Science.gov

Sample records for 2-d p-wave velocity

  1. Uppermost mantle P wave velocities beneath Turkey and Iran

    SciTech Connect

    Chen, C.; Chen, W.; Molnar, P.

    1980-01-01

    The uppermost mantle P wave velocities beneath Turkey and Iran were estimated by applying the conventional travel time-distance relation method to arrival times of well located earthquakes recorded at a few stations. The average uppermost mantle P wave velocity under Turkey is estimated from two stations of the World Wide Standardized Seismograph Network (WWSSN), Istanbul and Tabriz. The data are consistent with a crust of uniform, but poorly determined, thickness and an uppermost mantle P wave velocity of 7.73 +- 0.08 km/s. This velocity is very similar to that for the Aegean Sea and suggests that its structure could be closely related to that beneath Turkey. For Iran, the results calculated from travel times to three WWSSN stations, Meshed, Shiraz, and Tabriz, can be explained by a crust dipping toward the south-southeast at about 1/sup 0/ with an uppermost mantle P wave velocity of 8.0 +- 0.1 km/s. If the crustal thickness were 34 km in the north it would reach about 49 km in the south. Based on these uppermost mantle velocities, the temperature at Moho beneath Turkey is probably close to the melting temperature of peridotite but that beneath Iran is probably lower.

  2. Impact of Phase Transitions on P Wave Velocities

    SciTech Connect

    D Weidner; L Li

    2011-12-31

    In regions where a high pressure phase is in equilibrium with a low pressure phase, the bulk modulus defined by the P-V relationship is greatly reduced. Here we evaluate the effect of such transitions on the P wave velocity. A model, where cation diffusion is the rate limiting factor, is used to project laboratory data to the conditions of a seismic wave propagating in the two-phase region. We demonstrate that for the minimum expected effect there is a significant reduction of the seismic velocity, as large as 10% over a narrow depth range.

  3. P Wave Velocity Structure Beneath the Baikal Rift Axis

    NASA Astrophysics Data System (ADS)

    Brazier, R. A.; Nyblade, A. A.; Boman, E. C.

    2001-12-01

    Over 100 p wave travel times from the 1500 km en echelon Baikal Rift system are used in this study.The events range 3 to 13 degrees from Talaya, Russia (TLY) along the axis of southwest northeast trending rift in East Siberia. A Herglotz Wiechert inversion of these events resolved a crust of 6.4 km/s and a gradient in the mantle starting at 35 km depth and 7.7 km/s down to 200 km depth and 8.2 km/s. This is compatible with Gao et al,1994 cross sectional structure which cuts the rift at about 400km from TLY. The Baikal Rift hosts the deepest lake and is the most seismically active rift in the world. It is one of the few continental rifts, it separates the Siberian craton and the Syan-Baikal mobile fold belt. Two events, the March 21 1999 magnitude 5.7 earthquake 638 km from TLY and the November 13th 1995 magnitude 5.9 earthquake 863 km from TLY were modeled for there PnL wave structure using the discrete wavenumber method and the Harvard CMT solutions with adjusted depths from p-pP times. The PnL signals match well. A genetic algorithm will used to perturb the velocity structure and compare to a selection of the events between 3 and 13 degrees many will require moment tensor solutions.

  4. Hammering Yucca Flat, Part One: P-Wave Velocity

    NASA Astrophysics Data System (ADS)

    Tang, D. G.; Abbott, R. E.; Preston, L. A.; Hampshire, J. B., II

    2015-12-01

    Explosion-source phenomenology is best studied when competing signals (such as instrument, site, and propagation effects), are well understood. The second phase of the Source Physics Experiments (SPE), is moving from granite geology to alluvium geology at Yucca Flat, Nevada National Security Site. To improve subsurface characterization of Yucca Flat (and therefore better understand propagation and site effects), an active-source seismic survey was conducted using a novel 13,000-kg impulsive hammer source. The source points, spaced 200 m apart, covered a N-S transect spanning 18 km. Three component, 2-Hz geophones were used to record useable signals out to 10 km. We inverted for P-wave velocity by computing travel times using a finite-difference 3D eikonal solver, and then compared that to the picked travel times using a linearized iterative inversion scheme. Preliminary results from traditional reflection processing methods are also presented. Sandia National Laboratories is a multi-program laboratory managed and operated by Sandia Corporation, a wholly owned subsidiary of Lockheed Martin Corporation, for the U.S. Department of Energy's National Nuclear Security Administration under contract DE-AC04-94AL85000.

  5. The correlations between the saturated and dry P-wave velocity of rocks.

    PubMed

    Kahraman, S

    2007-11-01

    Sometimes engineers need to estimate the wet-rock P-wave velocity from the dry-rock P-wave velocity. An estimation equation embracing all rock classes will be useful for the rock engineers. To investigate the predictability of wet-rock P-wave velocity from the dry-rock P-wave velocity, P-wave velocity measurements were performed on 41 different rock types, 11 of which were igneous, 15 of which were sedimentary and 15 of which was metamorphic. In addition to the dry- and wet-rock P-wave velocity measurements, the P-wave velocity changing as a function of saturation degree was studied. Moreover, dry-rock S-wave velocity measurements were conducted. The test results were modeled using Gassmann's and Wood's theory and it was seen that the measured data did not fit the theories. The unconformity is due to the fact that the theories are valid for high-porosity unconsolidated sediments at low frequencies. Gassmann's equation was modified for the rocks except high-porosity unconsolidated sediments. The dry- and wet-rock P-wave velocity values were evaluated using regression analysis. A strong linear correlation between the dry- and wet-rock P-wave velocities was found. Regression analyses were repeated for the rock classes and it was shown that correlation coefficients were increased. Concluding remark is that the derived equations can be used for the prediction of wet-rock P-wave velocity from the dry-rock P-wave velocity.

  6. The correlations between the saturated and dry P-wave velocity of rocks.

    PubMed

    Kahraman, S

    2007-11-01

    Sometimes engineers need to estimate the wet-rock P-wave velocity from the dry-rock P-wave velocity. An estimation equation embracing all rock classes will be useful for the rock engineers. To investigate the predictability of wet-rock P-wave velocity from the dry-rock P-wave velocity, P-wave velocity measurements were performed on 41 different rock types, 11 of which were igneous, 15 of which were sedimentary and 15 of which was metamorphic. In addition to the dry- and wet-rock P-wave velocity measurements, the P-wave velocity changing as a function of saturation degree was studied. Moreover, dry-rock S-wave velocity measurements were conducted. The test results were modeled using Gassmann's and Wood's theory and it was seen that the measured data did not fit the theories. The unconformity is due to the fact that the theories are valid for high-porosity unconsolidated sediments at low frequencies. Gassmann's equation was modified for the rocks except high-porosity unconsolidated sediments. The dry- and wet-rock P-wave velocity values were evaluated using regression analysis. A strong linear correlation between the dry- and wet-rock P-wave velocities was found. Regression analyses were repeated for the rock classes and it was shown that correlation coefficients were increased. Concluding remark is that the derived equations can be used for the prediction of wet-rock P-wave velocity from the dry-rock P-wave velocity. PMID:17624388

  7. Anisotropic changes in P-wave velocity and attenuation during deformation and fluid infiltration of granite

    USGS Publications Warehouse

    Stanchits, S.A.; Lockner, D.A.; Ponomarev, A.V.

    2003-01-01

    Fluid infiltration and pore fluid pressure changes are known to have a significant effect on the occurrence of earthquakes. Yet, for most damaging earthquakes, with nucleation zones below a few kilometers depth, direct measurements of fluid pressure variations are not available. Instead, pore fluid pressures are inferred primarily from seismic-wave propagation characteristics such as Vp/Vs ratio, attenuation, and reflectivity contacts. We present laboratory measurements of changes in P-wave velocity and attenuation during the injection of water into a granite sample as it was loaded to failure. A cylindrical sample of Westerly granite was deformed at constant confining and pore pressures of 50 and 1 MPa, respectively. Axial load was increased in discrete steps by controlling axial displacement. Anisotropic P-wave velocity and attenuation fields were determined during the experiment using an array of 13 piezoelectric transducers. At the final loading steps (86% and 95% of peak stress), both spatial and temporal changes in P-wave velocity and peak-to-peak amplitudes of P and S waves were observed. P-wave velocity anisotropy reached a maximum of 26%. Transient increases in attenuation of up to 483 dB/m were also observed and were associated with diffusion of water into the sample. We show that velocity and attenuation of P waves are sensitive to the process of opening of microcracks and the subsequent resaturation of these cracks as water diffuses in from the surrounding region. Symmetry of the orientation of newly formed microcracks results in anisotropic velocity and attenuation fields that systematically evolve in response to changes in stress and influx of water. With proper scaling, these measurements provide constraints on the magnitude and duration of velocity and attenuation transients that can be expected to accompany the nucleation of earthquakes in the Earth's crust.

  8. A three-dimensional P wave velocity model for the Charlevoix seismic zone, Quebec, Canada

    NASA Astrophysics Data System (ADS)

    Vlahovic, Gordana; Powell, Christine; Lamontagne, Maurice

    2003-09-01

    A three-dimensional P wave velocity model has been developed for the Charlevoix seismic zone (CSZ). The CSZ is located along the St. Lawrence River ˜100 km northeast of Quebec City, Canada, and is one of the most active seismic zones in eastern North America. Five earthquakes with magnitudes equal to or exceeding 6.0 have occurred in the CSZ in historic time, and around 200 earthquakes occur annually. Hypocenters are located in Precambrian basement rocks. Basement rocks have been affected by numerous tectonic events including Grenvillian collision, Iapetan rifting, and meteor impact. We performed a sequential, tomographic inversion for P wave velocity structure based upon 3093 P wave arrivals from 489 earthquakes recorded by 12 stations. High velocity is associated with the center of the impact crater. The region of high velocity is surrounded by low velocities interpreted to be highly disrupted rocks. An elongated, high-velocity region is present at midcrustal depths that trends parallel to the St. Lawrence River. Earthquakes avoid the high-velocity body and separate into two bands, one on either side of the feature. Larger earthquakes (magnitude ≥ 4) have occurred along the northern edges of the high-velocity region.

  9. Correlating P-wave Velocity with the Physico-Mechanical Properties of Different Rocks

    NASA Astrophysics Data System (ADS)

    Khandelwal, Manoj

    2013-04-01

    In mining and civil engineering projects, physico-mechanical properties of the rock affect both the project design and the construction operation. Determination of various physico-mechanical properties of rocks is expensive and time consuming, and sometimes it is very difficult to get cores to perform direct tests to evaluate the rock mass. The purpose of this work is to investigate the relationships between the different physico-mechanical properties of the various rock types with the P-wave velocity. Measurement of P-wave velocity is relatively cheap, non-destructive and easy to carry out. In this study, representative rock mass samples of igneous, sedimentary, and metamorphic rocks were collected from the different locations of India to obtain an empirical relation between P-wave velocity and uniaxial compressive strength, tensile strength, punch shear, density, slake durability index, Young's modulus, Poisson's ratio, impact strength index and Schmidt hammer rebound number. A very strong correlation was found between the P-wave velocity and different physico-mechanical properties of various rock types with very high coefficients of determination. To check the sensitivity of the empirical equations, Students t test was also performed, which confirmed the validity of the proposed correlations.

  10. Simultaneous Local and Teleseismic P-Wave Velocity Tomography in Western Mexico

    NASA Astrophysics Data System (ADS)

    Escudero, C. R.; Alarcon, E.; Ochoa, J.; Nuñez-Cornu, F. J.

    2015-12-01

    In western Mexico, the subduction of the Rivera and Cocos plates beneath the North America plate has deformed and fragmented the overriding plate, forming several structural rifts and crustal blocks. To improve the current tomographic images of the continental crust and uppermost mantle in this complex area, we used P-wave arrivals of local and teleseismic earthquakes along with the Fast Marching Method tomography technique. Our traveltime datasets include 2100 local earthquakes P-wave arrival times and 5,062 P-wave relative arrival time residuals of teleseismic earthquakes. The local earthquake phase picking was manually corrected and the relative arrival time residuals were estimated using the Multi-Channel Cross-Correlation method. All earthquakes occurred between 2006 and 2007 and were recorded by seismic stations deployed during the Mapping the Rivera Subduction Zone (MARS) experiment. The temporal seismic network consisted of 50 stations equipped with Streckeisen STS-2 and Quanterra Q330. We use an iterative nonlinear tomographic procedure and the fast marching method to map the residual patterns as P wave velocity anomalies. We followed an inversion scheme consisting of: (1) selection of a local and teleseismic earthquake, (2) estimation of improved 1-D reference velocity model, and (3) checkerboard testing to determine the optimum configuration of the velocity nodes, and inversion parameters, finally (4) perform final tomography and results analysis.

  11. P wave velocity structure below India and Tibet incorporating anisotropic delay time effects

    NASA Astrophysics Data System (ADS)

    Mohanty, Debasis D.; Singh, Arun; O'Driscoll, Leland J.; Ravi Kumar, M.; Srinagesh, D.; Humphreys, Eugene D.

    2016-03-01

    We incorporate the effects of anisotropy to refine the continental-scale 3-D isotropic velocity model previously produced for India and Tibet by inverting 52,050 teleseismic P wave residuals. We have exploited a total of 1648 individual SKS splitting parameters to calculate the P wave travel time corrections due to azimuthal anisotropy. Our results suggest that anisotropy affects the P wave delays significantly (-0.3 to +0.5 s). Integration of these corrections into the 3-D modeling is achieved in two ways: (a) a priori adjustment to the delay time vector and (b) inverting only for anisotropic delays by introducing strong damping above 80 km and below 360 km depths and then subtracting the obtained anisotropic artifact image from the isotropic image, to get the corrected image. Under the assumption of azimuthal anisotropy resulting from lattice preferred orientation (LPO) alignment due to horizontal flow, the bias in isotropic P wave tomographic images is clear. The anisotropy corrected velocity perturbations are in the range of ±1.2% at depths of around 150 km and reduced further at deeper levels. Although the bias due to anisotropy does not affect the gross features, it does introduce certain artifacts at deeper levels.

  12. Determination of basic physical and mechanical properties of basaltic rocks from P-wave velocity

    NASA Astrophysics Data System (ADS)

    Karakuş, Askeri; Akatay, Mahmut

    2013-12-01

    Physical and mechanical properties of basaltic rocks used as main building material in historical buildings in Diyarbakir show great diversity depending on the place of origin. Especially, earthquake studies as well as restoration jobs and civil engineers and architects who work on building dynamics need to know basic material properties of basaltic rocks that are the main building material. In this study, the basalt samples obtained from 18 different locations of the Diyarbakir area were tested in order to estimate the main material properties of basalts used in historical buildings without collecting samples from them. Subsequently, statistical relationships between the nondestructive P-wave velocity and other properties of basalts were investigated. Consequently, highly correlated models (R2 = 0.717-0.890) were obtained between P-wave velocity and density, porosity, uniaxial compressive strength, Brazilian tensile strength, modulus of elasticity and Poisson's ratio.

  13. Oceanic lithospheric S wave velocities from the analysis of P wave polarization at the ocean floor

    NASA Astrophysics Data System (ADS)

    Hannemann, Katrin; Krüger, Frank; Dahm, Torsten

    2016-09-01

    Our knowledge of the absolute S wave velocities of the oceanic lithosphere is mainly based on global surface wave tomography, local active seismic or compliance measurements using oceanic infragravity waves. The results of tomography give a rather smooth picture of the actual S wave velocity structure and local measurements have limitations regarding the range of elastic parameters or the geometry of the measurement. Here, we use the P wave polarization (apparent P wave incidence angle) of teleseismic events to investigate the S wave velocity structure of the oceanic crust and the upper tens of kilometres of the mantle beneath single stations. In this study, we present an up to our knowledge new relation of the apparent P wave incidence angle at the ocean bottom dependent on the half space S wave velocity. We analyse the angle in different period ranges at ocean bottom stations (OBS) to derive apparent S wave velocity profiles. These profiles are dependent on the S wave velocity as well as on the thickness of the layers in the subsurface. Consequently, their interpretation results in a set of equally valid models. We analyse the apparent P wave incidence angles of an OBS data set which was collected in the Eastern Mid Atlantic. We are able to determine reasonable S wave velocity-depth models by a three step quantitative modelling after a manual data quality control, although layer resonance sometimes influences the estimated apparent S wave velocities. The apparent S wave velocity profiles are well explained by an oceanic PREM model in which the upper part is replaced by four layers consisting of a water column, a sediment, a crust and a layer representing the uppermost mantle. The obtained sediment has a thickness between 0.3 km and 0.9 km with S wave velocities between 0.7 km s-1 and 1.4 km s-1. The estimated total crustal thickness varies between 4 km and 10 km with S wave velocities between 3.5 km s-1 and 4.3 km s-1. We find a slight increase of the total

  14. Three-dimensional P-wave velocity structure of Mt. Etna, Italy

    USGS Publications Warehouse

    Villasenor, A.; Benz, H.M.; Filippi, L.; De Luca, G.; Scarpa, R.; Patane, G.; Vinciguerra, S.

    1998-01-01

    The three-dimensional P-wave velocity structure of Mt. Etna is determined to depths of 15 km by tomographic inversion of first arrival times from local earthquakes recorded by a network of 29 permanent and temporary seismographs. Results show a near-vertical low-velocity zone that extends from beneath the central craters to a depth of 10 km. This low-velocity region is coincident with a band of steeply-dipping seismicity, suggesting a magmatic conduit that feeds the summit eruptions. The most prominent structure is an approximately 8-km-diameter high-velocity body located between 2 and 12 km depth below the southeast flank of the volcano. This high-velocity body is interpreted as a remnant mafic intrusion that is an important structural feature influencing both volcanism and east flank slope stability and faulting.

  15. Prediction of Building Limestone Physical and Mechanical Properties by Means of Ultrasonic P-Wave Velocity

    PubMed Central

    Concu, Giovanna; De Nicolo, Barbara; Valdes, Monica

    2014-01-01

    The aim of this study was to evaluate ultrasonic P-wave velocity as a feature for predicting some physical and mechanical properties that describe the behavior of local building limestone. To this end, both ultrasonic testing and compressive tests were carried out on several limestone specimens and statistical correlation between ultrasonic velocity and density, compressive strength, and modulus of elasticity was studied. The effectiveness of ultrasonic velocity was evaluated by regression, with the aim of observing the coefficient of determination r2 between ultrasonic velocity and the aforementioned parameters, and the mathematical expressions of the correlations were found and discussed. The strong relations that were established between ultrasonic velocity and limestone properties indicate that these parameters can be reasonably estimated by means of this nondestructive parameter. This may be of great value in a preliminary phase of the diagnosis and inspection of stone masonry conditions, especially when the possibility of sampling material cores is reduced. PMID:24511286

  16. Regional P wave velocity structure of the Northern Cascadia Subduction Zone

    USGS Publications Warehouse

    Ramachandran, K.; Hyndman, R.D.; Brocher, T.M.

    2006-01-01

    This paper presents the first regional three-dimensional, P wave velocity model for the Northern Cascadia Subduction. Zone (SW British Columbia and NW Washington State) constructed through tomographic inversion of first-arrival traveltime data from active source experiments together with earthquake traveltime data recorded at permanent stations. The velocity model images the structure of the subducting Juan de Fuca plate, megathrust, and the fore-arc crust and upper mantle. Beneath southern Vancouver Island the megathrust above the Juan de Fuca plate is characterized by a broad zone (25-35 km depth) having relatively low velocities of 6.4-6.6 km/s. This relative low velocity zone coincides with the location of most of the episodic tremors recently mapped beneath Vancouver Island, and its low velocity may also partially reflect the presence of trapped fluids and sheared lower crustal rocks. The rocks of the Olympic Subduction Complex are inferred to deform aseismically as evidenced by the lack of earthquakes withi the low-velocity rocks. The fore-arc upper mantle beneath the Strait of Georgia and Puget Sound is characterized by velocities of 7.2-7.6 km/s. Such low velocities represent regional serpentinization of the upper fore-arc mantle and provide evidence for slab dewatering and densification. Tertiary sedimentary basins in the Strait of Georgia and Puget Lowland imaged by the velocity model lie above the inferred region of slab dewatering and densification and may therefore partly result from a higher rate of slab sinking. In contrast, sedimentary basins in the Strait of Juan de Fuca lie in a synclinal depression in the Crescent Terrane. The correlation of in-slab earthquake hypocenters M>4 with P wave velocities greater than 7.8 km/s at the hypocenters suggests that they originate near the oceanic Moho of the subducting Juan de Fuca plate. Copyright 2006 by the American Geophysical Union.

  17. On Animating 2D Velocity Fields

    NASA Technical Reports Server (NTRS)

    Kao, David; Pang, Alex; Yan, Jerry (Technical Monitor)

    2001-01-01

    A velocity field, even one that represents a steady state flow, implies a dynamical system. Animated velocity fields is an important tool in understanding such complex phenomena. This paper looks at a number of techniques that animate velocity fields and propose two new alternatives. These are texture advection and streamline cycling. The common theme among these techniques is the use of advection on some texture to generate a realistic animation of the velocity field. Texture synthesis and selection for these methods are presented. Strengths and weaknesses of the techniques are also discussed in conjunctions with several examples.

  18. On Animating 2D Velocity Fields

    NASA Technical Reports Server (NTRS)

    Kao, David; Pang, Alex

    2000-01-01

    A velocity field. even one that represents a steady state flow implies a dynamical system. Animated velocity fields is an important tool in understanding such complex phenomena. This paper looks at a number of techniques that animate velocity fields and propose two new alternatives, These are texture advection and streamline cycling. The common theme among these techniques is the use of advection on some texture to generate a realistic animation of the velocity field. Texture synthesis and selection for these methods are presented. Strengths and weaknesses of the techniques are also discussed in conjunction with several examples.

  19. Three-dimensional P-wave velocity structure of Damavand Volcano, Iran

    NASA Astrophysics Data System (ADS)

    Mostafanejad, A.; Shomali, H.

    2009-04-01

    Damavand volcano is the highest peak in the Middle East ( 5670 m ). It is a large intraplate composite cone representing an accumulation of more than 400 km3 of trachyandesite lavas and pyroclastic material overlying the active fold and-thrust belt of the Alborz Mountains,the range that fringes the southern Caspian Sea. It shows fumarolic activity near the summit but no evidence of eruption in the past 1000 yr. The target region, Damavand volcano, is a Quaternary age volcano laying about 65 km northeast of Tehran metropolitan, Iran. A data set of over 1200 earthquakes recorded on a local 19 station short-period network between 1996 and 2006 provided by the Iranian Seismological Centre (ISC) is used for inversion in a well constrained and worldwide adopted code (SIMULPS). A 3-D velocity model beneath Damavand volcano has been obtained through inversion of P-wave arrivals of local earthquakes. About 1200 seismic events distributed around this volcano from surface up to a depth of about 30 km have been used to infer the P-wave velocity structure. The seismic arrival times were directly inverted using a 1D velocity model optimally representing the background structure. We used different grid spacing that provided detailed images of the volcano in order to investigate whether or not the anomalies are resolved by the data or are artifacts of the inversion. The resolution analysis carefully performed on the model parameters allowed the determination of a more reliable final model that represented the best results for the velocity structure beneath the volcano. The final model revealed an anomalous structure with a high velocity anomaly located beneath the volcano and a low velocity anomaly dominated the shallower depths. The spatial pattern of 3D velocity anomalies resolved in the region appears to be correlated at surface with the distribution of seismicity and major tectonic units and faults.

  20. P-wave tomography reveals a westward dipping low velocity zone beneath the Kenya Rift

    NASA Astrophysics Data System (ADS)

    Park, Yongcheol; Nyblade, Andrew A.

    2006-04-01

    Three teleseismic P-wave travel time data sets (KRISP 1985, 1989-1990 Kenya Broadband Seismic Experiment) have been inverted to obtain a new tomographic model of the upper mantle beneath the Kenya Rift. The model shows a 0.5-1.5% low velocity anomaly below the rift extending to about 150 km depth. Below ~150 km depth, the anomaly broadens to the west toward the Tanzania Craton, suggesting a westward dip to the structure. Tomographic images to the south in Tanzania and to the north in Ethiopia also show westward dipping low velocity anomalies below depths of ~150-200 km. The presence of westward dipping low velocity structures along much of the East African rift (Ethiopia, Kenya and Tanzania) is difficult to explain with a plume model and is consistent with some models of the African Superplume showing anomalous lower and upper mantle structure connecting at mid-mantle depths under the western side of East Africa.

  1. P wave velocity of Proterozoic upper mantle beneath central and southern Asia

    NASA Astrophysics Data System (ADS)

    Nyblade, Andrew A.; Vogfjord, Kristin S.; Langston, Charles A.

    1996-05-01

    P wave velocity structure of Proterozoic upper mantle beneath central and southern Africa was investigated by forward modeling of Pnl waveforms from four moderate size earthquakes. The source-receiver path of one event crosses central Africa and lies outside the African superswell while the source-receiver paths for the other events cross Proterozoic lithosphere within southern Africa, inside the African superswell. Three observables (Pn waveshape, PL-Pn time, and Pn/PL amplitude ratio) from the Pnl waveform were used to constrain upper mantle velocity models in a grid search procedure. For central Africa, synthetic seismograms were computed for 5880 upper mantle models using the generalized ray method and wavenumber integration; synthetic seismograms for 216 models were computed for southern Africa. Successful models were taken as those whose synthetic seismograms had similar waveshapes to the observed waveforms, as well as PL-Pn times within 3 s of the observed times and Pn/PL amplitude ratios within 30% of the observed ratio. Successful models for central Africa yield a range of uppermost mantle velocity between 7.9 and 8.3 km s-1, velocities between 8.3 and 8.5 km s-1 at a depth of 200 km, and velocity gradients that are constant or slightly positive. For southern Africa, successful models yield uppermost mantle velocities between 8.1 and 8.3 km s-1, velocities between 7.9 and 8.4 km s-1 at a depth of 130 km, and velocity gradients between -0.001 and 0.001 s-1. Because velocity gradients are controlled strongly by structure at the bottoming depths for Pn waves, it is not easy to compare the velocity gradients obtained for central and southern Africa. For central Africa, Pn waves turn at depths of about 150-200 km, whereas for southern Africa they bottom at ˜100-150 km depth. With regard to the origin of the African superswell, our results do not have sufficient resolution to test hypotheses that invoke simple lithospheric reheating. However, our models are not

  2. P-wave ray velocities and the inverse acoustic problem for anisotropic media

    NASA Astrophysics Data System (ADS)

    Zel, I. Yu.; Ivankina, T. I.; Levin, D. M.; Lokajicek, T.

    2016-07-01

    The specific features of the calculation of ray velocities of quasi-longitudinal waves in anisotropic media have been considered. A technique for calculating elastic constants using P-wave ray velocities measured in an ultrasonic experiment on spherical samples is presented. It is shown by an example of tabular data that elastic constants C11, C22, and C33 and combinations of constants ( C12 + 2 C66), ( C13 + 2 C55), ( C23 + 2 C44), ( C14 + 2 C56), ( C25 + 2 C46), and ( C36 + 2 C45) can be calculated most accurately for the general case of anisotropic media with elastic properties of arbitrary symmetry. Since the determining system of equations is illconditioned, the values of elastic constants entering these combinations depend on the choosed initial approximation.

  3. P-wave velocity in granulites from South India: implications for the continental crust

    NASA Astrophysics Data System (ADS)

    Ramachandran, C.

    1992-01-01

    P-wave velocities ( Vp) were measured in 160 high-grade metamorphic rocks from the South Indian granulite terrain (SGT). The wide variations observed in the Vp of charnockites and gneisses could be due to the complex prograde and retrograde metamorphic histories of the two major rock types of the SGT. The velocity-density relation showed distinct trends for charnockites and gneisses. Initial stages of retrograde metamorphism in charnockites significantly affected their magnetic properties, however, its effect on velocity and density is not diagnostic. Contrasting physical properties on either side of the Palghat-Cauvery (P-C) shear zone lends support for the contention that the P-C shear zone is a major paleosuture. The laboratory mean Vpof the rocks from the northern SGT are comparable with the mid-crustal DSS velocity in the adjacent granite greenstone terrain (GGT), suggesting that the GGT is possibly underlain by a felsic granulite basement. The physical properties of the high-grade metamorphic rocks from SGT are significantly lower than that of the lower crust. The physical properties and tectonic considerations show that the granulites of South India may not be of lower crustal origin and hence not representative of the lower crust, as generally thought. A simplified two-layer crustal model with a predominantly felsic granulite upper crust and a mafic granulite lower crust, is suggested for the SGT.

  4. Minimum 1-D P-wave velocity reference model for Northern Iran

    NASA Astrophysics Data System (ADS)

    Rezaeifar, Meysam; Diehl, Tobias; Kissling, Edi

    2016-04-01

    Uniform high-precision earthquake location is of importance in a seismically active area like northern Iran where the earthquake catalogue is a prerequisite for seismic hazard assessment and tectonic interpretation. We compile a complete and consistent local earthquake data set for the northern Iran region, using information from two independently operating seismological networks, Iran Seismological Center (IRSC) network, administered by the Geophysical Institute of Tehran University, and Iran Broadband network administered by International Institute of Engineering Earthquake and Seismology (IIEES). Special care is taken during the merging process to reduce the number of errors in the data, including station parameters, event pairing, phase identification, and to the assessment of quantitative observation uncertainties. The derived P-wave 1D-velocity model for Northern Iran may serve for consistent routine high-precision earthquake location and as initial reference model for 3D seismic tomography.

  5. Crosswell seismic studies in gas hydrate-bearing sediments: P wave velocity and attenuation tomography

    NASA Astrophysics Data System (ADS)

    Bauer, K.; Haberland, Ch.; Pratt, R. G.; Ryberg, T.; Weber, M. H.; Mallik Working Group

    2003-04-01

    We present crosswell seismic data from the Mallik 2002 Production Research Well Program, an international research project on Gas Hydrates in the Northwest Territories of Canada. The program participants include 8 partners; The Geological Survey of Canada (GSC), The Japan National Oil Corporation (JNOC), GeoForschungsZentrum Potsdam (GFZ), United States Geological Survey (USGS), United States Department of the Energy (USDOE), India Ministry of Petroleum and Natural Gas (MOPNG)/Gas Authority of India (GAIL) and the Chevron-BP-Burlington joint venture group. The crosswell seismic measurements were carried out by making use of two 1160 m deep observation wells (Mallik 3L-38 and 4L-38) both 45 m from and co-planar with the 1188 m deep production research well (5L-38). A high power piezo-ceramic source was used to generate sweeped signals with frequencies between 100 and 2000 Hz recorded with arrays of 8 hydrophones per depth level. A depth range between 800 and 1150 m was covered, with shot and receiver spacings of 0.75 m. High quality data could be collected during the survey which allow for application of a wide range of crosswell seismic methods. The initial data analysis included suppression of tube wave energy and picking of first arrivals. A damped least-squares algorithm was used to derive P-wave velocities from the travel time data. Next, t* values were derived from the decay of the amplitude spectra, which served as input parameters for a damped least-squares attenuation tomography. The initial results of the P-wave velocity and attenuation tomography reveal significant features reflecting the stratigraphic environment and allow for detection and eventually quantification of gas hydrate bearing sediments. A prominent correlation between P velocity and attenuation was found for the gas hydrate layers. This contradicts to the apparently more meaningful inverse correlation as it was determined for the gas hydrates at the Blake Ridge but supports the results from

  6. Effects of exciting frequencies, grain sizes, and damage upon P-wave velocity for ultrasonic NDT of concrete

    NASA Astrophysics Data System (ADS)

    Ju, Jiann W.; Weng, Lisheng

    2000-05-01

    This paper focuses on the experimental study of the effects of exciting frequencies, grain (aggregate) sizes, and damage upon the ultrasonic P-wave velocity when performing the ultrasonic nondestructive testing (NDT) for concrete specimens. Two batches of concrete and mortar specimens were prepared in the laboratory for the investigation of the effects from the stated factors upon the P-wave velocity. Damage here mostly refers to microcracks and microvoids in concrete. Five different aggregate sizes, 0' (mortar), 3/8', 1/2', 3/4', and 1', were selected to demonstrate the grain (aggregate) size effect. Exciting frequencies of the ultrasonic wave were set to range from 100 kHz to 1,000 kHz, with increment of 50 kHz, to demonstrate the frequency effect. Styrofoam particles were mixed into the comparison concrete and mortar specimens to simulate the distributed microvoids (damage). Different volume fractions of styrofoam particles were mixed into the mortar specimens in order to study the effect of different porosities (damage) upon the P-wave velocity. The experimental observations show that, for mortar and concrete specimens with aggregate sizes from 0 to 1 inch, the P-wave velocity would not be affected significantly within the tested frequency range (100 - 1000 kHz). The normalized P-wave velocity exhibits almost identical pattern upon the exciting frequencies for all specimens.

  7. Three-dimensional P wave velocity model for the San Francisco Bay region, California

    USGS Publications Warehouse

    Thurber, C.H.; Brocher, T.M.; Zhang, H.; Langenheim, V.E.

    2007-01-01

    A new three-dimensional P wave velocity model for the greater San Francisco Bay region has been derived using the double-difference seismic tomography method, using data from about 5,500 chemical explosions or air gun blasts and approximately 6,000 earthquakes. The model region covers 140 km NE-SW by 240 km NW-SE, extending from 20 km south of Monterey to Santa Rosa and reaching from the Pacific coast to the edge of the Great Valley. Our model provides the first regional view of a number of basement highs that are imaged in the uppermost few kilometers of the model, and images a number of velocity anomaly lows associated with known Mesozoic and Cenozoic basins in the study area. High velocity (Vp > 6.5 km/s) features at ???15-km depth beneath part of the edge of the Great Valley and along the San Francisco peninsula are interpreted as ophiolite bodies. The relocated earthquakes provide a clear picture of the geometry of the major faults in the region, illuminating fault dips that are generally consistent with previous studies. Ninety-five percent of the earthquakes have depths between 2.3 and 15.2 km, and the corresponding seismic velocities at the hypocenters range from 4.8 km/s (presumably corresponding to Franciscan basement or Mesozoic sedimentary rocks of the Great Valley Sequence) to 6.8 km/s. The top of the seismogenic zone is thus largely controlled by basement depth, but the base of the seismogenic zone is not restricted to seismic velocities of ???6.3 km/s in this region, as had been previously proposed. Copyright 2007 by the American Geophysical Union.

  8. P wave crustal velocity structure in the greater Mount Rainier area from local earthquake tomography

    USGS Publications Warehouse

    Moran, S.C.; Lees, J.M.; Malone, S.D.

    1999-01-01

    We present results from a local earthquake tomographic imaging experiment in the greater Mount Rainier area. We inverted P wave arrival times from local earthquakes recorded at permanent and temporary Pacific Northwest Seismograph Network seismographs between 1980 and 1996. We used a method similar to that described by Lees and Crosson [1989], modified to incorporate the parameter separation method for decoupling the hypocenter and velocity problems. In the upper 7 km of the resulting model there is good correlation between velocity anomalies and surface geology. Many focal mechanisms within the St. Helens seismic zone have nodal planes parallel to the epicentral trend as well as to a north-south trending low-velocity trough, leading us to speculate that the trough represents a zone of structural weakness in which a moderate (M 6.5-7.0) earthquake could occur. In contrast, the western Rainier seismic zone does not correlate in any simple way with anomaly patterns or focal mechanism fault planes, leading us to infer that it is less likely to experience a moderate earthquake. A ???10 km-wide low-velocity anomaly occurs 5 to 18 km beneath the summit of Mount Rainier, which we interpret to be a signal of a region composed of hot, fractured rock with possible small amounts of melt or fluid. No systematic velocity pattern is observed in association with the southern Washington Cascades conductor. A midcrustal anomaly parallels the Olympic-Wallowa lineament as well as several other geophysical trends, indicating that it may play an important role in regional tectonics. Copyright 1999 by the American Geophysical Union.

  9. Are high p-wave velocity sediments on thin Tethyan crust, deep-water carbonates?

    NASA Astrophysics Data System (ADS)

    Gutscher, Marc-Andre; Graindorge, David; Klingelhoefer, Frauke; Dellong, David; Kopp, Heidrun; Sallares, Valenti; Bartolome, Rafael; Gallais, Flora

    2016-04-01

    Seismic reflection profiles from the Central Mediterranean and Gulf of Cadiz regions indicate the widespread presence of a seismic unit, marked by strong continuous reflectors, directly overlying the basement. Seismic velocity analysis from seismic reflection and refraction studies indicate high p-wave velocities of 3.5 - 4.5 km/s in this layer. These same seismic studies image a thin crust, typically 6-9 km thick, in most cases thought to be oceanic in nature and related to the Tethys oceanic domain separating Africa (Gondwana) from Laurussia. We interpret this 2-3 km thick reflective layer to be carbonates, deposited in the late Triassic, Jurassic and early Cretaceous in the Tethys Ocean, in deep marine basins. Few drilling studies have penetrated into this layer. In one case (DSDP site 135, drilled at 4152 m water depth on Coral Patch Ridge in the western Gulf of Cadiz), Aptian (early Cretaceous) marls and limestone were drilled (560-689 m sub-seafloor depth). The Calcite compensation depth during the Jurassic to Early Cretaceous was about 4000 m to 3500 m according to compilations from the Atlantic and Indian Oceans and is consistent with deposition of deep-water carbonates. For the NW Moroccan margin (Mazagan transect near El Jadida) there is a 2 km thick sedimentary layer with p-wave velocities of 4.0 - 4.5 km/s at the base of a 4 - 6 km thick sedimentary section. This layer extends from seafloor thought to be oceanic crust (west of the West African Coast magnetic anomaly) across a domain of thin/transitional crust with abundant Triassic salt diapirs to the foot of the margin. This reflective basal layer is also observed in reflection and refraction profiles from the Seine abyssal plain, below the toe of the Cadiz accretionary wedge (S. Algarve margin), in the Ionian abyssal plain and below the toe of the Calabrian accretionary wedge, all regions floored by this thin Tethyan crust. Work is in progress to determine the exact nature of this crust.

  10. The relationship between gas hydrate saturation and P-wave velocity of pressure cores obtained in the Eastern Nankai Trough

    NASA Astrophysics Data System (ADS)

    Konno, Y.; Yoneda, J.; Jin, Y.; Kida, M.; Suzuki, K.; Nakatsuka, Y.; Fujii, T.; Nagao, J.

    2014-12-01

    P-wave velocity is an important parameter to estimate gas hydrate saturation in sediments. In this study, the relationship between gas hydrate saturation and P-wave velocity have been analyzed using natural hydrate-bearing-sediments obtained in the Eastern Nankai Trough, Japan. The sediment samples were collected by the Hybrid Pressure Coring System developed by Japan Agency for Marine-Earth Science and Technology during June-July 2012, aboard the deep sea drilling vessel CHIKYU. P-wave velocity was measured on board by the Pressure Core Analysis and Transfer System developed by Geotek Ltd. The samples were maintained at a near in-situ pressure condition during coring and measurement. After the measurement, the samples were stored core storage chambers and transported to MHRC under pressure. The samples were manipulated and cut by the Pressure-core Non-destructive Analysis Tools or PNATs developed by MHRC. The cutting sections were determined on the basis of P-wave velocity and visual observations through an acrylic window equipped in the PNATs. The cut samples were depressurized to measure gas volume for saturation calculations. It was found that P-wave velocity correlates well with hydrate saturation and can be reproduced by the hydrate frame component model. Using pressure cores and pressure core analysis technology, nondestructive and near in-situ correlation between gas hydrate saturation and P-wave velocity can be obtained. This study was supported by funding from the Research Consortium for Methane Hydrate Resources in Japan (MH21 Research Consortium) planned by the Ministry of Economy, Trade and Industry (METI), Japan.

  11. First high resolution P wave velocity structure beneath Tenerife Island, (Canary Islands, Spain)

    NASA Astrophysics Data System (ADS)

    Garcia-Yeguas, Araceli; Ivan, Koulakov; Ibañez Jesus, M.; Valenti, Sallarès.

    2010-05-01

    3D velocity structure distribution has been imaged for first time using high resolution traveltime seismic tomography of the active volcano of Tenerife Island (Canary Islands, Spain). It is located in the Atlantic Ocean. In this island is situated the Teide stratovolcano (3718 m high) that is part of the Cañadas-Teide-Pico Viejo volcanic complex. Las Cañadas is a caldera system more than 20 kilometers wide where at least four distinct caldera processes have been identified. Evidence for many explosive eruptions in the volcanic complex has been found; the last noticeable explosive eruption (sub-plinean) occurred at Montaña Blanca around 2000 years ago. During the last 300 years, six effusive eruptions have been reported, the last of which took place at Chinyero Volcano on 18 November 1909. In January 2007, a seismic active experiment was carried out as part of the TOM-TEIDEVS project. About 6850 air gun shots were fired on the sea and recorded on a dense local seismic land network consisting of 150 independent (three component) seismic stations. The good quality of the recorded data allowed identifying P-wave arrivals up to offsets of 30-40 km obtaining more than 63000 traveltimes used in the tomographic inversion. The images have been obtained using ATOM-3D code (Koulakov, 2009). This code uses ray bending algorithms in the ray tracing for the forward modelling and in the inversion step it uses gradient methods. The velocity models show a very heterogeneous upper crust that is usual in similar volcanic environment. The tomographic images points out the no-existence of a magmatic chamber near to the surface and below Pico Teide. The ancient Las Cañadas caldera borders are clearly imaged featuring relatively high seismic velocity. Moreover, we have found a big low velocity anomaly in the northwest dorsal of the island. The last eruption took place in 1909 in this area. Furthermore, in the southeast another low velocity anomaly has been imaged. Several resolution

  12. 3D P-Wave Velocity Structure of the Deep Galicia Rifted Margin

    NASA Astrophysics Data System (ADS)

    Bayrakci, G.; Minshull, T. A.; Davy, R. G.; Sawyer, D. S.; Klaeschen, D.; Papenberg, C. A.; Reston, T. J.; Shillington, D. J.; Ranero, C. R.

    2014-12-01

    The combined wide-angle reflection-refraction and multi-channel seismic (MCS) experiment, Galicia 3D, was carried out in 2013 at the Galicia rifted margin in the northeast Atlantic Ocean, west of Spain. The main geological features within the 64 by 20 km (1280 km²) 3D box investigated by the survey are the peridotite ridge (PR), the fault bounded, rotated basement blocks and the S reflector, which has been interpreted to be a low angle detachment fault. 44 short period four-component ocean bottom seismometers and 28 ocean bottom hydrophones were deployed in the 3D box. 3D MCS profiles sampling the whole box were acquired with two airgun arrays of 3300 cu.in. fired alternately every 37.5 m. We present the results from 3D first-arrival time tomography that constrains the P-wave velocity in the 3D box, for the entire depth sampled by reflection data. Results are validated by synthetic tests and by the comparison with Galicia 3D MCS lines. The main outcomes are as follows: 1- The 3.5 km/s iso-velocity contour mimics the top of the acoustic basement observed on MCS profiles. Block bounding faults are imaged as velocity contrasts and basement blocks exhibit 3D topographic variations. 2- On the southern profiles, the top of the PR rises up to 5.5 km depth whereas, 20 km northward, its basement expression (at 6.5 km depth) nearly disappears. 3- The 6.5 km/s iso-velocity contour matches the topography of the S reflector where the latter is visible on MCS profiles. Within a depth interval of 0.6 km (in average), velocities beneath the S reflector increase from 6.5 km/s to 7 km/s, which would correspond to a decrease in the degree of serpentinization from ~45 % to ~30 % if these velocity variations are caused solely by variations in hydration. At the intersections between the block bounding normal faults and the S reflector, this decrease happens over a larger depth interval (> 1 km), suggesting that faults act as conduit for the water flow in the upper mantle.

  13. 3D P-Wave Velocity Structure of the Deep Galicia Rifted Margin

    NASA Astrophysics Data System (ADS)

    Bayrakci, Gaye; Minshull, Timothy; Davy, Richard; Sawyer, Dale; Klaeschen, Dirk; Papenberg, Cord; Reston, Timothy; Shillington, Donna; Ranero, Cesar

    2015-04-01

    The combined wide-angle reflection-refraction and multi-channel seismic (MCS) experiment, Galicia 3D, was carried out in 2013 at the Galicia rifted margin in the northeast Atlantic Ocean, west of Spain. The main geological features within the 64 by 20 km (1280 km²) 3D box investigated by the survey are the peridotite ridge (PR), the fault bounded, rotated basement blocks and the S reflector, which has been interpreted to be a low angle detachment fault. 44 short period four-component ocean bottom seismometers and 28 ocean bottom hydrophones were deployed in the 3D box. 3D MCS profiles sampling the whole box were acquired with two airgun arrays of 3300 cu.in. fired alternately every 37.5 m. We present the results from 3D first-arrival time tomography that constrains the P-wave velocity in the 3D box, for the entire depth sampled by reflection data. Results are validated by synthetic tests and by the comparison with Galicia 3D MCS lines. The main outcomes are as follows: 1- The 3.5 km/s iso-velocity contour mimics the top of the acoustic basement observed on MCS profiles. Block bounding faults are imaged as velocity contrasts and basement blocks exhibit 3D topographic variations. 2- On the southern profiles, the top of the PR rises up to 5.5 km depth whereas, 20 km northward, its basement expression (at 6.5 km depth) nearly disappears. 3- The 6.5 km/s iso-velocity contour matches the topography of the S reflector where the latter is visible on MCS profiles. Within a depth interval of 0.6 km (in average), velocities beneath the S reflector increase from 6.5 km/s to 7 km/s, which would correspond to a decrease in the degree of serpentinization from ~45 % to ~30 % if these velocity variations are caused solely by variations in hydration. At the intersections between the block bounding normal faults and the S reflector, this decrease happens over a larger depth interval (> 1 km), suggesting that faults act as conduit for the water flow in the upper mantle.

  14. The P wave velocity structure of Deception Island, Antarctica, from two-dimensional seismic tomography

    NASA Astrophysics Data System (ADS)

    Ben-Zvi, T. Z.; Barclay, A. H.; Wilcock, W. S.; Zandomeneghi, D.; Ibáñez, J. M.; Almendros, J.

    2006-12-01

    Deception Island is a small (diameter of ~15km) active volcanic island located at the western end of the Bransfield Strait, a region of back-arc extension associated with the recently extinct South Shetland Island Arc. The island has a horseshoe shape with a flooded caldera (Port Foster) that is open to the sea through a narrow passage. The geometry of the island makes it ideal for seismic imaging. In January, 2005, an international team of scientists deployed seismometers on Deception Island and the seafloor in order to record P wave arrivals from airgun shots both within the caldera and around the island. The experiment geometry was designed for high-resolution three-dimensional tomography of the shallow structure of the volcano but also included two linear profiles that were configured to image structure down to 5-10 km depth; a 90 km long-profile was oriented NNW-SSE and extended over 50 km to the south of the island and a 50 km long profile was oriented ENE-WSW and extended equal distances to either side of the island. We have obtained tomographic inversions for two-dimensional P-wave velocity structure along these profiles using shots and stations that lie up 2 km away from the profile. The inversions resolve a pronounced low- velocity anomaly beneath much of the caldera which extends from near the surface to about 3-4 km depth with a maximum anomaly of ~ -1 km/s at 1.5-2km depth. Refracted arrivals for shots within the caldera are consistent with a 1-km-thick layer of sediments infilling the caldera but synthetic inversions suggest that the low velocity anomaly resolved by the inversions is primarily a result of structure at greater depth. The inversion for the NNW-SSE profile resolves a sharp increase in velocities to the northwest of the caldera that coincides with the location of a regional zone of normal faulting that defines the northern boundary of the extension in the Bransfield Strait. The ENE-WSW profile also resolves a high velocity region to the

  15. Derivation of site-specific relationships between hydraulic parameters and p-wave velocities based on hydraulic and seismic tomography

    SciTech Connect

    Brauchler, R.; Doetsch, J.; Dietrich, P.; Sauter, M.

    2012-01-10

    In this study, hydraulic and seismic tomographic measurements were used to derive a site-specific relationship between the geophysical parameter p-wave velocity and the hydraulic parameters, diffusivity and specific storage. Our field study includes diffusivity tomograms derived from hydraulic travel time tomography, specific storage tomograms, derived from hydraulic attenuation tomography, and p-wave velocity tomograms, derived from seismic tomography. The tomographic inversion was performed in all three cases with the SIRT (Simultaneous Iterative Reconstruction Technique) algorithm, using a ray tracing technique with curved trajectories. The experimental set-up was designed such that the p-wave velocity tomogram overlaps the hydraulic tomograms by half. The experiments were performed at a wellcharacterized sand and gravel aquifer, located in the Leine River valley near Göttingen, Germany. Access to the shallow subsurface was provided by direct-push technology. The high spatial resolution of hydraulic and seismic tomography was exploited to derive representative site-specific relationships between the hydraulic and geophysical parameters, based on the area where geophysical and hydraulic tests were performed. The transformation of the p-wave velocities into hydraulic properties was undertaken using a k-means cluster analysis. Results demonstrate that the combination of hydraulic and geophysical tomographic data is a promising approach to improve hydrogeophysical site characterization.

  16. Experimental study on monitoring CO2 sequestration by conjoint analysis of the P-wave velocity and amplitude.

    PubMed

    Chen, Hao; Yang, Shenglai; Huan, Kangning; Li, Fangfang; Huang, Wei; Zheng, Aiai; Zhang, Xing

    2013-09-01

    CO2 sequestration has been considered to be one of the most straightforward carbon management strategies for industrial CO2 emission. Monitoring of the CO2 injection process is one of the best ways to make sure the safety storage but is also a major challenge in CO2 geological sequestration. Previous field and laboratory researches have shown that seismic methods are among the most promising monitoring methods because of the obvious reduction in P-wave velocities caused by CO2 injection. However, as CO2 injection continues, the P-wave velocity becomes increasingly insensitive according to the pilot projects when CO2 saturation is higher than 20-40%. Therefore, the conventional seismic method needs improvement or replacement to solve its limitations. In this study, P-wave velocity and amplitude responses to supercritical CO2 injection in brine-saturated core samples from Jilin oilfield were tested using core displacement and an ultrasonic detection integrated system. Results showed that neither the P-wave velocity nor amplitude could simply be used to monitor the CO2 injection process because of the insensitive or nonmonotonous response. Consequently, a new index was established by synthetically considering these two parameters to invert and monitor the CO2 process, which can be thought of as a newer and more effective assessment criterion for the seismic method. PMID:23915233

  17. 3D P-Wave Velocity Structure of the Crust and Relocation of Earthquakes in 21 the Lushan Source Area

    NASA Astrophysics Data System (ADS)

    Yu, X.; Wang, X.; Zhang, W.

    2014-12-01

    The double difference seismic tomography method is applied to the absolute first arrival P wave arrival times and high quality relative P arrival times of the Lushan seismic sequence to determine the detailed crustal 3D P wave velocity structure and the hypocenter parameters in the Lushan seismic area. The results show that the Lushan mainshock locates at 30.28 N, 103.98 E, with the depth of 16.38 km. The leading edge of aftershock in the northeast of mainshock present a spade with a steep dip angle, the aftershocks' extended length is about 12 km. In the southwest of the Lushan mainshock, the leading edge of aftershock in low velocity zone slope gently, the aftershocks' extended length is about 23 km. The P wave velocity structure of the Lushan seismic area shows obviously lateral heterogeneity. The P wave velocity anomalies represent close relationship with topographic relief and geological structure. In Baoxing area the complex rocks correspond obvious high-velocity anomalies extending down to 15 km depth,while the Cenozoic rocks are correlated with low-velocity anomalies. Our high-resolution tomographic model not only displays the general features contained in the previous models, but also reveals some new features. An obvious high-velocity anomaly is visible in Daxing area. The high-velocity anomalies beneath Baoxing and Daxing connect each other in 10 km depth, which makes the contrast between high and low velocity anomalies more sharp. Above 20 km depth the velocity structure in southwest and northeast segment of the mainshock shows a big difference: low-velocity anomalies are dominated the southwest segment, while high-velocity anomalies rule the northeast segment. The Lushan mainshock locates at the leading edge of a low-velocity anomaly surrounded by the Baoxing and Daxing high-velocity anomalies. The Lushan aftershocks in southwest are distributed in low-velocity anomalies or the transition belt: the footwall represents low-velocity anomalies, while

  18. Estimating 2-D vector velocities using multidimensional spectrum analysis.

    PubMed

    Oddershede, Niels; Løvstakken, Lasse; Torp, Hans; Jensen, Jørgen Arendt

    2008-08-01

    Wilson (1991) presented an ultrasonic wideband estimator for axial blood flow velocity estimation through the use of the 2-D Fourier transform. It was shown how a single velocity component was concentrated along a line in the 2-D Fourier space, where the slope was given by the axial velocity. Later, it was shown that this approach could also be used for finding the lateral velocity component by also including a lateral sampling. A single velocity component would then be concentrated along a plane in the 3-D Fourier space, tilted according to the 2 velocity components. This paper presents 2 new velocity estimators for finding both the axial and lateral velocity components. The estimators essentially search for the plane in the 3- D Fourier space, where the integrated power spectrum is largest. The first uses the 3-D Fourier transform to find the power spectrum, while the second uses a minimum variance approach. Based on this plane, the axial and lateral velocity components are estimated. Several phantom measurements, for flow-to-depth angles of 60, 75, and 90 degrees, were performed. Multiple parallel lines were beamformed simultaneously, and 2 different receive apodization schemes were tried. The 2 estimators were then applied to the data. The axial velocity component was estimated with an average standard deviation below 2.8% of the peak velocity, while the average standard deviation of the lateral velocity estimates was between 2.0% and 16.4%. The 2 estimators were also tested on in vivo data from a transverse scan of the common carotid artery, showing the potential of the vector velocity estimation method under in vivo conditions. PMID:18986918

  19. P-Wave Velocity Tomography from Local Earthquakes in Western Mexico

    NASA Astrophysics Data System (ADS)

    Ochoa-Chávez, Juan A.; Escudero, Christian R.; Núñez-Cornú, Francisco J.; Bandy, William L.

    2015-11-01

    In western Mexico, the subduction of the Rivera and Cocos plates beneath the North America plate has deformed and fragmented the overriding plate, forming several structural rifts and crustal blocks. To obtain a reliable subsurface image of the continental crust and uppermost mantle in this complex area, we used P-wave arrivals of local earthquakes along with the Fast Marching Method tomography technique. We followed an inversion scheme consisting of (1) the use of a high-quality earthquake catalog and corrected phase picks, (2) the selection of earthquakes using a maximum location error threshold, (3) the estimation of an improved 1-D reference velocity model, and (4) the use of checkerboard testing to determine the optimum configuration of the velocity nodes and inversion parameters. Surprisingly, the tomography results show a very simple δVp distribution that can be described as being controlled by geologic structures formed during two stages of the separation of the Rivera and Cocos plates. The earlier period represents the initial stages of the separation of the Rivera and Cocos plates beneath western Mexico; the later period represents the more advanced stage of rifting where the Rivera and Cocos plates had separated sufficiently to allow melt to accumulate below the Colima Volcanic complex. During the earlier period (14 or 10-1.6 Ma), NE-SW-oriented structures/lineaments (such as the Southern Colima Rift) were formed as the two plates separated. During the second period (1.6 Ma to the present), the deformation is attributed to magma, generated within and above the tear zone between the Rivera and Cocos plates, rising beneath the region of the Colima Volcanic Complex. The rising magma fractured the overlying crust, forming a classic triple-rift junction geometry. This triple-rift system is confined to the mid- to lower crust perhaps indicating that this rifting process is still in an early stage. This fracturing, along with fluid circulation and associated

  20. P-Wave Velocity Tomography from Local Earthquakes in Western Mexico

    NASA Astrophysics Data System (ADS)

    Ochoa-Chávez, Juan A.; Escudero, Christian R.; Núñez-Cornú, Francisco J.; Bandy, William L.

    2016-10-01

    In western Mexico, the subduction of the Rivera and Cocos plates beneath the North America plate has deformed and fragmented the overriding plate, forming several structural rifts and crustal blocks. To obtain a reliable subsurface image of the continental crust and uppermost mantle in this complex area, we used P-wave arrivals of local earthquakes along with the Fast Marching Method tomography technique. We followed an inversion scheme consisting of (1) the use of a high-quality earthquake catalog and corrected phase picks, (2) the selection of earthquakes using a maximum location error threshold, (3) the estimation of an improved 1-D reference velocity model, and (4) the use of checkerboard testing to determine the optimum configuration of the velocity nodes and inversion parameters. Surprisingly, the tomography results show a very simple δVp distribution that can be described as being controlled by geologic structures formed during two stages of the separation of the Rivera and Cocos plates. The earlier period represents the initial stages of the separation of the Rivera and Cocos plates beneath western Mexico; the later period represents the more advanced stage of rifting where the Rivera and Cocos plates had separated sufficiently to allow melt to accumulate below the Colima Volcanic complex. During the earlier period (14 or 10-1.6 Ma), NE-SW-oriented structures/lineaments (such as the Southern Colima Rift) were formed as the two plates separated. During the second period (1.6 Ma to the present), the deformation is attributed to magma, generated within and above the tear zone between the Rivera and Cocos plates, rising beneath the region of the Colima Volcanic Complex. The rising magma fractured the overlying crust, forming a classic triple-rift junction geometry. This triple-rift system is confined to the mid- to lower crust perhaps indicating that this rifting process is still in an early stage. This fracturing, along with fluid circulation and associated

  1. 3D P-wave velocity structure of the crust and relocation of earthquakes in the Lushan, China, source area

    NASA Astrophysics Data System (ADS)

    Yu, Xiangwei; Wang, Xiaona; Zhang, Wenbo

    2016-04-01

    Many researchers have investigated the Lushan source area with geological and geophysical approaches since the 2013 Lushan, China, earthquake happened. Compared with the previous tomographic studies, we have used a much large data set and an updated tomographic method to determine a small scale three-dimensional P wave velocity structure with spatial resolution less than 5km, which plays the important role for understanding the deep structure and the genetic mechanism beneath the Lushan area. The double difference seismic tomography method is applied to 50,711 absolute first arrival P wave arrival times and 7,294,691 high quality relative P arrival times of 5,285 events of Lushan seismic sequence to simultaneously determine the detailed crustal 3D P wave velocity structure and the hypocenter parameters in the Lushan seismic area. This method takes account of the path anomaly biases explicitly by making full use of valuable information of seismic wave propagation jointly with absolute and relative arrival time data. Our results show that the Lushan mainshock locates at 30.28N, 103.98E, with the depth of 16.38km. The front edge of aftershock in the northeast of mainshock present a spade with a steep dip angle, the aftershocks' extended length is about 12km. In the southwest of Lushan mainshock, the front edge of aftershock in low velocity zone slope gently, the aftershocks' extended length is about 23km. Our high-resolution tomographic model not only displays the general features contained in the previous models, but also reveals some new features. The Tianquan, Shuangshi and Daguan line lies in the transition zone between high velocity anomalies to the southeast and low velocity anomalies to the northwest at the ground surface. An obvious high-velocity anomaly is visible in Daxing area. With the depth increasing, Baoxing high velocity anomaly extends to Lingguan, while the southeast of the Tianquan, Shuangshi and Daguan line still shows low velocity. The high-velocity

  2. Predicting abnormal pressure from 2-D seismic velocity modeling

    SciTech Connect

    Grauls, D.; Dunand, J.P.; Beaufort, D.

    1995-12-01

    Seismic velocities are the only data available, before drilling, on which to base a quantitative, present-day estimate of abnormal pressure. Recent advances in seismic velocity processing have enabled them to obtain, using an in-house approach, an optimized 2-D interval velocity field and consequently to better define the lateral extension of pressure regimes. The methodology, interpretation and quantification of overpressure-related anomalies are supported by case studies, selected in sand-shale dominated Tertiary basins, offshore West Africa. Another advantage of this approach is that it can also account for the presence of reservoir-potential intervals at great depth and thus provide significant insight, from a prospective standpoint, into very poorly explored areas. Although at the outset the 2-D seismic tool legitimately merits being favored, optimization of the final predictive pressure model, prior to drilling, will depend upon the success of its combined use with other concepts and approaches, pertaining to structural geology, sedimentology, rock mechanics and fluid dynamics.

  3. Velocity distributions for 2D inelastic granular gases

    NASA Astrophysics Data System (ADS)

    Miracle, Dylan J.; Goldman, Daniel I.; Moon, Sung Joon; Rericha, Erin; Swift, J. B.; Swinney, Harry L.

    2002-11-01

    A previous study of a vertically vibrated 2D granular gas found a time-averaged horizontal velocity distribution function of the form P(v) exp(-C|v|^3/2) for the entire velocity range(F. Rouyer and N. Menon, Phys. Rev. Lett. 85), 3676 (2000).. We examine the dependence of the velocity distribution function on phase in the cycle, height above the plate and air pressure in the container. We use 1.6 mm stainless steel balls confined to a vertical plane by a container 32σ tall, 48σ wide, and 1.15σ thick, where σ is the particle diameter. The container oscillates with peak acceleration 20g and frequency 50 Hz. We observe that a shock forms at collision of the plate with the layer and propagates through the layer, heating the grains. The shock rapidly decays over a distance of approximately 8σ above the plate; above this height the granular temperature and density are essentially independent of phase in the cycle. In this steady-state region, we compare the observed functional form of the velocity distribution to molecular dynamics simulations.

  4. P-wave anisotropic velocity tomography beneath the Japan islands: Large-scale images and details in the Kanto district

    NASA Astrophysics Data System (ADS)

    Ishise, M.; Koketsu, K.; Miyake, H.; Oda, H.

    2006-12-01

    The Japan islands arc is located in the convergence zone of the North American (NA), Amurian (AM), Pacific (PAC) and Philippine Sea (PHS) plates, and its parts are exposed to various tectonic settings. For example, at the Kanto district in its central part, these four plates directly interact with each, so that disastrous future earthquakes are expected along the plate boundaries and within the inland areas. In order to understand this sort of complex tectonic setting, it is necessary to know the seismological structure in various perspectives. We investigate the seismic velocity structure beneath the Japan islands in view of P-wave anisotropy. We improved a hitherto-known P-wave tomography technique so that the 3-D structure of isotropic and anisotropic velocities and earthquake hypocenter locations are determined from P-wave arrival times of local earthquakes [Ishise and Oda, 2005]. In the tomography technique, P-wave anisotropy is assumed to hold hexagonal symmetry with horizontal symmetry axis. The P-wave arrival times used in this study are complied in the Japan University Network Earthquake Catalog. The results obtained are summarized as follows; (1) the upper crust anisotropy is governed by the present-day stress field arising from the interaction between the plates surrounding the Japan islands arc, (2) the mantle anisotropy is caused by the present-day mantle flow induced by slab subduction and continental plate motion, (3) the old PAC slab keeps its original slab anisotropy which was captured when the plate was formed, while the youngest part of the PHS slab has lost the original anisotropy during its subduction and has gained new anisotropy which is controlled by the present-day stress field. We also carried out a further study on high-resolution seismic tomography for understanding the specific characteristics of the Kanto district. We mostly focused on the elucidation of the dual subduction formed by the PHS and PAC slabs using seismological data

  5. Density and P-wave velocity structure beneath the Paraná Magmatic Province: Refertilization of an ancient lithospheric mantle

    NASA Astrophysics Data System (ADS)

    Chaves, Carlos; Ussami, Naomi; Ritsema, Jeroen

    2016-08-01

    We estimate density and P-wave velocity perturbations in the mantle beneath the southeastern South America plate from geoid anomalies and P-wave traveltime residuals to constrain the structure of the lithosphere underneath the Paraná Magmatic Province (PMP) and conterminous geological provinces. Our analysis shows a consistent correlation between density and velocity anomalies. The P-wave speed and density are 1% and 15 kg/m3 lower, respectively, in the upper mantle under the Late Cretaceous to Cenozoic alkaline provinces, except beneath the Goiás Alkaline Province (GAP), where density (+20 kg/m3) and velocity (+0.5%) are relatively high. Underneath the PMP, the density is higher by about 50 kg/m3 in the north and 25 kg/m3 in the south, to a depth of 250 - 300 km. These values correlate with high-velocity perturbations of +0.5% and +0.3%, respectively. Profiles of density perturbation versus depth in the upper mantle are different for the PMP and the adjacent Archean São Francisco (SFC) and Amazonian (AC) cratons. The Paleoproterozoic PMP basement has a high-density root. The density is relatively low in the SFC and AC lithospheres. A reduction of density is a typical characteristic of chemically depleted Archean cratons. A more fertile Proterozoic and Phanerozoic subcontinental lithospheric mantle has a higher density, as deduced from density estimates of mantle xenoliths of different ages and composition. In conjunction with Re-Os isotopic studies of the PMP basalts, chemical and isotopic analyses of peridodite xenoliths from the GAP in the northern PMP, and electromagnetic induction experiments of the PMP lithosphere, our density and P-wave speed models suggest that the densification of the PMP lithosphere and flood basalt generation are related to mantle refertilization. Metasomatic refertilization resulted from the introduction of asthenospheric components from the mantle wedge above Proterozoic subduction zones, which surrounded the Paraná lithosphere

  6. Three-dimensional P-wave velocity structure and precise earthquake relocation at Great Sitkin Volcano, Alaska

    USGS Publications Warehouse

    Pesicek, Jeremy; Thurber, Clifford H.; DeShon, Heather R.; Prejean, Stephanie G.; Zhang, Haijiang

    2008-01-01

    Waveform cross-correlation with bispectrum verification is combined with double-difference tomography to increase the precision of earthquake locations and constrain regional 3D P-wave velocity heterogeneity at Great Sitkin volcano, Alaska. From 1999 through 2005, the Alaska Volcano Observatory (AVO) recorded ∼1700 earthquakes in the vicinity of Great Sitkin, including two ML 4.3 earthquakes that are among the largest events in the AVO catalog. The majority of earthquakes occurred during 2002 and formed two temporally and spatially separate event sequences. The first sequence began on 17 March 2002 and was centered ∼20 km west of the volcano. The second sequence occurred on the southeast flank of Great Sitkin and began 28 May 2002. It was preceded by two episodes of volcanic tremor. Earthquake relocations of this activity on the southeast flank define a vertical planar feature oriented radially from the summit and in the direction of the assumed regional maximum compressive stress due to convergence along the Alaska subduction zone. This swarm may have been caused or accompanied by the emplacement of a dike. Relocations of the mainshock–aftershock sequence occurring west of Great Sitkin are consistent with rupture on a strike-slip fault. Tomographic images support the presence of a vertically dipping fault striking parallel to the direction of convergence in this region. The remaining catalog hypocenters relocate along discrete features beneath the volcano summit; here, low P-wave velocities possibly indicate the presence of magma beneath the volcano.

  7. A new P wave velocity model beneath East Asia: insights on the relationship between intraplate volcanism and Pacific subduction

    NASA Astrophysics Data System (ADS)

    Huang, T.; Niu, F.; Obayashi, M.

    2013-12-01

    The Pacific plate subducted beneath the East China since the Middle Mesozoic and it went through several different stages of subduction. Knowing its detailed configuration in the mantle can help better understand the geological events happened in the East Asia. Here we combine P-wave traveltime data from the EHB (Engdahl, van der Hilst, and Buland 1998) catalog of 1964-2007, and manually picks from the regional networks of the China Earthquake Administration (CEArray) consisting of more than one thousand stations from 2007 to 2010 as well as the NorthEast China Extended Array (NECESSArray) with 127 broadband stations from 2009 to 2011 in order to produce a global P-wave velocity model with a focus on the velocity structure beneath the East Asia. The mantle is parameterized into irregular blocks and the size of each block depends on the number of the rays penetrating the block. The minimum block size is 1.25°x1.25°. The large dataset and the adaptive block size yield a high-resolution 3D P-wave velocity model beneath Asia. Our tomographic model shows high velocity roots under Archean cratons, such as the Ordos and the Sichuan basin. Our model also displays low velocity anomalies at a depth from 50km to 350km beneath the Changbaishan and Datong volcanoes. Massive basaltic volcanism occurred in these places in the Cenozoic. There is also a pronounced slow anomaly that extends to the transition zone beneath the South China block, but it is only limited in the upper mantle. The Cenozoic basaltic magmatism in Hainan Island might be related with this slow anomaly. Our model also shows clear segments of slabs inside the transition zone, which could be imaged as flat slabs with insufficient data sampling. Different segments also appear to have different intensity and may correspond to different episodes of the Pacific subduction. The fragmented nature of the subducted Pacific plate also implies that several slab detachment events may have occurred during the subduction

  8. One dimensional P wave velocity structure of the crust beneath west Java and accurate hypocentre locations from local earthquake inversion

    SciTech Connect

    Supardiyono; Santosa, Bagus Jaya

    2012-06-20

    A one-dimensional (1-D) velocity model and station corrections for the West Java zone were computed by inverting P-wave arrival times recorded on a local seismic network of 14 stations. A total of 61 local events with a minimum of 6 P-phases, rms 0.56 s and a maximum gap of 299 Degree-Sign were selected. Comparison with previous earthquake locations shows an improvement for the relocated earthquakes. Tests were carried out to verify the robustness of inversion results in order to corroborate the conclusions drawn out from our reasearch. The obtained minimum 1-D velocity model can be used to improve routine earthquake locations and represents a further step toward more detailed seismotectonic studies in this area of West Java.

  9. The P-wave velocity of the uppermost mantle of the Rio Grande rift region of north central New Mexico.

    USGS Publications Warehouse

    Murdock, J.N.; Jaksha, L.H.

    1981-01-01

    A network of seismograph stations has operated in north-central New Mexico since 1975. The network is approximately 200 by 300 km in size and encompasses the Rio Grande rift there. Several seismic refraction experiments have been reported in the literature for the region of the network and adjacent areas. Because all of the seismic refraction lines are unreversed, Pn velocities reported were mainly of the inverse travel time slope for the direction of the corresponding line. The values of the inverse slope for those studies range from 7.6 to 8.2 km/s. The purpose of our study is to estimate the P-wave velocity of the uppermost mantle by using the time term method. First, we timed the Pn waves of strong signals from five explosions and eight shallow earthquakes recorded by the network. The main data set, which contains 87 time-distance pairs, was processed by using the time term method. The Pn velocity estimated by this method is 8.0 + or - 0.1 km/s. To corroborate this estimate, we then processed 10 subsets of the main data set in the same way. Almost all of the solutions show velocities of 7.9-8.1 km/s, in agreement with the velocity determined for the main data set. -Authors

  10. Estimating fracture parameters from p-wave velocity profiles about a geothermal well

    SciTech Connect

    Jenkinson, J.T.; Henyey, T.L.; Sammis, C.G.; Leary, P.C.; McRaney, J.K.

    1981-12-01

    The feasibility of locating fracture zones and estimating their crack parameters was examined using an areal well shoot method centered on Utah State Geothermal Well 9-1, Beaver County, Utah. High-resolution travel time measurements were made between a borehole sensor and an array of shot stations distributed radially and azimuthally about the well. Directional velocity behavior in the vicinity of the well was investigated by comparing velocity logs derived from the travel time data. Three fracture zones were identified form the velocity data, corroborating fracture indicators seen in other geophysical logs conducted in Well 9-1. Crack densities and average crack aspect ratios for these fracture zones were estimated using a self-consistent velocity theory (O'Connell and Budiansy 1974). Probable trends of these fracture zones were established from a combination of the data from the more distant shot stations and the results of a gravity survey. The results of this study indicate that the areal well shoot is a potentially powerful tool for the reconnaisance of fracture-controlled fluid and gas reservoirs. Improvements in methodology and hardware could transform it into an operationally viable survey method.

  11. Crust and upper mantle P wave velocity structure beneath Valles caldera, New Mexico: Results from the Jemez teleseismic tomography experiment

    SciTech Connect

    Steck, Lee K.; Fehler, Michael C.; Roberts, Peter M.; Baldridge, W. Scott; Stafford, Darrik G.; Lutter, William J.; Sessions, Robert

    1998-10-01

    New results are presented from the teleseismic component of the Jemez Tomography Experiment conducted across Valles caldera in northern New Mexico. We invert 4872 relative {ital P} wave arrival times recorded on 50 portable stations to determine velocity structure to depths of 40 km. The three principle features of our model for Valles caldera are: (1) near-surface low velocities of {minus}17{percent} beneath the Toledo embayment and the Valle Grande, (2) midcrustal low velocities of {minus}23{percent} in an ellipsoidal volume underneath the northwest quadrant of the caldera, and (3) a broad zone of low velocities ({minus}15{percent}) in the lower crust or upper mantle. Crust shallower than 20 km is generally fast to the northwest of the caldera and slow to the southeast. Near-surface low velocities are interpreted as thick deposits of Bandelier tuff and postcaldera volcaniclastic rocks. Lateral variation in the thickness of these deposits supports increased caldera collapse to the southeast, beneath the Valle Grande. We interpret the midcrustal low-velocity zone to contain a minimum melt fraction of 10{percent}. While we cannot rule out the possibility that this zone is the remnant 1.2 Ma Bandelier magma chamber, the eruption history and geochemistry of the volcanic rocks erupted in Valles caldera following the Bandelier tuff make it more likely that magma results from a new pulse of intrusion, indicating that melt flux into the upper crust beneath Valles caldera continues. The low-velocity zone near the crust-mantle boundary is consistent with either partial melt in the lower crust or mafic rocks without partial melt in the upper mantle. In either case, this low-velocity anomaly indicates that underplating by mantle-derived melts has occurred. {copyright} 1998 American Geophysical Union

  12. Imaging earth`s interior: Tomographic inversions for mantle P-wave velocity structure

    SciTech Connect

    Pulliam, R.J.

    1991-07-01

    A formalism is developed for the tomographic inversion of seismic travel time residuals. The travel time equations are solved both simultaneously, for velocity model terms and corrections to the source locations, and progressively, for each set of terms in succession. The methods differ primarily in their treatment of source mislocation terms. Additionally, the system of equations is solved directly, neglecting source terms. The efficacy of the algorithms is explored with synthetic data as we perform simulations of the general procedure used to produce tomographic images of Earth`s mantle from global earthquake data. The patterns of seismic heterogeneity in the mantle that would be returned reliably by a tomographic inversion are investigated. We construct synthetic data sets based on real ray sampling of the mantle by introducing spherical harmonic patterns of velocity heterogeneity and perform inversions of the synthetic data.

  13. Imaging earth's interior: Tomographic inversions for mantle P-wave velocity structure

    SciTech Connect

    Pulliam, R.J.

    1991-07-01

    A formalism is developed for the tomographic inversion of seismic travel time residuals. The travel time equations are solved both simultaneously, for velocity model terms and corrections to the source locations, and progressively, for each set of terms in succession. The methods differ primarily in their treatment of source mislocation terms. Additionally, the system of equations is solved directly, neglecting source terms. The efficacy of the algorithms is explored with synthetic data as we perform simulations of the general procedure used to produce tomographic images of Earth's mantle from global earthquake data. The patterns of seismic heterogeneity in the mantle that would be returned reliably by a tomographic inversion are investigated. We construct synthetic data sets based on real ray sampling of the mantle by introducing spherical harmonic patterns of velocity heterogeneity and perform inversions of the synthetic data.

  14. Estimated Moho Temperature from Observed Heat Flow and Comparison with P-Wave Velocity in the East Sea, Korea

    NASA Astrophysics Data System (ADS)

    Jung, W. Y.; Wood, W. T.

    2014-12-01

    We have estimated temperatures at the Moho surface by employing a published empirical relationship of Perry et al's work (JGR, doi:10.1029/2005JB003921) to the observed heat flow measurements in the East Sea (Sea of Japan), Korea. We assumed in our computation that the parameter values are all the same although the Perry et al's relationship between crustal thickness and heat flows to compute Moho temperature was derived for the Canadian Shield. For the heat flow data, we used the published global heat flow data (http://www.heatflow.und.edu) augmented with some recent heat flow measurements from Korea, and the LLN3_G3Dv3 for P-wave tomography model (JGR, doi:10.1029/2012JB009525). Preliminary results do not show a significant correlation between the computed Moho temperature and the P-wave velocity model perhaps due to uncertainty in the parameter values used in the computation as well as the empirical relation. An empirical relationship between the observed heat flow and the Moho temperature for the Canadian shield might be different for a backarec basin area like the East Sea, Korea. However, we noted that there exists a moderate negative correlation between the total crustal thickness and heat flow - less heat flows with increasing crustal thickness with a relation of Heat_Flow (mW/m2) = 205 - 18.3 * Crustal_Thickness (km). The modeled Moho temperature displays a trend of higher values (900o K -1400o K) from Japan toward the beneath of Yamato Basin and Rise in the NW direction, and beneath the Ulleung Basin area. Another higher Moho temperature (>1000o K) contour band is observed in the area north of Japan Basin, approximately centered along the 139.5o E.

  15. Empirical Correlations for Predicting Strength Properties of Rocks from P-Wave Velocity Under Different Degrees of Saturation

    NASA Astrophysics Data System (ADS)

    Karakul, Hasan; Ulusay, Resat

    2013-09-01

    Determination of P-wave velocity ( V p), which is closely related to intact rock properties both in laboratory and in situ conditions, is a non-destructive, easy and less complicated procedure. Due to these advantages, there is an increasing trend to predict the physico-mechanical properties of rocks from V p. By considering that no attempt on the estimation of mechanical properties of rocks from V p under different degrees of saturation has been made, in this study, it was aimed to correlate strength properties (uniaxial compressive and tensile strengths) with V p of various rock types under different degrees of saturation. For this purpose, fourteen different rock types were collected from several parts of Turkey and a comprehensive laboratory testing program was conducted. Experimental results indicated that strength and deformability properties of the rocks decreased with increasing degree of saturation, while V p showed increasing and decreasing trends depending on degree of saturation. Simple regression analysis results indicated that although prediction of the strength properties of rocks directly from V p at different degrees of saturation was possible, the equations developed would yield some under- or over-predictions. In the second stage of statistical analyses, a series of different prediction relationships were developed by using independent variables such as V p, degree of saturation and effective clay content (ECC). The statistical tests suggested that the resultant multivariate equations had very high prediction performances and were very useful tools to estimate the strength properties from V p determined at any degree of saturation. In addition, the comparisons between the theoretical Gassmann-Biot velocities, which were calculated at different degrees of saturation, and the experimental results suggest that the theoretical Gassmann-Biot velocities show inconsistencies with the experimental results obtained from the investigated rock types with

  16. Crustal P-wave velocity structure from Altyn Tagh to Longmen mountains along the Taiwan-Altay geoscience transect

    USGS Publications Warehouse

    Wang, Y.-X.; Mooney, W.D.; Han, G.-H.; Yuan, X.-C.; Jiang, M.

    2005-01-01

    Based upon the seismic experiments along Geoscience Transect from the Altyn Tagh to the Longmen Mountains, the crustal P-wave velocity structure was derived to outline the characteristics of the crustal structure. The section shows a few significant features. The crustal thickness varies dramatically, and is consistent with tectonic settings. The Moho boundary abruptly drops to 73km depth beneath the southern Altyn Tagh from 50km below the Tarim basin, then rises again to about 58km depth beneath the Qaidam basin. Finally, the Moho drops again to about 70km underneath the Songpan-Garze Terrane and rises to 60km near the Longmen Mountains with a step-shape. Further southeast, the crust thins to 52km beneath the Sichuan basin in the southeast of the Longmen Mountains. In the north of the Kunlun fault, a low-velocity zone, which may be a layer of melted rocks due to high temperature and pressure at depth, exists in the the bottom of the middle crust. The two depressions of the Moho correlate with the Qilian and Songpan-Garze terranes, implying that these two mountains have thick roots. According to our results, it is deduced that the thick crust of the northeastern Tibetan Plateau probably is a result of east-west and northwest-southeast crustal shortening since Mesozoic time during the collision between the Asian and Indian plates.

  17. Fast P-wave precursors in New Zealand: high velocity material associated with the subducted Hikurangi Plateau

    NASA Astrophysics Data System (ADS)

    Love, H.; LeGood, M.; Stuart, G.; Reyners, M.; Eberhart-Phillips, D. E.; Gubbins, D.

    2015-08-01

    Seismic tomography has revealed very high P-wave velocities, over 8.5 km s-1, at shallow depths, 30-100 km, beneath New Zealand. Here we study fast, high-frequency arrivals at North and South Island stations that contain additional information about the crust and mantle structure. These arrivals, which are from earthquakes within or close to the land mass, have a characteristic high-frequency precursor followed by a lower frequency, larger amplitude, main phase. Precursors were seen on at least one station from 262 of 306 candidate events; the best-recorded 76 events were analysed for wave speed, frequency content and polarization. Time-distance plots are consistent with two phases travelling at 8.38 ± 0.03 and 6.93 ± 0.05 km s-1. The precursor has typical frequencies 4-9 Hz, the second arrival 2-4 Hz. Polarizations are off-azimuth by 30° and steeper than predicted by ray tracing through a smooth 3-D tomographic model. These results are explained by propagation through a dipping layer of order 10 km thick with seismic velocity around 8.5 km s-1; it is too thin to propagate frequencies below 4 Hz and waves refract from it at a steep, out-of-plane angle, explaining the anomalous polarization. Ray paths cover a region coinciding with the subducted Hikurangi Plateau; the fast layer is interpreted as the lowest section of the plateau that has transformed to eclogite, which has the same fast seismic velocity that we observe. Unlike the fast, eclogitic layers identified in subduction zones such as the Kermadecs, this layer is shallower, at 30 km, than the eclogite transformation; we therefore propose that it formed at the base of the thick plateau prior to subduction.

  18. Improved estimation of P-wave velocity, S-wave velocity, and attenuation factor by iterative structural joint inversion of crosswell seismic data

    NASA Astrophysics Data System (ADS)

    Zhu, Tieyuan; Harris, Jerry M.

    2015-12-01

    We present an iterative joint inversion approach for improving the consistence of estimated P-wave velocity, S-wave velocity and attenuation factor models. This type of inversion scheme links two or more independent inversions using a joint constraint, which is constructed by the cross-gradient function in this paper. The primary advantages of this joint inversion strategy are: avoiding weighting for different datasets in conventional simultaneous joint inversion, flexible for incorporating prior information, and relatively easy to code. We demonstrate the algorithm with two synthetic examples and two field datasets. The inversions for P- and S-wave velocity are based on ray traveltime tomography. The results of the first synthetic example show that the iterative joint inversion take advantages of both P- and S-wave sensitivity to resolve their ambiguities as well as improve structural similarity between P- and S-wave velocity models. In the second synthetic and field examples, joint inversion of P- and S-wave traveltimes results in an improved Vs velocity model that shows better structural correlation with the Vp model. More importantly, the resultant VP/VS ratio map has fewer artifacts and is better correlated for use in geological interpretation than the independent inversions. The second field example illustrates that the flexible joint inversion algorithm using frequency-shift data gives a structurally improved attenuation factor map constrained by a prior VP tomogram.

  19. P-wave velocity structure in the southernmost source region of the 2011 Tohoku earthquakes, off the Boso Peninsula, deduced by an ocean bottom seismographic survey

    NASA Astrophysics Data System (ADS)

    Nakahigashi, Kazuo; Shinohara, Masanao; Mochizuki, Kimihiro; Yamada, Tomoaki; Hino, Ryota; Sato, Toshinori; Uehira, Kenji; Ito, Yoshihiro; Murai, Yoshio; Kanazawa, Toshihiko

    2012-12-01

    We present the result of a seismic experiment conducted using ocean bottom seismometers and controlled sources in the region off Ibaraki and the Boso Peninsula. This region is the southern edge of the rupture zone of the 2011 off the Pacific coast of Tohoku Earthquake. We estimated the P-wave seismic velocity structure beneath the profile using a 2-D ray-tracing method. The crustal structure in the southern area is more heterogeneous than that of the northern area. This heterogeneity is thought to be related with subducting the Philippine Sea plate (PHS). The plate boundary between the landward plate and the Pacific plate (PAC) is positioned at depths of 20 km at a distance of 170 km from the southern end of the profile. The subducting PHS is imaged on the southern part of the profile. However, we could not obtain a distinct image of the contact zone of PHS and PAC. The contact zone of PHS and PAC is estimated to have a large heterogeneity resulting from strong deformation due to the collision of the two plates. We infer that the termination of the rupture, and the large afterslip in the collision region, are caused by this strong heterogeneity.

  20. Effect of the specimen length on ultrasonic P-wave velocity in some volcanic rocks and limestones

    NASA Astrophysics Data System (ADS)

    Karaman, Kadir; Kaya, Ayberk; Kesimal, Ayhan

    2015-12-01

    Ultrasonic P-wave velocity (UPV) is commonly used in different fields such as civil, mining, geotechnical, and rock engineering. One of the significant parameters which affect the UPV of rock materials is likely to be the length of test cores although it is not mentioned in the literature. In this study, in order to explore the influence of the specimen length on the UPV, rock samples were collected from eight different locations in Turkey. The NX-sized core specimens having different length of 50, 75, 100, 125, and 150 mm were prepared. Before the analyses, rocks were divided into two groups in terms of their geological origins such as volcanic and chemical sedimentary (limestone) rocks. The UPV tests were carried out under dry and saturated conditions for each 200 core specimens. By evaluating the test results, it was shown that the length of the specimens significantly affects the UPV values. Based on the regression analyses, a method was developed to determine the threshold specimen length of studied rocks. Fluctuations in UPVdry and UPVsat values were generally observed for cores smaller than the threshold specimen length. In this study, the threshold specimen length was determined as 79 mm for volcanic rocks and 109 mm for limestones.

  1. Three-dimensional P-wave velocity structure derived from local earthquakes at the Katmai group of volcanoes, Alaska

    USGS Publications Warehouse

    Jolly, A.D.; Moran, S.C.; McNutt, S.R.; Stone, D.B.

    2007-01-01

    The three-dimensional P-wave velocity structure beneath the Katmai group of volcanoes is determined by inversion of more than 10,000 rays from over 1000 earthquakes recorded on a local 18 station short-period network between September 1996 and May 2001. The inversion is well constrained from sea level to about 6??km below sea level and encompasses all of the Katmai volcanoes; Martin, Mageik, Trident, Griggs, Novarupta, Snowy, and Katmai caldera. The inversion reduced the average RMS travel-time error from 0.22??s for locations from the standard one-dimensional model to 0.13??s for the best three-dimensional model. The final model, from the 6th inversion step, reveals a prominent low velocity zone (3.6-5.0??km/s) centered at Katmai Pass and extending from Mageik to Trident volcanoes. The anomaly has values about 20-25% slower than velocities outboard of the region (5.0-6.5??km/s). Moderately low velocities (4.5-6.0??km/s) are observed along the volcanic axis between Martin and Katmai Caldera. Griggs volcano, located about 10??km behind (northwest of) the volcanic axis, has unremarkable velocities (5.0-5.7??km/s) compared to non-volcanic regions. The highest velocities are observed between Snowy and Griggs volcanoes (5.5-6.5??km/s). Relocated hypocenters for the best 3-D model are shifted significantly relative to the standard model with clusters of seismicity at Martin volcano shifting systematically deeper by about 1??km to depths of 0 to 4??km below sea level. Hypocenters for the Katmai Caldera are more tightly clustered, relocating beneath the 1912 scarp walls. The relocated hypocenters allow us to compare spatial frequency-size distributions (b-values) using one-dimensional and three-dimensional models. We find that the distribution of b is significantly changed for Martin volcano, which was characterized by variable values (0.8 < b < 2.0) with standard locations and more uniform values (0.8 < b < 1.2) after relocation. Other seismic clusters at Mageik (1.2 < b

  2. P-wave velocity structure beneath Mt. Melbourne in northern Victoria Land, Antarctica: Evidence of partial melting and volcanic magma sources

    NASA Astrophysics Data System (ADS)

    Park, Yongcheol; Yoo, Hyun Jae; Lee, Won Sang; Lee, Choon-Ki; Lee, Joohan; Park, Hadong; Kim, Jinseok; Kim, Yeadong

    2015-12-01

    Mt. Melbourne is a late Cenozoic intraplate volcano located ∼30 km northeast of Jang Bogo Station in Antarctica. The volcano is quiescent with fumarolic activity at the summit. To monitor volcanic activity and glacial movements near Jang Bogo Station, a seismic network was installed during the 2010-11 Antarctic summer field season. The network is maintained during the summer field season every year, and the number of stations has been increased. We used continuous seismic data recorded by the network and an Italian seismic station (TNV) at Mario Zucchelli Station to develop a 3-D P-wave velocity model for the Mt. Melbourne area based on the teleseismic P-wave tomographic method. The new 3-D model presented a relative velocity structure for the lower part of the crust and upper mantle between depths of 30 and 160 km and revealed the presence of two low-velocity anomalies beneath Mt. Melbourne and the Priestley Fault. The low-velocity anomaly beneath Mt. Melbourne may be caused by the edge flow of hot mantle material at the lithospheric step between the thick East Antarctic Craton and thin Ross Sea crust. The other low-velocity anomaly along the Priestley Fault may have been beneath Mt. Melbourne and moved to the southern tip of the Deep Freeze Range, where the crustal thickness is relatively thin. The anomaly was trapped on the fault line and laterally flowed along the fault line in the northwest direction.

  3. P-wave residuals at stations in Nepal - Evidence for a high velocity region beneath the Karakorum

    NASA Technical Reports Server (NTRS)

    Pandey, M. R.; Roecker, Steven W.; Molnar, Peter

    1991-01-01

    P-wave residuals recorded at stations in Nepal from events to the northwest and closer than about 20 deg are consistently earlier than those from other directions by about 2.5 sec. These early arrivals are associated with paths confined to the upper 300 km of the earth and suggest that cold material occupies the uppermost mantle beneath the Karakorum, northwest Himalaya, and western Kunlun. Thus, these data suggest that convective downwelling occurs more vigorously in this region than beneath the rest of the Himalaya, Tibet, and their surroundings.

  4. Joint Inversion of Geoid Anomaly and Teleseismic P-Wave Delay Times: Modeling Density and Velocity Perturbations Beneath the Parana Magmatic Province

    NASA Astrophysics Data System (ADS)

    Chaves, C. A. M.; Ussami, N.; Ritsema, J.

    2014-12-01

    The Parana Magmatic Province (PMP) is one of the largest continental igneous provinces (LIP) on Earth. It is well dated at 133 Ma preceding the opening of the South Atlantic Ocean, but the causative geodynamic processes are still poorly understood. Although a low-velocity anomaly has been imaged by seismic tomography in the northeast region of the PMP and interpreted as a fossil conduct of a mantle plume that is related to the flood basalt eruptions, geochemical data indicate that such magmatism is caused by the melting of a heterogeneous and enriched lithospheric mantle with no deep plume participation. Models of density perturbations in the upper mantle estimated from joint inversion of geoid anomalies and P-wave delay times will offer important constraints on mantle dynamics. A new generation of accurate global geopotential models derived from satellite-missions (e.g. GRACE, GOCE) allows us to estimate density distribution within the Earth from geoid inversion. In order to obtain the residual geoid anomaly related to the density structure of the mantle, we use the EGM2008 model removing estimated geoid perturbations owing to variations in crustal structure (i.e., topographical masses, Moho depth, thickness of sediments and basalts). Using a spherical-Earth approximation, the density model space is represented by a set of tesseroids and the velocity model is parameterized in nodes of a spherical grid where cubic B-splines are utilized as an interpolation function. To constrain the density inversion, we add more than 10,000 manually picked teleseismic P-wave delay times. During the inversion procedure, density and P-wave velocity are linked through the optimization of a constant linear factor correlating density and velocity perturbation. Such optimization will be performed using a probability density function (PDF) [Tarantola, 2005]. We will present the preliminary results of this joint inversion scheme and hypothesize on the geodynamic processes responsible for

  5. Estimating Attenuation Coefficients and P-Wave Velocities of the Shallow San Jacinto Fault Zone from Betsy Gunshots Data Recorded by a Spatially Dense Array with 1108 Sensors

    NASA Astrophysics Data System (ADS)

    Ozakin, Yaman; Ben-Zion, Yehuda

    2016-04-01

    We estimate values of P wave velocity and P attenuation coefficients (QP) for the subsurface material at the Sage Brush Flat site along the Clark branch of the San Jacinto Fault Zone. The data are generated by 33 Betsy gunshots and recorded by a spatially dense array of 1108 vertical component geophones deployed in a rectangular grid that is approximately 600 m x 600 m. We automatically pick the arrival times of the seismic body waves from each explosion arriving at stations within 200 m. These measurements are used to derive an average velocity map with velocity values ranging from 500 m/s to 1250 m/s. We estimate the energy of the early P waves by squaring the amplitudes in a short window relative to the automatic picks. These energies are fitted to a decay function representing the geometrical spreading and intrinsic attenuation. By separating the stations into spatial bins and calculating attenuation values for each by linear regression, we construct a QP values map. Most of the QP values are in 5-20 range, which is consistent with other studies of shallow fault zone regions.

  6. Rock Physics Interpretation of P-Wave Q and Velocity Structure, Geology, Fluids and Fractures at the Southeast Portion of The Geysers Geothermal Reservoir

    SciTech Connect

    Berge, P; Hutchings, L; Wagoner, J; Kasameyer, P

    2001-04-06

    We examine how quantitative rock physics models, such as effective medium theories, can improve the interpretation of seismic parameters and material and fluid properties at The Geysers. We use effective medium theories to estimate effects of fractures on velocities for The Geysers rocks. We compare theoretical velocity estimates to laboratory measurements from the literature and our seismic velocity values from 1992 earthquake data. We approximate the reservoir as being homogeneous in mineral composition, with a constant density of fractures whose total void ratio is reduced by lithostatic pressure. Thus, we expect low velocities near the surface, increasing with depth up to the values observed in the lab on intact samples, 5.5 - 5.7 km/sec. We use a one-dimensional inversion of P-waves to obtain an ''expected'' P-wave velocity (Vp) and attenuation (Qp) relation as a function of depth for The Geysers rocks. We then use a three-dimensional Vp and Qp inversion to find anomalous zones within the reservoir. We find portions with ''high'' Vp and Qp, high Vp and low Qp, and low Vp and low Qp. We interpret the regions with high Vp and Qp to be relatively less fractured, and the regions with low Vp and Qp to be significantly fractured. The high V and Q anomaly is centered on the zone of greatest pressure drop, and is mostly within the shallowest part of the felsite. The anomalous zones within the greywacke reservoir are on either side of the felsite, in areas of more moderate pressure depletion. More work is required to interpret the significance of these observations.

  7. P-Wave and S-Wave Velocity Structure of Submarine Landslide Associated With Gas Hydrate Layer on Frontal Ridge of Northern Cascadia Margin

    NASA Astrophysics Data System (ADS)

    He, T.; Lu, H.; Yelisetti, S.; Spence, G.

    2015-12-01

    The submarine landslide associated with gas hydrate is a potential risk for environment and engineering projects, and thus from long time ago it has been a hot topic of hydrate research. The study target is Slipstream submarine landslide, one of the slope failures observed on the frontal ridges of the Northern Cascadia accretionary margin off Vancouver Island. The previous studies indicated a possible connection between this submarine landslide feature and gas hydrate, whose occurrence is indicated by a prominent bottom-simulating reflector (BSR), at a depth of ~265-275 m beneath the seafloor (mbsf). The OBS (Ocean Bottom Seismometer) data collected during SeaJade (Seafloor Earthquake Array - Japan Canada Cascadia Experiment) project were used to derive the subseafloor velocity structure for both P- and S-wave using travel times picked from refraction and reflection events. The P-wave velocity structure above the BSR showed anomalous high velocities of about 2.0 km/s at shallow depths of 100 mbsf, closely matching the estimated depth of the glide plane (100 ± 10 m). Forward modelling of S-waves was carried out using the data from the OBS horizontal components. The S-wave velocities, interpreted in conjunction with the P-wave results, provide the key constraints on the gas hydrate distribution within the pores. The hydrate distribution in the pores is important for determining concentrations, and also for determining the frame strength which is critical for controlling slope stability of steep frontal ridges. The increase in S-wave velocity suggests that the hydrate is distributed as part of the load-bearing matrix to increase the rigidity of the sediment.

  8. Structure, Density and Velocity Fluctuations in Quasi-2D non-Brownian Suspensions of Spheres

    NASA Astrophysics Data System (ADS)

    Rouyer, Florence; Lhuillier, Daniel; Martin, Jérôme; Salin, Dominique

    1999-11-01

    Non-brownian sedimenting suspensions exhibit density and velocity fluctuations. We have performed experiments on a quasi-2D counter-flow stabilized suspension of 2000 spherical particles, namely a liquid-solid fluidized bed in a Hele-Shaw cell. This 2D suspension displays a uniform concentration but the particle radial distribution function and the fluctuations of the particle number in a sub-volume of the suspension suggest that the micostructure is homogeneous but not random. We have also measured the velocity fluctuations of a test-particle and the fluctuation of the mean particle velocity in a sub-volume. It happens that the relation between velocity and concentration fluctuation in a sub-volume can be deduced from a balance between buoyancy and parietal friction forces.

  9. Estimates of velocity structure and source depth using multiple P waves from aftershocks of the 1987 Elmore Ranch and Superstition Hills, California, earthquakes

    USGS Publications Warehouse

    Mori, J.

    1991-01-01

    Event record sections, which are constructed by plotting seismograms from many closely spaced earthquakes recorded on a few stations, show multiple free-surface reflections (PP, PPP, PPPP) of the P wave in the Imperial Valley. The relative timing of these arrivals is used to estimate the strength of the P-wave velocity gradient within the upper 5 km of the sediment layer. Consistent with previous studies, a velocity model with a value of 1.8 km/sec at the surface increasing linearly to 5.8 km/sec at a depth of 5.5 km fits the data well. The relative amplitudes of the P and PP arrivals are used to estimate the source depth for the aftershock distributions of the Elmore Ranch and Superstition Hills main shocks. Although the depth determination has large uncertainties, both the Elmore Ranch and Superstition Hills aftershock sequencs appear to have similar depth distribution in the range of 4 to 10 km. -Author

  10. Static and Dynamic Reservoir Characterization Using High Resolution P-Wave Velocity Data in Delhi Field, la

    NASA Astrophysics Data System (ADS)

    Hussain, S.; Davis, T.

    2012-12-01

    Static and dynamic reservoir characterization was done on high resolution P-wave seismic data in Delhi Field, LA to study the complex stratigraphy of the Holt-Bryant sands and to delineate the CO2 flow path. The field is undergoing CO2 injection for enhanced oil recovery. The seismic data was bandwidth extended by Geotrace to decrease the tuning thickness effect. Once the authenticity of the added frequencies in the data was determined, the interpretation helped map thin Tuscaloosa and Paluxy sands. Cross-equalization was done on the baseline and monitor surveys to remove the non-repeatable noise in the data. Acoustic impedance (AI) inversion was done on the baseline and monitor surveys to map the changes in AI with CO2 injection in the field. Figure 1 shows the AI percentage change at Base Paluxy. The analysis helped identify areas that were not being swept by CO2. Figure 2 shows the CO2 flow paths in Tuscaloosa formation. The percentage change of AI with CO2 injection and pressure increase corresponded with the fluid substitution modeling results. Time-lapse interpretation helped in delineating the channels, high permeability zones and the bypassed zones in the reservoir.; Figure 1: P-impedance percentage difference map with a 2 ms window centered at the base of Paluxy with the production data from June 2010 overlain; the black dashed line is the oil-water contact; notice the negative impedance change below the OWC. The lighter yellow color shows area where Paluxy is not being swept completely. ; Figure 2: P-impedance percentage difference map at TUSC 7 top; the white triangles are TUSC 7 injectors and the white circles are TUSC 7 producers; the black polygons show the flow paths of CO2.

  11. Upper mantle P-wave velocity structure beneath northern Lake Malawi and the Rungwe Volcanic Province, East Africa

    NASA Astrophysics Data System (ADS)

    Grijalva, A. N.; Kachingwe, M.; Nyblade, A.; Shillington, D. J.; Gaherty, J. B.; Ebinger, C. J.; Accardo, N. J.; O'Donnell, J. P.; Mbogoni, G. J.; Mulibo, G. D.; Ferdinand, R.; Chindandali, P. R. N.; Mphepo, F.

    2015-12-01

    A recent deployment of 55 broadband seismic stations around the northern Lake Malawi rift as part of the SEGMeNT project have provided a new dataset for imaging crustal and upper mantle structure beneath the Rungwe volcanic center and northern most segment of the Lake Malawi Rift. The goal of our study is to characterize the upper mantle velocity structure and determine to what extent the rifting has been influenced by magmatism. P relative arrival time residuals have been obtained for 115 teleseismic events with magnitudes > 5 in the 30 - 90 degree distance range. They are being tomographically inverted, together with travel time residuals from previous deployments for a 3-D velocity model of the upper mantle. Preliminary results indicate a low wave speed anomaly in the uppermost mantle beneath the Rungwe volcanics. Future results will determine if this anomaly exists under the northern Lake Malawi rift.

  12. Deep Downhole Seismic Testing at the Waste Treatment Plant Site, Hanford, WA. Volume III P-Wave Measurements in Borehole C4997 Seismic Records, Wave-Arrival Identifications and Interpreted P-Wave Velocity Profile.

    SciTech Connect

    Stokoe, Kenneth H.; Li, Song Cheng; Cox, Brady R.; Menq, Farn-Yuh

    2007-06-06

    In this volume (III), all P-wave measurements are presented that were performed in Borehole C4997 at the Waste Treatment Plant (WTP) with T-Rex as the seismic source and the Lawrence Berkeley National Laboratory (LBNL) 3-D wireline geophone as the at-depth borehole receiver. P-wave measurements were performed over the depth range of 390 to 1220 ft, typically in 10-ft intervals. However, in some interbeds, 5-ft depth intervals were used. Compression (P) waves were generated by moving the base plate of T-Rex for a given number of cycles at a fixed frequency as discussed in Section 2. This process was repeated so that signal averaging in the time domain was performed using 3 to about 15 averages, with 5 averages typically used. In addition to the LBNL 3-D geophone, called the lower receiver herein, a 3-D geophone from Redpath Geophysics was fixed at a depth of 40 ft (later relocated to 27.5 ft due to visibility in borehole after rain) in Borehole C4997, and a 3-D geophone from the University of Texas was embedded near the borehole at about 1.5 ft below the ground surface. This volume is organized into 12 sections as follows: Section 1: Introduction, Section 2: Explanation of Terminology, Section 3: Vp Profile at Borehole C4997, Sections 4 to 6: Unfiltered P-wave records of lower vertical receiver, reaction mass, and reference receiver, Sections 7 to 9: Filtered P-wave signals of lower vertical receiver, reaction mass and reference receiver, Section 10: Expanded and filtered P-wave signals of lower vertical receiver, and Sections 11 and 12: Waterfall plots of unfiltered and filtered lower vertical receiver signals.

  13. Deep Downhole Seismic Testing at the Waste Treatment Plant Site, Hanford, WA. Volume I P-Wave Measurements in Borehole C4993 Seismic Records, Wave-Arrival Identifications and Interpreted P-Wave Velocity Profile.

    SciTech Connect

    Stokoe, Kenneth H.; Li, Song Cheng; Cox, Brady R.; Menq, Farn-Yuh

    2007-07-06

    In this volume (I), all P-wave measurements are presented that were performed in Borehole C4993 at the Waste Treatment Plant (WTP) with T-Rex as the seismic source and the Lawrence Berkeley National Laboratory (LBNL) 3-D wireline geophone as the at-depth borehole receiver. P-wave measurements were performed over the depth range of 370 to 1400 ft, typically in 10-ft intervals. However, in some interbeds, 5-ft depth intervals were used, while below about 1200 ft, depth intervals of 20 ft were used. Compression (P) waves were generated by moving the base plate of T-Rex for a given number of cycles at a fixed frequency as discussed in Section 2. This process was repeated so that signal averaging in the time domain was performed using 3 to about 15 averages, with 5 averages typically used. In addition to the LBNL 3-D geophone, called the lower receiver herein, a 3-D geophone from Redpath Geophysics was fixed at a depth of 22 ft in Borehole C4993, and a 3-D geophone from the University of Texas was embedded near the borehole at about 1.5 ft below the ground surface. This volume is organized into 12 sections as follows: Section 1: Introduction, Section 2: Explanation of Terminology, Section 3: Vp Profile at Borehole C4993, Sections 4 to 6: Unfiltered P-wave records of lower vertical receiver, reaction mass, and reference receiver, Sections 7 to 9: Filtered P-wave signals of lower vertical receiver, reaction mass and reference receiver, Section 10: Expanded and filtered P-wave signals of lower vertical receiver, and Sections 11 and 12: Waterfall plots of unfiltered and filtered lower vertical receiver signals.

  14. Deep Downhole Seismic Testing at the Waste Treatment Plant Site, Hanford, WA. Volume II P-Wave Measurements in Borehole C4996 Seismic Records, Wave-Arrival Identifications and Interpreted P-Wave Velocity Profile.

    SciTech Connect

    Stokoe, Kenneth H.; Li, Song Cheng; Cox, Brady R.; Menq, Farn-Yuh

    2007-07-06

    In this volume (II), all P-wave measurements are presented that were performed in Borehole C4996 at the Waste Treatment Plant (WTP) with T-Rex as the seismic source and the Lawrence Berkeley National Laboratory (LBNL) 3-D wireline geophone as the at-depth borehole receiver. P-wave measurements were performed over the depth range of 360 to 1400 ft, typically in 10-ft intervals. However, in some interbeds, 5-ft depth intervals were used, while below about 1180 ft, depth intervals of 20 ft were used. Compression (P) waves were generated by moving the base plate of T-Rex for a given number of cycles at a fixed frequency as discussed in Section 2. This process was repeated so that signal averaging in the time domain was performed using 3 to about 15 averages, with 5 averages typically used. In addition to the LBNL 3-D geophone, called the lower receiver herein, a 3-D geophone from Redpath Geophysics was fixed at a depth of 22 ft in Borehole C4996, and a 3-D geophone from the University of Texas was embedded near the borehole at about 1.5 ft below the ground surface. This volume is organized into 12 sections as follows: Section 1: Introduction, Section 2: Explanation of Terminology, Section 3: Vp Profile at Borehole C4996, Sections 4 to 6: Unfiltered P-wave records of lower vertical receiver, reaction mass, and reference receiver, Sections 7 to 9: Filtered P-wave signals of lower vertical receiver, reaction mass and reference receiver, Section 10: Expanded and filtered P-wave signals of lower vertical receiver, and Sections 11 and 12: Waterfall plots of unfiltered and filtered lower vertical receiver signals.

  15. Estimation of pseudo-2D shear-velocity section by inversion of high frequency surface waves

    USGS Publications Warehouse

    Luo, Y.; Liu, J.; Xia, J.; Xu, Y.; Liu, Q.

    2006-01-01

    A scheme to generate pseudo-2D shear-velocity sections with high horizontal resolution and low field cost by inversion of high frequency surface waves is presented. It contains six steps. The key step is the joint method of crossed correlation and phase shift scanning. This joint method chooses only two traces to generate image of dispersion curve. For Rayleigh-wave dispersion is most important for estimation of near-surface shear-wave velocity, it can effectively obtain reliable images of dispersion curves with a couple of traces. The result of a synthetic example shows the feasibility of this scheme. ?? 2005 Society of Exploration Geophysicists.

  16. 3D Anisotropic Velocity Structure beneath the Kii Peninsula from P-wave Traveltime Tomography: Diagnostics of Seismic Anisotropy in a Subduction Zone

    NASA Astrophysics Data System (ADS)

    Ishise, M.; Koketsu, K.; Miyake, H.

    2008-12-01

    Seismic anisotropy is one of key elements to understand geodynamics such as mantle convection, plate tectonics, and evolutional process of the crust. Thus, it is crucial to investigate seismic anisotropy in the subduction zone where various phenomena are attributed to dynamic processes caused by interaction among adjacent plates. Actually, recent studies of seismic anisotropy show that the determination of a 3D seismic anisotropy structure can be potential diagnostics of a geological lineament structure inside the crust, and probe earthquake rupture areas and rupture nucleation points. In this study, we have evaluated the three-dimensional (3D) P-wave anisotropic velocity structure in the Kii Peninsula, southwest Japan, as well as the isotropic velocity structure by P-wave travel times tomography. The study area lies on the Eurasian (Amulian) plate above the subducting Philippine Sea Plate. This belongs to an accretionary prism, which is being developed at the margin of the Asian Continent, and is characterized by E-W trending metamorphic belts including a segment of the active faults zone called the Median Tectonic Line (MTL). Additionally, the Kii Peninsula region is presumed to be source regions of megathrust earthquakes along the Nankai trough. The resultant images of both the isotropic and anisotropic tomography show that the upper crust is characterized by E-W trending structure similar to that of the geological structure over the peninsula region. Because deformation of the crust such as preferred mineral alignment and recrystallization associated with planar structures produces significant seismic anisotropy, the plausible factor of the crustal feature is interpreted as E-W orientation of the regional metamorphic belt. Furthermore, in the resultant tomographic image, the E-W trending pattern is found within the deeper crust. This fact indicates that the lineament structure is sustained in the deeper crust. Since our tomography has good resolution in the

  17. Tomographic inversion of P-wave velocity and Q structures beneath the Kirishima volcanic complex, Southern Japan, based on finite difference calculations of complex traveltimes

    USGS Publications Warehouse

    Tomatsu, T.; Kumagai, H.; Dawson, P.B.

    2001-01-01

    We estimate the P-wave velocity and attenuation structures beneath the Kirishima volcanic complex, southern Japan, by inverting the complex traveltimes (arrival times and pulse widths) of waveform data obtained during an active seismic experiment conducted in 1994. In this experiment, six 200-250 kg shots were recorded at 163 temporary seismic stations deployed on the volcanic complex. We use first-arrival times for the shots, which were hand-measured interactively. The waveform data are Fourier transformed into the frequency domain and analysed using a new method based on autoregressive modelling of complex decaying oscillations in the frequency domain to determine pulse widths for the first-arrival phases. A non-linear inversion method is used to invert 893 first-arrival times and 325 pulse widths to estimate the velocity and attenuation structures of the volcanic complex. Wavefronts for the inversion are calculated with a finite difference method based on the Eikonal equation, which is well suited to estimating the complex traveltimes for the structures of the Kirishima volcano complex, where large structural heterogeneities are expected. The attenuation structure is derived using ray paths derived from the velocity structure. We obtain 3-D velocity and attenuation structures down to 1.5 and 0.5 km below sea level, respectively. High-velocity pipe-like structures with correspondingly low attenuation are found under the summit craters. These pipe-like structures are interpreted as remnant conduits of solidified magma. No evidence of a shallow magma chamber is visible in the tomographic images.

  18. Catalog of velocity distributions around a reconnection site in 2D PIC simulations

    NASA Astrophysics Data System (ADS)

    Lechner, Lukas; Bourdin, Philippe-A.; Nakamura, Takuma K. M.; Nakamura, Rumi; Narita, Yasuhito

    2016-04-01

    The velocity distribution of electrons and ions are known to be a marker for regions where magnetic reconnection develops. Past theoretical and computational works demonstrated that non-gyrotropic and anisotropic distributions depending on particle meandering motions and accelerations are seen around the reconnection point. The Magnetospheric Multiscale (MMS) mission is expected to resolve such kinetic scale reconnection regions. We present a catalog of velocity distribution functions that can give hints on the location within the current sheet relative to the reconnection point, which is sometimes unclear from pure spacecraft observations. We use 2D PIC simulations of anti-parallel magnetic reconnection to obtain velocity distributions at different locations, like in the center of the reconnection site, the ion and electron diffusion regions, or the reconnection inflow and outflow regions. With sufficiently large number of particles we resolve the distribution functions also in rather small regions. Such catalog may be compared with future MMS observations of the Earth's magnetotail.

  19. Measuring curvature and velocity vector fields for waves of cardiac excitation in 2-D media.

    PubMed

    Kay, Matthew W; Gray, Richard A

    2005-01-01

    Excitable media theory predicts the effect of electrical wavefront morphology on the dynamics of propagation in cardiac tissue. It specifies that a convex wavefront propagates slower and a concave wavefront propagates faster than a planar wavefront. Because of this, wavefront curvature is thought to be an important functional mechanism of cardiac arrhythmias. However, the curvature of wavefronts during an arrhythmia are generally unknown. We introduce a robust, automated method to measure the curvature vector field of discretely characterized, arbitrarily shaped, two-dimensional (2-D) wavefronts. The method relies on generating a smooth, continuous parameterization of the shape of a wave using cubic smoothing splines fitted to an isopotential at a specified level, which we choose to be -30 mV. Twice differentiating the parametric form provides local curvature vectors along the wavefront and waveback. Local conduction velocities are computed as the wave speed along lines normal to the parametric form. In this way, the curvature and velocity vector field for wavefronts and wavebacks can be measured. We applied the method to data sampled from a 2-D numerical model and several examples are provided to illustrate its usefulness for studying the dynamics of cardiac propagation in 2-D media.

  20. 3D P-wave velocity structure of the deep Galicia rifted margin: A first analysis of the Galicia 3D wide-angle seismic dataset

    NASA Astrophysics Data System (ADS)

    Bayrakci, Gaye; Minshull, Timothy A.; Davy, Richard G.; Karplus, Marianne S.; Kaeschen, Dirk; Papenberg, Cord; Krabbenhoeft, Anne; Sawyer, Dale; Reston, Timothy J.; Shillington, Donna J.; Ranero, César R.

    2014-05-01

    Galicia 3D, a reflection-refraction and long offset seismic experiment was carried out from May through September 2013, at the Galicia rifted margin (in the northeast Atlantic Ocean, west of Spain) as a collaboration between US, UK, German and Spanish groups. The 3D multichannel seismic acquisition conducted by R/V Marcus Langseth covered a 64 km by 20 km (1280 km2) zone where the main geological features are the Peridotite Ridge (PR), composed of serpentinized peridotite and thought be upper mantle exhumed to the seafloor during rifting, and the S reflector which has been interpreted to be a low angle detachment fault overlain by fault bounded, rotated, continental crustal blocks. In the 3D box, two airgun arrays of 3300 cu.in. were fired alternately (in flip-flop configuration) every 37.5 m. All shots are recorded by 44 short period four component ocean bottom seismometers (OBS) and 26 ocean bottom hydrophones (OBH) deployed and recovered by R/V Poseidon, as well as four 6 km hydrophone streamers with 12.5 m channel spacing towed by R/V Marcus Langseth. We present the preliminary results of the first arrival time tomography study which is carried out with a subset of the wide-angle dataset, in order to generate a 3D P-wave velocity volume for the entire depth sampled by the reflection data. After the relocation of OBSs and OBHs, an automatic first-arrival time picking approach is applied to a subset of the dataset, which comprises more than 5.5 million source-receiver pairs. Then, the first-arrival times are checked visually, in 3-dimensions. The a priori model used for the first-arrival time tomography is built up using information from previous seismic surveys carried out at the Galicia margin (e.g. ISE, 1997). The FAST algorithm of Zelt and Barton (1998) is used for the first-arrival time inversion. The 3D P-wave velocity volume can be used in interpreting the reflection dataset, as a starting point for migration, to quantify the thinning of the crustal layers

  1. Three-dimensional models of P wave velocity and P-to-S velocity ratio in the southern central Andes by simultaneous inversion of local earthquake data

    NASA Astrophysics Data System (ADS)

    Graeber, Frank M.; Asch, Günter

    1999-09-01

    The PISCO'94 (Proyecto de Investigatión Sismológica de la Cordillera Occidental, 1994) seismological network of 31 digital broad band and short-period three-component seismometers was deployed in northern Chile between the Coastal Cordillera and the Western Cordillera. More than 5300 local seismic events were observed in a 100 day period. A subset of high-quality P and S arrival time data was used to invert simultaneously for hypocenters and velocity structure. Additional data from two other networks in the region could be included. The velocity models show a number of prominent anomalies, outlining an extremely thickened crust (about 70 km) beneath the forearc region, an anomalous crustal structure beneath the recent magmatic arc (Western Cordillera) characterized by very low velocities, and a high-velocity slab. A region of an increased Vp/Vs ratio has been found directly above the Wadati-Benioff zone, which might be caused by hydration processes. A zone of lower than average velocities and a high Vp/Vs ratio might correspond to the asthenospheric wedge. The upper edge of the Wadati-Benioff zone is sharply defined by intermediate depth hypocenters, while evidence for a double seismic zone can hardly be seen. Crustal events between the Precordillera and the Western Cordillera have been observed for the first time and are mainly located in the vicinity of the Salar de Atacama down to depths of about 40 km.

  2. Developing regionalized models of lithospheric thickness and velocity structure across Eurasia and the Middle East from jointly inverting P-wave and S-wave receiver functions with Rayleigh wave group and phase velocities

    SciTech Connect

    Julia, J; Nyblade, A; Hansen, S; Rodgers, A; Matzel, E

    2009-07-06

    In this project, we are developing models of lithospheric structure for a wide variety of tectonic regions throughout Eurasia and the Middle East by regionalizing 1D velocity models obtained by jointly inverting P-wave and S-wave receiver functions with Rayleigh wave group and phase velocities. We expect the regionalized velocity models will improve our ability to predict travel-times for local and regional phases, such as Pg, Pn, Sn and Lg, as well as travel-times for body-waves at upper mantle triplication distances in both seismic and aseismic regions of Eurasia and the Middle East. We anticipate the models will help inform and strengthen ongoing and future efforts within the NNSA labs to develop 3D velocity models for Eurasia and the Middle East, and will assist in obtaining model-based predictions where no empirical data are available and for improving locations from sparse networks using kriging. The codes needed to conduct the joint inversion of P-wave receiver functions (PRFs), S-wave receiver functions (SRFs), and dispersion velocities have already been assembled as part of ongoing research on lithospheric structure in Africa. The methodology has been tested with synthetic 'data' and case studies have been investigated with data collected at an open broadband stations in South Africa. PRFs constrain the size and S-P travel-time of seismic discontinuities in the crust and uppermost mantle, SRFs constrain the size and P-S travel-time of the lithosphere-asthenosphere boundary, and dispersion velocities constrain average S-wave velocity within frequency-dependent depth-ranges. Preliminary results show that the combination yields integrated 1D velocity models local to the recording station, where the discontinuities constrained by the receiver functions are superimposed to a background velocity model constrained by the dispersion velocities. In our first year of this project we will (i) generate 1D velocity models for open broadband seismic stations in the

  3. A velocity-dependent anomalous radial transport model for (2-D, 2-V) kinetic transport codes

    NASA Astrophysics Data System (ADS)

    Bodi, Kowsik; Krasheninnikov, Sergei; Cohen, Ron; Rognlien, Tom

    2008-11-01

    Plasma turbulence constitutes a significant part of radial plasma transport in magnetically confined plasmas. This turbulent transport is modeled in the form of anomalous convection and diffusion coefficients in fluid transport codes. There is a need to model the same in continuum kinetic edge codes [such as the (2-D, 2-V) transport version of TEMPEST, NEO, and the code being developed by the Edge Simulation Laboratory] with non-Maxwellian distributions. We present an anomalous transport model with velocity-dependent convection and diffusion coefficients leading to a diagonal transport matrix similar to that used in contemporary fluid transport models (e.g., UEDGE). Also presented are results of simulations corresponding to radial transport due to long-wavelength ExB turbulence using a velocity-independent diffusion coefficient. A BGK collision model is used to enable comparison with fluid transport codes.

  4. The LLNL-G3D global P-wave velocity model and the significance of the BayesLoc multiple-event location procedure

    NASA Astrophysics Data System (ADS)

    Simmons, N. A.; Myers, S. C.; Johannesson, G.; Matzel, E.

    2011-12-01

    LLNL-G3D is a global-scale model of P-wave velocity designed to accurately predict seismic travel times at regional and teleseismic distances simultaneously. The underlying goal of the model is to provide enhanced seismic event location capabilities. Previous versions of LLNL-G3D (versions 1 and 2) provide substantial improvements in event location accuracy via 3-D ray tracing. The latest models are based on ~2.7 million P and Pn arrivals that are re-processed using our global multi-event locator known as BayesLoc. Bayesloc is a formulation of the joint probability distribution across multiple-event location parameters, including hypocenters, travel time corrections, pick precision, and phase labels. Modeling the whole multiple-event system results in accurate locations and an internally consistent data set that is ideal for tomography. Our recently developed inversion approach (called Progressive Multi-level Tessellation Inversion or PMTI) captures regional trends and fine details where data warrant. Using PMTI, we model multiple heterogeneity scale lengths without defining parameter grids with variable densities based on some ad hoc criteria. LLNL-G3Dv3 (version 3) is produced with data generated with the BayesLoc procedure, recently modified to account for localized travel time trends via a multiple event clustering technique. We demonstrate the significance of BayesLoc processing, the impact on the resulting tomographic images, and the application of LLNL-G3D to seismic event location. This work performed under the auspices of the U.S. Department of Energy by Lawrence Livermore National Laboratory under Contract DE-AC52-07NA27344. LLNL-ABS-491805.

  5. 2D He+ pickup ion velocity distribution functions: STEREO PLASTIC observations

    NASA Astrophysics Data System (ADS)

    Drews, C.; Berger, L.; Taut, A.; Peleikis, T.; Wimmer-Schweingruber, R. F.

    2015-03-01

    Context. He+ pickup ions are either born from the ionization of interstellar neutral helium inside our heliosphere, the so-called interstellar pickup ions, or through the interaction of solar wind ions with small dust particles, the so-called inner source of pickup ions. Until now, most observations of pickup ions were limited to reduced 1D velocity spectra, which are insufficient to study certain characteristics of the He+ velocity distribution function (VDF). Aims: It is generally assumed that rapid pitch-angle scattering of freshly created pickup ions quickly leads to a fully isotropic He+ VDF. In light of recent observations, this assumption has found to be oversimplified and needs to be reinvestigated. Methods: Using He+ pickup ion data from the PLASTIC instrument on board the STEREO A spacecraft, we reconstruct a reduced form of the He+ VDF in two dimensions. This allows us to study relative changes of the 2D He+ VDF as a function of the configuration of the heliospheric magnetic field. Results: Our observations show that the He+ VDF is highly anisotropic and even indicates that, at least for certain configurations of B, it is not fully gyrotropic. Our results further suggest, that the observed velocity and pitch angle of He+ depends strongly on the local solar magnetic field vector, B, the ecliptic longitude, λ, the solar wind speed, vsw, and the global distribution of B. Conclusions: We found two distinct signatures that systematically change as a function of the alignment of B: (1) a ring beam distribution that is most pronounced at wsw> 0.5 and likely attributed to interstellar He+; (2) a beam signature aligned parallel to B that is most pronounced at wsw < 0.5 and attributed to inner-source He+. The strong anisotropy and the aforementioned dependencies of the He+ VDF also imply that observations of 1D velocity spectra of He+ pickup ions are potentially deceiving.

  6. Experimental study of two-phase fluid flow in two different porosity types of sandstone by P-wave velocity and electrical Impedance measurement

    NASA Astrophysics Data System (ADS)

    Honda, H.; Mitani, Y.; Kitamura, K.; Ikemi, H.; Takaki, S.

    2015-12-01

    Carbon dioxide (CO2) capture and storage (CCS) is recently expected as the promising method to reduce greenhouse gas emissions. It is important to investigate CO2 behavior in the reservoir, to evaluate the safety and to account the stored CO2 volume. In this study, experimental investigation is conducted to discuss the relationships between injected fluid speed (Flow rate: FR) or capillary number (Ca) and non-wetting fluid flow by compressional wave velocity (Vp) and electrical impedance (Z). In the experiment, N2 and supercritical CO2 were injected into the two sandstones with different porosity (φ), Berea sandstone (φ: 18 %), and Ainoura sandstone (φ: 11.9 %). The dimension of the rock specimens is cored cylinder with a 35 mm diameter and 70 mm height. Experimental conditions are nearly same as the reservoir of deep underground (Confining pressure:15MPa, 40℃). Initial conditions of the specimen are brine (0.1wt%-KCl) saturated. Four piezo-electrical transducers (PZTs) are set on the each surface of the top, middle, lower of the specimen to monitor the CO2 bahavior by Vp. To measuring Z, we use for electrodes method with Ag-AgCl electrodes. Four electrodes are wounded around specimen on the both sides of PZTs. We measured the changes of these parameters with injecting N2, injected fluid speed (FR), the differential pore pressure (DP), N2 saturation (SN2), P-wave velocity (Vp) and electrical impedance (Z), respectively. We also estimated the Ca from measured FR. From these experimental results, there are no obvious Vp changes with increasing Ca, while Z measurement indicates clear and continuous increment. In regards to Vp, Vp reduced at the small FR (0.1 to 0.2 ml/min). As the Ca increases, Vp doesn't indicate large reduction. On the other hand, Z is more sensitive to change the fluid saturation than Vp. It is well-known that both of Vp and Z are the function of fluid saturation. Though, these experimental results are not consistent with previous studies. In

  7. Surface wave phase velocities from 2-D surface wave tomography studies in the Anatolian plate

    NASA Astrophysics Data System (ADS)

    Arif Kutlu, Yusuf; Erduran, Murat; Çakır, Özcan; Vinnik, Lev; Kosarev, Grigoriy; Oreshin, Sergey

    2014-05-01

    We study the Rayleigh and Love surface wave fundamental mode propagation beneath the Anatolian plate. To examine the inter-station phase velocities a two-station method is used along with the Multiple Filter Technique (MFT) in the Computer Programs in Seismology (Herrmann and Ammon, 2004). The near-station waveform is deconvolved from the far-station waveform removing the propagation effects between the source and the station. This method requires that the near and far stations are aligned with the epicentre on a great circle path. The azimuthal difference of the earthquake to the two-stations and the azimuthal difference between the earthquake and the station are restricted to be smaller than 5o. We selected 3378 teleseismic events (Mw >= 5.7) recorded by 394 broadband local stations with high signal-to-noise ratio within the years 1999-2013. Corrected for the instrument response suitable seismogram pairs are analyzed with the two-station method yielding a collection of phase velocity curves in various period ranges (mainly in the range 25-185 sec). Diffraction from lateral heterogeneities, multipathing, interference of Rayleigh and Love waves can alter the dispersion measurements. In order to obtain quality measurements, we select only smooth portions of the phase velocity curves, remove outliers and average over many measurements. We discard these average phase velocity curves suspected of suffering from phase wrapping errors by comparing them with a reference Earth model (IASP91 by Kennett and Engdahl, 1991). The outlined analysis procedure yields 3035 Rayleigh and 1637 Love individual phase velocity curves. To obtain Rayleigh and Love wave travel times for a given region we performed 2-D tomographic inversion for which the Fast Marching Surface Tomography (FMST) code developed by N. Rawlinson at the Australian National University was utilized. This software package is based on the multistage fast marching method by Rawlinson and Sambridge (2004a, 2004b). The

  8. P-wave velocity features of methane hydrate-bearing turbidity sediments sampled by a pressure core tool, from the first offshore production test site in the eastern Nankai Trough, Japan

    NASA Astrophysics Data System (ADS)

    Suzuki, K.; Santamarina, C. J.; Waite, W. F.; Winters, W. J.; Ito, T.; Nakatsuka, Y.; Konno, Y.; Yoneda, J.; Kida, M.; Jin, Y.; Egawa, K.; Fujii, T.; Nagao, J.

    2013-12-01

    Turbidite sediments around the production test site at Daini-Atsumi knoll were deposited under channel and lobe environments of a submarine fan. Changes in physical properties of the sediments are likely caused by differences in the depositional environments. In addition, methane hydrate (MH) crystals growing among sediment grains alter the sediment's original physical properties. Thus, distinguishing between hydrate-bearing sediment and hydrate-free sediment based only on physical property changes measured during downhole logging can be difficult. To more precisely analyze sediment properties, core samples of MH-bearing sediments were taken at the first offshore MH production test site. Samples were collected using a wireline hybrid pressure coring system (Hybrid PCS), which retains downhole pressure, thereby preventing dissociation of MH in the sampled cores. Nondestructive, high-pressure analyses were conducted in both the 2012 summer drilling campaign and a 2013 winter laboratory study in Sapporo. To handle Hybrid PCS cores during the pressure coring campaign in the summer of 2012, a pressure core analysis and transfer system (PCATS) was installed on the research vessel Chikyu (Yamamoto et al., 2012). PCATS P-wave velocity measurements were made at in situ water pressure without causing any core destruction or MH dissociation. In January 2013, Georgia Tech (GT), USGS, AIST, and JOGMEC researchers used pressure core characterization tools (PCCTs) developed by GT to re-measure the P-wave velocity of the MH-bearing sediments at high pressure and low, non-freezing temperature. In the PCATS analysis, results showed a difference of more than 1,200 m/s in P-wave velocities between the MH-bearing sandy and muddy layers. This difference in P-wave velocities was confirmed by PCCTs measurements. P-wave velocities within the turbidite interval tend to decrease upward with the textural grading of the turbidite. Our result implies that MH concentration, which is related to

  9. Method to Rapidly Collect Thousands of Velocity Observations to Validate Million-Element 2D Hydrodynamic Models

    NASA Astrophysics Data System (ADS)

    Barker, J. R.; Pasternack, G. B.; Bratovich, P.; Massa, D.; Reedy, G.; Johnson, T.

    2010-12-01

    Two-dimensional (depth-averaged) hydrodynamic models have existed for decades and are used to study a variety of hydrogeomorphic processes as well as to design river rehabilitation projects. Rapid computer and coding advances are revolutionizing the size and detail of 2D models. Meanwhile, advances in topo mapping and environmental informatics are providing the data inputs to drive large, detailed simulations. Million-element computational meshes are in hand. With simulations of this size and detail, the primary challenge has shifted to finding rapid and inexpensive means for testing model predictions against observations. Standard methods for collecting velocity data include boat-mounted ADCP and point-based sensors on boats or wading rods. These methods are labor intensive and often limited to a narrow flow range. Also, they generate small datasets at a few cross-sections, which is inadequate to characterize the statistical structure of the relation between predictions and observations. Drawing on the long-standing oceanographic method of using drogues to track water currents, previous studies have demonstrated the potential of small dGPS units to obtain surface velocity in rivers. However, dGPS is too inaccurate to test 2D models. Also, there is financial risk in losing drogues in rough currents. In this study, an RTK GPS unit was mounted onto a manned whitewater kayak. The boater positioned himself into the current and used floating debris to maintain a speed and heading consistent with the ambient surface flow field. RTK GPS measurements were taken ever 5 sec. From these positions, a 2D velocity vector was obtained. The method was tested over ~20 km of the lower Yuba River in California in flows ranging from 500-5000 cfs, yielding 5816 observations. To compare velocity magnitude against the 2D model-predicted depth-averaged value, kayak-based surface values were scaled down by an optimized constant (0.72), which had no negative effect on regression analysis

  10. A hybrid experimental-numerical technique for determining 3D velocity fields from planar 2D PIV data

    NASA Astrophysics Data System (ADS)

    Eden, A.; Sigurdson, M.; Mezić, I.; Meinhart, C. D.

    2016-09-01

    Knowledge of 3D, three component velocity fields is central to the understanding and development of effective microfluidic devices for lab-on-chip mixing applications. In this paper we present a hybrid experimental-numerical method for the generation of 3D flow information from 2D particle image velocimetry (PIV) experimental data and finite element simulations of an alternating current electrothermal (ACET) micromixer. A numerical least-squares optimization algorithm is applied to a theory-based 3D multiphysics simulation in conjunction with 2D PIV data to generate an improved estimation of the steady state velocity field. This 3D velocity field can be used to assess mixing phenomena more accurately than would be possible through simulation alone. Our technique can also be used to estimate uncertain quantities in experimental situations by fitting the gathered field data to a simulated physical model. The optimization algorithm reduced the root-mean-squared difference between the experimental and simulated velocity fields in the target region by more than a factor of 4, resulting in an average error less than 12% of the average velocity magnitude.

  11. Using overlapping sonobuoy data from the Ross Sea to construct a 2D deep crustal velocity model

    NASA Astrophysics Data System (ADS)

    Selvans, M. M.; Clayton, R. W.; Stock, J. M.; Granot, R.

    2012-03-01

    Sonobuoys provide an alternative to using long streamers while conducting multi-channel seismic (MCS) studies, in order to provide deeper velocity control. We present analysis and modeling techniques for interpreting the sonobuoy data and illustrate the method with ten overlapping sonobuoys collected in the Ross Sea, offshore from Antarctica. We demonstrate the importance of using the MCS data to correct for ocean currents and changes in ship navigation, which is required before using standard methods for obtaining a 1D velocity profile from each sonobuoy. We verify our 1D velocity models using acoustic finite-difference (FD) modeling and by performing depth migration on the data, and demonstrate the usefulness of FD modeling for tying interval velocities to the shallow crust imaged using MCS data. Finally, we show how overlapping sonobuoys along an MCS line can be used to construct a 2D velocity model of the crust. The velocity model reveals a thin crust (5.5 ± 0.4 km) at the boundary between the Adare and Northern Basins, and implies that the crustal structure of the Northern Basin may be more similar to that of the oceanic crust in the Adare Basin than to the stretched continental crust further south in the Ross Sea.

  12. Velocity and Attenuation Structure of the Tibetan Lithosphere using Seismic Attributes of P-waves from Regional Earthquakes Recorded by the Hi-CLIMB Array

    NASA Astrophysics Data System (ADS)

    Nowack, R. L.; Bakir, A. C.; Griffin, J.; Chen, W.; Tseng, T.

    2010-12-01

    Using data from regional earthquakes recorded by the Hi-CLIMB array in Tibet, we utilize seismic attributes from crustal and Pn arrivals to constrain the velocity and attenuation structure in the crust and the upper mantle in central and western Tibet. The seismic attributes considered include arrival times, Hilbert envelope amplitudes, and instantaneous as well as spectral frequencies. We have constructed more than 30 high-quality regional seismic profiles, and of these, 10 events have been selected with excellent crustal and Pn arrivals for further analysis. Travel-times recorded by the Hi-CLIMB array are used to estimate the large-scale velocity structure in the region, with four near regional events to the array used to constrain the crustal structure. The travel times from the far regional events indicate that the Moho beneath the southern Lhasa terrane is up to 75 km thick, with Pn velocities greater than 8 km/s. In contrast, the data sampling the Qiangtang terrane north of the Bangong-Nujiang (BNS) suture shows thinner crust with Pn velocities less than 8 km/s. Seismic amplitude and frequency attributes have been extracted from the crustal and Pn wave trains, and these data are compared with numerical results for models with upper-mantle velocity gradients and attenuation, which can strongly affect Pn amplitudes and pulse frequencies. The numerical modeling is performed using the complete spectral element method (SEM), where the results from the SEM method are in good agreement with analytical and reflectivity results for different models with upper-mantle velocity gradients. The results for the attenuation modeling in Tibet imply lower upper mantle Q values in the Qiangtang terrane to the north of the BNS compared to the less attenuative upper mantle beneath the Lhasa terrane to the south of the BNS.

  13. Generalized 2D Euler-Boussinesq equations with a singular velocity

    NASA Astrophysics Data System (ADS)

    KC, Durga; Regmi, Dipendra; Tao, Lizheng; Wu, Jiahong

    2014-07-01

    This paper studies the global (in time) regularity problem concerning a system of equations generalizing the two-dimensional incompressible Boussinesq equations. The velocity here is determined by the vorticity through a more singular relation than the standard Biot-Savart law and involves a Fourier multiplier operator. The temperature equation has a dissipative term given by the fractional Laplacian operator √{-Δ}. We establish the global existence and uniqueness of solutions to the initial-value problem of this generalized Boussinesq equations when the velocity is “double logarithmically” more singular than the one given by the Biot-Savart law. This global regularity result goes beyond the critical case. In addition, we recover a result of Chae, Constantin and Wu [8] when the initial temperature is set to zero.

  14. Effective filtering and interpolation of 2D discrete velocity fields with Navier-Stokes equations

    NASA Astrophysics Data System (ADS)

    Saumier, Louis-Philippe; Khouider, Boualem; Agueh, Martial

    2016-11-01

    We introduce a new variational technique to interpolate and filter a two-dimensional velocity vector field which is discretely sampled in a region of {{{R}}}2 and sampled only once at a time, on a small time-interval [0,{{Δ }}t]. The main idea is to find a solution of the Navier-Stokes equations that is closest to a prescribed field in the sense that it minimizes the l 2 norm of the difference between this solution and the target field. The minimization is performed on the initial vorticity by expanding it into radial basis functions of Gaussian type, with a fixed size expressed by a parameter ɛ. In addition, a penalty term with parameter k e is added to the minimizing functional in order to select a solution with a small kinetic energy. This additional term makes the minimizing functional strongly convex, and therefore ensures that the minimization problem is well-posed. The interplay between the parameters k e and ɛ effectively contributes to smoothing the discrete velocity field, as demonstrated by the numerical experiments on synthetic and real data.

  15. P-wave velocity structure of the southern Ryukyu margin east of Taiwan: Results from the ACTS wide-angle seismic experiment

    NASA Astrophysics Data System (ADS)

    Klingelhoefer, F.; Berthet, T.; Lallemand, S.; Schnurle, P.; Lee, C.-S.; Liu, C.-S.; McIntosh, K.; Theunissen, T.

    2012-11-01

    An active seismic experiment has been conducted across the southern Ryukyu margin east of Taiwan over the whole trench-arc-backarc system in May 2009. Twenty-four ocean bottom seismometers (OBS) were deployed from the Ryukyu trench to the southern Okinawa trough over the Ryukyu arc and forearc. Wide angle seismic data were recorded by the OBS array while coincident reflection seismic data were acquired using a 6 km long streamer and a 6600 cubic inch seismic airgun array. Results from tomographic inversion of 21091 travel time picks along this line allowed us to image crustal structures of the Ryukyu margin down to a depth of 25 km. The transect has been designed to provide a better seismic velocity structure of the subduction zone in a highly deformed area that has produced an M8 earthquake in 1920. The line crosses a seismic cluster of earthquakes which source mechanisms are still poorly understood. The subducting oceanic crust of the Huatung Basin is about 5-6 km thick. The underlying mantle exhibits low seismic velocities around 7.8 km/s suggesting some hydrothermal alterations or alteration of the upper mantle through faults generated by the flexure of the subducting plate as it enters the subduction. Low velocities, up to 4.5 km/s, associated with the accretionary wedge are well imaged from the trench back to the Nanao forearc. A major result concerns the abrupt termination of the buttress at the rear of the accretionary wedge. Despite the low resolution of the tomographic inversion near the subduction interface, several lines of evidence supporting the presence of a low velocity zone beneath the toe of the forearc buttress could be established. The Moho beneath the Ryukyu non-volcanic arc is located at a depth around 25 km depth.

  16. Detailed temporally resolved 2-D Velocity Measurements in a Novel Heat Exchanger Surface

    NASA Astrophysics Data System (ADS)

    Guezennec, Yann G.; Ko, Jang-Hyok; Choi, Woong-Chul

    1998-11-01

    Using flow visualization as a primary tool, a novel, high-performance heat transfer surface for compact heat exchangers was designed, specifically for low Reynolds number applications. This geometry was specifically created to enhance or generate strong three-dimensional transport even at low Reynolds number. It consists of a staggered array of "pin" mounted normal to the fins. A 15:1 model of this heat exchanger surface core was built out of Plexiglas to provide optical access and this model was placed in a 1'x1' water channel. The flow speed was adjusted to match the Reynolds based on the hydraulic diameter based on the fin pitch. The flow was seeded with small polystyrene particles and illuminated by a laser sheet from an Argon Ion laser. The fluid motion was recorded using a CCD camera and an S-VHS video recorder. In post-processing, the video records were automatically digitized and processed using a cinematographic PIV technique. The temporal evolution of the 2-D flow field (side view) clearly shows the presence of unsteady, shed vortical regions behind the pins, modulated by the spatially-periodic acceleration/deceleration and meandering of the mean flow between the periodic array of staggered pins. In the perpendicular view (top view), the results show the presence of two strong cross-stream transport mechanisms, mainly the horse-shoe vortex near the pin-fin junctions and the very strong spanwise transport in the separated wake region of the pins. This transport is most likely associated with the strong interaction of the longitudinal vortices (emanating form the horseshoe) and the spanwise vortices from the pin wake. This vortex interaction sets up a strong spanwise pressure gradient inducing large cross-stream transport from the fin to the core flow. Animation of the results illustrating these effects will be presented.

  17. Three-Dimensional P-wave Velocity Structure Beneath Long Valley Caldera, California, Using Local-Regional Double-Difference Tomography

    NASA Astrophysics Data System (ADS)

    Menendez, H. M.; Thurber, C. H.

    2011-12-01

    Eastern California's Long Valley Caldera (LVC) and the Mono-Inyo Crater volcanic systems have been active for the past ~3.6 million years. Long Valley is known to produce very large silicic eruptions, the last of which resulted in the formation of a 17 km by 32 km wide, east-west trending caldera. Relatively recent unrest began between 1978-1980 with five ML ≥ 5.7 non-double-couple (NDC) earthquakes and associated aftershock swarms. Similar shallow seismic swarms have continued south of the resurgent dome and beneath Mammoth Mountain, surrounding sites of increased CO2 gas emissions. Nearly two decades of increased volcanic activity led to the 1997 installation of a temporary three-component array of 69 seismometers. This network, deployed by the Durham University, the USGS, and Duke University, recorded over 4,000 high-frequency events from May to September. A local tomographic inversion of 283 events surrounding Mammoth Mountain yielded a velocity structure with low Vp and Vp/Vs anomalies at 2-3 km bsl beneath the resurgent dome and Casa Diablo hot springs. These anomalies were interpreted to be CO2 reservoirs (Foulger et al., 2003). Several teleseismic and regional tomography studies have also imaged low Vp anomalies beneath the caldera at ~5-15 km depth, interpreted to be the underlying magma reservoir (Dawson et al., 1990; Weiland et al., 1995; Thurber et al., 2009). This study aims to improve the resolution of the LVC regional velocity model by performing tomographic inversions using the local events from 1997 in conjunction with regional events recorded by the Northern California Seismic Network (NCSN) between 1980 and 2010 and available refraction data. Initial tomographic inversions reveal a low velocity zone at ~2 to 6 km depth beneath the caldera. This structure may simply represent the caldera fill. Further iterations and the incorporation of teleseismic data may better resolve the overall shape and size of the underlying magma reservoir.

  18. AMTCLAB: A MATLAB ®-based program for traveltime analysis and velocity tuning in 2D elliptical anisotropic media

    NASA Astrophysics Data System (ADS)

    Fernández Martínez, J. L.; Pedruelo González, L. M.; García Gonzalo, E.

    2009-10-01

    In this paper we present the program AMTCLAB, a MATLAB ®-based computer code that analyzes the traveltime distribution and performs quality analysis at the pre-inversion stage for elliptically anisotropic media explored via 2D transmission experiments. This software generalizes the program MTCLAB presented in the past for the case of layered isotropic media, and makes use of traditional and robust traveltime distribution descriptors (mean, standard deviation, median, lower and upper quartiles, inter-quartile range and minimum absolute deviation), which are valid for all kinds of recording geometries. A guided user interface leads the modeller through the algorithm steps using the same data MTCLAB-structures. This methodology offers better understanding of the data variability prior to inversion, and provides the geophysicist with a macroscopic elliptical anisotropic velocity model, which is valid at the experiment scale, and matches the experimental mean traveltime distribution. To solve the inverse problems involved, program AMTCLAB uses the particle swarm optimisation algorithm, which allows the use of different norms and sampling the region of equivalent anisotropic velocity models in order to perform posterior sample statistics in each individual model parameter. The approximated velocity model issued from this analysis can serve in the traveltime inverse problem as an initial guess, or as a reference model in the subsequent inversion.

  19. Comparison of 4D flow and 2D velocity-encoded phase contrast MRI sequences for the evaluation of aortic hemodynamics.

    PubMed

    Bollache, Emilie; van Ooij, Pim; Powell, Alex; Carr, James; Markl, Michael; Barker, Alex J

    2016-10-01

    The purpose of this study was to compare aortic flow and velocity quantification using 4D flow MRI and 2D CINE phase-contrast (PC)-MRI with either one-directional (2D-1dir) or three-directional (2D-3dir) velocity encoding. 15 healthy volunteers (51 ± 19 years) underwent MRI including (1) breath-holding 2D-1dir and (2) free breathing 2D-3dir PC-MRI in planes orthogonal to the ascending (AA) and descending (DA) aorta, as well as (3) free breathing 4D flow MRI with full thoracic aorta coverage. Flow quantification included the co-registration of the 2D PC acquisition planes with 4D flow MRI data, AA and DA segmentation, and calculation of AA and DA peak systolic velocity, peak flow and net flow volume for all sequences. Additionally, the 2D-3dir velocity taking into account the through-plane component only was used to obtain results analogous to a free breathing 2D-1dir acquisition. Good agreement was found between 4D flow and 2D-3dir peak velocity (differences = -3 to 6 %), peak flow (-7 %) and net volume (-14 to -9 %). In contrast, breath-holding 2D-1dir measurements exhibited indices significantly lower than free breathing 2D-3dir and 2D-1dir (differences = -35 to -7 %, p < 0.05). Finally, high correlations (r ≥ 0.97) were obtained for indices estimated with or without eddy current correction, with the lowest correlation observed for net volume. 4D flow and 2D-3dir aortic hemodynamic indices were in concordance. However, differences between respiration state and 2D-1dir and 2D-3dir measurements indicate that reference values should be established according to the PC-MRI sequence, especially for the widely used net flow (e.g. stroke volume in the AA). PMID:27435230

  20. Comparison of 4D flow and 2D velocity-encoded phase contrast MRI sequences for the evaluation of aortic hemodynamics.

    PubMed

    Bollache, Emilie; van Ooij, Pim; Powell, Alex; Carr, James; Markl, Michael; Barker, Alex J

    2016-10-01

    The purpose of this study was to compare aortic flow and velocity quantification using 4D flow MRI and 2D CINE phase-contrast (PC)-MRI with either one-directional (2D-1dir) or three-directional (2D-3dir) velocity encoding. 15 healthy volunteers (51 ± 19 years) underwent MRI including (1) breath-holding 2D-1dir and (2) free breathing 2D-3dir PC-MRI in planes orthogonal to the ascending (AA) and descending (DA) aorta, as well as (3) free breathing 4D flow MRI with full thoracic aorta coverage. Flow quantification included the co-registration of the 2D PC acquisition planes with 4D flow MRI data, AA and DA segmentation, and calculation of AA and DA peak systolic velocity, peak flow and net flow volume for all sequences. Additionally, the 2D-3dir velocity taking into account the through-plane component only was used to obtain results analogous to a free breathing 2D-1dir acquisition. Good agreement was found between 4D flow and 2D-3dir peak velocity (differences = -3 to 6 %), peak flow (-7 %) and net volume (-14 to -9 %). In contrast, breath-holding 2D-1dir measurements exhibited indices significantly lower than free breathing 2D-3dir and 2D-1dir (differences = -35 to -7 %, p < 0.05). Finally, high correlations (r ≥ 0.97) were obtained for indices estimated with or without eddy current correction, with the lowest correlation observed for net volume. 4D flow and 2D-3dir aortic hemodynamic indices were in concordance. However, differences between respiration state and 2D-1dir and 2D-3dir measurements indicate that reference values should be established according to the PC-MRI sequence, especially for the widely used net flow (e.g. stroke volume in the AA).

  1. Raindrop axis ratios, fall velocities and size distribution over Sumatra from 2D-Video Disdrometer measurement

    NASA Astrophysics Data System (ADS)

    Marzuki; Randeu, Walter L.; Kozu, Toshiaki; Shimomai, Toyoshi; Hashiguchi, Hiroyuki; Schönhuber, Michael

    2013-01-01

    Raindrop axis ratio, falling velocity and size distribution are important in broad list of applications. However, they are not frequently observed in the equatorial region. This paper elucidated the characteristics of raindrop axis ratio, falling velocity and size distribution based on 2D-Video Disdrometer (2DVD) data that have been collected in the equatorial Indonesia, particularly at Kototabang (hereafter called KT), west Sumatra, Indonesia (0.20°S, 100.32°E, 864 m above sea level). A comprehensive follow-up of the previous study on the natural variability of raindrop size distributions (DSDs) is presented. Precipitation was classified through 1.3-GHz wind profiler observation. The dependence of raindrop falling velocity and axis ratio on rainfall type was not clearly observed. Overall, measured raindrop fall velocities were in good agreement with Gunn-Kinzer's data. Raindrop axis ratio at KT was more spherical than that of artificial rain and equilibrium model, and close to the values reported in the turbulent high shear zone of surface layer which can be partially due to the effect of the instrument errors (e.g., location and container shape). Of some natural variations of DSD investigated, the dependence of DSD on rainfall rate and rainfall type as well as diurnal variation was clearly visible. A striking contrast between the stratiform and convective rains is that the size distributions from the stratiform (convective) rains tend to narrow (broaden) with increasing rainfall rates. For rainfall rate R < 10 mm/h, the size distribution of stratiform was broader than that of convective. On the other hand, at higher rainfall rate more large-sized drops were found in convective rain. During the convective rain, very large-sized drops were found mainly at the very start of rain event while for the stratiform they were found to be associated with a strong bright band. In diurnal basis, the DSDs in the morning hours were narrower than those in the evening which was

  2. Experimental validation of a 2D overland flow model using high resolution water depth and velocity data

    NASA Astrophysics Data System (ADS)

    Cea, L.; Legout, C.; Darboux, F.; Esteves, M.; Nord, G.

    2014-05-01

    This paper presents a validation of a two-dimensional overland flow model using empirical laboratory data. Unlike previous publications in which model performance is evaluated as the ability to predict an outlet hydrograph, we use high resolution 2D water depth and velocity data to analyze to what degree the model is able to reproduce the spatial distribution of these variables. Several overland flow conditions over two impervious surfaces of the order of one square meter with different micro and macro-roughness characteristics are studied. The first surface is a simplified representation of a sinusoidal terrain with three crests and furrows, while the second one is a mould of a real agricultural seedbed terrain. We analyze four different bed friction parameterizations and we show that the performance of formulations which consider the transition between laminar, smooth turbulent and rough turbulent flow do not improve the results obtained with Manning or Keulegan formulas for rough turbulent flow. The simulations performed show that using Keulegan formula with a physically-based definition of the bed roughness coefficient, a two-dimensional shallow water model is able to reproduce satisfactorily the flow hydrodynamics. It is shown that, even if the resolution of the topography data and numerical mesh are high enough to include all the small scale features of the bed surface, the roughness coefficient must account for the macro-roughness characteristics of the terrain in order to correctly reproduce the flow hydrodynamics.

  3. Novel p-wave superfluids of fermionic polar molecules

    PubMed Central

    Fedorov, A. K.; Matveenko, S. I.; Yudson, V. I.; Shlyapnikov, G. V.

    2016-01-01

    Recently suggested subwavelength lattices offer remarkable prospects for the observation of novel superfluids of fermionic polar molecules. It becomes realistic to obtain a topological p-wave superfluid of microwave-dressed polar molecules in 2D lattices at temperatures of the order of tens of nanokelvins, which is promising for topologically protected quantum information processing. Another foreseen novel phase is an interlayer p-wave superfluid of polar molecules in a bilayer geometry. PMID:27278711

  4. Novel p-wave superfluids of fermionic polar molecules

    NASA Astrophysics Data System (ADS)

    Fedorov, A. K.; Matveenko, S. I.; Yudson, V. I.; Shlyapnikov, G. V.

    2016-06-01

    Recently suggested subwavelength lattices offer remarkable prospects for the observation of novel superfluids of fermionic polar molecules. It becomes realistic to obtain a topological p-wave superfluid of microwave-dressed polar molecules in 2D lattices at temperatures of the order of tens of nanokelvins, which is promising for topologically protected quantum information processing. Another foreseen novel phase is an interlayer p-wave superfluid of polar molecules in a bilayer geometry.

  5. Black Hole Window into p -Wave Dark Matter Annihilation

    NASA Astrophysics Data System (ADS)

    Shelton, Jessie; Shapiro, Stuart L.; Fields, Brian D.

    2015-12-01

    We present a new method to measure or constrain p -wave-suppressed cross sections for dark matter (DM) annihilations inside the steep density spikes induced by supermassive black holes. We demonstrate that the high DM densities, together with the increased velocity dispersion, within such spikes combine to make thermal p -wave annihilation cross sections potentially visible in γ -ray observations of the Galactic center (GC). The resulting DM signal is a bright central point source with emission originating from DM annihilations in the absence of a detectable spatially extended signal from the halo. We define two simple reference theories of DM with a thermal p -wave annihilation cross section and establish new limits on the combined particle and astrophysical parameter space of these models, demonstrating that Fermi Large Area Telescope is currently sensitive to thermal p -wave DM over a wide range of possible scenarios for the DM distribution in the GC.

  6. Black Hole Window into p-Wave Dark Matter Annihilation.

    PubMed

    Shelton, Jessie; Shapiro, Stuart L; Fields, Brian D

    2015-12-01

    We present a new method to measure or constrain p-wave-suppressed cross sections for dark matter (DM) annihilations inside the steep density spikes induced by supermassive black holes. We demonstrate that the high DM densities, together with the increased velocity dispersion, within such spikes combine to make thermal p-wave annihilation cross sections potentially visible in γ-ray observations of the Galactic center (GC). The resulting DM signal is a bright central point source with emission originating from DM annihilations in the absence of a detectable spatially extended signal from the halo. We define two simple reference theories of DM with a thermal p-wave annihilation cross section and establish new limits on the combined particle and astrophysical parameter space of these models, demonstrating that Fermi Large Area Telescope is currently sensitive to thermal p-wave DM over a wide range of possible scenarios for the DM distribution in the GC.

  7. Black Hole Window into p-Wave Dark Matter Annihilation.

    PubMed

    Shelton, Jessie; Shapiro, Stuart L; Fields, Brian D

    2015-12-01

    We present a new method to measure or constrain p-wave-suppressed cross sections for dark matter (DM) annihilations inside the steep density spikes induced by supermassive black holes. We demonstrate that the high DM densities, together with the increased velocity dispersion, within such spikes combine to make thermal p-wave annihilation cross sections potentially visible in γ-ray observations of the Galactic center (GC). The resulting DM signal is a bright central point source with emission originating from DM annihilations in the absence of a detectable spatially extended signal from the halo. We define two simple reference theories of DM with a thermal p-wave annihilation cross section and establish new limits on the combined particle and astrophysical parameter space of these models, demonstrating that Fermi Large Area Telescope is currently sensitive to thermal p-wave DM over a wide range of possible scenarios for the DM distribution in the GC. PMID:26684108

  8. Instantaneous 2D Velocity and Temperature Measurements in High Speed Flows Based on Spectrally Resolved Molecular Rayleigh Scattering

    NASA Technical Reports Server (NTRS)

    Seasholtz, Richard G.

    1995-01-01

    A Rayleigh scattering diagnostic for high speed flows is described for the simultaneous, instantaneous measurement of gas temperature and velocity at a number (up to about one hundred) of locations in a plane illuminated by an injection-seeded, frequency doubled Nd:YAG laser. Molecular Rayleigh scattered light is collected and passed through a planar mirror Fabry-Perot interferometer. The resulting image is analyzed to determine the gas temperature and bulk velocity at each of the regions. The Cramer Rao lower bound for measurement uncertainty is calculated. Experimental data is presented for a free jet and for preliminary measurements in the Lewis 4 inch by 10 inch supersonic wind tunnel.

  9. Generation of a pseudo-2D shear-wave velocity section by inversion of a series of 1D dispersion curves

    USGS Publications Warehouse

    Luo, Y.; Xia, J.; Liu, J.; Xu, Y.; Liu, Q.

    2008-01-01

    Multichannel Analysis of Surface Waves utilizes a multichannel recording system to estimate near-surface shear (S)-wave velocities from high-frequency Rayleigh waves. A pseudo-2D S-wave velocity (vS) section is constructed by aligning 1D models at the midpoint of each receiver spread and using a spatial interpolation scheme. The horizontal resolution of the section is therefore most influenced by the receiver spread length and the source interval. The receiver spread length sets the theoretical lower limit and any vS structure with its lateral dimension smaller than this length will not be properly resolved in the final vS section. A source interval smaller than the spread length will not improve the horizontal resolution because spatial smearing has already been introduced by the receiver spread. In this paper, we first analyze the horizontal resolution of a pair of synthetic traces. Resolution analysis shows that (1) a pair of traces with a smaller receiver spacing achieves higher horizontal resolution of inverted S-wave velocities but results in a larger relative error; (2) the relative error of the phase velocity at a high frequency is smaller than at a low frequency; and (3) a relative error of the inverted S-wave velocity is affected by the signal-to-noise ratio of data. These results provide us with a guideline to balance the trade-off between receiver spacing (horizontal resolution) and accuracy of the inverted S-wave velocity. We then present a scheme to generate a pseudo-2D S-wave velocity section with high horizontal resolution using multichannel records by inverting high-frequency surface-wave dispersion curves calculated through cross-correlation combined with a phase-shift scanning method. This method chooses only a pair of consecutive traces within a shot gather to calculate a dispersion curve. We finally invert surface-wave dispersion curves of synthetic and real-world data. Inversion results of both synthetic and real-world data demonstrate that

  10. Correlation between the neighborhood and the velocity of a bead in a 2D non-brownian suspension

    NASA Astrophysics Data System (ADS)

    Rouyer, Florence; Martin, Jerome; Salin, Dominique

    2000-03-01

    We quantitatively analyze the correlation between the dynamic of one sphere and its neighborhood in a 2D fluidized suspension of macroscopic spheres. It appears that both the radial and the orientational distribution of spheres around a referenced one clearly depend on wether this particle flows upwards or downwards. We then look at the dynamics of groups of spheres, in order to adress the question: can we analyze this dynamics of our monodisperse suspension as resulting from its local polydispersivity due to these groups?

  11. New insights from velocity field measurements in multiphase flow of water and liquid CO2 in 2D porous micromodels for

    NASA Astrophysics Data System (ADS)

    Kazemifar, F.; Blois, G.; Kyritsis, D. C.; Christensen, K. T.

    2014-12-01

    We study the multiphase flow of water and liquid/supercritical CO2 in 2D porous micromodels, with the goal of developing a more complete understanding of pore-scale flow dynamics for the scenario of geological sequestration of carbon dioxide. Fluorescent microscopy and the microscopic particle image velocimetry (micro-PIV) technique are employed to simultaneously visualize both phases and obtain the velocity field in the aqueous phase. This technique provides a powerful tool for studying such flow systems and the results give valuable insight into flow processes at the pore scale. The fluid-fluid interface curvature from the images can be used to estimate the local capillary pressure. The velocity measurements illustrate active and passive flow pathways and circulation regions near the fluid-fluid interfaces induced by shear. Thin water films observed on the solid surfaces confirm the hydrophilic nature of the micromodels. The velocity of the said films is measured by particle tracking.

  12. Blind test of methods for obtaining 2-D near-surface seismic velocity models from first-arrival traveltimes

    USGS Publications Warehouse

    Zelt, Colin A.; Haines, Seth; Powers, Michael H.; Sheehan, Jacob; Rohdewald, Siegfried; Link, Curtis; Hayashi, Koichi; Zhao, Don; Zhou, Hua-wei; Burton, Bethany L.; Petersen, Uni K.; Bonal, Nedra D.; Doll, William E.

    2013-01-01

    Seismic refraction methods are used in environmental and engineering studies to image the shallow subsurface. We present a blind test of inversion and tomographic refraction analysis methods using a synthetic first-arrival-time dataset that was made available to the community in 2010. The data are realistic in terms of the near-surface velocity model, shot-receiver geometry and the data's frequency and added noise. Fourteen estimated models were determined by ten participants using eight different inversion algorithms, with the true model unknown to the participants until it was revealed at a session at the 2011 SAGEEP meeting. The estimated models are generally consistent in terms of their large-scale features, demonstrating the robustness of refraction data inversion in general, and the eight inversion algorithms in particular. When compared to the true model, all of the estimated models contain a smooth expression of its two main features: a large offset in the bedrock and the top of a steeply dipping low-velocity fault zone. The estimated models do not contain a subtle low-velocity zone and other fine-scale features, in accord with conventional wisdom. Together, the results support confidence in the reliability and robustness of modern refraction inversion and tomographic methods.

  13. Demonstration of synchronised scanning Lidar measurements of 2D velocity fields in a boundary-layer wind tunnel

    NASA Astrophysics Data System (ADS)

    van Dooren, M. F.; Kühn, M.; PetroviĆ, V.; Bottasso, C. L.; Campagnolo, F.; Sjöholm, M.; Angelou, N.; Mikkelsen, T.; Croce, A.; Zasso, A.

    2016-09-01

    This paper combines the currently relevant research methodologies of scaled wind turbine model experiments in wind tunnels with remote-sensing short-range WindScanner Lidar measurement technology. The wind tunnel of the Politecnico di Milano was equipped with three wind turbine models and two short-range WindScanner Lidars to demonstrate the benefits of synchronised scanning Lidars in such experimental surroundings for the first time. The dual- Lidar system can provide fully synchronised trajectory scans with sampling time scales ranging from seconds to minutes. First, staring mode measurements were compared to hot wire probe measurements commonly used in wind tunnels. This yielded goodness of fit coefficients of 0.969 and 0.902 for the 1 Hz averaged u- and v-components of the wind speed, respectively, validating the 2D measurement capability of the Lidar scanners. Subsequently, the measurement of wake profiles on a line as well as wake area scans were executed to illustrate the applicability of Lidar scanning to measuring small scale wind flow effects. The downsides of Lidar with respect to the hot wire probes are the larger measurement probe volume and the loss of some measurements due to moving blades. In contrast, the benefits are the high flexibility in conducting both point measurements and area scanning, and the fact that remote sensing techniques do not disturb the flow while measuring. The research campaign revealed a high potential for using short-range WindScanner Lidar for accurately measuring small scale flow structures in a wind tunnel.

  14. Seismic Velocity Structure Across the Quebrada and Gofar Oceanic Transform Faults from 2D Refraction Tomography - A Comparison of Faults with High and Low Seismic Slip Deficits

    NASA Astrophysics Data System (ADS)

    Roland, E. C.; McGuire, J. J.; Collins, J. A.; Lizarralde, D.

    2009-12-01

    We perform two 2-D tomographic inversions using data collected as a part of the Quebrada-Discovery-Gofar (QDG) Transform Fault Active/Passive Experiment. The QDG transform faults are located in the southern Pacific Ocean and offset the East Pacific Rise (EPR) at approximately 4° south. In the spring of 2008, two ~100 km refraction profiles were collected, each using 8 short period Ocean Bottom Seismometers (OBS) from OBSIP and over 900 shots from the RV Marcus Langseth, across the easternmost segments of the Quebrada and Gofar transform faults. The two refraction profiles are modeled using a 2-D tomographic code that allows joint inversion of the Pg, PmP, and Pn arrivals (Korenaga et al., 2000). Variations in crustal velocity and thickness, as well as the width and depth extent of a significant low velocity zone within and below the transform valley provide some insight into the material properties of each of the fault-zones. Reduced seismic velocities that are 0.5 to over 1.0 km/s slower than velocities associated with the oceanic crust outside the fault zone may indicate the highly fractured fault zone lithology. The low velocity zone associated with the Quebrada fault also extends to the south of the active fault zone, beneath a fossil fault trace. Because Gofar is offset by an intratransform spreading center, we are able to compare ‘normal’ oceanic crust produced at the EPR to the south of the fault with crust associated with the ~15 km intratransform spreading center to the north. These two high slip rate (14 cm/yr) faults look similar morphologically and demonstrate comparable microseismicity characteristics, however their abilities to generate large earthquakes differ significantly. Gofar generates large earthquakes (Mw ~6) regularly every few years, but in the past 24 years only one large (Mw 5.6) event has been reliably located on Quebrada. The contrasting seismic behavior of these faults represents the range of behavior observed in the global

  15. P-wave Variability and Atrial Fibrillation

    PubMed Central

    Censi, Federica; Corazza, Ivan; Reggiani, Elisa; Calcagnini, Giovanni; Mattei, Eugenio; Triventi, Michele; Boriani, Giuseppe

    2016-01-01

    The analysis of P-wave template has been widely used to extract indices of Atrial Fibrillation (AF) risk stratification. The aim of this paper was to assess the potential of the analysis of the P-wave variability over time in patients suffering from atrial fibrillation. P-wave features extracted from P-wave template together with novel indices of P-wave variability have been estimated in a population of patients suffering from persistent AF and compared to those extracted from control subjects. We quantify the P-wave variability over time using three algorithms and we extracted three novel indices: one based on the cross-correlation coefficients among the P-waves (Cross-Correlation Index, CCI), one associated to variation in amplitude of the P-waves (Amplitude Dispersion Index, ADI), one sensible to the phase shift among P-waves (Warping Index, WI). The control group resulted to be characterized by shorter P-wave duration and by a less amount of fragmentation and variability, respect to AF patients. The parameter CCI shows the highest sensitivity (97.3%) and a good specificity (95%). PMID:27225709

  16. P-wave Variability and Atrial Fibrillation.

    PubMed

    Censi, Federica; Corazza, Ivan; Reggiani, Elisa; Calcagnini, Giovanni; Mattei, Eugenio; Triventi, Michele; Boriani, Giuseppe

    2016-01-01

    The analysis of P-wave template has been widely used to extract indices of Atrial Fibrillation (AF) risk stratification. The aim of this paper was to assess the potential of the analysis of the P-wave variability over time in patients suffering from atrial fibrillation. P-wave features extracted from P-wave template together with novel indices of P-wave variability have been estimated in a population of patients suffering from persistent AF and compared to those extracted from control subjects. We quantify the P-wave variability over time using three algorithms and we extracted three novel indices: one based on the cross-correlation coefficients among the P-waves (Cross-Correlation Index, CCI), one associated to variation in amplitude of the P-waves (Amplitude Dispersion Index, ADI), one sensible to the phase shift among P-waves (Warping Index, WI). The control group resulted to be characterized by shorter P-wave duration and by a less amount of fragmentation and variability, respect to AF patients. The parameter CCI shows the highest sensitivity (97.3%) and a good specificity (95%). PMID:27225709

  17. Measurement of a 2D fast-ion velocity distribution function by tomographic inversion of fast-ion D-alpha spectra

    NASA Astrophysics Data System (ADS)

    Salewski, M.; Geiger, B.; Jacobsen, A. S.; García-Muñoz, M.; Heidbrink, W. W.; Korsholm, S. B.; Leipold, F.; Madsen, J.; Moseev, D.; Nielsen, S. K.; Rasmussen, J.; Stejner, M.; Tardini, G.; Weiland, M.; the ASDEX Upgrade Team

    2014-02-01

    We present the first measurement of a local fast-ion 2D velocity distribution function f(v‖, v⊥). To this end, we heated a plasma in ASDEX Upgrade by neutral beam injection and measured spectra of fast-ion Dα (FIDA) light from the plasma centre in three views simultaneously. The measured spectra agree very well with synthetic spectra calculated from a TRANSP/NUBEAM simulation. Based on the measured FIDA spectra alone, we infer f(v‖, v⊥) by tomographic inversion. Salient features of our measurement of f(v‖, v⊥) agree reasonably well with the simulation: the measured as well as the simulated f(v‖, v⊥) are lopsided towards negative velocities parallel to the magnetic field, and they have similar shapes. Further, the peaks in the simulation of f(v‖, v⊥) at full and half injection energies of the neutral beam also appear in the measurement at similar velocity-space locations. We expect that we can measure spectra in up to seven views simultaneously in the next ASDEX Upgrade campaign which would further improve measurements of f(v‖, v⊥) by tomographic inversion.

  18. Josephson current between p-wave superconductors

    NASA Astrophysics Data System (ADS)

    Yokoyama, Takehito; Tanaka, Yukio; Golubov, Alexander; Asano, Yasuhiro

    2006-10-01

    Josephson current in p-wave superconductor/diffusive normal metal (DN)/p-wave superconductor junctions is calculated by solving the Usadel equation under the Nazarov's boundary condition extended to unconventional superconductors by changing the heights of the insulating barriers at the interfaces, the magnitudes of the resistance in DN, and the angles between the normal to the interface and the lobe directions of p-wave pair potentials. It is shown that the magnitude of the Josephson current strongly depends on the lobe directions of the p-wave pair potentials and the resulting magnitude of the Josephson current is large compared to that in the s-wave superconducting junctions due to the formation of the resonant states peculiar to p-wave superconductors.

  19. Anomalous delays of teleseismic P waves in Yellowstone National Park

    USGS Publications Warehouse

    Iyer, H.M.

    1975-01-01

    TELESEISMIC P waves recorded by a short-period seismic network, comprising 12 stations, in Yellowstone National Park, show anomalous delays of 1-2 s in their travel times in the central region of the park relative to the surrounding area. To explain this phenomenon, I propose that a substantial body of low velocity material is present beneath the park, with horizontal dimensions of several tens of kilometres; it may be the magma chamber associated with the volcanism of Yellowstone (ref. 1, and G. P. Eaton et al., unpublished). ?? 1975 Nature Publishing Group.

  20. Vortical versus skyrmionic states in mesoscopic p -wave superconductors

    NASA Astrophysics Data System (ADS)

    Fernández Becerra, V.; Sardella, E.; Peeters, F. M.; Milošević, M. V.

    2016-01-01

    We investigate the superconducting states that arise as a consequence of mesoscopic confinement and a multicomponent order parameter in the Ginzburg-Landau model for p -wave superconductivity. Conventional vortices, but also half-quantum vortices and skyrmions, are found as the applied magnetic field and the anisotropy parameters of the Fermi surface are varied. The solutions are well differentiated by a topological charge that for skyrmions is given by the Hopf invariant and for vortices by the circulation of the superconducting velocity. We revealed several unique states combining vortices and skyrmions, their possible reconfiguration with varied magnetic field, as well as temporal and field-induced transitions between vortical and skyrmionic states.

  1. P-wave signatures and parameterization of transversely isotropic media: An overview

    SciTech Connect

    Tsvankin, I.

    1994-07-01

    Progress in seismic inversion and processing in anisotropic media depends on our ability to relate different seismic signatures to the anisotropic parameters. While the conventional notation (stiffness coefficients) is suitable for forward modeling, it is inconvenient in developing analytic insight into the influence of anisotropy on wave propagation. The author gives a consistent description of P-wave signatures in transversely isotropic media with arbitrary strength of the anisotropy, using the notation suggested by Thomsen (1986). The influence of transverse isotropy on P-wave propagation is shown to be practically independent of the vertical S-wave velocity V{sub S0}, even in models with strong velocity variations. Therefore, the contribution of transverse isotropy to P-wave kinematic and dynamic signatures is controlled by just two anisotropic parameters, {epsilon} and {delta}, with the vertical velocity V{sub P0} being no more than a scaling coefficient in homogeneous models.

  2. AnisWave 2D

    2004-08-01

    AnisWave2D is a 2D finite-difference code for a simulating seismic wave propagation in fully anisotropic materials. The code is implemented to run in parallel over multiple processors and is fully portable. A mesh refinement algorithm has been utilized to allow the grid-spacing to be tailored to the velocity model, avoiding the over-sampling of high-velocity materials that usually occurs in fixed-grid schemes.

  3. Simulated Obstructive Sleep Apnea Increases P-Wave Duration and P-Wave Dispersion

    PubMed Central

    Wons, Annette M.; Rossi, Valentina; Bratton, Daniel J.; Schlatzer, Christian; Schwarz, Esther I.; Camen, Giovanni; Kohler, Malcolm

    2016-01-01

    Background A high P-wave duration and dispersion (Pd) have been reported to be a prognostic factor for the occurrence of paroxysmal atrial fibrillation (PAF), a condition linked to obstructive sleep apnea (OSA). We tested the hypothesis of whether a short-term increase of P-wave duration and Pd can be induced by respiratory manoeuvres simulating OSA in healthy subjects and in patients with PAF. Methods 12-lead-electrocardiography (ECG) was recorded continuously in 24 healthy subjects and 33 patients with PAF, while simulating obstructive apnea (Mueller manoeuvre, MM), obstructive hypopnea (inspiration through a threshold load, ITH), central apnea (AP), and during normal breathing (BL) in randomized order. The P-wave duration and Pd was calculated by using dedicated software for ECG-analysis. Results P-wave duration and Pd significantly increased during MM and ITH compared to BL in all subjects (+13.1ms and +13.8ms during MM; +11.7ms and +12.9ms during ITH; p<0.001 for all comparisons). In MM, the increase was larger in healthy subjects when compared to patients with PAF (p<0.05). Conclusion Intrathoracic pressure swings through simulated obstructive sleep apnea increase P-wave duration and Pd in healthy subjects and in patients with PAF. Our findings imply that intrathoracic pressure swings prolong the intra-atrial and inter-atrial conduction time and therefore may represent an independent trigger factor for the development for PAF. PMID:27071039

  4. P-Wave Electron-Hydrogen Scattering

    NASA Technical Reports Server (NTRS)

    Bhtia, Anand

    2012-01-01

    A variational wave function incorporating short range correlations via Hylleraas type functions plus long-range polarization terms of the polarized orbital type but with smooth cut-off factors has been used to calculate P-wave phase shifts for electron-hydrogen scattering. This approach gives the direct r(exp -4) potential and a non-local optical potential which is definite. The resulting phase shifts have rigorous lower bounds and the convergence is much faster than those obtained without the modification of the target function. Final results will be presented at the conference.

  5. P wave azimuthal and radial anisotropy of the Hokkaido subduction zone

    NASA Astrophysics Data System (ADS)

    Niu, Xiongwei; Zhao, Dapeng; Li, Jiabiao; Ruan, Aiguo

    2016-04-01

    We present the first three-dimensional P wave radial anisotropy tomography of the Hokkaido subduction zone, as well as P wave azimuthal anisotropy and S wave tomography, which are determined by inverting 298,430 P wave and 233,934 S wave arrival times from 14,245 local earthquakes recorded by 344 seismic stations. Our results reveal significant velocity heterogeneity, seismic anisotropy, and upwelling flows beneath the study region. In the mantle wedge, prominent low-velocity (low-V) anomalies exhibit trench-normal fast-velocity directions (FVDs) and a negative radial anisotropy (i.e., vertical velocity > horizontal velocity), which may reflect upwelling mantle flows. Fan-shaped FVDs are found at depths of 65-90 km, and a detailed 3-D mantle flow pattern is revealed, which may be caused by a combination of oblique subduction of the Pacific plate and collision of the Kuril arc with the Honshu arc beneath southern Hokkaido. The radial anisotropy changes at ~100 km depth, which may reflect variations in temperature and fluid conditions there. The subducting Pacific slab exhibits a positive radial anisotropy (i.e., horizontal velocity > vertical velocity), which may reflect the original fossil anisotropy when the Pacific plate formed at the mid-ocean ridge.

  6. Holographic p-wave superconductor with disorder

    NASA Astrophysics Data System (ADS)

    Areán, D.; Farahi, A.; Pando Zayas, L. A.; Salazar Landea, I.; Scardicchio, A.

    2015-07-01

    We implement the effects of disorder on a holographic p-wave superconductor by introducing a random chemical potential which defines the local energy of the charge carriers. Since there are various possibilities for the orientation of the vector order parameter, we explore the behavior of the condensate in the parallel and perpendicular directions to the introduced disorder. We clarify the nature of various branches representing competing solutions and construct the disordered phase diagram. We find that moderate disorder enhances superconductivity as determined by the value of the condensate. Though we mostly focus on uncorrelated noise, we also consider a disorder characterized by its spectral properties and study in detail its influence on the spectral properties of the condensate and charge density. We find fairly universal responses of the resulting power spectra characterized by linear functions of the disorder power spectrum.

  7. Accurate source location from P waves scattered by surface topography

    NASA Astrophysics Data System (ADS)

    Wang, N.; Shen, Y.

    2015-12-01

    Accurate source locations of earthquakes and other seismic events are fundamental in seismology. The location accuracy is limited by several factors, including velocity models, which are often poorly known. In contrast, surface topography, the largest velocity contrast in the Earth, is often precisely mapped at the seismic wavelength (> 100 m). In this study, we explore the use of P-coda waves generated by scattering at surface topography to obtain high-resolution locations of near-surface seismic events. The Pacific Northwest region is chosen as an example. The grid search method is combined with the 3D strain Green's tensor database type method to improve the search efficiency as well as the quality of hypocenter solution. The strain Green's tensor is calculated by the 3D collocated-grid finite difference method on curvilinear grids. Solutions in the search volume are then obtained based on the least-square misfit between the 'observed' and predicted P and P-coda waves. A 95% confidence interval of the solution is also provided as a posterior error estimation. We find that the scattered waves are mainly due to topography in comparison with random velocity heterogeneity characterized by the von Kάrmάn-type power spectral density function. When only P wave data is used, the 'best' solution is offset from the real source location mostly in the vertical direction. The incorporation of P coda significantly improves solution accuracy and reduces its uncertainty. The solution remains robust with a range of random noises in data, un-modeled random velocity heterogeneities, and uncertainties in moment tensors that we tested.

  8. Bright spot validation using comparative P-wave and S-wave seismic sections

    SciTech Connect

    Robertson, J.D.; Pritchett, W.C.

    1984-04-01

    Coincident P-wave and S-wave CDP lines were shot across the Willow Slough and Putah Sink fields, Yolo County, California, by the 1977-78 Conoco P-Wave/Shear-Wave Group Shoot. The fields produce gas from pay sands in the Cretaceous Starkey and Winters formations. Several of the thicker pay sands correlate with amplitude anomalies on the P-wave sections, and these amplitude anomalies are true seismic bright spots. The equivalent events on the S-wave sections are much lower in relative amplitude when the overall gains of the P and S sections are balanced. The difference in the P and S responses is consistent with laboratory experiments which show that introducing gas into the pore space of a liquid-saturated rock dramatically lowers P velocity but minimally affects S velocity. The experimental lines demonstrate that comparison between the amplitudes of P and S is a diagnostic technique that can be sued to distinguish gas-liquid contacts from lithologic interfaces. An S-wave section validates a P-wave bright spot attributed to gas saturation when there is no anomalous amplitude at the equivalent S-wave event.

  9. Effect of immiscible liquid contaminants on P-wave transmission through natural aquifer samples

    SciTech Connect

    Geller, Jil T.; Ajo-Franklin, Jonathan B.; Majer, Ernest L.

    2003-01-31

    We performed core-scale laboratory experiments to examine the effect of non-aqueous phase liquid (NAPL) contaminants on P-wave velocity and attenuation in heterogeneous media. This work is part of a larger project to develop crosswell seismic methods for minimally invasive NAPL detection. The test site is the former DOE Pinellas Plant in Florida, which has known NAPL contamination in the surficial aquifer. Field measurements revealed a zone of anomalously high seismic attenuation, which may be due to lithology and/or contaminants (NAPL or gas phase). Intact core was obtained from the field site, and P-wave transmission was measured by the pulse-transmission technique with a 500 kHz transducer. Two types of samples were tested: a clean fine sand from the upper portion of the surficial aquifer, and clayey-silty sand with shell fragments and phosphate nodules from the lower portion. Either NAPL trichloroethene or toluene was injected into the initially water-saturated sample. Maximum NAPL saturations ranged from 30 to 50% of the pore space. P-wave velocity varied by approximately 4% among the water-saturated samples, while velocities decreased by 5 to 9% in samples at maximum NAPL saturation compared to water-saturated conditions. The clay and silt fraction as well as the larger scatterers in the clayey-silty sands apparently caused greater P-wave attenuation compared to the clean sand. The presence of NAPLs caused a 34 to 54% decrease in amplitudes of the first arrival. The central frequency of the transmitted energy ranged from 85 to 200 kHz, and was sensitive to both grain texture and presence of NAPL. The results are consistent with previous trends observed in homogeneous sand packs. More data will be acquired to interpret P-wave tomograms from crosswell field measurements, determine the cause of high attenuation observed in the field data and evaluate the sensitivity of seismic methods for NAPL detection.

  10. P Wave Dispersion and Maximum P Wave Duration Are Associated with Renal Outcomes in Chronic Kidney Disease

    PubMed Central

    Huang, Jiun-Chi; Wei, Shu-Yi; Chen, Szu-Chia; Chang, Jer-Ming; Hung, Chi-Chih; Su, Ho-Ming; Hwang, Shang-Jyh; Chen, Hung-Chun

    2014-01-01

    P wave parameters measured by 12-lead electrocardiogram (ECG) are commonly used as a noninvasive tool to evaluate left atrial enlargement. This study was designed to assess whether P wave parameters were associated with renal outcomes in chronic kidney disease (CKD) patients. This longitudinal study enrolled 439 patients with CKD stages 3–5. Renal end points were defined as the commencement of dialysis or death. Change in renal function was measured using the estimated glomerular filtration rate (eGFR) slope. We measured two ECG P wave parameters corrected for heart rate, i.e., corrected P wave dispersion and corrected maximum P wave duration. The values of P wave dispersion and maximum P wave duration were 88.8±21.7 ms and 153.3±21.7 ms, respectively. During the follow-up period (mean, 25.2 months), 95 patients (21.6%) started hemodialysis and 30 deaths (6.8%) were recorded. Multivariate Cox regression analysis identified that increased P wave dispersion [hazard ratio (HR), 1.020; 95% confidence interval (CI), 1.009–1.032; P<0.001] and maximum P wave duration (HR, 1.013; 95% CI, 1.003–1.024; P = 0.012) were associated with progression to renal end points. Furthermore, increased P wave dispersion (unstandardized coefficient β = –0.016; P = 0.037) and maximum P wave duration (unstandardized coefficient β = –0.014; P = 0.040) were negatively associated with the eGFR slope. We demonstrated that increased P wave dispersion and maximum P wave duration were associated with progression to the renal end points of dialysis or death and faster renal function decline in CKD patients. Screening CKD patients on the basis of P wave dispersion and maximum P wave duration may help identify patients at high risk for worse renal outcomes. PMID:25006682

  11. Lithosphere-asthenosphere P-wave reflectivity across Australia

    NASA Astrophysics Data System (ADS)

    Kennett, B. L. N.

    2015-12-01

    A direct image of P-wave reflectivity in the lithosphere and asthenosphere beneath seismic stations is extracted from stacked autocorrelograms of continuous component records. The autocorrelograms emphasise near vertically travelling waves, so that multiples are more muted than in receiver function studies and it is possible to work at higher frequencies than for receiver functions. Across a wide range of geological environments in Australia, in the 0.5-4.0 Hz frequency band, distinct reflections are seen in the crust underlain by weaker reflectivity in the lithosphere and asthenosphere. The base of crustal reflectivity fits well with Moho estimates from other classes of information. Few mantle reflectors have been seen in conventional reflection profiling at frequencies above 10 Hz; the presence of reflections in the 0.5-4.0 Hz band suggests variations on vertical scales of a few hundred metres with amplitudes of the order of 1%. There are slight indications of a change of reflection character in the lower part of the lithosphere in the transition to the asthenosphere. At a few stations there is a very clear lamination at asthenospheric depth, as well as reflections from the base of the S wave low velocity zone. Reflection bands often occur at depths where discontinuities have been inferred from S wave receiver function work at the same station, but would not by themselves be distinctive of a mid-lithosphere discontinuity.

  12. Change in P wave morphology after convergent atrial fibrillation ablation.

    PubMed

    Shrestha, Suvash; Chen, On; Greene, Mary; John, Jinu Jacob; Greenberg, Yisachar; Yang, Felix

    2016-01-01

    Convergent atrial fibrillation ablation involves extensive epicardial as well as endocardial ablation of the left atrium. We examined whether it changes the morphology of the surface P wave. We reviewed electrocardiograms of 29 patients who underwent convergent ablation for atrial fibrillation. In leads V1, II and III, we measured P wave duration, area and amplitude before ablation, and at 1, 3 and 6 months from ablation. After ablation, there were no significant changes in P wave amplitude, area, or duration in leads II and III. There was a significant reduction in the area of the terminal negative deflection of the P wave in V1 from 0.38 mm(2) to 0.13 mm(2) (p = 0.03). There is also an acute increase in the amplitude and duration of the positive component of the P wave in V1 followed by a reduction in both by 6 months. Before ablation, 62.5% of the patients had biphasic P waves in V1. In 6 months, only 39.2% of them had biphasic P waves. Hybrid ablation causes a reduction of the terminal negative deflection of the P wave in V1 as well as temporal changes in the duration and amplitude of the positive component of the P wave in V1. This likely reflects the reduced electrical contribution of the posterior left atrium after ablation as well as anatomical and autonomic remodeling. Recognition of this altered sinus P wave morphology is useful in the diagnosis of atrial arrhythmias in this patient population. PMID:27485559

  13. Crustal parameters estimated from P-waves of earthquakes recorded at a small array

    USGS Publications Warehouse

    Murdock, J.N.; Steppe, J.A.

    1980-01-01

    The P-arrival times of local and regional earthquakes that are outside of a small network of seismometers can be used to interpret crustal parameters beneath the network by employing the time-term technique. Even when the estimate of the refractor velocity is poorly determined, useful estimates of the station time-terms can be made. The method is applied to a 20 km diameter network of eight seismic stations which was operated near Castaic, California, during the winter of 1972-73. The stations were located in sedimentary basins. Beneath the network, the sedimentary rocks of the basins are known to range from 1 to more than 4 km in thickness. Relative time-terms are estimated from P-waves assumed to be propagated by a refractor in the mid-crust, and again from P-waves propagated by a refractor in the upper basement. For the range of velocities reported by others, the two sets of time-terms are very similar. They suggest that both refractors dip to the southwest, and the geology also indicates that the basement dips in this direction. In addition, the P-wave velocity estimated for the refractor of mid-crustal depths, roughly 6.7 km/sec, agrees with values reported by others. Thus, even in this region of complicated geologic structure, the method appears to give realistic results. ?? 1980 Birkha??user Verlag.

  14. Effects of p-wave annihilation on the angular power spectrum of extragalactic gamma-rays from dark matter annihilation

    SciTech Connect

    Campbell, Sheldon; Dutta, Bhaskar

    2011-10-01

    We present a formalism for estimating the angular power spectrum of extragalactic gamma-rays produced by dark matter annihilating with any general velocity-dependent cross section. The relevant density and velocity distribution of dark matter is modeled as an ensemble of smooth, universal, rigid, disjoint, spherical halos with distribution and universal properties constrained by simulation data. We apply this formalism to theories of dark matter with p-wave annihilation, for which the relative-velocity-weighted annihilation cross section is {sigma}v=a+bv{sup 2}. We determine that this significantly increases the gamma-ray power if b/a > or approx. 10{sup 6}. The effect of p-wave annihilation on the angular power spectrum is very similar for the sample of particle physics models we explored, suggesting that the important effect for a given b/a is largely determined by the cosmic dark matter distribution. If the dark matter relic from strong p-wave theories is thermally produced, the intensities of annihilation gamma-rays are strongly p-wave suppressed, making them difficult to observe. If an angular power spectrum consistent with a strong p wave were to be observed, it would likely indicate nonthermal production of dark matter in the early Universe.

  15. Combined analysis of 2-D electrical resistivity, seismic refraction and geotechnical investigations for Bukit Bunuh complex crater

    NASA Astrophysics Data System (ADS)

    Azwin, I. N.; Saad, Rosli; Saidin, Mokhtar; Nordiana, M. M.; Anderson Bery, Andy; Hidayah, I. N. E.

    2015-01-01

    Interest in studying impact crater on earth has increased tremendously due to its importance in geologic events, earth inhabitant history as well as economic value. The existences of few shock metamorphism and crater morphology evidences are discovered in Bukit Bunuh, Malaysia thus detailed studies are performed using geophysical and geotechnical methods to verify the type of the crater and characteristics accordingly. This paper presents the combined analysis of 2-D electrical resistivity, seismic refraction, geotechnical SPT N value, moisture content and RQD within the study area. Three stages of data acquisition are made starting with regional study followed by detailed study on West side and East side. Bulk resistivity and p-wave seismic velocity were digitized from 2-D resistivity and seismic sections at specific distance and depth for corresponding boreholes and samples taken. Generally, Bukit Bunuh shows the complex crater characteristics. Standard table of bulk resistivity and p-wave seismic velocity against SPT N value, moisture content and RQD are produce according to geological classifications of impact crater; inside crater, rim/slumped terrace and outside crater.

  16. P-wave dispersion: What we know till now?

    PubMed Central

    Aytemir, Kudret; Oto, Ali

    2016-01-01

    P-wave dispersion is defined as the difference between the maximum and the minimum P-wave duration recorded from multiple different-surface ECG leads. It has been known that increased P-wave duration and P-wave dispersion reflect prolongation of intraatrial and interatrial conduction time and the inhomogeneous propagation of sinus impulses, which are well-known electrophysiologic characteristics in patients with atrial arrhythmias and especially paroxysmal atrial fibrillation. Extensive clinical evaluation of P-wave dispersion has been performed in the assessment of the risk for atrial fibrillation in patients without apparent heart disease, in hypertensives, in patients with coronary artery disease, in patients undergoing coronary artery bypass surgery, in patients with congenital heart diseases, as well as in other groups of patients suffering from various cardiac or non-cardiac diseases. In this paper, we aimed to summarize the measurement methods, current use in different clinical situations, strengths and limitations of the of P-wave dispersion. PMID:27081484

  17. Ray-theoretical modeling of secondary microseism P-waves

    NASA Astrophysics Data System (ADS)

    Farra, V.; Stutzmann, E.; Gualtieri, L.; Schimmel, M.; Ardhuin, F.

    2016-06-01

    Secondary microseism sources are pressure fluctuations close to the ocean surface. They generate acoustic P-waves that propagate in water down to the ocean bottom where they are partly reflected, and partly transmitted into the crust to continue their propagation through the Earth. We present the theory for computing the displacement power spectral density of secondary microseism P-waves recorded by receivers in the far field. In the frequency domain, the P-wave displacement can be modeled as the product of (1) the pressure source, (2) the source site effect that accounts for the constructive interference of multiply reflected P-waves in the ocean, (3) the propagation from the ocean bottom to the stations, (4) the receiver site effect. Secondary microseism P-waves have weak amplitudes, but they can be investigated by beamforming analysis. We validate our approach by analyzing the seismic signals generated by Typhoon Ioke (2006) and recorded by the Southern California Seismic Network. Back projecting the beam onto the ocean surface enables to follow the source motion. The observed beam centroid is in the vicinity of the pressure source derived from the ocean wave model WAVEWATCH IIIR. The pressure source is then used for modeling the beam and a good agreement is obtained between measured and modeled beam amplitude variation over time. This modeling approach can be used to invert P-wave noise data and retrieve the source intensity and lateral extent.

  18. P-wave tomography of Northeastern China observed with NECESSArray

    NASA Astrophysics Data System (ADS)

    Obayashi, M.; Kawakatsu, H.; Tanaka, S.; Chen, Y. J.; Ning, J.; Grand, S. P.; Niu, F.; Miyakawa, K.; Idehara, K.; Tonegawa, T.; Iritani, R.; Necessarray Project Team

    2011-12-01

    A passive broadband seismic experiment, NorthEast China Extended SeiSmic Array (NECESSArray) has been deployed since 2009 for two years. Northeastern China is a very interesting region because slabs subducting from the south Kuril and Japan trenches are stagnant in the mantle transition zone and extends to northeastern China, and above the stagnant slabs, Sino-Korea craton and unusual volcanism in the continent exist. The relationships between the deep slabs and shallow structures are important clues to understand the tectonic features. P-wave travel-time picks of the NECESSArray stations were made interactively, while the teleseismic arrival time residuals were extracted using the adaptive stacking method. We picked more than 13,000 event-station pairs. Relative travel-times of P-wave between different stations were measured as a function of frequency using deep events of which P-waves separate in time from depth phases and very shallow events of which P-waves and depth phases are completely coincide. We found strong dispersive effect that is not predicted by our previous three dimensional (3D) P-wave model. We will combine the picked travel times and the frequency depended relative travel times to image a 3D P-wave heterogeneities of the northeastern China. We will show our first model at the meeting.

  19. Ray-theoretical modeling of secondary microseism P waves

    NASA Astrophysics Data System (ADS)

    Farra, V.; Stutzmann, E.; Gualtieri, L.; Schimmel, M.; Ardhuin, F.

    2016-09-01

    Secondary microseism sources are pressure fluctuations close to the ocean surface. They generate acoustic P waves that propagate in water down to the ocean bottom where they are partly reflected and partly transmitted into the crust to continue their propagation through the Earth. We present the theory for computing the displacement power spectral density of secondary microseism P waves recorded by receivers in the far field. In the frequency domain, the P-wave displacement can be modeled as the product of (1) the pressure source, (2) the source site effect that accounts for the constructive interference of multiply reflected P waves in the ocean, (3) the propagation from the ocean bottom to the stations and (4) the receiver site effect. Secondary microseism P waves have weak amplitudes, but they can be investigated by beamforming analysis. We validate our approach by analysing the seismic signals generated by typhoon Ioke (2006) and recorded by the Southern California Seismic Network. Backprojecting the beam onto the ocean surface enables to follow the source motion. The observed beam centroid is in the vicinity of the pressure source derived from the ocean wave model WAVEWATCH IIIR. The pressure source is then used for modeling the beam and a good agreement is obtained between measured and modeled beam amplitude variation over time. This modeling approach can be used to invert P-wave noise data and retrieve the source intensity and lateral extent.

  20. QTc dispersion and P-wave dispersion during migraine attacks.

    PubMed

    Duru, M; Melek, I; Seyfeli, E; Duman, T; Kuvandik, G; Kaya, H; Yalçin, F

    2006-06-01

    The aim of this study was to investigate increase of QTc dispersion and P-wave dispersion during migraine attacks. Fifty-five patients (16-65 years of age, 49 women, six men) with migraine were included in our study. Heart rate, QTc interval, maximum and minimum QTc interval, QTc dispersion, maximum and minimum P-wave duration and P-wave dispersion were measured from 12-lead ECG recording during migraine attacks and pain-free periods. ECGs were transferred to a personal computer via a scanner and then used for magnification of x400 by Adobe Photoshop software. Maximum QTc interval (454 +/- 24 ms vs. 429 +/- 23 ms, P < 0.001), QTc interval (443 +/- 26 ms vs. 408 +/- 22 ms, P < 0.001) and QTc dispersion (63 +/- 18 ms vs. 43 +/- 14 ms, P < 0.001) were found significantly higher during migraine attacks compared with pain-free periods. Maximum P-wave duration (107 +/- 11 ms vs. 100 +/- 11 ms, P < 0.001) and P-wave dispersion (45 +/- 13 ms vs. 35 +/- 13 ms, P < 0.001) were found higher during migraine attacks than pain-free periods. We concluded that migraine attacks are associated with increased QTc and P-wave dispersion compared with pain-free periods.

  1. Observation and modelling of P-wave polarization for teleseismic events

    NASA Astrophysics Data System (ADS)

    Cristiano, Luigia; Minakov, Alexander; Meier, Thomas; Keers, Henk

    2014-05-01

    P-wave polarization may yield valuable information on lateral heterogeneity and anisotropy of the crust and uppermost mantle. Using 20 years of the Gräfenberg (GRF) array data we show that stable measurements of P-wave polarization attributes - azimuthal deviation and incidence angle - may be obtained by automated data processing. The P-wave polarization at the GRF array is frequency dependent and a function of backazimuth. By applying harmonic analysis, properties of the 180° and 360° periodicities of azimuthal deviation and incidence angle as a function of backazimuth are quantified. The observations point to the presence of azimuthal anisotropy and lateral heterogenetiy in the crust and uppermost mantle in the vicinity of the stations. The fast propagation direction of P-waves and lateral velocity gradients of P-wave velocity may be estimated based on results of the harmonic analysis. For the GRF array the fast direction of P-wave propagation is found to be about 20° in the frequency range from 0.03 to 0.1Hz that is mainly sensitive to the lower crust and the uppermost mantle. At higher frequencies from 0.1 to 0.5 Hz, mainly related to the upper crust, the variability is larger with a predominant direction of fast P-wave propagation of about 100°. In order to investigate the sensitivity of P-wave polarization to azimuthal anisotropy quantitatively, full waveform forward modellings are performed using 3D Elastic Ray-Born Modelling. Ray and ray-Born techniques have proven their importance in seismology as all travel time tomography is based on ray tracing and all finite frequency travel time and amplitude kernels are based on ray-Born theory. Moreover ray and ray-Born methods are relatively fast and specifically valid at high frequencies. Thus these methods complement the finite-difference and spectral-element full waveform modelling methods . The actual implementation is done using an isotropic background medium with an anisotropic medium perturbation

  2. Detection of the electrocardiogram P-wave using wavelet analysis

    SciTech Connect

    Anant, K.S.; Rodrigue, G.H. |; Dowla, F.U.

    1994-01-01

    Since wavelet analysis is an effective tool for analyzing transient signals, we studied its feature extraction and representation properties for events in electrocardiogram (EKG) data. Significant features of the EKG include the P-wave, the QRS complex, and the T-wave. For this paper the feature that we chose to focus on was the P-wave. Wavelet analysis was used as a pre-processor for a backpropagation neural network with conjugate gradient learning. The inputs to the neural network were the wavelet transforms of EKGs at a particular scale. The desired output was the location of the P-wave. The results were compared to results obtained without using the wavelet transform as a pre-processor.

  3. Detection of the electrocardiogram P-wave using wavelet analysis

    NASA Astrophysics Data System (ADS)

    Anant, Kanwaldip S.; Dowla, Farid U.; Rodrigue, Garry H.

    1994-03-01

    Since wavelet analysis is an effective tool for analyzing transient signals, we studied its feature extraction and representation properties for events in electrocardiogram (EKG) data. Significant features of the EKG include the P-wave, the QRS complex, and the T-wave. For this paper the feature that we chose to focus on was the P-wave. Wavelet analysis was used as a preprocessor for a backpropagation neural network with conjugate gradient learning. The inputs to the neural network were the wavelet transforms of EKGs at a particular scale. The desired output was the location of the P-wave. The results were compared to results obtained without using the wavelet transform as a preprocessor.

  4. Supercurrent in a p-wave holographic superconductor

    SciTech Connect

    Zeng Huabi; Sun Weimin; Zong Hongshi

    2011-02-15

    The p-wave and p+ip-wave holographic superconductors with fixed DC supercurrent are studied by introducing a nonvanishing vector potential. We find that close to the critical temperature T{sub c} of zero current, the numerical results of both the p-wave model and the p+ip model are the same as those of Ginzburg-Landau (GL) theory; for example, the critical current is j{sub c}{approx}(T{sub c}-T){sup 3/2} and the phase transition in the presence of a DC current is a first-order transition. Beside the similar results between both models, the p+ip superconductor shows isotropic behavior for the supercurrent, while the p-wave superconductor shows anisotropic behavior for the supercurrent.

  5. Spectral modulation effect in teleseismic P-waves from DPRK nuclear tests recorded at different azimuths

    NASA Astrophysics Data System (ADS)

    Gitterman, Yefim; Kim, So Gu; Hofstetter, Abraham

    2014-05-01

    Two underground nuclear explosions conducted by North Korea in 2009 and 2013 were recorded by the Israel Seismic Network. Pronounced coherent minima (spectral nulls) at 1.2-1.3 Hz were revealed in the spectra of teleseismic P-waves. For a ground-truth explosion with a shallow source depth (relatively to an earthquake), this phenomenon can be interpreted in terms of the interference between the down-going P-wave and the pP phase reflected from the Earth's surface. A similar effect was observed at ISN stations for the Pakistan nuclear explosion at a different frequency 1.7 Hz indicating a source and not site-effect. Similar spectral minima with about the same frequency were observed in teleseismic P-waves of all three North Korea explosions (including the 2006 test) recorded at network stations and arrays in Kazakhstan (KURK), Norway (NORESS, ARCESS), Australia (Alice Springs, Warramunga) and Canada (Yellowknife), covering a broad azimuthal range. Data of the 2013 test at Warramunga array showed harmonic spectral modulation with several minima, evidencing a clear interference effect. These observations support the above-mentioned interpretation. Based on the null frequency dependency on the near-surface acoustic velocity and the source depth, the depth of the North Korea tests was estimated as ~2 km (different from the value ~1 km reported by USGS for the third test). This unusual depth estimation needs an additional validation based on more stations and verification by other methods.

  6. p -wave annihilating dark matter from a decaying predecessor and the Galactic Center excess

    NASA Astrophysics Data System (ADS)

    Choquette, Jeremie; Cline, James M.; Cornell, Jonathan M.

    2016-07-01

    Dark matter (DM) annihilations have been widely studied as a possible explanation of excess gamma rays from the Galactic Center seen by Fermi/LAT. However most such models are in conflict with constraints from dwarf spheroidals. Motivated by this tension, we show that p -wave annihilating dark matter can easily accommodate both sets of observations due to the lower DM velocity dispersion in dwarf galaxies. Explaining the DM relic abundance is then challenging. We outline a scenario in which the usual thermal abundance is obtained through s -wave annihilations of a metastable particle, that eventually decays into the p -wave annihilating DM of the present epoch. The couplings and lifetime of the decaying particle are constrained by big bang nucleosynthesis, the cosmic microwave background and direct detection, but significant regions of parameter space are viable. A sufficiently large p -wave cross section can be found by annihilation into light mediators, that also give rise to Sommerfeld enhancement. A prediction of the scenario is enhanced annihilations in galaxy clusters.

  7. Three-dimensional P wave azimuthal anisotropy in the lithosphere beneath China

    NASA Astrophysics Data System (ADS)

    Huang, Zhouchuan; Wang, Pan; Zhao, Dapeng; Wang, Liangshu; Xu, Mingjie

    2014-07-01

    Seismic anisotropy in the upper mantle beneath East Asia has been studied extensively using shear wave (SKS) splitting measurements, which have provided important information on mantle dynamics in this region. However, SKS measurements have poor vertical resolution, and so their interpretations are usually not unique. In this work we use a large number of traveltime data from 34,036 local earthquakes recorded by 1563 seismic stations to determine the first model of 3-D P wave azimuthal anisotropy in the lithosphere beneath China. Our results show that the fast velocity directions (FVDs) are generally correlated with the surface geologic features, such as the strikes of the orogens, active faults, and tectonic boundaries. The FVDs in the upper crust are normal to the maximal horizontal stress (σH) in regions with extensive compression such as the Tibetan Plateau, whereas they are subparallel to σH in strike-slip shear zones such as the western and eastern Himalayan syntax. The comparison of the FVDs of P wave anisotropy with SKS splitting measurements indicates that beneath the Tibetan Plateau the seismic anisotropy in the lithosphere contributes significantly to the SKS splitting observations. In contrast, in east China the P wave FVDs in the lithosphere are different from the SKS splitting measurements, suggesting that the SKS splitting is mainly caused by the anisotropy in the deeper mantle such as the asthenosphere and the mantle transition zone under east China. These novel results provide important new information on the lithospheric deformation and mantle dynamics in East Asia.

  8. p-wave pion production from nucleon-nucleon collisions

    SciTech Connect

    Baru, V.; Epelbaum, E.; Haidenbauer, J.; Hanhart, C.; Kudryavtsev, A. E.; Lensky, V.; Meissner, U.-G.

    2009-10-15

    We investigate p-wave pion production in nucleon-nucleon collisions up to next-to-next-to-leading order in chiral effective field theory. In particular, we show that it is possible to describe simultaneously the p-wave amplitudes in the pn{yields}pp{pi}{sup -}, pp{yields}pn{pi}{sup +}, pp{yields}d{pi}{sup +} channels by adjusting a single low-energy constant accompanying the short-range operator that is available at this order. This study provides a nontrivial test of the applicability of chiral effective field theory to reactions of the type NN{yields}NN{pi}.

  9. P wave anisotropic tomography of the Nankai subduction zone in Southwest Japan

    NASA Astrophysics Data System (ADS)

    Wang, Jian; Zhao, Dapeng

    2012-05-01

    The active subduction of the young Philippine Sea (PHS) plate and the old Pacific plate has resulted in significant seismic heterogeneity and anisotropy in Southwest (SW) Japan. In this work we determined a detailed 3-D P wave anisotropic tomography of the crust and upper mantle beneath SW Japan using ˜540,000 P wave arrival times from 5,249 local earthquakes recorded by 1095 stations. The PHS slab is imaged clearly as a high-velocity (high-V) anomaly which exhibits considerable lateral variations. Significant low-velocity (low-V) anomalies are revealed above and below the PHS slab. The low-V anomalies above the PHS slab may reflect the upwelling flow in the mantle wedge and the PHS slab dehydration, and they form the source zone of the arc volcanoes in SW Japan. The low-V zones under the PHS slab may reflect the upwelling flow in the big mantle wedge above the Pacific slab. The anisotropy in the crust and upper mantle is complex. In Kyushu, the P wave fast velocity direction (FVD) is generally trench-normal in the mantle wedge under the back-arc, which is consistent with the corner flow driven by the PHS slab subduction. The FVD is trench-parallel in the subducting PHS slab under Kyushu. We think that the intraslab seismicity is a potential indicator to the slab anisotropy. That is, the PHS slab with seismicity has kept its original fossil anisotropy formed at the mid-ocean ridge, while the aseismic PHS slab has reproduced the anisotropy according to its current deformation.

  10. Teleseismic P-wave polarization analysis at the Gräfenberg array

    NASA Astrophysics Data System (ADS)

    Cristiano, L.; Meier, T.; Krüger, F.; Keers, H.; Weidle, C.

    2016-09-01

    P-wave polarization at the Gräfenberg array (GRF) in southern Germany is analyzed in terms of azimuthal deviations and deviations in the vertical polarization using 20 years of broad band recordings. An automated procedure for estimating P-wave polarization parameters is suggested, based on the definition of a characteristic function, which evaluates the polarization angles and their time variability as well as the amplitude, linearity and the signal-to-noise ratio of the P-wave. P-wave polarization at the GRF array is shown to depend mainly on frequency and backazimuth and only slightly on epicentral distance indicating depth dependent local anisotropy and lateral heterogeneity. A harmonic analysis is applied to the azimuthal anomalies to analyze their periodicity as a function of backazimuth. The dominant periods are 180° and 360°. At low frequencies, between 0.03-0.1 Hz, the observed fast directions of azimuthal anisotropy inferred from the 180° periodicity are similar across the array. The average fast direction of azimuthal anisotropy at these frequencies is N20°E with an uncertainty of about 8° and is consistent with fast directions of Pn-wave propagation. Lateral velocity gradients determined for the low frequency band are compatible with the Moho topography of the area. A more complex pattern in the horizontal fast axis orientation beneath the GRF array is observed in the high frequency band between 0.1-0.5 Hz, and is attributed to anisotropy in the upper crust. A remarkable rotation of the horizontal fast axis orientation across the suture between the geological units Moldanubicum and Saxothuringicum is observed. In contrast, the 360° periodicity at high frequencies is rather consistent across the array and may either point to lower velocities in the upper crust towards the Bohemian Massif and/or to anisotropy dipping predominantly in the NE-SW direction. Altogether, P-wave polarization analysis indicates the presence of layered lithospheric

  11. P wave {pi}{pi} amplitude from dispersion relations

    SciTech Connect

    Szczepaniak, Adam P.; Guo, Peng; Battaglieri, M.; De Vita, R.

    2010-08-01

    We solve the dispersion relation for the P-wave {pi}{pi} amplitude. We discuss the role of the left-hand cut vs the Castillejo-Dalitz-Dyson pole contribution and compare the solution with a generic quark model description. We review the generic properties of analytical partial wave scattering and production amplitudes and discuss their applicability and fits of experimental data.

  12. P wave tomography and anisotropy beneath Southeast Asia: Insight into mantle dynamics

    NASA Astrophysics Data System (ADS)

    Huang, Zhouchuan; Zhao, Dapeng; Wang, Liangshu

    2015-07-01

    Southeast Asia is surrounded by subduction zones resulting from the interactions of several lithospheric plates. Its evolution has been also influenced by active tectonics due to the Indo-Asian collision in the Cenozoic. In this study, we use a large number of arrival-time data of local and regional earthquakes to determine 3-D P wave tomography and azimuthal anisotropy in the mantle beneath SE Asia. High-velocity (high-V) anomalies representing the subducting slabs are clearly visible in the upper mantle and the mantle transition zone (MTZ). Low-velocity (low-V) zones with trench-normal anisotropy are revealed in the uppermost mantle, which indicate back-arc spreading or secondary mantle-wedge flow induced by the slab subduction. In contrast, trench-parallel anisotropy dominates in the deep upper mantle and reflects structures either in the subducting slab or in the upper mantle surrounding the slab. The trench-parallel anisotropy is also significant in the lower MTZ, which may contribute to shear wave splitting observations. A low-V body extending down to the lower mantle is visible under the Hainan volcano far away from the plate boundaries, suggesting that Hainan is a hot spot fed by a lower-mantle plume. The low-V body under Hainan is connected with low-V zones in the upper mantle under SE Tibet and Vietnam. Our P wave anisotropy results reflect significant mantle flow existing in the asthenosphere from SE Tibet to Hainan and further southwestward to Vietnam. The present study, especially the 3-D P wave anisotropy results, provides important new insight into mantle dynamics in SE Asia.

  13. Estimating Seismic Moment From Broadband P-Waves for Tsunami Warnings.

    NASA Astrophysics Data System (ADS)

    Hirshorn, B. F.

    2006-12-01

    The Richard H. Hagemeyer Pacific Tsunami Warning Center (PTWC), located in Ewa Beach, Oahu, Hawaii, is responsible for issuing local, regional, and distant tsunami warnings to Hawaii, and for issuing regional and distant tsunami warnings to the rest of the Pacific Basin, exclusive of the US West Coast. The PTWC must provide these tsunami warnings as soon as technologically possible, based entirely on estimates of a potentially tsunamigenic earthquake's source parameters. We calculate the broadband P-wave moment magnitude, Mwp, from the P or pP wave velocity seismograms [Tsuboi et al., 1995, 1999]. This method appears to work well for regional and teleseismic events [ Tsuboi et al (1999], Whitmore et al (2002), Hirshorn et al (2004) ]. Following Tsuboi, [1995], we consider the displacement record of the P-wave portion of the broadband seismograms as an approximate source time function and integrate this record to obtain the moment rate function, Mo(t), and the moment magnitude [Hanks and Kanamori, 1972] as a function of time, Mw(t). We present results for Mwp for local, regional, and teleseismic broad band recordings for earthquakes in the Mw 5 to 9.3 range. As large Hawaii events are rare, we tested this local case using other Pacific events in the magnitude 5.0 to 7.5 range recorded by nearby stations. Signals were excluded, however, if the epicentral distance was so small (generally less than 1 degree) that there was contamination by the S-wave too closely following the P-waves. Scatter plots of Mwp against the Harvard Mw for these events shows that Mwp does predict Mw well from seismograms recorded at local, regional, and teleseismic distances. For some complex earthquakes, eg. the Mw 8.4(HRV) Peru earthquake of June 21, 2001, Mwp underestimates Mw if the first moment release is not the largest. Our estimates of Mwp for the Mw 9.3 Summatra-Andaman Island's earthquake of December 26, 2004 and for the Mw 8.7 (HRV) Summatra event of March 28, 2005, were Mwp 8

  14. Rigorous precision p-wave positron-hydrogen scattering calculation

    NASA Technical Reports Server (NTRS)

    Bhatia, A. K.; Temkin, A.; Eiserike, H.

    1974-01-01

    Rigorous lower-bound p-wave positron-hydrogen phase shifts are calculated below the positronium pickup threshold. The wave function is expanded in terms of the two linearly independent D functions each multiplied by an associated Hilleraas-type radial function with two parameters. Adiabatic and nonadiabatic corrections have been included. The results are found to be larger than Armstead's (1968) in all cases near the upper edge of his estimated uncertainty.

  15. Estimating elastic moduli of rocks from thin sections: Digital rock study of 3D properties from 2D images

    NASA Astrophysics Data System (ADS)

    Saxena, Nishank; Mavko, Gary

    2016-03-01

    Estimation of elastic rock moduli using 2D plane strain computations from thin sections has several numerical and analytical advantages over using 3D rock images, including faster computation, smaller memory requirements, and the availability of cheap thin sections. These advantages, however, must be weighed against the estimation accuracy of 3D rock properties from thin sections. We present a new method for predicting elastic properties of natural rocks using thin sections. Our method is based on a simple power-law transform that correlates computed 2D thin section moduli and the corresponding 3D rock moduli. The validity of this transform is established using a dataset comprised of FEM-computed elastic moduli of rock samples from various geologic formations, including Fontainebleau sandstone, Berea sandstone, Bituminous sand, and Grossmont carbonate. We note that using the power-law transform with a power-law coefficient between 0.4-0.6 contains 2D moduli to 3D moduli transformations for all rocks that are considered in this study. We also find that reliable estimates of P-wave (Vp) and S-wave velocity (Vs) trends can be obtained using 2D thin sections.

  16. Aniso2D

    2005-07-01

    Aniso2d is a two-dimensional seismic forward modeling code. The earth is parameterized by an X-Z plane in which the seismic properties Can have monoclinic with x-z plane symmetry. The program uses a user define time-domain wavelet to produce synthetic seismograms anrwhere within the two-dimensional media.

  17. Towards 2D nanocomposites

    NASA Astrophysics Data System (ADS)

    Jang, Hyun-Sook; Yu, Changqian; Hayes, Robert; Granick, Steve

    2015-03-01

    Polymer vesicles (``polymersomes'') are an intriguing class of soft materials, commonly used to encapsulate small molecules or particles. Here we reveal they can also effectively incorporate nanoparticles inside their polymer membrane, leading to novel ``2D nanocomposites.'' The embedded nanoparticles alter the capacity of the polymersomes to bend and to stretch upon external stimuli.

  18. Preliminary Results for Crustal Structure in Southeastern Africa from P-wave Receiver Functions

    NASA Astrophysics Data System (ADS)

    Kachingwe, M.; Nyblade, A.; Mulibo, G. D.; Mulowezi, A.; Kunkuta, E.; De Magalhães, V.; Wiens, D. A.; Wysession, M. E.; Julia, J.

    2013-12-01

    The crustal structure of southeastern Africa is investigated by modeling P-wave receiver functions using H-k stacking and joint inversion methods. P-wave receiver functions are analyzed for 29 broadband seismic stations in Zambia, Malawi and Mozambique. Estimates for the Moho depth and Poisson's ratio are determined from H-k stacking, and estimates for the shear wave velocity are determined by the joint inversion of receiver functions and surface wave dispersion. Preliminary results show that Moho depths beneath southeastern Africa range from 32 km to 51 km. Thicker crust is found in Proterozoic terrains, such as the Irumide Belt, while thinner crust is found in reworked Archean terrains, such as the Bangweulu Block. These results are consistent with previous studies and global averages for Precambrian terrains. The preliminary results also show a range of Poisson's ratios from 0.2 to 0.3. These new results for southeastern Africa are being combined with similar results from elsewhere in eastern and southern Africa to improve our understanding of African crustal structure.

  19. Depth variations of P-wave azimuthal anisotropy beneath Mainland China

    PubMed Central

    Wei, Wei; Zhao, Dapeng; Xu, Jiandong; Zhou, Bengang; Shi, Yaolin

    2016-01-01

    A high-resolution model of P-wave anisotropic tomography beneath Mainland China and surrounding regions is determined using a large number of arrival-time data recorded by the China seismic network, the International Seismological Centre (ISC) and temporary seismic arrays deployed on the Tibetan Plateau. Our results provide important new insights into the subducted Indian plate and mantle dynamics in East Asia. Our tomographic images show that the northern limit of the subducting Indian plate has reached the Jinsha River suture in eastern Tibet. A striking variation of P-wave azimuthal anisotropy is revealed in the Indian lithosphere: the fast velocity direction (FVD) is NE-SW beneath the Indian continent, whereas the FVD is arc parallel beneath the Himalaya and Tibetan Plateau, which may reflect re-orientation of minerals due to lithospheric extension, in response to the India-Eurasia collision. There are multiple anisotropic layers with variable FVDs in some parts of the Tibetan Plateau, which may be the cause of the dominant null splitting measurements in these regions. A circular pattern of FVDs is revealed around the Philippine Sea slab beneath SE China, which reflects asthenospheric strain caused by toroidal mantle flow around the edge of the subducting slab. PMID:27432744

  20. Depth variations of P-wave azimuthal anisotropy beneath Mainland China.

    PubMed

    Wei, Wei; Zhao, Dapeng; Xu, Jiandong; Zhou, Bengang; Shi, Yaolin

    2016-07-19

    A high-resolution model of P-wave anisotropic tomography beneath Mainland China and surrounding regions is determined using a large number of arrival-time data recorded by the China seismic network, the International Seismological Centre (ISC) and temporary seismic arrays deployed on the Tibetan Plateau. Our results provide important new insights into the subducted Indian plate and mantle dynamics in East Asia. Our tomographic images show that the northern limit of the subducting Indian plate has reached the Jinsha River suture in eastern Tibet. A striking variation of P-wave azimuthal anisotropy is revealed in the Indian lithosphere: the fast velocity direction (FVD) is NE-SW beneath the Indian continent, whereas the FVD is arc parallel beneath the Himalaya and Tibetan Plateau, which may reflect re-orientation of minerals due to lithospheric extension, in response to the India-Eurasia collision. There are multiple anisotropic layers with variable FVDs in some parts of the Tibetan Plateau, which may be the cause of the dominant null splitting measurements in these regions. A circular pattern of FVDs is revealed around the Philippine Sea slab beneath SE China, which reflects asthenospheric strain caused by toroidal mantle flow around the edge of the subducting slab.

  1. Depth variations of P-wave azimuthal anisotropy beneath Mainland China.

    PubMed

    Wei, Wei; Zhao, Dapeng; Xu, Jiandong; Zhou, Bengang; Shi, Yaolin

    2016-01-01

    A high-resolution model of P-wave anisotropic tomography beneath Mainland China and surrounding regions is determined using a large number of arrival-time data recorded by the China seismic network, the International Seismological Centre (ISC) and temporary seismic arrays deployed on the Tibetan Plateau. Our results provide important new insights into the subducted Indian plate and mantle dynamics in East Asia. Our tomographic images show that the northern limit of the subducting Indian plate has reached the Jinsha River suture in eastern Tibet. A striking variation of P-wave azimuthal anisotropy is revealed in the Indian lithosphere: the fast velocity direction (FVD) is NE-SW beneath the Indian continent, whereas the FVD is arc parallel beneath the Himalaya and Tibetan Plateau, which may reflect re-orientation of minerals due to lithospheric extension, in response to the India-Eurasia collision. There are multiple anisotropic layers with variable FVDs in some parts of the Tibetan Plateau, which may be the cause of the dominant null splitting measurements in these regions. A circular pattern of FVDs is revealed around the Philippine Sea slab beneath SE China, which reflects asthenospheric strain caused by toroidal mantle flow around the edge of the subducting slab. PMID:27432744

  2. Depth variations of P-wave azimuthal anisotropy beneath Mainland China

    NASA Astrophysics Data System (ADS)

    Wei, Wei; Zhao, Dapeng; Xu, Jiandong; Zhou, Bengang; Shi, Yaolin

    2016-07-01

    A high-resolution model of P-wave anisotropic tomography beneath Mainland China and surrounding regions is determined using a large number of arrival-time data recorded by the China seismic network, the International Seismological Centre (ISC) and temporary seismic arrays deployed on the Tibetan Plateau. Our results provide important new insights into the subducted Indian plate and mantle dynamics in East Asia. Our tomographic images show that the northern limit of the subducting Indian plate has reached the Jinsha River suture in eastern Tibet. A striking variation of P-wave azimuthal anisotropy is revealed in the Indian lithosphere: the fast velocity direction (FVD) is NE-SW beneath the Indian continent, whereas the FVD is arc parallel beneath the Himalaya and Tibetan Plateau, which may reflect re-orientation of minerals due to lithospheric extension, in response to the India-Eurasia collision. There are multiple anisotropic layers with variable FVDs in some parts of the Tibetan Plateau, which may be the cause of the dominant null splitting measurements in these regions. A circular pattern of FVDs is revealed around the Philippine Sea slab beneath SE China, which reflects asthenospheric strain caused by toroidal mantle flow around the edge of the subducting slab.

  3. Rupture history of the 1997 Cariaco, Venezuela, earthquake from teleseismic P waves

    USGS Publications Warehouse

    Mendoza, C.

    2000-01-01

    A two-step finite-fault waveform inversion scheme is applied to the broadband teleseismic P waves recorded for the strike-slip, Cariaco, Venezuela, earthquake of 9 July 1997 to recover the distribution of mainshock slip. The earthquake is first analyzed using a long narrow fault with a maximum rise time of 20 sec. This line-source analysis indicates that slip propagated to the west with a constant rupture velocity and a relatively short rise time. The results are then used to constrain a second inversion of the P waveforms using a 60-km by 20-km two-dimensional fault. The rupture shows a zone of large slip (1.3-m peak) near the hypocenter and a second, broader source extending updip and to the west at depths shallower than 5 km. The second source has a peak slip of 2.1 meters and accounts for most of the moment of 1.1 × 1026 dyne-cm (6.6 Mww) estimated from the P waves. The inferred rupture pattern is consistent with macroseismic effects observed in the epicentral area.

  4. P-wave contacts for two dimensional quatum gas

    NASA Astrophysics Data System (ADS)

    Zhang, Yicai; Yu, Zhenhua; Zhang, Shizhong

    The s-wave contact has played an important role in our understanding of the strongly interacting Fermi gases. Recently, theoretical and experimental work has shown that two similar contacts exist for a p-wave interacting Fermi gas in three-dimensions. In this work, we extend the considerations to two dimensional spineless Fermi gas and derive exact results regarding the energy, momentum distributions and in particular, shifts of monopole frequency in a harmonic trap. Asymptotic formula for the frequency shift is given at high temperature via virial expansion and this can be checked by future experiments.

  5. Endstates in multichannel spinless p-wave superconducting wires

    NASA Astrophysics Data System (ADS)

    Rieder, M.-T.; Kells, G.; Duckheim, M.; Meidan, D.; Brouwer, P. W.

    2012-09-01

    Multimode spinless p-wave superconducting wires with a width W much smaller than the superconducting coherence length ξ are known to have multiple low-energy subgap states localized near the wire's ends. Here we compare the typical energies of such endstates for various terminations of the wire: A superconducting wire coupled to a normal-metal stub, a weakly disordered superconductor wire and a wire with smooth confinement. Depending on the termination, we find that the energies of the subgap states can be higher or lower than for the case of a rectangular wire with hard-wall boundaries.

  6. p-Wave Cold Collisions in an Optical Lattice Clock

    SciTech Connect

    Lemke, N. D.; Sherman, J. A.; Oates, C. W.; Ludlow, A. D.; Stecher, J. von; Rey, A. M.

    2011-09-02

    We study ultracold collisions in fermionic ytterbium by precisely measuring the energy shifts they impart on the atoms' internal clock states. Exploiting Fermi statistics, we uncover p-wave collisions, in both weakly and strongly interacting regimes. With the higher density afforded by two-dimensional lattice confinement, we demonstrate that strong interactions can lead to a novel suppression of this collision shift. In addition to reducing the systematic errors of lattice clocks, this work has application to quantum information and quantum simulation with alkaline-earth atoms.

  7. Electron-H P-Wave Elastic Scattering

    NASA Technical Reports Server (NTRS)

    Bhatia, A. K.

    2004-01-01

    In previous papers [Bhatia and Temkin, Phys. Rev. A 64, 032709-1 (2001), Phys. Rev. A 66, 064702 (2002)], electron-hydrogen and electron-He(+) S-wave scattering phase shifts were calculated using the optical potential approach. This method is now extended to the singlet and triplet electron-H P-wave scattering in the elastic region. Phase shifts are calculated using Hylleraas-type correlation functions with up to 220 terms. Results are rigorous lower bounds to the exact phase shifts and they are compared to phase shifts obtained from previous calculations.

  8. Quantum Phase Transitions across a p-Wave Feshbach Resonance

    NASA Astrophysics Data System (ADS)

    Gurarie, V.; Radzihovsky, L.; Andreev, A. V.

    2005-06-01

    We study a single-species polarized Fermi gas tuned across a narrow p-wave Feshbach resonance. We show that in the course of a Bose-Einstein condensation (BEC)-BCS crossover, the system can undergo a magnetic-field-tuned quantum phase transition from a px-wave to a px+ipy-wave superfluid. The latter state, that spontaneously breaks time-reversal symmetry, furthermore undergoes a topological px+ipy to px+ipy transition at zero chemical potential μ. In two dimensions, for μ>0 it is characterized by a Pfaffian ground state exhibiting topological order and non-Abelian excitations familiar from fractional quantum Hall systems.

  9. Mesh2d

    2011-12-31

    Mesh2d is a Fortran90 program designed to generate two-dimensional structured grids of the form [x(i),y(i,j)] where [x,y] are grid coordinates identified by indices (i,j). The x(i) coordinates alone can be used to specify a one-dimensional grid. Because the x-coordinates vary only with the i index, a two-dimensional grid is composed in part of straight vertical lines. However, the nominally horizontal y(i,j0) coordinates along index i are permitted to undulate or otherwise vary. Mesh2d also assignsmore » an integer material type to each grid cell, mtyp(i,j), in a user-specified manner. The complete grid is specified through three separate input files defining the x(i), y(i,j), and mtyp(i,j) variations.« less

  10. A Split of Direction of Propagation and Attenuation of P Waves in the Po Valley

    NASA Astrophysics Data System (ADS)

    Daminelli, R.; Tento, A.; Marcellini, A.

    2013-12-01

    On July 17, 2011 a ML 4.8 earthquake occurred in the PO valley at a 48 km epicentral distance from a seismic station located at Palazzo Te (Mantova). The station is situated on deep quaternary sediments: the uppermost layers are mainly composed of clay and silty clay with interbedded sands; the Robertson index is 1.4P wave particle motion, that appears rather difficult to explain if we assume the homogeneity of the P waves (that means attenuation is scalar). Note that the degree of nonlinearity is very low given that the maximum strain can be roughly estimated as 10-5 on the basis of maximum ground velocity of the P wave train considered and the Vp. On the contrary we show that P wave particle motion can be fully (and easily) described by a Homogeneous Isotropic Linear Viscoelastic model (HILV). HILV, as in the 2009 Borcherdt formulation adopted here, allows two different directions of propagation and attenuation; in other words attenuation becomes a vector that is not necessarily parallel to the propagation vector. The results evidence that the incidence angle and the inhomogeneity angle (it is the angle between propagation and attenuation vectors and it is closely related to Q factor) are in good agreement with the geological conditions of the site. Finally, we observed that these results are very similar to the ones obtained when we analyzed two explosions recorded by a seismic station in Milano, also situated in the Po valley at some 140 km from Mantova (Marcellini & Tento, 2011). Borcherdt, R.D. (2009) 'Viscoelastic Waves in Layered Media', Cambridge University Press, Cambridge, United Kingdom, 305 pp. Marcellini, A. and A. Tento (2011) ' Explosive Sources Prove the Validity of Homogeneous Isotropic Linear Viscoelastic Models', BSSA, Vol. 101, No. 4, pp. 1576-1583.

  11. Characterizing the nonlinear interaction of S- and P-waves in a rock sample

    NASA Astrophysics Data System (ADS)

    Gallot, Thomas; Malcolm, Alison; Szabo, Thomas L.; Brown, Stephen; Burns, Daniel; Fehler, Michael

    2015-01-01

    The nonlinear elastic response of rocks is known to be caused by the rocks' microstructure, particularly cracks and fluids. This paper presents a method for characterizing the nonlinearity of rocks in a laboratory scale experiment with a unique configuration. This configuration has been designed to open up the possibility of using the nonlinear characterization of rocks as an imaging tool in the field. In our experiment, we study the nonlinear interaction of two traveling waves: a low-amplitude 500 kHz P-wave probe and a high-amplitude 50 kHz S-wave pump in a room-dry 15 × 15 × 3 cm slab of Berea sandstone. Changes in the arrival time of the P-wave probe as it passes through the perturbation created by the traveling S-wave pump were recorded. Waveforms were time gated to simulate a semi-infinite medium. The shear wave phase relative to the P-wave probe signal was varied with resultant changes in the P-wave probe arrival time of up to 100 ns, corresponding to a change in elastic properties of 0.2%. In order to estimate the strain in our sample, we also measured the particle velocity at the sample surface to scale a finite difference linear elastic simulation to estimate the complex strain field in the sample, on the order of 10-6, induced by the S-wave pump. We derived a fourth order elastic model to relate the changes in elasticity to the pump strain components. We recover quadratic and cubic nonlinear parameters: β ˜ = - 872 and δ ˜ = - 1.1 × 10 10 , respectively, at room-temperature and when particle motions of the pump and probe waves are aligned. Temperature fluctuations are correlated to changes in the recovered values of β ˜ and δ ˜ , and we find that the nonlinear parameter changes when the particle motions are orthogonal. No evidence of slow dynamics was seen in our measurements. The same experimental configuration, when applied to Lucite and aluminum, produced no measurable nonlinear effects. In summary, a method of selectively determining the

  12. Tall P waves associated with severe hypokalemia and combined electrolyte depletion.

    PubMed

    Kishimoto, Chiharu; Tamaru, Kosaku; Kuwahara, Hiroyasu

    2014-01-01

    A 32-year-old woman with anorexia nervosa showing tall P waves on electrocardiogram (ECG) was reported. Her ECG showed tall P waves (5.5mm in voltage, lead II) at 2.2mEq/L of serum potassium. After the treatment, P waves decreased in voltage with the normalization of serum potassium. Tall P waves may be considered to be the so-called pseudo-P pulmonale, and added to the criteria of hypokalemia on ECG.

  13. Three-dimensional modeling of the Nevada Test Site and vicinity from teleseismic P-wave residuals

    USGS Publications Warehouse

    Monfort, Mary E.; Evans, John R.

    1982-01-01

    A teleseismic P-wave travel-time residual study is described which reveals the regional compressional-velocity structure of southern Nevada and neighboring parts of California to a depth of 280 km. During 1980, 98 teleseismic events were recorded at as many as 53 sites in this area. P-wave residuals were calculated relative to a network-wide average residual for each event and are displayed on maps of the stations for each of four event-azimuth quadrants. Fluctuations in these map-patterns of residuals with approach azimuth combined with results of linear, three-dimensional inversions of some 2887 residuals indicate the following characteristics of the velocity structure of the southern Nevada region: 1) a low-velocity body exists in the upper crust 50 km northeast of Beatty, Nevada, near the Miocene Timber Mountain-Silent Canyon caldera complex. Another highly-localized low-velocity anomaly occurs near the southwest corner of the Nevada Test Site (NTS). These two anomalies seem to be part of a low-velocity trough extending from Death Valley, California, to about 50 km north of NTS. 2) There is a high-velocity body in the mantle between 81 and 131 km deep centered about i0 km north of the edge of the Timber Mountain caldera, 3) a broad low-velocity body is delineated between 81 and 131 km deep centered about 30 km north of Las Vegas, 4) there is a monotonic increase in travel-time delays from west to east across the region, probably indicating an eastward decrease in velocity, and lower than average velocities in southeastern Nevada below 31 km, and 5) considerable complexity in three-dimensional velocity structure exists in this part of the southern Great Basin. Inversions of teleseismic P-wave travel-time residuals were also performed on data from 12 seismometers in the immediate vicinity of the Nevada Test Site to make good use of the closer station spacing i in that area. Results of these inversions show more details of the velocity structure but generally the

  14. Investigation of semileptonic B meson decays to P-wave charm mesons

    NASA Astrophysics Data System (ADS)

    Bellerive, Alain

    This thesis presents an investigation of semileptonic B meson decays with a narrow P-wave charm meson in the final state. The data sample consists of 3.29 × 106 BB¯ events collected with the CLEO II detector at the Cornell Electron-positron Storage Ring. The P-wave charm mesons are reconstructed in the chain of decays: D0J-->D*+p- ,D*+-->D0p+,D 0-->K-p+ or D0-->K- p+p 0 . Study of the decay B- -->D*+p0l -nl reveals useful information about the deficit observed in inclusive charm semileptonic B decays and the effective couplings of the W boson to heavy quark mesons. The results obtained for the exclusive semileptonic product branching fractions are B(B- --> D01l-nl ) B(D01-->D*+p -) = (0.373 +/- 0.085 +/- 0.052 +/- 0.024)% and B(B- -->D*0 2l- nl )B(D*0 2-->D*+p-) < 0.16% (90% C.L.). The assumption B(D01-->D* +p-) = 67% and B(D*02-->D *+p-) = 20% implies B(B- -->D01 l- nl) (0.56 0.13 +/- 0.08 +/- 0.04)% and B(B---> D*0 2lnl) < 0.8% (90% C.L.). These results indicate that at least 18% of the total B semileptonic rate is still unaccounted for by the observed exclusive decays, B-->D0l- nl, B-->D*ln l,B -->D1ln l, and B-->D*2 lnl . Furthermore, the first measurement of the q 2 spectrum for B- -->D01ln l is presented. The present analysis also suggests that the Λ QCD/mQ corrections beyond the HQS prescriptions might be significant in the theoretical treatment of the dynamics of B semileptonic decays to excited charm mesons.

  15. Finite-fault source inversion using teleseismic P waves: Simple parameterization and rapid analysis

    USGS Publications Warehouse

    Mendoza, C.; Hartzell, S.

    2013-01-01

    We examine the ability of teleseismic P waves to provide a timely image of the rupture history for large earthquakes using a simple, 2D finite‐fault source parameterization. We analyze the broadband displacement waveforms recorded for the 2010 Mw∼7 Darfield (New Zealand) and El Mayor‐Cucapah (Baja California) earthquakes using a single planar fault with a fixed rake. Both of these earthquakes were observed to have complicated fault geometries following detailed source studies conducted by other investigators using various data types. Our kinematic, finite‐fault analysis of the events yields rupture models that similarly identify the principal areas of large coseismic slip along the fault. The results also indicate that the amount of stabilization required to spatially smooth the slip across the fault and minimize the seismic moment is related to the amplitudes of the observed P waveforms and can be estimated from the absolute values of the elements of the coefficient matrix. This empirical relationship persists for earthquakes of different magnitudes and is consistent with the stabilization constraint obtained from the L‐curve in Tikhonov regularization. We use the relation to estimate the smoothing parameters for the 2011 Mw 7.1 East Turkey, 2012 Mw 8.6 Northern Sumatra, and 2011 Mw 9.0 Tohoku, Japan, earthquakes and invert the teleseismic P waves in a single step to recover timely, preliminary slip models that identify the principal source features observed in finite‐fault solutions obtained by the U.S. Geological Survey National Earthquake Information Center (USGS/NEIC) from the analysis of body‐ and surface‐wave data. These results indicate that smoothing constraints can be estimated a priori to derive a preliminary, first‐order image of the coseismic slip using teleseismic records.

  16. Seismic characterization of fracture orientation in the Austin Chalk using azimuthal P-wave AVO

    NASA Astrophysics Data System (ADS)

    Al-Shuhail, Abdullatif Adulrahman

    The Austin Chalk is a naturally fractured reservoir. Horizontal drilling, to intersect more fractures, is the most efficient method to develop this reservoir. Information about the predominant fracture orientation in the subsurface is essential before horizontal drilling. This information may be provided by cores, well logs, outcrop, or seismic data. In this study, I apply the azimuthal P-wave AVO method suggested by Ruger and Tsvankin (1997) on 2-D P-wave seismic data in Gonzales County, Texas, in order to determine the fracture azimuth in the Austin Chalk. The data also include oil production from horizontal wells and various types of well logs from vertical wells in the study area. The raw seismic data was imaged through a processing sequence that preserved the relative changes of amplitudes with offset. The stacked sections of some seismic lines showed that the top of the Austin Chalk reflector is laterally inconsistent. This is interpreted as an indication of fractured zones in the subsurface. This interpretation was strengthened by well logs that indicated fracturing in nearby wells. The AVO gradient of every CDP in a seismic line was determined. The median AVO gradient of all the CDPs in a seismic line was chosen to represent the whole line. The median AVO gradients of the lines and their corresponding line azimuths were used repeatedly to solve the azimuthal AVO equation, of Ruger and Tsvankin (1997), for the fracture azimuth using a combination of three different lines every time. The resultant fracture-azimuth solutions clustered about two, nearly perpendicular, azimuths: N58E and S31E. To resolve the inherently ambiguous solutions, the results from the production and well log data were used. Since the production and well log data indicated the presence of NE-trending fractures, I chose the N58E direction as the fracture azimuth. This result agreed with the results of other studies in surrounding areas, using different methods, about the fracture azimuth

  17. Zero modes of two-dimensional chiral p -wave superconductors

    NASA Astrophysics Data System (ADS)

    Gurarie, V.; Radzihovsky, L.

    2007-06-01

    We discuss fermionic zero modes in the two-dimensional chiral p -wave superconductors. We show quite generally that without fine tuning, in a macroscopic sample there is only one or zero of such Majorana-fermion modes depending only on whether the total vorticity of the order parameter is odd or even, respectively. As a special case of this, we find explicitly the one zero mode localized on a single odd-vorticity vortex and show that, in contrast, zero modes are absent for an even-vorticity vortex. One zero mode per odd vortex persists, within an exponential accuracy, for a collection of well-separated vortices, shifting to finite ±E energies as two odd vortices approach. These results should be useful for the demonstration of the non-Abelian statistics that such zero-mode vortices are expected to exhibit and for their possible application in quantum computation.

  18. Quantum phase transitions across a p-wave Feshbach resonance.

    PubMed

    Gurarie, V; Radzihovsky, L; Andreev, A V

    2005-06-17

    We study a single-species polarized Fermi gas tuned across a narrow p-wave Feshbach resonance. We show that in the course of a Bose-Einstein condensation (BEC)-BCS crossover, the system can undergo a magnetic-field-tuned quantum phase transition from a px-wave to a px+ipy-wave superfluid. The latter state, that spontaneously breaks time-reversal symmetry, furthermore undergoes a topological px+ipy to px+ipy transition at zero chemical potential mu. In two dimensions, for mu > 0 it is characterized by a Pfaffian ground state exhibiting topological order and non-Abelian excitations familiar from fractional quantum Hall systems. PMID:16090447

  19. Source Time Function of P-wave Acceleration

    NASA Astrophysics Data System (ADS)

    Chen, K. J.

    2015-12-01

    In this study, the site effect of time function of the Taiwan area will be invested. The recorded response function of a single earthquake will be calculated by Complex Demodulation. The path effect of each event-station pair will be estimated by using the forward method with a 3-D attenuation structure. After removing the path effect, the source frequency function of each single event will be obtained by averaging the whole station gotten. Using this source time function to calculate the path effect of the all stations, the theoretic received time frequency function can be obtained. The difference between this theoretic function and the recorded function is the site effect function of the single station. The characterics of the site effect in Taiwan area will be analyzed. Recalculate the path effect and remove the site effect of each station to get the new source time function of P-wave acceleration.

  20. Systematics of S- and P-wave radiation widths

    SciTech Connect

    Moore, M.S.

    1980-09-22

    The question of calculating differences in s- and p-wave radiation widths as a valid evaluation tool is explored. A purely statistical approach such as that provided by the Brink-Axel formula depends upon two factors: 1) an adequate description of the giant dipole resonance shape at energies well below the resonance, and 2) an adequate description of the level densities between the ground state and the excitation of the compound nucleus near the neutron separation energy. Some success has been obtained in certain regions of the periodic table with this simple approach, e.g., in the actinides where all nuclei exhibit similar rigid permanent deformations. However, if the method is to be used as a general evaluation procedure throughout the periodic table and particularly in regions where the radiative transition probabilities are enhanced by direct processes, it appears that much more nuclear structure information needs to be incorporated into the calculations.

  1. High-frequency P wave spectra from explosions and earthquakes

    NASA Astrophysics Data System (ADS)

    Walter, William R.; Priestley, Keith F.

    Two explosion P wave spectral models [Sharpe, 1942; Mueller-Murphy, 1971] and two earthquake P wave spectral models [Archambeau, 1968, 1972; modified Brune 1970, 1971] are reviewed to assess their implications for high-frequency (>1 Hz) seismic discrimination between earthquakes and explosions. The importance of the corner frequency scaling, particularly for models with the same high-frequency spectral decay rate, is demonstrated by calculating source spectral ratios (a potentially important regional discriminant) for these models. We compare North American events and a limited data set of Central Asian events with these spectral models. We find North American earthquakes are consistent with a constant stress drop modified Brune model between 10 and 30 Hz. Shallow (<700 m depth) Pahute Mesa explosions at the Nevada Test Site have a high-frequency spectral decay between 10 and 30 Hz greater than the ω-2 predicted by the explosion models. Near regional recordings of the Soviet Joint Verification Experiment (JVE) explosion show a higher corner frequency and lower 1 to 4 Hz spectral ratios than predicted by either explosion model. The higher corner frequency of the Soviet JVE appears not to be due to attenuation, or receiver effects, and may represent a need for different corner frequency scaling, or result from source complications such as spall and tectonic release. A regional recording of the Soviet JVE (NEIC mb = 6.1) is shown to have a lower 1 to 4 Hz spectral ratio than a smaller earthquake (NEIC mb = 4.6) recorded on a nearly reciprocal path.

  2. Improvement of the Earthquake Early Warning System with Wavefield Extrapolation with Apparent Velocity and Direction

    NASA Astrophysics Data System (ADS)

    Sato, A.; Yomogida, K.

    2014-12-01

    The early warning system operated by Japan Meteorological Agency (JMA) has been available in public since October 2007.The present system is still not effective in cases, that we cannot assume a nearly circular wavefront expansion from a source. We propose a new approach based on the extrapolation of the early observed wavefield alone without estimating its epicenter. The idea is similar to the migration method in exploration seismology, but we use not only the information of wave field at an early stage (i.e., at time T2 in Figure, but also its normal derivatives the difference between T1 and T2), that is, we utilize the apparent velocity and direction of early-stage wave propagation to predict the wavefield later (at T3 in Fig.). For the extrapolation of wavefield, we need a reliable Green's function from the observed point to a target point at which the wave arrives later. Since the complete 3-D wave propagation is extremely complex, particularly in and around Japan of highly heterogeneous structures, we shall consider a phenomenological 2-D Green's function, that is, a wavefront propagates on the surface with a certain apparent velocity and direction of P wave. This apparent velocity and direction may vary significantly depending on, for example, event depth and an area of propagation, so we examined those of P wave propagating in Japan in various situations. For example, the velocity of shallow events in Hokkaido is 7.1km/s while that in Nagano prefecture is about 5.5km/s. In addition, the apparent velocity depends on event depth, 7.1km/s for the depth of 10km and 8.9km/s for 100km in Hokkaido. We also conducted f-k array analyses of adjacent five or six stations where we can accurately estimate the apparent velocity and direction of P wave. For deep events with relatively simple waveforms, they are easily obtained, but we may need site corrections to enhance correlations of waveforms among stations for shallow ones. In the above extrapolation scheme, we can

  3. Multichannel Analysis of Surface Waves and Down-Hole Tests in the Archeological "Palatine Hill" Area (Rome, Italy): Evaluation and Influence of 2D Effects on the Shear Wave Velocity

    NASA Astrophysics Data System (ADS)

    Di Fiore, V.; Cavuoto, G.; Tarallo, D.; Punzo, M.; Evangelista, L.

    2016-05-01

    A joint analysis of down-hole (DH) and multichannel analysis of surface waves (MASW) measurements offers a complete evaluation of shear wave velocity profiles, especially for sites where a strong lateral variability is expected, such as archeological sites. In this complex stratigraphic setting, the high "subsoil anisotropy" (i.e., sharp lithological changes due to the presence of anthropogenic backfill deposits and/or buried man-made structures) implies a different role for DH and MASW tests. This paper discusses some results of a broad experimental program conducted on the Palatine Hill, one of the most ancient areas of the city of Rome (Italy). The experiments were part of a project on seismic microzoning and consisted of 20 MASW and 11 DH tests. The main objective of this study was to examine the difficulties related to the interpretation of the DH and MASW tests and the reliability limits inherent in the application of the noninvasive method in complex stratigraphic settings. As is well known, DH tests provide good determinations of shear wave velocities (Vs) for different lithologies and man-made materials, whereas MASW tests provide average values for the subsoil volume investigated. The data obtained from each method with blind tests were compared and were correlated to site-specific subsurface conditions, including lateral variability. Differences between punctual (DH) and global (MASW) Vs measurements are discussed, quantifying the errors by synthetic comparison and by site response analyses. This study demonstrates that, for archeological sites, VS profiles obtained from the DH and MASW methods differ by more than 15 %. However, the local site effect showed comparable results in terms of natural frequencies, whereas the resolution of the inverted shear wave velocity was influenced by the fundamental mode of propagation.

  4. High-resolution 3-D P wave attenuation structure of the New Madrid Seismic Zone using local earthquake tomography

    NASA Astrophysics Data System (ADS)

    Bisrat, Shishay T.; DeShon, Heather R.; Pesicek, Jeremy; Thurber, Clifford

    2014-01-01

    A three-dimensional (3-D), high-resolution P wave seismic attenuation model for the New Madrid Seismic Zone (NMSZ) is determined using P wave path attenuation (t*) values of small-magnitude earthquakes (MD < 3.9). Events were recorded at 89 broadband and short-period seismometers of the Cooperative New Madrid Seismic Zone Network and 40 short-period seismometers of the Portable Array for Numerical Data Acquisition experiment. The amplitude spectra of all the earthquakes are simultaneously inverted for source, path (t*), and site parameters. The t* values are inverted for QP using local earthquake tomography methods and a known 3-D P wave velocity model for the region. The four major seismicity arms of the NMSZ exhibit reduced QP (higher attenuation) than the surrounding crust. The highest attenuation anomalies coincide with areas of previously reported high swarm activity attributed to fluid-rich fractures along the southeast extension of the Reelfoot fault. The QP results are consistent with previous attenuation studies in the region, which showed that active fault zones and fractured crust in the NMSZ are highly attenuating.

  5. P wave signals retrieved from noise cross correlation function and their seasonal variation observed in southwest China

    NASA Astrophysics Data System (ADS)

    Wang, W.; Ni, S.; Wang, B.

    2013-12-01

    The noise cross correlation technique is a breakthrough in imaging the earth's structure and monitoring temporal variation using continuous seismic records. Compared to the fundamental mode surface waves which show up coherently in most noise correlation functions (NCF), body waves are difficult to retrieve but provide essential information of Earth's deep interior. By cross correlating five year continuous seismic records at 88 stations located in southwest China, strong signals with high apparent velocities are observed in the NCF(Noise Cross-correlation Function)) in the secondary microseism frequency band. Polarization analysis of these signals using three component NCFs indicates that these signals are P waves and they originate from coherent teleseismic body wave type noise. Moreover, these P type signals have positive or negative arrival time at specified paths in different seasons, from which we hypothesize that these P wave signals are generated from different source locations in different seasons. The locations of these sources may be related to the ocean activity and its interaction with local bathymetry. Further work on locating these sources will help to understand its generation mechanism and to retrieve P wave Green's Function which will improve deep Earth imaging substantially.

  6. San Andreas Fault Branching at SAFOD From Fault Guided Wave Mapping and P-wave Tomography

    NASA Astrophysics Data System (ADS)

    Malin, P. E.; Shalev, E.

    2005-12-01

    In 2004, drilling in the San Andreas Fault Observatory at Depth Main Hole (MH) stopped at ~2.5 km underground and ~0.7 m short of the SAF surface trace. A seismograph temporarily placed there recorded fault zone guided waves from SAF earthquakes, but only from events more than ~2 km northwest and ~3 km southeast of the seismograph. P-wave tomography of seismograms recorded in the SAFOD Pilot Hole (PH) show the seismograph was near the bottom of a synclinal low velocity zone, which also extends across the surface trace. Evidently, the seismograph was in a branch of the SAF that bounds a sliver of sedimentary rock. Our observations were take with a 3-component, 4.5 Hz seismograph temporarily locked in near the bottom of the MH. The seismograph's position was on the southwestern edge of a structure previously imaged using scattered microearthquake waves as recorded on the PH array. It is also near a highly fractured lithological contact seen in the drill core recovered from the end of the 2004 drilling. Seismograms from SAF microearthquakes originating several km to the northwest and southeast of the seismograph appear to contain large fault zone guided waves ("Fg" waves). These data imply that the structure seen in the migration image and drill core is a significant fault zone with a low velocity core that can trap seismic waves. They further suggest that the fault at the end of the 2004 drilling maybe connected to the active trace of the SAF to the north and south of the SAFOD site. Since the SAFOD site is situated on the flower structure of the Middle Mountain segment of the SAF, this branch may still connect to the surface trace fault but at a depth greater than the target events. Previous geological mapping show that the SAFOD site sits above the Middle Mountain syncline. Our P-wave velocity tomography also suggests that its structure extends deeper than indicated by the surface geology. Further, both the 2004 branch and surface-trace-fault cut through this

  7. Crustal structure of Nigeria and Southern Ghana, West Africa from P-wave receiver functions

    NASA Astrophysics Data System (ADS)

    Akpan, Ofonime; Nyblade, Andrew; Okereke, Chiedu; Oden, Michael; Emry, Erica; Julià, Jordi

    2016-04-01

    We report new estimates of crustal thickness (Moho depth), Poisson's ratio and shear-wave velocities for eleven broadband seismological stations in Nigeria and Ghana. Data used for this study came from teleseismic earthquakes recorded at epicentral distances between 30° and 95° and with moment magnitudes greater than or equal to 5.5. P-wave receiver functions were modeled using the Moho Ps arrival times, H-k stacking, and joint inversion of receiver functions and Rayleigh wave group velocities. The average crustal thickness of the stations in the Neoproterozoic basement complex of Nigeria is 36 km, and 23 km for the stations in the Cretaceous Benue Trough. The crustal structure of the Paleoproterozoic Birimian Terrain, and Neoproterozoic Dahomeyan Terrain and Togo Structural Unit in southern Ghana is similar, with an average Moho depth of 44 km. Poisson's ratios for all the stations range from 0.24 to 0.26, indicating a bulk felsic to intermediate crustal composition. The crustal structure of the basement complex in Nigeria is similar to the average crustal structure of Neoproterozoic terrains in other parts of Africa, but the two Neoproterozoic terrains in southern Ghana have a thicker crust with a thick mafic lower crust, ranging in thickness from 12 to 17 km. Both the thicker crust and thick mafic lower crustal section are consistent with many Precambrian suture zones, and thus we suggest that both features are relict from the collisional event during the formation of Gondwana.

  8. Tunable ground states in helical p-wave Josephson junctions

    NASA Astrophysics Data System (ADS)

    Cheng, Qiang; Zhang, Kunhua; Yu, Dongyang; Chen, Chongju; Zhang, Yinhan; Jin, Biao

    2016-07-01

    We study new types of Josephson junctions composed of helical p-wave superconductors with {k}x\\hat{x}+/- {k}y\\hat{y} and {k}y\\hat{x}+/- {k}x\\hat{y}-pairing symmetries using quasi-classical Green’s functions with generalized Riccati parametrization. The junctions can host rich ground states: π phase, 0 + π phase, φ 0 phase and φ phase. The phase transition can be tuned by rotating the magnetization in the ferromagnetic interface. We present the phase diagrams in the parameter space formed by the orientation of the magnetization or by the magnitude of the interfacial potentials. The selection rules for the lowest order current which are responsible for the formation of the rich phases are summarized from the current-phase relations based on the numerical calculation. We construct a Ginzburg–Landau type of free energy for the junctions with d-vectors and the magnetization, which not only reveals the interaction forms of spin-triplet superconductivity and ferromagnetism, but can also directly lead to the selection rules. In addition, the energies of the Andreev bound states and the novel symmetries in the current-phase relations are also investigated. Our results are helpful both in the prediction of novel Josephson phases and in the design of quantum circuits.

  9. Tunable ground states in helical p-wave Josephson junctions

    NASA Astrophysics Data System (ADS)

    Cheng, Qiang; Zhang, Kunhua; Yu, Dongyang; Chen, Chongju; Zhang, Yinhan; Jin, Biao

    2016-07-01

    We study new types of Josephson junctions composed of helical p-wave superconductors with {k}x\\hat{x}+/- {k}y\\hat{y} and {k}y\\hat{x}+/- {k}x\\hat{y}-pairing symmetries using quasi-classical Green’s functions with generalized Riccati parametrization. The junctions can host rich ground states: π phase, 0 + π phase, φ 0 phase and φ phase. The phase transition can be tuned by rotating the magnetization in the ferromagnetic interface. We present the phase diagrams in the parameter space formed by the orientation of the magnetization or by the magnitude of the interfacial potentials. The selection rules for the lowest order current which are responsible for the formation of the rich phases are summarized from the current-phase relations based on the numerical calculation. We construct a Ginzburg-Landau type of free energy for the junctions with d-vectors and the magnetization, which not only reveals the interaction forms of spin-triplet superconductivity and ferromagnetism, but can also directly lead to the selection rules. In addition, the energies of the Andreev bound states and the novel symmetries in the current-phase relations are also investigated. Our results are helpful both in the prediction of novel Josephson phases and in the design of quantum circuits.

  10. P-wave tomography of the western United States: Insight into the Yellowstone hotspot and the Juan de Fuca slab

    NASA Astrophysics Data System (ADS)

    Tian, You; Zhao, Dapeng

    2012-06-01

    We used 190,947 high-quality P-wave arrival times from 8421 local earthquakes and 1,098,022 precise travel-time residuals from 6470 teleseismic events recorded by the EarthScope/USArray transportable array to determine a detailed three-dimensional P-wave velocity model of the crust and mantle down to 1000 km depth under the western United States (US). Our tomography revealed strong heterogeneities in the crust and upper mantle under the western US. Prominent high-velocity anomalies are imaged beneath Idaho Batholith, central Colorado Plateau, Cascadian subduction zone, stable North American Craton, Transverse Ranges, and Southern Sierra Nevada. Prominent low-velocity anomalies are imaged at depths of 0-200 km beneath Snake River Plain, which may represent a small-scale convection beneath the western US. The low-velocity structure deviates variably from a narrow vertical plume conduit extending down to ˜1000 km depth, suggesting that the Yellowstone hotspot may have a lower-mantle origin. The Juan de Fuca slab is imaged as a dipping high-velocity anomaly under the western US. The slab geometry and its subducted depth vary in the north-south direction. In the southern parts the slab may have subducted down to >600 km depth. A "slab hole" is revealed beneath Oregon, which shows up as a low-velocity anomaly at depths of ˜100 to 300 km. The formation of the slab hole may be related to the Newberry magmatism. The removal of flat subducted Farallon slab may have triggered the vigorous magmatism in the Basin and Range and southern part of Rocky Mountains and also resulted in the uplift of the Colorado Plateau and Rocky Mountains.

  11. P-wave [cs][cs] tetraquark state: Y(4260) or Y(4660)?

    SciTech Connect

    Zhang Jianrong; Huang Mingqiu

    2011-02-01

    The mass of a P-wave cs-scalar-diquark cs-scalar-antidiquark state is computed in the framework of QCD sum rules. The result 4.69{+-}0.36 GeV is in good agreement with the experimental value of Y(4660) but higher than Y(4260)'s, which supports the P-wave [cs][cs] configuration for Y(4660) while disfavors the interpretation of Y(4260) as the P-wave [cs][cs] state. In the same picture, the mass of P-wave [bs][bs] is predicted to be 11.19{+-}0.49 GeV.

  12. Using P-Wave Coda to Understand the Evolution of Fault Zone Elastic Properties During the Seismic Cycle

    NASA Astrophysics Data System (ADS)

    Tinti, E.; Scuderi, M. M.; Scognamiglio, L.; Di Stefano, G.; Collettini, C.; Marone, C.

    2015-12-01

    Fault slip can occur not only seismically, or aseismically but also through quasi-dynamic processes such as slow-slip, which represent slow but self-propagating acceleration of slip along fault zones. However, the underlying physics is still poorly understood. To investigate these quasi-dynamic processes, we performed laboratory experiments on simulated fault gouge in the double direct shear configuration, under boundary conditions where the loading system (k) approaches the critical rheologic stiffness of the fault gouge (kc). We varied k and measured acoustic properties for the full spectrum of slip behaviors as a function of the ratio k/kc. When k≈kc, we observe slow-slip events emerging from steady frictional sliding. Stick-slip stress drop varied inversely with k'=k/kc, ranging from 0.1 to 0.6 MPa over the range of k' from 1.0 to 0.7. The duration of failure events varied from 10-3 to a few seconds and peak slip velocities ranged from 0.1 to 0.15 mm/s. To shed light on the micro-physical mechanisms governing slow-slip we analyzed variations in fault zone elastic properties including P-wave velocity (Vp) and amplitude. Although the first arrival of the P-wave is not always clearly detectable, we are able to find clear, systematic changes in elastic properties by carefully evaluating the P-wave coda. To quantify variations in flight time we cross-correlate different sections of the P-wave coda. We use a simplified ray-propagation scheme to account for the sample geometry and derive an equation to describe the expected flight time of reflected and transmitted waves within the fault zone and loading blocks. We study the peak-to-peak amplitude variation of the P-arrival in order to investigate acoustic transmissivity and its variation during failure. We find that precursory changes in Vp scale inversely with stick-slip failure velocity. Our results provide significant insight into the mechanics of slow stick-slip and transient fault slip.

  13. Teleseismic P-wave tomography and mantle dynamics beneath Eastern Tibet

    NASA Astrophysics Data System (ADS)

    Lei, Jianshe; Zhao, Dapeng

    2016-05-01

    We determined a new 3-D P-wave velocity model of the upper mantle beneath eastern Tibet using 112,613 high-quality arrival-time data collected from teleseismic seismograms recorded by a new portable seismic array in Yunnan and permanent networks in southwestern China. Our results provide new insights into the mantle structure and dynamics of eastern Tibet. High-velocity (high-V) anomalies are revealed down to 200 km depth under the Sichuan basin and the Ordos and Alashan blocks. Low-velocity (low-V) anomalies are imaged in the upper mantle under the Kunlun-Qilian and Qinling fold zones, and the Songpan-Ganzi, Qiangtang, Lhasa and Chuan-Dian diamond blocks, suggesting that eastward moving low-V materials are extruded to eastern China after the obstruction by the Sichuan basin, and the Ordos and Alashan blocks. Furthermore, the extent and thickness of these low-V anomalies are correlated with the surface topography, suggesting that the uplift of eastern Tibet could be partially related to these low-V materials having a higher temperature and strong positive buoyancy. In the mantle transition zone (MTZ), broad high-V anomalies are visible from the Burma arc northward to the Kunlun fault and eastward to the Xiaojiang fault, and they are connected upward with the Wadati-Benioff seismic zone. These results suggest that the subducted Indian slab has traveled horizontally for a long distance after it descended into the MTZ, and return corner flow and deep slab dehydration have contributed to forming the low-V anomalies in the big mantle wedge. Our results shed new light on the dynamics of the eastern Tibetan plateau.

  14. [A P-wave detection method based on multi-feature].

    PubMed

    Song, Lixin; Guan, Lili; Wang, Qian; Wang, Yuhong

    2014-04-01

    Generally, P-wave is the wave of low-frequency and low-amplitude, and it could be affected by baseline drift, electromyography (EMG) interference and other noises easily. Not every heart beat contains the P-wave, and it is also a major problem to determine the P-wave exist or not in a heart beat. In order to solve the limitation of suiting the diverse morphological P-wave using wavelet-amplitude-transform algorithm and the limitation of selecting the pseudo-P-wave sample using the wavelet transform and neural network, we presented new P-wave detecting method based on wave-amplitude threshold and using the multi-feature as the input of neural networks. Firstly, we removed the noise of ECG through the wavelet transform, then determined the position of the candidate P-wave by calculating modulus maxima of the wavelet transform, and then determine the P-wave exist or not by wave-amplitude threshold method initially. Finally we determined whether the P-wave existed or not by the neural networks. The method is validated based on the QT database which is supplied with manual labels made by physicians. We compared the detection effect of ECG P-waves, which was obtained with the method developed in the study, with the algorithm of wavelet threshold value and the method based on "wavelet-amplitude-slope", and verified the feasibility of the proposed algorithm. The detected ECG signal, which is recorded in the hospital ECG division, was consistent with the doctor's labels. Furthermore, after detecting the 13 sets of ECG which were 15 min long, the detection rate for the correct P-wave is 99.911%.

  15. High divergent 2D grating

    NASA Astrophysics Data System (ADS)

    Wang, Jin; Ma, Jianyong; Zhou, Changhe

    2014-11-01

    A 3×3 high divergent 2D-grating with period of 3.842μm at wavelength of 850nm under normal incidence is designed and fabricated in this paper. This high divergent 2D-grating is designed by the vector theory. The Rigorous Coupled Wave Analysis (RCWA) in association with the simulated annealing (SA) is adopted to calculate and optimize this 2D-grating.The properties of this grating are also investigated by the RCWA. The diffraction angles are more than 10 degrees in the whole wavelength band, which are bigger than the traditional 2D-grating. In addition, the small period of grating increases the difficulties of fabrication. So we fabricate the 2D-gratings by direct laser writing (DLW) instead of traditional manufacturing method. Then the method of ICP etching is used to obtain the high divergent 2D-grating.

  16. Velocity analysis for transversely isotropic media

    SciTech Connect

    Alkhalifah, T.; Tsvankin, I.

    1994-08-01

    The main difficulty in extending seismic processing to anisotropic media is the recovery of anisotropic velocity fields from surface reflection data. Velocity analysis for transversely isotropic (TI) media can be done by inverting the dependence of P-wave moveout velocities on the ray parameter. P-wave NMO velocity in homogeneous TI media with a vertical symmetry axis depends just on the zero-dip value V{sub nmo} and a new effective parameter {eta} that reduces to the difference between Thomsen parameters {epsilon} and {delta} in the limit of weak anisotropy. It is possible to obtain {eta} and reconstruct the NMO velocity as a function of ray parameter using moveout velocities for two different dips. Moreover, V{sub nmo}(0) and {eta} determine not only the NMO velocity, but also also long-spread (nonhyperbollic) P-wave moveout for horizontal reflectors and time-migration impulse response. Inversion of dip-moveout information allows performance of all time-processing steps in TI media using only surface P-wave data. Isotropic time-processing methods remain entirely valid for elliptical anisotropy ({epsilon} = {delta}). Accurate time-to-depth conversion, however, requires the vertical velocity V{sub P0} be resolved independently. If I-P0 is known, then allisotropies {epsilon} and {delta} can be found by inverting two P-wave NMO velocities corresponding to a horizontal and a dipping reflector. If no information is available, all three parameters (V {sub P0}, {epsilon}, and {delta}) can be obtained by combining inversion results with shear-wave information. such as the P-SV or SV-SV wave NMO velocities for a horizontal reflector. Generalization of Tsvankin`s single-layer NMO equation for layered anisotropic media with a dipping reflector provides a basis for extending anisotropic velocity analysis to vertically inhomogeneous media. The influence of a stratified overburden on moveout velocity can be stripped through a Dix-type differentiation procedure.

  17. Crustal structure of North Dakota from joint inversion of surface wave dispersion and teleseismic P-wave reciever functions

    NASA Astrophysics Data System (ADS)

    Walsh, Braden Michael

    Studying and determining crustal structure of the Earth is important for understanding the interior of the Earth. Using methods like receiver functions and surface wave dispersion allows the determination of differences in structure and composition through the crust. Jointly inverting receiver functions and surface wave dispersion reduces the error and over-interpretation of the crustal structure estimation. Receiver functions and surface wave dispersion invert well together because receiver functions are very sensitive to velocity contrasts and vertical travel times, and surface wave dispersion is sensitive to average velocity and insensitive to sharp velocity contrasts. By jointly inverting receiver functions and surface wave dispersion, shear wave velocity profiles can be created to determine the properties of the crustal structure and velocity contrasts. With the use of IRIS Transportable Array stations data throughout the United States, this thesis takes a closer look at the crustal structure of North Dakota through the joint inversion of surface wave dispersion and teleseismic P-wave receiver functions. The receiver functions in North Dakota show shallow sediment effects that affect the joint inversion process. In western North Dakota the Williston basin and in eastern North Dakota the Red River Valley cause ringing effects in the receiver functions. The shallow sediments in North Dakota control and overpower the rest of the crustal signal in the receiver functions, and thus affect the ability of determining the crustal shear wave velocity structure of North Dakota through the joint inversion of receiver functions and surface wave dispersion, thus the use of background geology is necessary.

  18. On the resolution of ECG acquisition systems for the reliable analysis of the P-wave.

    PubMed

    Censi, Federica; Calcagnini, Giovanni; Corazza, Ivan; Mattei, Eugenio; Triventi, Michele; Bartolini, Pietro; Boriani, Giuseppe

    2012-02-01

    The analysis of the P-wave on surface ECG is widely used to assess the risk of atrial arrhythmias. In order to provide reliable results, the automatic analysis of the P-wave must be precise and reliable and must take into account technical aspects, one of those being the resolution of the acquisition system. The aim of this note is to investigate the effects of the amplitude resolution of ECG acquisition systems on the P-wave analysis. Starting from ECG recorded by an acquisition system with a less significant bit (LSB) of 31 nV (24 bit on an input range of 524 mVpp), we reproduced an ECG signal as acquired by systems with lower resolution (16, 15, 14, 13 and 12 bit). We found that, when the LSB is of the order of 128 µV (12 bit), a single P-wave is not recognizable on ECG. However, when averaging is applied, a P-wave template can be extracted, apparently suitable for the P-wave analysis. Results obtained in terms of P-wave duration and morphology revealed that the analysis of ECG at lowest resolutions (from 12 to 14 bit, LSB higher than 30 µV) could lead to misleading results. However, the resolution used nowadays in modern electrocardiographs (15 and 16 bit, LSB <10 µV) is sufficient for the reliable analysis of the P-wave.

  19. Anomalous incident-angle and elliptical-polarization rotation of an elastically refracted P-wave

    NASA Astrophysics Data System (ADS)

    Fa, Lin; Fa, Yuxiao; Zhang, Yandong; Ding, Pengfei; Gong, Jiamin; Li, Guohui; Li, Lijun; Tang, Shaojie; Zhao, Meishan

    2015-08-01

    We report a newly discovered anomalous incident-angle of an elastically refracted P-wave, arising from a P-wave impinging on an interface between two VTI media with strong anisotropy. This anomalous incident-angle is found to be located in the post-critical incident-angle region corresponding to a refracted P-wave. Invoking Snell’s law for a refracted P-wave provides two distinctive solutions before and after the anomalous incident-angle. For an inhomogeneously refracted and elliptically polarized P-wave at the anomalous incident-angle, its rotational direction experiences an acute variation, from left-hand elliptical to right-hand elliptical polarization. The new findings provide us an enhanced understanding of acoustical-wave scattering and lead potentially to widespread and novel applications.

  20. Anomalous incident-angle and elliptical-polarization rotation of an elastically refracted P-wave

    PubMed Central

    Fa, Lin; Fa, Yuxiao; Zhang, Yandong; Ding, Pengfei; Gong, Jiamin; Li, Guohui; Li, Lijun; Tang, Shaojie; Zhao, Meishan

    2015-01-01

    We report a newly discovered anomalous incident-angle of an elastically refracted P-wave, arising from a P-wave impinging on an interface between two VTI media with strong anisotropy. This anomalous incident-angle is found to be located in the post-critical incident-angle region corresponding to a refracted P-wave. Invoking Snell’s law for a refracted P-wave provides two distinctive solutions before and after the anomalous incident-angle. For an inhomogeneously refracted and elliptically polarized P-wave at the anomalous incident-angle, its rotational direction experiences an acute variation, from left-hand elliptical to right-hand elliptical polarization. The new findings provide us an enhanced understanding of acoustical-wave scattering and lead potentially to widespread and novel applications. PMID:26244284

  1. Creation of p-wave Feshbach molecules in selected angular momentum states using an optical lattice

    NASA Astrophysics Data System (ADS)

    Waseem, Muhammad; Zhang, Zhiqi; Yoshida, Jun; Hattori, Keita; Saito, Taketo; Mukaiyama, Takashi

    2016-10-01

    We selectively create p-wave Feshbach molecules in the {m}l=+/- 1 orbital angular momentum projection state of 6Li. We use an optical lattice potential to restrict the relative momentum of the atoms such that only the {m}l=+/- 1 molecular state couples to the atoms at the Feshbach resonance. We observe the hollow-centered dissociation profile, which is a clear indication of the selective creation of p-wave molecules in the {m}l=+/- 1 states. We also measure the dissociation energy of the p-wave molecules created in the optical lattice and develop a theoretical formulation to explain the dissociation energy as a function of the magnetic field ramp rate for dissociation. The capability of selecting one of the two closely-residing p-wave Feshbach resonances is useful for the precise characterization of the p-wave Feshbach resonances.

  2. Acousto-ultrasonic input-output characterization of unidirectional fiber composite plate by P waves

    NASA Technical Reports Server (NTRS)

    Liao, Peter; Williams, James H., Jr.

    1988-01-01

    The single reflection problem for an incident P wave at a stress free plane boundary in a semi-infinite transversely isotropic medium whose isotropic plane is parallel to the plane boundary is analyzed. It is found that an obliquely incident P wave results in a reflected P wave and a reflected SV wave. The delay time for propagation between the transmitting and the receiving transducers is computed as if the P waves were propagating in an infinite half space. The displacements associated with the P waves in the plate and which may be detected by a noncontact NDE receiving transducer are approximated by an asymptotic solution for an infinite transversely isotropic medium subjected to a harmonic point load.

  3. Reactivation and mantle dynamics of North China Craton: insight from P-wave anisotropy tomography

    NASA Astrophysics Data System (ADS)

    Tian, You; Zhao, Dapeng

    2013-12-01

    We determined the first 3-D P-wave anisotropic tomography beneath the North China Craton (NCC) using a large number of high-quality arrival-time data from local earthquakes and teleseismic events, which reveals depth-dependent azimuthal anisotropy in the crust and upper mantle down to 600 km depth. In the NCC western block, the fast velocity direction (FVD) varies from east-west in the southern part to northeast-southwest in the northern part, which may reflect either the interaction between the Yangtze block and NCC or fossil lithospheric fabrics in the craton. Under the NCC eastern block, a uniform northwest-southeast FVD is revealed in the lower part of the upper mantle (300-410 km depths) and the mantle transition zone (410-660 km depths), which may reflect horizontal and upwelling flows in the big mantle wedge (BMW) above the stagnant Pacific slab in the mantle transition zone. The NCC central block exhibits a northeast-southwest FVD, consistent with the surface tectonic orientation there, suggesting that the cold and thick (>300 km) cratonic root of the NCC western block may obstruct the northwest-southeast trending mantle flow induced by the Pacific Plate subduction, resulting in a northeast-southwest trending mantle flow under the central block. Our present results indicate that the corner flow in the BMW associated with the deep subduction of the Pacific Plate is the main cause of NCC reactivation and mantle dynamics under East China.

  4. BCS-BEC crossover and nodal-points contribution in p-wave resonance superfluids

    NASA Astrophysics Data System (ADS)

    Kagan, M. Yu.; Efremov, D. V.

    2009-08-01

    We solve the Leggett equations for BCS-BEC crossover of the resonance p-wave superfluid. We calculate sound velocity, specific heat and the normal density for the BCS domain (μ>0), the BEC domain (μ<0), and for the interesting interpolation point (μ=0) in the 100%-polarized A1 phase in 3D. We are especially interested in the quasiparticle contribution coming from the zeros of the superfluid gap in the A1 phase. We discuss the spectrum of orbital waves and the superfluid hydrodynamics at temperature T →0. In this context we elucidate the difficult problem of the chiral anomaly and mass-current nonconcervation appearing in the BCS domain. We present the different approaches taken to solve this problem. To clarify this problem experimentally we propose an experiment for measurement of the anomalous current in the superfluid A1 phase in the presence of aerogel for He3 and in the presence of Josephson tunneling structures for ultracold gases in magnetic traps.

  5. Joint Optimization of Vertical Component Gravity and Seismic P-wave First Arrivals by Simulated Annealing

    NASA Astrophysics Data System (ADS)

    Louie, J. N.; Basler-Reeder, K.; Kent, G. M.; Pullammanappallil, S. K.

    2015-12-01

    Simultaneous joint seismic-gravity optimization improves P-wave velocity models in areas with sharp lateral velocity contrasts. Optimization is achieved using simulated annealing, a metaheuristic global optimization algorithm that does not require an accurate initial model. Balancing the seismic-gravity objective function is accomplished by a novel approach based on analysis of Pareto charts. Gravity modeling uses a newly developed convolution algorithm, while seismic modeling utilizes the highly efficient Vidale eikonal equation traveltime generation technique. Synthetic tests show that joint optimization improves velocity model accuracy and provides velocity control below the deepest headwave raypath. Detailed first arrival picking followed by trial velocity modeling remediates inconsistent data. We use a set of highly refined first arrival picks to compare results of a convergent joint seismic-gravity optimization to the Plotrefa™ and SeisOpt® Pro™ velocity modeling packages. Plotrefa™ uses a nonlinear least squares approach that is initial model dependent and produces shallow velocity artifacts. SeisOpt® Pro™ utilizes the simulated annealing algorithm and is limited to depths above the deepest raypath. Joint optimization increases the depth of constrained velocities, improving reflector coherency at depth. Kirchoff prestack depth migrations reveal that joint optimization ameliorates shallow velocity artifacts caused by limitations in refraction ray coverage. Seismic and gravity data from the San Emidio Geothermal field of the northwest Basin and Range province demonstrate that joint optimization changes interpretation outcomes. The prior shallow-valley interpretation gives way to a deep valley model, while shallow antiformal reflectors that could have been interpreted as antiformal folds are flattened. Furthermore, joint optimization provides a clearer image of the rangefront fault. This technique can readily be applied to existing datasets and could

  6. Segmented African Lithosphere Beneath Anatolia Imaged by Teleseismic P-Wave Tomography

    NASA Astrophysics Data System (ADS)

    Biryol, Cemal; Zandt, George; Beck, Susan; Ozacar, Atilla

    2010-05-01

    Anatolia, a part of the Alpine-Himalayan orogenic belt, is shaped by a variety of complex tectonic processes that define the major tectonic provinces across which different deformation regimes exist. Collision related plateau formation dominates the present lithospheric deformation to the east and slab roll-back related back-arc extension takes place in the west. The two zones are connected at the northern part of the region by strike-slip faulting along the right-lateral North Anatolian Fault Zone. Recent seismological studies show that the Eastern Anatolian Plateau (EAP) is supported by hot asthenosphereric material that was emplaced beneath the plateau following the detachment of subducted Arabian lithosphere. The westward continuation of the deeper structure of Anatolia was previously less well constrained due to the lack of geophysical observations. In order to study the deeper lithosphere and mantle structure beneath Anatolia, we used teleseismic P-wave tomography and data from several temporary and permanent seismic networks deployed in the region. A major part of the data comes from the North Anatolian Fault passive seismic experiment (NAF) that consists of 39 broadband seismic stations operated at the north central part of Anatolia between 2005 and 2008. We also used data collected from permanent seismic stations of the National Earthquake Monitoring Center (NEMC) and stations from the Eastern Turkey Seismic Experiment (ETSE). Approximately 34,000 P-wave travel time residuals, measured in multiple frequency bands, are inverted using approximate finite-frequency sensitivity kernels. Our tomograms reveal a fast anomaly that corresponds to the subducted portion of the African lithosphere along the Cyprean Arc. This fast anomaly dips northward beneath central Anatolia with an angle of approximately 45 degrees. However, the anomaly disappears rather sharply to the east beneath the western margin of the EAP and to the west beneath the Isparta Angle. The western

  7. 2-D Drift Velocities from the IMAGE EUV Plasmaspheric Imager

    NASA Technical Reports Server (NTRS)

    Gallagher, D.; Adrian, M.

    2007-01-01

    The IMAGE Mission extreme ultraviolet imager (EUY) observes He+ plasmaspheric ions throughout the inner magnetosphere. Limited by ionizing radiation and viewing close to the Sun, images of the He+ distribution are available every 10 minutes for many hours as the spacecraft passes through apogee in its highly elliptical orbit. As a consistent constituent at about 15%, He+ is an excellent surrogate for monitoring all of the processes that control the dynamics of plasmaspheric plasma. In particular, the motion ofHe+ transverse to the ambient magnetic field is a direct indication of convective electric fields. The analysis of boundary motions has already achieved new insights into the electrodynamic coupling processes taking place between energetic magnetospheric plasmas and the ionosphere. Yet to be fulfilled, however, is the original promise that global EUY images of the plasmasphere might yield two-dimensional pictures of meso-scale to macro-scale electric fields in the inner magnetosphere. This work details the technique and initial application of an IMAGE EUY analysis that appears capable of following thermal plasma motion on a global basis.

  8. 2-D Drift Velocities from the IMAGE EUV Plasmaspheric Imager

    NASA Technical Reports Server (NTRS)

    Gallagher, D. L.

    2006-01-01

    The IMAGE Mission extreme ultraviolet imager (EW) observes He(+) plasmaspheric ions throughout the inner magnetosphere. Limited by ionizing radiation and viewing close to the Sun, images of the He(+) distribution are available every 10 minutes for many hours as the spacecraft passes through apogee in its highly elliptical orbit. As a consistent constituent at about 15%, He(+) is an excellent surrogate for monitoring all of the processes that control the dynamics of plasmaspheric plasma. In particular, the motion of He' transverse to the ambient magnetic field is a direct indication of convective electric fields. The analysis of boundary motions has already achieved new insights into the electrodynamic coupling processes taking place between energetic magnetospheric plasmas and the ionosphere. Yet to be fulfilled, however, is the original promise that global E W images of the plasmasphere might yield two-dimensional pictures of mesoscale to macro-scale electric fields in the inner magnetosphere. This work details the technique and initial application of an IMAGE EUV analysis that appears capable of following thermal plasma motion on a global basis.

  9. Ultrafast 2D IR microscopy

    PubMed Central

    Baiz, Carlos R.; Schach, Denise; Tokmakoff, Andrei

    2014-01-01

    We describe a microscope for measuring two-dimensional infrared (2D IR) spectra of heterogeneous samples with μm-scale spatial resolution, sub-picosecond time resolution, and the molecular structure information of 2D IR, enabling the measurement of vibrational dynamics through correlations in frequency, time, and space. The setup is based on a fully collinear “one beam” geometry in which all pulses propagate along the same optics. Polarization, chopping, and phase cycling are used to isolate the 2D IR signals of interest. In addition, we demonstrate the use of vibrational lifetime as a contrast agent for imaging microscopic variations in molecular environments. PMID:25089490

  10. Crustal structure beneath Long Valley caldera from modeling of teleseismic P wave polarizations and Ps converted waves

    SciTech Connect

    Steck, L.K.; Prothero, W.A. Jr.

    1994-04-10

    In this study, the authors present new constraints on the nature of the low-velocity zone beneath Long Valley caldera, based on the measured propagation directions of teleseismic P waves and on modeling of P to S converted waves. The low-velocity body is a large asymmetrical volume which deepens to the east, extending from depths of 7 to 30 km. It contains lower velocities than originally proposed by earlier teleseismic studies. In particular, there is a tabular feature between 7 and 11 km depth that has a reduction in velocity of about 30%. These low velocities imply a much greater percentage of melt in the crust beneath Long Valley caldera than previously estimated. Array analysis of large delayed arrivals identifies them to be Ps converted waves from the shoulders and roof of this tabular zone. These conversions bound the depth to the magma chamber roof to be within about 10 km of the surface. These results are consistent with elements from several other studies, and the authors present an integrated and improved model of crustal structure at Long Valley. The concordance of the deeper low-velocity zones with regional structural trends implies that the shallow low-velocity feature is a cupola on top of an asymmetric diapiric ridge rising up from the migmatized lower crust of the Basin and Range. The authors present two contrasting interpretations of the geometry of low-velocity zones in the crust: one implies a time-invariant magma chamber and conduit system for Long Valley caldera, the other implies an evolution of that system from a simple vertical regime to its current asymmetrical geometry. 37 refs., 19 figs., 1 tab.

  11. A crustal seismic velocity model for the UK, Ireland and surrounding seas

    USGS Publications Warehouse

    Kelly, A.; England, R.W.; Maguire, Peter K.H.

    2007-01-01

    A regional model of the 3-D variation in seismic P-wave velocity structure in the crust of NW Europe has been compiled from wide-angle reflection/refraction profiles. Along each 2-D profile a velocity-depth function has been digitised at 5 km intervals. These 1-D velocity functions were mapped into three dimensions using ordinary kriging with weights determined to minimise the difference between digitised and interpolated values. An analysis of variograms of the digitised data suggested a radial isotropic weighting scheme was most appropriate. Horizontal dimensions of the model cells are optimised at 40 ?? 40 km and the vertical dimension at 1 km. The resulting model provides a higher resolution image of the 3-D variation in seismic velocity structure of the UK, Ireland and surrounding areas than existing models. The construction of the model through kriging allows the uncertainty in the velocity structure to be assessed. This uncertainty indicates the high density of data required to confidently interpolate the crustal velocity structure, and shows that for this region the velocity is poorly constrained for large areas away from the input data. ?? 2007 The Authors Journal compilation ?? 2007 RAS.

  12. Technical Review of the UNET2D Hydraulic Model

    SciTech Connect

    Perkins, William A.; Richmond, Marshall C.

    2009-05-18

    The Kansas City District of the US Army Corps of Engineers is engaged in a broad range of river management projects that require knowledge of spatially-varied hydraulic conditions such as velocities and water surface elevations. This information is needed to design new structures, improve existing operations, and assess aquatic habitat. Two-dimensional (2D) depth-averaged numerical hydraulic models are a common tool that can be used to provide velocity and depth information. Kansas City District is currently using a specific 2D model, UNET2D, that has been developed to meet the needs of their river engineering applications. This report documents a tech- nical review of UNET2D.

  13. Engineering quantum magnetism in one-dimensional trapped Fermi gases with p -wave interactions

    NASA Astrophysics Data System (ADS)

    Yang, Lijun; Guan, Xiwen; Cui, Xiaoling

    2016-05-01

    The highly controllable ultracold atoms in a one-dimensional (1D) trap provide a new platform for the ultimate simulation of quantum magnetism. In this regard, the Néel antiferromagnetism and the itinerant ferromagnetism are of central importance and great interest. Here we show that these magnetic orders can be achieved in the strongly interacting spin-1/2 trapped Fermi gases with additional p -wave interactions. In this strong-coupling limit, the 1D trapped Fermi gas exhibits an effective Heisenberg spin X X Z chain in the anisotropic p -wave scattering channels. For a particular p -wave attraction or repulsion within the same species of fermionic atoms, the system displays ferromagnetic domains with full spin segregation or the antiferromagnetic spin configuration in the ground state. Such engineered magnetisms are likely to be probed in a quasi-1D trapped Fermi gas of 40K atoms with very close s -wave and p -wave Feshbach resonances.

  14. Three-dimensional seismic tomography from P wave and S wave microearthquake travel times and rock physics characterization of the Campi Flegrei Caldera

    NASA Astrophysics Data System (ADS)

    Vanorio, T.; Virieux, J.; Capuano, P.; Russo, G.

    2005-03-01

    The Campi Flegrei (CF) Caldera experiences dramatic ground deformations unsurpassed anywhere in the world. The source responsible for this phenomenon is still debated. With the aim of exploring the structure of the caldera as well as the role of hydrothermal fluids on velocity changes, a multidisciplinary approach dealing with three-dimensional delay time tomography and rock physics characterization has been followed. Selected seismic data were modeled by using a tomographic method based on an accurate finite difference travel time computation which simultaneously inverts P wave and S wave first-arrival times for both velocity model parameters and hypocenter locations. The retrieved P wave and S wave velocity images as well as the deduced Vp/Vs images were interpreted by using experimental measurements of rock physical properties on CF samples to take into account steam/water phase transition mechanisms affecting P wave and S wave velocities. Also, modeling of petrophysical properties for site-relevant rocks constrains the role of overpressured fluids on velocity. A flat and low Vp/Vs anomaly lies at 4 km depth under the city of Pozzuoli. Earthquakes are located at the top of this anomaly. This anomaly implies the presence of fractured overpressured gas-bearing formations and excludes the presence of melted rocks. At shallow depth, a high Vp/Vs anomaly located at 1 km suggests the presence of rocks containing fluids in the liquid phase. Finally, maps of the Vp*Vs product show a high Vp*Vs horseshoe-shaped anomaly located at 2 km depth. It is consistent with gravity data and well data and might constitute the on-land remainder of the caldera rim, detected below sea level by tomography using active source seismic data.

  15. Synthetic p-wave interaction and topological superfluids in s-wave quantum gases

    NASA Astrophysics Data System (ADS)

    Pu, Han; Wang, Bin; Zheng, Zhen; Zou, Xubo; Guo, Guangcan

    2016-05-01

    P-wave interaction in cold atoms may give rise to exotic topological superfluids. However, realization of p-wave interaction in cold atom system is experimentally challenging. Here we propose a simple scheme to synthesize effective p-wave interaction in conventional s-wave interacting quantum gases. The key idea is to load atoms into spin-dependent optical lattice potential. Using two concrete examples involving spin-1/2 fermions, we show how the original system can be mapped into a model describing spinless fermions with nearest neighbor p-wave interaction, whose ground state can be a topological superfluid that supports Majorana fermions under proper conditions. Our proposal has the advantage that it does not require spin-orbit coupling or loading atoms onto higher orbitals, which is the key in earlier proposals to synthesize effective p-wave interaction in s-wave quantum gases, and may provide a completely new route for realizing p-wave topological superfluids.

  16. Contact Tensor in a p-Wave Fermi Gas with Anisotropic Feshbach Resonances

    NASA Astrophysics Data System (ADS)

    Yoshida, Shuhei M.; Ueda, Masahito

    2016-05-01

    Recent theoretical and experimental investigations have revealed that a Fermi gas with a p-wave Feshbach resonance has universal relations between the system's high-momentum behavior and thermodynamics. A new feature introduced by the p-wave interaction is anisotropy in the Feshbach resonances; three degenerate p-wave resonances split according to the magnetic quantum number of the closed-channel molecules | m | due to the magnetic dipole-dipole interaction. Here, we investigate the consequences of the anisotropy. We show that the momentum distribution has a high-momentum asymptote nk ~k-2 ∑ m, m' = - 1 1 >Cm, m'Y1m * (\\kcirc)Y1m' (\\kcirc) , in which we introduce the p-wave contact tensor Cm ,m'. In contrast to the previous studies, it has nine components. We identify them as the number, angular momentum, and nematicity of the closed-channel molecules. We also discuss two examples, the anisotropic p-wave superfluid and a gas confined in a cigar-shaped trap, which exhibit a nematicity component in the p-wave contact tensor.

  17. Experimental study of the stress effect on attenuation of normally incident P-wave through coal

    NASA Astrophysics Data System (ADS)

    Feng, Junjun; Wang, Enyuan; Chen, Liang; Li, Xuelong; Xu, Zhaoyong; Li, Guoai

    2016-09-01

    The purpose of this study is to experimentally investigate the stress effect on normally incident P-wave attenuation through coal specimens. Laboratory tests were carried out using a Split Hopkinson pressure bar (SHPB) system, and a modified method was proposed to determine the quality factor (Q) of P-waves through coal specimens. Larger quality factor denotes less energy attenuated during P-wave propagating through coal. Experimental results indicate that the quality factor and stress (σ) within coal specimens are positively correlated. The P-wave propagation through coal specimens causes crack closure at the beginning of the coal fracture process in SHPB tests, an innovative model was thus proposed to describe the relationship between the crack closure length and the dynamic stress induced by P-wave. Finally, the stress effect on P-wave attenuation through coal was quantitatively represented by a power function Q = a(c-bσ)- 6, and the material constants a, b, and c were determined as 1.227, 1.314, and 0.005, respectively. The results obtained in this study would be helpful for engineers to estimate seismic energy attenuation and coal mass instability in coal mines.

  18. Teleseismic P wave spectra from USArray and implications for upper mantle attenuation and scattering

    NASA Astrophysics Data System (ADS)

    Cafferky, Samantha; Schmandt, Brandon

    2015-10-01

    Teleseismic P wave amplitude spectra from deep earthquakes recorded by USArray are inverted for maps of upper mantle Δt* for multiple frequency bands within 0.08-2 Hz. All frequency bands show high Δt* regions in the southwestern U.S., southern Rocky Mountains, and Appalachian margin. Low Δt* is more common across the cratonic interior. Inversions with narrower frequency bands yield similar patterns, but greater Δt* magnitudes. Even the two standard deviation Δt* magnitude for the widest band is ˜2-7 times greater than predicted by global QS tomography or an anelastic olivine thermal model, suggesting that much of the Δt* signal is nonthermal in origin. Nonthermal contributions are further indicated by only a moderate correlation between Δt* and P travel times. Some geographic variations, such as high Δt* in parts of the cratonic interior with high mantle velocities and low heat flow, demonstrate that the influence of temperature is regionally overwhelmed. Transverse spectra are used to investigate the importance of scattering because they would receive no P energy in the absence of 3-D heterogeneity or anisotropy. Transverse to vertical (T/Z) spectral ratios for stations with high Δt* are higher and exhibit steeper increases with frequency compared to T/Z spectra for low Δt* stations. The large magnitude of Δt* estimates and the T/Z spectra are consistent with major contributions to Δt* from scattering. A weak positive correlation between intrinsic attenuation and apparent attenuation due to scattering may contribute to Δt* magnitude and the moderate correlation of Δt* with travel times.

  19. Estimation of the Crustal Bulk Properties Beneath Mainland Portugal from P-Wave Teleseismic Receiver Functions

    NASA Astrophysics Data System (ADS)

    Dündar, Süleyman; Dias, Nuno A.; Silveira, Graça; Kind, Rainer; Vinnik, Lev; Matias, Luís; Bianchi, Marcelo

    2016-06-01

    In this work, we present results from teleseismic P-wave receiver functions (PRFs) obtained in Portugal, Western Iberia. A dense seismic station deployment conducted between 2010 and 2012, in the scope of the WILAS project and covering the entire country, allowed the most spatially extensive probing on the bulk crustal seismic properties of Portugal up to date. The application of the H- κ stacking algorithm to the PRFs enabled us to estimate the crustal thickness ( H) and the average crustal ratio of the P- and S-waves velocities V p/ V s ( κ) for the region. Observations of Moho conversions indicate that this interface is relatively smooth with the crustal thickness ranging between 24 and 34 km, with an average of 30 km. The highest V p/ V s values are found on the Mesozoic-Cenozoic crust beneath the western and southern coastal domain of Portugal, whereas the lowest values correspond to Palaeozoic crust underlying the remaining part of the subject area. An average V p/ V s is found to be 1.72, ranging 1.63-1.86 across the study area, indicating a predominantly felsic composition. Overall, we systematically observe a decrease of V p/ V s with increasing crustal thickness. Taken as a whole, our results indicate a clear distinction between the geological zones of the Variscan Iberian Massif in Portugal, the overall shape of the anomalies conditioned by the shape of the Ibero-Armorican Arc, and associated Late Paleozoic suture zones, and the Meso-Cenozoic basin associated with Atlantic rifting stages. Thickened crust (30-34 km) across the studied region may be inherited from continental collision during the Paleozoic Variscan orogeny. An anomalous crustal thinning to around 28 km is observed beneath the central part of the Central Iberian Zone and the eastern part of South Portuguese Zone.

  20. P-wave and s-wave imaging from drill bit seismic data at SAFOD

    NASA Astrophysics Data System (ADS)

    Taylor, S. T.; Miller, D.; Haldorsen, J. B.; Coates, R.; Malin, P.; Shalev, E.

    2005-12-01

    We have used the drill bit seismic technique to develop preliminary images of fracture and shear zones associated with the San Andreas Fault at the SAFOD site, Parkfield, California. Our study included the interpretation of the USGS PSINE surface seismic profile and the drill bit seismic data recorded by three different geophone arrays. Three-component geophones were used in two of the arrays, one of which consisted of a 1.2 km string of geophones in the SAFOD Pilot Hole. The multi-component data allowed us to use both p-wave and s-wave imaging techniques for delineating subsurface structure after updating the velocity models for the site. Our interpretation of the locations and dips of linear features imaged in the migrated drill bit seismic data correlates very well with locations and dips of faults in the PSINE profile. Using the available seismic datasets, we interpret numerous faults to cut the Cenozoic sedimentary cover, the Salinian block, and an apparent wedge of metasediments at the SAFOD site. Based on the structural pattern of downward converging faults and fracture zones, we interpret the fault system to comprise a flower structure that is directly related to the tectonic regime of the San Andreas Fault. The interpretation of a flower structure at SAFOD, which is located 1.8 km SW of the SAF, fits well with the surface geological mapping that has been conducted at the site. This mapping and our data indicates that a pervasive system of fractures and faults trend subparallel to the SAF in a zone up to 3 km SW of the main trace of the fault.

  1. The leading twist light-cone distribution amplitudes for the S-wave and P-wave Bc mesons

    NASA Astrophysics Data System (ADS)

    Xu, Ji; Yang, Deshan

    2016-07-01

    The light-cone distribution amplitudes (LCDAs) serve as important nonperturbative inputs for the study of hard exclusive processes. In this paper, we calculate ten LCDAs at twist-2 for the S-wave and P-wave B c mesons up to the next-to-leading order (NLO) of the strong coupling α s and leading order of the velocity expansion. Each one of these ten LCDAs is expressed as a product of a perturbatively calculable distribution and a universal NRQCD matrix-element. By use of the spin symmetry, only two NRQCD matrix-elements will be involved. The reduction of the number of non-perturbative inputs will improve the predictive power of collinear factorization.

  2. Evidence for magmatic underplating under the Azores Islands from P-wave receiver functions

    NASA Astrophysics Data System (ADS)

    Spieker, Kathrin; Rondenay, Stéphane; Ramalho, Ricardo; Thomas, Christine; Helffrich, George

    2016-04-01

    The Azores plateau is located near the Mid-Atlantic Ridge and consists of nine islands. Various methods including seismic reflection, gravity, and passive seismology, have been used to investigate the crustal thickness beneath the islands. They have yielded depth estimates that range between roughly 10 km and 30 km, but until now, a model of the fine-scale crustal structure has been lacking. Geochemical studies carried out across the islands suggest the existence of volcanic interfaces within the shallow crust. Moreover, magma might have accumulated beneath the existing crust (magmatic underplating), causing a shift of the crust-mantle boundary to lower depths. In this study, we use data from ten seismic stations located on the Azores Islands to investigate the crustal structure with P-wave receiver functions (PRFs). A challenge of using ocean island data is oceanic noise that interferes with the useful conversion signals. Here, we employ a frequency-domain deconvolution with objective regularisation based on the pre-event noise spectrum to reduce the effect of the oceanic noise. Our fine-scale PRFs yield conversions at about 0.3 s, 1 s, and 2-3.5 s, which we attribute to a shallow volcanic interface, a mid-crustal interface, and the crust-mantle boundary, respectively. Following the interpretation of similar PRF studies beneath other volcanic ocean islands, the 1 s signal (mid-crustal interface) may correspond to a conversion at the top of the underplated magmatic material. Underplating is most pronounced in the southeastern portion of the Azores plateau. Considering lower seismic P- and S-wave velocities within the volcanic interfaces (vp=4.9 km/s, vs=2.6 km/s) and higher velocities within the underplated material (vp=7.3 km/s, vs=4.2 km/s) compared to the normal crust (vp=6.3 km/s, vs=3.6 km/s), the total crustal thickness amounts to approximately 12-15 km.

  3. Eastern Edge of the Laurentian Cratonic Lithosphere Beneath Southern Quebec from Teleseismic P Waves

    NASA Astrophysics Data System (ADS)

    Menke, W. H.; Neitz, T.; Levin, V. L.; Darbyshire, F. A.; Bastow, I. D.

    2014-12-01

    The eastern margin of Laurentia was deformed by the late-Proterozoic Grenville orogeny, which metamorphosed the original Archean-age cratonic crust and added extensive intrusive rocks. The Laurentian crust clearly extends as far east as the Laurentian Highlands, just north of the St. Laurence River, where Grenville-deformed rocks outcrop. Small outliers of Grenville-deformed rocks amongst west-thrust Paleozoic sediments, 20-50 km east of the Appalachian Front in southern Quebec, suggest that the Laurentian crust extends beneath the shallow thrust sheets of this region, too. On the other hand, Laurentia does not extend east of the Norumbega fault in coastal Maine, for the crust there is derived from the Avalon micro-continent. We search for the eastern edge of Laurentia within this ~250 km wide interval using relative arrival times of teleseismic P waves which ascend sub-vertically through the lithosphere beneath the region. These times are expected to be most sensitive to upper mantle compressional velocity and so to be able to discriminate the cratonic lithosphere on the basis of its faster than average speed. We use signal-correlation techniques to measured delay times for all broadband seismic stations in the region, including the QMIII array, which is especially designed to have high station density near the Appalachian Front. As expected, we observe central Quebec to have anomalously early times and coastal Maine to have anomalously late times, by as much as ±1s, when compared to the predictions of the global AK135 traveltime model. The boundary between the two arrival time regimes is sharp and is collinear with the Appalachian Front, to within the ± 25 km spatial resolution of our study. We hypothesize that it represents the eastern edge of the Laurentian cratonic lithosphere. Tomographic inversion of the data indicates a 0.2 km/s (2.4%) drop in compressional velocity of the shallow (90 km deep) mantle from west to east across the boundary. This is a strong

  4. Multifrequency measurements of core-diffracted P waves (Pdiff) for global waveform tomography

    NASA Astrophysics Data System (ADS)

    Hosseini, Kasra; Sigloch, Karin

    2015-10-01

    The lower third of the mantle is sampled extensively by body waves that diffract around the earth's core (Pdiff and Sdiff phases), which could deliver highly resolved tomographic images of this poorly understood region. But core-diffracted waves-especially Pdiff waves-are not often used in tomography because they are difficult to model adequately. Our aim is to make core-diffracted body waves usable for global waveform tomography, across their entire frequency range. Here we present the data processing part of this effort. A method is demonstrated that routinely calculates finite-frequency traveltimes of Pdiff waves by cross-correlating large quantities of waveform data with synthetic seismograms, in frequency passbands ranging from 30.0 to 2.7 s dominant period. Green's functions for 1857 earthquakes, typically comprising thousands of seismograms, are calculated by theoretically exact wave propagation through a spherically symmetric earth model, up to 1 Hz dominant period. Out of 418 226 candidates, 165 651 (39.6 per cent) source-receiver pairs yielded at least one successful passband measurement of a Pdiff traveltime anomaly, for a total of 479 559 traveltimes in the eight passbands considered. Measurements of teleseismic P waves yielded 448 178 usable source-receiver paths from 613 057 candidates (73.1 per cent success rate), for a total of 2 306 755 usable teleseismic dT in eight passbands. Observed and predicted characteristics of Pdiff traveltimes are discussed and compared to teleseismic P for this very large data set. Pdiff measurements are noise-limited due to severe wave attenuation with epicentral distance and frequency. Measurement success drops from 40-60 per cent at 80° distance, to 5-10 per cent at 140°. Frequency has a 2-3 times stronger influence on measurement success for Pdiff than for P. The fewest usable dT measurements are obtained in the microseismic noise band, whereas the fewest usable teleseismic P measurements occur at the highest

  5. A P-wave based, on-site method for Earthquake Early Warning

    NASA Astrophysics Data System (ADS)

    Zollo, Aldo

    2016-04-01

    Can we rapidly predict the potential damage of earthquakes by-passing the estimation of its location and magnitude? One possible approach is to predict the expected peak ground shaking at the site and the earthquake magnitude from the initial P-peak amplitude and characteristic period, respectively. The idea, first developed by Wu and Kanamori (2005), is to combine the two parameters for declaring the alert once the real-time measured quantities have passed pre-defined thresholds. Our proposed on-site early warning method generalized this approach, based on the analysis of strong motion data from modern accelerograph networks in Japan, Taiwan and Italy (Zollo et al., 2010). It is based on the real-time measurement of the period (τc) and peak displacement (Pd) parameters at one or more co-located stations at a given target site to be protected against the earthquake effects. By converting these real-time proxies in predicted values of Peak Ground Velocity (PGV) or instrumental intensity (IMM) and magnitude, an alert level is issued at the recording site based on a decisional table with four entries defined upon threshold values of the parameters Pd and Tc. The latter ones are set according to the error bounds estimated on the derived prediction equations. A near-source network of stations running the onsite method can provide the event location and transmit the information about the alert levels recorded at near-source stations to more distant sites, before the arrival of the most destructive phase. The network-based approach allows for the rapid and robust estimation of the Potential Damage Zone (PDZ), that is the area where most of earthquake damage is expected (Colombelli et al., 2012). A new strategy for a P-wave based, on-site earthquake early warning system has been developed and tested on Japanese strong motion data and under testing on Italian data. The key elements are the real-time, continuous measurement of three peak amplitude parameters and their

  6. Evaluation of the P Wave Axis in Patients With Systemic Lupus Erythematosus

    PubMed Central

    Acar, Rezzan Deniz; Bulut, Mustafa; Acar, Şencan; Izci, Servet; Fidan, Serdar; Yesin, Mahmut; Efe, Suleyman Cagan

    2015-01-01

    Introduction: P wave axis is one of the most practical clinical tool for evaluation of cardiovascular disease. The aim of our study was to evaluate the P wave axis in electrocardiogram (ECG), left atrial function and association between the disease activity score in patients with systemic lupus erythematosus (SLE). Methods: Standard 12-lead surface ECGs were recorded by at a paper speed of 25 m/s and an amplifier gain of 10 mm/mV. The heart rate (HR), the duration of PR, QRS, QTd (dispersion), the axis of P wave were measured by ECG machine automatically. Results: The P wave axis was significantly increased in patients with SLE (49 ± 20 vs. 40 ± 18, P = 0.037) and the disease activity score was found positively correlated with P wave axis (r: 0.382, P = 0.011). The LA volume and the peak systolic strain of the left atrium (LA) were statistically different between the groups (P = 0.024 and P = 0.000). The parameters of the diastolic function; E/A and E/e’ were better in the control group than the patients with SLE (1.1 ± 0.3 vs. 1.3 ± 0.3, P = 0.041 and 6.6 ± 2.8 vs. 5.4 ± 1.4, P = 0.036, respectively). Conclusion: P wave axis was found significantly increased in patients with SLE and positively correlated with SELENA-SLEDAI score. As the risk score increases in patients with SLE, P wave axis changes which may predict the risk of all-cause and cardiovascular mortality. PMID:26702344

  7. Chiral p-wave order in Sr2RuO4

    NASA Astrophysics Data System (ADS)

    Kallin, Catherine

    2012-04-01

    Shortly after the discovery in 1994 of superconductivity in Sr2RuO4, it was proposed on theoretical grounds that the superconducting state may have chiral p-wave symmetry analogous to the A phase of superfluid 3He. Substantial experimental evidence has since accumulated in favor of this pairing symmetry, including several interesting recent results related to broken time-reversal symmetry (BTRS) and vortices with half of the usual superconducting flux quantum. Great interest surrounds the possibility of chiral p-wave order in Sr2RuO4, since this state may exhibit topological order analogous to that of a quantum Hall state, and can support such exotic physics as Majorana fermions and non-Abelian winding statistics, which have been proposed as one route to a quantum computer. However, serious discrepancies remain in trying to connect the experimental results to theoretical predictions for chiral p-wave order. In this paper, I review a broad range of experiments on Sr2RuO4 that are sensitive to p-wave pairing, triplet superconductivity and time-reversal symmetry breaking and compare these experiments to each other and to theoretical predictions. In this context, the evidence for triplet pairing is strong, although some puzzles remain. The ‘smoking gun’ experimental results for chiral p-wave order, those which directly look for evidence of BTRS in the superconducting state of Sr2RuO4, are most perplexing when the results are compared with each other and to theoretical predictions. Consequently, the case for chiral p-wave superconductivity in Sr2RuO4 remains unresolved, suggesting the need to consider either significant modifications to the standard chiral p-wave models or possible alternative pairing symmetries. Recent ideas along these lines are discussed.

  8. DYNA2D96. Explicit 2-D Hydrodynamic FEM Program

    SciTech Connect

    Whirley, R.G.

    1992-04-01

    DYNA2D is a vectorized, explicit, two-dimensional, axisymmetric and plane strain finite element program for analyzing the large deformation dynamic and hydrodynamic response of inelastic solids. DYNA2D contains 13 material models and 9 equations of state (EOS) to cover a wide range of material behavior. The material models implemented in all machine versions are: elastic, orthotropic elastic, kinematic/isotropic elastic plasticity, thermoelastoplastic, soil and crushable foam, linear viscoelastic, rubber, high explosive burn, isotropic elastic-plastic, temperature-dependent elastic-plastic. The isotropic and temperature-dependent elastic-plastic models determine only the deviatoric stresses. Pressure is determined by one of 9 equations of state including linear polynomial, JWL high explosive, Sack Tuesday high explosive, Gruneisen, ratio of polynomials, linear polynomial with energy deposition, ignition and growth of reaction in HE, tabulated compaction, and tabulated.

  9. Universal High-Momentum Asymptote and Thermodynamic Relations in a Spinless Fermi Gas with a Resonant p-Wave Interaction.

    PubMed

    Yoshida, Shuhei M; Ueda, Masahito

    2015-09-25

    We investigate universal relations in a spinless Fermi gas near a p-wave Feshbach resonance, and show that the momentum distribution n_{k} has an asymptote proportional to k^{-2} with the proportionality constant-the p-wave contact-scaling with the number of closed-channel molecules. We prove the adiabatic sweep theorem for a p-wave resonance which reveals the thermodynamic implication of the p-wave contact. In contrast to the unitary Fermi gas in which Tan's contact is universal, the p-wave contact depends on the short-range details of the interaction.

  10. Detection of seismic events triggered by P-waves from the 2011 Tohoku-Oki earthquake

    NASA Astrophysics Data System (ADS)

    Miyazawa, Masatoshi

    2012-12-01

    Large-amplitude surface waves from the 2011 Tohoku-Oki earthquake triggered many seismic events across Japan, while the smaller amplitude P-wave triggering remains unclear. A spectral method was used to detect seismic events triggered by the first arriving P-waves over Japan. This method uses a reference event to correct for source and propagation effects, so that the local response near the station can be examined in detail. P-wave triggering was found in the regions where triggered non-volcanic tremor (NVT) has been observed, and some seismic and volcanic regions. The triggering strain due to P-waves is of the order of 10-8 to 10-7, which is 1 to 2 orders of magnitude smaller than the triggering strain necessary for the surface wave triggering. In the regions of NVT, the triggered event was not identified with slow events, but with other seismic events such as tectonic earthquakes. The sequence of triggering in the regions started with P-wave arrivals. The subsequent surface waves contributed to triggering of NVT, possibly together with slow slip, which resulted in the large amplitude of the NVT.

  11. Evidence for universal relations describing a gas with p-wave interactions

    NASA Astrophysics Data System (ADS)

    Luciuk, Christopher; Trotzky, Stefan; Smale, Scott; Yu, Zhenhua; Zhang, Shizhong; Thywissen, Joseph H.

    2016-06-01

    In dilute gases, a set of universal relations, known as the contact relations, directly connects thermodynamics and microscopic properties. So far, they have been established only for interactions with s-wave symmetry--that is, without relative angular momentum. Here we report measurements of two new physical quantities, the p-wave contacts, and, using recently proposed relations, present evidence that they encode the universal aspects of p-wave interactions. Our experiments use an ultracold Fermi gas of 40K, in which s-wave interactions are suppressed by polarizing the sample, whereas p-wave interactions are enhanced by working near a scattering resonance. Using time-resolved spectroscopy, we study how correlations in the system develop after quenching the atoms into an interacting state. By combining quasi-steady-state measurements with new contact relations, we infer an attractive p-wave interaction energy as large as half the Fermi energy. Our results reveal new ways to understand and characterize the properties of a resonant p-wave quantum gas.

  12. Hypocenter determination of aftershocks of the 2010 Maule earthquake (Mw=8.8) with automatically picked P waves from an amphibious seismic network

    NASA Astrophysics Data System (ADS)

    Lieser, K.; Grevemeyer, I.; Flueh, E. R.; Lange, D.; Tilmann, F. J.

    2012-12-01

    The Chilean subduction zone is among the seismically most active plate boundaries in the world and coastal ranges suffer from a magnitude 8 or larger megathrust earthquake every 10-20 years. The Constitución-Concepción or Maule segment in central Chile between ~35.5°S and 37°S was considered to be a mature seismic gap, rupturing last in 1835 and being seismically quiet without any magnitude 4.5 or larger earthquakes reported in global catalogues. It is located to the north of the nucleation area of the 1960 magnitude 9.5 Valdivia earthquake and to the south of the 1928 magnitude 8 Talca earthquake. On 27 February 2010 this segment ruptured in a Mw=8.8 earthquake, nucleating near 36°S and affecting a 500-600 km long segment of the margin between 34°S and 38.5°S that is roughly three times larger than the seismic gap. Aftershocks occurred along a roughly 600 km long portion of the central Chilean margin, most of them offshore. Therefore, a network of 30 ocean-bottom-seismometers was deployed in the northern portion of the rupture area for a three month period, recording local offshore aftershocks between 20 September 2010 and 25 December 2010. In addition, data of a network consisting of 33 landstations of the GeoForschungsZentrum Potsdam were included into the network, providing an ideal coverage of both the rupture plane and areas affected by post-seismic slip as deduced from geodetic data. Aftershock locations are based on automatically detected P waves onsets and a 2D velocity model of the combined on- and offshore network. 3181 earthquakes were located of which 1012 had an RMS < 0.5 s and a confidence ellipsoid semi-axis < 10 km. The most profound features are (i) a zone without seismicity between the trench-axis and the seismic front roughly 50 km landward of the trench, (ii) a 80 km wide band of seismicity stretching from the seismic front along the plate boundary fault terminating roughly at the depth where the continental Moho intersects the

  13. MOSS2D V1

    2001-01-31

    This software reduces the data from two-dimensional kSA MOS program, k-Space Associates, Ann Arbor, MI. Initial MOS data is recorded without headers in 38 columns, with one row of data per acquisition per lase beam tracked. The final MOSS 2d data file is reduced, graphed, and saved in a tab-delimited column format with headers that can be plotted in any graphing software.

  14. Universal Relations for a Fermi Gas Close to a p-Wave Interaction Resonance.

    PubMed

    Yu, Zhenhua; Thywissen, Joseph H; Zhang, Shizhong

    2015-09-25

    We investigate the properties of a spinless Fermi gas close to a p-wave interaction resonance. We show that the effects of interaction near a p-wave resonance are captured by two contacts, which are related to the variation of energy with the p-wave scattering volume v and with the effective range R in two adiabatic theorems. Exact pressure and virial relations are derived. We show how the two contacts determine the leading and subleading asymptotic behavior of the momentum distribution (∼1/k^{2} and ∼1/k^{4}) and how they can be measured experimentally by radio-frequency and photoassociation spectroscopies. Finally, we evaluate the two contacts at high temperature with a virial expansion.

  15. Universal Relations for a Fermi Gas Close to a p -Wave Interaction Resonance

    NASA Astrophysics Data System (ADS)

    Yu, Zhenhua; Thywissen, Joseph H.; Zhang, Shizhong

    2015-09-01

    We investigate the properties of a spinless Fermi gas close to a p -wave interaction resonance. We show that the effects of interaction near a p -wave resonance are captured by two contacts, which are related to the variation of energy with the p -wave scattering volume v and with the effective range R in two adiabatic theorems. Exact pressure and virial relations are derived. We show how the two contacts determine the leading and subleading asymptotic behavior of the momentum distribution (˜1 /k2 and ˜1 /k4) and how they can be measured experimentally by radio-frequency and photoassociation spectroscopies. Finally, we evaluate the two contacts at high temperature with a virial expansion.

  16. P-wave and S-wave traveltime residuals in Caledonian and adjacent units of Northern Europe and Greenland

    NASA Astrophysics Data System (ADS)

    Hejrani, Babak; Balling, Niels; Holm Jacobsen, Bo; Kind, Rainer; Tilmann, Frederik; England, Richard; Bom Nielsen, Søren

    2014-05-01

    This work combines P-wave and S-wave travel time residuals from in total 477 temporary and 56 permanent stations deployed across Caledonian and adjacent units in Northern Europe and Greenland (Tor, Gregersen et al. 2002; SVEKALAPKO, Sandoval et al., 2003; CALAS, Medhus et al, 2012a; MAGNUS, Weidle et al. 2010; SCANLIPS south, England & Ebbing 2012; SCANLIPS north, Hejrani et al. 2012; JULS Hejrani et al. 2013; plus permanent stations in the region). We picked data from 2002 to 2012 (1221 events) using a cross correlation technique on all waveforms recorded for each event. In this way we achieve maximum consistency of relative residuals over the whole region (Medhus et al. 2012b). On the European side 18362 P-wave travel time residuals was delivered. In East Greenland 1735 P-wave residuals were recovered at the Central Fjord array (13 stations) and 2294 residuals from the sparse GLISN-array (23 stations). Likewise, we picked a total of 6034 residuals of the SV phase (For the Tor and SVEKALAPKO projects we used data from Amaru et al. 2008). Relative residuals within the region are mainly due to sub-crustal uppermost mantle velocity anomalies. A dominant subvertical boundary was detected by Medhus et al. (2012), running along the Tornquist zone, east of the Oslo Graben and crossing under high topography of the southern Scandes. We delineated this boundary in more detail, tracking it towards the Atlantic margin north of Trondheim. Further north (Scanlips north), a similar subvertical upper mantle boundary seems to be present close to the coast, coinciding with the edge of the stretched crust. The North German Caledonides were probed by the new JULS (JUtland Lower Saxony) profile which closes the gap between Tor and CALAS arrays. Mantle structure found by the Tor project was confirmed, and modelling was extended to the eastern edge of the North Sea. References: Amaru, M. L., Spakman, W., Villaseñor, A., Sandoval, S., Kissling, E., 2008, A new absolute arrival time data

  17. Finite-momentum superfluidity and phase transitions in a p-wave resonant Bose gas

    SciTech Connect

    Choi, Sungsoo; Radzihovsky, Leo

    2011-10-15

    We study a degenerate two-species gas of bosonic atoms interacting through a p-wave Feshbach resonance as, for example, realized in a {sup 85}Rb-{sup 87}Rb mixture. We show that, in addition to a conventional atomic and a p-wave molecular spinor-1 superfluidity at large positive and negative detunings, respectively, the system generically exhibits a finite-momentum atomic-molecular superfluidity at intermediate detuning around the unitary point. We analyze the detailed nature of the corresponding phases and the associated quantum and thermal phase transitions.

  18. p-Wave Resonant Bose Gas: A Finite-Momentum Spinor Superfluid

    NASA Astrophysics Data System (ADS)

    Choi, Sungsoo; Radzihovsky, Leo

    2010-03-01

    We study a degenerate gas of two-species bosonic atoms interacting through a p-wave Feshbach resonance (as realized in, e.g., a ^85Rb-^87Rb mixture). We show that this model exhibits a finite-momentum atomic-molecular superfluid(AMSF), sandwiched by a molecular p-wave (orbital spinor) superfluid and by an s-wave atomic superfluid at large negative and positive detunings, respectively. The magnetic field can be used to tune the modulation wave vector of the AMSF state, as well as to drive quantum phase transitions in this rich system.

  19. p-Wave Resonant Bose Gas: A Finite-Momentum Spinor Superfluid

    NASA Astrophysics Data System (ADS)

    Choi, Sungsoo; Radzihovsky, Leo

    2009-10-01

    We study a degenerate gas of two-species bosonic atoms interacting through a p-wave Feshbach resonance (as realized in, e.g., a ^85Rb-^87Rb mixture). We show that this model exhibits a finite-momentum atomic-molecular superfluid (AMSF), sandwiched by a molecular p-wave (orbital spinor) superfluid and by an s-wave atomic superfluid at large negative and positive detunings, respectively. The magnetic field can be used to tune the modulation wave vector of the AMSF state, as well as to drive quantum phase transitions in this rich system.

  20. Finite-momentum superfluidity and phase transitions in a p-wave resonant Bose gas

    NASA Astrophysics Data System (ADS)

    Choi, Sungsoo; Radzihovsky, Leo

    2011-10-01

    We study a degenerate two-species gas of bosonic atoms interacting through a p-wave Feshbach resonance as, for example, realized in a 85Rb-87Rb mixture. We show that, in addition to a conventional atomic and a p-wave molecular spinor-1 superfluidity at large positive and negative detunings, respectively, the system generically exhibits a finite-momentum atomic-molecular superfluidity at intermediate detuning around the unitary point. We analyze the detailed nature of the corresponding phases and the associated quantum and thermal phase transitions.

  1. p-Wave Resonant Bose Gas: A Finite-Momentum Spinor Superfluid

    NASA Astrophysics Data System (ADS)

    Radzihovsky, Leo; Choi, Sungsoo

    2009-08-01

    We show that a degenerate gas of two-species bosonic atoms interacting through a p-wave Feshbach resonance (as realized in, e.g., a Rb85-Rb87 mixture) exhibits a finite-momentum atomic-molecular superfluid (AMSF), sandwiched by a molecular p-wave (orbital spinor) superfluid and by an s-wave atomic superfluid at large negative and positive detunings, respectively. The magnetic field can be used to tune the modulation wave vector of the AMSF state, as well as to drive quantum phase transitions in this rich system.

  2. p-wave resonant bose gas: a finite-momentum spinor superfluid.

    PubMed

    Radzihovsky, Leo; Choi, Sungsoo

    2009-08-28

    We show that a degenerate gas of two-species bosonic atoms interacting through a p-wave Feshbach resonance (as realized in, e.g., a (85)Rb -- (87)Rb mixture) exhibits a finite-momentum atomic-molecular superfluid (AMSF), sandwiched by a molecular p-wave (orbital spinor) superfluid and by an s-wave atomic superfluid at large negative and positive detunings, respectively. The magnetic field can be used to tune the modulation wave vector of the AMSF state, as well as to drive quantum phase transitions in this rich system. PMID:19792805

  3. Evidence for back scattering of near-podal seismic P'P' waves from the 150-220 km zone in Earth's upper mantle

    SciTech Connect

    Tkalcic, H; Flanagan, M P; Cormier, V F

    2005-07-15

    The deepest and most inaccessible parts of Earth's interior--the core and core-mantle boundary regions can be studied from compressional waves that turn in the core and are routinely observed following large earthquakes at epicentral distances between 145{sup o} and 180{sup o} (also called P', PKIKP or PKP waves). P'P' (PKPPKP) are P' waves that travel from a hypocenter through the Earth's core, reflect from the free surface and travel back through the core to a recording station on the surface. P'P' waves are sometimes accompanied by precursors, which were reported first in the 1960s as small-amplitude arrivals on seismograms at epicentral distances of about 50{sup o}-70{sup o}. Most prominent of these observed precursors were explained by P'P' waves generated by earthquakes or explosions that did not reach the Earth's surface but were reflected from the underside of first order velocity discontinuities at 410 and 660 km in the upper mantle mantle. Here we report the discovery of hitherto unobserved near-podal P'P' waves (at epicentral distance less than 10{sup o}) and very prominent precursors preceding the main energy by as much as 55 seconds. We interpret these precursors as a back scattered energy from undocumented structure in the upper mantle, in a zone between 150 and 220 km depth beneath Earth's surface. From these observations, we identify a frequency dependence of Q (attenuation quality factor) in the lithosphere that can be modeled by a flat relaxation spectrum below about 0.05-0.1 Hz and increasing with as the first power of frequency above this value, confirming pioneering work by B. Gutenberg.

  4. Crustal evolution and metallogeny in relation to mantle dynamics: A perspective from P-wave tomography of the South China Block

    NASA Astrophysics Data System (ADS)

    He, Chuansong; Santosh, M.

    2016-10-01

    The South China Block, composed of the Yangtze and Cathaysia sub-blocks which were sutured along the Jiangnan Orogen, preserves the records of multiple tectonothermal and metallogenic events coeval with global supercontinental cycles. In this study, we attempt to evaluate the mantle dynamics in this region based on P-wave tomographic analyses from data recorded by the China seismic network from 2007 to 2014. Our study reveals significant velocity perturbations in the upper mantle and mantle transition zone beneath this region which we correlate with various features including remnant and stagnant slabs resulting from Neoproterozoic subduction events and prominent mantle upwellings. Four vertical cross-sections along the latitudinal profiles indicate significant low velocity perturbation located at the mantle transition zone and upper mantle beneath the Cathaysia block and Jiangnan orogenic belt. South China is one of the major multi-metal provinces of the globe, and carries several large-scale ore deposits associated with a variety of tectonic settings. The distribution of major mineral deposits in the Yangtze and Cathaysia blocks as well as along the Jiangnan Orogen reveals a remarkable correlation between the location of the deposits and deep-seated low velocity P-wave anomalies. These features highlight the role of mantle dynamics and resultant crust mantle-interaction as well as crustal melting and recycling in generating the major metallogenic belts in this region.

  5. Detecting π -phase superfluids with p -wave symmetry in a quasi-one-dimensional optical lattice

    NASA Astrophysics Data System (ADS)

    Liu, Bo; Li, Xiaopeng; Hulet, Randall G.; Liu, W. Vincent

    2016-09-01

    We propose an experimental protocol to study p -wave superfluidity in a spin-polarized cold Fermi gas tuned by an s -wave Feshbach resonance. A crucial ingredient is to add a quasi-one-dimensional optical lattice and tune the fillings of two spins to the s and p band, respectively. The pairing order parameter is confirmed to inherit p -wave symmetry in its center-of-mass motion. We find that it can further develop into a state of unexpected π -phase modulation in a broad parameter regime. Experimental signatures are predicted in the momentum distributions, density of states, and spatial densities for a realistic experimental setup with a shallow trap. The π -phase p -wave superfluid is reminiscent of the π state in superconductor-ferromagnet heterostructures but differs in symmetry and physical origin. The spatially varying phases of the superfluid gap provide an approach to synthetic magnetic fields for neutral atoms. It would represent another example of p -wave pairing, first discovered in 3He liquids.

  6. High-resolution near-surface velocity model building using full-waveform inversion—a case study from southwest Sweden

    NASA Astrophysics Data System (ADS)

    Adamczyk, A.; Malinowski, M.; Malehmir, A.

    2014-06-01

    Full-waveform inversion (FWI) is an iterative optimization technique that provides high-resolution models of subsurface properties. Frequency-domain, acoustic FWI was applied to seismic data acquired over a known quick-clay landslide scar in southwest Sweden. We inverted data from three 2-D seismic profiles, 261-572 m long, two of them shot with small charges of dynamite and one with a sledgehammer. To our best knowledge this is the first published application of FWI to sledgehammer data. Both sources provided data suitable for waveform inversion, the sledgehammer data containing even wider frequency spectrum. Inversion was performed for frequency groups between 27.5 and 43.1 Hz for the explosive data and 27.5-51.0 Hz for the sledgehammer. The lowest inverted frequency was limited by the resonance frequency of the standard 28-Hz geophones used in the survey. High-velocity granitic bedrock in the area is undulated and very shallow (15-100 m below the surface), and exhibits a large P-wave velocity contrast to the overlying normally consolidated sediments. In order to mitigate the non-linearity of the inverse problem we designed a multiscale layer-stripping inversion strategy. Obtained P-wave velocity models allowed to delineate the top of the bedrock and revealed distinct layers within the overlying sediments of clays and coarse-grained materials. Models were verified in an extensive set of validating procedures and used for pre-stack depth migration, which confirmed their robustness.

  7. Imaging in 2D media

    NASA Astrophysics Data System (ADS)

    Medvedev, S. N.

    2015-10-01

    Stacking by CDP technique is inapplicable for processing of data from bottom seismic stations or acoustic sonobuoys. In addition, big amount of unknown velocity and structural parameters of the real layered medium do not allow these parameters to be defined by standard processing methods. Local sloped stacking is proposed for simultaneous obtaining the stacked tracks, travel time curve of a chosen wave, and the first derivative of this travel time curve. The additionally defined parameters are second derivative of this travel time curve and integrated average of squared travel time curve. These data are sufficient to reduce the amount of unknown parameters (down to one-two for each boundary) when layer-by-layer top-to-bottom processing. As a result, the stable estimates of velocity parameters of the layered (isotropic or anisotropic) medium can be obtained and stacked tracks obtained by local sloped staking can be transformed into boundaries in the time and depth sections.

  8. Type 2 Diabetes Induces Prolonged P-wave Duration without Left Atrial Enlargement.

    PubMed

    Li, Bin; Pan, Yilong; Li, Xiaodong

    2016-04-01

    Prolonged P-wave duration has been observed in diabetes. However, the underlying mechanisms remain unclear. The aim of this study was to elucidate the possible mechanisms. A rat model of type 2 diabetes mellitus (T2DM) was used. P-wave durations were obtained using surface electrocardiography and sizes of the left atrium were determined using echocardiography. Cardiac inward rectifier K(+) currents (Ik1), Na(+) currents (INa), and action potentials were recorded from isolated left atrial myocytes using patch clamp techniques. Left atrial tissue specimens were analyzed for total connexin-40 (Cx40) and connexin-43 (Cx43) expression levels on western-blots. Specimens were also analyzed for Cx40 and Cx43 distribution and interstitial fibrosis by immunofluorescent and Masson trichrome staining, respectively. The mean P-wave duration was longer in T2DM rats than in controls; however, the mean left atrial sizes of each group of rats were similar. The densities of Ik1 and INa were unchanged in T2DM rats compared to controls. The action potential duration was longer in T2DM rats, but there was no significant difference in resting membrane potential or action potential amplitude compared to controls. The expression level of Cx40 protein was significantly lower, but Cx43 was unaltered in T2DM rats. However, immunofluorescent labeling of Cx43 showed a significantly enhanced lateralization. Staining showed interstitial fibrosis was greater in T2DM atrial tissue. Prolonged P-wave duration is not dependent on the left atrial size in rats with T2DM. Dysregulation of Cx40 and Cx43 protein expression, as well as fibrosis, might partly account for the prolongation of P-wave duration in T2DM.

  9. Unparticle example in 2D.

    PubMed

    Georgi, Howard; Kats, Yevgeny

    2008-09-26

    We discuss what can be learned about unparticle physics by studying simple quantum field theories in one space and one time dimension. We argue that the exactly soluble 2D theory of a massless fermion coupled to a massive vector boson, the Sommerfield model, is an interesting analog of a Banks-Zaks model, approaching a free theory at high energies and a scale-invariant theory with nontrivial anomalous dimensions at low energies. We construct a toy standard model coupling to the fermions in the Sommerfield model and study how the transition from unparticle behavior at low energies to free particle behavior at high energies manifests itself in interactions with the toy standard model particles.

  10. Improvement of Epicentral Direction Estimation by P-wave Polarization Analysis

    NASA Astrophysics Data System (ADS)

    Oshima, Mitsutaka

    2016-04-01

    Polarization analysis has been used to analyze the polarization characteristics of waves and developed in various spheres, for example, electromagnetics, optics, and seismology. As for seismology, polarization analysis is used to discriminate seismic phases or to enhance specific phase (e.g., Flinn, 1965)[1], by taking advantage of the difference in polarization characteristics of seismic phases. In earthquake early warning, polarization analysis is used to estimate the epicentral direction using single station, based on the polarization direction of P-wave portion in seismic records (e.g., Smart and Sproules(1981) [2], Noda et al.,(2012) [3]). Therefore, improvement of the Estimation of Epicentral Direction by Polarization Analysis (EEDPA) directly leads to enhance the accuracy and promptness of earthquake early warning. In this study, the author tried to improve EEDPA by using seismic records of events occurred around Japan from 2003 to 2013. The author selected the events that satisfy following conditions. MJMA larger than 6.5 (JMA: Japan Meteorological Agency). Seismic records are available at least 3 stations within 300km in epicentral distance. Seismic records obtained at stations with no information on seismometer orientation were excluded, so that precise and quantitative evaluation of accuracy of EEDPA becomes possible. In the analysis, polarization has calculated by Vidale(1986) [4] that extended the method proposed by Montalbetti and Kanasewich(1970)[5] to use analytical signal. As a result of the analysis, the author found that accuracy of EEDPA improves by about 15% if velocity records, not displacement records, are used contrary to the author's expectation. Use of velocity records enables reduction of CPU time in integration of seismic records and improvement in promptness of EEDPA, although this analysis is still rough and further scrutiny is essential. At this moment, the author used seismic records that obtained by simply integrating acceleration

  11. Investigation of structural heterogeneity at the SPE site using combined P–wave travel times and Rg phase velocities

    DOE PAGES

    Rowe, Charlotte A.; Patton, Howard J.

    2015-10-01

    Here, we present analyses of the 2D seismic structure beneath Source Physics Experiments (SPE) geophone lines that extended radially at 100 m spacing from 100 to 2000 m from the source borehole. With seismic sources at only one end of the geophone lines, standard refraction profiling methods cannot resolve seismic velocity structures unambiguously. In previous work, we demonstrated overall agreement between body-wave refraction modeling and Rg dispersion curves for the least complex of the five lines. A more detailed inspection supports a 2D reinterpretation of the structure. We obtained Rg phase velocity measurements in both the time and frequency domains,more » then used iterative adjustment of the initial 1D body-wave model to predict Rg dispersion curves to fit the observed values. Our method applied to the most topographically severe of the geophone lines is supplemented with a 2D ray-tracing approach, whose application to P-wave arrivals supports the Rg analysis. In addition, midline sources will allow us to refine our characterization in future work.« less

  12. Automatic identification of fault zone head waves and direct P waves and its application in the Parkfield section of the San Andreas Fault, California

    NASA Astrophysics Data System (ADS)

    Li, Zefeng; Peng, Zhigang

    2016-06-01

    Fault zone head waves (FZHWs) are observed along major strike-slip faults and can provide high-resolution imaging of fault interface properties at seismogenic depth. In this paper, we present a new method to automatically detect FZHWs and pick direct P waves secondary arrivals (DWSAs). The algorithm identifies FZHWs by computing the amplitude ratios between the potential FZHWs and DSWAs. The polarities, polarizations and characteristic periods of FZHWs and DSWAs are then used to refine the picks or evaluate the pick quality. We apply the method to the Parkfield section of the San Andreas Fault where FZHWs have been identified before by manual picks. We compare results from automatically and manually picked arrivals and find general agreement between them. The obtained velocity contrast at Parkfield is generally 5-10 per cent near Middle Mountain while it decreases below 5 per cent near Gold Hill. We also find many FZHWs recorded by the stations within 1 km of the background seismicity (i.e. the Southwest Fracture Zone) that have not been reported before. These FZHWs could be generated within a relatively wide low velocity zone sandwiched between the fast Salinian block on the southwest side and the slow Franciscan Mélange on the northeast side. Station FROB on the southwest (fast) side also recorded a small portion of weak precursory signals before sharp P waves. However, the polarities of weak signals are consistent with the right-lateral strike-slip mechanisms, suggesting that they are unlikely genuine FZHW signals.

  13. In-medium P-wave quarkonium from the complex lattice QCD potential

    NASA Astrophysics Data System (ADS)

    Burnier, Yannis; Kaczmarek, Olaf; Rothkopf, Alexander

    2016-10-01

    We extend our lattice QCD potential based study [1] of the in-medium properties of heavy quark bound states to P-wave bottomonium and charmonium. Similar to the behavior found in the S-wave channel their spectra show a characteristic broadening, as well as mass shifts to lower energy with increasing temperature. In contrast to the S-wave states, finite angular momentum leads to the survival of spectral peaks even at temperatures, where the continuum threshold reaches below the bound state remnant mass. We elaborate on the ensuing challenges in defining quarkonium dissolution and present estimates of melting temperatures for the spin averaged χ b and χ c states. As an application to heavy-ion collisions we further estimate the contribution of feed down to S-wave quarkonium through the P-wave states after freezeout.

  14. Properties of skyrmions and multi-quanta vortices in chiral p-wave superconductors.

    PubMed

    Garaud, Julien; Babaev, Egor

    2015-01-01

    Chiral p-wave superconducting state supports a rich spectrum of topological excitations different from those in conventional superconducting states. Besides domain walls separating different chiral states, chiral p-wave state supports both singular and coreless vortices also interpreted as skyrmions. Here, we present a numerical study of the energetic properties of isolated singular and coreless vortex states as functions of anisotropy and magnetic field penetration length. In a given chiral state, single quantum vortices with opposite winding have different energies and thus only one kind is energetically favoured. We find that with the appropriate sign of the phase winding, two-quanta (coreless) vortices are always energetically preferred over two isolated single quanta (singular) vortices. We also report solutions carrying more flux quanta. However those are typically more energetically expensive/metastable as compared to those carrying two flux quanta. PMID:26631985

  15. Scaling relation between earthquake magnitude and the departure time from P wave similar growth

    NASA Astrophysics Data System (ADS)

    Noda, Shunta; Ellsworth, William L.

    2016-09-01

    We introduce a new scaling relation between earthquake magnitude (M) and a characteristic of initial P wave displacement. By examining Japanese K-NET data averaged in bins partitioned by Mw and hypocentral distance, we demonstrate that the P wave displacement briefly displays similar growth at the onset of rupture and that the departure time (Tdp), which is defined as the time of departure from similarity of the absolute displacement after applying a band-pass filter, correlates with the final M in a range of 4.5 ≤ Mw ≤ 7. The scaling relation between Mw and Tdp implies that useful information on the final M can be derived while the event is still in progress because Tdp occurs before the completion of rupture. We conclude that the scaling relation is important not only for earthquake early warning but also for the source physics of earthquakes.

  16. Scaling relation between earthquake magnitude and the departure time from P wave similar growth

    USGS Publications Warehouse

    Noda, Shunta; Ellsworth, William L.

    2016-01-01

    We introduce a new scaling relation between earthquake magnitude (M) and a characteristic of initial P wave displacement. By examining Japanese K-NET data averaged in bins partitioned by Mw and hypocentral distance, we demonstrate that the P wave displacement briefly displays similar growth at the onset of rupture and that the departure time (Tdp), which is defined as the time of departure from similarity of the absolute displacement after applying a band-pass filter, correlates with the final M in a range of 4.5 ≤ Mw ≤ 7. The scaling relation between Mw and Tdp implies that useful information on the final M can be derived while the event is still in progress because Tdp occurs before the completion of rupture. We conclude that the scaling relation is important not only for earthquake early warning but also for the source physics of earthquakes.

  17. Electron-He(+) P-wave Elastic Scattering and Photoabsorption in Two-electron Systems

    NASA Technical Reports Server (NTRS)

    Bhatia, A. K.

    2006-01-01

    In a previous paper [Bhatia, Phys. Rev. A 69,032714 (2004)], electron-hydrogen P-wave scattering phase shifts were calculated using the optical potential approach based on the Feshbach projection operator formalism. This method is now extended to the singlet and triplet electron-He(+) P-wave scattering in the elastic region. Phase shifts are calculated using Hylleraas-type correlation functions with up to 220 terms. Results are rigorous lower bounds to the exact phase shifts and they are compared to phase shifts obtained from the method of polarized orbitals and close-coupling calculations. The continuum functions calculated here are used to calculate photoabsorption cross sections. Photoionization cross sections of He and photodetachment cross sections of H(-) are calculated in the elastic region, i.e. leaving He(+) and H in their respective ground states, and compared with previous calculations. Radiative attachment rates are also calculated.

  18. ECG manifestations of multiple electrolyte imbalance: peaked T wave to P wave ("tee-pee sign").

    PubMed

    Johri, Amer M; Baranchuk, Adrian; Simpson, Christopher S; Abdollah, Hoshiar; Redfearn, Damian P

    2009-04-01

    The surface electrocardiogram (ECG) is a useful instrument in the detection of metabolic disturbances. The accurate characterization of these disturbances, however, may be considerably more difficult when more than one metabolic abnormality is present in the same individual. While "classic" ECG presentations of common electrolyte disturbances are well described, multiple electrolyte disturbances occurring simultaneously may generate ECG abnormalities that are not as readily recognizable. We report a case of hyperkalemia, with concurrent hypocalcemia and hypomagnesemia resulting in (1) peaking of the T wave, (2) a prominent U wave, and (3) prolongation of the descending limb of the T wave such that it overlapped with the next P wave. In this particular ECG from a patient with combined electrolyte imbalance, we have dubbed the unusual appearance of the segment between the peak of the T wave to the next P wave as the "tee-pee" sign. PMID:19419407

  19. Properties of skyrmions and multi-quanta vortices in chiral p-wave superconductors

    PubMed Central

    Garaud, Julien; Babaev, Egor

    2015-01-01

    Chiral p-wave superconducting state supports a rich spectrum of topological excitations different from those in conventional superconducting states. Besides domain walls separating different chiral states, chiral p-wave state supports both singular and coreless vortices also interpreted as skyrmions. Here, we present a numerical study of the energetic properties of isolated singular and coreless vortex states as functions of anisotropy and magnetic field penetration length. In a given chiral state, single quantum vortices with opposite winding have different energies and thus only one kind is energetically favoured. We find that with the appropriate sign of the phase winding, two-quanta (coreless) vortices are always energetically preferred over two isolated single quanta (singular) vortices. We also report solutions carrying more flux quanta. However those are typically more energetically expensive/metastable as compared to those carrying two flux quanta. PMID:26631985

  20. Input-output characterization of fiber reinforced composites by P waves

    NASA Technical Reports Server (NTRS)

    Renneisen, John D.; Williams, James H., Jr.

    1990-01-01

    Input-output characterization of fiber composites is studied theoretically by tracing P waves in the media. A new path motion to aid in the tracing of P and the reflection generated SV wave paths in the continuum plate is developed. A theoretical output voltage from the receiving transducer is calculated for a tone burst. The study enhances the quantitative and qualitative understanding of the nondestructive evaluation of fiber composites which can be modeled as transversely isotropic media.

  1. Multiple scattering dynamics of fermions at an isolated p-wave resonance

    PubMed Central

    Thomas, R.; Roberts, K. O.; Tiesinga, E.; Wade, A. C. J.; Blakie, P. B.; Deb, A. B.; Kjærgaard, N.

    2016-01-01

    The wavefunction for indistinguishable fermions is anti-symmetric under particle exchange, which directly leads to the Pauli exclusion principle, and hence underlies the structure of atoms and the properties of almost all materials. In the dynamics of collisions between two indistinguishable fermions, this requirement strictly prohibits scattering into 90° angles. Here we experimentally investigate the collisions of ultracold clouds fermionic 40K atoms by directly measuring scattering distributions. With increasing collision energy we identify the Wigner threshold for p-wave scattering with its tell-tale dumb-bell shape and no 90° yield. Above this threshold, effects of multiple scattering become manifest as deviations from the underlying binary p-wave shape, adding particles either isotropically or axially. A shape resonance for 40K facilitates the separate observation of these two processes. The isotropically enhanced multiple scattering mode is a generic p-wave threshold phenomenon, whereas the axially enhanced mode should occur in any colliding particle system with an elastic scattering resonance. PMID:27396294

  2. Multiple scattering dynamics of fermions at an isolated p-wave resonance

    NASA Astrophysics Data System (ADS)

    Thomas, R.; Roberts, K. O.; Tiesinga, E.; Wade, A. C. J.; Blakie, P. B.; Deb, A. B.; Kjærgaard, N.

    2016-07-01

    The wavefunction for indistinguishable fermions is anti-symmetric under particle exchange, which directly leads to the Pauli exclusion principle, and hence underlies the structure of atoms and the properties of almost all materials. In the dynamics of collisions between two indistinguishable fermions, this requirement strictly prohibits scattering into 90° angles. Here we experimentally investigate the collisions of ultracold clouds fermionic 40K atoms by directly measuring scattering distributions. With increasing collision energy we identify the Wigner threshold for p-wave scattering with its tell-tale dumb-bell shape and no 90° yield. Above this threshold, effects of multiple scattering become manifest as deviations from the underlying binary p-wave shape, adding particles either isotropically or axially. A shape resonance for 40K facilitates the separate observation of these two processes. The isotropically enhanced multiple scattering mode is a generic p-wave threshold phenomenon, whereas the axially enhanced mode should occur in any colliding particle system with an elastic scattering resonance.

  3. Multiple scattering dynamics of fermions at an isolated p-wave resonance.

    PubMed

    Thomas, R; Roberts, K O; Tiesinga, E; Wade, A C J; Blakie, P B; Deb, A B; Kjærgaard, N

    2016-01-01

    The wavefunction for indistinguishable fermions is anti-symmetric under particle exchange, which directly leads to the Pauli exclusion principle, and hence underlies the structure of atoms and the properties of almost all materials. In the dynamics of collisions between two indistinguishable fermions, this requirement strictly prohibits scattering into 90° angles. Here we experimentally investigate the collisions of ultracold clouds fermionic (40)K atoms by directly measuring scattering distributions. With increasing collision energy we identify the Wigner threshold for p-wave scattering with its tell-tale dumb-bell shape and no 90° yield. Above this threshold, effects of multiple scattering become manifest as deviations from the underlying binary p-wave shape, adding particles either isotropically or axially. A shape resonance for (40)K facilitates the separate observation of these two processes. The isotropically enhanced multiple scattering mode is a generic p-wave threshold phenomenon, whereas the axially enhanced mode should occur in any colliding particle system with an elastic scattering resonance. PMID:27396294

  4. Multiple scattering dynamics of fermions at an isolated p-wave resonance.

    PubMed

    Thomas, R; Roberts, K O; Tiesinga, E; Wade, A C J; Blakie, P B; Deb, A B; Kjærgaard, N

    2016-07-11

    The wavefunction for indistinguishable fermions is anti-symmetric under particle exchange, which directly leads to the Pauli exclusion principle, and hence underlies the structure of atoms and the properties of almost all materials. In the dynamics of collisions between two indistinguishable fermions, this requirement strictly prohibits scattering into 90° angles. Here we experimentally investigate the collisions of ultracold clouds fermionic (40)K atoms by directly measuring scattering distributions. With increasing collision energy we identify the Wigner threshold for p-wave scattering with its tell-tale dumb-bell shape and no 90° yield. Above this threshold, effects of multiple scattering become manifest as deviations from the underlying binary p-wave shape, adding particles either isotropically or axially. A shape resonance for (40)K facilitates the separate observation of these two processes. The isotropically enhanced multiple scattering mode is a generic p-wave threshold phenomenon, whereas the axially enhanced mode should occur in any colliding particle system with an elastic scattering resonance.

  5. Preliminary result of P-wave speed tomography beneath North Sumatera region

    SciTech Connect

    Jatnika, Jajat; Nugraha, Andri Dian; Wandono

    2015-04-24

    The structure of P-wave speed beneath the North Sumatra region was determined using P-wave arrival times compiled by MCGA from time periods of January 2009 to December 2012 combining with PASSCAL data for February to May 1995. In total, there are 2,246 local earthquake events with 10,666 P-wave phases from 63 stations seismic around the study area. Ray tracing to estimate travel time from source to receiver in this study by applying pseudo-bending method while the damped LSQR method was used for the tomographic inversion. Based on assessment of ray coverage, earthquakes and stations distribution, horizontal grid nodes was set up of 30×30 km2 for inside the study area and 80×80 km2 for outside the study area. The tomographic inversion results show low Vp anomaly beneath Toba caldera complex region and around the Sumatra Fault Zones (SFZ). These features are consistent with previous study. The low Vp anomaly beneath Toba caldera complex are observed around Mt. Pusuk Bukit at depths of 5 km down to 100 km. The interpretation is these anomalies may be associated with ascending hot materials from subduction processes at depths of 80 km down to 100 km. The obtained Vp structure from local tomography will give valuable information to enhance understanding of tectonic and volcanic in this study area.

  6. Rupture details of the 28 March 2005 Sumatra Mw 8.6 earthquake imaged with teleseismic P waves

    NASA Astrophysics Data System (ADS)

    Walker, Kristoffer T.; Ishii, Miaki; Shearer, Peter M.

    2005-12-01

    We image the rupture of the 28 March 2005 Sumatra Mw 8.6 earthquake by back-projecting teleseismic P waves recorded by the Global Seismic Network and the Japanese Hi-net to their source. The back-projected energy suggests that the rupture started slowly, had a total duration of about 120 s, and propagated at 2.9 to 3.3 km/s from the hypocenter in two different directions: first toward the north for ~100 km and then, after a ~40 s delay, toward the southeast for ~200 km. Our images are consistent with a rupture area of ~40,000 km2, the locations of the first day of aftershocks, and the Harvard CMT Mw of 8.6, which implies an average slip of ~6 m. The earthquake is similar in its location, size, and geometry to a Mw ~8.5 event in 1861. Our estimated average slip is consistent with a partially coupled subduction interface, GPS forearc velocities, and the ~59 mm/yr convergence rate if the 2005 earthquake released elastic strain that accumulated over many hundreds of years rather than just since the last 1861 event.

  7. S-P wave travel time residuals and lateral inhomogeneity in the mantle beneath Tibet and the Himalaya

    NASA Technical Reports Server (NTRS)

    Molnar, P.; Chen, W.-P.

    1984-01-01

    S-P wave travel time residuals were measured in earthquakes in Tibet and the Himalaya in order to study lateral inhomogeneities in the earth's mantle. Average S-P residuals, measured with respect to Jeffrey-Bullen (J-B) tables for 11 earthquakes in the Himalaya are less than +1 second. Average J-B S-P from 10 of 11 earthquakes in Tibet, however, are greater than +1 second even when corrected for local crustal thickness. The largest values, ranging between 2.5 and 4.9 seconds are for five events in central and northern Tibet, and they imply that the average velocities in the crust and upper mantle in this part of Tibet are 4 to 10 percent lower than those beneath the Himalaya. On the basis of the data, it is concluded that it is unlikely that a shield structure lies beneath north central Tibet unless the S-P residuals are due to structural variations occurring deeper than 250 km.

  8. Effect of low dose sotalol on the signal averaged P wave in patients with paroxysmal atrial fibrillation.

    PubMed Central

    Stafford, P. J.; Cooper, J.; de Bono, D. P.; Vincent, R.; Garratt, C. J.

    1995-01-01

    OBJECTIVE--To investigate the effects of low dose sotalol on the signal averaged surface P wave in patients with paroxysmal atrial fibrillation. DESIGN--A longitudinal within patient crossover study. SETTING--Cardiac departments of a regional cardiothoracic centre and a district general hospital. PATIENTS--Sixteen patients with documented paroxysmal atrial fibrillation. The median (range) age of the patients was 65.5 (36-70) years; 11 were men. MAIN OUTCOME MEASURES--Analysis of the signal averaged P wave recorded from patients not receiving antiarrhythmic medication and after 4-6 weeks' treatment with sotalol. P wave limits were defined automatically by a computer algorithm. Filtered P wave duration and energies contained in frequency bands from 20, 30, 40, 60, and 80 to 150 Hz of the P wave spectrum expressed as absolute values (P20, P30, etc) and as ratios of high to low frequency energy (PR20, PR30, etc) were measured. RESULTS--No difference in P wave duration was observed between the groups studied (mean (SEM) 149 (4) without medication and 152 (3) ms with sotalol). Significant decreases in high frequency P wave energy (for example P60: 4.3 (0.4) v 3.3 (0.3) microV2.s, P = 0.003) and energy ratio (PR60: 5.6 (0.5) v 4.7 (0.6), P = 0.03) were observed during sotalol treatment. These changes were independent of heart rate. CONCLUSIONS--Treatment with low dose sotalol reduces high frequency P wave energy but does not change P wave duration. These results are consistent with the class III effect of the drug and suggest that signal averaging of the surface P wave may be a useful non-invasive measure of drug induced changes in atrial electrophysiology. PMID:8541169

  9. A simple method of predicting S-wave velocity

    USGS Publications Warehouse

    Lee, M.W.

    2006-01-01

    Prediction of shear-wave velocity plays an important role in seismic modeling, amplitude analysis with offset, and other exploration applications. This paper presents a method for predicting S-wave velocity from the P-wave velocity on the basis of the moduli of dry rock. Elastic velocities of water-saturated sediments at low frequencies can be predicted from the moduli of dry rock by using Gassmann's equation; hence, if the moduli of dry rock can be estimated from P-wave velocities, then S-wave velocities easily can be predicted from the moduli. Dry rock bulk modulus can be related to the shear modulus through a compaction constant. The numerical results indicate that the predicted S-wave velocities for consolidated and unconsolidated sediments agree well with measured velocities if differential pressure is greater than approximately 5 MPa. An advantage of this method is that there are no adjustable parameters to be chosen, such as the pore-aspect ratios required in some other methods. The predicted S-wave velocity depends only on the measured P-wave velocity and porosity. ?? 2006 Society of Exploration Geophysicists.

  10. Crustal thickness estimation in the Maule Region (Chile) from P-wave receiver function analysis

    NASA Astrophysics Data System (ADS)

    Dannowski, A.; Grevemeyer, I.; Thorwart, M. M.; Rabbel, W.; Flueh, E. R.

    2010-12-01

    A temporary passive seismic network of 31 broad-band stations was deployed in the region around Talca and Constitución between 35°S to 36°S latitude and 71°W to 72.5°W longitude. The network was operated between March and October 2008. Thus, we recorded data prior the magnitude Mw=8.8 earthquake of 27 February 2010 at a latitude of the major slip and surface uplift. The experiment was conducted to address fundamental questions on deformation processes, crustal and mantle structures, and fluid flow. We present first results of a teleseismic P receiver function study that covers the coastal region and reaches to the Andes. The aim is to determine the structure and thickness of the continental crust and constrain the state of hydration of the mantle wedge. The P-wave receiver function technique requires large teleseismic earthquakes from different distances and backazimuths. A few percent of the incident P-wave energy from a teleseismic event will be converted into S-wave (Ps) at significant and relatively sharp discontinuities beneath the station. A small converted S phase is produced that arrives at the station within the P wave coda directly after the direct P-wave. The converted Ps phase and their crustal multiples contain information about crustal properties, such as Moho depth and the crustal vp/vs ratio. We use teleseismic events with magnitudes mb > 5.5 at epicentral distances between 30° and 95° to examine P-to-S converted seismic phases. Our preliminary results provide new information about the thickness of the continental crust beneath the coastal region in Central Chile. At most of the stations we observed significant energy from P to S converted waves between 4 and 5 s after the direct P-wave within a positive phase interpreted as the Moho, occurring at 35 to 40 km. Thus, the great Maule earthquake of 27 February 2010 nucleated up-dip of the continental Moho and hence ruptured along a plate contact between subducted sediments and continental crust

  11. Mean flow and anisotropic cascades in decaying 2D turbulence

    NASA Astrophysics Data System (ADS)

    Liu, Chien-Chia; Cerbus, Rory; Gioia, Gustavo; Chakraborty, Pinaki

    2015-11-01

    Many large-scale atmospheric and oceanic flows are decaying 2D turbulent flows embedded in a non-uniform mean flow. Despite its importance for large-scale weather systems, the affect of non-uniform mean flows on decaying 2D turbulence remains unknown. In the absence of mean flow it is well known that decaying 2D turbulent flows exhibit the enstrophy cascade. More generally, for any 2D turbulent flow, all computational, experimental and field data amassed to date indicate that the spectrum of longitudinal and transverse velocity fluctuations correspond to the same cascade, signifying isotropy of cascades. Here we report experiments on decaying 2D turbulence in soap films with a non-uniform mean flow. We find that the flow transitions from the usual isotropic enstrophy cascade to a series of unusual and, to our knowledge, never before observed or predicted, anisotropic cascades where the longitudinal and transverse spectra are mutually independent. We discuss implications of our results for decaying geophysical turbulence.

  12. Spectral Modulation Effect in Teleseismic P-waves from North Korean Nuclear Tests Recorded in Broad Azimuthal Range and Possible Source Depth Estimation

    NASA Astrophysics Data System (ADS)

    Gitterman, Y.; Kim, S. G.; Hofstetter, R.

    2016-04-01

    Three underground nuclear explosions, conducted by North Korea in 2006, 2009 and 2013, are analyzed. The last two tests were recorded by the Israel Seismic Network. Pronounced coherent minima (spectral nulls) at 1.2-1.3 Hz were revealed in the spectra of teleseismic P -waves. For a ground-truth explosion with a shallow source depth, this phenomenon can be interpreted in terms of the interference between the down-going P-wave and the pP phase reflected from the Earth's surface. This effect was also observed at ISN stations for a Pakistan nuclear explosion at a different frequency 1.7 Hz and the PNE Rubin-2 in West Siberia at 1 Hz, indicating a source-effect and not a site-effect. Similar spectral minima having essentially the same frequency, as at ISN, were observed in teleseismic P-waves for all the three North Korean explosions recorded at networks and arrays in Kazakhstan (KURK), Norway (NNSN), Australia (ASAR, WRA) and Canada (YKA), covering a broad azimuthal range. Data of 2009 and 2013 tests at WRA and KURK arrays showed harmonic spectral modulation with three multiple minima frequencies, evidencing the clear interference effect. These observations support the above-mentioned interpretation. Based on the null frequency dependency on the near-surface acoustic velocity and the source depth, the depth of the North Korean tests was estimated about 2.0-2.1 km. It was shown that the observed null frequencies and the obtained source depth estimates correspond to P- pP interference phenomena in both cases of a vertical shaft or a horizontal drift in a mountain. This unusual depth estimation needs additional validation based on more stations and verification by other methods.

  13. Teleseismic P-wave Delay Time Tomography of the southern Superior Province and Midcontinent Rift System (MRS) Region

    NASA Astrophysics Data System (ADS)

    Bollmann, T. A.; van der Lee, S.; Frederiksen, A. W.; Wolin, E.; Aleqabi, G. I.; Revenaugh, J.; Wiens, D. A.; Darbyshire, F. A.

    2014-12-01

    The Superior Province Rifting Earthscope Experiment (SPREE) and the northern midwest footprint of USArray's Transportable Array recorded continuous ground motion for a period of 2.5 years. From around 400 M>5.5 teleseismic earthquakes recorded at 337 stations, we measured body wave delay times for 255 of these earthquakes. The P wave delays are accumulated over more than 45 thousand wave paths with turning points in the lower mantle. We combine these delay times with a similar number delay times used in previous tomographic studies of the study region. The latter delay times stem from fewer stations, including Polaris and CNSN stations, and nearly a thousand earthquakes. We combine these two sets of delay times to image the three-dimensional distribution of seismic velocity variations beneath the southern Superior Province and surrounding provinces. This combined data coverage is illustrated in the accompanying figure for a total number of 447 stations . The coverage and the combined delays form the best configuration yet to image the three-dimensional distribution of seismic P and S-wave velocity variations beneath the southern Superior and surrounding provinces. Closely spaced stations (~12 km) along and across the MRS provide higher resolving power for lithospheric structure beneath the rift system. Conforming to expectations that the entire region is underlain by thick, cool lithosphere, a mean delay of -.55 +/- .54 s. This is very similar to the mean delays -.6s +/- .37s measured for this region before 2012. Event corrections range from -.2 +/-.54 s and correlate with tectonics for 80% of the earthquakes. An inversion of these nearly one hundred thousand P and around thirty thousand S-wave delay times for high-resolution P and S-wave velocity structure, respectively, does not show structures that are obviously related to the crustal signature of the MRS. None of structures imaged, align with or have a similar shape to the high Mid-continent Gravity Anomaly

  14. FLAC/SPECFEM2D coupled numerical simulation of wavefields near excavation boundaries in underground mines

    NASA Astrophysics Data System (ADS)

    Wang, X.; Cai, M.

    2016-11-01

    A nonlinear velocity model that considers the influence of confinement and rock mass failure on wave velocity is developed. A numerical method, which couples FLAC and SPECFEM2D, is developed for ground motion modeling near excavation boundaries in underground mines. The motivation of developing the FLAC/SPECFEM2D coupled approach is to take merits of each code, such as the stress analysis capability in FLAC and the powerful wave propagation analysis capability in SPECFEM2D. Because stress redistribution and failure of the rock mass around an excavation are considered, realistic non-uniform velocity fields for the SPECFEM2D model can be obtained, and this is a notable feature of this study. Very large differences in wavefields and ground motion are observed between the results from the non-uniform and the uniform velocity models. If the non-uniform velocity model is used, the ground motion around a stope can be amplified up to five times larger than that given by the design scaling law. If a uniform velocity model is used, the amplification factor is only about three. Using the FLAC/SPECFEM2D coupled modeling approach, accurate velocity models can be constructed and this in turn will assist in predicting ground motions accurately around underground excavations.

  15. Investigation of structural heterogeneity at the SPE site using combined P–wave travel times and Rg phase velocities

    SciTech Connect

    Rowe, Charlotte A.; Patton, Howard J.

    2015-10-01

    Here, we present analyses of the 2D seismic structure beneath Source Physics Experiments (SPE) geophone lines that extended radially at 100 m spacing from 100 to 2000 m from the source borehole. With seismic sources at only one end of the geophone lines, standard refraction profiling methods cannot resolve seismic velocity structures unambiguously. In previous work, we demonstrated overall agreement between body-wave refraction modeling and Rg dispersion curves for the least complex of the five lines. A more detailed inspection supports a 2D reinterpretation of the structure. We obtained Rg phase velocity measurements in both the time and frequency domains, then used iterative adjustment of the initial 1D body-wave model to predict Rg dispersion curves to fit the observed values. Our method applied to the most topographically severe of the geophone lines is supplemented with a 2D ray-tracing approach, whose application to P-wave arrivals supports the Rg analysis. In addition, midline sources will allow us to refine our characterization in future work.

  16. Perspectives for spintronics in 2D materials

    NASA Astrophysics Data System (ADS)

    Han, Wei

    2016-03-01

    The past decade has been especially creative for spintronics since the (re)discovery of various two dimensional (2D) materials. Due to the unusual physical characteristics, 2D materials have provided new platforms to probe the spin interaction with other degrees of freedom for electrons, as well as to be used for novel spintronics applications. This review briefly presents the most important recent and ongoing research for spintronics in 2D materials.

  17. Parity violation effects in the Josephson junction of a p-wave superconductor

    NASA Astrophysics Data System (ADS)

    Belov, Nikolay A.; Harman, Zoltán

    2016-10-01

    The phenomenon of the parity violation due to weak interaction may be studied with superconducting systems. Previous research considered the case of conventional superconductors. We here theoretically investigate the parity violation effect in an unconventional p-wave ferromagnetic superconductor, and find that its magnitude can be increased by three orders of magnitude, as compared to results of earlier studies. For potential experimental observations, the superconductor UGe2 is suggested, together with the description of a possible experimental scheme allowing one to effectively measure and control the phenomenon. Furthermore, we put forward a setup for a further significant enhancement of the signature of parity violation in the system considered.

  18. Quantitative 2D liquid-state NMR.

    PubMed

    Giraudeau, Patrick

    2014-06-01

    Two-dimensional (2D) liquid-state NMR has a very high potential to simultaneously determine the absolute concentration of small molecules in complex mixtures, thanks to its capacity to separate overlapping resonances. However, it suffers from two main drawbacks that probably explain its relatively late development. First, the 2D NMR signal is strongly molecule-dependent and site-dependent; second, the long duration of 2D NMR experiments prevents its general use for high-throughput quantitative applications and affects its quantitative performance. Fortunately, the last 10 years has witnessed an increasing number of contributions where quantitative approaches based on 2D NMR were developed and applied to solve real analytical issues. This review aims at presenting these recent efforts to reach a high trueness and precision in quantitative measurements by 2D NMR. After highlighting the interest of 2D NMR for quantitative analysis, the different strategies to determine the absolute concentrations from 2D NMR spectra are described and illustrated by recent applications. The last part of the manuscript concerns the recent development of fast quantitative 2D NMR approaches, aiming at reducing the experiment duration while preserving - or even increasing - the analytical performance. We hope that this comprehensive review will help readers to apprehend the current landscape of quantitative 2D NMR, as well as the perspectives that may arise from it.

  19. Acoustic velocity log numerical simulation and saturation estimation of gas hydrate reservoir in Shenhu area, South China Sea.

    PubMed

    Xiao, Kun; Zou, Changchun; Xiang, Biao; Liu, Jieqiong

    2013-01-01

    Gas hydrate model and free gas model are established, and two-phase theory (TPT) for numerical simulation of elastic wave velocity is adopted to investigate the unconsolidated deep-water sedimentary strata in Shenhu area, South China Sea. The relationships between compression wave (P wave) velocity and gas hydrate saturation, free gas saturation, and sediment porosity at site SH2 are studied, respectively, and gas hydrate saturation of research area is estimated by gas hydrate model. In depth of 50 to 245 m below seafloor (mbsf), as sediment porosity decreases, P wave velocity increases gradually; as gas hydrate saturation increases, P wave velocity increases gradually; as free gas saturation increases, P wave velocity decreases. This rule is almost consistent with the previous research result. In depth of 195 to 220 mbsf, the actual measurement of P wave velocity increases significantly relative to the P wave velocity of saturated water modeling, and this layer is determined to be rich in gas hydrate. The average value of gas hydrate saturation estimated from the TPT model is 23.2%, and the maximum saturation is 31.5%, which is basically in accordance with simplified three-phase equation (STPE), effective medium theory (EMT), resistivity log (Rt), and chloride anomaly method.

  20. Deep crustal and shallow sedimentary velocity structure along the Gulf of Corinth rift

    NASA Astrophysics Data System (ADS)

    Zelt, B. C.; Taylor, B.; Hirn, A.; Sachpazi, M.

    2003-04-01

    In July 2001, a multichannel seismic (MCS) survey of the Gulf of Corinth was carried out by the R/V Maurice Ewing. A network of 40 temporary 3-component land stations were deployed in southern Greece, within a radius of approximately 100 km from the Gulf, to record the blasts from the 140-litre airgun array. The blasts were also continuously recorded by nine Corseis 3-component stations as part of the Corinth Rift Laboratory project. We present results from two separate studies. (1) a 2-D P-wave velocity model for a W-E profile through the Gulf of Corinth, extending from the Ionian to the Aegean coastlines. We invert the traveltimes of refracted and reflected arrivals from an 85-km-long shot profile within the Gulf recorded at eight land stations to constrain crustal and upper mantle velocity structure. The recording geometry does not provide constraint on shallow structure. The crust-mantle boundary dips from a depth of 30 km in the east to 40 km in the west, consistent with other regional estimates of Moho topography in Greece. Crustal velocities are generally faster in the east. We interpret a strong, late phase recorded at our western-most station as a reflection from the top of the subducting African slab at a depth of ~73 km beneath the western end of the Gulf. This is somewhat deeper than the depth estimated from earthquake tomography (~60 km). The deep reflection is not observed at other stations, suggesting that the dip of the slap may increase significantly to the east of this location. (2) We also present a high-resolution image of the P-wave velocity structure along a short (~20-km-long) segment of the same W-E profile within the Gulf. We invert first arrival traveltimes recorded along the 6-km-long MCS streamer to constrain the shallow sedimentary and basement velocity structure. The profile is located near the eastern end of the Gulf, where basin depth transitions from ~300 m within the Gulf of Alkyonides to ~850 m within the Gulf of Corinth. MCS data

  1. Contrasting Subduction Modes with Slab Tearing beneath Eastern Himalaya: Evidence from Teleseismic P-wave Tomography

    NASA Astrophysics Data System (ADS)

    Peng, M.; Jiang, M.; Li, Z. H.; Xu, Z.; Chen, Y.; Chan, W. W. W.; Wang, Y.; Yu, C.; Lei, J.

    2014-12-01

    On the eastern margin of the Himalayan orogenic belt, the rapid uplift of the Namche Barwa metamorphic terrane and the significant bending of the Yarlung Zangbo suture zone occur. However, the formation mechanism and dynamics of the Eastern Himalayan Syntaxis is still debated. In order to better understand the deep structures beneath eastern Himalaya, we further deployed 35 broadband seismic stations (2010-2013) around the Namche Barwa Mountain, which is integrated with the existing Lehigh data sets of 45 stations (2003-2004). We totally selected 18,979 high-quality P-wave arrival times from 2,140 teleseismic events to image P-wave teleseismic tomography. The results demonstrate complex deep structures and significantly different subduction modes in the eastern Himalaya. In contrast to the steep subduction of the Indian lithosphere beneath the Eastern Himalayan Syntaxis, the Indian slab flatly subducted in the west, which might extend close to the Bangong-Nujiang Suture and then steeply sink and bend over. The contrasting subduction model results in the tearing and fragmentation of the Indian lithosphere in the transition zone between the flat and steep subduction. Consequently, the upwelling of hot asthenospheric mantle may occur through the slab tear window, which might further lead to the rapid uplift of Namche Barwa and the formation of the Eastern Himalayan Syntaxis. The lateral variation in subduction mode and slab tearing induced asthenospheric mantle upwelling is similar to that observed in the Hellenide and Anatolide domains of the Tethyan orogen.

  2. P-wave propagation heterogeneity and earthquake location in the Mediterranean region

    NASA Astrophysics Data System (ADS)

    Piromallo, Claudia; Morelli, Andrea

    1998-10-01

    We analyse P-wave traveltimes for the Mediterranean area, using both teleseismic and regional arrivals for shallow earthquakes reported in the Bulletins of the International Seismological Centre. We model delays between pairs of 0.5° × 0.5° cells, obtaining a detailed representation of the P traveltime heterogeneities. Examination of these anomalies shows the clear presence of geographically coherent patterns-consistent with known geological features-due to significant structure in the upper mantle. We present a scheme, based on an empirical heterogeneity correction (EHC) to P-wave traveltimes, to improve earthquake location. This method provides similar benefits to those of a location procedure based on ray tracing in a 3-D model, but it is simpler and computationally more efficient. The definition of the traveltime heterogeneity model, being based on a statistical procedure, bypasses most of the critical points and possible instabilities involved in model inversion. EHC relocation, applied to Mediterranean earthquakes, allows one to predict about 70 per cent of the estimated signal due to heterogeneity and produces epicentral and origin time-shifts of, respectively, 4.22 km and 0.35 s (rms). From a synthetic experiment, in which we use the proposed algorithm to retrieve known source locations, we estimate that the rms improvement achieved by the EHC relocation over a simpler, standard, 1-D location is more than 20 per cent for both epicentral mislocation and origin time-shifts.

  3. Constraining dark matter late-time energy injection: decays and p-wave annihilations

    SciTech Connect

    Diamanti, Roberta; Mena, Olga; Palomares-Ruiz, Sergio; Vincent, Aaron C.; Lopez-Honorez, Laura E-mail: llopezho@vub.ac.be E-mail: sergio.palomares.ruiz@ific.uv.es

    2014-02-01

    We use the latest cosmic microwave background (CMB) observations to provide updated constraints on the dark matter lifetime as well as on p-wave suppressed annihilation cross sections in the 1 MeV to 1 TeV mass range. In contrast to scenarios with an s-wave dominated annihilation cross section, which mainly affect the CMB close to the last scattering surface, signatures associated with these scenarios essentially appear at low redshifts (z∼<50) when structure began to form, and thus manifest at lower multipoles in the CMB power spectrum. We use data from Planck, WMAP9, SPT and ACT, as well as Lyman–α measurements of the matter temperature at z ∼ 4 to set a 95% confidence level lower bound on the dark matter lifetime of ∼ 4 × 10{sup 25} s for m{sub χ} = 100 MeV. This bound becomes lower by an order of magnitude at m{sub χ} = 1 TeV due to inefficient energy deposition into the intergalactic medium. We also show that structure formation can enhance the effect of p-wave suppressed annihilation cross sections by many orders of magnitude with respect to the background cosmological rate, although even with this enhancement, CMB constraints are not yet strong enough to reach the thermal relic value of the cross section.

  4. Staring 2-D hadamard transform spectral imager

    DOEpatents

    Gentry, Stephen M.; Wehlburg, Christine M.; Wehlburg, Joseph C.; Smith, Mark W.; Smith, Jody L.

    2006-02-07

    A staring imaging system inputs a 2D spatial image containing multi-frequency spectral information. This image is encoded in one dimension of the image with a cyclic Hadamarid S-matrix. The resulting image is detecting with a spatial 2D detector; and a computer applies a Hadamard transform to recover the encoded image.

  5. The velocity distribution of cometary hydrogen - Evidence for high velocities?

    NASA Technical Reports Server (NTRS)

    Brown, Michael E.; Spinrad, Hyron

    1993-01-01

    The Hamilton Echelle spectrograph on the 3-m Shane telescope at Lick Observatory was used to obtain high-velocity and spatial resolution 2D spectra of H-alpha 6563-A emission in Comets Austin and Levy. The presence of the components expected from water dissociation and collisional thermalization in the inner coma is confirmed by the hydrogen velocity distribution. In Comet Austin, the potential high-velocity hydrogen includes velocities of up to about 40 km/s and is spatially symmetric with respect to the nucleus. In Comet Levy, the high-velocity hydrogen reaches velocities of up to 50 km/s and is situated exclusively on the sunward side of the nucleus. The two distinct signatures of high-velocity hydrogen imply two distinct sources.

  6. LLNL-G3Dv3: Global P-wave tomography model for improved regional and teleseismic travel time prediction

    NASA Astrophysics Data System (ADS)

    Simmons, Nathan A.; Myers, Steve C.; Johannesson, Gardar; Matzel, Eric

    2013-04-01

    We develop a global-scale P-wave velocity model (LLNL-G3Dv3) designed to accurately predict seismic travel times at regional and teleseismic distances simultaneously. The model provides a new image of Earth's interior, but the underlying practical purpose of the model is to provide enhanced seismic event location capabilities. The LLNL-G3Dv3 model is based on ~2.8 million P and Pn arrivals that are re-processed using our global multiple-event locator called Bayesloc. We construct LLNL-G3Dv3 within a spherical tessellation based framework, allowing for explicit representation of undulating and discontinuous layers including the crust and transition zone layers. Using a multi-scale inversion technique, regional trends as well as fine details are captured where the data allow. LLNL-G3Dv3 exhibits large-scale structures including cratons and superplumes as well numerous complex details in the upper mantle including within the transition zone. Particularly, the model reveals new details of a vast network of subducted slabs trapped within the transition beneath much of Eurasia, including beneath the Tibetan Plateau. We demonstrate the impact of Bayesloc multiple-event location on the resulting tomographic images through comparison with images produced without the benefit of multiple-event constraints (single-event locations). We find that the multiple-event locations allow for better reconciliation of the large set of direct P phases recorded at 0-97° distance and yield a smoother and more continuous image relative to the single-event locations. Travel times predicted from a 3-D model are also found to be strongly influenced by the initial locations of the input data, even when an iterative inversion/relocation technique is employed. This work performed under the auspices of the U.S. Department of Energy by Lawrence Livermore National Laboratory under Contract DE-AC52-07NA27344. LLNL-ABS-559093

  7. Finite-frequency measurements of conventional and core-diffracted P-waves (P and Pdiff) for waveform tomography

    NASA Astrophysics Data System (ADS)

    Hosseini, Kasra; Sigloch, Karin; Staehler, Simon C.

    2014-05-01

    In its lowermost 200-300 km, the mantle has a complex structure resulting from accumulations of downwellings (subducted slabs), upwellings (LLSVPs and plumes), and probably phase transitions; seismic velocities and density show large variations but are not tightly constrained. Core-diffracted body waves are the seismic phases that sample the lowermost mantle extensively and are prime candidates to be used in tomography for enhancing resolution in this depth range. Since they are diffracted along the core-mantle boundary, their behavior is highly dispersive and cannot be modeled satisfactory using ray theory, nor early versions of finite-frequency modeling. Hence they have rarely been used for tomography so far, and where they have been, large imaging blur can be expected. We present a processing scheme to measure finite-frequency travel-time anomalies of arbitrary seismic body-wave phases in a fully automated way, with an initial focus on core-diffracted P waves. The aim is to extract a maximum of information from observed broadband seismograms using multi-frequency techniques. Using a matched-filtering approach, predicted and observed waveforms are compared in a cross-correlation sense in eight overlapping frequency passbands, with dominant periods ranging between 30 and 2.7sec. This method was applied to a global data set of ≡2000 teleseismic events in our waveform archive, which resulted in 1,616,184 P and 536,190 Pdiff usable multi-frequency measurements of high cross-correlation coefficient (≥ 0.8). The measurements are analyzed statistically in terms of goodness of fit, effects of epicentral distance, and frequency-dependent behavior of P and Pdiff phases. The results for Pdiff waves are displayed by projecting the measured travel time anomalies onto the phase's nominal grazing segments along the core-mantle boundary.

  8. 2-D Magnetohydrodynamic Modeling of A Pulsed Plasma Thruster

    NASA Technical Reports Server (NTRS)

    Thio, Y. C. Francis; Cassibry, J. T.; Wu, S. T.; Rodgers, Stephen L. (Technical Monitor)

    2002-01-01

    Experiments are being performed on the NASA Marshall Space Flight Center (MSFC) MK-1 pulsed plasma thruster. Data produced from the experiments provide an opportunity to further understand the plasma dynamics in these thrusters via detailed computational modeling. The detailed and accurate understanding of the plasma dynamics in these devices holds the key towards extending their capabilities in a number of applications, including their applications as high power (greater than 1 MW) thrusters, and their use for producing high-velocity, uniform plasma jets for experimental purposes. For this study, the 2-D MHD modeling code, MACH2, is used to provide detailed interpretation of the experimental data. At the same time, a 0-D physics model of the plasma initial phase is developed to guide our 2-D modeling studies.

  9. Defect Dynamics in Active 2D Nematic Liquid Crystals

    NASA Astrophysics Data System (ADS)

    Decamp, Stephen; Redner, Gabriel; Hagan, Michael; Dogic, Zvonimir

    2014-03-01

    Active materials are assemblies of animate, energy-consuming objects that exhibit continuous dynamics. As such, they have properties that are dramatically different from those found in conventional materials made of inanimate objects. We present a 2D active nematic liquid crystal composed of bundled microtubules and kinesin motor proteins that exists in a dynamic steady-state far from equilibrium. The active nematic exhibits spontaneous binding and unbinding of charge +1/2 and -1/2 disclination defects as well as streaming of +1/2 defects. By tuning ATP concentration, we precisely control the amount of activity, a key parameter of the system. We characterize the dynamics of streaming defects on a large, flat, 2D interface using quantitative polarization light microscopy. We report fundamental characteristics of the active nematics such as defect velocities, defect creation and annihilation rates, and emergent length scales in the system.

  10. 2D materials for nanophotonic devices

    NASA Astrophysics Data System (ADS)

    Xu, Renjing; Yang, Jiong; Zhang, Shuang; Pei, Jiajie; Lu, Yuerui

    2015-12-01

    Two-dimensional (2D) materials have become very important building blocks for electronic, photonic, and phononic devices. The 2D material family has four key members, including the metallic graphene, transition metal dichalcogenide (TMD) layered semiconductors, semiconducting black phosphorous, and the insulating h-BN. Owing to the strong quantum confinements and defect-free surfaces, these atomically thin layers have offered us perfect platforms to investigate the interactions among photons, electrons and phonons. The unique interactions in these 2D materials are very important for both scientific research and application engineering. In this talk, I would like to briefly summarize and highlight the key findings, opportunities and challenges in this field. Next, I will introduce/highlight our recent achievements. We demonstrated atomically thin micro-lens and gratings using 2D MoS2, which is the thinnest optical component around the world. These devices are based on our discovery that the elastic light-matter interactions in highindex 2D materials is very strong. Also, I would like to introduce a new two-dimensional material phosphorene. Phosphorene has strongly anisotropic optical response, which creates 1D excitons in a 2D system. The strong confinement in phosphorene also enables the ultra-high trion (charged exciton) binding energies, which have been successfully measured in our experiments. Finally, I will briefly talk about the potential applications of 2D materials in energy harvesting.

  11. Internal Photoemission Spectroscopy of 2-D Materials

    NASA Astrophysics Data System (ADS)

    Nguyen, Nhan; Li, Mingda; Vishwanath, Suresh; Yan, Rusen; Xiao, Shudong; Xing, Huili; Cheng, Guangjun; Hight Walker, Angela; Zhang, Qin

    Recent research has shown the great benefits of using 2-D materials in the tunnel field-effect transistor (TFET), which is considered a promising candidate for the beyond-CMOS technology. The on-state current of TFET can be enhanced by engineering the band alignment of different 2D-2D or 2D-3D heterostructures. Here we present the internal photoemission spectroscopy (IPE) approach to determine the band alignments of various 2-D materials, in particular SnSe2 and WSe2, which have been proposed for new TFET designs. The metal-oxide-2-D semiconductor test structures are fabricated and characterized by IPE, where the band offsets from the 2-D semiconductor to the oxide conduction band minimum are determined by the threshold of the cube root of IPE yields as a function of photon energy. In particular, we find that SnSe2 has a larger electron affinity than most semiconductors and can be combined with other semiconductors to form near broken-gap heterojunctions with low barrier heights which can produce a higher on-state current. The details of data analysis of IPE and the results from Raman spectroscopy and spectroscopic ellipsometry measurements will also be presented and discussed.

  12. 2D materials: to graphene and beyond.

    PubMed

    Mas-Ballesté, Rubén; Gómez-Navarro, Cristina; Gómez-Herrero, Julio; Zamora, Félix

    2011-01-01

    This review is an attempt to illustrate the different alternatives in the field of 2D materials. Graphene seems to be just the tip of the iceberg and we show how the discovery of alternative 2D materials is starting to show the rest of this iceberg. The review comprises the current state-of-the-art of the vast literature in concepts and methods already known for isolation and characterization of graphene, and rationalizes the quite disperse literature in other 2D materials such as metal oxides, hydroxides and chalcogenides, and metal-organic frameworks.

  13. Cascadia tremor located near plate interface constrained by S minus P wave times.

    PubMed

    La Rocca, Mario; Creager, Kenneth C; Galluzzo, Danilo; Malone, Steve; Vidale, John E; Sweet, Justin R; Wech, Aaron G

    2009-01-30

    Nonvolcanic tremor is difficult to locate because it does not produce impulsive phases identifiable across a seismic network. An alternative approach to identifying specific phases is to measure the lag between the S and P waves. We cross-correlate vertical and horizontal seismograms to reveal signals common to both, but with the horizontal delayed with respect to the vertical. This lagged correlation represents the time interval between vertical compressional waves and horizontal shear waves. Measurements of this interval, combined with location techniques, resolve the depth of tremor sources within +/-2 kilometers. For recent Cascadia tremor, the sources locate near or on the subducting slab interface. Strong correlations and steady S-P time differences imply that tremor consists of radiation from repeating sources. PMID:19179527

  14. Cascadia tremor located near plate interface constrained by S minus P wave times.

    PubMed

    La Rocca, Mario; Creager, Kenneth C; Galluzzo, Danilo; Malone, Steve; Vidale, John E; Sweet, Justin R; Wech, Aaron G

    2009-01-30

    Nonvolcanic tremor is difficult to locate because it does not produce impulsive phases identifiable across a seismic network. An alternative approach to identifying specific phases is to measure the lag between the S and P waves. We cross-correlate vertical and horizontal seismograms to reveal signals common to both, but with the horizontal delayed with respect to the vertical. This lagged correlation represents the time interval between vertical compressional waves and horizontal shear waves. Measurements of this interval, combined with location techniques, resolve the depth of tremor sources within +/-2 kilometers. For recent Cascadia tremor, the sources locate near or on the subducting slab interface. Strong correlations and steady S-P time differences imply that tremor consists of radiation from repeating sources.

  15. Three-body bound states in atomic mixtures with resonant p-wave interaction.

    PubMed

    Efremov, Maxim A; Plimak, Lev; Ivanov, Misha Yu; Schleich, Wolfgang P

    2013-09-13

    We employ the Born-Oppenheimer approximation to find the effective potential in a three-body system consisting of a light particle and two heavy ones when the heavy-light short-range interaction potential has a resonance corresponding to a nonzero orbital angular momentum. In the case of an exact resonance in the p-wave scattering amplitude, the effective potential is attractive and long range; namely, it decreases as the third power of the interatomic distance. Moreover, we show that the range and power of the potential, as well as the number of bound states, are determined by the mass ratio of the particles and the parameters of the heavy-light short-range potential. PMID:24074084

  16. Manifestation of the P -wave diproton resonance in single-pion production in p p collisions

    NASA Astrophysics Data System (ADS)

    Platonova, M. N.; Kukulin, V. I.

    2016-09-01

    It is demonstrated that many important features of single-pion production in p p collisions at intermediate energies (Tp≃400 - 800 MeV ) can naturally be explained by supposing excitation of intermediate diproton resonances in p p channels 1D2 , 3F3 and 3P2 , in addition to conventional mechanisms involving an intermediate Δ -isobar. We predict for the first time the crucial role of the 3P2 diproton resonance, found in recent experiments on the single-pion production reaction p p →p p (1S0 )π0 , in reproducing the proper behavior of spin-correlation parameters in the reaction p p →d π+ which were poorly described by conventional meson-exchange models to date. The possible quark structure of the P -wave diproton resonances is also discussed.

  17. Magnetic-field effects on p-wave phase transition in Gauss-Bonnet gravity

    NASA Astrophysics Data System (ADS)

    Wu, Ya-Bo; Lu, Jun-Wang; Jin, Yong-Yi; Lu, Jian-Bo; Zhang, Xue; Wu, Si-Yu; Wang, Cui

    2014-07-01

    In the probe limit, we study the holographic p-wave phase transition in the Gauss-Bonnet gravity via numerical and analytical methods. Concretely, we study the influences of the external magnetic field on the Maxwell complex vector model in the five-dimensional Gauss-Bonnet-AdS black hole and soliton backgrounds, respectively. For the two backgrounds, the results show that the magnetic field enhances the superconductor phase transition in the case of the lowest Landau level, while the increasing Gauss-Bonnet parameter always hinders the vector condensate. Moreover, the Maxwell complex vector model is a generalization of the SU(2) Yang-Mills model all the time. In addition, the analytical results backup the numerical results. Furthermore, this model might provide a holographic realization for the QCD vacuum instability.

  18. Energy space entanglement spectrum of pairing models with s-wave and p-wave symmetry

    NASA Astrophysics Data System (ADS)

    Rodríguez-Laguna, Javier; Berganza, Miguel Ibáñez; Sierra, Germán

    2014-07-01

    We study the entanglement between blocks of energy levels in 1D models for s-wave and p-wave superconductivity. The ground state entanglement entropy and entanglement spectrum (ES) of a block of ℓ levels around the Fermi point is obtained and related to its physical properties. In the superconducting phase at large coupling, the maximal entropy grows with the number of levels L as 1/2ln(L). The number of levels presenting maximal entanglement is shown to estimate the number of Cooper pairs involved in pairing correlations. Moreover, the properties of the ES signal the presence of the Read-Green quantum phase transition in the p +ip model, and of the Moore-Read line, which is difficult to characterize. This work establishes a link between physical properties of superconducting phases and quantum entanglement.

  19. p-Wave superfluidity by spin-nematic Fermi surface deformation.

    PubMed

    Gukelberger, Jan; Kozik, Evgeny; Pollet, Lode; Prokof'ev, Nikolay; Sigrist, Manfred; Svistunov, Boris; Troyer, Matthias

    2014-11-01

    We study attractively interacting fermions on a square lattice with dispersion relations exhibiting strong spin-dependent anisotropy. The resulting Fermi surface mismatch suppresses the s-wave BCS-type instability, clearing the way for unconventional types of order. Unbiased sampling of the Feynman diagrammatic series using diagrammatic Monte Carlo methods reveals a rich phase diagram in the regime of intermediate coupling strength. Instead of a proposed Cooper-pair Bose metal phase [A. E. Feiguin and M. P. A. Fisher, Phys. Rev. Lett. 103, 025303 (2009)], we find an incommensurate density wave at strong anisotropy and two different p-wave superfluid states with unconventional symmetry at intermediate anisotropy. PMID:25415910

  20. 2-d Finite Element Code Postprocessor

    1996-07-15

    ORION is an interactive program that serves as a postprocessor for the analysis programs NIKE2D, DYNA2D, TOPAZ2D, and CHEMICAL TOPAZ2D. ORION reads binary plot files generated by the two-dimensional finite element codes currently used by the Methods Development Group at LLNL. Contour and color fringe plots of a large number of quantities may be displayed on meshes consisting of triangular and quadrilateral elements. ORION can compute strain measures, interface pressures along slide lines, reaction forcesmore » along constrained boundaries, and momentum. ORION has been applied to study the response of two-dimensional solids and structures undergoing finite deformations under a wide variety of large deformation transient dynamic and static problems and heat transfer analyses.« less

  1. Matrix models of 2d gravity

    SciTech Connect

    Ginsparg, P.

    1991-01-01

    These are introductory lectures for a general audience that give an overview of the subject of matrix models and their application to random surfaces, 2d gravity, and string theory. They are intentionally 1.5 years out of date.

  2. Matrix models of 2d gravity

    SciTech Connect

    Ginsparg, P.

    1991-12-31

    These are introductory lectures for a general audience that give an overview of the subject of matrix models and their application to random surfaces, 2d gravity, and string theory. They are intentionally 1.5 years out of date.

  3. Brittle damage models in DYNA2D

    SciTech Connect

    Faux, D.R.

    1997-09-01

    DYNA2D is an explicit Lagrangian finite element code used to model dynamic events where stress wave interactions influence the overall response of the system. DYNA2D is often used to model penetration problems involving ductile-to-ductile impacts; however, with the advent of the use of ceramics in the armor-anti-armor community and the need to model damage to laser optics components, good brittle damage models are now needed in DYNA2D. This report will detail the implementation of four brittle damage models in DYNA2D, three scalar damage models and one tensor damage model. These new brittle damage models are then used to predict experimental results from three distinctly different glass damage problems.

  4. Chemical Approaches to 2D Materials.

    PubMed

    Samorì, Paolo; Palermo, Vincenzo; Feng, Xinliang

    2016-08-01

    Chemistry plays an ever-increasing role in the production, functionalization, processing and applications of graphene and other 2D materials. This special issue highlights a selection of enlightening chemical approaches to 2D materials, which nicely reflect the breadth of the field and convey the excitement of the individuals involved in it, who are trying to translate graphene and related materials from the laboratory into a real, high-impact technology. PMID:27478083

  5. Chemical Approaches to 2D Materials.

    PubMed

    Samorì, Paolo; Palermo, Vincenzo; Feng, Xinliang

    2016-08-01

    Chemistry plays an ever-increasing role in the production, functionalization, processing and applications of graphene and other 2D materials. This special issue highlights a selection of enlightening chemical approaches to 2D materials, which nicely reflect the breadth of the field and convey the excitement of the individuals involved in it, who are trying to translate graphene and related materials from the laboratory into a real, high-impact technology.

  6. Glitter in a 2D monolayer.

    PubMed

    Yang, Li-Ming; Dornfeld, Matthew; Frauenheim, Thomas; Ganz, Eric

    2015-10-21

    We predict a highly stable and robust atomically thin gold monolayer with a hexagonal close packed lattice stabilized by metallic bonding with contributions from strong relativistic effects and aurophilic interactions. We have shown that the framework of the Au monolayer can survive 10 ps MD annealing simulations up to 1400 K. The framework is also able to survive large motions out of the plane. Due to the smaller number of bonds per atom in the 2D layer compared to the 3D bulk we observe significantly enhanced energy per bond (0.94 vs. 0.52 eV per bond). This is similar to the increase in bond strength going from 3D diamond to 2D graphene. It is a non-magnetic metal, and was found to be the global minima in the 2D space. Phonon dispersion calculations demonstrate high kinetic stability with no negative modes. This 2D gold monolayer corresponds to the top monolayer of the bulk Au(111) face-centered cubic lattice. The close-packed lattice maximizes the aurophilic interactions. We find that the electrons are completely delocalized in the plane and behave as 2D nearly free electron gas. We hope that the present work can inspire the experimental fabrication of novel free standing 2D metal systems.

  7. 2d index and surface operators

    NASA Astrophysics Data System (ADS)

    Gadde, Abhijit; Gukov, Sergei

    2014-03-01

    In this paper we compute the superconformal index of 2d (2, 2) supersymmetric gauge theories. The 2d superconformal index, a.k.a. flavored elliptic genus, is computed by a unitary matrix integral much like the matrix integral that computes the 4d superconformal index. We compute the 2d index explicitly for a number of examples. In the case of abelian gauge theories we see that the index is invariant under flop transition and under CY-LG correspondence. The index also provides a powerful check of the Seiberg-type duality for non-abelian gauge theories discovered by Hori and Tong. In the later half of the paper, we study half-BPS surface operators in = 2 super-conformal gauge theories. They are engineered by coupling the 2d (2, 2) supersymmetric gauge theory living on the support of the surface operator to the 4d = 2 theory, so that different realizations of the same surface operator with a given Levi type are related by a 2d analogue of the Seiberg duality. The index of this coupled system is computed by using the tools developed in the first half of the paper. The superconformal index in the presence of surface defect is expected to be invariant under generalized S-duality. We demonstrate that it is indeed the case. In doing so the Seiberg-type duality of the 2d theory plays an important role.

  8. Core size effect on the dry and saturated ultrasonic pulse velocity of limestone samples.

    PubMed

    Ercikdi, Bayram; Karaman, Kadir; Cihangir, Ferdi; Yılmaz, Tekin; Aliyazıcıoğlu, Şener; Kesimal, Ayhan

    2016-12-01

    This study presents the effect of core length on the saturated (UPVsat) and dry (UPVdry) P-wave velocities of four different biomicritic limestone samples, namely light grey (BL-LG), dark grey (BL-DG), reddish (BL-R) and yellow (BL-Y), using core samples having different lengths (25-125mm) at a constant diameter (54.7mm). The saturated P-wave velocity (UPVsat) of all core samples generally decreased with increasing the sample length. However, the dry P-wave velocity (UPVdry) of samples obtained from BL-LG and BL-Y limestones increased with increasing the sample length. In contrast to the literature, the dry P-wave velocity (UPVdry) values of core samples having a length of 75, 100 and 125mm were consistently higher (2.8-46.2%) than those of saturated (UPVsat). Chemical and mineralogical analyses have shown that the P wave velocity is very sensitive to the calcite and clay minerals potentially leading to the weakening/disintegration of rock samples in the presence of water. Severe fluctuations in UPV values were observed to occur between 25 and 75mm sample lengths, thereafter, a trend of stabilization was observed. The maximum variation of UPV values between the sample length of 75mm and 125mm was only 7.3%. Therefore, the threshold core sample length was interpreted as 75mm for UPV measurement in biomicritic limestone samples used in this study.

  9. Core size effect on the dry and saturated ultrasonic pulse velocity of limestone samples.

    PubMed

    Ercikdi, Bayram; Karaman, Kadir; Cihangir, Ferdi; Yılmaz, Tekin; Aliyazıcıoğlu, Şener; Kesimal, Ayhan

    2016-12-01

    This study presents the effect of core length on the saturated (UPVsat) and dry (UPVdry) P-wave velocities of four different biomicritic limestone samples, namely light grey (BL-LG), dark grey (BL-DG), reddish (BL-R) and yellow (BL-Y), using core samples having different lengths (25-125mm) at a constant diameter (54.7mm). The saturated P-wave velocity (UPVsat) of all core samples generally decreased with increasing the sample length. However, the dry P-wave velocity (UPVdry) of samples obtained from BL-LG and BL-Y limestones increased with increasing the sample length. In contrast to the literature, the dry P-wave velocity (UPVdry) values of core samples having a length of 75, 100 and 125mm were consistently higher (2.8-46.2%) than those of saturated (UPVsat). Chemical and mineralogical analyses have shown that the P wave velocity is very sensitive to the calcite and clay minerals potentially leading to the weakening/disintegration of rock samples in the presence of water. Severe fluctuations in UPV values were observed to occur between 25 and 75mm sample lengths, thereafter, a trend of stabilization was observed. The maximum variation of UPV values between the sample length of 75mm and 125mm was only 7.3%. Therefore, the threshold core sample length was interpreted as 75mm for UPV measurement in biomicritic limestone samples used in this study. PMID:27529138

  10. Relationship between Entrainment and Static Pressure Field on 2-D Jets.

    NASA Astrophysics Data System (ADS)

    Kimura, M.; Ono, K.; Saima, A.

    1996-11-01

    It is well know that entrainment carried out in wakes and jets. This experimental study aimes at investigation the relationship between the entrainment and the pressure field in 2-D jet. The 2-D jet was generated by 2-D rectangular wind tunnel. The velocity and prressure fields were observed in order to investigate the free shear layer of jet. These value were measured by the x type hot-wire anemometer, LDV and the newly developed static pressure probe. Jet diffusion process is visualized by smoke wire method. The result of the experiment was that the static pressure fluctuated intensively, and was negative mean value because of the velocity intermittence in the free shear layer of the 2-D jet. It seems reasonable to suppose that entrainment occurs owing to the negative static pressure by the eddy motion and large scale convection in the free shear layer.

  11. Wide-Field H2D+ Observations of Starless Cores

    NASA Astrophysics Data System (ADS)

    Di Francesco, James; Friesen, R.; Caselli, P.; Myers, P. C.; van der Tak, F. F. S.; Ceccarelli, C.

    2009-01-01

    In recent years, isolated starless cores have been revealed to have significant chemical differentiation with very low abundances of carbon-bearing molecules (such as CO and its isotopologues) in their cold, dense interiors. The inner regions of such cores, however, may be quite interesting, e.g., if contraction or collapse begins there. To explore these regions, we present detections of six isolated starless cores in the 110-111 line of H2D+ at 372 GHz using the new HARP instrument at the James Clerk Maxwell Telescope. Since the detection of this line requires very dry conditions on Mauna Kea (i.e., κ(225 GHz) < 0.05), only a multi-beam receiver system like the 4 X 4 HARP array can locate H2D+ emission across such cores in a practical amount of observing time. In all cases, the brightest line emission is coincident with the local peak of submillimeter continuum emission, but significant H2D+ emission is detected offset from the continuum peak in some. In addition, we describe the thermal and turbulent velocity fields in these cores revealed by these lines.

  12. Definition of Contravariant Velocity Components

    NASA Technical Reports Server (NTRS)

    Hung, Ching-Mao; Kwak, Dochan (Technical Monitor)

    2002-01-01

    This is an old issue in computational fluid dynamics (CFD). What is the so-called contravariant velocity or contravariant velocity component? In the article, we review the basics of tensor analysis and give the contravariant velocity component a rigorous explanation. For a given coordinate system, there exist two uniquely determined sets of base vector systems - one is the covariant and another is the contravariant base vector system. The two base vector systems are reciprocal. The so-called contravariant velocity component is really the contravariant component of a velocity vector for a time-independent coordinate system, or the contravariant component of a relative velocity between fluid and coordinates, for a time-dependent coordinate system. The contravariant velocity components are not physical quantities of the velocity vector. Their magnitudes, dimensions, and associated directions are controlled by their corresponding covariant base vectors. Several 2-D (two-dimensional) linear examples and 2-D mass-conservation equation are used to illustrate the details of expressing a vector with respect to the covariant and contravariant base vector systems, respectively.

  13. 3D crustal seismic velocity model for the Gulf of Cadiz and adjacent areas (SW Iberia margin) based on seismic reflection and refraction profiles

    NASA Astrophysics Data System (ADS)

    Lozano, Lucía; Cantavella, Juan Vicente; Barco, Jaime; Carranza, Marta; Burforn, Elisa

    2016-04-01

    The Atlantic margin of the SW Iberian Peninsula and northern Morocco has been subject of study during the last 30 years. Many seismic reflection and refraction profiles have been carried out offshore, providing detailed information about the crustal structure of the main seafloor tectonic domains in the region, from the South Portuguese Zone and the Gulf of Cadiz to the Abyssal Plains and the Josephine Seamount. The interest to obtain a detailed and realistic velocity model for this area, integrating the available data from these studies, is clear, mainly to improve real-time earthquake hypocentral location and for tsunami and earthquake early warning. Since currently real-time seismic location tools allow the implementation of 3D velocity models, we aim to generate a full 3D crustal model. For this purpose we have reviewed more than 50 profiles obtained in different seismic surveys, from 1980 to 2008. Data from the most relevant and reliable 2D seismic velocity published profiles were retrieved. We first generated a Moho depth map of the studied area (latitude 32°N - 41°N and longitude 15°W - 5°W) by extracting Moho depths along each digitized profile with a 10 km spacing, and then interpolating this dataset using ordinary kriging method and generating the contour isodepth map. Then, a 3D crustal velocity model has been obtained. Selected vertical sections at different distances along each profile were considered to retrieve P-wave velocity values at each interface in order to reproduce the geometry and the velocity gradient within each layer. A double linear interpolation, both in distance and depth, with sampling rates of 10 km and 1 km respectively, was carried out to generate a (latitude, longitude, depth, velocity) matrix. This database of all the profiles was interpolated to obtain the P-wave velocity distribution map every kilometer of depth. The new 3D velocity model has been integrated in NonLinLoc location program to relocate several representative

  14. Implications of elastic wave velocities for Apollo 17 rock powders

    NASA Technical Reports Server (NTRS)

    Talwani, P.; Nur, A.; Kovach, R. L.

    1974-01-01

    Ultrasonic P- and S-wave velocities of lunar rock powders 172701, 172161, 170051, and 175081 were measured at room temperature and to 2.5 kb confining pressure. The results compare well with those of terrestrial volcanic ash and powdered basalt. P-wave velocity values up to pressures corresponding to a lunar depth of 1.4 km preclude cold compaction alone as an explanation for the observed seismic velocity structure at the Apollo 17 site. Application of small amounts of heat with simultaneous application of pressure causes rock powders to achieve equivalence of seismic velocities for competent rocks.

  15. Identifying seismic noise sources and their amplitude from P wave microseisms.

    NASA Astrophysics Data System (ADS)

    Neale, Jennifer; Harmon, Nicholas; Srokosz, Meric

    2016-04-01

    Understanding sources of seismic noise is important for a range of applications including seismic imagery, time-lapse, and climate studies. For locating sources from seismic data, body waves offer an advantage over surface waves because they can reveal the distance to the source as well as direction. Studies have found that body waves do originate from regions predicted by models (Obrebski et al., 2013), where wave interaction intensity and site effect combine to produce the source (Ardhuin & Herbers, 2013). Here, we undertake a quantitative comparison between observed body wave microseisms and modelled sources- in terms of location, amplitude, and spectral shape- with the aim of understanding how well sources are observed and potentially what they reveal about the underlying ocean wavefield. We used seismic stations from the Southern California Seismic Network, and computed beamformer output as a function of time, frequency, slowness and azimuth. During winter months (October - mid March) the dominant arrivals at frequencies 0.18-0.22 Hz were P waves that originated from the North Pacific, whilst arrivals from the North Atlantic dominated at slightly lower frequencies of 0.16-0.18 Hz. Based on this, we chose to focus on P waves during winter, and back-projected the beamformer energy onto a global grid using P wave travel timetables (following Gerstoft et al., 2008). We modelled the seismic sources using Wavewatch III and site effect coefficients calculated following Ardhuin and Herbers (2013). We output the beamformer and the modelled sources on a 2° global grid averaged over 6 hour periods from September 2012 to September 2014, at seismic frequencies of 0.06 to 0.3 Hz. We then integrated the spectra over the full frequency range. Here we focus on results from the first winter in the North Pacific. Preliminary results indicate that the logarithm of the modelled source and the logarithm of the beamformer output are well described by a two-term exponential model

  16. Mariscope: Observing P Waves (and much more) Everywhere in the Oceans

    NASA Astrophysics Data System (ADS)

    Nolet, G.; Hello, Y.; Bonnieux, S.; Sukhovich, A.; Simons, F. J.

    2014-12-01

    The lack of stations on islands or the ocean bottom deprives seismic tomographers of almost 2/3 of the information potentially available for global seismic tomography. The "Mermaid", developed at Geoazur, is an underwater seismograph, based on a TWR Apex float. P wave signals are automatically identified and transmitted using the detection algorithm from Sukhovich et al. (GRL, 2011), GPS is used to locate the sensor at the time of transmission. We have studied the performance of Mermaids under different noise conditions in the Mediterranean, Indian Ocean and most recently near the Galapagos islands and will show a selection of observations. In the Mediterranean, we regularly detect P waves at teleseismic distances of earthquakes with magnitude 6, occasionally below that. Local and regional earthquakes of much lower magnitude, such as a M 4.9 earthquake near Barcelonette (figure), yield seismograms with a high signal to noise ratio.In the much noisier environment of the Indian Ocean the threshold for useful seismograms is close to magnitude 6.5. Yet we were also able to record 235 low magnitude events when a Mermaid was close to a swarm near the Indian Ocean triple junction, with the lowest magnitude estimated to be 2.1; this sequence also enabled us to put an upper limit of about 250 m to the error in sensor location at the time of recording. Preliminary data from the Galapagos indicate low noise conditions similar to those in the Mediterranean, with good recordings of events in the magnitude 5 range.A new prototype of a spherical "MultiMermaid" is currently being tested. It allows for multidisciplinary observations (seismic and kHz acoustics, magnetic field, temperature, bathymetry) and will function about five years with lithium batteries. A global deployment of such instruments in a five-year program is affordable: project MariScope aims for at least 300 floating seismometers in the world's oceans. At the time of writing of this abstract, a proposal is being

  17. Novel P Wave Indices to Predict Atrial Fibrillation Recurrence After Radiofrequency Ablation for Paroxysmal Atrial Fibrillation

    PubMed Central

    Hu, Xiaoliang; Jiang, Jingzhou; Ma, Yuedong; Tang, Anli

    2016-01-01

    Background Circumferential pulmonary vein isolation (CPVI) is a widely used treatment for paroxysmal atrial fibrillation (AF). Several P wave duration (PWD) parameters have been suggested to predict post-ablation recurrence, but their use remains controversial. This study aimed to identify novel P wave indices that predict post-ablation AF recurrence. Material/Methods We selected 171 consecutive patients undergoing CPVI for paroxysmal AF. Electrocardiography (ECG) recordings were obtained at the beginning and the end of ablation. PWD was measured in all 12 leads. The PWD variation was calculated by subtracting the pre-ablation PWD from the post-ablation PWD. Results PWD was significantly shortened in leads II, III, aVF, and V1 after ablation. During a mean follow-up of 19.96±4.32 months, AF recurrence occurred in 32 (18.7%) patients. No significant differences in baseline characteristics or pre- or post-ablation PWD were observed between the AF recurrence and non-recurrence groups. Patients with AF recurrence exhibited a smaller PWD variation in leads II (1.21(−0.56, 2.40) vs. −5.77(−9.10, −4.06) ms, P<0.001), III (−5.92(−9.87, 3.27) vs. −9.44(−11.89, −5.57) ms, P=0.001) and V1 (−4.43(−6.64, −3.13) vs. −6.33(−8.19,−4.59) ms, P=0.003). Multivariable logistic regression analysis demonstrated that smaller PWD variations in lead II and III were independent risk factors for AF recurrence. PWD variation ≥−2.21 ms in lead II displayed the highest combined sensitivity and specificity (85.29% and 83.94%, respectively) for predicting post-ablation AF recurrence. A PWD variation ≥0 ms displayed the best practical value in predicting AF recurrence. Conclusions PWD variation in lead II is an effective predictor of post-ablation AF recurrence. PMID:27450644

  18. Eastern Termination of the Subducting African Lithosphere Beneath Anatolia Imaged by Teleseismic P-Wave Tomography

    NASA Astrophysics Data System (ADS)

    Biryol, C. B.; Zandt, G.; Beck, S. L.; Ozacar, A.; Schmandt, B.

    2009-12-01

    A variety of complex tectonic processes are active in Anatolia. Collision related plateau formation dominates the present lithospheric deformation toward the east and slab roll-back related back-arc extension takes place toward the west. The two zones are connected at the northern part of the region by strike-slip faulting along the right-lateral North Anatolian Fault. Recent seismological studies show that the Eastern Anatolian Plateau (EAP) is supported by hot asthenosphereric material that was emplaced beneath the plateau following the detachment of subducted Arabian lithosphere. The westward continuation of the deeper structure of Anatolia is less well constrained due to the lack of geophysical observations. In order to study how the deeper lithosphere and mantle structure evolves spatially from east to west, we used teleseismic P-wave tomography and data from several temporary and permanent seismic networks deployed in the region. A major part of the data comes from the North Anatolian Fault passive seismic experiment (NAF) that consists of 39 broadband seismic stations operated at the north central part of Anatolia between 2005 - 2008. We also used data collected from permanent seismic stations of the National Earthquake Monitoring Center (NEMC) and stations from the Eastern Turkey Seismic Experiment (ETSE). Approximately 15,000 P-wave travel time residuals, measured in multiple frequency bands, are inverted using approximate finite-frequency sensitivity kernels. Our tomographic model reveals a fast anomaly that corresponds to the subducted portion of the African lithosphere along the Cyprean Arc. This fast anomaly dips northward beneath central Anatolia with an angle of approximately 45 degrees. However, the anomaly disappears rather sharply east of 36 degree longitude. This eastern edge of the slab also marks the western boundary of the EAP and Arabia-Eurasia collision zone. Beneath EAP our model reveals distributed slow anomalies down to 400 km and upper

  19. Three-dimenstional crustal velocity structure beneath the strait of georgia, British Columbia

    USGS Publications Warehouse

    Zelt, B.C.; Ellis, R.M.; Zelt, C.A.; Hyndman, R.D.; Lowe, C.; Spence, G.D.; Fisher, M.A.

    2001-01-01

    The Strait of Georgia is a topographic depression straddling the boundary between the Insular and Coast belts in southwestern British Columbia. Two shallow earthquakes located within the strait (M = 4.6 in 1997 and M = 5.0 in 1975) and felt throughout the Vancouver area illustrate the seismic potential of this region. As part of the 1998 Seismic Hazards Investigation of Puget Sound (SHIPS) experiment, seismic instruments were placed in and around the Strait of Georgia to record shots from a marine source within the strait. We apply a tomographic inversion procedure to first-arrival travel-time data to derive a minimum-structure 3-D P-wave velocity model for the upper crust to about 13 km depth. We also present a 2-D velocity model for a profile orientated across the Strait of Georgia derived using a minimum-parameter traveltime inversion approach. This paper represents the first detailed look at crustal velocity variations within the major Cretaceous to Cenozoic Georgia Basin, which underlies the Strait of Georgia. The 3-D velocity model clearly delineates the structure of the Georgia Basin. Taking the 6 km s-1 isovelocity contour to represent the top of the underlying basement, the basin thickens from between 2 and 4 km in the northwestern half of the strait to between 8 and 9 km at the southeastern end of the study region. Basin velocities in the northeastern half are 4.5-6 km s-1 and primarily represent the Upper Cretaceous Nanaimo Group. Velocities to the south are lower (3-6 km s-1) because of the additional presence of the overlying Tertiary Huntingdon Formation and more recent sediments, including glacial and modern Fraser River deposits. In contrast to the relatively smoothly varying velocity structure of the basin, velocities of the basement rocks, which comprise primarily Palaeozoic to Jurassic rocks of the Wrangellia Terrane and possibly Jurassic to mid-Cretaceous granitic rocks of the Coast Belt, show significantly more structure, probably an indication

  20. Orthotropic Piezoelectricity in 2D Nanocellulose

    NASA Astrophysics Data System (ADS)

    García, Y.; Ruiz-Blanco, Yasser B.; Marrero-Ponce, Yovani; Sotomayor-Torres, C. M.

    2016-10-01

    The control of electromechanical responses within bonding regions is essential to face frontier challenges in nanotechnologies, such as molecular electronics and biotechnology. Here, we present Iβ-nanocellulose as a potentially new orthotropic 2D piezoelectric crystal. The predicted in-layer piezoelectricity is originated on a sui-generis hydrogen bonds pattern. Upon this fact and by using a combination of ab-initio and ad-hoc models, we introduce a description of electrical profiles along chemical bonds. Such developments lead to obtain a rationale for modelling the extended piezoelectric effect originated within bond scales. The order of magnitude estimated for the 2D Iβ-nanocellulose piezoelectric response, ~pm V‑1, ranks this material at the level of currently used piezoelectric energy generators and new artificial 2D designs. Such finding would be crucial for developing alternative materials to drive emerging nanotechnologies.

  1. Orthotropic Piezoelectricity in 2D Nanocellulose

    PubMed Central

    García, Y.; Ruiz-Blanco, Yasser B.; Marrero-Ponce, Yovani; Sotomayor-Torres, C. M.

    2016-01-01

    The control of electromechanical responses within bonding regions is essential to face frontier challenges in nanotechnologies, such as molecular electronics and biotechnology. Here, we present Iβ-nanocellulose as a potentially new orthotropic 2D piezoelectric crystal. The predicted in-layer piezoelectricity is originated on a sui-generis hydrogen bonds pattern. Upon this fact and by using a combination of ab-initio and ad-hoc models, we introduce a description of electrical profiles along chemical bonds. Such developments lead to obtain a rationale for modelling the extended piezoelectric effect originated within bond scales. The order of magnitude estimated for the 2D Iβ-nanocellulose piezoelectric response, ~pm V−1, ranks this material at the level of currently used piezoelectric energy generators and new artificial 2D designs. Such finding would be crucial for developing alternative materials to drive emerging nanotechnologies. PMID:27708364

  2. 2D microwave imaging reflectometer electronics

    SciTech Connect

    Spear, A. G.; Domier, C. W. Hu, X.; Muscatello, C. M.; Ren, X.; Luhmann, N. C.; Tobias, B. J.

    2014-11-15

    A 2D microwave imaging reflectometer system has been developed to visualize electron density fluctuations on the DIII-D tokamak. Simultaneously illuminated at four probe frequencies, large aperture optics image reflections from four density-dependent cutoff surfaces in the plasma over an extended region of the DIII-D plasma. Localized density fluctuations in the vicinity of the plasma cutoff surfaces modulate the plasma reflections, yielding a 2D image of electron density fluctuations. Details are presented of the receiver down conversion electronics that generate the in-phase (I) and quadrature (Q) reflectometer signals from which 2D density fluctuation data are obtained. Also presented are details on the control system and backplane used to manage the electronics as well as an introduction to the computer based control program.

  3. Optical modulators with 2D layered materials

    NASA Astrophysics Data System (ADS)

    Sun, Zhipei; Martinez, Amos; Wang, Feng

    2016-04-01

    Light modulation is an essential operation in photonics and optoelectronics. With existing and emerging technologies increasingly demanding compact, efficient, fast and broadband optical modulators, high-performance light modulation solutions are becoming indispensable. The recent realization that 2D layered materials could modulate light with superior performance has prompted intense research and significant advances, paving the way for realistic applications. In this Review, we cover the state of the art of optical modulators based on 2D materials, including graphene, transition metal dichalcogenides and black phosphorus. We discuss recent advances employing hybrid structures, such as 2D heterostructures, plasmonic structures, and silicon and fibre integrated structures. We also take a look at the future perspectives and discuss the potential of yet relatively unexplored mechanisms, such as magneto-optic and acousto-optic modulation.

  4. LLNL-G3Dv3: global P-wave tomography model for improved regional and teleseismic travel time prediction

    NASA Astrophysics Data System (ADS)

    Simmons, N. A.; Myers, S. C.; Johannesson, G.; Matzel, E.

    2013-05-01

    We develop a global-scale P-wave velocity model (LLNL-G3Dv3) designed to accurately predict seismic travel times at regional and teleseismic distances simultaneously. The model provides a new image of Earth's interior, but the underlying practical purpose of the model is to provide enhanced seismic event location capabilities. The LLNL-G3Dv3 model is based on ~2.8 million P and Pn arrivals that are re-processed using our global multiple-event locator called Bayesloc. We construct LLNL-G3Dv3 within a spherical tessellation based framework, allowing for explicit representation of undulating and discontinuous layers including the crust and transition zone layers. Using a multi-scale inversion technique, regional trends as well as fine details are captured where the data allow. LLNL-G3Dv3 exhibits large-scale structures including cratons and superplumes as well numerous complex details in the upper mantle including within the transition zone. Particularly, the model reveals new details of a vast network of subducted slabs trapped within the transition beneath much of Eurasia, including beneath the Tibetan Plateau. We demonstrate the impact of Bayesloc multiple-event location on the resulting tomographic images through comparison with images produced without the benefit of multiple-event constraints (single-event locations). We find that the multiple-event locations allow for better reconciliation of the large set of direct P phases recorded at 0-97° distance and yield a smoother and more continuous image relative to the single-event locations. Travel times predicted from a 3-D model are also found to be strongly influenced by the initial locations of the input data, even when an iterative inversion/relocation technique is employed. This work performed under the auspices of the U.S. Department of Energy by Lawrence Livermore National Laboratory under Contract DE-AC52-07NA27344. LLNL-ABS-559093 Summary of the LLNL-G3Dv3 model architecture. a) Selected levels of the

  5. Effects of inflow velocity profile on two-dimensional hemodynamic analysis by ordinary and ultrasonic-measurement-integrated simulations.

    PubMed

    Kato, Takaumi; Sone, Shusaku; Funamoto, Kenichi; Hayase, Toshiyuki; Kadowaki, Hiroko; Taniguchi, Nobuyuki

    2016-09-01

    Two-dimensional ultrasonic-measurement-integrated (2D-UMI) simulation correctly reproduces hemodynamics even with an inexact inflow velocity distribution. This study aimed to investigate which is superior, a two-dimensional ordinary (2D-O) simulation with an accurate inflow velocity distribution or a 2D-UMI simulation with an inaccurate one. 2D-O and 2D-UMI simulations were performed for blood flow in a carotid artery with four upstream velocity boundary conditions: a velocity profile with backprojected measured Doppler velocities (condition A), and velocity profiles with a measured Doppler velocity distribution, a parabolic one, and a uniform one, magnitude being obtained by inflow velocity estimation (conditions B, C, and D, respectively). The error of Doppler velocity against the measurement data was sensitive to the inflow velocity distribution in the 2D-O simulation, but not in the 2D-UMI simulation with the inflow velocity estimation. Among the results in conditions B, C, and D, the error in the worst 2D-UMI simulation with condition D was 31 % of that in the best 2D-O simulation with condition B, implying the superiority of the 2D-UMI simulation with an inaccurate inflow velocity distribution over the 2D-O simulation with an exact one. Condition A resulted in a larger error than the other conditions in both the 2D-O and 2D-UMI simulations.

  6. Inkjet printing of 2D layered materials.

    PubMed

    Li, Jiantong; Lemme, Max C; Östling, Mikael

    2014-11-10

    Inkjet printing of 2D layered materials, such as graphene and MoS2, has attracted great interests for emerging electronics. However, incompatible rheology, low concentration, severe aggregation and toxicity of solvents constitute critical challenges which hamper the manufacturing efficiency and product quality. Here, we introduce a simple and general technology concept (distillation-assisted solvent exchange) to efficiently overcome these challenges. By implementing the concept, we have demonstrated excellent jetting performance, ideal printing patterns and a variety of promising applications for inkjet printing of 2D layered materials. PMID:25169938

  7. Inkjet printing of 2D layered materials.

    PubMed

    Li, Jiantong; Lemme, Max C; Östling, Mikael

    2014-11-10

    Inkjet printing of 2D layered materials, such as graphene and MoS2, has attracted great interests for emerging electronics. However, incompatible rheology, low concentration, severe aggregation and toxicity of solvents constitute critical challenges which hamper the manufacturing efficiency and product quality. Here, we introduce a simple and general technology concept (distillation-assisted solvent exchange) to efficiently overcome these challenges. By implementing the concept, we have demonstrated excellent jetting performance, ideal printing patterns and a variety of promising applications for inkjet printing of 2D layered materials.

  8. Finite-Source Inversion for the 2004 Parkfield Earthquake using 3D Velocity Model Green's Functions

    NASA Astrophysics Data System (ADS)

    Kim, A.; Dreger, D.; Larsen, S.

    2008-12-01

    We determine finite fault models of the 2004 Parkfield earthquake using 3D Green's functions. Because of the dense station coverage and detailed 3D velocity structure model in this region, this earthquake provides an excellent opportunity to examine how the 3D velocity structure affects the finite fault inverse solutions. Various studies (e.g. Michaels and Eberhart-Phillips, 1991; Thurber et al., 2006) indicate that there is a pronounced velocity contrast across the San Andreas Fault along the Parkfield segment. Also the fault zone at Parkfield is wide as evidenced by mapped surface faults and where surface slip and creep occurred in the 1966 and the 2004 Parkfield earthquakes. For high resolution images of the rupture process"Ait is necessary to include the accurate 3D velocity structure for the finite source inversion. Liu and Aurchuleta (2004) performed finite fault inversions using both 1D and 3D Green's functions for 1989 Loma Prieta earthquake using the same source paramerization and data but different Green's functions and found that the models were quite different. This indicates that the choice of the velocity model significantly affects the waveform modeling at near-fault stations. In this study, we used the P-wave velocity model developed by Thurber et al (2006) to construct the 3D Green's functions. P-wave speeds are converted to S-wave speeds and density using by the empirical relationships of Brocher (2005). Using a finite difference method, E3D (Larsen and Schultz, 1995), we computed the 3D Green's functions numerically by inserting body forces at each station. Using reciprocity, these Green's functions are recombined to represent the ground motion at each station due to the slip on the fault plane. First we modeled the waveforms of small earthquakes to validate the 3D velocity model and the reciprocity of the Green"fs function. In the numerical tests we found that the 3D velocity model predicted the individual phases well at frequencies lower than 0

  9. Recording of anomalous shear energy in the teleseismic P-wave coda at Long Valley Caldera, California, on a small aperture array

    SciTech Connect

    Zucca, J.J.; Zandt, G. ); Steck, L.K.; Prothero, W.A. . Dept. of Geology)

    1990-03-01

    Anomalous energy in the coda of teleseismic P-waves at Long Valley caldera has been suggested to be a P to S converted arrival, perhaps with the conversion occurring at the boundaries of magma bodies beneath the caldera. We have collected new data with a small-aperture, three-component array located in the northwestern quadrant of the caldera with the purpose of testing this hypothesis. An examination of three teleseismic events using array and particle motion techniques shows that converted P- to S-waves comprise a significant fraction of the early arriving anomalous energy. In volcanic areas such as Long Valley, the scattered energy could originate at a high velocity contrast feature such as magma body interface. In addition, later arriving energy was detected with slow phase velocity and is tentatively identified as body wave to surface wave scattering. Our interpretation is illustrated with waveforms of two earthquakes from the Kuril Islands and one in northern Peru. Our results show that a small-aperture, three-component array can be used to perform detailed analysis of the coda. 12 refs., 8 figs., 1 tab.

  10. The p-wave superconductivity in the presence of Rashba interaction in 2DEG.

    PubMed

    Weng, Ke-Chuan; Hu, C D

    2016-07-26

    We investigate the effect of the Rashba interaction on two dimensional superconductivity. The presence of the Rashba interaction lifts the spin degeneracy and gives rise to the spectrum of two bands. There are intraband and interband pairs scattering which result in the coupled gap equations. We find that there are isotropic and anisotropic components in the gap function. The latter has the form of cos φk where . The former is suppressed because the intraband and the interband scatterings nearly cancel each other. Hence, -the system should exhibit the p-wave superconductivity. We perform a detailed study of electron-phonon interaction for 2DEG and find that, if only normal processes are considered, the effective coupling strength constant of this new superconductivity is about one-half of the s-wave case in the ordinary 2DEG because of the angular average of the additional in the anisotropic gap function. By taking into account of Umklapp processes, we find they are the major contribution in the electron-phonon coupling in superconductivity and enhance the transition temperature Tc.

  11. Inversion of Source Parameters for Moderate Earthquakes Using Short-Period Teleseismic P Waves

    NASA Astrophysics Data System (ADS)

    Chu, Risheng; Ni, Sidao; Pitarka, Arben; Helmberger, Don V.

    2014-07-01

    In this paper, we introduce a new method for estimating the source parameters of moderate earthquakes ( M w ~5.0) by modeling short-period teleseismic waveforms. This method uses a grid-search algorithm to minimize misfits between observed data and synthetic seismograms in depth, magnitude, and mechanism domain in a relative high-frequency range of 0.8-2.0 Hz, similar to the traditional cut-and-paste method used in regional modeling ( Zhu and Helmberger, Bull Sesimol Soc Am 86:1634-1641, 1996). In this frequency range, a significant challenge is determining the initial P-wave polarity because of a low signal-to-noise ratio (SNR). Therefore we first determine source properties for a master earthquake with a relative strong SNR. Both the travel time and amplitude corrections are developed relative to the reference 1D model along each path used in inverting the master event. We then applied these corrections to other earthquakes clustered in the same area to constrain the initial P polarities. Thus the focal mechanisms can be determined reasonably well. We inverted focal mechanisms for a small set of events beneath Qeshm Island in southern Iran and demonstrate the importance of radiation pattern at short periods.

  12. Hindered magnetic dipole transitions between P-wave bottomonia and coupled-channel effects

    NASA Astrophysics Data System (ADS)

    Guo, Feng-Kun; Meißner, Ulf-G.; Yang, Zhi

    2016-09-01

    In the hindered magnetic dipole transitions of heavy quarkonia, the coupled-channel effects originating from the coupling of quarkonia to a pair of heavy and anti-heavy mesons can play a dominant role. Here, we study the hindered magnetic dipole transitions between two P-wave bottomonia, χb (nP) and hb (n‧ P), with n ≠n‧. In these processes the coupled-channel effects are expected to lead to partial widths much larger than the quark model predictions. We estimate these partial widths which, however, are very sensitive to unknown coupling constants related to the vertices χb0 (nP) B B bar . A measurement of the hindered M1 transitions can shed light on the coupled-channel dynamics in these transitions and hence on the size of the coupling constants. We also suggest to check the coupled-channel effects by comparing results from quenched and fully dynamical lattice QCD calculations.

  13. Crustal Structure across the Appalachian Orogen in Pennsylvania from P-wave receiver functions

    NASA Astrophysics Data System (ADS)

    Arroyo, G.; Nyblade, A.; Homman, K.

    2014-12-01

    Crustal structure across the Appalachian Orogen from eastern Ohio to New Jersey is investigated using P-wave receiver functions to estimate Moho depths and crustal Vp/Vs ratios. Data for this study comes from the PASEIS and the USArray Transportable Array. The PASEIS seismic network includes 22 broadband seismic stations throughout Pennsylvania that were in installed in February 2013. Preliminary results from H-K stacking show that Moho depth varies greatly across the Appalachians, ranging from 53 km in northern Pennsylvania to only 32 km just west of the New Jersey border. The thickest crust can be found nearest to Lake Erie, and a relatively thick crust is maintained in northeastern Pennsylvania and along the Pennsylvania-Ohio border. Crustal thickness decreases to the southeast, and a rather sharp decrease can be seen well before the start of the Allegheny Front. Crustal thickness remains relatively uniform between 43 and 45km in the Appalachian Mountains, and decreases to 33-38km in the Piedmont province. Vp/Vs values range from 1.75 to 1.83, with no observable pattern to the variation.

  14. The p-wave superconductivity in the presence of Rashba interaction in 2DEG.

    PubMed

    Weng, Ke-Chuan; Hu, C D

    2016-01-01

    We investigate the effect of the Rashba interaction on two dimensional superconductivity. The presence of the Rashba interaction lifts the spin degeneracy and gives rise to the spectrum of two bands. There are intraband and interband pairs scattering which result in the coupled gap equations. We find that there are isotropic and anisotropic components in the gap function. The latter has the form of cos φk where . The former is suppressed because the intraband and the interband scatterings nearly cancel each other. Hence, -the system should exhibit the p-wave superconductivity. We perform a detailed study of electron-phonon interaction for 2DEG and find that, if only normal processes are considered, the effective coupling strength constant of this new superconductivity is about one-half of the s-wave case in the ordinary 2DEG because of the angular average of the additional in the anisotropic gap function. By taking into account of Umklapp processes, we find they are the major contribution in the electron-phonon coupling in superconductivity and enhance the transition temperature Tc. PMID:27459677

  15. Generalized Aubry-André-Harper model with p -wave superconducting pairing

    NASA Astrophysics Data System (ADS)

    Zeng, Qi-Bo; Chen, Shu; Lü, Rong

    2016-09-01

    We investigate a generalized Aubry-André-Harper (AAH) model with p -wave superconducting pairing. Both the hopping amplitudes between the nearest-neighboring lattice sites and the on-site potentials in this system are modulated by a cosine function with a periodicity of 1 /α . In the incommensurate case [α =(√{5 }-1 )/2 ] , due to the modulations on the hopping amplitudes, the critical region of this quasiperiodic system is significantly reduced and the system becomes easier to be turned from extended states to localized states. In the commensurate case (α =1 /2 ), we find that this model shows three different phases when we tune the system parameters: Su-Schrieffer-Heeger (SSH)-like trivial, SSH-like topological, and Kitaev-like topological phases. The phase diagrams and the topological quantum numbers for these phases are presented in this work. This generalized AAH model combined with superconducting pairing provides us with a useful test field for studying the phase transitions from extended states to Anderson localized states and the transitions between different topological phases.

  16. Hybrid Theory of P-Wave Electron-Hydrogen Elastic Scattering

    NASA Technical Reports Server (NTRS)

    Bhatia, Anand

    2012-01-01

    We report on a study of electron-hydrogen scattering, using a combination of a modified method of polarized orbitals and the optical potential formalism. The calculation is restricted to P waves in the elastic region, where the correlation functions are of Hylleraas type. It is found that the phase shifts are not significantly affected by the modification of the target function by a method similar to the method of polarized orbitals and they are close to the phase shifts calculated earlier by Bhatia. This indicates that the correlation function is general enough to include the target distortion (polarization) in the presence of the incident electron. The important fact is that in the present calculation, to obtain similar results only 35-term correlation function is needed in the wave function compared to the 220-term wave function required in the above-mentioned previous calculation. Results for the phase shifts, obtained in the present hybrid formalism, are rigorous lower bounds to the exact phase shifts.

  17. An analytical solution to separate P-waves and S-waves in the VSP wavefield

    SciTech Connect

    Amano, Hiroshi

    1994-12-31

    An analytical solution to separate P-waves and S-waves in the VSP wavefield is derived with combinations of the formal solution of a forward VSP modeling. Some practical applications of this method to synthetic seismograms and field data are investigated and evaluated. Little wave distortion is recognized and the weak wavefield masked by dominant wave trains can be extracted with this method. The decomposed wavefield is expressed in frequency-depth (f-z) domain as a linear combination of up to the third order differential of traces, which is approximated by trace difference sin the practical separation process. In general, five traces with single-component data are required in this process, but the same process is implemented with only three traces in the acoustic case. Two-trace extrapolation is applied to each edge of data gather in order to enhance the accuracy of trace difference. Since the formulas are developed in f-z domain, the influence of anelasticity is taken into account with simplicity and the calculation is carried out fast enough with the benefit of fast Fourier transform (FFT).

  18. Electronic properties of emergent topological defects in chiral p -wave superconductivity

    NASA Astrophysics Data System (ADS)

    Zhang, L.-F.; Becerra, V. Fernández; Covaci, L.; Milošević, M. V.

    2016-07-01

    Chiral p -wave superconductors in applied magnetic field can exhibit more complex topological defects than just conventional superconducting vortices, due to the two-component order parameter (OP) and the broken time-reversal symmetry. We investigate the electronic properties of those exotic states, some of which contain clusters of one-component vortices in chiral components of the OP and/or exhibit skyrmionic character in the relative OP space, all obtained as a self-consistent solution of the microscopic Bogoliubov-de Gennes equations. We reveal the link between the local density of states (LDOS) of the novel topological states and the behavior of the chiral domain wall between the OP components, enabling direct identification of those states in scanning tunneling microscopy. For example, a skyrmion always contains a closed chiral domain wall, which is found to be mapped exactly by zero-bias peaks in LDOS. Moreover, the LDOS exhibits electron-hole asymmetry, which is different from the LDOS of conventional vortex states with same vorticity. Finally, we present the magnetic field and temperature dependence of the properties of a skyrmion, indicating that this topological defect can be surprisingly large in size, and can be pinned by an artificially indented nonsuperconducting closed path in the sample. These features are expected to facilitate the experimental observation of skyrmionic states, thereby enabling experimental verification of chirality in emerging superconducting materials.

  19. p-wave holographic superconductors and five-dimensional gauged supergravity

    NASA Astrophysics Data System (ADS)

    Aprile, Francesco; Rodriguez-Gomez, Diego; Russo, Jorge G.

    2011-01-01

    We explore five-dimensional mathcal{N} = 4 SU(2) × U(1) and mathcal{N} = 8 SO(6) gauged supergravities as frameworks for condensed matter applications. These theories contain charged (dilatonic) black holes and 2-forms which have non-trivial quantum numbers with respect to U(1) subgroups of SO(6). A question of interest is whether they also contain black holes with two-form hair with the required asymptotic to give rise to holographic superconductivity. We first consider the mathcal{N} = 4 case, which contains a complex two-form potential A μν which has U(1) charge ±1. We find that a slight generalization, where the two-form potential has an arbitrary charge q, leads to a five-dimensional model that exhibits second-order superconducting transitions of p-wave type where the role of order parameter is played by A μν , provided q ≳ 5 .6. We identify the operator that condenses in the dual CFT, which is closely related to mathcal{N} = 4 Super Yang-Mills theory with chemical potentials. Similar phase transitions between R-charged black holes and black holes with 2-form hair are found in a generalized version of the mathcal{N} = 8 gauged supergravity Lagrangian where the two-forms have charge q ≳ 1 .8.

  20. The p-wave superconductivity in the presence of Rashba interaction in 2DEG

    NASA Astrophysics Data System (ADS)

    Weng, Ke-Chuan; Hu, C. D.

    2016-07-01

    We investigate the effect of the Rashba interaction on two dimensional superconductivity. The presence of the Rashba interaction lifts the spin degeneracy and gives rise to the spectrum of two bands. There are intraband and interband pairs scattering which result in the coupled gap equations. We find that there are isotropic and anisotropic components in the gap function. The latter has the form of cos φk where . The former is suppressed because the intraband and the interband scatterings nearly cancel each other. Hence, ‑the system should exhibit the p-wave superconductivity. We perform a detailed study of electron-phonon interaction for 2DEG and find that, if only normal processes are considered, the effective coupling strength constant of this new superconductivity is about one-half of the s-wave case in the ordinary 2DEG because of the angular average of the additional in the anisotropic gap function. By taking into account of Umklapp processes, we find they are the major contribution in the electron-phonon coupling in superconductivity and enhance the transition temperature Tc.

  1. The p-wave superconductivity in the presence of Rashba interaction in 2DEG

    PubMed Central

    Weng, Ke-Chuan; Hu, C. D.

    2016-01-01

    We investigate the effect of the Rashba interaction on two dimensional superconductivity. The presence of the Rashba interaction lifts the spin degeneracy and gives rise to the spectrum of two bands. There are intraband and interband pairs scattering which result in the coupled gap equations. We find that there are isotropic and anisotropic components in the gap function. The latter has the form of cos φk where . The former is suppressed because the intraband and the interband scatterings nearly cancel each other. Hence, −the system should exhibit the p-wave superconductivity. We perform a detailed study of electron-phonon interaction for 2DEG and find that, if only normal processes are considered, the effective coupling strength constant of this new superconductivity is about one-half of the s-wave case in the ordinary 2DEG because of the angular average of the additional in the anisotropic gap function. By taking into account of Umklapp processes, we find they are the major contribution in the electron-phonon coupling in superconductivity and enhance the transition temperature Tc. PMID:27459677

  2. Elastic velocities of partially gas-saturated unconsolidated sediments

    USGS Publications Warehouse

    Lee, M.W.

    2004-01-01

    Fluid in sediments significantly affects elastic properties of sediments and gas in the pore space can be identified by a marked reduction of P-wave velocity or a decrease of Poisson's ratio. The elastic properties of gas-saturated sediments can be predicted by the classical Biot-Gassmann theory (BGT). However, parameters for the BGT such as the Biot coefficient or moduli of dry frame of unconsolidated and high porosity sediments are not readily available. Dependence of velocities on differential pressure or porosity for partially gas-saturated sediments is formulated using properties derived from velocities of water-saturated sediments. Laboratory samples for unconsolidated and consolidated sediments and well log data acquired for unconsolidated marine sediments agree well with the predictions. However, because the P-wave velocity depends highly on how the gas is saturated in the pore space such as uniform or patch, the amounts of gas estimated from the P-wave velocity contains high uncertainty. The modeled Vp/Vs ratio of partially gas-saturated sediment using the patch distribution is usually greater than 1.6, whereas the ratio modeled assuming a uniform distribution is about 1.6. Thus, Poisson's ratio or Vp/Vs ratio may be used to differentiate patch from uniform saturation, but differences between various models of patch saturation cannot be easily identified. ?? 2004 Elsevier Ltd. All rights reserved.

  3. Topological Odd-Parity Superconductivity Close to Type-II 2D Van Hove Singularities

    NASA Astrophysics Data System (ADS)

    Yao, Hong; Yang, Fan

    2014-03-01

    We study unconventional superconductivity induced by weak repulsive interactions in 2D electronic systems at Van Hove singularity (VHS) where electronic density of states is logarithmically divergent. We define two types of VH saddle points. For type-I VH systems, weak repulsive interactions generically induce unconventional singlet pairing. However and more interestingly, for type-II VH systems renormalization group treatment shows that weak repulsive interactions favor triplet pairing (e.g. p-wave) when the Fermi surface has no good nesting. When such type-II VH systems respecting tetragonal or hexagonal point group symmetry, topological superconductivity (chiral p +ip or time reversal invariant Z2 p +ip pairing) will generally occur. We shall also discuss implications of this study to recently discovered BiS2-based superconductors and other superconducting materials that host type-II VH singularities in their Fermi surfaces.

  4. Parallel stitching of 2D materials

    DOE PAGES

    Ling, Xi; Wu, Lijun; Lin, Yuxuan; Ma, Qiong; Wang, Ziqiang; Song, Yi; Yu, Lili; Huang, Shengxi; Fang, Wenjing; Zhang, Xu; et al

    2016-01-27

    Diverse parallel stitched 2D heterostructures, including metal–semiconductor, semiconductor–semiconductor, and insulator–semiconductor, are synthesized directly through selective “sowing” of aromatic molecules as the seeds in the chemical vapor deposition (CVD) method. Lastly, the methodology enables the large-scale fabrication of lateral heterostructures, which offers tremendous potential for its application in integrated circuits.

  5. Parallel Stitching of 2D Materials.

    PubMed

    Ling, Xi; Lin, Yuxuan; Ma, Qiong; Wang, Ziqiang; Song, Yi; Yu, Lili; Huang, Shengxi; Fang, Wenjing; Zhang, Xu; Hsu, Allen L; Bie, Yaqing; Lee, Yi-Hsien; Zhu, Yimei; Wu, Lijun; Li, Ju; Jarillo-Herrero, Pablo; Dresselhaus, Mildred; Palacios, Tomás; Kong, Jing

    2016-03-23

    Diverse parallel stitched 2D heterostructures, including metal-semiconductor, semiconductor-semiconductor, and insulator-semiconductor, are synthesized directly through selective "sowing" of aromatic molecules as the seeds in the chemical vapor deposition (CVD) method. The methodology enables the large-scale fabrication of lateral heterostructures, which offers tremendous potential for its application in integrated circuits.

  6. Detecting π-phase superfluids with p-wave symmetry in a quasi-1D optical lattice

    NASA Astrophysics Data System (ADS)

    Liu, Bo; Li, Xiaopeng; Hulet, Randall G.; Liu, W. Vincent

    2016-05-01

    We propose an experimental protocol to create a p-wave superfluid in a spin-polarized cold Fermi gas tuned by an s-wave Feshbach resonance. A crucial ingredient is to add an anisotropic 3D optical lattice and tune the fillings of two spins to the s and p band, respectively. The pairing order parameter is confirmed to inherit p-wave symmetry in its center-of-mass motion. We find that it can further develop into a state of unexpected π-phase modulation in a broad parameter regime. Experimental signatures are predicted in the momentum distributions, density of states and spatial densities for a realistic experimental setup. The π-phase p-wave superfluid is reminiscent of the π-state in superconductor-ferromagnet heterostructures but differs in symmetry and physical origin. The spatially-varying phases of the superfluid gap provide a novel approach to synthetic magnetic fields for neutral atoms. It would represent another example of p-wave pairing, first discovered in He-3 liquids. Work supported in part by U.S. ARO, AFOSR, NSF, ONR, Charles E. Kaufman Foundation, and The Pittsburgh Foundation, LPS-MPO-CMTC, JQI-NSF-PFC, ARO-Atomtronics-MURI, the Welch Foundation, ARO-MURI and NSF of China.

  7. 2-D acoustic VTI full waveform inversion for CCS monitoring

    NASA Astrophysics Data System (ADS)

    KIM, S.; Kim, W. K.; Min, D. J.; Jeong, W.; OH, J. W.

    2014-12-01

    These days many geophysicists have been working not only for oil and gas exploration but also for CO2 monitoring for CCS (Carbon Capture and storage). When CO2 is injected and stored to the target layer, it changes the physical properties of subsurface media like p-wave velocity, density and so on. Seismic method is one of the most widely used geophysical methods for CO2 monitoring, because it can delineate physical properties of subsurface media. To prevent CO2 from leaking out of reservoirs, most target areas require caprocks, and shale often acts as a caprock. However, shale has a strong anisotropic property. Without considering the anisotropic property of subsurface media, interpretations of seismic monitoring data can distort the CO2distribution or movement in the subsurface media. For computational efficiency, seismic data interpretation based on acoustic VTI (Vertical Transversely Isotropic) wave equations has been commonly done although it does not consider the shear waves. To investigate the importance of considering anisotropic properties in acoustic FWI (full waveform inversion) for CO2 monitoring, we compare results obtained by the acoustic VTI FWI with those of the conventional acoustic FWI for isotropic case in the frequency domain. Both methods are based on the node-based finite-element method. Numerical examples show that neglecting anisotropic properties of subsurface media can distort distribution of CO2 and degrade reliability of subsurface image obtained by FWI. Acknowledgements This work was supported by the Human Resources Development program (No. 20134010200510) of the Korea Institute of Energy Technology Evaluation and Planning (KETEP) grant funded by the Korean government Ministry of Trade, Industry, and Energy and by the "Development of Technology for CO2 Marine Geological Storage" grant funded by the Ministry of Oceans and Fisheries of Korea.

  8. Alteration of the P-wave non-linear dynamics near the onset of paroxysmal atrial fibrillation.

    PubMed

    Martínez, Arturo; Abásolo, Daniel; Alcaraz, Raúl; Rieta, José J

    2015-07-01

    The analysis of P-wave variability from the electrocardiogram (ECG) has been suggested as an early predictor of the onset of paroxysmal atrial fibrillation (PAF). Hence, a preventive treatment could be used to avoid the loss of normal sinus rhythm, thus minimising health risks and improving the patient's quality of life. In these previous studies the variability of different temporal and morphological P-wave features has been only analysed in a linear fashion. However, the electrophysiological alteration occurring in the atria before the onset of PAF has to be considered as an inherently complex, chaotic and non-stationary process. This work analyses the presence of non-linear dynamics in the P-wave progression before the onset of PAF through the application of the central tendency measure (CTM), which is a non-linear metric summarising the degree of variability in a time series. Two hour-length ECG intervals just before the arrhythmia onset belonging to 46 different PAF patients were analysed. In agreement with the invasively observed inhomogeneous atrial conduction preceding the onset of PAF, CTM for all the considered P-wave features showed higher variability when the arrhythmia was closer to its onset. A diagnostic accuracy around 80% to discern between ECG segments far from PAF and close to PAF was obtained with the CTM of the metrics considered. This result was similar to previous P-wave variability methods based on linear approaches. However, the combination of linear and non-linear methods with a decision tree improved considerably their discriminant ability up to 90%, thus suggesting that both dynamics could coexist at the same time in the fragmented depolarisation of the atria preceding the arrhythmia. PMID:25956053

  9. Application of 2D Non-Graphene Materials and 2D Oxide Nanostructures for Biosensing Technology

    PubMed Central

    Shavanova, Kateryna; Bakakina, Yulia; Burkova, Inna; Shtepliuk, Ivan; Viter, Roman; Ubelis, Arnolds; Beni, Valerio; Starodub, Nickolaj; Yakimova, Rositsa; Khranovskyy, Volodymyr

    2016-01-01

    The discovery of graphene and its unique properties has inspired researchers to try to invent other two-dimensional (2D) materials. After considerable research effort, a distinct “beyond graphene” domain has been established, comprising the library of non-graphene 2D materials. It is significant that some 2D non-graphene materials possess solid advantages over their predecessor, such as having a direct band gap, and therefore are highly promising for a number of applications. These applications are not limited to nano- and opto-electronics, but have a strong potential in biosensing technologies, as one example. However, since most of the 2D non-graphene materials have been newly discovered, most of the research efforts are concentrated on material synthesis and the investigation of the properties of the material. Applications of 2D non-graphene materials are still at the embryonic stage, and the integration of 2D non-graphene materials into devices is scarcely reported. However, in recent years, numerous reports have blossomed about 2D material-based biosensors, evidencing the growing potential of 2D non-graphene materials for biosensing applications. This review highlights the recent progress in research on the potential of using 2D non-graphene materials and similar oxide nanostructures for different types of biosensors (optical and electrochemical). A wide range of biological targets, such as glucose, dopamine, cortisol, DNA, IgG, bisphenol, ascorbic acid, cytochrome and estradiol, has been reported to be successfully detected by biosensors with transducers made of 2D non-graphene materials. PMID:26861346

  10. Application of 2D Non-Graphene Materials and 2D Oxide Nanostructures for Biosensing Technology.

    PubMed

    Shavanova, Kateryna; Bakakina, Yulia; Burkova, Inna; Shtepliuk, Ivan; Viter, Roman; Ubelis, Arnolds; Beni, Valerio; Starodub, Nickolaj; Yakimova, Rositsa; Khranovskyy, Volodymyr

    2016-01-01

    The discovery of graphene and its unique properties has inspired researchers to try to invent other two-dimensional (2D) materials. After considerable research effort, a distinct "beyond graphene" domain has been established, comprising the library of non-graphene 2D materials. It is significant that some 2D non-graphene materials possess solid advantages over their predecessor, such as having a direct band gap, and therefore are highly promising for a number of applications. These applications are not limited to nano- and opto-electronics, but have a strong potential in biosensing technologies, as one example. However, since most of the 2D non-graphene materials have been newly discovered, most of the research efforts are concentrated on material synthesis and the investigation of the properties of the material. Applications of 2D non-graphene materials are still at the embryonic stage, and the integration of 2D non-graphene materials into devices is scarcely reported. However, in recent years, numerous reports have blossomed about 2D material-based biosensors, evidencing the growing potential of 2D non-graphene materials for biosensing applications. This review highlights the recent progress in research on the potential of using 2D non-graphene materials and similar oxide nanostructures for different types of biosensors (optical and electrochemical). A wide range of biological targets, such as glucose, dopamine, cortisol, DNA, IgG, bisphenol, ascorbic acid, cytochrome and estradiol, has been reported to be successfully detected by biosensors with transducers made of 2D non-graphene materials.

  11. Structure and consequences of vortex-core states in p-wave superfluids

    SciTech Connect

    Moeller, G.; Cooper, N. R.; Gurarie, V.

    2011-01-15

    We study the properties of the subgap states in p-wave superfluids, which occur at energies below the bulk gap and are localized inside the cores of vortices. We argue that their presence affects the topological protection of the zero modes. Transitions between the subgap states, including the zero modes and at energies much smaller than the gap, can alter the quantum states of the zero modes. Consequently, qubits defined uniquely in terms of the zero modes do not remain coherent, while compound qubits involving the zero modes and the parity of the occupation number of the subgap states on each vortex are still well defined. In neutral superfluids, it may be difficult to measure the parity of the subgap states. We propose to avoid this difficulty by working in the regime of small chemical potential {mu}, near the transition to a strongly paired phase, where the number of subgap states is reduced. We develop the theory to describe this regime of strong pairing interactions and we show how the subgap states are ultimately absorbed into the bulk gap. Since the bulk gap also vanishes as {mu}{yields}0 there is an optimum value {mu}{sub c} which maximizes the combined gap. We propose cold atomic gases as candidate systems where the regime of strong interactions can be explored, and explicitly evaluate {mu}{sub c} in a Feshbach resonant {sup 40}K gas. In particular, the parameter c{sub 2} parametrizing the strength of the resonance in such gases sets the characteristic size of vortices and the energy scale of the subgap states.

  12. P-wave receiver function study of crustal structure in Scandinavia

    NASA Astrophysics Data System (ADS)

    Makushkina, Anna; Thybo, Hans; Vinnik, Lev; Youssof, Mohammad

    2016-04-01

    In this study we present preliminary results on the structure of the continental crust in northern Scandinavia. The research area consists of three geologically different domains: the Archaean Domain in the north-east, the Palaeoproterozoic Svecofennian Domain in the east and the Caledonian Deformed Domain in the west (Gorbatschev and Bogdanova,1993). We present results based on data collected by 60 seismic stations during 2-4 years of deployment in the ScanArray experiment, which is an international collaboration between Scandinavian, German and British universities. We use the receiver function (RF) technique in the LQT ray-oriented coordinate system (Vinnik, 1977). Receiver function analysis has rather high vertical resolution of the depth to seismic discontinuities which cause transformation between P- and S-waves. The whole dataset is uniformly filtered and deconvolved records are stacked using appropriate moveout corrections. We have used events with a magnitude ≥ 5.5 Mw, with epicentral distances range from 30° to 95°. The technique allows us to constrain crustal structure and determine the Moho depth around stations by analyzing the PS converted phases generated at discontinuities in particular the Moho. We present preliminary interpretation of P-wave RF analysis in terms of the complex tectonic and geodynamic evolution of the Baltic Shield. Further studies will include joint P and S receiver function analysis of this area as well as investigations of the upper mantle. References: Vinnik L.P. (1977) Detection of waves converted from P to SV in the mantle. Phys. Earth planet. Inter. 15, 39-45 Gorbatschev R., Bogdanova, S. (1993) Frontiers in the Baltic Shield. Precambrian Res. 64, 3-21

  13. Stochastic Inversion of 2D Magnetotelluric Data

    SciTech Connect

    Chen, Jinsong

    2010-07-01

    The algorithm is developed to invert 2D magnetotelluric (MT) data based on sharp boundary parametrization using a Bayesian framework. Within the algorithm, we consider the locations and the resistivity of regions formed by the interfaces are as unknowns. We use a parallel, adaptive finite-element algorithm to forward simulate frequency-domain MT responses of 2D conductivity structure. Those unknown parameters are spatially correlated and are described by a geostatistical model. The joint posterior probability distribution function is explored by Markov Chain Monte Carlo (MCMC) sampling methods. The developed stochastic model is effective for estimating the interface locations and resistivity. Most importantly, it provides details uncertainty information on each unknown parameter. Hardware requirements: PC, Supercomputer, Multi-platform, Workstation; Software requirements C and Fortan; Operation Systems/version is Linux/Unix or Windows

  14. Explicit 2-D Hydrodynamic FEM Program

    1996-08-07

    DYNA2D* is a vectorized, explicit, two-dimensional, axisymmetric and plane strain finite element program for analyzing the large deformation dynamic and hydrodynamic response of inelastic solids. DYNA2D* contains 13 material models and 9 equations of state (EOS) to cover a wide range of material behavior. The material models implemented in all machine versions are: elastic, orthotropic elastic, kinematic/isotropic elastic plasticity, thermoelastoplastic, soil and crushable foam, linear viscoelastic, rubber, high explosive burn, isotropic elastic-plastic, temperature-dependent elastic-plastic. Themore » isotropic and temperature-dependent elastic-plastic models determine only the deviatoric stresses. Pressure is determined by one of 9 equations of state including linear polynomial, JWL high explosive, Sack Tuesday high explosive, Gruneisen, ratio of polynomials, linear polynomial with energy deposition, ignition and growth of reaction in HE, tabulated compaction, and tabulated.« less

  15. Stochastic Inversion of 2D Magnetotelluric Data

    2010-07-01

    The algorithm is developed to invert 2D magnetotelluric (MT) data based on sharp boundary parametrization using a Bayesian framework. Within the algorithm, we consider the locations and the resistivity of regions formed by the interfaces are as unknowns. We use a parallel, adaptive finite-element algorithm to forward simulate frequency-domain MT responses of 2D conductivity structure. Those unknown parameters are spatially correlated and are described by a geostatistical model. The joint posterior probability distribution function ismore » explored by Markov Chain Monte Carlo (MCMC) sampling methods. The developed stochastic model is effective for estimating the interface locations and resistivity. Most importantly, it provides details uncertainty information on each unknown parameter. Hardware requirements: PC, Supercomputer, Multi-platform, Workstation; Software requirements C and Fortan; Operation Systems/version is Linux/Unix or Windows« less

  16. Static & Dynamic Response of 2D Solids

    1996-07-15

    NIKE2D is an implicit finite-element code for analyzing the finite deformation, static and dynamic response of two-dimensional, axisymmetric, plane strain, and plane stress solids. The code is fully vectorized and available on several computing platforms. A number of material models are incorporated to simulate a wide range of material behavior including elasto-placicity, anisotropy, creep, thermal effects, and rate dependence. Slideline algorithms model gaps and sliding along material interfaces, including interface friction, penetration and single surfacemore » contact. Interactive-graphics and rezoning is included for analyses with large mesh distortions. In addition to quasi-Newton and arc-length procedures, adaptive algorithms can be defined to solve the implicit equations using the solution language ISLAND. Each of these capabilities and more make NIKE2D a robust analysis tool.« less

  17. Static & Dynamic Response of 2D Solids

    SciTech Connect

    Lin, Jerry

    1996-07-15

    NIKE2D is an implicit finite-element code for analyzing the finite deformation, static and dynamic response of two-dimensional, axisymmetric, plane strain, and plane stress solids. The code is fully vectorized and available on several computing platforms. A number of material models are incorporated to simulate a wide range of material behavior including elasto-placicity, anisotropy, creep, thermal effects, and rate dependence. Slideline algorithms model gaps and sliding along material interfaces, including interface friction, penetration and single surface contact. Interactive-graphics and rezoning is included for analyses with large mesh distortions. In addition to quasi-Newton and arc-length procedures, adaptive algorithms can be defined to solve the implicit equations using the solution language ISLAND. Each of these capabilities and more make NIKE2D a robust analysis tool.

  18. Explicit 2-D Hydrodynamic FEM Program

    SciTech Connect

    Lin, Jerry

    1996-08-07

    DYNA2D* is a vectorized, explicit, two-dimensional, axisymmetric and plane strain finite element program for analyzing the large deformation dynamic and hydrodynamic response of inelastic solids. DYNA2D* contains 13 material models and 9 equations of state (EOS) to cover a wide range of material behavior. The material models implemented in all machine versions are: elastic, orthotropic elastic, kinematic/isotropic elastic plasticity, thermoelastoplastic, soil and crushable foam, linear viscoelastic, rubber, high explosive burn, isotropic elastic-plastic, temperature-dependent elastic-plastic. The isotropic and temperature-dependent elastic-plastic models determine only the deviatoric stresses. Pressure is determined by one of 9 equations of state including linear polynomial, JWL high explosive, Sack Tuesday high explosive, Gruneisen, ratio of polynomials, linear polynomial with energy deposition, ignition and growth of reaction in HE, tabulated compaction, and tabulated.

  19. 2D photonic-crystal optomechanical nanoresonator.

    PubMed

    Makles, K; Antoni, T; Kuhn, A G; Deléglise, S; Briant, T; Cohadon, P-F; Braive, R; Beaudoin, G; Pinard, L; Michel, C; Dolique, V; Flaminio, R; Cagnoli, G; Robert-Philip, I; Heidmann, A

    2015-01-15

    We present the optical optimization of an optomechanical device based on a suspended InP membrane patterned with a 2D near-wavelength grating (NWG) based on a 2D photonic-crystal geometry. We first identify by numerical simulation a set of geometrical parameters providing a reflectivity higher than 99.8% over a 50-nm span. We then study the limitations induced by the finite value of the optical waist and lateral size of the NWG pattern using different numerical approaches. The NWG grating, pierced in a suspended InP 265-nm thick membrane, is used to form a compact microcavity involving the suspended nanomembrane as an end mirror. The resulting cavity has a waist size smaller than 10 μm and a finesse in the 200 range. It is used to probe the Brownian motion of the mechanical modes of the nanomembrane. PMID:25679837

  20. The p-wave upper mantle structure beneath an active spreading centre - The Gulf of California

    NASA Technical Reports Server (NTRS)

    Walck, M. C.

    1984-01-01

    Over 1400 seismograms of earthquakes in Mexico are analyzed and data sets for the travel time, apparent phase velocity, and relative amplitude information are utilized to produce a tightly constrained, detailed model for depths to 900 km beneath an active oceanic ridge region, the Gulf of California. The data are combined by first inverting the travel times, perturbing that model to fit the p-delta data, and then performing trial and error synthetic seismogram modelling to fit the short-period waveforms. The final model satisfies all three data sets. The ridge model is similar to existing upper mantle models for shield, tectonic-continental, and arc-trench regimes below 400 km, but differs significantly in the upper 350 km. Ridge model velocities are very low in this depth range; the model 'catches up' with the others with a very large velocity gradient from 225 to 390 km.

  1. Multiple mantle upwellings in the transition zone beneath the northern East-African Rift system from relative P-wave travel-time tomography

    NASA Astrophysics Data System (ADS)

    Civiero, Chiara; Hammond, James O. S.; Goes, Saskia; Fishwick, Stewart; Ahmed, Abdulhakim; Ayele, Atalay; Doubre, Cecile; Goitom, Berhe; Keir, Derek; Kendall, J.-Michael; Leroy, Sylvie; Ogubazghi, Ghebrebrhan; Rümpker, Georg; Stuart, Graham W.

    2015-09-01

    Mantle plumes and consequent plate extension have been invoked as the likely cause of East African Rift volcanism. However, the nature of mantle upwelling is debated, with proposed configurations ranging from a single broad plume connected to the large low-shear-velocity province beneath Southern Africa, the so-called African Superplume, to multiple lower-mantle sources along the rift. We present a new P-wave travel-time tomography model below the northern East-African, Red Sea, and Gulf of Aden rifts and surrounding areas. Data are from stations that span an area from Madagascar to Saudi Arabia. The aperture of the integrated data set allows us to image structures of ˜100 km length-scale down to depths of 700-800 km beneath the study region. Our images provide evidence of two clusters of low-velocity structures consisting of features with diameter of 100-200 km that extend through the transition zone, the first beneath Afar and a second just west of the Main Ethiopian Rift, a region with off-rift volcanism. Considering seismic sensitivity to temperature, we interpret these features as upwellings with excess temperatures of 100 ± 50 K. The scale of the upwellings is smaller than expected for lower mantle plume sources. This, together with the change in pattern of the low-velocity anomalies across the base of the transition zone, suggests that ponding or flow of deep-plume material below the transition zone may be spawning these upper mantle upwellings. This article was corrected on 28 SEP 2015. See the end of the full text for details.

  2. Compact 2-D graphical representation of DNA

    NASA Astrophysics Data System (ADS)

    Randić, Milan; Vračko, Marjan; Zupan, Jure; Novič, Marjana

    2003-05-01

    We present a novel 2-D graphical representation for DNA sequences which has an important advantage over the existing graphical representations of DNA in being very compact. It is based on: (1) use of binary labels for the four nucleic acid bases, and (2) use of the 'worm' curve as template on which binary codes are placed. The approach is illustrated on DNA sequences of the first exon of human β-globin and gorilla β-globin.

  3. 2D materials: Graphene and others

    NASA Astrophysics Data System (ADS)

    Bansal, Suneev Anil; Singh, Amrinder Pal; Kumar, Suresh

    2016-05-01

    Present report reviews the recent advancements in new atomically thick 2D materials. Materials covered in this review are Graphene, Silicene, Germanene, Boron Nitride (BN) and Transition metal chalcogenides (TMC). These materials show extraordinary mechanical, electronic and optical properties which make them suitable candidates for future applications. Apart from unique properties, tune-ability of highly desirable properties of these materials is also an important area to be emphasized on.

  4. Layer Engineering of 2D Semiconductor Junctions.

    PubMed

    He, Yongmin; Sobhani, Ali; Lei, Sidong; Zhang, Zhuhua; Gong, Yongji; Jin, Zehua; Zhou, Wu; Yang, Yingchao; Zhang, Yuan; Wang, Xifan; Yakobson, Boris; Vajtai, Robert; Halas, Naomi J; Li, Bo; Xie, Erqing; Ajayan, Pulickel

    2016-07-01

    A new concept for junction fabrication by connecting multiple regions with varying layer thicknesses, based on the thickness dependence, is demonstrated. This type of junction is only possible in super-thin-layered 2D materials, and exhibits similar characteristics as p-n junctions. Rectification and photovoltaic effects are observed in chemically homogeneous MoSe2 junctions between domains of different thicknesses. PMID:27136275

  5. Realistic and efficient 2D crack simulation

    NASA Astrophysics Data System (ADS)

    Yadegar, Jacob; Liu, Xiaoqing; Singh, Abhishek

    2010-04-01

    Although numerical algorithms for 2D crack simulation have been studied in Modeling and Simulation (M&S) and computer graphics for decades, realism and computational efficiency are still major challenges. In this paper, we introduce a high-fidelity, scalable, adaptive and efficient/runtime 2D crack/fracture simulation system by applying the mathematically elegant Peano-Cesaro triangular meshing/remeshing technique to model the generation of shards/fragments. The recursive fractal sweep associated with the Peano-Cesaro triangulation provides efficient local multi-resolution refinement to any level-of-detail. The generated binary decomposition tree also provides efficient neighbor retrieval mechanism used for mesh element splitting and merging with minimal memory requirements essential for realistic 2D fragment formation. Upon load impact/contact/penetration, a number of factors including impact angle, impact energy, and material properties are all taken into account to produce the criteria of crack initialization, propagation, and termination leading to realistic fractal-like rubble/fragments formation. The aforementioned parameters are used as variables of probabilistic models of cracks/shards formation, making the proposed solution highly adaptive by allowing machine learning mechanisms learn the optimal values for the variables/parameters based on prior benchmark data generated by off-line physics based simulation solutions that produce accurate fractures/shards though at highly non-real time paste. Crack/fracture simulation has been conducted on various load impacts with different initial locations at various impulse scales. The simulation results demonstrate that the proposed system has the capability to realistically and efficiently simulate 2D crack phenomena (such as window shattering and shards generation) with diverse potentials in military and civil M&S applications such as training and mission planning.

  6. 2D Spinodal Decomposition in Forced Turbulence

    NASA Astrophysics Data System (ADS)

    Fan, Xiang; Diamond, Patrick; Chacon, Luis; Li, Hui

    2015-11-01

    Spinodal decomposition is a second order phase transition for binary fluid mixture, from one thermodynamic phase to form two coexisting phases. The governing equation for this coarsening process below critical temperature, Cahn-Hilliard Equation, is very similar to 2D MHD Equation, especially the conserved quantities have a close correspondence between each other, so theories for MHD turbulence are used to study spinodal decomposition in forced turbulence. Domain size is increased with time along with the inverse cascade, and the length scale can be arrested by a forced turbulence with direct cascade. The two competing mechanisms lead to a stabilized domain size length scale, which can be characterized by Hinze Scale. The 2D spinodal decomposition in forced turbulence is studied by both theory and simulation with ``pixie2d.'' This work focuses on the relation between Hinze scale and spectra and cascades. Similarities and differences between spinodal decomposition and MHD are investigated. Also some transport properties are studied following MHD theories. This work is supported by the Department of Energy under Award Number DE-FG02-04ER54738.

  7. MAGNUM-2D computer code: user's guide

    SciTech Connect

    England, R.L.; Kline, N.W.; Ekblad, K.J.; Baca, R.G.

    1985-01-01

    Information relevant to the general use of the MAGNUM-2D computer code is presented. This computer code was developed for the purpose of modeling (i.e., simulating) the thermal and hydraulic conditions in the vicinity of a waste package emplaced in a deep geologic repository. The MAGNUM-2D computer computes (1) the temperature field surrounding the waste package as a function of the heat generation rate of the nuclear waste and thermal properties of the basalt and (2) the hydraulic head distribution and associated groundwater flow fields as a function of the temperature gradients and hydraulic properties of the basalt. MAGNUM-2D is a two-dimensional numerical model for transient or steady-state analysis of coupled heat transfer and groundwater flow in a fractured porous medium. The governing equations consist of a set of coupled, quasi-linear partial differential equations that are solved using a Galerkin finite-element technique. A Newton-Raphson algorithm is embedded in the Galerkin functional to formulate the problem in terms of the incremental changes in the dependent variables. Both triangular and quadrilateral finite elements are used to represent the continuum portions of the spatial domain. Line elements may be used to represent discrete conduits. 18 refs., 4 figs., 1 tab.

  8. Engineering light outcoupling in 2D materials.

    PubMed

    Lien, Der-Hsien; Kang, Jeong Seuk; Amani, Matin; Chen, Kevin; Tosun, Mahmut; Wang, Hsin-Ping; Roy, Tania; Eggleston, Michael S; Wu, Ming C; Dubey, Madan; Lee, Si-Chen; He, Jr-Hau; Javey, Ali

    2015-02-11

    When light is incident on 2D transition metal dichalcogenides (TMDCs), it engages in multiple reflections within underlying substrates, producing interferences that lead to enhancement or attenuation of the incoming and outgoing strength of light. Here, we report a simple method to engineer the light outcoupling in semiconducting TMDCs by modulating their dielectric surroundings. We show that by modulating the thicknesses of underlying substrates and capping layers, the interference caused by substrate can significantly enhance the light absorption and emission of WSe2, resulting in a ∼11 times increase in Raman signal and a ∼30 times increase in the photoluminescence (PL) intensity of WSe2. On the basis of the interference model, we also propose a strategy to control the photonic and optoelectronic properties of thin-layer WSe2. This work demonstrates the utilization of outcoupling engineering in 2D materials and offers a new route toward the realization of novel optoelectronic devices, such as 2D LEDs and solar cells.

  9. 2D Time-lapse Seismic Tomography Using An Active Time Constraint (ATC) Approach

    EPA Science Inventory

    We propose a 2D seismic time-lapse inversion approach to image the evolution of seismic velocities over time and space. The forward modeling is based on solving the eikonal equation using a second-order fast marching method. The wave-paths are represented by Fresnel volumes rathe...

  10. Evaluation of 2D shallow-water model for spillway flow with a complex geometry

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Although the two-dimensional (2D) shallow water model is formulated based on several assumptions such as hydrostatic pressure distribution and vertical velocity is negligible, as a simple alternative to the complex 3D model, it has been used to compute water flows in which these assumptions may be ...

  11. Influence of Elevation Data Source on 2D Hydraulic Modelling

    NASA Astrophysics Data System (ADS)

    Bakuła, Krzysztof; Stępnik, Mateusz; Kurczyński, Zdzisław

    2016-08-01

    The aim of this paper is to analyse the influence of the source of various elevation data on hydraulic modelling in open channels. In the research, digital terrain models from different datasets were evaluated and used in two-dimensional hydraulic models. The following aerial and satellite elevation data were used to create the representation of terrain - digital terrain model: airborne laser scanning, image matching, elevation data collected in the LPIS, EuroDEM, and ASTER GDEM. From the results of five 2D hydrodynamic models with different input elevation data, the maximum depth and flow velocity of water were derived and compared with the results of the most accurate ALS data. For such an analysis a statistical evaluation and differences between hydraulic modelling results were prepared. The presented research proved the importance of the quality of elevation data in hydraulic modelling and showed that only ALS and photogrammetric data can be the most reliable elevation data source in accurate 2D hydraulic modelling.

  12. Recent Depth determination of Moderate Earthquakes in Brazil Using Teleseismic P-wave Modeling and pP and sP phases

    NASA Astrophysics Data System (ADS)

    Dias, F.; Assumpcao, M.

    2013-05-01

    We determined depths of shallow ( depth < 25 km) recent earthquakes with moderate magnitude (range of 3 to 5 mb) in Brazil using teleseismic P-waves modeling of P, pP and sP phases The events are located in the Pantanal Basin, São Francisco Craton and Amazon river fan. The stations (delta > 25 °) were grouped according to distance and azimuth and every record was visually inspected; those with a good signal/noise ratio (SNR) were divided in windows of ten degrees distance and stacked. We usually consider groups with at least two stations, but sometimes, a good record of single station with different azimuth was also used to improve the focal depth. We used the hudson96 program of Herrmann seismology package (Herrmann, 2002) to do the modeling. One advantage of the program is the possibility of using different velocity models for the source, the path and the receiver. We used the dispersion of Rayleigh and Loves waves record in closer stations to build a velocity model of the source, and the ak135 model for the path and the receiver. The modeling is especially useful for the shallowest events (less than ~ 1 km) where the P, pP, sP phases are so close that is not possible to separate them. For three earthquakes in the Amazon Fan: 5.3 mb in 1998, 4.8 mb in 2006 and 5.1 mb in 2007, we identified the depth phase pP by stacking teleseismic records grouped by distance and azimuth. Using refraction seismic models in the region (Watts et al., 2009) we determined a depth of 14 km for the 2007 event and 26 km for 1998 event. In the event of 2006, closer to the coast, it was not possible see the pP phase, indicating that it was a shallow earthquake. Synthetic seismograms were calculated to constrain 2 km depth. For the event in the Pantanal basin (4.8 mb) the pP-P time difference indicates a 5.7 km depth, while teleseismic P-wave modeling gives a 6.0 km depth. This shows that the earthquake occurred in basement beneath the sedimentary basin. The 3.3 Mw event of Brasilia

  13. Production of P-wave charmed mesons in hadronic B decays

    NASA Astrophysics Data System (ADS)

    Cheng, Hai-Yang; Chua, Chun-Khiang

    2006-08-01

    Production of even-parity charmed mesons in hadronic B decays is studied. Specifically, we focus on the Cabibbo-allowed decays B¯→D**π and D¯s**D(*), where D** denotes generically a P-wave charmed meson. While the measured color-allowed decays B¯0→D**+π- are consistent with the theoretical expectation, the experimental observation of B-→D**0π- for the broad D** states is astonishing as it requires that the color-suppressed contribution dominates over the color-allowed one, even though the former is 1/mb suppressed in the heavy quark limit. In order to accommodate the data of B¯→D**π-, it is found that the real part of a2/a1 has a sign opposite to that in B¯→Dπ decays, where a1 and a2 are the effective parameters for color-allowed and color-suppressed decay amplitudes, respectively. The decay constants and form factors for D** and the Isgur-Wise functions τ1/2(ω) and τ3/2(ω) are extracted from the data of B→D**π decays. The Isgur-Wise functions calculated in the covariant light-front quark model are in good agreement with experiment. The neutral modes B¯0→D**0π0 for D**=D0*(2400), D1'(2430), and B¯0→D1'0(2430)ω are predicted to have branching ratios of order 10-4 which are also supported by the isospin argument. The decay constants of Ds0*(2317) and Ds1'(2460) are inferred from the measurements of B¯→Ds**-D to be 58 86 MeV and 130 200 MeV, respectively. Contrary to the decay constants fD0* and fD1' which are similar in size, the large disparity between fDs0* and fDs1' is surprising and unexpected.

  14. GBL-2D Version 1.0: a 2D geometry boolean library.

    SciTech Connect

    McBride, Cory L. (Elemental Technologies, American Fort, UT); Schmidt, Rodney Cannon; Yarberry, Victor R.; Meyers, Ray J.

    2006-11-01

    This report describes version 1.0 of GBL-2D, a geometric Boolean library for 2D objects. The library is written in C++ and consists of a set of classes and routines. The classes primarily represent geometric data and relationships. Classes are provided for 2D points, lines, arcs, edge uses, loops, surfaces and mask sets. The routines contain algorithms for geometric Boolean operations and utility functions. Routines are provided that incorporate the Boolean operations: Union(OR), XOR, Intersection and Difference. A variety of additional analytical geometry routines and routines for importing and exporting the data in various file formats are also provided. The GBL-2D library was originally developed as a geometric modeling engine for use with a separate software tool, called SummitView [1], that manipulates the 2D mask sets created by designers of Micro-Electro-Mechanical Systems (MEMS). However, many other practical applications for this type of software can be envisioned because the need to perform 2D Boolean operations can arise in many contexts.

  15. Reflection of P-Wave and Sv-Wave in a Generalized Two Temperature Thermoelastic Half-Space

    NASA Astrophysics Data System (ADS)

    Santra, S.; Lahiri, A.; Das, N. C.

    2014-11-01

    In this work the theory of two temperature generalized thermoelasticity has been used to investigate the problem of reflection of P-wave and SV-wave in a half space when the surface is i) thermally insulated or ii) isothermal. The ratios of the reflection coefficient to that of the incident coefficient for different cases are obtained for P-wave and SV-waves. The results for various cases for the conductive and dynamical temperature have been compared. The results arrived at in the absence of the thermal field (elastic case) have also been compared with those in the existing literature. Finally, the results for various cases have been analyzed and depicted in graphs.

  16. Hadronic production of S-wave and P-wave charmed beauty mesons via heavy quark fragmentation

    SciTech Connect

    Cheung, K.; Yuan, Tzu Chiang

    1995-02-01

    At hadron colliders the dominant production mechanism of ({bar b}c) mesons with large transverse momentum is due to parton fragmentation. The authors compute in a model-independent way the production rates and transverse momentum spectra for S-wave and P-wave ({bar b}c) mesons at the Tevatron via the direct fragmentation of the bottom antiquark as well as the Altarelli-Parisi induced gluon fragmentation. Since all the radially and orbitally excited ({bar b}c) mesons below the BD flavor threshold will cascade into the pseudoscalar ground state B{sub c} through electromagnetic and/or hadronic transitions, they all contribute to the inclusive production of B{sub c}. The contributions of the excited S-wave and P-wave states to the inclusive production of B{sub c} are 58 and 23%, respectively, and hence significant.

  17. 2-D Finite Element Heat Conduction

    1989-10-30

    AYER is a finite element program which implicitly solves the general two-dimensional equation of thermal conduction for plane or axisymmetric bodies. AYER takes into account the effects of time (transient problems), in-plane anisotropic thermal conductivity, a three-dimensional velocity distribution, and interface thermal contact resistance. Geometry and material distributions are arbitrary, and input is via subroutines provided by the user. As a result, boundary conditions, material properties, velocity distributions, and internal power generation may be mademore » functions of, e.g., time, temperature, location, and heat flux.« less

  18. Periodically sheared 2D Yukawa systems

    SciTech Connect

    Kovács, Anikó Zsuzsa; Hartmann, Peter; Donkó, Zoltán

    2015-10-15

    We present non-equilibrium molecular dynamics simulation studies on the dynamic (complex) shear viscosity of a 2D Yukawa system. We have identified a non-monotonic frequency dependence of the viscosity at high frequencies and shear rates, an energy absorption maximum (local resonance) at the Einstein frequency of the system at medium shear rates, an enhanced collective wave activity, when the excitation is near the plateau frequency of the longitudinal wave dispersion, and the emergence of significant configurational anisotropy at small frequencies and high shear rates.

  19. ENERGY LANDSCAPE OF 2D FLUID FORMS

    SciTech Connect

    Y. JIANG; ET AL

    2000-04-01

    The equilibrium states of 2D non-coarsening fluid foams, which consist of bubbles with fixed areas, correspond to local minima of the total perimeter. (1) The authors find an approximate value of the global minimum, and determine directly from an image how far a foam is from its ground state. (2) For (small) area disorder, small bubbles tend to sort inwards and large bubbles outwards. (3) Topological charges of the same sign repel while charges of opposite sign attract. (4) They discuss boundary conditions and the uniqueness of the pattern for fixed topology.

  20. Is Sr2RuO4 a chiral p-wave superconductor? Insights from edge currents and uniaxial strain

    NASA Astrophysics Data System (ADS)

    Scaffidi, Thomas

    The prevailing candidate for the superconducting order parameter in Sr2RuO4 is chiral p-wave and signatures of this phase have been looked for experimentally. In this work, we discuss two of these experiments at the light of theoretical results obtained from a weak coupling RG calculation. First, we show that the most favored chiral superconducting order parameter in Sr2RuO4 has Chern number |C|=7 in the weak coupling limit, owing to a dominant longer range pairing. Since it was shown that the edge currents of a |C|>1 superconductor vanish exactly in the continuum limit, and can be strongly reduced on the lattice, this form of order parameter could help resolve the conflict between experimental observation of time-reversal symmetry breaking and yet the absence of observed edge currents in Sr2RuO4. Second, the p-wave order parameter obtained from the RG calculation exhibits a large Tc enhancement under uniaxial strain along 100. This enhancement is symmetric for tensile and compressive strain, and shows no measurable cusp at zero strain, in agreement with experiments. The absence of such a cusp is therefore not incompatible with a chiral p-wave state. Finally, we make predictions about the evolution of the superconducting state as a Van Hove singularity is crossed at larger strain.

  1. Numerical Study of Impurity Effects on Quasiparticles within S-wave and Chiral P-wave Vortices

    NASA Astrophysics Data System (ADS)

    Kato, Yusuke; Hayashi, Nobuhiko

    2002-07-01

    The impurity problems within vortex cores of two-dimensional s-wave and chiral p-wave superconductors are studied numerically in the framework of the quasiclassical theory of superconductivity and self-consistent Born approximation under a trial form of the pair potential. The dispersion and impurity scattering rate (the inverse of the relaxation time) of the Andreev bound state localized in vortex cores are deduced from the angular-resoloved local density of states. The energy dependence of the impurity scattering rates depends on the pairing symmetry; particularly, in the chiral p-wave vortex core where chirality and vorticity have opposite sign and hence the total angular momentum is zero, the impurities are ineffective and the scattering rate is vanishingly small. Owing to the cancellation of angular momentum between chirality and vorticity, the chiral p-wave vortex core is similar to locally realized s-wave region and therefore non-magnetic impurity is harmless as a consequence of Anderson’s theorem. The results of the present study confirm the previous results of analytical study [J. Phys. Soc. Jpn. 69 (2000) 3378] in the Born limit.

  2. Dual subduction tectonics and plate dynamics of central Japan shown by three-dimensional P-wave anisotropic structure

    NASA Astrophysics Data System (ADS)

    Ishise, Motoko; Miyake, Hiroe; Koketsu, Kazuki

    2015-07-01

    The central Japanese subduction zone is characterized by a complex tectonic setting affected by the dual subduction of oceanic plates and collisions between the island arcs. To better understand of the subduction system, we performed an anisotropic tomography analysis using P-wave arrival times from local earthquakes to determine the three-dimensional structure of P-wave azimuthal anisotropy in the overriding plate and the Pacific and Philippine Sea (PHS) slabs. The principal characteristics of anisotropy in the subducted and subducting plates are (1) in the overriding plate, the distribution pattern of fast direction of crustal anisotropy coincides with that of the strike of geological structure, (2) in the two oceanic plates, fast propagation directions of P-wave were sub-parallel to the directions of seafloor spreading. Additionally, our tomographic images demonstrate that (1) the bottom of the Median Tectonic Line, the longest fault zone in Japan, reaches to the lower crust, and seems to link to the source region of an inter-plate earthquake along the PHS slab, (2) the segmentation of the PHS slab - the Izu Islands arc, the Nishi-Shichito ridge, and the Shikoku basin - due to the formation history, is reflected in the regional variation of anisotropy. The tomographic study further implies that there might be a fragment of the Pacific slab suggested by a previous study beneath the Tokyo metropolitan area. The overall findings strongly indicate that seismic anisotropy analysis provide potentially useful information to understand a subduction zone.

  3. WFR-2D: an analytical model for PWAS-generated 2D ultrasonic guided wave propagation

    NASA Astrophysics Data System (ADS)

    Shen, Yanfeng; Giurgiutiu, Victor

    2014-03-01

    This paper presents WaveFormRevealer 2-D (WFR-2D), an analytical predictive tool for the simulation of 2-D ultrasonic guided wave propagation and interaction with damage. The design of structural health monitoring (SHM) systems and self-aware smart structures requires the exploration of a wide range of parameters to achieve best detection and quantification of certain types of damage. Such need for parameter exploration on sensor dimension, location, guided wave characteristics (mode type, frequency, wavelength, etc.) can be best satisfied with analytical models which are fast and efficient. The analytical model was constructed based on the exact 2-D Lamb wave solution using Bessel and Hankel functions. Damage effects were inserted in the model by considering the damage as a secondary wave source with complex-valued directivity scattering coefficients containing both amplitude and phase information from wave-damage interaction. The analytical procedure was coded with MATLAB, and a predictive simulation tool called WaveFormRevealer 2-D was developed. The wave-damage interaction coefficients (WDICs) were extracted from harmonic analysis of local finite element model (FEM) with artificial non-reflective boundaries (NRB). The WFR-2D analytical simulation results were compared and verified with full scale multiphysics finite element models and experiments with scanning laser vibrometer. First, Lamb wave propagation in a pristine aluminum plate was simulated with WFR-2D, compared with finite element results, and verified by experiments. Then, an inhomogeneity was machined into the plate to represent damage. Analytical modeling was carried out, and verified by finite element simulation and experiments. This paper finishes with conclusions and suggestions for future work.

  4. Microwave Assisted 2D Materials Exfoliation

    NASA Astrophysics Data System (ADS)

    Wang, Yanbin

    Two-dimensional materials have emerged as extremely important materials with applications ranging from energy and environmental science to electronics and biology. Here we report our discovery of a universal, ultrafast, green, solvo-thermal technology for producing excellent-quality, few-layered nanosheets in liquid phase from well-known 2D materials such as such hexagonal boron nitride (h-BN), graphite, and MoS2. We start by mixing the uniform bulk-layered material with a common organic solvent that matches its surface energy to reduce the van der Waals attractive interactions between the layers; next, the solutions are heated in a commercial microwave oven to overcome the energy barrier between bulk and few-layers states. We discovered the minutes-long rapid exfoliation process is highly temperature dependent, which requires precise thermal management to obtain high-quality inks. We hypothesize a possible mechanism of this proposed solvo-thermal process; our theory confirms the basis of this novel technique for exfoliation of high-quality, layered 2D materials by using an as yet unknown role of the solvent.

  5. Multienzyme Inkjet Printed 2D Arrays.

    PubMed

    Gdor, Efrat; Shemesh, Shay; Magdassi, Shlomo; Mandler, Daniel

    2015-08-19

    The use of printing to produce 2D arrays is well established, and should be relatively facile to adapt for the purpose of printing biomaterials; however, very few studies have been published using enzyme solutions as inks. Among the printing technologies, inkjet printing is highly suitable for printing biomaterials and specifically enzymes, as it offers many advantages. Formulation of the inkjet inks is relatively simple and can be adjusted to a variety of biomaterials, while providing nonharmful environment to the enzymes. Here we demonstrate the applicability of inkjet printing for patterning multiple enzymes in a predefined array in a very straightforward, noncontact method. Specifically, various arrays of the enzymes glucose oxidase (GOx), invertase (INV) and horseradish peroxidase (HP) were printed on aminated glass surfaces, followed by immobilization using glutardialdehyde after printing. Scanning electrochemical microscopy (SECM) was used for imaging the printed patterns and to ascertain the enzyme activity. The successful formation of 2D arrays consisting of enzymes was explored as a means of developing the first surface confined enzyme based logic gates. Principally, XOR and AND gates, each consisting of two enzymes as the Boolean operators, were assembled, and their operation was studied by SECM. PMID:26214072

  6. Determination of two-dimensional velocity structure of Benioff zone based on inversion of body wave travel time (Case study of central Kamchatka)

    NASA Astrophysics Data System (ADS)

    Kuzin, I. P.; Flenov, A. B.

    2016-07-01

    A 2D variant of the inversion method for determining velocities within the Benioff zone of Kamchatka is developed with respect to the time of seismic wave travel from the foci group to Shipunskii station located in the region where the zone outcrops at the ocean bottom. The method is based on the idea of seismic tomography on the relationship between travel time discrepancies along the focus-station path and the value of seismic slowness, which is inverse to the velocity and corresponds to the gradient of the time field or the derivative of a hodograph with respect to the distance dt/dl. From this viewpoint, the field of discrepancies observed is the difference between the experimental and theoretical values of slowness. Its averaging with respect to depth and epicentral distance in 50 × 50 km rectangular windows and subsequent inversion make it possible to obtain a discrete velocity field using the GoldenSoftware Surfer program. Resmoothing with the same software leads to a variant of continuous velocity distribution = in the axial plane of the Benioff zone. The described procedure was used to calculate the velocities in this zone of the southern Kuril Islands and southern and central Kamchatka. The principal result in the latter case is identification of a sharp jump in the velocities of body waves in the upper mantle (up to 1.3 km/s for P-waves and up to 0.8 km/s for S-waves) beneath the Kronotskii Peninsula in the 7 years before the catastrophic Kronotskii earthquake that occurred in 1997 ( M = 7.9) with an upthrow focal mechanism. This jump reflects the concentration of stresses in the epicentral zone of the earthquake. This result is important for medium-term forecasting of strong earthquakes.

  7. 2-D or not 2-D, that is the question: A Northern California test

    SciTech Connect

    Mayeda, K; Malagnini, L; Phillips, W S; Walter, W R; Dreger, D

    2005-06-06

    Reliable estimates of the seismic source spectrum are necessary for accurate magnitude, yield, and energy estimation. In particular, how seismic radiated energy scales with increasing earthquake size has been the focus of recent debate within the community and has direct implications on earthquake source physics studies as well as hazard mitigation. The 1-D coda methodology of Mayeda et al. has provided the lowest variance estimate of the source spectrum when compared against traditional approaches that use direct S-waves, thus making it ideal for networks that have sparse station distribution. The 1-D coda methodology has been mostly confined to regions of approximately uniform complexity. For larger, more geophysically complicated regions, 2-D path corrections may be required. The complicated tectonics of the northern California region coupled with high quality broadband seismic data provides for an ideal ''apples-to-apples'' test of 1-D and 2-D path assumptions on direct waves and their coda. Using the same station and event distribution, we compared 1-D and 2-D path corrections and observed the following results: (1) 1-D coda results reduced the amplitude variance relative to direct S-waves by roughly a factor of 8 (800%); (2) Applying a 2-D correction to the coda resulted in up to 40% variance reduction from the 1-D coda results; (3) 2-D direct S-wave results, though better than 1-D direct waves, were significantly worse than the 1-D coda. We found that coda-based moment-rate source spectra derived from the 2-D approach were essentially identical to those from the 1-D approach for frequencies less than {approx}0.7-Hz, however for the high frequencies (0.7{le} f {le} 8.0-Hz), the 2-D approach resulted in inter-station scatter that was generally 10-30% smaller. For complex regions where data are plentiful, a 2-D approach can significantly improve upon the simple 1-D assumption. In regions where only 1-D coda correction is available it is still preferable over 2

  8. P-wave tomography of eastern North America: Evidence for mantle evolution from Archean to Phanerozoic, and modification during subsequent hot spot tectonism

    NASA Astrophysics Data System (ADS)

    Villemaire, M.; Darbyshire, F. A.; Bastow, I. D.

    2012-12-01

    The unique physical and chemical properties of cratonic lithosphere are thought to be key to its long-term survival and its resistance to pervasive modification by tectonic processes. Study of mantle structure in southeast Canada and the northeast US offers an excellent opportunity to address this issue because the region spans 3 billion years of Earth history, including Archean formation of the Superior craton and younger accretion of terranes to eastern Laurentia during the Proterozoic Grenville and Phanerozoic Appalachian orogenies. Trending NW-SE through each of these terranes is the track of the Great Meteor hot spot, which affected the region during the Mesozoic. Here we study mantle seismic velocity structure beneath this region of eastern North America using tomographic inversion of teleseismic P-wave relative arrival-times recorded by a large-aperture seismograph network. There are no large-scale systematic differences between Superior and Grenville mantle wave speed structure, which may suggest that tectonic stabilization of cratons occurred in a similar fashion during the Archean and Proterozoic. Cratonic lithosphere is largely thought to be resistant to modification by hot spot processes, in contrast to younger terranes where lithospheric erosion and significant magmatism are expected. Low velocities beneath the regions affected by the Great Meteor hot spot are broadest beneath the Paleozoic Appalachian terranes, indicating pervasive modification of the lithosphere during magmatism. The zone of modification narrows considerably into the Proterozoic Grenville province before disappearing completely in the Archean Superior craton, where the surface signature of Mesozoic magmatism is limited to kimberlite eruptions.

  9. The deeper structure of the southern Dead Sea basin derived from neural network analysis of velocity and attenuation tomography

    NASA Astrophysics Data System (ADS)

    Braeuer, Benjamin; Haberland, Christian; Bauer, Klaus; Weber, Michael

    2014-05-01

    The Dead Sea basin is a pull-apart basin at the Dead Sea transform fault, the boundary between the African and the Arabian plates. Though the DSB has been studied for a long time, the available knowledge - based mainly on surface geology, drilling and seismic reflection surveys - gives only a partial picture of its shallow structure. Therefore, within the framework of the international DESIRE (DEad Sea Integrated REsearch) project, a dense temporary local seismological network was operated in the southern Dead Sea area. Within 18 month of recording 650 events were detected. In addition to an already published tomography study revealing the distribution of P velocities and the Vp/Vs ratios a 2D P-wave attenuation tomography (parameter Qp) was performed. The neural network technique of Self-organizing maps (SOM) is used for the joint interpretation of these three parameters (Vp, Vp/Vs, Qp). The resulting clusters in the petrophysical parameter space are assigned to the main lithological units below the southern part of the Dead Sea basin: (1) The basin sediments characterized by strong attenuation, high vp/vs ratios and low P velocities. (2) The pre-basin sediments characterized by medium to strong attenuation, low Vp/Vs ratios and medium P velocities. (3) The basement characterized by low to moderate attenuation, medium vp/vs ratios and high P velocities. Thus, the asymmetric southern Dead Sea basin is filled with basin sediments down to depth of 7 to 12 km. Below the basin sediments, the pre-basin sediments are extending to a depth between 13 and 18 km.

  10. Canard configured aircraft with 2-D nozzle

    NASA Technical Reports Server (NTRS)

    Child, R. D.; Henderson, W. P.

    1978-01-01

    A closely-coupled canard fighter with vectorable two-dimensional nozzle was designed for enhanced transonic maneuvering. The HiMAT maneuver goal of a sustained 8g turn at a free-stream Mach number of 0.9 and 30,000 feet was the primary design consideration. The aerodynamic design process was initiated with a linear theory optimization minimizing the zero percent suction drag including jet effects and refined with three-dimensional nonlinear potential flow techniques. Allowances were made for mutual interference and viscous effects. The design process to arrive at the resultant configuration is described, and the design of a powered 2-D nozzle model to be tested in the LRC 16-foot Propulsion Wind Tunnel is shown.

  11. 2D Electrostatic Actuation of Microshutter Arrays

    NASA Technical Reports Server (NTRS)

    Burns, Devin E.; Oh, Lance H.; Li, Mary J.; Kelly, Daniel P.; Kutyrev, Alexander S.; Moseley, Samuel H.

    2015-01-01

    Electrostatically actuated microshutter arrays consisting of rotational microshutters (shutters that rotate about a torsion bar) were designed and fabricated through the use of models and experiments. Design iterations focused on minimizing the torsional stiffness of the microshutters, while maintaining their structural integrity. Mechanical and electromechanical test systems were constructed to measure the static and dynamic behavior of the microshutters. The torsional stiffness was reduced by a factor of four over initial designs without sacrificing durability. Analysis of the resonant behavior of the microshutters demonstrates that the first resonant mode is a torsional mode occurring around 3000 Hz. At low vacuum pressures, this resonant mode can be used to significantly reduce the drive voltage necessary for actuation requiring as little as 25V. 2D electrostatic latching and addressing was demonstrated using both a resonant and pulsed addressing scheme.

  12. 2D Electrostatic Actuation of Microshutter Arrays

    NASA Technical Reports Server (NTRS)

    Burns, Devin E.; Oh, Lance H.; Li, Mary J.; Jones, Justin S.; Kelly, Daniel P.; Zheng, Yun; Kutyrev, Alexander S.; Moseley, Samuel H.

    2015-01-01

    An electrostatically actuated microshutter array consisting of rotational microshutters (shutters that rotate about a torsion bar) were designed and fabricated through the use of models and experiments. Design iterations focused on minimizing the torsional stiffness of the microshutters, while maintaining their structural integrity. Mechanical and electromechanical test systems were constructed to measure the static and dynamic behavior of the microshutters. The torsional stiffness was reduced by a factor of four over initial designs without sacrificing durability. Analysis of the resonant behavior of the microshutter arrays demonstrates that the first resonant mode is a torsional mode occurring around 3000 Hz. At low vacuum pressures, this resonant mode can be used to significantly reduce the drive voltage necessary for actuation requiring as little as 25V. 2D electrostatic latching and addressing was demonstrated using both a resonant and pulsed addressing scheme.

  13. 2D quantum gravity from quantum entanglement.

    PubMed

    Gliozzi, F

    2011-01-21

    In quantum systems with many degrees of freedom the replica method is a useful tool to study the entanglement of arbitrary spatial regions. We apply it in a way that allows them to backreact. As a consequence, they become dynamical subsystems whose position, form, and extension are determined by their interaction with the whole system. We analyze, in particular, quantum spin chains described at criticality by a conformal field theory. Its coupling to the Gibbs' ensemble of all possible subsystems is relevant and drives the system into a new fixed point which is argued to be that of the 2D quantum gravity coupled to this system. Numerical experiments on the critical Ising model show that the new critical exponents agree with those predicted by the formula of Knizhnik, Polyakov, and Zamolodchikov.

  14. Graphene suspensions for 2D printing

    NASA Astrophysics Data System (ADS)

    Soots, R. A.; Yakimchuk, E. A.; Nebogatikova, N. A.; Kotin, I. A.; Antonova, I. V.

    2016-04-01

    It is shown that, by processing a graphite suspension in ethanol or water by ultrasound and centrifuging, it is possible to obtain particles with thicknesses within 1-6 nm and, in the most interesting cases, 1-1.5 nm. Analogous treatment of a graphite suspension in organic solvent yields eventually thicker particles (up to 6-10 nm thick) even upon long-term treatment. Using the proposed ink based on graphene and aqueous ethanol with ethylcellulose and terpineol additives for 2D printing, thin (~5 nm thick) films with sheet resistance upon annealing ~30 MΩ/□ were obtained. With the ink based on aqueous graphene suspension, the sheet resistance was ~5-12 kΩ/□ for 6- to 15-nm-thick layers with a carrier mobility of ~30-50 cm2/(V s).

  15. Metrology for graphene and 2D materials

    NASA Astrophysics Data System (ADS)

    Pollard, Andrew J.

    2016-09-01

    The application of graphene, a one atom-thick honeycomb lattice of carbon atoms with superlative properties, such as electrical conductivity, thermal conductivity and strength, has already shown that it can be used to benefit metrology itself as a new quantum standard for resistance. However, there are many application areas where graphene and other 2D materials, such as molybdenum disulphide (MoS2) and hexagonal boron nitride (h-BN), may be disruptive, areas such as flexible electronics, nanocomposites, sensing and energy storage. Applying metrology to the area of graphene is now critical to enable the new, emerging global graphene commercial world and bridge the gap between academia and industry. Measurement capabilities and expertise in a wide range of scientific areas are required to address this challenge. The combined and complementary approach of varied characterisation methods for structural, chemical, electrical and other properties, will allow the real-world issues of commercialising graphene and other 2D materials to be addressed. Here, examples of metrology challenges that have been overcome through a multi-technique or new approach are discussed. Firstly, the structural characterisation of defects in both graphene and MoS2 via Raman spectroscopy is described, and how nanoscale mapping of vacancy defects in graphene is also possible using tip-enhanced Raman spectroscopy (TERS). Furthermore, the chemical characterisation and removal of polymer residue on chemical vapour deposition (CVD) grown graphene via secondary ion mass spectrometry (SIMS) is detailed, as well as the chemical characterisation of iron films used to grow large domain single-layer h-BN through CVD growth, revealing how contamination of the substrate itself plays a role in the resulting h-BN layer. In addition, the role of international standardisation in this area is described, outlining the current work ongoing in both the International Organization of Standardization (ISO) and the

  16. Magnitude scaling relationship from the first P-wave arrivals on Canada's west coast

    NASA Astrophysics Data System (ADS)

    Eshaghi, A.; Tiampo, K. F.

    2011-12-01

    The empirical magnitude scaling relationship from ground-motion period parameter τc is derived using vertical waveforms recorded in the Cascadia Subduction Zone (CSZ) along Canada's west coast. A high-pass filtered displacement amplitude parameter, Pd, is calculated from the initial 3 s of the P waveforms and the empirical relationship between Pd and peak ground velocity, PGV, is derived using the same data set. We selected earthquakes of M >3.0 recorded during 1996-2009 by the seismic network stations in the region operated by National Resources Canada (NRCan). In total, 90 events were selected and the vertical components of the earthquakes signals were converted to ground velocity and displacement. The displacements were filtered with a one-way Butterworth high-pass filter with a cut-off frequency of 0.075 Hz. Pd and τc are computed from the vertical seismogram components. While the average magnitude error was approximately 0.70 magnitude units when using the individual record, the error dropped to approximately 0.5 magnitude units when using the average τc for each event. In case of PGV, the average error is approximately 0.3. These relationships may be used for initial steps in establishing an earthquake early warning system for the CSZ.

  17. Investigations of spectral resolution and angle dependency in a 2-D tracking Doppler method.

    PubMed

    Fredriksen, Tonje D; Avdal, Jorgen; Ekroll, Ingvild K; Dahl, Torbjorn; Lovstakken, Lasse; Torp, Hans

    2014-07-01

    An important source of error in velocity measurements from conventional pulsed wave (PW) Doppler is the angle used for velocity calibration. Because there are great uncertainties and interobserver variability in the methods used for Doppler angle correction in the clinic today, it is desirable to develop new and more robust methods. In this work, we have investigated how a previously presented method, 2-D tracking Doppler, depends on the tracking angle. A signal model was further developed to include tracking along any angle, providing velocity spectra which showed good agreement with both experimental data and simulations. The full-width at half-maximum (FWHM) bandwidth and the peak value of predicted power spectra were calculated for varying tracking angles. It was shown that the spectra have lowest bandwidth and maximum power when the tracking angle is equal to the beam-to-flow angle. This may facilitate new techniques for velocity calibration, e.g., by manually adjusting the tracking angle, while observing the effect on the spectral display. An in vitro study was performed in which the Doppler angles were predicted by the minimum FWHM and the maximum power of the 2-D tracking Doppler spectra for 3 different flow angles. The estimated Doppler angles had an overall error of 0.24° ± 0.75° when using the minimum FWHM. With an in vivo example, it was demonstrated that the 2-D tracking Doppler method is suited for measurements in a patient with carotid stenosis.

  18. CYP2D6*36 gene arrangements within the cyp2d6 locus: association of CYP2D6*36 with poor metabolizer status.

    PubMed

    Gaedigk, Andrea; Bradford, L Dianne; Alander, Sarah W; Leeder, J Steven

    2006-04-01

    Unexplained cases of CYP2D6 genotype/phenotype discordance continue to be discovered. In previous studies, several African Americans with a poor metabolizer phenotype carried the reduced function CYP2D6*10 allele in combination with a nonfunctional allele. We pursued the possibility that these alleles harbor either a known sequence variation (i.e., CYP2D6*36 carrying a gene conversion in exon 9 along the CYP2D6*10-defining 100C>T single-nucleotide polymorphism) or novel sequences variation(s). Discordant cases were evaluated by long-range polymerase chain reaction (PCR) to test for gene rearrangement events, and a 6.6-kilobase pair PCR product encompassing the CYP2D6 gene was cloned and entirely sequenced. Thereafter, allele frequencies were determined in different study populations comprising whites, African Americans, and Asians. Analyses covering the CYP2D7 to 2D6 gene region established that CYP2D6*36 did not only exist as a gene duplication (CYP2D6*36x2) or in tandem with *10 (CYP2D6*36+*10), as previously reported, but also by itself. This "single" CYP2D6*36 allele was found in nine African Americans and one Asian, but was absent in the whites tested. Ultimately, the presence of CYP2D6*36 resolved genotype/phenotype discordance in three cases. We also discovered an exon 9 conversion-positive CYP2D6*4 gene in a duplication arrangement (CYP2D6*4Nx2) and a CYP2D6*4 allele lacking 100C>T (CYP2D6*4M) in two white subjects. The discovery of an allele that carries only one CYP2D6*36 gene copy provides unequivocal evidence that both CYP2D6*36 and *36x2 are associated with a poor metabolizer phenotype. Given a combined frequency of between 0.5 and 3% in African Americans and Asians, genotyping for CYP2D6*36 should improve the accuracy of genotype-based phenotype prediction in these populations.

  19. Teleseismic array analysis of upper mantle compressional velocity structure. Ph.D. Thesis

    NASA Technical Reports Server (NTRS)

    Walck, M. C.

    1984-01-01

    Relative array analysis of upper mantle lateral velocity variations in southern California, analysis techniques for dense data profiles, the P-wave upper mantle structure beneath an active spreading center: the Gulf of California, and the upper mantle under the Cascade ranges: a comparison with the Gulf of California are presented.

  20. A new inversion method for (T2, D) 2D NMR logging and fluid typing

    NASA Astrophysics Data System (ADS)

    Tan, Maojin; Zou, Youlong; Zhou, Cancan

    2013-02-01

    One-dimensional nuclear magnetic resonance (1D NMR) logging technology has some significant limitations in fluid typing. However, not only can two-dimensional nuclear magnetic resonance (2D NMR) provide some accurate porosity parameters, but it can also identify fluids more accurately than 1D NMR. In this paper, based on the relaxation mechanism of (T2, D) 2D NMR in a gradient magnetic field, a hybrid inversion method that combines least-squares-based QR decomposition (LSQR) and truncated singular value decomposition (TSVD) is examined in the 2D NMR inversion of various fluid models. The forward modeling and inversion tests are performed in detail with different acquisition parameters, such as magnetic field gradients (G) and echo spacing (TE) groups. The simulated results are discussed and described in detail, the influence of the above-mentioned observation parameters on the inversion accuracy is investigated and analyzed, and the observation parameters in multi-TE activation are optimized. Furthermore, the hybrid inversion can be applied to quantitatively determine the fluid saturation. To study the effects of noise level on the hybrid method and inversion results, the numerical simulation experiments are performed using different signal-to-noise-ratios (SNRs), and the effect of different SNRs on fluid typing using three fluid models are discussed and analyzed in detail.

  1. Monitoring seismic wave velocities in situ

    USGS Publications Warehouse

    McEvilly, T.V.; Clymer, R.

    1979-01-01

    Beginning in the early 1960's, reports from the Soviet Union described travel-time anomalies of 5 to 20 percent preceding large earthquakes. In the early 970's, similar observations began to be reported outside the U.S.S.R. The most convincing were anomalously low values of the velocity ration, Vp/Vs, before four earthquakes of magnitudes 2.5 to 3.3 at Blue Mountain Lake, N.Y.; the anomalies were based on large amounts of high-quality data. In Japan, significant decreases were observed in the travel-time ratio, ts/tp, before two thrust-type earthquakes of magnitudes 6. and 5.3. Finally, there is the much discussed report of an anomaly before the magnitude 6.4 San Fernando, Calif., earthquake of 1971 and the implication that the change was caused principally by a decrease in the velocity of the primary (P) wave.

  2. Parallel 2D and 3D Prestack Depth Migration Using Recursive Kirchhoff Wavefield Extrapolation

    NASA Astrophysics Data System (ADS)

    Geiger, H. D.; Margrave, G. F.; Liu, K.

    2004-05-01

    Recursive Kirchhoff wavefield extrapolation in the space-frequency domain can be thought of as a simple convolutional filter that calculates a single output point at depth z+dz using a weighted summation of all input points within the extrapolator aperture at depth z. The desired velocity values for the extrapolator are the ones that provide the best approximation of the true phase (propagation time) of the seismic wavefield between the input points and the output point. Recursive Kirchhoff extrapolators can be designed to handle lateral variations in velocity in a number of ways: a PSPI-type (phase shift plus interpolation) extrapolator uses only the velocity at the output point, a NSPS-type (nonstationary phase shift) extrapolator uses the velocities at the input points; a SNPS-type (symmetric nonstationary phase shift) extrapolator incorporates two extrapolation steps of dz/2 where the first step uses the velocities at the input points (NSPS-type) and the second step uses the velocity at the output point (PSPI-type); while the Weyl-type extrapolator uses an average of the velocities between each input point and the output point. Here, we introduce the PAVG-type (slowness averaged) extrapolator, which uses velocity values calculated by an average of slowness along straight raypaths between each input point and the output point. Parallel 2D and 3D prestack depth migration algorithms have been coded in both MATLAB and C and tested on a small Linux cluster. A simple synthetic with a lateral step in velocity shows that the PAVG Kirchhoff extrapolator is very close to the exact desired response. Tests using the 2D Marmousi synthetic data set suggest that the extrapolator behaviour is only one of many considerations that must be addressed for accurate depth imaging. Other important considerations include preprocessing, aperture size, taper width, extrapolator stability, and imaging condition.

  3. Analysis of upper mantle structure using wave field continuation of P waves

    NASA Technical Reports Server (NTRS)

    Walck, M. C.; Clayton, R. W.

    1984-01-01

    Wave field continuation theory, which allows transformation of the seismic record section data directly into velocity-depth space, is tested for upper mantle analysis using a large array-recorded data set obtained at the 200-station Caltech-USGS Southern California Seismic Network that is representative of the structure beneath the gulf of California. The method's resolution capability is illustrated by the comparison of the slant stacks and downward continuation of both synthetic and data record sections. It is stressed that when high-quality, densely sampled digital data are available, the technique is easy to implement, provides an inversion which contains all the data in the global format, and produces an objective estimate of depth resolution as a function of ray parameter.

  4. Role of P-wave inelasticity in J/{psi}{yields}{pi}{sup +}{pi}{sup -}{pi}{sup 0}

    SciTech Connect

    Guo Peng; Mitchell, Ryan; Szczepaniak, Adam P.

    2010-11-01

    We discuss the importance of inelasticity in the P-wave {pi}{pi} amplitude on the Dalitz distribution of 3{pi} events in J/{psi} decay. The inelasticity, which becomes sizable for {pi}{pi} masses above 1.4 GeV, is attributed to KK{yields}{pi}{pi} rescattering. We construct an analytical model for the two-channel scattering amplitude and use it to solve the dispersion relation for the isobar amplitudes that parametrize the J/{psi} decay. We present comparisons between theoretical predictions for the Dalitz distribution of 3{pi} events with available experimental data.

  5. Extremal inversion of lunar travel time data. [seismic velocity structure

    NASA Technical Reports Server (NTRS)

    Burkhard, N.; Jackson, D. D.

    1975-01-01

    The tau method, developed by Bessonova et al. (1974), of inversion of travel times is applied to lunar P-wave travel time data to find limits on the velocity structure of the moon. Tau is the singular solution to the Clairaut equation. Models with low-velocity zones, with low-velocity zones at differing depths, and without low-velocity zones, were found to be consistent with data and within the determined limits. Models with and without a discontinuity at about 25-km depth have been found which agree with all travel time data to within two standard deviations. In other words, the existence of the discontinuity and its size and location have not been uniquely resolved. Models with low-velocity channels are also possible.

  6. Radiofrequency Spectroscopy and Thermodynamics of Fermi Gases in the 2D to Quasi-2D Dimensional Crossover

    NASA Astrophysics Data System (ADS)

    Cheng, Chingyun; Kangara, Jayampathi; Arakelyan, Ilya; Thomas, John

    2016-05-01

    We tune the dimensionality of a strongly interacting degenerate 6 Li Fermi gas from 2D to quasi-2D, by adjusting the radial confinement of pancake-shaped clouds to control the radial chemical potential. In the 2D regime with weak radial confinement, the measured pair binding energies are in agreement with 2D-BCS mean field theory, which predicts dimer pairing energies in the many-body regime. In the qausi-2D regime obtained with increased radial confinement, the measured pairing energy deviates significantly from 2D-BCS theory. In contrast to the pairing energy, the measured radii of the cloud profiles are not fit by 2D-BCS theory in either the 2D or quasi-2D regimes, but are fit in both regimes by a beyond mean field polaron-model of the free energy. Supported by DOE, ARO, NSF, and AFOSR.

  7. Competing coexisting phases in 2D water

    PubMed Central

    Zanotti, Jean-Marc; Judeinstein, Patrick; Dalla-Bernardina, Simona; Creff, Gaëlle; Brubach, Jean-Blaise; Roy, Pascale; Bonetti, Marco; Ollivier, Jacques; Sakellariou, Dimitrios; Bellissent-Funel, Marie-Claire

    2016-01-01

    The properties of bulk water come from a delicate balance of interactions on length scales encompassing several orders of magnitudes: i) the Hydrogen Bond (HBond) at the molecular scale and ii) the extension of this HBond network up to the macroscopic level. Here, we address the physics of water when the three dimensional extension of the HBond network is frustrated, so that the water molecules are forced to organize in only two dimensions. We account for the large scale fluctuating HBond network by an analytical mean-field percolation model. This approach provides a coherent interpretation of the different events experimentally (calorimetry, neutron, NMR, near and far infra-red spectroscopies) detected in interfacial water at 160, 220 and 250 K. Starting from an amorphous state of water at low temperature, these transitions are respectively interpreted as the onset of creation of transient low density patches of 4-HBonded molecules at 160 K, the percolation of these domains at 220 K and finally the total invasion of the surface by them at 250 K. The source of this surprising behaviour in 2D is the frustration of the natural bulk tetrahedral local geometry and the underlying very significant increase in entropy of the interfacial water molecules. PMID:27185018

  8. Phase Engineering of 2D Tin Sulfides.

    PubMed

    Mutlu, Zafer; Wu, Ryan J; Wickramaratne, Darshana; Shahrezaei, Sina; Liu, Chueh; Temiz, Selcuk; Patalano, Andrew; Ozkan, Mihrimah; Lake, Roger K; Mkhoyan, K A; Ozkan, Cengiz S

    2016-06-01

    Tin sulfides can exist in a variety of phases and polytypes due to the different oxidation states of Sn. A subset of these phases and polytypes take the form of layered 2D structures that give rise to a wide host of electronic and optical properties. Hence, achieving control over the phase, polytype, and thickness of tin sulfides is necessary to utilize this wide range of properties exhibited by the compound. This study reports on phase-selective growth of both hexagonal tin (IV) sulfide SnS2 and orthorhombic tin (II) sulfide SnS crystals with diameters of over tens of microns on SiO2 substrates through atmospheric pressure vapor-phase method in a conventional horizontal quartz tube furnace with SnO2 and S powders as the source materials. Detailed characterization of each phase of tin sulfide crystals is performed using various microscopy and spectroscopy methods, and the results are corroborated by ab initio density functional theory calculations. PMID:27099950

  9. Phase Engineering of 2D Tin Sulfides.

    PubMed

    Mutlu, Zafer; Wu, Ryan J; Wickramaratne, Darshana; Shahrezaei, Sina; Liu, Chueh; Temiz, Selcuk; Patalano, Andrew; Ozkan, Mihrimah; Lake, Roger K; Mkhoyan, K A; Ozkan, Cengiz S

    2016-06-01

    Tin sulfides can exist in a variety of phases and polytypes due to the different oxidation states of Sn. A subset of these phases and polytypes take the form of layered 2D structures that give rise to a wide host of electronic and optical properties. Hence, achieving control over the phase, polytype, and thickness of tin sulfides is necessary to utilize this wide range of properties exhibited by the compound. This study reports on phase-selective growth of both hexagonal tin (IV) sulfide SnS2 and orthorhombic tin (II) sulfide SnS crystals with diameters of over tens of microns on SiO2 substrates through atmospheric pressure vapor-phase method in a conventional horizontal quartz tube furnace with SnO2 and S powders as the source materials. Detailed characterization of each phase of tin sulfide crystals is performed using various microscopy and spectroscopy methods, and the results are corroborated by ab initio density functional theory calculations.

  10. Competing coexisting phases in 2D water

    NASA Astrophysics Data System (ADS)

    Zanotti, Jean-Marc; Judeinstein, Patrick; Dalla-Bernardina, Simona; Creff, Gaëlle; Brubach, Jean-Blaise; Roy, Pascale; Bonetti, Marco; Ollivier, Jacques; Sakellariou, Dimitrios; Bellissent-Funel, Marie-Claire

    2016-05-01

    The properties of bulk water come from a delicate balance of interactions on length scales encompassing several orders of magnitudes: i) the Hydrogen Bond (HBond) at the molecular scale and ii) the extension of this HBond network up to the macroscopic level. Here, we address the physics of water when the three dimensional extension of the HBond network is frustrated, so that the water molecules are forced to organize in only two dimensions. We account for the large scale fluctuating HBond network by an analytical mean-field percolation model. This approach provides a coherent interpretation of the different events experimentally (calorimetry, neutron, NMR, near and far infra-red spectroscopies) detected in interfacial water at 160, 220 and 250 K. Starting from an amorphous state of water at low temperature, these transitions are respectively interpreted as the onset of creation of transient low density patches of 4-HBonded molecules at 160 K, the percolation of these domains at 220 K and finally the total invasion of the surface by them at 250 K. The source of this surprising behaviour in 2D is the frustration of the natural bulk tetrahedral local geometry and the underlying very significant increase in entropy of the interfacial water molecules.

  11. A three-dimensional measuring system based on 2D laser displacement sensor

    NASA Astrophysics Data System (ADS)

    Jiang, Sulun; Fu, Yuegang; Zhu, Wangbin; Zhang, Yingwei; Wang, Weichen

    2014-12-01

    3D(Three-dimensional) measurement has found its applications in the fields of automation process, Reverse engineering(RE), machine vision, as well as medical diagnostic. There are some disadvantages in the present 3D measurement methods. In this paper, a 2D laser displacement sensor-based and fast-dimensional surface measurement method for small size objects was proposed after analyzing the existing three-dimensional measurement methods. This method uses the information collected by 2D laser displacement sensor and encoder in pan-tilt to three-dimensional reconstruct 3D model. And then discuss the restrictive relation between angular velocity of pan-tilt and parameters (measurement range, signal sample rate, precision, etc.) of 2D laser displacement sensor. The sources of error and methods of improving precision were analyzed. Theoretical analyses and experiments have proved the feasibility, high-precision and practical of this method.

  12. Three dimensional images of geothermal systems: local earthquake P-wave velocity tomography at the Hengill and Krafla geothermal areas, Iceland, and The Geysers, California

    USGS Publications Warehouse

    Julian, B.R.; Prisk, A.; Foulger, G.R.; Evans, J.R.; ,

    1993-01-01

    Local earthquake tomography - the use of earthquake signals to form a 3-dimensional structural image - is now a mature geophysical analysis method, particularly suited to the study of geothermal reservoirs, which are often seismically active and severely laterally inhomogeneous. Studies have been conducted of the Hengill (Iceland), Krafla (Iceland) and The Geysers (California) geothermal areas. All three systems are exploited for electricity and/or heat production, and all are highly seismically active. Tomographic studies of volumes a few km in dimension were conducted for each area using the method of Thurber (1983).

  13. 2-D Animation's Not Just for Mickey Mouse.

    ERIC Educational Resources Information Center

    Weinman, Lynda

    1995-01-01

    Discusses characteristics of two-dimensional (2-D) animation; highlights include character animation, painting issues, and motion graphics. Sidebars present Silicon Graphics animations tools and 2-D animation programs for the desktop computer. (DGM)

  14. P-waves imaging of the FRI and BK zones at the Grimsel Rock Laboratory

    SciTech Connect

    Majer, E.L.; Peterson, J.E. Jr. ); Blueming, P.; Sattel, G. )

    1990-08-01

    This report is one of a series documenting the results of the Nagra-DOE Cooperative (NDC-I) research program in which the cooperating scientists explore the geological, geophysical, hydrological, geochemical, and structural effects anticipated from the use of a rock mass as a geological repository for nuclear waste. Tomographic imaging studies using a high frequency (10 Khz.) piezoelectric source and a three component receiver were carried out in two different regions of the underground Nagra Grimsel test facility in Switzerland. Both sites were in fractured granite, one being in a strongly foliated granite (FRI site), and the other being in a relatively homogeneous granite (BK zone). The object of the work was to determine if the seismic techniques could be useful in imaging the fracture zones and provide information on the hydrologic conditions. Both amplitude and velocity tomograms were obtained from the Data. The results indicate that the fracture zones strongly influenced the seismic wave propagation, thus imaging the fracture zones that were hydrologically important. 11 refs., 24 figs.

  15. Simulation of the flow and mass transfer for KDP crystals undergoing 2D translation during growth

    NASA Astrophysics Data System (ADS)

    Zhou, Chuan; Li, Mingwei; Hu, Zhitao; Yin, Huawei; Wang, Bangguo; Cui, Qidong

    2016-09-01

    In this study, a novel motion mode for crystals during growth, i.e., 2D translation, is proposed. Numerical simulations of flow and mass transfer are conducted for the growth of large-scale potassium dihydrogen phosphate (KDP) crystals subjected to the new motion mode. Surface supersaturation and shear stress are obtained as functions of the translational velocity, distance, size, orientation of crystals. The dependence of these two parameters on the flow fields around the crystals is also discussed. The thicknesses of the solute boundary layer varied with translational velocity are described. The characteristics of solution flow and surface supersaturation distribution are summarized, where it suggests that the morphological stability of a crystal surface can be enhanced if the proposed 2D translation is applied to crystal growth.

  16. Generates 2D Input for DYNA NIKE & TOPAZ

    SciTech Connect

    Hallquist, J. O.; Sanford, Larry

    1996-07-15

    MAZE is an interactive program that serves as an input and two-dimensional mesh generator for DYNA2D, NIKE2D, TOPAZ2D, and CHEMICAL TOPAZ2D. MAZE also generates a basic template for ISLAND input. MAZE has been applied to the generation of input data to study the response of two-dimensional solids and structures undergoing finite deformations under a wide variety of large deformation transient dynamic and static problems and heat transfer analyses.

  17. MAZE96. Generates 2D Input for DYNA NIKE & TOPAZ

    SciTech Connect

    Sanford, L.; Hallquist, J.O.

    1992-02-24

    MAZE is an interactive program that serves as an input and two-dimensional mesh generator for DYNA2D, NIKE2D, TOPAZ2D, and CHEMICAL TOPAZ2D. MAZE also generates a basic template for ISLAND input. MAZE has been applied to the generation of input data to study the response of two-dimensional solids and structures undergoing finite deformations under a wide variety of large deformation transient dynamic and static problems and heat transfer analyses.

  18. Analysis of 2D Phase Contrast MRI in Renal Arteries by Self Organizing Maps

    NASA Astrophysics Data System (ADS)

    Zöllner, Frank G.; Schad, Lothar R.

    We present an approach based on self organizing maps to segment renal arteries from 2D PC Cine MR, images to measure blood velocity and flow. Such information are important in grading renal artery stenosis and support the decision on surgical interventions like percu-tan transluminal angioplasty. Results show that the renal arteries could be extracted automatically. The corresponding velocity profiles show high correlation (r=0.99) compared those from manual delineated vessels. Furthermore, the method could detect possible blood flow patterns within the vessel.

  19. Flow Quantification from 2D Phase Contrast MRI in Renal Arteries Using Clustering

    NASA Astrophysics Data System (ADS)

    Zöllner, Frank G.; Monnsen, Jan Ankar; Lundervold, Arvid; Rørvik, Jarle

    We present an approach based on clustering to segment renal arteries from 2D PC Cine MR images to measure blood velocity and flow. Such information are important in grading renal artery stenosis and support the decision on surgical interventions like percutan transluminal angioplasty. Results show that the renal arteries could be extracted automatically and the corresponding velocity profiles could be calculated. Furthermore, the clustering could detect possible phase wrap effects automatically as well as differences in the blood flow patterns within the vessel.

  20. 2-D inner-shelf current observations from a single VHF WEllen RAdar (WERA) station

    USGS Publications Warehouse

    Voulgaris, G.; Kumar, N.; Gurgel, K.-W.; Warner, J.C.; List, J.H.

    2011-01-01

    The majority of High Frequency (HF) radars used worldwide operate at medium to high frequencies (8 to 30 MHz) providing spatial resolutions ranging from 3 to 1.5 km and ranges from 150 to 50 km. This paper presents results from the deployment of a single Very High Frequency (VHF, 48 MHz) WEllen RAdar (WERA) radar with spatial resolution of 150 m and range 10-15 km, used in the nearshore off Cape Hatteras, NC, USA. It consisted of a linear array of 12 antennas operating in beam forming mode. Radial velocities were estimated from radar backscatter for a variety of wind and nearshore wave conditions. A methodology similar to that used for converting acoustically derived beam velocities to an orthogonal system is presented for obtaining 2-D current fields from a single station. The accuracy of the VHF radar-derived radial velocities is examined using a new statistical technique that evaluates the system over the range of measured velocities. The VHF radar velocities showed a bias of 3 to 7 cm/s over the experimental period explainable by the differences in radar penetration and in-situ measurement height. The 2-D current field shows good agreement with the in-situ measurements. Deviations and inaccuracies are well explained by the geometric dilution analysis. ?? 2011 IEEE.

  1. Location of high-frequency P wave microseismic noise in the Pacific Ocean using multiple small aperture arrays

    DOE PAGES

    Pyle, Moira L.; Koper, Keith D.; Euler, Garrett G.; Burlacu, Relu

    2015-04-20

    We investigate source locations of P-wave microseisms within a narrow frequency band (0.67–1.33 Hz) that is significantly higher than the classic microseism band (~0.05–0.3 Hz). Employing a backprojection method, we analyze data recorded during January 2010 from five International Monitoring System arrays that border the Pacific Ocean. We develop a ranking scheme that allows us to combine beam power from multiple arrays to obtain robust locations of the microseisms. Some individual arrays exhibit a strong regional component, but results from the combination of all arrays show high-frequency P wave energy emanating from the North Pacific basin, in general agreement withmore » previous observations in the double-frequency (DF) microseism band (~0.1–0.3 Hz). This suggests that the North Pacific source of ambient P noise covers a broad range of frequencies and that the wave-wave interaction model is likely valid at shorter periods.« less

  2. Phase diagram of a non-Abelian Aubry-André-Harper model with p -wave superfluidity

    NASA Astrophysics Data System (ADS)

    Wang, Jun; Liu, Xia-Ji; Xianlong, Gao; Hu, Hui

    2016-03-01

    We study theoretically a one-dimensional quasiperiodic Fermi system with topological p -wave superfluidity, which can be deduced from a topologically nontrivial tight-binding model on the square lattice in a uniform magnetic field and subject to a non-Abelian gauge field. The system may be regarded as a non-Abelian generalization of the well-known Aubry-André-Harper model. We investigate its phase diagram as a function of the strength of the quasidisorder and the amplitude of the p -wave order parameter through a number of numerical investigations, including a multifractal analysis. There are four distinct phases separated by three critical lines, i.e., two phases with all extended wave functions [(I) and (IV)], a topologically trivial phase (II) with all localized wave functions, and a critical phase (III) with all multifractal wave functions. Phase (I) is related to phase (IV) by duality. It also seems to be related to phase (II) by duality. Our proposed phase diagram may be observable in current cold-atom experiments, in view of simulating non-Abelian gauge fields and topological insulators/superfluids with ultracold atoms.

  3. Antiferromagnetism, f -wave, and chiral p -wave superconductivity in a kagome lattice with possible application to s d2 graphenes

    NASA Astrophysics Data System (ADS)

    Wang, Wan-Sheng; Liu, Yuan-Chun; Xiang, Yuan-Yuan; Wang, Qiang-Hua

    2016-07-01

    We investigate the electronic instabilities in a kagome lattice with Rashba spin-orbital coupling by the unbiased singular-mode functional renormalization group. At the parent 1 /3 filling, the normal state is a quantum spin Hall system. Since the bottom of the conduction band is near the van Hove singularity, the electron-doped system is highly susceptible to competing orders upon electron interactions. The topological nature of the parent system enriches the complexity and novelty of such orders. We find 120∘-type intra-unit-cell antiferromagnetic order, f -wave superconductivity, and chiral p -wave superconductivity with increasing electron doping above the van Hove point. In both types of superconducting phases, there is a mixture of comparable spin singlet and triplet components because of the Rashba coupling. The chiral p -wave superconducting state is characterized by a Chern number Z =1 , supporting a branch of Weyl fermion states on each edge. The model bares close relevance to the so-called s d2 graphenes proposed recently.

  4. Relativistic effects in the double S- and P-wave charmonium production in e{sup +}e{sup -} annihilation

    SciTech Connect

    Elekina, E. N.; Martynenko, A. P.

    2010-03-01

    On the basis of perturbative QCD and the relativistic quark model we calculate relativistic and bound state corrections in the pair production of S-wave and P-wave charmonium states. Relativistic factors in the production amplitude connected with the relative motion of heavy quarks and the transformation law of the bound state wave function to the reference frame of the moving S- and P-wave mesons are taken into account. For the gluon and quark propagators entering the production vertex function we use a truncated expansion in the ratio of the relative quark momenta to the center-of-mass energy {radical}(s) up to the second order. The relativistic treatment of the wave functions makes all such second order terms convergent, thus allowing the reliable calculation of their contributions to the production cross section. Relativistic corrections to the quark bound state wave functions in the rest frame are considered by means of the QCD generalization of the standard Breit potential. It turns out that the examined effects change essentially the nonrelativistic results of the cross section for the reaction e{sup +}+e{sup -{yields}}J/{Psi}({eta}{sub c})+{chi}{sub cJ}(h{sub c}) at the center-of-mass energy {radical}(s)=10.6 GeV.

  5. P wave detection in ECG signals using an extended Kalman filter: an evaluation in different arrhythmia contexts.

    PubMed

    Rahimpour, M; Mohammadzadeh Asl, B

    2016-07-01

    Monitoring atrial activity via P waves, is an important feature of the arrhythmia detection procedure. The aim of this paper is to present an algorithm for P wave detection in normal and some abnormal records by improving existing methods in the field of signal processing. In contrast to the classical approaches, which are completely blind to signal dynamics, our proposed method uses the extended Kalman filter, EKF25, to estimate the state variables of the equations modeling the dynamic of an ECG signal. This method is a modified version of the nonlinear dynamical model previously introduced for a generation of synthetic ECG signals and fiducial point extraction in normal ones. It is capable of estimating the separate types of activity of the heart with reasonable accuracy and performs well in the presence of morphological variations in the waveforms and ectopic beats. The MIT-BIH Arrhythmia and QT databases have been used to evaluate the performance of the proposed method. The results show that this method has Se  =  98.38% and Pr  =  96.74% in the overall records (considering normal and abnormal rhythms). PMID:27321699

  6. Teleseismic P wave tomography of South Island, New Zealand upper mantle: Evidence of subduction of Pacific lithosphere since 45 Ma

    NASA Astrophysics Data System (ADS)

    Zietlow, Daniel W.; Molnar, Peter H.; Sheehan, Anne F.

    2016-06-01

    A P wave speed tomogram produced from teleseismic travel time measurements made on and offshore the South Island of New Zealand shows a nearly vertical zone with wave speeds that are 4.5% higher than the background average reaching to depths of approximately 450 km under the northwestern region of the island. This structure is consistent with oblique west-southwest subduction of Pacific lithosphere since about 45 Ma, when subduction beneath the region began. The high-speed zone reaches about 200-300 km below the depths of the deepest intermediate-depth earthquakes (subcrustal to ~200 km) and therefore suggests that ~200-300 km of slab below them is required to produce sufficient weight to induce the intermediate-depth seismicity. In the southwestern South Island, high P wave speeds indicate subduction of the Australian plate at the Puysegur Trench to approximately 200 km depth. A band with speeds ~2-3.5% lower than the background average is found along the east coast of the South Island to depths of ~150-200 km and underlies Miocene or younger volcanism; these low speeds are consistent with thinned lithosphere. A core of high speeds under the Southern Alps associated with a convergent margin and mountain building imaged in previous investigations is not well resolved in this study. This could suggest that such high speeds are limited in both width and depth and not resolvable by our data.

  7. Systematic Determination of Earthquake Rupture Directivity and Fault Planes From Analysis of Long-Period P-Wave Spectra

    NASA Astrophysics Data System (ADS)

    Warren, L. M.; Shearer, P. M.

    2003-12-01

    If an earthquake has a primarily unilateral rupture, the pulse width observed on seismograms will vary depending on the angle between the rupture direction and the takeoff vector to the station. We have developed a method to estimate the amount of pulse broadening from the spectrum and apply it to a long-period database of large, globally-distributed earthquakes that occurred between 1988 and 2000. We select vertical-component P waves at epicentral distances of 20o--98o. We compute the spectrum from a 64-s-long window around each P wave arrival. Each spectrum is the product of source, receiver, and propagation response functions as well as local source- and receiver-side effects. Since there are multiple receivers for each source and multiple sources for each receiver, we can estimate and remove the source- and receiver-side terms by stacking the appropriate P log spectra. For earthquakes deeper than ˜200~km, directivity effects dominate the residual spectra. We use our pulse-width estimates to determine the best rupture direction and to identify which nodal plane of the Harvard CMT solution is most consistent with this rupture direction for 66~events. In about 40% of the cases, one of the two nodal planes produces a much better fit to the data and can be identified as the true fault plane. Our results show good agreement with the known rupture directions and slip planes of recent earthquakes.

  8. Pore-Scale Modeling of Pore Structure Effects on P-Wave Scattering Attenuation in Dry Rocks

    PubMed Central

    Li, Tianyang; Qiu, Hao; Wang, Feifei

    2015-01-01

    Underground rocks usually have complex pore system with a variety of pore types and a wide range of pore size. The effects of pore structure on elastic wave attenuation cannot be neglected. We investigated the pore structure effects on P-wave scattering attenuation in dry rocks by pore-scale modeling based on the wave theory and the similarity principle. Our modeling results indicate that pore size, pore shape (such as aspect ratio), and pore density are important factors influencing P-wave scattering attenuation in porous rocks, and can explain the variation of scattering attenuation at the same porosity. From the perspective of scattering attenuation, porous rocks can safely suit to the long wavelength assumption when the ratio of wavelength to pore size is larger than 15. Under the long wavelength condition, the scattering attenuation coefficient increases as a power function as the pore density increases, and it increases exponentially with the increase in aspect ratio. For a certain porosity, rocks with smaller aspect ratio and/or larger pore size have stronger scattering attenuation. When the pore aspect ratio is larger than 0.5, the variation of scattering attenuation at the same porosity is dominantly caused by pore size and almost independent of the pore aspect ratio. These results lay a foundation for pore structure inversion from elastic wave responses in porous rocks. PMID:25961729

  9. Pore-scale modeling of pore structure effects on P-wave scattering attenuation in dry rocks.

    PubMed

    Wang, Zizhen; Wang, Ruihe; Li, Tianyang; Qiu, Hao; Wang, Feifei

    2015-01-01

    Underground rocks usually have complex pore system with a variety of pore types and a wide range of pore size. The effects of pore structure on elastic wave attenuation cannot be neglected. We investigated the pore structure effects on P-wave scattering attenuation in dry rocks by pore-scale modeling based on the wave theory and the similarity principle. Our modeling results indicate that pore size, pore shape (such as aspect ratio), and pore density are important factors influencing P-wave scattering attenuation in porous rocks, and can explain the variation of scattering attenuation at the same porosity. From the perspective of scattering attenuation, porous rocks can safely suit to the long wavelength assumption when the ratio of wavelength to pore size is larger than 15. Under the long wavelength condition, the scattering attenuation coefficient increases as a power function as the pore density increases, and it increases exponentially with the increase in aspect ratio. For a certain porosity, rocks with smaller aspect ratio and/or larger pore size have stronger scattering attenuation. When the pore aspect ratio is larger than 0.5, the variation of scattering attenuation at the same porosity is dominantly caused by pore size and almost independent of the pore aspect ratio. These results lay a foundation for pore structure inversion from elastic wave responses in porous rocks.

  10. P wave detection in ECG signals using an extended Kalman filter: an evaluation in different arrhythmia contexts.

    PubMed

    Rahimpour, M; Mohammadzadeh Asl, B

    2016-07-01

    Monitoring atrial activity via P waves, is an important feature of the arrhythmia detection procedure. The aim of this paper is to present an algorithm for P wave detection in normal and some abnormal records by improving existing methods in the field of signal processing. In contrast to the classical approaches, which are completely blind to signal dynamics, our proposed method uses the extended Kalman filter, EKF25, to estimate the state variables of the equations modeling the dynamic of an ECG signal. This method is a modified version of the nonlinear dynamical model previously introduced for a generation of synthetic ECG signals and fiducial point extraction in normal ones. It is capable of estimating the separate types of activity of the heart with reasonable accuracy and performs well in the presence of morphological variations in the waveforms and ectopic beats. The MIT-BIH Arrhythmia and QT databases have been used to evaluate the performance of the proposed method. The results show that this method has Se  =  98.38% and Pr  =  96.74% in the overall records (considering normal and abnormal rhythms).

  11. 2d PDE Linear Symmetric Matrix Solver

    1983-10-01

    ICCG2 (Incomplete Cholesky factorized Conjugate Gradient algorithm for 2d symmetric problems) was developed to solve a linear symmetric matrix system arising from a 9-point discretization of two-dimensional elliptic and parabolic partial differential equations found in plasma physics applications, such as resistive MHD, spatial diffusive transport, and phase space transport (Fokker-Planck equation) problems. These problems share the common feature of being stiff and requiring implicit solution techniques. When these parabolic or elliptic PDE''s are discretized withmore » finite-difference or finite-element methods,the resulting matrix system is frequently of block-tridiagonal form. To use ICCG2, the discretization of the two-dimensional partial differential equation and its boundary conditions must result in a block-tridiagonal supermatrix composed of elementary tridiagonal matrices. The incomplete Cholesky conjugate gradient algorithm is used to solve the linear symmetric matrix equation. Loops are arranged to vectorize on the Cray1 with the CFT compiler, wherever possible. Recursive loops, which cannot be vectorized, are written for optimum scalar speed. For matrices lacking symmetry, ILUCG2 should be used. Similar methods in three dimensions are available in ICCG3 and ILUCG3. A general source containing extensions and macros, which must be processed by a pre-compiler to obtain the standard FORTRAN source, is provided along with the standard FORTRAN source because it is believed to be more readable. The pre-compiler is not included, but pre-compilation may be performed by a text editor as described in the UCRL-88746 Preprint.« less

  12. 2d PDE Linear Asymmetric Matrix Solver

    1983-10-01

    ILUCG2 (Incomplete LU factorized Conjugate Gradient algorithm for 2d problems) was developed to solve a linear asymmetric matrix system arising from a 9-point discretization of two-dimensional elliptic and parabolic partial differential equations found in plasma physics applications, such as plasma diffusion, equilibria, and phase space transport (Fokker-Planck equation) problems. These equations share the common feature of being stiff and requiring implicit solution techniques. When these parabolic or elliptic PDE''s are discretized with finite-difference or finite-elementmore » methods, the resulting matrix system is frequently of block-tridiagonal form. To use ILUCG2, the discretization of the two-dimensional partial differential equation and its boundary conditions must result in a block-tridiagonal supermatrix composed of elementary tridiagonal matrices. A generalization of the incomplete Cholesky conjugate gradient algorithm is used to solve the matrix equation. Loops are arranged to vectorize on the Cray1 with the CFT compiler, wherever possible. Recursive loops, which cannot be vectorized, are written for optimum scalar speed. For problems having a symmetric matrix ICCG2 should be used since it runs up to four times faster and uses approximately 30% less storage. Similar methods in three dimensions are available in ICCG3 and ILUCG3. A general source, containing extensions and macros, which must be processed by a pre-compiler to obtain the standard FORTRAN source, is provided along with the standard FORTRAN source because it is believed to be more readable. The pre-compiler is not included, but pre-compilation may be performed by a text editor as described in the UCRL-88746 Preprint.« less

  13. Position control using 2D-to-2D feature correspondences in vision guided cell micromanipulation.

    PubMed

    Zhang, Yanliang; Han, Mingli; Shee, Cheng Yap; Ang, Wei Tech

    2007-01-01

    Conventional camera calibration that utilizes the extrinsic and intrinsic parameters of the camera and the objects has certain limitations for micro-level cell operations due to the presence of hardware deviations and external disturbances during the experimental process, thereby invalidating the extrinsic parameters. This invalidation is often neglected in macro-world visual servoing and affects the visual image processing quality, causing deviation from the desired position in micro-level cell operations. To increase the success rate of vision guided biological micromanipulations, a novel algorithm monitoring the changing image pattern of the manipulators including the injection micropipette and cell holder is designed and implemented based on 2 dimensional (2D)-to 2D feature correspondences and can adjust the manipulator and perform position control simultaneously. When any deviation is found, the manipulator is retracted to the initial focusing plane before continuing the operation.

  14. Numerical simulation of rock cutting using 2D AUTODYN

    NASA Astrophysics Data System (ADS)

    Woldemichael, D. E.; Rani, A. M. Abdul; Lemma, T. A.; Altaf, K.

    2015-12-01

    In a drilling process for oil and gas exploration, understanding of the interaction between the cutting tool and the rock is important for optimization of the drilling process using polycrystalline diamond compact (PDC) cutters. In this study the finite element method in ANSYS AUTODYN-2D is used to simulate the dynamics of cutter rock interaction, rock failure, and fragmentation. A two-dimensional single PDC cutter and rock model were used to simulate the orthogonal cutting process and to investigate the effect of different parameters such as depth of cut, and back rake angle on two types of rocks (sandstone and limestone). In the simulation, the cutting tool was dragged against stationary rock at predetermined linear velocity and the depth of cut (1,2, and 3 mm) and the back rake angles(-10°, 0°, and +10°) were varied. The simulation result shows that the +10° back rake angle results in higher rate of penetration (ROP). Increasing depth of cut leads to higher ROP at the cost of higher cutting force.

  15. Turbulent boundary layer over 2D and 3D large-scale wavy walls

    NASA Astrophysics Data System (ADS)

    Chamorro, Leonardo P.; Hamed, Ali M.; Castillo, Luciano

    2015-11-01

    In this work, an experimental investigation of the developing and developed flow over two- and three-dimensional large-scale wavy walls was performed using high-resolution planar particle image velocimetry in a refractive-index-matching flume. The 2D wall is described by a sinusoidal wave in the streamwise direction with amplitude to wavelength ratio a/ λx = 0.05. The 3D wall is defined with an additional wave superimposed on the 2D wall in the spanwise direction with a/ λy = 0.1. The flow was characterized at Reynolds numbers of 4000 and 40000, based on the bulk velocity and the flume half height. Instantaneous velocity fields and time-averaged turbulence quantities reveal strong coupling between large-scale topography and the turbulence dynamics near the wall. Turbulence statistics show the presence of a well-structured shear layer that enhances the turbulence for the 2D wavy wall, whereas the 3D wall exhibits different flow dynamics and significantly lower turbulence levels, particularly for which shows about 30% reduction. The likelihood of recirculation bubbles, levels and spatial distribution of turbulence, and the rate of the turbulent kinetic energy production are shown to be severely affected when a single spanwise mode is superimposed on the 2D wall. POD analysis was also performed to further understand distinctive features of the flow structures due to surface topography.

  16. A Planar Quantum Transistor Based on 2D-2D Tunneling in Double Quantum Well Heterostructures

    SciTech Connect

    Baca, W.E.; Blount, M.A.; Hafich, M.J.; Lyo, S.K.; Moon, J.S.; Reno, J.L.; Simmons, J.A.; Wendt, J.R.

    1998-12-14

    We report on our work on the double electron layer tunneling transistor (DELTT), based on the gate-control of two-dimensional -- two-dimensional (2D-2D) tunneling in a double quantum well heterostructure. While previous quantum transistors have typically required tiny laterally-defined features, by contrast the DELTT is entirely planar and can be reliably fabricated in large numbers. We use a novel epoxy-bond-and-stop-etch (EBASE) flip-chip process, whereby submicron gating on opposite sides of semiconductor epitaxial layers as thin as 0.24 microns can be achieved. Because both electron layers in the DELTT are 2D, the resonant tunneling features are unusually sharp, and can be easily modulated with one or more surface gates. We demonstrate DELTTs with peak-to-valley ratios in the source-drain I-V curve of order 20:1 below 1 K. Both the height and position of the resonant current peak can be controlled by gate voltage over a wide range. DELTTs with larger subband energy offsets ({approximately} 21 meV) exhibit characteristics that are nearly as good at 77 K, in good agreement with our theoretical calculations. Using these devices, we also demonstrate bistable memories operating at 77 K. Finally, we briefly discuss the prospects for room temperature operation, increases in gain, and high-speed.

  17. 'Brukin2D': a 2D visualization and comparison tool for LC-MS data

    PubMed Central

    Tsagkrasoulis, Dimosthenis; Zerefos, Panagiotis; Loudos, George; Vlahou, Antonia; Baumann, Marc; Kossida, Sophia

    2009-01-01

    Background Liquid Chromatography-Mass Spectrometry (LC-MS) is a commonly used technique to resolve complex protein mixtures. Visualization of large data sets produced from LC-MS, namely the chromatogram and the mass spectra that correspond to its compounds is the focus of this work. Results The in-house developed 'Brukin2D' software, built in Matlab 7.4, which is presented here, uses the compound data that are exported from the Bruker 'DataAnalysis' program, and depicts the mean mass spectra of all the chromatogram compounds from one LC-MS run, in one 2D contour/density plot. Two contour plots from different chromatograph runs can then be viewed in the same window and automatically compared, in order to find their similarities and differences. The results of the comparison can be examined through detailed mass quantification tables, while chromatogram compound statistics are also calculated during the procedure. Conclusion 'Brukin2D' provides a user-friendly platform for quick, easy and integrated view of complex LC-MS data. The software is available at . PMID:19534737

  18. Inhibition of human cytochrome P450 2D6 (CYP2D6) by methadone.

    PubMed Central

    Wu, D; Otton, S V; Sproule, B A; Busto, U; Inaba, T; Kalow, W; Sellers, E M

    1993-01-01

    1. In microsomes prepared from three human livers, methadone competitively inhibited the O-demethylation of dextromethorphan, a marker substrate for CYP2D6. The apparent Ki value of methadone ranged from 2.5 to 5 microM. 2. Two hundred and fifty-two (252) white Caucasians, including 210 unrelated healthy volunteers and 42 opiate abusers undergoing treatment with methadone were phenotyped using dextromethorphan as the marker drug. Although the frequency of poor metabolizers was similar in both groups, the extensive metabolizers among the opiate abusers tended to have higher O-demethylation metabolic ratios and to excrete less of the dose as dextromethorphan metabolites than control extensive metabolizer subjects. These data suggest inhibition of CYP2D6 by methadone in vivo as well. 3. Because methadone is widely used in the treatment of opiate abuse, inhibition of CYP2D6 activity in these patients might contribute to exaggerated response or unexpected toxicity from drugs that are substrates of this enzyme. PMID:8448065

  19. Correlated Electron Phenomena in 2D Materials

    NASA Astrophysics Data System (ADS)

    Lambert, Joseph G.

    In this thesis, I present experimental results on coherent electron phenomena in layered two-dimensional materials: single layer graphene and van der Waals coupled 2D TiSe2. Graphene is a two-dimensional single-atom thick sheet of carbon atoms first derived from bulk graphite by the mechanical exfoliation technique in 2004. Low-energy charge carriers in graphene behave like massless Dirac fermions, and their density can be easily tuned between electron-rich and hole-rich quasiparticles with electrostatic gating techniques. The sharp interfaces between regions of different carrier densities form barriers with selective transmission, making them behave as partially reflecting mirrors. When two of these interfaces are set at a separation distance within the phase coherence length of the carriers, they form an electronic version of a Fabry-Perot cavity. I present measurements and analysis of multiple Fabry-Perot modes in graphene with parallel electrodes spaced a few hundred nanometers apart. Transition metal dichalcogenide (TMD) TiSe2 is part of the family of materials that coined the term "materials beyond graphene". It contains van der Waals coupled trilayer stacks of Se-Ti-Se. Many TMD materials exhibit a host of interesting correlated electronic phases. In particular, TiSe2 exhibits chiral charge density waves (CDW) below TCDW ˜ 200 K. Upon doping with copper, the CDW state gets suppressed with Cu concentration, and CuxTiSe2 becomes superconducting with critical temperature of T c = 4.15 K. There is still much debate over the mechanisms governing the coexistence of the two correlated electronic phases---CDW and superconductivity. I will present some of the first conductance spectroscopy measurements of proximity coupled superconductor-CDW systems. Measurements reveal a proximity-induced critical current at the Nb-TiSe2 interfaces, suggesting pair correlations in the pure TiSe2. The results indicate that superconducting order is present concurrently with CDW in

  20. Integrin associated proteins differentially regulate neutrophil polarity and directed migration in 2D and 3D

    PubMed Central

    Yamahashi, Yukie; Cavnar, Peter J.; Hind, Laurel E.; Berthier, Erwin; Bennin, David A.; Beebe, David

    2015-01-01

    Directed neutrophil migration in blood vessels and tissues is critical for proper immune function; however, the mechanisms that regulate three-dimensional neutrophil chemotaxis remain unclear. It has been shown that integrins are dispensable for interstitial three-dimensional (3D) leukocyte migration; however, the role of integrin regulatory proteins during directed neutrophil migration is not known. Using a novel microfluidic gradient generator amenable to 2D and 3D analysis, we found that the integrin regulatory proteins Kindlin-3, RIAM, and talin-1 differentially regulate neutrophil polarization and directed migration to gradients of chemoattractant in 2D versus 3D. Both talin-1-deficient and RIAM-deficient neutrophil-like cells had impaired adhesion, polarization, and migration on 2D surfaces whereas in 3D the cells polarized but had impaired 3D chemotactic velocity. Kindlin-3 deficient cells were able to polarize and migrate on 2D surfaces but had impaired directionality. In a 3D environment, Kindlin-3 deficient cells displayed efficient chemotaxis. These findings demonstrate that the role of integrin regulatory proteins in cell polarity and directed migration can be different in 2D and 3D. PMID:26354879

  1. CYP2D7 Sequence Variation Interferes with TaqMan CYP2D6*15 and *35 Genotyping

    PubMed Central

    Riffel, Amanda K.; Dehghani, Mehdi; Hartshorne, Toinette; Floyd, Kristen C.; Leeder, J. Steven; Rosenblatt, Kevin P.; Gaedigk, Andrea

    2016-01-01

    TaqMan™ genotyping assays are widely used to genotype CYP2D6, which encodes a major drug metabolizing enzyme. Assay design for CYP2D6 can be challenging owing to the presence of two pseudogenes, CYP2D7 and CYP2D8, structural and copy number variation and numerous single nucleotide polymorphisms (SNPs) some of which reflect the wild-type sequence of the CYP2D7 pseudogene. The aim of this study was to identify the mechanism causing false-positive CYP2D6*15 calls and remediate those by redesigning and validating alternative TaqMan genotype assays. Among 13,866 DNA samples genotyped by the CompanionDx® lab on the OpenArray platform, 70 samples were identified as heterozygotes for 137Tins, the key SNP of CYP2D6*15. However, only 15 samples were confirmed when tested with the Luminex xTAG CYP2D6 Kit and sequencing of CYP2D6-specific long range (XL)-PCR products. Genotype and gene resequencing of CYP2D6 and CYP2D7-specific XL-PCR products revealed a CC>GT dinucleotide SNP in exon 1 of CYP2D7 that reverts the sequence to CYP2D6 and allows a TaqMan assay PCR primer to bind. Because CYP2D7 also carries a Tins, a false-positive mutation signal is generated. This CYP2D7 SNP was also responsible for generating false-positive signals for rs769258 (CYP2D6*35) which is also located in exon 1. Although alternative CYP2D6*15 and *35 assays resolved the issue, we discovered a novel CYP2D6*15 subvariant in one sample that carries additional SNPs preventing detection with the alternate assay. The frequency of CYP2D6*15 was 0.1% in this ethnically diverse U.S. population sample. In addition, we also discovered linkage between the CYP2D7 CC>GT dinucleotide SNP and the 77G>A (rs28371696) SNP of CYP2D6*43. The frequency of this tentatively functional allele was 0.2%. Taken together, these findings emphasize that regardless of how careful genotyping assays are designed and evaluated before being commercially marketed, rare or unknown SNPs underneath primer and/or probe regions can impact

  2. CYP2D7 Sequence Variation Interferes with TaqMan CYP2D6 (*) 15 and (*) 35 Genotyping.

    PubMed

    Riffel, Amanda K; Dehghani, Mehdi; Hartshorne, Toinette; Floyd, Kristen C; Leeder, J Steven; Rosenblatt, Kevin P; Gaedigk, Andrea

    2015-01-01

    TaqMan™ genotyping assays are widely used to genotype CYP2D6, which encodes a major drug metabolizing enzyme. Assay design for CYP2D6 can be challenging owing to the presence of two pseudogenes, CYP2D7 and CYP2D8, structural and copy number variation and numerous single nucleotide polymorphisms (SNPs) some of which reflect the wild-type sequence of the CYP2D7 pseudogene. The aim of this study was to identify the mechanism causing false-positive CYP2D6 (*) 15 calls and remediate those by redesigning and validating alternative TaqMan genotype assays. Among 13,866 DNA samples genotyped by the CompanionDx® lab on the OpenArray platform, 70 samples were identified as heterozygotes for 137Tins, the key SNP of CYP2D6 (*) 15. However, only 15 samples were confirmed when tested with the Luminex xTAG CYP2D6 Kit and sequencing of CYP2D6-specific long range (XL)-PCR products. Genotype and gene resequencing of CYP2D6 and CYP2D7-specific XL-PCR products revealed a CC>GT dinucleotide SNP in exon 1 of CYP2D7 that reverts the sequence to CYP2D6 and allows a TaqMan assay PCR primer to bind. Because CYP2D7 also carries a Tins, a false-positive mutation signal is generated. This CYP2D7 SNP was also responsible for generating false-positive signals for rs769258 (CYP2D6 (*) 35) which is also located in exon 1. Although alternative CYP2D6 (*) 15 and (*) 35 assays resolved the issue, we discovered a novel CYP2D6 (*) 15 subvariant in one sample that carries additional SNPs preventing detection with the alternate assay. The frequency of CYP2D6 (*) 15 was 0.1% in this ethnically diverse U.S. population sample. In addition, we also discovered linkage between the CYP2D7 CC>GT dinucleotide SNP and the 77G>A (rs28371696) SNP of CYP2D6 (*) 43. The frequency of this tentatively functional allele was 0.2%. Taken together, these findings emphasize that regardless of how careful genotyping assays are designed and evaluated before being commercially marketed, rare or unknown SNPs underneath primer

  3. The energy radiated by the 26 December 2004 Sumatra-Andaman earthquake estimated from 10-minute P-wave windows

    USGS Publications Warehouse

    Choy, G.L.; Boatwright, J.

    2007-01-01

    The rupture process of the Mw 9.1 Sumatra-Andaman earthquake lasted for approximately 500 sec, nearly twice as long as the teleseismic time windows between the P and PP arrival times generally used to compute radiated energy. In order to measure the P waves radiated by the entire earthquake, we analyze records that extend from the P-wave to the S-wave arrival times from stations at distances ?? >60??. These 8- to 10-min windows contain the PP, PPP, and ScP arrivals, along with other multiply reflected phases. To gauge the effect of including these additional phases, we form the spectral ratio of the source spectrum estimated from extended windows (between TP and TS) to the source spectrum estimated from normal windows (between TP and TPP). The extended windows are analyzed as though they contained only the P-pP-sP wave group. We analyze four smaller earthquakes that occurred in the vicinity of the Mw 9.1 mainshock, with similar depths and focal mechanisms. These smaller events range in magnitude from an Mw 6.0 aftershock of 9 January 2005 to the Mw 8.6 Nias earthquake that occurred to the south of the Sumatra-Andaman earthquake on 28 March 2005. We average the spectral ratios for these four events to obtain a frequency-dependent operator for the extended windows. We then correct the source spectrum estimated from the extended records of the 26 December 2004 mainshock to obtain a complete or corrected source spectrum for the entire rupture process (???600 sec) of the great Sumatra-Andaman earthquake. Our estimate of the total seismic energy radiated by this earthquake is 1.4 ?? 1017 J. When we compare the corrected source spectrum for the entire earthquake to the source spectrum from the first ???250 sec of the rupture process (obtained from normal teleseismic windows), we find that the mainshock radiated much more seismic energy in the first half of the rupture process than in the second half, especially over the period range from 3 sec to 40 sec.

  4. Rupture imaging of the Mw 7.9 12 May 2008 Wenchuan earthquake from back projection of teleseismic P waves

    USGS Publications Warehouse

    Xu, Y.; Koper, K.D.; Sufri, O.; Zhu, L.; Hutko, Alexander R.

    2009-01-01

    [1] The Mw 7.9 Wenchuan earthquake of 12 May 2008 was the most destructive Chinese earthquake since the 1976 Tangshan event. Tens of thousands of people were killed, hundreds of thousands were injured, and millions were left homeless. Here we infer the detailed rupture process of the Wenchuan earthquake by back-projecting teleseismic P energy from several arrays of seismometers. This technique has only recently become feasible and is potentially faster than traditional finite-fault inversion of teleseismic body waves; therefore, it may reduce the notification time to emergency response agencies. Using the IRIS DMC, we collected 255 vertical component broadband P waves at 30-95?? from the epicenter. We found that at periods of 5 s and greater, nearly all of these P waves were coherent enough to be used in a global array. We applied a simple down-sampling heuristic to define a global subarray of 70 stations that reduced the asymmetry and sidelobes of the array response function (ARF). We also considered three regional subarrays of seismometers in Alaska, Australia, and Europe that had apertures less than 30?? and P waves that were coherent to periods as short as 1 s. Individual ARFs for these subarrays were skewed toward the subarrays; however, the linear sum of the regional subarray beams at 1 s produced a symmetric ARF, similar to that of the groomed global subarray at 5 s. For both configurations we obtained the same rupture direction, rupture length, and rupture time. We found that the Wenchuan earthquake had three distinct pulses of high beam power at 0, 23, and 57 s after the origin time, with the pulse at 23 s being highest, and that it ruptured unilaterally to the northeast for about 300 km and 110 s, with an average speed of 2.8 km/s. It is possible that similar results can be determined for future large dip-slip earthquakes within 20-30 min of the origin time using relatively sparse global networks of seismometers such as those the USGS uses to locate

  5. Crustal velocities near Coalinga, California, modeled from a combined earthquake/explosion refraction profile

    USGS Publications Warehouse

    Macgregor-Scott, N.; Walter, A.

    1988-01-01

    Crustal velocity structure for the region near Coalinga, California, has been derived from both earthquake and explosion seismic phase data recorded along a NW-SE seismic-refraction profile on the western flank of the Great Valley east of the Diablo Range. Comparison of the two data sets reveals P-wave phases in common which can be correlated with changes in the velocity structure below the earthquake hypocenters. In addition, the earthquake records reveal secondary phases at station ranges of less than 20 km that could be the result of S- to P-wave conversions at velocity interfaces above the earthquake hypocenters. Two-dimensional ray-trace modeling of the P-wave travel times resulted in a P-wave velocity model for the western flank of the Great Valley comprised of: 1) a 7- to 9-km thick section of sedimentary strata with velocities similar to those found elsewhere in the Great Valley (1.6 to 5.2 km s-1); 2) a middle crust extending to about 14 km depth with velocities comparable to those reported for the Franciscan assemblage in the Diablo Range (5.6 to 5.9 km s-1); and 3) a 13- to 14-km thick lower crust with velocities similar to those reported beneath the Diablo Range and the Great Valley (6.5 to 7.30 km s-1). This lower crust may have been derived from subducted oceanic crust that was thickened by accretionary underplating or crustal shortening. -Authors

  6. Predicting S-wave velocities for unconsolidated sediments at low effective pressure

    USGS Publications Warehouse

    Lee, Myung W.

    2010-01-01

    Accurate S-wave velocities for shallow sediments are important in performing a reliable elastic inversion for gas hydrate-bearing sediments and in evaluating velocity models for predicting S-wave velocities, but few S-wave velocities are measured at low effective pressure. Predicting S-wave velocities by using conventional methods based on the Biot-Gassmann theory appears to be inaccurate for laboratory-measured velocities at effective pressures less than about 4-5 megapascals (MPa). Measured laboratory and well log velocities show two distinct trends for S-wave velocities with respect to P-wave velocity: one for the S-wave velocity less than about 0.6 kilometer per second (km/s) which approximately corresponds to effective pressure of about 4-5 MPa, and the other for S-wave velocities greater than 0.6 km/s. To accurately predict S-wave velocities at low effective pressure less than about 4-5 MPa, a pressure-dependent parameter that relates the consolidation parameter to shear modulus of the sediments at low effective pressure is proposed. The proposed method in predicting S-wave velocity at low effective pressure worked well for velocities of water-saturated sands measured in the laboratory. However, this method underestimates the well-log S-wave velocities measured in the Gulf of Mexico, whereas the conventional method performs well for the well log velocities. The P-wave velocity dispersion due to fluid in the pore spaces, which is more pronounced at high frequency with low effective pressures less than about 4 MPa, is probably a cause for this discrepancy.

  7. A compositional origin to ultralow-velocity zones

    NASA Astrophysics Data System (ADS)

    Brown, Samuel P.; Thorne, Michael S.; Miyagi, Lowell; Rost, Sebastian

    2015-02-01

    We analyzed vertical component short-period ScP waveforms for 26 earthquakes occurring in the Tonga-Fiji trench recorded at the Alice Springs Array in central Australia. These waveforms show strong precursory and postcursory seismic arrivals consistent with ultralow-velocity zone (ULVZ) layering beneath the Coral Sea. We used the Viterbi sparse spike detection method to measure differential travel times and amplitudes of the postcursor arrival ScSP and the precursor arrival SPcP relative to ScP. We compare our measurements to a database of 340,000 synthetic seismograms finding that these data are best fit by a ULVZ model with an S wave velocity reduction of 24%, a P wave velocity reduction of 23%, a thickness of 8.5 km, and a density increase of 6%. This 1:1 VS:VP velocity decrease is commensurate with a ULVZ compositional origin and is most consistent with highly iron enriched ferropericlase.

  8. Elastic wave velocities of Apollo 14, 15, and 16 rocks

    NASA Technical Reports Server (NTRS)

    Mizutani, H.; Newbigging, D. F.

    1973-01-01

    Elastic wave velocities of two Apollo 14 rocks, 14053 and 14321, three Apollo 15 rocks, 15058, 15415, and 15545, and one Apollo 16 rock 60315 have been determined at pressures up to 10 kb. For sample 14321, the variation of the compressional wave velocities with temperature has been measured over the temperature range from 27 to 200 C. Overall elastic properties of these samples except sample 15415 are very similar to those of Apollo 11, 12, and 14 rocks and are concordant with Toksoz et al.'s (1972) interpretation that lunar upper crust is of basaltic composition. Temperature derivative of the P wave velocity for sample 14321 is a half to one order of magnitude larger than that for single crystalline minerals. This suggests that the seismic velocity in the lunar crust may be affected significantly by the temperature distribution.

  9. Coupled ππ, KK¯ scattering in P-wave and the ρ resonance from lattice QCD

    DOE PAGES

    Wilson, David J.; Briceño, Raúl A.; Dudek, Jozef J.; Edwards, Robert G.; Thomas, Christopher E.

    2015-11-02

    In this study, we determine elastic and coupled-channel amplitudes for isospin-1 meson-meson scattering inmore » $P$-wave, by calculating correlation functions using lattice QCD with light quark masses such that $$m_\\pi = 236$$ MeV in a cubic volume of $$\\sim (4 \\,\\mathrm{fm})^3$$. Variational analyses of large matrices of correlation functions computed using operator constructions resembling $$\\pi\\pi$$, $$K\\overline{K}$$ and $$q\\bar{q}$$, in several moving frames and several lattice irreducible representations, leads to discrete energy spectra from which scattering amplitudes are extracted. In the elastic $$\\pi\\pi$$ scattering region we obtain a detailed energy-dependence for the phase-shift, corresponding to a $$\\rho$$ resonance, and we extend the analysis into the coupled-channel $$K\\overline{K}$$ region for the first time, finding a small coupling between the channels.« less

  10. Crossover from Majorana edge- to end-states in quasi-one-dimensional p-wave superconductors

    NASA Astrophysics Data System (ADS)

    Zhou, Bin; Shen, Shun-Qing

    2011-08-01

    In a recent work [Potter and Lee, Phys. Rev. Lett.PRLTAO0031-900710.1103/PhysRevLett.105.227003 105, 227003 (2010)], it was demonstrated by means of numerical diagonalization that the Majorana end states can be localized at opposite ends of a sample of an ideal spinless p-wave superconductor with the strip geometry beyond the strict one-dimensional limit. Here, we reexamine this issue and study the topological quantum phase transition in the same system. We give the phase diagrams of the presence of Majorana end modes by using of Z2 topological index. It is found that the topological property of a strip geometry will change in an oscillatory way with respect of the sample width.

  11. The rupture process and asperity distribution of three great earthquakes from long-period diffracted P-waves

    NASA Technical Reports Server (NTRS)

    Ruff, L.; Kanamori, H.

    1983-01-01

    The variation of maximum earthquake size along the subduction zones has been interpreted as a variation in the seismic coupling ostensibly related to the mechanical conditions of the fault zone. Great differences are noted between the seismographs of the three great earthquakes whose rupture processes are presently considered: in the Kurile Islands (1963), The Rat Islands (1965) and Alaska (1964). On-scale long period P waves were recorded in all cases. Source time functions are deconvolved from the observed periods. It is concluded that maximum earthquake size is related to the asperity distribution on the fault. The subduction zones with the largest earthquakes have very large asperities, as in the Alaskan case, while the zones with the smaller great earthquakes, such as the Kurile Islands, have smaller scattered asperities.

  12. Coupled π π , K K ¯ scattering in P -wave and the ρ resonance from lattice QCD

    NASA Astrophysics Data System (ADS)

    Wilson, David J.; Briceño, Raúl A.; Dudek, Jozef J.; Edwards, Robert G.; Thomas, Christopher E.; Hadron Spectrum Collaboration

    2015-11-01

    We determine elastic and coupled-channel amplitudes for isospin-1 meson-meson scattering in P wave, by calculating correlation functions using lattice QCD with light quark masses such that mπ=236 MeV in a cubic volume of ˜(4 fm )3 . Variational analyses of large matrices of correlation functions computed using operator constructions resembling π π , K K ¯ and q q ¯, in several moving frames and several lattice irreducible representations, lead to discrete energy spectra from which scattering amplitudes are extracted. In the elastic π π scattering region we obtain a detailed energy dependence for the phase shift, corresponding to a ρ resonance, and we extend the analysis into the coupled-channel K K ¯ region for the first time, finding a small coupling between the channels.

  13. The Effect of Crack Orientation on the Nonlinear Interaction of a P-wave with an S-wave

    DOE PAGES

    TenCate, J. A.; Malcolm, A. E.; Feng, X.; Fehler, M. C.

    2016-06-06

    Cracks, joints, fluids, and other pore-scale structures have long been hypothesized to be the cause of the large elastic nonlinearity observed in rocks. It is difficult to definitively say which pore-scale features are most important, however, because of the difficulty in isolating the source of the nonlinear interaction. In this work, we focus on the influence of cracks on the recorded nonlinear signal and in particular on how the orientation of microcracks changes the strength of the nonlinear interaction. We do this by studying the effect of orientation on the measurements in a rock with anisotropy correlated with the presencemore » and alignment of microcracks. We measure the nonlinear response via the traveltime delay induced in a low-amplitude P wave probe by a high-amplitude S wave pump. We find evidence that crack orientation has a significant effect on the nonlinear signal.« less

  14. The effect of crack orientation on the nonlinear interaction of a P wave with an S wave

    NASA Astrophysics Data System (ADS)

    TenCate, J. A.; Malcolm, A. E.; Feng, X.; Fehler, M. C.

    2016-06-01

    Cracks, joints, fluids, and other pore-scale structures have long been hypothesized to be the cause of the large elastic nonlinearity observed in rocks. It is difficult to definitively say which pore-scale features are most important, however, because of the difficulty in isolating the source of the nonlinear interaction. In this work, we focus on the influence of cracks on the recorded nonlinear signal and in particular on how the orientation of microcracks changes the strength of the nonlinear interaction. We do this by studying the effect of orientation on the measurements in a rock with anisotropy correlated with the presence and alignment of microcracks. We measure the nonlinear response via the traveltime delay induced in a low-amplitude P wave probe by a high-amplitude S wave pump. We find evidence that crack orientation has a significant effect on the nonlinear signal.

  15. Pairing fluctuations and an anisotropic pseudogap phenomenon in an ultracold superfluid Fermi gas with plural p -wave superfluid phases

    NASA Astrophysics Data System (ADS)

    Inotani, Daisuke; Ohashi, Yoji

    2015-12-01

    We investigate the superfluid properties of a one-component Fermi gas with a uniaxially anisotropic p -wave pairing interaction, Ux>Uy=Uz [where Ui(i =x ,y ,z ) is a pi-wave pairing interaction]. This type of interaction is considered to be realized in a 40K Fermi gas. Including pairing fluctuations within a strong-coupling T -matrix theory, we determine the px-wave superfluid phase transition temperature Tcpx, as well as the other phase transition temperature Tcpx+i py(p -wave Fermi superfluid is the most promising non-s -wave pairing state in an ultracold Fermi gas, our results would contribute to understanding how the anisotropic pairing fluctuations, as well as the existence of plural superfluid phases, affect many-body properties of this unconventional Fermi superfluid.

  16. Systematic determination of earthquake rupture directivity and fault planes from analysis of long-period P-wave spectra

    NASA Astrophysics Data System (ADS)

    Warren, Linda M.; Shearer, Peter M.

    2006-01-01

    If an earthquake has a primarily unilateral rupture, the pulse width observed on seismograms will vary depending on the angle between the rupture direction and the takeoff vector to the station. We have developed a method to estimate the amount of pulse broadening from the spectrum and apply it to a long-period database of large, globally distributed earthquakes that occurred between 1988 and 2000. We select vertical-component P-waves at epicentral distances of 20°-98°. We compute the spectrum from a 64-s-long window around each P-wave arrival. Each spectrum is the product of source, receiver and propagation response functions as well as local source- and receiver-side effects. Since there are multiple receivers for each source and multiple sources for each receiver, we can estimate and remove the source- and receiver-side terms by stacking the appropriate P log spectra. For earthquakes deeper than ~200 km, source effects dominate the residual spectra. We use our pulse-width estimates to determine the best rupture direction and to identify which nodal plane of the Harvard centroid moment tensor (CMT) solution is most consistent with this rupture direction for 66 events. In about 30 per cent of the cases, one of the two nodal planes produces a much better fit to the data and can be identified as the true fault plane. When results from previous studies are available for comparison, our rupture directions are usually consistent with their results, particularly for earthquakes with simple rupture histories.

  17. Mechanical characterization of 2D, 2D stitched, and 3D braided/RTM materials

    NASA Technical Reports Server (NTRS)

    Deaton, Jerry W.; Kullerd, Susan M.; Portanova, Marc A.

    1993-01-01

    Braided composite materials have potential for application in aircraft structures. Fuselage frames, floor beams, wing spars, and stiffeners are examples where braided composites could find application if cost effective processing and damage tolerance requirements are met. Another important consideration for braided composites relates to their mechanical properties and how they compare to the properties of composites produced by other textile composite processes being proposed for these applications. Unfortunately, mechanical property data for braided composites do not appear extensively in the literature. Data are presented in this paper on the mechanical characterization of 2D triaxial braid, 2D triaxial braid plus stitching, and 3D (through-the-thickness) braid composite materials. The braided preforms all had the same graphite tow size and the same nominal braid architectures, (+/- 30 deg/0 deg), and were resin transfer molded (RTM) using the same mold for each of two different resin systems. Static data are presented for notched and unnotched tension, notched and unnotched compression, and compression after impact strengths at room temperature. In addition, some static results, after environmental conditioning, are included. Baseline tension and compression fatigue results are also presented, but only for the 3D braided composite material with one of the resin systems.

  18. Crustal high-velocity anomaly at the East European Craton margin in SE Poland (TESZ) modelled by 3-D seismic tomography of refracted and reflected arrivals

    NASA Astrophysics Data System (ADS)

    Środa, Piotr; Dec, Monika

    2016-04-01

    The area of Trans-European Suture Zone in SE Poland represents a contact of major tectonic units of different consolidation age - from the Precambrian East European Craton, through Palaeozoic West European Platform to Cenozoic Carpathian orogen. The region was built by several phases of crustal accretion, which resulted in a complex collage of tectonic blocks. In 2000, this region was studied by several seismic wide-angle profiles of CELEBRATION 2000 experiment, providing a dense coverage of seismic data in SE Poland and allowing for detailed investigations of the crustal structure and properties in this area. Beneath the marginal part of the EEC, the 2-D modelling of in-line data form several CELEBRATION profiles revealed a prominent high P-wave velocity anomaly in the upper crust, with Vp of 6.7-7.1 km/s, starting at 10-16 km depth (e.g., Środa et al., 2006). Anomalously high velocities are observed in the area located approximately beneath Lublin trough, to the NE of Teisseyre-Tornquist Zone. Based on 3-D tomography of first arrivals of in- and off-line CELEBRATION 2000 recordings (Malinowski et al., 2008), elevated velocities are also reported in the same area and seem to continue to the SW, off the craton margin. Gravimetric modelling also revealed anomalously high density in the same region at similar depths. High seismic velocities and densities are interpreted as indicative for a pronounced mafic intrusion, possibly related to extensional processes at the EEC margin. Previous 3-D models of the high-velocity intrusion were based on first arrivals (crustal refractions) only. In this study, also off-line reflections (not modelled up to now) are used, in order to enlarge the data set and to better constrain the geometry and properties of the velocity anomaly. A code for 3-D joint tomographic inversion of refracted and reflected arrivals, with model parametrization allowing for velocity discontinuities was used (Rawlinson, 2007). With this approach, besides the

  19. Upper mantle P velocity structure beneath the Baikal Rift from modeling regional seismic data

    NASA Astrophysics Data System (ADS)

    Brazier, Richard A.; Nyblade, Andrew A.

    2003-02-01

    Uppermost mantle P wave velocity structure beneath the Baikal rift and southern margin of the Siberian Platform has been investigated by using a grid search method to model Pnl waveforms from two moderate earthquakes recorded by station TLY at the southwestern end of Lake Baikal. The results yielded a limited number of successful models which indicate the presence of upper mantle P wave velocities beneath the rift axis and the margin of the platform that are 2-5% lower than expected. The magnitude of the velocity anomalies and their location support the presence of a thermal anomaly that extends laterally beyond the rift proper, possibly created by small-scale convection or a plume-like, thermal upwelling.

  20. Error analysis of the converted wave deduced by equivalent velocity assumption

    NASA Astrophysics Data System (ADS)

    Wang, Wei; Wang, Yun; Yin, Junjie; Gao, Xing

    2012-05-01

    Based on the assumption of the equivalent velocity and offset, the converted wave travel-time equation, which has a double square root due to the asymmetric ray-path of the down-going P-wave and the up-coming S-wave, can be transformed into a single square root equation if the common scatterpoint (CSP) gathers are binned. This method simplifies the equation and decreases the errors of converted wave migration transferred by P-wave velocity error, compared to the equivalent offset method (EOM) migration proposed by Bancroft, Geiger and Foltinek . In this paper, the errors caused by the introduction of equivalent velocity for the PS-wave are analysed in detail. The discrete errors and effects introduced by discretization of the equivalent offset are presented, and finally the conditions for applying CSP gathers for PS-wave processing under the control of reasonable error limits are derived.

  1. Computational Screening of 2D Materials for Photocatalysis.

    PubMed

    Singh, Arunima K; Mathew, Kiran; Zhuang, Houlong L; Hennig, Richard G

    2015-03-19

    Two-dimensional (2D) materials exhibit a range of extraordinary electronic, optical, and mechanical properties different from their bulk counterparts with potential applications for 2D materials emerging in energy storage and conversion technologies. In this Perspective, we summarize the recent developments in the field of solar water splitting using 2D materials and review a computational screening approach to rapidly and efficiently discover more 2D materials that possess properties suitable for solar water splitting. Computational tools based on density-functional theory can predict the intrinsic properties of potential photocatalyst such as their electronic properties, optical absorbance, and solubility in aqueous solutions. Computational tools enable the exploration of possible routes to enhance the photocatalytic activity of 2D materials by use of mechanical strain, bias potential, doping, and pH. We discuss future research directions and needed method developments for the computational design and optimization of 2D materials for photocatalysis.

  2. Synthetic Covalent and Non-Covalent 2D Materials.

    PubMed

    Boott, Charlotte E; Nazemi, Ali; Manners, Ian

    2015-11-16

    The creation of synthetic 2D materials represents an attractive challenge that is ultimately driven by their prospective uses in, for example, electronics, biomedicine, catalysis, sensing, and as membranes for separation and filtration. This Review illustrates some recent advances in this diverse field with a focus on covalent and non-covalent 2D polymers and frameworks, and self-assembled 2D materials derived from nanoparticles, homopolymers, and block copolymers.

  3. A Geometric Boolean Library for 2D Objects

    2006-01-05

    The 2D Boolean Library is a collection of C++ classes -- which primarily represent 2D geometric data and relationships, and routines -- which contain algorithms for 2D geometric Boolean operations and utility functions. Classes are provided for 2D points, lines, arcs, edgeuses, loops, surfaces and mask sets. Routines are provided that incorporate the Boolean operations Union(OR), XOR, Intersection and Difference. Various analytical geometry routines and routines for importing and exporting the data in various filemore » formats, are also provided in the library.« less

  4. VizieR Online Data Catalog: The 2dF Galaxy Redshift Survey (2dFGRS) (2dFGRS Team, 1998-2003)

    NASA Astrophysics Data System (ADS)

    Colless, M.; Dalton, G.; Maddox, S.; Sutherland, W.; Norberg, P.; Cole, S.; Bland-Hawthorn, J.; Bridges, T.; Cannon, R.; Collins, C.; Couch, W.; Cross, N.; Deeley, K.; de Propris, R.; Driver, S. P.; Efstathiou, G.; Ellis, R. S.; Frenk, C. S.; Glazebrook, K.; Jackson, C.; Lahav, O.; Lewis, I.; Lumsden, S.; Madgwick, D.; Peacock, J. A.; Peterson, B. A.; Price, I.; Seaborne, M.; Taylor, K.

    2007-11-01

    The 2dF Galaxy Redshift Survey (2dFGRS) is a major spectroscopic survey taking full advantage of the unique capabilities of the 2dF facility built by the Anglo-Australian Observatory. The 2dFGRS is integrated with the 2dF QSO survey (2QZ, Cat. VII/241). The 2dFGRS obtained spectra for 245591 objects, mainly galaxies, brighter than a nominal extinction-corrected magnitude limit of bJ=19.45. Reliable (quality>=3) redshifts were obtained for 221414 galaxies. The galaxies cover an area of approximately 1500 square degrees selected from the extended APM Galaxy Survey in three regions: a North Galactic Pole (NGP) strip, a South Galactic Pole (SGP) strip, and random fields scattered around the SGP strip. Redshifts are measured from spectra covering 3600-8000 Angstroms at a two-pixel resolution of 9.0 Angstrom and a median S/N of 13 per pixel. All redshift identifications are visually checked and assigned a quality parameter Q in the range 1-5; Q>=3 redshifts are 98.4% reliable and have an rms uncertainty of 85 km/s. The overall redshift completeness for Q>=3 redshifts is 91.8% but this varies with magnitude from 99% for the brightest galaxies to 90% for objects at the survey limit. The 2dFGRS data base is available on the World Wide Web at http://www.mso.anu.edu.au/2dFGRS/. (6 data files).

  5. Klassifikation von Standardebenen in der 2D-Echokardiographie mittels 2D-3D-Bildregistrierung

    NASA Astrophysics Data System (ADS)

    Bergmeir, Christoph; Subramanian, Navneeth

    Zum Zweck der Entwicklung eines Systems, das einen unerfahrenen Anwender von Ultraschall (US) zur Aufnahme relevanter anatomischer Strukturen leitet, untersuchen wir die Machbarkeit von 2D-US zu 3D-CT Registrierung. Wir verwenden US-Aufnahmen von Standardebenen des Herzens, welche zu einem 3D-CT-Modell registriert werden. Unser Algorithmus unterzieht sowohl die US-Bilder als auch den CT-Datensatz Vorverarbeitungsschritten, welche die Daten durch Segmentierung auf wesentliche Informationen in Form von Labein für Muskel und Blut reduzieren. Anschließend werden diese Label zur Registrierung mittels der Match-Cardinality-Metrik genutzt. Durch mehrmaliges Registrieren mit verschiedenen Initialisierungen ermitteln wir die im US-Bild sichtbare Standardebene. Wir evaluierten die Methode auf sieben US-Bildern von Standardebenen. Fünf davon wurden korrekt zugeordnet.

  6. Epitaxial 2D SnSe2/ 2D WSe2 van der Waals Heterostructures.

    PubMed

    Aretouli, Kleopatra Emmanouil; Tsoutsou, Dimitra; Tsipas, Polychronis; Marquez-Velasco, Jose; Aminalragia Giamini, Sigiava; Kelaidis, Nicolaos; Psycharis, Vassilis; Dimoulas, Athanasios

    2016-09-01

    van der Waals heterostructures of 2D semiconductor materials can be used to realize a number of (opto)electronic devices including tunneling field effect devices (TFETs). It is shown in this work that high quality SnSe2/WSe2 vdW heterostructure can be grown by molecular beam epitaxy on AlN(0001)/Si(111) substrates using a Bi2Se3 buffer layer. A valence band offset of 0.8 eV matches the energy gap of SnSe2 in such a way that the VB edge of WSe2 and the CB edge of SnSe2 are lined up, making this materials combination suitable for (nearly) broken gap TFETs. PMID:27537619

  7. CVMAC 2D Program: A method of converting 3D to 2D

    SciTech Connect

    Lown, J.

    1990-06-20

    This paper presents the user with a method of converting a three- dimensional wire frame model into a technical illustration, detail, or assembly drawing. By using the 2D Program, entities can be mapped from three-dimensional model space into two-dimensional model space, as if they are being traced. Selected entities to be mapped can include circles, arcs, lines, and points. This program prompts the user to digitize the view to be mapped, specify the layers in which the new two-dimensional entities will reside, and select the entities, either by digitizing or windowing. The new two-dimensional entities are displayed in a small view which the program creates in the lower left corner of the drawing. 9 figs.

  8. 2D Four-Channel Perfect Reconstruction Filter Bank Realized with the 2D Lattice Filter Structure

    NASA Astrophysics Data System (ADS)

    Sezen, S.; Ertüzün, A.

    2006-12-01

    A novel orthogonal 2D lattice structure is incorporated into the design of a nonseparable 2D four-channel perfect reconstruction filter bank. The proposed filter bank is obtained by using the polyphase decomposition technique which requires the design of an orthogonal 2D lattice filter. Due to constraint of perfect reconstruction, each stage of this lattice filter bank is simply parameterized by two coefficients. The perfect reconstruction property is satisfied regardless of the actual values of these parameters and of the number of the lattice stages. It is also shown that a separable 2D four-channel perfect reconstruction lattice filter bank can be constructed from the 1D lattice filter and that this is a special case of the proposed 2D lattice filter bank under certain conditions. The perfect reconstruction property of the proposed 2D lattice filter approach is verified by computer simulations.

  9. Raman 2D response of graphene in hBN sandwich as a function of doping

    NASA Astrophysics Data System (ADS)

    Wang, Xuanye; Christopher, Jason; Swan, Anna

    Graphene on SiO2 is plagued by accidental strain and charge doping which cause significant deterioration in electrical, thermal and optical properties. The stacking of Van der Waals layers can not only provide better properties, e.g., electrical mobility, but can also be used for novel interactions between layers. Here we use gated and contacted hBN-graphene-hBN heterostructures to calibrate the 2D Raman response to doping, particularly the low doping region less than 1 ×1012 cm-2 . This will enable the use of the correlation between Raman G and 2D band to determine effects from doping and strain or compression separately. The dielectric environment of hBN as compared to SiO2 affects the phonon dispersion and the Fermi velocity which results in approximately 7 cm-1 blue shift in 2D band per side of graphene contacted with hBN. Charge dependent Raman measurements of the G band provide the means to determine the electron-phonon coupling and the Fermi velocity for graphene in an hBN sandwich. NSF DMR 1411008.

  10. 2D density model of the Chinese continental lithosphere along a NW-SE transect

    NASA Astrophysics Data System (ADS)

    Šimonová, Barbora; Bielik, Miroslav; Dérerová, Jana

    2015-06-01

    This paper presents a 2D density model along a transect from NW to SE China. The model was first constructed by the transformation of seismic velocity to density, revealed by previous deep seismic soundings (DSS) investigations in China. Then, the 2D density model was updated using the GM-SYS software by fitting the computed to the observed gravity data. Based on the density distribution of anomalous layers we divided the Chinese continental crust along the transect into three regions: north-western, central and south-eastern. The first one includes the Junggar Basin, Tianshan and Tarim Basin. The second part consists of the Qilian Orogen, the Qaidam Basin and the Songpan Ganzi Basin. The third region is represented by the Yangtze and the Cathaysia blocks. The low velocity body (vp =5.2 - 6.2 km/s) at the junction of the North-western and Central parts at a depth between 21 - 31 km, which was discovered out by DSS, was also confirmed by our 2D density modelling.

  11. Functional characterization of CYP2D6 enhancer polymorphisms

    PubMed Central

    Wang, Danxin; Papp, Audrey C.; Sun, Xiaochun

    2015-01-01

    CYP2D6 metabolizes nearly 25% of clinically used drugs. Genetic polymorphisms cause large inter-individual variability in CYP2D6 enzyme activity and are currently used as biomarker to predict CYP2D6 metabolizer phenotype. Previously, we had identified a region 115 kb downstream of CYP2D6 as enhancer for CYP2D6, containing two completely linked single nucleotide polymorphisms (SNPs), rs133333 and rs5758550, associated with enhanced transcription. However, the enhancer effect on CYP2D6 expression, and the causative variant, remained to be ascertained. To characterize the CYP2D6 enhancer element, we applied chromatin conformation capture combined with the next-generation sequencing (4C assays) and chromatin immunoprecipitation with P300 antibody, in HepG2 and human primary culture hepatocytes. The results confirmed the role of the previously identified enhancer region in CYP2D6 expression, expanding the number of candidate variants to three highly linked SNPs (rs133333, rs5758550 and rs4822082). Among these, only rs5758550 demonstrated regulating enhancer activity in a reporter gene assay. Use of clustered regularly interspaced short palindromic repeats mediated genome editing in HepG2 cells targeting suspected enhancer regions decreased CYP2D6 mRNA expression by 70%, only upon deletion of the rs5758550 region. These results demonstrate robust effects of both the enhancer element and SNP rs5758550 on CYP2D6 expression, supporting consideration of rs5758550 for CYP2D6 genotyping panels to yield more accurate phenotype prediction. PMID:25381333

  12. P wave detection and delineation in the ECG based on the phase free stationary wavelet transform and using intracardiac atrial electrograms as reference.

    PubMed

    Lenis, Gustavo; Pilia, Nicolas; Oesterlein, Tobias; Luik, Armin; Schmitt, Claus; Dössel, Olaf

    2016-02-01

    Robust and exact automatic P wave detection and delineation in the electrocardiogram (ECG) is still an interesting but challenging research topic. The early prognosis of cardiac afflictions such as atrial fibrillation and the response of a patient to a given treatment is believed to improve if the P wave is carefully analyzed during sinus rhythm. Manual annotation of the signals is a tedious and subjective task. Its correctness depends on the experience of the annotator, quality of the signal, and ECG lead. In this work, we present a wavelet-based algorithm to detect and delineate P waves in individual ECG leads. We evaluated a large group of commonly used wavelets and frequency bands (wavelet levels) and introduced a special phase free wavelet transformation. The local extrema of the transformed signals are directly related to the delineating points of the P wave. First, the algorithm was studied using synthetic signals. Then, the optimal parameter configuration was found using intracardiac electrograms and surface ECGs measured simultaneously. The reverse biorthogonal wavelet 3.3 was found to be optimal for this application. In the end, the method was validated using the QT database from PhysioNet. We showed that the algorithm works more accurately and more robustly than other methods presented in literature. The validation study delivered an average delineation error of the P wave onset of -0.32±12.41 ms when compared to manual annotations. In conclusion, the algorithm is suitable for handling varying P wave shapes and low signal-to-noise ratios. PMID:26136298

  13. P wave detection and delineation in the ECG based on the phase free stationary wavelet transform and using intracardiac atrial electrograms as reference.

    PubMed

    Lenis, Gustavo; Pilia, Nicolas; Oesterlein, Tobias; Luik, Armin; Schmitt, Claus; Dössel, Olaf

    2016-02-01

    Robust and exact automatic P wave detection and delineation in the electrocardiogram (ECG) is still an interesting but challenging research topic. The early prognosis of cardiac afflictions such as atrial fibrillation and the response of a patient to a given treatment is believed to improve if the P wave is carefully analyzed during sinus rhythm. Manual annotation of the signals is a tedious and subjective task. Its correctness depends on the experience of the annotator, quality of the signal, and ECG lead. In this work, we present a wavelet-based algorithm to detect and delineate P waves in individual ECG leads. We evaluated a large group of commonly used wavelets and frequency bands (wavelet levels) and introduced a special phase free wavelet transformation. The local extrema of the transformed signals are directly related to the delineating points of the P wave. First, the algorithm was studied using synthetic signals. Then, the optimal parameter configuration was found using intracardiac electrograms and surface ECGs measured simultaneously. The reverse biorthogonal wavelet 3.3 was found to be optimal for this application. In the end, the method was validated using the QT database from PhysioNet. We showed that the algorithm works more accurately and more robustly than other methods presented in literature. The validation study delivered an average delineation error of the P wave onset of -0.32±12.41 ms when compared to manual annotations. In conclusion, the algorithm is suitable for handling varying P wave shapes and low signal-to-noise ratios.

  14. An Incompressible 2D Didactic Model with Singularity and Explicit Solutions of the 2D Boussinesq Equations

    NASA Astrophysics Data System (ADS)

    Chae, Dongho; Constantin, Peter; Wu, Jiahong

    2014-09-01

    We give an example of a well posed, finite energy, 2D incompressible active scalar equation with the same scaling as the surface quasi-geostrophic equation and prove that it can produce finite time singularities. In spite of its simplicity, this seems to be the first such example. Further, we construct explicit solutions of the 2D Boussinesq equations whose gradients grow exponentially in time for all time. In addition, we introduce a variant of the 2D Boussinesq equations which is perhaps a more faithful companion of the 3D axisymmetric Euler equations than the usual 2D Boussinesq equations.

  15. 2D Doppler backscattering using synthetic aperture microwave imaging of MAST edge plasmas

    NASA Astrophysics Data System (ADS)

    Thomas, D. A.; Brunner, K. J.; Freethy, S. J.; Huang, B. K.; Shevchenko, V. F.; Vann, R. G. L.

    2016-02-01

    Doppler backscattering (DBS) is already established as a powerful diagnostic; its extension to 2D enables imaging of turbulence characteristics from an extended region of the cut-off surface. The Synthetic Aperture Microwave Imaging (SAMI) diagnostic has conducted proof-of-principle 2D DBS experiments of MAST edge plasma. SAMI actively probes the plasma edge using a wide (±40° vertical and horizontal) and tuneable (10-34.5 GHz) beam. The Doppler backscattered signal is digitised in vector form using an array of eight Vivaldi PCB antennas. This allows the receiving array to be focused in any direction within the field of view simultaneously to an angular range of 6-24° FWHM at 10-34.5 GHz. This capability is unique to SAMI and is a novel way of conducting DBS experiments. In this paper the feasibility of conducting 2D DBS experiments is explored. Initial observations of phenomena previously measured by conventional DBS experiments are presented; such as momentum injection from neutral beams and an abrupt change in power and turbulence velocity coinciding with the onset of H-mode. In addition, being able to carry out 2D DBS imaging allows a measurement of magnetic pitch angle to be made; preliminary results are presented. Capabilities gained through steering a beam using a phased array and the limitations of this technique are discussed.

  16. 2D-3D hybrid stabilized finite element method for tsunami runup simulations

    NASA Astrophysics Data System (ADS)

    Takase, S.; Moriguchi, S.; Terada, K.; Kato, J.; Kyoya, T.; Kashiyama, K.; Kotani, T.

    2016-09-01

    This paper presents a two-dimensional (2D)-three-dimensional (3D) hybrid stabilized finite element method that enables us to predict a propagation process of tsunami generated in a hypocentral region, which ranges from offshore propagation to runup to urban areas, with high accuracy and relatively low computational costs. To be more specific, the 2D shallow water equation is employed to simulate the propagation of offshore waves, while the 3D Navier-Stokes equation is employed for the runup in urban areas. The stabilized finite element method is utilized for numerical simulations for both of the 2D and 3D domains that are independently discretized with unstructured meshes. The multi-point constraint and transmission methods are applied to satisfy the continuity of flow velocities and pressures at the interface between the resulting 2D and 3D meshes, since neither their spatial dimensions nor node arrangements are consistent. Numerical examples are presented to demonstrate the performance of the proposed hybrid method to simulate tsunami behavior, including offshore propagation and runup to urban areas, with substantially lower computation costs in comparison with full 3D computations.

  17. A Convective Vorticity Vector Associated With Tropical Convection: A 2D Cloud-Resolving Modeling Study

    NASA Technical Reports Server (NTRS)

    Gao, Shou-Ting; Ping, Fan; Li, Xiao-Fan; Tao, Wei-Kuo

    2004-01-01

    Although dry/moist potential vorticity is a useful physical quantity for meteorological analysis, it cannot be applied to the analysis of 2D simulations. A convective vorticity vector (CVV) is introduced in this study to analyze 2D cloud-resolving simulation data associated with 2D tropical convection. The cloud model is forced by the vertical velocity, zonal wind, horizontal advection, and sea surface temperature obtained from the TOGA COARE, and is integrated for a selected 10-day period. The CVV has zonal and vertical components in the 2D x-z frame. Analysis of zonally-averaged and mass-integrated quantities shows that the correlation coefficient between the vertical component of the CVV and the sum of the cloud hydrometeor mixing ratios is 0.81, whereas the correlation coefficient between the zonal component and the sum of the mixing ratios is only 0.18. This indicates that the vertical component of the CVV is closely associated with tropical convection. The tendency equation for the vertical component of the CVV is derived and the zonally-averaged and mass-integrated tendency budgets are analyzed. The tendency of the vertical component of the CVV is determined by the interaction between the vorticity and the zonal gradient of cloud heating. The results demonstrate that the vertical component of the CVV is a cloud-linked parameter and can be used to study tropical convection.

  18. A new model for two-dimensional numerical simulation of pseudo-2D gas-solids fluidized beds

    SciTech Connect

    Li, Tingwen; Zhang, Yongmin

    2013-10-11

    Pseudo-two dimensional (pseudo-2D) fluidized beds, for which the thickness of the system is much smaller than the other two dimensions, is widely used to perform fundamental studies on bubble behavior, solids mixing, or clustering phenomenon in different gas-solids fluidization systems. The abundant data from such experimental systems are very useful for numerical model development and validation. However, it has been reported that two-dimensional (2D) computational fluid dynamic (CFD) simulations of pseudo-2D gas-solids fluidized beds usually predict poor quantitative agreement with the experimental data, especially for the solids velocity field. In this paper, a new model is proposed to improve the 2D numerical simulations of pseudo-2D gas-solids fluidized beds by properly accounting for the frictional effect of the front and back walls. Two previously reported pseudo-2D experimental systems were simulated with this model. Compared to the traditional 2D simulations, significant improvements in the numerical predictions have been observed and the predicted results are in better agreement with the available experimental data.

  19. Adaptation algorithms for 2-D feedforward neural networks.

    PubMed

    Kaczorek, T

    1995-01-01

    The generalized weight adaptation algorithms presented by J.G. Kuschewski et al. (1993) and by S.H. Zak and H.J. Sira-Ramirez (1990) are extended for 2-D madaline and 2-D two-layer feedforward neural nets (FNNs).

  20. Integrating Mobile Multimedia into Textbooks: 2D Barcodes

    ERIC Educational Resources Information Center

    Uluyol, Celebi; Agca, R. Kagan

    2012-01-01

    The major goal of this study was to empirically compare text-plus-mobile phone learning using an integrated 2D barcode tag in a printed text with three other conditions described in multimedia learning theory. The method examined in the study involved modifications of the instructional material such that: a 2D barcode was used near the text, the…

  1. Efficient Visible Quasi-2D Perovskite Light-Emitting Diodes.

    PubMed

    Byun, Jinwoo; Cho, Himchan; Wolf, Christoph; Jang, Mi; Sadhanala, Aditya; Friend, Richard H; Yang, Hoichang; Lee, Tae-Woo

    2016-09-01

    Efficient quasi-2D-structure perovskite light-emitting diodes (4.90 cd A(-1) ) are demonstrated by mixing a 3D-structured perovskite material (methyl ammonium lead bromide) and a 2D-structured perovskite material (phenylethyl ammonium lead bromide), which can be ascribed to better film uniformity, enhanced exciton confinement, and reduced trap density. PMID:27334788

  2. CYP2D6: novel genomic structures and alleles

    PubMed Central

    Kramer, Whitney E.; Walker, Denise L.; O’Kane, Dennis J.; Mrazek, David A.; Fisher, Pamela K.; Dukek, Brian A.; Bruflat, Jamie K.; Black, John L.

    2010-01-01

    Objective CYP2D6 is a polymorphic gene. It has been observed to be deleted, to be duplicated and to undergo recombination events involving the CYP2D7 pseudogene and surrounding sequences. The objective of this study was to discover the genomic structure of CYP2D6 recombinants that interfere with clinical genotyping platforms that are available today. Methods Clinical samples containing rare homozygous CYP2D6 alleles, ambiguous readouts, and those with duplication signals and two different alleles were analyzed by long-range PCR amplification of individual genes, PCR fragment analysis, allele-specific primer extension assay, and DNA sequencing to characterize alleles and genomic structure. Results Novel alleles, genomic structures, and the DNA sequence of these structures are described. Interestingly, in 49 of 50 DNA samples that had CYP2D6 gene duplications or multiplications where two alleles were detected, the chromosome containing the duplication or multiplication had identical tandem alleles. Conclusion Several new CYP2D6 alleles and genomic structures are described which will be useful for CYP2D6 genotyping. The findings suggest that the recombination events responsible for CYP2D6 duplications and multiplications are because of mechanisms other than interchromosomal crossover during meiosis. PMID:19741566

  3. Efficient Visible Quasi-2D Perovskite Light-Emitting Diodes.

    PubMed

    Byun, Jinwoo; Cho, Himchan; Wolf, Christoph; Jang, Mi; Sadhanala, Aditya; Friend, Richard H; Yang, Hoichang; Lee, Tae-Woo

    2016-09-01

    Efficient quasi-2D-structure perovskite light-emitting diodes (4.90 cd A(-1) ) are demonstrated by mixing a 3D-structured perovskite material (methyl ammonium lead bromide) and a 2D-structured perovskite material (phenylethyl ammonium lead bromide), which can be ascribed to better film uniformity, enhanced exciton confinement, and reduced trap density.

  4. Finite frequency P-wave traveltime measurements on ocean bottom seismometers and hydrophones in the western Indian Ocean

    NASA Astrophysics Data System (ADS)

    Tsekhmistrenko, Maria; Sigloch, Karin; Hosseini, Kasra; Barruol, Guilhem

    2016-04-01

    From 2011 to 2014, the RHUM-RUM project (Reunion Hotspot Upper Mantle - Reunions Unterer Mantel) instrumented a 2000x2000km2 area of Indian Ocean seafloor, islands and Madagascar with broadband seismometers and hydrophones. The central component was a 13-month deployment of 57 German and French Ocean Bottom Seismometers (OBS) in 2300-5600 m depth. This was supplemented by 2-3 year deployments of 37 island stations on Reunion, Mauritius, Rodrigues, the southern Seychelles, the Iles Eparses and southern Madagascar. Two partner projects contributed another 30+ stations on Madagascar. Our ultimate objective is multifrequency waveform tomography of the entire mantle column beneath the Reunion hotspot. Ideally we would use all passbands that efficiently transmit body waves but this meets practical limits in the noise characteristics of ocean-bottom recordings in particular. Here we present the preliminary data set of frequency-dependent P-wave traveltime measurements on seismometers and hydrophones, obtained by cross-correlation of observed with predicted waveforms. The latter are synthesized from fully numerical Green's functions and carefully estimated, broadband source time functions. More than 200 teleseismic events during the 13-month long deployment yielded usable P-waveform measurements. We present our methods and discuss data yield and quality of ocean-bottom versus land seismometers, and of OBS versus broadband hydrophones. Above and below the microseismic noise band, data yields are higher than within it, especially for OBS. The 48 German OBS, equipped with Guralp 60 s sensors, were afflicted by relatively high self-noise compared to the 9 French instruments equipped with Nanometrics Trillium 240 s sensors. The HighTechInc (model HTI-01 and HTI-04-PCA/ULF) hydrophones (100 s corner period) functioned particularly reliably but their waveforms are relatively more challenging to model due to reverberations in the water column. We obtain ~15000 combined cross

  5. The development and testing of a 2D laboratory seismic modelling system for heterogeneous structure investigations

    NASA Astrophysics Data System (ADS)

    Mo, Yike; Greenhalgh, Stewart A.; Robertsson, Johan O. A.; Karaman, Hakki

    2015-05-01

    Lateral velocity variations and low velocity near-surface layers can produce strong scattered and guided waves which interfere with reflections and lead to severe imaging problems in seismic exploration. In order to investigate these specific problems by laboratory seismic modelling, a simple 2D ultrasonic model facility has been recently assembled within the Wave Propagation Lab at ETH Zurich. The simulated geological structures are constructed from 2 mm thick metal and plastic sheets, cut and bonded together. The experiments entail the use of a piezoelectric source driven by a pulse amplifier at ultrasonic frequencies to generate Lamb waves in the plate, which are detected by piezoelectric receivers and recorded digitally on a National Instruments recording system, under LabVIEW software control. The 2D models employed were constructed in-house in full recognition of the similitude relations. The first heterogeneous model features a flat uniform low velocity near-surface layer and deeper dipping and flat interfaces separating different materials. The second model is comparable but also incorporates two rectangular shaped inserts, one of low velocity, the other of high velocity. The third model is identical to the second other than it has an irregular low velocity surface layer of variable thickness. Reflection as well as transmission experiments (crosshole & vertical seismic profiling) were performed on each model. The two dominant Lamb waves recorded are the fundamental symmetric mode (non-dispersive) and the fundamental antisymmetric (flexural) dispersive mode, the latter normally being absent when the source transducer is located on a model edge but dominant when it is on the flat planar surface of the plate. Experimental group and phase velocity dispersion curves were determined and plotted for both modes in a uniform aluminium plate. For the reflection seismic data, various processing techniques were applied, as far as pre-stack Kirchhoff migration. The

  6. 2D materials and van der Waals heterostructures.

    PubMed

    Novoselov, K S; Mishchenko, A; Carvalho, A; Castro Neto, A H

    2016-07-29

    The physics of two-dimensional (2D) materials and heterostructures based on such crystals has been developing extremely fast. With these new materials, truly 2D physics has begun to appear (for instance, the absence of long-range order, 2D excitons, commensurate-incommensurate transition, etc.). Novel heterostructure devices--such as tunneling transistors, resonant tunneling diodes, and light-emitting diodes--are also starting to emerge. Composed from individual 2D crystals, such devices use the properties of those materials to create functionalities that are not accessible in other heterostructures. Here we review the properties of novel 2D crystals and examine how their properties are used in new heterostructure devices.

  7. Van der Waals stacked 2D layered materials for optoelectronics

    NASA Astrophysics Data System (ADS)

    Zhang, Wenjing; Wang, Qixing; Chen, Yu; Wang, Zhuo; Wee, Andrew T. S.

    2016-06-01

    The band gaps of many atomically thin 2D layered materials such as graphene, black phosphorus, monolayer semiconducting transition metal dichalcogenides and hBN range from 0 to 6 eV. These isolated atomic planes can be reassembled into hybrid heterostructures made layer by layer in a precisely chosen sequence. Thus, the electronic properties of 2D materials can be engineered by van der Waals stacking, and the interlayer coupling can be tuned, which opens up avenues for creating new material systems with rich functionalities and novel physical properties. Early studies suggest that van der Waals stacked 2D materials work exceptionally well, dramatically enriching the optoelectronics applications of 2D materials. Here we review recent progress in van der Waals stacked 2D materials, and discuss their potential applications in optoelectronics.

  8. Estrogen-Induced Cholestasis Leads to Repressed CYP2D6 Expression in CYP2D6-Humanized Mice

    PubMed Central

    Pan, Xian

    2015-01-01

    Cholestasis activates bile acid receptor farnesoid X receptor (FXR) and subsequently enhances hepatic expression of small heterodimer partner (SHP). We previously demonstrated that SHP represses the transactivation of cytochrome P450 2D6 (CYP2D6) promoter by hepatocyte nuclear factor (HNF) 4α. In this study, we investigated the effects of estrogen-induced cholestasis on CYP2D6 expression. Estrogen-induced cholestasis occurs in subjects receiving estrogen for contraception or hormone replacement, or in susceptible women during pregnancy. In CYP2D6-humanized transgenic (Tg-CYP2D6) mice, cholestasis triggered by administration of 17α-ethinylestradiol (EE2) at a high dose led to 2- to 3-fold decreases in CYP2D6 expression. This was accompanied by increased hepatic SHP expression and subsequent decreases in the recruitment of HNF4α to CYP2D6 promoter. Interestingly, estrogen-induced cholestasis also led to increased recruitment of estrogen receptor (ER) α, but not that of FXR, to Shp promoter, suggesting a predominant role of ERα in transcriptional regulation of SHP in estrogen-induced cholestasis. EE2 at a low dose (that does not cause cholestasis) also increased SHP (by ∼50%) and decreased CYP2D6 expression (by 1.5-fold) in Tg-CYP2D6 mice, the magnitude of differences being much smaller than that shown in EE2-induced cholestasis. Taken together, our data indicate that EE2-induced cholestasis increases SHP and represses CYP2D6 expression in Tg-CYP2D6 mice in part through ERα transactivation of Shp promoter. PMID:25943116

  9. Comparison between 2D and 3D Numerical Modelling of a hot forging simulative test

    SciTech Connect

    Croin, M.; Ghiotti, A.; Bruschi, S.

    2007-04-07

    The paper presents the comparative analysis between 2D and 3D modelling of a simulative experiment, performed in laboratory environment, in which operating conditions approximate hot forging of a turbine aerofoil section. The plane strain deformation was chosen as an ideal case to analyze the process because of the thickness variations in the final section and the consequent distributions of contact pressure and sliding velocity at the interface that are closed to the conditions of the real industrial process. In order to compare the performances of 2D and 3D approaches, two different analyses were performed and compared with the experiments in terms of loads and temperatures peaks at the interface between the dies and the workpiece.

  10. 2D and 3D simulations of damage in 5-grain copper gas gun samples

    SciTech Connect

    Tonks, Davis L; Cerreta, Ellen K; Dennis - Koller, Darcie; Escobedo - Diaz, Juan P; Trujillo, Carl P; Luo, Shengian; Bingert, John F

    2010-12-16

    2D and 3D Hydrocode simulations were done of a gas gun damage experiment involving a 5 grain sample with a polycrystalline flyer with a velocity of about 140 m/s. The simulations were done with the Flag hydrocode and involved explicit meshing of the 5 grains with a single crystal plasticity model and a pressure based damage model. The calculated fields were compared with two cross sections from the recovered sample. The sample exhibited grain boundary cracks at high angle and tilt grain boundaries in the sample but not at a sigma 3 twin boundary. However, the calculation showed large gradients in stress and strain at only the twin boundary, contrary to expectation. This indicates that the twin boundary is quite strong to resist the predicted high gradients and that the calculation needs the addition of a grain boundary fracture mode. The 2D and 3D simulations were compared.

  11. 2D radiation-magnetohydrodynamic simulations of SATURN imploding Z-pinches

    SciTech Connect

    Hammer, J.H.; Eddleman, J.L.; Springer, P.T.

    1995-11-06

    Z-pinch implosions driven by the SATURN device at Sandia National Laboratory are modeled with a 2D radiation magnetohydrodynamic (MHD) code, showing strong growth of magneto-Rayleigh Taylor (MRT) instability. Modeling of the linear and nonlinear development of MRT modes predicts growth of bubble-spike structures that increase the time span of stagnation and the resulting x-ray pulse width. Radiation is important in the pinch dynamics keeping the sheath relatively cool during the run-in and releasing most of the stagnation energy. The calculations give x-ray pulse widths and magnitudes in reasonable agreement with experiments, but predict a radiating region that is too dense and radially localized at stagnation. We also consider peaked initial density profiles with constant imploding sheath velocity that should reduce MRT instability and improve performance. 2D krypton simulations show an output x-ray power > 80 TW for the peaked profile.

  12. Finite-frequency traveltime tomography of San Francisco Bay region crustal velocity structure

    USGS Publications Warehouse

    Pollitz, F.F.

    2007-01-01

    Seismic velocity structure of the San Francisco Bay region crust is derived using measurements of finite-frequency traveltimes. A total of 57 801 relative traveltimes are measured by cross-correlation over the frequency range 0.5-1.5 Hz. From these are derived 4862 'summary' traveltimes, which are used to derive 3-D P-wave velocity structure over a 341 ?? 140 km2 area from the surface to 25 km depth. The seismic tomography is based on sensitivity kernels calculated on a spherically symmetric reference model. Robust elements of the derived P-wave velocity structure are: a pronounced velocity contrast across the San Andreas fault in the south Bay region (west side faster); a moderate velocity contrast across the Hayward fault (west side faster); moderately low velocity crust around the Quien Sabe volcanic field and the Sacramento River delta; very low velocity crust around Lake Berryessa. These features are generally explicable with surface rock types being extrapolated to depth ???10 km in the upper crust. Generally high mid-lower crust velocity and high inferred Poisson's ratio suggest a mafic lower crust. ?? Journal compilation ?? 2007 RAS.

  13. Shallow mantle velocities beneath the southern Appalachians from Pn phases

    NASA Astrophysics Data System (ADS)

    MacDougall, Julia G.; Fischer, Karen M.; Forsyth, Donald W.; Hawman, Robert B.; Wagner, Lara S.

    2015-01-01

    constrain mantle structure that might contribute to the topography of the southern Appalachian Mountains, Pn phases from regional earthquakes recorded in northern Georgia by EarthScope Southeastern Suture of the Appalachian Margin Experiment and Transportable Array stations were used to solve for shallow mantle P wave velocities. Mantle velocities vary laterally, with values of 7.6-7.8 km/s beneath the higher elevations of the Blue Ridge terrane and northwestern flank of the Inner Piedmont terranes and values of 8.3-8.5 km/s farther south where elevation is lower. The zone of low-velocity mantle could represent a source of buoyancy that helps to support the higher elevations, in addition to the root of thickened crust that also exists beneath the mountains.

  14. Increased Nonconducted P-Wave Arrhythmias after a Single Oil Fly Ash Inhalation Exposure in Hypertensive Rats

    PubMed Central

    Farraj, Aimen K.; Haykal-Coates, Najwa; Winsett, Darrell W.; Hazari, Mehdi S.; Carll, Alex P.; Rowan, William H.; Ledbetter, Allen D.; Cascio, Wayne E.; Costa, Daniel L.

    2009-01-01

    Background Exposure to combustion-derived fine particulate matter (PM) is associated with increased cardiovascular morbidity and mortality especially in individuals with cardiovascular disease, including hypertension. PM inhalation causes several adverse changes in cardiac function that are reflected in the electrocardiogram (ECG), including altered cardiac rhythm, myocardial ischemia, and reduced heart rate variability (HRV). The sensitivity and reliability of ECG-derived parameters as indicators of the cardiovascular toxicity of PM in rats are unclear. Objective We hypothesized that spontaneously hypertensive (SH) rats are more susceptible to the development of PM-induced arrhythmia, altered ECG morphology, and reduced HRV than are Wistar Kyoto (WKY) rats, a related strain with normal blood pressure. Methods We exposed rats once by nose-only inhalation for 4 hr to residual oil fly ash (ROFA), an emission source particle rich in transition metals, or to air and then sacrificed them 1 or 48 hr later. Results ROFA-exposed SH rats developed nonconducted P-wave arrhythmias but no changes in ECG morphology or HRV. We found no ECG effects in ROFA-exposed WKY rats. ROFA-exposed SH rats also had greater pulmonary injury, neutrophil infiltration, and serum C-reactive protein than did ROFA-exposed WKY rats. Conclusions These results suggest that cardiac arrhythmias may be an early sensitive indicator of the propensity for PM inhalation to modify cardiovascular function. PMID:19479011

  15. Dependence of P-wave dispersion on mean arterial pressure as an independent hemodynamic variable in school children

    PubMed Central

    González, Emilio F.; Llanes, María del Carmen; Llanes, Merlin Garí; García, Yosvany

    2013-01-01

    Introduction: The relationship between diastolic dysfunction and P-wave dispersion (PWD) in the electrocardiogram has been studied for some time. In this regard, echocardiography is emerging as a diagnostic tool to improve risk stratification for mild hypertension. Objective: To determine the dependence of PWD on the electrocardiogram and on echocardiographic variables in a pediatric population. Methods: 515 children from three elementary schools were studied from a total of 565 children. Those whose parents did not want them to take part in the study, as well as those with known congenital diseases, were excluded. Tests including 12-lead surface ECGs and 4 blood pressure (BP) measurements were performed. Maximum and minimum P-values were measured, and the PWD on the electrocardiogram was calculated. Echocardiography for structural measurements and the pulsed Doppler of mitral flow were also performed. Results: A significant correlation in statistical variables was found between PWD and mean BP for pre-hypertensive and hypertensive children, i.e., r = 0.32, p <0.01 and r = 0.33, p <0.01, respectively. There was a significant correlation found between PWD and the left atrial area (r = 0.45 and p <0.01). Conclusions: We highlight the dependency between PWD, the electrocardiogram and mean blood pressure. We also draw attention to the dependence of PWD on the duration of the mitral inflow A-wave. This result provides an explanation for earlier changes in atrial electrophysiological and hemodynamic characteristics in pediatric patients. PMID:24892616

  16. Complex Indian subduction style with slab fragmentation beneath the Eastern Himalayan Syntaxis revealed by teleseismic P-wave tomography

    NASA Astrophysics Data System (ADS)

    Peng, Miao; Jiang, Mei; Li, Zhong-Hai; Xu, Zhiqin; Zhu, Lupei; Chan, Winston; Chen, Youlin; Wang, Youxue; Yu, Changqing; Lei, Jianshe; Zhang, Lishu; Li, Qingqing; Xu, Lehong

    2016-01-01

    On the eastern margin of the Himalayan orogenic belt, the rapid uplift of the Namche Barwa metamorphic terrane and significant bending of the Yarlung Zangbo suture zone occur. The formation mechanism and dynamics of the Eastern Himalaya Syntaxis (EHS) is still debated. In order to better understand the deep structures beneath the EHS, we deployed 35 broadband seismic stations around the Namche Barwa Mountain. The data were integrated with existing datasets for a 3-D teleseismic P-wave tomography. The results demonstrate complex deep structures and significantly contrasting Indian subduction styles in the eastern Himalaya. In the western region of the EHS, the Indian slab flatly subducts under southern Tibet and might extend to the Bangong-Nujiang Suture. In contrast, a (north)eastward steep subduction occurred in the eastern region of EHS. The contrasting subduction styles result in tearing and fragmentation of the Indian lithosphere between the flat and steep subducting slabs beneath the EHS. Consequently, the hot asthenospheric mantle may rise through the slab window, which might further lead to the rapid uplift of Namche Barwa and the formation of EHS. The lateral variation in subduction/collision mode and slab tearing induced asthenospheric mantle upwelling is similar to that observed in the Hellenide and Anatolide domains of the Tethyan orogen.

  17. First observations of teleseismic P-waves with autonomous underwater robots: towards future global network of mobile seismometers

    NASA Astrophysics Data System (ADS)

    Sukhovich, Alexei; Nolet, Guust; Hello, Yann; Simons, Frederik; Bonnieux, Sébastien

    2013-04-01

    We report here the first successful observations of underwater acoustic signals generated by teleseismic P-waves recorded by autonomous robots MERMAID (short for Mobile Earthquake Recording in Marine Areas by Independent Divers). During 2011-2012 we have conducted three test campaigns for a total duration of about 8 weeks in the Ligurian Sea which have allowed us to record nine teleseismic events (distance more than 60 degree) of magnitudes higher than 6 and one closer event (distance 23 degree) of magnitude 5.5. Our results indicate that no simple relation exists between the magnitude of the source event and the signal-to-noise ratio (SNR) of the corresponding acoustic signals. Other factors, such as fault orientation and meteorological conditions, play an important role in the detectability of the seismic events. We also show examples of the events recorded during these test runs and how their frequency characteristics allow them to be recognized automatically by an algorithm based on the wavelet transform. We shall also report on more recent results obtained during the first fully autonomous run (currently ongoing) of the final MERMAID design in the Mediterranean Sea.

  18. Targeted fluorescence imaging enhanced by 2D materials: a comparison between 2D MoS2 and graphene oxide.

    PubMed

    Xie, Donghao; Ji, Ding-Kun; Zhang, Yue; Cao, Jun; Zheng, Hu; Liu, Lin; Zang, Yi; Li, Jia; Chen, Guo-Rong; James, Tony D; He, Xiao-Peng

    2016-08-01

    Here we demonstrate that 2D MoS2 can enhance the receptor-targeting and imaging ability of a fluorophore-labelled ligand. The 2D MoS2 has an enhanced working concentration range when compared with graphene oxide, resulting in the improved imaging of both cell and tissue samples.

  19. Efficient 2D MRI relaxometry using compressed sensing

    NASA Astrophysics Data System (ADS)

    Bai, Ruiliang; Cloninger, Alexander; Czaja, Wojciech; Basser, Peter J.

    2015-06-01

    Potential applications of 2D relaxation spectrum NMR and MRI to characterize complex water dynamics (e.g., compartmental exchange) in biology and other disciplines have increased in recent years. However, the large amount of data and long MR acquisition times required for conventional 2D MR relaxometry limits its applicability for in vivo preclinical and clinical MRI. We present a new MR pipeline for 2D relaxometry that incorporates compressed sensing (CS) as a means to vastly reduce the amount of 2D relaxation data needed for material and tissue characterization without compromising data quality. Unlike the conventional CS reconstruction in the Fourier space (k-space), the proposed CS algorithm is directly applied onto the Laplace space (the joint 2D relaxation data) without compressing k-space to reduce the amount of data required for 2D relaxation spectra. This framework is validated using synt