NASA Astrophysics Data System (ADS)
Innocenti, M.; Beck, A.; Lapenta, G.; Markidis, S.
2012-12-01
The kinetic simulation of intrinsically multi scale processes such as magnetic reconnection events with realistic mass ratios is a daunting task for explicit Particle In Cell (PIC) codes, which require to use resolutions of the order of the electron Debye length even when simulating dramatically bigger domains. As an example, a simulation of reconnection in the magnetotail, with domain sizes of the order of 20 di x 10 di (˜ 7.2 106 m x 3.6 106 m, with di being the ion skin depth) and a resolution of λD,e= 687 m, with λD,e the electron Debye length, requires the astounding number of 10500 x 5240 cells. Higher grid spacings can be used if the simulation is performed with an implicit PIC code, which substitutes a much less strict accuracy constraint to the stability constraint of explicit PIC codes. The same reconnection problem as before can be simulated, with an implicit PIC code resolving the scale of interest of de /2 instead of the electron Debye length (de is the electron skin depth), with the much more manageable number of 1920 x 958 cells. However, an even smaller number of cells can be used if, instead of using the same, high resolution on the entire domain, the domain to simulate is divided into subdomains each resolved with a grid spacing related to the physical scale of interest in the specific subdomain. In the case of reconnection, the division which immediately springs to mind is between electron diffusion region, ion diffusion region and outer region, where resolutions respectively of the order of fractions of the electron skin depth, of the ion skin depth and bigger can be used. We present here a new Multi Level Multi Domain (MLMD) Implicit Moment Method (IMM) Particle In Cell (PIC) code, Parsek2D-MLMD, able to perform simulations of magnetic reconnection where the expensive high resolutions are used only when needed, while the rest of the domain is simulated with grid spacings chosen according to the local scales of interest. The major difference
Spacecraft charging analysis with the implicit particle-in-cell code iPic3D
Deca, J.; Lapenta, G.; Marchand, R.; Markidis, S.
2013-10-15
We present the first results on the analysis of spacecraft charging with the implicit particle-in-cell code iPic3D, designed for running on massively parallel supercomputers. The numerical algorithm is presented, highlighting the implementation of the electrostatic solver and the immersed boundary algorithm; the latter which creates the possibility to handle complex spacecraft geometries. As a first step in the verification process, a comparison is made between the floating potential obtained with iPic3D and with Orbital Motion Limited theory for a spherical particle in a uniform stationary plasma. Second, the numerical model is verified for a CubeSat benchmark by comparing simulation results with those of PTetra for space environment conditions with increasing levels of complexity. In particular, we consider spacecraft charging from plasma particle collection, photoelectron and secondary electron emission. The influence of a background magnetic field on the floating potential profile near the spacecraft is also considered. Although the numerical approaches in iPic3D and PTetra are rather different, good agreement is found between the two models, raising the level of confidence in both codes to predict and evaluate the complex plasma environment around spacecraft.
Hewett, D.W.; Francis, G.E.; Max, C.E.
1990-06-29
Evidence from magnetospheric and solar flare research supports the belief that collisionless magnetic reconnection can proceed on the Alfven-wave crossing timescale. Reconnection behavior that occurs this rapidly in collisionless plasmas is not well understood because underlying mechanisms depend on the details of the ion and electron distributions in the vicinity of the emerging X-points. We use the direct implicit Particle-In-Cell (PIC) code AVANTI to study the details of these distributions as they evolve in the self-consistent E and B fields of magnetic reconnection. We first consider a simple neutral sheet model. We observe rapid movement of the current-carrying electrons away from the emerging X-point. Later in time an oscillation of the trapped magnetic flux is found, superimposed upon continued linear growth due to plasma inflow at the ion sound speed. The addition of a current-aligned and a normal B field widen the scope of our studies.
Birdsall, C.K. . Dept. of Electrical Engineering and Computer Sciences)
1991-04-01
Many-particle (meaning 100's) charged-particle plasma simulations using spatial meshes for the electromagnetic field solutions, particle-in-cell (PIC) merged with Monte Carlo collision (MCC) calculations, are coming into wide use for application to partially ionized gases. This paper emphasizes the development of PIC computer experiments since the 1950's starting with one-dimensional (1-D) charged-sheet models, the addition of the mesh, and fast direct Poisson equation solvers for 2-D and 3-D. The finite-size particle-in-mesh (finite {Delta}{chi}, {Delta}t) theory of Langdon is presented in part to display the effects of too small {lambda}{sub D}/{Delta}{chi}, even for Maxwellian velocity distributions, as a caution, for example, when some ions are cooled to background gas temperatures by charge exchange. Early work on adding collisions to 1-D charge-sheet models by Burger and Shanny et al. are presented, with many of the elements of current Monte Carlo codes. Bounded plasma modeling is presented with electrode charges and external R, L, C, and V(t), I(t) sources now in use on fast desktop computers as real-time computer experiments, complementing analytic modeling and laboratory experiments. This paper reports that the addition of Monte Carlo collisions (usually done with irregular timesteps) to PIC (usually done with uniform {Delta}t's) is displayed as a developing art, relying on experimental total cross sections and approximate analytical differential cross sections to produce changes in charged-particle speed and direction due to collisions with neutrals, so far including elastic, excitation, ionization, charge exchange, and attachment processes.
NASA Astrophysics Data System (ADS)
Kwan, Thomas; Huang, Chengkun; Carlsten, Bruce
2012-10-01
Understanding CSR effects in a bunch compressor requires accurate and self-consistent dynamical simulations accounting for the realistic beam shape and parameters, transient dynamics and possibly a material boundary. We first extend the well-known 1D CSR model into two dimensions and develop a simple numerical algorithm based on the Lienard-Wiechert formula for the electric field of a stiff beam. This numerical model includes the 2D spatial dependence of the field in the bending plane and is accurate for arbitrary beam energy. It also removes the singularity in space charge field presented in a 1D model. Good agreement is obtained with 1D CSR analytic [1] result for FEL related beam parameters but deviations are also found for low-energy or large spot size beams and off-axis fields. We also employ fully electromagnetic Particle-In-Cell (PIC) simulations for self-consistent CSR modeling. The relatively large numerical phase error and anisotropy in a standard PIC algorithm is improved with a high order Finite Difference Time Domain scheme. Detail self-consistent PIC simulations of the CSR fields and beam dynamics will be presented and discussed.
NASA Astrophysics Data System (ADS)
Chen, Guangye; Chacón, Luis; CoCoMans Team
2014-10-01
For decades, the Vlasov-Darwin model has been recognized to be attractive for PIC simulations (to avoid radiative noise issues) in non-radiative electromagnetic regimes. However, the Darwin model results in elliptic field equations that renders explicit time integration unconditionally unstable. Improving on linearly implicit schemes, fully implicit PIC algorithms for both electrostatic and electromagnetic regimes, with exact discrete energy and charge conservation properties, have been recently developed in 1D. This study builds on these recent algorithms to develop an implicit, orbit-averaged, time-space-centered finite difference scheme for the particle-field equations in multiple dimensions. The algorithm conserves energy, charge, and canonical-momentum exactly, even with grid packing. A simple fluid preconditioner allows efficient use of large timesteps, O (√{mi/me}c/veT) larger than the explicit CFL. We demonstrate the accuracy and efficiency properties of the of the algorithm with various numerical experiments in 2D3V.
Deploying electromagnetic particle-in-cell (EM-PIC) codes on Xeon Phi accelerators boards
NASA Astrophysics Data System (ADS)
Fonseca, Ricardo
2014-10-01
The complexity of the phenomena involved in several relevant plasma physics scenarios, where highly nonlinear and kinetic processes dominate, makes purely theoretical descriptions impossible. Further understanding of these scenarios requires detailed numerical modeling, but fully relativistic particle-in-cell codes such as OSIRIS are computationally intensive. The quest towards Exaflop computer systems has lead to the development of HPC systems based on add-on accelerator cards, such as GPGPUs and more recently the Xeon Phi accelerators that power the current number 1 system in the world. These cards, also referred to as Intel Many Integrated Core Architecture (MIC) offer peak theoretical performances of >1 TFlop/s for general purpose calculations in a single board, and are receiving significant attention as an attractive alternative to CPUs for plasma modeling. In this work we report on our efforts towards the deployment of an EM-PIC code on a Xeon Phi architecture system. We will focus on the parallelization and vectorization strategies followed, and present a detailed performance evaluation of code performance in comparison with the CPU code.
3D Particle-In-Cell (PIC) simulations of plasma sheath formation above lunar craters
NASA Astrophysics Data System (ADS)
Likhanskii, A.; Poppe, A. R.; Piquette, M.; Amyx, K.; Messmer, P.; Horanyi, M.
2010-12-01
Comprehensive investigation of plasma sheath formation and consequent dust levitation on lunar surface is important for interpretation of results of future lunar missions (such as LADEE and ARTEMIS). Until recently, most of such studies were done in experimental laboratories at reduced scales. Due to the complexity and nonlinearity of the problem, only simplified theories, describing this effect, were developed. However, recent progress in high-performance kinetic plasma simulations allowed tackling the problem of plasma sheath formation numerically. In this poster we will present the simulation results of plasma sheath formation above the lunar craters in presence of solar wind and photoelectron emission. These results were obtained using 3D Particle-In-Cell (PIC) code VORPAL. In the simulations we considered plasma sheath formation for normal, 45 and 90 degree incidence solar wind. Sample distribution of electric field in plasma sheath is shown in Figure 1. In the second part of the poster, we will present results of simulations of the LASP (Laboratory for Atmospheric and Space Physics at University of Colorado) experiments on study of plasma sheath formation above hemispherical isolated dimple. Figure 1. Electric field distribution in the plasma sheath above the lunar crater
Dipp, T.M. |
1993-12-01
The generation of radiation via photoelectrons induced off of a conducting surface was explored using Particle-In-Cell (PIC) code computer simulations. Using the MAGIC PIC code, the simulations were performed in one dimension to handle the diverse scale lengths of the particles and fields in the problem. The simulations involved monoenergetic, nonrelativistic photoelectrons emitted normal to the illuminated conducting surface. A sinusoidal, 100% modulated, 6.3263 ns pulse train, as well as unmodulated emission, were used to explore the behavior of the particles, fields, and generated radiation. A special postprocessor was written to convert the PIC code simulated electron sheath into far-field radiation parameters by means of rigorous retarded time calculations. The results of the small-spot PIC simulations were used to generate various graphs showing resonance and nonresonance radiation quantities such as radiated lobe patterns, frequency, and power. A database of PIC simulation results was created and, using a nonlinear curve-fitting program, compared with theoretical scaling laws. Overall, the small-spot behavior predicted by the theoretical scaling laws was generally observed in the PIC simulation data, providing confidence in both the theoretical scaling laws and the PIC simulations.
A 2-D Implicit, Energy and Charge Conserving Particle In Cell Method
McPherson, Allen L.; Knoll, Dana A.; Cieren, Emmanuel B.; Feltman, Nicolas; Leibs, Christopher A.; McCarthy, Colleen; Murthy, Karthik S.; Wang, Yijie
2012-09-10
Recently, a fully implicit electrostatic 1D charge- and energy-conserving particle-in-cell algorithm was proposed and implemented by Chen et al ([2],[3]). Central to the algorithm is an advanced particle pusher. Particles are moved using an energy conserving scheme and are forced to stop at cell faces to conserve charge. Moreover, a time estimator is used to control errors in momentum. Here we implement and extend this advanced particle pusher to include 2D and electromagnetic fields. Derivations of all modifications made are presented in full. Special consideration is taken to ensure easy coupling into the implicit moment based method proposed by Taitano et al [19]. Focus is then given to optimizing the presented particle pusher on emerging architectures. Two multicore implementations, and one GPU (Graphics Processing Unit) implementation are discussed and analyzed.
DEMOCRITUS: An adaptive particle in cell (PIC) code for object-plasma interactions
NASA Astrophysics Data System (ADS)
Lapenta, Giovanni
2011-06-01
A new method for the simulation of plasma materials interactions is presented. The method is based on the particle in cell technique for the description of the plasma and on the immersed boundary method for the description of the interactions between materials and plasma particles. A technique to adapt the local number of particles and grid adaptation are used to reduce the truncation error and the noise of the simulations, to increase the accuracy per unit cost. In the present work, the computational method is verified against known results. Finally, the simulation method is applied to a number of specific examples of practical scientific and engineering interest.
Modelling RF sources using 2-D PIC codes
Eppley, K.R.
1993-03-01
In recent years, many types of RF sources have been successfully modelled using 2-D PIC codes. Both cross field devices (magnetrons, cross field amplifiers, etc.) and pencil beam devices (klystrons, gyrotrons, TWT`S, lasertrons, etc.) have been simulated. All these devices involve the interaction of an electron beam with an RF circuit. For many applications, the RF structure may be approximated by an equivalent circuit, which appears in the simulation as a boundary condition on the electric field (``port approximation``). The drive term for the circuit is calculated from the energy transfer between beam and field in the drift space. For some applications it may be necessary to model the actual geometry of the structure, although this is more expensive. One problem not entirely solved is how to accurately model in 2-D the coupling to an external waveguide. Frequently this is approximated by a radial transmission line, but this sometimes yields incorrect results. We also discuss issues in modelling the cathode and injecting the beam into the PIC simulation.
Modelling RF sources using 2-D PIC codes
Eppley, K.R.
1993-03-01
In recent years, many types of RF sources have been successfully modelled using 2-D PIC codes. Both cross field devices (magnetrons, cross field amplifiers, etc.) and pencil beam devices (klystrons, gyrotrons, TWT'S, lasertrons, etc.) have been simulated. All these devices involve the interaction of an electron beam with an RF circuit. For many applications, the RF structure may be approximated by an equivalent circuit, which appears in the simulation as a boundary condition on the electric field ( port approximation''). The drive term for the circuit is calculated from the energy transfer between beam and field in the drift space. For some applications it may be necessary to model the actual geometry of the structure, although this is more expensive. One problem not entirely solved is how to accurately model in 2-D the coupling to an external waveguide. Frequently this is approximated by a radial transmission line, but this sometimes yields incorrect results. We also discuss issues in modelling the cathode and injecting the beam into the PIC simulation.
Particle-In-Cell (PIC) simulation of long-anode magnetron
NASA Astrophysics Data System (ADS)
Verma, Rajendra Kumar; Maurya, Shivendra; Singh, Vindhyavasini Prasad
2016-03-01
Long Anode Magnetron (LAM) is a design scheme adopted to attain greater thermal stability and higher power levels for the conventional magnetrons. So a LAM for 5MW Power level at 2.858 GHz was `Virtual Prototyped' using Admittance Matching field theory (AMT) andthen a PIC Study (Beam-wave interaction) was conducted using CST Particle Studio (CST-PS) which is explained in this paper. The convincing results thus obtained were - hot resonant frequency of 2.834 GHz. Output power of 5 MW at beam voltage of 58kV and applied magnetic field of 2200 Gauss with an overall efficiency of 45%. The simulated parameters values on comparison with the E2V LAM tube (M5028) were in good agreement which validates the feasibility of the design approach.
Particle-in-Cell (PIC) simulation of CW industrial heating magnetron.
Andreev, Andrey D; Hendricks, Kyle J
2010-01-01
Modern CW industrial heating magnetrons are capable for producing as high as 300 kW of continuous-wave microwave power at frequencies around 900 MHz and are sold commercially [Wynn et al., 2004]. However, to utilize these magnetrons in some specific research and scientific applications being of interest for the Air Force, the necessary adaptation and redesign are required. It means that the detailed knowledge of principles of their operation and full understanding of how the changes of the design parameters affect their operational characteristics are necessary. We have developed and tested computer model of a 10-vane high-power strapped magnetron, which geometrical dimensions and design parameters are close to those of the California Tube Laboratory's commercially produced CWM-75/100L tube. The computer model is built by using the 3-D Improved Concurrent Electromagnetic Particle-in-Cell (ICEPIC) code. Simulations of the strapped magnetron operation are performed and the following operational characteristics are obtained during the simulation: frequency and mode of magnetron oscillations, output microwave power and efficiency of magnetron operation, anode current and anode-cathode voltage dynamics. The developed computer model of a non-relativistic high-power strapped magnetron may be used by the industrial magnetron community for designing following generations of the CW industrial heating high-power magnetrons. PMID:21721323
2D electrostatic PIC algorithm for laser induced studying plasma in vacuum
NASA Astrophysics Data System (ADS)
Álvarez, C. A.; Riascos, H.; Gonzalez, C.
2016-02-01
Particle-In-Cell(PIC) method is widely used for simulating plasma kinetic models. A 2D-PIC electrostatic algorithm is implemented for simulating the expansion of a laser- induced plasma plume. For potential and Electric Field calculation, Dirichlet and periodic boundary conditions are used in the X (perpendicular to the ablated material) and Y directions, respectively. Poisson-solver employs FFTW3 library and the five-point Laplacian to compute the electric potential. Electric field calculation is made by central finite differences method. Leap-frog scheme updates particle positions and velocities at each iteration. Plume expansion anlysis is done for the Emission and Post-Emission stages. In the Emission phase (while the laser is turned on), fast electron expansion is observed and ion particles remain near the surface of the ablated material. In the post-emission stage (with the laser turned off) the charge separation produces an electric field that accelerates the ions leading to the formation of a KeV per particle Ion-Front. At the end of the expansion, fastest electrons escape from the simulation space; an almost homogeneous ion-electron distribution is observed, decreasing the electric field value and the Coulomb interactions.
NASA Astrophysics Data System (ADS)
Genco, Filippo
Damage to plasma-facing components (PFC) due to various plasma instabilities is still a major concern for the successful development of fusion energy and represents a significant research obstacle in the community. It is of great importance to fully understand the behavior and lifetime expectancy of PFC under both low energy cycles during normal events and highly energetic events as disruptions, Edge-Localized Modes (ELM), Vertical Displacement Events (VDE), and Run-away electron (RE). The consequences of these high energetic dumps with energy fluxes ranging from 10 MJ/m2 up to 200 MJ/m 2 applied in very short periods (0.1 to 5 ms) can be catastrophic both for safety and economic reasons. Those phenomena can cause a) large temperature increase in the target material b) consequent melting, evaporation and erosion losses due to the extremely high heat fluxes c) possible structural damage and permanent degradation of the entire bulk material with probable burnout of the coolant tubes; d) plasma contamination, transport of target material into the chamber far from where it was originally picked. The modeling of off-normal events such as Disruptions and ELMs requires the simultaneous solution of three main problems along time: a) the heat transfer in the plasma facing component b) the interaction of the produced vapor from the surface with the incoming plasma particles c) the transport of the radiation produced in the vapor-plasma cloud. In addition the moving boundaries problem has to be considered and solved at the material surface. Considering the carbon divertor as target, the moving boundaries are two since for the given conditions, carbon doesn't melt: the plasma front and the moving eroded material surface. The current solution methods for this problem use finite differences and moving coordinates system based on the Crank-Nicholson method and Alternating Directions Implicit Method (ADI). Currently Particle-In-Cell (PIC) methods are widely used for solving
NASA Astrophysics Data System (ADS)
Leboeuf, Jean-Noel; Decyk, Viktor; Newman, David; Sanchez, Raul
2013-10-01
The massively parallel, 2D domain-decomposed, nonlinear, 3D, toroidal, electrostatic, gyrokinetic, Particle in Cell (PIC), Cartesian geometry UCAN2 code, with particle ions and adiabatic electrons, has been ported to two emerging mainframes. These two computers, one at NERSC in the US built by Cray named Edison and the other at the Barcelona Supercomputer Center (BSC) in Spain built by IBM named MareNostrum III (MNIII) just happen to share the same Intel ``Sandy Bridge'' processors. The successful port of UCAN2 to MNIII which came online first has enabled us to be up and running efficiently in record time on Edison. Overall, the performance of UCAN2 on Edison is superior to that on MNIII, particularly at large numbers of processors (>1024) for the same Intel IFORT compiler. This appears to be due to different MPI modules (OpenMPI on MNIII and MPICH2 on Edison) and different interconnection networks (Infiniband on MNIII and Cray's Aries on Edison) on the two mainframes. Details of these ports and comparative benchmarks are presented. Work supported by OFES, USDOE, under contract no. DE-FG02-04ER54741 with the University of Alaska at Fairbanks.
A 2D Particle in Cell model for ion extraction and focusing in electrostatic accelerators
Veltri, P. Serianni, G.; Cavenago, M.
2014-02-15
Negative ions are fundamental to produce intense and high energy neutral beams used to heat the plasma in fusion devices. The processes regulating the ion extraction involve the formation of a sheath on a scale comparable to the Debye length of the plasma. On the other hand, the ion acceleration as a beam is obtained on distances greater than λ{sub D}. The paper presents a model for both the phases of ion extraction and acceleration of the ions and its implementation in a numerical code. The space charge of particles is deposited following usual Particle in Cell codes technique, while the field is solved with finite element methods. Some hypotheses on the beam plasma transition are described, allowing to model both regions at the same time. The code was tested with the geometry of the NIO1 negative ions source, and the results are compared with existing ray tracing codes and discussed.
What Can We Learn about Magnetotail Reconnection from 2D PIC Harris-Sheet Simulations?
NASA Astrophysics Data System (ADS)
Goldman, M. V.; Newman, D. L.; Lapenta, G.
2016-03-01
The Magnetosphere Multiscale Mission (MMS) will provide the first opportunity to probe electron-scale physics during magnetic reconnection in Earth's magnetopause and magnetotail. This article will address only tail reconnection—as a non-steady-state process in which the first reconnected field lines advance away from the x-point in flux pile-up fronts directed Earthward and anti-Earthward. An up-to-date microscopic physical picture of electron and ion-scale collisionless tail reconnection processes is presented based on 2-D Particle-In-Cell (PIC) simulations initiated from a Harris current sheet and on Cluster and Themis measurements of tail reconnection. The successes and limitations of simulations when compared to measured reconnection are addressed in detail. The main focus is on particle and field diffusion region signatures in the tail reconnection geometry. The interpretation of these signatures is vital to enable spacecraft to identify physically significant reconnection events, to trigger meaningful data transfer from MMS to Earth and to construct a useful overall physical picture of tail reconnection. New simulation results and theoretical interpretations are presented for energy transport of particles and fields, for the size and shape of electron and ion diffusion regions, for processes occurring near the fronts and for the j × B (Hall) electric field.
2D and 3D PIC-MCC simulations of a low temperature magnetized plasma on CPU and GPU
NASA Astrophysics Data System (ADS)
Claustre, Jonathan; Chaudhury, Bhaskar; Fubiani, Gwenael; Boeuf, Jean-Pierre
2012-10-01
A Particle-In-Cell Monte Carlo Collisions model is used to described plasma transport in a low temperature magnetized plasma under conditions similar to those of the negative ion source for the neutral beam injector of ITER. A large diamagnetic electron current is present in the plasma because of the electron pressure gradient between the ICP driver of the source and the entrance of the magnetic filter, and is directed toward the chamber walls. The plasma potential adjusts to limit the diamagnetic electron current to the wall, leading to large electron current flow through the filter, and to a non uniform plasma density in the region between magnetic filter and extracting grids. On the basis of the PIC-MCC simulation results, we describe the plasma properties and electron current density distributions through the filter in 2D and 3D situations and use these models to better understand plasma transport across the filter in these conditions. We also present comparisons between computation times of two PIC-MCC simulation codes that have been developed for operations on standard CPU (Central Processing Units, code in Fortran) and on GPU (Graphics Processing Units, code in CUDA). The results show that the GPU simulation is about 25 times faster than the CPU one for a 2D domain with 512x512 grid points. The computation time ratio increases with the number of grid points.
Braunmueller, F. Tran, T. M.; Alberti, S.; Genoud, J.; Hogge, J.-Ph.; Tran, M. Q.; Vuillemin, Q.
2015-06-15
A new gyrotron simulation code for simulating the beam-wave interaction using a monomode time-dependent self-consistent model is presented. The new code TWANG-PIC is derived from the trajectory-based code TWANG by describing the electron motion in a gyro-averaged one-dimensional Particle-In-Cell (PIC) approach. In comparison to common PIC-codes, it is distinguished by its computation speed, which makes its use in parameter scans and in experiment interpretation possible. A benchmark of the new code is presented as well as a comparative study between the two codes. This study shows that the inclusion of a time-dependence in the electron equations, as it is the case in the PIC-approach, is mandatory for simulating any kind of non-stationary oscillations in gyrotrons. Finally, the new code is compared with experimental results and some implications of the violated model assumptions in the TWANG code are disclosed for a gyrotron experiment in which non-stationary regimes have been observed and for a critical case that is of interest in high power gyrotron development.
Numerical experiments on unstructured PIC stability.
Day, David Minot
2011-04-01
Particle-In-Cell (PIC) is a method for plasmas simulation. Particles are pushed with Verlet time integration. Fields are modeled using finite differences on a tensor product mesh (cells). The Unstructured PIC methods studied here use instead finite element discretizations on unstructured (simplicial) meshes. PIC is constrained by stability limits (upper bounds) on mesh and time step sizes. Numerical evidence (2D) and analysis will be presented showing that similar bounds constrain unstructured PIC.
2D PIC/MC simulations of electrical asymmetry effect in capacitive coupled plasma
NASA Astrophysics Data System (ADS)
Zhang, Quan-Zhi; Jiang, Wei; Wang, You-Nian
2011-10-01
Recently a so-called electrical asymmetry effect (EAE), which could achieve high-degree separate control of ion flux and energy in dual-frequency capacitively coupled plasmas, was discovered theoretically by Heil et al. and was confirmed by experiments and theory/numerical simulations later on. However, since there always is a bigger grounded surface area for experiment devices, which reduces the geometrical symmetry, and all the simulations were limited to 1D before, it is, thus, worth studying the EAE when coupling the electrically and geometrically asymmetric discharges theoretically. Here, we perform 2D PIC/MC simulations, which can include both electrically and geometrically asymmetric factors. The EAE on plasma parameters, such as dc self-bias voltage, density profiles, ion energy distribution and power absorption of electron have been examined for different pressures and geometry conditions. Recently a so-called electrical asymmetry effect (EAE), which could achieve high-degree separate control of ion flux and energy in dual-frequency capacitively coupled plasmas, was discovered theoretically by Heil et al. and was confirmed by experiments and theory/numerical simulations later on. However, since there always is a bigger grounded surface area for experiment devices, which reduces the geometrical symmetry, and all the simulations were limited to 1D before, it is, thus, worth studying the EAE when coupling the electrically and geometrically asymmetric discharges theoretically. Here, we perform 2D PIC/MC simulations, which can include both electrically and geometrically asymmetric factors. The EAE on plasma parameters, such as dc self-bias voltage, density profiles, ion energy distribution and power absorption of electron have been examined for different pressures and geometry conditions. This work was supported by the National Natural Science Foundation of China (Grant No 10635010) and the Important National Science & Technology Specific Project (Grant No
NASA Astrophysics Data System (ADS)
Grant, Edwin J.; Posada, Chrystian M.; Castaño, Carlos H.; Lee, Hyoung K.
2011-03-01
A novel x-ray source based on carbon nanotubes (CNTs) field emitters is being developed as an alternative for medical imaging diagnostic technologies. The design is based on an array of millions of micro sized x-ray sources similar to the way pixels are arranged in flat panel displays. The trajectory and focusing characteristics of the field emitted electrons, as well as the x-ray generation characteristics of each one of the proposed micro-sized x-ray tubes are simulated. The electron field emission is simulated using the OOPIC PRO particle-in-cell code. The x-ray generation is analyzed with the MCNPX Monte Carlo code. MCNPX is used to optimize both the bremsstrahlung radiation energy spectra and to verify the angular distribution for 0.25-12 μm thick molybdenum, rhodium and tungsten targets. Also, different extracting, accelerating and focusing voltages, as well as different focusing structures and geometries of the micro cells are simulated using the OOPIC Pro particle-in-cell code. The electron trajectories, beam spot sizes, I-V curves, bremsstrahlung radiation energy spectra, and angular distribution are all analyzed for a given cell. The simulation results show that micro x-ray cells can be used to generate suitable electron currents using CNT field emitters and strike a thin tungsten target to produce an adequate bremsstrahlung spectrum. The shape and trajectory of the electron beam was modified using focusing structures in the microcell. Further modifications to the electron beam are possible and can help design a better x-ray transmission source.
Fubiani, G. Boeuf, J. P.
2014-07-15
Previously reported 2D Particle-In-Cell Monte Carlo Collisions (PIC-MCC) simulations of negative ion sources under conditions similar to those of the ITER neutral beam injection system have shown that the presence of the magnetic filter tends to generate asymmetry in the plasma properties in the extraction region. In this paper, we show that these conclusions are confirmed by 3D PIC-MCC simulations and we provide quantitative comparisons between the 2D and 3D model predictions.
NASA Astrophysics Data System (ADS)
Leboeuf, Jean-Noel; Decyk, Viktor; Newman, David; Sanchez, Raul
2012-03-01
The massively parallel, nonlinear, 3D, toroidal, electrostatic, gyrokinetic, PIC, Cartesian geometry UCAN code, with particle ions and adiabatic electrons, has been successfully exercised to identify non-diffusive transport characteristics in DIII-D-like tokamak discharges. The limitation in applying UCAN to larger scale discharges is the 1D domain decomposition in the toroidal (or z-) direction for massively parallel implementation using MPI which has restricted the calculations to a few hundred ion Larmor radii per minor radius. To exceed these sizes, we have implemented 2D domain decomposition in UCAN with the addition of the y-direction to the processor mix. This has been facilitated by use of relevant components in the 2D domain decomposed PLIB2 library of field and particle management routines developed for UCLA's UPIC framework of conventional PIC codes. The gyro-averaging in gyrokinetic codes has necessitated the use of replicated arrays for efficient charge accumulation and particle push. The 2D domain-decomposed UCAN2 code reproduces the original 1D domain results within roundoff. Production calculations at large system sizes have been performed with UCAN2 on 131072 processors of the Cray XE6 at NERSC.
Conformal Electromagnetic Particle in Cell: A Review
Meierbachtol, Collin S.; Greenwood, Andrew D.; Verboncoeur, John P.; Shanker, Balasubramaniam
2015-10-26
We review conformal (or body-fitted) electromagnetic particle-in-cell (EM-PIC) numerical solution schemes. Included is a chronological history of relevant particle physics algorithms often employed in these conformal simulations. We also provide brief mathematical descriptions of particle-tracking algorithms and current weighting schemes, along with a brief summary of major time-dependent electromagnetic solution methods. Several research areas are also highlighted for recommended future development of new conformal EM-PIC methods.
NASA Astrophysics Data System (ADS)
Chacon, Luis; Chen, Guangye
2015-11-01
We discuss a new, implicit 2D-3V particle-in-cell (PIC) algorithm for non-radiative, electromagnetic kinetic plasma simulations, based on the Vlasov-Darwin model. The Vlasov-Darwin model avoids radiative noise issues, but is elliptic and renders explicit time integration unconditionally unstable. Absolutely stable, fully implicit, charge and energy conserving PIC algorithms for both electrostatic and electromagnetic regimes have been recently developed in 1D. In this study, we build on these recent successes to develop a multi-D, fully implicit PIC algorithm for the Vlasov-Darwin model. The algorithm conserves global energy, local charge, and particle canonical-momentum exactly. The nonlinear iteration is effectively accelerated with a fluid preconditioner, allowing the efficient use of large timesteps compared to the explicit CFL. We demonstrate the potential of the approach with various numerical examples in 2D-3V.
Fully implicit particle-in-cell algorithm.
NASA Astrophysics Data System (ADS)
Kim, Hyung; Chacon, Luis
2005-10-01
Most current particle-in-cell (PIC) algorithms employ an explicit approach. Explicit PIC approaches are not only time-step limited for numerical stability, but also grid-intensive due to the so-called finite-grid instability.ootnotetextC. Birdsall and A. Langdon, Plasma physics via computer simulation, McGraw-Hill, New York, 1985 As a result, explicit PIC methods are very hardware-intensive, and become prohibitive for system scale simulations even with modern supercomputers. To avoid such stringent time-step and grid-size requirements, the implicit moment method PIC approach (IM-PIC) was developed.ootnotetextJ. Brackbill and D. Forslund, J. Comput. Phys. 46, 271 (1982). IM-PIC advances the required moments (density, current) using Chapman-Enskop-based fluid equations, and then advances the particles with such moments. While being able to employ much larger time steps and grid spacings than explicit PIC methods, IM-PIC is limited in that the time-advanced moments and the particle moments are inconsistent, resulting in lack of energy conservation. To remedy this, we propose here a fully implicit, fully nonlinear PIC approach (FI-PIC) where the particles and the moments are converged simultaneously using Newton-Krylov techniques. This guarantees the consistency of moments and particles upon convergence. We will demonstrate the feasibility of the concept using a purely electrostatic Vlasov-Poisson model, and will show its effectiveness with several fully kinetic examples.
NASA Astrophysics Data System (ADS)
Chen, Guangye; Chacon, Luis
2015-11-01
We discuss a new, conservative, fully implicit 2D3V Vlasov-Darwin particle-in-cell algorithm in curvilinear geometry for non-radiative, electromagnetic kinetic plasma simulations. Unlike standard explicit PIC schemes, fully implicit PIC algorithms are unconditionally stable and allow exact discrete energy and charge conservation. Here, we extend these algorithms to curvilinear geometry. The algorithm retains its exact conservation properties in curvilinear grids. The nonlinear iteration is effectively accelerated with a fluid preconditioner for weakly to modestly magnetized plasmas, which allows efficient use of large timesteps, O (√{mi/me}c/veT) larger than the explicit CFL. In this presentation, we will introduce the main algorithmic components of the approach, and demonstrate the accuracy and efficiency properties of the algorithm with various numerical experiments in 1D (slow shock) and 2D (island coalescense).
Particle-in-cell simulations of Hall plasma thrusters
NASA Astrophysics Data System (ADS)
Miranda, Rodrigo; Ferreira, Jose Leonardo; Martins, Alexandre
2016-07-01
Hall plasma thrusters can be modelled using particle-in-cell (PIC) simulations. In these simulations, the plasma is described by a set of equations which represent a coupled system of charged particles and electromagnetic fields. The fields are computed using a spatial grid (i.e., a discretization in space), whereas the particles can move continuously in space. Briefly, the particle and fields dynamics are computed as follows. First, forces due to electric and magnetic fields are employed to calculate the velocities and positions of particles. Next, the velocities and positions of particles are used to compute the charge and current densities at discrete positions in space. Finally, these densities are used to solve the electromagnetic field equations in the grid, which are interpolated at the position of the particles to obtain the acting forces, and restart this cycle. We will present numerical simulations using software for PIC simulations to study turbulence, wave and instabilities that arise in Hall plasma thrusters. We have sucessfully reproduced a numerical simulation of a SPT-100 Hall thruster using a two-dimensional (2D) model. In addition, we are developing a 2D model of a cylindrical Hall thruster. The results of these simulations will contribute to improve the performance of plasma thrusters to be used in Cubesats satellites currenty in development at the Plasma Laboratory at University of Brasília.
Two-dimensional particle-in-cell simulations of transport in a magnetized electronegative plasma
Kawamura, E.; Lichtenberg, A. J.; Lieberman, M. A.
2010-11-15
Particle transport in a uniformly magnetized electronegative plasma is studied in two-dimensional (2D) geometry with insulating (dielectric) boundaries. A 2D particle-in-cell (PIC) code is employed, with the results compared to analytic one-dimensional models that approximate the end losses as volume losses. A modified oxygen reaction set is used to scale to the low densities used in PIC codes and also to approximately model other gases. The principal study is the limiting of the transverse electron flow due to strong electron magnetization. The plasma in the PIC calculation is maintained by axial currents that vary across the transverse dimension. For a cosine current profile nearly uniform electron temperature is obtained, which at the B-fields studied (600-1200 G) give a small but significant fraction (0.25 or less) of electron to negative ion transverse loss. For a more transverse-confined current, and approximating the higher mass and attachment reaction rate of iodine, the fraction of electron to negative ion transverse loss can be made very small. The models which have been constructed reasonably approximate the PIC results and indicate that the cross-field transport is nearly classical.
Multidimensional, fully implicit, exactly conserving electromagnetic particle-in-cell simulations
NASA Astrophysics Data System (ADS)
Chacon, Luis
2015-09-01
We discuss a new, conservative, fully implicit 2D-3V particle-in-cell algorithm for non-radiative, electromagnetic kinetic plasma simulations, based on the Vlasov-Darwin model. Unlike earlier linearly implicit PIC schemes and standard explicit PIC schemes, fully implicit PIC algorithms are unconditionally stable and allow exact discrete energy and charge conservation. This has been demonstrated in 1D electrostatic and electromagnetic contexts. In this study, we build on these recent algorithms to develop an implicit, orbit-averaged, time-space-centered finite difference scheme for the Darwin field and particle orbit equations for multiple species in multiple dimensions. The Vlasov-Darwin model is very attractive for PIC simulations because it avoids radiative noise issues in non-radiative electromagnetic regimes. The algorithm conserves global energy, local charge, and particle canonical-momentum exactly, even with grid packing. The nonlinear iteration is effectively accelerated with a fluid preconditioner, which allows efficient use of large timesteps, O(√{mi/me}c/veT) larger than the explicit CFL. In this presentation, we will introduce the main algorithmic components of the approach, and demonstrate the accuracy and efficiency properties of the algorithm with various numerical experiments in 1D and 2D. Support from the LANL LDRD program and the DOE-SC ASCR office.
2D Axisymmetric vs 1D: A PIC/DSMC Model of Breakdown in Triggered Vacuum Spark Gaps
NASA Astrophysics Data System (ADS)
Moore, Stan; Moore, Chris; Boerner, Jeremiah
2015-09-01
Last year at GEC14, we presented results of one-dimensional PIC/DSMC simulations of breakdown in triggered vacuum spark gaps. In this talk, we extend the model to two-dimensional axisymmetric and compare the results to the previous 1D case. Specially, we vary the fraction of the cathode that emits electrons and neutrals (holding the total injection rates over the cathode surface constant) and show the effects of the higher dimensionality on the time to breakdown. Sandia National Laboratories is a multi-program laboratory managed and operated by Sandia Corporation, a wholly owned subsidiary of Lockheed Martin Corporation, for the U. S. Department of Energy's National Nuclear Security Administration under contract DE-AC04-94AL85000.
Global particle-in-cell simulations of Alfvenic modes
Mishchenko, A.; Koenies, A.; Hatzky, R.
2008-11-01
Global linear gyro-kinetic particle-in-cell (PIC) simulations of electromagnetic modes in pinch and tokamak geometries are reported. The Toroidal Alfven Eigenmode and the Kinetic Ballooning Mode have been simulated. All plasma species have been treated kinetically (i.e. no hybrid fluid-kinetic or reduced-kinetic model has been applied). The main intention of the paper is to demonstrate that the global Alfven modes can be treated with the gyro-kinetic PIC method.
Adaptable Particle-in-Cell Algorithms for Graphical Processing Units
NASA Astrophysics Data System (ADS)
Decyk, Viktor; Singh, Tajendra
2010-11-01
Emerging computer architectures consist of an increasing number of shared memory computing cores in a chip, often with vector (SIMD) co-processors. Future exascale high performance systems will consist of a hierarchy of such nodes, which will require different algorithms at different levels. Since no one knows exactly how the future will evolve, we have begun development of an adaptable Particle-in-Cell (PIC) code, whose parameters can match different hardware configurations. The data structures reflect three levels of parallelism, contiguous vectors and non-contiguous blocks of vectors, which can share memory, and groups of blocks which do not. Particles are kept ordered at each time step, and the size of a sorting cell is an adjustable parameter. We have implemented a simple 2D electrostatic skeleton code whose inner loop (containing 6 subroutines) runs entirely on the NVIDIA Tesla C1060. We obtained speedups of about 16-25 compared to a 2.66 GHz Intel i7 (Nehalem), depending on the plasma temperature, with an asymptotic limit of 40 for a frozen plasma. We expect speedups of about 70 for an 2D electromagnetic code and about 100 for a 3D electromagnetic code, which have higher computational intensities (more flops/memory access).
NASA Astrophysics Data System (ADS)
Pekárek, Z.; Lahuta, M.; Hrach, R.
2007-04-01
In this contribution we estimate the performance of various Poisson equation solvers applied to the Particle-In-Cell plasma models. The solvers determine the practical usability of complex PIC models, especially in three dimensions. The performance is measured on 2D models with grids of various sizes, the methods studied are SOR, conjugate gradients, LU decomposition, FACR and multigrid methods. The results confirm the efficiency of the direct methods tested, namely the LU decomposition method and FACR. The advantages of using LU decomposition as a part of the multigrid method on larger grids are discussed as well.
Particle-In-Cell simulation of laser irradiated two-component microspheres in 2 and 3 dimensions
NASA Astrophysics Data System (ADS)
Pauw, Viktoria; Ostermayr, Tobias M.; Bamberg, Karl-Ulrich; Böhl, Patrick; Deutschmann, Fabian; Kiefer, Daniel; Klier, Constantin; Moschüring, Nils; Ruhl, Hartmut
2016-09-01
We examine proton acceleration from spherical carbon-hydrogen targets irradiated by a relativistic laser pulse. Particle-In-Cell (PIC) simulations are carried out in 2 and 3 dimensions (2D and 3D) to compare fast proton spectra. We find very different final kinetic energies in 2D and 3D simulations. We show that they are caused by the different Coulomb fields in 2D and 3D. We propose a correction scheme for the proton energies to test this hypothesis. In the case of sub-focus diameter targets comparison of corrected 2D energies with 3D results show good agreement. This demonstrates that caution is required when modeling experiments with simulations of reduced dimensionality.
Modeling Laser Wake Field Acceleration with the Quasi-Static PIC Code QuickPIC
Vieira, J.; Antonsen, T. Jr.; Cooley, J.; Silva, L. O.
2006-11-27
We use the Quasi-static Particle-In-Cell code QuickPIC to model laser wake field acceleration, in both uniform and parabolic plasma channels within current state of the art experimental laser and plasma parameters. QuickPIC uses the quasi-static approximation, which allows the separation of the plasma and laser evolution, as they respond in different time scales. The laser is evolved with a larger time step, that correctly resolves distances of the order of the Rayleigh length, according to the ponderomotive guiding center approximation, while the plasma response is calculated through a quasi-static field solver for each transverse 2d slice. We have performed simulations that show very good agreement between QuickPIC and three dimensional simulations using the full PIC code OSIRIS. We have scanned laser intensities from those for which linear plasma waves are excited to those for which the plasma response is highly nonlinear. For these simulations, QuickPIC was 2-3 orders of magnitude faster than OSIRIS.
Concurrent Algorithm For Particle-In-Cell Simulations
NASA Technical Reports Server (NTRS)
Liewer, Paulett C.; Decyk, Viktor K.
1990-01-01
Separate decompositions used for particle-motion and field calculations. General Concurrent Particle-in-Cell (GCPIC) algorithm used to implement motions of individual plasma particles (ions and electrons) under influence of particle-in-cell (PIC) computer codes on concurrent processors. Simulates motions of individual plasma particles under influence of electromagnetic fields generated by particles themselves. Performed to study variety of nonlinear problems in plasma physics, including magnetic and inertial fusion, plasmas in outer space, propagation of electron and ion beams, free-electron lasers, and particle accelerators.
Global gyrokinetic particle-in-cell simulations of internal kink instabilities
Mishchenko, Alexey; Zocco, Alessandro
2012-12-15
Internal kink instabilities have been studied in straight tokamak geometry employing an electromagnetic gyrokinetic particle-in-cell (PIC) code. The ideal-MHD internal kink mode and the collisionless m=1 tearing mode have been successfully simulated with the PIC code. Diamagnetic effects on the internal kink modes have also been investigated.
Propagation of numerical noise in particle-in-cell tracking
NASA Astrophysics Data System (ADS)
Kesting, Frederik; Franchetti, Giuliano
2015-11-01
Particle-in-cell (PIC) is the most used algorithm to perform self-consistent tracking of intense charged particle beams. It is based on depositing macroparticles on a grid, and subsequently solving on it the Poisson equation. It is well known that PIC algorithms occupy intrinsic limitations as they introduce numerical noise. Although not significant for short-term tracking, this becomes important in simulations for circular machines over millions of turns as it may induce artificial diffusion of the beam. In this work, we present a modeling of numerical noise induced by PIC algorithms, and discuss its influence on particle dynamics. The combined effect of particle tracking and noise created by PIC algorithms leads to correlated or decorrelated numerical noise. For decorrelated numerical noise we derive a scaling law for the simulation parameters, allowing an estimate of artificial emittance growth. Lastly, the effect of correlated numerical noise is discussed, and a mitigation strategy is proposed.
Particle-in-cell simulations with charge-conserving current deposition on graphic processing units
NASA Astrophysics Data System (ADS)
Ren, Chuang; Kong, Xianglong; Huang, Michael; Decyk, Viktor; Mori, Warren
2011-10-01
Recently using CUDA, we have developed an electromagnetic Particle-in-Cell (PIC) code with charge-conserving current deposition for Nvidia graphic processing units (GPU's) (Kong et al., Journal of Computational Physics 230, 1676 (2011). On a Tesla M2050 (Fermi) card, the GPU PIC code can achieve a one-particle-step process time of 1.2 - 3.2 ns in 2D and 2.3 - 7.2 ns in 3D, depending on plasma temperatures. In this talk we will discuss novel algorithms for GPU-PIC including charge-conserving current deposition scheme with few branching and parallel particle sorting. These algorithms have made efficient use of the GPU shared memory. We will also discuss how to replace the computation kernels of existing parallel CPU codes while keeping their parallel structures. This work was supported by U.S. Department of Energy under Grant Nos. DE-FG02-06ER54879 and DE-FC02-04ER54789 and by NSF under Grant Nos. PHY-0903797 and CCF-0747324.
Electromagnetic direct implicit PIC simulation
Langdon, A.B.
1983-03-29
Interesting modelling of intense electron flow has been done with implicit particle-in-cell simulation codes. In this report, the direct implicit PIC simulation approach is applied to simulations that include full electromagnetic fields. The resulting algorithm offers advantages relative to moment implicit electromagnetic algorithms and may help in our quest for robust and simpler implicit codes.
NASA Astrophysics Data System (ADS)
Chen, G.; Chacón, L.
2015-12-01
For decades, the Vlasov-Darwin model has been recognized to be attractive for particle-in-cell (PIC) kinetic plasma simulations in non-radiative electromagnetic regimes, to avoid radiative noise issues and gain computational efficiency. However, the Darwin model results in an elliptic set of field equations that renders conventional explicit time integration unconditionally unstable. Here, we explore a fully implicit PIC algorithm for the Vlasov-Darwin model in multiple dimensions, which overcomes many difficulties of traditional semi-implicit Darwin PIC algorithms. The finite-difference scheme for Darwin field equations and particle equations of motion is space-time-centered, employing particle sub-cycling and orbit-averaging. The algorithm conserves total energy, local charge, canonical-momentum in the ignorable direction, and preserves the Coulomb gauge exactly. An asymptotically well-posed fluid preconditioner allows efficient use of large cell sizes, which are determined by accuracy considerations, not stability, and can be orders of magnitude larger than required in a standard explicit electromagnetic PIC simulation. We demonstrate the accuracy and efficiency properties of the algorithm with various numerical experiments in 2D-3V.
Analysis of the beam halo in negative ion sources by using 3D3V PIC code
NASA Astrophysics Data System (ADS)
Miyamoto, K.; Nishioka, S.; Goto, I.; Hatayama, A.; Hanada, M.; Kojima, A.; Hiratsuka, J.
2016-02-01
The physical mechanism of the formation of the negative ion beam halo and the heat loads of the multi-stage acceleration grids are investigated with the 3D PIC (particle in cell) simulation. The following physical mechanism of the beam halo formation is verified: The beam core and the halo consist of the negative ions extracted from the center and the periphery of the meniscus, respectively. This difference of negative ion extraction location results in a geometrical aberration. Furthermore, it is shown that the heat loads on the first acceleration grid and the second acceleration grid are quantitatively improved compared with those for the 2D PIC simulation result.
Analysis of the beam halo in negative ion sources by using 3D3V PIC code.
Miyamoto, K; Nishioka, S; Goto, I; Hatayama, A; Hanada, M; Kojima, A; Hiratsuka, J
2016-02-01
The physical mechanism of the formation of the negative ion beam halo and the heat loads of the multi-stage acceleration grids are investigated with the 3D PIC (particle in cell) simulation. The following physical mechanism of the beam halo formation is verified: The beam core and the halo consist of the negative ions extracted from the center and the periphery of the meniscus, respectively. This difference of negative ion extraction location results in a geometrical aberration. Furthermore, it is shown that the heat loads on the first acceleration grid and the second acceleration grid are quantitatively improved compared with those for the 2D PIC simulation result. PMID:26932006
A spectral, quasi-cylindrical and dispersion-free Particle-In-Cell algorithm
NASA Astrophysics Data System (ADS)
Lehe, Rémi; Kirchen, Manuel; Andriyash, Igor A.; Godfrey, Brendan B.; Vay, Jean-Luc
2016-06-01
We propose a spectral Particle-In-Cell (PIC) algorithm that is based on the combination of a Hankel transform and a Fourier transform. For physical problems that have close-to-cylindrical symmetry, this algorithm can be much faster than full 3D PIC algorithms. In addition, unlike standard finite-difference PIC codes, the proposed algorithm is free of spurious numerical dispersion, in vacuum. This algorithm is benchmarked in several situations that are of interest for laser-plasma interactions. These benchmarks show that it avoids a number of numerical artifacts, that would otherwise affect the physics in a standard PIC algorithm - including the zero-order numerical Cherenkov effect.
NASA Astrophysics Data System (ADS)
Ngirmang, Gregory K.; Orban, Chris; Feister, Scott; Morrison, John T.; Frische, Kyle D.; Chowdhury, Enam A.; Roquemore, W. M.
2016-04-01
We present 3D Particle-in-Cell (PIC) modeling of an ultra-intense laser experiment by the Extreme Light group at the Air Force Research Laboratory using the Large Scale Plasma (LSP) PIC code. This is the first time PIC simulations have been performed in 3D for this experiment which involves an ultra-intense, short-pulse (30 fs) laser interacting with a water jet target at normal incidence. The laser-energy-to-ejected-electron-energy conversion efficiency observed in 2D(3v) simulations were comparable to the conversion efficiencies seen in the 3D simulations, but the angular distribution of ejected electrons in the 2D(3v) simulations displayed interesting differences with the 3D simulations' angular distribution; the observed differences between the 2D(3v) and 3D simulations were more noticeable for the simulations with higher intensity laser pulses. An analytic plane-wave model is discussed which provides some explanation for the angular distribution and energies of ejected electrons in the 2D(3v) simulations. We also performed a 3D simulation with circularly polarized light and found a significantly higher conversion efficiency and peak electron energy, which is promising for future experiments.
Particle-in-cell modeling for MJ scale dense plasma focus with varied anode shape
Link, A. Halvorson, C. Schmidt, A.; Hagen, E. C.; Rose, D. V.; Welch, D. R.
2014-12-15
Megajoule scale dense plasma focus (DPF) Z-pinches with deuterium gas fill are compact devices capable of producing 10{sup 12} neutrons per shot but past predictive models of large-scale DPF have not included kinetic effects such as ion beam formation or anomalous resistivity. We report on progress of developing a predictive DPF model by extending our 2D axisymmetric collisional kinetic particle-in-cell (PIC) simulations from the 4 kJ, 200 kA LLNL DPF to 1 MJ, 2 MA Gemini DPF using the PIC code LSP. These new simulations incorporate electrodes, an external pulsed-power driver circuit, and model the plasma from insulator lift-off through the pinch phase. To accommodate the vast range of relevant spatial and temporal scales involved in the Gemini DPF within the available computational resources, the simulations were performed using a new hybrid fluid-to-kinetic model. This new approach allows single simulations to begin in an electron/ion fluid mode from insulator lift-off through the 5-6 μs run-down of the 50+ cm anode, then transition to a fully kinetic PIC description during the run-in phase, when the current sheath is 2-3 mm from the central axis of the anode. Simulations are advanced through the final pinch phase using an adaptive variable time-step to capture the fs and sub-mm scales of the kinetic instabilities involved in the ion beam formation and neutron production. Validation assessments are being performed using a variety of different anode shapes, comparing against experimental measurements of neutron yield, neutron anisotropy and ion beam production.
Particle-In-Cell Modeling For MJ Dense Plasma Focus with Varied Anode Shape
NASA Astrophysics Data System (ADS)
Link, A.; Halvorson, C.; Schmidt, A.; Hagen, E. C.; Rose, D.; Welch, D.
2014-10-01
Megajoule scale dense plasma focus (DPF) Z-pinches with deuterium gas fill are compact devices capable of producing 1012 neutrons per shot but past predictive models of large-scale DPF have not included kinetic effects such as ion beam formation or anomalous resistivity. We report on progress of developing a predictive DPF model by extending our 2D axisymmetric collisional kinetic particle-in-cell (PIC) simulations to the 1 MJ, 2 MA Gemini DPF using the PIC code LSP. These new simulations incorporate electrodes, an external pulsed-power driver circuit, and model the plasma from insulator lift-off through the pinch phase. The simulations were performed using a new hybrid fluid-to-kinetic model transitioning from a fluid description to a fully kinetic PIC description during the run-in phase. Simulations are advanced through the final pinch phase using an adaptive variable time-step to capture the fs and sub-mm scales of the kinetic instabilities involved in the ion beam formation and neutron production. Results will be present on the predicted effects of different anode configurations. This work performed under the auspices of the U.S. Department of Energy by Lawrence Livermore National Laboratory (LLNL) under Contract DE-AC52-07NA27344 and supported by the Laboratory Directed Research and Development Program (11-ERD-063) and the Computing Grand Challenge program at LLNL. This work supported by Office of Defense Nuclear Nonproliferation Research and Development within U.S. Department of Energy's National Nuclear Security Administration.
Accelerating particle-in-cell simulations using multilevel Monte Carlo
NASA Astrophysics Data System (ADS)
Ricketson, Lee
2015-11-01
Particle-in-cell (PIC) simulations have been an important tool in understanding plasmas since the dawn of the digital computer. Much more recently, the multilevel Monte Carlo (MLMC) method has accelerated particle-based simulations of a variety of systems described by stochastic differential equations (SDEs), from financial portfolios to porous media flow. The fundamental idea of MLMC is to perform correlated particle simulations using a hierarchy of different time steps, and to use these correlations for variance reduction on the fine-step result. This framework is directly applicable to the Langevin formulation of Coulomb collisions, as demonstrated in previous work, but in order to apply to PIC simulations of realistic scenarios, MLMC must be generalized to incorporate self-consistent evolution of the electromagnetic fields. We present such a generalization, with rigorous results concerning its accuracy and efficiency. We present examples of the method in the collisionless, electrostatic context, and discuss applications and extensions for the future.
Wavenumber spectrum of whistler turbulence: Particle-in-cell simulation
Saito, S.; Gary, S. Peter; Narita, Y.
2010-12-15
The forward cascade of decaying whistler turbulence is studied in low beta plasma to understand essential properties of the energy spectrum at electron scales, by using a two-dimensional electromagnetic particle-in-cell (PIC) simulation. This simulation demonstrates turbulence in which the energy cascade rate is greater than the dissipation rate at the electron inertial length. The PIC simulation shows that the magnetic energy spectrum of forward-cascaded whistler turbulence at electron inertial scales is anisotropic and develops a very steep power-law spectrum which is consistent with recent solar wind observations. A comparison of the simulated spectrum with that predicted by a phenomenological turbulence scaling model suggests that the energy cascade at the electron inertial scale depends on both magnetic fluctuations and electron velocity fluctuations, as well as on the whistler dispersion relation. Thus, not only kinetic Alfven turbulence but also whistler turbulence may explain recent solar wind observations of very steep magnetic spectra at short scales.
Lemaire, J.-L.; Sonnendruecker, E.
2005-06-08
We have investigated the dynamical behaviors of intense charged particle beams propagating through continuous and periodic systems using a fully self consistent method based on the direct solution of the Vlasov equation in presence of conducting wall. The simulation code deals either with an axisymetric system (r, vr, v{theta}) or cartesian system (x, vx, y, vy). Several diagnostics have been implemented enabling to display halo generation caused by sources that are driven by nonlinear forces, mismatching, non-stationary beam distributions and its development Comparisons with corresponding PIC technique simulations can be made. Further works are in progress to study in the same manner the propagation of charged particle beams in quadrupole FODO channels.
Classical radiation reaction in particle-in-cell simulations
NASA Astrophysics Data System (ADS)
Vranic, M.; Martins, J. L.; Fonseca, R. A.; Silva, L. O.
2016-07-01
Under the presence of ultra high intensity lasers or other intense electromagnetic fields the motion of particles in the ultrarelativistic regime can be severely affected by radiation reaction. The standard particle-in-cell (PIC) algorithms do not include radiation reaction effects. Even though this is a well known mechanism, there is not yet a definite algorithm nor a standard technique to include radiation reaction in PIC codes. We have compared several models for the calculation of the radiation reaction force, with the goal of implementing an algorithm for classical radiation reaction in the Osiris framework, a state-of-the-art PIC code. The results of the different models are compared with standard analytical results, and the relevance/advantages of each model are discussed. Numerical issues relevant to PIC codes such as resolution requirements, application of radiation reaction to macro particles and computational cost are also addressed. For parameters of interest where the classical description of the electron motion is applicable, all the models considered are shown to give comparable results. The Landau and Lifshitz reduced model is chosen for implementation as one of the candidates with the minimal overhead and no additional memory requirements.
Two- and three-dimensional particle-in-cell simulations of ExB discharges
NASA Astrophysics Data System (ADS)
Carlsson, Johan; Kaganovich, Igor; Khrabrov, Alexander; Raitses, Yevgeny; Smolyakov, Andrei
2015-09-01
The Large-Scale Plasma (LSP) Particle-In-Cell with Monte-Carlo Collisions (PIC-MCC) code has been used to simulate several crossed-field (ExB) discharges in two and three dimensions. Two-dimensional (2D) simulations of a cold-cathode electric discharge with power-electronics applications and a Penning discharge will be presented. Three-dimensional (3D) simulation results of a cylindrical Hall thruster with scaled plasma parameters will also be shown and compared to experiment [Ellison2012]. To enable the 2D and 3D ExB discharge simulations, several improvements to the LSP code were made, including implementation of a new electrostatic field solver, external-circuit model and models for particle injection and secondary-electron emission. To ensure the correctness of the collision models used (and particularly important for the cold-cathode-discharge simulations), validation and code benchmarking was done with the LSP and EDIPIC codes in 1D for a glow discharge. Results and conclusions will be presented. Work funded by AFOSR and ARPA-E.
Two- and three-dimensional particle-in-cell simulations of ExB discharges
NASA Astrophysics Data System (ADS)
Carlsson, Johan; Kaganovich, Igor D.; Khrabrov, Alexander V.; Raitses, Yevgeny; Smolyakov, Andrei
2015-11-01
The Large-Scale Plasma (LSP) Particle-In-Cell with Monte-Carlo Collisions (PIC-MCC) code has been used to simulate several crossed-field (ExB) discharges in two and three dimensions. Two-dimensional (2D) simulations of a cold-cathode electric discharge with power-electronics applications and a Penning discharge will be presented. Three-dimensional (3D) simulation results of a cylindrical Hall thruster with scaled plasma parameters will also be shown and compared to experiment [Ellison2012]. To enable the 2D and 3D ExB discharge simulations, several improvements to the LSP code were made, including implementation of a new electrostatic field solver, external-circuit model and models for particle injection and secondary-electron emission. To ensure the correctness of the collision models used (and particularly important for the cold-cathode-discharge simulations), validation and code benchmarking was done with the LSP and EDIPIC codes in 1D for a glow discharge. Results and conclusions will be presented. L. Ellison, Y. Raitses and N. J. Fisch, ``Cross-field electron transport induced by a rotating spoke in a cylindrical Hall thruster,'' Physics of Plasmas 19, 013503 (2012). Research supported by the U.S. Air Force Office of Scientific Research.
Candel, A.; Kabel, A.; Lee, L.; Li, Z.; Limborg, C.; Ng, C.; Prudencio, E.; Schussman, G.; Uplenchwar, R.; Ko, K.; /SLAC
2009-06-19
Over the past years, SLAC's Advanced Computations Department (ACD), under SciDAC sponsorship, has developed a suite of 3D (2D) parallel higher-order finite element (FE) codes, T3P (T2P) and Pic3P (Pic2P), aimed at accurate, large-scale simulation of wakefields and particle-field interactions in radio-frequency (RF) cavities of complex shape. The codes are built on the FE infrastructure that supports SLAC's frequency domain codes, Omega3P and S3P, to utilize conformal tetrahedral (triangular)meshes, higher-order basis functions and quadratic geometry approximation. For time integration, they adopt an unconditionally stable implicit scheme. Pic3P (Pic2P) extends T3P (T2P) to treat charged-particle dynamics self-consistently using the PIC (particle-in-cell) approach, the first such implementation on a conformal, unstructured grid using Whitney basis functions. Examples from applications to the International Linear Collider (ILC), Positron Electron Project-II (PEP-II), Linac Coherent Light Source (LCLS) and other accelerators will be presented to compare the accuracy and computational efficiency of these codes versus their counterparts using structured grids.
NASA Astrophysics Data System (ADS)
Hughes, R. Scott; Wang, Joseph; Decyk, Viktor K.; Gary, S. Peter
2016-04-01
This paper investigates how the physics of the whistler anisotropy instability (WAI) is affected by variations in the electron thermal velocity vte, referred to here in terms of the ratio v̂ t e=vt e/c , where c is the speed of light. The WAI is driven by the electron condition RT>1 , where RT=Te ⊥/Te ∥ is the temperature anisotropy ratio and ⊥/∥ signify directions perpendicular/parallel to the background magnetic field B0 . While a typical value of v̂ t e in the solar wind is ˜0.005 , electromagnetic (EM) particle-in-cell (PIC) simulations often use a value near 0.1 in order to maximize the computational time step. In this study, a two-dimensional (2D) Darwin particle-in-cell (DPIC) code, MDPIC2, is used. The time step in the DPIC model is not affected by the choice of v̂ t e , making DPIC suited for this study. A series of simulations are carried out under the condition that the electron βe is held fixed, while v̂ t e is varied over the range 0.1 ≥v̂ t e≥0.025 . The results show that, with βe held fixed, the linear dispersion properties and the nonlinear saturation amplitude and pitch angle scattering rates associated with the WAI are insensitive to the value of v̂ t e . A supplementary investigation is conducted which characterizes how the WAI model is affected at various values of v̂ t e by noise associated with the limited number of particles in a typical PIC simulation. It is found that the evolution of the WAI is more strongly influenced by electrostatic noise as v̂ t e is decreased. The electrostatic noise level is inversely proportional to the number of particles per computational cell ( Nc ); this implies that the number of particles required to remove nonphysical effects from the PIC simulation increases as v̂ t e decreases. It is concluded that PIC simulations of this instability which use an artificially large value of v̂ t e accurately reproduce the response of a cooler plasma as long as a realistic value of βe is used
GPU acceleration of particle-in-cell methods
NASA Astrophysics Data System (ADS)
Cowan, Benjamin; Cary, John; Meiser, Dominic
2015-11-01
Graphics processing units (GPUs) have become key components in many supercomputing systems, as they can provide more computations relative to their cost and power consumption than conventional processors. However, to take full advantage of this capability, they require a strict programming model which involves single-instruction multiple-data execution as well as significant constraints on memory accesses. To bring the full power of GPUs to bear on plasma physics problems, we must adapt the computational methods to this new programming model. We have developed a GPU implementation of the particle-in-cell (PIC) method, one of the mainstays of plasma physics simulation. This framework is highly general and enables advanced PIC features such as high order particles and absorbing boundary conditions. The main elements of the PIC loop, including field interpolation and particle deposition, are designed to optimize memory access. We describe the performance of these algorithms and discuss some of the methods used. Work supported by DARPA contract W31P4Q-15-C-0061 (SBIR).
MPI implementation of a generalized implicit algorithm for multi-dimensional PIC simulations
NASA Astrophysics Data System (ADS)
Petrov, George; Davis, Jack
2012-10-01
The implicit 2D3V particle-in-cell (PIC) code developed to study the interaction of short pulse lasers with matter [G. M. Petrov and J. Davis, Computer Phys. Comm. 179, 868 (2008); Phys. Plasmas 18, 073102 (2011)] has been parallelized using MPI (Message Passing Interface). Performance evaluation has been made on a Linux cluster for two typical regimes of PIC operation: ``particle dominated,'' for which the bulk of the computation time is spent on pushing particles, and ``field dominated,'' for which computing the fields is prevalent. The MPI implementation of the code offers a significant numerical speedup, particularly in the ``particle dominated'' regime, which will allow extension to three dimensions and implementation of atomic physics.
Development of 1D Particle-in-Cell Code and Simulation of Plasma-Wall Interactions
NASA Astrophysics Data System (ADS)
Rose, Laura P.
This thesis discusses the development of a 1D particle-in-cell (PIC) code and the analysis of plasma-wall interactions. The 1D code (Plasma and Wall Simulation -- PAWS) is a kinetic simulation of plasma done by treating both electrons and ions as particles. The goal of this thesis is to study near wall plasma interaction to better understand the mechanism that occurs in this region. The main focus of this investigation is the effects that secondary electrons have on the sheath profile. The 1D code is modeled using the PIC method. Treating both the electrons and ions as macroparticles the field is solved on each node and weighted to each macro particle. A pre-ionized plasma was loaded into the domain and the velocities of particles were sampled from the Maxwellian distribution. An important part of this code is the boundary conditions at the wall. If a particle hits the wall a secondary electron may be produced based on the incident energy. To study the sheath profile the simulations were run for various cases. Varying background neutral gas densities were run with the 2D code and compared to experimental values. Different wall materials were simulated to show their effects of SEE. In addition different SEE yields were run, including one study with very high SEE yields to show the presence of a space charge limited sheath. Wall roughness was also studied with the 1D code using random angles of incidence. In addition to the 1D code, an external 2D code was also used to investigate wall roughness without secondary electrons. The roughness profiles where created upon investigation of wall roughness inside Hall Thrusters based off of studies done on lifetime erosion of the inner and outer walls of these devices. The 2D code, Starfish[33], is a general 2D axisymmetric/Cartesian code for modeling a wide a range of plasma and rarefied gas problems. These results show that higher SEE yield produces a smaller sheath profile and that wall roughness produces a lower SEE yield
Fully implicit Particle-in-cell algorithms for multiscale plasma simulation
Chacon, Luis
2015-07-16
The outline of the paper is as follows: Particle-in-cell (PIC) methods for fully ionized collisionless plasmas, explicit vs. implicit PIC, 1D ES implicit PIC (charge and energy conservation, moment-based acceleration), and generalization to Multi-D EM PIC: Vlasov-Darwin model (review and motivation for Darwin model, conservation properties (energy, charge, and canonical momenta), and numerical benchmarks). The author demonstrates a fully implicit, fully nonlinear, multidimensional PIC formulation that features exact local charge conservation (via a novel particle mover strategy), exact global energy conservation (no particle self-heating or self-cooling), adaptive particle orbit integrator to control errors in momentum conservation, and canonical momenta (EM-PIC only, reduced dimensionality). The approach is free of numerical instabilities: ω_{pe}Δt >> 1, and Δx >> λ_{D}. It requires many fewer dofs (vs. explicit PIC) for comparable accuracy in challenging problems. Significant CPU gains (vs explicit PIC) have been demonstrated. The method has much potential for efficiency gains vs. explicit in long-time-scale applications. Moment-based acceleration is effective in minimizing N_{FE}, leading to an optimal algorithm.
Laser-plasma interactions with a Fourier-Bessel particle-in-cell method
NASA Astrophysics Data System (ADS)
Andriyash, Igor A.; Lehe, Remi; Lifschitz, Agustin
2016-03-01
A new spectral particle-in-cell (PIC) method for plasma modeling is presented and discussed. In the proposed scheme, the Fourier-Bessel transform is used to translate the Maxwell equations to the quasi-cylindrical spectral domain. In this domain, the equations are solved analytically in time, and the spatial derivatives are approximated with high accuracy. In contrast to the finite-difference time domain (FDTD) methods, that are used commonly in PIC, the developed method does not produce numerical dispersion and does not involve grid staggering for the electric and magnetic fields. These features are especially valuable in modeling the wakefield acceleration of particles in plasmas. The proposed algorithm is implemented in the code PLARES-PIC, and the test simulations of laser plasma interactions are compared to the ones done with the quasi-cylindrical FDTD PIC code CALDER-CIRC.
Particle-In-Cell simulations of high pressure plasmas using graphics processing units
NASA Astrophysics Data System (ADS)
Gebhardt, Markus; Atteln, Frank; Brinkmann, Ralf Peter; Mussenbrock, Thomas; Mertmann, Philipp; Awakowicz, Peter
2009-10-01
Particle-In-Cell (PIC) simulations are widely used to understand the fundamental phenomena in low-temperature plasmas. Particularly plasmas at very low gas pressures are studied using PIC methods. The inherent drawback of these methods is that they are very time consuming -- certain stability conditions has to be satisfied. This holds even more for the PIC simulation of high pressure plasmas due to the very high collision rates. The simulations take up to very much time to run on standard computers and require the help of computer clusters or super computers. Recent advances in the field of graphics processing units (GPUs) provides every personal computer with a highly parallel multi processor architecture for very little money. This architecture is freely programmable and can be used to implement a wide class of problems. In this paper we present the concepts of a fully parallel PIC simulation of high pressure plasmas using the benefits of GPU programming.
Finite grid instability and spectral fidelity of the electrostatic Particle-In-Cell algorithm
Huang, C. -K.; Zeng, Y.; Wang, Y.; Meyers, M. D.; Yi, S.; Albright, B. J.
2016-06-07
The origin of the Finite Grid Instability (FGI) is studied by resolving the dynamics in the 1D electrostatic Particle-In-Cell (PIC) model in the spectral domain at the single particle level and at the collective motion level. The spectral fidelity of the PIC model is contrasted with the underlying physical system or the gridless model. The systematic spectral phase and amplitude errors from the charge deposition and field interpolation are quantified for common particle shapes used in the PIC models. Lastly, it is shown through such analysis and in simulations that the lack of spectral fidelity relative to the physical systemmore » due to the existence of aliased spatial modes is the major cause of the FGI in the PIC model.« less
On the numerical dispersion and the spectral fidelity of the Particle-In-Cell method
NASA Astrophysics Data System (ADS)
Huang, Chengkun; Meyers, M. D.; Zeng, Y.; Yi, S.; Albright, B. J.
2015-11-01
The Particle-In-Cell (PIC) method is widely used in plasma modeling. However, the PIC method exhibits grid type numerical instabilities, including the finite grid instability and the numerical Cherenkov instability that can render unphysical simulation results or disrupt the simulation. A faithful numerical dispersion of the electromagnetic PIC algorithm is obtained and analyzed to obtain the insight about the numerical instabilities inherent in such a computation model. Using this dispersion, we investigate how the finite grid instability arises from the interaction of the numerical modes admitted in the system and their aliases. Compared with the gridless model, we show that the lack of spectral fidelity relative to the real system due to the aliasing effect is a major cause of the numerical instabilities in the PIC model. Work supported by the U.S. Department of Energy through the LDRD program at Los Alamos National Laboratory.
On the use of particle-in-cell methods for the study of magnetically-confined fusion plasmas
Procassini, R.J. California Univ., Berkeley, CA . Electronics Research Lab.)
1991-06-12
The applicability of electrostatic particle-in-cell (PIC) methods for the simulation of magnetically-confined fusion plasmas is investigated. The aspects of the PIC methodology which allow one to accurately model the representative charge separations found in hot fusion plasmas with far fewer simulation particles are discussed. The number of simulation particles required to resolve the collective effects of interest (such as the ambipolar potential) above the statistical fluctuations is also analyzed. 8 refs., 1 fig.
Foust, F. R.; Bell, T. F.; Spasojevic, M.; Inan, U. S.
2011-06-15
We present results showing the measured Landau damping rate using a high-order discontinuous Galerkin particle-in-cell (DG-PIC) [G. B. Jacobs and J. S. Hesthaven, J. Comput. Phys. 214, 96 (2006)] method. We show that typical damping rates measured in particle-in-cell (PIC) simulations can differ significantly from the linearized Landau damping coefficient and propose a simple numerical method to solve the plasma dispersion function exactly for moderate to high damping rates. Simulation results show a high degree of agreement between the high-order PIC results and this calculated theoretical damping rate.
Physical Fidelity in Particle-In-Cell Modeling of Small Debye-Length Plasmas
Shadwick, B. A.; Schroeder, C. B.
2009-01-22
The connection between macro-particle shape functions and non-physical phase-space 'heating' in the particle-in-cell (PIC) algorithm is examined. The development of fine-scale phase-space structures starting from a cold initial condition is shown to be related to spatial correlations in the interpolated fields used in the Lorentz force. It is shown that the plasma evolution via the PIC algorithm from a cold initial condition leads to a state that is not consistent with that of a thermal plasma.
Physical Fidelity in Particle-In-Cell Modeling of Small Debye-Length Plasmas
Shadwick, B.A.; Schroeder, C.B.
2008-08-01
The connection between macro-particle shape functions and non-physical phase-space"heating" in the particle-in-cell (PIC) algorithm is examined. The development of fine-scale phasespace structures starting from a cold initial condition is shown to be related to spatial correlations in the interpolated fields used in the Lorentz force. It is shown that the plasma evolution via the PIC algorithm from a cold initial condition leads to a state that is not consistent with that of a thermal plasma.
John A. Krommes
2007-10-09
The present state of the theory of fluctuations in gyrokinetic GK plasmas and especially its application to sampling noise in GK particle-in-cell PIC simulations is reviewed. Topics addressed include the Δf method, the fluctuation-dissipation theorem for both classical and GK many-body plasmas, the Klimontovich formalism, sampling noise in PIC simulations, statistical closure for partial differential equations, the theoretical foundations of spectral balance in the presence of arbitrary noise sources, and the derivation of Kadomtsev-type equations from the general formalism.
Particle-In-Cell Modeling for MegaJoule Dense Plasma Focus
NASA Astrophysics Data System (ADS)
Link, Anthony
2015-11-01
Megajoule scale dense plasma focus (DPF) Z-pinches with deuterium gas fill are compact devices capable of producing 1012 neutrons per shot but past predictive models of large-scale DPF have not included kinetic effects such as ion beam formation or anomalous resistivity. We report on progress of developing a predictive DPF model by extending our 2D axisymmetric collisional kinetic particle-in-cell (PIC) simulations from the 4 kJ, 200 kA LLNL DPF to 1 MJ, 2 MA Gemini DPF using the PIC code LSP. These new simulations are by far the most detailed and computationally intensive DPF simulations run to date. They incorporate electrodes, an external pulsed-power driver circuit, and model the plasma from insulator lift-off through the pinch phase. To accommodate the vast range of relevant spatial and temporal scales involved in the Gemini DPF within the available computational resources, the simulations were performed using a new hybrid fluid-to-kinetic model. This new approach allows single simulations to begin in an electron/ion fluid mode from insulator lift-off through the 5-6 μs run-down of the 50 + cm anode, then transition to a fully kinetic PIC description during the run-in phase, when the current sheath is 2-3 mm from the central axis of the anode. Simulations are advanced through the final pinch phase using an adaptive variable time-step to capture the fs and sub-mm scales of the kinetic instabilities involved in the ion beam formation and neutron production. An anode shape scan as well as a scan in stored energy/charging voltage has been performed. A comparison of MJ performance for different drivers will be presented. Validation assessments are being performed, comparing against experimental measurements of neutron yield, neutron anisotropy and plasma density. Prepared by LLNL under Contract DE-AC52-07NA27344. This work supported by the U.S. Department of Energy's National Nuclear Security Administration. Computing support for this work came from the LLNL
NASA Astrophysics Data System (ADS)
Toth, Gabor; Gombosi, Tamas; Jia, Xianzhe; Welling, Daniel; Chen, Yuxi; Haiducek, John; Jordanova, Vania; Peng, Ivy Bo; Markidis, Stefano; Lapenta, Giovanni
2016-04-01
We have recently developed a new modeling capability to embed the implicit Particle-in-Cell (PIC) model iPIC3D into the BATS-R-US extended magnetohydrodynamic model. The PIC domain can cover the regions where kinetic effects are most important, such as reconnection sites. The BATS-R-US code with its block-adaptive grid can efficiently handle the rest of the computational domain where the MHD or Hall MHD description is sufficient. The current implementation of the MHD-EPIC model allows two-way coupled simulations in two and three dimensions with multiple embedded PIC regions. The MHD and PIC grids can have different grid resolutions and grid structures. The MHD variables and the moments of the PIC distribution functions are interpolated and message passed in an efficient manner through the Space Weather Modeling Framework (SWMF). Both BATS-R-US and iPIC3D are massively parallel codes fully integrated into, run by and coupled through the SWMF. We have successfully applied the MHD-EPIC code to model Ganymede's and Mercury's magnetospheres. We compared our results with Galileo and MESSENGER magnetic observations, respectively, and found good overall agreement. We will report our progress on modeling the Earth magnetosphere with MHD-EPIC with the goal of providing direct comparison with and global context for the MMS observations.
Accuracy Analysis of the PIC Method
NASA Astrophysics Data System (ADS)
Verboncoeur, J. P.; Cartwright, K. L.
2000-10-01
The discretization errors for many steps of the classical Particle-in-Cell (PIC) model have been well-studied (C. K. Birdsall and A. B. Langdon, Plasma Physics via Computer Simulation, McGraw-Hill, New York, NY (1985).) (R. W. Hockney and J. W. Eastwood, Computer Simulation Using Particles, McGraw-Hill, New York, NY (1981).). In this work, the errors in the interpolation algorithms, which provide the connection between continuum particles and discrete fields, are described in greater detail. In addition, the coupling of errors between steps in the method is derived. The analysis is carried out for both electrostatic and electromagnetic PIC models, and the results are demonstrated using a bounded one-dimensional electrostatic PIC code (J. P. Verboncoeur et al., J. Comput. Phys. 104, 321-328 (1993).), as well as a bounded two-dimensional electromagnetic PIC code (J. P. Verboncoeur et al., Comp. Phys. Comm. 87, 199-211 (1995).).
Hybrid PIC Simulations of Particle Dynamics in Coaxial Plasma Jet Accelerators
NASA Astrophysics Data System (ADS)
Thoma, Carsten; Hughes, Thomas; Welch, Dale; Hakel, Peter
2007-11-01
We describe the results of 1D and 2D simulations of plasma jet accelerators using the particle-in-cell (PIC) code Lsp. Previous studies of 1D cartesian simulations have shown that ion particle dynamics at the plasma-vacuum interface depend critically on the local Hall parameter, which is strongly dependent on electron temperature. In a coaxial accelerator with finite transverse dimensions, large transverse ion motions, predicted at moderate Hall parameters in 1D, can lead to ion loss to the walls. The results of 2D r-z jet simulations are described and compared with the 1D cartesian results. The effects of particle loss and ablation at the wall are considered, as are electron heating mechanisms at the plasma-vacuum interface, including radiation losses. We will apply the results to the plasma jet experiments underway at HyperV Technologies Corp.
Chen, Guangye; Chacon, Luis; Knoll, Dana Alan; Barnes, Daniel C
2015-07-31
A multi-rate PIC formulation was developed that employs large timesteps for slow field evolution, and small (adaptive) timesteps for particle orbit integrations. Implementation is based on a JFNK solver with nonlinear elimination and moment preconditioning. The approach is free of numerical instabilities (ω_{pe}Δt >>1, and Δx >> λ_{D}), and requires many fewer dofs (vs. explicit PIC) for comparable accuracy in challenging problems. Significant gains (vs. conventional explicit PIC) may be possible for large scale simulations. The paper is organized as follows: Vlasov-Maxwell Particle-in-cell (PIC) methods for plasmas; Explicit, semi-implicit, and implicit time integrations; Implicit PIC formulation (Jacobian-Free Newton-Krylov (JFNK) with nonlinear elimination allows different treatments of disparate scales, discrete conservation properties (energy, charge, canonical momentum, etc.)); Some numerical examples; and Summary.
Numerical thermalization in particle-in-cell simulations with Monte-Carlo collisions
Lai, P. Y.; Lin, T. Y.; Lin-Liu, Y. R.; Chen, S. H.
2014-12-15
Numerical thermalization in collisional one-dimensional (1D) electrostatic (ES) particle-in-cell (PIC) simulations was investigated. Two collision models, the pitch-angle scattering of electrons by the stationary ion background and large-angle collisions between the electrons and the neutral background, were included in the PIC simulation using Monte-Carlo methods. The numerical results show that the thermalization times in both models were considerably reduced by the additional Monte-Carlo collisions as demonstrated by comparisons with Turner's previous simulation results based on a head-on collision model [M. M. Turner, Phys. Plasmas 13, 033506 (2006)]. However, the breakdown of Dawson's scaling law in the collisional 1D ES PIC simulation is more complicated than that was observed by Turner, and the revised scaling law of the numerical thermalization time with numerical parameters are derived on the basis of the simulation results obtained in this study.
The use of electromagnetic particle-in-cell codes in accelerator applications
Eppley, K.
1988-12-01
The techniques developed for the numerical simulation of plasmas have numerous applications relevant to accelerators. The operation of many accelerator components involves transients, interactions between beams and rf fields, and internal plasma oscillations. These effects produce non-linear behavior which can be represented accurately by particle in cell (PIC) simulations. We will give a very brief overview of the algorithms used in PIC Codes. We will examine the range of parameters over which they are useful. We will discuss the factors which determine whether a two or three dimensional simulation is most appropriate. PIC codes have been applied to a wide variety of diverse problems, spanning many of the systems in a linear accelerator. We will present a number of practical examples of the application of these codes to areas such as guns, bunchers, rf sources, beam transport, emittance growth and final focus. 8 refs., 8 figs., 2 tabs.
Numerical thermalization in particle-in-cell simulations with Monte-Carlo collisions
NASA Astrophysics Data System (ADS)
Lai, P. Y.; Lin, T. Y.; Lin-Liu, Y. R.; Chen, S. H.
2014-12-01
Numerical thermalization in collisional one-dimensional (1D) electrostatic (ES) particle-in-cell (PIC) simulations was investigated. Two collision models, the pitch-angle scattering of electrons by the stationary ion background and large-angle collisions between the electrons and the neutral background, were included in the PIC simulation using Monte-Carlo methods. The numerical results show that the thermalization times in both models were considerably reduced by the additional Monte-Carlo collisions as demonstrated by comparisons with Turner's previous simulation results based on a head-on collision model [M. M. Turner, Phys. Plasmas 13, 033506 (2006)]. However, the breakdown of Dawson's scaling law in the collisional 1D ES PIC simulation is more complicated than that was observed by Turner, and the revised scaling law of the numerical thermalization time with numerical parameters are derived on the basis of the simulation results obtained in this study.
NASA Astrophysics Data System (ADS)
Rose, D. V.; Welch, D. R.; Genoni, T. C.; Mehlhorn, T. A.; Campbell, R. B.
2008-03-01
Particle-based numerical simulations are required to study the dynamics and evolution of inhomogeneous nonequilibrium multispecies strongly coupled plasmas. Molecular dynamics (MD) and particle-in-cell (PIC) techniques and been compared previously [K. Y. Sanbonmatsu, et al., J. Phys. IV (France) 10, Pr5-259 (2000)], with the PIC methodology demonstrating the capability of improved accuracy over the MD simulations at high resolution. However, the PIC simulations were significantly slower, limiting their utility. Here we explore several schemes to improve the computational speed of such calculations including non-iterative, implicit EM field solvers and subgrid models. The simulations are compared directly with the results of Sanbonmatsu, et al., and a new theoretical analysis of the hypernetted chain model where all inter-species correlations are retained [V. Schwarz, et al., Contrib. Plasma Phys. 47, 324 (2007)].
NASA Astrophysics Data System (ADS)
Melzani, Mickaël; Walder, Rolf; Folini, Doris; Winisdoerffer, Christophe; Favre, Jean M.
2014-10-01
Magnetic reconnection is a leading mechanism for magnetic energy conversion and high-energy non-thermal particle production in a variety of high-energy astrophysical objects, including ones with relativistic ion-electron plasmas (e.g., microquasars or AGNs), a regime where first principle studies are scarce. We present 2D particle-in-cell (PIC) simulations of low β ion-electron plasmas under relativistic conditions, i.e., with inflow magnetic energy exceeding the plasma restmass energy. We identify outstanding properties: (i) For relativistic inflow magnetizations (here 10 ≤ σe ≤ 360), the reconnection outflows are dominated by thermal agitation instead of bulk kinetic energy. (ii) At high inflow electron magnetization (σe ≥ 80), the reconnection electric field is sustained more by bulk inertia than by thermal inertia. It challenges the thermal-inertia paradigm and its implications. (iii) The inflows feature sharp transitions at the entrance of the diffusion zones. These are not shocks but results from particle ballistic motions, all bouncing at the same location, provided that the thermal velocity in the inflow is far lower than the inflow E × B bulk velocity. (iv) Island centers are magnetically isolated from the rest of the flow and can present a density depletion at their center. (v) The reconnection rates are slightly higher than in non-relativistic studies. They are best normalized by the inflow relativistic Alfvén speed projected in the outflow direction, which then leads to rates in a close range (0.14-0.25), thus allowing for an easy estimation of the reconnection electric field.
NASA Astrophysics Data System (ADS)
Artyomov, K. P.; Ryzhov, V. V.; Naumenko, G. A.; Shevelev, M. V.
2012-05-01
Different types of polarization radiation generated by a relativistic electron beam are simulated using fully electromagnetic particle-in-cell (PIC) code KARAT. The simulation results for diffraction radiation, transition radiation, Smith-Purcell radiation and Vavilov-Cherenkov radiation are in a good agreement with experimental data and analytical models. Modern PIC simulation is a good tool to check and predict experimental results.
NASA Astrophysics Data System (ADS)
Wang, Hong-Yu; Sun, Peng; Jiang, Wei; Zhou, Jie; Xie, Bai-Song
2015-06-01
An implicit electrostatic particle-in-cell/Monte Carlo (PIC/MC) algorithm is developed for the magnetized discharging device simulation. The inductive driving force can be considered. The direct implicit PIC algorithm (DIPIC) and energy conservation scheme are applied together and the grid heating can be eliminated in most cases. A tensor-susceptibility Poisson equation is constructed. Its discrete form is made up by a hybrid scheme in one-dimensional (1D) and two-dimensional (2D) cylindrical systems. A semi-coarsening multigrid method is used to solve the discrete system. The algorithm is applied to simulate the cylindrical magnetized target fusion (MTF) pre-ionization process and get qualitatively correct results. The potential application of the algorithm is discussed briefly. Project supported by the National Natural Science Foundation of China (Grant Nos. 11275007, 11105057, 11175023, and 11275039). One of the author (Wang H Y) is supported by Program for Liaoning Excellent Talents in University (Grant No. LJQ2012098).
Acceleration of a Particle-in-Cell Code for Space Plasma Simulations with OpenACC
NASA Astrophysics Data System (ADS)
Peng, Ivy Bo; Markidis, Stefano; Vaivads, Andris; Vencels, Juris; Deca, Jan; Lapenta, Giovanni; Hart, Alistair; Laure, Erwin
2015-04-01
We simulate space plasmas with the Particle-in-cell (PIC) method that uses computational particles to mimic electrons and protons in solar wind and in Earth magnetosphere. The magnetic and electric fields are computed by solving the Maxwell's equations on a computational grid. In each PIC simulation step, there are four major phases: interpolation of fields to particles, updating the location and velocity of each particle, interpolation of particles to grids and solving the Maxwell's equations on the grid. We use the iPIC3D code, which was implemented in C++, using both MPI and OpenMP, for our case study. By November 2014, heterogeneous systems using hardware accelerators such as Graphics Processing Unit (GPUs) and the Many Integrated Core (MIC) coprocessors for high performance computing continue growth in the top 500 most powerful supercomputers world wide. Scientific applications for numerical simulations need to adapt to using accelerators to achieve portability and scalability in the coming exascale systems. In our work, we conduct a case study of using OpenACC to offload the computation intensive parts: particle mover and interpolation of particles to grids, in a massively parallel Particle-in-Cell simulation code, iPIC3D, to multi-GPU systems. We use MPI for inter-node communication for halo exchange and communicating particles. We identify the most promising parts suitable for GPUs accelerator by profiling using CrayPAT. We implemented manual deep copy to address the challenges of porting C++ classes to GPU. We document the necessary changes in the exiting algorithms to adapt for GPU computation. We present the challenges and findings as well as our methodology for porting a Particle-in-Cell code to multi-GPU systems using OpenACC. In this work, we will present the challenges, findings and our methodology of porting a Particle-in-Cell code for space applications as follows: We profile the iPIC3D code by Cray Performance Analysis Tool (CrayPAT) and identify
Electrostatic PIC with adaptive Cartesian mesh
NASA Astrophysics Data System (ADS)
Kolobov, Vladimir; Arslanbekov, Robert
2016-05-01
We describe an initial implementation of an electrostatic Particle-in-Cell (ES-PIC) module with adaptive Cartesian mesh in our Unified Flow Solver framework. Challenges of PIC method with cell-based adaptive mesh refinement (AMR) are related to a decrease of the particle-per-cell number in the refined cells with a corresponding increase of the numerical noise. The developed ES-PIC solver is validated for capacitively coupled plasma, its AMR capabilities are demonstrated for simulations of streamer development during high-pressure gas breakdown. It is shown that cell-based AMR provides a convenient particle management algorithm for exponential multiplications of electrons and ions in the ionization events.
On the Numerical Dispersion of Electromagnetic Particle-In-Cell Code : Finite Grid Instability
Meyers, Michael David; Huang, Chengkun; Zeng, Yong; Yi, Sunghwan; Albright, Brian James
2014-07-15
The Particle-In-Cell (PIC) method is widely used in relativistic particle beam and laser plasma modeling. However, the PIC method exhibits numerical instabilities that can render unphysical simulation results or even destroy the simulation. For electromagnetic relativistic beam and plasma modeling, the most relevant numerical instabilities are the finite grid instability and the numerical Cherenkov instability. We review the numerical dispersion relation of the electromagnetic PIC algorithm to analyze the origin of these instabilities. We rigorously derive the faithful 3D numerical dispersion of the PIC algorithm, and then specialize to the Yee FDTD scheme. In particular, we account for the manner in which the PIC algorithm updates and samples the fields and distribution function. Temporal and spatial phase factors from solving Maxwell's equations on the Yee grid with the leapfrog scheme are also explicitly accounted for. Numerical solutions to the electrostatic-like modes in the 1D dispersion relation for a cold drifting plasma are obtained for parameters of interest. In the succeeding analysis, we investigate how the finite grid instability arises from the interaction of the numerical 1D modes admitted in the system and their aliases. The most significant interaction is due critically to the correct representation of the operators in the dispersion relation. We obtain a simple analytic expression for the peak growth rate due to this interaction.
Discrete Particle Noise in Particle-in-Cell Simulations of Plasma Microturbulence
Nevins, W M; Dimits, A; Hammett, G
2005-05-24
Recent gyrokinetic simulations of electron temperature gradient (ETG) turbulence with flux-tube continuum codes vs. the global particle-in-cell (PIC) code GTC yielded different results despite similar plasma parameters. Differences between the simulations results were attributed to insufficient phase-space resolution and novel physics associated with toroidicity and/or global simulations. We have reproduced the results of the global PIC code using the flux-tube PIC code PG3EQ, thereby eliminating global effects as the cause of the discrepancy. We show that the late-time decay of ETG turbulence and the steady-state heat transport observed in these PIC simulations results from discrete particle noise. Discrete particle noise is a numerical artifact, so both these PG3EQ simulations and the previous GTC simulations have nothing to say about steady-state ETG turbulence and the associated anomalous heat transport. In the course of this work we develop three diagnostics which can help to determine if a particular PIC simulation has become dominated by discrete particle noise.
NASA Astrophysics Data System (ADS)
Baraka, S. M.; Ben-Jaffel, L. B.
2014-12-01
We use particle-in-cell PIC 3D Electromagnetic, relativistic global code to address large-scale problems in magnetosphere electrodynamics. Terrestrial bow shock is simulated as an example. 3D Magnetohydrodynamics model ,MHD GUMICS in CCMC project, have been used in parallel with PIC under same scaled Solar wind (SW) and IMF conditions. We report new results from the coupling between the two models. Further investigations are required for confirmations of these results. In both codes the Earth's bow shock position is found at ~14.8 RE along the Sun-Earth line, and ~29 RE on the dusk side which is consistent with past in situ observation. Both simulations reproduce the theoretical jump conditions at the shock. However, PIC code density and temperature distributions are inflated and slightly shifted sunward when compared to MHD results. Reflected ions upstream of the bow shock may cause this sunward shift for density and temperature. Distribution of reflected ions and electrons are shown in the foreshock region, within the transition of the shock and in the downstream. The current version of PIC code can be run under modest computing facilities and resources. Additionally, existing MHD simulations should be useful to calibrate scaled properties of plasma resulting from PIC simulations for comparison with observations. Similarities and drawbacks of the results obtained by the two models are listed. The ultimate goal of using these different models in a complimentary manner rather than competitive is to better understand the macrostructure of the magnetosphere
Electromagnetic ''particle-in-cell'' plasma simulation
Langdon, A.B.
1985-04-22
''PIC'' simulation tracks particles through electromagnetic fields calculated self-consistently from the charge and current densities of the particles themselves, external sources, and boundaries. Already used extensively in plasma physics, such simulations have become useful in the design of accelerators and their r.f. sources. 5 refs.
Normalized ion distribution function in expanding sheaths of 2D grid electrodes
NASA Astrophysics Data System (ADS)
Yi, Changho; Namkung, Won; Cho, Moohyun
2016-04-01
Ion distributions in expanding collisionless sheaths of two-dimensional (2D) grid electrodes were studied by using XOOPIC (particle-in-cell) simulations when short pulses of negative high-voltage were applied to electrodes immersed in plasmas. 2D grid electrodes consist of a periodic array of cylindrical electrodes, and the opening ratio of the grid electrodes is defined by the ratio of the spacing between cylindrical electrodes to the periodic length of the grid electrodes. In this paper, we introduce a normalized ion distribution function in normalized coordinates, and it is shown by simulation that the normalized ion distribution function depends only on the opening ratio of the grid electrodes. When the opening ratio of the grid electrodes is fixed, the ion distribution in expanding sheaths can be easily found in various conditions using only a single run of a PIC simulation, and the computation time can be significantly reduced.
Nuter, R.; Gremillet, L.; Lefebvre, E.; Levy, A.; Ceccotti, T.; Martin, P.
2011-03-15
A novel numerical modeling of field ionization in PIC (Particle In Cell) codes is presented. Based on the quasistatic approximation of the ADK (Ammosov Delone Krainov) theory and implemented through a Monte Carlo scheme, this model allows for multiple ionization processes. Two-dimensional PIC simulations are performed to analyze the cut-off energies of the laser-accelerated carbon ions measured on the UHI 10 Saclay facility. The influence of the target and the hydrocarbon pollutant composition on laser-accelerated carbon ion energies is demonstrated.
PICsar: Particle in cell pulsar magnetosphere simulator
NASA Astrophysics Data System (ADS)
Belyaev, Mikhail A.
2016-07-01
PICsar simulates the magnetosphere of an aligned axisymmetric pulsar and can be used to simulate other arbitrary electromagnetics problems in axisymmetry. Written in Fortran, this special relativistic, electromagnetic, charge conservative particle in cell code features stretchable body-fitted coordinates that follow the surface of a sphere, simplifying the application of boundary conditions in the case of the aligned pulsar; a radiation absorbing outer boundary, which allows a steady state to be set up dynamically and maintained indefinitely from transient initial conditions; and algorithms for injection of charged particles into the simulation domain. PICsar is parallelized using MPI and has been used on research problems with ~1000 CPUs.
Model and particle-in-cell simulation of ion energy distribution in collisionless sheath
Zhou, Zhuwen; Kong, Bo; Luo, Yuee; Chen, Deliang; Wang, Yuansheng
2015-06-15
In this paper, we propose a self-consistent theoretical model, which is described by the ion energy distributions (IEDs) in collisionless sheaths, and the analytical results for different combined dc/radio frequency (rf) capacitive coupled plasma discharge cases, including sheath voltage errors analysis, are compared with the results of numerical simulations using a one-dimensional plane-parallel particle-in-cell (PIC) simulation. The IEDs in collisionless sheaths are performed on combination of dc/rf voltage sources electrodes discharge using argon as the process gas. The incident ions on the grounded electrode are separated, according to their different radio frequencies, and dc voltages on a separated electrode, the IEDs, and widths of energy in sheath and the plasma sheath thickness are discussed. The IEDs, the IED widths, and sheath voltages by the theoretical model are investigated and show good agreement with PIC simulations.
Relativistic Particle-In-Cell Simulations of Particle Accleration in Relativistic Jets
NASA Technical Reports Server (NTRS)
Nishikawa, K.-I.; Hardee, P.; Mizuno, Y.; Medvedev, M.; Hartmann, D. H.; Fishman, J. F.
2008-01-01
Highly accelerated particles are observed in astrophysical systems containing relativistic jets and shocks, e.g., active galactic nuclei (AGNs), microquasars, and Gamma-Ray Bursts (GRBs). Particle-In-Cell (PIC) simulations of relativistic electron-ion and electron-positron jets injected into a stationary medium show that efficient acceleration occurs downstream in the jet. In collisionless relativistic shocks particle acceleration is due to plasma waves and their associated instabilities, e.g., the Buneman instability, other two-stream instabilities, and the Weibel (filamentation) instability. Simulations show that the Weibel instability is responsible for generating and amplifying highly non-uniform, small-scale magnetic fields. The instability depends on strength and direction of the magnetic field. Particles in relativistic jets may be accelerated in a complicated dynamics of relativistic jets with magnetic field. We present results of our recent PIC simulations.
Load management strategy for Particle-In-Cell simulations in high energy particle acceleration
NASA Astrophysics Data System (ADS)
Beck, A.; Frederiksen, J. T.; Dérouillat, J.
2016-09-01
In the wake of the intense effort made for the experimental CILEX project, numerical simulation campaigns have been carried out in order to finalize the design of the facility and to identify optimal laser and plasma parameters. These simulations bring, of course, important insight into the fundamental physics at play. As a by-product, they also characterize the quality of our theoretical and numerical models. In this paper, we compare the results given by different codes and point out algorithmic limitations both in terms of physical accuracy and computational performances. These limitations are illustrated in the context of electron laser wakefield acceleration (LWFA). The main limitation we identify in state-of-the-art Particle-In-Cell (PIC) codes is computational load imbalance. We propose an innovative algorithm to deal with this specific issue as well as milestones towards a modern, accurate high-performance PIC code for high energy particle acceleration.
Particle-in-Cell Modeling of Laser-Plasma Interactions in Three Dimensions
NASA Astrophysics Data System (ADS)
Wen, H.; Maximov, A. V.; Yan, R.; Li, J.; Ren, C.; Myatt, J. F.
2014-10-01
In the direct-drive method of inertial confinement fusion, the laser-plasma interactions (LPI's) near quarter-critical density are very important for laser absorption and fast-electron generation. Three-dimensional simulations with the particle-in-cell (PIC) code OSIRIS have allowed us to study different parametric instabilities including two-plasmon decay, stimulated Raman scattering, and stimulated Brillouin scattering. These instabilities may coexist and interact in the region near quarter-critical density. The spectra of forward-going and backward-going scattered light and fast electrons in two-dimensional and three-dimensional PIC simulations have been studied. Characteristics of LPI driven by a plane-wave laser and by an incoherent laser beam are compared. This material is based upon work supported by the Department of Energy National Nuclear Security Administration under Award Number DE-NA0001944.
Wavelet-based Poisson Solver for use in Particle-In-CellSimulations
Terzic, B.; Mihalcea, D.; Bohn, C.L.; Pogorelov, I.V.
2005-05-13
We report on a successful implementation of a wavelet based Poisson solver for use in 3D particle-in-cell (PIC) simulations. One new aspect of our algorithm is its ability to treat the general(inhomogeneous) Dirichlet boundary conditions (BCs). The solver harnesses advantages afforded by the wavelet formulation, such as sparsity of operators and data sets, existence of effective preconditioners, and the ability simultaneously to remove numerical noise and further compress relevant data sets. Having tested our method as a stand-alone solver on two model problems, we merged it into IMPACT-T to obtain a fully functional serial PIC code. We present and discuss preliminary results of application of the new code to the modeling of the Fermilab/NICADD and AES/JLab photoinjectors.
Particle-In-Cell modeling of Fast Ignition experiments on the Titan Laser
NASA Astrophysics Data System (ADS)
Link, Anthony; Akli, K. U.; Beg, F.; Chen, C. D.; Davies, J. R.; Freeman, R. R.; Kemp, G. E.; Li, K.; McLean, H. S.; Morace, A.; Patel, P. K.; Schumacher, D. W.; Sorokovikova, A. V.; Stephens, R.; Streeter, M. J. V.; Wertepny, D.; Westhover, B.
2012-10-01
We report on particle-in-cell-modeling (PIC) of fast ignition experiments conducted on the Titan laser. The Titan laser was used to irradiate multilayer planar targets at intensities greater than 10^20 Wcm-2 to diagnose the laser to electron coupling, electron beam divergence, and energy spectrum of the hot electrons at relativistic intensities. Hot electron beam properties were inferred through buried fluors, escaping electrons and bremsstrahlung measurements. The PIC simulations of the experiment were conducted in two stages: a high resolution laser plasma interaction (LPI) simulation using measured on shot laser parameters but with a subscale target; and a lower resolution transport simulation containing the full scale multilayer target. The transport simulation utilized the electron source based on the output of the LPI simulation and included necessary models to simulate the experimental diagnostics. Comparison of the predicted electron source properties and the experimental data will be presented.
Particle in cell simulation of a radiofrequency plasma jet expanding in vacuum
Charles, C. Hawkins, R.; Boswell, R. W.
2015-03-02
The effect of a pressure gradient (∼133 Pa–0.133 Pa) on electron and ion energy distributions in a radiofrequency (rf at 13.56 MHz) argon plasma jet is studied using a 1D-3v Particle In Cell (PIC) simulation. The PIC domain is three times that of the 0.018 m long plasma cavity and the total simulation time is 1 ms. Ion heating and acceleration up to a drift velocity about 2000 m s{sup −1} are measured along the jet's main expansion axis. Elastic and charge exchange ion-neutral collisions histograms computed at equilibrium during 0.74 ms show that charge exchange collisions act as the main neutral heating mechanism.
Particle in cell simulation of laser-accelerated proton beams for radiation therapy.
Fourkal, E; Shahine, B; Ding, M; Li, J S; Tajima, T; Ma, C M
2002-12-01
In this article we present the results of particle in cell (PIC) simulations of laser plasma interaction for proton acceleration for radiation therapy treatments. We show that under optimal interaction conditions protons can be accelerated up to relativistic energies of 300 MeV by a petawatt laser field. The proton acceleration is due to the dragging Coulomb force arising from charge separation induced by the ponderomotive pressure (light pressure) of high-intensity laser. The proton energy and phase space distribution functions obtained from the PIC simulations are used in the calculations of dose distributions using the GEANT Monte Carlo simulation code. Because of the broad energy and angular spectra of the protons, a compact particle selection and beam collimation system will be needed to generate small beams of polyenergetic protons for intensity modulated proton therapy. PMID:12512712
NASA Astrophysics Data System (ADS)
Feng, Bing
Electron cloud instabilities have been observed in many circular accelerators around the world and raised concerns of future accelerators and possible upgrades. In this thesis, the electron cloud instabilities are studied with the quasi-static particle-in-cell (PIC) code QuickPIC. Modeling in three-dimensions the long timescale propagation of beam in electron clouds in circular accelerators requires faster and more efficient simulation codes. Thousands of processors are easily available for parallel computations. However, it is not straightforward to increase the effective speed of the simulation by running the same problem size on an increasingly number of processors because there is a limit to domain size in the decomposition of the two-dimensional part of the code. A pipelining algorithm applied on the fully parallelized particle-in-cell code QuickPIC is implemented to overcome this limit. The pipelining algorithm uses multiple groups of processors and optimizes the job allocation on the processors in parallel computing. With this novel algorithm, it is possible to use on the order of 102 processors, and to expand the scale and the speed of the simulation with QuickPIC by a similar factor. In addition to the efficiency improvement with the pipelining algorithm, the fidelity of QuickPIC is enhanced by adding two physics models, the beam space charge effect and the dispersion effect. Simulation of two specific circular machines is performed with the enhanced QuickPIC. First, the proposed upgrade to the Fermilab Main Injector is studied with an eye upon guiding the design of the upgrade and code validation. Moderate emittance growth is observed for the upgrade of increasing the bunch population by 5 times. But the simulation also shows that increasing the beam energy from 8GeV to 20GeV or above can effectively limit the emittance growth. Then the enhanced QuickPIC is used to simulate the electron cloud effect on electron beam in the Cornell Energy Recovery Linac
NASA Astrophysics Data System (ADS)
Kol'tsov, S. N.; Gall, L. N.; Gall, N. R.
2016-03-01
Applicability limits of the particle-in-cell (PIC) method for the calculation of jet gasdynamic flows under conditions of pressure variations by four or five orders of magnitude are studied. Three approaches permitting one to determine real limits of the model adequacy from the side of low pressures are considered. Based on the analysis of the results, it is shown that the PIC method adequately operates in the pressure range of 5-105 Pa in spite of the fact that, formally, the PIC method can operate also at lower pressures.
NASA Astrophysics Data System (ADS)
Toth, G.; Daldorff, L. K. S.; Jia, X.; Gombosi, T. I.; Lapenta, G.
2014-12-01
We have recently developed a new modeling capability to embed theimplicit Particle-in-Cell (PIC) model iPIC3D into the BATS-R-USmagnetohydrodynamic model. The PIC domain can cover the regions wherekinetic effects are most important, such as reconnection sites. TheBATS-R-US code, on the other hand, can efficiently handle the rest ofthe computational domain where the MHD or Hall MHD description issufficient. As one of the very first applications of the MHD-EPICalgorithm (Daldorff et al. 2014, JCP, 268, 236) we simulate theinteraction between Jupiter's magnetospheric plasma with Ganymede'smagnetosphere, where the separation of kinetic and global scalesappears less severe than for the Earth's magnetosphere. Because theexternal Jovian magnetic field remains in an anti-parallel orientationwith respect to Ganymede's intrinsic magnetic field, magneticreconnection is believed to be the major process that couples the twomagnetospheres. As the PIC model is able to describe self-consistentlythe electron behavior, our coupled MHD-EPIC model is well suited forinvestigating the nature of magnetic reconnection in thisreconnection-driven mini-magnetosphere. We will compare the MHD-EPICsimulations with pure Hall MHD simulations and compare both modelresults with Galileo plasma and magnetic field measurements to assess therelative importance of ion and electron kinetics in controlling theconfiguration and dynamics of Ganymede's magnetosphere.
Numerical simulation of quantum systems using the Particle-In-Cell method
NASA Astrophysics Data System (ADS)
Dirkmann, Sven; Youssef, Ziad; Hemke, Torben; Mussenbrock, Thomas
2014-10-01
The Particle-In-Cell (PIC) method is a very powerful method for studying the dynamics of plasmas. It has been primarily developed for tracking the charged particle trajectories subject to selfconsistent and external electromagnetic fields. Exploiting the power of modern computers, one is able to track the classical paths of tens of millions of particles at the same time. In the late 1980th, it was Dawson (and later Dauger) who had the idea to apply the PIC method to the classical part in the semiclassical approach to quantum systems via path integral methods. One could estimate that if a thousands of classical paths are sufficient to describe the dynamics of one quantum particle, then millions classical paths could describe the dynamics of a quantum particle system. A PIC code in the frame of a semiclassical approach would therefore enable the investigation of a number of quantum phenomena, e.g., optical properties, electrical properties, and, ultimately, chemical reactions. In this contribution we explain the use of the PIC code yapic (developed by the authors) in the frame of the path integral method and discuss the numerical results for simple quantum phenomena, i.e., the quantum harmonic oscillator and quantum tunneling. This work is supported by the German Research Foundation in the frame of FOR 2093.
Contemporary particle-in-cell approach to laser-plasma modelling
NASA Astrophysics Data System (ADS)
Arber, T. D.; Bennett, K.; Brady, C. S.; Lawrence-Douglas, A.; Ramsay, M. G.; Sircombe, N. J.; Gillies, P.; Evans, R. G.; Schmitz, H.; Bell, A. R.; Ridgers, C. P.
2015-11-01
Particle-in-cell (PIC) methods have a long history in the study of laser-plasma interactions. Early electromagnetic codes used the Yee staggered grid for field variables combined with a leapfrog EM-field update and the Boris algorithm for particle pushing. The general properties of such schemes are well documented. Modern PIC codes tend to add to these high-order shape functions for particles, Poisson preserving field updates, collisions, ionisation, a hybrid scheme for solid density and high-field QED effects. In addition to these physics packages, the increase in computing power now allows simulations with real mass ratios, full 3D dynamics and multi-speckle interaction. This paper presents a review of the core algorithms used in current laser-plasma specific PIC codes. Also reported are estimates of self-heating rates, convergence of collisional routines and test of ionisation models which are not readily available elsewhere. Having reviewed the status of PIC algorithms we present a summary of recent applications of such codes in laser-plasma physics, concentrating on SRS, short-pulse laser-solid interactions, fast-electron transport, and QED effects.
On the numerical dispersion of electromagnetic particle-in-cell code: Finite grid instability
NASA Astrophysics Data System (ADS)
Meyers, M. D.; Huang, C.-K.; Zeng, Y.; Yi, S. A.; Albright, B. J.
2015-09-01
The Particle-In-Cell (PIC) method is widely used in relativistic particle beam and laser plasma modeling. However, the PIC method exhibits numerical instabilities that can render unphysical simulation results or even destroy the simulation. For electromagnetic relativistic beam and plasma modeling, the most relevant numerical instabilities are the finite grid instability and the numerical Cherenkov instability. We review the numerical dispersion relation of the Electromagnetic PIC model. We rigorously derive the faithful 3-D numerical dispersion relation of the PIC model, for a simple, direct current deposition scheme, which does not conserve electric charge exactly. We then specialize to the Yee FDTD scheme. In particular, we clarify the presence of alias modes in an eigenmode analysis of the PIC model, which combines both discrete and continuous variables. The manner in which the PIC model updates and samples the fields and distribution function, together with the temporal and spatial phase factors from solving Maxwell's equations on the Yee grid with the leapfrog scheme, is explicitly accounted for. Numerical solutions to the electrostatic-like modes in the 1-D dispersion relation for a cold drifting plasma are obtained for parameters of interest. In the succeeding analysis, we investigate how the finite grid instability arises from the interaction of the numerical modes admitted in the system and their aliases. The most significant interaction is due critically to the correct representation of the operators in the dispersion relation. We obtain a simple analytic expression for the peak growth rate due to this interaction, which is then verified by simulation. We demonstrate that our analysis is readily extendable to charge conserving models.
On the numerical dispersion of electromagnetic particle-in-cell code: Finite grid instability
Meyers, M.D.; Huang, C.-K.; Zeng, Y.; Yi, S.A.; Albright, B.J.
2015-09-15
The Particle-In-Cell (PIC) method is widely used in relativistic particle beam and laser plasma modeling. However, the PIC method exhibits numerical instabilities that can render unphysical simulation results or even destroy the simulation. For electromagnetic relativistic beam and plasma modeling, the most relevant numerical instabilities are the finite grid instability and the numerical Cherenkov instability. We review the numerical dispersion relation of the Electromagnetic PIC model. We rigorously derive the faithful 3-D numerical dispersion relation of the PIC model, for a simple, direct current deposition scheme, which does not conserve electric charge exactly. We then specialize to the Yee FDTD scheme. In particular, we clarify the presence of alias modes in an eigenmode analysis of the PIC model, which combines both discrete and continuous variables. The manner in which the PIC model updates and samples the fields and distribution function, together with the temporal and spatial phase factors from solving Maxwell's equations on the Yee grid with the leapfrog scheme, is explicitly accounted for. Numerical solutions to the electrostatic-like modes in the 1-D dispersion relation for a cold drifting plasma are obtained for parameters of interest. In the succeeding analysis, we investigate how the finite grid instability arises from the interaction of the numerical modes admitted in the system and their aliases. The most significant interaction is due critically to the correct representation of the operators in the dispersion relation. We obtain a simple analytic expression for the peak growth rate due to this interaction, which is then verified by simulation. We demonstrate that our analysis is readily extendable to charge conserving models.
NASA Astrophysics Data System (ADS)
Toth, G.; Jia, X.; Chen, Y.; Markidis, S.; Peng, B.; Daldorff, L. K. S.; Tenishev, V.; Borovikov, D.; Haiducek, J. D.; Gombosi, T. I.; Glocer, A.; Dorelli, J.; Lapenta, G.
2015-12-01
We have recently developed a new modeling capability to embed the implicit Particle-in-Cell (PIC) model iPIC3D into the BATS-R-US magnetohydrodynamic model. The PIC domain can cover the regions where kinetic effects are most important, such as reconnection sites. The BATS-R-US code, on the other hand, can efficiently handle the rest of the computational domain where the MHD or Hall MHD description is sufficient with its block-adaptive grid. The current implementation of the MHD-EPIC model allows two-way coupled simulations in two and three dimensions with multiple embedded PIC regions. The MHD and PIC grids can have different grid resolutions. The MHD variables and the moments of the PIC distribution functions are interpolated and message passed in an efficient manner through the Space Weather Modeling Framework (SWMF). Both BATS-R-US and iPIC3D are massively parallel codes fully integrated into, run by and coupled through the SWMF. We have successfully applied the MHD-EPIC code to model Ganymede's magnetosphere. Using four PIC regions we have in effect performed a fully kinetic simulation of the moon's mini-magnetosphere with a grid resolution that is about 5 times finer than the ion inertial length. The Hall MHD model provides proper boundary conditions for the four PIC regions and connects them with each other and with the inner and outer outer boundary conditions of the much larger MHD domain. We compare our results with Galileo magnetic observations and find good overall agreement with both Hall MHD and MHD-EPIC simulations. The power spectrum for the small scale fluctuations, however, agrees with the data much better for the MHD-EPIC simulation than for Hall MHD. In the MHD-EPIC simulation, unlike in the pure Hall MHD results, we also find signatures of flux transfer events (FTEs) that agree very well with the observed FTE signatures both in terms of shape and amplitudes. We will also highlight our ongoing efforts to model the magnetospheres of Mercury and
A Radiation Transport Coupled Particle-In-Cell Model for Hg-Ar Discharges
NASA Astrophysics Data System (ADS)
Lee, Hae June; Verboncoeur, J. P.; Smith, H. B.; Parker, G. J.; Birdsall, C. K.
2000-10-01
We simulate a radial slice of the fluorescent lamp discharge in the positive column with a radiation transport coupled particle-in-cell (RT-PIC) code. In this model, the radiative and meta stable excited states of Hg-Ar mixture and their collisions as well as radiation transport are simulated by the fluid equations. The motions of electrons and ions and collisions with neutral or excited states are simulated by the conventional particle-in-cell method. We consider radiation transport of excited states using the Holstein equation[1] including the time varying nonuniform background gas density. The background gas density is calculated from the temperature profile by solving the heat transfer equation. The motion of charged particles are simulated by using the 1-D cylindrical particle-in-cell code, XPDC1[2]. Separate time scales are used for the charged particles, the excited states, and the neutral gas, respectively, and parallel processing can be used for the expensive calculation including radiation transport. This work was supported in part by General Electric Company contract GE-20000181. [1] T. Holstein, Phys. Rev. 72, 1213 (1947). [2] J. P. Verboncoeur, M. V. Alves, V. Vahedi, and C. K. Birdsall, Journal of Computational Physics 104(2), 321, (1993).
Study on Low-Frequency Oscillations in a Gyrotron Using a 3D CFDTD PIC Method
NASA Astrophysics Data System (ADS)
Lin, M. C.; Smithe, D. N.
2010-11-01
Low-frequency oscillations (LFOs) have been observed in a high average power gyrotron and the trapped electron population contributing to the oscillation has been measured. As high average power gyrotrons are the most promising millimeter wave source for thermonuclear fusion research, it is important to get a better understanding of this parasitic phenomenon to avoid any deterioration of the electron beam quality thus reducing the gyrotron efficiency. 2D Particle-in-cell simulations quasi-statically model the development of oscillations of the space charge in the adiabatic trap, but the physics of the electron dynamics in the adiabatic trap is only partially understood. Therefore, understanding of the LFOs remains incomplete and a full picture of this parasitic phenomenon has not been seen yet. In this work, we use a 3D conformal finite-difference time-domain (CFDTD) particle-in-cell (PIC) method to accurately and efficiently study the LFOs in a high average power gyrotron. As the CFDTD method exhibits a second order accuracy, complicated structures, such as a magnetron injection gun, can be well described. Employing a highly parallelized computation, the model can be simulated in time domain more realistically.
NASA Astrophysics Data System (ADS)
Bao, Rong; Wang, Hongguang; Li, Yongdong; Liu, Chunliang
2016-07-01
The output power fluctuations caused by weights of macro particles used in particle-in-cell (PIC) simulations of a backward wave oscillator and a travelling wave tube are statistically analyzed. It is found that the velocities of electrons passed a specific slow-wave structure form a specific electron velocity distribution. The electron velocity distribution obtained in PIC simulation with a relative small weight of macro particles is considered as an initial distribution. By analyzing this initial distribution with a statistical method, the estimations of the output power fluctuations caused by different weights of macro particles are obtained. The statistical method is verified by comparing the estimations with the simulation results. The fluctuations become stronger with increasing weight of macro particles, which can also be determined reversely from estimations of the output power fluctuations. With the weights of macro particles optimized by the statistical method, the output power fluctuations in PIC simulations are relatively small and acceptable.
NASA Astrophysics Data System (ADS)
Ramsay, M. G.; Arber, T. D.; Sircombe, N. J.
2016-03-01
In order for detailed, solid density particle-in-cell (PIC) simulations to run within a reasonable time frame, novel approaches to modelling high density material must be employed. For the purposes of modelling high intensity, short pulse laser-plasma interactions, however, these approaches must be consistent with retaining a full PIC model in the low-density laser interaction region. By replacing the standard Maxwell field solver with an electric field update based on a simplified Ohm's law in regions of high electron density, it is possible to access densities at and above solid without being subject to the standard grid and time step constraints. Such a model has recently been implemented in the PIC code EPOCH. We present the initial results of a detailed two-dimensional simulation performed to compare the adapted version of the code with recent experimental results from the Orion laser facility.
Xiao, Jianyuan; Liu, Jian; Qin, Hong; Plasma Physics Laboratory, Princeton University, Princeton, New Jersey 08543 ; Yu, Zhi
2013-10-15
Smoothing functions are commonly used to reduce numerical noise arising from coarse sampling of particles in particle-in-cell (PIC) plasma simulations. When applying smoothing functions to symplectic algorithms, the conservation of symplectic structure should be guaranteed to preserve good conservation properties. In this paper, we show how to construct a variational multi-symplectic PIC algorithm with smoothing functions for the Vlasov-Maxwell system. The conservation of the multi-symplectic structure and the reduction of numerical noise make this algorithm specifically suitable for simulating long-term dynamics of plasmas, such as those in the steady-state operation or long-pulse discharge of a super-conducting tokamak. The algorithm has been implemented in a 6D large scale PIC code. Numerical examples are given to demonstrate the good conservation properties of the multi-symplectic algorithm and the reduction of the noise due to the application of smoothing function.
Benchmarking the codes VORPAL, OSIRIS, and QuickPIC with Laser Wakefield Acceleration Simulations
Paul, Kevin; Huang, C.; Bruhwiler, D.L.; Mori, W.B.; Tsung, F.S.; Cormier-Michel, E.; Geddes, C.G.R.; Cowan, B.; Cary, J.R.; Esarey, E.; Fonseca, R.A.; Martins, S.F.; Silva, L.O.
2008-09-08
Three-dimensional laser wakefield acceleration (LWFA) simulations have recently been performed to benchmark the commonly used particle-in-cell (PIC) codes VORPAL, OSIRIS, and QuickPIC. The simulations were run in parallel on over 100 processors, using parameters relevant to LWFA with ultra-short Ti-Sapphire laser pulses propagating in hydrogen gas. Both first-order and second-order particle shapes were employed. We present the results of this benchmarking exercise, and show that accelerating gradients from full PIC agree for all values of a0 and that full and reduced PIC agree well for values of a0 approaching 4.
Benchmarking the codes VORPAL, OSIRIS, and QuickPIC with Laser Wakefield Acceleration Simulations
Paul, K.; Bruhwiler, D. L.; Cowan, B.; Cary, J. R.; Huang, C.; Mori, W. B.; Tsung, F. S.; Cormier-Michel, E.; Geddes, C. G. R.; Esarey, E.; Fonseca, R. A.; Martins, S. F.; Silva, L. O.
2009-01-22
Three-dimensional laser wakefield acceleration (LWFA) simulations have recently been performed to benchmark the commonly used particle-in-cell (PIC) codes VORPAL, OSIRIS, and QuickPIC. The simulations were run in parallel on over 100 processors, using parameters relevant to LWFA with ultra-short Ti-Sapphire laser pulses propagating in hydrogen gas. Both first-order and second-order particle shapes were employed. We present the results of this benchmarking exercise, and show that accelerating gradients from full PIC agree for all values of a{sub 0} and that full and reduced PIC agree well for values of a{sub 0} approaching 4.
Numerical stability of pseudo-spectral PIC code generalizations
NASA Astrophysics Data System (ADS)
Godfrey, Brendan B.; Vay, Jean-Luc
2014-10-01
Laser Plasma Accelerator (LPA) particle-in-cell (PIC) simulations are computationally demanding, because they require beam transport over times and distances long compared with the natural scales of the acceleration mechanism and because they are prone to numerical instabilities. To provide greater flexibility in LPA PIC simulations, we have generalized the Pseudo-Spectral Time Domain (PSTD) algorithm to accommodate arbitrary order spatial derivative approximations and substantially longer time steps. Here, we show that, by extending approaches developed by us for other PIC algorithms, numerical Cherenkov instabilities can be suppressed for the generalized PSTD algorithm. We also illustrate the relationships between the generalized PSTD and other PIC algorithms, such as Finite Difference Time Domain (FDTD) and Pseudo-Spectral Analytical Time Domain (PSATD) algorithms. Background information can be found at http://hifweb.lbl.gov/public/BLAST/Godfrey/. Work supported in part by DOE under Contract DE-AC02-05CH11231.
Particle-in-cell simulations of whistler turbulence: A review (Invited)
NASA Astrophysics Data System (ADS)
Gary, S. P.; Chang, O.; Hughes, R. S.; Wang, J.
2013-12-01
Measurements of broadband magnetic fluctuations in the solar wind at wavelengths shorter than the ion inertial length indicate that the primary constituent of such turbulence is kinetic Alfven waves at frequencies well below the proton cyclotron frequency. Nevertheless, it is possible that much higher frequency whistler fluctuations also contribute to this short-wavelength turbulence. To better understand such potential contributions to solar wind turbulence, we have carried out a series of three-dimensional (3D) particle-in-cell (PIC) simulations of whistler turbulence in a collisionless, homogeneous, magnetized plasma [Chang et al., 2011, 2013; Gary et al., 2012]. We here review the properties of these simulations, which address turbulence driven by both an initial ensemble of whistler waves and by the whistler anisotropy instability. Our results include the consequences due to both forward and inverse cascades, to variations in the amplitudes of the initial fluctuations and to variations in βe. We describe the magnetic fluctuation spectral properties as well as dissipation on the electrons, which are heated primarily in directions parallel and antiparallel to the background magnetic field. Magnetic fluctuation energy spectra exhibit a break to steeper slopes which scales as the inverse electron inertial length. The simulation results are consistent with the interpretation that the forward cascade is due to nonlinear three-wave interactions. Chang, O., S. P. Gary, and J. Wang (2011), Whistler turbulence forward cascade: Three-dimensional particle-in-cell simulations, Geophys. Res. Lett., 38, L22102. Chang, O., S. P. Gary, and J. Wang (2013), Whistler turbulence at variable electron beta: Three-dimensional particle-in-cell simulations, J. Geophys. Res., 118, 2824. Gary, S. P., O. Chang, and J. Wang (2012), Forward cascade of whistler turbulence: Three-dimensional particle-in-cell simulations, Ap. J., 755, 142.
Recent advances in the modeling of plasmas with the Particle-In-Cell methods
NASA Astrophysics Data System (ADS)
Vay, Jean-Luc; Lehe, Remi; Vincenti, Henri; Godfrey, Brendan; Lee, Patrick; Haber, Irv
2015-11-01
The Particle-In-Cell (PIC) approach is the method of choice for self-consistent simulations of plasmas from first principles. The fundamentals of the PIC method were established decades ago but improvements or variations are continuously being proposed. We report on several recent advances in PIC related algorithms, including: (a) detailed analysis of the numerical Cherenkov instability and its remediation, (b) analytic pseudo-spectral electromagnetic solvers in Cartesian and cylindrical (with azimuthal modes decomposition) geometries, (c) arbitrary-order finite-difference and generalized pseudo-spectral Maxwell solvers, (d) novel analysis of Maxwell's solvers' stencil variation and truncation, in application to domain decomposition strategies and implementation of Perfectly Matched Layers in high-order and pseudo-spectral solvers. Work supported by US-DOE Contracts DE-AC02-05CH11231 and the US-DOE SciDAC program ComPASS. Used resources of NERSC, supported by US-DOE Contract DE-AC02-05CH11231.
On energy and momentum conservation in particle-in-cell plasma simulation
NASA Astrophysics Data System (ADS)
Brackbill, J. U.
2016-07-01
Particle-in-cell (PIC) plasma simulations are a productive and valued tool for the study of nonlinear plasma phenomena, yet there are basic questions about the simulation methods themselves that remain unanswered. Here we study energy and momentum conservation by PIC. We employ both analysis and simulations of one-dimensional, electrostatic plasmas to understand why PIC simulations are either energy or momentum conserving but not both, what role a numerical stability plays in non-conservation, and how errors in conservation scale with the numerical parameters. Conserving both momentum and energy make it possible to model problems such as Jeans'-type equilibria. Avoiding numerical instability is useful, but so is being able to identify when its effect on the results may be important. Designing simulations to achieve the best possible accuracy with the least expenditure of effort requires results on the scaling of error with the numerical parameters. Our results identify the central role of Gauss' law in conservation of both momentum and energy, and the significant differences in numerical stability and error scaling between energy-conserving and momentum-conserving simulations.
NASA Astrophysics Data System (ADS)
Shaw, J. L.; Lemos, N.; Marsh, K. A.; Tsung, F. S.; Mori, W. B.; Joshi, C.
2016-03-01
Many current laser wakefield acceleration (LWFA) experiments are carried out in a regime where the laser pulse length is on the order of or longer than the wake wavelength and where ionization injection is employed to inject electrons into the wake. In these experiments, the electrons can gain a significant amount of energy from the direct laser acceleration (DLA) mechanism as well as the usual LWFA mechanism. Particle-in-cell (PIC) codes are frequently used to discern the relative contribution of these two mechanisms. However, if the longitudinal resolution used in the PIC simulations is inadequate, it can produce numerical heating that can overestimate the transverse motion, which is important in determining the energy gain due to DLA. We have therefore carried out a systematic study of this LWFA regime by varying the longitudinal resolution of PIC simulations and then examining the energy gain characteristics of both the highest-energy electrons and the bulk electrons. By calculating the contribution of DLA to the final energies of the electrons produced from the LWFA, we find that even at the highest longitudinal resolutions, DLA contributes a significant portion of the energy gained by the highest-energy electrons and also contributes to accelerating the bulk of the charge in the electron beam produced by the LWFA.
Particle-in-Cell Modeling of Magnetized Argon Plasma Flow Through Small Mechanical Apertures
Adam B. Sefkow and Samuel A. Cohen
2009-04-09
Motivated by observations of supersonic argon-ion flow generated by linear helicon-heated plasma devices, a three-dimensional particle-in-cell (PIC) code is used to study whether stationary electrostatic layers form near mechanical apertures intersecting the flow of magnetized plasma. By self-consistently evaluating the temporal evolution of the plasma in the vicinity of the aperture, the PIC simulations characterize the roles of the imposed aperture and applied magnetic field on ion acceleration. The PIC model includes ionization of a background neutral-argon population by thermal and superthermal electrons, the latter found upstream of the aperture. Near the aperture, a transition from a collisional to a collisionless regime occurs. Perturbations of density and potential, with mm wavelengths and consistent with ion acoustic waves, propagate axially. An ion acceleration region of length ~ 200-300 λD,e forms at the location of the aperture and is found to be an electrostatic double layer, with axially-separated regions of net positive and negative charge. Reducing the aperture diameter or increasing its length increases the double layer strength.
Performance of particle in cell methods on highly concurrent computational architectures
M.F.Adams; S. Ethier; N. Wichmann
2009-09-23
Particle in cell (PIC) methods are effective in computing Vlasov-Poisson system of equations used in simulations of magnetic fusion plasmas. PIC methods use grid based computations, for solving Poisson’s equation or more generally Maxwell’s equations, as well as Monte-Carlo type methods to sample the Vlasov equation. The presence of two types of discretizations, deterministic field solves and Monte-Carlo methods for the Vlasov equation, pose challenges in understanding and optimizing performance on today large scale computers which require high levels of concurrency. These challenges arises from the need to optimize two very different types of processes and the interactions between them. Modern cache based high-end computers have very deep memory hierarchies and high degrees of concurrency which must be utilized effectively to achieve good performance. The effective use of these machines requires maximizing concurrency by eliminating serial or redundant work and minimizing global communication. A related issue is minimizing the memory traffic between levels of the memory hierarchy because performance is often limited by the bandwidths and latencies of the memory system. This paper discusses some of the performance issues, particularly in regard to parallelism, of PIC methods. The gyrokinetic toroidal code (GTC) is used for these studies and a new radial grid decomposition is presented and evaluated. Scaling of the code is demonstrated on ITER sized plasmas with up to 16K Cray XT3/4 cores.
Kinetic properties of the particle-in-cell simulation of a Lorentz plasma
NASA Astrophysics Data System (ADS)
Lin-Liu, Y. R.; Lin, T. Y.; Chen, S. H.
2010-11-01
The phenomenon of numerical thermalization in the standard particle-in-cell (PIC) simulation of Vlasov plasmas has been extensively studied at the early stage of its development [1] and was considered well understood. However, it was recently reported [2] that the well-established scaling law for the thermalization time could be compromised by the presence of an additional stochastic force acting on the particles, which is used to simulate collisional processes in a weakly ionized gas. In the present work, we are interested in the problem of electron-ion collisions in a fully ionized plasma. We investigate the thermal relaxation phenomenon in the PIC simulation of a Lorentz plasma in one dimension [3]. The pitch-angle scattering of the electrons by the stationary ion background is modeled by a Monte-Carlo algorithm. The numerical results obtained indicate that the thermal relaxation time is proportional to ND (the number of particles per Debye length), and not ND^2 as in the standard PIC simulations. Our results appear to complement those found by the previous study [2]. [4pt] [1] C. K. Birdsall and A. B. Langdon, Plasma Physics via Computer Simulation (McGraw-Hill, New York, 1985). [0pt] [2] M. M. Turner, Phys. of Plasmas 13, 033506 (2006). [0pt] [3] R. Shanny, J. M. Dawson, and J. M. Greene, Phys. of Fluids 10, 1281 (1967).
Extended magnetohydrodynamics with embedded particle-in-cell simulation of Ganymede's magnetosphere
NASA Astrophysics Data System (ADS)
Tóth, Gábor; Jia, Xianzhe; Markidis, Stefano; Peng, Ivy Bo; Chen, Yuxi; Daldorff, Lars K. S.; Tenishev, Valeriy M.; Borovikov, Dmitry; Haiducek, John D.; Gombosi, Tamas I.; Glocer, Alex; Dorelli, John C.
2016-02-01
We have recently developed a new modeling capability to embed the implicit particle-in-cell (PIC) model iPIC3D into the Block-Adaptive-Tree-Solarwind-Roe-Upwind-Scheme magnetohydrodynamic (MHD) model. The MHD with embedded PIC domains (MHD-EPIC) algorithm is a two-way coupled kinetic-fluid model. As one of the very first applications of the MHD-EPIC algorithm, we simulate the interaction between Jupiter's magnetospheric plasma and Ganymede's magnetosphere. We compare the MHD-EPIC simulations with pure Hall MHD simulations and compare both model results with Galileo observations to assess the importance of kinetic effects in controlling the configuration and dynamics of Ganymede's magnetosphere. We find that the Hall MHD and MHD-EPIC solutions are qualitatively similar, but there are significant quantitative differences. In particular, the density and pressure inside the magnetosphere show different distributions. For our baseline grid resolution the PIC solution is more dynamic than the Hall MHD simulation and it compares significantly better with the Galileo magnetic measurements than the Hall MHD solution. The power spectra of the observed and simulated magnetic field fluctuations agree extremely well for the MHD-EPIC model. The MHD-EPIC simulation also produced a few flux transfer events (FTEs) that have magnetic signatures very similar to an observed event. The simulation shows that the FTEs often exhibit complex 3-D structures with their orientations changing substantially between the equatorial plane and the Galileo trajectory, which explains the magnetic signatures observed during the magnetopause crossings. The computational cost of the MHD-EPIC simulation was only about 4 times more than that of the Hall MHD simulation.
Particle-in-cell simulations of plasma accelerators and electron-neutral collisions
Bruhwiler, David L.; Giacone, Rodolfo E.; Cary, John R.; Verboncoeur, John P.; Mardahl, Peter; Esarey, Eric; Leemans, W.P.; Shadwick, B.A.
2001-10-01
We present 2-D simulations of both beam-driven and laser-driven plasma wakefield accelerators, using the object-oriented particle-in-cell code XOOPIC, which is time explicit, fully electromagnetic, and capable of running on massively parallel supercomputers. Simulations of laser-driven wakefields with low ({approx}10{sup 16} W/cm{sup 2}) and high ({approx}10{sup 18} W/cm{sup 2}) peak intensity laser pulses are conducted in slab geometry, showing agreement with theory and fluid simulations. Simulations of the E-157 beam wakefield experiment at the Stanford Linear Accelerator Center, in which a 30 GeV electron beam passes through 1 m of preionized lithium plasma, are conducted in cylindrical geometry, obtaining good agreement with previous work. We briefly describe some of the more significant modifications of XOOPIC required by this work, and summarize the issues relevant to modeling relativistic electron-neutral collisions in a particle-in-cell code.
Hierarchical agglomerative sub-clustering technique for particles management in PIC simulations
NASA Astrophysics Data System (ADS)
Grasso, Giacomo; Frignani, Michele; Rocchi, Federico; Sumini, Marco
2010-08-01
The effectiveness of Particle-In-Cell (PIC) codes lies mainly in the robustness of the methods implemented, under the fundamental assumption that a sufficient number of pseudo-particles is concerned for a correct representation of the system. The consequent drawback is the huge increase of computational time required to run a simulation, to what concerns the particles charge assignment to the grid and the motion of the former through the latter. Moreover the coupling of such methods with Monte-Carlo-Collisional (MCC) modules causes another expensive computational cost to simulate particle multiple collisions with background gas and domain boundaries. Particles management techniques are therefore often introduced in PIC-MCC codes in order to improve the distribution of pseudo-particles in the simulation domain: as a matter of facts, the aim at managing the number of samples according to the importance of the considered region is a main question for codes simulating a local phenomenon in a larger domain or a strongly collisional system (e.g.: a ionizing plasma, where the number of particles increases exponentially). A clustering procedure based on the distribution function sampling applied to the 5D phase space (2D in space, 3D in velocity) is here proposed, representing the leading criterion for particles merging and splitting procedures guaranteeing the second order charge moments conservation. Applied to the study of the electrical breakdown in the early discharge phase of a Plasma Focus device, this technique is shown to increase performances of both PIC kernel and MCC module preserving the solution of the electric field and increasing samples representativeness in stochastic calculations (with respect to more traditional merging and splitting procedures).
Lorentz boosted frame simulation technique in Particle-in-cell methods
NASA Astrophysics Data System (ADS)
Yu, Peicheng
In this dissertation, we systematically explore the use of a simulation method for modeling laser wakefield acceleration (LWFA) using the particle-in-cell (PIC) method, called the Lorentz boosted frame technique. In the lab frame the plasma length is typically four orders of magnitude larger than the laser pulse length. Using this technique, simulations are performed in a Lorentz boosted frame in which the plasma length, which is Lorentz contracted, and the laser length, which is Lorentz expanded, are now comparable. This technique has the potential to reduce the computational needs of a LWFA simulation by more than four orders of magnitude, and is useful if there is no or negligible reflection of the laser in the lab frame. To realize the potential of Lorentz boosted frame simulations for LWFA, the first obstacle to overcome is a robust and violent numerical instability, called the Numerical Cerenkov Instability (NCI), that leads to unphysical energy exchange between relativistically drifting particles and their radiation. This leads to unphysical noise that dwarfs the real physical processes. In this dissertation, we first present a theoretical analysis of this instability, and show that the NCI comes from the unphysical coupling of the electromagnetic (EM) modes and Langmuir modes (both main and aliasing) of the relativistically drifting plasma. We then discuss the methods to eliminate them. However, the use of FFTs can lead to parallel scalability issues when there are many more cells along the drifting direction than in the transverse direction(s). We then describe an algorithm that has the potential to address this issue by using a higher order finite difference operator for the derivative in the plasma drifting direction, while using the standard second order operators in the transverse direction(s). The NCI for this algorithm is analyzed, and it is shown that the NCI can be eliminated using the same strategies that were used for the hybrid FFT
Lorentz boosted frame simulation technique in Particle-in-cell methods
NASA Astrophysics Data System (ADS)
Yu, Peicheng
In this dissertation, we systematically explore the use of a simulation method for modeling laser wakefield acceleration (LWFA) using the particle-in-cell (PIC) method, called the Lorentz boosted frame technique. In the lab frame the plasma length is typically four orders of magnitude larger than the laser pulse length. Using this technique, simulations are performed in a Lorentz boosted frame in which the plasma length, which is Lorentz contracted, and the laser length, which is Lorentz expanded, are now comparable. This technique has the potential to reduce the computational needs of a LWFA simulation by more than four orders of magnitude, and is useful if there is no or negligible reflection of the laser in the lab frame. To realize the potential of Lorentz boosted frame simulations for LWFA, the first obstacle to overcome is a robust and violent numerical instability, called the Numerical Cerenkov Instability (NCI), that leads to unphysical energy exchange between relativistically drifting particles and their radiation. This leads to unphysical noise that dwarfs the real physical processes. In this dissertation, we first present a theoretical analysis of this instability, and show that the NCI comes from the unphysical coupling of the electromagnetic (EM) modes and Langmuir modes (both main and aliasing) of the relativistically drifting plasma. We then discuss the methods to eliminate them. However, the use of FFTs can lead to parallel scalability issues when there are many more cells along the drifting direction than in the transverse direction(s). We then describe an algorithm that has the potential to address this issue by using a higher order finite difference operator for the derivative in the plasma drifting direction, while using the standard second order operators in the transverse direction(s). The NCI for this algorithm is analyzed, and it is shown that the NCI can be eliminated using the same strategies that were used for the hybrid FFT
Macroparticle merging algorithm for PIC
NASA Astrophysics Data System (ADS)
Vranic, Marija; Grismayer, Thomas; Martins, Joana L.; Fonseca, Ricardo A.; Silva, Luis O.
2014-10-01
With the development of large supercomputers (>1000000 cores), the complexity of the problems we are able to simulate with particle-in-cell (PIC) codes has increased substantially. However, localized density spikes can introduce load imbalance where a small fraction of cores is occupied, while the others remain idle. An additional challenge lies in self-consistent modeling of QED effects at ultra-high laser intensities (I > 1023 W/cm2), where the number of pairs produced sometimes grows exponentially and may reach beyond the maximum number of particles that each processor can handle. We can overcome this by resampling the 6D phase space: the macroparticles can be merged into fewer particles with higher particle weights. Existing merging scheme preserves the total charge, but not the particle distribution. Here we present a novel particle-merging algorithm that preserves the energy, momentum and charge locally and thereby minimizes the potential influence to the relevant physics. Through examples of classical plasma physics and more extreme scenarios, we show that the physics is not altered but we obtain an immense increase in performance.
A GeneralizedWeight-Based Particle-In-Cell Simulation Scheme
W.W. Lee, T.G. Jenkins and S. Ethier
2010-02-02
A generalized weight-based particle simulation scheme suitable for simulating magnetized plasmas, where the zeroth-order inhomogeneity is important, is presented. The scheme is an extension of the perturbative simulation schemes developed earlier for particle-in-cell (PIC) simulations. The new scheme is designed to simulate both the perturbed distribution (δf) and the full distribution (full-F) within the same code. The development is based on the concept of multiscale expansion, which separates the scale lengths of the background inhomogeneity from those associated with the perturbed distributions. The potential advantage for such an arrangement is to minimize the particle noise by using δf in the linear stage stage of the simulation, while retaining the flexibility of a full-F capability in the fully nonlinear stage of the development when signals associated with plasma turbulence are at a much higher level than those from the intrinsic particle noise.
Huang, C.; An, W.; Decyk, V.K.; Lu, W.; Mori, W.B.; Tsung, F.S.; Tzoufras, M.; Morshed, S.; Antomsen, T.; Feng, B.; Katsouleas, T; Fonseca, R.A.; Martins, S.F.; Vieira, J.; Silva, L.O.; Geddes, C.G.R.; Cormier-Michel, E; Vay, J.-L.; Esarey, E.; Leemans, W.P.; Bruhwiler, D.L.; Cowan, B.; Cary, J.R.; Paul, K.
2009-05-01
The concept and designs of plasma-based advanced accelerators for high energy physics and photon science are modeled in the SciDAC COMPASS project with a suite of Particle-In-Cell codes and simulation techniques including the full electromagnetic model, the envelope model, the boosted frame approach and the quasi-static model. In this paper, we report the progress of the development of these models and techniques and present recent results achieved with large-scale parallel PIC simulations. The simulation needs for modeling the plasma-based advanced accelerator at the energy frontier is discussed and a path towards this goal is outlined.
NASA Astrophysics Data System (ADS)
Tejero-del-Caz, A.; Fernández Palop, J. I.; Díaz-Cabrera, J. M.; Ballesteros, J.
2016-02-01
A particle-in-cell (PIC) simulation of the plasma sheath around a cylindrical Langmuir probe has been developed to evaluate the ion current collected by the probe. The simulation includes the positive ion thermal motion and has been optimized by solely describing the positive ion motion. A transition from the prediction of the radial model to the orbital-motion-limited model is observed. The transition is explained as an effect of the positive ion thermal motion and the radial model is recovered when the positive ion to electron temperature ratio is decreased. The behaviour of this transition strongly depends on the dimensionless probe radius.
NASA Astrophysics Data System (ADS)
Mitchell, Robert A.; Schumacher, Douglass W.; Chowdhury, Enam A.
2015-11-01
We present our results of a fundamental simulation of a periodic grating structure formation on a copper target during the femtosecond-pulse laser damage process, and compare our results to recent experiment. The particle-in-cell (PIC) method is used to model the initial laser heating of the electrons, a two-temperature model (TTM) is used to model the thermalization of the material, and a modified PIC method is employed to model the atomic transport leading to a damage crater morphology consistent with experimental grating structure formation. This laser-induced periodic surface structure (LIPSS) is shown to be directly related to the formation of surface plasmon polaritons (SPP) and their interference with the incident laser pulse.
NASA Astrophysics Data System (ADS)
Zhu, Danni; Zhang, Jun; Zhong, Huihuang; Cai, Dan
2016-03-01
The expansion of cathode plasma in magnetically insulated coaxial diode (MICD) is investigated in theory and particle-in-cell (PIC) simulation. The temperature and density of the cathode plasma are about several eV and 1013-1016 cm-3, respectively, and its expansion velocity is of the level of few cm/μs. Through hydrodynamic theory analysis, expressions of expansion velocities in axial and radial directions are obtained. The characteristics of cathode plasma expansion have been simulated through scaled-down PIC models. Simulation results indicate that the expansion velocity is dominated by the ratio of plasma density other than the static electric field. The electric field counteracts the plasma expansion reverse of it. The axial guiding magnetic field only reduces the radial transport coefficients by a correction factor, but not the axial ones. Both the outward and inward radial expansions of a MICD are suppressed by the much stronger guiding magnetic field and even cease.
NASA Astrophysics Data System (ADS)
Daldorff, L. K. S.; Toth, G.; Borovikov, D.; Gombosi, T. I.; Lapenta, G.
2014-12-01
With the new modeling capability in the Space Weather Modeling Framework (SWMF) of embedding an implicit Particle-in-Cell (PIC) model iPIC3D into the BATS-R-US magnetohydrodynamics model (Daldorff et al. 2014, JCP, 268, 236) we are ready to locally handle the full physics of the reconnection and its implications on the full system where globally, away from the reconnection region, a magnetohydrodynamic description is satisfactory. As magnetic reconnection is one of the main drivers in magnetospheric and heliospheric plasma dynamics, the self-consistent description of the electron dynamics in the coupled MHD-EPIC model is well suited for investigating the nature of these systems. We will compare the new embedded MHD-EPIC model with pure MHD and Hall MHD simulations of the Earth's magnetosphere.
An incompressible two-dimensional multiphase particle-in-cell model for dense particle flows
Snider, D.M.; O`Rourke, P.J.; Andrews, M.J.
1997-06-01
A two-dimensional, incompressible, multiphase particle-in-cell (MP-PIC) method is presented for dense particle flows. The numerical technique solves the governing equations of the fluid phase using a continuum model and those of the particle phase using a Lagrangian model. Difficulties associated with calculating interparticle interactions for dense particle flows with volume fractions above 5% have been eliminated by mapping particle properties to a Eulerian grid and then mapping back computed stress tensors to particle positions. This approach utilizes the best of Eulerian/Eulerian continuum models and Eulerian/Lagrangian discrete models. The solution scheme allows for distributions of types, sizes, and density of particles, with no numerical diffusion from the Lagrangian particle calculations. The computational method is implicit with respect to pressure, velocity, and volume fraction in the continuum solution thus avoiding courant limits on computational time advancement. MP-PIC simulations are compared with one-dimensional problems that have analytical solutions and with two-dimensional problems for which there are experimental data.
Particle in cell simulations of tearing modes in reversed-field-pinch-like plasma
Svidzinski, Vladmir; Li, Hui; Albright, Brian
2008-01-01
Particle in cell (PIC) simulations of tearing modes in two-dimensional plane geometry in a force free reversed field pinch (RFP) like plasma equilibrium are performed to study possible kinetic effects on these modes in RFPs. Linear tearing modes are compared in the PIC and two fluid models. The results showed that the growth rates and the profiles of magnetic field components in the two models are very similar, indicating that the kinetic effects on the tearing modes are weak such that the two fluid approximation is rather accurate for modeling these instabilities in RFPs. During the nonlinear evolution of the tearing mode in this geometry small scale secondary instabilities located near the internal layer of the primary tearing instability are excited. These secondary instabilities appear to be driven by the nonlinearly induced local pressure gradient in the regions of unfavorable curvature of the nonlinearly evolved magnetic field. They could also appear in a realistic RFP geometry and play a role during sawtooth crashes in these machines.
An energy- and charge-conserving, nonlinearly implicit, electromagnetic particle-in-cell algorithm
NASA Astrophysics Data System (ADS)
Chen, Guangye; Chacon, Luis; Knoll, Dana; Daughton, William; CoCoMans (LANL) Team
2013-10-01
A recent proof-of-principle study proposes a nonlinear electrostatic implicit particle-in-cell (PIC) algorithm in one dimension. The algorithm employs a kinetically enslaved Jacobian-free Newton-Krylov (JFNK) method, and conserves energy and charge to numerical round-off. In this study, we generalize the method to electromagnetic simulations in 1D using the Darwin approximation of Maxwell's equations. An implicit, orbit-averaged central finite difference scheme is applied to both the Darwin field equations and the particle orbit equations to produce a discrete system that remains exactly charge-and energy-conserving. Furthermore, the canonical momentum in any ignorable direction is exactly conserved per particle by appropriate interpolations of the magnetic field. A fluid preconditioner targeting the stiffest electron waves has been developed to accelerate the linear GMRES solver of JFNK. We present 1D numerical experiments (e.g. the Weibel instability, kinetic Alfven wave ion-ion streaming instability, etc.) to demonstrate the accuracy and efficiency of the implicit Darwin PIC algorithm, and the performance of the fluid preconditioner.
Advanced 3D electromagnetic and particle-in-cell modeling on structured/unstructured hybrid grids
Seidel, D.B.; Pasik, M.F.; Kiefer, M.L.; Riley, D.J.; Turner, C.D.
1998-01-01
New techniques have been recently developed that allow unstructured, free meshes to be embedded into standard 3-dimensional, rectilinear, finite-difference time-domain grids. The resulting hybrid-grid modeling capability allows the higher resolution and fidelity of modeling afforded by free meshes to be combined with the simplicity and efficiency of rectilinear techniques. Integration of these new methods into the full-featured, general-purpose QUICKSILVER electromagnetic, Particle-In-Cell (PIC) code provides new modeling capability for a wide variety of electromagnetic and plasma physics problems. To completely exploit the integration of this technology into QUICKSILVER for applications requiring the self-consistent treatment of charged particles, this project has extended existing PIC methods for operation on these hybrid unstructured/rectilinear meshes. Several technical issues had to be addressed in order to accomplish this goal, including the location of particles on the unstructured mesh, adequate conservation of charge, and the proper handling of particles in the transition region between structured and unstructured portions of the hybrid grid.
Novel methods in the Particle-In-Cell accelerator Code-Framework Warp
Vay, J-L; Grote, D. P.; Cohen, R. H.; Friedman, A.
2012-12-26
The Particle-In-Cell (PIC) Code-Framework Warp is being developed by the Heavy Ion Fusion Science Virtual National Laboratory (HIFS-VNL) to guide the development of accelerators that can deliver beams suitable for high-energy density experiments and implosion of inertial fusion capsules. It is also applied in various areas outside the Heavy Ion Fusion program to the study and design of existing and next-generation high-energy accelerators, including the study of electron cloud effects and laser wakefield acceleration for example. This study presents an overview of Warp's capabilities, summarizing recent original numerical methods that were developed by the HIFS-VNL (including PIC with adaptive mesh refinement, a large-timestep 'drift-Lorentz' mover for arbitrarily magnetized species, a relativistic Lorentz invariant leapfrog particle pusher, simulations in Lorentz-boosted frames, an electromagnetic solver with tunable numerical dispersion and efficient stride-based digital filtering), with special emphasis on the description of the mesh refinement capability. In addition, selected examples of the applications of the methods to the abovementioned fields are given.
A Parallelized 3D Particle-In-Cell Method With Magnetostatic Field Solver And Its Applications
NASA Astrophysics Data System (ADS)
Hsu, Kuo-Hsien; Chen, Yen-Sen; Wu, Men-Zan Bill; Wu, Jong-Shinn
2008-10-01
A parallelized 3D self-consistent electrostatic particle-in-cell finite element (PIC-FEM) code using an unstructured tetrahedral mesh was developed. For simulating some applications with external permanent magnet set, the distribution of the magnetostatic field usually also need to be considered and determined accurately. In this paper, we will firstly present the development of a 3D magnetostatic field solver with an unstructured mesh for the flexibility of modeling objects with complex geometry. The vector Poisson equation for magnetostatic field is formulated using the Galerkin nodal finite element method and the resulting matrix is solved by parallel conjugate gradient method. A parallel adaptive mesh refinement module is coupled to this solver for better resolution. Completed solver is then verified by simulating a permanent magnet array with results comparable to previous experimental observations and simulations. By taking the advantage of the same unstructured grid format of this solver, the developed PIC-FEM code could directly and easily read the magnetostatic field for particle simulation. In the upcoming conference, magnetron is simulated and presented for demonstrating the capability of this code.
Deca, J; Divin, A; Lapenta, G; Lembège, B; Markidis, S; Horányi, M
2014-04-18
We present the first three-dimensional fully kinetic and electromagnetic simulations of the solar wind interaction with lunar crustal magnetic anomalies (LMAs). Using the implicit particle-in-cell code iPic3D, we confirm that LMAs may indeed be strong enough to stand off the solar wind from directly impacting the lunar surface forming a mini-magnetosphere, as suggested by spacecraft observations and theory. In contrast to earlier magnetohydrodynamics and hybrid simulations, the fully kinetic nature of iPic3D allows us to investigate the space charge effects and in particular the electron dynamics dominating the near-surface lunar plasma environment. We describe for the first time the interaction of a dipole model centered just below the lunar surface under plasma conditions such that only the electron population is magnetized. The fully kinetic treatment identifies electromagnetic modes that alter the magnetic field at scales determined by the electron physics. Driven by strong pressure anisotropies, the mini-magnetosphere is unstable over time, leading to only temporal shielding of the surface underneath. Future human exploration as well as lunar science in general therefore hinges on a better understanding of LMAs. PMID:24785022
Particle-in-Cell Simulations of Atmospheric Pressure He/2%H2O Discharges
NASA Astrophysics Data System (ADS)
Kawamura, E.; Lieberman, M. A.; Lichtenberg, A. J.; Graves, D. B.; Gopalakrishnan, R.
2015-09-01
Atmospheric pressure micro-discharges in contact with liquid surfaces are of increasing interest, especially in the bio-medical field. We conduct 1D3v particle-in-cell (PIC) simulations of a voltage-driven 1 mm width atmospheric pressure He/2% H2O plasma discharge in series with an 0.5 mm width liquid H2O layer and a 1mm width quartz dielectric layer. A previously developed two-temperature hybrid global model of atmospheric pressure He/H2O discharges was used to determine the most important species and collisional reactions to use in the PIC simulations. We found that H13O6+, H5O3-, and electrons were the most prominent charged species, while most of the metastable helium He* was quenched via Penning ionization. The ion-induced secondary emission coefficient γi was assumed to be 0.15 at all surfaces. A series of simulations were conducted at 27.12 MHz with Jrf ~ 800-2200 A/m2. The H2O rotational and vibrational excitation losses were so high that electrons reached the walls at thermal temperatures. We also simulated a much lower frequency case of 50 kHz with Vrf = 10 kV. In this case, the discharge ran in a pure time-varying γ-mode. This work was supported by the Department of Energy Office of Fusion Energy Science Contract DE-SC0001939.
Qi, Xin; Xu, Yan-xia; Duan, Wen-shan E-mail: lyang@impcas.ac.cn; Zhang, Ling-yu; Yang, Lei E-mail: lyang@impcas.ac.cn
2014-08-15
The head-on collision of two ion acoustic solitary waves in plasmas composed of hot electrons and cold ions has been studied by using the Poincare-Lighthill-Kuo (PLK) perturbation method and one-dimensional Particle-in-Cell (PIC) simulation. Then the phase lags of ion acoustic solitary waves (IASWs) obtained from the two approaches have been compared and discussed. It has been found that: if the amplitudes of both the colliding IASWs are small enough, the phase lags obtained from PLK method are in good agreement with those obtained from PIC simulation. As the amplitudes of IASWs increase, the phase lags from PIC simulation become smaller than the analytical ones from PLK method. Besides, the PIC simulation shows the phase lag of an IASW involved in collision depends not only on the characteristics of the wave it collides with but also on itself, which disagrees with the prediction of the PLK method. Finally, the application scopes of the PLK method in studying both the single IASW and the head-on collisions of IASWs have been studied and discussed, and the latter turns out to be more strict.
Monte Carlo particle-in-cell methods for the simulation of the Vlasov-Maxwell gyrokinetic equations
NASA Astrophysics Data System (ADS)
Bottino, A.; Sonnendrücker, E.
2015-10-01
> The particle-in-cell (PIC) algorithm is the most popular method for the discretisation of the general 6D Vlasov-Maxwell problem and it is widely used also for the simulation of the 5D gyrokinetic equations. The method consists of coupling a particle-based algorithm for the Vlasov equation with a grid-based method for the computation of the self-consistent electromagnetic fields. In this review we derive a Monte Carlo PIC finite-element model starting from a gyrokinetic discrete Lagrangian. The variations of the Lagrangian are used to obtain the time-continuous equations of motion for the particles and the finite-element approximation of the field equations. The Noether theorem for the semi-discretised system implies a certain number of conservation properties for the final set of equations. Moreover, the PIC method can be interpreted as a probabilistic Monte Carlo like method, consisting of calculating integrals of the continuous distribution function using a finite set of discrete markers. The nonlinear interactions along with numerical errors introduce random effects after some time. Therefore, the same tools for error analysis and error reduction used in Monte Carlo numerical methods can be applied to PIC simulations.
NASA Astrophysics Data System (ADS)
Zhang, Ya; Li, Lian; Jiang, Wei; Yi, Lin
2016-07-01
A one dimensional quantum-hydrodynamic/particle-in-cell (QHD/PIC) model is used to study the interaction process of an intense proton beam (injection density of 1017 cm‑3) with a dense plasma (initial density of ~ 1021 cm‑3), with the PIC method for simulating the beam particle dynamics and the QHD model for considering the quantum effects including the quantum statistical and quantum diffraction effects. By means of the QHD theory, the wake electron density and wakefields are calculated, while the proton beam density is calculated by the PIC method and compared to hydrodynamic results to justify that the PIC method is a more suitable way to simulate the beam particle dynamics. The calculation results show that the incident continuous proton beam when propagating in the plasma generates electron perturbations as well as wakefields oscillations with negative valleys and positive peaks where the proton beams are repelled by the positive wakefields and accelerated by the negative wakefields. Moreover, the quantum correction obviously hinders the electron perturbations as well as the wakefields. Therefore, it is necessary to consider the quantum effects in the interaction of a proton beam with cold dense plasmas, such as in the metal films. supported by National Natural Science Foundation of China (Nos. 11405067, 11105057, 11275007)
Muñoz, P. A. Kilian, P.; Büchner, J.; Told, D.; Jenko, F.
2015-08-15
In this work, we compare gyrokinetic (GK) with fully kinetic Particle-in-Cell (PIC) simulations of magnetic reconnection in the limit of strong guide field. In particular, we analyze the limits of applicability of the GK plasma model compared to a fully kinetic description of force free current sheets for finite guide fields (b{sub g}). Here, we report the first part of an extended comparison, focusing on the macroscopic effects of the electron flows. For a low beta plasma (β{sub i} = 0.01), it is shown that both plasma models develop magnetic reconnection with similar features in the secondary magnetic islands if a sufficiently high guide field (b{sub g} ≳ 30) is imposed in the kinetic PIC simulations. Outside of these regions, in the separatrices close to the X points, the convergence between both plasma descriptions is less restrictive (b{sub g} ≳ 5). Kinetic PIC simulations using guide fields b{sub g} ≲ 30 reveal secondary magnetic islands with a core magnetic field and less energetic flows inside of them in comparison to the GK or kinetic PIC runs with stronger guide fields. We find that these processes are mostly due to an initial shear flow absent in the GK initialization and negligible in the kinetic PIC high guide field regime, in addition to fast outflows on the order of the ion thermal speed that violate the GK ordering. Since secondary magnetic islands appear after the reconnection peak time, a kinetic PIC/GK comparison is more accurate in the linear phase of magnetic reconnection. For a high beta plasma (β{sub i} = 1.0) where reconnection rates and fluctuations levels are reduced, similar processes happen in the secondary magnetic islands in the fully kinetic description, but requiring much lower guide fields (b{sub g} ≲ 3)
NASA Astrophysics Data System (ADS)
Muñoz, P. A.; Told, D.; Kilian, P.; Büchner, J.; Jenko, F.
2015-08-01
In this work, we compare gyrokinetic (GK) with fully kinetic Particle-in-Cell (PIC) simulations of magnetic reconnection in the limit of strong guide field. In particular, we analyze the limits of applicability of the GK plasma model compared to a fully kinetic description of force free current sheets for finite guide fields (bg). Here, we report the first part of an extended comparison, focusing on the macroscopic effects of the electron flows. For a low beta plasma (βi = 0.01), it is shown that both plasma models develop magnetic reconnection with similar features in the secondary magnetic islands if a sufficiently high guide field (bg ≳ 30) is imposed in the kinetic PIC simulations. Outside of these regions, in the separatrices close to the X points, the convergence between both plasma descriptions is less restrictive (bg ≳ 5). Kinetic PIC simulations using guide fields bg ≲ 30 reveal secondary magnetic islands with a core magnetic field and less energetic flows inside of them in comparison to the GK or kinetic PIC runs with stronger guide fields. We find that these processes are mostly due to an initial shear flow absent in the GK initialization and negligible in the kinetic PIC high guide field regime, in addition to fast outflows on the order of the ion thermal speed that violate the GK ordering. Since secondary magnetic islands appear after the reconnection peak time, a kinetic PIC/GK comparison is more accurate in the linear phase of magnetic reconnection. For a high beta plasma (βi = 1.0) where reconnection rates and fluctuations levels are reduced, similar processes happen in the secondary magnetic islands in the fully kinetic description, but requiring much lower guide fields (bg ≲ 3).
ERIC Educational Resources Information Center
Armstrong, C. J.
1997-01-01
Discusses PICS (Platform for Internet Content Selection), the Centre for Information Quality Management (CIQM), and metadata. Highlights include filtering networked information; the quality of information; and standardizing search engines. (LRW)
The Convergence of Particle-in-Cell Schemes for Cosmological Dark Matter Simulations
NASA Astrophysics Data System (ADS)
Myers, Andrew; Colella, Phillip; Van Straalen, Brian
2016-01-01
Particle methods are a ubiquitous tool for solving the Vlasov-Poisson equation in comoving coordinates, which is used to model the gravitational evolution of dark matter (DM) in an expanding universe. However, these methods are known to produce poor results on idealized test problems, particularly at late times, after the particle trajectories have crossed. To investigate this, we have performed a series of one- and two-dimensional “Zel’dovich pancake” calculations using the popular particle-in-cell (PIC) method. We find that PIC can indeed converge on these problems provided that the following modifications are made. The first modification is to regularize the singular initial distribution function by introducing a small but finite artificial velocity dispersion. This process is analogous to artificial viscosity in compressible gas dynamics, and, as with artificial viscosity, the amount of regularization can be tailored so that its effect outside of a well-defined region—in this case, the high-density caustics—is small. The second modification is the introduction of a particle remapping procedure that periodically reexpresses the DM distribution function using a new set of particles. We describe a remapping algorithm that is third-order accurate and adaptive in phase space. This procedure prevents the accumulation of numerical errors in integrating the particle trajectories from growing large enough to significantly degrade the solution. Once both of these changes are made, PIC converges at second order on the Zel’dovich pancake problem, even at late times, after many caustics have formed. Furthermore, the resulting scheme does not suffer from the unphysical, small-scale “clumping” phenomenon known to occur on the pancake problem when the perturbation wavevector is not aligned with one of the Cartesian coordinate axes.
The Implicit Hyprid/PIC Code AMTHEM.
Mason, R. J.
2002-01-01
Recent inventions in pulse power switching, fast laser-driven thermonuclear ignition, and short pulse radiography have demanded a dramatic increase in the capabilities of plasma simulation tools. Multifluid, multi-component, fluid and kinetic models are needed for plasmas spanning thousands of Debye lengths and thousands of plasma periods. Such plasmas manifest both dense and tenuous regions, including or excluding magnetic fields and collisional resistivity. The problems of interest can dwell in a transition regime with limits traditionally treated by resistive MHD and and/or collisional particle-in-cell (PIC) methods. The ANTHEM implicit hybrid simulation model is under development to meet these challenges. This presentation will outline its past and current features, and review results typical of short-pulse laser applications.
NASA Astrophysics Data System (ADS)
Qin, Hong; Liu, Jian; Xiao, Jianyuan; Zhang, Ruili; He, Yang; Wang, Yulei; Sun, Yajuan; Burby, Joshua W.; Ellison, Leland; Zhou, Yao
2016-01-01
Particle-in-cell (PIC) simulation is the most important numerical tool in plasma physics. However, its long-term accuracy has not been established. To overcome this difficulty, we developed a canonical symplectic PIC method for the Vlasov-Maxwell system by discretising its canonical Poisson bracket. A fast local algorithm to solve the symplectic implicit time advance is discovered without root searching or global matrix inversion, enabling applications of the proposed method to very large-scale plasma simulations with many, e.g. 109, degrees of freedom. The long-term accuracy and fidelity of the algorithm enables us to numerically confirm Mouhot and Villani’s theory and conjecture on nonlinear Landau damping over several orders of magnitude using the PIC method, and to calculate the nonlinear evolution of the reflectivity during the mode conversion process from extraordinary waves to Bernstein waves.
Qin, Hong; Liu, Jian; Xiao, Jianyuan; Zhang, Ruili; He, Yang; Wang, Yulei; Sun, Yajuan; Burby, Joshua W.; Ellison, Leland; Zhou, Yao
2015-12-14
Particle-in-cell (PIC) simulation is the most important numerical tool in plasma physics. However, its long-term accuracy has not been established. To overcome this difficulty, we developed a canonical symplectic PIC method for the Vlasov-Maxwell system by discretising its canonical Poisson bracket. A fast local algorithm to solve the symplectic implicit time advance is discovered without root searching or global matrix inversion, enabling applications of the proposed method to very large-scale plasma simulations with many, e.g. 10(9), degrees of freedom. The long-term accuracy and fidelity of the algorithm enables us to numerically confirm Mouhot and Villani's theory and conjecture on nonlinear Landau damping over several orders of magnitude using the PIC method, and to calculate the nonlinear evolution of the reflectivity during the mode conversion process from extraordinary waves to Bernstein waves.
Zhang, Jie; Yang, Yang; Xu, Yan-Xia; Qi, Xin E-mail: duanws@nwnu.edu.cn; Duan, Wen-shan E-mail: duanws@nwnu.edu.cn; Yang, Lei
2014-10-15
The application scope of the Poincare-Lighthill-Kuo (PLK) method is suggested by using the Particle-in-cell (PIC) numerical method to study head-on collision of two solitary waves. Comparisons between the numerical results from PIC simulations and the analytical ones from the PLK method indicate that the both are in good agreement with each other. The dependence of the phase shifts after the head-on collision on both amplitudes of two solitary waves is given from our PIC method. It is found that the phase shifts depended on the amplitude of both waves. The maximum amplitude during the colliding process is approximately equal to the sum of both amplitudes for the small amplitude solitary waves.
New Particle-in-Cell Code for Numerical Simulation of Coherent Synchrotron Radiation
Balsa Terzic, Rui Li
2010-05-01
We present a first look at the new code for self-consistent, 2D simulations of beam dynamics affected by the coherent synchrotron radiation. The code is of the particle-in-cell variety: the beam bunch is sampled by point-charge particles, which are deposited on the grid; the corresponding forces on the grid are then computed using retarded potentials according to causality, and interpolated so as to advance the particles in time. The retarded potentials are evaluated by integrating over the 2D path history of the bunch, with the charge and current density at the retarded time obtained from interpolation of the particle distributions recorded at discrete timesteps. The code is benchmarked against analytical results obtained for a rigid-line bunch. We also outline the features and applications which are currently being developed.
Three-dimensional particle-in-cell simulations of laser channeling in fast ignition
Li, G.; Yan, R.; Ren, C.; Tonge, J.; Mori, W. B.
2011-04-15
Three-dimensional particle-in-cell simulations with an underdense plasma length up to 540 {mu}m are presented to show that laser channeling in 3D is qualitatively similar to that shown in previous 2D simulations [Li et al., Phys. Rev. Lett. 100, 125002 (2008)], but quantitative differences exist. Due to a larger laser ponderomotive force resulting from self-focusing and easier channel formation in 3D, the channeling speed in 3D is larger compared to 2D. Laser hosing and channel bending are also observed in 3D. Decoupling of the laser and plasma is observed when the electrons are heated to relativistic temperatures during the channeling process.
PIC Simulation for ICF Plasma Sputter Coater
NASA Astrophysics Data System (ADS)
Wu, W.; Huang, H.; Parks, P. B.; Chan, V. S.; Walton, C. C.; Wilks, S. C.
2010-11-01
To satisfy mesh spacing constraint δ/λDebye<=1 particle In Cell (PIC) simulations at 25x reduced cathode currents levels are used to numerically model the distribution of currents, electrostatic potentials and particle kinetics in a Type II ``unbalanced'' cylindrically symmetric magnetron discharge used for Be sputter coating of ICF capsules. Simulation indicates a strong magnetic field confinement of the plasma in the closed field lines region adjacent to cathode, and accompanying cross-field line plasma diffusion into the open-field line region connected to wall/anode. A narrow Charles-Langmuir sheath and a pre-sheath that is ˜10x wider due to the existence of the B-field are observed. The effects of varying boundary conditions, e.g., the separation between the anode/cathode, the anode bias voltage, etc., are studied, which is expected to aid experimentalists in turning these ``knobs'' for better coating qualities. We also show that the etch rate due to sputtering of Be targets predicted by the results of our PIC simulations, after rescaling to experimental conditions, agrees with experiments.
NASA Astrophysics Data System (ADS)
Kakad, A.; Kakad, B. A.; Omura, Y.
2014-12-01
In recent spacecraft observations, coherent electrostatic solitary wave (ESWs) structures are observed in various regions of the Earth's magnetosphere. Over the years, many researchers have attempted to model these observations in terms of electron/ion acoustic solitary waves by using nonlinear fluid theory/simulations. The ESW structures predicted by fluid models can be inadequate due to its inability in handling kinetic effects. To provide clear view on the application of the fluid and kinetic treatments in modeling the ESWs, we perform both fluid and particle-in-cell (PIC) simulations of ion acoustic solitary waves (IASWs) and estimate the quantitative differences in their characteristics like speed, amplitude, and width. It is noted that a long time evolution of Gaussian type perturbations in the equilibrium electron and ion densities generated the nonlinear IASW structures in both fluid and PIC simulations. The IASW structures represent vortices of trapped electrons in PIC simulations. We find that the number of trapped electrons in the wave potential is higher for the large amplitude IASW, which are generated by large-amplitude initial density perturbation (IDP). The present fluid and PIC simulation results are in close agreement for small amplitude IDPs, whereas for large IDPs they show discrepancy in the amplitude, width, and speed of the IASW, which is attributed to negligence of kinetic effects in the former approach. The speed of IASW in the fluid simulations increases with the increase of IASW amplitude, while the reverse tendency is seen in the PIC simulation. The present study suggests that the fluid treatment is appropriate to model the IASW observations when the magnitude of phase velocity of IASW is less than the ion acoustic (IA) speed obtained from their linear dispersion relation, whereas when it exceeds IA speed, it is necessary to include the kinetic effects in the model.
Particle-in-cell simulations for virtual cathode oscillator including foil ablation effects
NASA Astrophysics Data System (ADS)
Singh, Gursharn; Chaturvedi, S.
2011-06-01
We have performed two- and three-dimensional, relativistic, electromagnetic, particle-in-cell simulations of an axially extracted virtual cathode oscillator (vircator). The simulations include, for the first time, self-consistent dynamics of the anode foil under the influence of the intense electron beam. This yields the variation of microwave output power as a function of time, including the role of anode ablation and anode-cathode gap closure. These simulations have been done using locally developed particle-in-cell (PIC) codes. The codes have been validated using two vircator designs available from the literature. The simulations reported in the present paper take account of foil ablation due to the intense electron flux, the resulting plasma expansion and shorting of the anode-cathode gap. The variation in anode transparency due to plasma formation is automatically taken into account. We find that damage is generally higher near the axis. Also, at all radial positions, there is little damage in the early stages, followed by a period of rapid erosion, followed in turn by low damage rates. A physical explanation has been given for these trends. As a result of gap closure due to plasma formation from the foil, the output microwave power initially increases, reaches a near-flat-top and then decreases steadily, reaching a minimum around 230 ns. This is consistent with a typical plasma expansion velocity of ˜2 cm/μs reported in the literature. We also find a significant variation in the dominant output frequency, from 6.3 to 7.6 GHz. This variation is small as long as the plasma density is small, up to ˜40 ns. As the AK gap starts filling with plasma, there is a steady increase in this frequency.
Beyond Hydrodynamics via a Fluid Element PIC algorithm, GaPH
NASA Astrophysics Data System (ADS)
Bateson, William; Hewett, Dennis; Lambert, Michael
1996-11-01
For strongly-driven gas and plasma systems, issues of interpenetration and turbulence have led to difficulties with fluid models. For example, a Maxwell distribution within the finite volume could miss the interpenetration and shear regions between two fluids. To address these and other issues, we have extended our Grid and Particle Hydrodynamics (GaPH), a fluid element PIC code, beyond the initial high-precision, 1-D collisionless solutions[2] to 2-D with both binary and viscous drag collisions. The GaPH algorithm still aggressively probes for emerging phase space features by fitting new "particles" to the "hydrodynamic" evolution of individual particles and aggressively merges to preserves economy if interesting features fail to materialize. Recent extensions add collisonal diffusion to the hydrodynamics. Through these and other extensions, GaPH approximates Boltzmann transport thus leaving the fluid model assumption of a local Maxwell distribution behind. [1] This work was performed under the auspices of the U.S. Department of Energy by Lawrence Livermore National Laboratory under Contract W-7405-Eng-48 and by Sandia National Laboratory under Contract DE-AC04-94AL85000. [2] "Beyond Hydrodynamics via Fluid Element Particle-In-Cell", WB Bateson and DW Hewett, (submitted J. Comp. Phys. July 1996).
NASA Astrophysics Data System (ADS)
Hofmann, I.; Boine-Frankenheim, O.
2014-12-01
The numerical noise inherent to particle-in-cell (PIC) simulation of 3d anisotropic high intensity bunched beams in periodic focusing is compared with the analytical model by Struckmeier [Part. Accel. 45, 229 (1994)]. The latter assumes that entropy growth can be related to Markov type stochastic processes due to temperature anisotropy and the artificial "collisions" caused by using macro-particles and calculating the space charge effect. The PIC simulations are carried out with the tracewin code widely used for high intensity beam simulation. The resulting noise can lead to growth of the six-dimensional rms emittance. The logarithm of the latter is shown to qualify as rms-based entropy. We confirm the dependence of this growth on the bunch temperature anisotropy as predicted by Struckmeier. However, we also find a grid and focusing dependent component of noise not predicted by Struckmeier. Although commonalities exist with well-established models for collision effects in PIC-simulation of extended plasmas, a distinctive feature is the presence of a periodic focusing potential, wherein the beam one-component plasma extends only over relatively few Debye lengths. Our findings are applied in particular to noise in high current linac beam simulation, where they help for optimization of the balance between the number of simulation particles and the grid resolution.
NASA Astrophysics Data System (ADS)
Kawamura, E.; Lieberman, M. A.; Lichtenberg, A. J.; Chabert, P.; Lazzaroni, C.
2014-06-01
Atmospheric pressure radio-frequency (rf) capacitive micro-discharges are of interest due to emerging applications, especially in the bio-medical field. A previous global model did not consider high-power phenomena such as sheath multiplication, thus limiting its applicability to the lower power range. To overcome this, we use one-dimensional particle-in-cell (PIC) simulations of atmospheric He/0.1% N2 capacitive discharges over a wide range of currents and frequencies to guide the development of a more general global model which is also valid at higher powers. The new model includes sheath multiplication and two classes of electrons: the higher temperature ‘hot’ electrons associated with the sheaths, and the cooler ‘warm’ electrons associated with the bulk. The electric field and the electron power balance are solved analytically to determine the time-varying hot and warm temperatures and the effective rate coefficients. The particle balance equations are integrated numerically to determine the species densities. The model and PIC results are compared, showing reasonable agreement over the range of currents and frequencies studied. They indicate a transition from an α mode at low power characterized by relatively high electron temperature Te with a near uniform profile to a γ mode at high power with a Te profile strongly depressed in the bulk plasma. The transition is accompanied by an increase in density and a decrease in sheath widths. The current and frequency scalings of the model are confirmed by the PIC simulations.
NASA Astrophysics Data System (ADS)
Camporeale, E.; Zimbardo, G.
2015-12-01
We study the wave-particle interactions between lower band chorus whistlers and an anisotropic tenuous population of relativistic electrons. We present the first direct comparison of first-principle particle-in-cell (PIC) simulations with a quasi-linear diffusion code. In the PIC approach, the waves are self-consistently generated by the temperature anisotropy instability that quickly saturates and relaxes the system toward marginal stability. We show that the quasi-linear diffusion and PIC results have significant quantitative mismatch in regions of energy/pitch angle where the resonance condition is not satisfied. Moreover, for pitch angles close to the loss cone the diffusion code overestimates the scattering, particularly at low energies. This suggests that higher-order nonlinear theories should be taken in consideration in order to capture non-resonant interactions, resonance broadening, and to account for scattering at angles close to 90 degree. Finally, we show that pitch angle diffusion is enhanced during the linear wave growth phase, and it rapidly saturates well before a single bounce period. We discuss how the saturation is related to the fact that the domain in which the particles pitch angle diffuse is bounded, and to the well-known problem of 90 degree diffusion barrier.
[PIC Program Evaluation Forms.
ERIC Educational Resources Information Center
Short, N. J.
These 4 questionnaires are designed to elicit teacher and parent evaluations of the Prescriptive Instruction Center (PIC) program. Included are Teacher Evaluation of Program Effectiveness (14 items), M & M Evaluation of Program Implementation (methods and materials specialists; 11 items), Teacher Evaluation of Program Effectiveness--Case Study…
ERIC Educational Resources Information Center
Montgomery, H. Wynn
1988-01-01
The author discusses the establishment and objectives of private industry councils (PICs). Such topics as local decision making, private sector representation, on-site evaluations, and summer jobs programs are covered. Emphasis is on the Atlanta, Georgia PIC. (CH)
An Integrated Radiation Transport Particle-in-Cell Method
NASA Astrophysics Data System (ADS)
Lee, H. J.; Verboncoeur, J. P.; Smith, H. B.; Parker, G. J.; Birdsall, C. K.
2000-10-01
The study of radiation transport is important to understand the basic physics and to calculate the efficiency in a lamp discharge or laser induced plasma. Many models neglect radiation transport effects in evolving the steady state. In this study, we established a basic model to calculate radiation transport, including the effects of nonuniform ground state density and atomic collisions in one dimensional cylindrical and planar geometries. We coupled radiation transport with the self-consistent kinetic particle-in-cell codes, XPDP1 and XPDC1[1]. We treat electrons and ions with a particle-in-cell method, and the neutral ground and excited states with a fluid model to calculate radiation transport and atomic collisions. The steady state result of this model compares well with the solution of Holstein equation[2]. [1] J. P. Verboncoeur, M. V. Alves, V. Vahedi, and C. K. Birdsall, Journal of Computational Physics 104, 321 (1993). [2] T. Holstein, Phys. Rev. 72, 1213 (1947).
NASA Astrophysics Data System (ADS)
Benstâali, W.; Harrache, Z.; Belasri, A.
2012-06-01
Plasma display panels (PDPs) are one of the leading technologies in the flat panels market. However, they are facing intense competition. Different fluid models, both one-dimensional (1D) and 2D, have been used to analyze the energy balance in PDP cells in order to find out how the xenon excitation part can be improved to optimize the luminous efficiency. The aim of this work is to present a 1D particle-in-cell with Monte Carlo collision (PIC-MCC) model for PDPs. The discharge takes place in a Xe10-Ne gas mixture at 560 Torr. The applied voltage is 381 V. We show at first that this model reproduces the electric characteristics of a single PDP discharge pulse. Then, we calculate the energy deposited by charged particles in each collision. The total energy is about 19 μJ cm-2, and the energy used in xenon excitation is of the order of 12.5% compared to the total energy deposited in the discharge. The effect of xenon content in a Xe-Ne mixture is also analyzed. The energies deposited in xenon excitation and ionization are more important when the xenon percentage has been increased from 1 to 30%. The applied voltage increases the energy deposited in xenon excitation.
photon-plasma: A modern high-order particle-in-cell code
Haugbølle, Troels; Frederiksen, Jacob Trier; Nordlund, Åke
2013-06-15
We present the photon-plasma code, a modern high order charge conserving particle-in-cell code for simulating relativistic plasmas. The code is using a high order implicit field solver and a novel high order charge conserving interpolation scheme for particle-to-cell interpolation and charge deposition. It includes powerful diagnostics tools with on-the-fly particle tracking, synthetic spectra integration, 2D volume slicing, and a new method to correctly account for radiative cooling in the simulations. A robust technique for imposing (time-dependent) particle and field fluxes on the boundaries is also presented. Using a hybrid OpenMP and MPI approach, the code scales efficiently from 8 to more than 250.000 cores with almost linear weak scaling on a range of architectures. The code is tested with the classical benchmarks particle heating, cold beam instability, and two-stream instability. We also present particle-in-cell simulations of the Kelvin-Helmholtz instability, and new results on radiative collisionless shocks.
Enhanced stopping of macro-particles in particle-in-cell simulations
May, J.; Tonge, J.; Ellis, I.; Mori, W. B.; Fiuza, F.; Fonseca, R. A.; Silva, L. O.
2014-05-15
We derive an equation for energy transfer from relativistic charged particles to a cold background plasma appropriate for finite-size particles that are used in particle-in-cell simulation codes. Expressions for one-, two-, and three-dimensional particles are presented, with special attention given to the two-dimensional case. This energy transfer is due to the electric field of the wake set up in the background plasma by the relativistic particle. The enhanced stopping is dependent on the q{sup 2}/m, where q is the charge and m is the mass of the relativistic particle, and therefore simulation macro-particles with large charge but identical q/m will stop more rapidly. The stopping power also depends on the effective particle shape of the macro-particle. These conclusions are verified in particle-in-cell simulations. We present 2D simulations of test particles, relaxation of high-energy tails, and integrated fast ignition simulations showing that the enhanced drag on macro-particles may adversely affect the results of these simulations in a wide range of high-energy density plasma scenarios. We also describe a particle splitting algorithm which can potentially overcome this problem and show its effect in controlling the stopping of macro-particles.
Gyrokinetic and kinetic particle-in-cell simulations of guide-field reconnection
NASA Astrophysics Data System (ADS)
Munoz Sepulveda, Patricio Alejandro; Büchner, Jörg; Kilian, Patrick; Told, Daniel; Jenko, Frank
2016-07-01
Fully kinetic Particle-in-Cell (PIC) simulations of (strong) guide-field reconnection can be computationally very demanding, due to the intrinsic stability and accuracy conditions required by this numerical method. One convenient approach to circumvent this issue is using gyrokinetic theory, an approximation of the Vlasov-Maxwell equations for strongly magnetized plasmas that eliminates the fast gyromotion, and thus reduces the computational cost. Although previous works have started to compare the features of reconnection between both approaches, a complete understanding of the differences is far from being complete. This knowledge is essential to discern the limitations of the gyrokinetic simulations of magnetic reconnection when applied to scenarios with moderate guide fields, such as the Solar corona, in contrast to most of the fusion/laboratory plasmas. We extend a previous work by our group, focused in the differences in the macroscopic flows, by analyzing the heating processes and non-thermal features developed by reconnection between both plasma approximations. We relate these processes by identifying some high-frequency cross-streaming instabilities appearing only in the fully kinetic approach. We characterize the effects of these phenonema such as anisotropic electron heating, beam formation and turbulence under different parameter regimes. And finally, we identify the conditions under which these instabilities tends to become negligible in the fully kinetic model, and thus a comparison with gyrokinetic theory becomes more reliable.
Plume expansion of a laser-induced plasma studied with the particle-in-cell method
NASA Astrophysics Data System (ADS)
Ellegaard, O.; Nedelea, T.; Schou, J.; Urbassek, H. M.
2002-09-01
The initial stage of laser-induced plasma plume expansion from a solid in vacuum and the effect of the Coulomb field have been studied. We have performed a one-dimensional numerical calculation by mapping the charge on a computational grid according to the particle-in-cell (PIC) method of Birdsall et al. It is assumed that the particle ablation from a surface with a fixed temperature takes place as a pulse, i.e. within a finite period of time. A number of characteristic quantities for the plasma plume are compared with similar data for expansion of neutrals as well as fluid models: Density profiles n( x, t), velocity distributions of ions u( x, t), distribution functions for velocities F( vx) of ions or electrons as well as the time dependence of kinetic energy Ekin( t) for both type of particles. We found a significant increase in the velocities of the ions at the expense of field potential energy as well as electron energy. We have estimated the time constant for energy transfer between the electrons and the ions. The scaling of these processes is given by a single parameter determined by the Debye length obtained from the electron density in the plasma outside the surface.
Particle-in-Cell Simulation of a Micro ECR Plasma Thruster
NASA Astrophysics Data System (ADS)
Ueno, Keisuke; Mori, Daisuke; Takao, Yoshinori; Eriguchi, Koji; Ono, Kouichi
2015-09-01
Downsizing spacecrafts has recently been focused on to decrease mission costs and to increase launch rates, and missions with small satellites would bring a great advantage of reducing their risks. Such a concept supports a new approach to developing precise, reliable, and low-cost micropropulsion systems. We have developed a new type of electromagnetic micro plasma thruster using electron cyclotron resonance (ECR) discharges. The microthruster consists of a microwave antenna and a quartz microplasma chamber 4.15 mm in inner diameter surrounded by two permanent magnet rings. The plasma is generated by 4-GHz microwaves of < 10 W with a propellant gas of Xe, where the ions are accelerated through divergent magnetic fields and the resulting ambipolar electric fields generated. To investigate plasma characteristics of the thruster, we simulated the plasma density, electrostatic potential, and ion velocity in the exhaust area by the particle-in-cell (PIC) method with a Monte Carlo calculation for particle collisions, where the electrostatic field and the ion velocity were obtained by solving the Poisson equation and the equation of motion, respectively. The numerical results showed that the ions generated in the plasma are well confined by the applied magnetic fields and diffuse out of the discharge tube, then being accelerated by a potential drop of ~7 V through divergent magnetic fields from < 1000 to > 3000 m/s (< 0 . 7 to > 6 eV) in the axial direction.
NASA Astrophysics Data System (ADS)
Cartwright, Keith
2015-09-01
Numerical error estimation is a key component in verification, validation, and uncertainty quantification. For ParticleIn-Cell (PIC) plasma simulations, error estimation is complicated due to the presence of stochastic noise and multiple convergence parameters (grid size, time step, macro particle weight). In this talk, we will discuss recent developments for the Stochastic Richardson Extrapolation Based Error Quantification method (StREEQ). This method at its core is a multi-regression technique, where nine regression models and multiple bootstrap samples propagate uncertainties due to the fit and the stochasticity of the underlying data for an appropriate error model with unknown convergence rates. Recently, automation of the convergence parameter domain selection has been implemented; this enables efficient error estimation for large data sets, including analysis of multiple quantities of interest and time dependent data. This method is demonstrated for verification of both steady and time-periodic electron diodes, as well as validation of radiation generated plasma in an end-radiated cylinder. In collaboration with Gregg Radtke, Sandia National Laboratories. Sandia National Laboratories is a multi-program laboratory managed and operated by Sandia Corporation, a wholly owned subsidiary of Lockheed Martin Corporation, for the U.S. DOE's National Nuclear Security Administration under Contract DE-AC04-94AL85000.
NASA Astrophysics Data System (ADS)
Lucca Fabris, Andrea; Young, Christopher; Manente, Marco; Pavarin, Daniele; Cappelli, Mark
2014-10-01
This work aims to provide new insight into the physical mechanisms occurring in the discharge channel and acceleration region of a cusped field plasma thruster through a combined experimental and computational approach. Simulations are performed using the 3D particle-in-cell code F3MPIC, comprised of a PIC core coupled with a finite element electrostatic field solver over an unstructured mesh of tetrahedra. The cusped field structure is also included to resolve magnetized particle dynamics. We perform simulations with two ionization schemes: one where constant particle source rates are assigned to certain regions, and a more rigorous approach based on Monte Carlo collision events. The simulation results reveal correlations between the particle density distributions, electrostatic potential, and magnetic field topology inside the thruster discharge channel that are confirmed through experiments. Laser induced fluorescence measurements have resolved xenon ion velocities at several points near the thruster exit plane. Faraday and floating emissive probe measurements indicate this velocity field is correlated with the measured ion beam current profile and electrostatic potential field. This work sponsored by the U.S.A.F. Office of Scientific Research, with Dr. Mitat Birkan as program manager. F3MPIC developed under the European Union FP7 HPH.com project. C.V.Y. acknowledges the DOE NNSA SSGF fellowship under Contract DE-FC52-08NA28752.
Comparing the O+ and H+ Escape Fluxes from Fluid and Particle-in-Cell Solutions of the Polar Wind
NASA Astrophysics Data System (ADS)
Eccles, J. V.; Schunk, R. W.; Barakat, A. R.
2015-12-01
There are different theoretical descriptions of the terrestrial polar wind. Fluid models of mass, momentum, and energy equations can be used to solve the field-aligned flow of H+ and O+ ions from the ionosphere into the earth's magnetosphere. Particle-in-cell (PIC) codes, which include kinetic processes, have also treated polar wind flow between an active ionospheric boundary condition and the outflow boundary into the magnetosphere. In study, we compare the O+ and H+ escape fluxes from the USU Ionosphere-Plasmasphere Model (IPM) [Schunk et al., 2003] with the escape fluxes from the macroscopic PIC solution of the Generalized Polar Wind (GPW) Model of Barakat and Schunk [2006]. The IPM model results at 1500km are used to supply the time-varying boundary conditions to the GPW model. The escape flux comparisons will be made at the 2.5 Re, which is a typical boundary condition radius for fluxes into MHD magnetosphere models. Classical fluid codes generate escape fluxes driven by the pressure gradients in the ionosphere, while the PIC code has additional energization processes for the polar wind fluxes. Differencing the two escape flux solutions at 2.5 Re will quantify the importance of the additional energization processes within the PIC GPW model. We will make the comparisons of escape fluxes using the model results of 4 different storm periods: an idealized storm period, April 5-8, 2000, 2002 September 27 to October 4, and 2002 October 22-29. These storm periods were chosen for the collaborative studies of the Outflow Measuring Modeling, and Merging GEM focus group. Barakat, A. R. and R. W. Schunk (2006), A three-dimensional model of the generalized polar wind, J. Geophys. Res., 111, A12314, doi:10.1029/2006JA011662. Schunk, R. W., J. V. Eccles, J. J. Sojka, D. C. Thompson, and L. Zhu (2003), Assimilation Ionosphere Model (AIM), Final report, Space Environment Corporation, Providence, Utah.
Particle-in-cell study of the ion-to-electron sheath transition
NASA Astrophysics Data System (ADS)
Scheiner, Brett; Baalrud, Scott D.; Hopkins, Matthew M.; Yee, Benjamin T.; Barnat, Edward V.
2016-08-01
The form of a sheath near a small electrode, with bias changing from below to above the plasma potential, is studied using 2D particle-in-cell simulations. When the electrode is biased within Te/2 e below the plasma potential, the electron velocity distribution functions (EVDFs) exhibit a loss-cone type truncation due to fast electrons overcoming the small potential difference between the electrode and plasma. No sheath is present in this regime, and the plasma remains quasineutral up to the electrode. The EVDF truncation leads to a presheath-like density and flow velocity gradients. Once the bias exceeds the plasma potential, an electron sheath is present. In this case, the truncation driven behavior persists, but is accompanied by a shift in the maximum value of the EVDF that is not present in the negative bias cases. The flow moment has significant contributions from both the flow shift of the EVDF maximum, and the loss-cone truncation.
Masson-Laborde, P. E.; Casanova, M.; Loiseau, P.; Rozmus, W.; Peng, Z.; Pesme, D.; Hueller, S.; Chapman, T.; Bychenkov, V. Yu.
2010-09-15
In the following work, we analyze one-dimensional (1D) and two-dimensional (2D) full particle-in-cell simulations of stimulated Raman scattering (SRS) and study the evolution of Langmuir waves (LWs) in the kinetic regime. It is found that SRS reflectivity becomes random due to a nonlinear frequency shift and that the transverse modulations of LWs are induced by (i) the Weibel instability due to the current of trapped particles and (ii) the trapped particle modulational instability (TPMI) [H. Rose, Phys. Plasmas 12, 12318 (2005)]. Comparisons between 1D and 2D cases indicate that the nonlinear frequency shift is responsible for the first saturation of SRS. After this transient interval of first saturation, 2D effects become important: a strong side-scattering of the light, caused by these transverse modulations of the LW and the presence of a nonlinear frequency shift, is observed together with a strong transverse diffusion. This leads to an increase of the Landau damping rate of the LW, contributing to the limiting of Raman backscattering. A model is developed that reproduces the transverse evolution of the magnetic field due to trapped particles. Based on a simple 1D hydrodynamic model, the growth rate for the Weibel instability of the transverse electrostatic mode and magnetic field is estimated and found to be close to the TPMI growth rate [H. Rose et al., Phys. Plasmas 15, 042311 (2008)].
NASA Astrophysics Data System (ADS)
Majzoobi, Alireza
The first magnetron as a vacuum-tube device, capable of generating microwaves, was invented in 1913. This thesis research focuses on numerical simulation-based analysis of magnetron performance. The particle-in-cell (PIC) based MAGIC software tool has been utilized to study the A6 and the Rising-Sun magnetron structures, and to obtain the optimized geometry for optimizing the device performance. The A6 magnetron is the more traditional structure and has been studied more often. The Rising-Sun geometry, consists of two alternating groups of short and long vanes in angular orientation, and was created to achieve mode stability. The effect of endcaps, changes in lengths of the cathode, the location of cathodes with respect to the anode block, and use of transparent cathodes have been probed to gauge the performance of the A6 magnetron with diffraction output. The simulations have been carried out with different types of endcaps. The results of this thesis research demonstrate peak output power in excess of 1GW, with efficiencies on the order of 66% for magnetic (B)-fields in the range of 0.4T - 0.42T. In addition, particle-in-cell simulations have been performed to provide a numerical evaluation of the efficiency, output power and leakage currents for a 12-cavitiy, Rising-Sun magnetron with diffraction output with transparent cathodes. The results demonstrate peak output power in excess of 2GW, with efficiencies on the order of 68% for B-fields in the 0.42T - 0.46T range. While slightly better performance for longer cathode length has been recorded. The results show the efficiency in excess of 70% and peak output power on the order of 2.1GW for an 18 cm cathode length at 0.45T magnetic field and 400 kV applied voltage. All results of this thesis conform to the definite advantage of having endcaps. Furthermore, the role of secondary electron emission (SEE) on the output performance of the12-cavity, 12-cathodes Rising-Sun magnetron has been probed. The results indicate
PIC: Protein Interactions Calculator.
Tina, K G; Bhadra, R; Srinivasan, N
2007-07-01
Interactions within a protein structure and interactions between proteins in an assembly are essential considerations in understanding molecular basis of stability and functions of proteins and their complexes. There are several weak and strong interactions that render stability to a protein structure or an assembly. Protein Interactions Calculator (PIC) is a server which, given the coordinate set of 3D structure of a protein or an assembly, computes various interactions such as disulphide bonds, interactions between hydrophobic residues, ionic interactions, hydrogen bonds, aromatic-aromatic interactions, aromatic-sulphur interactions and cation-pi interactions within a protein or between proteins in a complex. Interactions are calculated on the basis of standard, published criteria. The identified interactions between residues can be visualized using a RasMol and Jmol interface. The advantage with PIC server is the easy availability of inter-residue interaction calculations in a single site. It also determines the accessible surface area and residue-depth, which is the distance of a residue from the surface of the protein. User can also recognize specific kind of interactions, such as apolar-apolar residue interactions or ionic interactions, that are formed between buried or exposed residues or near the surface or deep inside. PMID:17584791
NASA Astrophysics Data System (ADS)
Sewell, Stephen
This thesis introduces a software framework that effectively utilizes low-cost commercially available Graphic Processing Units (GPUs) to simulate complex scientific plasma phenomena that are modeled using the Particle-In-Cell (PIC) paradigm. The software framework that was developed conforms to the Compute Unified Device Architecture (CUDA), a standard for general purpose graphic processing that was introduced by NVIDIA Corporation. This framework has been verified for correctness and applied to advance the state of understanding of the electromagnetic aspects of the development of the Aurora Borealis and Aurora Australis. For each phase of the PIC methodology, this research has identified one or more methods to exploit the problem's natural parallelism and effectively map it for execution on the graphic processing unit and its host processor. The sources of overhead that can reduce the effectiveness of parallelization for each of these methods have also been identified. One of the novel aspects of this research was the utilization of particle sorting during the grid interpolation phase. The final representation resulted in simulations that executed about 38 times faster than simulations that were run on a single-core general-purpose processing system. The scalability of this framework to larger problem sizes and future generation systems has also been investigated.
NASA Astrophysics Data System (ADS)
Rossi, Francesco; Londrillo, Pasquale; Sgattoni, Andrea; Sinigardi, Stefano; Turchetti, Giorgio
2012-12-01
We present `jasmine', an implementation of a fully relativistic, 3D, electromagnetic Particle-In-Cell (PIC) code, capable of running simulations in various laser plasma acceleration regimes on Graphics-Processing-Units (GPUs) HPC clusters. Standard energy/charge preserving FDTD-based algorithms have been implemented using double precision and quadratic (or arbitrary sized) shape functions for the particle weighting. When porting a PIC scheme to the GPU architecture (or, in general, a shared memory environment), the particle-to-grid operations (e.g. the evaluation of the current density) require special care to avoid memory inconsistencies and conflicts. Here we present a robust implementation of this operation that is efficient for any number of particles per cell and particle shape function order. Our algorithm exploits the exposed GPU memory hierarchy and avoids the use of atomic operations, which can hurt performance especially when many particles lay on the same cell. We show the code multi-GPU scalability results and present a dynamic load-balancing algorithm. The code is written using a python-based C++ meta-programming technique which translates in a high level of modularity and allows for easy performance tuning and simple extension of the core algorithms to various simulation schemes.
Wang, Liang Germaschewski, K.; Hakim, Ammar H.; Bhattacharjee, A.
2015-01-15
We introduce an extensible multi-fluid moment model in the context of collisionless magnetic reconnection. This model evolves full Maxwell equations and simultaneously moments of the Vlasov-Maxwell equation for each species in the plasma. Effects like electron inertia and pressure gradient are self-consistently embedded in the resulting multi-fluid moment equations, without the need to explicitly solving a generalized Ohm's law. Two limits of the multi-fluid moment model are discussed, namely, the five-moment limit that evolves a scalar pressures for each species and the ten-moment limit that evolves the full anisotropic, non-gyrotropic pressure tensor for each species. We first demonstrate analytically and numerically that the five-moment model reduces to the widely used Hall magnetohydrodynamics (Hall MHD) model under the assumptions of vanishing electron inertia, infinite speed of light, and quasi-neutrality. Then, we compare ten-moment and fully kinetic particle-in-cell (PIC) simulations of a large scale Harris sheet reconnection problem, where the ten-moment equations are closed with a local linear collisionless approximation for the heat flux. The ten-moment simulation gives reasonable agreement with the PIC results regarding the structures and magnitudes of the electron flows, the polarities and magnitudes of elements of the electron pressure tensor, and the decomposition of the generalized Ohm's law. Possible ways to improve the simple local closure towards a nonlocal fully three-dimensional closure are also discussed.
NASA Astrophysics Data System (ADS)
Gudmundsson, J. T.; Lieberman, M. A.; Wang, Ying; Verboncoeur, J. P.
2009-10-01
The oopd1 particle-in-cell Monte Carlo (PIC-MC) code is used to simulate a capacitively coupled discharge in oxygen. oopd1 is a one-dimensional object-oriented PIC-MC code [1] in which the model system has one spatial dimension and three velocity components. It contains models for planar, cylindrical, and spherical geometries and replaces the XPDx1 series [2], which is not object-oriented. The revised oxygen model includes, in addition to electrons, the oxygen molecule in ground state, the oxygen atom in ground state, the negative ion O^-, and the positive ions O^+ and O2^+. The cross sections for the collisions among the oxygen species have been significantly revised from earlier work using the xpdp1 code [3]. Here we explore the electron energy distribution function (EEDF), the ion energy distribution function (IEDF) and the density profiles for various pressures and driving frequencies. In particular we investigate the influence of the O^+ ion on the IEDF, we explore the influence of multiple driving frequencies, and we do comparisons to the previous xpdx1 codes. [1] J. P. Verboncoeur, A. B. Langdon, and N. T. Gladd, Comp. Phys. Comm. 87 (1995) 199 [2] J. P. Verboncoeur, M. V. Alves, V. Vahedi, and C. K. Birdsall, J. Comp. Physics 104 (1993) 321 [2] V. Vahedi and M. Surendra, Comp. Phys. Comm. 87 (1995) 179
NASA Astrophysics Data System (ADS)
Wang, Liang; Hakim, Ammar H.; Bhattacharjee, A.; Germaschewski, K.
2015-01-01
We introduce an extensible multi-fluid moment model in the context of collisionless magnetic reconnection. This model evolves full Maxwell equations and simultaneously moments of the Vlasov-Maxwell equation for each species in the plasma. Effects like electron inertia and pressure gradient are self-consistently embedded in the resulting multi-fluid moment equations, without the need to explicitly solving a generalized Ohm's law. Two limits of the multi-fluid moment model are discussed, namely, the five-moment limit that evolves a scalar pressures for each species and the ten-moment limit that evolves the full anisotropic, non-gyrotropic pressure tensor for each species. We first demonstrate analytically and numerically that the five-moment model reduces to the widely used Hall magnetohydrodynamics (Hall MHD) model under the assumptions of vanishing electron inertia, infinite speed of light, and quasi-neutrality. Then, we compare ten-moment and fully kinetic particle-in-cell (PIC) simulations of a large scale Harris sheet reconnection problem, where the ten-moment equations are closed with a local linear collisionless approximation for the heat flux. The ten-moment simulation gives reasonable agreement with the PIC results regarding the structures and magnitudes of the electron flows, the polarities and magnitudes of elements of the electron pressure tensor, and the decomposition of the generalized Ohm's law. Possible ways to improve the simple local closure towards a nonlocal fully three-dimensional closure are also discussed.
Fully 3D Particle-in-Cell Simulation of Double Post-Hole Convolute on PTS Facility
NASA Astrophysics Data System (ADS)
Zhao, Hailong; Dong, Ye; Zhou, Haijing; Zou, Wenkang; Institute of Fluid Physics Collaboration; Institute of Applied Physics; Computational Mathematics Collaboration
2015-11-01
In order to get better understand of energy transforming and converging process during High Energy Density Physics (HEDP) experiments, fully 3D particle-in-cell (PIC) simulation code NEPTUNE3D was used to provide numerical approach towards parameters which could hardly be acquired through diagnostics. Cubic region (34cm × 34cm × 18cm) including the double post-hole convolute (DPHC) on the primary test stand (PTS) facility was chosen to perform a series of fully 3D PIC simulations, calculating ability of codes were tested and preliminary simulation results about DPHC on PTS facility were discussed. Taking advantages of 3D simulation codes and large-scale parallel computation, massive data (~ 250GB) could be acquired in less than 5 hours and clear process of current transforming and electron emission in DPHC were demonstrated with the help of visualization tools. Cold-chamber tests were performed during which only cathode electron emission was considered without temperature rise or ion emission, current loss efficiency was estimated to be 0.46% ~ 0.48% by comparisons between output magnetic field profiles with or without electron emission. Project supported by the National Natural Science Foundation of China (Grant No. 11205145, 11305015, 11475155).
NASA Astrophysics Data System (ADS)
Wang, Yue; Wang, Jianguo; Chen, Zaigao; Cheng, Guoxin; Wang, Pan
2016-08-01
To overcome the staircase error in the traditional particle-in-cell (PIC) method, a three dimensional (3D) simple conformal (SC) symplectic PIC method is presented in this paper. The SC symplectic finite integration technique (FIT) scheme is used to advance the electromagnetic fields without reduction of the time step. Particles are emitted from conformal boundaries with the charge conserving emission scheme and moved by using the relativistic Newton-Lorentz force equation. The symplectic formulas of auxiliary-differential equation, complex frequency shifted perfectly matched layer (ADE-CFS-PML) are given for truncating the open boundaries, numerical results show that the maximum relative error of truncation is less than 90 dB. Based on the surface equivalence theorem, the computing algorithms of conformal signals' injection are given, numerical results show that the algorithms can give the right mode patterns and the errors of cutoff frequencies could be as low as 0.1%. To verify the conformal algorithms, a magnetically insulated line oscillator is simulated, and the results are compared to those provided by using the 2.5D UNIPIC code, which show that they agree well. The results also show that the high order symplectic integration method can suppress the numerical Cherenkov radiation.
3D PIC Modeling of Microcavity Discharge
NASA Astrophysics Data System (ADS)
Hopkins, Matthew; Manginell, Ronald; Moore, Christopher; Yee, Benjamin; Moorman, Matthew
2015-09-01
We present a number of techniques and challenges in simulating the transient behavior of a microcavity discharge. Our microcavities are typically cylindrical with diameters approximately 50 - 100 μm, heights of 50 - 200 μm, pressure near atmospheric, and operate at a few hundred volts. We employ a fully kinetic simulation methodology, the Particle-in-Cell (PIC) method, with interparticle collisions handled via methods based on direct simulation Monte Carlo (DSMC). In particular, we explicitly include kinetic electrons. Some of the challenges we encounter include variations in number densities, external circuit coupling, and time step resolution constraints. By employing dynamic particle weighting (particle weights vary over time by species and location) we can mitigate some of the challenges modeling systems with 107 variations in number densities. Smoothing mechanisms have been used to attempt to mitigate external circuit response. We perform our simulations on hundreds or thousands of processing cores to accommodate the computational work inherent in using relatively small time step sizes (e.g., 50 fs for a 100 ns calculation). In addition, particle weighting issues inherent to three-dimensional low temperature plasma systems will be mentioned. Sandia National Laboratories is a multi-program laboratory managed and operated by Sandia Corporation, a wholly owned subsidiary of Lockheed Martin Corporation, for the U.S. Department of Energy's NNSA under Contract DE-AC04-94AL85000.
Vay, J.-L.; Adam, J.-C.; Heron, A.
2003-09-24
We present an extension of the Berenger Perfectly Matched Layer with additional terms and tunable coefficients which introduce some asymmetry in the absorption rate. We show that the discretized version of the new PML offers superior absorption rates than the discretized standard PML under a plane wave analysis. Taking advantage of the high rates of absorption of the new PML, we have devised a new strategy for introducing the technique of Mesh Refinement into electromagnetic Particle-In-Cell plasma simulations. We present the details of the algorithm as well as a 2-D example of its application to laser-plasma interaction in the context of fast ignition.
Gibbons, M.R.
1995-06-01
This dissertation describes a new algorithm for simulating low frequency, kinetic phenomena in plasmas. DArwin Direct Implicit Particle-in-Cell (DADIPIC), as its name implies, is a combination of the Darwin and direct implicit methods. One of the difficulties in simulating plasmas lies in the enormous disparity between the fundamental scale lengths of a plasma and the scale lengths of the phenomena of interest. The objective is to create models which can ignore the fundamental constraints without eliminating relevant plasma properties. Over the past twenty years several PIC methods have been investigated for overcoming the constraints on explicit electrodynamic PIC. These models eliminate selected high frequency plasma phenomena while retaining kinetic phenomena at low frequency. This dissertation shows that the combination of Darwin and Direct Implicit allows them to operate better than they have been shown to operate in the past. Through the Darwin method the hyperbolic Maxwell`s equations are reformulated into a set of elliptic equations. Propagating light waves do not exist in the formulation so the Courant constraint on the time step is eliminated. The Direct Implicit method is applied only to the electrostatic field with the result that electrostatic plasma oscillations do not have to be resolved for stability. With the elimination of these constraints spatial and temporal discretization can be much larger than that possible with explicit, electrodynamic PIC. The code functions in a two dimensional Cartesian region and has been implemented with all components of the particle velocities, the E-field, and the B-field. Internal structures, conductors or dielectrics, may be placed in the simulation region, can be set at desired potentials, and driven with specified currents.
NASA Astrophysics Data System (ADS)
Daldorff, Lars K. S.; Tóth, Gábor; Gombosi, Tamas I.; Lapenta, Giovanni; Amaya, Jorge; Markidis, Stefano; Brackbill, Jeremiah U.
2014-07-01
Computational models based on a fluid description of the plasma, such as magnetohydrodynamic (MHD) and extended magnetohydrodynamic (XMHD) codes are highly efficient, but they miss the kinetic effects due to the assumptions of small gyro radius, charge neutrality, and Maxwellian thermal velocity distribution. Kinetic codes can properly take into account the kinetic effects, but they are orders of magnitude more expensive than the fluid codes due to the increased degrees of freedom. If the fluid description is acceptable in a large fraction of the computational domain, it makes sense to confine the kinetic model to the regions where kinetic effects are important. This coupled approach can be much more efficient than a pure kinetic model. The speed up is approximately the volume ratio of the full domain relative to the kinetic regions assuming that the kinetic code uses a uniform grid. This idea has been advocated by [1] but their coupling was limited to one dimension and they employed drastically different grid resolutions in the fluid and kinetic models. We describe a fully two-dimensional two-way coupling of a Hall MHD model BATS-R-US with an implicit Particle-in-Cell (PIC) model iPIC3D. The coupling can be performed with identical grid resolutions and time steps. We call this coupled computational plasma model MHD-EPIC (MHD with Embedded PIC regions). Our verification tests show that MHD-EPIC works accurately and robustly. We show a two-dimensional magnetosphere simulation as an illustration of the potential future applications of MHD-EPIC.
Strozzi, D. J.; Tabak, M.; Larson, D. J.; Divol, L.; Kemp, A. J.; Bellei, C.; Marinak, M. M.; Key, M. H.
2012-07-15
Transport modeling of idealized, cone-guided fast ignition targets indicates the severe challenge posed by fast-electron source divergence. The hybrid particle-in-cell (PIC) code Zuma is run in tandem with the radiation-hydrodynamics code Hydra to model fast-electron propagation, fuel heating, and thermonuclear burn. The fast electron source is based on a 3D explicit-PIC laser-plasma simulation with the PSC code. This shows a quasi two-temperature energy spectrum and a divergent angle spectrum (average velocity-space polar angle of 52 Degree-Sign ). Transport simulations with the PIC-based divergence do not ignite for >1 MJ of fast-electron energy, for a modest (70 {mu}m) standoff distance from fast-electron injection to the dense fuel. However, artificially collimating the source gives an ignition energy of 132 kJ. To mitigate the divergence, we consider imposed axial magnetic fields. Uniform fields {approx}50 MG are sufficient to recover the artificially collimated ignition energy. Experiments at the Omega laser facility have generated fields of this magnitude by imploding a capsule in seed fields of 50-100 kG. Such imploded fields will likely be more compressed in the transport region than in the laser absorption region. When fast electrons encounter increasing field strength, magnetic mirroring can reflect a substantial fraction of them and reduce coupling to the fuel. A hollow magnetic pipe, which peaks at a finite radius, is presented as one field configuration which circumvents mirroring.
NASA Astrophysics Data System (ADS)
Deca, Jan; Divin, Andrey; Lapenta, Giovanni; Lembège, Bertrand; Markidis, Stefano; Horányi, Mihály
2014-05-01
We present the first three-dimensional fully kinetic and electromagnetic simulations of the solar wind interaction with lunar crustal magnetic anomalies (LMAs). Using the implicit particle-in-cell code iPic3D, we confirm that LMAs may indeed be strong enough to stand off the solar wind from directly impacting the lunar surface forming a mini-magnetosphere, as suggested by spacecraft observations and theory. In contrast to earlier MHD and hybrid simulations, the fully kinetic nature of iPic3D allows to investigate the space charge effects and in particular the electron dynamics dominating the near-surface lunar plasma environment. We describe the general picture of the interaction of a dipole model centred just below the lunar surface under various solar wind and plasma conditions and focus on the kinetic effects. It is shown that the configuration is dominated by electron motion, because the LMA scale size is small with respect to the gyroradius of the solar wind ions. Driven by strong pressure anisotropies, the mini-magnetosphere is also unstable over time, leading to only temporal shielding of the surface underneath. Our work opens new frontiers of research toward a deeper understanding of LMAs and is ideally suited to be compared with field or particle observations from spacecraft such as Kaguya (SELENE), Lunar Prospector or ARTEMIS. The ability to evaluate the implications for future lunar exploration as well as lunar science in general hinges on a better understanding of LMAs. This research has received funding from the European Commission's FP7 Program with the grant agreement SWIFF (project 2633430, swiff.eu) and EHEROES (project 284461, www.eheroes.eu). The simulations were conducted on the computational resources provided by the PRACE Tier-0 project 2011050747 (Curie supercomputer). This research was supported by the Swedish National Space Board, Grant No. 136/11. JD has received support through the HPC-Europa2 visitor programme (project HPC08SSG85) and
A split control variate scheme for PIC simulations with collisions
NASA Astrophysics Data System (ADS)
Sonnendrücker, Eric; Wacher, Abigail; Hatzky, Roman; Kleiber, Ralf
2015-08-01
When the distribution function of plasma particles stays close to some analytically known function, statistical noise inherent to Monte Carlo simulations can be greatly reduced by introducing this function as a control variate in the computation of the velocity moments. Such a method, even though it can be naturally applied to nonlinear simulations, has originally emerged from linearised simulations and is usually called the δf particle-in-cell (PIC) method. In the past, the method has been extended to also handle collisions. This resulted in a two weight scheme which is known to produce a pronounced weight growth problem which rapidly makes it inefficient as a control variate method for variance reduction. In this work we analyse the weight growth problem within a simple example, which allows us to overcome its pathological behaviour. We also introduce a new split algorithm based on switching the control variate for PIC simulations with collisions. A key element of our algorithm is a new weight smoothing operator which enables us to obtain a significant noise reduction both in the presence of collisions and in the deep nonlinear phase of PIC simulations.
Oblique electron fire hose instability: Particle-in-cell simulations
NASA Astrophysics Data System (ADS)
Hellinger, Petr; Trávníček, Pavel M.; Decyk, Victor K.; Schriver, David
2014-01-01
Nonlinear properties of the oblique resonant electron fire hose instability are investigated using two-dimensional particle-in-cell simulations in the Darwin approximation for weak initial growth rates. The weak electron fire hose instability has a self-destructive nonlinear behavior; it destabilizes a nonpropagating branch which only exists for a sufficiently strong temperature anisotropy. The nonlinear evolution leads to generation of nonpropagating waves which in turn scatter electrons and reduce their temperature anisotropy. As the temperature anisotropy is being reduced, the nonpropagating branch disappears and the generated standing waves are transformed to propagating whistler waves which are rapidly damped. Consequently, the oblique electron fire hose efficiently reduces the electron temperature anisotropy.
NASA Astrophysics Data System (ADS)
Tsiklauri, D.; Thurgood, J. O.
2015-12-01
first co-author Jonathan O. Thurgood (QMUL) The simulation of three-wave interaction based plasma emission, an underlying mechanism for type III solar radio bursts, is a challenging task requiring fully-kinetic, multi-dimensional models. This paper aims to resolve a contradiction in past attempts, whereby some authors report that no such processes occur and others draw conflicting conclusions, by using 2D, fully kinetic, particle-in-cell simulations of relaxing electron beams. Here we present the results of particle-in-cell simulations which for different physical parameters permit or prohibit the plasma emission. We show that the possibility of plasma emission is contingent upon the frequency of the initial electrostatic waves generated by the bump-in-tail instability, and that these waves may be prohibited from participating in the necessary three-wave interactions due to the frequency beat requirements. We caution against simulating astrophysical radio bursts using unrealistically dense beams (a common approach which reduces run time), as the resulting non-Langmuir characteristics of the initial wave modes significantly suppresses the emission. Comparison of our results indicates that, contrary to the suggestions of previous authors, a plasma emission mechanism based on two counter-propagating beams is unnecessary in astrophysical context. Finally, we also consider the action of the Weibel instability, which generates an electromagnetic beam mode. As this provides a stronger contribution to electromagnetic energy than the emission, we stress that evidence of plasma emission in simulations must disentangle the two contributions and not simply interpret changes in total electromagnetic energy as the evidence of plasma emission. In summary, we present the first self-consistent demonstration of fundamental and harmonic plasma emission from a single-beam system via fully kinetic numerical simulation. Pre-print can be found at http://astro.qmul.ac.uk/~tsiklauri/jtdt1
Colliding Two Shocks: 1-D full Particle-in-Cell Simulation
NASA Astrophysics Data System (ADS)
Nakanotani, Masaru; Hada, T.; Matsukiyo, Shuichi; Mazelle, Christian
2016-07-01
Shock-shock interactions occur on various places in space and the interaction can produce high energy particles. A coronal mass ejection driven shock can collide with the Earth's bow shock [Hietala et al., 2011]. This study reported that ions are accelerated by the first Fermi acceleration between the two shocks before the collision. An electron acceleration through an interplanetary shock-Earth's bow shock interaction was also reported [Terasawa et al., 1997]. Shock-shock interactions can occur in astrophysical phenomena as well as in the heliosphere. For example, a young supernova shock can collide with the wind termination shock of a massive star if they are close to each other [Bykov et al., 2013]. Although hybrid simulations (ions and electrons treated as super-particles and mass-less fluid, respectively) were carried out to understand the kinetic nature of a shock-shock interaction [Cargill et al., 1986], hybrid simulations cannot resolve electron dynamics and non-thermal electrons. We, therefore, use one-dimensional full particle-in-cell (PIC) simulations to investigate a shock-shock interaction in which two shocks collide head-on. In a case of quasi-perpendicular shocks, electrons are accelerated by the mirror reflection between the two shocks before the collision (Fermi acceleration). On the other hand, because ions cannot go back upstream, the electron acceleration mechanism does not occur for ions. In a case of quasi-parallel shocks, ions can go back upstream and are accelerated at the shocks. The accelerated ions have great effect on the shock structure.
Lagrangian MHD Particle-in-Cell simulations of coronal interplanetary shocks driven by observations
NASA Astrophysics Data System (ADS)
Lapenta, Giovanni; Bacchini, Fabio; Bemporad, Alessandro; Susino, Roberto; Olshevskyi, Vyacheslav
2016-04-01
In this work, we compare the spatial distribution of the plasma parameters along the June 11, 1999 CME-driven shock front with the results obtained from a CME-like event simulated with the FLIPMHD3D code, based on the FLIP-MHD Particle-in-Cell (PiC) method. The observational data are retrieved from the combination of white-light (WL) coronagraphic data (for the upstream values) and the application of the Rankine-Hugoniot (RH) equations (for the downstream values). The comparison shows a higher compression ratio X and Alfvénic Mach number MA at the shock nose, and a stronger magnetic field deflection d towards the flanks, in agreement with observations. Then, we compare the spatial distribution of MA with the profiles obtained from the solutions of the shock adiabatic equation relating MA, X, and the angle between the upstream magnetic field and the shock front normal for the special cases of parallel and perpendicular shock, and with a semi-empirical expression for a generically oblique shock. The semi-empirical curve approximates the actual values of MA very well, if the effects of a non-negligible shock thickness and plasma-to magnetic pressure ratio are taken into account throughout the computation. Moreover, the simulated shock turns out to be supercritical at the nose and sub-critical at the flanks. Finally, we develop a new 1D Lagrangian ideal MHD method based on the GrAALE code, to simulate the ion-electron temperature decoupling due to the shock transit. Two models are used, a simple solar wind model and a variable-gamma model. Both produce results in agreement with observations, the second one being capable of introducing the physics responsible for the additional electron heating due to secondary effects (collisions, Alfvén waves, etc.). Work supported by the European Commission under the SWIFF project (swiff.eu)
NASA Astrophysics Data System (ADS)
Vu, H. X.; Bezzerides, B.; Dubois, D. F.
1998-11-01
A fully kinetic, reduced-description particle-in-cell (RPIC) model is presented in which deviations from quasineutrality, electron and ion kinetic effects, and nonlinear interactions between low-frequency and high-frequency parametric instabilities are modeled correctly. The model is based on a reduced description where the electromagnetic field is represented by three separate temporal WKB envelopes in order to model low-frequency and high-frequency parametric instabilities. Because temporal WKB approximations are invoked, the simulation can be performed on the electron time scale instead of the time scale of the light waves. The electrons and ions are represented by discrete finite-size particles, permitting electron and ion kinetic effects to be modeled properly. The Poisson equation is utilized to ensure that space-charge effects are included. Although RPIC is fully three dimensional, it has been implemented in only two dimensions on a CRAY-T3D with 512 processors and on the Accelerated Strategic Computing Initiative (ASCI) parallel computer at Los Alamos National Laboratory, and the resulting simulation code has been named ASPEN. Given the current computers available to the authors, one and two dimensional simulations are feasible to, and have been, performed. Three dimensional simulations are much more expensive, and are not feasible at this time. However, with rapidly advancing computer technologies, three dimensional simulations may be feasible in the near future. We believe this code is the first PIC code capable of simulating the interaction between low-frequency and high-frequency parametric instabilites in multiple dimensions. Test simulations of stimulated Raman scattering (SRS), stimulated Brillouin scattering (SBS), and Langmuir decay instability (LDI), are presented.
Particle-in-cell Simulations with Charge-Conserving Current Deposition on Graphic Processing Units
NASA Astrophysics Data System (ADS)
Kong, Xianglong; Huang, Michael; Ren, Chuang; Decyk, Viktor
2010-11-01
We present an implementation of a fully relativistic, electromagnetic PIC code, with charge-conserving current deposition, on graphics processing units (GPUs) with NVIDIA's massively multithreaded computing architecture CUDA. A particle-based computation thread assignment was used in the current deposition scheme and write conflicts among the threads were resolved by a thread racing technique. A parallel particle sorting scheme was also developed and used. The implementation took advantage of fast on-chip shared memory. The 2D implementation achieved a one particle-step process time of 2.28 ns for cold plasma runs and 8.53 ns for extremely relativistic plasma runs on a GTX 280 graphic card, which were respectively 90 and 29 times faster than a single threaded state-of-art CPU code. A comparable speedup was also achieved for the 3D implementation.
3-D Particl-in-Cell Simulations of Transport Driven Currents
NASA Astrophysics Data System (ADS)
Tsung, F. S.; Dawson, J. M.
1997-11-01
In the advanced tokamak regime, transport phenomena can account for a signficant fraction of the toroidal current, possibly over that driven directly by the ohmic heating electric fields. Although bootstrap theory accounts for contributions of the collisional modification of banana orbits on the toroidal currents, the corresponding transport theory does not accurately predict the transport of particles and heat in present-day tokamak experiments. Furthermore, in our previous simulations in 21/2-D, currents were spontaneously generated in both the cylindrical and the toroidal geometries, contrary to neoclassical predictions. In these calculations, it was believed that the driving mechanism is the preferential loss of particles whose initial velocity is opposite to that of the plasma current. Because the preferential loss mechanism assumes the conservation of toroidal angular momentum, we have extended these simulations to three dimensions to study the effects of toroidal assymetries. A parallel, 3-D electromagnetic PIC code running on the IBM SP, with a localized field-solver has been developed to investigate the effects of perturbations parallel to the field lines, and direct comparisons has been made between the 21/2-D and 3-D simulations, and we have found good agreements between the 2 1/2-D calculations and the 3-D results. We will present these results at the meeting.
FLIP MHD - A particle-in-cell method for magnetohydrodynamics
NASA Technical Reports Server (NTRS)
Brackbill, J. U.
1991-01-01
The fluid-implicit-particle, or 'FLIP' method presently extended to 2D and 3D MHD flow incorporates a Lagrangian field representation and yields a grid magnetic Reynolds number of up to 16 while preserving contact continuities that retain the Galilean invariance of the MHD flow equations. Analytical arguments and numerical examples demonstrate the conservation of mass, momentum, magnetic flux, and energy; 2D calculation results for the illustrative cases of contact discontinuity convection, Rayleigh-Taylor unstable flow.
Particle-in-cell simulations for fast ignition
NASA Astrophysics Data System (ADS)
Ren, C.; Tonge, J.; Li, G.; Fiuza, F.; Fonseca, R. A.; May, J.; Mori, W. B.; Silva, L. O.; Wang, T. L.; Yan, R.
2008-07-01
The hole-boring scheme in fast ignition is studied via largee-scale, two-dimensional particle-in-cell simulations in two steps. First, laser channeling in millimeter-scale underdense plasmas is simulated. The results show a highly nonlinear and dynamic process involving longitudinal plasma buildup, laser hosing, channel bifurcation and self-correction, and electron heating to relativistic temperatures. The channeling speed is much less than the linear group velocity of the laser. Low-intensity channeling pulses are preferred to minimize the required laser energy. The channel is also shown to significantly increase the transmission of an ignition pulse. In the second step, the interactions of the ignition pulse and a hundred-critical-density plasma are simulated to study hot electron generation and transport. The results show that at ultra-high intensities, I > 5 × 1019W/cm2, most of the electrons transporting energy through 50μm of 100 times critical density plasma are in a relatively low energy range. The fraction of laser power that transits the dense plasma and is deposited into a dense core increases with laser intensity. Overall these results show the promise of using ultra-high-intensity ignition pulses in the hole-boring scheme.
Particle-in-cell Simulation of Langmuir Probes
NASA Astrophysics Data System (ADS)
Iza, Felipe
2005-10-01
Ion kinetics in the sheath and pre-sheath of planar and cylindrical probes has been studied by means of 1-dimensional (1d3v) particle-in-cell Monte Carlo collision simulations. Collisionless and collisional regimes are considered and simulation results (floating potentials and the ion saturation currents) are compared with available theories. As pressure increases, the ion velocity at the sheath edge decreases below the Bohm velocity (uB). For planar probes, this velocity is ˜ uB(1+5λDe/λi) where λDe is the Debye length at the sheath edge and λi the ion mean free path. Although ionization can be neglected in the sheath region, it plays a key role in determining the voltage across the presheath. For planar probes and Maxwellian electrons, this voltage increases rapidly for electron temperatures below ˜2eV. For cylindrical probes, however, the voltage across the presheath can be drastically reduced by the geometrical increase of current density as ions approach the probe. At low pressure, simulation results lie between the Laframboise and the ABR theories. As pressure increases, however, collisions and ionization in the presheath becomes critical in determining the ion flux to the probe at a given bias voltage.
Second order gyrokinetic theory for particle-in-cell codes
NASA Astrophysics Data System (ADS)
Tronko, Natalia; Bottino, Alberto; Sonnendrücker, Eric
2016-08-01
The main idea of the gyrokinetic dynamical reduction consists in a systematical removal of the fast scale motion (the gyromotion) from the dynamics of the plasma, resulting in a considerable simplification and a significant gain of computational time. The gyrokinetic Maxwell-Vlasov equations are nowadays implemented in for modeling (both laboratory and astrophysical) strongly magnetized plasmas. Different versions of the reduced set of equations exist, depending on the construction of the gyrokinetic reduction procedure and the approximations performed in the derivation. The purpose of this article is to explicitly show the connection between the general second order gyrokinetic Maxwell-Vlasov system issued from the modern gyrokinetic theory and the model currently implemented in the global electromagnetic Particle-in-Cell code ORB5. Necessary information about the modern gyrokinetic formalism is given together with the consistent derivation of the gyrokinetic Maxwell-Vlasov equations from first principles. The variational formulation of the dynamics is used to obtain the corresponding energy conservation law, which in turn is used for the verification of energy conservation diagnostics currently implemented in ORB5. This work fits within the context of the code verification project VeriGyro currently run at IPP Max-Planck Institut in collaboration with others European institutions.
PIC Simulations of Hypersonic Plasma Instabilities
NASA Astrophysics Data System (ADS)
Niehoff, D.; Ashour-Abdalla, M.; Niemann, C.; Decyk, V.; Schriver, D.; Clark, E.
2013-12-01
The plasma sheaths formed around hypersonic aircraft (Mach number, M > 10) are relatively unexplored and of interest today to both further the development of new technologies and solve long-standing engineering problems. Both laboratory experiments and analytical/numerical modeling are required to advance the understanding of these systems; it is advantageous to perform these tasks in tandem. There has already been some work done to study these plasmas by experiments that create a rapidly expanding plasma through ablation of a target with a laser. In combination with a preformed magnetic field, this configuration leads to a magnetic "bubble" formed behind the front as particles travel at about Mach 30 away from the target. Furthermore, the experiment was able to show the generation of fast electrons which could be due to instabilities on electron scales. To explore this, future experiments will have more accurate diagnostics capable of observing time- and length-scales below typical ion scales, but simulations are a useful tool to explore these plasma conditions theoretically. Particle in Cell (PIC) simulations are necessary when phenomena are expected to be observed at these scales, and also have the advantage of being fully kinetic with no fluid approximations. However, if the scales of the problem are not significantly below the ion scales, then the initialization of the PIC simulation must be very carefully engineered to avoid unnecessary computation and to select the minimum window where structures of interest can be studied. One method of doing this is to seed the simulation with either experiment or ion-scale simulation results. Previous experiments suggest that a useful configuration for studying hypersonic plasma configurations is a ring of particles rapidly expanding transverse to an external magnetic field, which has been simulated on the ion scale with an ion-hybrid code. This suggests that the PIC simulation should have an equivalent configuration
PIC simulation of electrodeless plasma thruster with rotating electric field
NASA Astrophysics Data System (ADS)
Nomura, Ryosuke; Ohnishi, Naofumi; Nishida, Hiroyuki
2012-11-01
For longer lifetime of electric propulsion system, an electrodeless plasma thruster with rotating electric field have been proposed utilizing a helicon plasma source. The rotating electric field may produce so-called Lissajous acceleration of helicon plasma in the presence of diverging magnetic field through a complicated mechanism originating from many parameters. Two-dimensional simulations of the Lissajous acceleration were conducted by a code based on Particle-In-Cell (PIC) method and Monte Carlo Collision (MCC) method for understanding plasma motion in acceleration area and for finding the optimal condition. Obtained results show that azimuthal current depends on ratio of electron drift radius to plasma region length, AC frequency, and axial magnetic field. When ratio of cyclotron frequency to the AC frequency is higher than unity, reduction of the azimuthal current by collision effect is little or nothing.
Bounded PIC-MCC simulation of an electgronegative RF discharge
Vahedi, V.; Lieberman, M.A.; Birdsall, C.K.
1992-12-01
The authors have developed a Monte Carlo Collision (MCC) scheme, as an addition to the Particle-in-Cell (PIC) method, to study oxygen RF discharges. The presence of negative ions and their effect on the plasma is being investigated at various pressures and input powers. Simulation results show that for low input powers, the negative ion density can be an order of magnitude higher than the electron density. This high concentration of negative ions affects the ambipolar diffusion conditions which can lead to lower ion loss rates and higher ion densities than in electropositive discharges. In this model, electrons, O{sub 2}{sup +}, O{sup {minus}}, and O are evolved as particles. These models can be used to model other processing discharges.
PIC simulation of electrodeless plasma thruster with rotating electric field
Nomura, Ryosuke; Ohnishi, Naofumi; Nishida, Hiroyuki
2012-11-27
For longer lifetime of electric propulsion system, an electrodeless plasma thruster with rotating electric field have been proposed utilizing a helicon plasma source. The rotating electric field may produce so-called Lissajous acceleration of helicon plasma in the presence of diverging magnetic field through a complicated mechanism originating from many parameters. Two-dimensional simulations of the Lissajous acceleration were conducted by a code based on Particle-In-Cell (PIC) method and Monte Carlo Collision (MCC) method for understanding plasma motion in acceleration area and for finding the optimal condition. Obtained results show that azimuthal current depends on ratio of electron drift radius to plasma region length, AC frequency, and axial magnetic field. When ratio of cyclotron frequency to the AC frequency is higher than unity, reduction of the azimuthal current by collision effect is little or nothing.
3D implicit PIC simulations of solar wind - moon interactions
NASA Astrophysics Data System (ADS)
Deca, J.; Markidis, S.; Divin, A.; Lapenta, G.; Vapirev, A.
2012-04-01
We present three-dimensional Particle-in-Cell simulations of an unmagnetized insulating Moon-sized body immersed in the solar wind. The simulations are performed using the implicit electromagnetic Particle-in-Cell code iPIC3D [Markidis, 2009]. Multiscale kinetic physics is resolved for all plasma components (heavy ions, protons and electrons) in the code, recently updated with a set of open boundary conditions designed for solar wind - body interaction studies. Particles are injected at the inflow side of the computational domain and absorbed at all others. A bow shock is not formed upstream of the body, but the obstacle generates faint dispersive waves propagating parallel to the magnetic field lines, in agreement with numerical simulations done in MHD approach. Polarization electric field is generated in the wake. In addition, plasma flows filling the wake tend to excite streaming instabilities, which lead to bipolar signatures in the parallel electric field. Our future work includes updating the physical model to include photoionization and re-emission at the object's surface.
NASA Astrophysics Data System (ADS)
Kusoglu Sarikaya, C.; Rafatov, I.; Kudryavtsev, A. A.
2016-06-01
The work deals with the Particle in Cell/Monte Carlo Collision (PIC/MCC) analysis of the problem of detection and identification of impurities in the nonlocal plasma of gas discharge using the Plasma Electron Spectroscopy (PLES) method. For this purpose, 1d3v PIC/MCC code for numerical simulation of glow discharge with nonlocal electron energy distribution function is developed. The elastic, excitation, and ionization collisions between electron-neutral pairs and isotropic scattering and charge exchange collisions between ion-neutral pairs and Penning ionizations are taken into account. Applicability of the numerical code is verified under the Radio-Frequency capacitively coupled discharge conditions. The efficiency of the code is increased by its parallelization using Open Message Passing Interface. As a demonstration of the PLES method, parallel PIC/MCC code is applied to the direct current glow discharge in helium doped with a small amount of argon. Numerical results are consistent with the theoretical analysis of formation of nonlocal EEDF and existing experimental data.
Particle-in-cell simulations of particle energization from low Mach number fast mode shocks
NASA Astrophysics Data System (ADS)
Park, Jaehong; Workman, Jared; Blackman, Eric; Ren, Chuang; Siller, Robert
2012-10-01
Low Mach number, high plasma beta, fast mode shocks likely occur in the outflows from reconnection sites associated with solar flares. These shocks are sites of particle energization with observable consequences, but there has been much less work on understanding the underlying physics compared to that of Mach number shocks. To make progress, we have simulated a low Mach number/high beta shock using 2D particle-in-cell simulations with a ``moving wall'' method and studied the shock structure and particle acceleration processes therein [Park et. al (2012), Phys. Plasmas, 19, 062904]. The moving wall method can control the shock speed in the simulation frame to allow smaller simulation boxes and longer simulation times. We found that the modified two-stream instability in the shock transition region is responsible for shock sustenance via turbulent dissipation and entropy creation throughout the downstream region long after the initial shock formation. Particle tracking and the particle energy distributions show that both electrons and ions participate in shock-drift-acceleration (SDA). The simulation combined with a theoretical analysis reveals a two-temperature Maxwellian distribution for the electron energy distribution via SDA.
Open Boundary Particle-in-Cell Simulation of Dipolarization Front Propagation
NASA Technical Reports Server (NTRS)
Klimas, Alex; Hwang, Kyoung-Joo; Vinas, Adolfo F.; Goldstein, Melvyn L.
2014-01-01
First results are presented from an ongoing open boundary 2-1/2D particle-in-cell simulation study of dipolarization front (DF) propagation in Earth's magnetotail. At this stage, this study is focused on the compression, or pileup, region preceding the DF current sheet. We find that the earthward acceleration of the plasma in this region is in general agreement with a recent DF force balance model. A gyrophase bunched reflected ion population at the leading edge of the pileup region is reflected by a normal electric field in the pileup region itself, rather than through an interaction with the current sheet. We discuss plasma wave activity at the leading edge of the pileup region that may be driven by gradients, or by reflected ions, or both; the mode has not been identified. The waves oscillate near but above the ion cyclotron frequency with wavelength several ion inertial lengths. We show that the waves oscillate primarily in the perpendicular magnetic field components, do not propagate along the background magnetic field, are right handed elliptically (close to circularly) polarized, exist in a region of high electron and ion beta, and are stationary in the plasma frame moving earthward. We discuss the possibility that the waves are present in plasma sheet data, but have not, thus far, been discovered.
Forced Reconnection in the Near Magnetotail: Onset and Energy Conversion in PIC and MHD Simulations
NASA Technical Reports Server (NTRS)
Birn, J.; Hesse, Michael
2014-01-01
Using two-dimensional particle-in-cell (PIC) together with magnetohydrodynamic (MHD) Q1 simulations of magnetotail dynamics, we investigate the evolution toward onset of reconnection and the subsequent energy transfer and conversion. In either case, reconnection onset is preceded by a driven phase, during which magnetic flux is added to the tail at the high-latitude boundaries, followed by a relaxation phase, during which the configuration continues to respond to the driving. The boundary deformation leads to the formation of thin embedded current sheets, which are bifurcated in the near tail, converging to a single sheet farther out in the MHD simulations. The thin current sheets in the PIC simulation are carried by electrons and are associated with a strong perpendicular electrostatic field, which may provide a connection to parallel potentials and auroral arcs and an ionospheric signal even prior to the onset of reconnection. The PIC simulation very well satisfies integral entropy conservation (intrinsic to ideal MHD) during this phase, supporting ideal ballooning stability. Eventually, the current intensification leads to the onset of reconnection, the formation and ejection of a plasmoid, and a collapse of the inner tail. The earthward flow shows the characteristics of a dipolarization front: enhancement of Bz, associated with a thin vertical electron current sheet in the PIC simulation. Both MHD and PIC simulations show a dominance of energy conversion from incoming Poynting flux to outgoing enthalpy flux, resulting in heating of the inner tail. Localized Joule dissipation plays only a minor role.
PlasmaPIC: A tool for modeling low-temperature plasma discharges
NASA Astrophysics Data System (ADS)
Muehlich, Nina Sarah; Becker, Michael; Henrich, Robert; Heiliger, Christian
2015-09-01
PlasmaPIC is a three-dimensional particle in cell (PIC) code. It consists of an electrostatic part for modeling dc and rf-ccp discharges as well as an electrodynamic part for modeling inductively coupled discharges. The three-dimensional description enables the modeling of discharges in arbitrary geometries without limitations to any symmetry. These geometries can be easily imported from common CAD tools. A main feature of PlasmaPIC is the ability of an excellent massive parallelization of the computation, which scales linearly up to a few hundred cpu cores. This is achieved by using a multigrid algorithm for the field solver as well as an effective load balancing of the particles. Moreover, PlasmaPIC includes the interaction of the neutral gas and the plasma discharge. Because the neutral gas and the plasma simulation are acting on different time scales we perform the simulation of both separately in a self-consistent treatment, whereas the neutral gas distribution is calculated using the direct simulation Monte Carlo method (DSMC). The merge of these features turns PlasmaPIC into a powerful simulation tool for a wide range of plasma discharges and introduces a new way of understanding and optimizing low-temperature plasma applications. This work has been supported by the ``Bundesministerium fuer Wirtschaft und Energie.'' Grant 50RS1507.
Particle-In-Cell simulations on spacecraft charging mitigation by plasma injection
NASA Astrophysics Data System (ADS)
Usui, Hideyuki; Imasato, Koujirou; Kuninaka, Hitoshi
By performing three-dimensional Particle-In-Cell simulations, we have been investigating the time-dependent process of spacecraft charging mitigation by plasma injection. We particularly focus on the differential charging occurring between solar panel and spacecraft conducting part of spacecraft in the polar environment. In the presence of aurora electron beam, the absolute charging of spacecraft becomes the order of KeV as the worst case and the differential charging between the conducting surface of the spacecraft and the dielectric material on the solar panel can become several hundreds volts. To mitigate the charging, active plasma release from a plasma contactor onboard the spacecraft is proposed as one of the effective methods. In order to understand the charging mitigation process we started to examine the transient plasma process in terms of electron/ion flux to the spacecraft surface and the corresponding potential variation by performing 3D PIC simulations. In the simulation space, we set a spacecraft consisting of conducting body and dielectric film on the solar panels. This spacecraft system is immersed in isothermal magnetized plasma environment. We assume the aurora beam energy is around 100 eV. We started a simulation with no plasma emission from the body in order for the spacecraft to achieve a floating potential. Then, we start emitting plasma from the spacecraft surface from one side of the spacecraft. Due to the aurora current, the conducting part of the spacecraft was negatively charged around -50 V while the dielectric surface of the solar panel is about -30 V because of ion flux impinging at the ram side. In this case, approximately 20V differential charging occurs at the dielectric surface. In such a situation, we started emitting electrons from the spacecraft surface. Because of negative charge emission, the spacecraft potential increases and approaches to the plasma potential. This implies the absolute charging of spacecraft has been
Particle in Cell Simulations of the Pulsar Y-Point -- Nature of the Accelerating Electric Field
NASA Astrophysics Data System (ADS)
Belyaev, Mikhail
2016-06-01
Over the last decade, satellite observations have yielded a wealth of data on pulsed high-energy emission from pulsars. Several different models have been advanced to fit this data, all of which “paint” the emitting region onto a different portion of the magnetosphere.In the last few years, particle in cell simulations of pulsar magnetospheres have reached the point where they are able to self-consistently model particle acceleration and dissipation. One of the key findings of these simulations is that the region of the current sheet in and around the Y-point provides the highest rate of dissipation of Poynting flux (Belyaev 2015a). On the basis of this physical evidence, it is quite plausible that this region should be associated with the pulsed high energy emission from pulsars. We present high resolution PIC simulations of an axisymmetric pulsar magnetosphere, which are run using PICsar (Belyaev 2015b). These simulations focus on the particle dynamics and electric fields in and around the Y-point region. We run two types of simulations -- first, a force-free magnetosphere and second, a magnetosphere with a gap between the return current layer and the outflowing plasma in the polar wind zone. The latter setup is motivated by studies of pair production with general relativity (Philippov et al. 2015, Belyaev & Parfrey (in preparation)). In both cases, we find that the Y-point and the current sheet in its direct vicinity act like an “electric particle filter” outwardly accelerating particles of one sign of charge while returning the other sign of charge back to the pulsar. We argue that this is a natural behavior of the plasma as it tries to adjust to a solution that is as close to force-free as possible. As a consequence, a large E dot J develops in the vicinity of the Y-point leading to dissipation of Poynting flux. Our work is relevant for explaining the plasma physical mechanisms underlying pulsed high energy emission from pulsars.
Challenges of PIC Simulations at High Laser Intensity
NASA Astrophysics Data System (ADS)
Luedtke, Scott V.; Arefiev, Alexey V.; Toncian, Toma; Hegelich, Bjorn Manuel
2015-11-01
New lasers with very high intensity pulses (I >1022 W/cm2) are being commissioned to explore new regimes of laser-matter interactions. These lasers require accurate particle-in-cell (PIC) simulations, which may require new computational approaches to efficiently produce physically accurate results. We examine the constraints on PIC simulations at high field intensity imposed by both the particle pusher and field solver. As proposed by Arefiev, et al. (Physics of Plasmas 22, 013103 (2015)), we implement adaptive sub-cycling in the Boris pusher of the EPOCH code and demonstrate its effectiveness in efficiently reducing errors from the pusher. It is well know that the use of a finite-difference scheme also modifies the electromagnetic wave dispersion relation. We examine the effect of the resulting discrepancy in the phase velocity on electron acceleration, and demonstrate that relatively small errors in the phase velocity lead to substantial changes in the electron energy gain from the laser pulse. We discuss the corresponding conditions for the field solver. These results are relevant to direct laser acceleration and underdense ionization experiments. This work was supported by NNSA cooperative agreement DE-NA0002008, the Defense Advanced Research Projects Agency's PULSE program (12-63-PULSE-FP014) and the Air Force Office of Scientific Research (FA9550-14-1-0045).
BOA, Beam Optics Analyzer A Particle-In-Cell Code
Thuc Bui
2007-12-06
The program was tasked with implementing time dependent analysis of charges particles into an existing finite element code with adaptive meshing, called Beam Optics Analyzer (BOA). BOA was initially funded by a DOE Phase II program to use the finite element method with adaptive meshing to track particles in unstructured meshes. It uses modern programming techniques, state-of-the-art data structures, so that new methods, features and capabilities are easily added and maintained. This Phase II program was funded to implement plasma simulations in BOA and extend its capabilities to model thermal electrons, secondary emissions, self magnetic field and implement a more comprehensive post-processing and feature-rich GUI. The program was successful in implementing thermal electrons, secondary emissions, and self magnetic field calculations. The BOA GUI was also upgraded significantly, and CCR is receiving interest from the microwave tube and semiconductor equipment industry for the code. Implementation of PIC analysis was partially successful. Computational resource requirements for modeling more than 2000 particles begin to exceed the capability of most readily available computers. Modern plasma analysis typically requires modeling of approximately 2 million particles or more. The problem is that tracking many particles in an unstructured mesh that is adapting becomes inefficient. In particular memory requirements become excessive. This probably makes particle tracking in unstructured meshes currently unfeasible with commonly available computer resources. Consequently, Calabazas Creek Research, Inc. is exploring hybrid codes where the electromagnetic fields are solved on the unstructured, adaptive mesh while particles are tracked on a fixed mesh. Efficient interpolation routines should be able to transfer information between nodes of the two meshes. If successfully developed, this could provide high accuracy and reasonable computational efficiency.
NASA Astrophysics Data System (ADS)
Innocenti, Maria Elena; Beck, Arnaud; Markidis, Stefano; Lapenta, Giovanni
2013-10-01
Particle in Cell (PIC) simulations of plasmas are not bound anymore by the stability constraints of explicit algorithms. Semi implicit and fully implicit methods allow to use larger grid spacings and time steps. Adaptive Mesh Refinement (AMR) techniques permit to locally change the simulation resolution. The code proposed in Innocenti et al., 2013 and Beck et al., 2013 is however the first to combine the advantages of both. The use of the Implicit Moment Method allows to taylor the resolution used in each level to the physical scales of interest and to use high Refinement Factors (RF) between the levels. The Multi Level Multi Domain (MLMD) structure, where all levels are simulated as complete domains, conjugates algorithmic and practical advantages. The different levels evolve according to the local dynamics and achieve optimal level interlocking. Also, the capabilities of the Object Oriented programming model are fully exploited. The MLMD algorithm is demonstrated with magnetic reconnection and collisionless shocks simulations with very high RFs between the levels. Notable computational gains are achieved with respect to simulations performed on the entire domain with the higher resolution. Beck A. et al. (2013). submitted. Innocenti M. E. et al. (2013). JCP, 238(0):115-140.
NASA Astrophysics Data System (ADS)
Deca, J.; Lapenta, G.; Divin, A. V.; Lembege, B.; Markidis, S.
2013-12-01
Unlike the Earth and Mercury, our Moon has no global magnetic field and is therefore not shielded from the impinging solar wind by a magnetosphere. However, lunar magnetic field measurements made by the Apollo missions provided direct evidence that the Moon has regions of small-scale crustal magnetic fields, ranging up to a few 100km in scale size with surface magnetic field strengths up to hundreds of nanoTeslas. More recently, the Lunar Prospector spacecraft has provided high-resolution observations allowing to construct magnetic field maps of the entire Moon, confirming the earlier results from Apollo, but also showing that the lunar plasma environment is much richer than earlier believed. Typically the small-scale magnetic fields are non-dipolar and rather tiny compared to the lunar radius and mainly clustered on the far side of the moon. Using iPic3D we present the first 3D fully kinetic and electromagnetic Particle-in-Cell simulations of the solar wind interaction with lunar magnetic anomalies. We study the behaviour of a dipole model with variable surface magnetic field strength under changing solar wind conditions and confirm that lunar crustal magnetic fields may indeed be strong enough to stand off the solar wind and form a mini-magnetosphere, as suggested by MHD and hybrid simulations and spacecraft observations. 3D-PIC simulations reveal to be very helpful to analyze the diversion/braking of the particle flux and the characteristics of the resulting particles accumulation. The particle flux to the surface is significantly reduced at the magnetic anomaly, surrounded by a region of enhanced density due to the magnetic mirror effect. Second, the ability of iPic3D to resolve all plasma components (heavy ions, protons and electrons) allows to discuss in detail the electron physics leading to the highly non-adiabatic interactions expected as well as the implications for solar wind shielding of the lunar surface, depending on the scale size (solar wind protons
Boltzmann electron PIC simulation of the E-sail effect
NASA Astrophysics Data System (ADS)
Janhunen, P.
2015-12-01
The solar wind electric sail (E-sail) is a planned in-space propulsion device that uses the natural solar wind momentum flux for spacecraft propulsion with the help of long, charged, centrifugally stretched tethers. The problem of accurately predicting the E-sail thrust is still somewhat open, however, due to a possible electron population trapped by the tether. Here we develop a new type of particle-in-cell (PIC) simulation for predicting E-sail thrust. In the new simulation, electrons are modelled as a fluid, hence resembling hybrid simulation, but in contrast to normal hybrid simulation, the Poisson equation is used as in normal PIC to calculate the self-consistent electrostatic field. For electron-repulsive parts of the potential, the Boltzmann relation is used. For electron-attractive parts of the potential we employ a power law which contains a parameter that can be used to control the number of trapped electrons. We perform a set of runs varying the parameter and select the one with the smallest number of trapped electrons which still behaves in a physically meaningful way in the sense of producing not more than one solar wind ion deflection shock upstream of the tether. By this prescription we obtain thrust per tether length values that are in line with earlier estimates, although somewhat smaller. We conclude that the Boltzmann PIC simulation is a new tool for simulating the E-sail thrust. This tool enables us to calculate solutions rapidly and allows to easily study different scenarios for trapped electrons.
Camporeale, Enrico; Zimbardo, Gaetano
2015-09-15
We present a self-consistent Particle-in-Cell simulation of the resonant interactions between anisotropic energetic electrons and a population of whistler waves, with parameters relevant to the Earth's radiation belt. By tracking PIC particles and comparing with test-particle simulations, we emphasize the importance of including nonlinear effects and time evolution in the modeling of wave-particle interactions, which are excluded in the resonant limit of quasi-linear theory routinely used in radiation belt studies. In particular, we show that pitch angle diffusion is enhanced during the linear growth phase, and it rapidly saturates well before a single bounce period. This calls into question the widely used bounce average performed in most radiation belt diffusion calculations. Furthermore, we discuss how the saturation is related to the fact that the domain in which the particles pitch angle diffuses is bounded, and to the well-known problem of 90° diffusion barrier.
NASA Astrophysics Data System (ADS)
Shi, Feng; Wang, Dezhen; Ren, Chunsheng
2008-06-01
Atmospheric pressure discharge nonequilibrium plasmas have been applied to plasma processing with modern technology. Simulations of discharge in pure Ar and pure He gases at one atmospheric pressure by a high voltage trapezoidal nanosecond pulse have been performed using a one-dimensional particle-in-cell Monte Carlo collision (PIC-MCC) model coupled with a renormalization and weighting procedure (mapping algorithm). Numerical results show that the characteristics of discharge in both inert gases are very similar. There exist the effects of local reverse field and double-peak distributions of charged particles' density. The electron and ion energy distribution functions are also observed, and the discharge is concluded in the view of ionization avalanche in number. Furthermore, the independence of total current density is a function of time, but not of position.
NASA Astrophysics Data System (ADS)
Lin, M. C.; Loverich, J.; Stoltz, P. H.; Nieter, C.
2013-10-01
This work introduces a conformal finite difference time domain (CFDTD) particle-in-cell (PIC) method with an improved field emission algorithm to accurately and efficiently study field emission devices. The CFDTD method is based on the Dey-Mittra algorithm or cut-cell algorithm, as implemented in the Vorpal code. For the field emission algorithm, we employ the elliptic function v(y) found by Forbes and a new fitting function t(y)2 for the Fowler-Nordheim (FN) equation. With these improved correction factors, field emission of electrons from a cathode surface is much closer to the prediction of the exact FN formula derived by Murphy and Good. This work was supported in part by both the U.S. Department of Defense under Grant No. FA9451-07-C-0025 and the U.S. Department of Energy under Grant No. DE-SC0004436.
NASA Astrophysics Data System (ADS)
Camporeale, Enrico; Zimbardo, Gaetano
2015-09-01
We present a self-consistent Particle-in-Cell simulation of the resonant interactions between anisotropic energetic electrons and a population of whistler waves, with parameters relevant to the Earth's radiation belt. By tracking PIC particles and comparing with test-particle simulations, we emphasize the importance of including nonlinear effects and time evolution in the modeling of wave-particle interactions, which are excluded in the resonant limit of quasi-linear theory routinely used in radiation belt studies. In particular, we show that pitch angle diffusion is enhanced during the linear growth phase, and it rapidly saturates well before a single bounce period. This calls into question the widely used bounce average performed in most radiation belt diffusion calculations. Furthermore, we discuss how the saturation is related to the fact that the domain in which the particles pitch angle diffuses is bounded, and to the well-known problem of 90° diffusion barrier.
NASA Astrophysics Data System (ADS)
Shukla, Chandrasekhar; Das, Amita; Patel, Kartik
2016-08-01
We carry out particle-in-cell simulations to study the instabilities associated with a 2-D sheared electron flow configuration against a neutralizing background of ions. Both weak and strong relativistic flow velocities are considered. In the weakly relativistic case, we observe the development of electromagnetic Kelvin-Helmholtz instability with similar characteristics as that predicted by the electron Magnetohydrodynamic (EMHD) model. On the contrary, in a strong relativistic case, the compressibility effects of electron fluid dominate and introduce upper hybrid electrostatic oscillations transverse to the flow which are very distinct from EMHD fluid behavior. In the nonlinear regime, both weak and strong relativistic cases lead to turbulence with broad power law spectrum.
Recent advances in high-performance modeling of plasma-based acceleration using the full PIC method
NASA Astrophysics Data System (ADS)
Vay, J.-L.; Lehe, R.; Vincenti, H.; Godfrey, B. B.; Haber, I.; Lee, P.
2016-09-01
Numerical simulations have been critical in the recent rapid developments of plasma-based acceleration concepts. Among the various available numerical techniques, the particle-in-cell (PIC) approach is the method of choice for self-consistent simulations from first principles. The fundamentals of the PIC method were established decades ago, but improvements or variations are continuously being proposed. We report on several recent advances in PIC-related algorithms that are of interest for application to plasma-based accelerators, including (a) detailed analysis of the numerical Cherenkov instability and its remediation for the modeling of plasma accelerators in laboratory and Lorentz boosted frames, (b) analytic pseudo-spectral electromagnetic solvers in Cartesian and cylindrical (with azimuthal modes decomposition) geometries, and (c) novel analysis of Maxwell's solvers' stencil variation and truncation, in application to domain decomposition strategies and implementation of perfectly matched layers in high-order and pseudo-spectral solvers.
PIC simulation of high efficiency and high power 14 vane industrial magnetron
NASA Astrophysics Data System (ADS)
Vyas, Sandeep; Maurya, Shivendra; Singh, V. V. P.
2016-03-01
This paper presents a 3D Particle in cell (PIC) simulation of a CW 2.450±0.050 GHz 10 kW industrial magnetron. The electromagnetic and PIC simulation of magnetron has been carried out using CST microwave studio andCST particle studio. A virtual prototype of 14 vane magnetron has been simulated on computer. The cold frequency of magnetron is found 2.495 GHz. The unloaded quality factor and circuit efficiency are found 1970 and 92% from electromagnetic simulation. The output power is achieved 12.4 KW for anode voltage 12.7 kV and magnetic field 2900 Gauss. The anode current is found anode current 1.22 A. The total efficiency is 78.76 %.
A Hybrid PIC/DSMC Model of Breakdown in Triggered Vacuum Spark Gaps
NASA Astrophysics Data System (ADS)
Moore, Stan G.; Moore, Christopher H.; Boerner, Jeremiah J.
2014-10-01
Triggered vacuum spark gaps (TVSGs) can be used as high voltage, high current switches with a fast switching time and a variable operating voltage, such as in pulsed power applications and crowbar circuits that protect against overvoltage conditions. Hybrid particle-in-cell (PIC) and direct simulation Monte Carlo (DSMC) methods can be used to simulate breakdown in TVSGs. In this talk, we present results of a one-dimensional hybrid PIC/DSMC model and show that changing the density and velocity of injected neutral particles (which can be related to the surface temperature) significantly changes both the time to breakdown and the existence of a short-lived starvation mode in the current waveform. Sandia National Laboratories is a multi-program laboratory managed and operated by Sandia Corporation, a wholly owned subsidiary of Lockheed Martin Corporation, for the U.S. Department of Energy's National Nuclear Security Administration under contract DE-AC04-94AL85000.
Enhanced quasi-static PIC simulation with pipelining algorithm for e-cloud instability
NASA Astrophysics Data System (ADS)
Feng, Bing; Huang, Chengkun; Decyk, Viktor; Mori, Warren; Muggli, Patric; Katsouleas, Tom
2008-11-01
Simulating the electron cloud effect on a beam that circulates thousands of turns in circular machines is highly computationally demanding. A novel algorithm, the pipelining algorithm is applied to the fully parallelized quasi-static particle-in-cell code QuickPIC to overcome the limit of the maximum number of processors can be used for each time step. The pipelining algorithm divides the processors into subgroups and each subgroup focuses on different partition of the beam and performs the calculation in series. With this novel algorithm, the accuracy of the simulation is preserved; the speed of the simulation is improved by one order of magnitude with more than 10^2 processors are used. The long term simulation results of the CERN-LHC and the Main Injector at FNAL from the QuickPIC with pipelining algorithm are presented. This work is supported by SiDAC and US Department of Energy
MP-Pic simulation of CFB riser with EMMS-based drag model
Li, F.; Song, F.; Benyahia, S.; Wang, W.; Li, J.
2012-01-01
MP-PIC (multi-phase particle in cell) method combined with the EMMS (energy minimization multi- scale) drag force model was implemented with the open source program MFIX to simulate the gas–solid flows in CFB (circulatingfluidizedbed) risers. Calculated solid flux by the EMMS drag agrees well with the experimental value; while the traditional homogeneous drag over-predicts this value. EMMS drag force model can also predict the macro-and meso-scale structures. Quantitative comparison of the results by the EMMS drag force model and the experimental measurements show high accuracy of the model. The effects of the number of particles per parcel and wall conditions on the simulation results have also been investigated in the paper. This work proved that MP-PIC combined with the EMMS drag model can successfully simulate the fluidized flows in CFB risers and it serves as a candidate to realize real-time simulation of industrial processes in the future.
Hybrid-PIC Algorithms for Simulation of Large-Scale Plasma Jet Accelerators
NASA Astrophysics Data System (ADS)
Thoma, Carsten; Welch, Dale
2009-11-01
Merging coaxial plasma jets are envisioned for use in magneto-inertial fusion schemes as the source of an imploding plasma liner. An experimental program at HyperV is considering the generation of large plasma jets (length scales on the order of centimeters) at high densities (10^16-10^17 cm-3) in long coaxial accelerators. We describe the Hybrid particle-in-cell (PIC) methods implemented in the code LSP for this parameter regime and present simulation results of the HyperV accelerator. A radiation transport algorithm has also been implemented into LSP so that the effect of radiation cooling on the jet mach number can be included self-consistently into the Hybrid PIC formalism.
Progress on a particle-in-cell model of a W-band klystron
NASA Astrophysics Data System (ADS)
Mardahl, Peter J.; Verboncoeur, John P.; Birdsall, C. K.
1999-11-01
Design and initial implementation of an extension from two to three dimensions (x-y-z and r-θ-z) is described for the XOOPIC( J. P. Verboncoeur, A. B. Langdon, and N. T. Gladd, ``An object-oriented electromagnetic PIC code.'' Computer Physics Communications 87) (1995) 199-211. code. The klystron ( G. Caryotakis, E. Jongewaard, G. Schietrum, A. Vlieks, R.L. Kustom, N.C. Luhmann, M.I. Petelin, ``W-Band Micro-fabricated Modular Klystrons.'' --Private communication) of interest is to operate at 91GHz, with a 125kW peak power, 120kV, 2.5A, 1us pulse, and 0.8mm drift tube diameter. This klystron uses periodic permanent magnetic focussing to contain the beam within the drift tube. Initially, the device will be modelled in 2d, and this will be extended to a 3d model. A 3d model is preferred because the drift tube is circular, while the cavities are rectangular. The circular drift tube will be modelled using stair-stepped boundaries.
NASA Astrophysics Data System (ADS)
Fubiani, G.; Boeuf, J. P.
2013-11-01
Results from a 3D self-consistent Particle-In-Cell Monte Carlo Collisions (PIC MCC) model of a high power fusion-type negative ion source are presented for the first time. The model is used to calculate the plasma characteristics of the ITER prototype BATMAN ion source developed in Garching. Special emphasis is put on the production of negative ions on the plasma grid surface. The question of the relative roles of the impact of neutral hydrogen atoms and positive ions on the cesiated grid surface has attracted much attention recently and the 3D PIC MCC model is used to address this question. The results show that the production of negative ions by positive ion impact on the plasma grid is small with respect to the production by atomic hydrogen or deuterium bombardment (less than 10%).
Fubiani, G.; Boeuf, J. P.
2013-11-15
Results from a 3D self-consistent Particle-In-Cell Monte Carlo Collisions (PIC MCC) model of a high power fusion-type negative ion source are presented for the first time. The model is used to calculate the plasma characteristics of the ITER prototype BATMAN ion source developed in Garching. Special emphasis is put on the production of negative ions on the plasma grid surface. The question of the relative roles of the impact of neutral hydrogen atoms and positive ions on the cesiated grid surface has attracted much attention recently and the 3D PIC MCC model is used to address this question. The results show that the production of negative ions by positive ion impact on the plasma grid is small with respect to the production by atomic hydrogen or deuterium bombardment (less than 10%)
PIC Algorithm with Multiple Poisson Equation Solves During One Time Step
NASA Astrophysics Data System (ADS)
Ren, Junxue; Godar, Trenton; Menart, James; Mahalingam, Sudhakar; Choi, Yongjun; Loverich, John; Stoltz, Peter H.
2015-09-01
In order to reduce the overall computational time of a PIC (particle-in-cell) computer simulation, an attempt was made to utilize larger time step sizes by implementing multiple solutions of Poisson's equation within one time step. The hope was this would make the PIC simulation stable at larger time steps than an explicit technique can use, and using larger time steps would reduce the overall computational time, even though the computational time per time step would increase. A three-dimensional PIC code that tracks electrons and ions throughout a three-dimensional Cartesian computational domain is used to perform this study. The results of altering the number of times Poisson's equation is solved during a single time step are presented. Also, the size of the time that can be used and still maintain a stable solution is surveyed. The results indicate that using multiple Poisson solves during one time step provides some ability to use larger time steps in PIC simulations, but the increase in time step size is not significant and the overall simulation run time is not reduced
Modeling Self-Ionized Plasma Wakefield Acceleration for Afterburner Parameters Using QuickPIC
Zhou, M.; Clayton, C.E.; Decyk, V.K.; Huang, C.; Johnson, D.K.; Joshi, C.; Lu, W.; Mori, W.B.; Tsung, F.S.; Deng, S.; Katsouleas, T.; Muggli, P.; Oz, E.; Decker, F.-J.; Iverson, R.; O'Connel, C.; Walz, D.; /SLAC
2006-01-25
For the parameters envisaged in possible afterburner stages[1] of a plasma wakefield accelerator (PWFA), the self-fields of the particle beam can be intense enough to tunnel ionize some neutral gases. Tunnel ionization has been investigated as a way for the beam itself to create the plasma, and the wakes generated may differ from those generated in pre-ionized plasmas[2],[3]. However, it is not practical to model the whole stage of PWFA with afterburner parameters using the models described in [2] and [3]. Here we describe the addition of a tunnel ionization package using the ADK model into QuickPIC, a highly efficient quasi-static particle in cell (PIC) code which can model a PWFA with afterburner parameters. Comparison between results from OSIRIS (a full PIC code with ionization) and from QuickPIC with the ionization package shows good agreement. Preliminary results using parameters relevant to the E164X experiment and the upcoming E167 experiment at SLAC are shown.
NASA Astrophysics Data System (ADS)
Thurgood, J. O.; Tsiklauri, D.
2015-12-01
Aims: The simulation of three-wave interaction based plasma emission, thought to be the underlying mechanism for Type III solar radio bursts, is a challenging task requiring fully-kinetic, multi-dimensional models. This paper aims to resolve a contradiction in past attempts, whereby some studies indicate that no such processes occur. Methods: We self-consistently simulate three-wave based plasma emission through all stages by using 2D, fully kinetic, electromagnetic particle-in-cell simulations of relaxing electron beams using the EPOCH2D code. Results: Here we present the results of two simulations; Run 1 (nb/n0 = 0.0057, vb/ Δvb = vb/Ve = 16) and Run 2 (nb/n0 = 0.05, vb/ Δvb = vb/Ve = 8), which we find to permit and prohibit plasma emission respectively. We show that the possibility of plasma emission is contingent upon the frequency of the initial electrostatic waves generated by the bump-in-tail instability, and that these waves may be prohibited from participating in the necessary three-wave interactions due to frequency conservation requirements. In resolving this apparent contradiction through a comprehensive analysis, in this paper we present the first self-consistent demonstration of fundamental and harmonic plasma emission from a single-beam system via fully kinetic numerical simulation. We caution against simulating astrophysical radio bursts using unrealistically dense beams (a common approach which reduces run time), as the resulting non-Langmuir characteristics of the initial wave modes significantly suppresses emission. Comparison of our results also indicates that, contrary to the suggestions of previous authors, an alternative plasma emission mechanism based on two counter-propagating beams is unnecessary in an astrophysical context. Finally, we also consider the action of the Weibel instability which generates an electromagnetic beam mode. As this provides a stronger contribution to electromagnetic energy than the emission, we stress that
QuickPIC: a highly efficient fully parallelized PIC code for plasma-based acceleration
NASA Astrophysics Data System (ADS)
Huang, C.; Decyk, V. K.; Zhou, M.; Lu, W.; Mori, W. B.; Cooley, J. H.; Antonsen, T. M., Jr.; Feng, B.; Katsouleas, T.; Vieira, J.; Silva, L. O.
2006-09-01
A highly efficient, fully parallelized, fully relativistic, three-dimensional particle-incell model for simulating plasma and laser wakefield acceleration is described. The model is based on the quasi-static approximation, which reduces a fully three-dimensional electromagnetic field solve and particle push to a two-dimensional field solve and particle push. This is done by calculating the plasma wake assuming that the drive beam and/or laser does not evolve during the time it takes for it to pass a plasma particle. The complete electromagnetic fields of the plasma wake and its associated index of refraction are then used to evolve the drive beam and/or laser using very large time steps. This algorithm reduces the computation time by 2 to 3 orders of magnitude without loss of accuracy for highly nonlinear problems of interest. The code is fully parallelizable with different domain decompositions for the 2D and 3D pieces of the code. The code also has dynamic load balancing. We present the basic algorithms and design of QuickPIC, as well as comparison between the new algorithm and conventional fully explicit models (OSIRIS). Direction for future work is also presented including a software pipeline technique to further scale QuickPIC to 10,000+ processors.
NASA Astrophysics Data System (ADS)
Barbancho, Ana M.; Tardón, Lorenzo J.; Barbancho, Isabel
2010-12-01
In this paper, a piano chords detector based on parallel interference cancellation (PIC) is presented. The proposed system makes use of the novel idea of modeling a segment of music as a third generation mobile communications signal, specifically, as a CDMA (Code Division Multiple Access) signal. The proposed model considers each piano note as a CDMA user in which the spreading code is replaced by a representative note pattern. The lack of orthogonality between the note patterns will make necessary to design a specific thresholding matrix to decide whether the PIC outputs correspond to the actual notes composing the chord or not. An additional stage that performs an octave test and a fifth test has been included that improves the error rate in the detection of these intervals that are specially difficult to detect. The proposed system attains very good results in both the detection of the notes that compose a chord and the estimation of the polyphony number.
Self-consistent Nonlinear Analysis and 3D Particle-In-Cell Simulation of a W-band Gyro-TWT
NASA Astrophysics Data System (ADS)
Tang, Yong; Luo, Yong; Xu, Yong; Yan, Ran
2014-10-01
The self-consistent nonlinear analysis and CST 3D particle-in-cell (PIC) simulation of a W-band gyrotron traveling wave tube (gyro-TWT) are presented in this paper. Both the simulation results of the two codes are excellent agreement with each other. The gyro-TWT loaded with periodic lossy dielectric in the circuit for suppressing potential spurious oscillations. It is driven by a 70kV, 10A gyrating electron beam with velocity ratio of 1.0. PIC simulation results are: the maximum peak output power of 198kW, statured gain of 62.3dB and efficiency of 28.3% at 92.5GHz. Only the operating mode TE 01 is observed in the CST 3D simulation and the potential competing backward wave oscillations are effectively suppressed. The CST simulation also predicts that the device works stably under the condition of the beam current lower than 14A and B 0 /B g lower than 1.05. The simulated bandwidth with peak power greater than 100kW is 6.8GHz without axial velocity spread, and 4.1GHz with 6% axial velocity spread.
NASA Astrophysics Data System (ADS)
Brambilla, Gabriele; Kalapotharakos, Constantions; Timokhin, Andrey; Kust Harding, Alice; Kazanas, Demosthenes
2016-04-01
Accelerated charged particles flowing in the magnetosphere produce pulsar gamma-ray emission. Pair creation processes produce an electron-positron plasma that populates the magnetosphere, in which the plasma is very close to force-free. However, it is unknown how and where the plasma departs from the ideal force-free condition, which consequently inhibits the understanding of the emission generation. We found that a dissipative magnetosphere outside the light cylinder effectively reproduces many aspects of the young gamma-ray pulsar emission as seen by the Fermi Gamma-ray Space Telescope, and through particle-in-cell simulations (PIC), we started explaining this configuration self-consistently. These findings show that, together, a magnetic field structure close to force-free and the assumption of gamma-ray curvature radiation as the emission mechanism are strongly compatible with the observations. Two main issues from the previously used models that our work addresses are the inability to explain luminosity, spectra, and light curve features at the same time and the inconsistency of the electrodynamics. Moreover, using the PIC simulations, we explore the effects of different pair multiplicities on the magnetosphere configurations and the locations of the accelerating regions. Our work aims for a self-consistent modeling of the magnetosphere, connecting the microphysics of the pair-plasma to the global magnetosphere macroscopic quantities. This direction will lead to a greater understanding of pulsar emission at all wavelengths, as well as to concrete insights into the physics of the magnetosphere.
Progress in 3D Particle-In-Cell Modeling of Space-Charge-Dominated Ion Beams for Heavy-Ion Fusion
NASA Astrophysics Data System (ADS)
Friedman, A.; Callahan, D. A.; Grote, D. P.; Langdon, A. B.; Lund, S. M.; Haber, I.
1996-11-01
The ion beam in an induction accelerator for HIF is a non-neutral plasma, and is effectively simulated using familiar particle-in-cell (PIC) techniques, with the addition of a description of the accelerating and confining elements. The WARP code incorporates electrostatic 3D and r,z PIC models; a number of techniques are used in the 3D package, WARP3d, to increase accuracy and efficiency. These include solution of Poisson's equation with subgrid-scale resolution of internal boundary placement, a bent-system model using ``warped'' coordinates, and parallel processing. In this paper we describe recent applications to HIF experiments, including a high-current electrostatic-quadrupole injector at LBNL, and bending and recirculation experiments at LLNL. We also describe new computational techniques being studied, including higher-order integrators and subcycling methods aimed at allowing larger timesteps, and a ``fat-slice'' model which affords efficient examination of collective modes that transfer thermal energy between degrees of freedom.
NASA Astrophysics Data System (ADS)
Han, Daoru; Wang, Pu; He, Xiaoming; Lin, Tao; Wang, Joseph
2016-09-01
Motivated by the need to handle complex boundary conditions efficiently and accurately in particle-in-cell (PIC) simulations, this paper presents a three-dimensional (3D) linear immersed finite element (IFE) method with non-homogeneous flux jump conditions for solving electrostatic field involving complex boundary conditions using structured meshes independent of the interface. This method treats an object boundary as part of the simulation domain and solves the electric field at the boundary as an interface problem. In order to resolve charging on a dielectric surface, a new 3D linear IFE basis function is designed for each interface element to capture the electric field jump on the interface. Numerical experiments are provided to demonstrate the optimal convergence rates in L2 and H1 norms of the IFE solution. This new IFE method is integrated into a PIC method for simulations involving charging of a complex dielectric surface in a plasma. A numerical study of plasma-surface interactions at the lunar terminator is presented to demonstrate the applicability of the new method.
NASA Astrophysics Data System (ADS)
Min, Kyungguk; Liu, Kaijun
2016-01-01
Linear dispersion theory and electromagnetic particle-in-cell (PIC) simulations are used to investigate linear growth and nonlinear saturation of the proton velocity ring-driven instabilities, namely, ion Bernstein instability and Alfvén-cyclotron instability, which lead to fast magnetosonic waves and electromagnetic ion cyclotron waves in the inner magnetosphere, respectively. The proton velocity distribution is assumed to consist of 10% of a ring distribution and 90% of a low-temperature Maxwellian background. Here two cases with ring speeds vr/vA=1 and 2 (vA is the Alfvén speed) are examined in detail. For the two cases, linear theory predicts that the maximum growth rate γm of the Bernstein instability is 0.16Ωp and 0.19Ωp, respectively, and γm of the Alfvén-cyclotron instability is 0.045Ωp and 0.15Ωp, respectively, where Ωp is the proton cyclotron frequency. Two-dimensional PIC simulations are carried out for the two cases to examine the instability development and the corresponding evolution of the particle distributions. Initially, Bernstein waves develop and saturate with strong electrostatic fluctuations. Subsequently, electromagnetic Alfvén-cyclotron waves grow and saturate. Despite their smaller growth rate, the saturation levels of the Alfvén-cyclotron waves for both cases are larger than those of the Bernstein waves. Resonant interactions with the Bernstein waves lead to scattering of ring protons predominantly along the perpendicular velocity component (toward both decreasing and, at a lesser extent, increasing speeds) without substantial change of either the parallel temperature or the temperature anisotropy. Consequently, the Alfvén-cyclotron instability can still grow. Furthermore, the free energy resulting from the pitch angle scattering by the Alfvén-cyclotron waves is larger than the free energy resulting from the perpendicular energy scattering, thereby leading to the larger saturation level of the Alfvén-cyclotron waves.
NASA Astrophysics Data System (ADS)
Yu, Peicheng; Xu, Xinlu; Davidson, Asher; Tableman, Adam; Dalichaouch, Thamine; Li, Fei; Meyers, Michael D.; An, Weiming; Tsung, Frank S.; Decyk, Viktor K.; Fiuza, Frederico; Vieira, Jorge; Fonseca, Ricardo A.; Lu, Wei; Silva, Luis O.; Mori, Warren B.
2016-07-01
When modeling laser wakefield acceleration (LWFA) using the particle-in-cell (PIC) algorithm in a Lorentz boosted frame, the plasma is drifting relativistically at βb c towards the laser, which can lead to a computational speedup of ∼ γb2 = (1 - βb2)-1. Meanwhile, when LWFA is modeled in the quasi-3D geometry in which the electromagnetic fields and current are decomposed into a limited number of azimuthal harmonics, speedups are achieved by modeling three dimensional (3D) problems with the computational loads on the order of two dimensional r - z simulations. Here, we describe a method to combine the speedups from the Lorentz boosted frame and quasi-3D algorithms. The key to the combination is the use of a hybrid Yee-FFT solver in the quasi-3D geometry that significantly mitigates the Numerical Cerenkov Instability (NCI) which inevitably arises in a Lorentz boosted frame due to the unphysical coupling of Langmuir modes and EM modes of the relativistically drifting plasma in these simulations. In addition, based on the space-time distribution of the LWFA data in the lab and boosted frame, we propose to use a moving window to follow the drifting plasma, instead of following the laser driver as is done in the LWFA lab frame simulations, in order to further reduce the computational loads. We describe the details of how the NCI is mitigated for the quasi-3D geometry, the setups for simulations which combine the Lorentz boosted frame, quasi-3D geometry, and the use of a moving window, and compare the results from these simulations against their corresponding lab frame cases. Good agreement is obtained among these sample simulations, particularly when there is no self-trapping, which demonstrates it is possible to combine the Lorentz boosted frame and the quasi-3D algorithms when modeling LWFA. We also discuss the preliminary speedups achieved in these sample simulations.
NASA Astrophysics Data System (ADS)
Liu, Hui; Chen, Peng-Bo; Zhao, Yin-Jian; Yu, Da-Ren
2015-08-01
Magnetic mirror used as an efficient tool to confine plasma has been widely adopted in many different areas especially in recent cusped field thrusters. In order to check the influence of magnetic mirror effect on the plasma distribution in a cusped field thruster, three different radii of the discharge channel (6 mm, 4 mm, and 2 mm) in a cusped field thruster are investigated by using Particle-in-Cell Plus Monte Carlo (PIC-MCC) simulated method, under the condition of a fixed axial length of the discharge channel and the same operating parameters. It is found that magnetic cusps inside the small radius discharge channel cannot confine electrons very well. Thus, the electric field is hard to establish. With the reduction of the discharge channel’s diameter, more electrons will escape from cusps to the centerline area near the anode due to a lower magnetic mirror ratio. Meanwhile, the leak width of the cusped magnetic field will increase at the cusp. By increasing the magnetic field strength in a small radius model of a cusped field thruster, the negative effect caused by the weak magnetic mirror effect can be partially compensated. Therefore, according to engineering design, the increase of magnetic field strength can contribute to obtaining a good performance, when the radial distance between the magnets and the inner surface of the discharge channel is relatively big. Project supported by the National Natural Science Foundation of China (Grant No. 51006028) and the Foundation for Innovative Research Groups of the National Natural Science Foundation of China (Grant No. 51121004).
NASA Technical Reports Server (NTRS)
Wang, J.; Biasca, R.; Liewer, P. C.
1996-01-01
Although the existence of the critical ionization velocity (CIV) is known from laboratory experiments, no agreement has been reached as to whether CIV exists in the natural space environment. In this paper we move towards more realistic models of CIV and present the first fully three-dimensional, electromagnetic particle-in-cell Monte-Carlo collision (PIC-MCC) simulations of typical space-based CIV experiments. In our model, the released neutral gas is taken to be a spherical cloud traveling across a magnetized ambient plasma. Simulations are performed for neutral clouds with various sizes and densities. The effects of the cloud parameters on ionization yield, wave energy growth, electron heating, momentum coupling, and the three-dimensional structure of the newly ionized plasma are discussed. The simulations suggest that the quantitative characteristics of momentum transfers among the ion beam, neutral cloud, and plasma waves is the key indicator of whether CIV can occur in space. The missing factors in space-based CIV experiments may be the conditions necessary for a continuous enhancement of the beam ion momentum. For a typical shaped charge release experiment, favorable CIV conditions may exist only in a very narrow, intermediate spatial region some distance from the release point due to the effects of the cloud density and size. When CIV does occur, the newly ionized plasma from the cloud forms a very complex structure due to the combined forces from the geomagnetic field, the motion induced emf, and the polarization. Hence the detection of CIV also critically depends on the sensor location.
NASA Astrophysics Data System (ADS)
Dalichaouch, Thamine; Yu, Peicheng; Davidson, Asher; Mori, Warren; Vieira, Jorge; Fonseca, Ricardo
2015-11-01
Laser wakefield acceleration (LWFA) has attracted a lot of interest as a possible compact particle accelerator. However, 3D simulations of plasma-based accelerators are computationally intensive, sometimes taking millions of core hours on today's computers. A quasi-3D particle-In-cell (PIC) approach has been developed to take advantage of azimuthal symmetry in LWFA (and PWFA) simulations by using a particle-in-cell description in r-z and a Fourier description in φ. Quasi-3D simulations of LWFA are computationally more efficient and faster than Full-3D simulations because only first few azimuthal harmonics are needed to capture the physics of the problem. We have developed a cylindrical mode decomposition diagnostic for 3D Cartesian geometry simulations to analyze the agreement between full-3D and quasi-3D PIC simulations of laser and beam-plasma interactions. The diagnostic interpolates field data from Full-3D PIC simulations onto an irregular cylindrical grid (r , φ , z). A Fourier decomposition is then performed on the interpolated 3D simulation data along the azimuthal direction. This diagnostic has the added advantage of separating out the wakefields from the laser field. Preliminary results for this diagnostic of LWFA and PWFA simulations with symmetric and nearly symmetric spot sizes as well as of laser-plasma interactions using lasers with orbital angular momentum (higher order Laguerre-Gaussian modes) will be presented.
Numerical modeling of laser tunneling ionization in explicit particle-in-cell codes
Chen, M.; Cormier-Michel, E.; Geddes, C.G.R.; Bruhwiler, D.L.; Yu, L.L.; Esarey, E.; Schroeder, C.B.; Leemans, W.P.
2013-03-01
Methods for the calculation of laser tunneling ionization in explicit particle-in-cell codes used for modeling laser–plasma interactions are compared and validated against theoretical predictions. Improved accuracy is obtained by using the direct current form for the ionization rate. Multi level ionization in a single time step and energy conservation have been considered during the ionization process. The effects of grid resolution and number of macro-particles per cell are examined. Implementation of the ionization algorithm in two different particle-in-cell codes is compared for the case of ionization-based electron injection in a laser–plasma accelerator.
Onset of Reconnection in the near Magnetotail: PIC Simulations
NASA Technical Reports Server (NTRS)
Liu, Yi-Hsin; Birn, Joachim; Daughton, William; Hesse, Michael; Schindler, Karl
2014-01-01
Using 2.5-dimensional particle-in-cell (PIC) simulations of magnetotail dynamics, we investigate the onset of reconnection in two-dimensional tail configurations with finite Bz. Reconnection onset is preceded by a driven phase, during which magnetic flux is added to the tail at the high-latitude boundaries, followed by a relaxation phase, during which the configuration continues to respond to the driving. We found a clear distinction between stable and unstable cases, dependent on deformation amplitude and ion/electron mass ratio. The threshold appears consistent with electron tearing. The evolution prior to onset, as well as the evolution of stable cases, are largely independent of the mass ratio, governed by integral flux tube entropy conservation as imposed in MHD (magnetohydrodynamics). This suggests that ballooning instability in the tail should not be expected prior to the onset of tearing and reconnection. The onset time and other onset properties depend on the mass ratio, consistent with expectations for electron tearing. At onset,we found electron anisotropies T?/ T? (bottom tail divided by parallel tail) equals 1.1-1.3, raising growth rates and wavenumbers. Our simulations have provided a quantitative onset criterion that is easily evaluated in MHD simulations, provided the spatial resolution is sufficient. The evolution prior to onset and after the formation of a neutral line does not depend on the electron physics, which should permit an approximation by MHD simulations with appropriate dissipation terms.
Ion Density Holes observed by Cluster satellite: Electromagnetic PIC Simulation
NASA Astrophysics Data System (ADS)
Hong, J.; Lee, E.; Min, K. W.; Parks, G. K.
2010-12-01
In the upstream region of the bow shock, many transient structures have been found such as hot flow anomalies (HFAs), foreshock cavities (FCs), hot diamagnetic cavities (HDCs), and short- and large-amplitude magnetic structures. Density holes (DHs) are one of such transient phenomena with similar characteristics to those of HFAs, FCs, and HDCs: density depletion accompanied by the depression of magnetic field and "deflection of" flow velocity. While sometimes regarded as the early phase of HFA, DH has a lower magnetic shear and a smaller flow deviation than the HFA. However, the most significant difference between the two structures is the direction of motional electric field (convection electric field). The solar wind convection electric fields of DHs have an outward-component from the embedding IMF current sheets while HFAs usually have components directed inward on either or both of the edges. As the Cluster observations indicate the isolated DH structures generally accompany diffuse ion beams in the rotating magnetic fields, which can be interpreted as a current sheet or a solitary wave, we conjecture the ion-ion beam instability occurring around the current sheet to be the important factor of DHs structures and set up simulation models using a two-dimensional electromagnetic particle-in-cell (PIC) code. Here, we report the characteristics of DHs observed by Cluster and the progress of our simulation study.
Benchmarking of particle-in-cell simulations with Monte Carlo collisions using LXcat data
NASA Astrophysics Data System (ADS)
Turner, M. M.; Hanzlikova, N.; Eremin, D.; Mussenbrock, T.; Derzsi, A.; Donko, Z.
2011-10-01
As a direct solution of the Boltzmann equation, particle-in-cell simulation potentially yields highly accurate descriptions of low-temperature plasma. However, this accuracy is realised only with correct implementation and appropriately chosen numerical parameters. Particle-in-cell simulation is a computationally intensive procedure. Consequently, efficient implementations that take full advantage of the resources of modern computer hardware are highly desirable. Such hardware typically offers some degree of parallelisation, such as is found in multicored processors and graphical processing units. Implementations exploiting these facilities can be orders of magnitude faster than traditional serialized approaches. However, parallelisation introduces a great increase in algorithmic complexity, and thereby intensifies concerns about correct implementation. In this report we describe a suite of benchmark calculations for particle-in-cell simulations, making use of LXcat cross section data. These bench marks have three aims: (1) to demonstrate correct implementation (2) to facilitate performance comparisons of different implementations and (3) to provide a baseline for other simulation methods. We will discuss the benchmarks, which include measurements of plasma kinetic properties, transport coefficients and discharge simulations, together with the results obtained from a variety of particle-in-cell implementations.
PIC (PRODUCTS OF INCOMPLETE COMBUSTION) ANALYSIS METHODS
The report gives results of method evaluations for products of incomplete combustion (PICs): 36 proposed PICs were evaluated by previously developed gas chromatography/flame ionization detection (GC/FID) and gas chromatography/mass spectroscopy (GC/MS) methods. It also gives resu...
User-configurable MAGIC for electromagnetic PIC calculations
NASA Astrophysics Data System (ADS)
Goplen, Bruce; Ludeking, Larry; Smith, David; Warren, Gary
1995-05-01
MAGIC is a user-configurable code that solves Maxwell's equations together with Lorentz particle motion. A variety of 2D, finite-difference electromagnetic algorithms and 3D particle-in-cell algorithms may be combined in problem-specific ways to provide fast, accurate, steady-state and transient calculations for many research and design needs. Default configurations provide good speed and accuracy for most applications, and a library of templates offers optimized algorithm configurations for specific devices. A programmable processor named POSTER provides advanced post-analysis of the field and particle solutions. Coordinate systems, boundary conditions, geometry, and materials are specified by the user, and grid generation can be manual, user-assisted, or fully automatic. MAGIC has a fully 3D counterpart called SOS. Programs exist to connect these analysis tools to parametric and CAD input from an integrated design environment.
NASA Astrophysics Data System (ADS)
McMahon, Matthew; Poole, Patrick; Willis, Christopher; Andereck, David; Schumacher, Douglass
2014-10-01
We recently introduced liquid crystal films as on-demand, variable thickness (50-5000 nanometers), low cost targets for intense laser experiments. Here we present the first particle-in-cell (PIC) simulations of short pulse laser excitation of liquid crystal targets treating Scarlet (OSU) class lasers using the PIC code LSP. In order to accurately model the target evolution, a low starting temperature and field ionization model are employed. This is essential as large starting temperatures, often used to achieve large Debye lengths, lead to expansion of the target causing significant reduction of the target density before the laser pulse can interact. We also present an investigation of the modification of laser pulses by very thin targets. This work was supported by the DARPA PULSE program through a grant from ARMDEC, by the US Department of Energy under Contract No. DE-NA0001976, and allocations of computing time from the Ohio Supercomputing Center.
Dynamic load balancing in a concurrent plasma PIC code on the JPL/Caltech Mark III hypercube
Liewer, P.C.; Leaver, E.W.; Decyk, V.K.; Dawson, J.M.
1990-12-31
Dynamic load balancing has been implemented in a concurrent one-dimensional electromagnetic plasma particle-in-cell (PIC) simulation code using a method which adds very little overhead to the parallel code. In PIC codes, the orbits of many interacting plasma electrons and ions are followed as an initial value problem as the particles move in electromagnetic fields calculated self-consistently from the particle motions. The code was implemented using the GCPIC algorithm in which the particles are divided among processors by partitioning the spatial domain of the simulation. The problem is load-balanced by partitioning the spatial domain so that each partition has approximately the same number of particles. During the simulation, the partitions are dynamically recreated as the spatial distribution of the particles changes in order to maintain processor load balance.
NASA Astrophysics Data System (ADS)
Blackman, Eric; Park, Jaehong; Ren, Chuang; Workman, Jared
2012-10-01
Low Mach/high beta fast mode shocks can occur in the magnetic reconnection outflows of solar flares. These shocks, which occur above flare loop tops, may provide electron energization responsible for some of the hard X-rays detected by YOHKO and the RHESSE, and radio emission. There has been a dearth of work on understanding the microphysics of these low Mach number shocks. We present new 2D particle-in-cell simulations of low Mach/high beta shocks for the general quasi-perpendicular geometry of field and shock normal to compare with the results for the purely perpendicular case considered in Park et. al. (2012)[Phys.Plasmas 19,062904]. Our aim is to study shock structure and particle acceleration. We find that the modified-two-stream instability sustains the shock and accounts for the entropy creation downstream. We observe the electron Whistler instability in the transition region due to the temperature anisotropy. To have enough simulation electrons above the threshold energy for shock-drift-acceleration (SDA), we inject a two-temperature Maxwellian distribution represented by two separate species, which is approximated to a kappa distribution with κ=10. From particle tracking and the particle energy distribution, we find copious high-energy electrons experiencing SDA.
Lu, San; Lu, Quanming; Huang, Can; Wang, Shui; Dong, Quanli; Zhu, Jianqiang; Sheng, Zhengming; Zhang, Jie
2013-11-15
Recently, magnetic reconnection has been realized in high-energy-density laser-produced plasmas. Plasma bubbles with self-generated magnetic fields are created by focusing laser beams to small-scale spots on a foil. The bubbles expand into each other, which may then drive magnetic reconnection. The reconnection experiment in laser-produced plasmas has also been conducted at Shenguang-II (SG-II) laser facility, and the existence of a plasmoid was identified in the experiment [Dong et al., Phys. Rev. Lett. 108, 215001 (2012)]. In this paper, by performing two-dimensional (2-D) particle-in-cell simulations, we investigate such a process of magnetic reconnection based on the experiment on SG-II facility, and a possible explanation for the formation of the plasmoid is proposed. The results show that before magnetic reconnection occurs, the bubbles squeeze strongly each other and a very thin current sheet is formed. The current sheet is unstable to the tearing mode instability, and we can then observe the formation of plasmoid(s) in such a multiple X-lines reconnection.
NASA Astrophysics Data System (ADS)
Niemiec, J.; Florinski, V.; Heerikhuisen, J.; Nishikawa, K.-I.
2016-08-01
The nearly circular ribbon of energetic neutral atom (ENA) emission discovered by NASA’s Interplanetary Boundary EXplorer satellite (IBEX), is most commonly attributed to the effect of charge exchange of secondary pickup ions (PUIs) gyrating about the magnetic field in the outer heliosheath (OHS) and the interstellar space beyond. The first paper in the series (Paper I) presented a theoretical analysis of the pickup process in the OHS and hybrid-kinetic simulations, revealing that the kinetic properties of freshly injected proton rings depend sensitively on the details of their velocity distribution. It was demonstrated that only rings that are not too narrow (parallel thermal spread above a few km s‑1) and not too wide (parallel temperature smaller than the core plasma temperature) could remain stable for a period of time long enough to generate ribbon ENAs. This paper investigates the role of electron dynamics and the extra spatial degree of freedom in the ring ion scattering process with the help of two-dimensional full particle-in-cell (PIC) kinetic simulations. A good agreement is observed between ring evolution under unstable conditions in hybrid and PIC models, and the dominant modes are found to propagate parallel to the magnetic field. We also present more realistic ribbon PUI distributions generated using Monte Carlo simulations of atomic hydrogen in the global heliosphere and examine the effect of both the cold ring-like and the hot “halo” PUIs produced from heliosheath ENAs on the ring stability. It is shown that the second PUI population enhances the fluctuation growth rate, leading to faster isotropization of the solar-wind-derived ring ions.
NASA Astrophysics Data System (ADS)
Domański, J.; Badziak, J.; Jabloński, S.
2016-04-01
Laser-driven generation of high-energy ion beams has recently attracted considerable interest due to a variety of potential applications including proton radiography, ICF fast ignition, nuclear physics or hadron therapy. The ion beam parameters depend on both laser pulse and target parameters, and in order to produce the ion beam of properties required for a particular application the laser and target parameters must be carefully selected, and the mechanism of the ion beam generation should be well understood and controlled. Convenient and commonly used tools for studies of the ion acceleration process are particle-in-cell (PIC) codes. Using two-dimensional PIC simulations, the properties of a proton beam generated from a thin erbium hydride (ErH3) target irradiated by a 25fs laser pulse of linear or circular polarization and of intensity ranging from 1020 to 1021 W/cm2 are investigated and compared with the features of a proton beam produced from a hydrocarbon (CH) target. It has been found that using erbium hydride targets instead of hydrocarbon ones creates an opportunity to generate more compact proton beams of higher mean energy, intensity and of better collimation. This is especially true for the linear polarization of the laser beam, for which the mean proton energy, the amount of high energy protons and the intensity of the proton beam generated from the hydride target is by an order of magnitude higher than for the hydrocarbon target. For the circular polarization, the proton beam parameters are lower than those for the linear one, and the effect of target composition on the acceleration process is weaker.
Application of adaptive mesh refinement to particle-in-cell simulations of plasmas and beams
Vay, J.-L.; Colella, P.; Kwan, J.W.; McCorquodale, P.; Serafini, D.B.; Friedman, A.; Grote, D.P.; Westenskow, G.; Adam, J.-C.; Heron, A.; Haber, I.
2003-11-04
Plasma simulations are often rendered challenging by the disparity of scales in time and in space which must be resolved. When these disparities are in distinctive zones of the simulation domain, a method which has proven to be effective in other areas (e.g. fluid dynamics simulations) is the mesh refinement technique. We briefly discuss the challenges posed by coupling this technique with plasma Particle-In-Cell simulations, and present examples of application in Heavy Ion Fusion and related fields which illustrate the effectiveness of the approach. We also report on the status of a collaboration under way at Lawrence Berkeley National Laboratory between the Applied Numerical Algorithms Group (ANAG) and the Heavy Ion Fusion group to upgrade ANAG's mesh refinement library Chombo to include the tools needed by Particle-In-Cell simulation codes.
Improved modeling of relativistic collisions and collisional ionization in particle-in-cell codes
Perez, F.; Gremillet, L.; Decoster, A.; Drouin, M.; Lefebvre, E.
2012-08-15
An improved Monte Carlo collisional scheme modeling both elastic and inelastic interactions has been implemented into the particle-in-cell code CALDER[E. Lefebvre et al., Nucl. Fusion 43, 629 (2003)]. Based on the technique proposed by Nanbu and Yonemura [J. Comput. Phys. 145, 639 (1998)] allowing to handle arbitrarily weighted macro-particles, this binary collision scheme uses a more compact and accurate relativistic formulation than the algorithm recently worked out by Sentoku and Kemp [J. Comput. Phys. 227, 6846 (2008)]. Our scheme is validated through several test cases, demonstrating, in particular, its capability of modeling the electrical resistivity and stopping power of a solid-density plasma over a broad parameter range. A relativistic collisional ionization scheme is developed within the same framework, and tested in several physical scenarios. Finally, our scheme is applied in a set of integrated particle-in-cell simulations of laser-driven fast electron transport.
Leap frog integrator modifications in highly collisional particle-in-cell codes
NASA Astrophysics Data System (ADS)
Hanzlikova, N.; Turner, M. M.
2014-07-01
Leap frog integration method is a standard, simple, fast, and accurate way to implement velocity and position integration in particle-in-cell codes. Due to the direct solution of kinetics of particles in phase space central to the particle-in-cell procedure, important information can be obtained on particle velocity distributions, and consequently on transport and heating processes. This approach is commonly associated with physical situations where collisional effects are weak, but can also be profitably applied in some highly collisional cases, such as occur in semiconductor devices and gaseous discharges at atmospheric pressure. In this paper, we show that the implementation of the leap frog integration method in these circumstances can violate some of the assumptions central to the accuracy of this scheme. Indeed, without adaptation, the method gives incorrect results. We show here how the method must be modified to deal correctly with highly collisional cases.
Implementations of mesh refinement schemes for particle-in-cell plasma simulations
Vay, J.-L.; Colella, P.; Friedman, A.; Grote, D.P.; McCorquodale, P.; Serafini, D.B.
2003-10-20
Plasma simulations are often rendered challenging by the disparity of scales in time and in space which must be resolved. When these disparities are in distinctive zones of the simulation region, a method which has proven to be effective in other areas (e.g. fluid dynamics simulations) is the mesh refinement technique. We briefly discuss the challenges posed by coupling this technique with plasma Particle-In-Cell simulations and present two implementations in more detail, with examples.
Geometric integration of the Vlasov-Maxwell system with a variational particle-in-cell scheme
NASA Astrophysics Data System (ADS)
Squire, J.; Qin, H.; Tang, W. M.
2012-08-01
A fully variational, unstructured, electromagnetic particle-in-cell integrator is developed for integration of the Vlasov-Maxwell equations. Using the formalism of discrete exterior calculus [Desbrun et al., e-print arXiv:math/0508341 (2005)], the field solver, interpolation scheme, and particle advance algorithm are derived through minimization of a single discrete field theory action. As a consequence of ensuring that the action is invariant under discrete electromagnetic gauge transformations, the integrator exactly conserves Gauss's law.
Geometric integration of the Vlasov-Maxwell system with a variational particle-in-cell scheme
Squire, J.; Tang, W. M.; Qin, H.
2012-08-15
A fully variational, unstructured, electromagnetic particle-in-cell integrator is developed for integration of the Vlasov-Maxwell equations. Using the formalism of discrete exterior calculus [Desbrun et al., e-print arXiv:math/0508341 (2005)], the field solver, interpolation scheme, and particle advance algorithm are derived through minimization of a single discrete field theory action. As a consequence of ensuring that the action is invariant under discrete electromagnetic gauge transformations, the integrator exactly conserves Gauss's law.
Geometric Integration Of The Vlasov-Maxwell System With A Variational Particle-in-cell Scheme
J. Squire, H. Qin and W.M. Tang
2012-03-27
A fully variational, unstructured, electromagnetic particle-in-cell integrator is developed for integration of the Vlasov-Maxwell equations. Using the formalism of Discrete Exterior Calculus [1], the field solver, interpolation scheme and particle advance algorithm are derived through minimization of a single discrete field theory action. As a consequence of ensuring that the action is invariant under discrete electromagnetic gauge transformations, the integrator exactly conserves Gauss's law.
First experience with particle-in-cell plasma physics code on ARM-based HPC systems
NASA Astrophysics Data System (ADS)
Sáez, Xavier; Soba, Alejandro; Sánchez, Edilberto; Mantsinen, Mervi; Mateo, Sergi; Cela, José M.; Castejón, Francisco
2015-09-01
In this work, we will explore the feasibility of porting a Particle-in-cell code (EUTERPE) to an ARM multi-core platform from the Mont-Blanc project. The used prototype is based on a system-on-chip Samsung Exynos 5 with an integrated GPU. It is the first prototype that could be used for High-Performance Computing (HPC), since it supports double precision and parallel programming languages.
Particle-In-Cell/Monte Carlo Simulation of Ion Back Bombardment in Photoinjectors
Qiang, Ji; Corlett, John; Staples, John
2009-03-02
In this paper, we report on studies of ion back bombardment in high average current dc and rf photoinjectors using a particle-in-cell/Monte Carlo method. Using H{sub 2} ion as an example, we observed that the ion density and energy deposition on the photocathode in rf guns are order of magnitude lower than that in a dc gun. A higher rf frequency helps mitigate the ion back bombardment of the cathode in rf guns.
Wang, Huihui; Meng, Lin; Liu, Dagang; Liu, Laqun
2013-12-15
A particle-in-cell/Monte Carlo code is developed to rescale the microwave breakdown theory which is put forward by Vyskrebentsev and Raizer. The results of simulations show that there is a distinct error in this theory when the high energy tail of electron energy distribution function increases. A rescaling factor is proposed to modify this theory, and the change rule of the rescaling factor is presented.
PIC codes for plasma accelerators on emerging computer architectures (GPUS, Multicore/Manycore CPUS)
NASA Astrophysics Data System (ADS)
Vincenti, Henri
2016-03-01
The advent of exascale computers will enable 3D simulations of a new laser-plasma interaction regimes that were previously out of reach of current Petasale computers. However, the paradigm used to write current PIC codes will have to change in order to fully exploit the potentialities of these new computing architectures. Indeed, achieving Exascale computing facilities in the next decade will be a great challenge in terms of energy consumption and will imply hardware developments directly impacting our way of implementing PIC codes. As data movement (from die to network) is by far the most energy consuming part of an algorithm future computers will tend to increase memory locality at the hardware level and reduce energy consumption related to data movement by using more and more cores on each compute nodes (''fat nodes'') that will have a reduced clock speed to allow for efficient cooling. To compensate for frequency decrease, CPU machine vendors are making use of long SIMD instruction registers that are able to process multiple data with one arithmetic operator in one clock cycle. SIMD register length is expected to double every four years. GPU's also have a reduced clock speed per core and can process Multiple Instructions on Multiple Datas (MIMD). At the software level Particle-In-Cell (PIC) codes will thus have to achieve both good memory locality and vectorization (for Multicore/Manycore CPU) to fully take advantage of these upcoming architectures. In this talk, we present the portable solutions we implemented in our high performance skeleton PIC code PICSAR to both achieve good memory locality and cache reuse as well as good vectorization on SIMD architectures. We also present the portable solutions used to parallelize the Pseudo-sepctral quasi-cylindrical code FBPIC on GPUs using the Numba python compiler.
Verification of particle-in-cell simulations against exact solutions of kinetic equations
NASA Astrophysics Data System (ADS)
Turner, Miles
2015-09-01
Demonstrating correctness of computer simulations (or verification) has become a matter of increasing concern in recent years. The strongest type of verification is a demonstration that the simulation converges to an exact solution of the mathematical model that is supposed to be solved. Of course, this is possible only if such an exact solution is available. In this paper, we are interested in kinetic simulation using the particle-in-cell method, and consequently a relevant exact solution must be a solution of a kinetic equation. While we know of no such solutions that exercise all the features of a typical particle-in-cell simulation, in this paper we show that the mathematical literature contains several such solutions that involve a large fraction of the functionality of such a code, and which collectively exercise essentially all of the code functionality. These solutions include the plane diode, the neutron criticality problem, and the calculation of ion energy distribution functions in oscillating fields. In each of theses cases, we can show the the particle-in-cell simulation converges to the exact solution in the expected way. These demonstrations are strong evidence of correct implementation. Work supported by Science Foundation Ireland under grant 08/SRC/I1411.
NASA Astrophysics Data System (ADS)
Kollasch, Jeffrey; Sovinec, Carl; Santarius, John
2013-10-01
Collisionless electron confinement times in polyhedral magnetic cusp configurations are investigated numerically with a particle-in-cell technique designed for steady-state conditions of the Vlasov-Poisson system. This method is based on iteratively solving particle trajectories in the time-independent electrostatic field produced by trajectories from a previous iteration. A new code based on this technique, SSUBPIC (steady-state unstructured-boundary particle-in-cell), is presented. It is found to converge rapidly for the cases investigated. The implementation is verified on computations of space-charge limited current in 1D and 2D configurations. Here, it is applied to study the effects of an ejecting virtual cathode potential well on a single electron species injected by guns into a Polywell(TM). Adverse effects of non-magnetically shielded structural members on confinement time are also calculated. Work supported by the Department of Defense (DoD) through the National Defense Science and Engineering Graduate Fellowship (NDSEG) Program.
Numerical stability analysis of the pseudo-spectral analytical time-domain PIC algorithm
Godfrey, Brendan B.; Vay, Jean-Luc; Haber, Irving
2014-02-01
The pseudo-spectral analytical time-domain (PSATD) particle-in-cell (PIC) algorithm solves the vacuum Maxwell's equations exactly, has no Courant time-step limit (as conventionally defined), and offers substantial flexibility in plasma and particle beam simulations. It is, however, not free of the usual numerical instabilities, including the numerical Cherenkov instability, when applied to relativistic beam simulations. This paper derives and solves the numerical dispersion relation for the PSATD algorithm and compares the results with corresponding behavior of the more conventional pseudo-spectral time-domain (PSTD) and finite difference time-domain (FDTD) algorithms. In general, PSATD offers superior stability properties over a reasonable range of time steps. More importantly, one version of the PSATD algorithm, when combined with digital filtering, is almost completely free of the numerical Cherenkov instability for time steps (scaled to the speed of light) comparable to or smaller than the axial cell size.
XPDC2-R{theta} a two-dimensional electrostatic PIC code
Birdsall, C.K.; Cooperberg, D.; Gopinath, V.P.; Mirrashidi, P.; Vahedi, V.; Verboncoeur, J.
1995-12-31
A two dimensional particle-in-cell simulation has been written using a cylindrical R-{theta} Poisson field solver. The simulator is capable of simulating coaxial structures with and without a central conductor. In the presence of a central conductor, an external circuit consisting of V,I sources and R-L-C elements can be self-consistently simulated with the plasma equations. The simulation model includes the PIC-MCC package to model collisions between charged particles and neutral species. The field solve in the {theta} direction can be done using finite-difference or Fourier transforms. The simulator is currently being used to study the diocotron and Kelvin-Helmholtz instabilities. The ability to generate movies to study time-varying phenomenon will be discussed. In addition, comparisons with theory and 1D models will also be presented.
Development and Test of 2.5-Dimensional Electromagnetic PIC Simulation Code
NASA Astrophysics Data System (ADS)
Lee, Sang-Yun; Lee, Ensang; Kim, Khan-Hyuk; Seon, Jongho; Lee, Dong-Hun; Ryu, Kwang-Sun
2015-03-01
We have developed a 2.5-dimensional electromagnetic particle simulation code using the particle-in-cell (PIC) method to investigate electromagnetic phenomena that occur in space plasmas. Our code is based on the leap-frog method and the centered difference method for integration and differentiation of the governing equations. We adopted the relativistic Buneman-Boris method to solve the Lorentz force equation and the Esirkepov method to calculate the current density while maintaining charge conservation. Using the developed code, we performed test simulations for electron two-stream instability and electron temperature anisotropy induced instability with the same initial parameters as used in previously reported studies. The test simulation results are almost identical with those of the previous papers.
2005-07-01
Aniso2d is a two-dimensional seismic forward modeling code. The earth is parameterized by an X-Z plane in which the seismic properties Can have monoclinic with x-z plane symmetry. The program uses a user define time-domain wavelet to produce synthetic seismograms anrwhere within the two-dimensional media.
Park, Jaehong; Ren Chuang; Workman, Jared C.; Blackman, Eric G.
2013-03-10
Low Mach number, high beta fast mode shocks can occur in the magnetic reconnection outflows of solar flares. These shocks, which occur above flare loop tops, may provide the electron energization responsible for some of the observed hard X-rays and contemporaneous radio emission. Here we present new two-dimensional particle-in-cell simulations of low Mach number/high beta quasi-perpendicular shocks. The simulations show that electrons above a certain energy threshold experience shock-drift-acceleration. The transition energy between the thermal and non-thermal spectrum and the spectral index from the simulations are consistent with some of the X-ray spectra from RHESSI in the energy regime of E {approx}< 40 {approx} 100 keV. Plasma instabilities associated with the shock structure such as the modified-two-stream and the electron whistler instabilities are identified using numerical solutions of the kinetic dispersion relations. We also show that the results from PIC simulations with reduced ion/electron mass ratio can be scaled to those with the realistic mass ratio.
Greg Flach, Frank Smith
2011-12-31
Mesh2d is a Fortran90 program designed to generate two-dimensional structured grids of the form [x(i),y(i,j)] where [x,y] are grid coordinates identified by indices (i,j). The x(i) coordinates alone can be used to specify a one-dimensional grid. Because the x-coordinates vary only with the i index, a two-dimensional grid is composed in part of straight vertical lines. However, the nominally horizontal y(i,j0) coordinates along index i are permitted to undulate or otherwise vary. Mesh2d also assigns an integer material type to each grid cell, mtyp(i,j), in a user-specified manner. The complete grid is specified through three separate input files defining the x(i), y(i,j), and mtyp(i,j) variations.
2011-12-31
Mesh2d is a Fortran90 program designed to generate two-dimensional structured grids of the form [x(i),y(i,j)] where [x,y] are grid coordinates identified by indices (i,j). The x(i) coordinates alone can be used to specify a one-dimensional grid. Because the x-coordinates vary only with the i index, a two-dimensional grid is composed in part of straight vertical lines. However, the nominally horizontal y(i,j0) coordinates along index i are permitted to undulate or otherwise vary. Mesh2d also assignsmore » an integer material type to each grid cell, mtyp(i,j), in a user-specified manner. The complete grid is specified through three separate input files defining the x(i), y(i,j), and mtyp(i,j) variations.« less
A portable approach for PIC on emerging architectures
NASA Astrophysics Data System (ADS)
Decyk, Viktor
2016-03-01
A portable approach for designing Particle-in-Cell (PIC) algorithms on emerging exascale computers, is based on the recognition that 3 distinct programming paradigms are needed. They are: low level vector (SIMD) processing, middle level shared memory parallel programing, and high level distributed memory programming. In addition, there is a memory hierarchy associated with each level. Such algorithms can be initially developed using vectorizing compilers, OpenMP, and MPI. This is the approach recommended by Intel for the Phi processor. These algorithms can then be translated and possibly specialized to other programming models and languages, as needed. For example, the vector processing and shared memory programming might be done with CUDA instead of vectorizing compilers and OpenMP, but generally the algorithm itself is not greatly changed. The UCLA PICKSC web site at http://www.idre.ucla.edu/ contains example open source skeleton codes (mini-apps) illustrating each of these three programming models, individually and in combination. Fortran2003 now supports abstract data types, and design patterns can be used to support a variety of implementations within the same code base. Fortran2003 also supports interoperability with C so that implementations in C languages are also easy to use. Finally, main codes can be translated into dynamic environments such as Python, while still taking advantage of high performing compiled languages. Parallel languages are still evolving with interesting developments in co-Array Fortran, UPC, and OpenACC, among others, and these can also be supported within the same software architecture. Work supported by NSF and DOE Grants.
NASA Astrophysics Data System (ADS)
Lotsch, Bettina V.
2015-07-01
Graphene's legacy has become an integral part of today's condensed matter science and has equipped a whole generation of scientists with an armory of concepts and techniques that open up new perspectives for the postgraphene area. In particular, the judicious combination of 2D building blocks into vertical heterostructures has recently been identified as a promising route to rationally engineer complex multilayer systems and artificial solids with intriguing properties. The present review highlights recent developments in the rapidly emerging field of 2D nanoarchitectonics from a materials chemistry perspective, with a focus on the types of heterostructures available, their assembly strategies, and their emerging properties. This overview is intended to bridge the gap between two major—yet largely disjunct—developments in 2D heterostructures, which are firmly rooted in solid-state chemistry or physics. Although the underlying types of heterostructures differ with respect to their dimensions, layer alignment, and interfacial quality, there is common ground, and future synergies between the various assembly strategies are to be expected.
PIC simulations of SMLWFA for 35fs class lasers
NASA Astrophysics Data System (ADS)
Adam, J. C.; Tsung, F. S.; Ren, Chuang; Mori, W. B.; Fonseca, R. A.; Silva, L. O.
2001-10-01
In the self-modulated laser wakefield regime a laser pulse several to many 2 π c/ ωp long breaks up via Raman scattering type instabilities producing large wakes. In some cases these wakes can trap background electrons generating a beam of accelerated electrons with a large energy spread. PIC simulations have shown that this process is highly sensitive to the laser intensity, pulse length, and plasma density [K-C.Tzeng et al., PRL 76, 3332 (1996), K-C.Tzeng et al., PRL 79, 5258 (1997)]. There have been some recent experimental results in which 35fs laser pulses have been used. In this case the pulses are at most only a few 2 π c/ ωp long even for the highest densities 10**20 cm-3. We report here on 1D, 2D, and 3D PIC simulations using OSIRIS for parameters closely related to the LULI/LOA results [V.Malka et al., Phys. Plasmas 8, 2605 (2001)].
Fully explicit nonlinear optics model in a particle-in-cell framework
Gordon, D.F. Helle, M.H.; Peñano, J.R.
2013-10-01
A numerical technique which incorporates the nonlinear optics of anisotropic crystals into a particle-in-cell framework is described. The model is useful for simulating interactions between crystals, ultra-short laser pulses, intense relativistic electron bunches, plasmas, or any combination thereof. The frequency content of the incident and scattered radiation is limited only by the resolution of the spatial and temporal grid. A numerical stability analysis indicates that the Courant condition is more stringent than in the vacuum case. Numerical experiments are carried out illustrating the electro-optic effect, soliton propagation, and the generation of fields in a crystal by a relativistic electron bunch.
Levko, D.; Gurovich, V. Tz.; Krasik, Ya. E.
2012-06-15
The conductivity of the discharge gap during the nanosecond high-voltage pulsed discharge in nitrogen and sulfur hexafluoride is studied using particle-in-cell numerical simulations. It is shown that the conductivity in different locations of the cathode-anode gap is not uniform and that the conductivity is determined by both the runaway and the plasma electrons. In addition, it is shown that runaway electrons generated prior to the virtual cathode formation pre-ionize the discharge gap, which makes it conductive.
Particle-in-cell modeling of gas-confined barrier discharge
NASA Astrophysics Data System (ADS)
Levko, Dmitry; Raja, Laxminarayan L.
2016-04-01
Gas-confined barrier discharge is studied using the one-dimensional Particle-in-Cell Monte Carlo Collisions model for the conditions reported by Guerra-Garcia and Martinez-Sanchez [Appl. Phys. Lett. 106, 041601 (2015)]. Depending on the applied voltage, two modes of discharge are observed. In the first mode, the discharge develops in the entire interelectrode gap. In the second mode, the discharge is ignited and develops only in the gas layer having smaller breakdown voltage. The one-dimensional model shows that for the conditions considered, there is no streamer stage of breakdown as is typical for a traditional dielectric barrier discharge.
Geometric integration of the Vlasov-Maxwell system with a variational particle-in-cell scheme
NASA Astrophysics Data System (ADS)
Squire, Jonathan; Qin, Hong; Tang, William
2012-10-01
A fully variational, unstructured, electromagnetic particle-in-cell integrator is developed for integration of the Vlasov-Maxwell equations. Using the formalism of Discrete Exterior Calculus [1], the field solver, interpolation scheme and particle advance algorithm are derived through minimization of a single discrete field theory action. As a consequence of ensuring that the action is invariant under discrete electromagnetic gauge transformations, the integrator exactly conserves Gauss's law. This work was supported by USDOE Contract DE-AC02-09CH11466.[4pt] [1] M. Desbrun, A. N. Hirani, M. Leok, and J. E. Marsden, (2005), arXiv:math/0508341
NASA Astrophysics Data System (ADS)
Kempf, Andreas; Kilian, Patrick; Ganse, Urs; Schreiner, Cedric; Spanier, Felix
2015-03-01
A three-dimensional, parallelized implementation of the electromagnetic relativistic moment implicit particle-in-cell method in Cartesian geometry (Noguchi et al., 2007) is presented. Particular care was taken to keep the C++11 codebase simple, concise, and approachable. GMRES is used as a field solver and during the Newton-Krylov iteration of the particle pusher. Drifting Maxwellian problem setups are available while more complex simulations can be implemented easily. Several test runs are described and the code's numerical and computational performance is examined. Weak scaling on the SuperMUC system is discussed and found suitable for large-scale production runs.
Global particle-in-cell simulations of plasma pressure effects on Alfvenic modes
Mishchenko, Alexey; Koenies, Axel; Hatzky, Roman
2011-01-15
Global linear gyrokinetic particle-in-cell simulations of electromagnetic modes in realistic tokamak geometry are reported. The effect of plasma pressure on Alfvenic modes is studied. It is shown that the fast-particle pressure can considerably affect the shear Alfven wave continuum structure and hence the toroidicity-induced gap in the continuum. It is also found that the energetic ions can substantially reduce the growth rate of the ballooning modes (and perhaps completely stabilize them in a certain parameter range). Ballooning modes are found to be the dominant instabilities if the bulk-plasma pressure gradient is large enough.
Sheath and presheath in ion-ion plasmas via particle-in-cell simulation
Meige, A.; Leray, G.; Raimbault, J.-L.; Chabert, P.
2008-02-11
A full particle-in-cell simulation is developed to investigate electron-free plasmas constituted of positive and negative ions under the influence of a dc bias voltage. It is shown that high-voltage sheaths following the classical Child-law sheaths form within a few microseconds (which corresponds to the ion transit time) after the dc voltage is applied. It is also shown that there exists the equivalent of a Bohm criterion where a presheath accelerates the ions collected at one of the electrodes up to the sound speed before they enter the sheath. From an applied perspective, this leads to smaller sheaths than one would expect.
Philippov, Alexander A.; Spitkovsky, Anatoly
2014-04-20
We perform ''first-principles'' relativistic particle-in-cell simulations of aligned pulsar magnetosphere. We allow free escape of particles from the surface of a neutron star and continuously populate the magnetosphere with neutral pair plasma to imitate pair production. As pair plasma supply increases, we observe the transition from a charge-separated ''electrosphere'' solution with trapped plasma and no spin-down to a solution close to the ideal force-free magnetosphere with electromagnetically dominated pulsar wind. We calculate the magnetospheric structure, current distribution, and spin-down power of the neutron star. We also discuss particle acceleration in the equatorial current sheet.
Quasilinear theory and particle-in-cell simulation of proton cyclotron instability
Seough, Jungjoon E-mail: yoonp@umd.edu; Yoon, Peter H. E-mail: yoonp@umd.edu; Hwang, Junga E-mail: yoonp@umd.edu
2014-06-15
The electromagnetic ion (proton) cyclotron instability is important for regulating the excessive development of perpendicular temperature anisotropy in the solar wind, for instance, when it is compressed in the vicinity of the Earth's magnetosheath environment. A recent letter [Seough et al., Phys. Rev. Lett. 110, 071103 (2013)] successfully employed the quasilinear kinetic theory to explain the observed temperature anisotropy upper bound. The present paper rigorously examines the reliability of the quasilinear theory by making a direct comparison against results from the particle-in-cell simulation method. It is found that the quasilinear approach is indeed a valid first-cut theoretical tool in the study of proton cyclotron instability.
Particle-in-Cell Simulations of Ponderomotive Particle Acceleration in a Plasma
Startsev, E.A.; McKinstrie, C.J.
2003-06-17
(B204)In previous publications the ponderomotive acceleration of electrons by an idealized (one-dimensional) circularly polarized laser pulse in a plasma was studied analytically. Acceleration gradients of order 100 GeV/m were predicted. To verify the predictions of the theoretical model, a two-dimensional relativistic particle-in-cell code was developed. Simulations of the interaction of a preaccelerated electron bunch with a realistic (two-dimensional)laser pulse in a plasma are presented and analyzed. The simulation results validate the theoretical model and show that significant ponderomotive acceleration is possible.
Particle-in-cell simulations on spontaneous thermal magnetic field fluctuations
Simões, F. J. R. Jr.; Pavan, J.; Gaelzer, R.; Ziebell, L. F.; Yoon, P. H.
2013-10-15
In this paper an electromagnetic particle code is used to investigate the spontaneous thermal emission. Specifically we perform particle-in-cell simulations employing a non-relativistic isotropic Maxwellian particle distribution to show that thermal fluctuations are related to the origin of spontaneous magnetic field fluctuation. These thermal fluctuations can become seed for further amplification mechanisms and thus be considered at the origin of the cosmological magnetic field, at microgauss levels. Our numerical results are in accordance with theoretical results presented in the literature.
Particle-in-cell simulation of multipactor discharge on a dielectric in a parallel-plate waveguide
NASA Astrophysics Data System (ADS)
Sakharov, A. S.; Ivanov, V. A.; Konyzhev, M. E.
2016-06-01
An original 2D3V (two-dimensional in coordinate space and three-dimensional in velocity space) particle-in-cell code has been developed for simulation of multipactor discharge on a dielectric in a parallelplate metal waveguide with allowance for secondary electron emission (SEE) from the dielectric surface and waveguide walls, finite temperature of secondary electrons, electron space charge, and elastic and inelastic scattering of electrons from the dielectric and metal surfaces. The code allows one to simulate all stages of the multipactor discharge, from the onset of the electron avalanche to saturation. It is shown that the threshold for the excitation of a single-surface multipactor on a dielectric placed in a low-profile waveguide with absorbing walls increases as compared to that in the case of an unbounded dielectric surface due to escape of electrons onto the waveguide walls. It is found that, depending on the microwave field amplitude and the SEE characteristics of the waveguide walls, the multipactor may operate in two modes. In the first mode, which takes place at relatively low microwave amplitudes, a single-surface multipactor develops only on the dielectric, the surface of which acquires a positively potential with respect to the waveguide walls. In the second mode, which occurs at sufficiently high microwave intensities, a single-surface multipactor on the dielectric and a two-surface multipactor between the waveguide walls operate simultaneously. In this case, both the dielectric surface and the interwall space acquire a negative potential. It is shown that electron scattering from the dielectric surface and waveguide walls results in the appearance of high-energy tails in the electron distribution function.
Fu, X. R. Cowee, M. M.; Winske, D.; Liu, K.; Peter Gary, S.
2014-04-15
The velocity space scattering of an anisotropic electron beam (T{sub ⊥b}/T{sub ∥b}>1) flowing along a background magnetic field B{sub 0} through a cold plasma is investigated using both linear theory and 2D particle-in-cell simulations. Here, ⊥ and ∥ represent the directions perpendicular and parallel to B{sub 0}, respectively. In this scenario, we find that two primary instabilities contribute to the scattering in electron pitch angle: an electrostatic electron beam instability and a predominantly parallel-propagating electromagnetic whistler anisotropy instability. Our results show that at relative beam densities n{sub b}/n{sub e}≤0.05 and beam temperature anisotropies T{sub b⊥}/T{sub b∥}≤25, the electrostatic beam instability grows much faster than the whistler instabilities for a reasonably fast hot beam. The enhanced fluctuating fields from the beam instability scatter the beam electrons, slowing their average speed and increasing their parallel temperature, thereby increasing their pitch angles. In an inhomogeneous magnetic field, such as the geomagnetic field, this could result in beam electrons scattered out of the loss cone. After saturation of the electrostatic instability, the parallel-propagating whistler anisotropy instability shows appreciable growth, provided that the beam density and late-time anisotropy are sufficiently large. Although the whistler anisotropy instability acts to pitch-angle scatter the electrons, reducing perpendicular energy in favor of parallel energy, these changes are weak compared to the pitch-angle increases resulting from the deceleration of the beam due to the electrostatic instability.
PIC-MCC Simulations of Capacitive High-Frequency Discharge Dynamics with Nanoparticles
NASA Astrophysics Data System (ADS)
Schweigert, Irina V.
A new combined particle-in-cell Monte Carlo collision (PIC-MCC) approach is discussed for accurate and fast simulation of a radio-frequency (rf) discharge at a low gas pressure and high plasma density. Test calculations of the heating mode transition in a capacitively coupled rf-discharge in helium and argon show a good agreement with experimental data. The combined PIC-MCC algorithm is very efficient, especially for the collisionless regime of electron heating. Using this algorithm, the properties of a capacitively coupled 13.56 MHz discharge are studied in a mixture of Ar/C2H2 with nanoparticles of different sizes. For the description of plasma-dust interaction a kinetic model is introduced. The dust surface potential and discharge parameters are calculated self-consistently. In this model, any assumption about electron and ion energy distribution functions is not used. This allows us to calculate accurately the dust particle charging. The transport of dust is calculated by using the fluid approach. It is shown that at the initial stage of the growth, nanoparticles are accumulated near the sheath-plasma boundaries, where the ionization rate has maximum value. The nanoparticles suppress the ionization due to the absorbing of fast electrons and stimulate a quick change of the plasma parameters followed by the transition between different modes of discharge operation.
Asymmetric Magnetic Reconnection with Flow Shear: PIC Simulations and Magnetopause Applications
NASA Astrophysics Data System (ADS)
Doss, C.; Cassak, P.
2015-12-01
Magnetic reconnection at Earth's dayside magnetopause is typically characterized by significant asymmetries in both magnetic field strength and plasma density. In addition, a flow shear across the reconnection site in the plane of the reconnecting magnetic field can be caused by magnetosheath flow, especially at higher latitudes. Being able to predict the solar wind's effect on reconnection is important for understanding, e.g., solar wind-magnetospheric coupling. Recently, we showed that flow shear during asymmetric reconnection causes the reconnection site to convect in the outflow direction, predicted the flow speed from momentum conservation, and confirmed the results with two-dimensional two-fluid numerical simulations (Doss et al., J. Geophys. Res., submitted). We also predicted and confirmed with two-fluid simulations the reconnection rate as a function of upstream plasma conditions and the flow shear required to shut reconnection off. Here, we revisit this system using two-dimensional fully electromagnetic particle-in-cell (PIC) simulations, which treat plasma mixing in the exhaust more realistically than the fluid model. We find very good agreement between the predictions and PIC simulation results for both the X-line convection speed and the reconnection rate for flow speeds below the cutoff speed. For reconnection with typical conditions at the dayside magnetopause, we predict the reconnection site of isolated X-lines convect at nearly the same speed as the tangential component of the solar wind velocity, and the flow has little effect on the reconnection rate.
Kreh, B.B.
1994-12-01
This work investigates the role that the beam-plasma instability may play in a thermionic converter. The traditional assumption of collisionally dominated relaxation is questioned, and the beam-plasma instability is proposed as a possible dominant relaxation mechanism. Theory is developed to describe the beam-plasma instability in the cold-plasma approximation, and the theory is tested with two common Particle-in-Cell (PIC) simulation codes. The theory is first confirmed using an unbounded plasma PIC simulation employing periodic boundary conditions, ES1. The theoretically predicted growth rates are on the order of the plasma frequencies, and ES1 simulations verify these predictions within the order of 1%. For typical conditions encountered in thermionic converters, the resulting growth period is on the order of 7 {times} 10{sup {minus}11} seconds. The bounded plasma simulation PDP1 was used to evaluate the influence of finite geometry and the electrode boundaries. For this bounded plasma, a two-stream interaction was supported and resulting in nearly complete thermalization in approximately 5 {times} 10{sup {minus}10} seconds. Since the electron-electron collision rate of 10{sup 9} Hz and the electron atom collision rate of 10{sup 7} Hz are significantly slower than the rate of development of these instabilities, the instabilities appear to be an important relaxation mechanism.
PIC simulations of whistler wave generation using plasma conditions from the RAM-SCB model
NASA Astrophysics Data System (ADS)
Yu, Yiqun; Zhao, Lei; Peng, Bo; Delzanno, Gian Luca; Jordanova, Vania; Markidis, Stefano
2014-10-01
Wave-particle interactions play an important role in the Earth's inner magnetospheric dynamics. We study the whistler wave generation with an implicit particle-in-cell code (iPIC3D) within unstable equatorial regions identified by the kinetic ring current model RAM-SCB. During storm time, RAM-SCB shows that hot electrons on the dayside demonstrate high temperature anisotropy and are unstable to whistler wave excitation. By using plasma parameters from RAM-SCB, we carry out iPIC3D simulations assuming a bi-Maxwellian distribution for electrons. We find that with an electron temperature anisotropy of 4, electron density of 6 cm-3, and parallel temperature of 1 keV on the dayside around L ~ 5 . 5 , whistler waves are rapidly excited and propagate along the background magnetic field. Comparisons with linear theory show good agreement. The electron velocity distribution is significantly changed after wave generation, with smaller anisotropy due to the pitch-angle scattering. Furthermore, test particles are tracked in the whistler wave environment and the pitch-angle diffusion coefficient is extracted. The coefficient generally agrees with quasi-linear theory prediction with slight deviation even when the wave amplitude is as large as 5 % of the background magnetic field.
Validation of RF CCP Discharge Model against Experimental Data using PIC Method
NASA Astrophysics Data System (ADS)
Icenhour, Casey; Kummerer, Theresa; Green, David L.; Smithe, David; Shannon, Steven
2014-10-01
The particle-in-cell (PIC) simulation method is a well-known standard for the simulation of laboratory plasma discharges. Using parallel computation on the Titan supercomputer at Oak Ridge National Laboratory (ORNL), this research is concerned with validation of a radio-frequency (RF) capacitively-coupled plasma (CCP) discharge PIC model against previously obtained experimental data. The plasma sources under simulation are 10--100 mTorr argon plasmas with a 13 MHz source and 27 MHz source operating at 50--200 W in both pulse and constant power conditions. Plasma parameters of interest in the validation include peak electron density, electron temperature, and RF plasma sheath voltages and thicknesses. The plasma is modeled utilizing the VSim plasma simulation tool, developed by the Tech-X Corporation. The implementation used here is a two-dimensional electromagnetic model, with corresponding external circuit model of the experimental setup. The goal of this study is to develop models for more complex RF plasma systems utilizing highly parallel computing technologies and methodology. This work is carried out with the support of Oak Ridge National Laboratory and the Tech-X Corporation.
Generalized SIMD algorithm for efficient EM-PIC simulations on modern CPUs
NASA Astrophysics Data System (ADS)
Fonseca, Ricardo; Decyk, Viktor; Mori, Warren; Silva, Luis
2012-10-01
There are several relevant plasma physics scenarios where highly nonlinear and kinetic processes dominate. Further understanding of these scenarios is generally explored through relativistic particle-in-cell codes such as OSIRIS [1], but this algorithm is computationally intensive, and efficient use high end parallel HPC systems, exploring all levels of parallelism available, is required. In particular, most modern CPUs include a single-instruction-multiple-data (SIMD) vector unit that can significantly speed up the calculations. In this work we present a generalized PIC-SIMD algorithm that is shown to work efficiently with different CPU (AMD, Intel, IBM) and vector unit types (2-8 way, single/double). Details on the algorithm will be given, including the vectorization strategy and memory access. We will also present performance results for the various hardware variants analyzed, focusing on floating point efficiency. Finally, we will discuss the applicability of this type of algorithm for EM-PIC simulations on GPGPU architectures [2]. [4pt] [1] R. A. Fonseca et al., LNCS 2331, 342, (2002)[0pt] [2] V. K. Decyk, T. V. Singh; Comput. Phys. Commun. 182, 641-648 (2011)
Particle-in-cell plasma simulation codes on the connection machine
NASA Astrophysics Data System (ADS)
Walker, D. W.
Methods for implementing three-dimensional, electromagnetic, relativistic PIC plasma simulation codes on the Connection Machine (CM-2) are discussed. The gather and scatter phases of the PIC algorithm involve indirect indexing of data, which results in a large amount of communication on the CM-2. Different data decompositions are described that seek to reduce the amount of communication while maintaining good load balance. These methods require the particles to be spatially sorted at the start of each time step, which introduced another form of overhead. The different methods are implemented in CM FORTRAN on the CM-2 and compared. It was found that the general router is slow in performing the communication in the gather and scatter steps, which precludes an efficient CM FORTRAN implementation. An alternative method that uses PARIS calls and the NEWS communication network to pipeline data along the axes of the VP set is suggested as a more efficient algorithm.
Quasisteady and steady states in global gyrokinetic particle-in-cell simulations
Jolliet, S.; McMillan, B. F.; Vernay, T.; Villard, L.; Bottino, A.; Angelino, P.
2009-05-15
Collisionless delta-f gyrokinetic particle-in-cell simulations suffer from the entropy paradox, in which the entropy grows linearly in time while low-order moments are saturated. As a consequence, these simulations do not reach a steady state and are unsuited to make quantitative predictions. A solution to this issue is the introduction of artificial dissipation. The notion of steady state in gyrokinetic simulations is studied by deriving an evolution equation for the fluctuation entropy and applying it to the global collisionless particle-in-cell code ORB5 [S. Jolliet et al., Comput. Phys. Commun. 177, 409 (2007)]. It is shown that a recently implemented noise-control algorithm [B. F. McMillan et al., Phys. Plasmas 15, 052308 (2008)] based on a W-stat provides the necessary dissipation to reach a steady state. The two interesting situations of decaying and driven turbulence are considered. In addition, it is shown that a separate heating algorithm, not based on a W-stat, does not lead to a statistical steady state.
Computing quasi-linear diffusion coefficients using the delta-f particle-in-cell method
Austin, T. M.; Smithe, D. N.; Ranjbar, V.
2009-11-26
Linear wave codes AORSA and TORIC couple to the bounce-averaged nonlinear Fokker-Planck code CQL3D through quasi-linear diffusion coefficients. Both linear wave codes rely on the quasi-local approximation that includes only first-order parallel and perpendicular gradient variations of cyclotron frequency and ignores field line curvature along with temperature and density gradient effects. The delta-f particle-in-cell (DFPIC) method has been successfully used for simulating ion-cyclotron fast wave behavior. This method also permits particle behavior such as multiple pass resonance, banana orbits, and superadiabaticity. We present new work on generating quasi-linear diffusion coefficients using the DFPIC method that will permit the electromagnetic particle-in-cell (EMPIC) code, VORPAL, to couple to CQL3D and to compare to AORSA and TORIC. A new multiple weight delta-f approach will be presented that converts velocity derivatives to action derivatives and yields a full tensor quasi-linear diffusion coefficient.
Particle-in-Cell laser-plasma simulation on Xeon Phi coprocessors
NASA Astrophysics Data System (ADS)
Surmin, I. A.; Bastrakov, S. I.; Efimenko, E. S.; Gonoskov, A. A.; Korzhimanov, A. V.; Meyerov, I. B.
2016-05-01
This paper concerns the development of a high-performance implementation of the Particle-in-Cell method for plasma simulation on Intel Xeon Phi coprocessors. We discuss the suitability of the method for Xeon Phi architecture and present our experience in the porting and optimization of the existing parallel Particle-in-Cell code PICADOR. Direct porting without code modification gives performance on Xeon Phi close to that of an 8-core CPU on a benchmark problem with 50 particles per cell. We demonstrate step-by-step optimization techniques, such as improving data locality, enhancing parallelization efficiency and vectorization leading to an overall 4.2 × speedup on CPU and 7.5 × on Xeon Phi compared to the baseline version. The optimized version achieves 16.9 ns per particle update on an Intel Xeon E5-2660 CPU and 9.3 ns per particle update on an Intel Xeon Phi 5110P. For a real problem of laser ion acceleration in targets with surface grating, where a large number of macroparticles per cell is required, the speedup of Xeon Phi compared to CPU is 1.6 ×.
Gatsonis, Nikolaos A. Spirkin, Anton
2009-06-01
The mathematical formulation and computational implementation of a three-dimensional particle-in-cell methodology on unstructured Delaunay-Voronoi tetrahedral grids is presented. The method allows simulation of plasmas in complex domains and incorporates the duality of the Delaunay-Voronoi in all aspects of the particle-in-cell cycle. Charge assignment and field interpolation weighting schemes of zero- and first-order are formulated based on the theory of long-range constraints. Electric potential and fields are derived from a finite-volume formulation of Gauss' law using the Voronoi-Delaunay dual. Boundary conditions and the algorithms for injection, particle loading, particle motion, and particle tracking are implemented for unstructured Delaunay grids. Error and sensitivity analysis examines the effects of particles/cell, grid scaling, and timestep on the numerical heating, the slowing-down time, and the deflection times. The problem of current collection by cylindrical Langmuir probes in collisionless plasmas is used for validation. Numerical results compare favorably with previous numerical and analytical solutions for a wide range of probe radius to Debye length ratios, probe potentials, and electron to ion temperature ratios. The versatility of the methodology is demonstrated with the simulation of a complex plasma microsensor, a directional micro-retarding potential analyzer that includes a low transparency micro-grid.
Load-balancing techniques for a parallel electromagnetic particle-in-cell code
PLIMPTON,STEVEN J.; SEIDEL,DAVID B.; PASIK,MICHAEL F.; COATS,REBECCA S.
2000-01-01
QUICKSILVER is a 3-d electromagnetic particle-in-cell simulation code developed and used at Sandia to model relativistic charged particle transport. It models the time-response of electromagnetic fields and low-density-plasmas in a self-consistent manner: the fields push the plasma particles and the plasma current modifies the fields. Through an LDRD project a new parallel version of QUICKSILVER was created to enable large-scale plasma simulations to be run on massively-parallel distributed-memory supercomputers with thousands of processors, such as the Intel Tflops and DEC CPlant machines at Sandia. The new parallel code implements nearly all the features of the original serial QUICKSILVER and can be run on any platform which supports the message-passing interface (MPI) standard as well as on single-processor workstations. This report describes basic strategies useful for parallelizing and load-balancing particle-in-cell codes, outlines the parallel algorithms used in this implementation, and provides a summary of the modifications made to QUICKSILVER. It also highlights a series of benchmark simulations which have been run with the new code that illustrate its performance and parallel efficiency. These calculations have up to a billion grid cells and particles and were run on thousands of processors. This report also serves as a user manual for people wishing to run parallel QUICKSILVER.
Voronoi particle merging algorithm for PIC codes
NASA Astrophysics Data System (ADS)
Luu, Phuc T.; Tückmantel, T.; Pukhov, A.
2016-05-01
We present a new particle-merging algorithm for the particle-in-cell method. Based on the concept of the Voronoi diagram, the algorithm partitions the phase space into smaller subsets, which consist of only particles that are in close proximity in the phase space to each other. We show the performance of our algorithm in the case of the two-stream instability and the magnetic shower.
Velocity-Shear Driven Magnetic Reconnection in Particle-In-Cell Simulations
NASA Astrophysics Data System (ADS)
Black, Carrie; Antiochos, Spiro; DeVore, Rick; Karpen, Judy; Germaschewski, Kai
2012-10-01
In the standard model for coronal mass ejections (CME) and/or solar flares, the free energy for the event resides in the strongly sheared magnetic field of a filament channel. The pre-eruption force balance consists of an upward force due to the magnetic pressure of the sheared field balanced by a downward tension due to overlying un-sheared field. Magnetic reconnection is widely believed to be the mechanism that disrupts this force balance, leading to explosive eruption. For understanding CME/flare initiation, therefore, it is critical to model the onset of reconnection that is driven by the buildup of magnetic shear. In MHD simulations, the application of a magnetic field shear is a trivial matter. However, kinetic effects are important in the diffusion region and thus, it is important to examine this process with PIC simulations as well. The implementation of such a driver in PIC methods is nontrivial: it must be done in a self-consistent manner that avoids the generation of waves that destroy the applied shear. In this work, we discuss methods for applying a velocity shear perpendicular to the plane of reconnection within a 2.5D, aperiodic, PIC system. We also discuss the implementation of boundary conditions that allow a net electric current to flow through the walls.
NASA Astrophysics Data System (ADS)
Deca, Jan; Divin, Andrey; Lapenta, Giovanni; Lembège, Bertrand; Markidis, Stefano; Horányi, Mihály
2015-04-01
We present three-dimensional fully kinetic and electromagnetic simulations of the solar wind interaction with lunar crustal magnetic anomalies (LMAs). Using the implicit particle-in-cell code iPic3D, we confirm that LMAs may indeed be strong enough to stand off the solar wind from directly impacting the lunar surface forming a mini-magnetosphere, as suggested by spacecraft observations and theory. In contrast to earlier MHD and hybrid simulations, the fully kinetic nature of iPic3D allows to investigate the space charge effects and in particular the electron dynamics dominating the near-surface lunar plasma environment. We describe the general picture of the interaction of a dipole model centered just below the lunar surface under various solar wind and plasma conditions, and focus afterwards on the ion and electron kinetic behavior of the system. It is shown that the configuration is dominated by electron motion, because the LMA scale size is small with respect to the gyroradius of the solar wind ions. We identify a population of backstreaming ions, the deflection of magnetized electrons via the ExB-drift motion and the subsequent formation of a halo region of elevated density around the dipole source. Finally, it is shown that the presence and efficiency of the latter mechanisms are heavily impacted by the upstream plasma conditions and, on their turn, influence the overall structure and evolution of the LMA system. Our work opens new frontiers of research toward a deeper understanding of LMAs and is ideally suited to be compared with field or particle observations from spacecraft such as Kaguya (SELENE), Lunar Prospector or ARTEMIS. The ability to evaluate the implications for future lunar exploration as well as lunar science in general hinges on a better understanding of LMAs. This research has received funding from the European Commission's FP7 Program with the grant agreement SWIFF (project 2633430, swiff.eu) and EHEROES (project 284461, www.eheroes.eu). The
NASA Astrophysics Data System (ADS)
Deca, J.; Divin, A. V.; Lapenta, G.; Lembege, B.; Markidis, S.; Horanyi, M.
2014-12-01
We present three-dimensional fully kinetic and electromagnetic simulations of the solar wind interaction with lunar crustal magnetic anomalies (LMAs). Using the implicit particle-in-cell code iPic3D, we confirm that LMAs may indeed be strong enough to stand off the solar wind from directly impacting the lunar surface forming a mini-magnetosphere, as suggested by spacecraft observations and theory. In contrast to earlier MHD and hybrid simulations, the fully kinetic nature of iPic3D allows to investigate the space charge effects and in particular the electron dynamics dominating the near-surface lunar plasma environment. We describe the general picture of the interaction of a dipole model centered just below the lunar surface under various solar wind and plasma conditions, and focus afterwards on the ion and electron kinetic behavior of the system. It is shown that the configuration is dominated by electron motion, because the LMA scale size is small with respect to the gyroradius of the solar wind ions. The dominant LMA interaction mechanism is also highly dependent on the solar wind and IMF conditions. Driven by strong pressure anisotropies, the mini-magnetosphere is also unstable over time, leading to only temporal shielding of the surface underneath. Our work opens new frontiers of research toward a deeper understanding of LMAs and is ideally suited to be compared with field or particle observations from spacecraft such as Kaguya (SELENE), Lunar Prospector or ARTEMIS. The ability to evaluate the implications for future lunar exploration as well as lunar science in general hinges on a better understanding of LMAs. This research has received funding from the European Commission's FP7 Program with the grant agreement SWIFF (project 2633430, swiff.eu) and EHEROES (project 284461, www.eheroes.eu). The simulations were conducted on the computational resources provided by the PRACE Tier-0 project 2011050747 (Curie) and 2013091928 (SuperMUC). This research was supported
Half-Cell RF Gun Simulations with the Electromagnetic Particle-in-Cell Code VORPAL
Paul, K.; Dimitrov, D. A.; Busby, R.; Bruhwiler, D. L.; Smithe, D.; Cary, J. R.; Kewisch, J.; Kayran, D.; Calaga, R.; Ben-Zvi, I.
2009-01-22
We have simulated Brookhaven National Laboratory's half-cell superconducting RF gun design for a proposed high-current ERL using the three-dimensional, electromagnetic particle-in-cell code VORPAL. VORPAL computes the fully self-consistent electromagnetic fields produced by the electron bunches, meaning that it accurately models space-charge effects as well as bunch-to-bunch beam loading effects and the effects of higher-order cavity modes, though these are beyond the scope of this paper. We compare results from VORPAL to the well-established space-charge code PARMELA, using RF fields produced by SUPERFISH, as a benchmarking exercise in which the two codes should agree well.
A particle-in-cell approach to obliquely propagating electrostatic waves
Koen, Etienne J.; Collier, Andrew B.; Maharaj, Shimul K.
2014-09-15
The electron-acoustic and beam-driven modes associated with electron beams have previously been identified and studied numerically. These modes are associated with Broadband Electrostatic Noise found in the Earth's auroral and polar cusp regions. Using a 1-D spatial Particle-in-Cell simulation, the electron-acoustic instability is studied for a magnetized plasma, which includes cool ions, cool electrons and a hot, drifting electron beam. Both the weakly and strongly magnetized regimes with varying wave propagation angle, θ, with respect to the magnetic field are studied. The amplitude and frequency of the electron-acoustic mode are found to decrease with increasing θ. The amplitude of the electron-acoustic mode is found to significantly grow at intermediate wavenumber ranges. It reaches a saturation level at the point, where a plateau forms in the hot electron velocity distribution after which the amplitude of the electron-acoustic mode decays.
Whistler turbulence forward vs. inverse cascade. Three-dimensional particle-in-cell simulations
Chang, Ouliang; Gary, S. Peter; Wang, Joseph
2015-02-12
In this study, we present the results of the first fully three-dimensional particle-in-cell simulations of decaying whistler turbulence in a magnetized, homogeneous, collisionless plasma in which both forward cascades to shorter wavelengths, and inverse cascades to longer wavelengths are allowed to proceed. For the electron beta βe = 0.10 initial value considered here, the early-time rate of inverse cascade is very much smaller than the rate of forward cascade, so that at late times the fluctuation energy in the regime of the inverse cascade is much weaker than that in the forward cascade regime. Similarly, the wavevector anisotropy in themore » inverse cascade regime is much weaker than that in the forward cascade regime.« less
Half-Cell RF Gun Simulations with the Electromagnetic Particle-in-Cell Code VORPAL
NASA Astrophysics Data System (ADS)
Paul, K.; Dimitrov, D. A.; Busby, R.; Bruhwiler, D. L.; Smithe, D.; Cary, J. R.; Kewisch, J.; Kayran, D.; Calaga, R.; Ben-Zvi, I.
2009-01-01
We have simulated Brookhaven National Laboratory's half-cell superconducting RF gun design for a proposed high-current ERL using the three-dimensional, electromagnetic particle-in-cell code VORPAL. VORPAL computes the fully self-consistent electromagnetic fields produced by the electron bunches, meaning that it accurately models space-charge effects as well as bunch-to-bunch beam loading effects and the effects of higher-order cavity modes, though these are beyond the scope of this paper. We compare results from VORPAL to the well-established space-charge code PARMELA, using RF fields produced by SUPERFISH, as a benchmarking exercise in which the two codes should agree well.
Whistler turbulence forward vs. inverse cascade. Three-dimensional particle-in-cell simulations
Chang, Ouliang; Gary, S. Peter; Wang, Joseph
2015-02-12
In this study, we present the results of the first fully three-dimensional particle-in-cell simulations of decaying whistler turbulence in a magnetized, homogeneous, collisionless plasma in which both forward cascades to shorter wavelengths, and inverse cascades to longer wavelengths are allowed to proceed. For the electron beta β_{e} = 0.10 initial value considered here, the early-time rate of inverse cascade is very much smaller than the rate of forward cascade, so that at late times the fluctuation energy in the regime of the inverse cascade is much weaker than that in the forward cascade regime. Similarly, the wavevector anisotropy in the inverse cascade regime is much weaker than that in the forward cascade regime.
Particle-in-cell simulations of electron energization in laser-driven magnetic reconnection
NASA Astrophysics Data System (ADS)
Lu, San; Lu, Quanming; Guo, Fan; Sheng, Zhengming; Wang, Huanyu; Wang, Shui
2016-01-01
Electrons can be energized during laser-driven magnetic reconnection, and the energized electrons form three super-Alfvénic electron jets in the outflow region (Lu et al 2014 New J. Phys. 16 083021). In this paper, by performing two-dimensional particle-in-cell simulations, we find that the electrons can also be significantly energized before magnetic reconnection occurs. When two plasma bubbles with toroidal magnetic fields expand and squeeze each other, the electrons in the magnetic ribbons are energized through betatron acceleration due to the enhancement of the magnetic field, and an electron temperature anisotropy {T}{{e}\\perp }\\gt {T}{{e}| | } develops. Meanwhile, some electrons are trapped and bounced repeatedly between the two expanding/approaching bubbles and get energized through a Fermi-like process. The energization before magnetic reconnection is more significant (or important) than that during magnetic reconnection.
Object-Oriented Parallel Particle-in-Cell Code for Beam Dynamics Simulation in Linear Accelerators
Qiang, J.; Ryne, R.D.; Habib, S.; Decky, V.
1999-11-13
In this paper, we present an object-oriented three-dimensional parallel particle-in-cell code for beam dynamics simulation in linear accelerators. A two-dimensional parallel domain decomposition approach is employed within a message passing programming paradigm along with a dynamic load balancing. Implementing object-oriented software design provides the code with better maintainability, reusability, and extensibility compared with conventional structure based code. This also helps to encapsulate the details of communications syntax. Performance tests on SGI/Cray T3E-900 and SGI Origin 2000 machines show good scalability of the object-oriented code. Some important features of this code also include employing symplectic integration with linear maps of external focusing elements and using z as the independent variable, typical in accelerators. A successful application was done to simulate beam transport through three superconducting sections in the APT linac design.
Three-dimensional plasma particle-in-cell calculations of ion thruster backflow contamination
Roy, R.I.S.; Hastings, D.E.; Taylor, S.
1996-10-01
A fully three-dimensional hybrid plasma particle-in-cell model for multi-computer environments was developed to assess the spacecraft backflow contamination of an ion thruster. Results of plume backflow are presented for a 13-cm xenon ion thruster operating with a current level of 0.4 A on a model spacecraft. The computational domain was over 40 m{sup 3} in volume, and used over 35 million particles representing charge-exchange (CEX) xenon ions produced in the plume. Results obtained on a massively parallel 256-node Cray T3D clearly show the plasma density enhancement around the spacecraft due to the CEX ions. Three-dimensional results are compared with the results of a two-dimensional axisymmetric model to explore the three-dimensionality of the backstreaming flowfield. 15 refs., 14 figs., 1 tab.
Chang, Ouliang; Gary, S. Peter; Wang, Joseph E-mail: pgary@lanl.gov
2015-02-20
We present the results of the first fully three-dimensional particle-in-cell simulations of decaying whistler turbulence in a magnetized, homogeneous, collisionless plasma in which both forward cascades to shorter wavelengths, and inverse cascades to longer wavelengths are allowed to proceed. For the electron beta β {sub e} = 0.10 initial value considered here, the early-time rate of inverse cascade is very much smaller than the rate of forward cascade, so that at late times the fluctuation energy in the regime of the inverse cascade is much weaker than that in the forward cascade regime. Similarly, the wavevector anisotropy in the inverse cascade regime is much weaker than that in the forward cascade regime.
Beam Dynamics in an Electron Lens with the Warp Particle-in-cell Code
Stancari, Giulio; Moens, Vince; Redaelli, Stefano
2014-07-01
Electron lenses are a mature technique for beam manipulation in colliders and storage rings. In an electron lens, a pulsed, magnetically confined electron beam with a given current-density profile interacts with the circulating beam to obtain the desired effect. Electron lenses were used in the Fermilab Tevatron collider for beam-beam compensation, for abort-gap clearing, and for halo scraping. They will be used in RHIC at BNL for head-on beam-beam compensation, and their application to the Large Hadron Collider for halo control is under development. At Fermilab, electron lenses will be implemented as lattice elements for nonlinear integrable optics. The design of electron lenses requires tools to calculate the kicks and wakefields experienced by the circulating beam. We use the Warp particle-in-cell code to study generation, transport, and evolution of the electron beam. For the first time, a fully 3-dimensional code is used for this purpose.
Balancing Particle and Mesh Computation in a Particle-In-Cell Code
Worley, Patrick H; D'Azevedo, Eduardo; Hager, Robert; Ku, Seung-Hoe; Yoon, Eisung; Chang, C. S.
2016-01-01
The XGC1 plasma microturbulence particle-in-cell simulation code has both particle-based and mesh-based computational kernels that dominate performance. Both of these are subject to load imbalances that can degrade performance and that evolve during a simulation. Each separately can be addressed adequately, but optimizing just for one can introduce significant load imbalances in the other, degrading overall performance. A technique has been developed based on Golden Section Search that minimizes wallclock time given prior information on wallclock time, and on current particle distribution and mesh cost per cell, and also adapts to evolution in load imbalance in both particle and mesh work. In problems of interest this doubled the performance on full system runs on the XK7 at the Oak Ridge Leadership Computing Facility compared to load balancing only one of the kernels.
Particle-in-Cell Calculationsof the Electron Cloud in the ILCPositron Damping Ring Wigglers
Celata, C.M.; Furman, M.A.; Vay, J.-L.; Grote, D.P.
2007-07-01
The self-consistent code suite WARP-POSINST is being used to study electron cloud effects in the ILC positron damping ring wiggler. WARP is a parallelized, 3D particle-in-cell code which is fully self-consistent for all species. The POSINST models for the production of photoelectrons and secondary electrons are used to calculate electron creation. Mesh refinement and a moving reference frame for the calculation will be used to reduce the computer time needed by several orders of magnitude. We present preliminary results for cloud buildup showing 3D electron effects at the nulls of the vertical wiggler field. First results from a benchmark of WARP-POSINST vs. POSINST are also discussed.
CPIC: A Parallel Particle-In-Cell Code for Studying Spacecraft Charging
NASA Astrophysics Data System (ADS)
Meierbachtol, Collin; Delzanno, Gian Luca; Moulton, David; Vernon, Louis
2015-11-01
CPIC is a three-dimensional electrostatic particle-in-cell code designed for use with curvilinear meshes. One of its primary objectives is to aid in studying spacecraft charging in the magnetosphere. CPIC maintains near-optimal computational performance and scaling thanks to a mapped logical mesh field solver, and a hybrid physical-logical space particle mover (avoiding the need to track particles). CPIC is written for parallel execution, utilizing a combination of both OpenMP threading and MPI distributed memory. New capabilities are being actively developed and added to CPIC, including the ability to handle multi-block curvilinear mesh structures. Verification results comparing CPIC to analytic test problems will be provided. Particular emphasis will be placed on the charging and shielding of a sphere-in-plasma system. Simulated charging results of representative spacecraft geometries will also be presented. Finally, its performance capabilities will be demonstrated through parallel scaling data.
Particle-in-cell simulations of ion-acoustic waves with application to Saturn's magnetosphere
Koen, Etienne J.; Collier, Andrew B.; Hellberg, Manfred A.; Maharaj, Shimul K.
2014-07-15
Using a particle-in-cell simulation, the dispersion and growth rate of the ion-acoustic mode are investigated for a plasma containing two ion and two electron components. The electron velocities are modelled by a combination of two kappa distributions, as found in Saturn's magnetosphere. The ion components consist of adiabatic ions and an ultra-low density ion beam to drive a very weak instability, thereby ensuring observable waves. The ion-acoustic mode is explored for a range of parameter values such as κ, temperature ratio, and density ratio of the two electron components. The phase speed, frequency range, and growth rate of the mode are investigated. Simulations of double-kappa two-temperature plasmas typical of the three regions of Saturn's magnetosphere are also presented and analysed.
Plasma electron hole kinematics. II. Hole tracking Particle-In-Cell simulation
NASA Astrophysics Data System (ADS)
Zhou, C.; Hutchinson, I. H.
2016-08-01
The kinematics of a 1-D electron hole is studied using a novel Particle-In-Cell simulation code. A hole tracking technique enables us to follow the trajectory of a fast-moving solitary hole and study quantitatively hole acceleration and coupling to ions. We observe a transient at the initial stage of hole formation when the hole accelerates to several times the cold-ion sound speed. Artificially imposing slow ion speed changes on a fully formed hole causes its velocity to change even when the ion stream speed in the hole frame greatly exceeds the ion thermal speed, so there are no reflected ions. The behavior that we observe in numerical simulations agrees very well with our analytic theory of hole momentum conservation and the effects of "jetting."
Electron-Anode Interactions in Particle-in-Cell Simulations of Applied-B Ion Diodes
Bailey, J.E.; Cuneo, M.D.; Johnson, D.J.; Mehlhorn, T.A.; Pointon, T.D.; Renk, T.J.; Stygar, W.A.; Vesey, R.A.
1998-11-12
Particle-in-cell simulations of applied-B ion diodes using the QUICKSILVER code have been augmented with Monte Carlo calculations of electron-anode interactions (reflection and energy deposition). Extraction diode simulations demonstrate a link between the instability evolution and increased electron loss and anode heating. Simulations of radial and extraction ion diodes show spatial non-uniformity in the predicted electron loss profile leading to hot spots on the anode that rapidly exceed the 350-450 {degree}C range, known to be sufficient for plasma formation on electron-bombarded surfaces. Thermal resorption calculations indicate complete resorption of contaminants with 15-20 kcal/mole binding energies in high-dose regions of the anode during the power pulse. Comparisons of parasitic ion emission simulations and experiment show agreement in some aspects; but also highlight the need for better ion source, plasma, and neutral gas models.
Two Dimensional Particle-In-Cell Code for Simulation of Quantum Plasmas
NASA Astrophysics Data System (ADS)
Decyk, V. K.; Tonge, J.; Dauger, D. E.
2002-11-01
We have developed a two dimensional code for simulating quantum plasmas (1). This unique code propagates many quantum particles forward in time self-consistently using the semi-classical approximation. Because of this it can model the statistical properties of interacting quantum particles. We are currently testing this code using small numbers of particles with model problems which we can use to verify the accuracy of the code. The goal is to model from first principles the statistical properties of plasmas where quantum mechanics plays a role such as hot high density plasmas found in stellar interiors (2). (1) D. Dauger, Semiclassical Modeling of Quantum-Mechanical Multiparticle Systems using Parallel Particle-In-Cell Methods, PHD Thesis (2) M. Opher et. al. , Nuclear reaction rates and energy in stellar plasmas: The effect of highly damped modes, Physics of Plasma, 8, No. 5, p. 2454 Sponsored by NSF
Verification of high voltage rf capacitive sheath models with particle-in-cell simulations
NASA Astrophysics Data System (ADS)
Wang, Ying; Lieberman, Michael; Verboncoeur, John
2009-10-01
Collisionless and collisional high voltage rf capacitive sheath models were developed in the late 1980's [1]. Given the external parameters of a single-frequency capacitively coupled discharge, plasma parameters including sheath width, electron and ion temperature, plasma density, power, and ion bombarding energy can be estimated. One-dimensional electrostatic PIC codes XPDP1 [2] and OOPD1 [3] are used to investigate plasma behaviors within rf sheaths and bulk plasma. Electron-neutral collisions only are considered for collisionless sheaths, while ion-neutral collisions are taken into account for collisional sheaths. The collisionless sheath model is verified very well by PIC simulations for the rf current-driven and voltage-driven cases. Results will be reported for collisional sheaths also. [1] M. A. Lieberman, IEEE Trans. Plasma Sci. 16 (1988) 638; 17 (1989) 338 [2] J. P. Verboncoeur, M. V. Alves, V. Vahedi, and C. K. Birdsall, J. Comp. Phys. 104 (1993) 321 [3] J. P. Verboncoeur, A. B. Langdon and N. T. Gladd, Comp. Phys. Comm. 87 (1995) 199
Three-Dimensional Particle-in-Cell Simulations of Laser WakefieldExperiments
Tsung, F.S.; Antonsen, T.; Bruhwiler, D.L.; Cary, J.R.; Decyk,V.K.; Esarey, E.; Geddes, C.G.R.; Huang, C.; Hakim, A.; Katsouleas, T.; Lu, W.; Messmer, P.; Mori, W.B.; Tzoufras, M.; Vieira, J.
2007-06-01
Plasma accelerator methods offer the potential to reduce thesize of moderate and high energy accelerators by factors of 1000. In thepast few years great advances have been made in the production of lowemittance, high quality (i.e., monoenergetic) electron beams withenergies between .1 and 1 GeV using ultra-fast (<50 femtoseconds),high power (>10TW) lasers. The most noticeable of these advances werethe experimental results presented in the "Dream Beam" issue of Natureand in a recent issues of Physical Review Letters, Nature, and NaturePhysics. The experimental progress have been made due to advances inlasers, diagnostics, plasma sources, and the knowledge of how to controlof this highly nonlinear acceleration process. And this experimentalprogress has occurred simultaneously with and been in part due toadvances in modeling capabilities. Using a hierarchy of particlein-cell(PIC) codes OSIRIS, VORPAL, and QuickPIC, we have performed numerous fullscale 3D simulations using parameters quoted from the Nature and NaturePhysics articles. Our simulations have predicted results, providedagreement between simulations and experiments (within the shot-to-shotvariations of the experiments), and provided insight into the complicatedphysics of the experiments. Most importantly, as our confidence in thefidelity of our methods increases we can now guide the planning of newexperiments, and probe parameters that are not yet available. Therebyproviding a "road map" for generating high quality, high-charge 10 to 100GeV electron beams for use in high-energy physics and lightsources.
Particle-In-Cell Multi-Algorithm Numerical Test-Bed
NASA Astrophysics Data System (ADS)
Meyers, M. D.; Yu, P.; Tableman, A.; Decyk, V. K.; Mori, W. B.
2015-11-01
We describe a numerical test-bed that allows for the direct comparison of different numerical simulation schemes using only a single code. It is built from the UPIC Framework, which is a set of codes and modules for constructing parallel PIC codes. In this test-bed code, Maxwell's equations are solved in Fourier space in two dimensions. One can readily examine the numerical properties of a real space finite difference scheme by including its operators' Fourier space representations in the Maxwell solver. The fields can be defined at the same location in a simulation cell or can be offset appropriately by half-cells, as in the Yee finite difference time domain scheme. This allows for the accurate comparison of numerical properties (dispersion relations, numerical stability, etc.) across finite difference schemes, or against the original spectral scheme. We have also included different options for the charge and current deposits, including a strict charge conserving current deposit. The test-bed also includes options for studying the analytic time domain scheme, which eliminates numerical dispersion errors in vacuum. We will show examples from the test-bed that illustrate how the properties of some numerical instabilities vary between different PIC algorithms. Work supported by the NSF grant ACI 1339893 and DOE grant DE-SC0008491.
The Plasma Simulation Code: A modern particle-in-cell code with patch-based load-balancing
NASA Astrophysics Data System (ADS)
Germaschewski, Kai; Fox, William; Abbott, Stephen; Ahmadi, Narges; Maynard, Kristofor; Wang, Liang; Ruhl, Hartmut; Bhattacharjee, Amitava
2016-08-01
This work describes the Plasma Simulation Code (PSC), an explicit, electromagnetic particle-in-cell code with support for different order particle shape functions. We review the basic components of the particle-in-cell method as well as the computational architecture of the PSC code that allows support for modular algorithms and data structure in the code. We then describe and analyze in detail a distinguishing feature of PSC: patch-based load balancing using space-filling curves which is shown to lead to major efficiency gains over unbalanced methods and a previously used simpler balancing method.
Warren B. Mori
2007-04-20
One of the important research questions in high energy density science (HEDS) is how intense laser and electron beams penetrate into and interact with matter. At high beam intensities the self-fields of the laser and particle beams can fully ionize matter so that beam -matter interactions become beam-plasma interactions. These interactions involve a disparity of length and time scales, and they involve interactions between particles, between particles and waves, and between waves and waves. In a plasma what happens in one region can significantly impact another because the particles are free to move and many types of waves can be excited. Therefore, simulating these interactions requires tools that include wave particle interactions and that include wave nonlinearities. One methodology for studying such interactions is particle-in-cell (PIC) simulations. While PIC codes include most of the relevant physics they are also the most computer intensive. However, with the development of sophisticated software and the use of massively parallel computers, PIC codes can now be used to accurately study a wide range of problems in HEDS. The research in this project involved building, maintaining, and using the UCLA parallel computing infrastructure. This infrastructure includes the codes OSIRIS and UPIC which have been improved or developed during this grant period. Specifically, we used this PIC infrastructure to study laser-plasma interactions relevant to future NIF experiments and high-intensity laser and beam plasma interactions relevant to fast ignition fusion. The research has led to fundamental knowledge in how to write parallel PIC codes and use parallel PIC simulations, as well as increased the fundamental knowledge of HEDS. This fundamental knowledge will not only impact Inertial Confinement Fusion but other fields such as plasma-based acceleration and astrophysics.
Large Scale Earth's Bow Shock with Northern IMF as Simulated by PIC Code in Parallel with MHD Model
NASA Astrophysics Data System (ADS)
Baraka, Suleiman
2016-06-01
In this paper, we propose a 3D kinetic model (particle-in-cell, PIC) for the description of the large scale Earth's bow shock. The proposed version is stable and does not require huge or extensive computer resources. Because PIC simulations work with scaled plasma and field parameters, we also propose to validate our code by comparing its results with the available MHD simulations under same scaled solar wind (SW) and (IMF) conditions. We report new results from the two models. In both codes the Earth's bow shock position is found to be ≈14.8 R E along the Sun-Earth line, and ≈29 R E on the dusk side. Those findings are consistent with past in situ observations. Both simulations reproduce the theoretical jump conditions at the shock. However, the PIC code density and temperature distributions are inflated and slightly shifted sunward when compared to the MHD results. Kinetic electron motions and reflected ions upstream may cause this sunward shift. Species distributions in the foreshock region are depicted within the transition of the shock (measured ≈2 c/ ω pi for Θ Bn = 90° and M MS = 4.7) and in the downstream. The size of the foot jump in the magnetic field at the shock is measured to be (1.7 c/ ω pi ). In the foreshocked region, the thermal velocity is found equal to 213 km s-1 at 15 R E and is equal to 63 km s -1 at 12 R E (magnetosheath region). Despite the large cell size of the current version of the PIC code, it is powerful to retain macrostructure of planets magnetospheres in very short time, thus it can be used for pedagogical test purposes. It is also likely complementary with MHD to deepen our understanding of the large scale magnetosphere.
NASA Astrophysics Data System (ADS)
Wang, Jin; Ma, Jianyong; Zhou, Changhe
2014-11-01
A 3×3 high divergent 2D-grating with period of 3.842μm at wavelength of 850nm under normal incidence is designed and fabricated in this paper. This high divergent 2D-grating is designed by the vector theory. The Rigorous Coupled Wave Analysis (RCWA) in association with the simulated annealing (SA) is adopted to calculate and optimize this 2D-grating.The properties of this grating are also investigated by the RCWA. The diffraction angles are more than 10 degrees in the whole wavelength band, which are bigger than the traditional 2D-grating. In addition, the small period of grating increases the difficulties of fabrication. So we fabricate the 2D-gratings by direct laser writing (DLW) instead of traditional manufacturing method. Then the method of ICP etching is used to obtain the high divergent 2D-grating.
NASA Astrophysics Data System (ADS)
Main, Daniel; Caplinger, James; Kim, Tony; Sotnikov, Vladimir
2014-10-01
The propagation of electromagnetic (EM) waves can be influenced by the presence of plasma turbulence. It is known that vortex density structures can develop on nonlinear stage of an interchange instability in Earth's ionosphere and can affect radio communication channels. These density structures play an important role in the refraction and scattering of EM waves in Earth's ionosphere and also in laser diagnostic scattering experiments. We will use a numerical solution of nonlinear equations which govern the development of interchange instability to define a spatial dependence of density irregularities which can be used to analyze scattering of high frequency EM waves. This solution contains both large scale vortex density structures coexisting with short scale density perturbations. Next we will initialize a PIC simulation with the density distribution from the fluid simulation to calculate the scattering cross-section and compare the results with an analytic solution obtained using numerically calculated density spectra.
QUICKPIC: A highly efficient particle-in-cell code for modeling wakefield acceleration in plasmas
Huang, C. . E-mail: huangck@ee.ucla.edu; Decyk, V.K.; Ren, C.; Zhou, M.; Lu, W.; Mori, W.B.; Cooley, J.H.; Antonsen, T.M.; Katsouleas, T.
2006-09-20
A highly efficient, fully parallelized, fully relativistic, three-dimensional particle-in-cell model for simulating plasma and laser wakefield acceleration is described. The model is based on the quasi-static or frozen field approximation, which reduces a fully three-dimensional electromagnetic field solve and particle push to a two-dimensional field solve and particle push. This is done by calculating the plasma wake assuming that the drive beam and/or laser does not evolve during the time it takes for it to pass a plasma particle. The complete electromagnetic fields of the plasma wake and its associated index of refraction are then used to evolve the drive beam and/or laser using very large time steps. This algorithm reduces the computational time by 2-3 orders of magnitude. Comparison between the new algorithm and conventional fully explicit models (OSIRIS) is presented. The agreement is excellent for problems of interest. Direction for future work is also presented.
Energy dissipation by whistler turbulence: Three-dimensional particle-in-cell simulations
Chang, Ouliang; Peter Gary, S.; Wang, Joseph
2014-05-15
Three-dimensional particle-in-cell simulations of whistler turbulence are carried out on a collisionless, homogeneous, magnetized plasma model. The simulations use an initial ensemble of relatively long wavelength whistler modes and follow the temporal evolution of the fluctuations as they cascade into a broadband, anisotropic, turbulent spectrum at shorter wavelengths. For relatively small levels of the initial fluctuation energy ϵ{sub e}, linear collisionless damping provides most of the dissipation of the turbulence. But as ϵ{sub e} and the total dissipation increase, linear damping becomes less important and, especially at β{sub e} ≪ 1, nonlinear processes become stronger. The PDFs and kurtoses of the magnetic field increments in the simulations suggest that intermittency in whistler turbulence generally increases with increasing ϵ{sub e} and β{sub e}. Correlation coefficient calculations imply that the current structure dissipation also increases with increasing ϵ{sub e} and β{sub e}, and that the nonlinear dissipation processes in these simulations are primarily associated with regions of localized current structures.
Three-dimensional particle-in-cell simulation on gain saturation effect of microchannel plate
NASA Astrophysics Data System (ADS)
Wang, Qiangqiang; Yuan, Zheng; Cao, Zhurong; Deng, Bo; Chen, Tao; Deng, Keli
2016-07-01
We present here the results of the simulation work, using the three-dimensional particle-in-cell method, on the performance of the lead glass microchannel plate under saturated state. We calculated the electron cascade process with different DC bias voltages under both self-consistent condition and non-self-consistent condition. The comparative results have demonstrated that the strong self-consistent field can suppress the cascade process and make the microchannel plate saturated. The simulation results were also compared to the experimental data and good agreement was obtained. The simulation results also show that the electron multiplication process in the channel is accompanied by the buildup process of positive charges in the channel wall. Though the interactions among the secondary electron cloud in the channel, the positive charges in the channel wall, and the external acceleration field can make the electron-surface collision more frequent, the collision energy will be inevitably reduced, thus the electron gain will also be reduced.
External circuit integration with electromagnetic particle in cell modeling of plasma focus devices
Seng, Y. S.; Lee, P.; Rawat, R. S.
2015-03-15
The pinch performance of a plasma focus (PF) device is sensitive to the physical conditions of the breakdown phase. It is therefore essential to model and study the initial phase in order to optimize device performance. An external circuit is self consistently coupled to the electromagnetic particle in cell code to model the breakdown and initial lift phase of the United Nations University/International Centre for Theoretical Physics (UNU-ICTP) plasma focus device. Gas breakdown during the breakdown phase is simulated successfully, following a drop in the applied voltage across the device and a concurrent substantial rise in the circuit current. As a result, the plasma becomes magnetized, with the growing value of the magnetic field over time leading to the gradual lift off of the well formed current sheath into the axial acceleration phase. This lifting off, with simultaneous outward sheath motion along the anode and vertical cathode, and the strong magnetic fields in the current sheath region, was demonstrated in this work, and hence validates our method of coupling the external circuit to PF devices. Our method produces voltage waveforms that are qualitatively similar to the observed experimental voltage profiles of the UNU-ICTP device. Values of the mean electron energy before and after voltage breakdown turned out to be different, with the values after breakdown being much lower. In both cases, the electron energy density function turned out to be non-Maxwellian.
Pegasus: A new hybrid-kinetic particle-in-cell code for astrophysical plasma dynamics
NASA Astrophysics Data System (ADS)
Kunz, Matthew W.; Stone, James M.; Bai, Xue-Ning
2014-02-01
We describe Pegasus, a new hybrid-kinetic particle-in-cell code tailored for the study of astrophysical plasma dynamics. The code incorporates an energy-conserving particle integrator into a stable, second-order-accurate, three-stage predictor-predictor-corrector integration algorithm. The constrained transport method is used to enforce the divergence-free constraint on the magnetic field. A δf scheme is included to facilitate a reduced-noise study of systems in which only small departures from an initial distribution function are anticipated. The effects of rotation and shear are implemented through the shearing-sheet formalism with orbital advection. These algorithms are embedded within an architecture similar to that used in the popular astrophysical magnetohydrodynamics code Athena, one that is modular, well-documented, easy to use, and efficiently parallelized for use on thousands of processors. We present a series of tests in one, two, and three spatial dimensions that demonstrate the fidelity and versatility of the code.
Three-dimensional particle-in-cell simulation on gain saturation effect of microchannel plate.
Wang, Qiangqiang; Yuan, Zheng; Cao, Zhurong; Deng, Bo; Chen, Tao; Deng, Keli
2016-07-01
We present here the results of the simulation work, using the three-dimensional particle-in-cell method, on the performance of the lead glass microchannel plate under saturated state. We calculated the electron cascade process with different DC bias voltages under both self-consistent condition and non-self-consistent condition. The comparative results have demonstrated that the strong self-consistent field can suppress the cascade process and make the microchannel plate saturated. The simulation results were also compared to the experimental data and good agreement was obtained. The simulation results also show that the electron multiplication process in the channel is accompanied by the buildup process of positive charges in the channel wall. Though the interactions among the secondary electron cloud in the channel, the positive charges in the channel wall, and the external acceleration field can make the electron-surface collision more frequent, the collision energy will be inevitably reduced, thus the electron gain will also be reduced. PMID:27475552
Particle-in-cell simulation study of a lower-hybrid shock
NASA Astrophysics Data System (ADS)
Dieckmann, M. E.; Sarri, G.; Doria, D.; Ynnerman, A.; Borghesi, M.
2016-06-01
The expansion of a magnetized high-pressure plasma into a low-pressure ambient medium is examined with particle-in-cell simulations. The magnetic field points perpendicular to the plasma's expansion direction and binary collisions between particles are absent. The expanding plasma steepens into a quasi-electrostatic shock that is sustained by the lower-hybrid (LH) wave. The ambipolar electric field points in the expansion direction and it induces together with the background magnetic field a fast E cross B drift of electrons. The drifting electrons modify the background magnetic field, resulting in its pile-up by the LH shock. The magnetic pressure gradient force accelerates the ambient ions ahead of the LH shock, reducing the relative velocity between the ambient plasma and the LH shock to about the phase speed of the shocked LH wave, transforming the LH shock into a nonlinear LH wave. The oscillations of the electrostatic potential have a larger amplitude and wavelength in the magnetized plasma than in an unmagnetized one with otherwise identical conditions. The energy loss to the drifting electrons leads to a noticeable slowdown of the LH shock compared to that in an unmagnetized plasma.
Electron Debye scale Kelvin-Helmholtz instability: Electrostatic particle-in-cell simulations
Lee, Sang-Yun; Lee, Ensang Kim, Khan-Hyuk; Lee, Dong-Hun; Seon, Jongho; Jin, Ho
2015-12-15
In this paper, we investigated the electron Debye scale Kelvin-Helmholtz (KH) instability using two-dimensional electrostatic particle-in-cell simulations. We introduced a velocity shear layer with a thickness comparable to the electron Debye length and examined the generation of the KH instability. The KH instability occurs in a similar manner as observed in the KH instabilities in fluid or ion scales producing surface waves and rolled-up vortices. The strength and growth rate of the electron Debye scale KH instability is affected by the structure of the velocity shear layer. The strength depends on the magnitude of the velocity and the growth rate on the velocity gradient of the shear layer. However, the development of the electron Debye scale KH instability is mainly determined by the electric field generated by charge separation. Significant mixing of electrons occurs across the shear layer, and a fraction of electrons can penetrate deeply into the opposite side fairly far from the vortices across the shear layer.
Particle-in-cell simulation of stationary processes in a relativistic carcinotron
NASA Astrophysics Data System (ADS)
Pegel', I. V.
1996-12-01
A one-dimensional nonstationary model of relativistic carcinotrons, combines the particle-in-cell method in the description of an electron beam with a single-wave approximation in the description of the dynamics of an electromagnetic field. The influence of the intrinsic space charge of the beam is taken into account in the quasistatic approximation. A procedure is developed for computational experiment with a carcinotron in the axisymmetric approximation on the basis of the entirely electromagnetic code KARAT. The computations support the main known laws for a relativistic carcinotron. The effect the space charge has on inertial electronbeam bunching is examined. Mechanisms by which the space charge affects the carcinotron generation efficiency are demonstrated. The space charge may cause anomalously accelerated electrons in the beam and a reverse electron current to appear, increasing the impedance of the coaxial magnetically insulated diode that feeds the device. The carcinotron power and frequency are studied as functions of the strength of the guiding magnetic field. Cyclotron suppression of generation is confirmed. Calculation in combination with an electronic diode shows that generation at a higher frequency can be excited in the cyclotron “dip”.
Particle-in-cell Simulations of Raman Laser Amplification in Preformed Plasmas
Daniel S. Clark; Nathaniel J. Fisch
2003-06-27
Two critical issues in the amplification of laser pulses by backward Raman scattering in plasma slabs are the saturation mechanism of the amplification effect (which determines the maximum attainable output intensity of a Raman amplifier) and the optimal plasma density for amplification. Previous investigations [V.M. Malkin, et al., Phys. Rev. Lett., 82 (22):4448-4451, 1999] identified forward Raman scattering and modulational instabilities of the amplifying seed as the likely saturation mechanisms and lead to an estimated unfocused output intensities of 10{sup 17}W/cm{sup 2}. The optimal density for amplification is determined by the competing constraints of minimizing the plasma density so as to minimize the growth rate of the instabilities leading to saturation but also maintaining the plasma sufficiently dense that the driven Langmuir wave responsible for backscattering does not break prematurely. Here, particle-in-cell code are simulations presented which verify that saturation of backward Raman amplification does occur at intensities of {approx}10{sup 17}W/cm{sup 2} by forward Raman scattering and modulational instabilities. The optimal density for amplification in a plasma with the representative temperature of T(sub)e = 200 eV is also shown in these simulations to be intermediate between the cold plasma wave-breaking density and the density limit found by assuming a water bag electron distribution function.
A two-dimensional (azimuthal-axial) particle-in-cell model of a Hall thruster
Coche, P.; Garrigues, L.
2014-02-15
We have developed a two-dimensional Particle-In-Cell model in the azimuthal and axial directions of the Hall thruster. A scaling method that consists to work at a lower plasma density to overcome constraints on time-step and grid-spacing is used. Calculations are able to reproduce the breathing mode due to a periodic depletion of neutral atoms without the introduction of a supplementary anomalous mechanism, as in fluid and hybrid models. Results show that during the increase of the discharge current, an electron-cyclotron drift instability (frequency in the range of MHz and wave number on the order of 3000 rad s{sup −1}) is formed in the region of the negative gradient of magnetic field. During the current decrease, an axial electric wave propagates from the channel toward the exhaust (whose frequency is on the order of 400 kHz) leading to a broadening of the ion energy distribution function. A discussion about the influence of the scaling method on the calculation results is also proposed.
Different Choices of the Form Factor in Particle-in-Cell Simulations
NASA Astrophysics Data System (ADS)
Kilian, P.; Ganse, U.; Spanier, F.
2013-04-01
Numerical simulations have proven a valuable tool to study plasma behavior, especially for conditions in astrophysical scenarios and which are not readily accessible under laboratory conditions. Whenever single particle behavior becomes important or the development of non-thermal components is of interest fluid descriptions have to be replaced by more accurate but also more expensive kinetic descriptions. A very popular such method is the Particle-in-Cell method. Conceptually this method combines the integration of motion if individual elementary particles with field quantities that are restricted to a spatial grid. Both the analytic derivation of the method as well as the computational feasibility require the use of phase space samples instead of the more readily envisioned individual elementary particles. Each macroparticle represents an ensemble of particles of one species that are close to each other in phase space and carries the total charge and mass of the ensemble. Unlike the elementary particles the macroparticle does not necessarily have a vanishing spatial extent. Different choices of the form factor, that is spatial distribution of the particle quantities within the macroparticle, are investigated. Included are the standard choices NGP, CIC and TSC as well as new schemes of higher order.
Kato, Tsunehiko N.; Takabe, Hideaki
2010-03-15
A two-dimensional electromagnetic particle-in-cell simulation with the realistic ion-to-electron mass ratio of 1836 is carried out to investigate the electrostatic collisionless shocks in relatively high-speed (approx3000 km s{sup -1}) plasma flows and also the influence of both electrostatic and electromagnetic instabilities, which can develop around the shocks, on the shock dynamics. It is shown that the electrostatic ion-ion instability can develop in front of the shocks, where the plasma is under counterstreaming condition, with highly oblique wave vectors as was shown previously. The electrostatic potential generated by the electrostatic ion-ion instability propagating obliquely to the shock surface becomes comparable with the shock potential and finally the shock structure is destroyed. It is also shown that in front of the shock the beam-Weibel instability gradually grows as well, consequently suggesting that the magnetic field generated by the beam-Weibel instability becomes important in long-term evolution of the shock and the Weibel-mediated shock forms long after the electrostatic shock vanished. It is also observed that the secondary electrostatic shock forms in the reflected ions in front of the primary electrostatic shock.
Fulfillment of the kinetic Bohm criterion in a quasineutral particle-in-cell model
NASA Astrophysics Data System (ADS)
Ahedo, Eduardo; Santos, Robert; Parra, Félix I.
2010-07-01
Quasineutral particle-in-cell models of ions must fulfill the kinetic Bohm criterion, in its inequality form, at the domain boundary in order to match correctly with solutions of the Debye sheaths tied to the walls. The simple, fluid form of the Bohm criterion is shown to be a bad approximation of the exact, kinetic form when the ion velocity distribution function has a significant dispersion and involves different charge numbers. The fulfillment of the Bohm criterion is measured by a weighting algorithm at the boundary, but linear weighting algorithms have difficulties to reproduce the nonlinear behavior around the sheath edge. A surface weighting algorithm with an extended temporal weighting is proposed and shown to behave better than the standard volumetric weighting. Still, this must be supplemented by a forcing algorithm of the kinetic Bohm criterion. This postulates a small potential fall in a supplementary, thin, transition layer. The electron-wall interaction is shown to be of little relevance in the fulfillment of the Bohm criterion.
Particle-in-cell simulations of electron beam control using an inductive current divider
Swanekamp, S. B.; Angus, J. R.; Cooperstein, G.; Ottinger, P. F.; Richardson, A. S.; Schumer, J. W.; Weber, B. V.
2015-11-18
Kinetic, time-dependent, electromagnetic, particle-in-cell simulations of the inductive current divider are presented. The inductive current divider is a passive method for controlling the trajectory of an intense, hollow electron beam using a vacuum structure that inductively splits the beam’s return current. The current divider concept was proposed and studied theoretically in a previous publication [Phys. Plasmas 22, 023107 (2015)] A central post carries a portion of the return current (I1) while the outer conductor carries the remainder (I2) with the injected beam current given by Ib=I1+I2. The simulations are in agreement with the theory which predicts that the total forcemore » on the beam trajectory is proportional to (I2-I1) and the force on the beam envelope is proportional to Ib. For a fixed central post, the beam trajectory is controlled by varying the outer conductor radius which changes the inductance in the return-current path. The simulations show that the beam emittance is approximately constant as the beam propagates through the current divider to the target. As a result, independent control over both the current density and the beam angle at the target is possible by choosing the appropriate return-current geometry.« less
Particle-in-cell simulations of electron beam control using an inductive current divider
Swanekamp, S. B.; Angus, J. R.; Cooperstein, G.; Ottinger, P. F.; Richardson, A. S.; Schumer, J. W.; Weber, B. V.
2015-11-18
Kinetic, time-dependent, electromagnetic, particle-in-cell simulations of the inductive current divider are presented. The inductive current divider is a passive method for controlling the trajectory of an intense, hollow electron beam using a vacuum structure that inductively splits the beam’s return current. The current divider concept was proposed and studied theoretically in a previous publication [Phys. Plasmas 22, 023107 (2015)] A central post carries a portion of the return current (I_{1}) while the outer conductor carries the remainder (I_{2}) with the injected beam current given by I_{b}=I_{1}+I_{2}. The simulations are in agreement with the theory which predicts that the total force on the beam trajectory is proportional to (I_{2}-I_{1}) and the force on the beam envelope is proportional to I_{b}. For a fixed central post, the beam trajectory is controlled by varying the outer conductor radius which changes the inductance in the return-current path. The simulations show that the beam emittance is approximately constant as the beam propagates through the current divider to the target. As a result, independent control over both the current density and the beam angle at the target is possible by choosing the appropriate return-current geometry.
Global Explicit Particle-in-cell Simulations of the Nonstationary Bow Shock and Magnetosphere
NASA Astrophysics Data System (ADS)
Yang, Zhongwei; Huang, Can; Liu, Ying D.; Parks, George K.; Wang, Rui; Lu, Quanming; Hu, Huidong
2016-07-01
We carry out two-dimensional global particle-in-cell simulations of the interaction between the solar wind and a dipole field to study the formation of the bow shock and magnetosphere. A self-reforming bow shock ahead of a dipole field is presented by using relatively high temporal-spatial resolutions. We find that (1) the bow shock and the magnetosphere are formed and reach a quasi-stable state after several ion cyclotron periods, and (2) under the B z southward solar wind condition, the bow shock undergoes a self-reformation for low β i and high M A . Simultaneously, a magnetic reconnection in the magnetotail is found. For high β i and low M A , the shock becomes quasi-stationary, and the magnetotail reconnection disappears. In addition, (3) the magnetopause deflects the magnetosheath plasmas. The sheath particles injected at the quasi-perpendicular region of the bow shock can be convected downstream of an oblique shock region. A fraction of these sheath particles can leak out from the magnetosheath at the wings of the bow shock. Hence, the downstream situation is more complicated than that for a planar shock produced in local simulations.
Kinetic structures of quasi-perpendicular shocks in global particle-in-cell simulations
Peng, Ivy Bo Markidis, Stefano; Laure, Erwin; Johlander, Andreas; Vaivads, Andris; Khotyaintsev, Yuri; Henri, Pierre; Lapenta, Giovanni
2015-09-15
We carried out global Particle-in-Cell simulations of the interaction between the solar wind and a magnetosphere to study the kinetic collisionless physics in super-critical quasi-perpendicular shocks. After an initial simulation transient, a collisionless bow shock forms as a result of the interaction of the solar wind and a planet magnetic dipole. The shock ramp has a thickness of approximately one ion skin depth and is followed by a trailing wave train in the shock downstream. At the downstream edge of the bow shock, whistler waves propagate along the magnetic field lines and the presence of electron cyclotron waves has been identified. A small part of the solar wind ion population is specularly reflected by the shock while a larger part is deflected and heated by the shock. Solar wind ions and electrons are heated in the perpendicular directions. Ions are accelerated in the perpendicular direction in the trailing wave train region. This work is an initial effort to study the electron and ion kinetic effects developed near the bow shock in a realistic magnetic field configuration.
Fulfillment of the kinetic Bohm criterion in a quasineutral particle-in-cell model
Ahedo, Eduardo; Santos, Robert; Parra, Felix I.
2010-07-15
Quasineutral particle-in-cell models of ions must fulfill the kinetic Bohm criterion, in its inequality form, at the domain boundary in order to match correctly with solutions of the Debye sheaths tied to the walls. The simple, fluid form of the Bohm criterion is shown to be a bad approximation of the exact, kinetic form when the ion velocity distribution function has a significant dispersion and involves different charge numbers. The fulfillment of the Bohm criterion is measured by a weighting algorithm at the boundary, but linear weighting algorithms have difficulties to reproduce the nonlinear behavior around the sheath edge. A surface weighting algorithm with an extended temporal weighting is proposed and shown to behave better than the standard volumetric weighting. Still, this must be supplemented by a forcing algorithm of the kinetic Bohm criterion. This postulates a small potential fall in a supplementary, thin, transition layer. The electron-wall interaction is shown to be of little relevance in the fulfillment of the Bohm criterion.
Effect of collisions on dust particle charging via particle-in-cell Monte-Carlo collision
Rovagnati, B.; Davoudabadi, M.; Lapenta, G.; Mashayek, F.
2007-10-01
In this paper, the effect of collisions on the charging and shielding of a single dust particle immersed in an infinite plasma is studied. A Monte-Carlo collision (MCC) algorithm is implemented in the particle-in-cell DEMOCRITUS code to account for the collisional phenomena which are typical of dusty plasmas in plasma processing, namely, electron-neutral elastic scattering, ion-neutral elastic scattering, and ion-neutral charge exchange. Both small and large dust particle radii, as compared to the characteristic Debye lengths, are considered. The trends of the steady-state dust particle potential at increasing collisionality are presented and discussed. The ions and electron energy distributions at various locations and at increasing collisionality in the case of large particle radius are shown and compared to their local Maxwellians. The ion-neutral charge-exchange collision is found to be by far the most important collisional phenomenon. For small particle radius, collisional effects are found to be important also at low level of collisionality, as more ions are collected by the dust particle due to the destruction of trapped ion orbits. For large particle radius, the major collisional effect is observed to take place in proximity of the presheath. Finally, the species energy distribution functions are found to approach their local Maxwellians at increasing collisionality.
NASA Astrophysics Data System (ADS)
Patacchini, L.; Hutchinson, I. H.
2009-04-01
A new explicit time-reversible orbit integrator for the equations of motion in a static homogeneous magnetic field - called Cyclotronic integrator - is presented. Like Spreiter and Walter's Taylor expansion algorithm, for sufficiently weak electric field gradients this second order method does not require a fine resolution of the Larmor motion; it has however the essential advantage of being symplectic, hence time-reversible. The Cyclotronic integrator is only subject to a linear stability constraint ( ΩΔ t < π, Ω being the Larmor angular frequency), and is therefore particularly suitable to electrostatic Particle In Cell codes with uniform magnetic field where Ω is larger than any other characteristic frequency, yet a resolution of the particles' gyromotion is required. Application examples and a detailed comparison with the well-known (time-reversible) Boris algorithm are presented; it is in particular shown that implementation of the Cyclotronic integrator in the kinetic codes SCEPTIC and Democritus can reduce the cost of orbit integration by up to a factor of ten.
Beta dependence of electron heating in decaying whistler turbulence: Particle-in-cell simulations
Saito, S.; Peter Gary, S.
2012-01-15
Two-dimensional particle-in-cell simulations have been carried out to study electron beta dependence of decaying whistler turbulence and electron heating in a homogeneous, collisionless magnetized plasma. Initially, applied whistler fluctuations at relatively long wavelengths cascade their energy into shorter wavelengths. This cascade leads to whistler turbulence with anisotropic wavenumber spectra which are broader in directions perpendicular to the background magnetic field than in the parallel direction. Comparing the development of whistler turbulence at different electron beta values, it is found that both the wavenumber spectrum anisotropy and electron heating anisotropy decrease with increasing electron beta. This indicates that higher electron beta reduces the perpendicular energy cascade of whistler turbulence. Fluctuation energy dissipation by electron Landau damping responsible for the electron parallel heating becomes weaker at higher electron beta, which leads to more isotropic heating. It suggests that electron kinetic processes are important in determining the properties of whistler turbulence. This kinetic property is applied to discuss the generation of suprathermal strahl electron distributions in the solar wind.
Particle-in-cell simulations of electron beam control using an inductive current divider
NASA Astrophysics Data System (ADS)
Swanekamp, S. B.; Angus, J. R.; Cooperstein, G.; Ottinger, P. F.; Richardson, A. S.; Schumer, J. W.; Weber, B. V.
2015-11-01
Kinetic, time-dependent, electromagnetic, particle-in-cell simulations of the inductive current divider are presented. The inductive current divider is a passive method for controlling the trajectory of an intense, hollow electron beam using a vacuum structure that inductively splits the beam's return current. The current divider concept was proposed and studied theoretically in a previous publication [Swanekamp et al., Phys. Plasmas 22, 023107 (2015)]. A central post carries a portion of the return current (I1), while the outer conductor carries the remainder (I2) with the injected beam current given by Ib = I1 + I2. The simulations are in agreement with the theory which predicts that the total force on the beam trajectory is proportional to (I2-I1) and the force on the beam envelope is proportional to Ib. Independent control over both the current density and the beam angle at the target is possible by choosing the appropriate current-divider geometry. The root-mean-square (RMS) beam emittance (ɛRMS) varies as the beam propagates through the current divider to the target. For applications where control of the beam trajectory is desired and the current density at the target is similar to the current density at the entrance foil, there is a modest 20% increase in ɛRMS at the target. For other applications where the beam is pinched to a current density ˜5 times larger at the target, ɛRMS is 2-3 times larger at the target.
Particle-in-Cell Simulation of Collisionless Driven Reconnection with Open Boundaries
NASA Technical Reports Server (NTRS)
Kimas, Alex; Hesse, Michael; Zenitani, Seiji; Kuznetsova, Maria
2010-01-01
First results are discussed from an ongoing study of driven collisionless reconnection using a 2 1/2-dimensional electromagnetic particle-in-cell simulation model with open inflow and outflow boundaries. An extended electron diffusion region (EEDR) is defined as that region surrounding a reconnecting neutral line in which the out-of-plane nonideal electric field is positive. It is shown that the boundaries of this region in the directions of the outflow jets are at the positions where the electrons make the transition from unfrozen meandering motion in the current sheet to outward drifting with the magnetic field in the outflow jets; a turning length scale is defined to mark these positions, The initial width of the EEDR in the inflow directions is comparable to the electron bounce width. Later. as shoulders develop to form a two-scale structure. thc EEDR width expands to the ion bounce width scale. The inner portion of the EEDR or the electron diffusion region proper remains at the electron bounce width. Two methods are introduced for predicting the reconnection electric field using the dimensions of the EEDR. These results are interpreted as further evidence that the EEDR is the region that is relevant to understanding the electron role in the neutral line vicinity.
Electron and ion heating by whistler turbulence: Three-dimensional particle-in-cell simulations
Hughes, R. Scott; Gary, S. Peter; Wang, Joseph
2014-12-17
Three-dimensional particle-in-cell simulations of decaying whistler turbulence are carried out on a collisionless, homogeneous, magnetized, electron-ion plasma model. In addition, the simulations use an initial ensemble of relatively long wavelength whistler modes with a broad range of initial propagation directions with an initial electron beta βe = 0.05. The computations follow the temporal evolution of the fluctuations as they cascade into broadband turbulent spectra at shorter wavelengths. Three simulations correspond to successively larger simulation boxes and successively longer wavelengths of the initial fluctuations. The computations confirm previous results showing electron heating is preferentially parallel to the background magnetic field Bo,more » and ion heating is preferentially perpendicular to Bo. The new results here are that larger simulation boxes and longer initial whistler wavelengths yield weaker overall dissipation, consistent with linear dispersion theory predictions of decreased damping, stronger ion heating, consistent with a stronger ion Landau resonance, and weaker electron heating.« less
Comparison of dust charging between orbital-motion-limited theory and particle-in-cell simulations
Delzanno, Gian Luca Tang, Xian-Zhu
2015-11-15
The Orbital-Motion-Limited (OML) theory has been modified to predict the dust charge and the results were contrasted with the Whipple approximation [X. Z. Tang and G. L. Delzanno, Phys. Plasmas 21, 123708 (2014)]. To further establish its regime of applicability, in this paper, the OML predictions (for a non-electron-emitting, spherical dust grain at rest in a collisionless, unmagnetized plasma) are compared with particle-in-cell simulations that retain the absorption radius effect. It is found that for large dust grain radius r{sub d} relative to the plasma Debye length λ{sub D}, the revised OML theory remains a very good approximation as, for the parameters considered (r{sub d}/λ{sub D} ≤ 10, equal electron and ion temperatures), it yields the dust charge to within 20% accuracy. This is a substantial improvement over the Whipple approximation. The dust collected currents and energy fluxes, which remain the same in the revised and standard OML theories, are accurate to within 15%–30%.
Electron and ion heating by whistler turbulence: Three-dimensional particle-in-cell simulations
Hughes, R. Scott; Gary, S. Peter; Wang, Joseph
2014-12-17
Three-dimensional particle-in-cell simulations of decaying whistler turbulence are carried out on a collisionless, homogeneous, magnetized, electron-ion plasma model. In addition, the simulations use an initial ensemble of relatively long wavelength whistler modes with a broad range of initial propagation directions with an initial electron beta β_{e} = 0.05. The computations follow the temporal evolution of the fluctuations as they cascade into broadband turbulent spectra at shorter wavelengths. Three simulations correspond to successively larger simulation boxes and successively longer wavelengths of the initial fluctuations. The computations confirm previous results showing electron heating is preferentially parallel to the background magnetic field B_{o}, and ion heating is preferentially perpendicular to B_{o}. The new results here are that larger simulation boxes and longer initial whistler wavelengths yield weaker overall dissipation, consistent with linear dispersion theory predictions of decreased damping, stronger ion heating, consistent with a stronger ion Landau resonance, and weaker electron heating.
Unphysical kinetic effects in particle-in-cell modeling of laser wakefield accelerators.
Cormier-Michel, Estelle; Shadwick, B A; Geddes, C G R; Esarey, E; Schroeder, C B; Leemans, W P
2008-07-01
Unphysical heating and macroparticle trapping that arise in the numerical modeling of laser wakefield accelerators using particle-in-cell codes are investigated. A dark current free laser wakefield accelerator stage, in which no trapping of background plasma electrons into the plasma wave should occur, and a highly nonlinear cavitated wake with self-trapping, are modeled. Numerical errors can lead to errors in the macroparticle orbits in both phase and momentum. These errors grow as a function of distance behind the drive laser and can be large enough to result in unphysical trapping in the plasma wake. The resulting numerical heating in intense short-pulse laser-plasma interactions grows much faster and to a higher level than the known numerical grid heating of an initially warm plasma in an undriven system. The amount of heating, at least in the region immediately behind the laser pulse, can, in general, be decreased by decreasing the grid size, increasing the number of particles per cell, or using smoother interpolation methods. The effect of numerical heating on macroparticle trapping is less severe in a highly nonlinear cavitated wake, since trapping occurs in the first plasma wave period immediately behind the laser pulse. PMID:18764064
Particle-in-cell simulation of large amplitude ion-acoustic solitons
Sharma, Sarveshwar Sengupta, Sudip; Sen, Abhijit
2015-02-15
The propagation of large amplitude ion-acoustic solitons is studied in the laboratory frame (x, t) using a 1-D particle-in-cell code that evolves the ion dynamics by treating them as particles but assumes the electrons to follow the usual Boltzmann distribution. It is observed that for very low Mach numbers the simulation results closely match the Korteweg-de Vries soliton solutions, obtained in the wave frame, and which propagate without distortion. The collision of two such profiles is observed to exhibit the usual solitonic behaviour. As the Mach number is increased, the given profile initially evolves and then settles down to the exact solution of the full non-linear Poisson equation, which then subsequently propagates without distortion. The fractional change in amplitude is found to increase linearly with Mach number. It is further observed that initial profiles satisfying k{sup 2}λ{sub de}{sup 2}<1 break up into a series of solitons.
Three-dimensional particle-in-cell simulations of 300 GHz reflex klystrons
Jeon, S. G.; Jin, Y. S.; Kim, J. I.; Kim, G. J.; Shon, C. H.
2007-03-01
Three-dimensional (3D) particle-in-cell simulations of 300 GHz reflex klystrons are presented. 300 GHz electromagnetic wave generation in a resonant cavity is analyzed by using a 3D simulation model in which all the geometric parameters (such as the grid thickness, repeller shape, beam radius, etc.) are described. When an electron beam of an energy of 1.0 keV and a net current of 8.9 mA is used, the maximum electronic efficiency of energy transfer is observed when the gap transit angle is 0.7{pi} rad, and the efficiency saturates when the beam current is over 10 mA. Space charge forces produce a shift in the optimum repeller voltage. It is also shown that the effect of the beam temperature is not critical, even though the bunching wavelength of the electron beam is several times smaller than that in conventional vacuum electron devices. Our simulation results show that a microfabricated 300 GHz reflex klystron can directly generate electromagnetic waves with output power levels of several tens of milliwatts.
Shock Injection Problem and Beyond in Hybrid/Particle-in-Cell Simulations
NASA Astrophysics Data System (ADS)
Hoshino, Masahiro
Collisionless shocks are a rich repository of nonlinear plasma instabilities and the self-regulated system of plasma waves, and provide not only quick thermalization but also nonthermal particle acceleration. One of the most widely accepted models of the nonthermal particle acceleration is the diffusive shock acceleration (DSA), which was established in the late seventies. In order that DSA operates effectively, however, the pre-acceleration of particles - the acceleration from the thermal into the suprathermal energies - is needed, namely, the so-called "shock injection problem" remains elusive. The transition from the thermal energies, the suprathermal energies, and the high energy nothermal particles are not well understood yet. With the recent advance of supper computer technology, kinetic plasma modeling by hybrid/particle-in-cell simulations are widely used for understanding the shock dynamics and the particle acceleration mechanisms etc. The modern computer capability is not enough to demonstrate DAS or other strong particle acceleration processes yet, but a great progress is now obtained. In this review talk, we discuss several important progresses: the pre-acceleration at the shock front as the particle injection problem, the turbulent wave generation in the shock transition/upstream as the particle scatterers of DAS, and the magnetic field amplification and so on. We will also give a perspective of the shock acceleration in the future simulation study.
Particle-in-cell modeling of Dual Segmented Langmuir Probe on PROBA2
NASA Astrophysics Data System (ADS)
Imtiaz, Nadia; Marchand, Richard
2015-11-01
We model the current characteristics of the Dual Segmented Langmuir Probe (DSLP), which is a part of the scientific payload of the ESA satellite PROBA2. It is used for the directional measurement of plasma parameters in the ionosphere at an altitude of approximately 725 km. The DSLP consists of two independent segmented Langmuir probes. Each probe is partitioned into eight collectors: seven electrically insulated spherical segments and a Guard electrode (the rest of the sphere and a small post). The current characteristics of the DSLP are computed by using the 3D particle-in-cell code PTetra. The model is electrostatic and it accounts for a uniform background magnetic field. The computed characteristics of different probe segments exhibit significant variation which depends on their orientation with respect to the ram direction. The floating potential and ion current branch of the I-V curves of each segment illustrate the directional sensitivity of the DSLP. It is found that the magnetic field also affects the electron current branch of the I-V curves of certain segments on the DSLP. The I-V curves computed with and without the ambient magnetic field are then used to estimate the electron temperature. This study will be helpful to understand the floating potential and electron temperature anisotropies measured by the DSLP.
Miyake, Yohei; Usui, Hideyuki; Kojima, Hirotsugu; Omura, Yoshiharu
2008-12-31
We applied the electromagnetic Particle-In-Cell simulation to the analysis of receiving antenna characteristics in space plasma environment. In the analysis, we set up external waves in a simulation region and receive them with a numerical antenna model placed in the simulation region. Using this method, we evaluated the effective length of electric field antennas used for plasma wave investigations conducted by scientific spacecraft. We particularly focused on the effective length of an electric field instrument called MEFISTO for a future mission to Mercury: BepiColombo. We first confirmed that the effective length of the MEFISTO-type antenna is basically longer than that of a simple dipole antenna for both electrostatic and electromagnetic plasma waves. By applying the principle of a voltmeter, the effective length of the MEFISTO-type antenna is predicted to become identical to the separation between two sensor-conductor's midpoints. However, the numerical result revealed that the actual effective length becomes shorter than the prediction, which is caused by the shorting-out effect due to the presence of a center boom conductor between the two sensor conductors. Since the above effect is difficult to treat theoretically, the present numerical method is a powerful tool for further quantitative evaluation of the antenna characteristics.
NASA Astrophysics Data System (ADS)
Riquelme, Mario A.; Quataert, Eliot; Verscharen, Daniel
2016-06-01
In low-collisionality plasmas, velocity-space instabilities are a key mechanism providing an effective collisionality for the plasma. We use particle-in-cell (PIC) simulations to study the interplay between electron- and ion-scale velocity-space instabilities and their effect on electron pressure anisotropy, viscous heating, and thermal conduction. The adiabatic invariance of the magnetic moment in low-collisionality plasmas leads to pressure anisotropy, {{Δ }}{p}j\\equiv {p}\\perp ,j-{p}\\parallel ,j\\gt 0, if the magnetic field {\\boldsymbol{B}} is amplified ({p}\\perp ,j and {p}\\parallel ,j denote the pressure of species j (electron, ion) perpendicular and parallel to {\\boldsymbol{B}}). If the resulting anisotropy is large enough, it can in turn trigger small-scale plasma instabilities. Our PIC simulations explore the nonlinear regime of the mirror, IC, and electron whistler instabilities, through continuous amplification of the magnetic field | {\\boldsymbol{B}}| by an imposed shear in the plasma. In the regime 1≲ {β }j≲ 20 ({β }j\\equiv 8π {p}j/| {\\boldsymbol{B}}{| }2), the saturated electron pressure anisotropy, {{Δ }}{p}{{e}}/{p}\\parallel ,{{e}}, is determined mainly by the (electron-lengthscale) whistler marginal stability condition, with a modest factor of ∼1.5–2 decrease due to the trapping of electrons into ion-lengthscale mirrors. We explicitly calculate the mean free path of the electrons and ions along the mean magnetic field and provide a simple physical prescription for the mean free path and thermal conductivity in low-collisionality β j ≳ 1 plasmas. Our results imply that velocity-space instabilities likely decrease the thermal conductivity of plasma in the outer parts of massive, hot, galaxy clusters. We also discuss the implications of our results for electron heating and thermal conduction in low-collisionality accretion flows onto black holes, including Sgr A* in the Galactic Center.
NASA Astrophysics Data System (ADS)
Lee, R. E.; Chapman, S. C.; Dendy, R. O.
2003-12-01
Recent Particle-in-cell (PIC) simulations have revealed time-dependent shock solutions for parameters relevant to astrophysical and heliospheric shocks [1,2,3]. These solutions are characterised by a shock which cyclically reforms on the spatio-temporal scales of the incoming protons. Whether a shock solution is stationary or reforming depends not only upon the correct treatment of the electrons, but also on the plasma parameters, the upstream β in particular. In the case of the heliospheric termination shock these parameters are not well determined, however, some estimates suggest that the termination shock may be in a parameter regime such that it is time-dependent. It has been pointed out [3] that this will switch off some acceleration mechanisms, for example shock surfing, which has been proposed previously for time-stationary shock solutions. The introduction of time-dependent electromagnetic fields intrinsic to the shock does however introduce the possibility of new mechanisms for the acceleration of protons. Here we present for the first time one such process as revealed by high phase space resolution 1.5D PIC simulations in which all vector quantities are three dimensional, the solution then varying with the spatial coordinate and time. We find that a subset of the protons that reflect off the reforming shock front are accelerated by subsequent interaction with the shock to form a suprathermal population which then propagates into the downstream region with energies of order six times the upstream inflow energy. These may provide an injection population for further acceleration to cosmic ray energies. [1] Shimada, N., and M. Hoshino, Astrophys. J, 543, L67, 2000. [2] Schmitz, H., S.C. Chapman and R.O. Dendy, Astrophys. J, 570, 637, 2002 [3] Scholer, M., I. Shinohara and S. Matsukiyo, J. Geophys. Res., 108, 1014, 2003
Particle-In-Cell Simulations on Electric Field Antenna Characteristics in the Spacecraft Environment
NASA Astrophysics Data System (ADS)
Miyake, Y.; Usui, H.; Kojima, H.; Omura, Y.; Matsumoto, H.
2006-12-01
The Solar Terrestrial Physics (STP) group in Japan has organized a new magnetospheric mission named SCOPE whose objective is to investigate the scale-coupling process of plasma dynamics in the Terrestrial magnetosphere. For the sophisticated electric field measurements planned in the SCOPE mission, we have to investigate the antenna characteristics which are essential for the precise calibration of observed data. Particularly, (1) realistic antenna geometries including spacecraft body and (2) inhomogeneous plasma environment created by plasma-spacecraft interactions should be taken into consideration in the antenna analysis for application to the scientific mission. However, the analysis of the antenna impedance is very complex because the plasma is a dispersive and anisotropic medium, and thus it is too difficult to consider the realistic plasma environment near the spacecraft by the theoretical approaches. In the present study, we apply the Particle-In-Cell simulations to the antenna analysis, which enables us to treat the antenna model including a spacecraft body and analyze the effects of photoelectron emission on antenna characteristics. The present antenna model consists of perfect conducting antennas and spacecraft body, and the photoelectron emission from the sunlit surfaces is also modeled. Using these models, we first performed the electrostatic simulations and examined the photoelectron environment around the spacecraft. Next, the antenna impedance under the obtained photoelectron environment was examined by the electromagnetic simulations. Impedance values obtained in photoelectron environment were much different from those in free space, and they were analogous to the impedance characteristics of an equivalent electric circuit consisting of a resistance and capacitance connected in parallel. The validity of the obtained values has been examined by the comparison with the measurements by the scientific spacecraft.
Whistler turbulence heating of electrons and ions: Three-dimensional particle-in-cell simuations
Gary, S. Peter; Hughes, R. Scott; Wang, Joseph
2016-01-14
In this study, the decay of whistler turbulence in a collisionless, homogeneous, magnetized plasma is studied using three-dimensional particle-in-cell simulations. The simulations are initialized with a narrowband, relatively isotropic distribution of long wavelength whistler modes. A first ensemble of simulations at electron betamore » $${\\beta }_{{\\rm{e}}}$$ = 0.25 and ion-to-electron mass ratio $${m}_{{\\rm{i}}}$$/$${m}_{{\\rm{e}}}$$ = 400 is carried out on a domain cube of dimension $$L{\\omega }_{\\mathrm{pi}}$$/c = 5.12 where $${\\omega }_{\\mathrm{pi}}$$ is the ion plasma frequency. The simulations begin with a range of dimensionless fluctuating field energy densities, $${\\epsilon }_{{\\rm{o}}}$$, and follow the fluctuations as they cascade to broadband, anisotropic turbulence which dissipates at shorter wavelengths, heating both electrons and ions. The electron heating is stronger and preferentially parallel/antiparallel to the background magnetic field $${{\\boldsymbol{B}}}_{{\\rm{o}}};$$ the ion energy gain is weaker and is preferentially in directions perpendicular to $${{\\boldsymbol{B}}}_{{\\rm{o}}}$$. The important new results here are that, over 0.01 < $${\\epsilon }_{{\\rm{o}}}$$ < 0.25, the maximum rate of electron heating scales approximately as $${\\epsilon }_{{\\rm{o}}}$$, and the maximum rate of ion heating scales approximately as $${\\epsilon }_{{\\rm{o}}}^{1.5}$$. A second ensemble of simulations at $${\\epsilon }_{{\\rm{o}}}$$ = 0.10 and $${\\beta }_{{\\rm{e}}}$$ = 0.25 shows that, over 25 < $${m}_{{\\rm{i}}}$$/$${m}_{{\\rm{e}}}\\;$$< 1836, the ratio of the maximum ion heating rate to the maximum electron heating rate scales approximately as $${m}_{{\\rm{e}}}$$/$${m}_{{\\rm{i}}}$$.« less
Revealing the sub-structures of the magnetic reconnection separatrix via particle-in-cell simulation
Zhou, M.; Deng, X. H.; Pang, Y.; Xu, X. J.; Yao, M.; Huang, S. Y.; Yuan, Z. G.; Li, H. M.; Wang, D. D.; Wang, Y. H.
2012-07-15
Magnetic separatrix is an important boundary layer separating the inflow and outflow regions in magnetic reconnection. In this article, we investigate the sub-structures of the separatrix region by using two-and-half dimensional electromagnetic particle-in-cell simulation. The separatrix region can be divided into two sub-regions in terms of the ion and electron frozen-in conditions. Far from the neutral sheet, ions and electrons are magnetized in magnetic fields. Approaching the neutral sheet, ion frozen-in condition is broken in a narrow region ({approx}c/{omega}{sub pi}) at the edge of a density cavity, while electrons are frozen-in to magnetic fields. In this region, electric field E{sub z} is around zero, and the convective term -(v{sub i} Multiplication-Sign B) is balanced by the Hall term in the generalized Ohm's law because ions carry the perpendicular current. Inside the density cavity, both ion and electron frozen-in conditions are broken. The region consists of two sub-ion or electron-scale layers, which contain intense electric fields. Formation of the two sub-layers is due to the complex electron flow pattern around the separatrix region. In the layer, E{sub z} is balanced by a combination of Hall term and the divergence of electron pressure tensor, with the Hall term being dominant. Our preliminary simulation result shows that the separatrix region in guide field reconnection also contains two sub-regions: the inner region and the outer region. However, the inner region contains only one current layer in contrast with the case without guide field.
Particle-in-cell simulation of spacecraft/plasma interactions in the vicinity of Enceladus
NASA Astrophysics Data System (ADS)
Yaroshenko, V. V.; Miloch, W. J.; Lühr, H.
2015-09-01
The Cassini Langmuir Probe of the Radio and Plasma Wave Science instrument has measured an electron depletion in a region extending at least 50 satellite radii away from Saturn's small but geologically active icy moon Enceladus. The maximal imbalance between the electron and ion densities was observed in the dust loaded plume and to date is attributed to the electron attachment to abundant dust grains. We report the results from a three dimensional particle-in-cell simulation of a plasma structure formed around a charged spacecraft in the conditions relevant inside the Enceladus torus and in the moon's plume. In addition to the plasma population the plume simulation includes singly charged nanograins detected by the Cassini Plasma Spectrometer. The accompanied spacecraft plasma perturbations can significantly modify an ambient plasma at the Cassini Langmuir probe positions and thus impact the plasma measurements. Our modeling reveals a domination of water group ions over the electron population due to the formation of a conventional plasma sheath at the ram-oriented probe positions in the Enceladus torus and in the plume regions with low dust density (nd0
Particle-in-Cell WARP simulation studies of positron plasmas in micro-Penning-Malmberg traps
NASA Astrophysics Data System (ADS)
Narimannezhad, Alireza; Weber, Marc H.; Lynn, Kelvin G.
2013-10-01
The charged particles storage capacity of microtraps with large length to radius aspect ratios and radii of the order of tens of microns was explored using particle-in-cell WARP code. The new design of the trap consisted of an array of microtraps with substantially lower end electrodes potential than conventional Penning-Malmberg traps, which makes this trap quite portable. It was shown that each microtrap with 50 μm radius immersed in a 7 T uniform, axial magnetic field, stored positrons with a density (1.6E11 cm-3) even higher than that in conventional Penning-Malmberg traps (~ 1E11 cm-3) while the confinement voltage was only 10 V. The trapped density scaled as r-2 down to 3 μm radius. It was presented in this work how to evaluate and lower the numerical noise by controlling the modeling parameters so the simulated plasma can evolve toward computational equilibrium. The local equilibrium distribution was attained in time scales of the simulation for plasmas initialized with a uniform density and Boltzmann energy distribution. The charge clouds developed the expected radial soft edge density distribution and rigid rotation evolved to some extent. To reach global equilibrium (i.e. rigid rotation) longer runs are required. The plasma confinement time and its thermalization were independent of the length. We would like to thank program managers Dr. William Beck and Dr. Parvez Uppal of the ARL who provide funding under contract W9113M-09-C-0075, and program manager Dr. Scott Coombe of the ONR who provide finding under award #N00014-10-1-0543.
Final Report for "Gyrotron Design and Evaluation using New Particle-in-Cell Capability"
David N Smithe
2008-05-28
ITER will depend on high power CW gyrotrons to deliver power to the plasma at ECR frequencies. However, gyrotrons can suffer from undesirable low frequency oscillations (LFO’s) which are known to interfere with the gun-region diagnostics and data collection, and are also expected to produce undesirable energy and velocity spread in the beam. The origins and processes leading to these oscillations are poorly understood, and existing gyrotron R&D tools, such as static gun solvers and interaction region models, are not designed to look at time-dependant oscillatory behavior. We have applied a time-domain particle-in-cell method to investigate the LFO phenomenon. Our company is at the forefront of smooth-curved-boundary treatment of the electromagnetic fields and particle emission surfaces, and such methods are necessary to simulate the adiabatically trapped and reflected electrons thought to be driving the oscillations. This approach provides the means for understanding, in microscopic detail, the underlying physical processes driving the low-frequency oscillations. In the Phase I project, an electron gun region from an existing gyrotron, known to observe LFO’s, was selected as a proof-of-principle geometry, and was modeled with the curved-geometry time-domain simulation tool, in order to establish the feasibility of simulating LFO physics with this tool on office-scale, and larger, parallel cluster computers. Generally, it was found to be feasible to model the simulation geometry, emission, and magnetic features of the electron gun. Ultimately, the tool will be used to investigate the origins and life cycle within the trapped particle population. This tool also provides the foundations and validation for potential application of the software to numerous other time-dependant beam and rf source problems in the commercial arena.
Particle-in-cell simulations of the critical ionization velocity effect in finite size clouds
Moghaddam-Taaheri, E.; Lu, G.; Nishikawa, K.I.
1994-04-01
The critical ionization velocity (CIV) mechanism in a finite size cloud is studied with a series of electrostatic particle-in-cell simulations. It is observed that an initial seed ionization, produced by non-CIV mechanisms, generates a cross-field ion beam which excites a modified beam-plasma instability (MBPI) with frequency in the range of the lower hybrid frequency. The excited waves accelerate electrons along the magnetic field up to the ion drift energy that exceeds the ionization energy of the neutral atoms. The heated electrons in turn enhance the ion beam by electron-neutral impact ionization, which established a positive feedback loop in maintaining the CIV process. It is also found that the efficiency of the CIV mechanism depends on the finite size of the gas cloud in the following ways: (1) Along the ambient magnetic field the finite size of the cloud, L{parallel}, restricts the growth of the fastest growing mode, with a wavelength {lambda}{sub m{parallel}}, of the MBPI. (2) Momentum coupling between the cloud and the ambient plasma via the Alfven waves occurs as a result of the finite size of the cloud in the direction perpendicular to both the ambient magnetic field and the neutral drift. (3) The transverse charge separation field across the cloud was found to result in the modulation of the beam velocity which reduces the parallel heating of electrons and increases the transverse acceleration of electrons. (4) Some energetic electrons are lost from the cloud along the magnetic field at a rate characterized by the acoustic velocity, instead of the electron thermal velocity. It is also shown that a factor of 4 increase in the ambient plasma density, increases the CIV ionization yield by almost 2 orders of magnitude at the end of a typical run. The simulation results are used to interpret various chemical release experiments in space. 68 refs., 22 figs., 4 tabs.
Particle-in-cell simulations of electron beam control using an inductive current divider
Swanekamp, S. B.; Angus, J. R.; Cooperstein, G.; Ottinger, P. F.; Richardson, A. S.; Schumer, J. W.; Weber, B. V.
2015-11-15
Kinetic, time-dependent, electromagnetic, particle-in-cell simulations of the inductive current divider are presented. The inductive current divider is a passive method for controlling the trajectory of an intense, hollow electron beam using a vacuum structure that inductively splits the beam's return current. The current divider concept was proposed and studied theoretically in a previous publication [Swanekamp et al., Phys. Plasmas 22, 023107 (2015)]. A central post carries a portion of the return current (I{sub 1}), while the outer conductor carries the remainder (I{sub 2}) with the injected beam current given by I{sub b} = I{sub 1} + I{sub 2}. The simulations are in agreement with the theory which predicts that the total force on the beam trajectory is proportional to (I{sub 2}−I{sub 1}) and the force on the beam envelope is proportional to I{sub b}. Independent control over both the current density and the beam angle at the target is possible by choosing the appropriate current-divider geometry. The root-mean-square (RMS) beam emittance (ε{sub RMS}) varies as the beam propagates through the current divider to the target. For applications where control of the beam trajectory is desired and the current density at the target is similar to the current density at the entrance foil, there is a modest 20% increase in ε{sub RMS} at the target. For other applications where the beam is pinched to a current density ∼5 times larger at the target, ε{sub RMS} is 2–3 times larger at the target.
Ab Initio Pulsar Magnetosphere: Three-dimensional Particle-in-cell Simulations of Oblique Pulsars
NASA Astrophysics Data System (ADS)
Philippov, Alexander A.; Spitkovsky, Anatoly; Cerutti, Benoit
2015-03-01
We present “first-principles” relativistic particle-in-cell simulations of the oblique pulsar magnetosphere with pair formation. The magnetosphere starts to form with particles extracted from the surface of the neutron star. These particles are accelerated by surface electric fields and emit photons capable of producing electron-positron pairs. We inject secondary pairs at the locations of primary energetic particles whose energy exceeds the threshold for pair formation. We find solutions that are close to the ideal force-free magnetosphere with the Y-point and current sheet. Solutions with obliquities ≤40° do not show pair production in the open field line region because the local current density along the magnetic field is below the Goldreich-Julian value. The bulk outflow in these solutions is charge-separated, and pair formation happens in the current sheet and return current layer only. Solutions with higher inclinations show pair production in the open field line region, with high multiplicity of the bulk flow and the size of the pair-producing region increasing with inclination. We observe the spin-down of the star to be comparable to MHD model predictions. The magnetic dissipation in the current sheet ranges between 20% for the aligned rotator and 3% for the orthogonal rotator. Our results suggest that for low obliquity neutron stars with suppressed pair formation at the light cylinder, the presence of phenomena related to pair activity in the bulk of the polar region, e.g., radio emission, may crucially depend on the physics beyond our simplified model, such as the effects of curved spacetime or multipolar surface fields.
Low-temperature plasma simulations with the LSP PIC code
NASA Astrophysics Data System (ADS)
Carlsson, Johan; Khrabrov, Alex; Kaganovich, Igor; Keating, David; Selezneva, Svetlana; Sommerer, Timothy
2014-10-01
The LSP (Large-Scale Plasma) PIC-MCC code has been used to simulate several low-temperature plasma configurations, including a gas switch for high-power AC/DC conversion, a glow discharge and a Hall thruster. Simulation results will be presented with an emphasis on code comparison and validation against experiment. High-voltage, direct-current (HVDC) power transmission is becoming more common as it can reduce construction costs and power losses. Solid-state power-electronics devices are presently used, but it has been proposed that gas switches could become a compact, less costly, alternative. A gas-switch conversion device would be based on a glow discharge, with a magnetically insulated cold cathode. Its operation is similar to that of a sputtering magnetron, but with much higher pressure (0.1 to 0.3 Torr) in order to achieve high current density. We have performed 1D (axial) and 2D (axial/radial) simulations of such a gas switch using LSP. The 1D results were compared with results from the EDIPIC code. To test and compare the collision models used by the LSP and EDIPIC codes in more detail, a validation exercise was performed for the cathode fall of a glow discharge. We will also present some 2D (radial/azimuthal) LSP simulations of a Hall thruster. The information, data, or work presented herein was funded in part by the Advanced Research Projects Agency-Energy (ARPA-E), U.S. Department of Energy, under Award Number DE-AR0000298.
Parallel PIC Simulations of Short-Pulse High Intensity Laser Plasma Interactions.
NASA Astrophysics Data System (ADS)
Lasinski, B. F.; Still, C. H.; Langdon, A. B.
2001-10-01
We extend our previous simulations of high intensity short pulse laser plasma interactions footnote B. F. Lasinski, A. B. Langdon, S. P. Hatchett, M. H. Key, and M. Tabak, Phys. Plasmas 6, 2041 (1999); S. C. Wilks and W. L. Kruer, IEEE Journal of Quantum Electronics 11, 1954 (1997). to 3D and to much larger systems in 2D using our new, modern, 3D, electromagnetic, fully relativistic, massively parallel PIC code. We study the generation of hot electrons and energetic ions and the associated complex phenomena. Laser light filamentation and the formation of high static magnetic fields are described.
Parallel PIC Simulations of Ultra-High Intensity Laser Plasma Interactions.
NASA Astrophysics Data System (ADS)
Lasinski, B. F.; Still, C. H.; Langdon, A. B.; Wilks, S. C.; Hatchett, S. P.; Hinkel, D. E.
1999-11-01
We extend our previous simulations of high intensity short pulse laser plasma interactionsfootnote B. F. Lasinski, A. B. Langdon, S. P. Hatchett, M. H. Key, and M. Tabak, Phys. Plasmas 6, 2041 (1999); S. C. Wilks and W. L. Kruer, IEEE Journal of Quantum Electronics 11, 1954 (1997). to 3D and to much larger systems in 2D using our new, modern, 3D, electromagnetic, fully relativistic, massively parallel PIC code. Our simulation parameters are guided by the recent Petawatt experiments at Livermore. We study the generation of hot electrons and energetic ions and the associated complex phenomena. Laser light filamentation and the formation of high static magnetic fields are described.
3D Hot Test Simulations of a 220 GHz Folded Waveguide Traveling Wave Tube Using a CFDTD PIC Method
NASA Astrophysics Data System (ADS)
Lin, Ming-Chieh; Song, Heather
2015-11-01
Millimeter or sub-THz wave sources centered at 220 GHz is of interest due to the potential for its commercial and military applications including high resolution radar, remote sensing, and high-data-rate communications. It has been demonstrated via 3D cold test finite element method (FEM) simulations that a folded waveguide traveling wave tube (FWTWT) can be designed and optimized at this frequency range with a small signal gain of 18 dB over a comparatively broad (-3 dB) bandwidth of ~ 10%. On the other hand, 3D hot test simulations of a V-band ladder TWT have been successfully demonstrated using a conformal finite-difference time-domain (CFDTD) particle-in-cell (PIC) method for center frequency of 50 GHz. In the present work, the 220 GHz FWTWT designs have been reviewed and studied. 3D Cold test simulations using both the CFDTD and FEM methods have been carried out and compared with each other as basis for 3D hot test CFDTD PIC simulations. The preliminary simulation result shows that the gain-bandwidth features at 220 GHz are achievable while carefully avoiding beam interceptions. Our study shows that the interaction characteristics are very sensitive to the operating beam parameters. Detail simulation results and discussions will be presented.
NASA Astrophysics Data System (ADS)
Kurilenkov, Yu K.; Tarakanov, V. P.; Karpukhin, V. T.; Gus'kov, S. Yu; Oginov, A. V.
2015-11-01
DD neutrons from microfusion in the interelectrode space of a table-top low energy nanosecond vacuum discharge with a deuterium-loaded Pd anode have been demonstrated earlier. The detailed particle-in-cell (PIC) simulation of the discharge experimental conditions have been developed using a fully electrodynamic code. The principal role of a virtual cathode and the corresponding deep potential well (PW) formed in the interelectrode space are recognized. The PIC modeling has allowed identifying the scheme of small-scale experiment with a rather old branch of plasma physics as inertial electrostatic confinement fusion. Deuterons being trapped by this well are accelerating up to the energies of a few tens of keV that provides the DD nuclear synthesis under head-on collisions. Meanwhile, any ions of other elements like He, C, O, Si (as main elements of different shells of stars) being placed in the PW (even with low Z charges) have to be accelerated easily up to the head-on collisions energies, which are corresponding to the temperatures of ignition Tign for different shells. We conclude that hypothesis on some imitation of different stages of stellar nucleosynthesis by nuclear burning in the potential well of virtual cathode in vacuum discharge seems to be reasonable and stimulating in the future study of complex element burning including advanced fuel like p-B11.
NASA Astrophysics Data System (ADS)
Moore, Christopher; Hopkins, Matthew; Moore, Stan; Boerner, Jeremiah; Cartwright, Keith
2015-09-01
Simulation of breakdown is important for understanding and designing a variety of applications such as mitigating undesirable discharge events. Such simulations need to be accurate through early time arc initiation to late time stable arc behavior. Here we examine constraints on the timestep and mesh size required for arc simulations using the particle-in-cell (PIC) method with direct simulation Monte Carlo (DMSC) collisions. Accurate simulation of electron avalanche across a fixed voltage drop and constant neutral density (reduced field of 1000 Td) was found to require a timestep ~ 1/100 of the mean time between collisions and a mesh size ~ 1/25 the mean free path. These constraints are much smaller than the typical PIC-DSMC requirements for timestep and mesh size. Both constraints are related to the fact that charged particles are accelerated by the external field. Thus gradients in the electron energy distribution function can exist at scales smaller than the mean free path and these must be resolved by the mesh size for accurate collision rates. Additionally, the timestep must be small enough that the particle energy change due to the fields be small in order to capture gradients in the cross sections versus energy. Sandia National Laboratories is a multi-program laboratory managed and operated by Sandia Corporation, a wholly owned subsidiary of Lockheed Martin Corporation, for the U.S. DOE's National Nuclear Security Administration under Contract DE-AC04-94AL85000.
NASA Astrophysics Data System (ADS)
Lee, R. E.; Chapman, S. C.; Dendy, R. O.
2004-12-01
Recent particle-in-cell (PIC) simulations have revealed time-dependent shock solutions for parameters relevant to astrophysical and heliospheric shocks [e.g. 1,2,3]. These solutions are characterised by a shock which cyclically reforms on the spatio-temporal scales of the incoming protons. Whether a shock solution is stationary or reforming depends not only upon the model adopted for electron dynamics, but also on the plasma parameters, notably the upstream beta. For the heliospheric termination shock, these parameters are not well determined: some estimates suggest that the termination shock may be in a parameter regime such that it is time-dependent. It has been pointed out [3] that this may terminate some acceleration processes, for example shock surfing, which have been proposed for time-stationary shock solutions. The introduction of time-dependent electromagnetic fields intrinsic to the shock does however introduce the possibility of new mechanisms for the acceleration of protons. We will discuss the prospects for local ion acceleration at reforming quasiperpendicular shocks, in the presence of pickup ions as seen in selfconsistent PIC simulations with parameters relevant to both SNRs and the heliospheric termination shock. [1] Shimada, N., and M. Hoshino, Astrophys. J, 543, L67, 2000. [2] Schmitz, H., S.C. Chapman and R.O. Dendy, Astrophys. J, 570, 637, 2002 [3] Scholer, M., I. Shinohara and S. Matsukiyo, J. Geophys. Res., 108, 1014, 2003
NASA Astrophysics Data System (ADS)
Koechlin, L.
2015-12-01
We carry a long term survey of the solar activity with our coronagraphic system at Pic du Midi de Bigorre in the French Pyrenees (CLIMSO). It is a set of two solar telescopes and two coronagraphs, taking one frame per minute for each of the four channels : Solar disk in H-α (656.28 nm), prominences in H-α, disk in Ca II (393.3 nm), prominences in He I (1083 nm), all year long, weather permitting. Since 2015 we also take images of the FeXIII corona (1074.7 nm) at the rate of one every 10 minutes. These images cover a large field: 1.25 solar diameter, 2k*2K pixels, and are freely downloadable form a database. The improvements made since 2015 concern an autoguiding system for better centering of the solar disk behind the coronagraphic masks, and a new Fe XIII channel at λ=1074.7 nm. In the near future we plan to provide radial velocity maps of the disc and polarimetry maps of the disk and corona. This survey took its present form in 2007 and we plan to maintain image acquisition in the same or better experimental conditions for a long period: one or several solar cycles if possible. During the partial solar eclipse of March 20, 2015, the CLIMSO instruments and the staff at Pic du Midi operating it have provided several millions internet users with real time images of the Sun and Moon during all the phenomenon.
On efficiency of collisions` simulation via particles-in-cells technique
Ovchenkov, P.A.; Sigov, Yu.S.
1995-12-31
Macro-particle technique is widely used to simulate kinetic processes in plasmas and plasma-like media. The common feature of various versions of this technique is tracing phase particles trajectories and detection of macro-characteristics system under modelling as average by particles band. The method is rather costly from the point of view of computer resources needed (as compared with flid calculations) but it permits to simulate complex kinetic processes in cases whet their precise theoretical description is impossible. In particular, the PIC technique allows to simulate spatial-nonuniform (SNU) non-equilibrium systems with self-consistent fields. The pair collisions between macro-particles are often used to model collisions in the frame of particle simulation technique. In so doing the SNU problems are not eliminated. By {open_quotes}pair collisions{close_quotes} we mean the collisions` simulation techniques witch is characterize by use of a collision act between two macro-particles. Such a method is commonly used in molecular dynamic technique. The collision can be treated as either determinate (solid sphere technique) or probabilistic one. There with, as the second interaction agent can be used both the same particle and a hypotetic {open_quotes}average{close_quotes} particle with properties derived from averaging over particles` ensemble. In the first case the technique must include the procedure of choice of pairs for collisions, the second one must include some averaging procedure. In this paper we propose one more method of pair collisions.
A curvilinear, fully implicit, conservative electromagnetic PIC algorithm in multiple dimensions
NASA Astrophysics Data System (ADS)
Chacón, L.; Chen, G.
2016-07-01
We extend a recently proposed fully implicit PIC algorithm for the Vlasov-Darwin model in multiple dimensions (Chen and Chacón (2015) [1]) to curvilinear geometry. As in the Cartesian case, the approach is based on a potential formulation (ϕ, A), and overcomes many difficulties of traditional semi-implicit Darwin PIC algorithms. Conservation theorems for local charge and global energy are derived in curvilinear representation, and then enforced discretely by a careful choice of the discretization of field and particle equations. Additionally, the algorithm conserves canonical-momentum in any ignorable direction, and preserves the Coulomb gauge ∇ ṡ A = 0 exactly. An asymptotically well-posed fluid preconditioner allows efficient use of large cell sizes, which are determined by accuracy considerations, not stability, and can be orders of magnitude larger than required in a standard explicit electromagnetic PIC simulation. We demonstrate the accuracy and efficiency properties of the algorithm with numerical experiments in mapped meshes in 1D-3V and 2D-3V.
A curvilinear, fully implicit, conservative electromagnetic PIC algorithm in multiple dimensions
Chacon, L.; Chen, G.
2016-07-01
Here, we extend a recently proposed fully implicit PIC algorithm for the Vlasov–Darwin model in multiple dimensions (Chen and Chacón (2015) [1]) to curvilinear geometry. As in the Cartesian case, the approach is based on a potential formulation (Φ, A), and overcomes many difficulties of traditional semi-implicit Darwin PIC algorithms. Conservation theorems for local charge and global energy are derived in curvilinear representation, and then enforced discretely by a careful choice of the discretization of field and particle equations. Additionally, the algorithm conserves canonical-momentum in any ignorable direction, and preserves the Coulomb gauge ∇ • A = 0 exactly. Anmore » asymptotically well-posed fluid preconditioner allows efficient use of large cell sizes, which are determined by accuracy considerations, not stability, and can be orders of magnitude larger than required in a standard explicit electromagnetic PIC simulation. We demonstrate the accuracy and efficiency properties of the algorithm with numerical experiments in mapped meshes in 1D-3V and 2D-3V.« less
Vollrath, Margarete E; Hampson, Sarah E; Torgersen, Svenn
2016-05-01
Children's personality traits are invaluable predictors of concurrent and later mental and physical health. Several validated longer inventories for assessing the widely recognized Five-Factor Model of personality in children are available, but short forms are scarce. This study aimed at constructing a 30-item form of the 144-item Hierarchical Personality Inventory for Children (HiPIC) (Mervielde & De Fruyt, ). Participants were 1543 children aged 6-12 years (sample 1) and 3895 children aged 8 years (sample 2). Sample 1 completed the full HiPIC, from which we constructed the HiPIC-30, and the Child Behaviour Checklist (Achenbach, ). Sample 2 completed the HiPIC-30. The HiPIC-30 personality domains correlated over r = .90 with the full HiPIC domains, had good Cronbach's alphas and correlated similarly with CBCL behaviour problems and gender as the full HiPIC. The factor structures of the HiPIC-30 were convergent across samples, but the imagination factor was not clear-cut. We conclude that the HiPIC-30 is a reliable and valid questionnaire for the Five-Factor personality traits in children. Copyright © 2016 John Wiley & Sons, Ltd. PMID:27120426
2004-08-01
AnisWave2D is a 2D finite-difference code for a simulating seismic wave propagation in fully anisotropic materials. The code is implemented to run in parallel over multiple processors and is fully portable. A mesh refinement algorithm has been utilized to allow the grid-spacing to be tailored to the velocity model, avoiding the over-sampling of high-velocity materials that usually occurs in fixed-grid schemes.
Plasma analysis for the plasma immersion ion implantation processing by a PIC-MCC simulation
NASA Astrophysics Data System (ADS)
Miyagawa, Y.; Ikeyama, M.; Miyagawa, S.; Tanaka, M.; Nakadate, H.
2007-07-01
In order to analyze the plasma behavior during PIII processing, a computer simulation has been carried out using the simulation software "PEGASUS". The software uses a Particle-in-Cell (PIC) method for the movement of charged particles in the electromagnetic field and a Monte Carlo method for collisions of ions, electrons, and neutrals in the plasma and also a Monte Carlo method to analyze the background gas behavior for a low density gas system. This approach is based on the weighting collision simulation scheme allowing for disparate number densities of different species. The spatial distributions of potential and densities of ions, electrons and radicals in the coating system were calculated together with the flux of ions and electrons on the surface of the object. The gas pressure was 0.01 to 50 Pa and a negative and/or a positive pulse voltage ( V=0.1 to 20 kV) was applied to the object. The calculation is fully self-consistent. A two-dimensional Cartesian and a cylindrical coordinate system were used. The effects of gas pressure, applied voltage, and secondary electron emission coefficient by ion impact ( γ) on the sheath thickness, the spatial distribution of densities of electron, ion, and neutral atoms, the ion flux and its spatial distribution, etc. were studied for PIII processing of a trench shaped object, inner wall of a pipe and a PET bottle.
3D CFDTD PIC Simulation Study on Low-Frequency Oscillations in a Gyrotron
NASA Astrophysics Data System (ADS)
Lin, M. C.; Smithe, D. N.
2011-10-01
Low-frequency oscillations (LFOs) have been observed in a high average power gyrotron and the trapped electron population contributing to the oscillation has been measured. As high average power gyrotrons are the most promising millimeter wave source for thermonuclear fusion research, it is important to get a better understanding of this parasitic phenomenon to avoid any deterioration of the electron beam quality thus reducing the gyrotron efficiency. However, understanding of the LFOs remains incomplete and a full picture of this parasitic phenomenon has not been seen yet. In this work, we use a 3D conformal finite-difference time-domain (CFDTD) particle-in-cell (PIC) method to accurately and efficiently study the LFOs in a magnetron injection gun (MIG) of a high average power gyrotron. Employing a highly parallelized computation, the model can be simulated in time domain more realistically. LFOs have been obtained in a 3D time domain simulation for the first time. From our preliminary simulation studies, it is found that not only magnetic compression profile but initial velocity or velocity ratio play an important role in the operation of a MIG electron gun. In addition, the secondary emission effects on the LFOs are also studied. Detailed results will be presented. Work supported by the U.S. Department of Energy under Grant No. DE-SC0004436.
Hybrid-PIC Computer Simulation of the Plasma and Erosion Processes in Hall Thrusters
NASA Technical Reports Server (NTRS)
Hofer, Richard R.; Katz, Ira; Mikellides, Ioannis G.; Gamero-Castano, Manuel
2010-01-01
HPHall software simulates and tracks the time-dependent evolution of the plasma and erosion processes in the discharge chamber and near-field plume of Hall thrusters. HPHall is an axisymmetric solver that employs a hybrid fluid/particle-in-cell (Hybrid-PIC) numerical approach. HPHall, originally developed by MIT in 1998, was upgraded to HPHall-2 by the Polytechnic University of Madrid in 2006. The Jet Propulsion Laboratory has continued the development of HPHall-2 through upgrades to the physical models employed in the code, and the addition of entirely new ones. Primary among these are the inclusion of a three-region electron mobility model that more accurately depicts the cross-field electron transport, and the development of an erosion sub-model that allows for the tracking of the erosion of the discharge chamber wall. The code is being developed to provide NASA science missions with a predictive tool of Hall thruster performance and lifetime that can be used to validate Hall thrusters for missions.
NASA Astrophysics Data System (ADS)
Icenhour, Casey; Exum, Ashe; Martin, Elijah; Green, David; Smithe, David; Shannon, Steven
2014-10-01
The coupling of experiment and simulation to elucidate near field physics above ICRF antennae presents challenges on both the experimental and computational side. In order to analyze this region, a new optical diagnostic utilizing active and passive spectroscopy is used to determine the structure of the electric fields within the sheath region. Parallel and perpendicular magnetic fields with respect to the sheath electric field have been presented. This work focuses on the validation of these measurements utilizing the Particle-in-Cell (PIC) simulation method in conjunction with High Performance Computing (HPC) resources on the Titan supercomputer at Oak Ridge National Laboratory (ORNL). Plasma parameters of interest include electron density, electron temperature, plasma potentials, and RF plasma sheath voltages and thicknesses. The plasma is modeled utilizing the VSim plasma simulation tool, developed by the Tech-X Corporation. The implementation used here is a two-dimensional electromagnetic model of the experimental setup. The overall goal of this study is to develop models for complex RF plasma systems and to help outline the physics of RF sheath formation and subsequent power loss on ICRF antennas in systems such as ITER. This work is carried out with the support of Oak Ridge National Laboratory and the Tech-X Corporation.
Gyrokinetic particle-in-cell simulations of Alfvén eigenmodes in presence of continuum effects
Mishchenko, Alexey Könies, Axel; Hatzky, Roman
2014-05-15
First-principle gyrokinetic particle-in-cell simulations of a global Toroidal Alfvén Eigenmode (TAE) are undertaken in the presence of a strong coupling with the continuum. Effects of the bulk plasma temperature on the interplay between the TAE and Kinetic Alfvén Waves (KAWs) are investigated. A global TAE-KAW structure is identified which appears to be more unstable with respect to the fast ions than a simple (fluid-like) TAE mode.
Chen, Guangye; Chacon, Luis; Barnes, Daniel C
2012-01-01
Recently, a fully implicit, energy- and charge-conserving particle-in-cell method has been developed for multi-scale, full-f kinetic simulations [G. Chen, et al., J. Comput. Phys. 230, 18 (2011)]. The method employs a Jacobian-free Newton-Krylov (JFNK) solver and is capable of using very large timesteps without loss of numerical stability or accuracy. A fundamental feature of the method is the segregation of particle orbit integrations from the field solver, while remaining fully self-consistent. This provides great flexibility, and dramatically improves the solver efficiency by reducing the degrees of freedom of the associated nonlinear system. However, it requires a particle push per nonlinear residual evaluation, which makes the particle push the most time-consuming operation in the algorithm. This paper describes a very efficient mixed-precision, hybrid CPU-GPU implementation of the implicit PIC algorithm. The JFNK solver is kept on the CPU (in double precision), while the inherent data parallelism of the particle mover is exploited by implementing it in single-precision on a graphics processing unit (GPU) using CUDA. Performance-oriented optimizations, with the aid of an analytical performance model, the roofline model, are employed. Despite being highly dynamic, the adaptive, charge-conserving particle mover algorithm achieves up to 300 400 GOp/s (including single-precision floating-point, integer, and logic operations) on a Nvidia GeForce GTX580, corresponding to 20 25% absolute GPU efficiency (against the peak theoretical performance) and 50-70% intrinsic efficiency (against the algorithm s maximum operational throughput, which neglects all latencies). This is about 200-300 times faster than an equivalent serial CPU implementation. When the single-precision GPU particle mover is combined with a double-precision CPU JFNK field solver, overall performance gains 100 vs. the double-precision CPU-only serial version are obtained, with no apparent loss of
NASA Astrophysics Data System (ADS)
Yu, Y.; Delzanno, G. L.; Jordanova, V.; Zhao, L.; Peng, B.; Markidis, S.
2014-12-01
Wave-particle interactions play an important role in influencing the Earth's inner magnetosphere dynamics. We study the whistler wave generation with an implicit particle-in-cell code (iPIC3D) within unstable equatorial regions identified by the kinetic ring current model RAM-SCB. During storm time, RAM-SCB shows that hot electrons on the dayside demonstrate high temperature anisotropy, implying that it is unstable to whistler wave excitation. By using plasma parameters from RAM-SCB results, we carry out iPIC3D simulations assuming a bi-Maxwellian distribution for electrons. We found that with an electron temperature anisotropy of 4, electron density of 6 cm-3 , and parallel temperature T|| of 1keV on the dayside around L of 5.5, whistler waves are rapidly excited and propagate along the background magnetic field line. Comparisons with linear theory show good agreements on the wave mode and frequency at which the whistler waves are excited, as well as on the linear growth rate of the maximum wave mode. The electron velocity distribution is significantly changed after the wave generation, towards a smaller anisotropy due to the pitch-angle scattering transport process. Furthermore, test particles are tracked in the whistler wave environment developed during the linear growth phase (with an amplitude of 0.05 B0) to examine the pitch angle diffusion. The diffusion coefficient is calculated and found to be one to two orders of magnitude smaller than the quasi-linear theory, which implies that the quasi-linear theory may predict a much faster loss of the radiation belts. In addition, in contrast to the quasi-linear theory that shows monotonic dependence on the electron pitch angle, the coefficient calculated from iPIC simulations are rather insensitive to the pitch angle.
NASA Astrophysics Data System (ADS)
Yu, Peicheng; Xu, Xinlu; Decyk, Viktor K.; An, Weiming; Vieira, Jorge; Tsung, Frank S.; Fonseca, Ricardo A.; Lu, Wei; Silva, Luis O.; Mori, Warren B.
2014-06-01
Simulating laser wakefield acceleration (LWFA) in a Lorentz boosted frame in which the plasma drifts towards the laser with vb can speed up the simulation by factors of γb2=(1. In these simulations the relativistic drifting plasma inevitably induces a high frequency numerical instability that contaminates the interesting physics. Various approaches have been proposed to mitigate this instability. One approach is to solve Maxwell equations in Fourier space (a spectral solver) as this has been shown to suppress the fastest growing modes of this instability in simple test problems using a simple low pass or "ring" or "shell" like filters in Fourier space. We describe the development of a fully parallelized, multi-dimensional, particle-in-cell code that uses a spectral solver to solve Maxwell's equations and that includes the ability to launch a laser using a moving antenna. This new EM-PIC code is called UPIC-EMMA and it is based on the components of the UCLA PIC framework (UPIC). We show that by using UPIC-EMMA, LWFA simulations in the boosted frames with arbitrary γb can be conducted without the presence of the numerical instability. We also compare the results of a few LWFA cases for several values of γb, including lab frame simulations using OSIRIS, an EM-PIC code with a finite-difference time domain (FDTD) Maxwell solver. These comparisons include cases in both linear and nonlinear regimes. We also investigate some issues associated with numerical dispersion in lab and boosted frame simulations and between FDTD and spectral solvers.
It's about Time: The Literacy TopPics Awards.
ERIC Educational Resources Information Center
And Others; Swafford, Jeanne
1997-01-01
Examines the last five years of articles in this journal to show what topics were most often written about (the "Top Picks" or "TopPics"). Discusses these results and makes recommendations that deserve considerable attention in the future. Notes that integrated language arts was a perennial TopPic. (SR)
AMBER: a PIC slice code for DARHT
NASA Astrophysics Data System (ADS)
Vay, Jean-Luc; Fawley, William
1999-11-01
The accelerator for the second axis of the Dual Axis Radiographic Hydrodynamic Test (DARHT) facility will produce a 4-kA, 20-MeV, 2-μ s output electron beam with a design goal of less than 1000 π mm-mrad normalized transverse emittance and less than 0.5-mm beam centroid motion. In order to study the beam dynamics throughout the accelerator, we have developed a slice Particle-In-Cell code named AMBER, in which the beam is modeled as a time-steady flow, subject to self, as well as external, electrostatic and magnetostatic fields. The code follows the evolution of a slice of the beam as it propagates through the DARHT accelerator lattice, modeled as an assembly of pipes, solenoids and gaps. In particular, we have paid careful attention to non-paraxial phenomena that can contribute to nonlinear forces and possible emittance growth. We will present the model and the numerical techniques implemented, as well as some test cases and some preliminary results obtained when studying emittance growth during the beam propagation.
2D Optical Streaking for Ultra-Short Electron Beam Diagnostics
Ding, Y.T.; Huang, Z.; Wang, L.; /SLAC
2011-12-14
field ionization, which occurs in plasma case, gases species with high field ionization threshold should be considered. For a linear polarized laser, the kick to the ionized electrons depends on the phase of the laser when the electrons are born and the unknown timing jitter between the electron beam and laser beam makes the data analysis very difficult. Here we propose to use a circular polarized laser to do a 2-dimensional (2D) streaking (both x and y) and measure the bunch length from the angular distribution on the screen, where the phase jitter causes only a rotation of the image on the screen without changing of the relative angular distribution. Also we only need to know the laser wavelength for calibration. A similar circular RF deflecting mode was used to measure long bunches. We developed a numerical particle-in-Cell (PIC) code to study the dynamics of ionization electrons with the high energy beam and the laser beam.
NASA Astrophysics Data System (ADS)
Dodd, E. S.; Barnes, D. C.; Bezzerides, B.; Dubois, D. F.; Vu, H. X.
2003-10-01
RPIC is a reduced-description PIC code designed to investigate laser-plasma instabilities (LPI) in physical systems with vastly-different time scales prevalent under ICF conditions(H.X. Vu, B. Bezzerides, D.F. DuBois, J. Comp. Phys. 156), 12 (1999)., typically studied with the extended Zakharov model. Comparisons between the extended Zakharov model and RPIC were presented in a series of papers(K.Y. Sanbonmatsu, H.X. Vu, D.F. DuBois, and B. Bezzerides, Phys. Rev. Lett. 82), 932 (1999); K.Y. Sanbonmatsu, H.X. Vu, B. Bezzerides, and D.F. DuBois, Phys. Plasmas. 7, 1723,2824 (2000)., where quantitative agreements are obtained in the fluid and quasi-linear regime. In the kinetic regime where particle trapping is important, differences were found. The RPIC model itself is limited, e.g., Langmuir wave frequency harmonics are neglected. Our goal is two fold in comparing RPIC with full PIC in 1-d. First, advantages of RPIC over full PIC will be quantitatively assessed. Second, for strong laser drives, harmonics may be important to LPI physics. We would like to establish the regime of validity for RPIC, and to assess if the regimes where RPIC fails is of interest to ICF indirect drive.
Particle-in-cell simulations of the critical ionization velocity effect in finite size clouds
NASA Technical Reports Server (NTRS)
Moghaddam-Taaheri, E.; Lu, G.; Goertz, C. K.; Nishikawa, K. - I.
1994-01-01
The critical ionization velocity (CIV) mechanism in a finite size cloud is studied with a series of electrostatic particle-in-cell simulations. It is observed that an initial seed ionization, produced by non-CIV mechanisms, generates a cross-field ion beam which excites a modified beam-plasma instability (MBPI) with frequency in the range of the lower hybrid frequency. The excited waves accelerate electrons along the magnetic field up to the ion drift energy that exceeds the ionization energy of the neutral atoms. The heated electrons in turn enhance the ion beam by electron-neutral impact ionization, which establishes a positive feedback loop in maintaining the CIV process. It is also found that the efficiency of the CIV mechanism depends on the finite size of the gas cloud in the following ways: (1) Along the ambient magnetic field the finite size of the cloud, L (sub parallel), restricts the growth of the fastest growing mode, with a wavelength lambda (sub m parallel), of the MBPI. The parallel electron heating at wave saturation scales approximately as (L (sub parallel)/lambda (sub m parallel)) (exp 1/2); (2) Momentum coupling between the cloud and the ambient plasma via the Alfven waves occurs as a result of the finite size of the cloud in the direction perpendicular to both the ambient magnetic field and the neutral drift. This reduces exponentially with time the relative drift between the ambient plasma and the neutrals. The timescale is inversely proportional to the Alfven velocity. (3) The transvers e charge separation field across the cloud was found to result in the modulation of the beam velocity which reduces the parallel heating of electrons and increases the transverse acceleration of electrons. (4) Some energetic electrons are lost from the cloud along the magnetic field at a rate characterized by the acoustic velocity, instead of the electron thermal velocity. The loss of energetic electrons from the cloud seems to be larger in the direction of
Advanced 3D Poisson solvers and particle-in-cell methods for accelerator modeling
NASA Astrophysics Data System (ADS)
Serafini, David B.; McCorquodale, Peter; Colella, Phillip
2005-01-01
We seek to improve on the conventional FFT-based algorithms for solving the Poisson equation with infinite-domain (open) boundary conditions for large problems in accelerator modeling and related areas. In particular, improvements in both accuracy and performance are possible by combining several technologies: the method of local corrections (MLC); the James algorithm; and adaptive mesh refinement (AMR). The MLC enables the parallelization (by domain decomposition) of problems with large domains and many grid points. This improves on the FFT-based Poisson solvers typically used as it doesn't require the all-to-all communication pattern that parallel 3d FFT algorithms require, which tends to be a performance bottleneck on current (and foreseeable) parallel computers. In initial tests, good scalability up to 1000 processors has been demonstrated for our new MLC solver. An essential component of our approach is a new version of the James algorithm for infinite-domain boundary conditions for the case of three dimensions. By using a simplified version of the fast multipole method in the boundary-to-boundary potential calculation, we improve on the performance of the Hockney algorithm typically used by reducing the number of grid points by a factor of 8, and the CPU costs by a factor of 3. This is particularly important for large problems where computer memory limits are a consideration. The MLC allows for the use of adaptive mesh refinement, which reduces the number of grid points and increases the accuracy in the Poisson solution. This improves on the uniform grid methods typically used in PIC codes, particularly in beam problems where the halo is large. Also, the number of particles per cell can be controlled more closely with adaptivity than with a uniform grid. To use AMR with particles is more complicated than using uniform grids. It affects depositing particles on the non-uniform grid, reassigning particles when the adaptive grid changes and maintaining the load
NASA Astrophysics Data System (ADS)
Mayor, Louise
2016-05-01
Graphene might be the most famous example, but there are other 2D materials and compounds too. Louise Mayor explains how these atomically thin sheets can be layered together to create flexible “van der Waals heterostructures”, which could lead to a range of novel applications.
NASA Astrophysics Data System (ADS)
Dubinov, Alexander E.
2000-11-01
The earliest stage of a non-completed sliding on a dielectric surface discharge, which is of an avalanche form, is studied by a two-dimensional particle-in-cell computer simulation with the use of a well known self-consistent electromagnetic code `KARAT'. The influence of a dielectric constant on the discharge dynamics is investigated. A return current of secondary electrons is discovered. It is obtained that the dielectric constant increases, approaches the ionization front velocity, decreases, and that there is a growth of an electric field near a cathode.
Pan, K. Q.; Zheng, C. Y. Cao, L. H.; He, X. T.; Wu, Dong; Liu, Z. J.
2015-11-02
Synchrotron radiation is strongly enhanced by the resonant excitation of surface plasma waves (SPWs). Two-dimensional particle-in-cell simulations show that energy conversion efficiency from laser to radiation in the case of SPWs excitation is about 18.7%, which is improved by more than 2 orders of magnitude compared with that of no SPWs excitation. Besides the high energy conversion efficiency, the frequency spectrum and the angular distribution of the radiation are also improved in the case of SPWs excitation because of the quasi-static magnet field induced by surface plasma waves excitation.
Walker, D.W.
1992-07-01
The hierarchical spatial decomposition method is a promising approach to decomposing the particles and computational grid in parallel particle-in-cell application codes, since it is able to maintain approximate dynamic load balance while keeping communication costs low. In this paper we investigate issues in implementing a hierarchical spatial decomposition on a hypercube multiprocessor. Particular attention is focused on the communication needed to update guard ring data, and on the load balancing method. The hierarchical approach is compared with other dynamic load balancing schemes.
Zaslavsky, V. Yu.; Ginzburg, N. S.; Glyavin, M. Yu.; Zheleznov, I. V.; Zotova, I. V.
2013-04-15
We perform 3D particle-in-cell simulations of terahertz gyrotrons with two different configurations of the interaction space. For a gyrotron with conventional cylindrical configuration of the interaction cavity, we demonstrate reasonable agreement between simulations and experimental results, including output frequency, structure of the higher-order operating mode (TE{sub 17,4}), output power, and ohmic losses. For a novel planar gyrotron scheme with transverse energy extraction, a possibility of further increasing the oversized factor with the single-mode operation regime retained is shown. Frequency detuning by mechanical variation of the gap between waveguide plates is also demonstrated.
2001-01-31
This software reduces the data from two-dimensional kSA MOS program, k-Space Associates, Ann Arbor, MI. Initial MOS data is recorded without headers in 38 columns, with one row of data per acquisition per lase beam tracked. The final MOSS 2d data file is reduced, graphed, and saved in a tab-delimited column format with headers that can be plotted in any graphing software.
Jolliet, S.; McMillan, B. F.; Vernay, T.; Villard, L.; Hatzky, R.; Bottino, A.; Angelino, P.
2009-07-15
In this paper, the influence of the parallel nonlinearity on zonal flows and heat transport in global particle-in-cell ion-temperature-gradient simulations is studied. Although this term is in theory orders of magnitude smaller than the others, several authors [L. Villard, P. Angelino, A. Bottino et al., Plasma Phys. Contr. Fusion 46, B51 (2004); L. Villard, S. J. Allfrey, A. Bottino et al., Nucl. Fusion 44, 172 (2004); J. C. Kniep, J. N. G. Leboeuf, and V. C. Decyck, Comput. Phys. Commun. 164, 98 (2004); J. Candy, R. E. Waltz, S. E. Parker et al., Phys. Plasmas 13, 074501 (2006)] found different results on its role. The study is performed using the global gyrokinetic particle-in-cell codes TORB (theta-pinch) [R. Hatzky, T. M. Tran, A. Koenies et al., Phys. Plasmas 9, 898 (2002)] and ORB5 (tokamak geometry) [S. Jolliet, A. Bottino, P. Angelino et al., Comput. Phys. Commun. 177, 409 (2007)]. In particular, it is demonstrated that the parallel nonlinearity, while important for energy conservation, affects the zonal electric field only if the simulation is noise dominated. When a proper convergence is reached, the influence of parallel nonlinearity on the zonal electric field, if any, is shown to be small for both the cases of decaying and driven turbulence.
The semi-implicit, adaptive Multi-Level Multi-Domain method for Particle In Cell plasma simulations
NASA Astrophysics Data System (ADS)
Innocenti, Maria Elena; Markidis, Stefano; Lapenta, Giovanni
2015-11-01
The Multi Level Multi Domain (MLMD) method (Innocenti (2013), Beck (2014)) is a fully kinetic, semi-implicit PIC method which simulates a domain as a collection of sub-domains where increasingly higher resolution is used. The aim is to reduce the computational costs of PIC simulations: simulations which are computationally challenging even with a traditional semi-implicit PIC code, e.g., realistic mass ratio simulations, become feasible with moderate computational resources. We present two sets of realistic mass ratio simulations: magnetic reconnection and Lower Hybrid Drift Instability (LHDI). MLMD reconnection simulations are discussed in Innocenti (2015). In the MLMD LHDI simulations, we show how the MLMD method cheaply extends the range of simulatedwavenumbers with respect to traditional simulations. We simulate the three LHDI stages (fast and slow LHDI branch, kink instability), which are well separated in wavenumber at realistic mass ratio. The coupling observed by Norgren (2012) between the magnetic field and perpendicular electric field LHDI oscillations in the magnetotail is investigated in these different stages. NERSC, Contract N. DE-AC02-05CH11231, PRACE SuperMUC, contract N. 2013091928, FWO, grant N. 12O5215N.
NASA Astrophysics Data System (ADS)
Sang, Chaofeng; Sun, Jizhong; Wang, Dezhen
2010-02-01
A particle-in-cell (PIC) plus Monte Carlo collision simulation is employed to investigate how a sustainable atmospheric pressure single dielectric-barrier discharge responds to a high-voltage nanosecond pulse (HVNP) further applied to the metal electrode. The results show that the HVNP can significantly increase the plasma density in the pulse-on period. The ion-induced secondary electrons can give rise to avalanche ionization in the positive sheath, which widens the discharge region and enhances the plasma density drastically. However, the plasma density stops increasing as the applied pulse lasts over certain time; therefore, lengthening the pulse duration alone cannot improve the discharge efficiency further. Physical reasons for these phenomena are then discussed.
Nanoimprint lithography: 2D or not 2D? A review
NASA Astrophysics Data System (ADS)
Schift, Helmut
2015-11-01
Nanoimprint lithography (NIL) is more than a planar high-end technology for the patterning of wafer-like substrates. It is essentially a 3D process, because it replicates various stamp topographies by 3D displacement of material and takes advantage of the bending of stamps while the mold cavities are filled. But at the same time, it keeps all assets of a 2D technique being able to pattern thin masking layers like in photon- and electron-based traditional lithography. This review reports about 20 years of development of replication techniques at Paul Scherrer Institut, with a focus on 3D aspects of molding, which enable NIL to stay 2D, but at the same time enable 3D applications which are "more than Moore." As an example, the manufacturing of a demonstrator for backlighting applications based on thermally activated selective topography equilibration will be presented. This technique allows generating almost arbitrary sloped, convex and concave profiles in the same polymer film with dimensions in micro- and nanometer scale.
NASA Astrophysics Data System (ADS)
Esmaeili, A.; Cai, D.; Lembege, B.; Nishikawa, K.
2013-12-01
Large scale three dimensionbal PIC (particle in cell) simulations are presently used in order to analyze the global solar wind-terrestrial magnetosphere intreraction within a full self-consistent approach, and where both electrons and ions are treated as an assembly of individual particles. This 3D kinetic approach allows us to analyze in particular the dynamics and the fine structures of the cusp region when including self consistently not only its whole neighborhood (in the terrestrial magnetosphere) but also the impact of the solar wind and the interplanetary field (IMF) features. Herein, we focuss our attention on the cusp region and in particular on the acceleration and precipitation of particles (both ions and electrons) within the cusp. In present simulations, the IMF is chosen northward, (i.e. where the X -reconnection region is just above the cusp, in the meridian plane). Back-trackings of self-consistent particles are analyzed in details in order to determine (i) which particles (just above the cusp) are precipitated deeply into the cusp, (ii) which populations are injected from the cusp into the nearby tail, (iii) where the particles suffer the largest energisation along their self-consistent trajectories, (iv) where these populations accumulate, and (v) where the most energetic particles are originally coming from. This approach allows to make a traking of particles within the scenario "solar wind-magnetosheath- cusp -nearbytail"; moreover it strongly differs from the standard test particles technics and allows to provide informations not accessible when using full MHD approach. Keywords: Tracing Particles, Particle In Cell (PIC) simulation, double cusp, test particles method, IMF, Solar wind, Magnetosphere
Preliminary Study of Electron Emission for Use in the PIC Portion of MAFIA
NASA Technical Reports Server (NTRS)
Freeman, Jon C.
2001-01-01
This memorandum summarizes a study undertaken to apply the program MAFIA to the modeling of an electron gun in a traveling wave tube (TWT). The basic problem is to emit particles from the cathode in the proper manner. The electrons are emitted with the classical Maxwell-Boltzmann (M-B) energy distribution; and for a small patch of emitting surface; the distribution with angle obeys Lambert's law. This states that the current density drops off as the cosine of the angle from the normal. The motivation for the work is to extend the analysis beyond that which has been done using older codes. Some existing programs use the Child-Langmuir, or 3/2 power law, for the description of the gun. This means the current varies as the 3/2 power of the anode voltage. The proportionality constant is termed the perveance of the gun. This is limited, however, since the 3/2 variation is only an approximation. Also, if the cathode is near saturation, the 3/2 law definitely will not hold. In most of the older codes, the electron beam is decomposed into current tubes, which imply laminar flow in the beam; even though experiments show the flow to be turbulent. Also, the proper inclusion of noise in the beam is not possible. These older methods of calculation do, however, give reasonable values for parameters of the electron beam and the overall gun, and these values will be used as the starting point for a more precise particle-in-cell (PIC) calculation. To minimize the time needed for a given computer run, all beams will use the same number of particles in a simulation. This is accomplished by varying the mass and charge of the emitted particles (macroparticles) in a certain manner, to be consistent with the desired beam current.
Ion velocity distribution at the termination shock: 1-D PIC simulation
Lu Quanming; Yang Zhongwei; Lembege, Bertrand
2012-11-20
The Voyager 2 (V2) plasma observations of the proton temperature downstream of the quasi-perpendicular heliospheric termination shock (TS) showed that upstream thermal solar wind ions played little role in the shock dissipation mechanism and their downstream temperature is an order of magnitude smaller than predicted by MHD Rankine-Hugoniot conditions. While pickup ions (PUI) are generally expected to play an important role in energy dissipation at the shock, the details remain unclear. Here, one-dimensional (1-D) Particle-in-cell (PIC) code is used to examine kinetic properties and downstream velocity distribution functions of pickup ions (the hot supra-thermal component) and solar wind protons (SWs, the cold component) at the perpendicular heliospheric termination shock. The code treats the pickup ions self-consistently as a third component. Present results show that: (1) both of the incident SWs and PUIs can be separated into two parts: reflected (R) ions and directly transmitted (DT) ions, the energy gain of the R ions at the shock front is much larger than that of the DT ions; (2) the fraction of reflected SWs and their downstream temperature decrease with the relative percentage PUI%; (3) no matter how large the PUI% is, the downstream ion velocity distribution function always can be separated into three parts: 1. a high energy tail (i.e. the wings) dominated by the reflected PUIs, 2. a low energy core mainly contributed by the directly transmitted SWs, and 3. a middle energy part which is a complicated superposition of reflected SWs and directly transmitted PUIs. The significance of the presence of pickup ions on shock front micro-structure and nonstationarity is also discussed.
NASA Astrophysics Data System (ADS)
Zharkova, V. V.; Siversky, T.
2015-09-01
Acceleration of protons and electrons in a reconnecting current sheet (RCS) is investigated with the test particle and particle-in-cell (PIC) approaches in a 3D magnetic topology. PIC simulations confirm a spatial separation of electrons and protons with respect to the midplane depending on the guiding field. Simulation reveals that the separation occurs in magnetic topologies with strong guiding fields and lasts as long as the particles are kept dragged into a current sheet. This separation produces a polarisation electric field induced by the plasma feedback to a presence of accelerated particles, which shape can change from symmetric towards the midplane (for weak guiding field) to fully asymmetric (for strong guiding field). Particles are found accelerated at a midplane of any current sheets present in the heliosphere to the energies up to hundred keV for electrons and hundred MeV for protons. The maximum energy gained by particles during their motion inside the current sheet is defined by its magnetic field topology (the ratio of magnetic field components), the side and location from the X-nullpoint, where the particles enter a current sheet. In strong magnetic fields of the solar corona with weaker guiding fields, electrons are found circulating about the midplane to large distances where proton are getting accelerated, creating about the current sheet midplane clouds of high energy electrons, which can be the source of hard X-ray emission in the coronal sources of flares. These electrons are ejected into the same footpoint as protons after the latter reach the energy sufficicent to break from a current sheet. In a weaker magnetic field of the heliosphere the bounced electrons with lower energies cannot reach the midplane turning instead at some distance D before the current sheet midplane by 180 degrees from their initial motion. Also the beams of accelerated transit and bounced particles are found to generate turbulent electric fields in a form of Langmuir
Ohira, Yutaka; Takahara, Fumio; Reville, Brian; Kirk, John G.
2009-06-10
In supernova remnants, the nonlinear amplification of magnetic fields upstream of collisionless shocks is essential for the acceleration of cosmic rays to the energy of the 'knee' at 10{sup 15.5} eV. A nonresonant instability driven by the cosmic ray current is thought to be responsible for this effect. We perform two-dimensional, particle-in-cell simulations of this instability. We observe an initial growth of circularly polarized nonpropagating magnetic waves as predicted in linear theory. It is demonstrated that in some cases the magnetic energy density in the growing waves can grow to at least 10 times its initial value. We find no evidence of competing modes, nor of significant modification by thermal effects. At late times, we observe saturation of the instability in the simulation, but the mechanism responsible is an artifact of the periodic boundary conditions and has no counterpart in the supernova-shock scenario.
Particle-in-cell simulations of multi-MeV pulsed X-ray induced air plasmas at low pressures
NASA Astrophysics Data System (ADS)
Ribière, M.; Cessenat, O.; d'Almeida, T.; de Gaufridy de Dortan, F.; Maulois, M.; Delbos, C.; Garrigues, A.; Azaïs, B.
2016-03-01
A full kinetic modelling of the charge particles dynamics generated upon the irradiation of an air-filled cavity by a multi-MeV pulsed x-ray is performed. From the calculated radiative source generated by the ASTERIX generator, we calculated the electromagnetic fields generated by x-ray induced air plasmas in a metallic cavity at different pressures. Simulations are carried out based on a Particle-In-Cell interpolation method which uses 3D Maxwell-Vlasov calculations of the constitutive charged species densities of air plasmas at different pressures at equilibrium. The resulting electromagnetic fields within the cavity are calculated for different electron densities up to 4 × 1010 cm-3. For each air pressure, we show electronic plasma waves formation followed by Landau damping. As electron density increases, the calculations exhibit space-charged neutralization and return current formation.
NASA Technical Reports Server (NTRS)
Thiemann, H.; Schunk, R. W.
1990-01-01
The interaction between satellite solar arrays and the LEO plasma is presently studied with particle-in-cell simulations in which an electrical potential was suddenly applied to the solar cell interconnector. The consequent temporal response was followed for the real O(+)-electron mass ratio in the cases of 100- and 250-V solar cells, various solar cell thicknesses, and solar cells with secondary electron emission. Larger applied potentials and thinner solar cells lead to greater initial polarization surface charges, and therefore longer discharging and shielding times. When secondary electron emission from the cover glass is brought to bear, however, the potential structure is nearly planar, allowing constant interaction between plasma electrons and cover glass; a large fraction of the resulting secondary electrons is collected by the interconnector, constituting an order-of-magnitude increase in collected current.
NASA Astrophysics Data System (ADS)
Taccogna, F.; Minelli, P.; Cavenago, M.; Veltri, P.; Ippolito, N.
2016-02-01
The geometry of a single aperture in the extraction grid plays a relevant role for the optimization of negative ion transport and extraction probability in a hybrid negative ion source. For this reason, a three-dimensional particle-in-cell/Monte Carlo collision model of the extraction region around the single aperture including part of the source and part of the acceleration (up to the extraction grid (EG) middle) regions has been developed for the new aperture design prepared for negative ion optimization 1 source. Results have shown that the dimension of the flat and chamfered parts and the slope of the latter in front of the source region maximize the product of production rate and extraction probability (allowing the best EG field penetration) of surface-produced negative ions. The negative ion density in the plane yz has been reported.
López, Rodrigo A.; Muñoz, Víctor; Viñas, Adolfo F.; Valdivia, Juan A.
2015-09-15
We use a particle-in-cell simulation to study the propagation of localized structures in a magnetized electron-positron plasma with relativistic finite temperature. We use as initial condition for the simulation an envelope soliton solution of the nonlinear Schrödinger equation, derived from the relativistic two fluid equations in the strongly magnetized limit. This envelope soliton turns out not to be a stable solution for the simulation and splits in two localized structures propagating in opposite directions. However, these two localized structures exhibit a soliton-like behavior, as they keep their profile after they collide with each other due to the periodic boundary conditions. We also observe the formation of localized structures in the evolution of a spatially uniform circularly polarized Alfvén wave. In both cases, the localized structures propagate with an amplitude independent velocity.
Niknam, A. R. Roozbahani, H.; Komaizi, D.; Hashemzadeh, M.
2014-09-15
The nonlinear evolution of low frequency Buneman instability in an unmagnetized current-driven plasma with q-nonextensive electron velocity distribution is investigated using particle in cell simulation. Simulation results show that the generation of electron phase space holes and the counter-streaming current induced in the plasma strongly depend on the q-parameter. It is found that by increasing the nonextensive parameter, the distribution of electron density becomes highly peaked. This density steepening or grating-like pattern occurs at the saturation time. In addition, a generalized dispersion relation is obtained using the kinetic theory. Analysis of the dispersion relation and the temporal evolution of the electric field energy density reveal that the growth rate of instability increases by increasing the q-parameter. Finally, the results of Maxwellian and q-nonextensive velocity distributions have been compared and discussed.
Heinrich, Jonathon R.; Cooke, David L.
2013-09-15
Electron trapping, electron heating, space-charge wings, wake eddies, and current collection by a positive probe in E×B drifting plasma were studied in three-dimensional electromagnetic particle-in-cell simulations. In these simulations, electrons and ions were magnetized with respect to the probe and the plasma was underdense (ω{sub pe}<ω{sub ce}). A large drift velocity (Mach 4.5 with respect to the ion acoustic speed) between the plasma and probe was created with background electric and magnetic fields. Four distinct regions developed in the presences of the positive probe: a quasi-trapped electron region, an electron-depletion wing, an ion-rich wing, and a wake region. We report on the observations of strong electron heating mechanisms, space-charge wings, ion cyclotron charge-density eddies in the wake, electron acceleration due to a magnetic presheath, and the current-voltage relationship.
NASA Astrophysics Data System (ADS)
Majzoobi, A.; Joshi, R. P.; Neuber, A. A.; Dickens, J. C.
2015-10-01
Particle-in-cell simulations are performed to analyze the efficiency, output power and leakage currents in a 12-Cavity, 12-Cathode rising-sun magnetron with diffraction output (MDO). The central goal is to conduct a parameter study of a rising-sun magnetron that comprehensively incorporates performance enhancing features such as transparent cathodes, axial extraction, the use of endcaps, and cathode extensions. Our optimum results demonstrate peak output power of about 2.1 GW, with efficiencies of ˜70% and low leakage currents at a magnetic field of 0.45 Tesla, a 400 kV bias with a single endcap, for a range of cathode extensions between 3 and 6 centimeters.
Taccogna, F; Minelli, P; Cavenago, M; Veltri, P; Ippolito, N
2016-02-01
The geometry of a single aperture in the extraction grid plays a relevant role for the optimization of negative ion transport and extraction probability in a hybrid negative ion source. For this reason, a three-dimensional particle-in-cell/Monte Carlo collision model of the extraction region around the single aperture including part of the source and part of the acceleration (up to the extraction grid (EG) middle) regions has been developed for the new aperture design prepared for negative ion optimization 1 source. Results have shown that the dimension of the flat and chamfered parts and the slope of the latter in front of the source region maximize the product of production rate and extraction probability (allowing the best EG field penetration) of surface-produced negative ions. The negative ion density in the plane yz has been reported. PMID:26932027
NASA Astrophysics Data System (ADS)
Cook, J. W. S.; Dendy, R. O.; Chapman, S. C.
2013-06-01
Ion cyclotron emission (ICE) is the only collective radiative instability, driven by confined fusion-born alpha-particles, observed from deuterium-tritium (DT) plasmas in both JET and TFTR. Using first principles particle-in-cell simulations of the magnetoacoustic cyclotron instability (MCI), we elucidate some of the fully kinetic nonlinear processes that may underlie observations of ICE from fusion products in these large tokamaks. We find that the MCI is intrinsically self-limiting on very fast timescales, which may help explain the observed correlation between linear theory and observed ICE intensity. The simulations elaborate the nature of the excited electric and magnetic fluctuations, from first principles, confirming the dominant role of fast Alfvénic and electrostatic components which is assumed ab initio in analytical treatments.
Xiao, Jianyuan; Liu, Jian; Qin, Hong; Yu, Zhi; Xiang, Nong
2015-09-15
In this paper, the nonlinear mode conversion of extraordinary waves in nonuniform magnetized plasmas is studied using the variational symplectic particle-in-cell simulation. The accuracy of the nonlinear simulation is guaranteed by the long-term accuracy and conservativeness of the symplectic algorithm. The spectra of the electromagnetic wave, the evolution of the wave reflectivity, the energy deposition profile, and the parameter-dependent properties of radio-frequency waves during the nonlinear mode conversion are investigated. It is illustrated that nonlinear effects significantly modify the physics of the radio-frequency injection in magnetized plasmas. The evolutions of the radio-frequency wave reflectivity and the energy deposition are observed, as well as the self-interaction of the Bernstein waves and mode excitations. Even for waves with small magnitude, nonlinear effects can also become important after continuous wave injections, which are common in the realistic radio-frequency wave heating and current drive experiments.
Majzoobi, A.; Joshi, R. P. Neuber, A. A.; Dickens, J. C.
2015-10-15
Particle-in-cell simulations are performed to analyze the efficiency, output power and leakage currents in a 12-Cavity, 12-Cathode rising-sun magnetron with diffraction output (MDO). The central goal is to conduct a parameter study of a rising-sun magnetron that comprehensively incorporates performance enhancing features such as transparent cathodes, axial extraction, the use of endcaps, and cathode extensions. Our optimum results demonstrate peak output power of about 2.1 GW, with efficiencies of ∼70% and low leakage currents at a magnetic field of 0.45 Tesla, a 400 kV bias with a single endcap, for a range of cathode extensions between 3 and 6 centimeters.
3D PIC-MCC simulations of discharge inception around a sharp anode in nitrogen/oxygen mixtures
NASA Astrophysics Data System (ADS)
Teunissen, Jannis; Ebert, Ute
2016-08-01
We investigate how photoionization, electron avalanches and space charge affect the inception of nanosecond pulsed discharges. Simulations are performed with a 3D PIC-MCC (particle-in-cell, Monte Carlo collision) model with adaptive mesh refinement for the field solver. This model, whose source code is available online, is described in the first part of the paper. Then we present simulation results in a needle-to-plane geometry, using different nitrogen/oxygen mixtures at atmospheric pressure. In these mixtures non-local photoionization is important for the discharge growth. The typical length scale for this process depends on the oxygen concentration. With 0.2% oxygen the discharges grow quite irregularly, due to the limited supply of free electrons around them. With 2% or more oxygen the development is much smoother. An almost spherical ionized region can form around the electrode tip, which increases in size with the electrode voltage. Eventually this inception cloud destabilizes into streamer channels. In our simulations, discharge velocities are almost independent of the oxygen concentration. We discuss the physical mechanisms behind these phenomena and compare our simulations with experimental observations.
NASA Astrophysics Data System (ADS)
Otsuka, Fumiko; Hada, Tohru; Shinohara, Shunjiro; Tanikawa, Takao
2015-06-01
Penetration of a radio frequency (rf) electromagnetic field into a magnetized plasma is discussed by performing one-dimensional particle-in-cell (PIC) simulations. We consider two models: an electrostatic (ES) model using an external rf voltage and an electromagnetic (EM) model using an external rf current. The background magnetic field is perpendicular to the one-dimensional system. In the ES model, the external rf voltage across the plasma produces the rf electric field into the plasma. When ω rf = Ω e /2, where ω rf and Ω e are the externally applied field and electron gyrofrequencies, respectively, the ion-rich sheath is formed due to the electron wall loss caused by the electron polarization drift. When ω rf = ω LH /2, where ω LH is the lower hybrid frequency, the electron-rich sheath is formed due to the ion wall loss caused by its larger gyroradius than the electron. In the EM model, an induced electromagnetic field via the external rf current forms a standing wave in the plasma region bounded by the external antennas. When the diameter of the plasma is equal to the wave length, the spatial/temporal profiles of the rf standing waves are well explained by a cold collisionless plasma linear theory except for the existence of the sheath. When the rf magnetic field is increased to 10 % of the background magnetic field, the waveforms become irregular and complex because of the boundary effects.
UCSD's MedPics: implementation and impact on the curriculum.
Hoffman, H. M.; Irwin, A. E.; Baird, S.; Bloor, C. M.; Miyai, K.; Savoia, M. C.
1993-01-01
MedPics is a computer-based image delivery system with supporting text fields and on-screen graphics to assist in key feature identification. It has been used by the University of California, San Diego as an integral part of the Human Disease course since 1992. Initially created to support pathology and histology, the program has now expanded to include hematology. MedPics has had a positive impact on the second year curriculum for which it was created. Moreover, use of this program has improved student attitudes toward computer-based resources and increased faculty interest in instructional development. Images Figure 1 PMID:8130582
NKG2D ligands as therapeutic targets
Spear, Paul; Wu, Ming-Ru; Sentman, Marie-Louise; Sentman, Charles L.
2013-01-01
The Natural Killer Group 2D (NKG2D) receptor plays an important role in protecting the host from infections and cancer. By recognizing ligands induced on infected or tumor cells, NKG2D modulates lymphocyte activation and promotes immunity to eliminate ligand-expressing cells. Because these ligands are not widely expressed on healthy adult tissue, NKG2D ligands may present a useful target for immunotherapeutic approaches in cancer. Novel therapies targeting NKG2D ligands for the treatment of cancer have shown preclinical success and are poised to enter into clinical trials. In this review, the NKG2D receptor and its ligands are discussed in the context of cancer, infection, and autoimmunity. In addition, therapies targeting NKG2D ligands in cancer are also reviewed. PMID:23833565
Pic-du-Midi Observatory (Observatoire Midi-Pyrenees) (OMP)
NASA Astrophysics Data System (ADS)
Murdin, P.
2000-11-01
OMP is under the administrative supervision of both the Institute des Sciences de l'Univers (INSU) of the French National Center for Scientific Research (CNRS) and the Ministry of Research, Technology and Education. It has laboratories located at the Université Paul Sabatier in Toulouse, Bagnères, Lannemezan and at the summit of Pic du Midi de Bigorre....
Functional design criteria for pumping and instrumentation control (PIC) skids
BOETTGER, J.S.
1999-08-25
Radioactive liquid and semisolid waste from operation of Hanford's nuclear fuel processing plants is stored in 177 underground storage tanks located in the 200 Areas of the Hanford site. 28 of these tanks are of double-shell construction. The remaining 149 tanks are of single-shell construction. Only the newer, double-shell tanks (DST) can meet current requirements for containment of dangerous waste. Therefore, the single-shell tanks (SST) are being ''interim stabilized,'' which is the process of removing liquid from the waste through the use of a jet pump installed in a saltwell which penetrates the waste. Lockheed Martin Hanford Company has decided to purchase additional Pumping and Instrumentation Control (PIC) skids to monitor and control the operation of saltwell jet pumps in SSTs. Similar PIC skids are already in use at several locations. The PIC skids will shut off all power to equipment/instruments if preset limits are exceeded for such conditions as flammable gas, leak detection, pressure and flow, as well as provide air and water necessary for saltwell pumping activities. This document outlines the functional design criteria for pumping and instrumentation control (PIC) skids to support the interim stabilization effort for saltwell pumping.
EXPERIMENTAL INVESTIGATION OF PIC FORMATION IN CFC-12 INCINERATION
The report gives results of experiments to determine the effect of flame zone temperature on gas-phase flame formation and destruction of products of incomplete combustion (PICS) during dichlorodi-fluoromethane (CFC-12) incineration. The effect of water injection into the flame ...
Soft-PIC multiuser detection in MC-CDMA uplink system
NASA Astrophysics Data System (ADS)
Guo, Li-Li; Yuan, Bing-Bing
2005-06-01
It is necessary for an MC-CDMA uplink receiver to employ MUD (multiuser detection) in a frequency selective fading channel. After analyzing the algorithm of PIC (parallel interference cancellation) MUD, a novel MUD scheme, Soft-PIC (soft parallel interference cancellation) is proposed. Based on the reliability of each detected user signal in the former stage, this Soft-PIC detection scheme substitutes a soft decision of the variable for the hard decision in PIC scheme. Compared with the PIC scheme, it can reconstruct the interference signals more accurately and eliminate MAI (multiple access interference) in a more efficient way. PIC is one of the most practical schemes in numerous multiuser detection technologies. However, Soft-PIC as an improved PIC scheme deserves further study.
NASA Technical Reports Server (NTRS)
Chap, Andrew; Tarditi, Alfonso G.; Scott, John H.
2013-01-01
A Particle-in-cell simulation model has been developed to study the physics of the Traveling Wave Direct Energy Converter (TWDEC) applied to the conversion of charged fusion products into electricity. In this model the availability of a beam of collimated fusion products is assumed; the simulation is focused on the conversion of the beam kinetic energy into alternating current (AC) electric power. The model is electrostatic, as the electro-dynamics of the relatively slow ions can be treated in the quasistatic approximation. A two-dimensional, axisymmetric (radial-axial coordinates) geometry is considered. Ion beam particles are injected on one end and travel along the axis through ring-shaped electrodes with externally applied time-varying voltages, thus modulating the beam by forming a sinusoidal pattern in the beam density. Further downstream, the modulated beam passes through another set of ring electrodes, now electrically oating. The modulated beam induces a time alternating potential di erence between adjacent electrodes. Power can be drawn from the electrodes by connecting a resistive load. As energy is dissipated in the load, a corresponding drop in beam energy is measured. The simulation encapsulates the TWDEC process by reproducing the time-dependent transfer of energy and the particle deceleration due to the electric eld phase time variations.
Long range transport: Evaluation of a particle-in-cell model using sources in the US and USSR
Rodriguez, D.J.
1988-08-01
After being informed that radioactive material from the Chernobyl nuclear power plant had been discovered on the clothing of workers at a Swedish reactor site, the United States Department of Energy requested that the Atmospheric Release Advisory Capability (ARAC) evaluate both the extent and the magnitude of the accident (Dickerson and Sullivan, 1987). ARAC is a real-time emergency response service that specializes in the regional assessment of radiological accidents using advanced dispersion models. While we possessed a sizable inventory of computer models with which to address this problem, we lacked an operational tool that could be used with confidence in determining the fate of airborne radioactivity beyond about 500 km. As an outgrowth of this experience, we began to explore the spatial limits of applicability of our Advection-Diffusion Particle-In-Cell (ADPIC) model (Lange, 1978). At the same time, we began testing a hybrid version of this model that uses the Air Force Global Weather Central's Northern Hemisphere Whole Mesh Grid of wind velocities as input. In combination, these models can provide, potentially, a response capability that extends from tens of kilometers to the entire Northern Hemisphere. 7 refs., 6 figs.
Explicit high-order non-canonical symplectic particle-in-cell algorithms for Vlasov-Maxwell systems
Xiao, Jianyuan; Qin, Hong; Liu, Jian; He, Yang; Zhang, Ruili; Sun, Yajuan
2015-11-01
Explicit high-order non-canonical symplectic particle-in-cell algorithms for classical particle-field systems governed by the Vlasov-Maxwell equations are developed. The algorithms conserve a discrete non-canonical symplectic structure derived from the Lagrangian of the particle-field system, which is naturally discrete in particles. The electromagnetic field is spatially discretized using the method of discrete exterior calculus with high-order interpolating differential forms for a cubic grid. The resulting time-domain Lagrangian assumes a non-canonical symplectic structure. It is also gauge invariant and conserves charge. The system is then solved using a structure-preserving splitting method discovered by He et al. [preprint arXiv: 1505.06076 (2015)], which produces five exactly soluble sub-systems, and high-order structure-preserving algorithms follow by combinations. The explicit, high-order, and conservative nature of the algorithms is especially suitable for long-term simulations of particle-field systems with extremely large number of degrees of freedom on massively parallel supercomputers. The algorithms have been tested and verified by the two physics problems, i.e., the nonlinear Landau damping and the electron Bernstein wave. (C) 2015 AIP Publishing LLC.
Study of self-consistent particle flows in a plasma blob with particle-in-cell simulations
Hasegawa, Hiroki Ishiguro, Seiji
2015-10-15
The self-consistent particle flows in a filamentary coherent structure along the magnetic field line in scrape-off layer (SOL) plasma (plasma blob) have been investigated by means of a three-dimensional electrostatic particle-in-cell simulation code. The presence of the spiral current system composed of the diamagnetic and parallel currents in a blob is confirmed by the particle simulation without any assumed sheath boundary models. Furthermore, the observation of the electron and ion parallel velocity distributions in a blob shows that those distributions are far from Maxwellian due to modification with the sheath formation and that the electron temperature on the higher potential side in a blob is higher than that on the lower potential side. Also, it is found that the ions on the higher potential side are accelerated more intensively along the magnetic field line than those on the lower potential side near the edge. This study indicates that particle simulations are able to provide an exact current closure to analysis of blob dynamics and will bring more accurate prediction of plasma transport in the SOL without any empirical assumptions.
NASA Astrophysics Data System (ADS)
Lafleur, T.; Baalrud, S. D.; Chabert, P.
2016-05-01
Using a 1D particle-in-cell simulation with perpendicular electric, E0, and magnetic, B0, fields, and modelling the azimuthal direction (i.e., the E0 × B0 direction), we study the cross-field electron transport in Hall effect thrusters (HETs). For low plasma densities, the electron transport is found to be well described by classical electron-neutral collision theory, but at sufficiently high densities (representative of typical HETs), a strong instability is observed to significantly enhance the electron mobility, even in the absence of electron-neutral collisions. This instability is associated with correlated high-frequency (of the order of MHz) and short-wavelength (of the order of mm) fluctuations in both the electric field and the plasma density, which are shown to be the cause of the anomalous transport. Saturation of the instability is observed to occur due to a combination of ion-wave trapping in the E0 × B0 direction, and convection in the E0 direction.
NASA Technical Reports Server (NTRS)
Poppe, A. R.; Halekas, J. S.; Delory, G. T.; Farrell, W. M.; Angelopoulos, V.; McFadden, J. P.; Bonnell, J. W.; Ergun, R. E.
2012-01-01
As an airless body in space with no global magnetic field, the Moon is exposed to both solar ultraviolet radiation and ambient plasmas. Photoemission from solar UV radiation and collection of ambient plasma are typically opposing charging currents and simple charging current balance predicts that the lunar dayside surface should charge positively; however, the two ARTEMIS probes have observed energydependent loss cones and high-energy, surface-originating electron beams above the dayside lunar surface for extended periods in the magnetosphere, which are indicative of negative surface potentials. In this paper, we compare observations by the ARTEMIS P1 spacecraft with a one dimensional particle-in-cell simulation and show that the energy-dependent loss cones and electron beams are due to the presence of stable, non-monotonic, negative potentials above the lunar surface. The simulations also show that while the magnitude of the non-monotonic potential is mainly driven by the incoming electron temperature, the incoming ion temperature can alter this magnitude, especially for periods in the plasma sheet when the ion temperature is more than twenty times the electron temperature. Finally, we note several other plasma phenomena associated with these non-monotonic potentials, such as broadband electrostatic noise and electron cyclotron harmonic emissions, and offer possible generation mechanisms for these phenomena.
Ratcliffe, H. Brady, C. S.; Che Rozenan, M. B.; Nakariakov, V. M.
2014-12-15
Quasilinear theory has long been used to treat the problem of a weak electron beam interacting with plasma and generating Langmuir waves. Its extension to weak-turbulence theory treats resonant interactions of these Langmuir waves with other plasma wave modes, in particular, ion-sound waves. These are strongly damped in plasma of equal ion and electron temperatures, as sometimes seen in, for example, the solar corona and wind. Weak turbulence theory is derived in the weak damping limit, with a term describing ion-sound wave damping then added. In this paper, we use the EPOCH particle-in-cell code to numerically test weak turbulence theory for a range of electron-ion temperature ratios. We find that in the cold ion limit, the results agree well, but for increasing ion temperature the three-wave resonance becomes broadened in proportion to the ion-sound wave damping rate. Additionally, we establish lower limits on the number of simulation particles needed to accurately reproduce the electron and wave distributions in their saturated states and to reproduce their intermediate states and time evolution. These results should be taken into consideration in, for example, simulations of plasma wave generation in the solar corona of Type III solar radio bursts from the corona to the solar wind and in weak turbulence investigations of ion-acoustic lines in the ionosphere.
Kwok, Dixon T. K.; Wu, Shuilin; Liu, Xiangmei; Fu, Ricky K. Y.; Chu, Paul K.
2008-03-01
A multiple-grid-particle-in-cell numerical method has been developed. This method uses grids of different cell sizes and details are needed in only one part of the simulation region and not others. Hence, there are fewer nodes in the simulation thereby reduced computational time without sacrificing details. In the multiple-grid system, a phenomenon is identified to arise at the interface between two grids and a half-cell weighting method is utilized to solve the weighting issue at the boundary. It is shown that the expression of the change of momentum has no weighting function. This method is employed to numerically simulate the plasma immersion ion implantation process into a nickel titanium rod measuring 50 mm long and 4.8 mm in diameter used in orthopaedic surgery. To conduct more uniform implantation, the NiTi rod is elevated on the sample stage by a metal rod. The nitrogen implantation fluences and depth profiles are simulated and compared to experimental values determined by x-ray photoelectron spectroscopy.
Riconda, C.; Weber, S.; Tikhonchuk, V. T.; Adam, J.-C.; Heron, A.
2006-08-15
Two-dimensional particle-in-cell simulations of laser-plasma interaction using a plane-wave geometry show strong bursty stimulated Brillouin backscattering, rapid filamentation, and subsequent plasma cavitation. It is shown that the cavitation is not induced by self-focusing. The electromagnetic fields below the plasma frequency that are excited are related to transient soliton-like structures. At the origin of these solitons is a three-wave decay process exciting new modes in the plasma. The cavitation is responsible for a strong local reduction of the reflectivity and goes along with an efficient but transient heating of the electrons. Once heating ceases, transmission starts to increase. Local as well as global average reflectivities attain a very low value due to strong plasma density variations brought about by the cavitation process. On the one hand, the simulations confirm the existence of a new mechanism of cavity and soliton formation in nonrelativistic laser-plasma interaction in two dimensions, which was shown to exist in one-dimensional simulations [S. Weber, C. Riconda, and V. T. Tikhonchuk, Phys. Rev. Lett. 94, 055005 (2005)]. On the other hand, new aspects are introduced inherently related to the additional degree of freedom.
Lo, F. S.; Lee, T. H.; Lu, P. S.; Ragan-Kelley, B.; Minnich, A.; Lin, M. C.; Verboncoeur, J. P.
2014-02-15
A thermionic energy converter (TEC) is a static device that converts heat directly into electricity by boiling electrons off a hot emitter surface across a small inter-electrode gap to a cooler collector surface. The main challenge in TECs is overcoming the space charge limit, which limits the current transmitted across a gap of a given voltage and width. We have verified the feasibility of studying and developing a TEC using a bounded finite-difference time-domain particle-in-cell plasma simulation code, OOPD1, developed by Plasma Theory and Simulation Group, formerly at UC Berkeley and now at Michigan State University. In this preliminary work, a TEC has been modeled kinetically using OOPD1, and the accuracy has been verified by comparing with an analytically solvable case, giving good agreement. With further improvement of the code, one will be able to quickly and cheaply analyze space charge effects, and seek designs that mitigate the space charge effect, allowing TECs to become more efficient and cost-effective.
Oudini, N.; Raimbault, J.-L.; Chabert, P.; Aanesland, A.; Meige, A.
2013-04-15
A one-dimensional electronegative plasma situated between two symmetrical parallel electrodes under DC bias is studied by Particle-In-Cell simulation with Monte Carlo Collisions. By varying the electronegativity {alpha}{identical_to}n{sub -}/n{sub e} from the limit of electron-ion plasmas (negative ion free) to ion-ion plasmas (electron free), the sheaths formation, the negative ion flux flowing towards the electrodes, and the particle velocities at the sheath edges are investigated. Depending on {alpha}, it is shown that the electronegative plasma behavior can be described by four regimes. In the lowest regime of {alpha}, i.e., {alpha} < 50, negative ions are confined by two positive sheaths within the plasma, while in the higher regimes of {alpha}, a negative sheath is formed and the negative ion flux can be extracted from the bulk plasma. In the two intermediate regimes of {alpha}, i.e., 50 < {alpha} < 10{sup 5}, both the electron and the negative ion fluxes are involved in the neutralization of the positive ions flux that leaves the plasma. In particular, we show that the velocity of the negative ions entering the negative sheath is affected by the presence of the electrons, and is not given by the modified Bohm velocity generally accepted for electronegative plasmas. For extremely high electronegativity, i.e., {alpha} > 10{sup 5}, the presence of electrons in the plasma is marginal and the electronegative plasma can be considered as an ion-ion plasma (electron free).
NASA Astrophysics Data System (ADS)
Usui, Hideyuki; Imasato, Koujiro; Kuninaka, Hitoshi
2008-12-01
We focus on the mitigation process of absolute and differential charging of spacecraft in the polar environment by plasma release from the spacecraft surface. In the presence of aurora electron beam, the absolute charging of spacecraft sometimes becomes the order of KeV at the worst case and the differential charging between the conducting surface of the spacecraft and the dielectric material on the solar panel can become several hundred volts. To avoid the discharge due to the differential charging at the solar panel, plasma release from a plasma contactor onboard the spacecraft is proposed as one of the effective methods. In the current study, we performed three-dimensional Particle-In-Cell simulations to examine the situation of spacecraft charging and its mitigation process by plasma release from the spacecraft surface. To mitigate the absolute charging, we showed the electron release is effective. The released electrons are accelerated away from the spacecraft by the intense electric field induced in the ion sheath at the spacecraft surface. As to the mitigation of differential voltage at the solar panel surface, we showed that ion release in addition to electrons from the contactor is effective. The released ions can neutralize the charges locally accumulated on the dielectric surface. Their dynamics including gyromotion with respect to the geomagnetic field and acceleration along the geomagnetic field can perturb the field and plasma environment in the spacecraft region.
A parallel particle-in-cell model for beam-beam interaction in high energy ring colliders
NASA Astrophysics Data System (ADS)
Qiang, Ji; Furman, Miguel A.; Ryne, Robert D.
2004-07-01
In this paper we present a self-consistent simulation model of colliding beams in high energy ring colliders. The model, which is based on a particle-in-cell method, uses a new developed shifted effective Green function algorithm for the efficient calculation of the beam-beam interaction with arbitrary separation and large aspect ratio. The model uses transfer maps to treat the external focusing elements and a stochastic map to treat radiation damping and quantum excitation of the beams. In the parallel implementation we studied various strategies to deal with the particular nature of the colliding beam system - a system in which there can be significant particle movement between beam-beam collisions. We chose a particle-field decomposition approach instead of the conventional domain decomposition or particle decomposition approach. The particle-field approach leads to good load balance, reduced communication cost, and shows the best scalability on an IBM SP3 among the three parallel implementations we studied. A performance test of the beam-beam model on a Cray T3E, IBM SP3, and a PC cluster is presented. As an application, we studied the flip-flop instability in an electron-positron collider.
NASA Astrophysics Data System (ADS)
Camporeale, Enrico
2014-05-01
Whistler wave chorus are believed to play a crucial role in the radiation belt dynamics, possibly being responsible for the loss and acceleration of energetic electrons. For this reason, the mechanisms related to the formation and propagation of whistlers in the radiation belt have been intensively investigated during the last decade. It is now generally acknowledged, via observational and simulation studies, that the whistler waves generated close to the magnetic equator through linear temperature anisotropy instabilities undergo an amplitude amplification that is essentially regulated by nonlinear mechanisms. In this work we focus on the wave-particle interaction between electrons and whistler chorus by employing two-dimensional fully-kinetic Particle-in-Cell simulations. The magnetic field is assumed to form a magnetic bottle that captures the particle bouncing motions and mimics the Earth's magnetic dipole. The code employs a semi-implicit time stepping algorithm that, in this context, is shown to be important in order to achieve accurate results with realistic parameters. We analyze and discuss the pitch-angle/energy scattering of energetic particles and comment on the applicability of the quasi-linear diffusion paradigm.
NASA Astrophysics Data System (ADS)
Riquelme, Mario A.; Quataert, Eliot; Verscharen, Daniel
2015-02-01
We use particle-in-cell simulations to study the nonlinear evolution of ion velocity space instabilities in an idealized problem in which a background velocity shear continuously amplifies the magnetic field. We simulate the astrophysically relevant regime where the shear timescale is long compared to the ion cyclotron period, and the plasma beta is β ~ 1-100. The background field amplification in our calculation is meant to mimic processes such as turbulent fluctuations or MHD-scale instabilities. The field amplification continuously drives a pressure anisotropy with p > p ∥ and the plasma becomes unstable to the mirror and ion cyclotron instabilities. In all cases, the nonlinear state is dominated by the mirror instability, not the ion cyclotron instability, and the plasma pressure anisotropy saturates near the threshold for the linear mirror instability. The magnetic field fluctuations initially undergo exponential growth but saturate in a secular phase in which the fluctuations grow on the same timescale as the background magnetic field (with δB ~ 0.3 langBrang in the secular phase). At early times, the ion magnetic moment is well-conserved but once the fluctuation amplitudes exceed δB ~ 0.1 langBrang, the magnetic moment is no longer conserved but instead changes on a timescale comparable to that of the mean magnetic field. We discuss the implications of our results for low-collisionality astrophysical plasmas, including the near-Earth solar wind and low-luminosity accretion disks around black holes.
Fu, Xiangrong; Cowee, Misa M; Friedel, Reinhard H; Funsten, Herbert O; Gary, S Peter; Hospodarsky, George B; Kletzing, Craig; Kurth, William; Larsen, Brian A; Liu, Kaijun; MacDonald, Elizabeth A; Min, Kyungguk; Reeves, Geoffrey D; Skoug, Ruth M; Winske, Dan
2014-01-01
Magnetospheric banded chorus is enhanced whistler waves with frequencies ωr<Ωe, where Ωe is the electron cyclotron frequency, and a characteristic spectral gap at ωr≃Ωe/2. This paper uses spacecraft observations and two-dimensional particle-in-cell simulations in a magnetized, homogeneous, collisionless plasma to test the hypothesis that banded chorus is due to local linear growth of two branches of the whistler anisotropy instability excited by two distinct, anisotropic electron components of significantly different temperatures. The electron densities and temperatures are derived from Helium, Oxygen, Proton, and Electron instrument measurements on the Van Allen Probes A satellite during a banded chorus event on 1 November 2012. The observations are consistent with a three-component electron model consisting of a cold (a few tens of eV) population, a warm (a few hundred eV) anisotropic population, and a hot (a few keV) anisotropic population. The simulations use plasma and field parameters as measured from the satellite during this event except for two numbers: the anisotropies of the warm and the hot electron components are enhanced over the measured values in order to obtain relatively rapid instability growth. The simulations show that the warm component drives the quasi-electrostatic upper band chorus and that the hot component drives the electromagnetic lower band chorus; the gap at ∼Ωe/2 is a natural consequence of the growth of two whistler modes with different properties. PMID:26167433
Riquelme, Mario A.; Quataert, Eliot; Verscharen, Daniel E-mail: eliot@berkeley.edu
2015-02-10
We use particle-in-cell simulations to study the nonlinear evolution of ion velocity space instabilities in an idealized problem in which a background velocity shear continuously amplifies the magnetic field. We simulate the astrophysically relevant regime where the shear timescale is long compared to the ion cyclotron period, and the plasma beta is β ∼ 1-100. The background field amplification in our calculation is meant to mimic processes such as turbulent fluctuations or MHD-scale instabilities. The field amplification continuously drives a pressure anisotropy with p > p {sub ∥} and the plasma becomes unstable to the mirror and ion cyclotron instabilities. In all cases, the nonlinear state is dominated by the mirror instability, not the ion cyclotron instability, and the plasma pressure anisotropy saturates near the threshold for the linear mirror instability. The magnetic field fluctuations initially undergo exponential growth but saturate in a secular phase in which the fluctuations grow on the same timescale as the background magnetic field (with δB ∼ 0.3 (B) in the secular phase). At early times, the ion magnetic moment is well-conserved but once the fluctuation amplitudes exceed δB ∼ 0.1 (B), the magnetic moment is no longer conserved but instead changes on a timescale comparable to that of the mean magnetic field. We discuss the implications of our results for low-collisionality astrophysical plasmas, including the near-Earth solar wind and low-luminosity accretion disks around black holes.
Lemke, R.W.; Genoni, T.C.; Spencer, T.A.
1999-08-02
This work is an attempt to elucidate effects that may limit efficiency in magnetrons operated at relativistic voltages (V {approximately} 500 kV). Three-dimensional particle-in-cell simulation is used to investigate the behavior of 14 and 22 cavity, cylindrical, rising-sun magnetrons. Power is extracted radially through a single iris located at the end of every other cavity. Numerical results show that in general output power and efficiency increase approximately linearly with increasing iris width (decreasing vacuum Q) until the total Q becomes too low for stable oscillation in the n-mode to be maintained. Beyond this point mode competition and/or switching occur and efficiency decreases. Results reveal that the minimum value of Q (maximum efficiency) that can be achieved prior to the onset of mode competition is significantly affected by the magnitude of the 0-space-harmonic of the {pi}-mode, a unique characteristic of rising-suns, and by the magnitude of the electron current density (space-charge effects). By minimizing these effects, up to 3.7 GW output power has been produced at an efficiency of 40%.
NASA Technical Reports Server (NTRS)
Poppe, A. R.; Halekas, J. S.; Delory, G. T.; Farrell, W. M.
2012-01-01
As the solar wind is incident upon the lunar surface, it will occasionally encounter lunar crustal remanent magnetic fields. These magnetic fields are small-scale, highly non-dipolar, have strengths up to hundreds of nanotesla, and typically interact with the solar wind in a kinetic fashion. Simulations, theoretical analyses, and spacecraft observations have shown that crustal fields can reflect solar wind protons via a combination of magnetic and electrostatic reflection; however, analyses of surface properties have suggested that protons may still access the lunar surface in the cusp regions of crustal magnetic fields. In this first report from a planned series of studies, we use a 1 1/2-dimensional, electrostatic particle-in-cell code to model the self-consistent interaction between the solar wind, the cusp regions of lunar crustal remanent magnetic fields, and the lunar surface. We describe the self-consistent electrostatic environment within crustal cusp regions and discuss the implications of this work for the role that crustal fields may play regulating space weathering of the lunar surface via proton bombardment.
Explicit high-order non-canonical symplectic particle-in-cell algorithms for Vlasov-Maxwell systems
Xiao, Jianyuan; Liu, Jian; He, Yang; Zhang, Ruili; Qin, Hong; Sun, Yajuan
2015-11-15
Explicit high-order non-canonical symplectic particle-in-cell algorithms for classical particle-field systems governed by the Vlasov-Maxwell equations are developed. The algorithms conserve a discrete non-canonical symplectic structure derived from the Lagrangian of the particle-field system, which is naturally discrete in particles. The electromagnetic field is spatially discretized using the method of discrete exterior calculus with high-order interpolating differential forms for a cubic grid. The resulting time-domain Lagrangian assumes a non-canonical symplectic structure. It is also gauge invariant and conserves charge. The system is then solved using a structure-preserving splitting method discovered by He et al. [preprint http://arxiv.org/abs/arXiv:1505.06076 (2015)], which produces five exactly soluble sub-systems, and high-order structure-preserving algorithms follow by combinations. The explicit, high-order, and conservative nature of the algorithms is especially suitable for long-term simulations of particle-field systems with extremely large number of degrees of freedom on massively parallel supercomputers. The algorithms have been tested and verified by the two physics problems, i.e., the nonlinear Landau damping and the electron Bernstein wave.
Skjaeraasen, Olaf; Melatos, A.; Spitkovsky, A.; /KIPAC, Menlo Park
2005-08-15
A 2.5-dimensional particle-in-cell code is used to investigate the propagation of a large-amplitude, superluminal, nearly transverse electromagnetic (TEM) wave in a relativistically streaming electron-positron plasma with and without a shock. In the freestreaming, unshocked case, the analytic TEM dispersion relation is verified, and the streaming is shown to stabilize the wave against parametric instabilities. In the confined, shocked case, the wave induces strong, coherent particle oscillations, heats the plasma, and modifies the shock density profile via ponderomotive effects. The wave decays over {approx}> 10{sup 2} skin depths; the decay length scale depends primarily on the ratio between the wave frequency and the effective plasma frequency, and on the wave amplitude. The results are applied to the termination shock of the Crab pulsar wind, where the decay length-scale ({approx}> 0.05''?) might be comparable to the thickness of filamentary, variable substructure observed in the optical and X-ray wisps and knots.
NASA Astrophysics Data System (ADS)
Wang, Hongliang; Agrusta, Roberto; Hunen, Jeroen
2015-06-01
The particle-in-cell method is generally considered a flexible and robust method to model the geodynamic problems with chemical heterogeneity. However, velocity interpolation from grid points to particle locations is often performed without considering the divergence of the velocity field, which can lead to significant particle dispersion or clustering if those particles move through regions of strong velocity gradients. This may ultimately result in cells void of particles, which, if left untreated, may, in turn, lead to numerical inaccuracies. Here we apply a two-dimensional conservative velocity interpolation (CVI) scheme to steady state and time-dependent flow fields with strong velocity gradients (e.g., due to large local viscosity variation) and derive and apply the three-dimensional equivalent. We show that the introduction of CVI significantly reduces the dispersion and clustering of particles in both steady state and time-dependent flow problems and maintains a locally steady number of particles, without the need for ad hoc remedies such as very high initial particle densities or reseeding during the calculation. We illustrate that this method provides a significant improvement to particle distributions in common geodynamic modeling problems such as subduction zones or lithosphere-asthenosphere boundary dynamics.
NASA Astrophysics Data System (ADS)
Dendy, Richard; Cook, James; Chapman, Sandra
2009-11-01
Suprathermal ion cyclotron emission (ICE) was the first collective radiative instability, driven by fusion products, observed on JET and TFTR. Strong emission occurs at sequential cyclotron harmonics of the energetic ion population at the outer mid-plane. Its intensity scales linearly with fusion reactivity, including its time evolution during a discharge. The emission mechanism is probably the magnetoacoustic cyclotron instability (MCI), involving resonance between: fast Alfv'en waves; cyclotron harmonic waves supported by the energetic particle population and by the background thermal plasma; and a subset of the centrally born fusion products, just inside the trapped-passing boundary, whose drift orbits make large radial excursions. The linear growth rate of the MCI has been intensively studied analytically, and yields good agreement with several key observational features of ICE. To address outstanding issues in the nonlinear ICE regime, we have developed a particle-in-cell code which self-consistently evolves electron and multi-species ion macroparticles and the electromagnetic field. We focus on the growth rate of the MCI, as it evolves from the linear into the nonlinear regime for JET-like parameters.
NASA Astrophysics Data System (ADS)
Doss, C. E.; Cassak, P. A.; Swisdak, M.
2016-08-01
We investigate magnetic reconnection in systems simultaneously containing asymmetric (anti-parallel) magnetic fields, asymmetric plasma densities and temperatures, and arbitrary in-plane bulk flow of plasma in the upstream regions. Such configurations are common in the high-latitudes of Earth's magnetopause and in tokamaks. We investigate the convection speed of the X-line, the scaling of the reconnection rate, and the condition for which the flow suppresses reconnection as a function of upstream flow speeds. We use two-dimensional particle-in-cell simulations to capture the mixing of plasma in the outflow regions better than is possible in fluid modeling. We perform simulations with asymmetric magnetic fields, simulations with asymmetric densities, and simulations with magnetopause-like parameters where both are asymmetric. For flow speeds below the predicted cutoff velocity, we find good scaling agreement with the theory presented in Doss et al. [J. Geophys. Res. 120, 7748 (2015)]. Applications to planetary magnetospheres, tokamaks, and the solar wind are discussed.
Erosion due to ion sputtering in absence of Debye Sheath at Divertor plates: PIC simulation
NASA Astrophysics Data System (ADS)
Goswami, K. S.; Adhikari, S.
2014-10-01
A 2D-3V Particle-in-Cell code with Monte Carlo Collision and a Plasma Surface Interaction Code written in Matlab is used to study the effect of grazing angle (α) on solid surface (divertor) erosion due to ion sputtering in magnetic fusion devices, where α is the angle between the magnetic field and the surface tangent. The ion distribution in front of an absorbing wall is computed using a kinetic model. Important factors like ion energy and impact angle for wall erosion and sputtering are highlighted. The dependence of these two parameters on grazing angle is investigated in detail. Physical Sputtering for ion bombardment is strongly dependent on incident ion energy and this energy is mainly gained by the ions when they travel through the potential drop across the combined Chodura Sheath and Debye Sheath. The present work contains the study of two scenario. In the first one we have studied the usual case to compare our result to the other similar work i.e. in presence of both Chodura Sheath and Debye Sheath. In the second one with the idea of previous work we have created the scenario where Debye Sheath cease to appear. The second scenario provides us the result that was never expected that the incident energy profile got reversed. The study is focused on the effect of grazing angle and its relation with the material erosion. Our study covers different materials (e.g. Be, Fe, W etc.) which are used as plasma facing components.
Australian Validation of the Hierarchical Personality Inventory for Children (HiPIC)
ERIC Educational Resources Information Center
Hopkinson, Laura; Watt, Dianne; Roodenburg, John
2014-01-01
The Hierarchical Personality Inventory for Children (HiPIC) is a developmentally appropriate parent-report measure of the Five Factor Model (FFM) that has been validated in several European languages but only recently in English. The English translation of the HiPIC was evaluated in an Australian context. Parent-rated HiPIC scores were obtained…
46 CFR 13.301 - Original application for “Tankerman-PIC (Barge)” endorsement.
Code of Federal Regulations, 2010 CFR
2010-10-01
... 46 Shipping 1 2010-10-01 2010-10-01 false Original application for âTankerman-PIC (Barge)â... OFFICERS AND SEAMEN CERTIFICATION OF TANKERMEN Requirements for âTankerman-PIC (Barge)â Endorsement § 13.301 Original application for “Tankerman-PIC (Barge)” endorsement. Each applicant for a...
Perspectives for spintronics in 2D materials
NASA Astrophysics Data System (ADS)
Han, Wei
2016-03-01
The past decade has been especially creative for spintronics since the (re)discovery of various two dimensional (2D) materials. Due to the unusual physical characteristics, 2D materials have provided new platforms to probe the spin interaction with other degrees of freedom for electrons, as well as to be used for novel spintronics applications. This review briefly presents the most important recent and ongoing research for spintronics in 2D materials.
Wavelet characterization of 2D turbulence and intermittency in magnetized electron plasmas
NASA Astrophysics Data System (ADS)
Romé, M.; Chen, S.; Maero, G.
2016-06-01
A study of the free relaxation of turbulence in a two-dimensional (2D) flow is presented, with a focus on the role of the initial vorticity conditions. Exploiting a well-known analogy with 2D inviscid incompressible fluids, the system investigated here is a magnetized pure electron plasma. The dynamics of this system are simulated by means of a 2D particle-in-cell code, starting from different spiral density (vorticity) distributions. A wavelet multiresolution analysis is adopted, which allows the coherent and incoherent parts of the flow to be separated. Comparison of the turbulent evolution in the different cases is based on the investigation of the time evolution of statistical properties, including the probability distribution functions and structure functions of the vorticity increments. It is also based on an analysis of the enstrophy evolution and its spectrum for the two components. In particular, while the statistical features assess the degree of flow intermittency, spectral analysis allows us not only to estimate the time required to reach a state of fully developed turbulence, but also estimate its dependence on the thickness of the initial spiral density distribution, accurately tracking the dynamics of both the coherent structures and the turbulent background. The results are compared with those relevant to annular initial vorticity distributions (Chen et al 2015 J. Plasma Phys. 81 495810511).
Bhullar, Kirandeep; Zarepour, Maryam; Yu, Hongbing; Yang, Hong; Croxen, Matthew; Stahl, Martin; Finlay, B Brett; Turvey, Stuart E; Vallance, Bruce A
2015-07-01
Bacterial pathogens produce a number of autotransporters that possess diverse functions. These include the family of serine protease autotransporters of Enterobacteriaceae (SPATEs) produced by enteric pathogens such as Shigella flexneri and enteroaggregative Escherichia coli. Of these SPATEs, one termed "protein involved in colonization," or Pic, has been shown to possess mucinase activity in vitro, but to date, its role in in vivo enteric pathogenesis is unknown. Testing a pic null (ΔpicC) mutant in Citrobacter rodentium, a natural mouse pathogen, found that the C. rodentium ΔpicC strain was impaired in its ability to degrade mucin in vitro compared to the wild type. Upon infection of mice, the ΔpicC mutant exhibited a hypervirulent phenotype with dramatically heavier pathogen burdens found in intestinal crypts. ΔpicC mutant-infected mice suffered greater barrier disruption and more severe colitis and weight loss, necessitating their euthanization between 10 and 14 days postinfection. Notably, the virulence of the ΔpicC mutant was normalized when the picC gene was restored; however, a PicC point mutant causing loss of mucinase activity did not replicate the ΔpicC phenotype. Exploring other aspects of PicC function, the ΔpicC mutant was found to aggregate to higher levels in vivo than wild-type C. rodentium. Moreover, unlike the wild type, the C. rodentium ΔpicC mutant had a red, dry, and rough (RDAR) morphology in vitro and showed increased activation of the innate receptor Toll-like receptor 2 (TLR2). Interestingly, the C. rodentium ΔpicC mutant caused a degree of pathology similar to that of wild-type C. rodentium when infecting TLR2-deficient mice, showing that despite its mucinase activity, PicC's major role in vivo may be to limit C. rodentium's stimulation of the host's innate immune system. PMID:25895966
Bhullar, Kirandeep; Zarepour, Maryam; Yu, Hongbing; Yang, Hong; Croxen, Matthew; Stahl, Martin; Finlay, B. Brett; Turvey, Stuart E.
2015-01-01
Bacterial pathogens produce a number of autotransporters that possess diverse functions. These include the family of serine protease autotransporters of Enterobacteriaceae (SPATEs) produced by enteric pathogens such as Shigella flexneri and enteroaggregative Escherichia coli. Of these SPATEs, one termed “protein involved in colonization,” or Pic, has been shown to possess mucinase activity in vitro, but to date, its role in in vivo enteric pathogenesis is unknown. Testing a pic null (ΔpicC) mutant in Citrobacter rodentium, a natural mouse pathogen, found that the C. rodentium ΔpicC strain was impaired in its ability to degrade mucin in vitro compared to the wild type. Upon infection of mice, the ΔpicC mutant exhibited a hypervirulent phenotype with dramatically heavier pathogen burdens found in intestinal crypts. ΔpicC mutant-infected mice suffered greater barrier disruption and more severe colitis and weight loss, necessitating their euthanization between 10 and 14 days postinfection. Notably, the virulence of the ΔpicC mutant was normalized when the picC gene was restored; however, a PicC point mutant causing loss of mucinase activity did not replicate the ΔpicC phenotype. Exploring other aspects of PicC function, the ΔpicC mutant was found to aggregate to higher levels in vivo than wild-type C. rodentium. Moreover, unlike the wild type, the C. rodentium ΔpicC mutant had a red, dry, and rough (RDAR) morphology in vitro and showed increased activation of the innate receptor Toll-like receptor 2 (TLR2). Interestingly, the C. rodentium ΔpicC mutant caused a degree of pathology similar to that of wild-type C. rodentium when infecting TLR2-deficient mice, showing that despite its mucinase activity, PicC's major role in vivo may be to limit C. rodentium's stimulation of the host's innate immune system. PMID:25895966
PIC Simulation of Laser Plasma Interactions with Temporal Bandwidths
NASA Astrophysics Data System (ADS)
Tsung, Frank; Weaver, J.; Lehmberg, R.
2015-11-01
We are performing particle-in-cell simulations using the code OSIRIS to study the effects of laser plasma interactions in the presence of temperal bandwidths under conditions relevant to current and future shock ignition experiments on the NIKE laser. Our simulations show that, for sufficiently large bandwidth, the saturation level, and the distribution of hot electrons, can be effected by the addition of temporal bandwidths (which can be accomplished in experiments using smoothing techniques such as SSD or ISI). We will show that temporal bandwidth along play an important role in the control of LPI's in these lasers and discuss future directions. This work is conducted under the auspices of NRL.
First Results of PIC Modeling of Kinetic Alfven Wave Dissipation
NASA Technical Reports Server (NTRS)
Chulaki, Anna; Hesse, Michael; Zenitani, Seiji
2007-01-01
We present first results of an investigation of the kinetic damping of Alfven wave turbulence. The methodology is based on a fully electromagnetic, three-dimensional, particle in cell code. The calculation is initialized by an Alfven wave spectrum. Subsequently, a cascade develops, and damping by coupling to both ions and electrons is observed. We discuss results of these calculations, and present first estimates of damping rates and of the effects of energy transfer on ion and electron distributions. The results pertain to solar wind heating and acceleration.
Fu, Xiangrong; Cowee, Misa M.; Friedel, Reinhard H.; Funsten, Herbert O.; Gary, S. Peter; Hospodarsky, George B.; Kletzing, Craig; Kurth, William; Larsen, Brian A.; Liu, Kaijun; MacDonald, Elizabeth A.; Reeves, Geoffrey D.; Skoug, Ruth M.; Winske, Dan
2014-10-22
Magnetospheric banded chorus is enhanced whistler waves with frequencies ω_{r} < Ω_{e}, where Ω_{e} is the electron cyclotron frequency, and a characteristic spectral gap at ω_{r} ≃ Ω_{e}/2. This paper uses spacecraft observations and two-dimensional particle-in-cell simulations in a magnetized, homogeneous, collisionless plasma to test the hypothesis that banded chorus is due to local linear growth of two branches of the whistler anisotropy instability excited by two distinct, anisotropic electron components of significantly different temperatures. The electron densities and temperatures are derived from Helium, Oxygen, Proton, and Electron instrument measurements on the Van Allen Probes A satellite during a banded chorus event on 1 November 2012. The observations are consistent with a three-component electron model consisting of a cold (a few tens of eV) population, a warm (a few hundred eV) anisotropic population, and a hot (a few keV) anisotropic population. The simulations use plasma and field parameters as measured from the satellite during this event except for two numbers: the anisotropies of the warm and the hot electron components are enhanced over the measured values in order to obtain relatively rapid instability growth. The simulations show that the warm component drives the quasi-electrostatic upper band chorus and that the hot component drives the electromagnetic lower band chorus; the gap at ~Ω_{e}/2 is a natural consequence of the growth of two whistler modes with different properties.
Fu, Xiangrong; Cowee, Misa M.; Friedel, Reinhard H.; Funsten, Herbert O.; Gary, S. Peter; Hospodarsky, George B.; Kletzing, Craig; Kurth, William; Larsen, Brian A.; Liu, Kaijun; et al
2014-10-22
Magnetospheric banded chorus is enhanced whistler waves with frequencies ωr < Ωe, where Ωe is the electron cyclotron frequency, and a characteristic spectral gap at ωr ≃ Ωe/2. This paper uses spacecraft observations and two-dimensional particle-in-cell simulations in a magnetized, homogeneous, collisionless plasma to test the hypothesis that banded chorus is due to local linear growth of two branches of the whistler anisotropy instability excited by two distinct, anisotropic electron components of significantly different temperatures. The electron densities and temperatures are derived from Helium, Oxygen, Proton, and Electron instrument measurements on the Van Allen Probes A satellite during a bandedmore » chorus event on 1 November 2012. The observations are consistent with a three-component electron model consisting of a cold (a few tens of eV) population, a warm (a few hundred eV) anisotropic population, and a hot (a few keV) anisotropic population. The simulations use plasma and field parameters as measured from the satellite during this event except for two numbers: the anisotropies of the warm and the hot electron components are enhanced over the measured values in order to obtain relatively rapid instability growth. The simulations show that the warm component drives the quasi-electrostatic upper band chorus and that the hot component drives the electromagnetic lower band chorus; the gap at ~Ωe/2 is a natural consequence of the growth of two whistler modes with different properties.« less
NASA Astrophysics Data System (ADS)
Hughes, R. S.; Gary, S. P.; Wang, J.
2015-12-01
Three-dimensional particle-in-cell simulations are utilized in order to model the forward cascade of an initially narrowband, isotropic spectrum of relatively long wavelength magnetosonic-whistler fluctuations in a collisionless, homogeneous, magnetized, electron-proton plasma. The intention of the investigation is to gain insight into the details of interaction between the electromagnetic fluctuations, the proton population, and the electron population. In particular, the manner in which each population is heated while the fluctuation energy dissipates is of interest. The results show that electrons are preferentially heated in the direction parallel to the background magnetic field, while ions are preferentially heated perpendicular to the background field. These behaviors appear to be universal with respect to the plasma βe and the initial fluctuation amplitudes. In order to better understand how such heating scales at variable plasma parameters two parametric studies have been carried out. The first study holds β(t=0) fixed at βe = βi = 0.25, and varies the initial fluctuation energy density ɛ0 = Σ δB2/B02 = 0.025, 0.05, 0.1, 0.25, 0.5, while the second study holds ɛ0(t=0) fixed at ɛ0 = 0.1 and varies βe = βi = 0.05, 0.1, 0.25, 0.5, 1.0. The investigations show that the ion heating rates scale approximately linearly with ɛ0, while they have a far weaker scaling with βe.
NASA Astrophysics Data System (ADS)
Moon, Haksu; Teixeira, Fernando L.; Omelchenko, Yuri A.
2015-09-01
We describe a charge-conserving scatter-gather algorithm for particle-in-cell simulations on unstructured grids. Charge conservation is obtained from first principles, i.e., without the need for any post-processing or correction steps. This algorithm recovers, at a fundamental level, the scatter-gather algorithms presented recently by Campos-Pinto et al. (2014) (to first-order) and by Squire et al. (2012), but it is derived here in a streamlined fashion from a geometric viewpoint. Some ingredients reflecting this viewpoint are (1) the use of (discrete) differential forms of various degrees to represent fields, currents, and charged particles and provide localization rules for the degrees of freedom thereof on the various grid elements (nodes, edges, facets), (2) use of Whitney forms as basic interpolants from discrete differential forms to continuum space, and (3) use of a Galerkin formula for the discrete Hodge star operators (i.e., "mass matrices" incorporating the metric datum of the grid) applicable to generally irregular, unstructured grids. The expressions obtained for the scatter charges and scatter currents are very concise and do not involve numerical quadrature rules. Appropriate fractional areas within each grid element are identified that represent scatter charges and scatter currents within the element, and a simple geometric representation for the (exact) charge conservation mechanism is obtained by such identification. The field update is based on the coupled first-order Maxwell's curl equations to avoid spurious modes with secular growth (otherwise present in formulations that discretize the second-order wave equation). Examples are provided to verify preservation of discrete Gauss' law for all times.
Abdul, R. F. Mace, R. L.
2015-10-15
Electrostatic Bernstein waves that propagate exactly perpendicularly to a static magnetic field in an electron-ion plasma are investigated using one-and-two-halves dimensional particle-in-cell simulations. An ion-to-electron mass ratio of m{sub i}/m{sub e} = 100 is used, allowing sufficient separation of the electron and ion time scales while still accounting for the ion dynamics without resorting to exceptionally long simulation run times. As a consequence of the mass ratio used, both the high frequency electron Bernstein wave and the lower frequency ion Bernstein wave are resolved within a single simulation run. The simulations presented here use isotropic three-dimensional kappa velocity distributions as well as the widely used Maxwellian velocity distribution, and the results from using each of these velocity distributions are analysed and compared. The behaviour of the Bernstein waves is found to be significantly dependent on the spectral index, κ, of the kappa distribution in all frequency domains of the Bernstein waves. In both the Maxwellian and kappa cases, spectral analysis of the electric field (wave) intensities, as a function of ω and k, show very good agreement between the simulation results and the linear dispersion relation for Bernstein waves. This agreement serves to validate the simulation techniques used, as well as the theory of Bernstein waves in plasmas with a kappa velocity distribution. The intensity of the field fluctuations in the simulations containing an abundance of superthermal particles, i.e., where the plasma has a kappa velocity distribution with a low kappa index, is slightly higher compared to the simulations of plasmas with higher kappa values. The plasmas with low kappa values also exhibit a broader region in frequency space of high intensity field fluctuations.
Elimination of the numerical Cerenkov instability for spectral EM-PIC codes
NASA Astrophysics Data System (ADS)
Yu, Peicheng; Xu, Xinlu; Decyk, Viktor K.; Fiuza, Frederico; Vieira, Jorge; Tsung, Frank S.; Fonseca, Ricardo A.; Lu, Wei; Silva, Luis O.; Mori, Warren B.
2015-07-01
When using an electromagnetic particle-in-cell (EM-PIC) code to simulate a relativistically drifting plasma, a violent numerical instability known as the numerical Cerenkov instability (NCI) occurs. The NCI is due to the unphysical coupling of electromagnetic waves on a grid to wave-particle resonances, including aliased resonances, i.e., ω + 2 πμ / Δt =(k1 + 2 πν1 / Δx1) v0, where μ and ν1 refer to the time and space aliases and the plasma is drifting relativistically at velocity v0 in the 1 ˆ -direction. We extend our previous work Xu et al. (2013) by recasting the numerical dispersion relation of a relativistically drifting plasma into a form which shows explicitly how the instability results from the coupling modes which are purely transverse electromagnetic (EM) modes and purely longitudinal modes in the rest frame of the plasma for each time and space aliasing. The dispersion relation for each μ and ν1 is the product of the dispersion relation of these two modes set equal to a coupling term that vanishes in the continuous limit. The new form of the numerical dispersion relation provides an accurate method of systematically calculating the growth rate and location of the mode in the fundamental Brillouin zone for any Maxwell solver for each μ and ν1. We then focus on the spectral Maxwell solver and systematically discuss its NCI modes. We show that the second fastest growing NCI mode for the spectral solver corresponds to μ =ν1 = 0, that it has a growth rate approximately one order of magnitude smaller than the fastest growing μ = 0 and ν1 = 1 mode, and that its location in the k space fundamental Brillouin zone is sensitive to the grid size and time step. Based on these studies, strategies to systematically eliminate the NCI modes for a spectral solver are developed. We apply these strategies to both relativistic collisionless shock and LWFA simulations, and demonstrate that high-fidelity multi-dimensional simulations of drifting plasmas
Annotated Bibliography of EDGE2D Use
J.D. Strachan and G. Corrigan
2005-06-24
This annotated bibliography is intended to help EDGE2D users, and particularly new users, find existing published literature that has used EDGE2D. Our idea is that a person can find existing studies which may relate to his intended use, as well as gain ideas about other possible applications by scanning the attached tables.
Staring 2-D hadamard transform spectral imager
Gentry, Stephen M.; Wehlburg, Christine M.; Wehlburg, Joseph C.; Smith, Mark W.; Smith, Jody L.
2006-02-07
A staring imaging system inputs a 2D spatial image containing multi-frequency spectral information. This image is encoded in one dimension of the image with a cyclic Hadamarid S-matrix. The resulting image is detecting with a spatial 2D detector; and a computer applies a Hadamard transform to recover the encoded image.
Rosenthal, Martin D.; Moore, Frederick A.
2015-01-01
A new phenotype of multiple organ failure has appeared: Persistent Inflammatory, Immunosuppressed, Catabolic Syndrome (PICS). Comorbidities and age >65 years have been established as the leading risk factors for PICS. As the percentage of elderly people continues to increase the prevalence of PICS in our ICUs will surely grow. Malnutrition (despite appropriate supplementation), recurrent nosocomial infections, frailty, ventilator dependence, and an indolent death depicts the central theme that plagues PICS patients. Aligned with the recently awarded P50 grant by NIGMS entitled, “PICS: A New Horizon for Surgical Critical Care”, and the University Of Florida’s Sepsis and Critical Illness Research Center will investigate the genetic make-up of PICS patients, better understand frailty and the implication in trauma patients, and hopefully elucidate new therapies. Currently, there are no therapies to combat PICS aside from nutritional inference elaborated after reviewing the literature on Burns, Cachexia, and Sarcopenia. PMID:26086042
NASA Astrophysics Data System (ADS)
Main, D. S.; Caplinger, J.; Kim, T. C.; Sotnikov, V. I.
2014-12-01
The propagation of electromagnetic (EM) waves can be influenced by the presence of plasma turbulence. It is known that Flute-type density irregularities can develop during the nonlinear stage of an interchange instability in Earth's ionosphere and can affect radio communication channels. These density structures play an important role in the refraction and scattering of EM waves in Earth's ionosphere and also in laser diagnostic scattering experiments. To generate Flute-type density irregularities, we will use previously obtained numerical solution of nonlinear fluid equations involving the electrostatic potential and density. The solutions to these fluid equations govern the development of an interchange instability and results in the spatial dependence of density irregularities which can be used to analyze scattering of high frequency EM waves. This solution contains both large scale vortex density structures coexisting with short scale density perturbations. Next we will initialize a PIC simulation with the density structure from the fluid simulation to calculate the scattering cross-section and compare the results with an analytic solution obtained using numerically calculated density spectra. Because the linear and non-linear stages are well separated in time, we will compare the effect of scattering from density irregularities which form in both the linear and non-linear stages.
Light field morphing using 2D features.
Wang, Lifeng; Lin, Stephen; Lee, Seungyong; Guo, Baining; Shum, Heung-Yeung
2005-01-01
We present a 2D feature-based technique for morphing 3D objects represented by light fields. Existing light field morphing methods require the user to specify corresponding 3D feature elements to guide morph computation. Since slight errors in 3D specification can lead to significant morphing artifacts, we propose a scheme based on 2D feature elements that is less sensitive to imprecise marking of features. First, 2D features are specified by the user in a number of key views in the source and target light fields. Then the two light fields are warped view by view as guided by the corresponding 2D features. Finally, the two warped light fields are blended together to yield the desired light field morph. Two key issues in light field morphing are feature specification and warping of light field rays. For feature specification, we introduce a user interface for delineating 2D features in key views of a light field, which are automatically interpolated to other views. For ray warping, we describe a 2D technique that accounts for visibility changes and present a comparison to the ideal morphing of light fields. Light field morphing based on 2D features makes it simple to incorporate previous image morphing techniques such as nonuniform blending, as well as to morph between an image and a light field. PMID:15631126
2D materials for nanophotonic devices
NASA Astrophysics Data System (ADS)
Xu, Renjing; Yang, Jiong; Zhang, Shuang; Pei, Jiajie; Lu, Yuerui
2015-12-01
Two-dimensional (2D) materials have become very important building blocks for electronic, photonic, and phononic devices. The 2D material family has four key members, including the metallic graphene, transition metal dichalcogenide (TMD) layered semiconductors, semiconducting black phosphorous, and the insulating h-BN. Owing to the strong quantum confinements and defect-free surfaces, these atomically thin layers have offered us perfect platforms to investigate the interactions among photons, electrons and phonons. The unique interactions in these 2D materials are very important for both scientific research and application engineering. In this talk, I would like to briefly summarize and highlight the key findings, opportunities and challenges in this field. Next, I will introduce/highlight our recent achievements. We demonstrated atomically thin micro-lens and gratings using 2D MoS2, which is the thinnest optical component around the world. These devices are based on our discovery that the elastic light-matter interactions in highindex 2D materials is very strong. Also, I would like to introduce a new two-dimensional material phosphorene. Phosphorene has strongly anisotropic optical response, which creates 1D excitons in a 2D system. The strong confinement in phosphorene also enables the ultra-high trion (charged exciton) binding energies, which have been successfully measured in our experiments. Finally, I will briefly talk about the potential applications of 2D materials in energy harvesting.
Inertial solvation in femtosecond 2D spectra
NASA Astrophysics Data System (ADS)
Hybl, John; Albrecht Ferro, Allison; Farrow, Darcie; Jonas, David
2001-03-01
We have used 2D Fourier transform spectroscopy to investigate polar solvation. 2D spectroscopy can reveal molecular lineshapes beneath ensemble averaged spectra and freeze molecular motions to give an undistorted picture of the microscopic dynamics of polar solvation. The transition from "inhomogeneous" to "homogeneous" 2D spectra is governed by both vibrational relaxation and solvent motion. Therefore, the time dependence of the 2D spectrum directly reflects the total response of the solvent-solute system. IR144, a cyanine dye with a dipole moment change upon electronic excitation, was used to probe inertial solvation in methanol and propylene carbonate. Since the static Stokes' shift of IR144 in each of these solvents is similar, differences in the 2D spectra result from solvation dynamics. Initial results indicate that the larger propylene carbonate responds more slowly than methanol, but appear to be inconsistent with rotational estimates of the inertial response. To disentangle intra-molecular vibrations from solvent motion, the 2D spectra of IR144 will be compared to the time-dependent 2D spectra of the structurally related nonpolar cyanine dye HDITCP.
Internal Photoemission Spectroscopy of 2-D Materials
NASA Astrophysics Data System (ADS)
Nguyen, Nhan; Li, Mingda; Vishwanath, Suresh; Yan, Rusen; Xiao, Shudong; Xing, Huili; Cheng, Guangjun; Hight Walker, Angela; Zhang, Qin
Recent research has shown the great benefits of using 2-D materials in the tunnel field-effect transistor (TFET), which is considered a promising candidate for the beyond-CMOS technology. The on-state current of TFET can be enhanced by engineering the band alignment of different 2D-2D or 2D-3D heterostructures. Here we present the internal photoemission spectroscopy (IPE) approach to determine the band alignments of various 2-D materials, in particular SnSe2 and WSe2, which have been proposed for new TFET designs. The metal-oxide-2-D semiconductor test structures are fabricated and characterized by IPE, where the band offsets from the 2-D semiconductor to the oxide conduction band minimum are determined by the threshold of the cube root of IPE yields as a function of photon energy. In particular, we find that SnSe2 has a larger electron affinity than most semiconductors and can be combined with other semiconductors to form near broken-gap heterojunctions with low barrier heights which can produce a higher on-state current. The details of data analysis of IPE and the results from Raman spectroscopy and spectroscopic ellipsometry measurements will also be presented and discussed.
Zharkova, Valentina V.; Khabarova, Olga V. E-mail: habarova@izmiran.ru
2012-06-10
In this paper, we apply an assumption of the reconnecting heliospheric current sheet (HCS) for explanation of some contradictory results in the experimental detection of the sector boundaries (SBs) from the interplanetary magnetic field and electron pitch-angle measurements. Trajectories, densities, velocity, and pitch-angle distributions of particles accelerated by a super-Dreicer electric field are investigated with 2.5D full kinetic particle-in-cell approach in the HCS assumed to undergo a slow magnetic reconnection process with magnetic field configurations deduced from the solar wind observations. This approach reveals that during motion in a current sheet both kinds of particles, electrons and protons, are to be separated, either fully or partially, with respect to its midplane that can lead to their ejection to the opposite semiplanes that was also observed during the HCS crossings. This separation is found to form Hall's currents and polarization electric field across the current sheet, which distribution over the current sheets allows us to reproduce the magnitudes and temporal profiles of proton and ion velocities measured across the SB (current sheet midplane). This separation process, in turn, divides both kinds of particles on 'transit' and 'bounced' ones depending on a side of the current sheet where they enter it and where they are supposed to be ejected. The transit and bounced protons reproduce rather closely the measured distributions of proton/ion densities about the current sheet midplane with a larger maximum occurring at the heliospheric SB to be formed by the bounced protons and the other two smaller maximums on both sides from the central one to be formed by 'transit' protons. The observed electron distributions of density and energy before and after sector boundary crossings are found to fit the simulated ones for electrons accelerated in a current sheet revealing a sharp increase of density from one side from the HCS boundary and a
NASA Astrophysics Data System (ADS)
Innocenti, M. E.; Goldman, M. V.; Newman, D. L.; Markidis, S.; Lapenta, G.
2015-12-01
The long term evolution of large domain Particle In Cell simulations of collisionless magnetic reconnection is investigated following observations that show two possible outcomes for collisionless reconnection: towards a Petschek-like configuration (Gosling 2007) or towards multiple X points (Eriksson et al. 2014). In the simulations presented here and described in [Innocenti2015*], a mixed scenario develops. At earlier time, plasmoids are emitted, disrupting the formation of Petschek-like structures. Later, an almost stationary monster plasmoid forms, preventing the emission of other plasmoids. A situation reminding of Petschek's switch-off then ensues. Switch-off is obtained through a slow shock / rotational discontinuity (SS/RD) compound structure, with the rotation discontinuity downstreamthe slow shock. Two external slow shocks located in correspondence of the separatrices reduce the in plane tangential component of the magnetic field, but not to zero. Two transitions reminding of rotational discontinuities in the internal part of the exhausts then perform the final switch-off. Both the slow shocks and the rotational discontinuities are characterized as such through the analysis of their Rankine-Hugoniot jump conditions. A moderate guide field is used to suppress the development of the firehose instability in the exhaust that prevented switch off in [Liu2012]. Compound SS/RD structures, with the RD located downstream the SS, have been observed in both the solar wind and the magnetosphere in Wind and Geotail data respectively [Whang1998, Whang2004]. Ion trajectiories across the SS/RD structure are followed and the kinetic origin of the SS/RD structure is investigated. * Innocenti, Goldman, Newman, Markidis, Lapenta, Evidence of magnetic field switch-off in collisionless magnetic reconnection, accepted in Astrophysical Journal Letters, 2015 Acknowledgements: NERSC, a DOE Office of Science User Facility supported by the Office of Science of the U.S. Department of
Brittle damage models in DYNA2D
Faux, D.R.
1997-09-01
DYNA2D is an explicit Lagrangian finite element code used to model dynamic events where stress wave interactions influence the overall response of the system. DYNA2D is often used to model penetration problems involving ductile-to-ductile impacts; however, with the advent of the use of ceramics in the armor-anti-armor community and the need to model damage to laser optics components, good brittle damage models are now needed in DYNA2D. This report will detail the implementation of four brittle damage models in DYNA2D, three scalar damage models and one tensor damage model. These new brittle damage models are then used to predict experimental results from three distinctly different glass damage problems.
Ginsparg, P.
1991-01-01
These are introductory lectures for a general audience that give an overview of the subject of matrix models and their application to random surfaces, 2d gravity, and string theory. They are intentionally 1.5 years out of date.
Ginsparg, P.
1991-12-31
These are introductory lectures for a general audience that give an overview of the subject of matrix models and their application to random surfaces, 2d gravity, and string theory. They are intentionally 1.5 years out of date.
2D electronic materials for army applications
NASA Astrophysics Data System (ADS)
O'Regan, Terrance; Perconti, Philip
2015-05-01
The record electronic properties achieved in monolayer graphene and related 2D materials such as molybdenum disulfide and hexagonal boron nitride show promise for revolutionary high-speed and low-power electronic devices. Heterogeneous 2D-stacked materials may create enabling technology for future communication and computation applications to meet soldier requirements. For instance, transparent, flexible and even wearable systems may become feasible. With soldier and squad level electronic power demands increasing, the Army is committed to developing and harnessing graphene-like 2D materials for compact low size-weight-and-power-cost (SWAP-C) systems. This paper will review developments in 2D electronic materials at the Army Research Laboratory over the last five years and discuss directions for future army applications.
2-d Finite Element Code Postprocessor
1996-07-15
ORION is an interactive program that serves as a postprocessor for the analysis programs NIKE2D, DYNA2D, TOPAZ2D, and CHEMICAL TOPAZ2D. ORION reads binary plot files generated by the two-dimensional finite element codes currently used by the Methods Development Group at LLNL. Contour and color fringe plots of a large number of quantities may be displayed on meshes consisting of triangular and quadrilateral elements. ORION can compute strain measures, interface pressures along slide lines, reaction forcesmore » along constrained boundaries, and momentum. ORION has been applied to study the response of two-dimensional solids and structures undergoing finite deformations under a wide variety of large deformation transient dynamic and static problems and heat transfer analyses.« less
Chemical Approaches to 2D Materials.
Samorì, Paolo; Palermo, Vincenzo; Feng, Xinliang
2016-08-01
Chemistry plays an ever-increasing role in the production, functionalization, processing and applications of graphene and other 2D materials. This special issue highlights a selection of enlightening chemical approaches to 2D materials, which nicely reflect the breadth of the field and convey the excitement of the individuals involved in it, who are trying to translate graphene and related materials from the laboratory into a real, high-impact technology. PMID:27478083