes of RAM provides 250 MFlops of execution speed for our fluid flow simulations. Utilizing the parallel virtual machine (PVM) language, at periodic intervals data is automatically transferred from the MP-1 to a cluster of workstations where individual three-dimensional images are rendered for inclusion in a single animation sequence. Work is underway to replace executions on the MP-1 with simulations performed on the 512-node CM-5 at NCSA and to simultaneously gain access to more potent volume rendering workstations.
Laminar boundary-layer flow of non-Newtonian fluid
NASA Technical Reports Server (NTRS)
Lin, F. N.; Chern, S. Y.
1979-01-01
A solution for the two-dimensional and axisymmetric laminar boundary-layer momentum equation of power-law non-Newtonian fluid is presented. The analysis makes use of the Merk-Chao series solution method originally devised for the flow of Newtonian fluid. The universal functions for the leading term in the series are tabulated for n from 0.2 to 2. Equations governing the universal functions associated with the second and the third terms are provided. The solution together with either Lighthill's formula or Chao's formula constitutes a simple yet general procedure for the calculation of wall shear and surface heat transfer rate. The theory was applied to flows over a circular cylinder and a sphere and the results compared with published data.
Measuring fluid flow and heat output in seafloor hydrothermal environments
NASA Astrophysics Data System (ADS)
Germanovich, Leonid N.; Hurt, Robert S.; Smith, Joshua E.; Genc, Gence; Lowell, Robert P.
2015-12-01
We review techniques for measuring fluid flow and advective heat output from seafloor hydrothermal systems and describe new anemometer and turbine flowmeter devices we have designed, built, calibrated, and tested. These devices allow measuring fluid velocity at high- and low-temperature focused and diffuse discharge sites at oceanic spreading centers. The devices perform at ocean floor depths and black smoker temperatures and can be used to measure flow rates ranging over 2 orders of magnitude. Flow velocity is determined from the rotation rate of the rotor blades or paddle assembly. These devices have an open bearing design that eliminates clogging by particles or chemical precipitates as the fluid passes by the rotors. The devices are compact and lightweight enough for deployment from either an occupied or remotely operated submersible. The measured flow rates can be used in conjunction with vent temperature or geochemical measurements to obtain heat outputs or geochemical fluxes from both vent chimneys and diffuse flow regions. The devices have been tested on 30 Alvin dives on the Juan de Fuca Ridge and 3 Jason dives on the East Pacific Rise (EPR). We measured an anomalously low entrainment coefficient (0.064) and report 104 new measurements over a wide range of discharge temperatures (5°-363°C), velocities (2-199 cm/s), and depths (1517-2511 m). These include the first advective heat output measurements at the High Rise vent field and the first direct fluid flow measurement at Middle Valley. Our data suggest that black smoker heat output at the Main Endeavour vent field may have declined since 1994 and that after the 2005-2006 eruption, the high-temperature advective flow at the EPR 9°50'N field may have become more channelized, predominately discharging through the Bio 9 structure. We also report 16 measurements on 10 Alvin dives and 2 Jason dives with flow meters that predate devices described in this work and were used in the process of their development
Communications: Mechanical Deformation of Dendrites by Fluid Flow
NASA Technical Reports Server (NTRS)
Pilling, J.; Hellawell, A.
1996-01-01
It is generally accepted that liquid agitation during alloy solidification assists in crystal multiplication, as in dendrite fragmentation and the detachment of side arms in the mushy region of a casting. Even without deliberate stirring by electromagnetic or mechanical means, there is often vigorous interdendritic fluid flow promoted by natural thermosolutal convection. In this analysis, we shall estimate the stress at the root of a secondary dendrite arm of aluminum arising from the action of a flow of molten metal past the dendrite arm.
Cytoskeletal Dynamics and Fluid Flow in Drosophila Oocytes
NASA Astrophysics Data System (ADS)
de Canio, Gabriele; Goldstein, Raymond; Lauga, Eric
2015-11-01
The biological world includes a broad range of phenomena in which transport in a fluid plays a central role. Among these is the fundamental issue of cell polarity arising during development, studied historically using the model organism Drosophila melanogaster. The polarity of the oocyte is known to be induced by the translocation of mRNAs by kinesin motor proteins along a dense microtubule cytoskeleton, a process which also induces cytoplasmic streaming. Recent experimental observations have revealed the remarkable fluid-structure interactions that occur as the streaming flows back-react on the microtubules. In this work we use a combination of theory and simulations to address the interplay between the fluid flow and the configuration of cytoskeletal filaments leading to the directed motion inside the oocyte. We show in particular that the mechanical coupling between the fluid motion and the orientation of the microtubules can lead to a transition to coherent motion within the oocyte, as observed. Supported by EPSRC and ERC Advanced Investigator Grant 247333.
ICEd-ALE Treatment of 3-D Fluid Flow.
1999-09-13
Version: 00 SALE3D calculates three-dimensional fluid flow at all speeds, from the incompressible limit to highly supersonic. An implicit treatment of the pressure calculation similar to that in the Implicit Continuous-fluid Eulerian (ICE) technique provides this flow speed flexibility. In addition, the computing mesh may move with the fluid in a typical Lagrangian fashion, be held in an Eulerian manner, or move in some arbitrarily specified way to provide a continuous rezoning capability. This latitudemore » results from use of an Arbitrary Lagrangian-Eulerian (ALE) treatment of the mesh. The partial differential equations solved are the Navier-Stokes equations and the mass and internal energy equations. The fluid pressure is determined from an equation of state and supplemented with an artificial viscous pressure for the computation of shock waves. The computing mesh consists of a three-dimensional network of arbitrarily shaped, six-sided deformable cells, and a variety of user-selectable boundary conditions are provided in the program.« less
Yield Hardening of Electrorheological Fluids in Channel Flow
NASA Astrophysics Data System (ADS)
Helal, Ahmed; Qian, Bian; McKinley, Gareth H.; Hosoi, A. E.
2016-06-01
Electrorheological fluids offer potential for developing rapidly actuated hydraulic devices where shear forces or pressure-driven flow are present. In this study, the Bingham yield stress of electrorheological fluids with different particle volume fractions is investigated experimentally in wall-driven and pressure-driven flow modes using measurements in a parallel-plate rheometer and a microfluidic channel, respectively. A modified Krieger-Dougherty model can be used to describe the effects of the particle volume fraction on the yield stress and is in good agreement with the viscometric data. However, significant yield hardening in pressure-driven channel flow is observed and attributed to an increase and eventual saturation of the particle volume fraction in the channel. A phenomenological physical model linking the densification and consequent microstructure to the ratio of the particle aggregation time scale compared to the convective time scale is presented and used to predict the enhancement in yield stress in channel flow, enabling us to reconcile discrepancies in the literature between wall-driven and pressure-driven flows.
Fluid dynamics in airway bifurcations: I. Primary flows.
Martonen, T B; Guan, X; Schreck, R M
2001-04-01
The subject of fluid dynamics within human airways is of great importance for the risk assessment of air pollutants (inhalation toxicology) and the targeted delivery of inhaled pharmacologic drugs (aerosol therapy). As cited herein, experimental investigations of flow patterns have been performed on airway models and casts by a number of investigators. We have simulated flow patterns in human lung bifurcations and compared the results with the experimental data of Schreck (1972). The theoretical analyses were performed using a third-party software package, FIDAP, on the Cray T90 supercomputer. This effort is part of a systematic investigation where the effects of inlet conditions, Reynolds numbers, and dimensions and orientations of airways were addressed. This article focuses on primary flows using convective motion and isovelocity contour formats to describe fluid dynamics; subsequent articles in this issue consider secondary currents (Part II) and localized conditions (Part III). The agreement between calculated and measured results, for laminar flows with either parabolic or blunt inlet conditions to the bifurcations, was very good. To our knowledge, this work is the first to present such detailed comparisons of theoretical and experimental flow patterns in airway bifurcations. The agreement suggests that the methodologies can be employed to study factors affecting airflow patterns and particle behavior in human lungs.
Effects of physical properties on thermo-fluids cavitating flows
NASA Astrophysics Data System (ADS)
Chen, T. R.; Wang, G. Y.; Huang, B.; Li, D. Q.; Ma, X. J.; Li, X. L.
2015-12-01
The aims of this paper are to study the thermo-fluid cavitating flows and to evaluate the effects of physical properties on cavitation behaviours. The Favre-averaged Navier-Stokes equations with the energy equation are applied to numerically investigate the liquid nitrogen cavitating flows around a NASA hydrofoil. Meanwhile, the thermodynamic parameter Σ is used to assess the thermodynamic effects on cavitating flows. The results indicate that the thermodynamic effects on the thermo-fluid cavitating flows significantly affect the cavitation behaviours, including pressure and temperature distribution, the variation of physical properties, and cavity structures. The thermodynamic effects can be evaluated by physical properties under the same free-stream conditions. The global sensitivity analysis of liquid nitrogen suggests that ρv, Cl and L significantly influence temperature drop and cavity structure in the existing numerical framework, while pv plays the dominant role when these properties vary with temperature. The liquid viscosity μl slightly affects the flow structure via changing the Reynolds number Re equivalently, however, it hardly affects the temperature distribution.
Optimization of micropillar sequences for fluid flow sculpting
NASA Astrophysics Data System (ADS)
Stoecklein, Daniel; Wu, Chueh-Yu; Kim, Donghyuk; Di Carlo, Dino; Ganapathysubramanian, Baskar
2016-01-01
Inertial fluid flow deformation around pillars in a microchannel is a new method for controlling fluid flow. Sequences of pillars have been shown to produce a rich phase space with a wide variety of flow transformations. Previous work has successfully demonstrated manual design of pillar sequences to achieve desired transformations of the flow cross section, with experimental validation. However, such a method is not ideal for seeking out complex sculpted shapes as the search space quickly becomes too large for efficient manual discovery. We explore fast, automated optimization methods to solve this problem. We formulate the inertial flow physics in microchannels with different micropillar configurations as a set of state transition matrix operations. These state transition matrices are constructed from experimentally validated streamtraces for a fixed channel length per pillar. This facilitates modeling the effect of a sequence of micropillars as nested matrix-matrix products, which have very efficient numerical implementations. With this new forward model, arbitrary micropillar sequences can be rapidly simulated with various inlet configurations, allowing optimization routines quick access to a large search space. We integrate this framework with the genetic algorithm and showcase its applicability by designing micropillar sequences for various useful transformations. We computationally discover micropillar sequences for complex transformations that are substantially shorter than manually designed sequences. We also determine sequences for novel transformations that were difficult to manually design. Finally, we experimentally validate these computational designs by fabricating devices and comparing predictions with the results from confocal microscopy.
A Finite-Time Thermodynamics of Unsteady Fluid Flows
NASA Astrophysics Data System (ADS)
Noack, Bernd R.; Schlegel, Michael; Ahlborn, Boye; Mutschke, Gerd; Morzyński, Marek; Comte, Pierre; Tadmor, Gilead
2008-06-01
Turbulent fluid has often been conceptualized as a transient thermodynamic phase. Here, a finite-time thermodynamics (FTT) formalism is proposed to compute mean flow and fluctuation levels of unsteady incompressible flows. The proposed formalism builds upon the Galerkin model framework, which simplifies a continuum 3D fluid motion into a finite-dimensional phase-space dynamics and, subsequently, into a thermodynamics energy problem. The Galerkin model consists of a velocity field expansion in terms of flow configuration dependent modes and of a dynamical system describing the temporal evolution of the mode coefficients. Each mode is treated as one thermodynamic degree of freedom, characterized by an energy level. The dynamical system approaches local thermal equilibrium (LTE) where each mode has the same energy if it is governed only by internal (triadic) mode interactions. However, in the generic case of unsteady flows, the full system approaches only partial LTE with unequal energy levels due to strongly mode-dependent external interactions. The FTT model is first illustrated by a traveling wave governed by a 1D Burgers equation. It is then applied to two flow benchmarks: the relatively simple laminar vortex shedding, which is dominated by two eigenmodes, and the homogeneous shear turbulence, which has been modeled with 1459 modes.
GEOSIM: A numerical model for geophysical fluid flow simulation
NASA Technical Reports Server (NTRS)
Butler, Karen A.; Miller, Timothy L.; Lu, Huei-Iin
1991-01-01
A numerical model which simulates geophysical fluid flow in a wide range of problems is described in detail, and comparisons of some of the model's results are made with previous experimental and numerical studies. The model is based upon the Boussinesq Navier-Stokes equations in spherical coordinates, which can be reduced to a cylindrical system when latitudinal walls are used near the pole and the ratio of latitudinal length to the radius of the sphere is small. The equations are approximated by finite differences in the meridional plane and spectral decomposition in the azimuthal direction. The user can specify a variety of boundary and initial conditions, and there are five different spectral truncation options. The results of five validation cases are presented: (1) the transition between axisymmetric flow and baroclinic wave flow in the side heated annulus; (2) the steady baroclinic wave of the side heated annulus; (3) the wave amplitude vacillation of the side heated annulus; (4) transition to baroclinic wave flow in a bottom heated annulus; and (5) the Spacelab Geophysical Fluid Flow Cell (spherical) experiment.
Dynamics of a fluid flow on Mars: Lava or mud?
NASA Astrophysics Data System (ADS)
Wilson, Lionel; Mouginis-Mark, Peter J.
2014-05-01
A distinctive flow deposit southwest of Cerberus Fossae on Mars is analyzed. The flow source is a ∼20 m deep, ∼12 × 1.5 km wide depression within a yardang associated with the Medusae Fossae Formation. The flow traveled for ∼40 km following topographic lows to leave a deposit on average 3-4 km wide. The surface morphology of the deposit suggests that it was produced by the emplacement of a fluid flowing in a laminar fashion and possessing a finite yield strength. We use topographic data from a digital elevation model (DEM) to model the dynamics of the motion and infer that the fluid had a Bingham rheology with a plastic viscosity of ∼1 Pa s and a yield strength of ∼185 Pa. Although the low viscosity is consistent with the properties of komatiite-like lava, the combination of values of viscosity and yield strength, as well as the surface morphology of the flow, suggests that this was a mud flow. Comparison with published experimental data implies a solids content close to 60% by volume and a grain size dominated by silt-size particles. Comparison of the ∼1.5 km3 deposit volume with the ∼0.03 km3 volume of the source depression implies that ∼98% of the flow material was derived from depth in the crust. There are similarities between the deposit studied here, which we infer to be mud, and other flow deposits on Mars currently widely held to be lavas. This suggests that a re-appraisal of many of these deposits is now in order.
Fluid flow measurements by means of vibration monitoring
NASA Astrophysics Data System (ADS)
Campagna, Mauro M.; Dinardo, Giuseppe; Fabbiano, Laura; Vacca, Gaetano
2015-11-01
The achievement of accurate fluid flow measurements is fundamental whenever the control and the monitoring of certain physical quantities governing an industrial process are required. In that case, non-intrusive devices are preferable, but these are often more sophisticated and expensive than those which are more common (such as nozzles, diaphrams, Coriolis flowmeters and so on). In this paper, a novel, non-intrusive, simple and inexpensive methodology is presented to measure the fluid flow rate (in a turbulent regime) whose physical principle is based on the acquisition of transversal vibrational signals induced by the fluid itself onto the pipe walls it is flowing through. Such a principle of operation would permit the use of micro-accelerometers capable of acquiring and transmitting the signals, even by means of wireless technology, to a control room for the monitoring of the process under control. A possible application (whose feasibility will be investigated by the authors in a further study) of this introduced technology is related to the employment of a net of micro-accelerometers to be installed on pipeline networks of aqueducts. This apparatus could lead to the faster and easier detection and location of possible leaks of fluid affecting the pipeline network with more affordable costs. The authors, who have previously proven the linear dependency of the acceleration harmonics amplitude on the flow rate, here discuss an experimental analysis of this functional relation with the variation in the physical properties of the pipe in terms of its diameter and constituent material, to find the eventual limits to the practical application of the measurement methodology.
Partitioned fluid-solid coupling for cardiovascular blood flow: left-ventricular fluid mechanics.
Krittian, Sebastian; Janoske, Uwe; Oertel, Herbert; Böhlke, Thomas
2010-04-01
We present a 3D code-coupling approach which has been specialized towards cardiovascular blood flow. For the first time, the prescribed geometry movement of the cardiovascular flow model KaHMo (Karlsruhe Heart Model) has been replaced by a myocardial composite model. Deformation is driven by fluid forces and myocardial response, i.e., both its contractile and constitutive behavior. Whereas the arbitrary Lagrangian-Eulerian formulation (ALE) of the Navier-Stokes equations is discretized by finite volumes (FVM), the solid mechanical finite elasticity equations are discretized by a finite element (FEM) approach. Taking advantage of specialized numerical solution strategies for non-matching fluid and solid domain meshes, an iterative data-exchange guarantees the interface equilibrium of the underlying governing equations. The focus of this work is on left-ventricular fluid-structure interaction based on patient-specific magnetic resonance imaging datasets. Multi-physical phenomena are described by temporal visualization and characteristic FSI numbers. The results gained show flow patterns that are in good agreement with previous observations. A deeper understanding of cavity deformation, blood flow, and their vital interaction can help to improve surgical treatment and clinical therapy planning.
Cerebrospinal fluid flow dynamics in the central nervous system.
Sweetman, Brian; Linninger, Andreas A
2011-01-01
Cine-phase-contrast-MRI was used to measure the three-dimensional cerebrospinal fluid (CSF) flow field inside the central nervous system (CNS) of a healthy subject. Image reconstruction and grid generation tools were then used to develop a three-dimensional fluid-structure interaction model of the CSF flow inside the CNS. The CSF spaces were discretized using the finite-element method and the constitutive equations for fluid and solid motion solved in ADINA-FSI 8.6. Model predictions of CSF velocity magnitude and stroke volume were found to be in excellent agreement with the experimental data. CSF pressure gradients and amplitudes were computed in all regions of the CNS. The computed pressure gradients and amplitudes closely match values obtained clinically. The highest pressure amplitude of 77 Pa was predicted to occur in the lateral ventricles. The pressure gradient between the lateral ventricles and the lumbar region of the spinal canal did not exceed 132 Pa (~1 mmHg) at any time during the cardiac cycle. The pressure wave speed in the spinal canal was predicted and found to agree closely with values previously reported in the literature. Finally, the forward and backward motion of the CSF in the ventricles was visualized, revealing the complex mixing patterns in the CSF spaces. The mathematical model presented in this article is a prerequisite for developing a mechanistic understanding of the relationships among vasculature pulsations, CSF flow, and CSF pressure waves in the CNS.
Erosion of a granular bed by laminar fluid flow
NASA Astrophysics Data System (ADS)
Orpe, Ashish; Lobovsky, Alex; Molloy, Ryan; Kudrolli, Arshad; Rothman, Daniel
2007-03-01
Motivated by examples of erosive incision of channels in sand, we investigate the motion of individual grains in a granular bed as a function of fluid flow rate to give us new insight concerning the relationship between hydrodynamic stress and surficial granular flow. A closed channel of rectangular cross section is partially filled with glass beads and a fluid and a constant flux Q is circulated through the channel. The fluid has same refractive index as the glass beads and is illuminated with a laser sheet away from the sidewalls. The bed erodes quadratically in time to a height hc which depends on Q. The Shields criterion, which is proportional to the ratio of the viscous shear stress and gravitational normal stress, describes the observed hc√Q when a height offset of approximately half a grain diameter is introduced. The offset can be interpreted as arising due to differences between the flow near a porous boundary and a smooth wall. Introducing this offset in the estimation of the shear stress yields a grain flux qx in the bed load regime proportional to (τ- τc)^2, where τ is the non-dimensional shear stress, and τc corresponds to the Shields criteria.
Oscillatory fluid flow influences primary cilia and microtubule mechanics.
Espinha, Lina C; Hoey, David A; Fernandes, Paulo R; Rodrigues, Hélder C; Jacobs, Christopher R
2014-07-01
Many tissues are sensitive to mechanical stimuli; however, the mechanotransduction mechanism used by cells remains unknown in many cases. The primary cilium is a solitary, immotile microtubule-based extension present on nearly every mammalian cell which extends from the basal body. The cilium is a mechanosensitive organelle and has been shown to transduce fluid flow-induced shear stress in tissues, such as the kidney and bone. The majority of microtubules assemble from the mother centriole (basal body), contributing significantly to the anchoring of the primary cilium. Several studies have attempted to quantify the number of microtubules emanating from the basal body and the results vary depending on the cell type. It has also been shown that cellular response to shear stress depends on microtubular integrity. This study hypothesizes that changing the microtubule attachment of primary cilia in response to a mechanical stimulus could change primary cilia mechanics and, possibly, mechanosensitivity. Oscillatory fluid flow was applied to two different cell types and the microtubule attachment to the ciliary base was quantified. For the first time, an increase in microtubules around primary cilia both with time and shear rate in response to oscillatory fluid flow stimulation was demonstrated. Moreover, it is presented that the primary cilium is required for this loading-induced cellular response. This study has demonstrated a new role for the cilium in regulating alterations in the cytoplasmic microtubule network in response to mechanical stimulation, and therefore provides a new insight into how cilia may regulate its mechanics and thus the cells mechanosensitivity.
Interfacial instabilities in a stratified flow of two superposed fluids
NASA Astrophysics Data System (ADS)
Schaflinger, Uwe
1994-06-01
Here we shall present a linear stability analysis of a laminar, stratified flow of two superposed fluids which are a clear liquid and a suspension of solid particles. The investigation is based upon the assumption that the concentration remains constant within the suspension layer. Even for moderate flow-rates the base-state results for a shear induced resuspension flow justify the latter assumption. The numerical solutions display the existence of two different branches that contribute to convective instability: long and short waves which coexist in a certain range of parameters. Also, a range exists where the flow is absolutely unstable. That means a convectively unstable resuspension flow can be only observed for Reynolds numbers larger than a lower, critical Reynolds number but still smaller than a second critical Reynolds number. For flow rates which give rise to a Reynolds number larger than the second critical Reynolds number, the flow is absolutely unstable. In some cases, however, there exists a third bound beyond that the flow is convectively unstable again. Experiments show the same phenomena: for small flow-rates short waves were usually observed but occasionally also the coexistence of short and long waves. These findings are qualitatively in good agreement with the linear stability analysis. Larger flow-rates in the range of the second critical Reynolds number yield strong interfacial waves with wave breaking and detached particles. In this range, the measured flow-parameters, like the resuspension height and the pressure drop are far beyond the theoretical results. Evidently, a further increase of the Reynolds number indicates the transition to a less wavy interface. Finally, the linear stability analysis also predicts interfacial waves in the case of relatively small suspension heights. These results are in accordance with measurements for ripple-type instabilities as they occur under laminar and viscous conditions for a mono-layer of particles.
Nanoscale transient porosity controls large-scale metamorphic fluid flow
NASA Astrophysics Data System (ADS)
Plümper, Oliver; Botan, Alexandru; Los, Catharina; Malthe-Sørenssen, Anders; Jamtveit, Bjørn
2016-04-01
The reaction of fluids with rocks is fundamental for Earth's dynamics as they facilitate heat/mass transfer and induce volume changes, weaknesses and instabilities in rock masses that localize deformation enabling tectonic responses to plate motion. During these fluid-rock interactions it is the ability of a rock to transmit fluid, its permeability, that controls the rates of metamorphic reactions. However, although some geological environments (e.g., sediments) are open to fluids, the majority of solid rocks (e.g., granites, elcogites, peridotites, etc.) are nearly impermeable. Surprisingly though, even in rocks that are nominally impermeable widespread fluid-rock interactions are observed leading to the question: How can fluids migrate through vast amounts of nominally impermeable rocks? Here we investigate one of the most wide-spread fluid-mediated metamorphic processes in the Earth's crust, the albitization of feldspatic rocks. We show that fluid flow and element mobilization during albitization is controlled by an interaction between grain boundary diffusion and reaction front migration through an interface-coupled dissolution-precipitation process. Using a combination of focused ion beam scanning electron microscopy (FIB-SEM)-assisted nanotomography combined with transmission electron microscopy (TEM) reveals that the porosity is dictated by pore channels with a pore diameter ranging between 10 to 100 nm. Three-dimensional visualization of the feldspar pore network reveals that the pore channels must have been connected during the replacement reaction. Analysis of the pore aspect ratios suggests that a Rayleigh-Taylor-type instability associated to surface energy minimization caused the disconnection of the pore channels. Fluid transport in nanometer-sized objects with at least one characteristic dimension below 100 nm enables the occurrence of physical phenomena that are impossible at bigger length scales. Thus, on the basis of our microstructural
NASA Astrophysics Data System (ADS)
Alligné, S.; Decaix, J.; Nicolet, C.; Avellan, F.; Münch, C.
2015-12-01
The 1D modelling of cavitation vortex rope dynamics in Francis turbine draft tube is decisive for prediction of pressure fluctuations in the system. However, models are defined with parameters which values must be quantified either experimentally or numerically. In this paper a methodology based on CFD simulations is setup to identify these parameters by exciting the flow through outlet boundary condition. A simplified test case is considered to assess if 1D cavitation model parameters can be identified from CFD simulations. It is shown that a low wave speed and a second viscosity due to the cavitating flow can be identified.
Traveling hairpin-shaped fluid vortices in plane Couette flow
NASA Astrophysics Data System (ADS)
Deguchi, K.; Nagata, M.
2010-11-01
Traveling-wave solutions are discovered in plane Couette flow. They are obtained when the so-called steady hairpin vortex state found recently by Gibson [J. Fluid Mech. 638, 243 (2009)]10.1017/S0022112009990863 and Itano and Generalis [Phys. Rev. Lett. 102, 114501 (2009)]10.1103/PhysRevLett.102.114501 is continued to sliding Couette flow geometry between two concentric cylinders by using the radius ratio as a homotopy parameter. It turns out that in the plane Couette flow geometry two traveling waves having the phase velocities with opposite signs are associated with their appearance from the steady hairpin vortex state, where the amplitude of the phase velocities increases gradually from zero as the Reynolds number is increased. The solutions obviously inherit the streaky structure of the hairpin vortex state, but shape preserving flow patterns propagate in the streamwise direction. Other striking features of the solution are asymmetric mean flow profiles and strong quasistreamwise vortices which occupy the vicinity of only the top or bottom moving boundary, depending on the sign of the phase velocity. Furthermore, we find that the pitchfork bifurcation associated with the appearance of the solution becomes imperfect when the flow is perturbed by a Poiseuille flow component.
Parallel Plate Flow of a Third-Grade Fluid and a Newtonian Fluid With Variable Viscosity
NASA Astrophysics Data System (ADS)
Yıldız, Volkan; Pakdemirli, Mehmet; Aksoy, Yiğit
2016-07-01
Steady-state parallel plate flow of a third-grade fluid and a Newtonian fluid with temperature-dependent viscosity is considered. Approximate analytical solutions are constructed using the newly developed perturbation-iteration algorithms. Two different perturbation-iteration algorithms are used. The velocity and temperature profiles obtained by the iteration algorithms are contrasted with the numerical solutions as well as with the regular perturbation solutions. It is found that the perturbation-iteration solutions converge better to the numerical solutions than the regular perturbation solutions, in particular when the validity criteria of the regular perturbation solution are not satisfied. The new analytical approach produces promising results in solving complex fluid problems.
Lymphatic vessel development: fluid flow and valve-forming cells.
Kume, Tsutomu
2015-08-01
Hemodynamic forces regulate many aspects of blood vessel disease and development, including susceptibility to atherosclerosis and remodeling of primary blood vessels into a mature vascular network. Vessels of the lymphatic circulatory system are also subjected to fluid flow-associated forces, but the molecular and cellular mechanisms by which these forces regulate the formation and maintenance of lymphatic vessels remain largely uncharacterized. This issue of the JCI includes two articles that begin to address how fluid flow influences lymphatic vessel development and function. Sweet et al. demonstrate that lymph flow is essential for the remodeling of primary lymphatic vessels, for ensuring the proper distribution of smooth muscle cells (SMCs), and for the development and maturation of lymphatic valves. Kazenwadel et al. show that flow-induced lymphatic valve development is initiated by the upregulation of GATA2, which has been linked to lymphedema in patients with Emberger syndrome. Together, these observations and future studies inspired by these results have potential to lead to the development of strategies for the treatment of lymphatic disorders.
Vortical Flows Research Program of the Fluid Dynamics Research Branch
NASA Technical Reports Server (NTRS)
1986-01-01
The research interests of the staff of the Fluid Dynamics Research Branch in the general area of vortex flows are summarized. A major factor in the development of enchanced maneuverability and reduced drag by aerodynamic means is the use of effective vortex control devices. The key to control is the use of emerging computational tools for predicting viscous fluid flow in close coordination with fundamental experiments. In fact, the extremely complex flow fields resulting from numerical solutions to boundary value problems based on the Navier-Stokes equations requires an intimate relationship between computation and experiment. The field of vortex flows is important in so many practical areas that a concerted effort in this area is justified. A brief background of the research activity undertaken is presented, including a proposed classification of the research areas. The classification makes a distinction between issues related to vortex formation and structure, and work on vortex interactions and evolution. Examples of current research results are provided, along with references where available. Based upon the current status of research and planning, speculation on future research directions of the group is also given.
The numerical methods for the fluid flow of UCMCWS
Zhang Wenfu; Li Hui; Zhu Shuquan; Wang Zuna
1997-12-31
As an alternative for diesel oil for internal combustion engines, the fluid flow state of Ultra Clean Micronized Coal-Water Slurry (UCMCWS) in mini pipe and nozzle of a diesel engine must be known. In the laboratory three kinds of UCMCWS have been made with coal containing less than 0.8% ash, viscosity less than 600 mPa.s and concentration between 50% and 56%. Because the UCMCWS is a non-Newtonian fluid, there are no analytical resolution for pipe flow, especially in inlet and outlet sections. In this case using the numerical methods to research the flow state of UCMCWS is a useful method. Using the method of finite element, the flow state of UCMCWS in inlet and outlet sections (similar to a nozzle) have been studied. The distribution of velocity at different pressures of UCMCWS in outlet and inlet sections have been obtained. The result of the numerical methods is the efficient base for the pipe and nozzle design.
Human red blood cells deformed under thermal fluid flow.
Foo, Ji-Jinn; Chan, Vincent; Feng, Zhi-Qin; Liu, Kuo-Kang
2006-03-01
The flow-induced mechanical deformation of a human red blood cell (RBC) during thermal transition between room temperature and 42.0 degrees C is interrogated by laser tweezer experiments. Based on the experimental geometry of the deformed RBC, the surface stresses are determined with the aid of computational fluid dynamics simulation. It is found that the RBC is more deformable while heating through 37.0 degrees C to 42.0 degrees C, especially at a higher flow velocity due to a thermal-fluid effect. More importantly, the degree of RBC deformation is irreversible and becomes softer, and finally reaches a plateau (at a uniform flow velocity U > 60 microm s(-1)) after the heat treatment, which is similar to a strain-hardening dominated process. In addition, computational simulated stress is found to be dependent on the progression of thermotropic phase transition. Overall, the current study provides new insights into the highly coupled temperature and hydrodynamic effects on the biomechanical properties of human erythrocyte in a model hydrodynamic flow system.
NASA Astrophysics Data System (ADS)
Zhao, Dongmiao; Tang, Jun; Wu, Xiuguang; Lin, Changning; Liu, Lijun; Chen, Jian
2016-05-01
A 2D vertical (2DV) numerical model, without σ-coordinate transformation in the vertical direction, is developed for the simulation of fl ow and sediment transport in open channels. In the model, time-averaged Reynolds equations are closed by the k-ɛ nonlinear turbulence model. The modifi ed Youngs-VOF method is introduced to capture free surface dynamics, and the free surface slope is simulated using the ELVIRA method. Based on the power-law scheme, the k-ɛ model and the suspended-load transport model are solved numerically with an implicit scheme applied in the vertical plane and an explicit scheme applied in the horizontal plane. Bedload transport is modeled using the Euler-WENO scheme, and the grid-closing skill is adopted to deal with the moving channel bed boundary. Verifi cation of the model using laboratory data shows that the model is able to adequately simulate fl ow and sediment transport in open channels, and is a good starting point for the study of sediment transport dynamics in strong nonlinear fl ow scenarios.
NASA Astrophysics Data System (ADS)
Buizert, Christo; Petrenko, Vasilii V.; Kavanaugh, Jeffrey L.; Cuffey, Kurt M.; Lifton, Nathaniel A.; Brook, Edward J.; Severinghaus, Jeffrey P.
2012-06-01
Radiocarbon measurements at ice margin sites and blue ice areas can potentially be used for ice dating, ablation rate estimates and paleoclimatic reconstructions. Part of the measured signal comes from in situ cosmogenic 14C production in ice, and this component must be well understood before useful information can be extracted from 14C data. We combine cosmic ray scaling and production estimates with a two-dimensional ice flow line model to study cosmogenic 14C production at Taylor Glacier, Antarctica. We find (1) that 14C production through thermal neutron capture by nitrogen in air bubbles is negligible; (2) that including ice flow patterns caused by basal topography can lead to a surface 14C activity that differs by up to 25% from the activity calculated using an ablation-only approximation, which is used in all prior work; and (3) that at high ablation margin sites, solar modulation of the cosmic ray flux may change the strength of the dominant spallogenic production by up to 10%. As part of this effort we model two-dimensional ice flow along the central flow line of Taylor Glacier. We present two methods for parameterizing vertical strain rates, and assess which method is more reliable for Taylor Glacier. Finally, we present a sensitivity study from which we conclude that uncertainties in published cosmogenic production rates are the largest source of potential error. The results presented here can inform ongoing and future 14C and ice flow studies at ice margin sites, including important paleoclimatic applications such as the reconstruction of paleoatmospheric 14C content of methane.
Schaffranek, Raymond W.
2004-01-01
A numerical model for simulation of surface-water integrated flow and transport in two (horizontal-space) dimensions is documented. The model solves vertically integrated forms of the equations of mass and momentum conservation and solute transport equations for heat, salt, and constituent fluxes. An equation of state for salt balance directly couples solution of the hydrodynamic and transport equations to account for the horizontal density gradient effects of salt concentrations on flow. The model can be used to simulate the hydrodynamics, transport, and water quality of well-mixed bodies of water, such as estuaries, coastal seas, harbors, lakes, rivers, and inland waterways. The finite-difference model can be applied to geographical areas bounded by any combination of closed land or open water boundaries. The simulation program accounts for sources of internal discharges (such as tributary rivers or hydraulic outfalls), tidal flats, islands, dams, and movable flow barriers or sluices. Water-quality computations can treat reactive and (or) conservative constituents simultaneously. Input requirements include bathymetric and topographic data defining land-surface elevations, time-varying water level or flow conditions at open boundaries, and hydraulic coefficients. Optional input includes the geometry of hydraulic barriers and constituent concentrations at open boundaries. Time-dependent water level, flow, and constituent-concentration data are required for model calibration and verification. Model output consists of printed reports and digital files of numerical results in forms suitable for postprocessing by graphical software programs and (or) scientific visualization packages. The model is compatible with most mainframe, workstation, mini- and micro-computer operating systems and FORTRAN compilers. This report defines the mathematical formulation and computational features of the model, explains the solution technique and related model constraints, describes the
NASA Astrophysics Data System (ADS)
Huang, Brendan K.; Zhou, Kevin C.; Gamm, Ute A.; Bhandari, Vineet; Khokha, Mustafa K.; Choma, Michael A.
2016-03-01
One critical barrier to the robust study of cilia-driven fluid flow in developmental biology is a lack of methods for acquiring three-dimensional (3D) images of three vector component (3C) measurements of flow velocities. A 3D3C map of cilia-driven fluid flow quantifies the flow speed along three axes (e.g. three Cartesian vector components v_x, v_y, v_z) at each point in 3D space. 3D3C quantification is important because cilia-driven fluid flow is not amenable to simplifying assumptions (e.g. parabolic flow profile. Such quantification may enable systematically detailed characterization of performance using shear force and power dissipation metrics derived from 3D3C flow velocity fields. We report our OCT-based results in developing methods for the 3D3C quantification of cilia-driven flow fields. First, we used custom scan protocols and reconstruction algorithms to synthesize 3D3C flow velocity fields from 2D2C fields generated using correlation-based methods (directional dynamic light scattering and digital particle image velocimetry). Xenopus results include flow driven by ciliated embryo skin and flow driven by ciliated ependymal cells in developing brain ventricles. Second, we developed a new approach to particle tracking velocimetry that generates 2D2.5C (2.5C: v_x,|v_y|,v_z) velocity fields from single-plane 2D image acquisitions. We demonstrated this particle streak velocimetry method in calibrated flow phantoms and in flow driven by ciliated Xenopus embryo skin. Additionally, we have preliminary results extending particle streak velocimetry to 3D3C in calibrated flow phantoms with ongoing work in Xenopus embryos.
Advanced numerics for multi-dimensional fluid flow calculations
Vanka, S.P.
1984-04-01
In recent years, there has been a growing interest in the development and use of mathematical models for the simulation of fluid flow, heat transfer and combustion processes in engineering equipment. The equations representing the multi-dimensional transport of mass, momenta and species are numerically solved by finite-difference or finite-element techniques. However despite the multiude of differencing schemes and solution algorithms, and the advancement of computing power, the calculation of multi-dimensional flows, especially three-dimensional flows, remains a mammoth task. The following discussion is concerned with the author's recent work on the construction of accurate discretization schemes for the partial derivatives, and the efficient solution of the set of nonlinear algebraic equations resulting after discretization. The present work has been jointly supported by the Ramjet Engine Division of the Wright Patterson Air Force Base, Ohio, and the NASA Lewis Research Center.
Advanced numerics for multi-dimensional fluid flow calculations
NASA Technical Reports Server (NTRS)
Vanka, S. P.
1984-01-01
In recent years, there has been a growing interest in the development and use of mathematical models for the simulation of fluid flow, heat transfer and combustion processes in engineering equipment. The equations representing the multi-dimensional transport of mass, momenta and species are numerically solved by finite-difference or finite-element techniques. However despite the multiude of differencing schemes and solution algorithms, and the advancement of computing power, the calculation of multi-dimensional flows, especially three-dimensional flows, remains a mammoth task. The following discussion is concerned with the author's recent work on the construction of accurate discretization schemes for the partial derivatives, and the efficient solution of the set of nonlinear algebraic equations resulting after discretization. The present work has been jointly supported by the Ramjet Engine Division of the Wright Patterson Air Force Base, Ohio, and the NASA Lewis Research Center.
Flow behaviour of negatively buoyant jets in immiscible ambient fluid
NASA Astrophysics Data System (ADS)
Geyer, A.; Phillips, J. C.; Mier-Torrecilla, M.; Idelsohn, S. R.; Oñate, E.
2012-01-01
In this paper we investigate experimentally the injection of a negatively buoyant jet into a homogenous immiscible ambient fluid. Experiments are carried out by injecting a jet of dyed fresh water through a nozzle in the base of a cylindrical tank containing rapeseed oil. The fountain inlet flow rate and nozzle diameter were varied to cover a wide range of Richardson Ri (8 × 10-4 < Ri < 1.98), Reynolds Re (467 < Re < 5,928) and Weber We (2.40 < We < 308.56) numbers. Based on the Re, Ri and We values for the experiments, we have determined a regime map to define how these values may control the occurrence of the observed flow types. Whereas Ri plays a stronger role when determining the maximum penetration height, the effect of the Reynolds number is stronger predicting the flow behaviour for a specific nozzle diameter and injection velocity.
Local mesh refinement for incompressible fluid flow with free surfaces
Terasaka, H.; Kajiwara, H.; Ogura, K.
1995-09-01
A new local mesh refinement (LMR) technique has been developed and applied to incompressible fluid flows with free surface boundaries. The LMR method embeds patches of fine grid in arbitrary regions of interest. Hence, more accurate solutions can be obtained with a lower number of computational cells. This method is very suitable for the simulation of free surface movements because free surface flow problems generally require a finer computational grid to obtain adequate results. By using this technique, one can place finer grids only near the surfaces, and therefore greatly reduce the total number of cells and computational costs. This paper introduces LMR3D, a three-dimensional incompressible flow analysis code. Numerical examples calculated with the code demonstrate well the advantages of the LMR method.
Fluid mechanics relevant to flow through pretreatment of cellulosic biomass.
Archambault-Léger, Véronique; Lynd, Lee R
2014-04-01
The present study investigates fluid mechanical properties of cellulosic feedstocks relevant to flow through (FT) pretreatment for biological conversion of cellulosic biomass. The results inform identifying conditions for which FT pretreatment can be implemented in a practical context. Measurements of pressure drop across packed beds, viscous compaction and water absorption are reported for milled and not milled sugarcane bagasse, switchgrass and poplar, and important factors impacting viscous flow are deduced. Using biomass knife-milled to pass through a 2mm sieve, the observed pressure drop was highest for bagasse, intermediate for switchgrass and lowest for poplar. The highest pressure drop was associated with the presence of more fine particles, greater viscous compaction and the degree of water absorption. Using bagasse without particle size reduction, the instability of the reactor during pretreatment above 140kg/m(3) sets an upper bound on the allowable concentration for continuous stable flow.
Fluid Flow Prediction with Development System Interwell Connectivity Influence
NASA Astrophysics Data System (ADS)
Bolshakov, M.; Deeva, T.; Pustovskikh, A.
2016-03-01
In this paper interwell connectivity has been studied. First of all, literature review of existing methods was made which is divided into three groups: Statistically-Based Methods, Material (fluid) Propagation-Based Methods and Potential (pressure) Change Propagation-Based Method. The disadvantages of the first and second groups are as follows: methods do not involve fluid flow through porous media, ignore any changes of well conditions (BHP, skin factor, etc.). The last group considers changes of well conditions and fluid flow through porous media. In this work Capacitance method (CM) has been chosen for research. This method is based on material balance and uses weight coefficients lambdas to assess well influence. In the next step synthetic model was created for examining CM. This model consists of an injection well and a production well. CM gave good results, it means that flow rates which were calculated by analytical method (CM) show matching with flow rate in model. Further new synthetic model was created which includes six production and one injection wells. This model represents seven-spot pattern. To obtain lambdas weight coefficients, the delta function was entered using by minimization algorithm. Also synthetic model which has three injectors and thirteen producer wells was created. This model simulates seven-spot pattern production system. Finally Capacitance method (CM) has been adjusted on real data of oil Field Ω. In this case CM does not give enough satisfying results in terms of field data liquid rate. In conclusion, recommendations to simplify CM calculations were given. Field Ω is assumed to have one injection and one production wells. In this case, satisfying results for production rates and cumulative production were obtained.
NASA Technical Reports Server (NTRS)
Olsen, George C.; Nowak, Robert J.; Holden, Michael S.; Baker, N. R.
1990-01-01
An experimental program was conducted to establish some design parameters important to a supersonic film cooling system in a scramjet engine. A simple non-combusting two-dimensional flow configuration was used to isolate the film cooling phenomena. Parameters investigated include coolant delivery pressure, slot height and lip thickness, and incident shock location and strength. Design guidelines for use in engineering and trade studies are presented.
2D dual permeability modeling of flow and transport in a two-scale structured lignitic mine soil
NASA Astrophysics Data System (ADS)
Dusek, J.; Gerke, H. H.; Vogel, T.; Maurer, T.; Buczko, U.
2009-04-01
Two-dimensional single- and dual-permeability simulations are used to analyze water and solute fluxes in heterogeneous lignitic mine soil at a forest-reclaimed mine spoil heap. The soil heterogeneity on this experimental site "Bärenbrücker Höhe" resulted from inclined dumping structures and sediment mixtures that consist of sand with lignitic dust and embedded lignitic fragments. Observations on undisturbed field suction-cell lysimeters including tracer experiments revealed funneling-type preferential flow with lateral water and bromide movement along inclined sediment structures. The spatial distribution of soil structures and fragment distributions was acquired by a digital camera and identified by a supervised classification of the digital profile image. First, a classical single-domain modeling approach was used, with spatially variable scaling factors inferred from image analyses. In the next step, a two-continuum scenario was constructed to examine additional effects of nonequilibrium on the flow regime. The scaling factors used for the preferential flow domain are here obtained from the gradient of the grayscale images. So far, the single domain scenarios failed to predict the bromide leaching patterns although water effluent could be described. Dual-permeability model allows the incorporation of structural effects and can be used as a tool to further testing other approaches that account for structure effects. The numerical study suggests that additional experiments are required to obtain better understanding of the highly complex transport processes on this experimental site.
Multi-GPU unsteady 2D flow simulation coupled with a state-to-state chemical kinetics
NASA Astrophysics Data System (ADS)
Tuttafesta, Michele; Pascazio, Giuseppe; Colonna, Gianpiero
2016-10-01
In this work we are presenting a GPU version of a CFD code for high enthalpy reacting flow, using the state-to-state approach. In supersonic and hypersonic flows, thermal and chemical non-equilibrium is one of the fundamental aspects that must be taken into account for the accurate characterization of the plasma and state-to-state kinetics is the most accurate approach used for this kind of problems. This model consists in writing a continuity equation for the population of each vibrational level of the molecules in the mixture, determining at the same time the species densities and the distribution of the population in internal levels. An explicit scheme is employed here to integrate the governing equations, so as to exploit the GPU structure and obtain an efficient algorithm. The best performances are obtained for reacting flows in state-to-state approach, reaching speedups of the order of 100, thanks to the use of an operator splitting scheme for the kinetics equations.
Capillary Corner Flows With Partial and Nonwetting Fluids
NASA Technical Reports Server (NTRS)
Bolleddula, D. A.; Weislogel, M. M.
2009-01-01
Capillary flow in containers or conduits with interior corners are common place in nature and industry. The majority of investigations addressing such flows solve the problem numerically in terms of a friction factor for flows along corners with contact angles below the Concus-Finn critical wetting condition for the particular conduit geometry of interest. This research effort provides missing numerical data for the flow resistance function F(sub i) for partially and nonwetting systems above the Concus-Finn condition. In such cases the fluid spontaneously de-wets the interior corner and often retracts into corner-bound drops. A banded numerical coefficient is desirable for further analysis and is achieved by careful selection of length scales x(sub s) and y(sub s) to nondimensionalize the problem. The optimal scaling is found to be identical to the wetting scaling, namely x(sub s) = H and y(sub s) = Htan (alpha), where H is the height from the corner to the free surface and a is the corner half-angle. Employing this scaling produces a relatively weakly varying flow resistance F(sub i) and for subsequent analyses is treated as a constant. Example solutions to steady and transient flow problems are provided that illustrate applications of this result.
Flow Characteristics of Distinctly Viscous Multilayered Intestinal Fluid Motion
Pandey, S. K.; Chaube, M. K.; Tripathi, Dharmendra
2015-01-01
The goal of this investigation is to study the three layered (core layer, intermediate layer, and peripheral layer) tubular flow of power law fluids with variable viscosity by peristalsis in order to investigate the strength of the role played by an artificially generated intermediate layer to ease constipation. The solution is carried out under the long wavelength and low Reynolds number approximations in the wave frame of reference as the flow is creeping one. The stream functions for each layer such as core layer, intermediate layer, and peripheral layer are determined. The expressions for axial pressure gradient, interfaces, trapping, and reflux limits are obtained. The effects of power law index and viscosities on pressure across one wavelength, mechanical efficiency, and trapping are discussed numerically. It is found that the pressure required to restrain flow rates and the mechanical efficiency increase with the viscosities of the intermediate and peripheral layers as well as with the flow behaviour index. It is observed that the axisymmetric flow in intestines is less prone to constipation than two-dimensional flow and may be more easily overcome with introducing a viscous intermediate layer. PMID:27041980
Constructive interference in arrays of energy harvesters in fluid flows
NASA Astrophysics Data System (ADS)
Azadeh Ranjbar, Vahid; Goushcha, Oleg; Elvin, Niell; Andreopoulos, Yiannis
2014-11-01
In the present work we demonstrate some unique opportunities which exist to increase the power harvested with fluidic piezoelectric generators by almost two orders of magnitude higher than existing methods by exploiting dynamic non-linearities and deploying multi-element arrays in carefully selected positions in a fluid flow field. These ac-coupled generators convert fluid kinetic energy, which otherwise would be wasted, into electrical energy. The available power in a flowing fluid is proportional to the cube of its velocity and if it is properly harvested can be used for continuously powering very small electronic devices or can be rectified and stored for intermittent use. Additional experimental work has shown that non-linear arrays of such energy harvesters can produce high output voltages in a very broadband range of frequencies. In our work, we investigate the effect of geometric parameters such as spatial arrangement and the mutual interference between the elements of a non-linear array on their overall performance and efficiency characteristics. Analytical tools based on the non-linear van der Pol oscillator have been also developed and verified with experimental data. Work supported by National Science Foundation under Grant No. CBET #1033117.
Fluid flow in nanopores: An examination of hydrodynamic boundary conditions
NASA Astrophysics Data System (ADS)
Sokhan, V. P.; Nicholson, D.; Quirke, N.
2001-08-01
Steady-state Poiseuille flow of a simple fluid in carbon slit pores under a gravity-like force is simulated using a realistic empirical many-body potential model for carbon. In this work we focus on the small Knudsen number regime, where the macroscopic equations are applicable, and simulate different wetting conditions by varying the strength of fluid-wall interactions. We show that fluid flow in a carbon pore is characterized by a large slip length even in the strongly wetting case, contrary to the predictions of Tolstoi's theory. When the surface density of wall atoms is reduced to values typical of a van der Waals solid, the streaming velocity profile vanishes at the wall, in accordance with earlier findings. From the velocity profiles we have calculated the slip length and by analyzing temporal profiles of the velocity components of particles colliding with the wall we obtained values of the Maxwell coefficient defining the fraction of molecules thermalized by the wall.
Stability of layered channel flow of magnetic fluids
NASA Astrophysics Data System (ADS)
Yecko, Philip
2009-03-01
The stability of a sheared interface separating a viscous magnetic fluid (ferrofluid) and an ordinary viscous fluid is examined for arbitrary wavelength disturbances using three dimensional linear perturbation theory. The unperturbed state corresponds to a two-layer Poiseuille profile in which a uniform magnetic field of arbitrary orientation is imposed. Coupling between the field and fluid occurs via the magnetic Maxwell stress tensor, formulated here for nonlinear magnetic material, expanding the scope of previous studies of linear media. Neutral curves and stability characteristics at low Reynolds number are presented and analyzed, and are found to depend sensitively on the linear and nonlinear magnetic properties of the material. The stability properties of the flow are shaped by a small set of the least stable modes of the spectrum, a result that evades single mode or potential flow analyses. The gravest modes can be of different character, resembling either interfacial or shear modes, modified by magnetic effects. The commonly cited ferrofluid interface properties of "stabilization by a tangential field" and "destabilization by a normal field" are shown to be invalid here, although the origins of these features can be identified within this problem.
Deformation and fluid flow in the Huab Basin and Etendeka Plateau, NW Namibia
NASA Astrophysics Data System (ADS)
Salomon, Eric; Koehn, Daniel; Passchier, Cees; Chung, Peter; Häger, Tobias; Salvona, Aron; Davis, Jennifer
2016-07-01
The Lower Cretaceous Twyfelfontein sandstone formation in the Huab Basin in NW Namibia shows the effects of volcanic activity on a potential reservoir rock. The formation was covered by the Paraná-Etendeka Large Igneous Province shortly before or during the onset of South-Atlantic rifting. Deformation bands found in the sandstone trend mostly parallel to the continental passive margin and must have formed during the extrusion of the overlying volcanic rocks, indicating that their formation is related to South-Atlantic rifting. 2D-image porosity analysis of deformation bands reveals significant porosity reduction from host rock to band of up to 70%. Cementation of the sandstone, linked to advective hydrothermal flow during volcanic activity, contributes an equal amount to porosity reduction from host rock to band when compared to initial grain crushing. Veins within the basaltic cover provide evidence for hot fluid percolation, indicated by spallation of wall rock and colloform quartz growth, and for a later low-temperature fluid circulation at low pressures indicated by stilbite growth sealing cavities. Sandstone samples and veins in the overlying volcanic rocks show that diagenesis of the Twyfelfontein sandstone is linked to Atlantic rifting and was affected by both hydrothermal and low-thermal fluid circulation.
Dating fluid flow in developing passive margins using low-temperature thermochronology
NASA Astrophysics Data System (ADS)
Gleadow, A. J.; Seiler, C.; Kohn, B. P.
2012-12-01
Despite the importance of fluid flow for mass flux and remobilisation in the Earth's crust, the age of past fluid flow events is often difficult to determine, particularly in the low-temperature environment of the shallow crust. This is partly because mineral phases precipitated by low-temperature fluids are either lacking or not very easy to date. Low-temperature thermochronometers such as apatite fission track (AFT) and (U-Th)/He (AHe) systems are, in theory, ideally suited to investigate the temperature interval of hydrothermal fluids near the Earth's surface and could be used to date fluid flow in the shallow crust. In passive margins, however, rift-related faulting, exhumation and post-breakup erosion often result in a much stronger regional cooling signal that relates to tectonic events rather than fluid flow. Moreover, the response of low-temperature thermochronometers to transient and potentially short-lived thermal events associated with hydrothermal fluids has not been studied systematically and is poorly known. In this study, we report AFT and AHe results from two young, regionally important faults that were active at different stages of passive margin evolution in the Gulf of California rift system. In the first case, we investigate the thermal history of the Libertad fault in central Baja California, which represents the breakaway fault for Late Miocene to recent rifting. Regional background AFT and AHe ages range between ~60-35Ma, they predate rifting and are likely associated with steady erosional unroofing of the basement. In contrast, a closely spaced 3D grid of samples from the Libertad escarpment records a distinct Late Miocene thermal event at ~9-8Ma that can be traced several kilometres along the base and a few hundred metres up the escarpment face. In the second case, we collected a 2D grid of samples orthogonal to the Ballenas transform, a transform fault located ~3-5km offshore the coast of central Baja California that is part of the current
NASA Technical Reports Server (NTRS)
Seasholtz, Richard G.
1995-01-01
A Rayleigh scattering diagnostic for high speed flows is described for the simultaneous, instantaneous measurement of gas temperature and velocity at a number (up to about one hundred) of locations in a plane illuminated by an injection-seeded, frequency doubled Nd:YAG laser. Molecular Rayleigh scattered light is collected and passed through a planar mirror Fabry-Perot interferometer. The resulting image is analyzed to determine the gas temperature and bulk velocity at each of the regions. The Cramer Rao lower bound for measurement uncertainty is calculated. Experimental data is presented for a free jet and for preliminary measurements in the Lewis 4 inch by 10 inch supersonic wind tunnel.
Homogenization of two fluid flow in porous media
Daly, K. R.; Roose, T.
2015-01-01
The macroscopic behaviour of air and water in porous media is often approximated using Richards' equation for the fluid saturation and pressure. This equation is parametrized by the hydraulic conductivity and water release curve. In this paper, we use homogenization to derive a general model for saturation and pressure in porous media based on an underlying periodic porous structure. Under an appropriate set of assumptions, i.e. constant gas pressure, this model is shown to reduce to the simpler form of Richards' equation. The starting point for this derivation is the Cahn–Hilliard phase field equation coupled with Stokes equations for fluid flow. This approach allows us, for the first time, to rigorously derive the water release curve and hydraulic conductivities through a series of cell problems. The method captures the hysteresis in the water release curve and ties the macroscopic properties of the porous media with the underlying geometrical and material properties. PMID:27547073
Characterization of fluid flow in naturally fractured reservoirs. Final report
Evans, R.D.
1981-08-01
This report summarizes the results of a four month study of the characteristics of multiphase flow in naturally fractured porous media. An assessment and evaluation of the literature was carried out and a comprehensive list of references compiled on the subject. Mathematical models presented in the various references cited were evaluated along with the stated assumptions or those inherent in the equations. Particular attention was focused upon identifying unique approaches which would lead to the formulation of a general mathematical model of multiphase/multi-component flow in fractured porous media. A model is presented which may be used to more accurately predict the movement of multi-phase fluids through such type formations. Equations of motion are derived for a multiphase/multicomponent fluid which is flowing through a double porosity, double permeability medium consisting of isotropic primary rock matrix blocks and an anisotropic fracture matrix system. The fractures are assumed to have a general statistical distribution in space and orientation. A general distribution function, called the fracture matrix function is introduced to represent the statistical nature of the fractures.
Microfluidic-SANS: flow processing of complex fluids
NASA Astrophysics Data System (ADS)
Lopez, Carlos G.; Watanabe, Takaichi; Martel, Anne; Porcar, Lionel; Cabral, João T.
2015-01-01
Understanding and engineering the flow-response of complex and non-Newtonian fluids at a molecular level is a key challenge for their practical utilisation. Here we demonstrate the coupling of microfluidics with small angle neutron scattering (SANS). Microdevices with high neutron transmission (up to 98%), low scattering background (), broad solvent compatibility and high pressure tolerance (~3-15 bar) are rapidly prototyped via frontal photo polymerisation. Scattering from single microchannels of widths down to 60 μm, with beam footprint of 500 μm diameter, was successfully obtained in the scattering vector range 0.01-0.3 Å-1, corresponding to real space dimensions of . We demonstrate our approach by investigating the molecular re-orientation and alignment underpinning the flow response of two model complex fluids, namely cetyl trimethylammonium chloride/pentanol/D2O and sodium lauryl sulfate/octanol/brine lamellar systems. Finally, we assess the applicability and outlook of microfluidic-SANS for high-throughput and flow processing studies, with emphasis of soft matter.
Langevin and diffusion equation of turbulent fluid flow
NASA Astrophysics Data System (ADS)
Brouwers, J. J. H.
2010-08-01
A derivation of the Langevin and diffusion equations describing the statistics of fluid particle displacement and passive admixture in turbulent flow is presented. Use is made of perturbation expansions. The small parameter is the inverse of the Kolmogorov constant C 0 , which arises from Lagrangian similarity theory. The value of C 0 in high Reynolds number turbulence is 5-6. To achieve sufficient accuracy, formulations are not limited to terms of leading order in C0 - 1 including terms next to leading order in C0 - 1 as well. Results of turbulence theory and statistical mechanics are invoked to arrive at the descriptions of the Langevin and diffusion equations, which are unique up to truncated terms of O ( C0 - 2 ) in displacement statistics. Errors due to truncation are indicated to amount to a few percent. The coefficients of the presented Langevin and diffusion equations are specified by fixed-point averages of the Eulerian velocity field. The equations apply to general turbulent flow in which fixed-point Eulerian velocity statistics are non-Gaussian to a degree of O ( C0 - 1 ) . The equations provide the means to calculate and analyze turbulent dispersion of passive or almost passive admixture such as fumes, smoke, and aerosols in areas ranging from atmospheric fluid motion to flows in engineering devices.
SPH numerical simulation of fluid flow through a porous media
NASA Astrophysics Data System (ADS)
Klapp-Escribano, Jaime; Mayoral-Villa, Estela; Rodriguez-Meza, Mario Alberto; de La Cruz-Sanchez, Eduardo; di G Sigalotti, Leonardo; Inin-Abacus Collaboration; Ivic Collaboration
2013-11-01
We have tested an improved a method for 3D SPH simulations of fluid flow through a porous media using an implementation of this method with the Dual-Physics code. This improvement makes it possible to simulate many particles (of the order of several million) in reasonable computer times because its execution on GPUs processors makes it possible to reduce considerably the simulation cost for large systems. Modifications in the initial configuration have been implemented in order to simulate different arrays and geometries for the porous media. The basic tests were reproduced and the performance was analyzed. Our 3D simulations of fluid flow through a saturated homogeneous porous media shows a discharge velocity proportional to the hydraulic gradient reproducing Darcy's law at small body forces. The results are comparable with values obtained in previous work and published in the literature for simulations of flow through periodic porous media. Our simulations for a non saturated porous media produce adequate qualitative results showing that a non steady state is generated. The relaxation time for these systems were obtained. Work partially supported by Cinvestav-ABACUS, CONACyT grant EDOMEX-2011-C01-165873.
Microfluidic-SANS: flow processing of complex fluids
Lopez, Carlos G.; Watanabe, Takaichi; Martel, Anne; Porcar, Lionel; Cabral, João T.
2015-01-01
Understanding and engineering the flow-response of complex and non-Newtonian fluids at a molecular level is a key challenge for their practical utilisation. Here we demonstrate the coupling of microfluidics with small angle neutron scattering (SANS). Microdevices with high neutron transmission (up to 98%), low scattering background (), broad solvent compatibility and high pressure tolerance (≈3–15 bar) are rapidly prototyped via frontal photo polymerisation. Scattering from single microchannels of widths down to 60 μm, with beam footprint of 500 μm diameter, was successfully obtained in the scattering vector range 0.01–0.3 Å−1, corresponding to real space dimensions of . We demonstrate our approach by investigating the molecular re-orientation and alignment underpinning the flow response of two model complex fluids, namely cetyl trimethylammonium chloride/pentanol/D2O and sodium lauryl sulfate/octanol/brine lamellar systems. Finally, we assess the applicability and outlook of microfluidic-SANS for high-throughput and flow processing studies, with emphasis of soft matter. PMID:25578326
Fluid flow and heat transfer modeling for castings
Domanus, H.M.; Liu, Y.Y.; Sha, W.T.
1986-01-01
Casting is fundamental to manufacturing of many types of equipment and products. Although casting is a very old technology that has been in existence for hundreds of years, it remains a highly empirical technology, and production of new castings requires an expensive and time-consuming trial-and-error approach. In recent years, mathematical modeling of casting has received increasing attention; however, a majority of the modeling work has been in the area of heat transfer and solidification. Very little work has been done in modeling fluid flow of the liquid melt. This paper presents a model of fluid flow coupled with heat transfer of a liquid melt for casting processes. The model to be described in this paper is an extension of the COMMIX code and is capable of handling castings with any shape, size, and material. A feature of this model is the ability to track the liquid/gas interface and liquid/solid interface. The flow of liquid melt through the sprue and runners and into the mold cavity is calculated as well as three-dimensional temperature and velocity distributions of the liquid melt throughout the casting process. 14 refs., 13 figs.
Modelling couplings between reaction, fluid flow and deformation: Kinetics
NASA Astrophysics Data System (ADS)
Malvoisin, Benjamin; Podladchikov, Yury Y.; Connolly, James A. D.
2016-04-01
Mineral assemblages out of equilibrium are commonly found in metamorphic rocks testifying of the critical role of kinetics for metamorphic reactions. As experimentally determined reaction rates in fluid-saturated systems generally indicate complete reaction in less than several years, i.e. several orders of magnitude faster than field-based estimates, metamorphic reaction kinetics are generally thought to be controlled by transport rather than by processes at the mineral surface. However, some geological processes like earthquakes or slow-slip events have shorter characteristic timescales, and transport processes can be intimately related to mineral surface processes. Therefore, it is important to take into account the kinetics of mineral surface processes for modelling fluid/rock interactions. Here, a model coupling reaction, fluid flow and deformation was improved by introducing a delay in the achievement of equilibrium. The classical formalism for dissolution/precipitation reactions was used to consider the influence of the distance from equilibrium and of temperature on the reaction rate, and a dependence on porosity was introduced to model evolution of reacting surface area during reaction. The fitting of experimental data for three reactions typically occurring in metamorphic systems (serpentine dehydration, muscovite dehydration and calcite decarbonation) indicates a systematic faster kinetics close from equilibrium on the dehydration side than on the hydration side. This effect is amplified through the porosity term in the reaction rate since porosity is formed during dehydration. Numerical modelling indicates that this difference in reaction rate close from equilibrium plays a key role in microtextures formation. The developed model can be used in a wide variety of geological systems where couplings between reaction, deformation and fluid flow have to be considered.
Shocking behavior of fluid flow in deformable joints
Murphy, H.; Dash, Z.
1985-01-01
If fluid is injected into joints in rock masses, several types of joint deformations can take place. At first the pressure rise in the joint is small enough that the joint does not actually open. Nevertheless the effective closure stress, i.e., the difference between the total earth stress acting normal to the joint plane and the fluid pressure, is reduced. Consequently the tightness of joint closure is lessened, resulting in a small increase of the effective open space, or aperture, of the joint. If the fluid pressure rise is small enough, the aperture can still be treated as nearly constant, and the pressure response therefore follows the usual laws of linear diffusion. But if the pressure increase is large, aperture increases must be accounted for, and the flow will be affected by nonlinear diffusion due to pressure-dependent aperture, as well as a new storativity term due to joint compressibility. Eventually the fluid pressure may attain a value equal to, and even slightly greater than, the original total earth stress, and the opposing surfaces of the rock that meet at the joint can actually part. We refer to this behavior as joint ''lift off,'' or ''jacking.'' During lift off, the changes in joint aperture and compressibility are very large compared to changes while the joint is still in roughness-to-roughness contact and the flow equation becomes so highly nonlinear that pressure pulses are no longer transmitted in a smooth, diffusive manner, but more like a propagating shock wave. 7 refs., 3 figs.
NASA Astrophysics Data System (ADS)
Eckert, Dominik; Kürzinger, Petra; Bauer, Robert; Griebler, Christian; Cirpka, Olaf A.
2015-01-01
Biodegradation in contaminated aquifers has been shown to be most pronounced at the fringe of contaminant plumes, where mixing of contaminated water and ambient groundwater, containing dissolved electron acceptors, stimulates microbial activity. While physical mixing of contaminant and electron acceptor by transverse dispersion has been shown to be the major bottleneck for biodegradation in steady-state plumes, so far little is known on the effect of flow and transport dynamics (caused, e.g., by a seasonally fluctuating groundwater table) on biodegradation in these systems. Towards this end we performed experiments in quasi-two-dimensional flow-through microcosms on aerobic toluene degradation by Pseudomonas putida F1. Plume dynamics were simulated by vertical alteration of the toluene plume position and experimental results were analyzed by reactive-transport modeling. We found that, even after disappearance of the toluene plume for two weeks, the majority of microorganisms stayed attached to the sediment and regained their full biodegradation potential within two days after reappearance of the toluene plume. Our results underline that besides microbial growth, also maintenance and dormancy are important processes that affect biodegradation performance under transient environmental conditions and therefore deserve increased consideration in future reactive-transport modeling.
Germán Rubino, J; Monachesi, Leonardo B; Müller, Tobias M; Guarracino, Luis; Holliger, Klaus
2013-12-01
Oscillatory fluid movements in heterogeneous porous rocks induced by seismic waves cause dissipation of wave field energy. The resulting seismic signature depends not only on the rock compressibility distribution, but also on a statistically averaged permeability. This so-called equivalent seismic permeability does not, however, coincide with the respective equivalent flow permeability. While this issue has been analyzed for one-dimensional (1D) media, the corresponding two-dimensional (2D) and three-dimensional (3D) cases remain unexplored. In this work, this topic is analyzed for 2D random medium realizations having strong permeability fluctuations. With this objective, oscillatory compressibility simulations based on the quasi-static poroelasticity equations are performed. Numerical analysis shows that strong permeability fluctuations diminish the magnitude of attenuation and velocity dispersion due to fluid flow, while the frequency range where these effects are significant gets broader. By comparing the acoustic responses obtained using different permeability averages, it is also shown that at very low frequencies the equivalent seismic permeability is similar to the equivalent flow permeability, while for very high frequencies this parameter approaches the arithmetic average of the permeability field. These seemingly generic findings have potentially important implications with regard to the estimation of equivalent flow permeability from seismic data. PMID:25669286
Germán Rubino, J; Monachesi, Leonardo B; Müller, Tobias M; Guarracino, Luis; Holliger, Klaus
2013-12-01
Oscillatory fluid movements in heterogeneous porous rocks induced by seismic waves cause dissipation of wave field energy. The resulting seismic signature depends not only on the rock compressibility distribution, but also on a statistically averaged permeability. This so-called equivalent seismic permeability does not, however, coincide with the respective equivalent flow permeability. While this issue has been analyzed for one-dimensional (1D) media, the corresponding two-dimensional (2D) and three-dimensional (3D) cases remain unexplored. In this work, this topic is analyzed for 2D random medium realizations having strong permeability fluctuations. With this objective, oscillatory compressibility simulations based on the quasi-static poroelasticity equations are performed. Numerical analysis shows that strong permeability fluctuations diminish the magnitude of attenuation and velocity dispersion due to fluid flow, while the frequency range where these effects are significant gets broader. By comparing the acoustic responses obtained using different permeability averages, it is also shown that at very low frequencies the equivalent seismic permeability is similar to the equivalent flow permeability, while for very high frequencies this parameter approaches the arithmetic average of the permeability field. These seemingly generic findings have potentially important implications with regard to the estimation of equivalent flow permeability from seismic data.
NASA Astrophysics Data System (ADS)
Caviedes-Voullième, Daniel; Juez, Carmelo; Murillo, Javier; García-Navarro, Pilar
2014-12-01
Avalanches, debris flows and other types of gravity-driven granular flows are a common hazard in mountainous regions. These regions often have human settlements in the lower parts of valleys, with human structures dangerously exposed to the destructive effects of these geophysical flows. Therefore a scientific effort has been made to understand, model and simulate geophysical granular flows. In order for computer models and simulations to be of predictive value they need to be validated under controlled, yet nature-like conditions. This work presents an experimental study of granular flow over a simplified mountain slope and valley topography. The experimental facility has a rough bed with very high slope at the upstream end and adverse slope on the downstream end, following a parabolic profile. Obstacles are present in the lower regions. Transient measurements of the moving granular surfaces were taken with a consumer-grade RGB-D sensor, providing transient 2D elevation fields around the obstacles. Three experimental configurations were tested, with semispheres of different diameters and a square dike obstacle. The experimental results are very consistent and repeatable. The quantitative, transient and two-dimensional data for all three experiments constitute excellent benchmarking tests for computational models, such as the one presented in a companion paper.
FLUID FLOW, SOLUTE MIXING AND PRECIPITATION IN POROUS MEDIA
Redden, George D; Y. Fang; T.D. Scheibe; A.M. Tartakovsky; Fox, Don T; Fujita, Yoshiko; White, Timothy A
2006-09-01
Reactions that lead to the formation of mineral precipitates, colloids or growth of biofilms in porous media often depend on the molecular-level diffusive mixing. For example, for the formation of mineral phases, exceeding the saturation index for a mineral is a minimum requirement for precipitation to proceed. Solute mixing frequently occurs at the interface between two solutions each containing one or more soluble reactants, particularly in engineered systems where contaminant degradation or modification or fluid flow are objectives. Although many of the fundamental component processes involved in the deposition or solubilization of solid phases are reasonably well understood, including precipitation equilibrium and kinetics, fluid flow and solute transport, the deposition of chemical precipitates, biofilms and colloidal particles are all coupled to flow, and the science of such coupled processes is not well developed. How such precipitates (and conversely, dissolution of solids) are distributed in the subsurface along flow paths with chemical gradients is a complex and challenging problem. This is especially true in systems that undergo rapid change where equilibrium conditions cannot be assumed, particularly in subsurface systems where reactants are introduced rapidly, compared to most natural flow conditions, and where mixing fronts are generated. Although the concept of dispersion in porous media is frequently used to approximate mixing at macroscopic scales, dispersion does not necessarily describe pore-level or molecular level mixing that must occur for chemical and biological reactions to be possible. An example of coupling between flow, mixing and mineral precipitation, with practical applications to controlling fluid flow or contaminant remediation in subsurface environments is shown in the mixing zone between parallel flowing solutions. Two- and three-dimensional experiments in packed-sand media were conducted where solutions containing calcium and
NASA Astrophysics Data System (ADS)
Hussin, H. Y.; Luna, B. Quan; van Westen, C. J.; Christen, M.; Malet, J.-P.; van Asch, Th. W. J.
2012-10-01
The occurrence of debris flows has been recorded for more than a century in the European Alps, accounting for the risk to settlements and other human infrastructure that have led to death, building damage and traffic disruptions. One of the difficulties in the quantitative hazard assessment of debris flows is estimating the run-out behavior, which includes the run-out distance and the related hazard intensities like the height and velocity of a debris flow. In addition, as observed in the French Alps, the process of entrainment of material during the run-out can be 10-50 times in volume with respect to the initially mobilized mass triggered at the source area. The entrainment process is evidently an important factor that can further determine the magnitude and intensity of debris flows. Research on numerical modeling of debris flow entrainment is still ongoing and involves some difficulties. This is partly due to our lack of knowledge of the actual process of the uptake and incorporation of material and due the effect of entrainment on the final behavior of a debris flow. Therefore, it is important to model the effects of this key erosional process on the formation of run-outs and related intensities. In this study we analyzed a debris flow with high entrainment rates that occurred in 2003 at the Faucon catchment in the Barcelonnette Basin (Southern French Alps). The historic event was back-analyzed using the Voellmy rheology and an entrainment model imbedded in the RAMMS 2-D numerical modeling software. A sensitivity analysis of the rheological and entrainment parameters was carried out and the effects of modeling with entrainment on the debris flow run-out, height and velocity were assessed.
Numerical investigation of fluid flow in a chandler loop.
Touma, Hisham; Sahin, Iskender; Gaamangwe, Tidimogo; Gorbet, Maud B; Peterson, Sean D
2014-07-01
The Chandler loop is an artificial circulatory platform for in vitro hemodynamic experiments. In most experiments, the working fluid is subjected to a strain rate field via rotation of the Chandler loop, which, in turn, induces biochemical responses of the suspended cells. For low rotation rates, the strain rate field can be approximated using laminar flow in a straight tube. However, as the rotation rate increases, the effect of the tube curvature causes significant deviation from the laminar straight tube approximation. In this manuscript, we investigate the flow and associated strain rate field of an incompressible Newtonian fluid in a Chandler loop as a function of the governing nondimensional parameters. Analytical estimates of the strain rate from a perturbation solution for pressure driven steady flow in a curved tube suggest that the strain rate should increase with Dean number, which is proportional to the tangential velocity of the rotating tube, and the radius to radius of curvature ratio of the loop. Parametrically varying the rotation rate, tube geometry, and fill ratio of the loop show that strain rate can actually decrease with Dean number. We show that this is due to the nonlinear relationship between the tube rotation rate and height difference between the two menisci in the rotating tube, which provides the driving pressure gradient. An alternative Dean number is presented to naturally incorporate the fill ratio and collapse the numerical data. Using this modified Dean number, we propose an empirical formula for predicting the average fluid strain rate magnitude that is valid over a much wider parameter range than the more restrictive straight tube-based prediction. PMID:24686927
Well-test analysis for non-Newtonian fluid flow
Vongvuthipornchai, S.
1985-01-01
This dissertation examines pressure behavior subsequent to the injection of a non-Newtonian power-law pseudoplastic fluid. Responses at an unfractured well and at a well intercepting a planar fracture or a finite-conductivity fracture are studied. A rigorous examination of both injection and falloff responses is presented. Two approximate solutions for the transient (radial) flow presented in the literature are examined. The use of these solutions to analyze falloff data and correction factors needed are investigated. The influence of injection time on falloff data is documented. The influence of wellbore storage and skin on pressure responses is considered. The effective wellbore radius concept is used to combine the wellbore storage constant and the skin factor. Infinite-conductivity and uniform-flux idealizations are used to examine responses at wells intercepting planar fractures. Procedures to identify flow regimes are discussed. The solutions presented here may be used to determine fluid mobility, fracture half-length and the power-law index. Procedures to analyze pressure data during pseudoradial flow are also discussed. The effective wellbore radius concept is used to relate the skin factor with fracture half-length. Also, the utility of the pressure derivative techniques and the influence of injection time on the ability to analyze falloff data are documented. Lastly, pressure responses at a well intercepting a finite-conductivity fracture are examined. The parameters that govern the well response are identified. The solutions presented here may be used to obtain fracture half-length, fluid mobility and fracture conductivity, provided that the power-law index is known. All solutions were obtained by using standard finite-difference techniques.
Mechanics of fluid flow over compliant wrinkled polymeric surfaces
NASA Astrophysics Data System (ADS)
Raayai, Shabnam; McKinley, Gareth; Boyce, Mary
2014-03-01
Skin friction coefficients (based on frontal area) of sharks and dolphins are lower than birds, fish and swimming beetles. By either exploiting flow-induced changes in their flexible skin or microscale textures, dolphins and sharks can change the structure of the fluid flow around them and thus reduce viscous drag forces on their bodies. Inspired by this ability, investigators have tried using compliant walls and riblet-like textures as drag reduction methods in aircraft and marine industries and have been able to achieve reductions up to 19%. Here we investigate flow-structure interaction and wrinkling of soft polymer surfaces that can emulate shark riblets and dolphin's flexible skin. Wrinkling arises spontaneously as the result of mismatched deformation of a thin stiff coating bound to a thick soft elastic substrate. Wrinkles can be fabricated by controlling the ratio of the stiffness of the coating and substrate, the applied displacement and the thickness of the coating. In this work we will examine the evolution in the kinematic structures associated with steady viscous flow over the polymer wrinkled surfaces and in particular compare the skin friction with corresponding results for flow over non-textured and rigid surfaces.
Reducing or stopping the uncontrolled flow of fluid such as oil from a well
Hermes, Robert E
2014-02-18
The uncontrolled flow of fluid from an oil or gas well may be reduced or stopped by injecting a composition including 2-cyanoacrylate ester monomer into the fluid stream. Injection of the monomer results in a rapid, perhaps instantaneous, polymerization of the monomer within the flow stream of the fluid. This polymerization results in formation of a solid plug that reduces or stops the flow of additional fluid from the well.
NASA Astrophysics Data System (ADS)
Perez, Alex; Zhu, Cun; Xia, Younan; Khalil, Gamal; Dabiri, Dana
2011-11-01
Airborne temperature and pressure sensitive microbeads provide a vehicle with which to conduct two-dimensional flow characterization. An array of temperature and pressure sensitive dyes have been synthesized with microbeads (of silica, polystyrene, and polydimethylsiloxane) for this purpose. These microbeads were evaluated based on emission spectra, pressure response (0-760 torr), temperature response (5-45°C), and response time. Work will be presented showing the various combinations of dyes and microbead materials, as well as the testing process and examples of future application. This material is based upon work supported by the National Science Foundation Graduate Research Fellowship under Grant No. #DEG-0718124, as well as National Science Foundation Grant No. NSF/CBET-IDR- 0929864.
Fluid flow and solute segregation in EFG crystal growth process
NASA Astrophysics Data System (ADS)
Bunoiu, O.; Nicoara, I.; Santailler, J. L.; Duffar, T.
2005-02-01
The influence of the die geometry and various growth conditions on the fluid flow and on the solute distribution in EFG method has been studied using numerical simulation. The commercial FIDAP software has been used in order to solve the momentum and mass transfer equations in the capillary channel and in the melt meniscus. Two types of shaper design are studied and the results are in good agreement with the void distribution observed in rod-shaped sapphire crystals grown by the EFG method in the various configurations.
Numerical simulation of fluid flow around a scramaccelerator projectile
NASA Technical Reports Server (NTRS)
Pepper, Darrell W.; Humphrey, Joseph W.; Sobota, Thomas H.
1991-01-01
Numerical simulations of the fluid motion and temperature distribution around a 'scramaccelerator' projectile are obtained for Mach numbers in the 5-10 range. A finite element method is used to solve the equations of motion for inviscid and viscous two-dimensional or axisymmetric compressible flow. The time-dependent equations are solved explicitly, using bilinear isoparametric quadrilateral elements, mass lumping, and a shock-capturing Petrov-Galerkin formulation. Computed results indicate that maintaining on-design performance for controlling and stabilizing oblique detonation waves is critically dependent on projectile shape and Mach number.
An annotation system for 3D fluid flow visualization
NASA Technical Reports Server (NTRS)
Loughlin, Maria M.; Hughes, John F.
1995-01-01
Annotation is a key activity of data analysis. However, current systems for data analysis focus almost exclusively on visualization. We propose a system which integrates annotations into a visualization system. Annotations are embedded in 3D data space, using the Post-it metaphor. This embedding allows contextual-based information storage and retrieval, and facilitates information sharing in collaborative environments. We provide a traditional database filter and a Magic Lens filter to create specialized views of the data. The system has been customized for fluid flow applications, with features which allow users to store parameters of visualization tools and sketch 3D volumes.
Direction of fluid flow and the properties of fibrous filters
Pich, J.; Spurny, K.
1991-01-01
The influence of the fluid flow direction (downflow and upflow) on the filtration properties of filters that have a fibrous structure is investigated. It is concluded that selectivity of these filters (dependence of the filter efficiency on the particle size) in the case of upflow is changed - in comparison with the case of downflow - in three ways: the position of the minimum of this dependence is shifted to larger particle sizes, and the whole selectivity is decreased and simultaneously deformed. Corresponding equations for this shift and changes are derived and analyzed. Theoretical predictions are compared with available experimental data. In all cases qualitative agreement and in some cases quantitative agreement is found.
Application of image processing techniques to fluid flow data analysis
NASA Technical Reports Server (NTRS)
Giamati, C. C.
1981-01-01
The application of color coding techniques used in processing remote sensing imagery to analyze and display fluid flow data is discussed. A minicomputer based color film recording and color CRT display system is described. High quality, high resolution images of two-dimensional data are produced on the film recorder. Three dimensional data, in large volume, are used to generate color motion pictures in which time is used to represent the third dimension. Several applications and examples are presented. System hardware and software is described.
Energy flow model for thin plate considering fluid loading with mean flow
NASA Astrophysics Data System (ADS)
Han, Ju-Bum; Hong, Suk-Yoon; Song, Jee-Hun
2012-11-01
Energy Flow Analysis (EFA) has been developed to predict the vibration energy density of system structures in the high frequency range. This paper develops the energy flow model for the thin plate in contact with mean flow. The pressure generated by mean flow affects energy governing equation and power reflection-transmission coefficients between plates. The fluid pressure is evaluated by using velocity potential and Bernoulli's equation, and energy governing equations are derived by considering the flexural wavenumbers of a plate, which are different along the direction of flexural wave and mean flow. The derived energy governing equation is composed of two kinds of group velocities. To verify the developed energy flow model, various numerical analyses are performed for a simple plate and a coupled plate for several excitation frequencies. The EFA results are compared with the analytical solutions, and correlations between the EFA results and the analytical solutions are verified.
Porous media flow problems: natural convection and one-dimensional flow of a non-Newtonian fluid
Walker, K.L.
1980-01-01
Two fluid problems in porous media are studied: natural convection of a Newtonian fluid and one-dimensional flow of a non-Newtonian fluid. Convection in a rectangular porous cavity driven by heating in the horizontal is analyzed by a number of different techniques which yield a fairly complete description of the 2-dimensional solutions. The solutions are governed by 2 dimensionless parameters: the Darcy-Rayleigh number R and cavity aspect ratio A. The flow behavior of a dilute solution of polyacrylamide in corn syrup flowing through porous media also is studied. Measurements of the pressure drop and flow rate are made for the solution flowing through a packed bed of glass beads. At low velocities the pressure drop as a function of velocity is the same as that for a Newtonian fluid of equal viscosity. At higher flow rates the non-Newtonian fluid exhibited significantly higher pressure drops than a Newtonian fluid.