Science.gov

Sample records for 2-d seismic velocity

  1. Blind test of methods for obtaining 2-D near-surface seismic velocity models from first-arrival traveltimes

    USGS Publications Warehouse

    Zelt, Colin A.; Haines, Seth; Powers, Michael H.; Sheehan, Jacob; Rohdewald, Siegfried; Link, Curtis; Hayashi, Koichi; Zhao, Don; Zhou, Hua-wei; Burton, Bethany L.; Petersen, Uni K.; Bonal, Nedra D.; Doll, William E.

    2013-01-01

    Seismic refraction methods are used in environmental and engineering studies to image the shallow subsurface. We present a blind test of inversion and tomographic refraction analysis methods using a synthetic first-arrival-time dataset that was made available to the community in 2010. The data are realistic in terms of the near-surface velocity model, shot-receiver geometry and the data's frequency and added noise. Fourteen estimated models were determined by ten participants using eight different inversion algorithms, with the true model unknown to the participants until it was revealed at a session at the 2011 SAGEEP meeting. The estimated models are generally consistent in terms of their large-scale features, demonstrating the robustness of refraction data inversion in general, and the eight inversion algorithms in particular. When compared to the true model, all of the estimated models contain a smooth expression of its two main features: a large offset in the bedrock and the top of a steeply dipping low-velocity fault zone. The estimated models do not contain a subtle low-velocity zone and other fine-scale features, in accord with conventional wisdom. Together, the results support confidence in the reliability and robustness of modern refraction inversion and tomographic methods.

  2. 2D Time-lapse Seismic Tomography Using An Active Time Constraint (ATC) Approach

    EPA Science Inventory

    We propose a 2D seismic time-lapse inversion approach to image the evolution of seismic velocities over time and space. The forward modeling is based on solving the eikonal equation using a second-order fast marching method. The wave-paths are represented by Fresnel volumes rathe...

  3. On Animating 2D Velocity Fields

    NASA Technical Reports Server (NTRS)

    Kao, David; Pang, Alex; Yan, Jerry (Technical Monitor)

    2001-01-01

    A velocity field, even one that represents a steady state flow, implies a dynamical system. Animated velocity fields is an important tool in understanding such complex phenomena. This paper looks at a number of techniques that animate velocity fields and propose two new alternatives. These are texture advection and streamline cycling. The common theme among these techniques is the use of advection on some texture to generate a realistic animation of the velocity field. Texture synthesis and selection for these methods are presented. Strengths and weaknesses of the techniques are also discussed in conjunctions with several examples.

  4. On Animating 2D Velocity Fields

    NASA Technical Reports Server (NTRS)

    Kao, David; Pang, Alex

    2000-01-01

    A velocity field. even one that represents a steady state flow implies a dynamical system. Animated velocity fields is an important tool in understanding such complex phenomena. This paper looks at a number of techniques that animate velocity fields and propose two new alternatives, These are texture advection and streamline cycling. The common theme among these techniques is the use of advection on some texture to generate a realistic animation of the velocity field. Texture synthesis and selection for these methods are presented. Strengths and weaknesses of the techniques are also discussed in conjunction with several examples.

  5. 2D Seismic Reflection Data across Central Illinois

    SciTech Connect

    Smith, Valerie; Leetaru, Hannes

    2014-09-30

    In a continuing collaboration with the Midwest Geologic Sequestration Consortium (MGSC) on the Evaluation of the Carbon Sequestration Potential of the Cambro-Ordovician Strata of the Illinois and Michigan Basins project, Schlumberger Carbon Services and WesternGeco acquired two-dimensional (2D) seismic data in the Illinois Basin. This work included the design, acquisition and processing of approximately 125 miles of (2D) seismic reflection surveys running west to east in the central Illinois Basin. Schlumberger Carbon Services and WesternGeco oversaw the management of the field operations (including a pre-shoot planning, mobilization, acquisition and de-mobilization of the field personnel and equipment), procurement of the necessary permits to conduct the survey, post-shoot closure, processing of the raw data, and provided expert consultation as needed in the interpretation of the delivered product. Three 2D seismic lines were acquired across central Illinois during November and December 2010 and January 2011. Traversing the Illinois Basin, this 2D seismic survey was designed to image the stratigraphy of the Cambro-Ordovician sections and also to discern the basement topography. Prior to this survey, there were no regionally extensive 2D seismic data spanning this section of the Illinois Basin. Between the NW side of Morgan County and northwestern border of Douglas County, these seismic lines ran through very rural portions of the state. Starting in Morgan County, Line 101 was the longest at 93 miles in length and ended NE of Decatur, Illinois. Line 501 ran W-E from the Illinois Basin – Decatur Project (IBDP) site to northwestern Douglas County and was 25 miles in length. Line 601 was the shortest and ran N-S past the IBDP site and connected lines 101 and 501. All three lines are correlated to well logs at the IBDP site. Originally processed in 2011, the 2D seismic profiles exhibited a degradation of signal quality below ~400 millisecond (ms) which made

  6. Development of the Borehole 2-D Seismic Tomography Software Using MATLAB

    NASA Astrophysics Data System (ADS)

    Nugraha, A. D.; Syahputra, A.; Fatkhan, F.; Sule, R.; Hendriyana, A.

    2011-12-01

    We developed 2-D borehole seismic tomography software that we called "EARTHMAX-2D TOMOGRAPHY" to image subsurface physical properties including P-wave and S-wave velocities between two boreholes. We used Graphic User Interface (GUI) facilities of MATLAB programming language to create the software. In this software, we used travel time of seismic waves from source to receiver by using pseudo bending ray tracing method as input for tomography inversion. We can also set up a model parameterization, initial velocity model, ray tracing processes, conduct borehole seismic tomography inversion, and finally visualize the inversion results. The LSQR method was applied to solve of tomography inversion solution. We provided the Checkerboard Test Resolution (CTR) to evaluate the model resolution of the tomography inversion. As validation of this developed software, we tested it for geotechnical purposes. We then conducted data acquisition in the "ITB X-field" that is located on ITB campus. We used two boreholes that have a depth of 39 meters. Seismic wave sources were generated by impulse generator and sparker and then they were recorded by borehole hydrophone string type 3. Later on, we analyzed and picked seismic arrival time as input for tomography inversion. As results, we can image the estimated weathering layer, sediment layer, and basement rock in the field depicted by seismic wave structures. More detailed information about the developed software will be presented. Keywords: borehole, tomography, earthmax-2D, inversion

  7. Estimating 2-D vector velocities using multidimensional spectrum analysis.

    PubMed

    Oddershede, Niels; Løvstakken, Lasse; Torp, Hans; Jensen, Jørgen Arendt

    2008-08-01

    Wilson (1991) presented an ultrasonic wideband estimator for axial blood flow velocity estimation through the use of the 2-D Fourier transform. It was shown how a single velocity component was concentrated along a line in the 2-D Fourier space, where the slope was given by the axial velocity. Later, it was shown that this approach could also be used for finding the lateral velocity component by also including a lateral sampling. A single velocity component would then be concentrated along a plane in the 3-D Fourier space, tilted according to the 2 velocity components. This paper presents 2 new velocity estimators for finding both the axial and lateral velocity components. The estimators essentially search for the plane in the 3- D Fourier space, where the integrated power spectrum is largest. The first uses the 3-D Fourier transform to find the power spectrum, while the second uses a minimum variance approach. Based on this plane, the axial and lateral velocity components are estimated. Several phantom measurements, for flow-to-depth angles of 60, 75, and 90 degrees, were performed. Multiple parallel lines were beamformed simultaneously, and 2 different receive apodization schemes were tried. The 2 estimators were then applied to the data. The axial velocity component was estimated with an average standard deviation below 2.8% of the peak velocity, while the average standard deviation of the lateral velocity estimates was between 2.0% and 16.4%. The 2 estimators were also tested on in vivo data from a transverse scan of the common carotid artery, showing the potential of the vector velocity estimation method under in vivo conditions. PMID:18986918

  8. Newberry EGS Seismic Velocity Model

    DOE Data Explorer

    Templeton, Dennise

    2013-10-01

    We use ambient noise correlation (ANC) to create a detailed image of the subsurface seismic velocity at the Newberry EGS site down to 5 km. We collected continuous data for the 22 stations in the Newberry network, together with 12 additional stations from the nearby CC, UO and UW networks. The data were instrument corrected, whitened and converted to single bit traces before cross correlation according to the methodology in Benson (2007). There are 231 unique paths connecting the 22 stations of the Newberry network. The additional networks extended that to 402 unique paths crossing beneath the Newberry site.

  9. VECTUM. Irregular 2D Velocity Vector Field Plotting Package

    SciTech Connect

    McClurg, F.R.; Mousseau, V.A.

    1992-05-04

    VECTUM is a NCAR Graphics based package, for generating a plot of an irregular 2D velocity vector field. The program reads an ASCII database of x, y, u, v, data pairs and produces a plot in Computer Graphics Metafile (CGM) format. The program also uses an ASCII parameter file for controlling annotation details such as the plot title, arrowhead style, scale of vectors, windowing, etc. Simple geometry (i.e. lines, arcs, splines) can be defined to be included with the velocity vectors. NCAR Graphics drivers can be used to display the CGM file into PostScript, HPGL, HDF, etc, output.

  10. The development and testing of a 2D laboratory seismic modelling system for heterogeneous structure investigations

    NASA Astrophysics Data System (ADS)

    Mo, Yike; Greenhalgh, Stewart A.; Robertsson, Johan O. A.; Karaman, Hakki

    2015-05-01

    Lateral velocity variations and low velocity near-surface layers can produce strong scattered and guided waves which interfere with reflections and lead to severe imaging problems in seismic exploration. In order to investigate these specific problems by laboratory seismic modelling, a simple 2D ultrasonic model facility has been recently assembled within the Wave Propagation Lab at ETH Zurich. The simulated geological structures are constructed from 2 mm thick metal and plastic sheets, cut and bonded together. The experiments entail the use of a piezoelectric source driven by a pulse amplifier at ultrasonic frequencies to generate Lamb waves in the plate, which are detected by piezoelectric receivers and recorded digitally on a National Instruments recording system, under LabVIEW software control. The 2D models employed were constructed in-house in full recognition of the similitude relations. The first heterogeneous model features a flat uniform low velocity near-surface layer and deeper dipping and flat interfaces separating different materials. The second model is comparable but also incorporates two rectangular shaped inserts, one of low velocity, the other of high velocity. The third model is identical to the second other than it has an irregular low velocity surface layer of variable thickness. Reflection as well as transmission experiments (crosshole & vertical seismic profiling) were performed on each model. The two dominant Lamb waves recorded are the fundamental symmetric mode (non-dispersive) and the fundamental antisymmetric (flexural) dispersive mode, the latter normally being absent when the source transducer is located on a model edge but dominant when it is on the flat planar surface of the plate. Experimental group and phase velocity dispersion curves were determined and plotted for both modes in a uniform aluminium plate. For the reflection seismic data, various processing techniques were applied, as far as pre-stack Kirchhoff migration. The

  11. Seismic velocity estimation from time migration

    NASA Astrophysics Data System (ADS)

    Cameron, M. K.; Fomel, S. B.; Sethian, J. A.

    2007-08-01

    We address the problem of estimating seismic velocities inside the Earth which is necessary for obtaining seismic images in regular Cartesian coordinates. The main goals are to develop algorithms to convert time-migration velocities to true seismic velocities, and to convert time-migrated images to depth images in regular Cartesian coordinates. Our main results are three-fold. First, we establish a theoretical relation between the true seismic velocities and the 'time-migration velocities' using the paraxial ray tracing. Second, we formulate an appropriate inverse problem describing the relation between time-migration velocities and depth velocities, and show that this problem is mathematically ill posed, i.e., unstable to small perturbations. Third, we develop numerical algorithms to solve regularized versions of these equations which can be used to recover smoothed velocity variations. Our algorithms consist of efficient time-to-depth conversion algorithms, based on Dijkstra-like fast marching methods, as well as level set and ray tracing algorithms for transforming Dix velocities into seismic velocities. Our algorithms are applied to both two-dimensional and three-dimensional problems, and we test them on a collection of both synthetic examples and field data.

  12. Factors Affecting Seismic Velocity in Alluvium

    NASA Astrophysics Data System (ADS)

    Huckins-Gang, H.; Mercadante, J.; Prothro, L.

    2015-12-01

    Yucca Flat at the Nevada National Security Site has been selected as the Source Physics Experiment (SPE) Dry Alluvium Geology Phase II site. The alluvium in this part of Yucca Flat is typical of desert basin fill, with discontinuous beds that are highly variable in clast size and provenance. Detailed understanding of the subsurface geology will be needed for interpretation of the SPE seismic data. A 3D seismic velocity model, created for Yucca Flat using interval seismic velocity data, shows variations in velocity within alluvium near the SPE Phase II site beyond the usual gradual increase of density with depth due to compaction. In this study we examined borehole lithologic logs, geophysical logs, downhole videos, and laboratory analyses of sidewall core samples to understand which characteristics of the alluvium are related to these variations in seismic velocity. Seismic velocity of alluvium is generally related to its density, which can be affected by sediment provenance, clast size, gravel percentage, and matrix properties, in addition to compaction. This study presents a preliminary subdivision of the alluvial strata in the SPE Phase II area into mappable units expected to be significant to seismic modeling. Further refinements of the alluvial units may be possible when seismic data are obtained from SPE Phase II tests. This work was done by National Security Technologies, LLC, under Contract No. DE-AC52-06NA25946 with the U.S. Department of Energy.

  13. Multi-method determination of continuous 2D velocity profiles from the surface to 1 km

    NASA Astrophysics Data System (ADS)

    Peterie, S.; Miller, R. D.; Ivanov, J.; Schwenk, J.; Bailey, B. L.; Schwarzer, J.; Markiewicz, R.

    2012-12-01

    Compressional and shear reflection data provide critical measurements of velocity and attenuation that are necessary for numerical simulations of site response from earthquake energy and seismic investigations to lithologic and pore characterizations. Imperative for accurate site response models is a seismic velocity model extending from the surface to the depth of interest that is representative of the true subsurface. In general, no seismic method can be used to characterize the shallowest (< 30 m) and deepest (30 m to 1 km) portions of the subsurface in a single pass with a consistent set of equipment and acquisition parameters. With four unique seismic surveys targeting different portions of the subsurface and different components of the seismic wavefield, we were able to build a comprehensive dataset that facilitated continuous 2D velocity profiles. The upper kilometer underlying our study site consists of Lake Bonneville lucustrine sediments and post-Bonneville alluvium and colluvium from the nearby Wasatch Front in north central Utah (Eardley, 1938; Hintze, 2005). Four unique seismic surveys were acquired along each of two 1.5 km lines located approximately 3 km apart. Data for tomography and multi-channel analysis of surface waves (MASW) were acquired with a bungee accelerated weight drop and 4.5 Hz compressional geophones. P-wave and S-wave reflection data were acquired with an IVI minivib 1 and 28 Hz compressional and 14 Hz SH geophones, respectively. P-wave and S-wave velocities from the surface to 30 m were determined using tomography and MASW, respectively. Stacking velocities of reflections on common midpoint gathers from the vibroseis data were used to determine Vp and Vs from approximately 30 m to nearly 1 km below ground surface. Each Vp and Vs dataset were merged to generate continuous interval and average velocity profiles. The sutured velocity cross-sections were produced for both P- and S-waves in a fashion not previously described in the

  14. 2D reflection seismic investigations in the Kevitsa Ni-Cu-PGE deposit, northern Finland

    NASA Astrophysics Data System (ADS)

    Koivisto, E.; Malehmir, A.; Heikkinen, P.; Heinonen, S.; Kukkonen, I.

    2012-04-01

    In 2007, 2D reflection seismic survey was conducted in the Kevitsa Ni-Cu-PGE (platinum group elements) deposit, northern Finland as a part of the HIRE (High Resolution Reflection Seismics for Ore Exploration 2007-2010) project of the Geological Survey of Finland. The Kevitsa 2D seismic survey consists of four connected survey lines, each approximately 6-8 km long. The survey lines traverse the ore-bearing Kevitsa intrusive complex and partly also the geological units surrounding it, thus providing an insight to the structural make-up of the complex. The aim of the survey was to delineate the overall shape and basal contact of the Kevitsa ultramafic intrusive complex at depth, to study the seismic response of the disseminated Kevitsa Ni-Cu-PGE deposit, and to potentially find indications for new ore deposits. Herein, we present results from processing and interpretation of the Kevitsa 2D reflection seismic data. In the data processing sequence, specific focus was given to finding optimal CDP-line geometries for the crooked-line survey profiles, and to detailed velocity analysis. We also conducted a simplified cross-dip analysis to assess the potential cross-profile dips of the reflectors, however, application of the cross-dip corrections was found to be unnecessary, and our conventional processing sequence involving prestack DMO corrections followed by poststack migration resulted in high-quality images of the subsurface. The seismic sections presented in this work reveal a detailed reflectivity structure of the uppermost 5 kilometers. The known Kevitsa deposit was found to have a specific seismic signature, and the seismic images were used to establish previously unknown shape and extent of the ore-bearing Kevitsa intrusive complex, thus providing a framework for effective future exploration in the area. Interestingly, the data reveal complex internal reflectivity structure within the intrusion, suggesting multiple levels of intrusion within the pre

  15. 2-D traveltime and waveform inversion for improved seismic imaging: Naga Thrust and Fold Belt, India

    NASA Astrophysics Data System (ADS)

    Jaiswal, Priyank; Zelt, Colin A.; Bally, Albert W.; Dasgupta, Rahul

    2008-05-01

    Exploration along the Naga Thrust and Fold Belt in the Assam province of Northeast India encounters geological as well as logistic challenges. Drilling for hydrocarbons, traditionally guided by surface manifestations of the Naga thrust fault, faces additional challenges in the northeast where the thrust fault gradually deepens leaving subtle surface expressions. In such an area, multichannel 2-D seismic data were collected along a line perpendicular to the trend of the thrust belt. The data have a moderate signal-to-noise ratio and suffer from ground roll and other acquisition-related noise. In addition to data quality, the complex geology of the thrust belt limits the ability of conventional seismic processing to yield a reliable velocity model which in turn leads to poor subsurface image. In this paper, we demonstrate the application of traveltime and waveform inversion as supplements to conventional seismic imaging and interpretation processes. Both traveltime and waveform inversion utilize the first arrivals that are typically discarded during conventional seismic processing. As a first step, a smooth velocity model with long wavelength characteristics of the subsurface is estimated through inversion of the first-arrival traveltimes. This velocity model is then used to obtain a Kirchhoff pre-stack depth-migrated image which in turn is used for the interpretation of the fault. Waveform inversion is applied to the central part of the seismic line to a depth of ~1 km where the quality of the migrated image is poor. Waveform inversion is performed in the frequency domain over a series of iterations, proceeding from low to high frequency (11-19 Hz) using the velocity model from traveltime inversion as the starting model. In the end, the pre-stack depth-migrated image and the waveform inversion model are jointly interpreted. This study demonstrates that a combination of traveltime and waveform inversion with Kirchhoff pre-stack depth migration is a promising approach

  16. 2D seismic reflection tomography in strongly anisotropic media

    NASA Astrophysics Data System (ADS)

    Huang, Guangnan; Zhou, Bing; Li, Hongxi; Zhang, Hua; Li, Zelin

    2014-12-01

    Seismic traveltime tomography is an effective method to reconstruct underground anisotropic parameters. Currently, most anisotropic tomographic methods were developed under the assumption of weak anisotropy. The tomographic method proposed here can be implemented for imaging subsurface targets in strongly anisotropic media with a known tilted symmetry axis, since the adopted ray tracing method is suitable for anisotropic media with arbitrary degree. There are three kinds of reflection waves (qP, qSV and qSH waves) that were separately used to invert the blocky abnormal body model. The reflection traveltime tomographiy is developed here because a surface observation system is the most economical and practical way compared with crosswell and VSP. The numerical examples show that the traveltimes of qP reflection wave have inverted parameters {{c}11},{{c}13},{{c}33} \\text{and} {{c}44} successfully. Traveltimes of qSV reflection wave have inverted parameters {{c}11},{{c}33} \\text{and} {{c}44} successfully, with the exception of the {{c}13}, since it is less sensitive than other parameters. Traveltimes of qSH reflection wave also have inverted parameters {{c}44} \\text{and} {{c}66} successfully. In addition, we find that the velocity sensitivity functions (derivatives of phase velocity with respect to elastic moduli parameters) and raypath illuminating angles have a great influence on the qualities of tomograms according to the inversion of theoretical models. Finally, the numerical examples confirm that the reflection traveltime tomography can be applied to invert strongly anisotropic models.

  17. Seismic velocity estimation from time migration

    SciTech Connect

    Cameron, Maria Kourkina

    2007-05-31

    earth becomes horizontally nonconstant. Even mild lateral velocity variations can significantly distort subsurface structures on the time migrated images. Conversely, depth migration provides the potential for more accurate reconstructions, since it can handle significant lateral variations. However, this approach requires good input data, known as a 'velocity model'. We address the problem of estimating seismic velocities inside the earth, i.e., the problem of constructing a velocity model, which is necessary for obtaining seismic images in regular Cartesian coordinates. The main goals are to develop algorithms to convert time-migration velocities to true seismic velocities, and to convert time-migrated images to depth images in regular Cartesian coordinates. Our main results are three-fold. First, we establish a theoretical relation between the true seismic velocities and the 'time migration velocities' using the paraxial ray tracing. Second, we formulate an appropriate inverse problem describing the relation between time migration velocities and depth velocities, and show that this problem is mathematically ill-posed, i.e., unstable to small perturbations. Third, we develop numerical algorithms to solve regularized versions of these equations which can be used to recover smoothed velocity variations. Our algorithms consist of efficient time-to-depth conversion algorithms, based on Dijkstra-like Fast Marching Methods, as well as level set and ray tracing algorithms for transforming Dix velocities into seismic velocities. Our algorithms are applied to both two-dimensional and three-dimensional problems, and we test them on a collection of both synthetic examples and field data.

  18. Seismic velocity estimation from time migration

    NASA Astrophysics Data System (ADS)

    Cameron, Maria Kourkina

    earth becomes horizontally nonconstant. Even mild lateral velocity variations can significantly distort subsurface structures on the time migrated images. Conversely, depth migration provides the potential for more accurate reconstructions, since it can handle significant lateral variations. However, this approach requires good input data, known as a "velocity model". We address the problem of estimating seismic velocities inside the earth, i.e., the problem of constructing a velocity model, which is necessary for obtaining seismic images in regular Cartesian coordinates. The main goals are to develop algorithms to convert time-migration velocities to true seismic velocities, and to convert time-migrated images to depth images in regular Cartesian coordinates. Our main results are three-fold. First, we establish a theoretical relation between the true seismic velocities and the "time migration velocities" using the paraxial ray tracing. Second, we formulate an appropriate inverse problem describing the relation between time migration velocities and depth velocities, and show that this problem is mathematically ill-posed, i.e., unstable to small perturbations. Third, we develop numerical algorithms to solve regularized versions of these equations which can be used to recover smoothed velocity variations. Our algorithms consist of efficient time-to-depth conversion algorithms, based on Dijkstra-like Fast Marching Methods, as well as level set and ray tracing algorithms for transforming Dix velocities into seismic velocities. Our algorithms are applied to both two-dimensional and three-dimensional problems, and we test them on a collection of both synthetic examples and field data.

  19. Measurements of Laser Imprinting Using 2-D Velocity Interferometry

    NASA Astrophysics Data System (ADS)

    Boehly, T. R.; Fiksel, G.; Hu, S. X.; Goncharov, V. N.; Sangster, T. C.; Celliers, P. M.

    2014-10-01

    Evaluating laser imprinting and its effect on target performance is critical to direct-drive inertial confinement fusion research. Using high-resolution velocity interferometry, we measure modulations in the velocity of shock waves produced by the 351-nm beams on OMEGA. These modulations result from nonuniformities in the drive laser beams. We use these measurements to evaluate the effect on imprinting of multibeam irradiation and metal layers on both plastic and cryogenic deuterium targets driven with 100-ps pulses. This material is based upon work supported by the Department of Energy National Nuclear Security Administration under Award Number DE-NA0001944.

  20. Research of CRP-based irregular 2D seismic acquisition

    NASA Astrophysics Data System (ADS)

    Zhao, Hu; Yin, Cheng; He, Guang-Ming; Chen, Ai-Ping; Jing, Long-Jiang

    2015-03-01

    Seismic exploration in the mountainous areas of western Chinese is extremely difficult because of the complexity of the surface and subsurface, which results in shooting difficulties, seismic data with low signal-to-noise ratio, and strong interference. The complexity of the subsurface structure leads to strong scattering of the reflection points; thus, the curved-line acquisition method has been used. However, the actual subsurface structural characteristics have been rarely considered. We propose a design method for irregular acquisition based on common reflection points (CRP) to avoid difficult-to-shoot areas, while considering the structural characteristics and CRP positions and optimizing the surface-receiving line position. We arrange the positions of the receiving points to ensure as little dispersion of subsurface CRP as possible to improve the signal-to-noise ratio of the seismic data. We verify the applicability of the method using actual data from a site in Sichuan Basin. The proposed method apparently solves the problem of seismic data acquisition and facilitates seismic exploration in structurally complex areas.

  1. 1D and 2D simulations of seismic wave propagation in fractured media

    NASA Astrophysics Data System (ADS)

    Möller, Thomas; Friederich, Wolfgang

    2016-04-01

    Fractures and cracks have a significant influence on the propagation of seismic waves. Their presence causes reflections and scattering and makes the medium effectively anisotropic. We present a numerical approach to simulation of seismic waves in fractured media that does not require direct modelling of the fracture itself, but uses the concept of linear slip interfaces developed by Schoenberg (1980). This condition states that at an interface between two imperfectly bonded elastic media, stress is continuous across the interface while displacement is discontinuous. It is assumed that the jump of displacement is proportional to stress which implies a jump in particle velocity at the interface. We use this condition as a boundary condition to the elastic wave equation and solve this equation in the framework of a Nodal Discontinuous Galerkin scheme using a velocity-stress formulation. We use meshes with tetrahedral elements to discretise the medium. Each individual element face may be declared as a slip interface. Numerical fluxes have been derived by solving the 1D Riemann problem for slip interfaces with elastic and viscoelastic rheology. Viscoelasticity is realised either by a Kelvin-Voigt body or a Standard Linear Solid. These fluxes are not limited to 1D and can - with little modification - be used for simulations in higher dimensions as well. The Nodal Discontinuous Galerkin code "neXd" developed by Lambrecht (2013) is used as a basis for the numerical implementation of this concept. We present examples of simulations in 1D and 2D that illustrate the influence of fractures on the seismic wavefield. We demonstrate the accuracy of the simulation through comparison to an analytical solution in 1D.

  2. 2-D Gaussian beam imaging of multicomponent seismic data in anisotropic media

    NASA Astrophysics Data System (ADS)

    Protasov, M. I.

    2015-12-01

    An approach for true-amplitude seismic beam imaging of multicomponent seismic data in 2-D anisotropic elastic media is presented and discussed. Here, the recovered true-amplitude function is a scattering potential. This approach is a migration procedure based on the weighted summation of pre-stack data. The true-amplitude weights are computed by applying Gaussian beams (GBs). We shoot a pair of properly chosen GBs with a fixed dip and opening angles from the current imaging point towards an acquisition system. This pair of beams is used to compute a true-amplitude selective image of a rapid velocity variation. The total true-amplitude image is constructed by superimposing selective images computed for a range of available dip angles. The global regularity of the GBs allows one to disregard whether a ray field is regular or irregular. P- and S-wave GBs can be used to handle raw multicomponent data without separating the waves. The use of anisotropic GBs allows one to take into account the anisotropy of the background model.

  3. Combined analysis of 2-D electrical resistivity, seismic refraction and geotechnical investigations for Bukit Bunuh complex crater

    NASA Astrophysics Data System (ADS)

    Azwin, I. N.; Saad, Rosli; Saidin, Mokhtar; Nordiana, M. M.; Anderson Bery, Andy; Hidayah, I. N. E.

    2015-01-01

    Interest in studying impact crater on earth has increased tremendously due to its importance in geologic events, earth inhabitant history as well as economic value. The existences of few shock metamorphism and crater morphology evidences are discovered in Bukit Bunuh, Malaysia thus detailed studies are performed using geophysical and geotechnical methods to verify the type of the crater and characteristics accordingly. This paper presents the combined analysis of 2-D electrical resistivity, seismic refraction, geotechnical SPT N value, moisture content and RQD within the study area. Three stages of data acquisition are made starting with regional study followed by detailed study on West side and East side. Bulk resistivity and p-wave seismic velocity were digitized from 2-D resistivity and seismic sections at specific distance and depth for corresponding boreholes and samples taken. Generally, Bukit Bunuh shows the complex crater characteristics. Standard table of bulk resistivity and p-wave seismic velocity against SPT N value, moisture content and RQD are produce according to geological classifications of impact crater; inside crater, rim/slumped terrace and outside crater.

  4. Seismicity and Improved Velocity Structure in Kuwait

    SciTech Connect

    Gok, R M; Rodgers, A J; Al-Enezi, A

    2006-01-26

    The Kuwait National Seismic Network (KNSN) began operation in 1997 and consists of nine three-component stations (eight short-period and one broadband) and is operated by the Kuwait Institute for Scientific Research. Although the region is largely believed to be aseismic, considerable local seismicity is recorded by KNSN. Seismic events in Kuwait are clustered in two main groups, one in the south and another in the north. The KNSN station distribution is able to capture the southern cluster within the footprint of the network but the northern cluster is poorly covered. Events tend to occur at depths ranging from the free surface to about 20 km. Events in the northern cluster tend to be deeper than those in south, however this might be an artifact of the station coverage. We analyzed KNSN recordings of nearly 200 local events to improve understanding of seismic events and crustal structure in Kuwait, performing several analyses with increasing complexity. First, we obtained an optimized one-dimensional (1D) velocity model for the entire region using the reported KNSN arrival times and routine locations. The resulting model is consistent with a recently obtained model from the joint inversion of receiver functions and surface wave group velocities. Crustal structure is capped by the thick ({approx} 7 km) sedimentary rocks of the Arabian Platform underlain by normal velocities for stable continental crust. Our new model has a crustal thickness of 44 km, constrained by an independent study of receiver functions and surface wave group velocities by Pasyanos et al (2006). Locations and depths of events after relocation with the new model are broadly consistent with those reported by KISR, although a few events move more than a few kilometers. We then used a double-difference tomography technique (tomoDD) to jointly locate the events and estimate three-dimensional (3D) velocity structure. TomoDD is based on hypoDD relocation algorithm and it makes use of both absolute and

  5. 2D seismic residual statics derived from refraction interferometry

    NASA Astrophysics Data System (ADS)

    Zhang, Chao; Zhang, Jie

    2016-07-01

    Refraction traveltimes have long been applied for deriving long-wavelength statics solutions. These traveltimes are also applied for the derivation of residual statics, but they must be sufficiently accurate at short wavelengths. In this study, we present a seismic residual statics method that applies interferometric theory to produce four stacked virtual refraction gathers with a significantly improved signal-to-noise ratio. These gathers are composed of forward and backward virtual refraction gathers for receivers and shots. By picking the first arrivals on these four gathers followed by the application of a set of refraction equations, reliable residual statics solutions can be derived. This approach can help deal with noisy data and also avoid using traveltime picks from shot gathers. We demonstrate the approach by applying it to synthetic data as well as real data.

  6. Lateral variations in lower mantle seismic velocity

    NASA Technical Reports Server (NTRS)

    Duffy, Thomas S.; Ahrens, Thomas J.

    1992-01-01

    To obtain a theoretical model which provides a rationale for the observed high values of velocity variations, the effect of a 0.1 to 0.2 percent partially molten volatile-rich material in various geometries which are heterogeneously dispersed in the lower mantle is examined. Data obtained indicate that, depending on aspect ratio and geometry, 0.1-0.2 percent partial melting in conjunction with about 100 K thermal anomalies can explain the seismic variations provided the compressibility of the melt differs by less than about 20 percent from the surrounding solid.

  7. Bernoulli-based random undersampling schemes for 2D seismic data regularization

    NASA Astrophysics Data System (ADS)

    Cai, Rui; Zhao, Qun; She, De-Ping; Yang, Li; Cao, Hui; Yang, Qin-Yong

    2014-09-01

    Seismic data regularization is an important preprocessing step in seismic signal processing. Traditional seismic acquisition methods follow the Shannon-Nyquist sampling theorem, whereas compressive sensing (CS) provides a fundamentally new paradigm to overcome limitations in data acquisition. Besides the sparse representation of seismic signal in some transform domain and the 1-norm reconstruction algorithm, the seismic data regularization quality of CS-based techniques strongly depends on random undersampling schemes. For 2D seismic data, discrete uniform-based methods have been investigated, where some seismic traces are randomly sampled with an equal probability. However, in theory and practice, some seismic traces with different probability are required to be sampled for satisfying the assumptions in CS. Therefore, designing new undersampling schemes is imperative. We propose a Bernoulli-based random undersampling scheme and its jittered version to determine the regular traces that are randomly sampled with different probability, while both schemes comply with the Bernoulli process distribution. We performed experiments using the Fourier and curvelet transforms and the spectral projected gradient reconstruction algorithm for 1-norm (SPGL1), and ten different random seeds. According to the signal-to-noise ratio (SNR) between the original and reconstructed seismic data, the detailed experimental results from 2D numerical and physical simulation data show that the proposed novel schemes perform overall better than the discrete uniform schemes.

  8. Seismic Velocity Measurements at Expanded Seismic Network Sites

    SciTech Connect

    Woolery, Edward W; Wang, Zhenming

    2005-01-01

    Structures at the Paducah Gaseous Diffusion Plant (PGDP), as well as at other locations in the northern Jackson Purchase of western Kentucky may be subjected to large far-field earthquake ground motions from the New Madrid seismic zone, as well as those from small and moderate-sized local events. The resultant ground motion a particular structure is exposed from such event will be a consequence of the earthquake magnitude, the structures' proximity to the event, and the dynamic and geometrical characteristics of the thick soils upon which they are, of necessity, constructed. This investigation evaluated the latter. Downhole and surface (i.e., refraction and reflection) seismic velocity data were collected at the Kentucky Seismic and Strong-Motion Network expansion sites in the vicinity of the Paducah Gaseous Diffusion Plant (PGDP) to define the dynamic properties of the deep sediment overburden that can produce modifying effects on earthquake waves. These effects are manifested as modifications of the earthquake waves' amplitude, frequency, and duration. Each of these three ground motion manifestations is also fundamental to the assessment of secondary earthquake engineering hazards such as liquefaction.

  9. Chicxulub Peak Ring Characteristics from 2D Reflection Seismic Survey

    NASA Astrophysics Data System (ADS)

    Mendoza-Cervantes, K.; Fucugauchi, J. U.; Gulick, S.

    2007-05-01

    Since 1980's research interest over Chicxulub crater located SE Gulf of Mexico, has grown not only because its relationship with the K-P(Cretaseous -Paleogene) extinction but because of its size (diameter ~ 200 km) and grade of preservation. Based on results from several surveys using different geophysical methods, Chicxulub has been classified as a multiring crater. A topographic high rising from crater floor was first recognized as the Chicxulub peak ring on four 1996 reflection seismic profiles but the low density of this data set made impossible to describe on detail this structure. Recently, during 2005 we carried out a marine survey acquiring 29 profiles. A grid located over the central marine portion of the crater was conformed by eleven profiles 80 km long oriented WSW-ENE and ten 25 km long NW-SE. Data was recorded on 480 channels spaced 12.5 cm on a 6 km streamer and air guns were shot every 50 m allowing us to image the earth up to 14 s TWTT. This new data set along with the 1996 profiles allow us to build up the first 3D image of Chicxulub peak ring as well as to analyze some important features of this ring. Results show that the peak ring lays down closer to the surface and the crater rim on its NW portion where it rises more abruptly from the crater floor reaching up to 430 m. Based on the information of the radial lines this characteristics change in clockwise direction being opposite on the NE. The relationship between the peak ring and other Chicxulub structures,such as the slump blocks and the dipping reflector, change as well in the same direction indicating that the peak ring is displaced to the NW. These asymmetries could be related to the process of formation of the peak ring as a result of: a)an asymmetric collapse of the central uplift which has been proved not to be related to impact direction, b) displacement of the central uplift towards the transient cavity rim or c)heterogeneities on impact surface predating the impact.

  10. Explore Seismic Velocity Change Associated with the 2010 Kaohsiung Earthquake by Ambient Noise Tomography

    NASA Astrophysics Data System (ADS)

    Ku, Chin-Shang; Wu, Yih-Min; Huang, Bor-Shouh; Huang, Win-Gee; Liu, Chun-Chi

    2016-04-01

    A ML 6.4 earthquake occurred on 4 March 2010 in Kaohsiung, the southern part of Taiwan, this shallow earthquake is the largest one of that area in the past few years. Some damages occurred on buildings and bridges after the earthquake, obvious surface deformation up to few cm was observed and the transportation including road and train traffic was also affected near the source area. Some studies about monitoring the velocity change induced by the big earthquake were carried out recently, most of studies used cross-correlation of the ambient noise-based method and indicated velocity drop was observed immediately after the big earthquake. However, this method is not able to constrain the depth of velocity change, and need to assume a homogeneous seismic velocity change during the earthquake. In this study, we selected 25 broadband seismic stations in the southern Taiwan and time period is from 2009/03 to 2011/03. Then we explored the velocity change associated with the 2010 Kaohsiung earthquake by applying ambient noise tomography (ANT) method. ANT is a way of using interferometry to image subsurface seismic velocity variations by using surface wave dispersions extracted from the ambient noise cross-correlation of seismic station-pairs, then the 2-D group velocity map with different periods could be extracted. Compare to ambient noise-based cross-correlation analysis, we estimated sensitivity kernel of dispersion curves and converted 2-D group velocity map from "with the period" to "with the depth" to have more constraints on the depth of velocity change. By subtracting shear velocity between "before" and "after" the earthquake, we could explore velocity change associated with the earthquake. Our result shows velocity reduction about 5-10% around the focal depth after the 2010 Kaohsiung earthquake and the post-seismic velocity recovery was observed with time period increasing, which may suggest a healing process of damaged rocks.

  11. 2D seismic data processing for straight lines in the loess plateaus in Fuxian of Shanbei

    NASA Astrophysics Data System (ADS)

    Li, Minjie; Chen, Yequan; Zhang, Hai; Pang, Shangming; Deng, Guozhen

    2005-01-01

    The crooked seismic lines along valleys were irregular previously in Fuxian of Shanbei, showing an irregular branch in plane, and hard to complete close grids. Therefore, it’s difficult to conduct reservoir inversion of 2D seismic data. In 2001, Zhongyuan Oilfield Company carried out the study on field acquisition methods and seismic processing technology in Fuxian. Straight lines were passing through plateaus and formed seismic grids by using flexible geometry with variable linear bins. Data processing involved model-inversion based refraction static correction, surface consistent amplitude compensation, deconvolution, and pre-stack noise attenuation. As the result, seismic data with a high fidelity was provided for the subsequent reservoir predictions, small-amplitude structure interpretation and integrative geologic study. Because all lines were jointed to form grids, comprehensive interpretation of reservoir inversion could be finally implemented by using the pseudo logging method to control lines without wells.

  12. Porosity estimation based on seismic wave velocity at shallow depths

    NASA Astrophysics Data System (ADS)

    Lee, Jong-Sub; Yoon, Hyung-Koo

    2014-06-01

    Seismic wave velocity and porosity are used for the estimation of dynamic behaviors in the Earth, including seismicity and liquefaction. To increase the resolution of subsurface observations, seismic wave velocity and porosity can be combined in a compound method. To this end, in this paper, we utilize and rearrange the Wood, Gassmann, and Foti methods - three techniques commonly used to estimate porosity based on seismic wave velocity at shallow depths. Seismic wave velocity is obtained by a field velocity probe using the horizontal transmission technique. Porosity calculated using the Gassmann method shows the highest reliability considering observed porosity criteria. The sensitivities of each method are compared using the error norm. Results show that the Gassmann method has low sensitivity for calculating porosity, whereas the Wood and Foti methods have high sensitivity. Consequently, the Gassmann method is recommended for estimating porosity at shallow depths when using measured elastic wave velocity.

  13. Seismic velocity, attenuation and rheology of the upper mantle

    NASA Technical Reports Server (NTRS)

    Anderson, D. L.; Minster, J. B.

    1980-01-01

    Seismic and rheological properties of the upper mantle in the vicinity of the low-velocity zone are expressed in terms of relaxation by dislocation glide. Dislocation bowing in the glide plane explains seismic velocities and attenuation. Climbing at higher stresses for longer periods of time give the observed viscosity, and explain the low velocity and high temperature attenuation found at seismic frequencies. Due to differing parameters, separate terms for thermal, seismic and rheological lithospheres are proposed. All three lithospheres, however, are related and are functions of temperature, and must be specified by parameters such as period, stress, and stress duration.

  14. Error propagation for velocity and shear stress prediction using 2D models for environmental management

    NASA Astrophysics Data System (ADS)

    Pasternack, Gregory B.; Gilbert, Andrew T.; Wheaton, Joseph M.; Buckland, Evan M.

    2006-08-01

    SummaryResource managers, scientists, government regulators, and stakeholders are considering sophisticated numerical models for managing complex environmental problems. In this study, observations from a river-rehabilitation experiment involving gravel augmentation and spawning habitat enhancement were used to assess sources and magnitudes of error in depth, velocity, and shear velocity predictions made at the 1-m scale with a commercial two-dimensional (depth-averaged) model. Error in 2D model depth prediction averaged 21%. This error was attributable to topographic survey resolution, which at 1 pt per 1.14 m 2, was inadequate to resolve small humps and depressions influencing point measurements. Error in 2D model velocity prediction averaged 29%. More than half of this error was attributable to depth prediction error. Despite depth and velocity error, 56% of tested 2D model predictions of shear velocity were within the 95% confidence limit of the best field-based estimation method. Ninety percent of the error in shear velocity prediction was explained by velocity prediction error. Multiple field-based estimates of shear velocity differed by up to 160%, so the lower error for the 2D model's predictions suggests such models are at least as accurate as field measurement. 2D models enable detailed, spatially distributed estimates compared to the small number measurable in a field campaign of comparable cost. They also can be used for design evaluation. Although such numerical models are limited to channel types adhering to model assumptions and yield predictions only accurate to ˜20-30%, they can provide a useful tool for river-rehabilitation design and assessment, including spatially diverse habitat heterogeneity as well as for pre- and post-project appraisal.

  15. Using overlapping sonobuoy data from the Ross Sea to construct a 2D deep crustal velocity model

    NASA Astrophysics Data System (ADS)

    Selvans, M. M.; Clayton, R. W.; Stock, J. M.; Granot, R.

    2012-03-01

    Sonobuoys provide an alternative to using long streamers while conducting multi-channel seismic (MCS) studies, in order to provide deeper velocity control. We present analysis and modeling techniques for interpreting the sonobuoy data and illustrate the method with ten overlapping sonobuoys collected in the Ross Sea, offshore from Antarctica. We demonstrate the importance of using the MCS data to correct for ocean currents and changes in ship navigation, which is required before using standard methods for obtaining a 1D velocity profile from each sonobuoy. We verify our 1D velocity models using acoustic finite-difference (FD) modeling and by performing depth migration on the data, and demonstrate the usefulness of FD modeling for tying interval velocities to the shallow crust imaged using MCS data. Finally, we show how overlapping sonobuoys along an MCS line can be used to construct a 2D velocity model of the crust. The velocity model reveals a thin crust (5.5 ± 0.4 km) at the boundary between the Adare and Northern Basins, and implies that the crustal structure of the Northern Basin may be more similar to that of the oceanic crust in the Adare Basin than to the stretched continental crust further south in the Ross Sea.

  16. Discrimination of porosity and fluid saturation using seismic velocity analysis

    DOEpatents

    Berryman, James G.

    2001-01-01

    The method of the invention is employed for determining the state of saturation in a subterranean formation using only seismic velocity measurements (e.g., shear and compressional wave velocity data). Seismic velocity data collected from a region of the formation of like solid material properties can provide relatively accurate partial saturation data derived from a well-defined triangle plotted in a (.rho./.mu., .lambda./.mu.)-plane. When the seismic velocity data are collected over a large region of a formation having both like and unlike materials, the method first distinguishes the like materials by initially plotting the seismic velocity data in a (.rho./.lambda., .mu./.lambda.)-plane to determine regions of the formation having like solid material properties and porosity.

  17. Evolution of seismic layer 2B across the Juan de Fuca Ridge from hydrophone streamer 2-D traveltime tomography

    NASA Astrophysics Data System (ADS)

    Newman, Kori R.; Nedimović, Mladen R.; Canales, J. Pablo; Carbotte, Suzanne M.

    2011-05-01

    How oceanic crust evolves has important implications for understanding both subduction earthquake hazards and energy and mass exchange between the Earth's interior and the oceans. Although considerable work has been done characterizing the evolution of seismic layer 2A, there has been little analysis of the processes that affect layer 2B after formation. Here we present high-resolution 2-D tomographic models of seismic layer 2B along ˜300 km long multichannel seismic transects crossing the Endeavour, Northern Symmetric, and Cleft segments of the Juan de Fuca Ridge. These models show that seismic layer 2B evolves rapidly following a different course than layer 2A. The upper layer 2B velocities increase on average by 0.8 km/s and reach a generally constant velocity of 5.2 ± 0.3 km/s within the first 0.5 Myr after crustal formation. This suggests that the strongest impact on layer 2B evolution may be that of mineral precipitation due to "active" hydrothermal circulation centered about the ridge crest and driven by the heat from the axial magma chamber. Variations in upper layer 2B velocity with age at time scales ≥0.5 Ma show correlation about the ridge axis indicating that in the long term, crustal accretion processes affect both sides of the ridge axis in a similar way. Below the 0.5 Ma threshold, differences in 2B velocity are likely imprinted during crustal formation or early crustal evolution. Layer 2B velocities at propagator wakes (5.0 ± 0.2 km/s), where enhanced faulting and cracking are expected, and at areas that coincide with extensional or transtensional faulting are on average slightly slower than in normal mature upper layer 2B. Analysis of the layer 2B velocities from areas where the hydrothermal patterns are known shows that the locations of current and paleohydrothermal discharge and recharge zones are marked by reduced and increased upper layer 2B velocities, respectively. Additionally, the distance between present up-flow and down-flow zones is

  18. Compressive and Shear Wave Velocity Profiles using Seismic Refraction Technique

    NASA Astrophysics Data System (ADS)

    Aziman, M.; Hazreek, Z. A. M.; Azhar, A. T. S.; Haimi, D. S.

    2016-04-01

    Seismic refraction measurement is one of the geophysics exploration techniques to determine soil profile. Meanwhile, the borehole technique is an established way to identify the changes of soil layer based on number of blows penetrating the soil. Both techniques are commonly adopted for subsurface investigation. The seismic refraction test is a non-destructive and relatively fast assessment compared to borehole technique. The soil velocities of compressive wave and shear wave derived from the seismic refraction measurements can be directly utilised to calculate soil parameters such as soil modulus and Poisson’s ratio. This study investigates the seismic refraction techniques to obtain compressive and shear wave velocity profile. Using the vertical and horizontal geophones as well as vertical and horizontal strike directions of the transient seismic source, the propagation of compressive wave and shear wave can be examined, respectively. The study was conducted at Sejagung Sri Medan. The seismic velocity profile was obtained at a depth of 20 m. The velocity of the shear wave is about half of the velocity of the compression wave. The soil profiles of compressive and shear wave velocities were verified using the borehole data and showed good agreement with the borehole data.

  19. Multiple triangulation analysis: application to determine the velocity of 2-D structures

    NASA Astrophysics Data System (ADS)

    Zhou, X.-Z.; Zong, Q.-G.; Wang, J.; Pu, Z. Y.; Zhang, X. G.; Shi, Q. Q.; Cao, J. B.

    2006-11-01

    In order to avoid the ambiguity of the application of the Triangulation Method (multi-spacecraft timing method) to two-dimensional structures, another version of this method, the Multiple Triangulation Analysis (MTA) is used, to calculate the velocities of these structures based on 4-point measurements. We describe the principle of MTA and apply this approach to a real event observed by the Cluster constellation on 2 October 2003. The resulting velocity of the 2-D structure agrees with the ones obtained by some other methods fairly well. So we believe that MTA is a reliable version of the Triangulation Method for 2-D structures, and thus provides us a new way to describe their motion.

  20. Neural network estimate of seismic velocities and resistivity of rocks from electromagnetic and seismic sounding data

    NASA Astrophysics Data System (ADS)

    Spichak, V. V.; Goidina, A. G.

    2016-05-01

    The neural network estimates of seismic P- and S-wave velocities from electrical resistivity of the rocks and, vice versa, resistivity estimates from seismic velocities are presented. It is shown that, depending on the ratio between the volumes of the known data and the data to be reconstructed, the accuracy of the estimates of the P- and S-wave velocities ranges within 1-4 and 4-6%, respectively. The logarithmic resistivity is estimated from seismic P- and S-velocities as accurately as up to 15-17%. In all cases, the biggest errors are obtained when the estimates are based on correlated data.

  1. Reconstruction of 2D seismic wavefield from Long-Period Seismogram and Short-Period Seismogram Envelope by Seismic Gradiometry applied to the Hi-net Array

    NASA Astrophysics Data System (ADS)

    Maeda, Takuto; Nishida, Kiwamu; Takagi, Ryota; Obara, Kazushige

    2016-04-01

    /arrival directions together with divergence/rotation decomposition will be useful for pursuing constituents of observed wavefield in inhomogeneous medium. In contrast, short-period waves are quite incoherent at stations mostly due to wave significant wave scattering. However, their envelope shapes resemble at neighbor stations. Therefore, we may be able to extract seismic wave energy propagation by seismogram envelope analysis. Based on this idea, we applied the same method to the time-integration of seismogram envelope to estimate its spatial derivatives. Together with seismogram envelope, we succeeded in reconstructing 2D envelope field and in estimating its arrival direction as well as long-period waveforms, without using phase information of seismic waves. Our results show that the seismic gradiometry suits the Hi-net to extract wave propagation characteristics both at long and short periods. This method is appealing that it can estimate waves at homogeneous grid to monitor seismic wave as a wavefield. It is promising to obtain phase velocity variation from direct waves, and to understand scattering and/or attenuation from coda envelopes, by applying the seismic gradiometry to Hi-net.

  2. Seismic investigation of gas hydrates in the Gulf of Mexico: Results from 2013 high-resolution 2D and multicomponent seismic surveys

    NASA Astrophysics Data System (ADS)

    Haines, S. S.; Hart, P. E.; Shedd, W. W.; Frye, M.; Agena, W.; Miller, J. J.; Ruppel, C. D.

    2013-12-01

    In the spring of 2013, the U.S. Geological Survey led a 16-day seismic acquisition cruise aboard the R/V Pelican in the Gulf of Mexico to survey two established gas hydrate study sites. We used a pair of 105/105 cubic inch generator/injector airguns as the seismic source, and a 450-m 72-channel hydrophone streamer to record two-dimensional (2D) data. In addition, we also deployed at both sites an array of 4-component ocean-bottom seismometers (OBS) to record P- and S-wave energy at the seafloor from the same seismic source positions as the streamer data. At lease block Green Canyon 955 (GC955), we acquired 400 km of 2-D streamer data, in a 50- to 250-m-spaced grid augmented by several 20-km transects that provide long offsets for the OBS. The seafloor recording at GC955 was accomplished by a 2D array of 21 OBS at approximately 400-m spacing, including instruments carefully positioned at two of the three boreholes where extensive logging-while-drilling data is available to characterize the presence of gas hydrate. At lease block Walker Ridge 313 (WR313), we acquired 450 km of streamer data in a set of 11-km, 150- to 1,000-m-spaced, dip lines and 6- to 8-km, 500- to 1000-m-spaced strike lines. These were augmented by a set of 20-km lines that provide long offsets for a predominantly linear array of 25 400- to 800-m spaced OBS deployed in the dip direction in and around WR313. The 2D data provide at least five times better resolution of the gas hydrate stability zone than the available petroleum industry seismic data from the area; this enables considerably improved analysis and interpretation of stratigraphic and structural features including previously unseen faults and gas chimneys that may have considerable impact on gas migration. Initial processing indicates that the OBS data quality is good, and we anticipate that these data will yield estimates of P- and S-wave velocities, as well as PP (reflected) and PS (converted wave) images beneath each sensor location.

  3. Joint analysis of the seismic data and velocity gravity model

    NASA Astrophysics Data System (ADS)

    Belyakov, A. S.; Lavrov, V. S.; Muchamedov, V. A.; Nikolaev, A. V.

    2016-03-01

    We performed joint analysis of the seismic noises recorded at the Japanese Ogasawara station located on Titijima Island in the Philippine Sea using the STS-2 seismograph at the OSW station in the winter period of January 1-15, 2015, over the background of a velocity gravity model. The graphs prove the existence of a cause-and-effect relation between the seismic noise and gravity and allow us to consider it as a desired signal.

  4. Robust seismic velocity change estimation using ambient noise recordings

    NASA Astrophysics Data System (ADS)

    Daskalakis, E.; Evangelidis, C. P.; Garnier, J.; Melis, N. S.; Papanicolaou, G.; Tsogka, C.

    2016-04-01

    We consider the problem of seismic velocity change estimation using ambient noise recordings. Motivated by (Zhan et al., 2013) we study how the velocity change estimation is affected by seasonal fluctuations in the noise sources. More precisely, we consider a numerical model and introduce spatio-temporal seasonal fluctuations in the noise sources. We show that indeed, as pointed out in (Zhan et al., 2013), the stretching method is affected by these fluctuations and produces misleading apparent velocity variations which reduce dramatically the signal to noise ratio of the method. We also show that these apparent velocity variations can be eliminated by an adequate normalization of the cross-correlation functions. Theoretically we expect our approach to work as long as the seasonal fluctuations in the noise sources are uniform, an assumption which holds for closely located seismic stations. We illustrate with numerical simulations in homogeneous and scattering media that the proposed normalization significantly improves the accuracy of the velocity change estimation. Similar behavior is also observed with real data recorded in the Aegean volcanic arc. We study in particular the volcano of Santorini during the seismic unrest of 2011-2012 and observe a decrease in the velocity of seismic waves which is correlated with GPS measured elevation.

  5. Robust seismic velocity change estimation using ambient noise recordings

    NASA Astrophysics Data System (ADS)

    Daskalakis, E.; Evangelidis, C. P.; Garnier, J.; Melis, N. S.; Papanicolaou, G.; Tsogka, C.

    2016-06-01

    We consider the problem of seismic velocity change estimation using ambient noise recordings. Motivated by Zhan et al., we study how the velocity change estimation is affected by seasonal fluctuations in the noise sources. More precisely, we consider a numerical model and introduce spatio-temporal seasonal fluctuations in the noise sources. We show that indeed, as pointed out by Zhan et al., the stretching method is affected by these fluctuations and produces misleading apparent velocity variations which reduce dramatically the signal to noise ratio of the method. We also show that these apparent velocity variations can be eliminated by an adequate normalization of the cross-correlation functions. Theoretically we expect our approach to work as long as the seasonal fluctuations in the noise sources are uniform, an assumption which holds for closely located seismic stations. We illustrate with numerical simulations in homogeneous and scattering media that the proposed normalization significantly improves the accuracy of the velocity change estimation. Similar behaviour is also observed with real data recorded in the Aegean volcanic arc. We study in particular the volcano of Santorini during the seismic unrest of 2011-2012 and observe a decrease in the velocity of seismic waves which is correlated with GPS measured elevation.

  6. Constraining seismic velocity features combining short and long period signals: Test ground is Turkey

    NASA Astrophysics Data System (ADS)

    Bulut, Fatih; Eken, Tuna; Yolsal-Çevikbilen, Seda; Taymaz, Tuncay

    2015-04-01

    Verifying the seismic velocity models requires combining different techniques to obtain more reliable basement for further steps, e.g., earthquake location, moment tensor analysis etc. Especially, 2D/3D heterogeneities and velocity contrasts are the key unknowns to be addressed in order to achieve the best-possible setup for further analysis. In that frame, short and long period signals are combined to better constrain the unusual velocity features. Our approach employs P-wave particle motions and receiver functions to discriminate the velocity structure of different crustal blocks. P-wave particle motions are basically used to differentiate direction of incoming waves, which is an indirect measure of potential velocity contrast/heterogeneity in horizontal axis. In the meanwhile, P-wave receiver functions are used to estimate frequency dependent S-wave velocities at different crustal spots. Turkey, seismically the most active region in Europe, is selected to be the test ground for joint analysis scheme. The region has been continuously monitored by AFAD (Prime Ministry, Ankara) and Kandilli Observatory (Boğaziçi Üniversity, Istanbul). Furthermore, some particular regions have been densely monitored for a couple of years by temporary seismic networks, e.g., the IRIS network deployed in the frame of the North Anatolian Fault experiment. We integrated all available data to reach to the highest possible coverage for selected test sites. The results are jointly interpreted to refine existing crustal models in Turkey.

  7. Seismic velocity estimation from wide-angle reflections in sediments

    NASA Astrophysics Data System (ADS)

    Majdanski, Mariusz

    2016-04-01

    Travel time inversion of wide-angle seismic data is well-known technique used in various scales. In specific case of the industrial profiling of a sedimentary layers, where rather flat structures with relatively small velocity differences are observed, we propose an extension of standard reflection tomography to wide-angle observations. In such conditions wide-angle reflections, and especially one observed at large angles, are dominant. They could be easily interpreted, and combined with observed refractions, gives precise estimation of velocities. Such an interpretation is presented based on full spread geometry seismic recording of standard vibroseis sources performing regular reflection seismic works. In the result it was possible to precisely recognize the velocity structure in layered media, and also perform its uncertainty analysis.

  8. A velocity-dependent anomalous radial transport model for (2-D, 2-V) kinetic transport codes

    NASA Astrophysics Data System (ADS)

    Bodi, Kowsik; Krasheninnikov, Sergei; Cohen, Ron; Rognlien, Tom

    2008-11-01

    Plasma turbulence constitutes a significant part of radial plasma transport in magnetically confined plasmas. This turbulent transport is modeled in the form of anomalous convection and diffusion coefficients in fluid transport codes. There is a need to model the same in continuum kinetic edge codes [such as the (2-D, 2-V) transport version of TEMPEST, NEO, and the code being developed by the Edge Simulation Laboratory] with non-Maxwellian distributions. We present an anomalous transport model with velocity-dependent convection and diffusion coefficients leading to a diagonal transport matrix similar to that used in contemporary fluid transport models (e.g., UEDGE). Also presented are results of simulations corresponding to radial transport due to long-wavelength ExB turbulence using a velocity-independent diffusion coefficient. A BGK collision model is used to enable comparison with fluid transport codes.

  9. 2-D TFPF based on Contourlet transform for seismic random noise attenuation

    NASA Astrophysics Data System (ADS)

    Zhao, Xian; Li, Yue; Zhuang, Guanghai; Zhang, Chao; Han, Xue

    2016-06-01

    The time-frequency peak filtering (TFPF) algorithm is useful for attenuating seismic random noise. Conventional TFPF processes each channel of the seismic record independently with a fixed window length (WL), which is a one-dimensional algorithm due to filtering along the channel direction. However, the fixed WL is not appropriate for all frequency components at the same time, so using this technique cannot preserve the reflected signals effectively. Also, Conventional TFPF ignores the spatial characteristics of reflection events, resulting in poor continuity of seismic events and serious loss of the correlation among channels. Here we introduce a new spatiotemporal method, called two-dimensional (2-D) TFPF based on Contourlet transform, which considers spatial correlation and improves the performance of the TFPF. Regarding the event as the contour in an image and using Contourlet transform (CT) to the record, we can find the optimal radial filtering trace which best matches the event, and then sample the record to extract signals along the trace. In this way, frequencies of sampled signals are low and similar. After applying the TFPF along the trace instead of along each channel, the estimation bias is decreased due to the low frequency. Moreover, using the same WL is suitable as a result of similar frequencies. Experiments on synthetic models and the field data illustrate that the new method performs well in random noise attenuation and reflection event preservation.

  10. Assessment of local pulse wave velocity in arteries using 2D distension waveforms.

    PubMed

    Meinders, J M; Kornet, L; Brands, P J; Hoeks, A P

    2001-10-01

    The reciprocal of the arterial pulse wave velocity contains crucial information about the mechanical characteristics of the arterial wall but is difficult to assess noninvasively in vivo. In this paper, a new method to assess local pulse wave velocity (PWV) is presented. To this end, multiple adjacent distension waveforms are determined simultaneously along a short arterial segment, using a single 2D-vessel wall tracking system with a high frame rate (651 Hz). Each B-mode image consists of 16 echo lines spanning a total width of 15.86 mm. Dedicated software has been developed to extract the end-diastolic diameter from the B-mode image and the distension waveforms from the underlying radiofrequency (rf) information for each echo-line. The PWV is obtained by determining the ratio of the temporal and spatial gradient of adjacent distension velocity waveforms. The proposed method is verified in a phantom and in the common carotid artery (CCA) of humans. Phantom experiments show a high concordance between the PWV obtained from 2D distension velocity waveforms (4.21 +/- 0.02 m/s) and the PWV determined using two pressure catheters (4.26 +/- 0.02 m/s). Assuming linear spatial gradients, the PWV can also be obtained in vivo for CCA and averages to 5.5 +/- 1.5 m/s (intersubject variation, n = 23), which compares well to values found in literature. Furthermore, intrasubject PWV compares well with those calculated using the Bramwell-Hill equation. It can be concluded that the PWV can be obtained from the spatial and temporal gradient if the spatial gradient is linear over the observed length of the artery, i.e. the artery should be homogenous in diameter and distension and the influence of reflections must be small. PMID:12051275

  11. A nearly analytic exponential time difference method for solving 2D seismic wave equations

    NASA Astrophysics Data System (ADS)

    Zhang, Xiao; Yang, Dinghui; Song, Guojie

    2014-02-01

    In this paper, we propose a nearly analytic exponential time difference (NETD) method for solving the 2D acoustic and elastic wave equations. In this method, we use the nearly analytic discrete operator to approximate the high-order spatial differential operators and transform the seismic wave equations into semi-discrete ordinary differential equations (ODEs). Then, the converted ODE system is solved by the exponential time difference (ETD) method. We investigate the properties of NETD in detail, including the stability condition for 1-D and 2-D cases, the theoretical and relative errors, the numerical dispersion relation for the 2-D acoustic case, and the computational efficiency. In order to further validate the method, we apply it to simulating acoustic/elastic wave propagation in multilayer models which have strong contrasts and complex heterogeneous media, e.g., the SEG model and the Marmousi model. From our theoretical analyses and numerical results, the NETD can suppress numerical dispersion effectively by using the displacement and gradient to approximate the high-order spatial derivatives. In addition, because NETD is based on the structure of the Lie group method which preserves the quantitative properties of differential equations, it can achieve more accurate results than the classical methods.

  12. Seismic waves velocity dispersion: An indicator of hydrocarbons

    SciTech Connect

    Rapoport, M.B.; Ryjkov, V.I.

    1994-12-31

    VSP data recorded in eleven wells located in different geological conditions were analyzed for studying the phase velocity dispersion of seismic waves. Strong positive dispersion (velocity increases with rising frequency) with the intensity of between 1.7 and 5.0% was obtained in all productive wells in depths of oil and gas pools. The close correlation between local increasing of velocity dispersion and absorption occurred in most cases. Background level of velocity dispersion with both signs (less then {+-}1.0%) which the authors consider as a level of mistakes was observed outside productive intervals and in ``dry`` wells. Modeling has shown that pseudodispersion caused by layered media may attain {+-}0.5% and, besides, curves of pseudodispersion and pseudoabsorption exhibit no correlation. Analysis of seismic waves dispersion together with the absorption may provide with reliable indicators of hydrocarbon pools.

  13. Geomorphological relationships through the use of 2-D seismic reflection data, Lidar, and aerial imagery

    NASA Astrophysics Data System (ADS)

    Alesce, Meghan Elizabeth

    Barrier Islands are crucial in protecting coastal environments. This study focuses on Dauphin Island, Alabama, located within the Northern Gulf of Mexico (NGOM) Barrier Island complex. It is one of many islands serving as natural protection for NGOM ecosystems and coastal cities. The NGOM barrier islands formed at 4 kya in response to a decrease in rate of sea level rise. The morphology of these islands changes with hurricanes, anthropogenic activity, and tidal and wave action. This study focuses on ancient incised valleys and and the impact on island morphology on hurricane breaches. Using high frequency 2-D seismic reflection data four horizons, including the present seafloor, were interpreted. Subaerial portions of Dauphin Island were imaged using Lidar data and aerial imagery over a ten-year time span, as well as historical maps. Historical shorelines of Dauphin Island were extracted from aerial imagery and historical maps, and were compared to the location of incised valleys seen within the 2-D seismic reflection data. Erosion and deposition volumes of Dauphin Island from 1998 to 2010 (the time span covering hurricanes Ivan and Katrina) in the vicinity of Katrina Cut and Pelican Island were quantified using Lidar data. For the time period prior to Hurricane Ivan an erosional volume of 46,382,552 m3 and depositional volume of 16,113.6 m3 were quantified from Lidar data. The effects of Hurricane Ivan produced a total erosion volume of 4,076,041.5 m3. The erosional and depositional volumes of Katrina Cut being were 7,562,068.5 m3 and 510,936.7 m3, respectively. More volume change was found within Pelican Pass. For the period between hurricanes Ivan and Katrina the erosion volume was 595,713.8 m3. This was mostly located within Katrina Cut. Total deposition for the same period, including in Pelican Pass, was 15,353,961 m3. Hurricane breaches were compared to ancient incised valleys seen within the 2-D seismic reflection results. Breaches from hurricanes from 1849

  14. Monitoring seismic wave velocities in situ

    USGS Publications Warehouse

    McEvilly, T.V.; Clymer, R.

    1979-01-01

    Beginning in the early 1960's, reports from the Soviet Union described travel-time anomalies of 5 to 20 percent preceding large earthquakes. In the early 970's, similar observations began to be reported outside the U.S.S.R. The most convincing were anomalously low values of the velocity ration, Vp/Vs, before four earthquakes of magnitudes 2.5 to 3.3 at Blue Mountain Lake, N.Y.; the anomalies were based on large amounts of high-quality data. In Japan, significant decreases were observed in the travel-time ratio, ts/tp, before two thrust-type earthquakes of magnitudes 6. and 5.3. Finally, there is the much discussed report of an anomaly before the magnitude 6.4 San Fernando, Calif., earthquake of 1971 and the implication that the change was caused principally by a decrease in the velocity of the primary (P) wave.

  15. A crustal seismic velocity model for the UK, Ireland and surrounding seas

    USGS Publications Warehouse

    Kelly, A.; England, R.W.; Maguire, Peter K.H.

    2007-01-01

    A regional model of the 3-D variation in seismic P-wave velocity structure in the crust of NW Europe has been compiled from wide-angle reflection/refraction profiles. Along each 2-D profile a velocity-depth function has been digitised at 5 km intervals. These 1-D velocity functions were mapped into three dimensions using ordinary kriging with weights determined to minimise the difference between digitised and interpolated values. An analysis of variograms of the digitised data suggested a radial isotropic weighting scheme was most appropriate. Horizontal dimensions of the model cells are optimised at 40 ?? 40 km and the vertical dimension at 1 km. The resulting model provides a higher resolution image of the 3-D variation in seismic velocity structure of the UK, Ireland and surrounding areas than existing models. The construction of the model through kriging allows the uncertainty in the velocity structure to be assessed. This uncertainty indicates the high density of data required to confidently interpolate the crustal velocity structure, and shows that for this region the velocity is poorly constrained for large areas away from the input data. ?? 2007 The Authors Journal compilation ?? 2007 RAS.

  16. Comparative 2D BRT and seismic modeling of CO2 plumes in deep saline reservoirs

    NASA Astrophysics Data System (ADS)

    Hagrey, Said Attia Al; Strahser, Matthias; Rabbel, Wolfgang

    2010-05-01

    The multi-disciplinary research project 'CO2 MoPa' (modeling and parameterization of CO2 storage in deep saline formations for dimensions and risk analysis) deals, among others, with the parameterization of virtual subsurface storage sites to characterize rock properties with modeling of processes related to CCS in deep saline reservoirs. The geophysical task is to estimate the sensitivity and the resolution of reflection seismic and geoelectrical time-lapses in order to determine the propagation of CO2 within the sediments and the development of the CO2 reservoir. Compared with seismic, borehole electric resistivity tomography (BRT) has lower resolution, but its permanent installation and continuous monitoring can make it an economical alternative or complement. Seismic and geoelectric applications to quantify changes of intrinsic aquifer properties with time are justified by the lower density and velocity and the higher electric resistivity of CO2 in comparison to pore brine. We present here modeling results on scenarios with realistic parameters of deep saline formations of the German Basin (candidate for CCS). The study focuses on effects of parameters related to depth (temperature, pressure), petrophysics (salinity, porosity), plume dimensions/saturations and data acquisition, processing and inversions. Both methods show stronger effects with increasing brine salinity, CO2 reservoir thickness, porosity and CO2 saturation in the pores. Both methods have a pronounced depth dependence due to the pressure and temperature dependence of the velocities, densities and resistivities of the host rock, brine and CO2. Increasing depth means also decreasing frequencies of the seismic signal and hence weaker resolution. Because of the expected limited thickness of the CO2 reservoir, the reflections from its top and bottom will most likely interfere with each other, making it difficult to determine the exact dimensions of the reservoir. In BRT, the resulting resistivity

  17. Seismic imaging for velocity and attenuation structure in geothermal fields

    SciTech Connect

    Zucca, J.J. ); Evans, J.R. )

    1989-06-01

    We have applied the attenuation inversion technique developed by Evans and Zucca (1988) to a seismic tomographic data set taken at Newberry Volcano by Achauer et al. (1988). Our preliminary results suggest that the interpretation of the velocity data by Achauer et al. that a magma chamber is present 3 km beneath the caldera is not confirmed by the attenuation data.

  18. Brady 1D seismic velocity model ambient noise prelim

    DOE Data Explorer

    Mellors, Robert J.

    2013-10-25

    Preliminary 1D seismic velocity model derived from ambient noise correlation. 28 Green's functions filtered between 4-10 Hz for Vp, Vs, and Qs were calculated. 1D model estimated for each path. The final model is a median of the individual models. Resolution is best for the top 1 km. Poorly constrained with increasing depth.

  19. 2D Seismic Imaging of Elastic Parameters by Frequency Domain Full Waveform Inversion

    NASA Astrophysics Data System (ADS)

    Brossier, R.; Virieux, J.; Operto, S.

    2008-12-01

    Thanks to recent advances in parallel computing, full waveform inversion is today a tractable seismic imaging method to reconstruct physical parameters of the earth interior at different scales ranging from the near- surface to the deep crust. We present a massively parallel 2D frequency-domain full-waveform algorithm for imaging visco-elastic media from multi-component seismic data. The forward problem (i.e. the resolution of the frequency-domain 2D PSV elastodynamics equations) is based on low-order Discontinuous Galerkin (DG) method (P0 and/or P1 interpolations). Thanks to triangular unstructured meshes, the DG method allows accurate modeling of both body waves and surface waves in case of complex topography for a discretization of 10 to 15 cells per shear wavelength. The frequency-domain DG system is solved efficiently for multiple sources with the parallel direct solver MUMPS. The local inversion procedure (i.e. minimization of residuals between observed and computed data) is based on the adjoint-state method which allows to efficiently compute the gradient of the objective function. Applying the inversion hierarchically from the low frequencies to the higher ones defines a multiresolution imaging strategy which helps convergence towards the global minimum. In place of expensive Newton algorithm, the combined use of the diagonal terms of the approximate Hessian matrix and optimization algorithms based on quasi-Newton methods (Conjugate Gradient, LBFGS, ...) allows to improve the convergence of the iterative inversion. The distribution of forward problem solutions over processors driven by a mesh partitioning performed by METIS allows to apply most of the inversion in parallel. We shall present the main features of the parallel modeling/inversion algorithm, assess its scalability and illustrate its performances with realistic synthetic case studies.

  20. Sleipner CCS site: velocity and attenuation model from seismic tomography

    NASA Astrophysics Data System (ADS)

    Rossi, G.; Chadwick, R. A.; Williams, G. A.

    2012-04-01

    The results of the travel-time and frequency shift tomographic inversion of the seismic data from one of the high-resolution lines acquired in 2006 on the Sleipner CO2 geological storage site are here presented. The work has been performed within the European project CO2ReMoVe, to produce an accurate model in-depth, of both seismic velocities and attenuation, to constrain better the quantification studies of the project's partners. Tomographic techniques have the advantage of not assuming horizontal layering or uniform lateral velocities, and of enabling an easy comparison of models, even if resulting from seismic data acquired with different geometries, unavoidable in a time-lapse data set. Through an iterative process, the differences in travel-times between observed direct, reflected or refracted arrivals and the same, calculated on a discrete model, with a ray-tracing based on the Fermat's principle, are minimized. Other minimization procedures provide the reflector/refractor geometries in -depth. Analogously, in attenuation tomography, the minimization process takes into account the observed and calculated spectral-centroid frequency-shift, due to the loss of the highest frequency of the seismic wave, while crossing an attenuating medium. The result is a seismic quality factor (Q) model in-depth, and hence of the attenuation that is known to be more sensitive to subtle changes in physical properties than seismic velocity. The model is across the center of the CO2 plume, on the in-line 1838, and is constituted by nine layers, four resulting by a preliminary analysis of the pre-injection 1994 data set, i.e. seabed, a strong reflection in the overburden and the top and bottom of the Utsira Sand, plus additional five horizons, four of which within Utsira Sands, and one just above the top of it. The layers within the reservoir are very close to each other and in some cases they merge together laterally. The accumulation of CO2 in the uppermost layer of the

  1. MSNoise: a Python Package for Monitoring Seismic Velocity Changes using Ambient Seismic Noise

    NASA Astrophysics Data System (ADS)

    Lecocq, T.; Caudron, C.; Brenguier, F.

    2013-12-01

    Earthquakes occur every day all around the world and are recorded by thousands of seismic stations. In between earthquakes, stations are recording "noise". In the last 10 years, the understanding of this noise and its potential usage have been increasing rapidly. The method, called "seismic interferometry", uses the principle that seismic waves travel between two recorders and are multiple-scattered in the medium. By cross-correlating the two records, one gets an information on the medium below/between the stations. The cross-correlation function (CCF) is a proxy to the Green Function of the medium. Recent developments of the technique have shown those CCF can be used to image the earth at depth (3D seismic tomography) or study the medium changes with time. We present MSNoise, a complete software suite to compute relative seismic velocity changes under a seismic network, using ambient seismic noise. The whole is written in Python, from the monitoring of data archives, to the production of high quality figures. All steps have been optimized to only compute the necessary steps and to use 'job'-based processing. We present a validation of the software on a dataset acquired during the UnderVolc[1] project on the Piton de la Fournaise Volcano, La Réunion Island, France, for which precursory relative changes of seismic velocity are visible for three eruptions betwee 2009 and 2011.

  2. 3D Seismic Velocity Structure in the Rupture Area of the 2010 Maule Mw=8.8 Earthquake

    NASA Astrophysics Data System (ADS)

    Hicks, S. P.; Rietbrock, A.; Ryder, I. M.; Nippress, S.; Haberland, C. A.

    2011-12-01

    The 2010 Mw=8.8 Maule, Chile earthquake is one of the largest subduction zone earthquakes ever recorded. Up to now numerous co-seismic and some post-seismic slip models have been published based entirely on seismological, geodetic, or tsunami run-up heights, or combinations of these data. Most of these models use a simplified megathrust geometry derived mainly from global earthquake catalogues, and also simplified models of seismic parameters (e.g. shear modulus). By using arrival times for a vast number of aftershocks that have been recorded on a temporary seismic array, we present a new model for the slab geometry based on earthquake locations together with a new 3D seismic velocity model of the region, for both vp and vp/vs. We analyzed 3552 aftershocks that occurred between 18 March and 24 May 2011, recorded by the International Maule Aftershock Dataset (IMAD) seismic network. Event selection from a catalogue of automatically-determined events was based on 20 or more arrival times, from which at least 10 are S-wave observations. In total over 170,000 arrival times (~125,000 and 45,000 P and S wave arrival times respectively) are used for the tomographic reconstructions. Initially, events were relocated in a 2D velocity model based on a previously published model for the southern end of the rupture area (Haberland et al., 2009). Afterwards a staggered inversion scheme is implemented, starting with a 2D inversion followed by a coarse 3D and a subsequent fine 3D inversion. Based on our preliminary inversions we conclude that aftershock seismicity is mainly concentrated between 20 and 35 km depth along the subduction interface. A second band of seismicity between 40 and 50 km depth is also observed. Low seismic velocities and an increased vp/vs ratio characterize the marine forearc. The obtained velocity model will be discussed.

  3. Local variations of seismic velocity in the Imperial Valley, California

    SciTech Connect

    Jackson, D.D.; Lee, W.B.

    1981-12-01

    The authors inverted local earthquake arrival times to estimate spatial variations of seismic velocity. Their model consisted of near-surface station corrections and local perturbations to a standard crustal velocity model. The authors found a zone of relatively high-velocity trending southeast from the Salton Sea. This zone corresponds to the region of thickest sediments. The authors compared results with those of teleseismic studies by Savino et al (1977). The agreement was excellent, suggesting that the teleseismic delays are caused primarily by crustal velocity variations. Residual delays between the teleseismic observations and predicted crustal delays imply crustal thinning of 3 or 4 km along the axis of the valley. Known geothermal resource areas at Salton Sea (or Obsidian Buttes), Brawley, and East Mesa, lie on the axis of a zone of thin crust, and they may be intimately related to the Brawley fault. Neither local earthquake nor teleseismic arrival times can discriminate between these hypotheses, but the issue might be resolved by combining both types of data. Known geothermal resource areas at Heber, Dunes, and Glamis, lie away from the projected trace of the Brawley fault. These areas are nearly aseismic, and overlie crust with apparent seismic velocities only mildly higher than the regional average. These apparent velocity anomalies could be related to crustal thinning, but because of the very mild Bouguer gravity anomalies in these areas, it seems more likely that the velocity anomalies occur entirely within the crust. 7 references, 6 figures, 3 tables.

  4. Laboratory measurements of seismic velocity anisotropy of salt diapirs: Implications for wellbore stability and seismic processing

    NASA Astrophysics Data System (ADS)

    Vargas-Meleza, Liliana; Healy, David

    2013-04-01

    A set of ten evaporite samples collected from outcrops in a single diapiric province in Cape Breton Island (Canada) have been tested for seismic velocity anisotropy using three methods: 1) conventional ultrasonic pulse transmission method, where velocities are found from the travel times and the known dimensions of the samples. In order to obtain the entire suite of elastic constants, both P- and S-wave velocity measurements were taken in three different directions of cuboid rock samples. Velocities have been measured under dry, ambient conditions of temperature and pressure in halite-, gypsum- and anhydrite-dominated samples; 2) optical microscopy and scanning electron microscopy on thin sections to define the spatial distribution of minerals, their crystallographic preferred orientations (CPO); and 3) a numerical 'rock-recipe' approach based on Tatham et al. (2008) to calculate seismic velocity anisotropy using arbitrary composites of evaporite minerals and different CPOs. These three methods are then compared to understand the controlling factors of the anisotropic elastic properties. The elasticity data are used to guide geomechanical modeling for wellbore stability and to provide insights for the seismic data processing and seismic imaging of salt diapirs. Reference Tatham, D.J., Lloyd, G.E., Butler, R.W.H. and Casey, M, 2008, Amphibole and lower crustal seismic properties: Earth and Planetary Science Letters, 267, 118-128.

  5. Methods to determine the Orientation and Velocity of 2-D structures based on multi- spacecraft data

    NASA Astrophysics Data System (ADS)

    Zhang, X.; Pu, Z.; Zhou, X.; Wang, J.; Zong, Q.; Shi, Q.

    2006-12-01

    Many techniques have been developed to study the axial orientation and/or velocity of 2-D structures (flux ropes), by analyzing in situ data from single or multiple spacecraft. To obtain the axial orientation, there are magnetic based MVA (BMVA), current based MVA (CMVA), Minimum Direction Derivative (MDD) and Multiple Triangulation Analysis (MTA) as a modified version of timing method. To further calculate the velocity, we have DeHoffmann-Teller analysis, Spatio-Temporal Difference (STD) and several version of timing method including MTA. After a brief introduction on the principle of these methods, we theoretically estimate their error ranges based on modeled structures to examine the validity of these techniques. Because of their different principles, their error bars are shown to be distinct, depending on the parameters (such as radius, model selected and even the satellite crossing path) of the certain structure. The error estimation thus provides us some clue on the selection of methods under different conditions. Some real events are further analyzed using these techniques as the example.

  6. MSNoise: a Python Package for Monitoring Seismic Velocity Changes using Ambient Seismic Noise

    NASA Astrophysics Data System (ADS)

    Lecocq, Thomas; Caudron, Corentin; Brenguier, Florent

    2014-05-01

    We present MSNoise, a complete software suite to compute relative seismic velocity changes under a seismic network, using ambient seismic noise. The whole is written in Python, from the monitoring of data archives, to the production of high quality figures. All steps have been optimized to only compute the necessary steps and to use 'job'-based processing. All steps can be changed by matching the in/outs. MSNoise exposes an API for communication with the data archive and the database. We present a validation of the software on a dataset acquired during the UnderVolc project on the Piton de la Fournaise Volcano, La Réunion Island, France, for which precursory relative changes of seismic velocity are visible for three eruptions betwee 2009 and 2011. MSNoise is available on http://www.msnoise.org

  7. Surface wave phase velocities from 2-D surface wave tomography studies in the Anatolian plate

    NASA Astrophysics Data System (ADS)

    Arif Kutlu, Yusuf; Erduran, Murat; Çakır, Özcan; Vinnik, Lev; Kosarev, Grigoriy; Oreshin, Sergey

    2014-05-01

    We study the Rayleigh and Love surface wave fundamental mode propagation beneath the Anatolian plate. To examine the inter-station phase velocities a two-station method is used along with the Multiple Filter Technique (MFT) in the Computer Programs in Seismology (Herrmann and Ammon, 2004). The near-station waveform is deconvolved from the far-station waveform removing the propagation effects between the source and the station. This method requires that the near and far stations are aligned with the epicentre on a great circle path. The azimuthal difference of the earthquake to the two-stations and the azimuthal difference between the earthquake and the station are restricted to be smaller than 5o. We selected 3378 teleseismic events (Mw >= 5.7) recorded by 394 broadband local stations with high signal-to-noise ratio within the years 1999-2013. Corrected for the instrument response suitable seismogram pairs are analyzed with the two-station method yielding a collection of phase velocity curves in various period ranges (mainly in the range 25-185 sec). Diffraction from lateral heterogeneities, multipathing, interference of Rayleigh and Love waves can alter the dispersion measurements. In order to obtain quality measurements, we select only smooth portions of the phase velocity curves, remove outliers and average over many measurements. We discard these average phase velocity curves suspected of suffering from phase wrapping errors by comparing them with a reference Earth model (IASP91 by Kennett and Engdahl, 1991). The outlined analysis procedure yields 3035 Rayleigh and 1637 Love individual phase velocity curves. To obtain Rayleigh and Love wave travel times for a given region we performed 2-D tomographic inversion for which the Fast Marching Surface Tomography (FMST) code developed by N. Rawlinson at the Australian National University was utilized. This software package is based on the multistage fast marching method by Rawlinson and Sambridge (2004a, 2004b). The

  8. Velocity Structure in the West Bohemia Seismic Zone: Velocity Models Retrieved from different Earthquake Swarms

    NASA Astrophysics Data System (ADS)

    Alexandrakis, C.; Löberich, E.; Kieslich, A.; Calo, M.; Vavrycuk, V.; Buske, S.

    2015-12-01

    Earthquake swarms, fluid migration and gas springs are indications of the ongoing geodynamic processes within the West Bohemia seismic zone located at the Czech-German border. The possible relationship between the fluids, gas and seismicity is of particular interest and has motivated numerous past, ongoing and future studies, including a multidisciplinary monitoring proposal through the International Continental Scientific Drilling Program (ICDP). The most seismically active area within the West Bohemia seismic zone is located at the Czech town Nový Kostel. The Nový Kostel zone experiences frequent swarms of several hundreds to thousands of earthquakes over a period of weeks to several months. The seismicity is always located in the same area and depth range (~5-15 km), however the activated fault segments and planes differ. For example, the 2008 swarm activated faults along the southern end of the seismic zone, the 2011 swarm activated the northern segment, and the recent 2014 swarm activated the middle of the seismic zone. This indicates changes to the local stress field, and may relate to fluid migration and/or the complicated tectonic situation. The West Bohemia Seismic Network (WEBNET) is ideally located for studying the Nový Kostel swarm area and provides good azimuthal coverage. Here, we use the high quality P- and S-wave arrival picks recorded by WEBNET to calculate swarm-dependent velocity models for the 2008 and 2011 swarms, and an averaged (swarm independent) model using earthquakes recorded between 1991 and 2011. To this end, we use double-difference tomography to calculate P- and S-wave velocity models. The models are compared and examined in terms of swarm-dependent velocities and structures. Since the P-to-S velocity ratio is particularly sensitive to the presence of pore fluids, we derive ratio models directly from the inverted P- and S-wave models in order to investigate the potential influence of fluids on the seismicity. Finally, clustering

  9. Stress-Release Seismic Source for Seismic Velocity Measurement in Mines

    NASA Astrophysics Data System (ADS)

    Swanson, P. L.; Clark, C.; Richardson, J.; Martin, L.; Zahl, E.; Etter, A.

    2014-12-01

    Accurate seismic event locations are needed to delineate roles of mine geometry, stress and geologic structures in developing rockburst conditions. Accurate absolute locations are challenging in mine environments with rapid changes in seismic velocity due to sharp contrasts between individual layers and large time-dependent velocity gradients attending excavations. Periodic use of controlled seismic sources can help constrain the velocity in this continually evolving propagation medium comprising the miners' workplace. With a view to constructing realistic velocity models in environments in which use of explosives is problematic, a seismic source was developed subject to the following design constraints: (i) suitable for use in highly disturbed zones surrounding mine openings, (ii) able to produce usable signals over km-scale distances in the frequency range of typical coal mine seismic events (~10-100 Hz), (iii) repeatable, (iv) portable, (v) non-disruptive to mining operations, and (vi) safe for use in potentially explosive gaseous environments. Designs of the compressed load column seismic source (CLCSS), which generates a stress, or load, drop normal to the surface of mine openings, and the fiber-optic based source-initiation timer are presented. Tests were conducted in a coal mine at a depth of 500 m (1700 ft) and signals were recorded on the surface with a 72-ch (14 Hz) exploration seismograph for load drops of 150-470 kN (16-48 tons). Signal-to-noise ratios of unfiltered signals ranged from ~200 immediately above the source (500 m (1700 ft)) to ~8 at the farthest extent of the array (slant distance of ~800 m (2600 ft)), suggesting the potential for use over longer range. Results are compared with signals produced by weight drop and sledge hammer sources, indicating the superior waveform quality for first-arrival measurements with the CLCSS seismic source.

  10. Coda wave interferometry for estimating nonlinear behavior in seismic velocity.

    PubMed

    Snieder, Roel; Grêt, Alexandre; Douma, Huub; Scales, John

    2002-03-22

    In coda wave interferometry, one records multiply scattered waves at a limited number of receivers to infer changes in the medium over time. With this technique, we have determined the nonlinear dependence of the seismic velocity in granite on temperature and the associated acoustic emissions. This technique can be used in warning mode, to detect the presence of temporal changes in the medium, or in diagnostic mode, where the temporal change in the medium is quantified. PMID:11910107

  11. Obtaining anisotropic velocity data for proper depth seismic imaging

    SciTech Connect

    Egerev, Sergey; Yushin, Victor; Ovchinnikov, Oleg; Dubinsky, Vladimir; Patterson, Doug

    2012-05-24

    The paper deals with the problem of obtaining anisotropic velocity data due to continuous acoustic impedance-based measurements while scanning in the axial direction along the walls of the borehole. Diagrams of full conductivity of the piezoceramic transducer were used to derive anisotropy parameters of the rock sample. The measurements are aimed to support accurate depth imaging of seismic data. Understanding these common anisotropy effects is important when interpreting data where it is present.

  12. pySeismicFMM: Python based travel time calculation in regular 2D and 3D grids in Cartesian and geographic coordinates using Fast Marching Method

    NASA Astrophysics Data System (ADS)

    Polkowski, Marcin

    2016-04-01

    Seismic wave travel time calculation is the most common numerical operation in seismology. The most efficient is travel time calculation in 1D velocity model - for given source, receiver depths and angular distance time is calculated within fraction of a second. Unfortunately, in most cases 1D is not enough to encounter differentiating local and regional structures. Whenever possible travel time through 3D velocity model has to be calculated. It can be achieved using ray calculation or time propagation in space. While single ray path calculation is quick it is complicated to find the ray path that connects source with the receiver. Time propagation in space using Fast Marching Method seems more efficient in most cases, especially when there are multiple receivers. In this presentation a Python module pySeismicFMM is presented - simple and very efficient tool for calculating travel time from sources to receivers. Calculation requires regular 2D or 3D velocity grid either in Cartesian or geographic coordinates. On desktop class computer calculation speed is 200k grid cells per second. Calculation has to be performed once for every source location and provides travel time to all receivers. pySeismicFMM is free and open source. Development of this tool is a part of authors PhD thesis. National Science Centre Poland provided financial support for this work via NCN grant DEC-2011/02/A/ST10/00284.

  13. Inferred and Predicted Seismic Velocities of the North American Mantle

    NASA Astrophysics Data System (ADS)

    Lou, Xiaoting

    North American mantle velocity structure was studied by seismic tomographic inversion and mineral physical modeling. A new software package named AIMBAT was developed for efficient and robust measurements of teleseismic P and S wave delay times from large-volume seismic data. Using AIMBAT, a total of 131,978 P and 130,388 S delay times were measured from 667 teleseismic earthquakes recorded by about 2000 broadband seismic stations which are mainly EarthScope's USArray stations. Delay times corrected for effects of event-side heterogeneity and station-side crustal structure suggest that the mantle beneath the eastern US is as equally heterogeneous as the mantle beneath the western US. This heterogeneity results from the asthenosphere beneath the western US and the lithosphere beneath the eastern US, which contribute most to the total delay time signatures. Geological binning of observed delays further suggests that mantle heterogeneity is not correlated with the timing of tectonic activity. Three-dimensional P and S velocity models XL13P and XL13S for the North American mantle were inverted from teleseismic P and S wave absolute delay times, respectively. Model NA13 improves XL13S by adding existing surface waveform-fit data and independent Moho depth point constraints in a joint inversion, in which the merits of body wave's lateral resolution and surface wave's vertical resolution are combined. Images of the subducting Juan de Fuca and Gorda slabs are improved by NA13, in which the slabs are no longer connected to seismic stations at the surface. Strong low velocity anomaly of up to -14% for V s beneath the Snake River Plain and Yellowstone is not explained by pure thermal effects and partial melting is necessary. Continuous but deflected plume conduits are observed. Sharp contrasts in seismic velocities are imaged across the Rocky Mountains. The velocity contrast within the mantle deviate from the surface geological boundaries as also suggested by the delay time

  14. A novel simple procedure to consider seismic soil structure interaction effects in 2D models

    NASA Astrophysics Data System (ADS)

    Jaramillo, Juan Diego; Gómez, Juan David; Restrepo, Doriam; Rivera, Santiago

    2014-09-01

    A method is proposed to estimate the seismic soil-structure-interaction (SSI) effects for use in engineering practice. It is applicable to 2D structures subjected to vertically incident shear waves supported by homogenous half-spaces. The method is attractive since it keeps the simplicity of the spectral approach, overcomes some of the difficulties and inaccuracies of existing classical techniques and yet it considers a physically consistent excitation. This level of simplicity is achieved through a response spectra modification factor that can be applied to the free-field 5%-damped response spectra to yield design spectral ordinates that take into account the scattered motions introduced by the interaction effects. The modification factor is representative of the Transfer Function (TF) between the structural relative displacements and the free-field motion, which is described in terms of its maximum amplitude and associated frequency. Expressions to compute the modification factor by practicing engineers are proposed based upon a parametric study using 576 cases representative of actual structures. The method is tested in 10 cases spanning a wide range of common fundamental vibration periods.

  15. Peak Ground Velocities for Seismic Events at Yucca Mountain, Nevada

    SciTech Connect

    K. Coppersmith; R. Quittmeyer

    2005-02-16

    This report describes a scientific analysis to bound credible horizontal peak ground velocities (PGV) for the repository waste emplacement level at Yucca Mountain. Results are presented as a probability distribution for horizontal PGV to represent uncertainties in the analysis. The analysis also combines the bound to horizontal PGV with results of ground motion site-response modeling (BSC 2004 [DIRS 170027]) to develop a composite hazard curve for horizontal PGV at the waste emplacement level. This result provides input to an abstraction of seismic consequences (BSC 2004 [DIRS 169183]). The seismic consequence abstraction, in turn, defines the input data and computational algorithms for the seismic scenario class of the total system performance assessment (TSPA). Planning for the analysis is documented in Technical Work Plan TWP-MGR-GS-000001 (BSC 2004 [DIRS 171850]). The bound on horizontal PGV at the repository waste emplacement level developed in this analysis complements ground motions developed on the basis of PSHA results. In the PSHA, ground motion experts characterized the epistemic uncertainty and aleatory variability in their ground motion interpretations. To characterize the aleatory variability they used unbounded lognormal distributions. As a consequence of these characterizations, as seismic hazard calculations are extended to lower and lower annual frequencies of being exceeded, the ground motion level increases without bound, eventually reaching levels that are not credible (Corradini 2003 [DIRS 171191]). To provide credible seismic inputs for TSPA, in accordance with 10 Code of Federal Regulations (CFR) 63.102(j) [DIRS 156605], this complementary analysis is carried out to determine reasonable bounding values of horizontal PGV at the waste emplacement level for annual frequencies of exceedance as low as 10{sup -8}. For each realization of the TSPA seismic scenario, the results of this analysis provide a constraint on the values sampled from the

  16. Monitoring of injected CO2 using the seismic full waveform inversion for 2-D elastic VTI media

    NASA Astrophysics Data System (ADS)

    Kim, W. K.; Min, D. J.; KIM, S.; Shin, Y.; Moon, S.

    2014-12-01

    To monitor the injected CO2 in the subsurface, seismic monitoring techniques are extensively applied because of its high resolution. Among the seismic monitoring techniques, seismic full waveform inversion (FWI) has high applicability because it can delineate parameter changes by injected CO2. When seismic FWIs are applied, subsurface media can be generally assumed to be isotropic. However, most subsurface media are not isotropic, and shale is a representative anisotropic medium, particularly vertical transversely isotropic (VTI) medium, which is often encountered as a barrier to injected CO2. Thus, anisotropic properties of subsurface media are important for monitoring of injected CO2. For these issues, we need to consider anisotropy of subsurface media when seismic FWIs are applied as a monitoring tool for CO2 sequestration. In this study, we performed seismic FWI for 2-D elastic VTI media to investigate the effects of anisotropic properties in CO2 monitoring. For this numerical test, we assumed a geological model, which copies after one of CO2 storage prospects in Korea. We also applied seismic FWI algorithm for 2-D elastic isotropic media for comparison. From this comparison, we noticed that we can obtain more reliable results when we apply the anisotropic FWI algorithm. Numerical examples indicate that we should apply the anisotropic FWI algorithm rather than the isotropic FWI algorithm when we interpret seismic monitoring data acquired in anisotropic media to increase the success of monitoring for injected CO2. Our numerical results can also be used as references for real seismic monitoring of the Korea CO2 sequestration projects in the near future. Acknowledgements This work was supported by the Human Resources Development program (No. 20134010200510) of the Korea Institute of Energy Technology Evaluation and Planning (KETEP) grant funded by the Korean government Ministry of Trade, Industry, and Energy and by the "Development of Technology for CO2 Marine

  17. AnisWave 2D

    2004-08-01

    AnisWave2D is a 2D finite-difference code for a simulating seismic wave propagation in fully anisotropic materials. The code is implemented to run in parallel over multiple processors and is fully portable. A mesh refinement algorithm has been utilized to allow the grid-spacing to be tailored to the velocity model, avoiding the over-sampling of high-velocity materials that usually occurs in fixed-grid schemes.

  18. Preliminary analysis of the Baranof Fan system, Gulf of Alaska, based on 2D seismic reflection and multibeam bathymetry data

    NASA Astrophysics Data System (ADS)

    LeVoir, M. A.; Gulick, S. P.; Reece, R.; Barth, G. A.; Childs, J. R.; Everson, E. D.; Hart, P. E.; Johnson, K. M.; Lester, W. R.; Sliter, R. W.

    2011-12-01

    The Baranof Fan is a large marine sedimentary system in the eastern Gulf of Alaska, straddling the border between the U.S. and Canada. The volume of the Fan is estimated to be > 200,000 km3. Little is known about the depositional timing, the tectonic and morphologic processes influencing its development, or the role of channel aggradation and avulsion in its progression. Both tectonic and climatic transitions likely influenced the formation and evolution of the Fan, with events including the onset of northern hemisphere glaciation, the Mid-Pleistocene transition, the transport of the Yakutat Terrane along the southeast Alaskan margin, and the uplift of the Coast Mountains. 2D seismic reflection and multibeam bathymetry data were collected in the Gulf of Alaska in June 2011 aboard the R/V Marcus G. Langseth as a part of the U.S. Extended Continental Shelf (ECS) program assessing potential opportunities under the United Nations Law of the Sea Convention. The purpose of the 2011 survey was to determine sediment thickness, velocity structure, stratigraphic architecture, and crustal structure on of the Gulf of Alaska seafloor in support of U.S. continental shelf maritime zone definition. The surveyed geologic features include the Surveyor and Baranof sedimentary systems, which control active sediment distribution in the Gulf of Alaska. Preliminary analysis of these data show four distinct buried channels throughout the mid to distal Baranof Fan, ranging in width from 5 - 9 km, which may have evolved into modern surface channels (ranging in width from 2 - 7 km) visible in both the seismic data and multibeam bathymetry. The location and trajectory of these buried channels, however, appears distinct from the modern Horizon and Mukluk Channels; the buried channels may have avulsed into the modern channel systems, or could possibly be older and now abandoned branches instrumental in building the westward part of the Fan. All of the imaged channels appear to be depositional

  19. Seismic Velocity Anomalies beneath Tatun Volcano Group, Northern Taiwan

    NASA Astrophysics Data System (ADS)

    Lin, Tzu-yu; Lin, Cheng-Horng; Yang, Tsanyao Frank; Chang, Li-Chin

    2015-04-01

    Volcanic eruption has been a natural disaster for human society. Taiwan is located in the Pacific Ring of Fire. Although there is no obvious phenomenon of volcanic activity in Taiwan, some volcanoes need to be monitored, especially the Tatun Volcano Group (TVG), which exhibits very active hydrothermal activity, is located on the tip of southwestern Ryukyu arc. TVG is about 15 km north to Taipei, capital of Taiwan, and is nearby two nuclear power plants along the northern coast of Taiwan. If TVG erupts, there must be a serious impact and damage to Taiwan. Since TVG is located within the Yangmingshan National Park, any artificial seismic source is not allowed to estimate possible eruption site and the degree of volcanic disaster. Instead, we use natural seismic waves generated by earthquakes to image the possible velocity anomaly of magma chamber and/or hydrothermal system beneath TVG. We systematically compare the differences of arrival times generated by some local earthquakes and recorded at 42 seismic stations in 2014 for finding any low-velocity zone within the crust. The results show that the arrival times always appeared significant delay at some particular seismic stations, such as Chi-Hsin-Shan (CHS), Siao-You-Keng (SYK) and some other stations at TVG, no matter where the earthquakes occurred. It implies that possible low-velocity zones, which could be the location of magma chamber and/or active hydrothermal system, exist beneath the CHS and SYK areas. This feature is generally consistent with the clustered micro-earthquakes in the shallow crust beneath the CHS area in the last decade.

  20. Improved detection of preeruptive seismic velocity drops at the Piton de La Fournaise volcano

    NASA Astrophysics Data System (ADS)

    Rivet, Diane; Brenguier, Florent; Cappa, Frédéric

    2015-08-01

    The unexpected 2014 and 2015 Ontake (Japan) and Calbuco (Chile) eruptions proved that improving volcanic eruption prediction is still a great challenge. Decreases of seismic velocities of the Piton de la Fournaise volcano inferred from seismic noise correlations have been shown to precede eruptions. However, seismic velocities are strongly influenced by rainfall and subsequent pore pressure perturbations. Here we increase the detection of precursory seismic velocity changes to an eruption by removing the effects of pore pressure changes. During 2011-2013, the volcano exhibits a low eruptive activity during which we observe seismic velocity variations well correlated with rainfall episodes. We estimated the transfer function between fluid pressure and seismic velocity changes. We use these results to correct seismic velocity change time series for pore pressure changes, due to rainfall and found a preeruptive velocity drop (0.15%) associated with the 21 June 2014 eruption that was undetected before correction.

  1. Upper Mississippi embayment shallow seismic velocities measured in situ

    USGS Publications Warehouse

    Liu, Huaibao P.; Hu, Y.; Dorman, J.; Chang, T.-S.; Chiu, J.-M.

    1997-01-01

    Vertical seismic compressional- and shear-wave (P- and S-wave) profiles were collected from three shallow boreholes in sediment of the upper Mississippi embayment. The site of the 60-m hole at Shelby Forest, Tennessee, is on bluffs forming the eastern edge of the Mississippi alluvial plain. The bluffs are composed of Pleistocene loess, Pliocene-Pleistocene alluvial clay and sand deposits, and Tertiary deltaic-marine sediment. The 36-m hole at Marked Tree, Arkansas, and the 27-m hole at Risco, Missouri, are in Holocene Mississippi river floodplain sand, silt, and gravel deposits. At each site, impulsive P- and S-waves were generated by man-made sources at the surface while a three-component geophone was locked downhole at 0.91-m intervals. Consistent with their very similar geology, the two floodplain locations have nearly identical S-wave velocity (VS) profiles. The lowest VS values are about 130 m s-1, and the highest values are about 300 m s-1 at these sites. The shear-wave velocity profile at Shelby Forest is very similar within the Pleistocene loess (12m thick); in deeper, older material, VS exceeds 400 m s-1. At Marked Tree, and at Risco, the compressional-wave velocity (VP) values above the water table are as low as about 230 m s-1, and rise to about 1.9 km s-1 below the water table. At Shelby Forest, VP values in the unsaturated loess are as low as 302 m s-1. VP values below the water table are about 1.8 km s-1. For the two floodplain sites, the VP/VS ratio increases rapidly across the water table depth. For the Shelby Forest site, the largest increase in the VP/VS ratio occurs at ???20-m depth, the boundary between the Pliocene-Pleistocene clay and sand deposits and the Eocene shallow-marine clay and silt deposits. Until recently, seismic velocity data for the embayment basin came from earthquake studies, crustal-scale seismic refraction and reflection profiles, sonic logs, and from analysis of dispersed earthquake surface waves. Since 1991, seismic data

  2. Seismic Anisotropy and Velocity-Porosity Relationships in the Seafloor.

    NASA Astrophysics Data System (ADS)

    Berge, Patricia A.

    In this dissertation, I investigate the structure and composition of marine sediments and the upper oceanic crust using seismic data and rock physics theories. Common marine sediments such as silty clays exhibit anisotropy because they are made up of thin sub-parallel lamellae of contrasting mineralogical composition and differing elastic properties. In 1986, Rondout Associates, Inc. and Woods Hole Oceanographic Institution recorded direct shear waves in shallow marine sediments in 21-m-deep water by using a newly developed ocean-bottom shear source and a multicomponent on-bottom receiver. A nearby drill hole showed that the sediments are interbedded silty clays, clays, and sands. I used an anisotropic reflectivity program written by Geo-Pacific Corporation to produce synthetic seismograms to estimate the five independent elastic stiffnesses necessary for describing transverse isotropy, the form of anisotropy found in these sediments. The synthetics fit the vertical and two horizontal components for two intersecting profiles, 150 and 200 m long. The data require low shear velocities (<400 m/s) and high attenuation (Q_{S} < 100) in about the top 30 m of the sediments. In the top 10 m, silty clay exhibits 12-15% anisotropy for shear waves. In this dissertation, I also consider the applicability of various rock physics theories to modeling the oceanic crust. Seismic velocities are controlled by the porosity, typically 20-30% for the top of layer 2. Most rock physics theories that relate seismic velocities to porosities are invalid for such high porosities. I combined elements of the self-consistent and noninteraction approaches to extend some rock physics theories for porosities up to at least 30-35%. Since the oceanic crust contains pores and cracks of many shapes, an appropriate theory must model round pores as well as flat cracks. I present examples of how layer 2A of the oceanic crust might be represented using an extended version of the Kuster-Toksoz theory

  3. Effect of Velocity of Detonation of Explosives on Seismic Radiation

    NASA Astrophysics Data System (ADS)

    Stroujkova, A. F.; Leidig, M.; Bonner, J. L.

    2014-12-01

    We studied seismic body wave generation from four fully contained explosions of approximately the same yields (68 kg of TNT equivalent) conducted in anisotropic granite in Barre, VT. The explosions were detonated using three types of explosives with different velocities of detonation (VOD): Black Powder (BP), Ammonium Nitrate Fuel Oil/Emulsion (ANFO), and Composition B (COMP B). The main objective of the experiment was to study differences in seismic wave generation among different types of explosives, and to determine the mechanism responsible for these differences. The explosives with slow burn rate (BP) produced lower P-wave amplitude and lower corner frequency, which resulted in lower seismic efficiency (0.35%) in comparison with high burn rate explosives (2.2% for ANFO and 3% for COMP B). The seismic efficiency estimates for ANFO and COMP B agree with previous studies for nuclear explosions in granite. The body wave radiation pattern is consistent with an isotropic explosion with an added azimuthal component caused by vertical tensile fractures oriented along pre-existing micro-fracturing in the granite, although the complexities in the P- and S-wave radiation patterns suggest that more than one fracture orientation could be responsible for their generation. High S/P amplitude ratios and low P-wave amplitudes suggest that a significant fraction of the BP source mechanism can be explained by opening of the tensile fractures as a result of the slow energy release.

  4. Velocity Inhomogeneity of The Seismic Focal Zone In Kamchatka

    NASA Astrophysics Data System (ADS)

    Sanina, I.; Gontovaya, L.; Levina, V.; Stepanova, M.

    Kamchatka is situated in the junction zone of Kuril-Kamchatka and Aleutian island arcs. According to P.R.Vogt et.al the geometry of this conjunction is determined by the Hawaiian-Emperor Volcanic Seamount Chain. The Kluchevsky volcanic group be- longs to intersection of these structures on the Kamchatka Peninsula. Due to high yield of magmatic material this group can be considered as one of the so-called hot spots on Earth. We studied the velocity structure of the Earth's crust and upper mantle in the transition zone continent-Pacific Ocean up to the depth about 120 km. 3-D veloc- ity structure is reconstructed by seismic tomography method (SSA modification). We used regional catalogue of Kamchatka earthquakes for the period 1975-1999 recorded by 35 seismological stations within the territory of Kamchatka (Kuril-Kamchatka is- land arc) and the Bering Island. Data are carefully selected according to special re- quirements on depth, magnitude, accuracy in coordinates and origin time. The amount of data provides high resolution of observation pattern and accuracy of obtained veloc- ity residuals. Distributions of Vp and Vs velocities are presented for the depth ranges 0-20, 20-35, 35-60, 60-90 and 90-120 km, and for vertical crossections along and across the Kuril-Kamchatka island arc. Significant lateral and vertical inhomogeneity of the seismic focal zone is revealed. We identify narrow steep dipping low velocity zones, related to deep faults with continuation on the Peninsula. These zones sepa- rate crust and mantle blocks with high contrast within the focal layer. Usually strong earthquakes are related to these boundaries. The conjunction zone of the island arc and the Emperor fault (its continuation under Kamchatka) coincides with the low velocity zone in the mantle at depth 60-90 km, continued in the continental block. A chain of volcanoes oriented across Eastern-Kamchatka volcanic belt is related to this zone. Volcanic belt on the whole is shifted westwards in

  5. Combining deterministic and stochastic velocity fields in the analysis of deep crustal seismic data

    NASA Astrophysics Data System (ADS)

    Larkin, Steven Paul

    Standard crustal seismic modeling obtains deterministic velocity models which ignore the effects of wavelength-scale heterogeneity, known to exist within the Earth's crust. Stochastic velocity models are a means to include wavelength-scale heterogeneity in the modeling. These models are defined by statistical parameters obtained from geologic maps of exposed crystalline rock, and are thus tied to actual geologic structures. Combining both deterministic and stochastic velocity models into a single model allows a realistic full wavefield (2-D) to be computed. By comparing these simulations to recorded seismic data, the effects of wavelength-scale heterogeneity can be investigated. Combined deterministic and stochastic velocity models are created for two datasets, the 1992 RISC seismic experiment in southeastern California and the 1986 PASSCAL seismic experiment in northern Nevada. The RISC experiment was located in the transition zone between the Salton Trough and the southern Basin and Range province. A high-velocity body previously identified beneath the Salton Trough is constrained to pinch out beneath the Chocolate Mountains to the northeast. The lateral extent of this body is evidence for the ephemeral nature of rifting loci as a continent is initially rifted. Stochastic modeling of wavelength-scale structures above this body indicate that little more than 5% mafic intrusion into a more felsic continental crust is responsible for the observed reflectivity. Modeling of the wide-angle RISC data indicates that coda waves following PmP are initially dominated by diffusion of energy out of the near-surface basin as the wavefield reverberates within this low-velocity layer. At later times, this coda consists of scattered body waves and P to S conversions. Surface waves do not play a significant role in this coda. Modeling of the PASSCAL dataset indicates that a high-gradient crust-mantle transition zone or a rough Moho interface is necessary to reduce precritical Pm

  6. Seismic Q and velocity at depth. [of lunar outgassed rock

    NASA Technical Reports Server (NTRS)

    Tittmann, B. R.; Nadler, H.; Clark, V.; Coombe, L.

    1979-01-01

    Measurements of the p-wave and s-wave internal friction quality factors (Q) and velocities of samples of a moderately outgassed terrestrial analog of lunar basalt exposed simultaneously to temperatures and hydrostatic confining pressures in accordance with the best available estimates of the lunar selenotherm are presented. Q values and velocities are found to increase with simulated depth, and an extrapolation of the Q value to a thoroughly outgassed states provides a Q value in reasonable agreement with those derived from lunar seismic data, suggesting a very dry lunar crust. Results also imply that similar seismic determinations for Mars would be able to distinguish between a dry crust and a crust containing water trapped beneath a layer of ice. Results of thermal cracking tests which demonstrate that high degrees of cracking associated with thermal cycling, as during the lunar day, are not inconsistent with high Q in a dry environment are presented, and it is shown that volatiles with diple moments comparable to H2O can greatly affect Q. Possible attenuation mechanisms are then considered, and velocity measurements on a synthetic anorthosite are presented.

  7. Velocity Structure of the Rifted Crust in the Northwestern Ross Sea, From Seismic Refraction Data

    NASA Astrophysics Data System (ADS)

    Selvans, M. M.; Stock, J. M.; Clayton, R. W.; Cande, S. C.; Davey, F. J.

    2007-12-01

    Extension in the West Antarctic Rift System produced the Transantarctic Mountains, deep sedimentary basins in the Ross Sea, and the Adare Trough spreading center (43 to 26 Ma). The Adare Basin and Northern Basin are located at the northwesternmost extent of this region of deformation, and are generally assumed to be oceanic and continental crust respectively. Their boundary therefore provides an ideal study area for linking the styles of extension in the two types of crust. We process seismic refraction data collected during research cruise NBP0701 to determine 2D crustal velocity models along four seismic lines at the margin of the Adare and Northern Basins. The 48 closely-spaced sonobuoy records included in this study provide continuous refraction data coverage; three of these lines have reversed sonobuoy records. Finite difference modeling of the individual sonobuoys provides accuracy in our interpreted layer velocities, confidence in tracing refracted arrivals back to their associated reflections in the sonobuoy records, and the ability to match these reflected arrivals with the multi- channel seismic reflection data. Preliminary results from the line trending perpendicular to the margin of the Adare and Northern Basins show no change in crustal velocity structure from one basin to the other, with nearly flat velocity contours along the entire line. An apparent velocity of 8000 m/s is observed along this line in the Northern Basin. A comparable layer velocity is not detected in the sonobuoy record shot in the reverse direction, so this velocity could be due to local basement topography. Alternatively, the high velocity may indicate mantle material, and an unusually thin crust at that location. We model structural layers and associated velocities below the sea floor in order to better understand the physical structure and deformational history of the crust in the northwestern Ross Sea. The velocity horizons determined from this data set provide model constraints

  8. Velocity Structure of the Rifted Crust in the Northwestern Ross Sea, From Seismic Refraction Data

    NASA Astrophysics Data System (ADS)

    Selvans, M. M.; Stock, J. M.; Clayton, R. W.; Cande, S. C.; Davey, F. J.

    2004-12-01

    Extension in the West Antarctic Rift System produced the Transantarctic Mountains, deep sedimentary basins in the Ross Sea, and the Adare Trough spreading center (43 to 26 Ma). The Adare Basin and Northern Basin are located at the northwesternmost extent of this region of deformation, and are generally assumed to be oceanic and continental crust respectively. Their boundary therefore provides an ideal study area for linking the styles of extension in the two types of crust. We process seismic refraction data collected during research cruise NBP0701 to determine 2D crustal velocity models along four seismic lines at the margin of the Adare and Northern Basins. The 48 closely-spaced sonobuoy records included in this study provide continuous refraction data coverage; three of these lines have reversed sonobuoy records. Finite difference modeling of the individual sonobuoys provides accuracy in our interpreted layer velocities, confidence in tracing refracted arrivals back to their associated reflections in the sonobuoy records, and the ability to match these reflected arrivals with the multi- channel seismic reflection data. Preliminary results from the line trending perpendicular to the margin of the Adare and Northern Basins show no change in crustal velocity structure from one basin to the other, with nearly flat velocity contours along the entire line. An apparent velocity of 8000 m/s is observed along this line in the Northern Basin. A comparable layer velocity is not detected in the sonobuoy record shot in the reverse direction, so this velocity could be due to local basement topography. Alternatively, the high velocity may indicate mantle material, and an unusually thin crust at that location. We model structural layers and associated velocities below the sea floor in order to better understand the physical structure and deformational history of the crust in the northwestern Ross Sea. The velocity horizons determined from this data set provide model constraints

  9. Wave-equation migration velocity inversion using passive seismic sources

    NASA Astrophysics Data System (ADS)

    Witten, B.; Shragge, J. C.

    2015-12-01

    Seismic monitoring at injection sites (e.g., CO2 sequestration, waste water disposal, hydraulic fracturing) has become an increasingly important tool for hazard identification and avoidance. The information obtained from this data is often limited to seismic event properties (e.g., location, approximate time, moment tensor), the accuracy of which greatly depends on the estimated elastic velocity models. However, creating accurate velocity models from passive array data remains a challenging problem. Common techniques rely on picking arrivals or matching waveforms requiring high signal-to-noise data that is often not available for the magnitude earthquakes observed over injection sites. We present a new method for obtaining elastic velocity information from earthquakes though full-wavefield wave-equation imaging and adjoint-state tomography. The technique exploits the fact that the P- and S-wave arrivals originate at the same time and location in the subsurface. We generate image volumes by back-propagating P- and S-wave data through initial Earth models and then applying a correlation-based extended-imaging condition. Energy focusing away from zero lag in the extended image volume is used as a (penalized) residual in an adjoint-state tomography scheme to update the P- and S-wave velocity models. We use an acousto-elastic approximation to greatly reduce the computational cost. Because the method requires neither an initial source location or origin time estimate nor picking of arrivals, it is suitable for low signal-to-noise datasets, such as microseismic data. Synthetic results show that with a realistic distribution of microseismic sources, P- and S-velocity perturbations can be recovered. Although demonstrated at an oil and gas reservoir scale, the technique can be applied to problems of all scales from geologic core samples to global seismology.

  10. Absolute plate velocities from seismic anisotropy: Importance of correlated errors

    NASA Astrophysics Data System (ADS)

    Zheng, Lin; Gordon, Richard G.; Kreemer, Corné

    2014-09-01

    The errors in plate motion azimuths inferred from shear wave splitting beneath any one tectonic plate are shown to be correlated with the errors of other azimuths from the same plate. To account for these correlations, we adopt a two-tier analysis: First, find the pole of rotation and confidence limits for each plate individually. Second, solve for the best fit to these poles while constraining relative plate angular velocities to consistency with the MORVEL relative plate angular velocities. Our preferred set of angular velocities, SKS-MORVEL, is determined from the poles from eight plates weighted proportionally to the root-mean-square velocity of each plate. SKS-MORVEL indicates that eight plates (Amur, Antarctica, Caribbean, Eurasia, Lwandle, Somalia, Sundaland, and Yangtze) have angular velocities that differ insignificantly from zero. The net rotation of the lithosphere is 0.25 ± 0.11° Ma-1 (95% confidence limits) right handed about 57.1°S, 68.6°E. The within-plate dispersion of seismic anisotropy for oceanic lithosphere (σ = 19.2°) differs insignificantly from that for continental lithosphere (σ = 21.6°). The between-plate dispersion, however, is significantly smaller for oceanic lithosphere (σ = 7.4°) than for continental lithosphere (σ = 14.7°). Two of the slowest-moving plates, Antarctica (vRMS = 4 mm a-1, σ = 29°) and Eurasia (vRMS = 3 mm a-1, σ = 33°), have two of the largest within-plate dispersions, which may indicate that a plate must move faster than ≈ 5 mm a-1 to result in seismic anisotropy useful for estimating plate motion. The tendency of observed azimuths on the Arabia plate to be counterclockwise of plate motion may provide information about the direction and amplitude of superposed asthenospheric flow or about anisotropy in the lithospheric mantle.

  11. 2D time-domain finite-difference modeling for viscoelastic seismic wave propagation

    NASA Astrophysics Data System (ADS)

    Fan, Na; Zhao, Lian-Feng; Xie, Xiao-Bi; Ge, Zengxi; Yao, Zhen-Xing

    2016-07-01

    Real Earth media are not perfectly elastic. Instead, they attenuate propagating mechanical waves. This anelastic phenomenon in wave propagation can be modeled by a viscoelastic mechanical model consisting of several standard linear solids. Using this viscoelastic model, we approximate a constant Q over a frequency band of interest. We use a four-element viscoelastic model with a tradeoff between accuracy and computational costs to incorporate Q into 2D time-domain first-order velocity-stress wave equations. To improve the computational efficiency, we limit the Q in the model to a list of discrete values between 2 and 1000. The related stress and strain relaxation times that characterize the viscoelastic model are pre-calculated and stored in a database for use by the finite-difference calculation. A viscoelastic finite-difference scheme that is second-order in time and fourth-order in space is developed based on the MacCormack algorithm. The new method is validated by comparing the numerical result with analytical solutions that are calculated using the generalized reflection/transmission coefficient method. The synthetic seismograms exhibit greater than 95 per cent consistency in a two-layer viscoelastic model. The dispersion generated from the simulation is consistent with the Kolsky-Futterman dispersion relationship.

  12. Extracting physical parameters from marine seismic data: New methods in seismic oceanography and velocity inversion

    NASA Astrophysics Data System (ADS)

    Fortin, Will F. J.

    The utility and meaning of a geophysical dataset is dependent on good interpretation informed by high-quality data, processing, and attribute examination via technical methodologies. Active source marine seismic reflection data contains a great deal of information in the location, phase, and amplitude of both pre- and post-stack seismic reflections. Using pre- and post-stack data, this work has extracted useful information from marine reflection seismic data in novel ways in both the oceanic water column and the sub-seafloor geology. In chapter 1 we develop a new method for estimating oceanic turbulence from a seismic image. This method is tested on synthetic seismic data to show the method's ability to accurately recover both distribution and levels of turbulent diffusivity. Then we apply the method to real data offshore Costa Rica where we observe lee waves. Our results find elevated diffusivities near the seafloor as well as above the lee waves five times greater than surrounding waters and 50 times greater than open ocean diffusivities. Chapter 2 investigates subsurface geology in the Cascadia Subduction Zone and outlines a workflow for using pre-stack waveform inversion to produce highly detailed velocity models and seismic images. Using a newly developed inversion code, we achieve better imaging results as compared to the product of a standard, user-intensive method for building a velocity model. Our results image the subduction interface ~30 km farther landward than previous work and better images faults and sedimentary structures above the oceanic plate as well as in the accretionary prism. The resultant velocity model is highly detailed, inverted every 6.25 m with ~20 m vertical resolution, and will be used to examine the role of fluids in the subduction system. These results help us to better understand the natural hazards risks associated with the Cascadia Subduction Zone. Chapter 3 returns to seismic oceanography and examines the dynamics of nonlinear

  13. Cross Gradient Based Joint Inversion of 2D Wide Angle Seismic Reflection/Refraction and Gravity Data Along the Profile Through the 2010 Ms 7.1 Yushu Earthquake, China

    NASA Astrophysics Data System (ADS)

    Xiang, S.; Zhang, H.

    2015-12-01

    2D wide-angle seismic reflection/refraction survey has been widely used to investigate crustal structure and Moho topography. Similarly gravity survey is also very important in the study of local and regional earth features. Seismic survey is sensitive to the seismic velocity parameters and interface variations. For gravity survey, it is sensitive to density parameters of the medium but the resolution along the vertical direction is relatively poor. In this study, we have developed a strategy to jointly invert for seismic velocity model, density model and interface positions using the gravity observations and seismic arrival times from different phases. For the joint inversion of seismic and gravity data, it often relies on the empirical relationship between seismic velocity and density. In comparison, our joint inversion strategy also includes the cross-gradient based structure constraint for seismic velocity and density models in addition to the empirical relationship between them. The objective function for the joint inversion includes data misfit terms for seismic travel times and gravity observations, the cross-gradient constraint, the smoothness terms for two models, and the data misfit term between predicted gravity data based on density model converted from velocity model using the empirical relationship. Each term has its respective weight. We have applied the new joint inversion method to the Riwoqe-Yushu-Maduo profile in northwest China. The profile crosses through the Qiangtang block and Bayan Har block from southwest to northeast, respectively. The 2010 Ms 7.1 Yushu earthquake is located on the profile, around the Ganzi-Yushu fault zone. The joint inversion produces the velocity and density models that are similar in structure and at the same time fit their respective data sets well. Compared to separate seismic inversion using seismic travel times, the joint inversion with gravity data gives a velocity model that better delineates the fault zones. Low

  14. The USGS 3D Seismic Velocity Model for Northern California

    NASA Astrophysics Data System (ADS)

    Brocher, T. M.; Aagaard, B.; Simpson, R. W.; Jachens, R. C.

    2006-12-01

    We present a new regional 3D seismic velocity model for Northern California for use in strong motion simulations of the 1906 San Francisco and other earthquakes. The model includes compressional-wave velocity (Vp), shear-wave velocity (Vs), density, and intrinsic attenuation (Qp, Qs). These properties were assigned for each rock type in a 3D geologic model derived from surface outcrops, boreholes, gravity and magnetic data, and seismic reflection, refraction, and tomography studies. A detailed description of the model, USGS Bay Area Velocity Model 05.1.0, is available online [http://www.sf06simulation.org/geology/velocitymodel]. For ground motion simulations Vs and Qs are more important parameters than Vp and Qp because the strongest ground motions are generated chiefly by shear and surface wave arrivals. Because Vp data are more common than Vs data, however, we first developed Vp versus depth relations for each rock type and then converted these to Vs versus depth relations. For the most important rock types in Northern California we compiled measurements of Vp versus depth using borehole logs, laboratory measurements on hand samples, seismic refraction profiles, and tomography models. These rock types include Salinian and Sierran granitic rocks, metagraywackes and greenstones of the Franciscan Complex, Tertiary and Mesozoic sedimentary and volcanic rocks, and Quaternary and Holocene deposits (Brocher, USGS OFR 05-1317, 2005). Vp versus depth curves were converted to Vs versus depth curves using new empirical nonlinear relations between Vs and Vp (Brocher, BSSA, 2005). These relations, showing that Poisson's ratio is a nonlinear function of Vp, were similarly based on compilations of diverse Vs and Vp measurements on a large suite of rock types, mainly from California and the Pacific Northwest. The model is distributed in a discretized form with routines to query the model using C++, C, and Fortran 77 programming languages. The geologic model was discretized at

  15. 2D and 3D Shear-Wave Velocity Structure to >1 Km Depth from Ambient and Active Surface Waves: Three "Deep Remi" Case Studies

    NASA Astrophysics Data System (ADS)

    Louie, J. N.; Pancha, A.; Pullammanappallil, S. K.

    2014-12-01

    Refraction microtermor routinely assesses 1D and 2D velocity-depth profiles to shallow depths of approximately 100 m primarily for engineering applications. Estimation of both shallow and deep (>100 m) shear-velocity structure are key elements in the assessment of urban areas for potential earthquake ground shaking, damage, and the calibration of recorded ground motions. Three independent studies investigated the ability of the refraction microtremor technology to image deep velocity structure, to depths exceeding 1 km (Deep ReMi). In the first study, we were able to delineate basin thicknesses of up to 900 m and the deep-basin velocity structure beneath the Reno-area basin. Constraints on lateral velocity changes in 3D as well as on velocity profiles extended down to 1500 m, and show a possible fault offset. This deployment used 30 stand-alone wireless instruments mated to 4.5 Hz geophones, along each of five arrays 2.9 to 5.8 km long. Rayleigh-wave dispersion was clear at frequencies as low as 0.5 Hz using 120 sec ambient urban noise records. The results allowed construction of a 3D velocity model, vetted by agreement with gravity studies. In a second test, a 5.8 km array delimited the southern edge of the Tahoe Basin, with constraints from gravity. There, bedrock depth increased by 250 m in thickness over a distance of 1600 m, with definition of the velocity of the deeper basin sediments. The third study delineated the collapse region of an underground nuclear explosion within a thick sequence of volcanic extrusives, using a shear-wave minivibe in a radial direction, and horizontal geophones. Analysis showed the cavity extends to 620 m depth, with a width of 180 m and a height of 220 m. Our results demonstrate that deep velocity structure can be recovered using ambient noise. This technique offers the ability to define 2D and 3D structural representations essential for seismic hazard evaluation.

  16. Seismic Constraints on Geometry, Seismic Velocity and Anisotropy of the "African Anomaly"

    NASA Astrophysics Data System (ADS)

    Wang, Y.; Wen, L.

    2006-05-01

    Seismic evidence shows that the "African Anomaly", a prominent low-velocity structure in the lower mantle beneath Africa, has a broad base near the core-mantle boundary (CMB) and extends at least 1000 km upward into the mid-lower mantle. Waveform modeling results indicate that its base is a very-low velocity province (VLVP) in the lowermost 200-300 km of the Earth's mantle with rapidly varying geometries and a strong Vs reduction gradient of -2% - -12% from top to bottom. These features unambiguously indicate the VLVP is compositionally distinct and can be best explained by partial melting driven by a compositional change produced in the early Earth's history [Wen, 2001; Wen et. al, 2001; Wang and Wen, 2004]. Seismic structure for the mid-lower mantle portion of the "African Anomaly" and the anisotropic behavior related to the VLVP remain unclear. In this presentation, we will present seismic data to constrain geometry and both P- and S- velocity perturbations for the "African Anomaly" along the great arc from the East Pacific Rise to the Japan Sea, and discuss seismic anisotropic behavior inside the VLVP and in the surrounding areas. We collected direct S, ScS, SKS, and SKKS waveforms data sets for 9 earthquakes recorded at the temporary broadband Kaapvaal, Tanzania, and Ethiopia/Kenya seismic arrays in Africa. These seismic data provide reasonably good coverage for the "African Anomaly" along a great circle path in opposite directions. We corrected for the effects of the earthquake mislocation and the seismic heterogeneities outside the anomaly. Seismic data suggest that the "African Anomaly" exhibits a "cusp-like" shape along the great arc and continuously extends from the CMB to about 1300 km above the CMB with both sides tilting toward its center beneath southern Africa. The magnitude of these travel time residuals can be best explained by a shear velocity structure with average Vs reductions of -5% for the basal layer and -2% - -3% for the portion in the

  17. Waveform Constrained Seismic Velocity Structure in Northern California

    NASA Astrophysics Data System (ADS)

    Rhie, J.; Dreger, D. S.

    2001-12-01

    1-D and 2-D S-wave velocity structure from Mammoth Lakes to Yreka is determined by SH waveform modeling and receiver function analysis. Regional broadband waveforms from the 21 September 1993 Klamath Falls (Mw 6.0), the 15 May 1999 Mammoth Lakes (Mw 6.0), and the 10 August 2001 Portola (Mw 5.2) events were well recorded by 4 to 5 BDSN stations that are also located nearly on the same NNW line. This naturally aligned configuration of three local earthquakes and stations provides an excellent opportunity to determine a waveform constrained velocity model along the profile. Before performing the waveform modeling, a receiver function technique is applied to constrain Moho depth at each station. 1-D models are estimated iteratively by forward modeling of the broadband waveforms and the receiver functions. A 2-D model will be determined based on the 1-D results, and will be tested by modeling the broadband waveforms using a finite difference technique.

  18. The shallow velocity structure of the Carboneras fault zone from high-resolution seismic investigations

    NASA Astrophysics Data System (ADS)

    Jones, C.; Nippress, S.; Rietbrock, A.; Faulkner, D. R.; Rutter, E. H.; Haberland, C. A.; Teixido, T.

    2010-12-01

    Understanding and characterizing fault zone structure at depth is vital to predicting the slip behaviour of faults in the brittle crust. The CFZ is a large offset (10s of km) strike-slip fault that constitutes part of the diffuse plate boundary between Africa and Iberia. It has been largely passively exhumed from ca. 4 to 6 km depth. The friable fault zone components are excellently preserved in the region’s semi-arid climate, and consist of multiple strands of phyllosilicate-rich fault gouge ranging from 1 to 20 m in thickness. We conducted four high-resolution seismic refraction tomography lines. Two of these lines crossed the entire width of the fault zone (~1km long) while the remaining lines concentrated on individual fault strands and associated damage zones (~100m long). For each line a combination of seismic sources (accelerated drop weight, sledgehammer and 100g explosives) was used, with 2m-geophone spacing. First breaks have been picked for each of the shot gathers and inputted into a 2D travel time inversion and amplitude-modeling package (Zelt & Smith, 1992) to obtain first break tomography images down to a depth 100m for the longer lines. The fault zone is imaged as a series of low velocity zones associated with the gouge strands, with Vp=1.5-1.75 km/s a velocity reduction of 40-60% compared to the wall-rock velocities (Vp=2.8-3.2km/s). These velocities are consistent with first break tomographic observations across the Dead Sea Transform fault (Haberland et al., 2007), but lower than the velocities imaged along the Punchbowl fault zone (part of the San Andreas system). Along the longer profiles we image multiple fault strands that exhibit a variety of thicknesses (~20-80m).

  19. 3-D seismic velocity and attenuation structures in the geothermal field

    SciTech Connect

    Nugraha, Andri Dian; Syahputra, Ahmad; Fatkhan,; Sule, Rachmat

    2013-09-09

    We conducted delay time tomography to determine 3-D seismic velocity structures (Vp, Vs, and Vp/Vs ratio) using micro-seismic events in the geothermal field. The P-and S-wave arrival times of these micro-seismic events have been used as input for the tomographic inversion. Our preliminary seismic velocity results show that the subsurface condition of geothermal field can be fairly delineated the characteristic of reservoir. We then extended our understanding of the subsurface physical properties through determining of attenuation structures (Qp, Qs, and Qs/Qp ratio) using micro-seismic waveform. We combined seismic velocities and attenuation structures to get much better interpretation of the reservoir characteristic. Our preliminary attanuation structures results show reservoir characterization can be more clearly by using the 3-D attenuation model of Qp, Qs, and Qs/Qp ratio combined with 3-D seismic velocity model of Vp, Vs, and Vp/Vs ratio.

  20. A hybrid experimental-numerical technique for determining 3D velocity fields from planar 2D PIV data

    NASA Astrophysics Data System (ADS)

    Eden, A.; Sigurdson, M.; Mezić, I.; Meinhart, C. D.

    2016-09-01

    Knowledge of 3D, three component velocity fields is central to the understanding and development of effective microfluidic devices for lab-on-chip mixing applications. In this paper we present a hybrid experimental-numerical method for the generation of 3D flow information from 2D particle image velocimetry (PIV) experimental data and finite element simulations of an alternating current electrothermal (ACET) micromixer. A numerical least-squares optimization algorithm is applied to a theory-based 3D multiphysics simulation in conjunction with 2D PIV data to generate an improved estimation of the steady state velocity field. This 3D velocity field can be used to assess mixing phenomena more accurately than would be possible through simulation alone. Our technique can also be used to estimate uncertain quantities in experimental situations by fitting the gathered field data to a simulated physical model. The optimization algorithm reduced the root-mean-squared difference between the experimental and simulated velocity fields in the target region by more than a factor of 4, resulting in an average error less than 12% of the average velocity magnitude.

  1. Seasonal variations of seismic velocities in the San Jacinto fault area observed with ambient seismic noise

    NASA Astrophysics Data System (ADS)

    Hillers, G.; Ben-Zion, Y.; Campillo, M.; Zigone, D.

    2015-08-01

    We observe seasonal seismic wave speed changes (dv/v) in the San Jacinto fault area and investigate several likely source mechanisms. Velocity variations are obtained from analysis of 6 yr data of vertical component seismic noise recorded by 10 surface and six borehole stations. We study the interrelation between dv/v records, frequency-dependent seismic noise properties, and nearby environmental data of wind speed, rain, ground water level, barometric pressure and atmospheric temperature. The results indicate peak-to-peak seasonal velocity variations of ˜0.2 per cent in the 0.5-2 Hz frequency range, likely associated with genuine changes of rock properties rather than changes in the noise field. Phase measurements between dv/v and the various environmental data imply that the dominant source mechanism in the arid study area is thermoelastic strain induced by atmospheric temperature variations. The other considered environmental effects produce secondary variations that are superimposed on the thermal-based changes. More detailed work with longer data on the response of rocks to various known external loadings can help tracking the evolving stress and effective rheology at depth.

  2. Estimation of Random Medium Parameters from 2D Post-Stack Seismic Data and Its Application in Seismic Inversion

    NASA Astrophysics Data System (ADS)

    Yang, X.; Zhu, P.; Gu, Y.; Xu, Z.

    2015-12-01

    Small scale heterogeneities of subsurface medium can be characterized conveniently and effectively using a few simple random medium parameters (RMP), such as autocorrelation length, angle and roughness factor, etc. The estimation of these parameters is significant in both oil reservoir prediction and metallic mine exploration. Poor accuracy and low stability existed in current estimation approaches limit the application of random medium theory in seismic exploration. This study focuses on improving the accuracy and stability of RMP estimation from post-stacked seismic data and its application in the seismic inversion. Experiment and theory analysis indicate that, although the autocorrelation of random medium is related to those of corresponding post-stacked seismic data, the relationship is obviously affected by the seismic dominant frequency, the autocorrelation length, roughness factor and so on. Also the error of calculation of autocorrelation in the case of finite and discrete model decreases the accuracy. In order to improve the precision of estimation of RMP, we design two improved approaches. Firstly, we apply region growing algorithm, which often used in image processing, to reduce the influence of noise in the autocorrelation calculated by the power spectrum method. Secondly, the orientation of autocorrelation is used as a new constraint in the estimation algorithm. The numerical experiments proved that it is feasible. In addition, in post-stack seismic inversion of random medium, the estimated RMP may be used to constrain inverse procedure and to construct the initial model. The experiment results indicate that taking inversed model as random medium and using relatively accurate estimated RMP to construct initial model can get better inversion result, which contained more details conformed to the actual underground medium.

  3. 2D velocity and temperature measurements in high speed flows based on spectrally resolved Rayleigh scattering

    NASA Technical Reports Server (NTRS)

    Seasholtz, Richard G.

    1992-01-01

    The use of molecular Rayleigh scattering for measurements of gas velocity and temperature is evaluated. Molecular scattering avoids problems associated with the seeding required by conventional laser anemometry and particle image velocimetry. The technique considered herein is based on the measurement of the spectrum of the scattered light. Planar imaging of Rayleigh scattering using a laser light sheet is evaluated for conditions at 30 km altitude (typical hypersonic flow conditions). The Cramer-Rao lower bounds for velocity and temperature measurement uncertainties are calculated for an ideal optical spectrum analyzer and for a planar mirror Fabry-Perot interferometer used in a static, imaging mode. With this technique, a single image of the Rayleigh scattered light from clean flows can be analyzed to obtain temperature and one component of velocity. Experimental results are presented for planar velocity measurements in a Mach 1.3 air jet.

  4. Mineralization, crystallography, and longitudinal seismic wave velocity of speleothems

    SciTech Connect

    Williams, R.S.; Grant, S.K. . Dept. of Geology and Geophysics); Haas, C.J. . Dept. of Mining Engineering)

    1993-03-01

    Speleothems, or cave deposits, of Fisher Cave in Sullivan, Missouri, display unique arrangements of overlapping and interwoven crystals that provide the foundation for intricate shapes and patterns. Research has found that the deposition of such forms are affected by many variables associated with carbonate petrology. An active cave system having a consistent yearly rate of water flow will deposit trace, non-carbonate mineralization at locations of initial contact with the cave environment. Deposit specimens were tested using X-ray diffraction methods resulting in the identification of a manganese oxide coating of a psilomelane. Speleothems, considered a natural resource, are protected along with the cave from industrial advancements outside the cave environment. When the detonation of explosives during the construction of a highway near Crystal Cave in Springfield, Missouri threatened the speleothegenic decoration, a study of the damaging resonant frequency of the speleothems was instigated. To calculate this frequency, the longitudinal and transverse seismic wave velocity was measured by geophysical techniques.

  5. Surface related multiple elimination (SRME) and radon transform forward multiple modeling methods applied to 2D multi-channel seismic profiles from the Chukchi Shelf, Arctic Ocean

    NASA Astrophysics Data System (ADS)

    Ilhan, I.; Coakley, B. J.

    2013-12-01

    The Chukchi Edges project was designed to establish the relationship between the Chukchi Shelf and Borderland and indirectly test theories of opening for the Canada Basin. During this cruise, ~5300 km of 2D multi-channel reflection seismic profiles and other geophysical data (swath bathymetry, gravity, magnetics, sonobuoy refraction seismic) were collected from the RV Marcus G. Langseth across the transition between the Chukchi Shelf and Chukchi Borderland, where the water depths vary from 30 m to over 3 km. Multiples occur when seismic energy is trapped in a layer and reflected from an acoustic interface more than once. Various kinds of multiples occur during seismic data acquisition. These depend on the ray-path the seismic energy follows through the layers. One of the most common multiples is the surface related multiple, which occurs due to strong acoustic impedance contrast between the air and water. The reflected seismic energy from the water surface is trapped within the water column, thus reflects from the seafloor multiple times. Multiples overprint the primary reflections and complicate data interpretation. Both surface related multiple elimination (SRME) and forward parabolic radon transform multiple modeling methods were necessary to attenuate the multiples. SRME is applied to shot gathers starting with the near offset interpolation, multiple estimation using water depths, and subtracting the model multiple from the shot gathers. This method attenuated surface related multiple energy, however, peg-leg multiples remained in the data. The parabolic radon transform method minimized the effect of these multiples. This method is applied to normal moveout (NMO) corrected common mid-point gathers (CMP). The CMP gathers are fitted or modeled with curves estimated from the reference offset, moveout range, moveout increment parameters. Then, the modeled multiples are subtracted from the data. Preliminary outputs of these two methods show that the surface related

  6. Velocity Structure Determination Through Seismic Waveform Modeling and Time Deviations

    NASA Astrophysics Data System (ADS)

    Savage, B.; Zhu, L.; Tan, Y.; Helmberger, D. V.

    2001-12-01

    Through the use of seismic waveforms recorded by TriNet, a dataset of earthquake focal mechanisms and deviations (time shifts) relative to a standard model facilitates the investigation of the crust and uppermost mantle of southern California. The CAP method of focal mechanism determination, in use by TriNet on a routine basis, provides time shifts for surface waves and Pnl arrivals independently relative to the reference model. These shifts serve as initial data for calibration of local and regional seismic paths. Time shifts from the CAP method are derived by splitting the Pnl section of the waveform, the first arriving Pn to just before the arrival of the S wave, from the much slower surface waves then cross-correlating the data with synthetic waveforms computed from a standard model. Surface waves interact with the entire crust, but the upper crust causes the greatest effect. Whereas, Pnl arrivals sample the deeper crust, upper mantle, and source region. This natural division separates the upper from lower crust for regional calibration and structural modeling and allows 3-D velocity maps to be created using the resulting time shifts. Further examination of Pnl and other arrivals which interact with the Moho illuminate the complex nature of this boundary. Initial attempts at using the first 10 seconds of the Pnl section to determine upper most mantle structure have proven insightful. Two large earthquakes north of southern California in Nevada and Mammoth Lakes, CA allow the creation of record sections from 200 to 600 km. As the paths swing from east to west across southern California, simple 1-D models turn into complex structure, dramatically changing the waveform character. Using finite difference models to explain the structure, we determine that a low velocity zone is present at the base of the crust and extends to 100 km in depth. Velocity variations of 5 percent of the mantle in combination with steeply sloping edges produces complex waveform variations

  7. 2D He+ Pickup Ion Velocity Distribution Functions: STEREO PLASTIC Observations

    NASA Astrophysics Data System (ADS)

    Drews, C.; Berger, L.; Peleikis, T.; Wimmer-Schweingruber, R. F.

    2014-12-01

    He+ pickup ions are either born from the ionization of interstellar neutral helium atoms inside our heliosphere, the so called interstellar pickup ions, or through the interaction of solar wind ions with small dust particles close to the Sun, the so called inner-source of pickup ions. Until now, most observations of He+ pickup ions were limited to reduced 1D velocity spectra, which are insufficient to study certain characteristics of the He+ Velocity Distribution Function (VDF). It is generally assumed that rapid pitch-angle scattering of freshly created pickup ions quickly leads to a fully isotropic He+ VDF. In the light of recent observations, this assumption has found to be oversimplified and needs to be re-investigated. Using He+ pickup ion data from the PLASTIC instrument on board the STEREO A spacecraft we reconstruct a reduced form of the He+ VDF in 2 dimensions (see figure). The reduced form of the He+ VDF allows us to study the pitch-angle distribution and anisotropy of the He+ VDF as a function of the solar magnetic field, B. Our observations show clear signs of a significant anisotropy of the He+ VDF and even indicates that, at least for certain configurations of B, it is not even fully gyrotropic. Our results further suggest, that the observed velocity and pitch-angle of He+ depends strongly on the solar magnetic field vector, B, the ecliptic longitude, λ, the solar wind speed, vsw, and the history of B. Consequently, we argue that reduced 1D velocity spectra of He+ are insufficient to study quantities like the pitch-angle scattering rate, τ, or the adiabatic cooling index γ.

  8. 3D Reservoir Modeling of Semutang Gas Field: A lonely Gas field in Chittagong-Tripura Fold Belt, with Integrated Well Log, 2D Seismic Reflectivity and Attributes.

    NASA Astrophysics Data System (ADS)

    Salehin, Z.; Woobaidullah, A. S. M.; Snigdha, S. S.

    2015-12-01

    Bengal Basin with its prolific gas rich province provides needed energy to Bangladesh. Present energy situation demands more Hydrocarbon explorations. Only 'Semutang' is discovered in the high amplitude structures, where rest of are in the gentle to moderate structures of western part of Chittagong-Tripura Fold Belt. But it has some major thrust faults which have strongly breached the reservoir zone. The major objectives of this research are interpretation of gas horizons and faults, then to perform velocity model, structural and property modeling to obtain reservoir properties. It is needed to properly identify the faults and reservoir heterogeneities. 3D modeling is widely used to reveal the subsurface structure in faulted zone where planning and development drilling is major challenge. Thirteen 2D seismic and six well logs have been used to identify six gas bearing horizons and a network of faults and to map the structure at reservoir level. Variance attributes were used to identify faults. Velocity model is performed for domain conversion. Synthetics were prepared from two wells where sonic and density logs are available. Well to seismic tie at reservoir zone shows good match with Direct Hydrocarbon Indicator on seismic section. Vsh, porosity, water saturation and permeability have been calculated and various cross plots among porosity logs have been shown. Structural modeling is used to make zone and layering accordance with minimum sand thickness. Fault model shows the possible fault network, those liable for several dry wells. Facies model have been constrained with Sequential Indicator Simulation method to show the facies distribution along the depth surfaces. Petrophysical models have been prepared with Sequential Gaussian Simulation to estimate petrophysical parameters away from the existing wells to other parts of the field and to observe heterogeneities in reservoir. Average porosity map for each gas zone were constructed. The outcomes of the research

  9. Analysis of Cretaceous (Aptian) strata in central Tunisia, using 2D seismic data and well logs

    NASA Astrophysics Data System (ADS)

    Zouaghi, Taher; Ferhi, Issam; Bédir, Mourad; Youssef, Mohamed Ben; Gasmi, Mohamed; Inoubli, Mohamed Hédi

    2011-08-01

    This paper presents a structural and depositional model of lower Cretaceous (Aptian) strata in central Tunisia, using detailed facies relations in outcrops, seismic reflection data, and wells. The study interval (called the "Aptian supersequence") is subdivided into four seismic sequences containing third-order sequences. Sequence architecture was strongly affected by syndepositional tectonic movements, which controlled sequence position and distribution. Specifically, the seismic sections show irregular distribution of different zones of subsidence and uplift. The observed structures identified through the detailed mapping suggest that lower Cretaceous rifting created depressions and grabens that filled with strata characterized by divergent reflectors striking against dipping growth faults. The Aptian-Albian unconformity ("crisis") marked a change of the extensional stress field from NNW-SSE to NE-SW induced rotation of blocks and an evolution of sedimentary basin filling related to the regional tectonic deformation. Local salt tectonic movement accentuated the formation of asymmetric depocenters. The salt ascended at the junction of master faults, resulting in cross-cutting of the strata and local reworking of Triassic evaporites in Aptian strata. Basinward to landward variations of the thickness and facies associated with strata pinch-outs and unconformities are related to the main synsedimentary tectonic events that were synchronous with salt tectonic movements. Triassic salt domes and salt intrusions along faults accentuated the border elevations between basin depocenters and uplifts. These sedimentary phenomena in central Tunisia are interpreted as causally related aspects of a local and global tectonic event during the Aptian.

  10. Three Dimensional velocity Structure in the New Madrid and Other SCR Seismic Zones

    NASA Astrophysics Data System (ADS)

    Powell, C. A.

    2002-12-01

    Recent tomographic inversions of travel time data accumulated for active SCR seismic zones have revealed strong velocity contrasts that appear to control the distribution of seismicity. Velocity images have been obtained for the New Madrid seismic zone (NMSZ), the eastern Tennessee seismic zone (ETSZ), and the Charlevoix seismic zone (CSZ). We have also obtained a preliminary velocity model for the aftershock region associated with the Mw=7.7 January 26th Bhuj, India earthquake. Both P and S waves were inverted for velocity structure in the NMSZ. High velocity bodies were imaged and are interpreted to be intrusions associated with the axis and edge of the Reelfoot graben. Low velocities were imaged near the intersection of the long NE arm of seismicity and the NW trending arm; the low velocities are attributed to highly fractured, fluid saturated crust and are associated with shallow earthquake swarms. In general, earthquakes tend to avoid regions with higher than average velocities and concentrate in areas of low velocity or along the edges of high velocity zones. Similar results were obtained for both the ETSZ and the CSZ. A prominent low-velocity zone was detected in the ETSZ; most earthquakes occur in rocks that surround the lowest-velocity regions. An elongated, high velocity region is present at mid-crustal depths in the CSZ; earthquakes avoid the high velocity body and separate into two bands, one on either side of the feature. Larger earthquakes (exceeding magnitude 4) have occurred along the northern edge of the high velocity region. Our results suggest that earthquakes in SCR seismic zones tend to occur in rocks where strain energy is concentrating. This observation is consistent with results from high resolution tomographic images of fault zones in California.

  11. Probing the Detailed Seismic Velocity Structure of Subduction Zones Using Advanced Seismic Tomography Methods

    NASA Astrophysics Data System (ADS)

    Zhang, H.; Thurber, C. H.

    2005-12-01

    Subduction zones are one of the most important components of the Earth's plate tectonic system. Knowing the detailed seismic velocity structure within and around subducting slabs is vital to understand the constitution of the slab, the cause of intermediate depth earthquakes inside the slab, the fluid distribution and recycling, and tremor occurrence [Hacker et al., 2001; Obara, 2002].Thanks to the ability of double-difference tomography [Zhang and Thurber, 2003] to resolve the fine-scale structure near the source region and the favorable seismicity distribution inside many subducting slabs, it is now possible to characterize the fine details of the velocity structure and earthquake locations inside the slab, as shown in the study of the Japan subduction zone [Zhang et al., 2004]. We further develop the double-difference tomography method in two aspects: the first improvement is to use an adaptive inversion mesh rather than a regular inversion grid and the second improvement is to determine a reliable Vp/Vs structure using various strategies rather than directly from Vp and Vs [see our abstract ``Strategies to solve for a better Vp/Vs model using P and S arrival time'' at Session T29]. The adaptive mesh seismic tomography method is based on tetrahedral diagrams and can automatically adjust the inversion mesh according to the ray distribution so that the inversion mesh nodes are denser where there are more rays and vice versa [Zhang and Thurber, 2005]. As a result, the number of inversion mesh nodes is greatly reduced compared to a regular inversion grid with comparable spatial resolution, and the tomographic system is more stable and better conditioned. This improvement is quite valuable for characterizing the fine structure of the subduction zone considering the highly uneven distribution of earthquakes within and around the subducting slab. The second improvement, to determine a reliable Vp/Vs model, lies in jointly inverting Vp, Vs, and Vp/Vs using P, S, and S

  12. Las Vegas Basin Seismic Response Project: Measured Shallow Soil Velocities

    NASA Astrophysics Data System (ADS)

    Luke, B. A.; Louie, J.; Beeston, H. E.; Skidmore, V.; Concha, A.

    2002-12-01

    The Las Vegas valley in Nevada is a deep (up to 5 km) alluvial basin filled with interlayered gravels, sands, and clays. The climate is arid. The water table ranges from a few meters to many tens of meters deep. Laterally extensive thin carbonate-cemented lenses are commonly found across parts of the valley. Lenses range beyond 2 m in thickness, and occur at depths exceeding 200 m. Shallow seismic datasets have been collected at approximately ten sites around the Las Vegas valley, to characterize shear and compression wave velocities in the near surface. Purposes for the surveys include modeling of ground response to dynamic loads, both natural and manmade, quantification of soil stiffness to aid structural foundation design, and non-intrusive materials identification. Borehole-based measurement techniques used include downhole and crosshole, to depths exceeding 100 m. Surface-based techniques used include refraction and three different methods involving inversion of surface-wave dispersion datasets. This latter group includes two active-source techniques, the Spectral Analysis of Surface Waves (SASW) method and the Multi-Channel Analysis of Surface Waves (MASW) method; and a new passive-source technique, the Refraction Mictrotremor (ReMi) method. Depths to halfspace for the active-source measurements ranged beyond 50 m. The passive-source method constrains shear wave velocities to 100 m depths. As expected, the stiff cemented layers profoundly affect local velocity gradients. Scale effects are evident in comparisons of (1) very local measurements typified by borehole methods, to (2) the broader coverage of the SASW and MASW measurements, to (3) the still broader and deeper resolution made possible by the ReMi measurements. The cemented layers appear as sharp spikes in the downhole datasets and are problematic in crosshole measurements due to refraction. The refraction method is useful only to locate the depth to the uppermost cemented layer. The surface

  13. Excavatability Assessment of Weathered Sedimentary Rock Mass Using Seismic Velocity Method

    SciTech Connect

    Bin Mohamad, Edy Tonnizam; Noor, Muhazian Md; Isa, Mohamed Fauzi Bin Md.; Mazlan, Ain Naadia; Saad, Rosli

    2010-12-23

    Seismic refraction method is one of the most popular methods in assessing surface excavation. The main objective of the seismic data acquisition is to delineate the subsurface into velocity profiles as different velocity can be correlated to identify different materials. The physical principal used for the determination of excavatability is that seismic waves travel faster through denser material as compared to less consolidated material. In general, a lower velocity indicates material that is soft and a higher velocity indicates more difficult to be excavated. However, a few researchers have noted that seismic velocity method alone does not correlate well with the excavatability of the material. In this study, a seismic velocity method was used in Nusajaya, Johor to assess the accuracy of this seismic velocity method with excavatability of the weathered sedimentary rock mass. A direct ripping run by monitoring the actual production of ripping has been employed at later stage and compared to the ripper manufacturer's recommendation. This paper presents the findings of the seismic velocity tests in weathered sedimentary area. The reliability of using this method with the actual rippability trials is also presented.

  14. Upper-crustal velocity structure near Coalinga, as determined from seismic-refraction data

    SciTech Connect

    Walter, A.W.

    1990-01-01

    The May 2 earthquake (M{sub L} = 6.7) was unexpected in that it occurred at the structural transition between the southern Diablo Range and the San Joaquin Valley, part of the 500-km-long Coast Ranges-Great Valley boundary. Since 1981, the US Geological Survey (USGS) has been acquiring both seismic reflection and refraction data along profiles that cross this boundary. The occurrence of the May 2 earthquake provided motivation to acquire additional seismic reflection and refraction data in the hypocentral region with the goal of understanding the structural relations responsible for the unexpected seismicity. This understanding is needed to assess the probability of large earthquakes occurring elsewhere along the Coast Ranges-Great Valley boundary. Sections of this paper describe the following: geologic setting; seismic-refraction experiment, including the east-west profile, northwest-southeast profile, quality of seismic data, velocity modeling, east-west velocity model, and northwest-southeast velocity model; comparison of the velocity models at their point of intersection; comparison between the Coalinga velocity models and the velocity model derived for profile SJ-6; comparison between the refraction velocity structure and nearby seismic-reflection profiles; relation between Coalinga seismicity and the velocity structure; and a summary of modeling results.

  15. Seismic response of a deep continental basin including velocity inversion: the Sulmona intramontane basin (Central Apennines, Italy)

    NASA Astrophysics Data System (ADS)

    Di Giulio, Giuseppe; de Nardis, Rita; Boncio, Paolo; Milana, Giuliano; Rosatelli, Gianluigi; Stoppa, Francesco; Lavecchia, Giusy

    2016-01-01

    The Sulmona plain (central Italy) is an intramontane basin of the Abruzzi Apennines that is known in the literature for its high seismic hazard. We use extensive measurements of ambient noise to map the fundamental frequency and to detect the presence of geological heterogeneities in the basin. We perform noise measurements along two basin-scale orthogonal transects, in conjunction with 2-D array experiments in specific key areas. The key areas are located in different positions with respect to the basin margins: one at the eastern boundary (fault-controlled basin margin) and one in the deepest part of the basin. We also collect independent data by using active seismic experiments (MASW), down-hole and geological surveys to characterize the near-surface geology of the investigated sites. In detail, the H/V noise spectral ratios and 2-D array techniques indicate a fundamental resonance (f0) in the low-frequency range (0.35-0.4 Hz) in the Sulmona Basin. Additionally, our results highlight the important role that is played by the alluvial fans near the edge-sectors of the basin, which are responsible for a velocity inversion in the uppermost layering of the soil profile. The H/V ratios and the dispersion curves of adjacent measurements strongly vary over a few dozens of meters in the alluvial fan area. Furthermore, we perform 1-D numerical simulations that are based on a linear-equivalent approach to estimate the site response in the key areas, using realistic seismic inputs. Finally, we perform a 2-D simulation that is based on the spectral element method to propagate surface waves in a simple model with an uppermost stiff layer, which is responsible for the velocity inversion. The results from the 2-D modelling agree with the experimental curves, showing deamplified H/V curves and typical shapes of dispersion curves of a not normally dispersive site.

  16. 3-D Velocity Model of the Coachella Valley, Southern California Based on Explosive Shots from the Salton Seismic Imaging Project

    NASA Astrophysics Data System (ADS)

    Persaud, P.; Stock, J. M.; Fuis, G. S.; Hole, J. A.; Goldman, M.; Scheirer, D. S.

    2014-12-01

    We have analyzed explosive shot data from the 2011 Salton Seismic Imaging Project (SSIP) across a 2-D seismic array and 5 profiles in the Coachella Valley to produce a 3-D P-wave velocity model that will be used in calculations of strong ground shaking. Accurate maps of seismicity and active faults rely both on detailed geological field mapping and a suitable velocity model to accurately locate earthquakes. Adjoint tomography of an older version of the SCEC 3-D velocity model shows that crustal heterogeneities strongly influence seismic wave propagation from moderate earthquakes (Tape et al., 2010). These authors improve the crustal model and subsequently simulate the details of ground motion at periods of 2 s and longer for hundreds of ray paths. Even with improvements such as the above, the current SCEC velocity model for the Salton Trough does not provide a match of the timing or waveforms of the horizontal S-wave motions, which Wei et al. (2013) interpret as caused by inaccuracies in the shallow velocity structure. They effectively demonstrate that the inclusion of shallow basin structure improves the fit in both travel times and waveforms. Our velocity model benefits from the inclusion of known location and times of a subset of 126 shots detonated over a 3-week period during the SSIP. This results in an improved velocity model particularly in the shallow crust. In addition, one of the main challenges in developing 3-D velocity models is an uneven stations-source distribution. To better overcome this challenge, we also include the first arrival times of the SSIP shots at the more widely spaced Southern California Seismic Network (SCSN) in our inversion, since the layout of the SSIP is complementary to the SCSN. References: Tape, C., et al., 2010, Seismic tomography of the Southern California crust based on spectral-element and adjoint methods: Geophysical Journal International, v. 180, no. 1, p. 433-462. Wei, S., et al., 2013, Complementary slip distributions

  17. Earthquake dynamics. Mapping pressurized volcanic fluids from induced crustal seismic velocity drops.

    PubMed

    Brenguier, F; Campillo, M; Takeda, T; Aoki, Y; Shapiro, N M; Briand, X; Emoto, K; Miyake, H

    2014-07-01

    Volcanic eruptions are caused by the release of pressure that has accumulated due to hot volcanic fluids at depth. Here, we show that the extent of the regions affected by pressurized fluids can be imaged through the measurement of their response to transient stress perturbations. We used records of seismic noise from the Japanese Hi-net seismic network to measure the crustal seismic velocity changes below volcanic regions caused by the 2011 moment magnitude (M(w)) 9.0 Tohoku-Oki earthquake. We interpret coseismic crustal seismic velocity reductions as related to the mechanical weakening of the pressurized crust by the dynamic stress associated with the seismic waves. We suggest, therefore, that mapping seismic velocity susceptibility to dynamic stress perturbations can be used for the imaging and characterization of volcanic systems. PMID:24994652

  18. 3D crustal seismic velocity model for the Gulf of Cadiz and adjacent areas (SW Iberia margin) based on seismic reflection and refraction profiles

    NASA Astrophysics Data System (ADS)

    Lozano, Lucía; Cantavella, Juan Vicente; Barco, Jaime; Carranza, Marta; Burforn, Elisa

    2016-04-01

    The Atlantic margin of the SW Iberian Peninsula and northern Morocco has been subject of study during the last 30 years. Many seismic reflection and refraction profiles have been carried out offshore, providing detailed information about the crustal structure of the main seafloor tectonic domains in the region, from the South Portuguese Zone and the Gulf of Cadiz to the Abyssal Plains and the Josephine Seamount. The interest to obtain a detailed and realistic velocity model for this area, integrating the available data from these studies, is clear, mainly to improve real-time earthquake hypocentral location and for tsunami and earthquake early warning. Since currently real-time seismic location tools allow the implementation of 3D velocity models, we aim to generate a full 3D crustal model. For this purpose we have reviewed more than 50 profiles obtained in different seismic surveys, from 1980 to 2008. Data from the most relevant and reliable 2D seismic velocity published profiles were retrieved. We first generated a Moho depth map of the studied area (latitude 32°N - 41°N and longitude 15°W - 5°W) by extracting Moho depths along each digitized profile with a 10 km spacing, and then interpolating this dataset using ordinary kriging method and generating the contour isodepth map. Then, a 3D crustal velocity model has been obtained. Selected vertical sections at different distances along each profile were considered to retrieve P-wave velocity values at each interface in order to reproduce the geometry and the velocity gradient within each layer. A double linear interpolation, both in distance and depth, with sampling rates of 10 km and 1 km respectively, was carried out to generate a (latitude, longitude, depth, velocity) matrix. This database of all the profiles was interpolated to obtain the P-wave velocity distribution map every kilometer of depth. The new 3D velocity model has been integrated in NonLinLoc location program to relocate several representative

  19. Quantifying uncertainty in velocity models for seismic imaging using a Bayesian approach with application to the Mentelle Basin - Australia

    NASA Astrophysics Data System (ADS)

    Michelioudakis, Dimitrios; Hobbs, Richard; Caiado, Camila

    2015-04-01

    Determining the depths of key horizons from seismic reflection data is one of the most important aspects of exploration geophysics. Here, we present Bayesian methods based on an elicitation tool and Gaussian processes to build a detailed and robust velocity model of the Mentelle Basin, located south west of Australia, with the ultimate goal to identify possible drilling targets for the Integrated Ocean Drilling Program (IODP). The Mentelle Basin is a deep water sedimentary basin located between the Naturaliste Plateau and the southern part of the Western Australian Shelf. It is among the few regions of the world where we can investigate the effects of the Cretaceous hot-house and its collapse at high latitude. The Mentelle Basin hosts a continuous shale sequence for this period that it is over a kilometer thick, the study of which, is crucial for the correlation between the paleoclimate conditions and the tectonic history of the region. By reprocessing 2D multichannel seismic reflection profiles around the proposed drill - sites, we create a detailed subsurface velocity model which is used as a priori input to the Bayesian approach. The final goal is to build a multi-layered model to estimate the depth and the root mean square velocity of each layer, both for the isotropic and anisotropic cases in terms of a multivariate posterior distribution. Having determined the RMS velocities for each layer, we can calculate, by inference, their interval velocities and finally estimate the depth of each sequence of interest with improved accuracy. The key advantage of the Bayesian approach and the major difference compared to the traditional semblance spectrum velocity analysis procedure is the calculation of uncertainty of the output model. As a result, our statistical approach can construct a robust velocity model which encompasses the noise and the band-limited nature of the data as an error function. We use this model to control the depth migration of the seismic data and

  20. Seismic wavefield propagation in 2D anisotropic media: Ray theory versus wave-equation simulation

    NASA Astrophysics Data System (ADS)

    Bai, Chao-ying; Hu, Guang-yi; Zhang, Yan-teng; Li, Zhong-sheng

    2014-05-01

    Despite the ray theory that is based on the high frequency assumption of the elastic wave-equation, the ray theory and the wave-equation simulation methods should be mutually proof of each other and hence jointly developed, but in fact parallel independent progressively. For this reason, in this paper we try an alternative way to mutually verify and test the computational accuracy and the solution correctness of both the ray theory (the multistage irregular shortest-path method) and the wave-equation simulation method (both the staggered finite difference method and the pseudo-spectral method) in anisotropic VTI and TTI media. Through the analysis and comparison of wavefield snapshot, common source gather profile and synthetic seismogram, it is able not only to verify the accuracy and correctness of each of the methods at least for kinematic features, but also to thoroughly understand the kinematic and dynamic features of the wave propagation in anisotropic media. The results show that both the staggered finite difference method and the pseudo-spectral method are able to yield the same results even for complex anisotropic media (such as a fault model); the multistage irregular shortest-path method is capable of predicting similar kinematic features as the wave-equation simulation method does, which can be used to mutually test each other for methodology accuracy and solution correctness. In addition, with the aid of the ray tracing results, it is easy to identify the multi-phases (or multiples) in the wavefield snapshot, common source point gather seismic section and synthetic seismogram predicted by the wave-equation simulation method, which is a key issue for later seismic application.

  1. Exploring the relative contribution of mineralogy and CPO to the seismic velocity anisotropy of evaporites

    NASA Astrophysics Data System (ADS)

    Vargas-Meleza, Liliana; Healy, David; Alsop, G. Ian; Timms, Nicholas E.

    2015-01-01

    We present the influence of mineralogy and microstructure on the seismic velocity anisotropy of evaporites. Bulk elastic properties and seismic velocities are calculated for a suite of 20 natural evaporite samples, which consist mainly of halite, anhydrite, and gypsum. They exhibit strong fabrics as a result of tectonic and diagenetic processes. Sample mineralogy and crystallographic preferred orientation (CPO) were obtained with the electron backscatter diffraction (EBSD) technique and the data used for seismic velocity calculations. Bulk seismic properties for polymineralic evaporites were evaluated with a rock recipe approach. Ultrasonic velocity measurements were also taken on cube shaped samples to assess the contribution of grain-scale shape preferred orientation (SPO) to the total seismic anisotropy. The sample results suggest that CPO is responsible for a significant fraction of the bulk seismic properties, in agreement with observations from previous studies. Results from the rock recipe indicate that increasing modal proportion of anhydrite grains can lead to a greater seismic anisotropy of a halite-dominated rock. Conversely, it can lead to a smaller seismic anisotropy degree of a gypsum-dominated rock until an estimated threshold proportion after which anisotropy increases again. The difference between the predicted anisotropy due to CPO and the anisotropy measured with ultrasonic velocities is attributed to the SPO and grain boundary effects in these evaporites.

  2. Seismic velocities to characterize the soil-aquifer continuum on the Orgeval experimental basin (France)

    NASA Astrophysics Data System (ADS)

    Pasquet, S.; Ludovic, B.; Dhemaied, A.; Flipo, N.; Guérin, R.; Mouhri, A.; Faycal, R.; Vitale, Q.

    2013-12-01

    Among geophysical methods applied to hydrogeology, seismic prospecting is frequently confined to the characterization of aquifers geometry. The combined study of pressure- (P) and shear- (SH) wave velocities (respectively Vp and Vs) can however provide information about the aquifer parameters, as it is commonly done for most fluids in hydrocarbon exploration. This approach has recently been proposed in sandy aquifers with the estimation of Vp/Vs ratio. In order to address such issues in more complex aquifer systems (e.g. unconsolidated, heterogeneous or low-permeability media) we carried out P- and SH-wave seismic surveys on the Orgeval experimental basin (70 km east from Paris, France). This basin drains a multi-layer aquifer system monitored by a network of piezometers. The upper part of the aquifer system is characterized by tabular layers well delineated all over the basin thanks to Electrical Resistivity Tomography (ERT), Time Domain ElectroMagnetic (TDEM) soundings and wells. But the lateral variability of the intrinsic properties in each layer raises questions regarding the hydrodynamics of the upper aquifer and the validity of interpolations between piezometers. A simple interpretation of P- and SH-wave first arrivals for tabular models provides 1D velocity structures in very good agreement with the stratification anticipated from ERT and nearby geological logs. Vp/Vs ratios show a strong contrast at a depth consistent with the observed water table level, reinforcing the assumption of a free upper aquifer in the area. Similar experiments have to be conducted under different hydrological conditions to validate these observations. Anticipating the need to propose lateral applications of the method, we additionally performed tomographic inversions of the recorded data to retrieve 2D Vp and Vs models. If interpreted independently, both models fail to depict the stratification of the medium and the water table level cannot be straightforwardly identified

  3. Terrace Zone Structure in the Chicxulub Impact Crater Based on 2-D Seismic Reflection Profiles: Preliminary Results From EW#0501

    NASA Astrophysics Data System (ADS)

    McDonald, M. A.; Gulick, S. P.; Gorney, D. L.; Christeson, G. L.; Barton, P. J.; Morgan, J. V.; Warner, M. R.; Urrutia-Fucugauchi, J.; Melosh, H. J.; Vermeesch, P. M.; Surendra, A. T.; Goldin, T.; Mendoza, K.

    2005-05-01

    Terrace zones, central peaks, and flat floors characterize complex craters like the Chicxulub impact crater located near the northeast coast of the Yucatan Peninsula. The subsurface crater structure was studied using seismic reflection surveying in Jan/Feb 2005 by the R/V Maurice Ewing. We present 2-D seismic profiles including constant radius, regional, and grid profiles encompassing the 195 km width of the crater. These diversely oriented lines clearly show the terrace zones and aid in the search for crater ejecta as we investigate the formation of the crater including the incidence angle and direction of the extraterrestrial object that struck the Yucatan Peninsula 65 million years ago (K-T boundary). Terrace zones form in complex craters after the modification stage as a result of the gravitational collapse of overextended sediment back into the crater cavity. The terrace zone is clearly imaged on seismic profiles confirming the complex structure of the Chixculub crater. Recent work on reprocessed 1996 profiles found different sizes and spacing of the terraces and concluded that the variations in radial structure are a result of an oblique impact. A SW-NE profile from this study was the only line to show a concentration of deformation near the crater rim hinting that the northeast was the downrange direction of impact. We confirm this narrowing in terrace spacing using a profile with a similar orientation in the 2005 images. Through integration of the new dense grid of profiles and radial lines from the 1996 and 2005 surveys we map the 3-D variability of the terrace zones to further constrain impact direction and examine the formative processes of the Chixculub and other large impact craters.

  4. Monitoring seismic velocity changes caused by the 2014 Northern Aegean earthquake using continuous ambient noise records

    NASA Astrophysics Data System (ADS)

    Evangelidis, Christos; Daskalakis, Emmanouil; Tsogka, Chrysoula

    2016-04-01

    The 24 May 2014 Northern Aegean earthquake (6.9 Mw), an event on the Northern Aegean Trough (NAT), ruptured on two different fault segments with a total ruptured length of ~100 km. For the second delayed segment, rupture propagated eastward from the hypocenter for ˜65 km with a supershear velocity (5.5 km/s). Low-aftershock seismicity on the supershear segment implies a simple and linear fault geometry there. An effort to monitor temporal seismic velocity changes across the ruptured area of the Northern Aegean earthquake is underway. In recent years, neighboring seismic broadband stations near active faults have been successfully used to detect such changes. The crosscorrelation functions (CCF) of ambient noise records between stations yields the corresponding traveltimes for those inter-station paths. Moreover, the auto-correlation functions (ACF) at each station produce the seismic responce for a coincident source and receiver position. Possible temporal changes of the measured traveltimes from CCFs and ACFs correspond to seismic velocity changes. Initially, we investigate the characteristics and sources of the ambient seismic noise as recorded at permanent seismic stations installed around NAT at the surrounding islands and in mainland Greece and Turkey. The microseismic noise levels show a clear seasonal variation at all stations. The noise levels across the double frequency band (DF; period range 4-8 s) reflect the local sea-weather conditions within a range of a few hundred kilometers. Three years of continuous seismic records framing the main shock have been analysed from ~15 stations within a radius of 100 km from the epicentre. We observe a clear decrease of seismic velocities most likely corresponding to the co-seismic shaking. The spatial variation of this velocity drop is imaged from all inter-station paths that correspond to CCF measurements and for station sites that correspond to ACF measurements. Thus, we explore a possible correlation between co-seismic

  5. Rayleigh and Love waves phase velocity measurements in central Europe from seismic ambient noise

    NASA Astrophysics Data System (ADS)

    Verbeke, J.; Fry, B.; Boschi, L.; Kissling, E. H.

    2009-12-01

    We present a new database of surface-wave phase-velocity dispersion curves derived from seismic ambient noise, cross-correlating continuous seismic recordings from the Swiss Network, the German Regional Seismological Network (GRSN), and from the Italian national broadband network operated by the the Istituto Nazionale di Geofisica e Vulcanologia (INGV), plus some stations from the Mediterranean Very Broadband Seismographic Network (MedNet) and from the Austrian Central Institute for Meteorology and Geodynamics (ZAMG). In order to increase the aperture of the station array, additional measurements from the French, Bulgarian, Hungarian, Romanian and Greek stations obtained throught Orfeus are also included. The ambient noise we are using to assemble our database was recorded at the mentioned stations between January 2006 and December 2007. The Green function method, applied to continuous signal recorded at pairs of stations allows to extract from ambient noise coherent surface-wave signal travelling between the two stations. Usually the ambient-noise cross-correlation technique allows to have infomation at periods of 30 s or shorter. Our efforts are focused on extending this technique to longer periods. At this point we are able to obtain coherent dispersion curves at periods from 8 to 35 s. At a second stage, the data set of phase delays associated with a certain frequency of Rayleigh or Love waves are inverted, to determine 2-dimensional phase-velocity maps of the European region. Inversions are conducted by means of a linearized tomographic inversion algorithm. We are now able to obtain 2D Rayleighs and Loves waves phase-velocity maps at periods between 8 and 35 s. We compare these maps with those that we obtain from teleseismic measurements made at the same stations, and with independantly observed geological features in Europe and the Moho depth. Combining ambient-noise and teleseismic observations, our efforts will help to determine a 3D consensus model of the

  6. Seismic velocity change and slip rate during the 2006 Guerrero (Mexico) slow slip event

    NASA Astrophysics Data System (ADS)

    Rivet, Diane; Radiguet, Mathilde; Campillo, Michel; Cotton, Fabrice; Shapiro, Nikolai; Krishna Singh, Shri; Kostoglodov, Vladimir

    2010-05-01

    We measure temporal change of the seismic velocity in the crust below the Guerrero region during the 2006 slow sleep event (SSE). We use repeated cross-correlations of ambient seismic noise recorded at 26 broad-band stations of the MesoAmerica Seismic Experiment (MASE). The cross-correlations are computed over 90 days with a moving window of 10 days from January 2005 to July 2007. To insure measurements independent of noise source variations, we only take into account the travel time change within the coda. For period of 8 to 20s, we observe a decrease in velocity starting in April 2006 with a maximum change of -0.3% of the initial velocity in June 2006. At these periods, the Rayleigh waves are sensitive to velocity changes down to the lower crust. In the other hand, we compute the deformation rate below the MASE array from a slip propagation model of the SSE observed by means of the displacement time-series of 15 continuous GPS stations. Slip initiates in the western part of the Guerrero Gap and propagates southeastward. The propagation velocity is of the order of 1 km/day. We then compare the seismic velocity change measured from continuous seismological data with the deformation rate inferred from geodetic measurements below the MASE array. We obtain a good agreement between the time of maximal seismic velocity change (July 2006) and the time of maximum deformation associated with the SSE (July to August 2006). This result shows that the long-term velocity change associated with the SSE can be detected using continuous seismic recordings. Since the SSE does not emit seismic waves, which interact with the superficial layers, the result indicates that the velocity change is due to deformation at depth.

  7. Monitoring Velocity Changes Caused By Underground Coal Mining Using Seismic Noise

    NASA Astrophysics Data System (ADS)

    Czarny, Rafał; Marcak, Henryk; Nakata, Nori; Pilecki, Zenon; Isakow, Zbigniew

    2016-01-01

    We use passive seismic interferometry to monitor temporal variations of seismic wave velocities at the area of underground coal mining named Jas-Mos in Poland. Ambient noise data were recorded continuously for 42 days by two three-component broadband seismometers deployed at the ground surface. The sensors are about 2.8 km apart, and we measure the temporal velocity changes between them using cross-correlation techniques. Using causal and acausal parts of nine-component cross-correlation functions (CCFs) with a stretching technique, we obtain seismic velocity changes in the frequency band between 0.6 and 1.2 Hz. The nine-component CCFs are useful to stabilize estimation of velocity changes. We discover correlation between average velocity changes and seismic events induced by mining. Especially after an event occurred between the stations, the velocity decreased about 0.4 %. Based on this study, we conclude that we can monitor the changes of seismic velocities, which are related to stiffness, effective stress, and other mechanical properties at subsurface, caused by mining activities even with a few stations.

  8. Monitoring Velocity Changes Caused By Underground Coal Mining Using Seismic Noise

    NASA Astrophysics Data System (ADS)

    Czarny, Rafał; Marcak, Henryk; Nakata, Nori; Pilecki, Zenon; Isakow, Zbigniew

    2016-06-01

    We use passive seismic interferometry to monitor temporal variations of seismic wave velocities at the area of underground coal mining named Jas- Mos in Poland. Ambient noise data were recorded continuously for 42 days by two three-component broadband seismometers deployed at the ground surface. The sensors are about 2.8 km apart, and we measure the temporal velocity changes between them using cross-correlation techniques. Using causal and acausal parts of nine-component cross-correlation functions (CCFs) with a stretching technique, we obtain seismic velocity changes in the frequency band between 0.6 and 1.2 Hz. The nine-component CCFs are useful to stabilize estimation of velocity changes. We discover correlation between average velocity changes and seismic events induced by mining. Especially after an event occurred between the stations, the velocity decreased about 0.4 %. Based on this study, we conclude that we can monitor the changes of seismic velocities, which are related to stiffness, effective stress, and other mechanical properties at subsurface, caused by mining activities even with a few stations.

  9. Changes in Seismic Velocity During the 2004 - 2008 Eruption of Mount St. Helens Volcano

    NASA Astrophysics Data System (ADS)

    Hotovec-Ellis, A. J.; Vidale, J. E.; Gomberg, J. S.; Moran, S. C.; Thelen, W. A.

    2013-12-01

    Mount St. Helens (MSH) effusively erupted in late 2004, following an 18-year quiescence. Many swarms of repeating earthquakes accompanied the extrusion and in some cases the waveforms from these earthquakes evolved slowly, possibly reflecting changes in the properties of the volcano that affect seismic wave propagation. We use coda-wave interferometry to quantify these changes in terms of small (usually <1%) changes in seismic velocity structure by determining how relatively condensed or stretched the coda is between two similar earthquakes. We then utilize several hundred distinct families of repeating earthquakes at once to create a continuous function of velocity change observed at any station in the seismic network. The rate of earthquakes allows us to track these changes on a daily or even hourly time scale. Following years of no seismic velocity changes larger than those due to climatic processes (tenths of a percent), we observed decreases in seismic velocity of >1% coincident with the onset of increased earthquake activity beginning September 23, 2004. These changes are largest near the summit of the volcano, and likely related to shallow deformation as magma first worked its way to the surface. Changes in velocity are often attributed to deformation, especially volumetric strain and the opening or closing of cracks, but also with nonlinear responses to ground shaking and fluid intrusion. We compare velocity changes across the eruption with other available observations, such as deformation (e.g., GPS, tilt, photogrammetry), to better constrain the relationships between velocity change and its possible causes.

  10. Seismic study of the inner part of the Tyrrhenian basin from 2-D joint refraction and reflection travel-time tomography

    NASA Astrophysics Data System (ADS)

    Prada, M.; Sallares, V.; Ranero, C. R.; Guzman, M.; Grevemeyer, I.; Zitellini, N.

    2011-12-01

    Located between Italy, Corsica, Sardinia and Sicily the Tyrrhenian Sea is a Neogen back-arc basin formed by continental extension attributed to the southeastward rollback of the subducting Ionian plate. This triangle-shaped basin is an ideal place to study the evolution of extension process. The basin displays different states of extension along its length, finding from the early, low-extension episodes of continental rifting in the northern areas to the exhumation of the mantle in the deepest part of the basin. In order to study the nature of the crust and the 4D evolution of the Tyrrhenian basin, we have collected a survey of multichannel (MCS) and wide angle seismic (WAS) data. This survey was carried out into the framework of the MEDOC project during 2010 with the coordination of 2 research vessels, the R/V Sarmiento de Gamboa and the R/V Urania. During the experiment a total of 17 lines of MCS and 5 lines of WAS were acquired, with more than 100 deployments of both Ocean Bottom Hydrophones (OBH) and Ocean Bottom Seismometers (OBS). The coordination with more than one team on land made possible to record data by land stations in Corsica, Sardinia and Italy. Here we present 2D P-wave velocity models with the velocity distribution in the crust and uppermost mantle and the geometry of the moho boundary, obtained by joint refraction and reflection tomography of WAS data. The data belong to lines recorded between Sardinia and Italy and Sardinia and Sicily. The data selected for the inversion consist in phases refracted through the crust and upper mantle (phases Pg and Pn) and reflected in the moho boundary (phases PmP). A detailed statistical uncertainty analysis will allow us to use seismic velocities to predict the petrology of the different domains recognized. The aim of this modeling effort is to identify the different crustal units across the basin in order to determine the transition between the continental little extended crust and the exhumed mantle.

  11. Imaging of 3-D seismic velocity structure of Southern Sumatra region using double difference tomographic method

    SciTech Connect

    Lestari, Titik; Nugraha, Andri Dian

    2015-04-24

    Southern Sumatra region has a high level of seismicity due to the influence of the subduction system, Sumatra fault, Mentawai fault and stretching zone activities. The seismic activities of Southern Sumatra region are recorded by Meteorological Climatological and Geophysical Agency (MCGA’s) Seismograph network. In this study, we used earthquake data catalog compiled by MCGA for 3013 events from 10 seismic stations around Southern Sumatra region for time periods of April 2009 – April 2014 in order to invert for the 3-D seismic velocities structure (Vp, Vs, and Vp/Vs ratio). We applied double-difference seismic tomography method (tomoDD) to determine Vp, Vs and Vp/Vs ratio with hypocenter adjustment. For the inversion procedure, we started from the initial 1-D seismic velocity model of AK135 and constant Vp/Vs of 1.73. The synthetic travel time from source to receiver was calculated using ray pseudo-bending technique, while the main tomographic inversion was applied using LSQR method. The resolution model was evaluated using checkerboard test and Derivative Weigh Sum (DWS). Our preliminary results show low Vp and Vs anomalies region along Bukit Barisan which is may be associated with weak zone of Sumatran fault and migration of partial melted material. Low velocity anomalies at 30-50 km depth in the fore arc region may indicated the hydrous material circulation because the slab dehydration. We detected low seismic seismicity in the fore arc region that may be indicated as seismic gap. It is coincides contact zone of high and low velocity anomalies. And two large earthquakes (Jambi and Mentawai) also occurred at the contact of contrast velocity.

  12. Imaging of 3-D seismic velocity structure of Southern Sumatra region using double difference tomographic method

    NASA Astrophysics Data System (ADS)

    Lestari, Titik; Nugraha, Andri Dian

    2015-04-01

    Southern Sumatra region has a high level of seismicity due to the influence of the subduction system, Sumatra fault, Mentawai fault and stretching zone activities. The seismic activities of Southern Sumatra region are recorded by Meteorological Climatological and Geophysical Agency (MCGA's) Seismograph network. In this study, we used earthquake data catalog compiled by MCGA for 3013 events from 10 seismic stations around Southern Sumatra region for time periods of April 2009 - April 2014 in order to invert for the 3-D seismic velocities structure (Vp, Vs, and Vp/Vs ratio). We applied double-difference seismic tomography method (tomoDD) to determine Vp, Vs and Vp/Vs ratio with hypocenter adjustment. For the inversion procedure, we started from the initial 1-D seismic velocity model of AK135 and constant Vp/Vs of 1.73. The synthetic travel time from source to receiver was calculated using ray pseudo-bending technique, while the main tomographic inversion was applied using LSQR method. The resolution model was evaluated using checkerboard test and Derivative Weigh Sum (DWS). Our preliminary results show low Vp and Vs anomalies region along Bukit Barisan which is may be associated with weak zone of Sumatran fault and migration of partial melted material. Low velocity anomalies at 30-50 km depth in the fore arc region may indicated the hydrous material circulation because the slab dehydration. We detected low seismic seismicity in the fore arc region that may be indicated as seismic gap. It is coincides contact zone of high and low velocity anomalies. And two large earthquakes (Jambi and Mentawai) also occurred at the contact of contrast velocity.

  13. Quaternary Deformation History of the Palos Verdes Fault in San Pedro Bay using 3D and 2D Seismic data

    NASA Astrophysics Data System (ADS)

    Rigor, A.; Mellors, R. J.; Legg, M.; Francis, D.

    2002-12-01

    The Palos Verdes fault has one of the highest slip rates of the Los Angeles basin structures. Using a combination of exploration industry 3-D seismic data and 2-D high-resolution profiles through San Pedro Bay, we are preparing detailed maps of the shallow geometry and deformation history of the Palos Verdes fault. By mapping prominent shallow reflection horizons, that represent important late Pliocene and Quaternary sedimentary sequences, we can estimate the Quaternary deformation history of this important fault zone and identify whether significant changes in tectonic style or rates of deformation have occurred that may affect estimates of earthquake potential in the southern California region. We have identified about six major seismic stratigraphic sequences in the Wilmington Graben east of the Palos Verdes fault zone representing the time period from Repettian (Pliocene) to late Quaternary. Three of these are in the shallow section and clearly imaged by the high-resolution profiles. One of the more significant features we observe regarding these sequences is that the uplift of the Palos Verdes anticlinorium, represented by sedimentary growth wedges adjacent to the fault zone, appears to stop and start. These changes in vertical deformation character may represent important local changes in the tectonic style along the fault zone. For constraints on lateral deformation history, we are attempting to identify possible meanders or other irregularities in the Los Angeles - San Gabriel river system that generally flows straight along the northeast flank of the Palos Verdes anticlinorium before plunging down the slope in the San Gabriel submarine canyon. Channel thalwegs and margins offset by the Palos Verdes fault zone would provide requisite piercing points for measuring right-slip since channels filled. Major segment boundaries, such as the 3-km long north-trending releasing bend and Beta oil field complex restraining bend structure may provide other important

  14. Implications of laboratory velocity measurements for seismic imaging of faults in anisotropic media

    NASA Astrophysics Data System (ADS)

    Kelly, Christina; Faulkner, Daniel; Rietbrock, Andreas

    2016-04-01

    Laboratory measurements of velocity and velocity anisotropy of fault zone rocks can contribute to a greater understanding of seismic imaging of fault zones at the crustal scale. Knowledge of fault zones at depth is vital to identify seismic hazard and characterize crustal structure and seismic investigations are often used to image fault zones at depth. Fault zones commonly occur within phyllosilicate-rich rocks. The anisotropic fabric of these rocks gives rise to seismic velocity anisotropy, which in turn will influence seismic imaging. However, anisotropy is not always taken into account in seismic imaging and the extent of the anisotropy is often unknown. We use laboratory measurements of velocity anisotropy to quantify the extent of anisotropy that may be expected in crustal fault zones. The results have implications for seismic imaging of anisotropic fault zones. The Carboneras fault is a left-lateral strike-slip fault in SE Spain that cuts through phyllosilicate micaschist. Laboratory measurements of the velocity and velocity anisotropy indicate 10% P-wave velocity anisotropy in the gouge of the Carboneras fault and 30% anisotropy in the schist protolith. Cyclic loading of the protolith, designed to replicate and quantify the fracture damage in fault zones, reveal only small changes in measured velocities due to the influence of microcracks. Greater differences in velocity are observed between the fast and slow directions in the mica-schist rock (5500 - 3500 m/s at 25 MPa), than between the gouge and the slow direction of the rock (3500-3000 m/s at 25 MPa). This implies that the orientation of the anisotropy with respect to the fault is key to imaging the fault seismically. If the slow direction is oriented perpendicular to the fault, then waves travelling in the same direction will see little velocity contrast and the reflectivity of the fault will be low. A guided wave travelling along the fault, however, would see a strong velocity contrast. If the slow

  15. Age dependence and the effect of cracks on the seismic velocities of the upper oceanic crust

    NASA Astrophysics Data System (ADS)

    Cerney, Brian Patrick

    Seismic velocities in young (e.g., <1 Ma) upper oceanic crust increase with depth from ˜2.0 km s-1 at the top of the basaltic crust to ˜6.8 km s-1 at its base. Also, seismic velocities at the top of the upper oceanic crust increase with age, while the velocities at the base remain fairly constant. The increase in seismic velocities with depth and age in oceanic crust can be explained by the stiffening of cracks with increasing overburden pressure and infilling of pore space with alteration products. Both of these mechanisms increase the moduli of the igneous crust and thus raise its seismic velocities. Using the oblate spheroidal pore-shapes model of Kuster-Toksoz, laboratory measurements of P- and S-wave velocities, densities, and porosities of basaltic mini-cores from Hole 990A on the Southeast Greenland Margin show that pores can be effectively sealed by alteration products, and that the distribution of pore shapes is independent of porosity. Analyses of sonobuoy data collected over 0--7 Ma oceanic crust near the East Pacific Rise using the hidden layer method estimates seismic velocities of the upper oceanic crust. The results of sonobuoy analyses indicate that mean top-of-basement velocities and velocity gradients are 2.8 +/- 0.1 km s-1 and 2.7 +/- 0.1 s-1 respectively. Results also suggest that top-of-basement velocities increase at a rate of 0.12 +/- 0.05 km s-1 Ma-1 . A pressure-dependent asperity-deformation model describes the increase in seismic velocities with depth observed from the sonobuoy data. The asperity-deformation model incorporates a velocity variation of the form V( z) = V0 (1 + z/ z0)1/n, where z is depth, V0 is the velocity at the seafloor, and z 0 and n are constants. The asperity-deformation model describes how seismic velocities can increase with pressure simply through the stiffening of cracks without a need for a change in mineral moduli. The observed traveltimes are modeled to within an average root-mean-square misfit of 3.5 ms

  16. Raindrop axis ratios, fall velocities and size distribution over Sumatra from 2D-Video Disdrometer measurement

    NASA Astrophysics Data System (ADS)

    Marzuki; Randeu, Walter L.; Kozu, Toshiaki; Shimomai, Toyoshi; Hashiguchi, Hiroyuki; Schönhuber, Michael

    2013-01-01

    Raindrop axis ratio, falling velocity and size distribution are important in broad list of applications. However, they are not frequently observed in the equatorial region. This paper elucidated the characteristics of raindrop axis ratio, falling velocity and size distribution based on 2D-Video Disdrometer (2DVD) data that have been collected in the equatorial Indonesia, particularly at Kototabang (hereafter called KT), west Sumatra, Indonesia (0.20°S, 100.32°E, 864 m above sea level). A comprehensive follow-up of the previous study on the natural variability of raindrop size distributions (DSDs) is presented. Precipitation was classified through 1.3-GHz wind profiler observation. The dependence of raindrop falling velocity and axis ratio on rainfall type was not clearly observed. Overall, measured raindrop fall velocities were in good agreement with Gunn-Kinzer's data. Raindrop axis ratio at KT was more spherical than that of artificial rain and equilibrium model, and close to the values reported in the turbulent high shear zone of surface layer which can be partially due to the effect of the instrument errors (e.g., location and container shape). Of some natural variations of DSD investigated, the dependence of DSD on rainfall rate and rainfall type as well as diurnal variation was clearly visible. A striking contrast between the stratiform and convective rains is that the size distributions from the stratiform (convective) rains tend to narrow (broaden) with increasing rainfall rates. For rainfall rate R < 10 mm/h, the size distribution of stratiform was broader than that of convective. On the other hand, at higher rainfall rate more large-sized drops were found in convective rain. During the convective rain, very large-sized drops were found mainly at the very start of rain event while for the stratiform they were found to be associated with a strong bright band. In diurnal basis, the DSDs in the morning hours were narrower than those in the evening which was

  17. Investigation of coseismic and postseismic processes using in situ measurements of seismic velocity variations in an underground mine

    NASA Astrophysics Data System (ADS)

    Olivier, G.; Brenguier, F.; Campillo, M.; Roux, P.; Shapiro, N. M.; Lynch, R.

    2015-11-01

    The in situ mechanical response of a rock mass to a sudden dynamic and static stress change is still poorly known. To tackle this question, we conducted an experiment in an underground mine to examine (1) the influence of dynamic and static stress perturbations on seismic velocities, (2) elastic static stress changes, and (3) induced earthquake activity associated with the blast and removal of a portion of hard rock. We accurately (0.01%) measured seismic velocity variations with ambient seismic noise correlations, located aftershock activity, and performed elastic static stress modeling. Overall, we observe that the blast induced a sudden decrease in seismic velocities over the entire studied area, which we interpreted as the damage due to the passing of strong seismic waves. This sudden process is followed by a slow relaxation lasting up to 5 days, while seismic activity returns to its background level after 2 days. In some locations, after the short-term effects of the blast have subsided, the seismic velocities converge to new baseline levels and permanent changes in seismic velocity become visible. After comparing the spatial pattern of permanent seismic velocity changes with elastic static stress modeling, we infer that the permanent seismic velocity changes are due to the change in the static volumetric stress induced by the removal of a solid portion of rock by the blast. To our knowledge, this is the first observation of noise-based permanent seismic velocity changes associated with static stress changes.

  18. Modelling of a coal seam of the deposit Đurđevik (BiH) by means of 2D reflection seismic imaging

    NASA Astrophysics Data System (ADS)

    Arsenović, Siniša; Urošević, Milovan; Sretenović, Branislav; Cvetkov, Vesna; Životić, Dragana

    2016-06-01

    A low cost 2D reflection seismic survey was used to map the continuity of the main seams as well as the numerous faults at the Đurđevik sub-bituminous coal deposit (BiH). A 24-channel seismic data acquisition system was available for this survey. The natural high reflectivity of the coal seams and a favourable geometry of seismic profiles enabled the identification and correlation of major faults across the area. Rugged terrain presented challenges to both data acquisition and processing. Stacks of acceptable quality were obtained only after the application of surface consistent statics and careful application of multi-channel filtering. A set of recorded 2D lines was interpreted in a 3D environment. Inferred structural elements disrupting the seam continuity were identified and were in agreement with available drilling results and mine workings. The result of this work was used to reduce mining hazards and also to help optimise mine planning.

  19. Are seismic wave velocities and anisotropies reliable proxies for partial melts?

    NASA Astrophysics Data System (ADS)

    Lee, Amicia; Torvela, Taija; Lloyd, Geoffrey; Walker, Andrew

    2015-04-01

    Partial melts and their segregation weaken mineral crystallographic alignment, resulting in a decrease in seismic anisotropy (AV). Furthermore, introduction of melt induces a drop in seismic wave velocities, especially for shear (Vs) but also compressional (Vp) waves, although some solid-state processes can also lead to velocity drops. Thus, decreases in AV and/or V are often used to infer the presence and even the amount of melt in both the crust and mantle, for example via the Vp/Vs ratio. However, evidence is accumulating that the relationship between melt fraction and seismic properties is not straight-forward. We consider how varying melt fraction (f) might affect crustal seismic properties. Our modelling approach is based on electron backscattered diffraction (EBSD) analysis of crystallographic preferred orientation (CPO) patterns from granulite facies sheared migmatites. The CPO data are used to model the seismic properties of rocks with different solid/melt proportions. Subsequently, melt was simulated via an isotropic elastic stiffness matrix and combined mathematically with the CPO-derived seismic properties, and seismic properties then recalculated to take into account the presence of melt. These melt models, therefore, predict changes in seismic properties at different f. The models show that low (c. f < 0.15) and high (0.7 < f < 1) values affect seismic properties much more than the 'crystal mush' part (0.1 < f < 0.7): velocities (V) and anisotropies (AV) for both low and high f drop rapidly but 'plateau' at intermediate f. Our results imply that V and, especially, AV may not be reliable proxies for the amount of crustal melt present. Seismic wave behaviour in crystal-supported (0.1 < f < 0.7) material may be controlled by the solid rather than the melt phase.

  20. Comparison of conventional (100%), two dimensional (2D), and three-dimensional (3D) seismic data: Case histories from the Midcontinent

    SciTech Connect

    Schloeder, F.X. III

    1995-09-01

    The principal objective of seismic exploration is to determine three geologic parameters, the structural top, the bottom, and the lateral extent of an oil and gas reservoir. Conventional (100%) data is very efficient in locating the structural top and bottom of reservoirs. Two-dimensional (2D) common depth point (CDP) seismic data provides an immense improvement in seismic data quality over conventional (100%) data. This improvement enables the explorer to better visualize and map the reservoir in each direction of the seismic line. Three-dimensional (3D) seismic technology provides even more mappable data and capability. The explorer may visualize every imaginable direction and subtlety of a reservoir. This talk compares conventional (100%), two-dimensional (2D), and three-dimensional (3D) seismic data from the Midcontinent. Case histories of the Douglass (Upper Pennsylvanian) in Texas, the Morrow (Lower Pennsylvanian) in Colorado, the {open_quotes}Chat{close_quotes} (Mississippian) and the Hunton (Silurian-Devonian) in Oklahoma, and the Simpson (Ordovician) in Kansas will be discussed. Major and independent operators can maximize their exploration efforts by integrating existing data with three-dimensional (3D) technology and a solid geologic interpretation.

  1. Multiple plates subducting beneath Colombia, as illuminated by seismicity and velocity from the joint inversion of seismic and gravity data

    DOE PAGESBeta

    Syracuse, Ellen M.; Maceira, Monica; Prieto, German A.; Zhang, Haijiang; Ammon, Charles J.

    2016-06-15

    Subduction beneath the northernmost Andes in Colombia is complex. Based on seismicity distributions, multiple segments of slab appear to be subducting, and arc volcanism ceases north of 5° N. Here, we illuminate the subduction system through hypocentral relocations and Vp and Vs models resulting from the joint inversion of local body wave arrivals, surface wave dispersion measurements, and gravity data. The simultaneous use of multiple data types takes advantage of the differing sensitivities of each data type, resulting in velocity models that have improved resolution at both shallower and deeper depths than would result from traditional travel time tomography alone.more » The relocated earthquake dataset and velocity model clearly indicate a tear in the Nazca slab at 5° N, corresponding to a 250-km shift in slab seismicity and the termination of arc volcanism. North of this tear, the slab is flat, and it comprises slabs of two sources: the Nazca and Caribbean plates. The Bucaramanga nest, a small region of among the most intense intermediate-depth seismicity globally, is associated with the boundary between these two plates and possibly with a zone of melting or elevated water content, based on reduced Vp and increased Vp/Vs. As a result, we also use relocated seismicity to identify two new faults in the South American plate, one related to plate convergence and one highlighted by induced seismicity.« less

  2. Multiple plates subducting beneath Colombia, as illuminated by seismicity and velocity from the joint inversion of seismic and gravity data

    NASA Astrophysics Data System (ADS)

    Syracuse, Ellen M.; Maceira, Monica; Prieto, Germán A.; Zhang, Haijiang; Ammon, Charles J.

    2016-06-01

    Subduction beneath the northernmost Andes in Colombia is complex. Based on seismicity distributions, multiple segments of slab appear to be subducting, and arc volcanism ceases north of 5° N. Here, we illuminate the subduction system through hypocentral relocations and Vp and Vs models resulting from the joint inversion of local body wave arrivals, surface wave dispersion measurements, and gravity data. The simultaneous use of multiple data types takes advantage of the differing sensitivities of each data type, resulting in velocity models that have improved resolution at both shallower and deeper depths than would result from traditional travel time tomography alone. The relocated earthquake dataset and velocity model clearly indicate a tear in the Nazca slab at 5° N, corresponding to a 250-km shift in slab seismicity and the termination of arc volcanism. North of this tear, the slab is flat, and it comprises slabs of two sources: the Nazca and Caribbean plates. The Bucaramanga nest, a small region of among the most intense intermediate-depth seismicity globally, is associated with the boundary between these two plates and possibly with a zone of melting or elevated water content, based on reduced Vp and increased Vp/Vs. We also use relocated seismicity to identify two new faults in the South American plate, one related to plate convergence and one highlighted by induced seismicity.

  3. Extremal inversion of lunar travel time data. [seismic velocity structure

    NASA Technical Reports Server (NTRS)

    Burkhard, N.; Jackson, D. D.

    1975-01-01

    The tau method, developed by Bessonova et al. (1974), of inversion of travel times is applied to lunar P-wave travel time data to find limits on the velocity structure of the moon. Tau is the singular solution to the Clairaut equation. Models with low-velocity zones, with low-velocity zones at differing depths, and without low-velocity zones, were found to be consistent with data and within the determined limits. Models with and without a discontinuity at about 25-km depth have been found which agree with all travel time data to within two standard deviations. In other words, the existence of the discontinuity and its size and location have not been uniquely resolved. Models with low-velocity channels are also possible.

  4. A seismic reflection velocity study of a Mississippian mud-mound in the Illinois basin

    NASA Astrophysics Data System (ADS)

    Ranaweera, Chamila Kumari

    Two mud-mounds have been reported in the Ullin limestone near, but not in, the Aden oil field in Hamilton County, Illinois. One mud-mound is in the Broughton oil field of Hamilton County 25 miles to the south of Aden. The second mud-mound is in the Johnsonville oil field in Wayne County 20 miles to the north of Aden. Seismic reflection profiles were shot in 2012 adjacent to the Aden oil field to evaluate the oil prospects and to investigate the possibility of detecting Mississippian mud-mounds near the Aden field. A feature on one of the seismic profiles was interpreted to be a mud-mound or carbonate buildup. A well drilled at the location of this interpreted structure provided digital geophysical logs and geological logs used to refine the interpretation of the seismic profiles. Geological data from the new well at Aden, in the form of drill cuttings, have been used to essentially confirm the existence of a mud-mound in the Ullin limestone at a depth of 4300 feet. Geophysical well logs from the new well near Aden were used to create 1-D computer models and synthetic seismograms for comparison to the seismic data. The reflection seismic method is widely used to aid interpreting subsurface geology. Processing seismic data is an important step in the method as a properly processed seismic section can give a better image of the subsurface geology whereas a poorly processed section could mislead the interpretation. Seismic reflections will be more accurately depicted with careful determination of seismic velocities and by carefully choosing the processing steps and parameters. Various data processing steps have been applied and parameters refined to produce improved stacked seismic records. The resulting seismic records from the Aden field area indicate a seismic response similar to what is expected from a carbonate mud-mound. One-dimensional synthetic seismograms were created using the available sonic and density logs from the well drilled near the Aden seismic lines

  5. The distribution of seismic velocities and attenuation in the earth. Ph.D. Thesis

    NASA Technical Reports Server (NTRS)

    Hart, R. S.

    1977-01-01

    Estimates of the radial distribution of seismic velocities and density and of seismic attenuation within the earth are obtained through inversion of body wave, surface wave, and normal mode data. The effect of attenuation related dispersion on gross earth structure, and on the reliability of eigenperiod identifications is discussed. The travel time baseline discrepancies between body waves and free oscillation models are examined and largely resolved.

  6. Rayleigh wave group velocity distributions for East Asia using ambient seismic noise

    NASA Astrophysics Data System (ADS)

    Witek, Michael; van der Lee, Suzan; Kang, Tae-Seob

    2014-11-01

    Vertical component data from 206 broadband seismometer stations from Korean networks Korean Institute of Geoscience and Mineral Resources and Korea Meteorological Administration, the Japanese F-net network, and the Chinese New China Digital Seismograph Network and Northeast China Extended Seismic Array network are collected for the year 2011, and the ambient seismic noise is analyzed. Rayleigh wave group velocity distribution maps are created in the period range 10 to 70 s. Our results are largely consistent with previous studies of the area but provide greater detail in the Korean peninsula and the Sea of Japan. Low group velocities are observed in the Ulleung basin, and the Chubu-Kanto and Kyushu regions in Japan. At 10 s period, sediment basins in the Sea of Japan appear as low group velocity regions relative to higher group velocity continental regions. At periods longer than 40 s, a low group velocity region emerges in the Ulleung basin region, and is bounded by the Korean peninsula.

  7. Hemispherical variations in seismic velocity at the top of the Earth's inner core.

    PubMed

    Niu, F; Wen, L

    2001-04-26

    Knowledge of the seismic velocity structure at the top of the Earth's inner core is important for deciphering the physical processes responsible for inner-core growth. Previous global seismic studies have focused on structures found 100 km or deeper within the inner core, with results for the uppermost 100 km available for only isolated regions. Here we present constraints on seismic velocity variations just beneath the inner-core boundary, determined from the difference in travel time between waves reflected at the inner-core boundary and those transmitted through the inner core. We found that these travel-time residuals-observed on both global seismograph stations and several regional seismic networks-are systematically larger, by about 0.8 s, for waves that sample the 'eastern hemisphere' of the inner core (40 degrees E to 180 degrees E) compared to those that sample the 'western hemisphere' (180 degrees W to 40 degrees E). These residuals show no correlation with the angle at which the waves traverse the inner core; this indicates that seismic anisotropy is not strong in this region and that the isotropic seismic velocity of the eastern hemisphere is about 0.8% higher than that of the western hemisphere. PMID:11323668

  8. Near-surface velocity structure from borehole and refraction seismic surveys

    SciTech Connect

    Parry, D.; Lawton, D.C.

    1994-12-31

    Seismic refraction and borehole reflection data have been used in conjunction with other geophysical tools to characterize the near-surface geology in the vicinity of a shallow well near Calgary, Alberta. The investigated section is comprised primarily of glacial tills and gravels. Seismic waves generated in the lower gravel units travel as compressional waves up to the till/gravel interface, where they are converted to shear waves upon transmission. Velocity structure from a reverse vertical seismic profile (RVSP) survey agrees closely with that from refraction surveying.

  9. Ultra-high-resolution marine 2D-3D seismic investigation of the Liman Tepe/Karantina Island archaeological site (Urla/Turkey)

    NASA Astrophysics Data System (ADS)

    Müller, C.; Woelz, S.; Ersoy, Y.; Boyce, J.; Jokisch, T.; Wendt, G.; Rabbel, W.

    2009-05-01

    2D and 3D high-resolution seismic investigations were performed on submerged coastal archaeological sites at Iskele and near to Karantina Island in the Bay of Izmir in western Turkey. Tectonic subsidence of the coastline has submerged a number of archaeological features associated with an important Early Bronze Archaic settlement (Liman Tepe) and the classical Ionian city of Clazomenae. Seismic surveys were focused on imaging of an Archaic harbour structure and other submerged Hellenistic and Roman architectural features. Seismic data were acquired with the SEAMAP-3D ultra-high-resolution 3D marine seismic acquisition system developed for detailed archaeological site investigation. A 2D reconnaissance survey was performed over a 2 km 2 area around Karantina Island to evaluate the seismic penetrability and to locate sites for further 3D investigation. This survey predominantly revealed marine sediment layers covering the local bedrock, which is characterized by scattering of seismic energy showing its rocky nature. Two ultra-high-resolution 3D seismic surveys were performed. The first covered a 350 m × 30 m area in the modern harbour targeting a prominent Archaic harbour structure. The second was acquired across a 120 m × 40 m area on the southeast shore of the Karantina Island close to a Roman architectural feature. The 3D surveys were acquired with nominal line spacings of 1 m, using a 8 × 4 pseudo-rigid hydrophone array and a Boomer source firing at 3 Hz shot frequency. Automated processing of the seismic data using a portable Linux cluster provided stacked 3D seismic volumes with 25 cm × 25 cm bin size on-site. The 3D seismic survey of the harbour clearly imaged the submerged Archaic structure and the underlying sediment sequence. The seismic time slices reveal two seismic anomalies (2-3 m in diameter) in the harbour basin sediments. The 3D surveys southeast of Karantina identified a thicker marine sediment sequence overlying steeply dipping bedrock

  10. Shear wave velocity profile estimation by integrated analysis of active and passive seismic data from small aperture arrays

    NASA Astrophysics Data System (ADS)

    Lontsi, A. M.; Ohrnberger, M.; Krüger, F.

    2016-07-01

    We present an integrated approach for deriving the 1D shear wave velocity (Vs) information at few tens to hundreds of meters down to the first strong impedance contrast in typical sedimentary environments. We use multiple small aperture seismic arrays in 1D and 2D configuration to record active and passive seismic surface wave data at two selected geotechnical sites in Germany (Horstwalde & Löbnitz). Standard methods for data processing include the Multichannel Analysis of Surface Waves (MASW) method that exploits the high frequency content in the active data and the sliding window frequency-wavenumber (f-k) as well as the spatial autocorrelation (SPAC) methods that exploit the low frequency content in passive seismic data. Applied individually, each of the passive methods might be influenced by any source directivity in the noise wavefield. The advantages of active shot data (known source location) and passive microtremor (low frequency content) recording may be combined using a correlation based approach applied to the passive data in the so called Interferometric Multichannel Analysis of Surface Waves (IMASW). In this study, we apply those methods to jointly determine and interpret the dispersion characteristics of surface waves recorded at Horstwalde and Löbnitz. The reliability of the dispersion curves is controlled by applying strict limits on the interpretable range of wavelengths in the analysis and further avoiding potentially biased phase velocity estimates from the passive f-k method by comparing to those derived from the SPatial AutoCorrelation method (SPAC). From our investigation at these two sites, the joint analysis as proposed allows mode extraction in a wide frequency range (~ 0.6-35 Hz at Horstwalde and ~ 1.5-25 Hz at Löbnitz) and consequently improves the Vs profile inversion. To obtain the shear wave velocity profiles, we make use of a global inversion approach based on the neighborhood algorithm to invert the interpreted branches of the

  11. The Salton Seismic Imaging Project: Seismic velocity structure of the Brawley Seismic Zone, Salton Buttes and Geothermal Field, Salton Trough, California

    NASA Astrophysics Data System (ADS)

    Delph, J.; Hole, J. A.; Fuis, G. S.; Stock, J. M.; Rymer, M. J.

    2011-12-01

    The Salton Trough is an active rift in southern California in a step-over between the plate-bounding Imperial and San Andreas Faults. In March 2011, the Salton Seismic Imaging Project (SSIP) investigated the rift's crustal structure by acquiring several seismic refraction and reflection lines. One of the densely sampled refraction lines crosses the northern-most Imperial Valley, perpendicular to the strike-slip faults and parallel to a line of small Quaternary rhyolitic volcanoes. The line crosses the obliquely extensional Brawley Seismic Zone and goes through one of the most geothermally productive areas in the United States. Well logs indicate the valley is filled by several kilometers of late Pliocene-recent lacustrine, fluvial, and shallow marine sediment. The 42-km long seismic line was comprised of eleven 110-460 kg explosive shots and receivers at a 100 m spacing. First arrival travel times were used to build a tomographic seismic velocity image of the upper crust. Velocity in the valley increases smoothly from <2 km/s to >5 km/s, indicating diagenesis and gradational metamorphism of rift sediments at very shallow depth due to an elevated geotherm. The velocity gradient is much smaller in the relatively low velocity (<6 km/s) crystalline basement comprised of recently metamorphosed sediment reaching greenschist to lower amphibolite facies. The depth of this basement is about 4-km below the aseismic region of the valley west of the Brawley Seismic Zone, but rises sharply to ~2 km depth beneath the seismically, geothermally, and volcanically active area of the Brawley Seismic Zone. The basement deepens to the northeast of the active tectonic zone and then is abruptly offset to shallower depth on the northeast side of the valley. This offset may be the subsurficial expression of a paleofault, most likely an extension of the Sand Hills Fault, which bounds the basin to the east. Basement velocity east of the fault is ~5.7 km/s, consistent with the granitic rocks

  12. New Observations of Seismic Group Velocities in the Western Solomon Islands from Cross-Correlation of Ambient Seismic Noise

    NASA Astrophysics Data System (ADS)

    Ku, C. S.; You, S. H.; Kuo, Y. T.; Huang, B. S.; Wu, Y. M.; Chen, Y. G.; Taylor, F. W.

    2015-12-01

    A MW 8.1 earthquake occurred on 1 April 2007 in the western Solomon Islands. Following this event, a damaging tsunami was induced and hit the Island Gizo where the capital city of Western Province of Solomon Islands located. Several buildings of this city were destroyed and several peoples lost their lives during this earthquake. However, during this earthquake, no near source seismic instrument has been installed in this region. The seismic evaluations for the aftershock sequence, the possible earthquake early warning and tsunami warning were unavailable. For the purpose of knowing more detailed information about seismic activity in this region, we have installed 9 seismic stations (with Trillium 120PA broadband seismometer and Q330S 24bit digitizer) around the rupture zone of the 2007 earthquake since September of 2009. Within a decade, it has been demonstrated both theoretically and experimentally that the Green's function or impulse response between two seismic stations can be retrieved from the cross-correlation of ambient noise. In this study, 6 stations' observations which are more complete during 2011/10 ~ 2012/12 period, were selected for the purpose of the cross-correlation analysis of ambient seismic noise. The group velocities at period 2-20 seconds of 15 station-pairs were extracted by using multiple filter technique (MFT) method. The analyzed results of this study presented significant results of group velocities with higher frequency contents than other studies (20-60 seconds in usually cases) and opened new opportunities to study the shallow crustal structure of the western Solomon Islands.

  13. Automated Interval velocity picking for Atlantic Multi-Channel Seismic Data

    NASA Astrophysics Data System (ADS)

    Singh, Vishwajit

    2016-04-01

    This paper described the challenge in developing and testing a fully automated routine for measuring interval velocities from multi-channel seismic data. Various approaches are employed for generating an interactive algorithm picking interval velocity for continuous 1000-5000 normal moveout (NMO) corrected gather and replacing the interpreter's effort for manual picking the coherent reflections. The detailed steps and pitfalls for picking the interval velocities from seismic reflection time measurements are describe in these approaches. Key ingredients these approaches utilized for velocity analysis stage are semblance grid and starting model of interval velocity. Basin-Hopping optimization is employed for convergence of the misfit function toward local minima. SLiding-Overlapping Window (SLOW) algorithm are designed to mitigate the non-linearity and ill- possessedness of root-mean-square velocity. Synthetic data case studies addresses the performance of the velocity picker generating models perfectly fitting the semblance peaks. A similar linear relationship between average depth and reflection time for synthetic model and estimated models proposed picked interval velocities as the starting model for the full waveform inversion to project more accurate velocity structure of the subsurface. The challenges can be categorized as (1) building accurate starting model for projecting more accurate velocity structure of the subsurface, (2) improving the computational cost of algorithm by pre-calculating semblance grid to make auto picking more feasible.

  14. Vertical seismic profile at Pike's Peak, Saskatchewan, Canada: turning rays and velocity anisotropy

    NASA Astrophysics Data System (ADS)

    Newrick, Rachel T.; Lawton, Don C.

    2003-12-01

    First-arrival traveltimes from a multi-offset vertical seismic profile (VSP) were used to estimate velocity anisotropy in the presence of a vertical velocity gradient. A numerical model consisting of two layers with vertical velocity gradients of 3.1 and 1.2 s-1, respectively, and global anisotropy parameters of ε=0.12±0.02 and δ=0.30±0.06 yielded first-arrival traveltimes that matched the observed traveltimes well. Shallow receivers were found to be crucial for constraining the vertical velocity field and for determining the parameters of anisotropy at depth.

  15. Key elements of regional seismic velocity models for long period ground motion simulations

    USGS Publications Warehouse

    Brocher, T.M.

    2008-01-01

    Regional 3-D seismic velocity models used for broadband strong motion simulations must include compressional-wave velocity (Vp), shear-wave velocity (Vs), intrinsic attenuation (Qp, Qs), and density. Vs and Qs are the most important of these parameters because the strongest ground motions are generated chiefly by shear- and surface-wave arrivals. Because Vp data are more common than Vs data, many researchers first develop a Vp model and convert it to a Vs model. I describe recent empirical relations between Vs, Vp, Qs, Qp, and density that allow velocity models to be rapidly and accurately calculated. ?? Springer Science+Business Media B.V. 2007.

  16. Variations and healing of the seismic velocity (Beno Gutenberg Medal Lecture)

    NASA Astrophysics Data System (ADS)

    Snieder, Roel

    2016-04-01

    Scattering of waves leads to a complexity of waveforms that is often seen by seismologists as a nuisance. And indeed, the complicated wave paths of multiple scattered waves makes it difficult to use these waves for imaging. Yet, the long wave paths of multiple scattered waves makes these waves an ideal tool for measuring minute velocity changes. This has led to the development of coda wave interferometry as a tool for measuring small velocity changes in the laboratory and with field data. Combined with the use of noise cross correlations - seismic interferometry - this method is even more useful because it follows for a quasi-continuous measurement of velocity changes. I will show examples of detecting velocity changes in the laboratory, the earth's near surface, and in engineered structures. Perhaps surprisingly, the seismic velocity is not constant at all, and varies with the seasons, temperature, precipitation, as the weather does. In addition, the seismic velocity usually drops as a result of deformation. Most of these changes likely occur in the near surface or the region of deformation, and a drawback of using strongly scattered waves is that it is difficult to localize the spatial area of the velocity change. I will present laboratory measurements that show that a certain spatial localization of the velocity change can be achieved. One of the intriguing observations is that after deformation the seismic velocity recovers logarithmically with time. The reason for this particular time-dependence is the presence of healing mechanisms that operate at different time scales. Since this is feature of many physical systems, the logarithmic healing is a widespread behavior and is akin in its generality to the Gutenberg-Richter law.

  17. Monitoring seismic velocity changes associated with the 2014 Mw 6.0 South Napa earthquake

    NASA Astrophysics Data System (ADS)

    Taira, T.; Brenguier, F.; Kong, Q.

    2014-12-01

    We analyze ambient seismic noise wavefield to explore temporal variations in seismic velocity associated with the 24 August 2014 Mw 6.0 South Napa earthquake. We estimate relative velocity changes (dv/v) with MSNoise [Lecocq et al., 2014, SRL] by analyzing continuous waveforms collected at 10 seismic stations that locate near the epicenter of the 2014 South Napa earthquake. Following Brenguier et al. [2008, Science], our preliminary analysis focuses on the vertical component waveforms in a frequency range of 0.1-0.9 Hz. We determine the reference Green's function (GF) for each station pair as the average of 1-day stacks of GFs obtained in the time interval, January through July 2014. We estimate the time history of dv/v by measuring delay times between 10-day stacks of GF and reference GF. We find about 0.07% velocity reduction immediately after the 2014 South Napa earthquake by measuring the delay times between stacked and reference GFs. Our preliminary result also reveals a post-seismic relaxation process. The velocity reduction is down to 0.04% about 20 days after the 2014 South Napa earthquake. We have implemented an automated system to monitor the time history of dv/v (http://earthquakes.berkeley.edu/~taira/SNapa/SNapa_Noise.html) by using waveforms archived at the Northern California Earthquake Data Center. We will characterize the detailed temporal evolution of velocity change associated with the 2014 South Napa earthquake.

  18. Monitoring changes in seismic velocity related to an ongoing rapid inflation event at Okmok volcano, Alaska

    USGS Publications Warehouse

    Bennington, Ninfa; Haney, Matt; De Angelis, Silvio; Thurber, Clifford; Freymueller, Jeff

    2015-01-01

    Okmok is one of the most active volcanoes in the Aleutian Arc. In an effort to improve our ability to detect precursory activity leading to eruption at Okmok, we monitor a recent, and possibly ongoing, GPS-inferred rapid inflation event at the volcano using ambient noise interferometry (ANI). Applying this method, we identify changes in seismic velocity outside of Okmok’s caldera, which are related to the hydrologic cycle. Within the caldera, we observe decreases in seismic velocity that are associated with the GPS-inferred rapid inflation event. We also determine temporal changes in waveform decorrelation and show a continual increase in decorrelation rate over the time associated with the rapid inflation event. Themagnitude of relative velocity decreases and decorrelation rate increases are comparable to previous studies at Piton de la Fournaise that associate such changes with increased production of volatiles and/ormagmatic intrusion within the magma reservoir and associated opening of fractures and/or fissures. Notably, the largest decrease in relative velocity occurs along the intrastation path passing nearest to the center of the caldera. This observation, along with equal amplitude relative velocity decreases revealed via analysis of intracaldera autocorrelations, suggests that the inflation sourcemay be located approximately within the center of the caldera and represent recharge of shallow magma storage in this location. Importantly, there is a relative absence of seismicity associated with this and previous rapid inflation events at Okmok. Thus, these ANI results are the first seismic evidence of such rapid inflation at the volcano.

  19. Upper Mantle Seismic Velocity Structure Beneath Eastern Africa and the Origin of Cenozoic Extensional Tectonism (Invited)

    NASA Astrophysics Data System (ADS)

    Nyblade, A.; Julia, J.; Adams, A. N.; Mulibo, G. D.; Tugume, F. A.

    2009-12-01

    The seismic structure of the upper mantle beneath eastern Africa will be reviewed using results from body wave tomography, surface wave tomography, and images of the 410 and 660 km discontinuities. Most of the data used for obtaining these results come from temporary deployments of broadband seismic stations in Ethiopia, Kenya, Uganda and Tanzania over the past decade. The ensemble of seismic results point to a deep-seated low velocity zone beneath the East African rift system that extends from the uppermost mantle, through the upper mantle, and into the mantle transition zone. The low velocity anomaly may also extend through the mantle transition zone and link with the low velocity zone in the lower mantle under southern Africa, commonly referred to as the African Superplume. This is in contrast to southern Africa, were there is little evidence for a pronounced low velocity anomaly in the upper mantle. The existence of a seismic low velocity zone beneath eastern African that extends to depths of more than 500 km supports the possibility that there is a geodynamic connection between the African Superplume and the origin of Cenozoic extensional tectonism in eastern Africa.

  20. Monitoring changes in seismic velocity related to an ongoing rapid inflation event at Okmok volcano, Alaska

    NASA Astrophysics Data System (ADS)

    Bennington, Ninfa L.; Haney, Matthew; De Angelis, Silvio; Thurber, Clifford H.; Freymueller, Jeffrey

    2015-08-01

    Okmok is one of the most active volcanoes in the Aleutian Arc. In an effort to improve our ability to detect precursory activity leading to eruption at Okmok, we monitor a recent, and possibly ongoing, GPS-inferred rapid inflation event at the volcano using ambient noise interferometry (ANI). Applying this method, we identify changes in seismic velocity outside of Okmok's caldera, which are related to the hydrologic cycle. Within the caldera, we observe decreases in seismic velocity that are associated with the GPS-inferred rapid inflation event. We also determine temporal changes in waveform decorrelation and show a continual increase in decorrelation rate over the time associated with the rapid inflation event. The magnitude of relative velocity decreases and decorrelation rate increases are comparable to previous studies at Piton de la Fournaise that associate such changes with increased production of volatiles and/or magmatic intrusion within the magma reservoir and associated opening of fractures and/or fissures. Notably, the largest decrease in relative velocity occurs along the intrastation path passing nearest to the center of the caldera. This observation, along with equal amplitude relative velocity decreases revealed via analysis of intracaldera autocorrelations, suggests that the inflation source may be located approximately within the center of the caldera and represent recharge of shallow magma storage in this location. Importantly, there is a relative absence of seismicity associated with this and previous rapid inflation events at Okmok. Thus, these ANI results are the first seismic evidence of such rapid inflation at the volcano.

  1. A bayesian approach for determining velocity and uncertainty estimates from seismic cone penetrometer testing or vertical seismic profiling data

    USGS Publications Warehouse

    Pidlisecky, A.; Haines, S.S.

    2011-01-01

    Conventional processing methods for seismic cone penetrometer data present several shortcomings, most notably the absence of a robust velocity model uncertainty estimate. We propose a new seismic cone penetrometer testing (SCPT) data-processing approach that employs Bayesian methods to map measured data errors into quantitative estimates of model uncertainty. We first calculate travel-time differences for all permutations of seismic trace pairs. That is, we cross-correlate each trace at each measurement location with every trace at every other measurement location to determine travel-time differences that are not biased by the choice of any particular reference trace and to thoroughly characterize data error. We calculate a forward operator that accounts for the different ray paths for each measurement location, including refraction at layer boundaries. We then use a Bayesian inversion scheme to obtain the most likely slowness (the reciprocal of velocity) and a distribution of probable slowness values for each model layer. The result is a velocity model that is based on correct ray paths, with uncertainty bounds that are based on the data error. ?? NRC Research Press 2011.

  2. Seismic velocity variation along the Izu-Bonin arc estaimated from traveltime tomography using OBS data

    NASA Astrophysics Data System (ADS)

    Obana, K.; Tamura, Y.; Takahashi, T.; Kodaira, S.

    2014-12-01

    The Izu-Bonin (Ogasawara) arc is an intra-oceanic island arc along the convergent plate boundary between the subducting Pacific and overriding Philippine Sea plates. Recent active seismic studies in the Izu-Bonin arc reveal significant along-arc variations in crustal structure [Kodaira et al., 2007]. The thickness of the arc crust shows a remarkable change between thicker Izu (~30 km) and thinner Bonin (~10 km) arcs. In addition to this, several geological and geophysical contrasts, such as seafloor topography and chemical composition of volcanic rocks, between Izu and Bonin arc have been reported [e.g., Yuasa 1992]. We have conducted earthquake observations using ocean bottom seismographs (OBSs) to reveal seismic velocity structure of the crust and mantle wedge in the Izu-Bonin arc and to investigate origin of the along-arc structure variations. We deployed 40 short-period OBSs in Izu and Bonin area in 2006 and 2009, respectively. The OBS data were processed with seismic data recorded at routine seismic stations on Hachijo-jima, Aoga-shima, and Chichi-jima operated by National Research Institute for Earth Science and Disaster Prevention (NIED). More than 5000 earthquakes were observed during about three-months observation period in each experiment. We conducted three-dimensional seismic tomography using manually picked P- and S-wave arrival time data. The obtained image shows a different seismic velocity structures in the mantle beneath the volcanic front between Izu and Bonin arcs. Low P-wave velocity anomalies in the mantle beneath the volcanic front in the Izu arc are limited at depths deeper than those in the Bonin arc. On the other hand, P-wave velocity in the low velocity anomalies beneath volcanic front in the Bonin arc is slower than that in the Izu arc. These large-scale along-arc structure variations in the mantle could relate to the geological and geophysical contrasts between Izu and Bonin arcs.

  3. The lunar interior. [compressional velocities of interior materials compared with lunar seismic results

    NASA Technical Reports Server (NTRS)

    Anderson, D. L.; Kovach, R. L.

    1972-01-01

    The compressional velocities are estimated for materials thought to be important in the lunar interior and compared with lunar seismic results. The lower lunar crust has velocities appropriate for basalts or anorthosites. Anorthosite is preferred if lunar basalts result from a small degree of partial melting. The high velocities associated with the uppermost mantle imply high densities and a change to a lighter assemblage at depths of the order of 120 km. Ca- and Al-rich minerals are important components of both the lower crust and the upper mantle. Most of the moon may have accreted from refractory material rich in Ca, Al, U, and the rare-earth elements. The important mineral of the upper mantle is garnet; possible accessory minerals are kyanite, spinel and rutile. If the seismic results stand up, the high-velocity layer in the moon is more likely to be a high-pressure form of anorthosite than eclogite, pyroxenite, or dunite.

  4. Potential Misidentification of Love-Wave Phase Velocity Based on Three-Component Ambient Seismic Noise

    NASA Astrophysics Data System (ADS)

    Xu, Zongbo; Xia, Jianghai; Luo, Yinhe; Cheng, Feng; Pan, Yudi

    2016-04-01

    People have calculated Rayleigh-wave phase velocities from vertical component of ambient seismic noise for several years. Recently, researchers started to extract Love waves from transverse component recordings of ambient noise, where "transverse" is defined as the direction perpendicular to a great-circle path or a line in small scale through observation sensors. Most researches assumed Rayleigh waves could be negligible, but Rayleigh waves can exist in the transverse component when Rayleigh waves propagate in other directions besides radial direction. In study of data acquired in western Junggar Basin near Karamay city, China, after processing the transverse component recordings of ambient noise, we obtain two energy trends, which are distinguished with Rayleigh-wave and Love-wave phase velocities, in the frequency-velocity domain using multichannel analysis of surface waves (MASW). Rayleigh waves could be also extracted from the transverse component data. Because Rayleigh-wave and Love-wave phase velocities are close in high frequencies (>0.1 Hz), two kinds of surface waves might be merged in the frequency-velocity domain. Rayleigh-wave phase velocities may be misidentified as Love-wave phase velocities. To get accurate surface-wave phase velocities from the transverse component data using seismic interferometry in investigating the shallow geology, our results suggest using MASW to calculate real Love-wave phase velocities.

  5. Inference of upper-mantle density structure from seismic velocities

    NASA Astrophysics Data System (ADS)

    Nettles, M.; Dziewonski, A. M.

    2005-12-01

    The inverse problem for the determination of density structure from perturbations in the gravity field is highly nonunique. The combination of gravity data and other observables can, however, be used to make inferences about the Earth's density structure in three dimensions. We use the three-dimensional shear-wave velocity model of Nettles and Dziewonski (2005) to make a forward prediction of the Earth's gravity field using simple assumptions about the relationship between perturbations in shear velocity and density. A scaling factor f=0.25 relating perturbations in shear velocity and density (δ/ρρ = f · δvS/vS) is determined empirically by comparison of observed variations in shear velocity in oceanic regions with density variations predicted from a simple model of conductive cooling. This value agrees well with f=0.27 based on the laboratory results of Jackson et al. (1992). The observed gravity signal in the oceans is explained well by this simple thermal-scaling approach. Behavior in some continental regions, such as the Basin and Range and the East African rift zone, is found to be similar to that in the oceans: the high topography in these regions appears to be supported by hot, low-density mantle underneath, a result also found by Kaban and Mooney (2001) for the Basin and Range. A velocity-to-density scaling relationship based only on thermal considerations is clearly inadequate in regions of continental craton, where such scaling leads to unrealistically large perturbations in the predicted gravity field. This result suggests that non-thermal effects must counteract the high density that would occur due to thermal effects alone, consistent with the suggestion of Jordan (1975) and other workers that density increases due to cool temperatures in the continental roots must be balanced by density decreases due to compositional variations. Using the compositional derivatives for density and shear velocity with respect to Mg# determined by Lee (2003), and an

  6. Ground Water and Frost Induced Seismic Velocity Changes in Ketzin (Germany)

    NASA Astrophysics Data System (ADS)

    Gassenmeier, Martina; Sens-Schönfelder, Christoph; Korn, Michael

    2014-05-01

    The principle of Seismic Interferometry (SI) is that the correlation of a random wave field like seismic noise recorded by distant receivers can be used to infer the Green function (or at least part of it) of the medium between the receivers. Beside tomographic inversion for the subsurface velocity it can also be used to detect small temporal changes in the propagation of the seismic wave field. As these changes can be related to changes of elastic properties in the propagation medium, SI can characterize dynamic processes in the earth's crust. This technique was successfully applied, inter alia, to monitor seasonal variations in response to environmental influences, shaking caused by earthquakes or material changes due to the eruption of volcanoes. We work with data acquired with a seismic network in Ketzin (Brandenburg, Germany), where CO2 is injected into a saline aquifer at a depth of about 650 m. We calculated daily cross-correlation functions (CCFs) of the ambient noise field for a time period of about 4 years from the beginning of the injection. Spectra showed that the frequency band between 1 and 3.5 Hz does neither show an annual periodicity (like for microseism) nor temporal shifts of peak frequencies. For this frequency band we estimated the noise propagation direction over two years and found a predominant direction from north-east. This direction matches with the location of a large wind park a few km away from the array. The direction of the noise wave field shows a good stability, which excludes variations of the noise source distribution as a cause of spurious velocity variations. To analyze possible velocity changes for each day, we computed stretched versions of a reference CCF and calculated correlation values between different time windows in the coda part of the stretched traces and the reference trace. We can observe velocity variations with a period of approx. one year that are not caused by the CO2 injection. Due to the almost continuous

  7. Seismic wave velocity and anisotropy of serpentinized peridotite in the Oman ophiolite

    NASA Astrophysics Data System (ADS)

    Dewandel, Benoı̂t; Boudier, Françoise; Kern, Hartmut; Warsi, Waris; Mainprice, David

    2003-07-01

    Shallow seismic measurements in harzburgite from the Oman ophiolite performed in a zone where the maximum horizontal anisotropy is expected (vertical foliation and horizontal lineation) point to a dominant dependence of seismic properties on fracturing. Optical microscopy studies show that microcracks are guided by the serpentine (lizardite) penetrative network oriented subparallel to the harzburgite foliation and subperpendicular to the mineral lineation, and that serpentine (lizardite) vein filling has a maximum concentration of (001) planes parallel to the veins walls. The calculated elastic properties of the oriented alteration veins filled with serpentine in an anisotropic matrix formed by oriented crystals of olivine and orthopyroxene are compared with seismic velocities measured on hand specimens. Laboratory ultrasonic data indicate that open microcracks are closed at 100 MPa pressure, e.g. (J. Geophys. Res. 65, (1960) 1083) and (Proc. ODP Sci. Results Leg 118, (1990) 227). Above this pressure, laboratory measurements and modeling show that P-compressional and S-shear wave velocities are mainly controlled by the mineral preferred orientation. Veins sealed with serpentine are effective in slightly lowering P and S velocities and increasing anisotropy. The penetrative lizardite network does not affect directly the geometry of seismic anisotropy, but contributes indirectly in the fact that this network controls the microcrack orientations. Comparison between seismic measurements of peridotite and gabbro in the same conditions suggest that P- and S-waves anisotropies are a possible discriminating factor between the two lithologies in the suboceanic lithosphere.

  8. P-Wave Velocity Structure beneath Eastern Eurasia from Finite Frequency Seismic Tomography

    NASA Astrophysics Data System (ADS)

    Yang, T.; Shen, Y.; Yang, X.

    2006-05-01

    Despite the recent extensive seismic studies, the detailed lithospheric structure and deep mantle dynamic processes beneath eastern Eurasia remain poorly constrained. In this study, we applied the Finite Frequency Seismic Tomography (FFST) method, which utilizes the 3D Fréchet sensitivity kernels of the travel times of finite frequency seismic waves to account for wavefront healing and off-ray scattering, to eastern Eurasia. Taking advantage of the broadband feature of seismic records, we measured P wave relative delays times by waveform cross-correlation in three frequency bands (0.03-0.1Hz, 0.1-0.5 Hz and 0.5 to 2.0 Hz), which were inverted jointly to constrain velocity heterogeneities with different distances from the central geometric rays. The effect of strong variations in crustal structure beneath this region on travel time data was removed by conducting a frequency dependent crustal correction. A comprehensive dataset, including waveforms from the publicly accessible sources and other seismic networks in the region, were collected for this study. Our preliminary results are consistent with the velocity models obtained in previous tomographic studies. A more complete dataset will further improve the resolution of the velocity structure beneath eastern Eurasia.

  9. Seismic velocity models for the Denali fault zone along the Richardson Highway, Alaska

    USGS Publications Warehouse

    Brocher, T.M.; Fuis, G.S.; Lutter, W.J.; Christensen, N.I.; Ratchkovski, N.A.

    2004-01-01

    Crustal-scale seismic-velocity models across the Denali fault zone along the Richardson Highway show a 50-km-thick crust, a near vertical fault trace, and a 5-km-wide damage zone associated with the fault near Trans-Alaska Pipeline Pump Station 10, which provided the closest strong ground motion recordings of the 2002 Denali fault earthquake. We compare models, derived from seismic reflection and refraction surveys acquired in 1986 and 1987, to laboratory measurements of seismic velocities for typical metamorphic rocks exposed along the profiles. Our model for the 1986 seismic reflection profile indicates a 5-km-wide low-velocity zone in the upper 1 km of the Denali fault zone, which we interpret as fault gouge. Deeper refractions from our 1987 line image a 40-km wide, 5-km-deep low-velocity zone along the Denali fault and nearby associated fault strands, which we attribute to a composite damage zone along several strands of the Denali fault zone and to the obliquity of the seismic line to the fault zone. Our velocity model and other geophysical data indicate a nearly vertical Denali fault zone to a depth of 30 km. After-shocks of the 2002 Denali fault earthquake and our velocity model provide evidence for a flower structure along the fault zone consisting of faults dipping toward and truncated by the Denali fault. Wide-angle reflections indicate that the crustal thickness beneath the Denali fault is transitional between the 60-km-thick crust beneath the Alaska Range to the south, and the extended, 30-km-thick crust of the Yukon-Tanana terrane to the north.

  10. Low seismic velocities below mid-ocean ridges: Attenuation versus melt retention

    NASA Astrophysics Data System (ADS)

    Goes, Saskia; Armitage, John; Harmon, Nick; Smith, Hannah; Huismans, Ritske

    2012-12-01

    The first comprehensive seismic experiment sampling subridge mantle revealed a pronounced low-velocity zone between 40 and 100 km depth below the East Pacific Rise (EPR) that has been attributed to substantial retained melt fractions of 0.3-2%. Such high melt fractions are at odds with low melt productivity and high melt mobility inferred from petrology and geochemistry. Here, we evaluate whether seismic attenuation can reconcile subridge seismic structure with low melt fractions. We start from a dynamic spreading model which includes melt generation and migration and is converted into seismic structure, accounting for temperature-, pressure-, composition-, phase-, and melt-dependent anharmonicity, and temperature-, pressure-, frequency- and hydration-dependent anelasticity. Our models predict a double low-velocity zone: a shallow—approximately triangular—region due to dry melting, and a low-velocity channel between 60 and 150 km depth dominantly controlled by solid state high-temperature seismic attenuation in a damp mantle, with only a minor contribution of (<0.1%) melt. We test how tomographic inversion influences the imaging of our modeled shear velocity features. The EPR experiment revealed a double low-velocity zone, but most tomographic studies would only resolve the deeper velocity minimum. Experimentally constrained anelasticity formulations produce VSas low as observed and can explain lateral variations in near-ridge asthenospheric VS with ±100 K temperature variations and/or zero to high water content. Furthermore, such QS formulations also reproduce low asthenospheric VS below older oceans and continents from basic lithospheric cooling models. Although these structures are compatible with global QS images, they are more attenuating than permitted by EPR data.

  11. Seismic velocity structure of the Puget Sound Region from three dimensional nonlinear tomography

    NASA Astrophysics Data System (ADS)

    Symons, Neill Philip

    In this dissertation I describe a non-linear seismic tomography experiment in the Greater Puget Sound Region (GPSR). The GPSR contains portions of three distinct geologic provinces: (1) the Coast Range Province---composed of the Olympic Mountains and the Siletzia terrane lying along the Washington Coast (the western edge of the GPSR). (2) The Puget Lowland---an approximately linear depression that stretches from Oregon's Willamette Valley to the Strait of Georgia in Canada. The Puget Lowland lies in the middle of the GPSR. (3) The Cascade Range---lying along the eastern edge of the GPSR and characterized by extensive episodic volcanism since the later Mesozoic. The result of this study is a three-dimensional model of the P-wave velocity within the GPSR. Interpretation of this model provides information about the subsurface geology in the region. The method used to perform the tomography has been developed as part of this research. The method uses a finite-difference algorithm to calculate seismic travel-times to every point in the region using the full 3-d velocity model. The method is capable of using three different types of data: (1) earthquakes with unknown hypocenters. The earthquake hypocenters are found as part of the model during solution of the tomography problem. (2) Explosions or other seismic events with known locations. (3) External data constraining the seismic velocity at known locations within the model. There is a good correlation between the velocity model derived in this experiment and several known geologic structures in the GPSR, including: the core of the Olympic Mountains; high seismic velocity where the basalt that makes up the Siletzia terrane outcrops; and low-velocity regions at basins under the cities of Seattle, Tacoma, Everett, and Chehalis. The data provides sufficient resolution to delineate the geometry of the contacts between these units within a large portion of the GPSR.

  12. Three-dimensional seismic velocity structure of the San Francisco Bay area

    NASA Astrophysics Data System (ADS)

    Hole, J. A.; Brocher, T. M.; Klemperer, S. L.; Parsons, T.; Benz, H. M.; Furlong, K. P.

    2000-06-01

    Seismic travel times from the northern California earthquake catalogue and from the 1991 Bay Area Seismic Imaging Experiment (BASIX) refraction survey were used to obtain a three-dimensional model of the seismic velocity structure of the San Francisco Bay area. Nonlinear tomography was used to simultaneously invert for both velocity and hypocenters. The new hypocenter inversion algorithm uses finite difference travel times and is an extension of an existing velocity tomography algorithm. Numerous inversions were performed with different parameters to test the reliability of the resulting velocity model. Most hypocenters were relocated <2 km from their catalogue locations. Large lateral velocity variations at shallow (<4 km) depth correlate with known surface geology, including low-velocity Cenozoic sedimentary basins, high-velocity Cenozoic volcanic rocks, and outcrop patterns of the major Mesozoic geologic terranes. Salinian arc rocks have higher velocities than the Franciscan melange, which in turn are faster than Great Valley Sequence forearc rocks. The thickess of low-velocity sediment is defined, including >12 km under the Sacramento River Delta, 6 km beneath Livermore Valley, 5 km beneath the Santa Clara Valley, and 4 km beneath eastern San Pablo Bay. The Great Valley Sequence east of San Francisco Bay is 4-6 km thick. A relatively high velocity body exists in the upper 10 km beneath the Sonoma volcanic field, but no evidence for a large intrusion or magma chamber exists in the crust under The Geysers or the Clear Lake volcanic center. Lateral velocity contrasts indicate that the major strike-slip faults extend sub vertically beneath their surface locations through most of the crust. Strong lateral velocity contrasts of 0.3-0.6 km/s are observed across the San Andreas Fault in the middle crust and across the Hayward, Rogers Creek, Calaveras, and Greenville Faults at shallow depth. Weaker velocity contrasts (0.1-0.3 km/s) exist across the San Andreas, Hayward

  13. 1-D seismic velocity model and hypocenter relocation using double difference method around West Papua region

    SciTech Connect

    Sabtaji, Agung E-mail: agung.sabtaji@bmkg.go.id; Nugraha, Andri Dian

    2015-04-24

    West Papua region has fairly high of seismicity activities due to tectonic setting and many inland faults. In addition, the region has a unique and complex tectonic conditions and this situation lead to high potency of seismic hazard in the region. The precise earthquake hypocenter location is very important, which could provide high quality of earthquake parameter information and the subsurface structure in this region to the society. We conducted 1-D P-wave velocity using earthquake data catalog from BMKG for April, 2009 up to March, 2014 around West Papua region. The obtained 1-D seismic velocity then was used as input for improving hypocenter location using double-difference method. The relocated hypocenter location shows fairly clearly the pattern of intraslab earthquake beneath New Guinea Trench (NGT). The relocated hypocenters related to the inland fault are also observed more focus in location around the fault.

  14. Imaging 3D seismic velocity along the seismogenic zone of Algarve region (southern Portugal)

    NASA Astrophysics Data System (ADS)

    Rocha, João.; Bezzeghoud, Mourad; Caldeira, Bento; Dias, Nuno; Borges, José; Matias, Luís.; Dorbath, Catherine; Carrilho, Fernando

    2010-05-01

    The present seismic tomographic study is focused around Algarve region, in South of Portugal. To locate the seismic events and find the local velocity structure of epicentral area, the P and S arrival times at 38 stations are used. The data used in this study were obtained during the Algarve campaign which worked from January/2006 to July/2007. The preliminary estimate of origin times and hypocentral coordinates are determined by the Hypoinverse program. Linearized inversion procedure was applied to comprise the following two steps: 1) finding the minimum 1D velocity model using Velest and 2) simultaneous relocation of hypocenters and determination of local velocity structure. The velocity model we have reached is a 10 layer model which gave the lowest RMS, after several runnings of eight different velocity models that we used "a priori". The model parameterization assumes a continuous velocity field between 4.5 km/s and 7.0 km/s until 30 km depth. The earth structure is represented in 3D by velocity at discrete points, and velocity at any intervening point is determined by linear interpolation among the surrounding eight grid points. A preliminary analysis of the resolution capabilities of the dataset, based on the Derivative Weight Sum (DWS) distribution, shows that the velocity structure is better resolved in the West part of the region between the surface to15 km. The resulting tomographic image has a prominent low-velocity anomaly that shows a maximum decrease in P-wave velocity in the first 12 kms in the studied region. We also identified the occurrence of local seismic events of reduced magnitude not catalogued, in the neighbourhood of Almodôvar (low Alentejo). The spatial distribution of epicentres defines a NE-SW direction that coincides with the strike of the mapped geological faults of the region and issued from photo-interpretation. Is still expectable to refine the seismicity of the region of Almodôvar and establish more rigorously its role in the

  15. Relationships among seismic velocity, metamorphism, and seismic and aseismic fault slip in the Salton Sea Geothermal Field region

    NASA Astrophysics Data System (ADS)

    McGuire, Jeffrey J.; Lohman, Rowena B.; Catchings, Rufus D.; Rymer, Michael J.; Goldman, Mark R.

    2015-04-01

    The Salton Sea Geothermal Field is one of the most geothermally and seismically active areas in California and presents an opportunity to study the effect of high-temperature metamorphism on the properties of seismogenic faults. The area includes numerous active tectonic faults that have recently been imaged with active source seismic reflection and refraction. We utilize the active source surveys, along with the abundant microseismicity data from a dense borehole seismic network, to image the 3-D variations in seismic velocity in the upper 5 km of the crust. There are strong velocity variations, up to ~30%, that correlate spatially with the distribution of shallow heat flow patterns. The combination of hydrothermal circulation and high-temperature contact metamorphism has significantly altered the shallow sandstone sedimentary layers within the geothermal field to denser, more feldspathic, rock with higher P wave velocity, as is seen in the numerous exploration wells within the field. This alteration appears to have a first-order effect on the frictional stability of shallow faults. In 2005, a large earthquake swarm and deformation event occurred. Analysis of interferometric synthetic aperture radar data and earthquake relocations indicates that the shallow aseismic fault creep that occurred in 2005 was localized on the Kalin fault system that lies just outside the region of high-temperature metamorphism. In contrast, the earthquake swarm, which includes all of the M > 4 earthquakes to have occurred within the Salton Sea Geothermal Field in the last 15 years, ruptured the Main Central Fault (MCF) system that is localized in the heart of the geothermal anomaly. The background microseismicity induced by the geothermal operations is also concentrated in the high-temperature regions in the vicinity of operational wells. However, while this microseismicity occurs over a few kilometer scale region, much of it is clustered in earthquake swarms that last from hours to a

  16. Meteorite Impact at the Bedout High, NW Australian Margin, and Seismic Velocities: is There a Connection?

    NASA Astrophysics Data System (ADS)

    Goncharov, A.; Kennard, J.; Becker, L.

    2004-12-01

    The Bedout High in the Roebuck Basin at the NW Australian Margin (NWAM) appears to be a good candidate for a massive impact structure associated with the global Permian/Triassic extinction event. On a regional and crustal scale, the NWAM is one of the best studied offshore areas of Australia: ocean-bottom seismograph (OBS) survey supplemented by deep reflection seismic studies in the region has enabled co-interpretation of conventional deep seismic reflection data and accurate seismic velocity models on several transects, including one across the Bedout High. The purpose of this research is to investigate if there is any manifestation of the meteorite impact on a crustal scale, and also on a finer scale of seismic velocity variation in the basement. The impact of the suggested magnitude may have significantly modified the crustal structure in the region. Depth conversion of reflection seismic data indicates that depth to basement at the top of the Bedout High is approximately 3.9 km, and that the High stands more than 4 km above the surrounding sedimentary basins. The basement and crust in the Roebuck Basin have a number of features that distinguish it from other basins at the NWAM. Rapid crustal thinning outboard of the Bedout High and the presence of a thick layer of magmatic underplating in the lower crust are among these features. The meteorite impact may have been one of the possible causes to have triggered upper mantle melting and generation of a voluminous layer of underplated material. On a finer scale, OBS-derived seismic velocity variation along the basement is speculatively interpreted to be consistent with impact-related effects. However, existing seismic and potential field data do not allow accurate estimates of the extent of the crust affected by the meteorite impact, and effects that it may have had on the subsequent rifting, thermal, sedimentation and hydrocarbon maturation regimes in the area. Further multidisciplinary research is necessary to

  17. Deducing the subsurface geological conditions and structural framework of the NE Gulf of Suez area, using 2-D and 3-D seismic data

    NASA Astrophysics Data System (ADS)

    Zahra, Hesham Shaker; Nakhla, Adel Mokhles

    2015-06-01

    An interpretation of the seismic data of Ras Budran and Abu Zenima oil fields, northern central Gulf of Suez, is carried out to evaluate its subsurface tectonic setting. The structural configuration, as well as the tectonic features of the concerned area is criticized through the study of 2D and 3D seismic data interpretation with the available geological data, in which the geo-seismic depth maps for the main interesting levels (Kareem, Nukhul, Matulla, Raha and Nubia Formations) are depicted. Such maps reflect that, the Miocene structure of Ras Budran area is a nearly NE-SW trending anticlinal feature, which broken into several panels by a set of NWSE and NE-SW trending faults. The Pre-Miocene structure of the studied area is very complex, where Ras Budran area consists of step faults down stepping to the south and southwest, which have been subjected to cross faults of NE-SW trend with lateral and vertical displacements.

  18. 2D Seismic interpretation of strike-slip faulting, salt tectonics, and Cretaceous unconformities, Atlas Mountains, central Tunisia

    NASA Astrophysics Data System (ADS)

    Zouaghi, Taher; Bédir, Mourad; Inoubli, Mohamed Hédi

    2005-11-01

    The Cretaceous deposits in central Tunisia blocks were studied by sequence stratigraphy, 2D seismic interpretation calibrated to the well and associated outcrop data. The constructing and comparing histories of the northern and southern blocks of the Gafsa master fault was the establishment of platform to basin stratigraphic configuration based on the major unconformity surfaces. Three important basin zones mark subsurface structures: Gafsa to the south, Souinia-Majoura to the northeast and Sidi Aïch-Mèjel Bel Abbès to the northwest. Basin depocenters and upthrown blocks are bounded by the N120° Gafsa and Majoura and N180° Sidi Ali Ben Aoun wrench fault salt-intruded tectonic corridors and subdivided by the associated N60° and N90° trending second-order fault corridors. The Mèjel Bel Abbès block is characterized by brittle structures associated with a deep asymmetric geometry that is organized into depressions and uplifts. Halokinesis of Triassic salt began in the Jurassic and continued during the Cretaceous periods. During extensional deformations, salt movement controlled sedimentation distribution and location of pre-compressional structures. During compressional deformations, salt remobilization accentuated the folded uplifts. The Triassic salt facies constitutes a level of decollement at the base of the Mesozoic deposits during the later displacements. The coeval dextral strike-slip motion along the three northwest-southeast bounding master faults (Gafsa, Sehib-Alima and Majoura-Mech) suggests a pull-apart opening of the Gafsa basin. Synchronous movements of the Gafsa first-order dextral strike-slip fault with the Sidi Ali Ben Aoun sinistral wrench fault caused formation of tectonic obstacles that are shown first by the sealed structures, then by development of the local compressive stress that caused formation of the south overturned folds and the syncline depressions. The transcurrent fault systems caused formation of Turonian and Senonian

  19. High-resolution shallow-seismic experiments in sand. Part 2: Velocities in shallow unconsolidated sand

    SciTech Connect

    Bachrach, R.; Dvorkin, J.; Nur, A.

    1998-07-01

    The authors conducted a shallow high-resolution seismic reflection and refraction experiment on a sandy beach. The depth of investigation was about 2 m. They interpret the data using the Hertz-Mindlin contact theory combined with Gassmann`s equation. These were used to obtain the vertical velocity profile. Then the profile was computed from seismic data using the turning-rays approximation. The normal moveout (NMO) velocity at the depth of 2 m matches the velocity profile. As a result, they developed a method to invert measured velocity from first arrivals, i.e., velocity versus distance into velocity versus depth using only one adjustable parameter. This parameter contains all the information about the internal structure and elasticity of the sand. The lowest velocity observed was about 40 m/s. It is noteworthy that the theoretical lower bound for velocity in dry sand with air is as low as 13 m/s. The authors find that modeling sand as a quartz sphere pack does not quantitatively agree with the measured data. However, the theoretical functional form proves to be useful for the inversion.

  20. Controls of seismogenic zone width and subduction velocity on interplate seismicity: insights from analog and numerical models

    NASA Astrophysics Data System (ADS)

    Corbi, Fabio; Herrendorfer, Robert; Funiciello, Francesca; van Dinther, Ylona

    2016-04-01

    Subduction megathrust earthquakes are one of the most destructive phenomena on Earth. Unraveling the role of parameters governing this process is difficult, mainly due to the short historical and instrumental observation period. To overcome this we run previously validated analogue and numerical seismic cycle models to study two of the most significant parameters; the width of the seismogenic zone W and subduction velocity Vs. Both simplified, essentially 2D, models have a comparable setup representing a rigid, straight slab with a seismogenic zone subducting beneath a viscoelastic forearc. We create thousands of years long time series of stress build up and sudden release via frictional instabilities (i.e., analog earthquakes) to study the resulting statistics of these events. In particular, we analyze seismic rate τ, maximum magnitude Mmax and moment release rate MRR. We show that: a) τ is directly correlated with Vs and inversely correlated with W; b) Mmax is directly correlated with W and insensitive to Vs; and c) MRR is directly correlated both with W and Vs. Wider seismogenic zones are associated to larger fault strength, which causes a longer recurrence time (due to the larger stress that must be reached for the rupture initiation) and larger seismic potential in terms of maximum size and release moment. Vs tunes the recurrence time and MMR. Similarly, in nature wider seismogenic zones are associated with the largest events and Vs tunes τ. Correlations in nature are however generally weaker than in our models, suggesting that other parameters (e.g., sediment thickness and trench parallel extent of the megathrust) may play a relevant role for the seismic behavior of subduction interfaces.

  1. High seismic velocity (7.x) lower crustal layers in cratonic North America: a view from xenoliths and EarthScope seismic data

    NASA Astrophysics Data System (ADS)

    Mahan, K. H.; Barnhart, K. R.; Schulte-Pelkum, V.; Blackburn, T.; Bowring, S. A.; Dudas, F. O.

    2010-12-01

    Continental crust worldwide has local areas with a lowermost layer characterized by unusually high seismic P velocities of over 7 km/s. The presence (or absence) of these high-velocity layers, as well as their thickness, composition and degree of heterogeneity, can have a profound influence on the rheological properties and behavior of the lower crust. These data also provide fundamental information about lithospheric growth and destruction processes. In North America, high-velocity layers have been inferred for portions of a significant number of seismic refraction lines, as well as from surface wave and receiver function studies. However, the 2-D and localized nature of most existing studies leave many open questions regarding the full spatial extent of these layers (e.g. correlations with Archean vs Proterozoic terranes, collisional or accretionary boundaries, rift zones or plume tracks, etc.). EarthScope’s USArray provides an exceptional opportunity to improve our knowledge of the distribution of 7.x layers in North America. Similarly, xenoliths provide a complimentary opportunity to investigate compositional, geochronological, and petrophysical characteristics of the lower crust in selected areas. In Montana and Wyoming, where seismic experiments reveal an anomalously thick (up to 25 km) 7.x layer, our studies emphasize the heterogeneity in modes of formation, physical properties, and age of the lower crust. We highlight an example from xenoliths exhumed by Eocene minettes from the Great Falls Tectonic Zone in central Montana. The suite includes mafic garnet granulites, mafic eclogite, and felsic granulites with peak pressures of 0.8-1.5+ GPa, consistent with derivation from depths of 28-55+ km. Multiple samples preserve evidence for prograde burial and some are polymetamorphic. One sample (likely a restite from melted supracrustal material) contains evidence for an early mid-crustal metamorphic event followed by an increase in pressure from <0.8 to >1.0 GPa

  2. Using seismically constrained magnetotelluric inversion to recover velocity structure in the shallow lithosphere

    NASA Astrophysics Data System (ADS)

    Moorkamp, M.; Fishwick, S.; Jones, A. G.

    2015-12-01

    Typical surface wave tomography can recover well the velocity structure of the upper mantle in the depth range between 70-200km. For a successful inversion, we have to constrain the crustal structure and assess the impact on the resulting models. In addition,we often observe potentially interesting features in the uppermost lithosphere which are poorly resolved and thus their interpretationhas to be approached with great care.We are currently developing a seismically constrained magnetotelluric (MT) inversion approach with the aim of better recovering the lithospheric properties (and thus seismic velocities) in these problematic areas. We perform a 3D MT inversion constrained by a fixed seismic velocity model from surface wave tomography. In order to avoid strong bias, we only utilize information on structural boundaries to combine these two methods. Within the region that is well resolved by both methods, we can then extract a velocity-conductivity relationship. By translating the conductivitiesretrieved from MT into velocities in areas where the velocity model is poorly resolved, we can generate an updated velocity model and test what impactthe updated velocities have on the predicted data.We test this new approach using a MT dataset acquired in central Botswana over the Okwa terrane and the adjacent Kaapvaal and Zimbabwe Cratons togetherwith a tomographic models for the region. Here, both datasets have previously been used to constrain lithospheric structure and show some similarities.We carefully asses the validity of our results by comparing with observations and petrophysical predictions for the conductivity-velocity relationship.

  3. Computational Modeling of Seismic Wave Propagation Velocity-Saturation Effects in Porous Rocks

    NASA Astrophysics Data System (ADS)

    Deeks, J.; Lumley, D. E.

    2011-12-01

    Compressional and shear velocities of seismic waves propagating in porous rocks vary as a function of the fluid mixture and its distribution in pore space. Although it has been possible to place theoretical upper and lower bounds on the velocity variation with fluid saturation, predicting the actual velocity response of a given rock with fluid type and saturation remains an unsolved problem. In particular, we are interested in predicting the velocity-saturation response to various mixtures of fluids with pressure and temperature, as a function of the spatial distribution of the fluid mixture and the seismic wavelength. This effect is often termed "patchy saturation' in the rock physics community. The ability to accurately predict seismic velocities for various fluid mixtures and spatial distributions in the pore space of a rock is useful for fluid detection, hydrocarbon exploration and recovery, CO2 sequestration and monitoring of many subsurface fluid-flow processes. We create digital rock models with various fluid mixtures, saturations and spatial distributions. We use finite difference modeling to propagate elastic waves of varying frequency content through these digital rock and fluid models to simulate a given lab or field experiment. The resulting waveforms can be analyzed to determine seismic traveltimes, velocities, amplitudes, attenuation and other wave phenomena for variable rock models of fluid saturation and spatial fluid distribution, and variable wavefield spectral content. We show that we can reproduce most of the published effects of velocity-saturation variation, including validating the Voigt and Reuss theoretical bounds, as well as the Hill "patchy saturation" curve. We also reproduce what has been previously identified as Biot dispersion, but in fact in our models is often seen to be wave multi-pathing and broadband spectral effects. Furthermore, we find that in addition to the dominant seismic wavelength and average fluid patch size, the

  4. Three-dimensional seismic velocity structure of Mauna Loa and Kilauea volcanoes in Hawaii from local seismic tomography

    USGS Publications Warehouse

    Lin, Guoqing; Shearer, Peter M.; Matoza, Robin S.; Okubo, Paul G.; Amelung, Falk

    2016-01-01

    We present a new three-dimensional seismic velocity model of the crustal and upper mantle structure for Mauna Loa and Kilauea volcanoes in Hawaii. Our model is derived from the first-arrival times of the compressional and shear waves from about 53,000 events on and near the Island of Hawaii between 1992 and 2009 recorded by the Hawaiian Volcano Observatory stations. The Vp model generally agrees with previous studies, showing high-velocity anomalies near the calderas and rift zones and low-velocity anomalies in the fault systems. The most significant difference from previous models is in Vp/Vs structure. The high-Vp and high-Vp/Vs anomalies below Mauna Loa caldera are interpreted as mafic magmatic cumulates. The observed low-Vp and high-Vp/Vs bodies in the Kaoiki seismic zone between 5 and 15 km depth are attributed to the underlying volcaniclastic sediments. The high-Vp and moderate- to low-Vp/Vs anomalies beneath Kilauea caldera can be explained by a combination of different mafic compositions, likely to be olivine-rich gabbro and dunite. The systematically low-Vp and low-Vp/Vs bodies in the southeast flank of Kilauea may be caused by the presence of volatiles. Another difference between this study and previous ones is the improved Vp model resolution in deeper layers, owing to the inclusion of events with large epicentral distances. The new velocity model is used to relocate the seismicity of Mauna Loa and Kilauea for improved absolute locations and ultimately to develop a high-precision earthquake catalog using waveform cross-correlation data.

  5. Three-dimensional seismic velocity structure of Mauna Loa and Kilauea volcanoes in Hawaii from local seismic tomography

    NASA Astrophysics Data System (ADS)

    Lin, Guoqing; Shearer, Peter M.; Matoza, Robin S.; Okubo, Paul G.; Amelung, Falk

    2014-05-01

    We present a new three-dimensional seismic velocity model of the crustal and upper mantle structure for Mauna Loa and Kilauea volcanoes in Hawaii. Our model is derived from the first-arrival times of the compressional and shear waves from about 53,000 events on and near the Island of Hawaii between 1992 and 2009 recorded by the Hawaiian Volcano Observatory stations. The Vp model generally agrees with previous studies, showing high-velocity anomalies near the calderas and rift zones and low-velocity anomalies in the fault systems. The most significant difference from previous models is in Vp/Vs structure. The high-Vp and high-Vp/Vs anomalies below Mauna Loa caldera are interpreted as mafic magmatic cumulates. The observed low-Vp and high-Vp/Vs bodies in the Kaoiki seismic zone between 5 and 15 km depth are attributed to the underlying volcaniclastic sediments. The high-Vp and moderate- to low-Vp/Vs anomalies beneath Kilauea caldera can be explained by a combination of different mafic compositions, likely to be olivine-rich gabbro and dunite. The systematically low-Vp and low-Vp/Vs bodies in the southeast flank of Kilauea may be caused by the presence of volatiles. Another difference between this study and previous ones is the improved Vp model resolution in deeper layers, owing to the inclusion of events with large epicentral distances. The new velocity model is used to relocate the seismicity of Mauna Loa and Kilauea for improved absolute locations and ultimately to develop a high-precision earthquake catalog using waveform cross-correlation data.

  6. Re-processing and interpretation of 2D seismic data from the Kristineberg mining area, northern Sweden

    NASA Astrophysics Data System (ADS)

    Ehsan, Siddique Akhtar; Malehmir, Alireza; Dehghannejad, Mahdieh

    2012-05-01

    The Kristineberg mining area in the western part of the Skellefte ore district, northern Sweden, contains the largest massive sulphide deposit in the district. In 2003, two parallel seismic lines, Profiles 1 and 5, each about 25 km long and about 8 km apart were acquired in the Kristineberg area. The initial processing results were successful in imaging the large-scale structures of the area down to 12 km of the crust, but resulted in relatively poor seismic image near the mine. In this paper, we re-processed the seismic data along Profile 1 that crosses the mine. The main objective was to improve the seismic section near the mine for further correlation with new seismic data recently acquired in the area. The crooked-line acquisition geometry, very low fold coverage of less than 17, complex geology and sparse outcrops in the area made the data re-processing and interpretation challenging. Despite these challenges, significant improvement is observed in the seismic data, in terms of event continuity and resolution. Refraction static corrections allowed high frequencies to be retained, which improved the seismic section. The refraction static solution was manually checked and adjusted at every iteration to avoid unstable solutions. 3D visualization of the re-processed data with other seismic profiles recently acquired in the area allowed the seismic reflections to be correlated. The majority of the reflections are interpreted to originate from either fault zones or lithological contacts. A very shallow reflection correlates well with the location of the Kristineberg mineralized horizon.

  7. Multicomponent, 3-D, and High-Resolution 2-D Seismic Characterization of Gas Hydrate Study Sites in the Gulf of Mexico

    NASA Astrophysics Data System (ADS)

    Haines, S. S.; Hart, P. E.; Ruppel, C. D.; Collett, T. S.; Shedd, W.; Lee, M. W.; Miller, J.

    2012-12-01

    High saturations of gas hydrates have been identified within coarse-grained sediments in the Green Canyon 955 and Walker Ridge 313 lease blocks of the deepwater northern Gulf of Mexico. The thickness, lateral extent, and hydrate saturations in these deposits are constrained by geological and geophysical data and state-of-the-art logging-while-drilling information obtained in multiple boreholes at each site during a 2009 expedition. Presently lacking are multicomponent seismic data that can provide a thorough understanding of the in-situ compressional and shear seismic properties of the hydrate-bearing sediments. Such data may represent an important tool for future characterization of gas hydrate resources. To address this data gap, the U.S. Geological Survey, the U.S. Department of Energy, and the Bureau of Ocean Energy Management will collaborate on a 20-day research expedition to acquire wide-angle ocean bottom seismometer and high-resolution vertical incidence 2-D seismic data at the study sites. In preparation for this mid-2013 expedition, we have analyzed existing industry 3-D seismic data, along with numerically modeled multicomponent data. The 3-D seismic data allow us to identify and rank specific survey targets and can be combined with the numerical modeling results to determine optimal survey line orientation and acquisition parameters. Together, these data also provide a more thorough understanding of the gas hydrate systems at these two sites.

  8. Density and seismic velocity of hydrous melts under crustal and upper mantle conditions

    NASA Astrophysics Data System (ADS)

    Ueki, Kenta; Iwamori, Hikaru

    2016-05-01

    We present a new model for calculating the density of hydrous silicate melts as a function of P, T, H2O concentration, and melt composition. We optimize VPr,Tr, ∂V/∂T, ∂V/∂P, ∂V2/∂T∂P, and K' of H2O end-member components in hydrous silicate melts, as well as K' of anhydrous silicate melts, using previously reported experimental results. The parameter set for H2O end-member component in silicate melt optimized in this study is internally consistent with the parameter values for the properties of anhydrous silicate melt reported by Lange and Carmichael (1987, 1990). The model calculation developed in this study reproduces the experimentally determined densities of various hydrous melts, and can be used to calculate the relationships between pressures, temperatures, and H2O concentrations of various hydrous melts from ultramafic to felsic compositions at pressures of 0-4.29 GPa. Using the new parameter set, we investigate the effects of H2O content on the seismic velocity of hydrous melts, as well as seismic velocities in partially molten regions of subduction zones. The results show that water content in silicate melt plays a key role in determining seismic velocity structure, and therefore must be taken into account when interpreting seismic tomography.

  9. Three-dimensional shear velocity anisotropic model of Piton de la Fournaise Volcano (La Réunion Island) from ambient seismic noise

    NASA Astrophysics Data System (ADS)

    Mordret, Aurélien; Rivet, Diane; Landès, Matthieu; Shapiro, Nikolaï M.

    2015-01-01

    We cross correlate 4 years of seismic noise from the seismic network of Piton de la Fournaise Volcano (La Réunion Island) to measure the group velocity dispersion curves of Rayleigh and Love waves. We average measurements from vertical and radial components to obtain 577 Rayleigh wave dispersion curves. The transverse components provided 395 Love wave dispersion curves. We regionalize the group velocities measurements into 2-D velocity maps between 0.4 and 8 s. Finally, we locally inverted these maps for a pseudo 3-D anisotropic shear-velocity model down to 3 km below the sea level using a Neighborhood Algorithm. The 3-D isotropic shear-wave model shows three distinct high-velocity anomalies surrounded by a low-velocity ring. The anomaly located below the present "Plaine des Sables" could be related to an old intrusive body at the location of the former volcanic center before it migrated toward its present location. The second high-velocity body located below the summit of the volcano likely corresponds to the actual preferential dyke intrusion zone as highlighted by the seismicity. The third high-velocity anomaly located below the "Grandes Pentes" and the "Grand Brûlé" areas and is an imprint of the solidified magma chamber of the dismantled "Les Alizés" Volcano. Radial anisotropy shows two main anomalies: positive anisotropy above sea level highlighting the recent edifice of Piton de la Fournaise with an accumulation of horizontal lava flows and the second one below the sea level with a negative anisotropy corresponding to the ancient edifice of Piton de la Fournaise dominated by intrusions of vertical dykes.

  10. The effects of alteration and porosity on seismic velocities in oceanic basalts and diabases

    NASA Astrophysics Data System (ADS)

    Carlson, R. L.

    2014-12-01

    velocities in the lavas that cap normal oceanic crust are affected by both crack porosity and alteration of the primary mineral phases, chiefly to clays. Porosity accounts for 75-80% of the velocity variation in sonic log velocities in the lava sections of Holes 504B and 1256D, but the effect of alteration on the properties of the basalts has not been assessed. In this analysis, the grain velocities in basalt and diabase samples are estimated from an empirical linear relationship between grain density and the P wave modulus. The theoretical velocity in fresh, zero-porosity basalt, or diabase is 6.96 ± 0.07 km/s. Grain velocities in the diabase samples are statistically indistinguishable from the theoretical velocity, and show no variation with depth; alteration does not significantly affect the velocities in the diabase samples from Hole 504B. This result is consistent with previous analyses, which demonstrated that velocities in the dikes are controlled by crack porosity. In basalt lab samples, alteration reduces the average sample grain velocity to 6.74 ± 0.02 km/s; cracks at the sample scale further reduce the velocity to 5.86 ± 0.03 km/s, and large-scale cracks in the lavas reduce the average in situ velocity to 5.2 ± 0.3 km/s. Cracks account for nearly 90% of the difference between seismic (in situ) velocities and the theoretical velocity in the unaltered solid material. Basalt grain velocities show a small, but significant systematic increase with depth; the influence of alteration decreases with depth in the lavas, reaching near zero at the base of the lavas in Holes 504B and 1256D. This article was corrected on 16 JAN 2015. See the end of the full text for details.

  11. Joint Travel-time Inversion of Streamer and OBS Seismic Data for Improved Velocity Models and Interplate Boundary Geometry in Subduction Zone

    NASA Astrophysics Data System (ADS)

    Begovic, S.; Ranero, C. R.; Sallares, V.; Melendez, A.; Grevemeyer, I.

    2015-12-01

    We combine wide-angle (WAS) seismic and multichannel seismic reflection (MCS) data acquired in the northern Chile subduction zone during the CINCA'95 survey into a common inversion scheme to obtain high-resolution image of upper plate and inter-plate boundary, and to characterize seismic velocity (Vp) as well as tectonic structure across ~300 km long, E-W profile, 21.30°S. To illustrate the advantages of a common inversion approach we have compared the modeling results using two different travel-time inversion strategies: First, we have produced seismic velocity and inter-plate boundary geometry using the WAS data, recorded on 19 OBH (Ocean Bottom Hydrophones) and 6 land stations following a typical joint refraction and reflection travel-time tomography strategy. In particular, the WAS model is obtained using tomo2d tomographic inversion code (Korenaga et al, 2000) and applying layer-stripping method. Second, to compare structure, physical properties and rupture characteristics we jointly invert two types of seismic data sets, integrating multichannel seismic (MCS) data collected with a 3 km long streamer with the OBS wide-angle seismic (WAS) data described above into a common inversion scheme. To do so, we have adapted tomo2d to deal with streamer data. The scheme results in a joint travel time tomographic inversion based on integrated travel time information from refracted and reflected from WAS data and reflected phases from the top of the basement and the inter-plate boundaries identified in the MCS shot gathers. Our first results of the joint inversion indicate a 5 - 10 times smaller ray travel-time misfit in the deeper parts of the model around the interplate boundary, compared to models obtained inverting with just wide-angle seismic data. Interpretation of the joint WAS-MCS velocity model, and MCS images provide improved models of physical properties of the upper plate and around inter-plate boundary. In turn this will help to better understand

  12. Smooth 2-D ocean sound speed from Laplace and Laplace-Fourier domain inversion of seismic oceanography data

    NASA Astrophysics Data System (ADS)

    Blacic, Tanya M.; Jun, Hyunggu; Rosado, Hayley; Shin, Changsoo

    2016-02-01

    In seismic oceanography, processed images highlight small temperature changes, but inversion is needed to obtain absolute temperatures. Local search-based full waveform inversion has a lower computational cost than global search but requires accurate starting models. Unfortunately, most marine seismic data have little associated hydrographic data and the band-limited nature of seismic data makes extracting the long wavelength sound speed trend directly from seismic data inherently challenging. Laplace and Laplace-Fourier domain inversion (LDI) can use rudimentary starting models without prior information about the medium. Data are transformed to the Laplace domain, and a smooth sound speed model is extracted by examining the zero and low frequency components of the damped wavefield. We applied LDI to five synthetic data sets based on oceanographic features and recovered smoothed versions of our synthetic models, showing the viability of LDI for creating starting models suitable for more detailed inversions.

  13. Contrasting behavior between dispersive seismic velocity and attenuation: advantages in subsoil characterization.

    PubMed

    Zhubayev, Alimzhan; Ghose, Ranajit

    2012-02-01

    A careful look into the pertinent models of poroelasticity reveals that in water-saturated sediments or soils, the seismic (P and S wave) velocity dispersion and attenuation in the low field-seismic frequency band (20-200 Hz) have a contrasting behavior in the porosity-permeability domain. Taking advantage of this nearly orthogonal behavior, a new approach has been proposed, which leads to unique estimates of both porosity and permeability simultaneously. Through realistic numerical tests, the effect of maximum frequency content in data and the integration of P and S waves on the accuracy and robustness of the estimates are demonstrated. PMID:22352618

  14. Seismic wave velocity of rocks in the Oman ophiolite: constraints for petrological structure of oceanic crust

    NASA Astrophysics Data System (ADS)

    Saito, S.; Ishikawa, M.; Shibata, S.; Akizuki, R.; Arima, M.; Tatsumi, Y.; Arai, S.

    2010-12-01

    Evaluation of rock velocities and comparison with velocity profiles defined by seismic refraction experiments are a crucial approach for understanding the petrological structure of the crust. In this study, we calculated the seismic wave velocities of various types of rocks from the Oman ophiolite in order to constrain a petrological structure of the oceanic crust. Christensen & Smewing (1981, JGR) have reported experimental elastic velocities of rocks from the Oman ophiolite under oceanic crust-mantle conditions (6-430 MPa). However, in their relatively low-pressure experiments, internal pore-spaces might affect the velocity and resulted in lower values than the intrinsic velocity of sample. In this study we calculated the velocities of samples based on their modal proportions and chemical compositions of mineral constituents. Our calculated velocities represent the ‘pore-space-free’ intrinsic velocities of the sample. We calculated seismic velocities of rocks from the Oman ophiolite including pillow lavas, dolerites, plagiogranites, gabbros and peridotites at high-pressure-temperature conditions with an Excel macro (Hacker & Avers 2004, G-cubed). The minerals used for calculations for pillow lavas, dolerites and plagiogranites were Qtz, Pl, Prh, Pmp, Chl, Ep, Act, Hbl, Cpx and Mag. Pl, Hbl, Cpx, Opx and Ol were used for the calculations for gabbros and peridotites. Assuming thermal gradient of 20° C/km and pressure gradient of 25 MPa/km, the velocities were calculated in the ranges from the atmospheric pressure (0° C) to 200 MPa (160° C). The calculation yielded P-wave velocities (Vp) of 6.5-6.7 km/s for the pillow lavas, 6.6-6.8 km/s for the dolerites, 6.1-6.3 km/s for the plagiogranites, 6.9-7.5 km/s for the gabbros and 8.1-8.2 km/s for the peridotites. On the other hand, experimental results reported by Christensen & Smewing (1981, JGR) were 4.5-5.9 km/s for the pillow lavas, 5.5-6.3 km/s for the dolerites, 6.1-6.3 km/s for the plagiogranites, 6

  15. Seismic investigation of gas hydrates in the Gulf of Mexico: 2013 multi-component and high-resolution 2D acquisition at GC955 and WR313

    USGS Publications Warehouse

    Haines, Seth S.; Hart, Patrick E.; Shedd, William W.; Frye, Matthew

    2014-01-01

    The U.S. Geological Survey led a seismic acquisition cruise at Green Canyon 955 (GC955) and Walker Ridge 313 (WR313) in the Gulf of Mexico from April 18 to May 3, 2013, acquiring multicomponent and high-resolution 2D seismic data. GC955 and WR313 are established, world-class study sites where high gas hydrate saturations exist within reservoir-grade sands in this long-established petroleum province. Logging-while-drilling (LWD) data acquired in 2009 by the Gulf of Mexico Gas Hydrates Joint Industry Project provide detailed characterization at the borehole locations, and industry seismic data provide regional- and local-scale structural and stratigraphic characterization. Significant remaining questions regarding lithology and hydrate saturation between and away from the boreholes spurred new geophysical data acquisition at these sites. The goals of our 2013 surveys were to (1) achieve improved imaging and characterization at these sites and (2) refine geophysical methods for gas hydrate characterization in other locations. In the area of GC955 we deployed 21 ocean-bottom seismometers (OBS) and acquired approximately 400 km of high-resolution 2D streamer seismic data in a grid with line spacing as small as 50 m and along radial lines that provide source offsets up to 10 km and diverse azimuths for the OBS. In the area of WR313 we deployed 25 OBS and acquired approximately 450 km of streamer seismic data in a grid pattern with line spacing as small as 250 m and along radial lines that provide source offsets up to 10 km for the OBS. These new data afford at least five times better resolution of the structural and stratigraphic features of interest at the sites and enable considerably improved characterization of lithology and the gas and gas hydrate systems. Our recent survey represents a unique application of dedicated geophysical data to the characterization of confirmed reservoir-grade gas hydrate accumulations.

  16. Modeling continuous seismic velocity changes due to ground shaking in Chile

    NASA Astrophysics Data System (ADS)

    Gassenmeier, Martina; Richter, Tom; Sens-Schönfelder, Christoph; Korn, Michael; Tilmann, Frederik

    2015-04-01

    In order to investigate temporal seismic velocity changes due to earthquake related processes and environmental forcing, we analyze 8 years of ambient seismic noise recorded by the Integrated Plate Boundary Observatory Chile (IPOC) network in northern Chile between 18° and 25° S. The Mw 7.7 Tocopilla earthquake in 2007 and the Mw 8.1 Iquique earthquake in 2014 as well as numerous smaller events occurred in this area. By autocorrelation of the ambient seismic noise field, approximations of the Green's functions are retrieved. The recovered function represents backscattered or multiply scattered energy from the immediate neighborhood of the station. To detect relative changes of the seismic velocities we apply the stretching method, which compares individual autocorrelation functions to stretched or compressed versions of a long term averaged reference autocorrelation function. We use time windows in the coda of the autocorrelations, that contain scattered waves which are highly sensitive to minute changes in the velocity. At station PATCX we observe seasonal changes in seismic velocity as well as temporary velocity reductions in the frequency range of 4-6 Hz. The seasonal changes can be attributed to thermal stress changes in the subsurface related to variations of the atmospheric temperature. This effect can be modeled well by a sine curve and is subtracted for further analysis of short term variations. Temporary velocity reductions occur at the time of ground shaking usually caused by earthquakes and are followed by a recovery. We present an empirical model that describes the seismic velocity variations based on continuous observations of the local ground acceleration. Our hypothesis is that not only the shaking of earthquakes provokes velocity drops, but any small vibrations continuously induce minor velocity variations that are immediately compensated by healing in the steady state. We show that the shaking effect is accumulated over time and best described by

  17. 2D multi-parameter elastic seismic imaging by frequency-domain L1-norm full waveform inversion

    NASA Astrophysics Data System (ADS)

    Brossier, Romain; Operto, Stéphane; Virieux, Jean

    2010-05-01

    Full waveform inversion (FWI) is becoming a powerful and efficient tool to derive high-resolution quantitative models of the subsurface. In the frequency-domain, computationally efficient FWI algorithms can be designed for wide-aperture acquisition geometries by limiting inversion to few discrete frequencies. However, FWI remains an ill-posed and highly non-linear data-fitting procedure that is sensitive to noise, inaccuracies of the starting model and definition of multiparameter classes. The footprint of the noise in seismic imaging is conventionally mitigated by stacking highly redundant multifold data. However, when the data redundancy is decimated in the framework of efficient frequency-domain FWI, it is essential to assess the sensitivity of the inversion to noise. The impact of the noise in FWI, when applied to decimated data sets, has been marginally illustrated in the past and least-squares minimisation has remained the most popular approach. We investigate in this study the sensitivity of frequency-domain elastic FWI to noise for realistic onshore and offshore synthetic data sets contaminated by ambient random white noise. Four minimisation functionals are assessed in the framework of frequency domain FWI of decimated data: the classical least-square norm (L2), the least-absolute-values norm (L1), and some combinations of both (the Huber and the so-called Hybrid criteria). These functionals are implemented in a massively-parallel, 2D elastic frequency-domain FWI algorithm. A two-level hierarchical algorithm is implemented to mitigate the non-linearity of the inversion in complex environments. The first outer level consists of successive inversions of frequency groups of increasing high-frequency content. This level defines a multi-scale approach while preserving some data redundancy by means of simultaneous inversion of multiple frequencies. The second inner level used complex-valued frequencies for data preconditioning. This preconditioning controls the

  18. Stochastic characterization of mesoscale seismic velocity heterogeneity in Long Beach, California

    NASA Astrophysics Data System (ADS)

    Nakata, Nori; Beroza, Gregory C.

    2015-12-01

    Earth's seismic velocity structure is heterogeneous at all scales, and mapping that heterogeneity provides insight into the processes that create it. At large scale lengths, seismic tomography is used to map Earth structure deterministically. At small scale lengths, structure can be imaged deterministically, but because it is impractical to image short-wavelength heterogeneity everywhere, we often resort to statistical methods to depict its variability. In this study, we develop random-field model representations of a 3-D P-wave velocity model at Long Beach, California, estimated from dense-array recordings of the ambient seismic wavefield. We focus on heterogeneity at the mesoscale, which is smaller than 10+ km scale of regional tomography but larger than the micro scale of borehole measurements. We explore four ellipsoidally anisotropic heterogeneity models, including von Kármán, Gaussian, self-affine and Kummer models, based on their autocorrelation functions. We find that the von Kármán model fits the imaged velocity model best among these options with a correlation length in the horizontal direction about five times greater than in the vertical direction, and with strong small-scale length variations. We validate our results by showing that our model accurately predicts the observed decay of scattered waves in the coda of a nearby earthquake, suggesting that quantitative measures of velocity variability will be useful for predicting high-frequency ground motion in earthquakes.

  19. Seismic dynamic monitoring in CO2 flooding based on characterization of frequency-dependent velocity factor

    NASA Astrophysics Data System (ADS)

    Zhang, Jun-Hua; Li, Jun; Xiao, Wen; Tan, Ming-You; Zhang, Yun-Ying; Cui, Shi-Ling; Qu, Zhi-Peng

    2016-06-01

    The phase velocity of seismic waves varies with the propagation frequency, and thus frequency-dependent phenomena appear when CO2 gas is injected into a reservoir. By dynamically considering these phenomena with reservoir conditions it is thus feasible to extract the frequency-dependent velocity factor with the aim of monitoring changes in the reservoir both before and after CO2 injection. In the paper, we derive a quantitative expression for the frequency-dependent factor based on the Robinson seismic convolution model. In addition, an inversion equation with a frequency-dependent velocity factor is constructed, and a procedure is implemented using the following four processing steps: decomposition of the spectrum by generalized S transform, wavelet extraction of cross-well seismic traces, spectrum equalization processing, and an extraction method for frequency-dependent velocity factor based on the damped least-square algorithm. An attenuation layered model is then established based on changes in the Q value of the viscoelastic medium, and spectra of migration profiles from forward modeling are obtained and analyzed. Frequency-dependent factors are extracted and compared, and the effectiveness of the method is then verified using a synthetic data. The frequency-dependent velocity factor is finally applied to target processing and oil displacement monitoring based on real seismic data obtained before and after CO2 injection in the G89 well block within Shengli oilfield. Profiles and slices of the frequency-dependent factor determine its ability to indicate differences in CO2 flooding, and the predicting results are highly consistent with those of practical investigations within the well block.

  20. Sound velocity measurement of nuclear-ordered U2D2 solid 3He along the melting curve

    NASA Astrophysics Data System (ADS)

    Nomura, R.; Suzuki, M.; Yamaguchi, M.; Sasaki, Y.; Mizusaki, T.

    2000-05-01

    The sound velocity of a single-domain 3He crystal was measured in the nuclear-ordered low-field phase and the paramagnetic phase along the melting curve, using 10.98 MHz longitudinal sound. The temperature dependence of the sound velocity along the melting curve was explained by a nuclear spin contribution and the molar volume change along the melting curve. By comparing the measured velocity with thermodynamic quantities, we extracted the Grüneizen constant for the exchange energy. The anisotropy of the velocity in the ordered phase was investigated for three samples and was found to be smaller than 2×10 -5 in Δ v/ v. The attenuation coefficient of the sound was much smaller than 0.2 cm-1.

  1. Seismic Velocity and Thickness of Sediments Beneath the Aleutian Basin, Bering Sea

    NASA Astrophysics Data System (ADS)

    Scheirer, D. S.; Barth, G. A.; Sliter, R. W.; Hart, P. E.; Childs, J. R.

    2014-12-01

    The thickness and seismic velocity structure of sediments of the Aleutian Basin were mapped during a 2011 multichannel seismic (MCS) cruise of the R/V Langseth. Combined with legacy MCS, sonobuoy, and scientific drilling data, the Langseth observations allowed us to study the history of sedimentation in this area. Semblance velocity analyses from common-depth-point gathers of the 8-km-long streamer data were conducted at-sea every 6.25 km. Post-cruise, these semblance analyses were refined and supplemented with new analyses where significant basement topography is present. The flat-lying nature of both the seafloor and the within-sediment reflectors allowed determination of interval velocity and thickness values with high precision using the Dix equation. Two prominent bottom-simulating reflections (BSRs) are common within the sediment column: a shallower one inferred to represent the base of gas hydrate stability, and a deeper one inferred to represent the diagenetic transformation from opal-A to opal-CT. This latter transition was reached by the one deep hole (Site 190, DSDP Leg19) drilled into the Aleutian Basin, where the lithologic contrast prevented further penetration. The gas hydrate BSR is associated with subvertical velocity-amplitude anomalies, and the opal A/CT transition is associated with a large decrease in reflector amplitudes beneath it, indicating the decrease in acoustic impedance contrasts associated with diagenetic dewatering. Seismic interval velocities range from 1600 m/sec at the top of the sediment column to 2800-3500 m/sec at its base. The largest step in interval velocity occurs at the opal A/CT transition. Interval velocities are laterally continuous over many tens of kilometers, and this continuity allows the generation of seismic travel-time vs. sediment thickness relationships across the basin. A second-degree polynomial relationship between time and thickness, developed by regression of all of the semblance velocity analyses from the

  2. Three-dimensional seismic velocity structure of the San Francisco Bay area

    USGS Publications Warehouse

    Hole, J.A.; Brocher, T.M.; Klemperer, S.L.; Parsons, T.; Benz, H.M.; Furlong, K.P.

    2000-01-01

    Seismic travel times from the northern California earthquake catalogue and from the 1991 Bay Area Seismic Imaging Experiment (BASIX) refraction survey were used to obtain a three-dimensional model of the seismic velocity structure of the San Francisco Bay area. Nonlinear tomography was used to simultaneously invert for both velocity and hypocenters. The new hypocenter inversion algorithm uses finite difference travel times and is an extension of an existing velocity tomography algorithm. Numerous inversions were performed with different parameters to test the reliability of the resulting velocity model. Most hypocenters were relocated 12 km under the Sacramento River Delta, 6 km beneath Livermore Valley, 5 km beneath the Santa Clara Valley, and 4 km beneath eastern San Pablo Bay. The Great Valley Sequence east of San Francisco Bay is 4-6 km thick. A relatively high velocity body exists in the upper 10 km beneath the Sonoma volcanic field, but no evidence for a large intrusion or magma chamber exists in the crust under The Geysers or the Clear Lake volcanic center. Lateral velocity contrasts indicate that the major strike-slip faults extend subvertically beneath their surface locations through most of the crust. Strong lateral velocity contrasts of 0.3-0.6 km/s are observed across the San Andreas Fault in the middle crust and across the Hayward, Rogers Creek, Calaveras, and Greenville Faults at shallow depth. Weaker velocity contrasts (0.1-0.3 km/s) exist across the San Andreas, Hayward, and Rogers Creek Faults at all other depths. Low spatial resolution evidence in the lower crust suggests that the top of high-velocity mafic rocks gets deeper from west to east and may be offset under the major faults. The data suggest that the major strike-slip faults extend subvertically through the middle and perhaps the lower crust and juxtapose differing lithology due to accumulated strike-slip motion. The extent and physical properties of the major geologic units as

  3. Seismic velocity anisotropy in mica-rich rocks: an inclusion model

    NASA Astrophysics Data System (ADS)

    Nishizawa, O.; Yoshino, T.

    2001-04-01

    We calculated seismic wave velocity anisotropy caused by the preferred orientation of mica minerals by using the differential effective medium method (DEM). Spheroidal biotite crystals with their c-axes coinciding with the symmetry axis of the spheroid are embedded in an isotropic matrix up to a volume ratio of 30 per cent. All crystals are aligned with their c-axes parallel to the symmetry axis of the effective homogeneous medium, which shows transverse isotropy. The effect of crystal shape on anisotropy was studied by changing the aspect ratio (the ratio between the minor axis and the major axis of the spheroid) from 0.01 (flat spheroid) to 1 (sphere). The S-velocity anisotropy becomes large as the crystal shape becomes flat, whereas the P-velocity anisotropy shows only small changes with changes of the crystal shape. In particular, biotite generates large S-wave anisotropy, and the anisotropy becomes stronger as the aspect ratio of the biotite crystal becomes smaller. When the volume ratio of the mica mineral is large, the P-wave phase velocity surface shows considerable deviation from the ellipse, and the SV-wave phase velocity surface forms a large bulge and crosses the SH-wave phase velocity surface (singularity) in the plane including the symmetry axis. These results show an interesting contrast when compared with the effect of crack or pore shape on seismic velocity anisotropy: crack (or pore) shape affects the P velocity more than the S velocity. We also calculated Thomsen's anisotropic parameters, ɛ, γ and δ as functions of the crystal aspect ratio and the mica volume ratio.

  4. 3D Seismic Velocity Structure Around Philippine Sea Slab Subducting Beneath Kii Peninsula, Japan

    NASA Astrophysics Data System (ADS)

    Shibutani, T.; Imai, M.; Hirahara, K.; Nakao, S.

    2013-12-01

    Kii Peninsula is a part of the source area of Nankai Trough megaquakes and the region through which the strong seismic waves propagate to big cities in Kansai such as Osaka, Kyoto, Nara, Kobe, and so on. Moreover, the rupture starting point is thought to be possibly at off the peninsula. Therefore, it is important for simulations of the megaquakes and the strong motions to estimate accurately the configuration of the Philippine Sea slab and the seismic velocity structure around the slab and to investigate properties and conditions of the plate boundary surface. Deep low frequency events (DLFEs) are widely distributed from western Shikoku to central Tokai at 30 - 40 km depths on the plate boundary (Obara, 2002). Results from seismic tomography and receiver function analyses revealed that the oceanic crust of the Philippine Sea plate had a low velocity and a high Vp/Vs ratio (Hirose et al., 2007; Ueno et al., 2008). Hot springs with high 3He/4He ratios are found in an area between central Kinki and Kii Peninsula despite in the forearc region (Sano and Wakita, 1985). These phenomena suggest the process that H2O subducting with the oceanic crust dehydrates at the depths, causes the DLFEs, and moves to shallower depths. We carried out linear array seismic observations in the Kii Peninsula since 2004 in order to estimate the structure of the Philippine Sea slab and the surrounding area. We have performed receiver function analyses for four profile lines in the dipping direction of the slab and two lines in the perpendicular direction so far. We estimated three dimensional shapes of seismic velocity discontinuities such as the continental Moho, the upper surface of the oceanic crust and the oceanic Moho (Imai et al., 2013, this session). In addition, we performed seismic tomography with a velocity model embedded the discontinuities and observed travel times at stations in the linear arrays, and successfully estimated 3D seismic velocity structure around the Philippine Sea

  5. Relationship between the upper mantle high velocity seismic lid and the continental lithosphere

    NASA Astrophysics Data System (ADS)

    Priestley, Keith; Tilmann, Frederik

    2009-04-01

    The lithosphere-asthenosphere boundary corresponds to the base of the "rigid" plates - the depth at which heat transport changes from advection in the convecting deeper upper mantle to conduction in the shallow upper mantle. Although this boundary is a fundamental feature of the Earth, mapping it has been difficult because it does not correspond to a sharp change in temperature or composition. Various definitions of the lithosphere and asthenosphere are based on the analysis of different types of geophysical and geological observations. The depth to the lithosphere-asthenosphere boundary determined from these different observations often shows little agreement when they are applied to the same region because the geophysical and geological observations (i.e., seismic velocity, strain rate, electrical resistivity, chemical depletion, etc.) are proxies for the change in rheological properties rather than a direct measure of the rheological properties. In this paper, we focus on the seismic mapping of the upper mantle high velocity lid and low velocity zone and its relationship to the lithosphere and asthenosphere. We have two goals: (a) to examine the differences in how teleseismic body-wave travel-time tomography and surface-wave tomography image upper mantle seismic structure; and (b) to summarise how upper mantle seismic velocity structure can be related to the structure of the lithosphere and asthenosphere. Surface-wave tomography provides reasonably good depth resolution, especially when higher modes are included in the analysis, but lateral resolution is limited by the horizontal wavelength of the long-period surface waves used to constrain upper mantle velocity structure. Teleseismic body-wave tomography has poor depth resolution in the upper mantle, particularly when no strong lateral contrasts are present. If station terms are used, features with large lateral extent and gradual boundaries are attenuated in the tomographic image. Body-wave models are not

  6. MEASUREMENT OF COMPRESSIONAL-WAVE SEISMIC VELOCITIES IN 29 WELLS AT THE HANFORD SITE

    SciTech Connect

    PETERSON SW

    2010-10-08

    Check shot seismic velocity surveys were collected in 100 B/C, 200 East, 200-PO-1 Operational Unit (OU), and the Gable Gap areas in order to provide time-depth correlation information to aid the interpretation of existing seismic reflection data acquired at the Hanford Site (Figure 1). This report details results from 5 wells surveyed in fiscal year (FY) 2008, 7 wells in FY 2009, and 17 wells in FY 2010 and provides summary compressional-wave seismic velocity information to help guide future seismic survey design as well as improve current interpretations of the seismic data (SSC 1979/1980; SGW-39675; SGW-43746). Augmenting the check shot database are four surveys acquired in 2007 in support of the Bechtel National, Inc. Waste Treatment Plant construction design (PNNL-16559, PNNL-16652), and check shot surveys in three wells to support seismic testing in the 200 West Area (Waddell et al., 1999). Additional sonic logging was conducted during the late 1970s and early 1980s as part of the Basalt Waste Isolation Program (BWIP) (SSC 1979/1980) and check shot/sonic surveys as part of the safety report for the Skagit/Hanford Nuclear project (RDH/10-AMCP-0164). Check shot surveys are used to obtain an in situ measure of compressional-wave seismic velocity for sediment and rock in the vicinity of the well point, and provide the seismic-wave travel time to geologic horizons of interest. The check shot method deploys a downhole seismic receiver (geophone) to record the arrival of seismic waves generated by a source at the ground surface. The travel time of the first arriving seismic-wave is determined and used to create a time-depth function to correlate encountered geologic intervals with the seismic data. This critical tie with the underlying geology improves the interpretation of seismic reflection profile information. Fieldwork for this investigation was conducted by in house staff during the weeks of September 22, 2008 for 5 wells in the 200 East Area (Figure 2); June 1

  7. Resonant seismic and microseismic ground motion of the Cascadia subduction zone accretionary prism and implications for seismic velocity

    NASA Astrophysics Data System (ADS)

    Davis, Earl E.; Heesemann, Martin

    2015-02-01

    Seafloor pressure and seismic observations have been made along a transect of sites off southwestern Canada using connections to the NEPTUNE Canada cabled network beginning in the fall of 2009. A comparison of the vertical ground motion response to oceanographic and seismic loading at a site on the outer Cascadia subduction zone accretionary prism to that at a site on the adjacent Juan de Fuca Plate shows generally stronger ground motion at the prism site across the full bandwidths of infragravity waves and microseisms and a strong sharp peak in the relative response at a period of 9 s. This peak is seen in the response to loading by local storm waves and dispersive swell sequences, as well as in the average response to storm- and swell-generated pressure fluctuations averaged over long periods of time. Tuned response to teleseismic surface waves is also seen at the same frequency. We infer that this behavior results from quarter-wavelength harmonic resonance of the prism, with the two-way travel time of compressional waves between the seafloor and underlying igneous crust being one half the resonance period. The consistency of the anomalous spectral peak from year to year at this particular site suggests that the behavior might be used to track small (≈1%) changes in the vertical seismic velocity of the prism if variations related to strain or pore fluid pressure changes through a subduction thrust earthquake cycle were to occur.

  8. P-Wave Velocity Structure Beneath Eastern Eurasia From Finite Frequency Seismic Tomography

    NASA Astrophysics Data System (ADS)

    Yang, T.; Shen, Y.; Yang, X.

    2005-12-01

    Eastern Eurasia is one of the most tectonically complex regions in the world. While the evolution history of continental lithosphere has been well recognized, the fine structure associated with the complicated deformation in this region is far from clear, and deep mantle processes that accompanied shallower lithosphere deformations are poorly understood. In order to improve the resolution of the velocity structure in the region, we applied the newly-developed Finite Frequency Seismic Tomography (FFST) method, which utilizes the 3D Frechet-Born sensitivity kernels of the travel times of finite frequency seismic waves to account for wavefront healing and off-ray scattering, to eastern Eurasia. In addition to the new technique, we obtained a comprehensive finite-frequency body wave travel time data set from cross-correlation of broadband waveforms. Datasets used in this study include waveforms from the publicly accessible sources (e.g. IRIS, GSN, PASSCAL, and IMS stations) and other seismic networks in the region such as the Japanese Broadband Seismograph Network (F-net), the Japanese International Seismic Network (JISNET), the Taiwan Broadband Seismic Network and China National Digital Seismic Network. Taking advantage of broadband waveforms, we measured relative delays times by waveform cross-correlation in three frequency bands between 0.03 to 2 Hz for P waves. The travel times in the three frequency bands were inverted jointly to take advantage of the `data fusion' made possible by the finite-frequency kernels and separately to understand the resolving power of each data set. Preliminary results are comparable to the velocity models obtained in previous tomographic studies.

  9. Aniso2D

    2005-07-01

    Aniso2d is a two-dimensional seismic forward modeling code. The earth is parameterized by an X-Z plane in which the seismic properties Can have monoclinic with x-z plane symmetry. The program uses a user define time-domain wavelet to produce synthetic seismograms anrwhere within the two-dimensional media.

  10. Using glacier seismicity for phase velocity measurements and Green's function retrieval

    NASA Astrophysics Data System (ADS)

    Walter, Fabian; Roux, Philippe; Roeoesli, Claudia; Lecointre, Albanne; Kilb, Debi; Roux, Pierre-François

    2015-06-01

    High-melt areas of glaciers and ice sheets foster a rich spectrum of ambient seismicity. These signals not only shed light on source mechanisms (e.g. englacial fracturing, water flow, iceberg detachment, basal motion) but also carry information about seismic wave propagation within glacier ice. Here, we present two approaches to measure and potentially monitor phase velocities of high-frequency seismic waves (≥1 Hz) using naturally occurring glacier seismicity. These two approaches were developed for data recorded by on-ice seasonal seismic networks on the Greenland Ice Sheet and a Swiss Alpine glacier. The Greenland data set consists of continuous seismograms, dominated by long-term tremor-like signals of englacial water flow, whereas the Alpine data were collected in triggered mode producing 1-2 s long records that include fracture events within the ice (`icequakes'). We use a matched-field processing technique to retrieve frequency-dependent phase velocity measurements for the Greenland data. In principle, this phase dispersion relationship can be inverted for ice sheet thickness and bed properties. For these Greenland data, inversion of the dispersion curve yields a bedrock depth of 541 m, which may be too small by as much as 35 per cent. We suggest that the discrepancy is due to lateral changes in ice sheet depth and bed properties beneath the network, which may cause unaccounted mixing of surface wave modes in the dispersion curve. The Swiss Alpine icequake records, on the other hand, allow for reconstruction of the impulse response between two seismometers. The direct and scattered wave fields from the vast numbers of icequake records (tens of thousands per month) can be used to measure small changes in englacial velocities and thus monitor structural changes within the ice.

  11. Velocity changes at Volcán de Colima: Seismic and Experimental observations

    NASA Astrophysics Data System (ADS)

    Lamb, Oliver; Lavallée, Yan; De Angelis, Silvio; Varley, Nick; Reyes-Dávila, Gabriel; Arámbula-Mendoza, Raúl; Hornby, Adrian; Wall, Richard; Kendrick, Jackie

    2016-04-01

    Immediately prior to dome-building eruptions, volcano-seismic swarms are a direct consequence of strain localisation in the ascending magma. A deformation mechanism map of magma subjected to strain localisation will help develop accurate numerical models, which, coupled to an understanding of the mechanics driving monitored geophysical signals prior to lava eruption, will enhance forecasts. Here we present how seismic data from Volcán de Colima, Mexico, is combined with experimental work to give insights into fracturing in and around magma. Volcán de Colima is a dome-forming volcano that has been almost-continuously erupting since November 1998. We use coda-wave interferometry to quantify small changes in seismic velocity structure between pairs of similar earthquakes, employing waveforms from clusters of repeating earthquakes. The changes in all pairs of events were then used together to create a continuous function of velocity change at all stations within 7 km of the volcano from October to December 1998. We complement our seismic data with acoustic emission data from tensional experiments using samples collected at Volcán de Colima. Decreases in velocity and frequency reflect changes in the sample properties prior to failure. By comparing experimental and seismic observations, we may place constraints on the conditions of the natural seismogenic processes. Using a combination of field and experimental data promises a greater understanding of the processes affecting the rise of magma during an eruption. This will help with the challenge of forecasting and hazard mitigation during dome-forming eruptions worldwide.

  12. Validating 3D Seismic Velocity Models Using the Spectral Element Method

    NASA Astrophysics Data System (ADS)

    Maceira, M.; Rowe, C. A.; Allen, R. M.; Obrebski, M. J.

    2010-12-01

    As seismic instrumentation, data storage and dissemination and computational power improve, seismic velocity models attempt to resolve smaller structures and cover larger areas. However, it is unclear how accurate these velocity models are and, while the best models available are used for event determination, it is difficult to put uncertainties on seismic event parameters. Model validation is typically done using resolution tests that assume the imaging theory used is accurate and thus only considers the impact of the data coverage on resolution. We present the results of a more rigorous approach to model validation via full three-dimensional waveform propagation using Spectral Element Methods (SEM). This approach makes no assumptions about the theory used to generate the models but require substantial computational resources. We first validate 3D tomographic models for the Western USA generated using both ray-theoretical and finite-frequency methods. The Dynamic North America (DNA) Models of P- and S- velocity structure (DNA09-P and DNA09-S) use teleseismic body-wave traveltime residuals recorded at over 800 seismic stations provided by the Earthscope USArray and regional seismic networks. We performed systematic computations of synthetics for the dataset used to generate the DNA models. Direct comparison of these synthetic seismograms to the actual observations allows us to accurately assess and validate the models. Implementation of the method for a densely instrumented region such as that covered by the DNA model provides a useful testbed for the validation methods that we will subsequently apply to other, more challenging study areas.

  13. Crustal Velocity Model of Watusi and Legacy Seismic Refraction Data, Clark County, Nevada

    NASA Astrophysics Data System (ADS)

    Zaragoza, S. A.; Snelson, C. M.; McEwan, D.; Sandru, J.; Hirsch, A. C.

    2003-12-01

    Clark County, Nevada is located in the southern portion of the Basin and Range Province. As such, it has undergone tremendous extensional forces that produced numerous north-trending ridges and basins. Little is known regarding the crustal structure of the southern Basin and Range. Extension along the Las Vegas Valley Shear Zone (LVVSZ) has produced a northwest-trending corridor of particular interest that may channel seismic energy into the Las Vegas basin. Potential sources include energy produced by earthquakes as well as nuclear testing, should the Nevada Test Site (NTS) become active in the future. Previous studies include a crustal velocity model in the form of a fence diagram by Prodehl (1979) based on Legacy data, seismic refraction experiments performed when the NTS was active. Legacy data were collected on seismometers placed at intervals greater than or equal to 500 m. Seismic sources included chemical blasts and nuclear test shots. To examine whether structures along the corridor would cause seismic energy to dissipate or to transmit into the basin, in September 2002 we utilized 400 seismic instruments to record the Watusi chemical blast at the Nevada Test Site. The profile extended from Ann Road and I-95 northwest to the town of Indian Springs, where the station spacing was 125 m. The blast was located 65 km away from the first station and was expected to have the energy equivalent to 40,000 tons of TNT. However, most of the energy was lost into the air. In addition, falling debris produced diffractions in the data. We picked first arrivals and analyzed these data with forward modeling utilizing MacRay ray-tracing software, integrating these with Prodehl's model to produce an updated, higher resolution crustal velocity model. The model indicates velocities of the upper to lower crust, into the Moho, with average velocities of approximately 6 km/s. Further studies will include integrating data from the Seismic Investigation of the Las Vegas Valley

  14. Monitoring changes in velocity and Q using non-physical arrivals in seismic interferometry

    NASA Astrophysics Data System (ADS)

    Draganov, Deyan; Ghose, Ranajit; Heller, Karel; Ruigrok, Elmer

    2013-02-01

    Application of seismic interferometry to records from receivers at the Earth's surface from sources in wells retrieves the reflection response measured at the receivers as if from virtual sources located also at the surface. When the wavefields experience intrinsic losses during propagation, non-physical arrivals (ghosts) would appear in the retrieved result. These ghosts appear due to waves that reflect inside a subsurface layer. Thus, a ghost contains information about the seismic properties of the specific layer. We show how such ghosts can be used to monitor layer-specific changes in the velocity and intrinsic losses in the subsurface. We show how to identify the ghosts using numerical-modelling results from a vertical well, and how to estimate the layer-specific velocity and quality-factor changes using numerical-modelling results from a horizontal well as well as ultrasonic S-wave laboratory data.

  15. Italy - Adriatic Sea - Barbara - A giant gas field marked by seismic velocity anomaly - A subtle trap

    SciTech Connect

    Ianniello, A.; Bolelli, W.; Di Scala, L. )

    1990-09-01

    Barbara gas field, discovered in 1971, is located in the northern sector of the Adriatic offshore. The field is a gentle anticline involving Quaternary clastic sediments and shaped by carbonate Mesozoic morphology. The presence of shallow gas pockets at the crest of the structure distort the seismic signal to such an extent that structural reconstruction using seismic data is not possible. Moreover, time delays and ray-path anomalies do not allow the use of staking velocities for the depth conversion. Seismic attribute analysis, instead of velocities, and time delays on the isochrone maps are providing a key to the understanding of seismic anomalies and are an indirect tool for reconstructing the real structural configuration of the field. The appraisal story of the field illustrates how the previously mentioned complications influenced its delineation and how an understanding of these complications helped in upgrading the reserves from an initial value of 10 billion ECM of gas to 40 billion ECM. Additional data acquired with the development wells tend to increase the estimate. Therefore, Barbara field is the most important Italian gas field of the decade. The producing formation is composed of very thin-bedded sandstone and shale intercalations, representing the peculiarity of this reservoir. Development of the field is being achieved with six production platforms and 72 wells.

  16. Methods to improve computer-assisted seismic interpretation using seismic attributes: Multiattribute display, spectral data reduction, and attributes to quantify structural deformation and velocity anisotropy

    NASA Astrophysics Data System (ADS)

    Guo, Hao

    Computer-assisted seismic interpretation gained widespread acceptance in the mid 1980s that no 3D survey and few 2D surveys are interpreted without the aid of an interpretation workstation. Geoscientists routinely quantify features of geologic interest and enhance their interpretation through the use of seismic attributes. Typically these attributes are examined sequentially, or within different interpretation windows. In this dissertation, I present two novel means of presenting the information content of multiple attributes by a single image. In the first approach, I show how two, three, or four attributes can be displayed by an appropriate use of color. I use a colorstack model of Red, Green, and Blue (RGB) to map attributes of similar type such as volumes of near-, mid-, and far-angle amplitude or low-, moderate-, high-frequency spectral components. I use an HLS model to display a theme attribute modulated by another secondary attribute, such as dip magnitude modulating dip azimuth, or amplitude of the peak spectral frequency modulating the phase measured at the peak frequency. Transparency/opacity provides a 4th color dimension and provides additional attribute modulation capabilities. In the second approach I use principal component analysis to reduce the multiplicity of redundant data into a smaller, more manageable number of components. The importance of each principal component is proportional to its corresponding eigenvalue. By mapping the three largest principal components against red, green, and blue, we can represent more than 80% of the original information with a single colored image. I then use these tools to help quantify and correlate structural deformation with velocity anisotropy. I develop an innovative algorithm that automatically counts the azimuth distribution of the fast P-wave velocity (or alternatively, the strike of the structural lineaments) weighted by the amount of anisotropy (or the intensity of the lineaments) at any point in the

  17. Stratigraphic analysis of 3-D and 2-D seismic data to delineate porous carbonate debris flow in permian strata along the northwestern margin of the Midlan

    SciTech Connect

    Pacht, J.A.; Brooks, L.; Messa, F.

    1995-12-31

    Carbonate debris flow are very important plays in Leonard strata along the northwestern margin of the Midland Basin. Delineation of these strata, however, is difficult and detailed stratigraphic analysis of both 2D and 3D seismic data is important in reducing risk. Porous debris flows are best developed during lowstand time. When sea-level falls to a point at or below the shelf margin, sand to boulder-sized clasts created by reef-front erosion are funneled through slope gullies onto the base of the slope. Large debris flows exhibit well-defined mounds which downlap onto the sequence boundary. Many of these flows, however, are too thin to exhibit discrete reflections. 3D seismic data are used to define subtle changes in amplitude and frequency which suggest presence of porous strata. Along the northwest shelf, porous debris flows exhibit lower amplitude (dim spots) and lower frequency than surrounding strata. They are commonly developed immediately downdip of major slump scars.

  18. Seismic velocity structure of the subducting Pacific plate in the Izu-Bonin region

    SciTech Connect

    Iidaka, Takashi; Mizoue, Megumi; Suyehiro, Kiyoshi )

    1992-10-01

    Observed travel time residual data from a spatially dense seismic network above deep earthquakes in the Izu-Bonin region are compared with 3D ray tracing calculations. The data are inconsistent with a homogeneous slab model and consistent with a heterogenous slab model with regional velocity variations. The residual data can be explained by a model that has a velocity gradient within the slab. In the subducting Pacific plate, the velocity near the center of the slab is faster than that near the upper boundary, and gradually decreases toward the bottom of the plate. A model with a velocity decrease of 3 percent, as predicted by a thermal profile, explains the observed data. 52 refs.

  19. Seismic structure and ultra-low velocity zones at the base of the Earth’s mantle beneath Southeast Asia

    NASA Astrophysics Data System (ADS)

    Yao, Jiayuan; Wen, Lianxing

    2014-08-01

    We constrain seismic structure and ultra-low velocity zones near the Earth’s core-mantle boundary (CMB) beneath Southeast Asia. We first determine the average shear-velocity structure near the CMB in the region based on travel-time analysis of S, ScS, P and ScP phases. We then map seismic scattering in the lowermost mantle using the PKP precursors observed at the USArray. The inferred average shear-velocity perturbations in the lowermost 200 km of the mantle range from about -6% to 6%, and exhibit a complex geographic distribution of alternate low- and high-velocity patches adjacent to each other, surrounded by a high-velocity anomaly in the south. The inferred strong seismic scatterers exhibit a crescent shape distributed from the South China Sea to the Maluku Islands and coincide with the westernmost low-velocity patch, suggesting that the strong scatterers represent ultra-low velocity zones (ULVZs). We suggest that the seismic structure in the region likely results from a complex interaction between a downwelling and a low-velocity region near the CMB. The downwelling (the high-velocity patches) displaces the low-velocity region into many low-velocity patches and pushes the ULVZs to the edge of the low-velocity region.

  20. Seismicity and depth of faulting in the Archean Kuusamo region based on relocation of earthquakes with new velocity models

    NASA Astrophysics Data System (ADS)

    Uski, M.; Tiira, T.; Grad, M.; Yliniemi, J.

    2012-04-01

    New crustal velocity models and synthetic waveform modelling are used to constrain the depth distribution of earthquakes in Kuusamo and surrounding Archean areas of north-eastern Fennoscandia. In the Kuusamo block, the seismogenic layer extends from about 8 km below the surface down to a depth of about 30 km, i.e., close to the basement of the middle crust. Clear decrease in activity at about 20 km depth may be related to lithological contrast between the upper and middle crust. The upper cut-off in seismicity is attributed to the excess of strong mafic material in the uppermost crust. Comparison with the rheological profiles of the lithosphere, calculated at nearby locations, indicates that the base of the seismogenic layer correlates best with the onset of brittle to ductile transition at about 30 km depth. In the surrounding Archean areas, two-thirds of the earthquakes occur in the upper crust between 1 and 13 km depth, and a sharp drop in seismicity level happens at 14 km. The lower cut-off depth of 38 km is solely attributed to the deep microseismic activity in the Norrbotten tectonic province of northern Sweden. The limited data set available for this study shows no evidence on movements in the lower crust beneath the Archean Karelian bedrock of northern Finland and Russian Karelia. The new 2-D crustal velocity models and a Moho depth map of the area were derived by integrating waveform data recorded by the Kuusamo temporary network with previous data sets. The results indicate that the Karelian upper crust is 12-20 km thick and associated with P wave velocities of 6.1-6.4 km/s. The relatively high velocities are related to layered mafic intrusive and volcanic rocks. The middle crust - lower crust boundary is located at depths between 28 and 38 km. In the middle crust, lower crust, and uppermost mantle P wave velocities range from 6.5 to 6.8 km/s, 6.9 to 7.3 km/s and 7.9 to 8.2 km/s, respectively. The average Vp/Vs ratio increases from 1.71 in the upper crust

  1. Comparative velocity structure of active Hawaiian volcanoes from 3-D onshore-offshore seismic tomography

    USGS Publications Warehouse

    Park, J.; Morgan, J.K.; Zelt, C.A.; Okubo, P.G.; Peters, L.; Benesh, N.

    2007-01-01

    We present a 3-D P-wave velocity model of the combined subaerial and submarine portions of the southeastern part of the Island of Hawaii, based on first-arrival seismic tomography of marine airgun shots recorded by the onland seismic network. Our model shows that high-velocity materials (6.5-7.0??km/s) lie beneath Kilauea's summit, Koae fault zone, and the upper Southwest Rift Zone (SWRZ) and upper and middle East Rift Zone (ERZ), indicative of magma cumulates within the volcanic edifice. A separate high-velocity body of 6.5-6.9??km/s within Kilauea's lower ERZ and upper Puna Ridge suggests a distinct body of magma cumulates, possibly connected to the summit magma cumulates at depth. The two cumulate bodies within Kilauea's ERZ may have undergone separate ductile flow seaward, influencing the submarine morphology of Kilauea's south flank. Low velocities (5.0-6.3??km/s) seaward of Kilauea's Hilina fault zone, and along Mauna Loa's seaward facing Kao'iki fault zone, are attributed to thick piles of volcaniclastic sediments deposited on the submarine flanks. Loihi seamount shows high-velocity anomalies beneath the summit and along the rift zones, similar to the interpreted magma cumulates below Mauna Loa and Kilauea volcanoes, and a low-velocity anomaly beneath the oceanic crust, probably indicative of melt within the upper mantle. Around Kilauea's submarine flank, a high-velocity anomaly beneath the outer bench suggests the presence of an ancient seamount that may obstruct outward spreading of the flank. Mauna Loa's southeast flank is also marked by a large, anomalously high-velocity feature (7.0-7.4??km/s), interpreted to define an inactive, buried volcanic rift zone, which might provide a new explanation for the westward migration of Mauna Loa's current SWRZ and the growth of Kilauea's SWRZ. ?? 2007 Elsevier B.V. All rights reserved.

  2. Rayleigh Wave Group Velocity Distributions for East Asia from Ambient Seismic Noise Tomography

    NASA Astrophysics Data System (ADS)

    Witek, M.; van der Lee, S.; Kang, T. S.; Chang, S. J.; Ning, S.; Ning, J.

    2014-12-01

    We have collected continuous vertical-component broadband data from 1109 seismic stations in regional networks across China, Korea, and Japan for the year 2011 to perform the largest surface wave tomography study in the region. Using this data set, we have measured over half a million Rayleigh wave group velocity dispersion curves from 1-year stacks of station-pair ambient seismic noise cross-correlations. Quality control is performed by measuring the coherency of the positive and negative lag time sides of the cross-correlations. If the coherency is below an empirically determined threshold, the dispersion curve is measured on the side of the highest SNR. Otherwise, the positive and negative sides of the cross-correlation are averaged before dispersion curve measurement. Group velocity measurements for which the SNR was less than 10 are discarded. The Rayleigh wave group velocity dispersion curves are regionalized on a tessellated spherical shell grid in the period range 10 to 50 s to produce maps of Rayleigh wave group velocity distributions. Preliminary maps at 10 seconds period match well with geologic features at the surface. In particular, we observe low group velocities in the Songliao, Bohai Bay, Sichuan, Ordos, Tarim, and Junggar Basins in China, and the Ulleung and Yamato Basins in the East Sea (Sea of Japan). Higher group velocities are observed in regions with less sediment cover. At periods around 30 s, we observe group velocity decreases going from east to west in China, representing an overall trend of crustal thickening due to the collision between the Indian and Eurasian plates. The Ordos and Sichuan blocks show higher group velocities relative to the eastern margin of the Tibetan Plateau, possibly reflecting low temperatures in these cratons.

  3. San Andreas fault zone velocity structure at SAFOD at core, log, and seismic scales

    NASA Astrophysics Data System (ADS)

    Jeppson, Tamara N.; Tobin, Harold J.

    2015-07-01

    The San Andreas Fault (SAF), like other mature brittle faults, exhibits a zone of low seismic velocity hypothesized to result from fluid pressure effects and/or development of a damage zone. To address the relative contributions of these mechanisms in developing low-velocity zones, we measured P and S wave velocities ultrasonically at elevated confining and pore pressures on core samples from the San Andreas Fault Observatory at Depth (SAFOD). We compared those data to wireline and seismic-scale velocities to examine the scale dependence of acoustic properties of the fault core and damage zone. Average laboratory P and S wave velocities of the fault gouge at estimated in situ conditions are 3.1 and 1.5 km/s, respectively, consistent with the sonic log from the same intervals. These data show that fault core has intrinsically low velocity, even if no anomalous pore pressure is assumed, due to alteration and mechanical damage. In contrast, laboratory average P and S wave velocities for the damage zone are 4.7 and 2.5 km/s, up to 41% greater than the sonic log in the damage zone. This scale dependence indicates that stress conditions or macroscale features dominate the damage zone's acoustic properties, although velocity dispersion could play a role. Because no pressure anomaly was detected while drilling the SAFOD borehole, we infer that damage at a scale larger than core samples controls the elastic properties of the broader damage zone. This result bolsters other independent lines of evidence that the SAF does not contain major pore fluid overpressure at SAFOD.

  4. Shear wave velocity, seismic attenuation, and thermal structure of the continental upper mantle

    USGS Publications Warehouse

    Artemieva, I.M.; Billien, M.; Leveque, J.-J.; Mooney, W.D.

    2004-01-01

    Seismic velocity and attenuation anomalies in the mantle are commonly interpreted in terms of temperature variations on the basis of laboratory studies of elastic and anelastic properties of rocks. In order to evaluate the relative contributions of thermal and non-thermal effects on anomalies of attenuation of seismic shear waves, QS-1, and seismic velocity, VS, we compare global maps of the thermal structure of the continental upper mantle with global QS-1 and Vs maps as determined from Rayleigh waves at periods between 40 and 150 S. We limit the comparison to three continental mantle depths (50, 100 and 150 km), where model resolution is relatively high. The available data set does not indicate that, at a global scale, seismic anomalies in the upper mantle are controlled solely by temperature variations. Continental maps have correlation coefficients of <0.56 between VS and T and of <0.47 between QS and T at any depth. Such low correlation coefficients can partially be attributed to modelling arrefacts; however, they also suggest that not all of the VS and QS anomalies in the continental upper mantle can be explained by T variations. Global maps show that, by the sign of the anomaly, VS and QS usually inversely correlate with lithospheric temperatures: most cratonic regions show high VS and QS and low T, while most active regions have seismic and thermal anomalies of the opposite sign. The strongest inverse correlation is found at a depth of 100 km, where the attenuation model is best resolved. Significantly, at this depth, the contours of near-zero QS anomalies approximately correspond to the 1000 ??C isotherm, in agreement with laboratory measurements that show a pronounced increase in seismic attenuation in upper mantle rocks at 1000-1100 ??C. East-west profiles of VS, QS and T where continental data coverage is best (50??N latitude for North America and 60??N latitude for Eurasia) further demonstrate that temperature plays a dominant, but non-unique, role in

  5. Crustal and uppermost mantle velocity structure beneath northwestern China from seismic ambient noise tomography

    NASA Astrophysics Data System (ADS)

    Li, Hongyi; Li, S.; Song, X. D.; Gong, M.; Li, X.; Jia, J.

    2012-01-01

    In this paper, we conduct ambient noise seismic tomography of northwestern China and adjacent regions. The data include 9 months (2009 January to 2009 September) three-component continuous data recorded at 146 seismic stations of newly upgraded China Provincial Digital Seismic Networks and regional Kyrgyzstan and Kazakhstan networks. Empirical Rayleigh and Love wave Green's functions are obtained from interstation cross-correlations. Group velocity dispersion curves for both Rayleigh and Love waves between 7 and 50 s periods were measured for each interstation path by applying the multiple-filter analysis method with phase-matched processing. The group velocity maps show clear lateral variations which correlate well with major geological structures and tectonic units in the study region. Shear wave velocity structures are inverted from Rayleigh wave and love wave dispersion maps. The results show that the Tibetan Plateau has a very thick crust with a low-velocity zone in its mid-lower crust. Along the northern margin of the plateau where a steep topographic gradient is present, the low-velocity zone does not extend to the Tarim basin which may indicate that crustal materials beneath the Tarim basin are colder and stronger than beneath the plateau, therefore inhibit the extension of mid-lower crustal flow and deformation of the Tibetan Plateau, resulting in very sharp topography contrasts. In the northeastern margin with a gentle topographic gradient toward the Ordos platform, the low-velocity zone diminishes around the eastern KunLun fault. Meanwhile, our results reveal obvious lateral velocity changes in the crust beneath the Tarim basin. In the upper crust, the Manjaer depression in the eastern Tarim basin is featured with very low velocities and the Bachu uplift in the western Tarim basin with high velocities; in the mid-lower crust, the northern Tarim basin in general displays lower velocities than the southern part along latitude ˜40° N with an east

  6. Instantaneous 2D Velocity and Temperature Measurements in High Speed Flows Based on Spectrally Resolved Molecular Rayleigh Scattering

    NASA Technical Reports Server (NTRS)

    Seasholtz, Richard G.

    1995-01-01

    A Rayleigh scattering diagnostic for high speed flows is described for the simultaneous, instantaneous measurement of gas temperature and velocity at a number (up to about one hundred) of locations in a plane illuminated by an injection-seeded, frequency doubled Nd:YAG laser. Molecular Rayleigh scattered light is collected and passed through a planar mirror Fabry-Perot interferometer. The resulting image is analyzed to determine the gas temperature and bulk velocity at each of the regions. The Cramer Rao lower bound for measurement uncertainty is calculated. Experimental data is presented for a free jet and for preliminary measurements in the Lewis 4 inch by 10 inch supersonic wind tunnel.

  7. Generation of a pseudo-2D shear-wave velocity section by inversion of a series of 1D dispersion curves

    USGS Publications Warehouse

    Luo, Y.; Xia, J.; Liu, J.; Xu, Y.; Liu, Q.

    2008-01-01

    Multichannel Analysis of Surface Waves utilizes a multichannel recording system to estimate near-surface shear (S)-wave velocities from high-frequency Rayleigh waves. A pseudo-2D S-wave velocity (vS) section is constructed by aligning 1D models at the midpoint of each receiver spread and using a spatial interpolation scheme. The horizontal resolution of the section is therefore most influenced by the receiver spread length and the source interval. The receiver spread length sets the theoretical lower limit and any vS structure with its lateral dimension smaller than this length will not be properly resolved in the final vS section. A source interval smaller than the spread length will not improve the horizontal resolution because spatial smearing has already been introduced by the receiver spread. In this paper, we first analyze the horizontal resolution of a pair of synthetic traces. Resolution analysis shows that (1) a pair of traces with a smaller receiver spacing achieves higher horizontal resolution of inverted S-wave velocities but results in a larger relative error; (2) the relative error of the phase velocity at a high frequency is smaller than at a low frequency; and (3) a relative error of the inverted S-wave velocity is affected by the signal-to-noise ratio of data. These results provide us with a guideline to balance the trade-off between receiver spacing (horizontal resolution) and accuracy of the inverted S-wave velocity. We then present a scheme to generate a pseudo-2D S-wave velocity section with high horizontal resolution using multichannel records by inverting high-frequency surface-wave dispersion curves calculated through cross-correlation combined with a phase-shift scanning method. This method chooses only a pair of consecutive traces within a shot gather to calculate a dispersion curve. We finally invert surface-wave dispersion curves of synthetic and real-world data. Inversion results of both synthetic and real-world data demonstrate that

  8. Seismic images of the upper mantle velocities and structure of European mantle lithosphere

    NASA Astrophysics Data System (ADS)

    Plomerova, Jaroslava; Munzarova, Helena; Vecsey, Ludek; Babuska, Vladislav

    2014-05-01

    Tomography images of seismic velocities in the Earth mantle represent significant tool for recovering first order structural features. Regional studies, based on dense networks of temporary stations allow us to focus on structure of the continental upper mantle and to study variations of body-wave velocities in greater detail. However, the standard tomography exhibits only isotropic view of the Earth, whose structure is anisotropic in general, as shown by results of various studies exploiting a broad range of methods, types of waves and scales. We present results of our studies of seismic anisotropy in tectonically different provinces that clearly demonstrate the continental mantle lithosphere consists of domains with different fossil fabrics. We detect anisotropic signal both in teleseismic P-wave travel-time deviations and shear-wave splitting and show changes of the anisotropic parameters across seismic arrays, in which stations with similar characteristics form groups. The geographical variations of seismic-wave anisotropy delimit individual, often sharply bounded domains of the mantle lithosphere, each of them having a consistent fabric. The domains can be modelled in 3D by peridotite aggregates with dipping lineation a or foliation (a,c). These findings allow us to interpret the domains as micro-plate fragments retaining fossil fabrics in the mantle lithosphere, reflecting thus an olivine LPO created before the micro-plates assembled. Modelling anisotropic structure of individual domains of the continental mantle lithosphere helps to decipher boundaries of individual blocks building the continental lithosphere and hypothesize on processes of its formation (Plomerova and Babuska, Lithos 2010). Exploiting the long memory of the deep continental lithosphere fabric, we present the lithosphere-asthenosphere boundary (LAB) as a transition between a fossil anisotropy in the mantle lithosphere and an underlying seismic anisotropy related to the present-day flow in

  9. Seismic Velocity structures in Northern Izu-Bonin arc derived from passive OBS observations

    NASA Astrophysics Data System (ADS)

    Obana, K.; Kamiya, S.; Kodaira, S.; Suetsugu, D.; Takahashi, N.; Takahashi, T.; Tamura, Y.; Sakaguchi, H.

    2007-12-01

    The Izu-Bonin Island arc is an oceanic island arc, where the Pacific plate subducts beneath the Philippine Sea plate. Recent active seismic surveys in the Izu-Bonin arc show significant variations in thickness of the middle crust along the volcanic front [Kodaira et al, 2007]. To understand the crustal evolution in the oceanic island arc, we have to clarify structures in the mantle wedge along the arc in addition to the oceanic island arc crust. We conducted seismicity observations to investigate structure variations in northern Izu-Bonin arc using natural earthquakes. A temporal ocean bottom seismograph (OBS) network consists of 40 pop-up type OBSs was deployed in April 2006 between Tori-shima and Hachijo-jima islands. These OBSs were retrieved in July after about 80-day observations. We used continuous seismic data at 36 OBSs and three F-net and Hi-net seismic stations on Hachijo-jima and Aoga-shima islands operated by National Research Institute for Earth Science and Disaster Prevention. During the OBS observations, about 1600 earthquakes were located. These earthquakes clearly show double seismic zone along the subducting Pacific plate. We estimated 1D and 3D P- and S-wave seismic velocity structure using arrival time data of these earthquakes. The 1D velocity model shows that a layer with low Poisson's ratio of 0.24 and high Poisson's ratio of 0.28 corresponds to middle and lower crust, respectively. The low Poisson's ratio layer suggests the granitic middle crust with Vp of ~6km/s. The high Poisson's ratio layer agrees with the gabbroic lower crust as suggested by Kodaira et al. [2007]. Three-dimensional Vp and Vs structures were estimated by 3D tomographic inversion method by Kamiyra and Kobayashi [2000] using the 1D model as an initial model. The estimated 3D model shows structure variations along the volcanic front. We will discuss relationships between the seismic velocity variations and the island arc crust structures in northern Izu- Bonin arc.

  10. Constraining physical properties of ultra-low velocity zones using multiple seismic phases

    NASA Astrophysics Data System (ADS)

    Jensen, K. J.; Thorne, M. S.; Rost, S.; Nissen-Meyer, T.

    2010-12-01

    Ultra-low velocity zones (ULVZs) are a prominent feature of the lower mantle and may be related to many lower mantle dynamic processes. Several studies have indicated a possible partial melt origin to ULVZs however chemical reactions between the mantle and outer core cannot be ruled out giving a compositional component to ULVZ makeup. In order to determine the true importance of ULVZs, it is first necessary to determine their physical properties and geographic location. ULVZ physical properties (P- and S-wave velocities, density, thickness, and lateral coverage) are not well constrained due to sparse coverage of seismic phases used to probe the CMB, and extensive modeling tradeoffs. In this study we focus on examining ULVZ structure in the western Pacific region. Although several studies have confirmed the presence of ULVZs in this region, these studies have primarily been conducted using a single seismic phase. Yet, these past studies indicate that multiple seismic phases may interact with the same ULVZ. We seek to further constrain ULVZ physical properties using the seismic phases SPdKS, ScP, and PcP. Our primary focus is on ULVZ structure where at least 2 of these 3 seismic phases pass through the same ULVZ. Our SPdKS data set consists of broadband seismic recordings from 150 deep earthquakes occurring between January 1990 to April 2010 along the west boundary of the Pacific plate, and the east and south boundaries of the Eurasian plate. Our ScP and PcP data sets consist of 785 and 819 events, respectively, occurring between the years 1995 and 2000 recorded at the short period arrays of the International Monitoring System. We constrain ULVZ properties by waveform modeling using two new techniques: (1) We use the axi-symmetric finite difference technique PSVaxi to model broadband SPdKS waveforms, and (2) we use the axi-symmetric spectral-element method (AXISEM) to model high frequency (1 Hz) ScP and PcP waveforms. We determine the acceptable model space for each

  11. Seismic Noise Analysis to Constrain Shallow Velocity Structure in the southern San Andreas Fault Region

    NASA Astrophysics Data System (ADS)

    Tsang, Stephanie D.

    The seismic velocity structure in the southern San Andreas Fault region is characterized by a known, distinct seismic velocity contrast on opposite sides of the fault, with a thick sedimentary region on the west side (Salton Sea area). Reverberations would affect the duration of shaking for El Centro, Mexicali, and other communities in the Coachella Valley and Imperial Valley. Furthermore, there are other areas where deep basins are bounded by faults that could have similar effects. Therefore, being able to determine the 3D structure is a critical facet of assessing the overall seismic hazard for structures on such basins. By utilizing the particle motion of surface waves, we are able extract useful information about the S-wave velocity structure. To accomplish this, we measured Rayleigh-wave ellipticity of continuous broadband data from 2010 to 2014 for 67 stations within the Southern California Seismic Network (SCSN). Measurements of Rayleigh-wave ellipticity were computed as the ratio between the vertical and horizontal amplitudes. Regional variations in the Rayleigh-wave ellipticity measurements at frequencies of 0.10 Hz up to and including 0.30 Hz illuminate small ellipticity values (i.e. horizontal elongation in Rayleigh-wave particle motion) across the entire frequency band in the regions specific to the thick sedimentary region. In this region, minimum ellipticity values (<0.20) observed at 0.10 Hz, 0.15 Hz, and at 0.20 Hz show a gradual increase up to 0.60 between 0.25 Hz to 0.40 Hz. In most areas exterior to the thick sedimentary region, ellipticity values are generally constant across the frequency band and are significantly higher (>0.90). The observed, small ellipticity values, which are characteristic of a slow velocity layer at shallow depths (upper 5-10 km), could have significant implications on the S-wave velocity structure. As the ZH-Ratio method is highly sensitive to the near-surface structure, combination of the ellipticity data with phase

  12. Seismic velocity structure in the western part of Nankai subduction zone

    NASA Astrophysics Data System (ADS)

    Yamamoto, Y.; Obana, K.; Takahashi, T.; Nakanishi, A.; Kodaira, S.; Kaneda, Y.

    2011-12-01

    In the Nankai Trough, three major seismogenic zones of megathrust earthquake exist (Tokai, Tonankai and Nankai earthquake regions). The Hyuga-nada region was distinguished from these seismogenic zones because of the lack of megathrust earthquake. However, recent studies show the possibility of simultaneous rupture of the Nankai and Hyuga-nada segments was also pointed out [e.g., Furumura et al, 2010 JGR]. Because seismic velocity structure is one of the useful and basic information for understanding the possibility of seismic linkage of Nankai and Hyuga-nada segments, Japan Agency for Marine-Earth Science and Technology has been carried out a series of wide-angle active source surveys and local seismic observations among the three major seismogenic zones and Hyuga-nada segment from 2008, as a part of "Research concerning Interaction Between the Tokai, Tonankai and Nankai Earthquakes' funded by Ministry of Education, Culture, Sports, Science and Technology, Japan". We are performing two set of three-dimensional seismic velocity tomographic inversions, one is in the Hyuga-nada region and the other is western part of the coseismic rupture area of 1946 Nankai earthquake, to discuss the relationship between the structural heterogeneities and the location of segment boundary between Hyuga-nada and Nankai segment. For the analysis of Hyuga-nada segment, we used both active and passive source data. The obtained velocity model clearly showed the subducted Kyushu-Palau ridge as thick low velocity Philippine Sea slab in the southwestern part. Our velocity image also indicates that "the thin oceanic crust zone" located between Nankai segment and Kyushu-Palau Ridge segment, founded by Nakanishi et al [2010, AGU] by analyzing of the active source survey, continuously exists from trough axis to near the coastline of Kyushu Island. The overriding plate just above the coseismic slip area of 1968 Hyuga-nada earthquake shows relatively high velocity. Although the tomographic study in

  13. Joint inversion of P-waveforms from teleseismic events and surface waves group velocities from ambient seismic noise in Bohemian Massif

    NASA Astrophysics Data System (ADS)

    Ruzek, Bohuslav

    2010-05-01

    Joint inversion of P-waveforms from distant earthquakes recorded by 41 broadband seismic stations located on the territory of Bohemian Massif and Rayleigh/Love group velocities gained by using cross-correlation technique applied to seismic noise recorded by the same set of broadband stations has been performed. Together with joint inversion also individual inversions using single data sets have been carried out. All computations were arranged inside isotropic, locally 1D layered models. Remarkable result is indication of horizons just above MOHO in the lower crust below some stations where low-velocity S-wave channel is needed in order to ensure correct modeling of measured events. This indication follows both from individual and joint inversions. P-waveform inversion is based on using a set of 271 well-recorded teleseismic events from epicentral distances 3000-10000 km. The inversion was originally based on the popular 'receiver function' methodology, but due to the instability of needed deconvolution it was modified. We search for optimum layered velocity model, which correctly projects radial to vertical components (and vice versa, deconvolution is no more needed). Regarding second source of data, both Rayleigh and Love surface waves were extracted from seismic noise by using cross-correlation. Long time series covering the period 2001-2009 were processed. Such measurements provide group velocities between arbitrary pairs of stations. Local group velocity dispersion curves were computed by using 2D tomography-like approach for periods 4-20 s. The subject of inversion (both individual and joint) were just group velocity dispersion curves. Inversion required exhaustive computations. We used HPC cluster nemo.ig.cas.cz and ANNI inversion software, capable to run in parallel regime.

  14. Variations of seismic velocities in the Kachchh rift zone, Gujarat, India, during 2001-2013

    NASA Astrophysics Data System (ADS)

    Mandal, Prantik

    2016-03-01

    We herein study variations of seismic velocities in the main rupture zone (MRZ) of the Mw 7.7 2001 Bhuj earthquake for the time periods [2001-05, 2006-08, 2009-10 and 2011-13], by constructing dVp(%), dVs(%) and d(Vp/Vs)(%) tomograms using high-quality arrival times of 28,902 P- and 28,696 S-waves from 4644 precise JHD (joint hypocentral determination) relocations of local events. Differential tomograms for 2001-05 reveal a marked decrease in seismic velocities (low dVp, low dVs and high d(Vp/Vs)) in the MRZ (at 5-35 km depths) during 2001-10, which is attributed to an increase in crack/fracture density (higher pore fluid pressure) resulted from the intense fracturing that occurred during the mainshock and post-seismic periods. While we observe a slight recovery or increase in seismic velocities 2011-13, this could be related to the healing process (lower pore fluid pressure due to sealing of cracks) of the causative fault zone of the 2001 Bhuj mainshock. The temporal reduction in seismic velocities is observed to be higher at deeper levels (more fluid enrichment under near-lithostatic pressure) than that at shallower levels. Fluid source for low velocity zone (LVZ) at 0-10 km depths (with high d(Vp/Vs)) could be attributed to the presence of meteoric water or soft alluvium sediments with higher water content, while fluid source for LVZ at 10-35 km depths could be due to the presence of brine fluids (released from the metamorphic dewatering) and volatile CO2 (emanating from the crystallization of carbonatite melts in the asthenosphere), in fractures and pores. We also imaged two prominent LVZs associated with the Katrol Hill fault zone and Island Belt fault zone, extending from shallow upper-crust to sub-crustal depth, which might be facilitating the deeper circulation of metamorphic fluids/volatile CO2, thereby, the generation of lower crustal earthquakes occurring in the Kachchh rift zone.

  15. Seismic velocity structure and earthquake relocation for the magmatic system beneath Long Valley Caldera, eastern California

    NASA Astrophysics Data System (ADS)

    Lin, Guoqing

    2015-04-01

    A new three-dimensional (3-D) seismic velocity model and high-precision location catalog for earthquakes between 1984 and 2014 are presented for Long Valley Caldera and its adjacent fault zones in eastern California. The simul2000 tomography algorithm is applied to derive the 3-D Vp and Vp/Vs models using first-arrivals of 1004 composite earthquakes obtained from the original seismic data at the Northern California Earthquake Data Center. The resulting Vp model reflects geological structures and agrees with previous local tomographic studies. The simultaneously resolved Vp/Vs model is a major contribution of this study providing an important complement to the Vp model for the interpretation of structural heterogeneities and physical properties in the study area. The caldera is dominated by low Vp anomalies at shallow depths due to postcaldera fill. High Vp and low Vp/Vs values are resolved from the surface to ~ 3.4 km depth beneath the center of the caldera, corresponding to the structural uplift of the Resurgent Dome. An aseismic body with low Vp and high Vp/Vs anomalies at 4.2-6.2 km depth below the surface is consistent with the location of partial melt suggested by previous studies based on Vp models only and the inflation source locations based on geodetic modeling. The Sierran crystalline rocks outside the caldera are generally characterized with high Vp and low Vp/Vs values. The newly resolved velocity model improves absolute location accuracy for the seismicity in the study area and ultimately provides the basis for a high-precision earthquake catalog based on similar-event cluster analysis and waveform cross-correlation data. The fine-scale velocity structure and precise earthquake relocations are useful for investigating magma sources, seismicity and stress interaction and other seismological studies in Long Valley.

  16. Seismic Velocities Contain Information About Depth, Lithology, Fluid Content, and Microstructure

    SciTech Connect

    Berge, P A; Bonner, B P

    2002-01-03

    Recent advances in field and laboratory methods for measuring elastic wave velocities provide incentive and opportunity for improving interpretation of geophysical data for engineering and environmental applications. Advancing the state-of-the-art of seismic imaging requires developing petrophysical relationships between measured velocities and the hydrogeology parameters and lithology. Our approach uses laboratory data and rock physics methods. Compressional (Vp) and shear (Vs) wave velocities, Vp/Vs ratios, and relative wave amplitudes show systematic changes related to composition, saturation, applied stress (analogous to depth), and distribution of clay for laboratory ultrasonic measurements on soils. The artificial soils were mixtures of Ottawa sand and a second phase, either Wyoming bentonite or peat moss used to represent clay or organic components found in natural soils. Compressional and shear wave velocities were measured for dry, saturated, and partially-saturated conditions, for applied stresses between about 7 and 100 kPa, representing approximately the top 5 m of the subsurface. Analysis of the results using rock physics methods shows the link between microstructure and wave propagation, and implications for future advances in seismic data interpretation. For example, we found that Vp in dry sand-clay mixtures initially increases as clay cements the sand grains and fills porosity, but then Vp decreases when the clay content is high enough that the clay matrix controls the elastic response of the material. Vs decreases monotonically with increasing clay content. This provides a method for using Vp/Vs ratios to estimate clay content in a dry soil.

  17. Classification of precipitation types using fall velocity-diameter relationships from 2D-video distrometer measurements

    NASA Astrophysics Data System (ADS)

    Lee, Jeong-Eun; Jung, Sung-Hwa; Park, Hong-Mok; Kwon, Soohyun; Lin, Pay-Liam; Lee, GyuWon

    2015-09-01

    Fall velocity-diameter relationships for four different snowflake types (dendrite, plate, needle, and graupel) were investigated in northeastern South Korea, and a new algorithm for classifying hydrometeors is proposed for distrometric measurements based on the new relationships. Falling ice crystals (approximately 40 000 particles) were measured with a two-dimensional video disdrometer (2DVD) during a winter experiment from 15 January to 9 April 2010. The fall velocity-diameter relationships were derived for the four types of snowflakes based on manual classification by experts using snow photos and 2DVD measurements: the coefficients (exponents) for different snowflake types were 0.82 (0.24) for dendrite, 0.74 (0.35) for plate, 1.03 (0.71) for needle, and 1.30 (0.94) for graupel, respectively. These new relationships established in the present study (PS) were compared with those from two previous studies. Hydrometeor types were classified with the derived fall velocity-diameter relationships, and the classification algorithm was evaluated using 3× 3 contingency tables for one rain-snow transition event and three snowfall events. The algorithm showed good performance for the transition event: the critical success indices (CSIs) were 0.89, 0.61 and 0.71 for snow, wet-snow and rain, respectively. For snow events, the algorithm performance for dendrite and plate (CSIs = 1.0 and 1.0, respectively) was better than for needle and graupel (CSIs = 0.67 and 0.50, respectively).

  18. Crustal high-velocity anomaly at the East European Craton margin in SE Poland (TESZ) modelled by 3-D seismic tomography of refracted and reflected arrivals

    NASA Astrophysics Data System (ADS)

    Środa, Piotr; Dec, Monika

    2016-04-01

    The area of Trans-European Suture Zone in SE Poland represents a contact of major tectonic units of different consolidation age - from the Precambrian East European Craton, through Palaeozoic West European Platform to Cenozoic Carpathian orogen. The region was built by several phases of crustal accretion, which resulted in a complex collage of tectonic blocks. In 2000, this region was studied by several seismic wide-angle profiles of CELEBRATION 2000 experiment, providing a dense coverage of seismic data in SE Poland and allowing for detailed investigations of the crustal structure and properties in this area. Beneath the marginal part of the EEC, the 2-D modelling of in-line data form several CELEBRATION profiles revealed a prominent high P-wave velocity anomaly in the upper crust, with Vp of 6.7-7.1 km/s, starting at 10-16 km depth (e.g., Środa et al., 2006). Anomalously high velocities are observed in the area located approximately beneath Lublin trough, to the NE of Teisseyre-Tornquist Zone. Based on 3-D tomography of first arrivals of in- and off-line CELEBRATION 2000 recordings (Malinowski et al., 2008), elevated velocities are also reported in the same area and seem to continue to the SW, off the craton margin. Gravimetric modelling also revealed anomalously high density in the same region at similar depths. High seismic velocities and densities are interpreted as indicative for a pronounced mafic intrusion, possibly related to extensional processes at the EEC margin. Previous 3-D models of the high-velocity intrusion were based on first arrivals (crustal refractions) only. In this study, also off-line reflections (not modelled up to now) are used, in order to enlarge the data set and to better constrain the geometry and properties of the velocity anomaly. A code for 3-D joint tomographic inversion of refracted and reflected arrivals, with model parametrization allowing for velocity discontinuities was used (Rawlinson, 2007). With this approach, besides the

  19. S-wave velocity measurements applied to the seismic microzonation of Basel, Upper Rhine Graben

    NASA Astrophysics Data System (ADS)

    Havenith, Hans-Balder; Fäh, Donat; Polom, Ulrich; Roullé, Agathe

    2007-07-01

    An extensive S-wave velocity survey had been carried out in the frame of a recent seismic microzonation study of Basel and the border areas between Switzerland, France and Germany. The aim was to better constrain the seismic amplification potential of the surface layers. The survey included single station (H/V spectral ratios) and ambient vibration array measurements carried out by the Swiss team, as well as active S-wave velocity measurements performed by the German and French partners. This paper is focused on the application of the array technique, which consists in recording ambient vibrations with a number of seismological stations. Several practical aspects related to the field measurements are outlined. The signal processing aims to determine the dispersion curves of surface waves contained in the ambient vibrations. The inversion of the dispersion curve provides a 1-D S-wave velocity model for the investigated site down to a depth related to the size of the array. Since the size of arrays is theoretically not limited, arrays are known to be well adapted for investigations in deep sediment basins, such as the Upper Rhine Graben including the area of the city of Basel. In this region, 27 array measurements with varying station configurations have been carried out to determine the S-wave velocity properties of the geological layers down to a depth of 100-250 m. For eight sites, the outputs of the array measurements have been compared with the results of the other investigations using active sources, the spectral analysis of surface waves (SASW) and S-wave reflection seismics. Borehole information available for a few sites could be used to calibrate the geophysical measurements. By this comparison, the advantages and disadvantages of the array method and the other techniques are outlined with regard to the effectiveness of the methods and the required investigation depth. The dispersion curves measured with the arrays and the SASW technique were also combined

  20. Shallow Seismic Velocity Structure of the Betic Cordillera (Southern Spain) from Modelling of Rayleigh Wave Dispersion

    NASA Astrophysics Data System (ADS)

    Chourak, M.; Corchete, V.; Badal, J.; Gómez, F.; Serón, J.

    2005-07-01

    A detailed dispersion analysis of Rayleigh waves generated by local earthquakes and occasionally by blasts that occurred in southern Spain, was undertaken to obtain the shear-wave velocity structure of the region at shallow depth. Our database includes seismograms generated by 35 seismic events that were recorded by 15 single-component short-period stations from 1990 to 1995. All these events have focal depths less than 10 km and body-wave magnitudes between 3.0 and 4.0, and they were all recorded at distances between 40 and 300 km from the epicentre. We analysed a total of 90 source-station Rayleigh-wave paths. The collected data were processed by standard digital filtering techniques to obtain Rayleigh-wave group-velocity dispersion measurements. The path-averaged group velocities vary from 1.12 to 2.25 km/s within the 1.0-6.0 s period interval. Then, using a stochastic inversion approach we obtained 1-D shear-wave velocity depth models across the study area, which were resolved to a depth of circa 5 km. The inverted shear-wave velocities range approximately between 1.0 and 3.8 km/s with a standard deviation range of 0.05 0.16 km/s, and show significant variations from region to region. These results were combined to produce 3-D images via volumetric modelling and data visualization. We present images that show different shear velocity patterns for the Betic Cordillera. Looking at the velocity distribution at various depths and at vertical sections, we discuss of the study area in terms of subsurface structure and S-wave velocity distribution (low velocity channels, basement depth, etc.) at very shallow depths (0 5 km). Our results characterize the region sufficiently and lead to a correlation of shear-wave velocity with the different geological units features.

  1. Seismic velocity structure of the crust and shallow mantle of the Central and Eastern United States by seismic surface wave imaging

    NASA Astrophysics Data System (ADS)

    Pollitz, Fred F.; Mooney, Walter D.

    2016-01-01

    Seismic surface waves from the Transportable Array of EarthScope's USArray are used to estimate phase velocity structure of 18 to 125 s Rayleigh waves, then inverted to obtain three-dimensional crust and upper mantle structure of the Central and Eastern United States (CEUS) down to ˜200 km. The obtained lithosphere structure confirms previously imaged CEUS features, e.g., the low seismic-velocity signature of the Cambrian Reelfoot Rift and the very low velocity at >150 km depth below an Eocene volcanic center in northwestern Virginia. New features include high-velocity mantle stretching from the Archean Superior Craton well into the Proterozoic terranes and deep low-velocity zones in central Texas (associated with the late Cretaceous Travis and Uvalde volcanic fields) and beneath the South Georgia Rift (which contains Jurassic basalts). Hot spot tracks may be associated with several imaged low-velocity zones, particularly those close to the former rifted Laurentia margin.

  2. The relation between seismic P- and S-wave velocity dispersion in saturated rocks

    SciTech Connect

    Mavko, G.; Jizba, D.

    1994-01-01

    Seismic velocity dispersion in fluid-saturated rocks appears to be dominated by two mechanisms: the large scale mechanism modeled by Biot, and the local flow or squirt mechanism. The two mechanisms can be distinguished by the ratio of P- to S-wave dispersions, or more conveniently, by the ratio of dynamic bulk to shear compliance dispersions derived from the wave velocities. The authors` formulation suggests that when local flow dominates, the dispersion of the shear compliance will be approximately 4/15 the dispersion of the compressibility. When the Biot mechanism dominates, the constant of proportionality is much smaller. Their examination of ultrasonic velocities from 40 sandstones and granites shows that most, but not all, of the samples were dominated by local flow dispersion, particularly at effective pressures below 40 MPa.

  3. AnisWave2D: User's Guide to the 2d Anisotropic Finite-DifferenceCode

    SciTech Connect

    Toomey, Aoife

    2005-01-06

    This document describes a parallel finite-difference code for modeling wave propagation in 2D, fully anisotropic materials. The code utilizes a mesh refinement scheme to improve computational efficiency. Mesh refinement allows the grid spacing to be tailored to the velocity model, so that fine grid spacing can be used in low velocity zones where the seismic wavelength is short, and coarse grid spacing can be used in zones with higher material velocities. Over-sampling of the seismic wavefield in high velocity zones is therefore avoided. The code has been implemented to run in parallel over multiple processors and allows large-scale models and models with large velocity contrasts to be simulated with ease.

  4. Seismic exploration-scale velocities and structure from ambient seismic noise (>1 Hz)

    NASA Astrophysics Data System (ADS)

    Draganov, Deyan; Campman, Xander; Thorbecke, Jan; Verdel, Arie; Wapenaar, Kees

    2013-08-01

    The successful surface waves retrieval in solid-Earth seismology using long-time correlations and subsequent tomographic images of the crust have sparked interest in extraction of subsurface information from noise in the exploration seismology. Subsurface information in exploration seismology is usually derived from body-wave reflections > 1 Hz, which is challenging for utilization of ambient noise. We use 11 h of noise recorded in the Sirte basin, Libya. First, we study the characteristics of the noise. We show that the bulk of the noise is composed of surface waves at frequencies below 6 Hz. Some noise panels contain nearly vertically traveling events. We further characterize these events using a beamforming algorithm. From the beamforming, we conclude that these events represent body-wave arrivals with a fairly rich azimuthal distribution. Having body-wave arrivals in the noise is a prerequisite for body-wave reflections retrieval. We crosscorrelate and sum the recorded ambient-noise panels to retrieve common-source gathers, following two approaches—using all the noise and using only noise panels containing body-wave arrivals likely to contribute to the reflections retrieval. Comparing the retrieved gathers with active seismic data, we show that the two-way traveltimes at short offsets of several retrieved events coincide with those of reflections in the active data and thus correspond to apexes of reflections. We then compare retrieved stacked sections of the subsurface from both approaches with the active-data stacked section and show that the reflectors are consistent along a line. The results from the second approach exhibit the reflectors better.

  5. Velocity-density models of the Earth's crust and upper mantle from the quartz, Craton, and Kimberlite superlong seismic profiles

    NASA Astrophysics Data System (ADS)

    Yegorova, T. P.; Pavlenkova, G. A.

    2015-03-01

    The unique deep seismic studies carried out in Russia with the use of nuclear explosions provided the possibility to identify the detailed structure of the Earth's crust, upper mantle, and transition zone to the lower mantle to a depth of 700 km in a huge territory of North Eurasia. It is shown that seismic velocities in the upper mantle mainly reflect its temperature regime. The gravity modeling along these profiles showed the absence of a direct relationship between seismic velocity and density. The Siberian Craton, which is marked with a low heat flow and high-velocity mantle, has lower density. The upper mantle of the East European Platform, with almost the same heat flow, is characterized by the highest densities and seismic velocities. Within the West Siberian Plate, high heat flow, lower seismic velocities, and increased density in the upper mantle are revealed. This combination of seismic velocities and densities suggests different composition of the upper mantle beneath the studied structures with the depleted upper mantle beneath the Siberian Craton.

  6. Characterising volcanic activity of Piton de la Fournaise volcano by the spatial distribution of seismic velocity changes

    NASA Astrophysics Data System (ADS)

    Sens-Schoenfelder, C.; Pomponi, E.

    2013-12-01

    We apply Passive Image Interferometry to investigate the seismic noise recorded from October 2009 until December 2011 by 21 stations of the IPGP/OVPF seismic network installed on Piton de la Fournaise volcano within the UnderVolc project. The analyzed period contains three eruptions in 2009 and January 2010, two eruptions plus one dyke intrusion in late 2010, and a seismic crises in 2011. Seismic noise of vertical and horizontal components is cross-correlated to measure velocity changes as apparent stretching of the coda. For some station pairs the apparent velocity changes exceed 1% and a decorrelation of waveforms is observed at the time of volcanic activity. This distorts monitoring results if changes are measured with respect to a global reference. To overcome this we present a method to estimate changes using multiple references that stabilizes the quality of estimated velocity changes. We observe abrupt changes that occur coincident with volcanic events as well as long term transient signals. Using a simple assumption about the spatial sensitivity of our measurements we can map the spatial distribution of velocity changes for selected periods. Comparing these signals with volcanic activity and GPS derived surface deformation we can identify patterns of the velocity changes that appear characteristic for the type of volcanic activity. We can differentiate intrusive processes associated with inflation and increased seismic activity, periods of relaxation without seismicity and eruptions solely based on the velocity signal. This information can help to assess the processes acting in the volcano.

  7. Three-Dimensional Seismic Velocity Structure in a High-Injection Region in The Northwest Geysers, California, from Standard and Double-Difference Seismic Tomography

    NASA Astrophysics Data System (ADS)

    Boyle, K. L.; Jarpe, S.

    2011-12-01

    The Northwest Geysers contains some of the highest-volume injection and production wells in the Geysers geothermal field. These wells coincide spatially with dense clusters of microseismicity with exception of a sub-region central to several injectors which has shown lower rates of seismicity over the past 10 years. This low-seismicity region is underlain by a cluster of deep seismicity extending up to 4.2km below sea level (b.s.l.). The low-seismicity region has been imaged to 610 m resolution using passive-source 3D seismic tomography and co-location of hypocenters. The results indicate a low-velocity (2.9 km/s) anomaly that extends from the surface to approximately 1.5km b.s.l. in both P- and S- velocity models. It lies just above and to the Northwest of the low-seismicity region. The high-injection/production region is bounded on the southeast by higher velocities (range 4.0 km/s to 5.3 km/s), although it is dominated by velocities in the 3.8 km/s range. The low-velocity feature persists over our 5-year study period from 2005 to 2010, but appears to diminish spatially in 2010. Mean velocity values vary nominally from year to year, as do the extent of high and low velocity regions, but it is yet unknown whether this effect is temporal, an artifact of topography, or related to differences in data quality during different monitoring periods. The the low-velocity feature is being confirmed and re-imaged using double-difference tomography with a node-spacing of 150 m, and the feature's evolution over time will be correlated with injection and production rates in the surrounding area.

  8. Transformation of seismic velocity data to extract porosity and saturation values for rocks

    SciTech Connect

    Berryman, James G.; Berge, Patricia A.; Bonner, Brian P.

    2000-06-01

    For wave propagation at low frequencies in a porous medium, the Gassmann-Domenico relations are well-established for homogeneous partial saturation by a liquid. They provide the correct relations for seismic velocities in terms of constituent bulk and shear moduli, solid and fluid densities, porosity and saturation. It has not been possible, however, to invert these relations easily to determine porosity and saturation when the seismic velocities are known. Also, the state (or distribution) of saturation, i.e., whether or not liquid and gas are homogeneously mixed in the pore space, is another important variable for reservoir evaluation. A reliable ability to determine the state of saturation from velocity data continues to be problematic. It is shown how transforming compressional and shear wave velocity data to the ({rho}/{lambda},{mu}/{lambda})-plane (where {lambda} and {mu} are the Lame parameters and {rho} is the total density) results in a set of quasi-orthogonal coordinates for porosity and liquid saturation that greatly aids in the interpretation of seismic data for the physical parameters of most interest. A second transformation of the same data then permits isolation of the liquid saturation value, and also provides some direct information about the state of saturation. By thus replotting the data in the ({lambda}/{mu}, {rho}/{mu})-plane, inferences can be made concerning the degree of patchy (inhomogeneous) versus homogeneous saturation that is present in the region of the medium sampled by the data. Our examples include igneous and sedimentary rocks, as well as man-made porous materials. These results have potential applications in various areas of interest, including petroleum exploration and reservoir characterization, geothermal resource evaluation, environmental restoration monitoring, and geotechnical site characterization. (c) 2000 Acoustical Society of America.

  9. A New Method for Calculating Seismic Velocities in Antigorite-Bearing Serpentinites

    NASA Astrophysics Data System (ADS)

    Watanabe, T.; Shirasugi, Y.; Michibayashi, K.

    2013-12-01

    Serpentinites play key roles in subduction zone processes including transportation of water, seismogenesis and slab-mantle coupling. Seismological mapping of serpentinites will give us insights into these processes. In order to interpret seismological observations, we must have a good understanding of seismic properties of serpentinites. Determination of elastic constants of antigorite (Bezacier et al., 2010; 2013) has enabled us to calculate the Voigt and Reuss bounds of seismic velocities in serpentinites with given modal compositions and CPOs. Although the Hill averages have been often employed for the prediction of velocity, it should be noted that they have large uncertainties. There is considerable difference between the two bounds due to the strong elastic anisotropy of antigorite. Microstructural variables like the grain shape and the spatial distribution of grains should be taken into account for a better prediction. We propose a calculation method which accounts for the grain shape of strongly dimensionally anisotropic minerals like micas and serpentines. A mineral grain is treated as an oblate spheroid, and embedded in a homogeneous matrix. Strain in the matrix is disturbed by embedded spheroidal inclusions, and evaluated by Eshelby's method (Eshelby, 1957). Elastic constants of the composite material are calculated by differentiating the elastic energy with respect to strain. We employed the differential effective medium method, which repeats introducing inclusions by a small amount and calculates effective elastic constants by evaluating the change in elastic strain energy density from the previous step. This method evaluates implicitly the stress and strain disturbance due to other inclusions. Our method is an extension of the method of Nishizawa and Yoshino (2001), and can be applied to a distributed geometrical orientation of mineral grains. Comparison was made between calculated and measured velocities in four natural antigorite

  10. Seismic Velocities Imaging around "AFA" Hydrothermal Area in West Java, Indonesia derived from Dense Seimometer Network

    NASA Astrophysics Data System (ADS)

    Fanani Akbar, Akhmad; Nugraha, Andri Dian; Jousset, Philippe GM; Ryannugroho, Riskiray; Gassner, Alexandra; Jaya, Makky S.; Sule, Rachmat; Diningrat, Wahyuddin; Hendryana, Andri; Kusnadi, Yosep; Umar, Muksin; Indrinanto, Yudi; Erbas, Kemal

    2015-04-01

    We have deployed about 48 three component seismometers around "AFA" hydrothermal are in West Java, Indonesia from October 2012 up to October 2014 in order to detect microseismic event and to enhance our knowledge about subsurface seismic stucture. The seismometer network in this study, is the first dense seismometer array monitoring around hydrothermal area in Indonesia so far. We analyzed a huge waveform data set to distinguish microseismic, local and regional events. Then, we picked the onset of P-and S-wave arrival of microseismic events carefully visually by eye. We determined the initial microseismic event by applying Geiger's method with uniform seismic velocity model. Totally, we have been successfully determined 2,497 microseismic events around this hydrothermal area. We also improved 1D seismic velocities (Vp, Vs) and simultaneously with hypocenter adjustment as input for the tomography inversion in this study. Overall, the microseismic events are concentrated around production area activities and we also found strong cluster microseismic event in Southern part of this region which still need to be investigated in more details. Now, we are going on tomographic inversion step by using double-difference method. We are going to show more information during the meeting.

  11. Seismic velocity variations under island arcs: Examples from the Philippines and Montserrat (Lesser antilles)

    NASA Astrophysics Data System (ADS)

    Sevilla, Winchelle Ian

    Island arcs are geologically active and important structures. From a short-term perspective, they are a major source of seismic and volcanic hazards. From a longer-term perspective, arc processes are most likely a key component in the production of continental lithosphere. They are also the focus of numerous Geoscience investigations. In this thesis I investigate the seismic structure of island arcs at a regional (hundreds of kilometer) and a local (10's of km) scale. My goal in this work is to contribute to our efforts to understand the origin and evolution of these geologically important structures. I focus seismic imaging methods on two regions, the Philippine Island region and the northern Lesser Antilles island of Montserrat. The Philippine Island Arc (PIA) is commonly regarded as a complex structure in which subduction zones border its sides and the intra-arc, sinistral Philippine Fault System transects throughout its length. The arc is seismically active and volcanic activity spans almost the entire arc. While several studies provide a wealth of information on the tectonic and the geodynamic settings of PIA, few have looked carefully into the subsurface because they were limited by the availability of digital seismic data. For this reason, important data gaps exist, in particular the details of the subsurface seismic velocity structure. The recent deployments of relatively dense digital seismic stations offer an opportunity to conduct a detailed study on the arc's velocity structure. Data from this new seismic network are used to determine the three-dimensional (3--D) velocity structure of the PIA by applying the P--wave travel time tomography. A broad distribution of source depths and the arc-wide distribution of seismic stations allow tomographic imaging of structures down to 450 km depth with spatial resolution of about ˜50 km resolution. The prominent features of the tomographic images include the low velocity zones correlating with the overlying

  12. Shear-wave velocity-based probabilistic and deterministic assessment of seismic soil liquefaction potential

    USGS Publications Warehouse

    Kayen, R.; Moss, R.E.S.; Thompson, E.M.; Seed, R.B.; Cetin, K.O.; Der Kiureghian, A.; Tanaka, Y.; Tokimatsu, K.

    2013-01-01

    Shear-wave velocity (Vs) offers a means to determine the seismic resistance of soil to liquefaction by a fundamental soil property. This paper presents the results of an 11-year international project to gather new Vs site data and develop probabilistic correlations for seismic soil liquefaction occurrence. Toward that objective, shear-wave velocity test sites were identified, and measurements made for 301 new liquefaction field case histories in China, Japan, Taiwan, Greece, and the United States over a decade. The majority of these new case histories reoccupy those previously investigated by penetration testing. These new data are combined with previously published case histories to build a global catalog of 422 case histories of Vs liquefaction performance. Bayesian regression and structural reliability methods facilitate a probabilistic treatment of the Vs catalog for performance-based engineering applications. Where possible, uncertainties of the variables comprising both the seismic demand and the soil capacity were estimated and included in the analysis, resulting in greatly reduced overall model uncertainty relative to previous studies. The presented data set and probabilistic analysis also help resolve the ancillary issues of adjustment for soil fines content and magnitude scaling factors.

  13. Effect of bone cortical thickness on velocity measurements using ultrasonic axial transmission: A 2D simulation study

    NASA Astrophysics Data System (ADS)

    Bossy, Emmanuel; Talmant, Maryline; Laugier, Pascal

    2002-07-01

    In recent years, quantitative ultrasound (QUS) has played an increasing role in the assessment of bone status. The axial transmission technique allows to investigate skeletal sites such as the cortical layer of long bones (radius, tibia), inadequate to through-transmission techniques. Nevertheless, the type of propagation involved along bone specimens has not been clearly elucidated. Axial transmission is investigated here by means of two-dimensional simulations at 1 MHz. We focus our interest on the apparent speed of sound (SOS) of the first arriving signal (FAS). Its dependence on the thickness of the plate is discussed and compared to previous work. Different time criteria are used to derive the apparent SOS of the FAS as a function of source-receiver distance. Frequency-wave number analysis is performed in order to understand the type of propagation involved. For thick plates (thickness>lambdabone, longitudinal wavelength in bone), and for a limited range of source-receiver distances, the FAS corresponds to the lateral wave. Its velocity equals the longitudinal bulk velocity of the bone. For plate thickness less than lambdabone, some plate modes contribute to the FAS, and the apparent SOS decreases with the thickness in a way that depends on both the time criterion and on the source-receiver distance. The FAS corresponds neither to the lateral wave nor to a single plate mode. For very thin plates (thicknessbone)/4, the apparent SOS tends towards the velocity of the lowest order symmetrical vibration mode (S0 Lamb mode). copyright 2002 Acoustical Society of America.

  14. Imaging the Ferron Member of the Mancos Shale formation using reprocessed high-resolution 2-D seismic reflection data: Emery County, Utah

    USGS Publications Warehouse

    Taylor, D.J.

    2003-01-01

    Late in 1982 and early in 1983, Arco Exploration contracted with Rocky Mountain Geophysical to acquired four high-resolution 2-D multichannel seismic reflection lines in Emery County, Utah. The primary goal in acquiring this data was an attempt to image the Ferron Member of the Upper Cretaceous Mancos Shale. Design of the high-resolution 2-D seismic reflection data acquisition used both a short geophone group interval and a short sample interval. An explosive energy source was used which provided an input pulse with broad frequency content and higher frequencies than typical non-explosive Vibroseis?? sources. Reflections produced by using this high-frequency energy source when sampled at a short interval are usually able to resolve shallow horizons that are relatively thin compared to those that can be resolved using more typical oil and gas exploration seismic reflection methods.The U.S. Geological Survey-Energy Resources Program, Geophysical Processing Group used the processing sequence originally applied by Arco in 1984 as a guide and experimented with processing steps applied in a different order using slightly different parameters in an effort to improve imaging the Ferron Member horizon. As with the Arco processed data there are sections along all four seismic lines where the data quality cannot be improved upon, and in fact the data quality is so poor that the Ferron horizon cannot be imaged at all.Interpretation of the seismic and core hole data indicates that the Ferron Member in the study area represent a deltaic sequence including delta front, lower delta plain, and upper delta plain environments. Correlating the depositional environments for the Ferron Member as indicated in the core holes with the thickness of Ferron Member suggests the presence of a delta lobe running from the northwest to the southeast through the study area. The presence of a deltaic channel system within the delta lobe complex might prove to be an interesting conventional

  15. Detailed seismic velocity structure beneath the Hokkaido corner, NE Japan: Collision process of the forearc sliver

    NASA Astrophysics Data System (ADS)

    Kita, S.; Hasegawa, A.; Okada, T.; Nakajima, J.; Matsuzawa, T.; Katsumata, K.

    2010-12-01

    1. Introduction In south-eastern Hokkaido, the Kuril forearc sliver is colliding with the northeastern Japan arc due to the oblique subduction of the Pacific plate. This collision causes the formation of the Hidaka mountain range since the late Miocene (Kimura, 1986) and delamination of the lower-crust materials of the Kuril forearc sliver, which would be expected to descend into the mantle wedge below (e.g., Ito 2000; Ito and Iwasaki, 2002). In this study, we precisely investigated the three-dimensional seismic velocity structure beneath the Hokkaido corner to examine the collision of two forearcs in this area by using both of data from a dense temporary seismic network deployed in this area (Katsumata et al. [2006]) and those from the Kiban observation network, which covers the entire Japanese Islands with a station separation of 15-20 km. 2. Data and method The double-difference tomography method (Zhang and Thurber, 2003; 2006) was applied to a large number of arrival time data of 201,527 for P-waves and 150,963 for S-waves that were recorded at 125 stations from 10,971 earthquakes that occurred from 1999 to 2010. Grid intervals were set at 10 km in the along-arc direction, 12.5 km perpendicular to it, and 5-10 km in the vertical direction. 3. Results and discussion Inhomogeneous seismic velocity structure was clearly imaged in the Hokkaido corner at depths of 0-120 km. A high-velocity anomaly of P- and S- waves with a volume of 20 km x 90 km x 35km was detected just beneath the main zone of the Hidaka metamorphic belt at depths of 0-35 km. This high-velocity anomaly is continuously distributed from the depths of the mantle wedge to the surface. The western edge of the anomaly exactly corresponds to the Hidaka main thrust (HMT) at the surface. The highest velocity value in the anomaly corresponds to those of the uppermost mantle material (e.g. peridotite). The location of them at depths of 0-35km is also consistent with that of the Horoman-Peridotite belt, which

  16. Well log and 2D seismic data character of the Wilcox Group in south-central Louisiana

    USGS Publications Warehouse

    Enomoto, Catherine B.

    2014-01-01

    The Wilcox Group is productive in updip areas of Texas and Louisiana from fluvial, deltaic, and near-shore marine shelf sandstones. The reported presence of porous sandstones at 29,000 feet within the Wilcox Group containing about 200 feet of gas in the Davy Jones 1 discovery well in the offshore Louisiana South Marsh Island area illustrates a sand-rich system developed during the Paleocene and early Eocene. This study describes some of the well log and reflection seismic data characteristics of the slope and basin-floor reservoirs with gas-discovery potential that may be in the area between the producing trend onshore Louisiana and the offshore discovery.

  17. Seismic Velocity Structure and Seismotectonics of the Hayward Fault System, East San Francisco Bay, California

    NASA Astrophysics Data System (ADS)

    Hardebeck, J. L.; Michael, A. J.; Brocher, T. M.

    2004-12-01

    The Hayward Fault is considered the most likely fault in the San Francisco Bay Area, California, to have a major earthquake in the next 30 years, posing a serious earthquake risk to more than 2 million people. In order to accurately evaluate various earthquake scenarios for this fault, it is important to understand its structure, kinematics, and physical properties. We present a new seismological study of the Hayward Fault system, including a new 3D seismic velocity model for the East San Francisco Bay, relocated earthquake hypocenters, and improved focal mechanisms. We use these new constraints on structure and seismicity to study the geometry and kinematics of the Hayward Fault. The new East Bay 3D tomography model, based on travel times from earthquakes and controlled-source experiments, reveals a clear velocity contrast across the Hayward Fault. In the upper 10 km, the P-wave velocity in the Franciscan rocks to the west are up to 0.8 km/s faster than in the Great Valley sequence rocks to the east. Below 10 km, where Franciscan rocks are thought to be present on both sides of the fault, there is negligible contrast. The observed P-wave velocities are comparable with velocities observed in deep boreholes in the East Bay. Anomalously low S-wave velocities are observed east of the Hayward Fault, near the Livermore Basin. We relocated more than 20,000 East Bay earthquakes, 1967-2004, with the 3D model. The events illuminate the Hayward Fault at depth, shifting from near-vertical in the north to steeply east-dipping in the south. New focal mechanisms were also computed, using take-off angles from ray tracing in the 3D seismic velocity model. Previous authors found heterogeneous focal mechanisms along the Hayward Fault near San Leandro, interpreted it as a zone of complex fracturing, and speculated that San Leandro marks a probable boundary for major Hayward Fault earthquakes. We find, however, that our high-quality focal mechanisms for events all along the Hayward

  18. Lunar Seismic Velocity and Crustal Thickness Inversions Using Constraints from Apollo and GRAIL Data

    NASA Astrophysics Data System (ADS)

    Blanchette-Guertin, J. F.; Drilleau, M.; Kawamura, T.; Lognonne, P. H.; Wieczorek, M. A.

    2015-12-01

    We present results from new Markov Chain Monte Carlo inversions of (i) 1-D lunar crustal and upper mantle velocity models and (ii) 3-D lateral crustal thickness models anchored by crustal thicknesses under the Apollo stations and the artificial and natural impact sites. These new generation models are constrained by both the Apollo impact event seismic data arrival times and by the more recent GRAIL gravimetric data. In all models, 1-D seismic velocities are parameterized using C1 Bézier polynomials, using two independent sets to represent the crust and the underlying mantle. Other parameters of the inversions include the depth and velocity amplitude of the Bézier control points, the depth of the crust-mantle discontinuity, the thickness of the crust under each Apollo station and impact epicenter, the vp/vs ratio, as well as location-specific time delays. Inverting for station-specific crustal thicknesses and velocity delays highlights geology-related differences between stations (e.g. contrasts in megaregolith thickness, in shallow subsurface composition and structure). These differences have already been observed by other analytical methods in the past, as detailed in the literature. We also test the possibility of having a dual-layered crust. However, some of the finer structural elements might be difficult to observe with the available data and might fall within the inherent uncertainty of the dataset. We use the more precise LROC-located epicentral locations for the lunar modules and Saturn-IV booster artificial impacts, reducing that way some of the uncertainty observed in past models. Natural impact epicentral locations are relocated during the inversions. Constraints from deep and shallow moonquakes will be included in future inversions to potentially refine the velocity and crustal models. This work falls within the NASA InSight mission to Mars seismic investigation (SEIS). Accordingly, the method and analytical software developed for this study will be

  19. The compositional signature of seismic velocities in the upper mantle: a hopeless problem?

    NASA Astrophysics Data System (ADS)

    Afonso, J. C.; Schutt, D.

    2010-12-01

    Seismic velocities have been by far the most used observable to obtain inferences on the compositional structure of the mantle. This is mainly due to the availability of i) high-quality seismic data in many regions of the world, ii) a vast amount of information on the T-P dependence of physical properties of minerals, iii) experimental data on partial melting of mantle rocks, and iv) robust methods relating modal compositions to major-element compositions. Also, several studies estimated the effects of melt depletion and temperature changes on seismic velocities in peridotites, thus providing fundamental information for interpreting seismic tomography. Since the most obvious reason for medium- to large scale compositional heterogeneities in peridotites is thought to be melt depletion (F), it has become customary in the literature to include a "melt depletion" component when interpreting seismic anomalies. However, three fundamental issues that make this interpretation dubious are still unsolved: firstly, all previous studies addressing melt depletion effects have been based on isobaric batch (equilibrium) melting experiments at near-solidus temperatures instead of more realistic polybaric near-fractional models at different equilibration pressures; secondly, the use of indicators such as VP/V_S is strongly influenced by anelastic attenuation and phase stability; thirdly, compositional effects are of the order of uncertainties in seismic models. We present the results of a systematic exploration of all these effects on seismic velocities in peridotites. Our results show that 1) polybaric vs isobaric models of partial melting result in similar VP and VS trends with F when they re-equilibrate at sub-solidus temperatures, but they differ from previous parameterizations based on isobaric experiments at near-solidus temperatures, 2) the VP/V_S ratio of residues at P<3GPa is strongly non-linear with F, 3) anelasticity effects accentuate this non-linearity even at higher

  20. Determination of a shallow velocity-depth model from seismic refraction data by coherence inversion

    SciTech Connect

    Landa, E.; Keydar, S.; Kravtsov, A.

    1995-02-01

    Seismic refractions have different applications in seismic prospecting. The travel-times of refracted waves can be observed as first breaks on shot records and used for field static calculation. A new method for constructing a near-surface model from refraction events is described. It does not require event picking on prestack records and is not based on any approximation of arrival times. It consists of the maximization of the semblance coherence measure computed using shot gathers in a time window along refraction traveltimes. Time curves are generated by ray tracing through the model. The initial model for the inversion was constructed by the intercept-time method. Apparent velocities and intercept times were taken from a refraction stacked section. Such a section can be obtained by applying linear moveout corrections to common-shot records. The technique is tested successfully on synthetic and real data. An important application of the proposed method for solving the statics problem is demonstrated.

  1. Field observations of seismic velocity changes caused by shaking-induced damage and healing due to mesoscopic nonlinearity

    NASA Astrophysics Data System (ADS)

    Gassenmeier, M.; Sens-Schönfelder, C.; Eulenfeld, T.; Bartsch, M.; Victor, P.; Tilmann, F.; Korn, M.

    2016-03-01

    To investigate temporal seismic velocity changes due to earthquake related processes and environmental forcing in Northern Chile, we analyse 8 yr of ambient seismic noise recorded by the Integrated Plate Boundary Observatory Chile (IPOC). By autocorrelating the ambient seismic noise field measured on the vertical components, approximations of the Green's functions are retrieved and velocity changes are measured with Coda Wave Interferometry. At station PATCX, we observe seasonal changes in seismic velocity caused by thermal stress as well as transient velocity reductions in the frequency range of 4-6 Hz. Sudden velocity drops occur at the time of mostly earthquake-induced ground shaking and recover over a variable period of time. We present an empirical model that describes the seismic velocity variations based on continuous observations of the local ground acceleration. The model assumes that not only the shaking of large earthquakes causes velocity drops, but any small vibrations continuously induce minor velocity variations that are immediately compensated by healing in the steady state. We show that the shaking effect is accumulated over time and best described by the integrated envelope of the ground acceleration over the discretization interval of the velocity measurements, which is one day. In our model, the amplitude of the velocity reduction as well as the recovery time are proportional to the size of the excitation. This model with two free scaling parameters fits the data of the shaking induced velocity variation in remarkable detail. Additionally, a linear trend is observed that might be related to a recovery process from one or more earthquakes before our measurement period. A clear relationship between ground shaking and induced velocity reductions is not visible at other stations. We attribute the outstanding sensitivity of PATCX to ground shaking and thermal stress to the special geological setting of the station, where the subsurface material

  2. Applications of detailed 3D P-wave velocity crustal model in Poland for local, regional and global seismic tomography

    NASA Astrophysics Data System (ADS)

    Polkowski, Marcin; Grad, Marek

    2015-04-01

    The 3D P-wave seismic velocity model was obtained by combining data from multiple studies during past 50 years. Data sources included refraction seismology, reflection seismology, geological boreholes, vertical seismic profiling, magnetotellurics and gravimetry. Use of many data sources allowed creation of detailed 3D P-wave velocity model that reaches to depth of 60 km and includes 6-layers of sediments and 3-layers of the crust. Purpose of this study is to analyze how 3D model influences local (accuracy of location and source time estimation for local events), regional (identification of wide-angle seismic phases) and global (teleseismic tomography) seismic travel times. Additionally we compare results of forward seismic wave propagation with signals observed on short period and broadband stations. National Science Centre Poland provided financial support for this work by NCN grant DEC-2011/02/A/ST10/00284.

  3. Complete regional waveform modeling to estimate seismic velocity structure and source parameters for CTBT monitoring

    SciTech Connect

    Bredbeck, T; Rodgers, A; Walter, W

    1999-07-23

    The velocity structures and source parameters estimated by waveform modeling provide valuable information for CTBT monitoring. The inferred crustal and uppermost mantle structures advance understanding of tectonics and guides regionalization for event location and identification efforts. Estimation of source parameters such as seismic moment, depth and mechanism (whether earthquake, explosion or collapse) is crucial to event identification. In this paper we briefly outline some of the waveform modeling research for CTBT monitoring performed in the last year. In the future we will estimate structure for new regions by modeling waveforms of large well-observed events along additional paths. Of particular interest will be the estimation of velocity structure in aseismic regions such as most of Africa and the Former Soviet Union. Our previous work on aseismic regions in the Middle East, north Africa and south Asia give us confidence to proceed with our current methods. Using the inferred velocity models we plan to estimate source parameters for smaller events. It is especially important to obtain seismic moments of earthquakes for use in applying the Magnitude-Distance Amplitude Correction (MDAC; Taylor et al., 1999) to regional body-wave amplitudes for discrimination and calibrating the coda-based magnitude scales.

  4. The structure and stratigraphy of the sedimentary succession in the Swedish sector of the Baltic Basin: New insights from vintage 2D marine seismic data

    NASA Astrophysics Data System (ADS)

    Sopher, Daniel; Erlström, Mikael; Bell, Nicholas; Juhlin, Christopher

    2016-04-01

    We present five interpreted regional seismic profiles, describing the full sedimentary sequence across the Swedish sector of the Baltic Sea. The data for the study are part of an extensive and largely unpublished 2D seismic dataset acquired between 1970 and 1990 by the Swedish Oil Prospecting Company (OPAB). The Baltic Basin is an intracratonic basin located in northern Europe. Most of the Swedish sector of the basin constitutes the NW flank of a broad synclinal depression, the Baltic Basin. In the SW of the Swedish sector lies the Hanö Bay Basin, formed by subsidence associated with inversion of the Tornquist Zone during the Late Cretaceous. The geological history presented here is broadly consistent with previously published works. We observe an area between the Hanö Bay and the Baltic Basin where the Palaeozoic strata has been affected by transpression and subsequent inversion, associated with the Tornquist Zone during the late Carboniferous-Early Permian and Late Cretaceous, respectively. We propose that the Christiansø High was a structural low during the Late Jurassic, which was later inverted in the Late Cretaceous. We suggest that a fan shaped feature in the seismic data, adjacent to the Christiansø Fault within the Hanö Bay Basin, represents rapidly deposited, coarse-grained sediments eroded from the inverted Christiansø High during the Late Cretaceous. We identify a number of faults within the deeper part of the Baltic Basin, which we also interpret to be transpressional in nature, formed during the Caledonian Orogeny in the Late Silurian-Early Devonian. East of Gotland a number of sedimentary structures consisting of Silurian carbonate reefs and Ordovician carbonate mounds, as well as a large Quaternary glacial feature are observed. Finally, we use the seismic interpretation to infer the structural and stratigraphic history of the Baltic and Hanö Bay basins within the Swedish sector.

  5. Elastic Velocity Updating through Image-Domain Tomographic Inversion of Passive Seismic Data

    NASA Astrophysics Data System (ADS)

    Witten, B.; Shragge, J. C.

    2014-12-01

    Seismic monitoring at injection sites (e.g., CO2sequestration, waste water disposal, hydraulic fracturing) has become an increasingly important tool for hazard identification and avoidance. The information obtained from this data is often limited to seismic event properties (e.g., location, approximate time, moment tensor), the accuracy of which greatly depends on the estimated elastic velocity models. However, creating accurate velocity models from passive array data remains a challenging problem. Common techniques rely on picking arrivals or matching waveforms requiring high signal-to-noise data that is often not available for the magnitude earthquakes observed over injection sites. We present a new method for obtaining elastic velocity information from earthquakes though full-wavefield wave-equation imaging and adjoint-state tomography. The technique exploits images of the earthquake source using various imaging conditions based upon the P- and S-wavefield data. We generate image volumes by back propagating data through initial models and then applying a correlation-based imaging condition. We use the P-wavefield autocorrelation, S-wavefield autocorrelation, and P-S wavefield cross-correlation images. Inconsistencies in the images form the residuals, which are used to update the P- and S-wave velocity models through adjoint-state tomography. Because the image volumes are constructed from all trace data, the signal-to-noise in this space is increased when compared to the individual traces. Moreover, it eliminates the need for picking and does not require any estimation of the source location and timing. Initial tests show that with reasonable source distribution and acquisition array, velocity anomalies can be recovered. Future tests will apply this methodology to other scales from laboratory to global.

  6. Seismic Velocity and Attenuation Tomography of the Tonga Arc and Lau Back-arc Basin

    NASA Astrophysics Data System (ADS)

    Wei, S. S.; Zha, Y.; Wiens, D. A.; Webb, S. C.

    2014-12-01

    We apply various techniques to analyze seismic data from the 2009 - 2010 Ridge2000 Lau Spreading Center project to investigate the distribution of partial melt beneath the Tonga arc and Lau back-arc basin. The shear wave velocity structure is jointly inverted from the phase velocities of teleseismic and ambient-noise Rayleigh waves, as the former is inverted using the two-plane-wave method with finite-frequency kernels, and the latter is obtained from cross-correlation in frequency domain. Additionally, we determine the 3D attenuation structure from t* measurements of P and S waves from local earthquakes. In order to avoid the trade-off between t* and corner frequency, we analyze the spectral ratio of S coda to independently constrain the fc for each event. The QP and QS structures are inverted separately, and QP/QS is jointly inverted from QP and t*(S). Tomographic results show strong signals of low velocity and high attenuation within the upper 100-km of the mantle beneath the back-arc basin, suggesting perhaps the lowest shear velocity (VSV = 3.5 km/s) and highest seismic attenuation (QP < 35 and QS < 25) known in the mantle. These anomalies require not only the abnormally high temperature but also the existence of partial melt. The inferred partial melt aligns with the spreading centers at shallow depths, but shift westwards away from the slab, implying a passive decompression melting process governed by the mantle wedge flow pattern. The Tonga volcanic arc does not display as strong of velocity or attenuation anomalies as the spreading centers, suggesting less magmatism associate with the arc compared to the back-arc.

  7. Grain size evolution in the mantle and its effect on geodynamics, seismic velocities and attenuation

    NASA Astrophysics Data System (ADS)

    Dannberg, Juliane; Eilon, Zach; Gassmoeller, Rene; Moulik, Pritwiraj; Myhill, Robert; Faul, Ulrich; Asimow, Paul

    2015-04-01

    Dynamic models of Earth's convecting mantle usually implement flow laws with constant grain size, stress-independent viscosity and a limited treatment of variations associated with changes in mineral assemblage. These simplifications greatly reduce computational requirements but preclude effects such as shear localisation and transient changes in rheology associated with phase transitions, which have the potential to fundamentally change flow patterns in the mantle. Here we use the finite-element code ASPECT (Bangerth et al., 2013) to model grain size evolution and the interplay between grain size, stress and strain rate in the convecting mantle. We include the simultaneous and competing effects of dynamic recrystallisation resulting from work done by dislocation creep, grain growth in multiphase assemblages and recrystallisation at phase transitions. Grain size variations also affect seismic properties of mantle materials. We use several published formulations to relate intrinsic variables (P, T, and grain size) from our numerical models to seismic velocity (Vs) and attenuation (Q). Our calculations use thermodynamically self-consistent anharmonic elastic moduli determined for the mineral assemblages in the mantle using HeFESTo (Stixrude and Lithgow-Bertelloni, 2013). We investigate the effect of realistically heterogeneous grain sizes by computing body wave travel times, ray paths, and attenuation (t*) at different frequencies. We highlight the frequency-dependent sensitivity of seismic waves to grain size, which is important when interpreting Vs and Q observations in terms of mineral assemblage and temperature. Our models show that rapid metamorphic reactions in mantle upwellings and downwellings lead to high lateral viscosity contrasts, as a result of gradual grain size evolution. Positive feedback between grain size reduction and viscosity reduction results in shear localisation. As a result, the edges of thermal plumes have smaller grain sizes and lower

  8. Using auto-correlations from seismic ambient noise to monitor velocity changes at Villarrica Volcano, Chile

    NASA Astrophysics Data System (ADS)

    McKee, K. F.; Waite, G. P.; Richardson, J. P.

    2012-12-01

    We used the Green's functions from auto-correlations and cross-correlations of seismic ambient noise to monitor temporal velocity changes in the subsurface at Villarrica Volcano in the Southern Andes of Chile. Campaigns were conducted from March to October 2010 and February to April 2011 with 8 broadband and 6 short-period stations, respectively. We prepared the data by removing the instrument response, normalizing with a root-mean-square method, whitening the spectra, and filtering from 1 to 10 Hz. This frequency band was chosen based on the relatively high background noise level in that range. Hour-long auto- and cross-correlations were computed and the Green's functions stacked by day and total time. To track the temporal velocity changes we stretched a 24 hour moving window of correlation functions from 90% to 110% of the original and cross correlated them with the total stack. The average increase in velocity gleaned from the auto-correlations during the 2010 array was 0.13%, as seen in the figure. Cross-correlations from station V01, near the summit, to the other stations show comparable increases in velocity. We attribute this change to the closing of cracks in the subsurface due either to seasonal snow loading or regional tectonics. In addition to the common increase in velocity across the stations, there are excursions in velocity on the same order lasting several days. Amplitude decreases as the station's distance from the vent increases suggesting these excursions may be attributed to changes within the volcanic edifice. Two occurrences are highlighted in the figure in which it is seen that the amplitudes at stations V06 and V07, the stations farthest from the vent, are smaller. Similar short temporal excursions were seen in the auto-correlations from 2011, however, there was little to no increase in the overall velocity.ercent change in velocity at Villarrica Volcano, Chile from March to October 2010 (stations offset by 0.2%)

  9. Development of a State-Wide 3-D Seismic Tomography Velocity Model for California

    NASA Astrophysics Data System (ADS)

    Thurber, C. H.; Lin, G.; Zhang, H.; Hauksson, E.; Shearer, P.; Waldhauser, F.; Hardebeck, J.; Brocher, T.

    2007-12-01

    We report on progress towards the development of a state-wide tomographic model of the P-wave velocity for the crust and uppermost mantle of California. The dataset combines first arrival times from earthquakes and quarry blasts recorded on regional network stations and travel times of first arrivals from explosions and airguns recorded on profile receivers and network stations. The principal active-source datasets are Geysers-San Pablo Bay, Imperial Valley, Livermore, W. Mojave, Gilroy-Coyote Lake, Shasta region, Great Valley, Morro Bay, Mono Craters-Long Valley, PACE, S. Sierras, LARSE 1 and 2, Loma Prieta, BASIX, San Francisco Peninsula and Parkfield. Our beta-version model is coarse (uniform 30 km horizontal and variable vertical gridding) but is able to image the principal features in previous separate regional models for northern and southern California, such as the high-velocity subducting Gorda Plate, upper to middle crustal velocity highs beneath the Sierra Nevada and much of the Coast Ranges, the deep low-velocity basins of the Great Valley, Ventura, and Los Angeles, and a high- velocity body in the lower crust underlying the Great Valley. The new state-wide model has improved areal coverage compared to the previous models, and extends to greater depth due to the data at large epicentral distances. We plan a series of steps to improve the model. We are enlarging and calibrating the active-source dataset as we obtain additional picks from investigators and perform quality control analyses on the existing and new picks. We will also be adding data from more quarry blasts, mainly in northern California, following an identification and calibration procedure similar to Lin et al. (2006). Composite event construction (Lin et al., in press) will be carried out for northern California for use in conventional tomography. A major contribution of the state-wide model is the identification of earthquakes yielding arrival times at both the Northern California Seismic

  10. Elastic Wave Velocity Measurements for Clinohumite and Phase A to 11 GPa: Seismic and Petrologic Implications

    NASA Astrophysics Data System (ADS)

    Ulmer, P.; Phan, H. T.; Reusser, E.; Burlini, L.

    2009-12-01

    Ultrasonic wave propagation velocities of polycrystalline aggregates of the dense hydrous magnesium silicate phases (DHMS) clinohumite (Mg9Si4O16(OH)2)and phase A (Mg7Si2O8(OH)6) have been measured at 1 to 11 GPa and room temperature condition. Starting materials were prepared by a sol-gel technique and synthesis experiments were conducted with a rocking piston cylinder and multi-anvil apparatus to produce homogenous fine-grained polycrystalline aggregates. Measurements were carried out in a multi-anvil device employing ultrasonic wave propagation techniques. Simultaneous compression (P) and shear (S) waves were created by Li-Niobate dual transducers with a resonant frequency in the range of 10-40 MHz. Using the third-order finite-strain equation of state elastic moduli and their derivatives were derived for clinohumite: KSo= 119(2) GPa, K’S= 4.8(1), G= 77(1) GPa and G’=1.9(2); and phase A: KSo=100(1) GPa, K’S=6.3(1), G=61(1) GPa, and G’=2.2(1). Elastic data of the principal anhydrous and hydrous phases stable at post-serpentine conditions derived from this study and literature values combined with petrologic phase assembly constraints were utilized to compute the seismic velocities of hydrous peridotite compositions with different degrees of hydration at subduction zone condition, where clinohumite and phase A are stable and form the principal H2O repositories. These calculations reveal some noteworthy and not necessarily expected results: Calculated Vp and Vs at a constant temperature of 1073K (800 °C) and pressures varying from 5 to 11 GPa indicate that the hydrous phases clinohumite and phase A exhibit a similar or stronger, positive pressure dependence than the anhydrous phases considered (olivine, garnets, high- and low-Ca pyroxenes) resulting in increasing isothermal seismic velocities with in increasing pressure. Computed, aggregate (rock) seismic velocities of hydrated peridotite are higher than anhydrous, olivine-dominated peridotite due to the

  11. Seismic scattering and velocity structure near the Earth's core-mantle boundary beneath the South China Sea and north Indonesia

    NASA Astrophysics Data System (ADS)

    Yao, J.; Wen, L.

    2013-12-01

    We constrain seismic scatterers near the Earth's core-mantle boundary beneath the South China Sea and north Indonesia using the observed PKP precursory energy and velocity structure in the region using the travel time of the core-reflected phases. The PKP precursor data are collected from the seismic data recorded in the USArray and the core-reflected seismic data include ScS and ScP phases recorded in the China National Digital Seismographic Network, the F-net in Japan, the Global Seismographic Network and several regional arrays. Migration of PKP precursory energy reveals crescent-shaped scatterers distributed from the middle of the South China Sea to the north of Sulawesi Island. ScSH-SH differential-travel-times suggest a complex shear-velocity structure near the core-mantle boundary, changing from a low-velocity patch to a high shear-velocity patch and to another low shear-velocity patch from east to west beneath the middle of the South China Sea. ScP-P differential travel-time residuals reveal a low-velocity patch in northeast of Sulawesi Sea, a high-velocity patch in north of Sulawesi Sea, another low-velocity patch in the middle of Sulawesi Sea and another high-velocity patch in north of the Kalimantan Island. Overall, the seismic structure in the region can be characterized by alternative presence of high- and low-velocity patches near the core-mantle boundary, with the abrupt shear-wave velocity changes between the patches being the source of seismic scattering in the region.

  12. Monitoring in situ deformation induced by a fluid injection in a fault zone in shale using seismic velocity changes

    NASA Astrophysics Data System (ADS)

    Rivet, D.; De Barros, L.; Guglielmi, Y.; Castilla, R.

    2015-12-01

    We monitor seismic velocity changes during an experiment at decametric scale aimed at artificially reactivate a fault zone by a high-pressure hydraulic injection in a shale formation of the underground site of Tournemire, South of France. A dense and a multidisciplinary instrumentation, with measures of pressure, fluid flow, strain, seismicity, seismic properties and resistivity allow for the monitoring of this experiment. We couple hydromechanical and seismic observations of the fault and its adjacent areas to better understand the deformation process preceding ruptures, and the role played by fluids. 9 accelerometers recorded repeated hammers shots on the tunnel walls. For each hammer shot we measured small travel time delays on direct P and S waves. We then located the seismic velocity perturbations using a tomography method. At low injection pressure, i.e. P< 15 Bars, we observe an increase of P-waves velocity around the injection, while we measure no change in S waves velocity. When the pressure overcomes 15 Bars, velocity perturbations dramatically increase with both P and S waves affected. A decrease of velocity is observed close to the injection point and is surrounded by regions of increasing velocity. Our observations are consistent with hydromechanical measures. Below 15 Bars, we interpret the P-wave velocity increase to be related to the compression of the fault zone around the injection chamber. Above 15 Bars, we measure a shear and dilatant fault movement, and a rapid increase in the injected fluid flow. At this step, our measures are coherent with a poroelastic opening of the fault with velocities decrease at the injection source and velocities increase related to stress transfer in the far field. Velocity changes prove to be efficient to monitor stress/strain variation in an activated fault, even if these observations might produce complex signals due to the highly contrasted hydromechanical responses in a heterogeneous media such as a fault zone.

  13. Changes in seismic velocity during the first 14 months of the 2004-2008 eruption of Mount St. Helens, Washington

    NASA Astrophysics Data System (ADS)

    Hotovec-Ellis, A. J.; Vidale, J. E.; Gomberg, J.; Thelen, W.; Moran, S. C.

    2015-09-01

    Mount St. Helens began erupting in late 2004 following an 18 year quiescence. Swarms of repeating earthquakes accompanied the extrusion of a mostly solid dacite dome over the next 4 years. In some cases the waveforms from these earthquakes evolved slowly, likely reflecting changes in the properties of the volcano that affect seismic wave propagation. We use coda-wave interferometry to quantify small changes in seismic velocity structure (usually <1%) between two similar earthquakes and employed waveforms from several hundred families of repeating earthquakes together to create a continuous function of velocity change observed at permanent stations operated within 20 km of the volcano. The high rate of earthquakes allowed tracking of velocity changes on an hourly time scale. Changes in velocity were largest near the newly extruding dome and likely related to shallow deformation as magma first worked its way to the surface. We found strong correlation between velocity changes and the inverse of real-time seismic amplitude measurements during the first 3 weeks of activity, suggesting that fluctuations of pressure in the shallow subsurface may have driven both seismicity and velocity changes. Velocity changes during the remainder of the eruption likely result from a complex interplay of multiple effects and are not well explained by any single factor alone, highlighting the need for complementary geophysical data when interpreting velocity changes.

  14. Seismic velocity structure and spatial distribution of reflection intensity off the Boso Peninsula, Central Japan, revealed by an ocean bottom seismographic experiment

    NASA Astrophysics Data System (ADS)

    Kono, Akihiro; Sato, Toshinori; Shinohara, Masanao; Mochizuki, Kimihiro; Yamada, Tomoaki; Uehira, Kenji; Shinbo, Takashi; Machida, Yuuya; Hino, Ryota; Azuma, Ryosuke

    2016-04-01

    Off the Boso Peninsula, central Japan, where the Sagami Trough is in the south and the Japan Trench is in the east, there is a triple junction where the Pacific plate (PAC), the Philippine Sea plate (PHS) and the Honshu island arc (HIA) meet each other. In this region, the PAC subducts beneath the PHS and the HIA, and the PHS subducts beneath the HIA. Due to the subduction of 2 oceanic plates, numerous seismic events took place in the past. In order to understand these events, it is important to image structure of these plates. Hence, many researchers attempted to reveal the substructure from natural earthquakes and seismic experiments. Because most of the seismometers are placed inland area and the regular seismicity off Boso is inactive, it is difficult to reveal the precise substructure off Boso area using only natural earthquakes. Although several marine seismic experiments using active sources were conducted, vast area remains unclear off Boso Peninsula. In order to improve the situation, a marine seismic experiment, using airgun as an active source, was conducted from 30th July to 4th of August, 2009. The survey line has 216 km length and 20 Ocean Bottom Seismometers (OBSs) were placed on it. We estimated 2-D P-wave velocity structure from the airgun data using the PMDM (Progressive Model Development Method; Sato and Kenett, 2000) and the FAST (First Arrival Seismic Tomography ; Zelt and Barton, 1998). Furthermore, we identified the probable reflection phases from the data and estimated the location of reflectors using Travel time mapping method (Fujie et al. 2006). We found some reflection phases from the data, and the reflectors are located near the region where P-wave velocity is 5.0 km/s. We interpret that the reflectors indicate the plate boundary between the PHS and the HIA. The variation of the intensity of reflection along the upper surface of PHS seems to be consistent with the result from previous reflection seismic experiment conducted by Kimura et

  15. First seismic shear wave velocity profile of the lunar crust as extracted from the Apollo 17 active seismic data by wavefield gradient analysis

    NASA Astrophysics Data System (ADS)

    Sollberger, David; Schmelzbach, Cedric; Robertsson, Johan O. A.; Greenhalgh, Stewart A.; Nakamura, Yosio; Khan, Amir

    2016-04-01

    We present a new seismic velocity model of the shallow lunar crust, including, for the first time, shear wave velocity information. So far, the shear wave velocity structure of the lunar near-surface was effectively unconstrained due to the complexity of lunar seismograms. Intense scattering and low attenuation in the lunar crust lead to characteristic long-duration reverberations on the seismograms. The reverberations obscure later arriving shear waves and mode conversions, rendering them impossible to identify and analyze. Additionally, only vertical component data were recorded during the Apollo active seismic experiments, which further compromises the identification of shear waves. We applied a novel processing and analysis technique to the data of the Apollo 17 lunar seismic profiling experiment (LSPE), which involved recording seismic energy generated by several explosive packages on a small areal array of four vertical component geophones. Our approach is based on the analysis of the spatial gradients of the seismic wavefield and yields key parameters such as apparent phase velocity and rotational ground motion as a function of time (depth), which cannot be obtained through conventional seismic data analysis. These new observables significantly enhance the data for interpretation of the recorded seismic wavefield and allow, for example, for the identification of S wave arrivals based on their lower apparent phase velocities and distinct higher amount of generated rotational motion relative to compressional (P-) waves. Using our methodology, we successfully identified pure-mode and mode-converted refracted shear wave arrivals in the complex LSPE data and derived a P- and S-wave velocity model of the shallow lunar crust at the Apollo 17 landing site. The extracted elastic-parameter model supports the current understanding of the lunar near-surface structure, suggesting a thin layer of low-velocity lunar regolith overlying a heavily fractured crust of basaltic

  16. Upper mantle seismic velocity structure beneath the Kenya Rift and the Arabian Shield

    NASA Astrophysics Data System (ADS)

    Park, Yongcheol

    Upper mantle structure beneath the Kenya Rift and Arabian Shield has been investigated to advance our understanding of the origin of the Cenozoic hotspot tectonism found there. A new seismic tomographic model of the upper mantle beneath the Kenya Rift has been obtained by inverting teleseismic P-wave travel time residuals. The model shows a 0.5--1.5% low velocity anomaly below the Kenya Rift extending to about 150 km depth. Below ˜150 km depth, the anomaly broadens to the west toward the Tanzania Craton, suggesting a westward dip to the structure. The P- and S-wave velocity structure beneath the Arabian Shield has been investigated using travel-time tomography. Models for the seismic velocity structure of the upper mantle between 150 and 400 depths reveal a low velocity region (˜1.5% in the P model and ˜3% in the S model) trending NW-SE along the western side of the Arabian Shield and broadening to the northeast beneath the MMN volcanic line. The models have limited resolution above 150 km depth everywhere under the Shield, and in the middle part of the Shield the resolution is limited at all depths. Rayleigh wave phase velocity measurements have been inverted to image regions of the upper mantle under the Arabian Shield not well resolved by the body wave tomography. The shear wave velocity model obtained shows upper mantle structure above 200 km depth. A broad low velocity region in the lithospheric mantle (depths of ≤ ˜100 km) across the Shield is observed, and below ˜150 km depth a region of low shear velocity is imaged along the Red Sea coast and MMN volcanic line. A westward dipping low velocity zone beneath the Kenya Rift is consistent with an interpretation by Nyblade et al. [2000] suggesting that a plume head is located under the eastern margin of the Tanzania Craton, or alternatively a superplume rising from the lower mantle from the west and reaching the surface under Kenya [e.g., Debayle et al., 2001; Grand et al., 1997; Ritsema et al., 1999]. For

  17. High-Resolution Inverse-Based Determination of Seismic-Velocity Structure in Basins

    NASA Astrophysics Data System (ADS)

    Akcelik, V.; Bielak, J.; Epanomeritakis, I.; Ghattas, O.

    2004-12-01

    Starting with the pioneering work of Aki, Christoffersson, and Husebye in 1976, there has been an increasing interest in developing inversion techniques for determining the three-dimensional crustal velocity structure in seismic regions. In this paper we describe a methodology that capitalizes on recent advances in optimization methods to adapt, extend, and refine powerful nonlinear Newton-Krylov adjoint-based inverse wave propagation algorithms to two- and three-dimensional velocity structure and kinematic source inversion problems. We present results of high resolution models for two-dimensional sedimentary valleys undergoing antiplane motion, and three dimensional acoustic approximations of models of the San Fernando Valley using parallel scalable inversion algorithms that overcome many of the difficulties particular to inverse heterogeneous wave propagation problems.

  18. A critical appraisal of asymptotic 3D-to-2D data transformation filters and the potential of complex frequency 2.5-D modeling in seismic full waveform inversion

    NASA Astrophysics Data System (ADS)

    Auer, L.; Greenhalgh, S. A.; Maurer, H. R.; Marelli, S.; Nuber, A.

    2012-04-01

    Seismic full waveform inversion is often based on forward modeling in the computationally attractive 2-D domain. Any solution of the 2-D cartesian wave equation inherently carries the implicit assumption of a line source extended in the out-of-plane medium invariant direction. This implies that the source energy in homogeneous media spreads over the surface of an approximately expanding cylinder, such that the wavefield amplitudes (at least in the far field) scale inversely with the square-root of distance. However, realistic point sources like explosives or airguns, fired in a 3-D medium, generate amplitudes that decay inversely with the first power of distance, since the wavefield expands quasi-spherically in all three dimensions. Usually, practitioners correct for this amplitude difference and the associated phase shift of π/4 by transforming the recorded 3-D field data to the approximate 2-D situation by using simplistic, asymptotic filter algorithms. Such filters operate on a square root of time-sample convolutional basis and implicitly assume straight ray paths and a constant velocity medium. The unsubstantiated usage of these asymptotic filters is in contradiction to their well known limitations. In this study, we present an extensive quantitative appraisal of 3D-to-2D data transformation procedures. Our analysis relies on a simple numerical modeling study, based on propagating 3-D and 2-D wavefields through 2-D media and comparing the true 2-D and the filtered 3-D synthetic data. It is shown that the filtering errors are moderate in purely acoustic situations but become substantial in complex media when arrivals overlap each other or ray paths deviate strongly from straight lines. Normalized root-mean-square deviations up to 5% and maximum relative time domain errors of up to 40% were found in high contrast media, when full elastic treatment was considered. In order to examine if this error translates into a deficient model reconstruction in full waveform

  19. A California statewide three-dimensional seismic velocity model from both absolute and differential times

    USGS Publications Warehouse

    Lin, G.; Thurber, C.H.; Zhang, H.; Hauksson, E.; Shearer, P.M.; Waldhauser, F.; Brocher, T.M.; Hardebeck, J.

    2010-01-01

    We obtain a seismic velocity model of the California crust and uppermost mantle using a regional-scale double-difference tomography algorithm. We begin by using absolute arrival-time picks to solve for a coarse three-dimensional (3D) P velocity (VP) model with a uniform 30 km horizontal node spacing, which we then use as the starting model for a finer-scale inversion using double-difference tomography applied to absolute and differential pick times. For computational reasons, we split the state into 5 subregions with a grid spacing of 10 to 20 km and assemble our final statewide VP model by stitching together these local models. We also solve for a statewide S-wave model using S picks from both the Southern California Seismic Network and USArray, assuming a starting model based on the VP results and a VP=VS ratio of 1.732. Our new model has improved areal coverage compared with previous models, extending 570 km in the SW-NE directionand 1320 km in the NW-SE direction. It also extends to greater depth due to the inclusion of substantial data at large epicentral distances. Our VP model generally agrees with previous separate regional models for northern and southern California, but we also observe some new features, such as high-velocity anomalies at shallow depths in the Klamath Mountains and Mount Shasta area, somewhat slow velocities in the northern Coast Ranges, and slow anomalies beneath the Sierra Nevada at midcrustal and greater depths. This model can be applied to a variety of regional-scale studies in California, such as developing a unified statewide earthquake location catalog and performing regional waveform modeling.

  20. 3-D Crustal Velocity Structure Across the Vrancea Zone in Romania, Derived From Seismic Data

    NASA Astrophysics Data System (ADS)

    Landes, M.; Hauser, F.; Popa, M.

    2002-12-01

    The Vrancea zone in the south-eastern Carpathians is one of the most active seismic zones in Europe. In order to study the crustal and upper-mantle structure in this region, two seismic refraction/wide-angle reflection experiments were carried out in 1999 and 2001. The 1999 campaign comprised a 320 km long N-S profile and a 80 km long transverse profile (E-W). All shots were recorded simultaneously on both profiles. The profile conducted in 2001 extended in E-W direction from the Hungarian border across the Vrancea zone to the Black Sea. We present an application of a 3-D refraction and reflection tomography algorithm (Hole 1992, 1995), elaborating the crustal velocity and interface structure within a 115 x 235 km wide region around the Vrancea zone. In order to enhance the model resolution, first arrival data from local earthquakes of the CALIXTO-99 teleseismic project were also included. The results indicate a high-velocity structure beneath the northern part of the Vrancea zone extending from shallow levels to depths of about 11 km. This structure may be related to the Trotus and Capidava-Ovidiu faults, which converge to the north of it. The high-velocity region is surrounded by the lower velocity Focsani and Brasov basins. The sedimentary succession beneath the southern part of the model extends to 18 km depth, while in the north sediment thickness varies between 10 and 15 km. Further results of the interface modelling of prominent reflections show that the mid-crustal and Moho interfaces shallow northwards from 30 km to 22 km and from 42 km to 38 km, respectively. This correlates well with previous results of Hauser et al. (2001).

  1. Imaging seismic velocity structure beneath the Iceland hot spot: A finite frequency approach

    NASA Astrophysics Data System (ADS)

    Hung, Shu-Huei; Shen, Yang; Chiao, Ling-Yun

    2004-08-01

    Tomographic models based on hypothetically infinite frequency ray interpretation of teleseismic travel time shifts have revealed a region of relatively low P and S wave speeds extending from shallow mantle to 400 km depth beneath Iceland. In reality, seismic waves have finite frequency bandwidths and undergo diffractive wave front healing. The limitation in ray theory leaves large uncertainties in the determinations of the magnitude and shape of the velocity anomaly beneath Iceland and its geodynamic implications. We developed a tomographic method that utilizes the banana-shaped sensitivity of finite frequency relative travel times from the paraxial kernel theory. Using available seismic data from the ICEMELT and HOTSPOT experiments, we applied the new method to image subsurface velocity structure beneath Iceland. Taking advantage that the sensitivity volume of broadband waveforms varies with frequency, we measured relative delay times in three frequency ranges from 0.03 to 2 Hz for P and 0.02 to 0.5 Hz for S waves. Given similar fit to data, the kernel-based models yield the root-mean-square amplitudes of P and S wave speed perturbations about 2-2.8 times those from ray tomography in the depths of 150-400 km. The kernel-based images show that a columnar low-velocity region having a lateral dimension of ˜250-300 km extends to the base of the upper mantle beneath central Iceland, deeper than that resolved by the ray-based studies. The improved resolution in the upper mantle transition zone is attributed to the deeper crossing of broad off-path sensitivity of travel time kernels than in ray approximation and frequency-dependent wave front healing as an intrinsic measure of the distance from velocity heterogeneity to receivers.

  2. Can seismic tomography detect weak velocity changes? The practical application for the volcanoes in the Tohoku region.

    NASA Astrophysics Data System (ADS)

    Gladkov, Valery; Koulakov, Ivan

    2016-04-01

    Temporal variations of seismic velocities in the active volcanic areas may give us important information about its evolution and development of geologic processes inside it. Usually we use "direct" method to reveal velocity changes with use of body wave's data. In this method, a whole period of observations is divided into a several interesting for us periods. For each period, we obtain a seismic velocity model by means of seismic tomography. Finally, a seismic velocity changes between chosen periods is a difference between inverted velocity models for these periods. In case of weak velocity changes, this approach fails due to factors of varying events location and "event-station" rays distribution which influence can raise a false and apparent velocity changes in the model. With the aim to eliminate these factors and to increase the reliability of velocity changes detection, we propose an approach, which improves the similarity of datasets used for seismic tomography in different time periods by rejection some input events and rays information. We used this approach to the data of the Japan Meteorological Agency, which includes several years before and after the Mw 9.0 Tohoku-Oki event that occurred on 11.03.2011. We performed careful testing using different synthetic models, showing that the selected data subsets reveal weak velocity changes with amplitudes above 0.5%. We detected velocity reductions of P-waves on 0.8% and S-waves on 0.6% in the central area of Honshu possibly linked with the fluid system properties changes which triggered by Tohoku-Oki earthquake.

  3. The thin section rock physics: Modeling and measurement of seismic wave velocity on the slice of carbonates

    NASA Astrophysics Data System (ADS)

    Wardaya, P. D.; Noh, K. A. B. M.; Yusoff, W. I. B. W.; Ridha, S.; Nurhandoko, B. E. B.

    2014-09-01

    This paper discusses a new approach for investigating the seismic wave velocity of rock, specifically carbonates, as affected by their pore structures. While the conventional routine of seismic velocity measurement highly depends on the extensive laboratory experiment, the proposed approach utilizes the digital rock physics view which lies on the numerical experiment. Thus, instead of using core sample, we use the thin section image of carbonate rock to measure the effective seismic wave velocity when travelling on it. In the numerical experiment, thin section images act as the medium on which wave propagation will be simulated. For the modeling, an advanced technique based on artificial neural network was employed for building the velocity and density profile, replacing image's RGB pixel value with the seismic velocity and density of each rock constituent. Then, ultrasonic wave was simulated to propagate in the thin section image by using finite difference time domain method, based on assumption of an acoustic-isotropic medium. Effective velocities were drawn from the recorded signal and being compared to the velocity modeling from Wyllie time average model and Kuster-Toksoz rock physics model. To perform the modeling, image analysis routines were undertaken for quantifying the pore aspect ratio that is assumed to represent the rocks pore structure. In addition, porosity and mineral fraction required for velocity modeling were also quantified by using integrated neural network and image analysis technique. It was found that the Kuster-Toksoz gives the closer prediction to the measured velocity as compared to the Wyllie time average model. We also conclude that Wyllie time average that does not incorporate the pore structure parameter deviates significantly for samples having more than 40% porosity. Utilizing this approach we found a good agreement between numerical experiment and theoretically derived rock physics model for estimating the effective seismic wave

  4. The thin section rock physics: Modeling and measurement of seismic wave velocity on the slice of carbonates

    SciTech Connect

    Wardaya, P. D. Noh, K. A. B. M. Yusoff, W. I. B. W.; Ridha, S.; Nurhandoko, B. E. B.

    2014-09-25

    This paper discusses a new approach for investigating the seismic wave velocity of rock, specifically carbonates, as affected by their pore structures. While the conventional routine of seismic velocity measurement highly depends on the extensive laboratory experiment, the proposed approach utilizes the digital rock physics view which lies on the numerical experiment. Thus, instead of using core sample, we use the thin section image of carbonate rock to measure the effective seismic wave velocity when travelling on it. In the numerical experiment, thin section images act as the medium on which wave propagation will be simulated. For the modeling, an advanced technique based on artificial neural network was employed for building the velocity and density profile, replacing image's RGB pixel value with the seismic velocity and density of each rock constituent. Then, ultrasonic wave was simulated to propagate in the thin section image by using finite difference time domain method, based on assumption of an acoustic-isotropic medium. Effective velocities were drawn from the recorded signal and being compared to the velocity modeling from Wyllie time average model and Kuster-Toksoz rock physics model. To perform the modeling, image analysis routines were undertaken for quantifying the pore aspect ratio that is assumed to represent the rocks pore structure. In addition, porosity and mineral fraction required for velocity modeling were also quantified by using integrated neural network and image analysis technique. It was found that the Kuster-Toksoz gives the closer prediction to the measured velocity as compared to the Wyllie time average model. We also conclude that Wyllie time average that does not incorporate the pore structure parameter deviates significantly for samples having more than 40% porosity. Utilizing this approach we found a good agreement between numerical experiment and theoretically derived rock physics model for estimating the effective seismic wave

  5. DIRDOP: a directivity approach to determining the seismic rupture velocity vector

    NASA Astrophysics Data System (ADS)

    Caldeira, Bento; Bezzeghoud, Mourad; Borges, José F.

    2010-07-01

    Directivity effects are a characteristic of seismic source finiteness and are a consequence of the rupture spread in preferential directions. These effects are manifested through seismic spectral deviations as a function of the observation location. The directivity by Doppler effect method permits estimation of the directions and rupture velocities, beginning from the duration of common pulses, which are identified in waveforms or relative source time functions. The general model of directivity that supports the method presented here is a Doppler analysis based on a kinematic source model of rupture (Haskell, Bull Seismol Soc Am 54:1811-1841, 1964) and a structural medium with spherical symmetry. To evaluate its performance, we subjected the method to a series of tests with synthetic data obtained from ten typical seismic ruptures. The experimental conditions studied correspond with scenarios of simple and complex, unilaterally and bilaterally extended ruptures with different mechanisms and datasets with different levels of azimuthal coverage. The obtained results generally agree with the expected values. We also present four real case studies, applying the method to the following earthquakes: Arequipa, Peru ( M w = 8.4, June 23, 2001); Denali, AK, USA ( M w = 7.8; November 3, 2002); Zemmouri-Boumerdes, Algeria ( M w = 6.8, May 21, 2003); and Sumatra, Indonesia ( M w = 9.3, December 26, 2004). The results obtained from the dataset of the four earthquakes agreed, in general, with the values presented by other authors using different methods and data.

  6. Seismic detection of a low-velocity layer beneath the southeast flank of Mauna Loa, Hawaii

    SciTech Connect

    Thurber, C.H.; Li, Yingping ); Johnson, C.

    1989-07-01

    The authors have identified seismic phases reflected off the top and bottom of a low velocity layer (LVL) by analysis of seismograms from six small earthquakes in Hawaii. These events occurred almost directly beneath station AIN of the Hawaiian Volcano Observatory (HVO) seismic network, located within the Kaoiki seismic zone on the southeast flank of Mauna Loa. The polarity reversals of the first reflected phases provide clear evidence for the existence of a LVL beneath this station. The LVL is estimated to be at a depth of about 11.5 km, with a thickness of about 800 m. The estimated depth to the top of the LVL is consistent with the depth distribution of low-angle thrust faulting events from the aftershock sequence of the 1983 Kaoiki earthquake. Presumably, this zone is the marine sediment layer buried beneath the volcanic pile, along which the volcanic edifice may slip easily to cause large earthquakes. Mapping the interface between the volcanic pile and oceanic crust and thus determining the depth and thickness of the buried sediment layer is essential for understanding the tectonics of large earthquakes in Hawaii.

  7. The Influence of Volcanic Processes on the Distribution of Seismic Velocity Changes at Piton de la Fournaise Volcano (La Reunion)

    NASA Astrophysics Data System (ADS)

    Sens-Schönfelder, Christoph; Pomponi, Eraldo

    2014-05-01

    The velocity of seismic waves propagating in the edifice of Piton de la Fournaise volcano (La Reunion) is known to change in response to volcanic eruptions. Here we present a detailed investigation of a the period from end of 2009 until end of 2011 that contains eruptions, non-eruptive intrusions and periods of relaxation and perform a detailed comparison of the associated velocity signals. We use data from by 21 seismograph stations of the IPGP/OVPF seismic network installed on Piton de la Fournaise volcano within the UnderVolc project. Seismic noise of vertical and horizontal components of all possible station pairs is cross-correlated in chunks of 24 hours to obtain daily approximations of Green's functions in order to monitor tiny changes in therein that are related to changes of the elastic properties in the volcano. Velocity changes are measured as apparent stretching of the coda. For some station pairs the apparent velocity changes exceed 1% and a decorrelation of waveforms is observed at the time of volcanic activity. This distorts monitoring results if changes are measured with respect to a global reference. To overcome this we present a method to estimate changes using multiple references that stabilizes the quality of estimated velocity changes. We observe abrupt changes that occur coincident with volcanic events as well as long term transient signals. Using a simple assumption about the spatial sensitivity of our measurements we can map the spatial distribution of velocity changes for selected periods. Comparing these signals with volcanic activity and GPS derived surface displacement we can identify patterns of the velocity changes that appear characteristic for the different types of volcanic activity. We can differentiate intrusive processes associated with inflation and increased seismic activity, periods of relaxation without seismicity and eruptions solely based on the velocity signal. This information can help to assess the processes acting in

  8. Crustal seismic velocity structure from Eratosthenes Seamount to Hecataeus Rise across the Cyprus Arc, eastern Mediterranean

    NASA Astrophysics Data System (ADS)

    Welford, J. Kim; Hall, Jeremy; Hübscher, Christian; Reiche, Sönke; Louden, Keith

    2015-02-01

    Wide-angle reflection/refraction seismic profiles were recorded across the Cyprus Arc, the plate boundary between the African Plate and the Aegean-Anatolian microplate, from the Eratosthenes Seamount to the Hecataeus Rise immediately south of Cyprus. The resultant models were able to resolve detail of significant lateral velocity variations, though the deepest crust and Moho are not well resolved from the seismic data alone. Conclusions from the modelling suggest that (i) Eratosthenes Seamount consists of continental crust but exhibits a laterally variable velocity structure with a thicker middle crust and thinner lower crust to the northeast; (ii) the Hecataeus Rise has a thick sedimentary rock cover on an indeterminate crust (likely continental) and the crust is significantly thinner than Eratosthenes Seamount based on gravity modelling; (iii) high velocity basement blocks, coincident with highs in the magnetic field, occur in the deep water between Eratosthenes and Hecataeus, and are separated and bounded by deep low-velocity troughs and (iv) one of the high velocity blocks runs parallel to the Cyprus Arc, while the other two appear linked based on the magnetic data and run NW-SE, parallel to the margin of the Hecataeus Rise. The high velocity block beneath the edge of Eratosthenes Seamount is interpreted as an older magmatic intrusion while the linked high velocity blocks along Hecataeus Rise are interpreted as deformed remnant Tethyan oceanic crust or mafic intrusives from the NNW-SSE oriented transform margin marking the northern boundary of Eratosthenes Seamount. Eratosthenes Seamount, the northwestern limit of rifted continental crust from the Levant Margin, is part of a jagged rifted margin transected by transform faults on the northern edge of the lower African Plate that is being obliquely subducted under the Aegean-Anatolian upper plate. The thicker crust of Eratosthenes Seamount may be acting as an asperity on the subducting slab, locally locking up

  9. Insights into Gulf of Mexico Gas Hydrate Study Sites GC955 and WR313 from New Multicomponent and High-Resolution 2D Seismic Data

    NASA Astrophysics Data System (ADS)

    Haines, S. S.; Hart, P. E.; Collett, T. S.; Shedd, W. W.; Frye, M.

    2014-12-01

    In 2013, the U.S. Geological Survey led a seismic acquisition expedition in the Gulf of Mexico, acquiring multicomponent data and high-resolution 2D multichannel seismic (MCS) data at Green Canyon 955 (GC955) and Walker Ridge 313 (WR313). Based on previously collected logging-while-drilling (LWD) borehole data, these gas hydrate study sites are known to include high concentrations of gas hydrate within sand layers. At GC955 our new 2D data reveal at least three features that appear to be fluid-flow pathways (chimneys) responsible for gas migration and thus account for some aspects of the gas hydrate distribution observed in the LWD data. Our new data also show that the main gas hydrate target, a Pleistocene channel/levee complex, has an areal extent of approximately 5.5 square kilometers and that a volume of approximately 3 x 107 cubic meters of this body lies within the gas hydrate stability zone. Based on LWD-inferred values and reasonable assumptions for net sand, sand porosity, and gas hydrate saturation, we estimate a total equivalent gas-in-place volume of approximately 8 x 108 cubic meters for the inferred gas hydrate within the channel/levee deposits. At WR313 we are able to map the thin hydrate-bearing sand layers in considerably greater detail than that provided by previous data. We also can map the evolving and migrating channel feature that persists in this area. Together these data and the emerging results provide valuable new insights into the gas hydrate systems at these two sites.

  10. Comparison of Active and Passive Seismic Methods for Calculating Shear-wave Velocity Profiles: An Example from Hartford County, Connecticut

    NASA Astrophysics Data System (ADS)

    Morton, S.; Lane, J. W.; Liu, L.; Thomas, M. A.

    2013-12-01

    Seismic hazard classifications have been developed for Hartford County, Connecticut based primarily on mapping of surficial materials and depositional environment using criteria specified by the National Earthquake Hazard Reduction Program (NEHRP). A study using near-surface seismic techniques to measure shear-wave velocities in Connecticut was initiated in support of broader seismic hazard mapping efforts undertaken by New England State Geologists. Thirty field sites in Hartford County representative of the range of mapped seismic hazard classes were chosen based on the availability of boring logs and adequate open space for the geophysical surveys. Because it can be difficult to acquire multi-channel seismic data in urban areas due to unwanted noise and open space restrictions, we also investigated the use of passive single-station seismometer measurements as a compact supplement and potential alternative to long-offset multi-channel measurements. Here we compare the results of active-source multi-channel analysis of surface waves (MASW) and passive horizontal-to-vertical spectral ratio (HVSR) seismic methods to determine shear-wave velocity profiles and seismic hazard classification based on Vs30 in glacial sediments throughout Hartford County, Connecticut. HVSR-derived seismic resonances were used as a constraint during inversion of the MASW dispersion curve to reduce model misfit and improve model comparison to site lithology.

  11. One-dimensional seismic response of two-layer soil deposits with shear wave velocity inversion

    SciTech Connect

    Ding Yuqin; Pagliaroli, Alessandro; Lanzo, Giuseppe

    2008-07-08

    The paper presents the results of a parametric study with the purpose of investigating the 1D linear and equivalent linear seismic response of a 30 meters two-layer soil deposits characterized by a stiff layer overlying a soft layer. The thickness of the soft layer was assumed equal to 0.25, 0.5 and 0.75 H, being H the total thickness of the deposit. The shear wave velocity of the soft layer was assumed equal to V{sub s} = 90 and 180 m/s while for the stiff layer V{sub s} = 360, 500 and 700 m/s were considered. Six accelerograms extracted by an Italian database characterized by different predominant periods ranging from 0.1 to 0.7 s were used as input outcropping motion. For the equivalent liner analyses, the accelerograms were scaled at three different values of peak ground acceleration (PGA), namely 0.1, 0.3 and 0.5 g. The numerical results show that the two-layer ground motion is generally deamplified in terms of PGA with respect to the outcrop PGA. This reduction is mainly controlled by the shear wave velocity of the soft layer, being larger for lower V{sub s} values, by the amount of nonlinearity experienced by the soft soil during the seismic shaking and, to a minor extent, by the thickness of the soft soil layer.

  12. Noise-based seismic velocity monitoring at Piton de la Fournaise Volcano, La Réunion (Invited)

    NASA Astrophysics Data System (ADS)

    Brenguier, F.; Obermann, A.; Rivet, D. N.; Clarke, D. S.; Shapiro, N.; Campillo, M.; Larose, E. F.; Ferrazzini, V.; Lecocq, T.

    2013-12-01

    Piton de la Fournaise (PdF) Volcano, a shield basaltic volcano located on La Réunion island, has been strongly active these last 15 years with 2 eruptions per year on average. In April 2007, an unusually strong eruption occurred on the volcano's south-eastern flank, ejecting a volume of over 240.10^6 m^3 of lava, that is, ten times more than the typical value during the preceding decade (Staudacher et al. 2009). A few days later (5 April 2007), the summit crater collapsed by 340 m. Since then, magmatic activity at PdF decayed (last eruption in December 2010). Since 2000, Piton de la Fournaise Volcano Observatory has recorded seismic signals continuously from 20 short-period sensors located on PdF Volcano. This set of data together with recent fundamental advances in ambient noise seismology (Campillo 2006) have led to the development of a novel method to measure volcanic edifice seismic velocity changes continuously along time. We show observations of pre-eruptive changes of seismic velocities at PdF volcano that are interpreted as being linked to the edifice deformation induced by magmatic activity (magma pressure buildup, Brenguier et al. 2008). In order to measure highly precise seismic velocity changes we deployed 15 new broad-band seismic sensors on PdF volcano between 2009 and 2011 in the framework of an international project (UnderVolc, Brenguier et al. 2012). During that time period, 5 eruptions occurred and the last 10 months of records were characterized by an unusually low level of volcanic activity. We focus on the location and characterization of edifice seismic velocity changes observed few weeks prior to the October 2010 PdF eruption. We present results of lateral location of seismic velocity changes for this precursory episode. We also study long-term changes of seismic velocities for the entire studied period from 2000 to 2012. We observe an unusual strong velocity drop in 2007. A detailed analysis of this velocity drop and the comparison with

  13. Multiple transition zone seismic discontinuities and low velocity layers below western United States

    NASA Astrophysics Data System (ADS)

    Tauzin, B.; van der Hilst, R. D.; Wittlinger, G.; Ricard, Y.

    2013-05-01

    With P-to-S converted waves recorded at seismic stations of the U.S. Transportable Array, we image the fine structure of upper mantle and transition zone (TZ) beneath the western U.S. We map the topographies of seismic discontinuities by stacking data by common conversion points along profiles. Systematic depth and amplitude measurements are performed not only for the well-known "410" and "660" interfaces but also for minor seismic discontinuities identified around 350, 590, and 630 km depths. The amplitude of conversion suggests shear wave velocity (Vs) increase by 4% at the 410 and the 660. The observed 660 velocity contrast is smaller than expected from the 6% in IASP91 but consistent with a pyrolitic model of mantle composition. The Gorda plate, subducted under northern California, is tracked to the TZ where it seems to flatten and induce uplift of the 410 under northern Nevada. Maps of 410/660 amplitude/topography reveal that the TZ is anomalous beneath the geographical borders of Washington, Oregon, and Idaho, with (1) a thickened TZ, (2) a sharp change in depth of the 660, (3) a reduced 410 conversion amplitude in the North, and (4) a positive "630" discontinuity. Such anomalous structure might be inherited from the past history of plate subduction/accretion. A thinned TZ under the Yellowstone suggests higher-than-average temperatures, perhaps due to a deep thermal plume. Both the "350" and the "590" negative discontinuities extend over very large areas. They might be related either to an increased water content in the TZ, a significant amount of oceanic material accumulated through the past 100 Myr, or both.

  14. USING RECENT ADVANCES IN 2D SEISMIC TECHNOLOGY AND SURFACE GEOCHEMISTRY TO ECONOMICALLY REDEVELOP A SHALLOW SHELF CARBONATE RESERVOIR: VERNON FIELD, ISABELLA COUNTY, MI.

    SciTech Connect

    James R. Wood; T.J. Bornhorst; William B. Harrison; W. Quinlan

    2002-04-01

    The fault study continues to find more faults and develop new techniques to visualize them. Data from the Dundee Formation has been used to document 11 major faults in the Michigan Basin which have now been verified using data from other horizons. These faults control the locations of many of the large anticlinal structures in the Michigan Basin and likely controlled fluid movements as well. The surface geochemistry program is also moving along well with emphasis on measuring samples collected last sampling season. The new GC laboratory is now functional and has been fully staffed as of December. The annual project review was held March 7-9 in Tampa, Florida. Contracts are being prepared for drilling the Bower's prospects in Isabella County, Michigan, this spring or summer. A request was made to extend the scope of the project to include the Willison Basin. A demonstration well has been suggested in Burke County, N. Dakota, following a review of 2D seismic and surface geochem. A 3D seismic survey is scheduled for the prospect.

  15. HIGH-RESOLUTION SEISMIC VELOCITY AND ATTENUATION MODELS OF THE CAUCASUS-CASPIAN REGION

    SciTech Connect

    Mellors, R; Gok, R; Sandvol, E

    2007-07-10

    The southwest edge of Eurasia is a tectonically and structurally complex region that includes the Caspian and Black Sea basins, the Caucasus Mountains, and the high plateaus south of the Caucasus. Crustal and upper mantle velocities show great heterogeneity in this region and regional phases display variations in both amplitudes and travel time. Furthermore, due to a lack of quality data, the region has largely been unexplored in terms of the detailed lithospheric seismic structure. A unified high-resolution 3D velocity and attenuation model of the crust and upper mantle will be developed and calibrated. This model will use new data from 23 new broadband stations in the region analyzed with a comprehensive set of techniques. Velocity models of the crust and upper mantle will be developed using a joint inversion of receiver functions and surface waves. The surface wave modeling will use both event-based methods and ambient noise tomography. Regional phase (Pg, Pn, Sn, and Lg) Q model(s) will be constructed using the new data in combination with existing data sets. The results of the analysis (both attenuation and velocity modeling) will be validated using modeling of regional phases, calibration with selected events, and comparison with previous work. Preliminary analyses of receiver functions show considerable variability across the region. All results will be integrated into the KnowledgeBase.

  16. An empirical method to estimate shear wave velocity of soils in the New Madrid seismic zone

    USGS Publications Warehouse

    Wei, B.-Z.; Pezeshk, S.; Chang, T.-S.; Hall, K.H.; Liu, Huaibao P.

    1996-01-01

    In this study, a set of charts are developed to estimate shear wave velocity of soils in the New Madrid seismic zone (NMSZ), using the standard penetration test (SPT) N values and soil depths. Laboratory dynamic test results of soil samples collected from the NMSZ showed that the shear wave velocity of soils is related to the void ratio and the effective confining pressure applied to the soils. The void ratio of soils can be estimated from the SPT N values and the effective confining pressure depends on the depth of soils. Therefore, the shear wave velocity of soils can be estimated from the SPT N value and the soil depth. To make the methodology practical, two corrections should be made. One is that field SPT N values of soils must be adjusted to an unified SPT N??? value to account the effects of overburden pressure and equipment. The second is that the effect of water table to effective overburden pressure of soils must be considered. To verify the methodology, shear wave velocities of five sites in the NMSZ are estimated and compared with those obtained from field measurements. The comparison shows that our approach and the field tests are consistent with an error of less than of 15%. Thus, the method developed in this study is useful for dynamic study and practical designs in the NMSZ region. Copyright ?? 1996 Elsevier Science Limited.

  17. Isotropic Crustal Velocity beneath Central Idaho/ Eastern Oregon using Ambient Seismic Noise

    NASA Astrophysics Data System (ADS)

    Bremner, P. M.; Panning, M. P.; Russo, R.; Mocanu, V. I.; Stanciu, A. C.; Torpey, M.; Hongsresawat, S.

    2013-12-01

    We present a new, high resolution isotropic crustal velocity model beneath central Idaho and eastern Oregon. We produced the velocity model from vertical component Rayleigh wave group velocity measurements on data from the IDaho/ORegon (IDOR) Passive seismic network, 85 3-component broadband seismic stations, using ambient noise tomography and the method of Gallego et. al (2010). We calculated inter-station group velocities in narrow frequency bands from travel-time measurements of the stacked cross-correlations (bandpass filtered between 2 and 30 seconds), which we used to invert for velocity structure beneath the network. Goals of our work include refining models of crustal structure in the accreted Blue Mountain terranes in the western study area; determining the depth extent of the Salmon River Suture/ West Idaho Shear Zone (WISZ), which crosses north-south through the middle of the network; determining the architecture of the Idaho batholith, an extensive largely crustal derived pluton; and examining the nature of the autochthonous (?) North American crust and lithosphere beneath the batholith. We cross-correlated seismograms for each IDOR Passive station pair in 24 hr segments, and then band-passed, removed mean and trend, whitened, and progressively stacked these cross-correlated seismograms for the number of days of available data for each station pair. We made travel-time measurements in relative width, narrow frequency bands by picking the peak of the envelope of the stacked seismograms. To overcome the loss of temporal resolution in the narrow bands, we measured 1-sided cross-correlated seismograms made by adding the negative side to the positive side of the stacked seismograms, and multiplying by a step function. We derived Rayleigh wave group velocity models for each frequency band using the least-squares inversion method of Tarantola (2005). We determined depth sensitivity of the various frequency bands from group velocity dispersion curves. Similarly

  18. Shear wave velocity mapping of Hat Yai district, southern Thailand: implication for seismic site classification

    NASA Astrophysics Data System (ADS)

    Yordkayhun, Sawasdee; Sujitapan, Chedtaporn; Chalermyanont, Tanit

    2015-02-01

    Soil characteristics play an important role in the degree of ground shaking due to local site amplification during an earthquake. The objectives of this work are to study shear wave velocity (Vs) distribution in the near surface, and to develop a seismic site classification map for soil effect characterization and seismic hazard assessment in Hat Yai district, southern Thailand. The Vs determination based on the multichannel analysis of surface waves technique, has been carried out and analyzed at 70 measuring sites throughout the district. On the basis of the weighted-average Vs in the upper 30 m depth (Vs30), a seismic site classification map, based on the National Earthquake Hazards Reduction Program (NEHRP) standard has been developed. It is found that the NEHRP site class in Hat Yai can be classified into four groups in accordance with the value of Vs30 within the range of about 150 to 1160 m s-1. Most parts of the study area are typically classified as site class C and D. Site class C is mostly found within the colluvial and terrace deposits in the western and eastern part of the area, whereas site class D is concentrated in the alluvial sediment of the middle and northern flood plain areas. A small portion of site class B is observed in the western mountain ranges, where there is a thin overburden on the firm rock. There is a remarkably low Vs30 value at only one site, located near the main stream in the northern part of the study area. The results imply that the soil characteristics in the central and northern Hat Yai district pose a medium to high amplification rate with respect to the other regions. Although Vs data alone are insufficient to verify the potential of the amplification of ground shaking, this study provides an initial attempt to understand seismic hazards in the study area.

  19. Recurrence of Seismic Velocity Change associated with the Earthquake Swarm revealed by the Passive Image Interferometry

    NASA Astrophysics Data System (ADS)

    Maeda, T.; Yukutake, Y.; Obara, K.

    2008-12-01

    Auto-correlation functions (ACFs) of ambient noise, which can be interpreted as a seismic wavefield or Green"fs function for the collocated source and receiver, is a powerful tool for searching temporal change of crustal structure. In this paper, we report the detection of the velocity reduction that correlate with the earthquake swarm activity. Earthquake swarm activity had started from 6 June 2007 at mid Oita prefecture, Kyushu, Japan. High-activity lasts about 6 days. Earthquake sources are located Beppu Bay to northern portion of Yufuin fault system, having depth of about 10km. Fine-scale relocation by using precise measurement of relative traveltime by waveform cross correlation technique shows that the swarm earthquake activity migrates from NNE to WSW direction with increasing time. Four months later, small-size earthquakes are re-activated on the shallower portion along the extended line of the swarm migration at 30 October. To measure the seismic velocity change, we calculate ACFs of noise at every one day at OITA2 station that is located very close to the epicenters of earthquake swarm, operated by Japan Meteorological Agency. At first, spikes which do not relate to the ambient noise and seismic record associated with natural earthquakes have been excluded by using LTA/STA algorithm. Then, we calculate ACF of noise for every hour. By taking ensemble average of ACFs among 24 hours, we generate one-day ACFs. We estimate day- by-day change of ACFs from May to December 2007. Estimated ACFs are stable with respect to time. Especially they have very small difference between days for shorter lag time. However, we find that there is prominent phase delay for the lag time of 7 s for the frequency band of 1--3Hz from the mid of June, when earthquake swarm had started. Phase delay increases with increasing lag time in later portion of the ACF, while there are no significant phase changes in earlier lag times. This is the effect what we expect if the velocity

  20. Spreading and slope instability at the continental margin offshore Mt Etna, imaged by high-resolution 2D seismic data

    NASA Astrophysics Data System (ADS)

    Gross, Felix; Krastel, Sebastian; Behrmann, Jan-Hinrich; Papenberg, Cord; Geersen, Jacob; Ridente, Domenico; Latino Chiocci, Francesco; Urlaub, Morelia; Bialas, Jörg; Micallef, Aaron

    2015-04-01

    Mount Etna is the largest active volcano in Europe. Its volcano edifice is located on top of continental crust close to the Ionian shore in east Sicily. Instability of the eastern flank of the volcano edifice is well documented onshore. The continental margin is supposed to deform as well. Little, however, is known about the offshore extension of the eastern volcano flank and its adjacent continental margin, which is a serious shortcoming in stability models. In order to better constrain the active tectonics of the continental margin offshore the eastern flank of the volcano, we acquired and processed a new marine high-resolution seismic and hydro-acoustic dataset. The data provide new detailed insights into the heterogeneous geology and tectonics of shallow continental margin structures offshore Mt Etna. In a similiar manner as observed onshore, the submarine realm is characterized by different blocks, which are controlled by local- and regional tectonics. We image a compressional regime at the toe of the continental margin, which is bound to an asymmetric basin system confining the eastward movement of the flank. In addition, we constrain the proposed southern boundary of the moving flank, which is identified as a right lateral oblique fault movement north of Catania Canyon. From our findings, we consider a major coupled volcano edifice instability and continental margin gravitational collapse and spreading to be present at Mt Etna, as we see a clear link between on- and offshore tectonic structures across the entire eastern flank. The new findings will help to evaluate hazards and risks accompanied by Mt Etna's slope- and continental margin instability and will be used as a base for future investigations in this region.

  1. Joint inversion of seismic velocities and source location without rays using the truncated Newton and the adjoint-state method

    NASA Astrophysics Data System (ADS)

    Virieux, J.; Bretaudeau, F.; Metivier, L.; Brossier, R.

    2013-12-01

    computed in the internal loop, each parameter being rescaled by its corresponding Hessian. The velocities and the source attributes are then updated in the external loop where the line search is performed. As the TCN method uses an iterative algorithm to compute Δm, it also needs a stopping criteria to avoid time-consuming large number of iterations and return the truncated solution of the normal equation. The strategy proposed by Eisenstat and Walker (1994) and used by Métivier et al. (2012) for FWI ensures superlinear convergence far from the solution and quadratic convergence in its attraction basin. In order to obtain better convergence of the resolution of the Newton system, it is also possible to use specific preconditioners for each inverted parameter. In particular, the exact Hessian for source parameters can be directly used as a preconditioner for the inversion. As it allows to consider the full Hessian operator, the TCN method mitigates scaling and trade-offs between seismic velocities and source parameters. We compare in this study the performances of various optimization algorithms (steepest descent, conjugate gradient, LBFGS and TCN) used with and without preconditioning, for this multi-parameter inversion problem. Tests are performed here on 2D models, but extensions to 3D is affordable.

  2. A pseudo-spectral method for the simulation of poro-elastic seismic wave propagation in 2D polar coordinates using domain decomposition

    NASA Astrophysics Data System (ADS)

    Sidler, Rolf; Carcione, José M.; Holliger, Klaus

    2013-02-01

    We present a novel numerical approach for the comprehensive, flexible, and accurate simulation of poro-elastic wave propagation in 2D polar coordinates. An important application of this method and its extensions will be the modeling of complex seismic wave phenomena in fluid-filled boreholes, which represents a major, and as of yet largely unresolved, computational problem in exploration geophysics. In view of this, we consider a numerical mesh, which can be arbitrarily heterogeneous, consisting of two or more concentric rings representing the fluid in the center and the surrounding porous medium. The spatial discretization is based on a Chebyshev expansion in the radial direction and a Fourier expansion in the azimuthal direction and a Runge-Kutta integration scheme for the time evolution. A domain decomposition method is used to match the fluid-solid boundary conditions based on the method of characteristics. This multi-domain approach allows for significant reductions of the number of grid points in the azimuthal direction for the inner grid domain and thus for corresponding increases of the time step and enhancements of computational efficiency. The viability and accuracy of the proposed method has been rigorously tested and verified through comparisons with analytical solutions as well as with the results obtained with a corresponding, previously published, and independently benchmarked solution for 2D Cartesian coordinates. Finally, the proposed numerical solution also satisfies the reciprocity theorem, which indicates that the inherent singularity associated with the origin of the polar coordinate system is adequately handled.

  3. A pseudo-spectral method for the simulation of poro-elastic seismic wave propagation in 2D polar coordinates using domain decomposition

    SciTech Connect

    Sidler, Rolf; Carcione, José M.; Holliger, Klaus

    2013-02-15

    We present a novel numerical approach for the comprehensive, flexible, and accurate simulation of poro-elastic wave propagation in 2D polar coordinates. An important application of this method and its extensions will be the modeling of complex seismic wave phenomena in fluid-filled boreholes, which represents a major, and as of yet largely unresolved, computational problem in exploration geophysics. In view of this, we consider a numerical mesh, which can be arbitrarily heterogeneous, consisting of two or more concentric rings representing the fluid in the center and the surrounding porous medium. The spatial discretization is based on a Chebyshev expansion in the radial direction and a Fourier expansion in the azimuthal direction and a Runge–Kutta integration scheme for the time evolution. A domain decomposition method is used to match the fluid–solid boundary conditions based on the method of characteristics. This multi-domain approach allows for significant reductions of the number of grid points in the azimuthal direction for the inner grid domain and thus for corresponding increases of the time step and enhancements of computational efficiency. The viability and accuracy of the proposed method has been rigorously tested and verified through comparisons with analytical solutions as well as with the results obtained with a corresponding, previously published, and independently benchmarked solution for 2D Cartesian coordinates. Finally, the proposed numerical solution also satisfies the reciprocity theorem, which indicates that the inherent singularity associated with the origin of the polar coordinate system is adequately handled.

  4. Crosswell seismic studies in gas hydrate-bearing sediments: P wave velocity and attenuation tomography

    NASA Astrophysics Data System (ADS)

    Bauer, K.; Haberland, Ch.; Pratt, R. G.; Ryberg, T.; Weber, M. H.; Mallik Working Group

    2003-04-01

    We present crosswell seismic data from the Mallik 2002 Production Research Well Program, an international research project on Gas Hydrates in the Northwest Territories of Canada. The program participants include 8 partners; The Geological Survey of Canada (GSC), The Japan National Oil Corporation (JNOC), GeoForschungsZentrum Potsdam (GFZ), United States Geological Survey (USGS), United States Department of the Energy (USDOE), India Ministry of Petroleum and Natural Gas (MOPNG)/Gas Authority of India (GAIL) and the Chevron-BP-Burlington joint venture group. The crosswell seismic measurements were carried out by making use of two 1160 m deep observation wells (Mallik 3L-38 and 4L-38) both 45 m from and co-planar with the 1188 m deep production research well (5L-38). A high power piezo-ceramic source was used to generate sweeped signals with frequencies between 100 and 2000 Hz recorded with arrays of 8 hydrophones per depth level. A depth range between 800 and 1150 m was covered, with shot and receiver spacings of 0.75 m. High quality data could be collected during the survey which allow for application of a wide range of crosswell seismic methods. The initial data analysis included suppression of tube wave energy and picking of first arrivals. A damped least-squares algorithm was used to derive P-wave velocities from the travel time data. Next, t* values were derived from the decay of the amplitude spectra, which served as input parameters for a damped least-squares attenuation tomography. The initial results of the P-wave velocity and attenuation tomography reveal significant features reflecting the stratigraphic environment and allow for detection and eventually quantification of gas hydrate bearing sediments. A prominent correlation between P velocity and attenuation was found for the gas hydrate layers. This contradicts to the apparently more meaningful inverse correlation as it was determined for the gas hydrates at the Blake Ridge but supports the results from

  5. Seismic no-data zone, offshore Mississippi delta: depositional controls on geotechnical properties, velocity structure, and seismic attenuation

    SciTech Connect

    May, J.A.; Meeder, C.A.; Tinkle, A.R.; Wener, K.R.

    1986-09-01

    Seismic acquisition problems plague exploration and production offshore the Mississippi delta. Geologic and geotechnical analyses of 300-ft borings and 20-ft piston cores, combined with subbottom acoustic measurements, help identify and predict the locations, types, and magnitudes of anomalous seismic zones. This knowledge is used to design acquisition and processing techniques to circumvent the seismic problems.

  6. Microseismic monitoring of soft-rock landslide: contribution of a 3D velocity model for the location of seismic sources.

    NASA Astrophysics Data System (ADS)

    Floriane, Provost; Jean-Philippe, Malet; Cécile, Doubre; Julien, Gance; Alessia, Maggi; Agnès, Helmstetter

    2015-04-01

    Characterizing the micro-seismic activity of landslides is an important parameter for a better understanding of the physical processes controlling landslide behaviour. However, the location of the seismic sources on landslides is a challenging task mostly because of (a) the recording system geometry, (b) the lack of clear P-wave arrivals and clear wave differentiation, (c) the heterogeneous velocities of the ground. The objective of this work is therefore to test whether the integration of a 3D velocity model in probabilistic seismic source location codes improves the quality of the determination especially in depth. We studied the clay-rich landslide of Super-Sauze (French Alps). Most of the seismic events (rockfalls, slidequakes, tremors...) are generated in the upper part of the landslide near the main scarp. The seismic recording system is composed of two antennas with four vertical seismometers each located on the east and west sides of the seismically active part of the landslide. A refraction seismic campaign was conducted in August 2014 and a 3D P-wave model has been estimated using the Quasi-Newton tomography inversion algorithm. The shots of the seismic campaign are used as calibration shots to test the performance of the different location methods and to further update the 3D velocity model. Natural seismic events are detected with a semi-automatic technique using a frequency threshold. The first arrivals are picked using a kurtosis-based method and compared to the manual picking. Several location methods were finally tested. We compared a non-linear probabilistic method coupled with the 3D P-wave model and a beam-forming method inverted for an apparent velocity. We found that the Quasi-Newton tomography inversion algorithm provides results coherent with the original underlaying topography. The velocity ranges from 500 m.s-1 at the surface to 3000 m.s-1 in the bedrock. For the majority of the calibration shots, the use of a 3D velocity model

  7. Seismic velocity and attenuation in Izu-Bonin subduction zone inferred from BBOBS data

    NASA Astrophysics Data System (ADS)

    Shito, A.; Shiobara, H.; Sugioka, H.; Ito, A.; Kawakatsu, H.; Adam, C.; Kanazawa, T.

    2007-12-01

    Seismic velocity and attenuation in the upper mantle and the subduction slab surrounding Izu-Bonin subduction zone is measured by using the waveform data recorded by Broad Band Ocean Bottom Seismometer (=BBOBS). As a part of Stagnant Slab Project, we deployed 12 BBOBS from October 2005 to October 2006 in and around the Philippine Sea. The sites were equipped with three components Guralp CMG-3T sensors recorded at 200 Hz. The BBOBS waveform data provide us much more information on physical property of subduction zone than previous on-land data. We analyze regional (< 15 degree) earthquakes that sample the Pacific slab, mantle above the Pacific slab (=mantle wedge), and the mantle beneath the Pacific slab. The waveform data from events in Izu-Bonin slab were recorded by the BBOBS array with adequate signal to noise ratio. We measured travel time residual dt and path integrated attenuation t*. The frequency dependent t* is measured using high frequency spectral decay and then path averaged attenuation Q is calculated. Time domain signals are windowed with the window length of 15 s; before 2.5 s and after 12.5 s onset of manually picked P wave. This window includes main pulse of the waveform and excludes later phases. Then amplitude spectra and the slope are calculated over the frequency range from 1.0 to 9.0 Hz. The results clearly show low velocity and high attenuation in the mantle wedge above the Pacific slab and high velocity and low attenuation in the Pacific slab. The estimated Q of P-wave at 1 Hz are 50-200 in the mantle wedge above the Pacific slab, 170-500 in the mantle beneath the Pacific slab, and 500-1000 in the Pacific slab. For all regions, data from shallower events have lower Q values. The intensity of P-wave low velocity anomaly in the mantle wedge above the Pacific slab is up to 10%. The high velocity anomaly in the Pacific slab is up to 8%. The mantle beneath the Pacific slab seems to have no velocity anomaly. The S-wave to P-wave velocity anomaly

  8. Seismic attenuation and velocity dispersion in heterogeneous partially saturated porous rocks

    NASA Astrophysics Data System (ADS)

    Rubino, J. Germán.; Holliger, Klaus

    2012-03-01

    Using a numerical approach, we explore wave-induced fluid flow effects in partially saturated porous rocks in which the gas-water saturation patterns are governed by mesoscopic heterogeneities associated with the dry frame properties. The link between the dry frame properties and the gas saturation is defined by the assumption of capillary pressure equilibrium, which in the presence of heterogeneity implies that neighbouring regions can exhibit different levels of saturation. To determine the equivalent attenuation and phase velocity of the synthetic rock samples considered in this study, we apply a numerical upscaling procedure, which permits to take into account mesoscopic heterogeneities associated with the dry frame properties as well as spatially continuous variations of the pore fluid properties. The multiscale nature of the fluid saturation is taken into account by locally computing the physical properties of an effective fluid, which are then used for the larger-scale simulations. We consider two sets of numerical experiments to analyse such effects in heterogeneous partially saturated porous media, where the saturation field is determined by variations in porosity and clay content, respectively. In both cases we also evaluate the seismic responses of corresponding binary, patchy-type saturation patterns. Our results indicate that significant attenuation and modest velocity dispersion effects take place in this kind of media for both binary patchy-type and spatially continuous gas saturation patterns and in particular in the presence of relatively small amounts of gas. The numerical experiments also show that the nature of the gas distribution patterns is a critical parameter controlling the seismic responses of these environments, since attenuation and velocity dispersion effects are much more significant and occur over a broader saturation range for binary patchy-type gas-water distributions. This analysis therefore suggests that the physical mechanisms

  9. High-resolution seismic tomography of compressional wave velocity structure at Newberry Volcano, Oregon Cascade Range

    SciTech Connect

    Achauer, U.; Evans, J.R.; Stauber, D.A.

    1988-09-10

    Compressional wave velocity structure is determined for the upper crust beneath Newberry Volcano, central Oregon, using a high-resolution active-source seismic-tomography method. Newberry Volcano is a bimodal shield volcano east of the axis of the Cascade Range. It is associated both with the Cascade Range and with northwest migrating silicic volcanism in southeast Oregon. High-frequency (approx.7 Hz) crustal phases, nominally Pg and a midcrustal reflected phase, travel upward through a target volume beneath Newberry Volcano to a dense array of 120 seismographs. This arrangement is limited by station spacing to 1- to 2-km resolution in the upper 5 to 6 km of the crust beneath the volcano's summit caldera. The experiment tests the hypothesis that Cascade Range volcanoes are underlain only by small magma chambers. A small low-velocity anomaly delineated abosut 3 km below the summit caldera supports this hypothesis for Newberry Volcano and is interpreted as a possible magma chamber of a few to a few tens of km/sup 3/ in volume. A ring-shaped high-velocity anomaly nearer the surface coincides with the inner mapped ring fractures of the caldera. It also coincides with a circular gravity high, and we interpret it as largely subsolidus silicic cone sheets. The presence of this anomaly and of silicic vents along the ring fractures suggests that the fractures are a likely eruption path between the small magma chamber and the surface.

  10. A new calibration of seismic velocities, anisotropy, fabrics, and elastic moduli of amphibole-rich rocks

    NASA Astrophysics Data System (ADS)

    Ji, Shaocheng; Shao, Tongbin; Michibayashi, Katsuyoshi; Long, Changxing; Wang, Qian; Kondo, Yosuke; Zhao, Weihua; Wang, Hongcai; Salisbury, Matthew H.

    2013-09-01

    large portion of the middle to lower crust beneath the continents and oceanic island arcs consists of amphibolites dominated by hornblende and plagioclase. We have measured P and S wave velocities (Vp and Vs) and anisotropy of 17 amphibole-rich rock samples containing 34-80 vol % amphibole at hydrostatic pressures (P) up to 650 MPa. Combined petrophysical and geochemical analyses provide a new calibration for mean density, average major element contents, mean Vp-P and Vs-P coefficients, intrinsic Vp and Vs anisotropy, Poisson's ratios, the logarithmic ratio Rs/p, and elastic moduli of amphibole-rich rocks. The Vp values decrease with increasing SiO2 and Na2O + K2O contents but increase with increasing MgO and CaO contents. The maximum (≤0.38-0.40 km/s) and minimum S wave birefringence values occur generally in the propagation direction parallel to Y and normal to foliation, respectively. Amphibole plays a critical role in the formation of seismic anisotropy, whereas the presence of plagioclase, quartz, pyroxene, and garnet diminishes the anisotropy induced by amphibole crystallographic preferred orientations (CPOs). The CPO variations cause different anisotropy patterns illustrated in the Flinn diagram of Vp(X)/Vp(Y)-Vp(Y)/Vp(Z) plots. The results make it possible to distinguish, in terms of seismic properties, the amphibolites from other categories of lithology such as granite-granodiorite, diorite, gabbro-diabase, felsic gneiss, mafic gneiss, eclogite, and peridotite within the Earth's crust. Hence, amphibole, aligned by dislocation creep, anisotropic growth, or rigid-body rotation, is the most important contributor to the seismic anisotropy of the deep crust beneath the continents and oceanic island arcs, which contains rather little phyllosilicates such as mica or chlorite.

  11. Long-period GPS waveforms. What can GPS bring to Earth seismic velocity models?

    NASA Astrophysics Data System (ADS)

    Kelevitz, Krisztina; Houlié, Nicolas; Boschi, Lapo; Nissen-Meyer, Tarje; Giardini, Domenico

    2014-05-01

    It is now commonly admitted that high rate GPS observations can provide reliable surface displacement waveforms (Cervelli, et al., 2001; Langbein, et al., 2006; Houlié, et al., 2006; Houlié et al., 2011). For long-period (T>5s) transients, it was shown that GPS and seismometer (STS-1) displacements are in agreement at least for vertical component (Houlié, et al., Sci. Rep. 2011). We propose here to supplement existing long-period seismic networks with high rate (>= 1Hz) GPS data in order to improve the resolution of global seismic velocity models. GPS measurements are providing a wide range of frequencies, going beyond the range of STS-1 in the low frequency end. Nowadays, almost 10.000 GPS receivers would be able to record data at 1 Hz with 3000+ stations already streaming data in Real-Time (RT). The reasons for this quick expansion are the price of receivers, their low maintenance, and the wide range of activities they can be used for (transport, science, public apps, navigation, etc.). We are presenting work completed on the 1Hz GPS records of the Hokkaido earthquake (25th of September, 2003, Mw=8.3). 3D Waveforms have been computed with an improved, stabilised inversion algorithm in order to constrain the ground motion history. Through the better resolution of inversion of the GPS phase observations, we determine displacement waveforms of frequencies ranging from 0.77 mHz to 330 mHz for a selection of sites. We compare inverted GPS waveforms with STS-1 waveforms and synthetic waveforms computed using 3D global wave propagation with SPECFEM. At co-located sites (STS-1 and GPS located within 10km) the agreement is good for the vertical component between seismic (both real and synthetic) and GPS waveforms.

  12. Seismic velocities and geotechnical data applied to the soil microzoning of western Algarve, Portugal

    NASA Astrophysics Data System (ADS)

    Carvalho, J.; Torres, L.; Castro, R.; Dias, R.; Mendes-Victor, L.

    2009-06-01

    The Algarve province of Portugal is located near the E-W Eurasia-Africa plate boundary. It is characterized by a moderate seismicity with some important historical and instrumental earthquakes causing important loss of lives, serious damage and economical problems. It has therefore been a target of several risk assessment projects. This paper focuses the evaluation of the most interesting and useful geotechnical near-surface parameters, through the acquisition, processing and interpretation of P and S-waves refraction profiles and the use of SPT parameters. VP/ VS ratios and the Poisson's ratio were estimated and a subsoil classification based on geophysical and geotechnical parameters is presented. The classification based upon the European Code 8 for civil engineering and SPT bedrock data, was carried out for land use planning and design of critical facilities. Other parameters were computed to provide information for future site effect studies. The quality and volume of the data gathered here using established approaches can be quite useful to estimate soil microzoning in the absence of local earthquake records. The results also show that the lithology is the most influent parameter on the values of seismic velocities and SPT data. Therefore, surficial geology is inappropriate for this kind of studies and lithological maps should be used instead.

  13. Ambient noise-based monitoring of seismic velocity changes associated with the 2014 Mw 6.0 South Napa earthquake

    NASA Astrophysics Data System (ADS)

    Taira, Taka'aki; Brenguier, Florent; Kong, Qingkai

    2015-09-01

    We perform an ambient noise-based monitoring to explore temporal variations of crustal seismic velocities before, during, and after the 24 August 2014 Mw 6.0 South Napa earthquake. A velocity drop of about 0.08% is observed immediately after the South Napa earthquake. Spatial variability of the velocity reduction is most correlated with the pattern of the peak ground velocity of the South Napa mainshock, which suggests that fracture damage in rocks induced by the dynamic strain is likely responsible for the coseismic velocity change. About 50% of the velocity reduction is recovered at the first 50 days following the South Napa mainshock. This postseismic velocity recovery may suggest a healing process of damaged rocks.

  14. Can we go From Tomographically Determined Seismic Velocities to Composition? Amplitude Resolution Issues in Local Earthquake Tomography

    NASA Astrophysics Data System (ADS)

    Wagner, L.

    2007-12-01

    There have been a number of recent papers (i.e. Lee (2003), James et al. (2004), Hacker and Abers (2004), Schutt and Lesher (2006)) which calculate predicted velocities for xenolith compositions at mantle pressures and temperatures. It is tempting, therefore, to attempt to go the other way ... to use tomographically determined absolute velocities to constrain mantle composition. However, in order to do this, it is vital that one is able to accurately constrain not only the polarity of the determined velocity deviations (i.e. fast vs slow) but also how much faster, how much slower relative to the starting model, if absolute velocities are to be so closely analyzed. While much attention has been given to issues concerning spatial resolution in seismic tomography (i.e. what areas are fast, what areas are slow), little attention has been directed at the issue of amplitude resolution (how fast, how slow). Velocity deviation amplitudes in seismic tomography are heavily influenced by the amount of regularization used and the number of iterations performed. Determining these two parameters is a difficult and little discussed problem. I explore the effect of these two parameters on the amplitudes obtained from the tomographic inversion of the Chile Argentina Geophysical Experiment (CHARGE) dataset, and attempt to determine a reasonable solution space for the low Vp, high Vs, low Vp/Vs anomaly found above the flat slab in central Chile. I then compare this solution space to the range in experimentally determined velocities for peridotite end-members to evaluate our ability to constrain composition using tomographically determined seismic velocities. I find that in general, it will be difficult to constrain the compositions of normal mantle peridotites using tomographically determined velocities, but that in the unusual case of the anomaly above the flat slab, the observed velocity structure still has an anomalously high S wave velocity and low Vp/Vs ratio that is most

  15. FWT2D: A massively parallel program for frequency-domain full-waveform tomography of wide-aperture seismic data—Part 1: Algorithm

    NASA Astrophysics Data System (ADS)

    Sourbier, Florent; Operto, Stéphane; Virieux, Jean; Amestoy, Patrick; L'Excellent, Jean-Yves

    2009-03-01

    This is the first paper in a two-part series that describes a massively parallel code that performs 2D frequency-domain full-waveform inversion of wide-aperture seismic data for imaging complex structures. Full-waveform inversion methods, namely quantitative seismic imaging methods based on the resolution of the full wave equation, are computationally expensive. Therefore, designing efficient algorithms which take advantage of parallel computing facilities is critical for the appraisal of these approaches when applied to representative case studies and for further improvements. Full-waveform modelling requires the resolution of a large sparse system of linear equations which is performed with the massively parallel direct solver MUMPS for efficient multiple-shot simulations. Efficiency of the multiple-shot solution phase (forward/backward substitutions) is improved by using the BLAS3 library. The inverse problem relies on a classic local optimization approach implemented with a gradient method. The direct solver returns the multiple-shot wavefield solutions distributed over the processors according to a domain decomposition driven by the distribution of the LU factors. The domain decomposition of the wavefield solutions is used to compute in parallel the gradient of the objective function and the diagonal Hessian, this latter providing a suitable scaling of the gradient. The algorithm allows one to test different strategies for multiscale frequency inversion ranging from successive mono-frequency inversion to simultaneous multifrequency inversion. These different inversion strategies will be illustrated in the following companion paper. The parallel efficiency and the scalability of the code will also be quantified.

  16. Rayleigh-Wave, Group-Velocity Tomography of the Borborema Province, NE Brazil, from Ambient Seismic Noise

    NASA Astrophysics Data System (ADS)

    Dias, Rafaela Carreiro; Julià, Jordi; Schimmel, Martin

    2015-06-01

    Ambient seismic noise has traditionally been regarded as an unwanted perturbation that "contaminates" earthquake data. Over the last decade, however, it has been shown that consistent information about subsurface structure can be extracted from ambient seismic noise. By cross-correlation of noise simultaneously recorded at two seismic stations, the empirical Green's function for the propagating medium between them can be reconstructed. Moreover, for periods less than 30 s the seismic spectrum of ambient noise is dominated by microseismic energy and, because microseismic energy travels mostly as surface-waves, the reconstruction of the empirical Green's function is usually proportional to the surface-wave portion of the seismic wavefield. In this paper, we present 333 empirical Green's functions obtained from stacked cross-correlations of one month of vertical component ambient seismic noise for different pairs of seismic stations in the Borborema Province of NE Brazil. The empirical Green's functions show that the signal obtained is dominated by Rayleigh waves and that dispersion velocities can be measured reliably for periods between 5 and 20 s. The study includes permanent stations from a monitoring seismic network and temporary stations from past passive experiments in the region, resulting in a combined network of 34 stations separated by distances between approximately 40 and 1,287 km. Fundamental-mode group velocities were obtained for all station pairs and then tomographically inverted to produce maps of group velocity variation. For short periods (5-10 s) the tomographic maps correlate well with surface geology, with slow velocities delineating the main rift basins (Potiguar, Tucano, and Recôncavo) and fast velocities delineating the location of the Precambrian São Francisco craton and the Rio Grande do Norte domain. For longer periods (15-20 s) most of the velocity anomalies fade away, and only those associated with the deep Tucano basin and the S

  17. Three-dimensional seismic velocity structure in the Sichuan basin, China

    NASA Astrophysics Data System (ADS)

    Wang, Maomao; Hubbard, Judith; Plesch, Andreas; Shaw, John H.; Wang, Lining

    2016-02-01

    We present a new three-dimensional velocity model of the crust in the eastern margin of the Tibetan Plateau. The model describes the velocity structure of the Sichuan basin and surrounding thrust belts. The model consists of 3-D surfaces representing major geologic unit contacts and faults and is parameterized with Vp velocity-depth functions calibrated using sonic logs. The model incorporates data from 1166 oil wells, industry isopach maps, geological maps, and a digital elevation model. The geological surfaces were modeled based on structure contour maps for various units from oil wells and seismic reflection profiles. These surfaces include base Quaternary, Mesozoic, Paleozoic, and Proterozoic horizons. The horizons locally exhibit major offsets that are compatible with the locations and displacements of important faults systems. This layered, upper crustal 3-D model extends down to 10-15 km depth and illustrates lateral and vertical variations of velocity that reflect the complex evolution of tectonics and sedimentation in the basin. The model also incorporates 3-D descriptions of Vs and density for sediments that are obtained from empirical relationships with Vp using direct measurements of these properties in borehole logs. To illustrate the impact of our basin model on earthquake hazards assessment, we use it to calculate ground motions and compare these with observations for the 2013 Lushan earthquake. The result demonstrates the effects of basin amplification in the western Sichuan basin. The Sichuan CVM model is intended to facilitate fault systems analysis, strong ground motion prediction, and earthquake hazards assessment for the densely populated Sichuan region.

  18. Seismic response analysis of a tuff cliff by an effective stress non-linear 2D model approach: an example in Sorrento Peninsula, Italy

    NASA Astrophysics Data System (ADS)

    di Fiore, V.; Angelino, A.; Buonocunto, F. P.; Rapolla, A.; Tarallo, D.

    2009-04-01

    We present a model to describe the behavior of a tuff cliff under the dynamic stress considering a law reference input motion. The studied area is located in the Sorrento Peninsula, a major Quaternary morpho-structural unit of the western flank of Southern Apennines. The peninsula forms a narrow and elevated mountain range (up to 1444 m) that separates two major embayments of the eastern Tyrrhenian margin and is characterized by a carbonate bedrock capped by pyroclastic deposits (i.e. "Campania Ignimbrite"), originated from the Campi Flegrei volcanic district. The occurrence of steep slopes and the high relief energy of the area, along with the marine erosion at the base of the coastal cliff creates favorable conditions for the occurrence of a generalized instability of the slopes that is manifested by tuff rock falls as prevailing landslide phenomena. These events are highly dangerous because of the sudden detachments of conspicuous volumes of rocks with high speed, especially when the rock fall initiates in the upper part of the slopes. Prediction of such landslides is difficult if not accompanied by accurate hydrogeologic and geotechnical monitoring and assessment. The geometry of our model is represented by a tuff cliff of 48 m height, covered by a 8 m thick volcaniclastic layer. At the base of the tuff cliff marine sand deposits occur. The geotechnical parameters used for the analysis were selected from the literature. We have used an effective stress non-linear 2D model to determine the dynamic stress field of our model. The effective stress non-linear algorithm uses the Direct Integration Method to compute the motion and excess pore-water pressures arising from inertial forces at user-defined time steps. The seismic response analysis was performed using the field shear stress generated by synthetic 1-30 Hz band-limited accelerogram. The finite elements mesh considered for the test problem was established by 395 element and 401 nodal point. Our results show a

  19. Sound velocity of hcp-Fe at high pressure: experimental constraints, extrapolations and comparison with seismic models

    NASA Astrophysics Data System (ADS)

    Antonangeli, Daniele; Ohtani, Eiji

    2015-12-01

    Determining the sound velocity of iron under extreme thermodynamic conditions is essential for a proper interpretation of seismic observations of the Earth's core but is experimentally challenging. Here, we review techniques and methodologies used to measure sound velocities in metals at megabar pressures, with specific focus on the compressional sound velocity of hexagonal close-packed iron. A critical comparison of literature results, coherently analyzed using consistent metrology (pressure scale, equation of state), allows us to propose reference relations for the pressure and density dependence of the compressional velocity of hexagonal close-packed iron at ambient temperature. This provides a key base line upon which to add complexity, including high-temperature effects, pre-melting effects, effects of nickel and/or light element incorporation, necessary for an accurate comparison with seismic models, and ultimately to constrain Earth's inner core composition.

  20. Imaging 3D anisotropic upper mantle shear velocity structure of Southeast Asia using seismic waveform inversion

    NASA Astrophysics Data System (ADS)

    Chong, J.; Yuan, H.; French, S. W.; Romanowicz, B. A.; Ni, S.

    2011-12-01

    Southeast Asia as a special region in the world which is seismically active and is surrounded by active tectonic belts, such as the Himalaya collision zone, western Pacific subduction zones and the Tianshan- Baikal tectonic belt. Seismic anisotropic tomography can shade light on the complex crust and upper mantle dynamics of this region, which is the subject of much debate. In this study, we applied full waveform time domain tomography to image 3D isotropic and anisotropic upper mantle shear velocity structure of Southeast Asia. Three component waveforms of teleseismic and far regional events (15 degree ≤ Δ≤ 165 degree) with magnitude ranges from Mw6.0 to Mw7.0 are collected from 91 permanent and 438 temporary broadband seismic stations in SE Asia. Wavepackets of both fundamental and overtone modes, filtered between 60 and 400 sec, are selected automatically according to the similarity between data and synthetic waveforms (Panning & Romanowicz, 2006). Wavepackets corresponding to event-station paths that sample the region considered are weighted according to path redundancy and signal to noise ratio. Higher modes and fundamental mode wavepackets are weighted separately in order to enhance the contribution of higher modes which are more sensitive to deeper structure compared to the fundamental mode. Synthetic waveforms and broadband sensitivity kernels are computed using normal mode asymptotic coupling theory (NACT, Li & Romanowicz, 1995). As a starting model, we consider a global anisotropic upper mantle shear velocity model based on waveform inversion using the Spectral Element Method (Lekic & Romanowicz, 2011), updated for more realistic crustal thickness (French et al., 2011) as our starting model, we correct waveforms for the effects of 3D structure outside of the region, and invert them for perturbations in the 3D structure of the target region only. We start with waveform inversion down to 60sec and after several iterations, we include shorter period

  1. Shear velocity structure beneath the central United States: implications for the origin of the Illinois Basin and intraplate seismicity

    NASA Astrophysics Data System (ADS)

    Chen, Chen; Gilbert, Hersh; Andronicos, Christopher; Hamburger, Michael W.; Larson, Timothy; Marshak, Stephen; Pavlis, Gary L.; Yang, Xiaotao

    2016-03-01

    We present new estimates of lithospheric shear velocities for the intraplate seismic zones and the Illinois Basin in the U.S. midcontinent by analyzing teleseismic Rayleigh waves. We find that relatively high crustal shear velocities (VS) characterize the southern Illinois Basin, while relatively low crustal velocities characterize the middle and lower crust of the central and northern Illinois Basin. The observed high crustal velocities may correspond to high-density mafic intrusions emplaced into the crust during the development of the Reelfoot Rift, which may have contributed to the subsidence of the Illinois Basin. The low crustal VS beneath the central and northern basin follow the La Salle deformation belt. We also observe relatively low velocities in the mantle beneath the New Madrid seismic zone where VS decreases by about 7% compared to those outside of the rift. The low VS in the upper mantle also extends beneath the Wabash Valley and Ste. Genevieve seismic zones. Testing expected VS reductions based on plausible thermal heterogeneities for the midcontinent indicates that the 7% velocity reduction would not result from elevated temperatures alone. Instead this scale of anomaly requires a contribution from some combination of increased iron and water content. Both rifting and interaction with a mantle plume could introduce these compositional heterogeneities. Similar orientations for the NE-SW low-velocity zone and the Reelfoot Rift suggest a rift origin to the reduced velocities. The low VS upper mantle represents a weak region and the intraplate seismic zones would correspond to concentrated crustal deformation above weak mantle.

  2. 2D Dynamic Models of Subduction: Links between Surface Plate Motion and Deformation in the Transition Zone from Observations of Deep Slab Seismicity

    NASA Astrophysics Data System (ADS)

    Arredondo, K.; Billen, M. I.

    2015-12-01

    Observations of seismicity and seismic tomography provide constraints on the geometry of slabs within mantle, while compression/tension axis derived from moment tensor solutions provide constraints on the internal deformation of slabs. However, since these observations provide only a somewhat blurred or incomplete snapshot of the slab in time, it is difficult to directly relate these observations to the evolution of the slab geometry and the forces acting on and within the slab. In contrast, plate tectonic reconstructions provide time-dependent constraints on the surface motion of plates and the trench at subduction zones, which are related to the dynamical evolution of the slab. We use 2D geodynamical simulations of subduction to explore the relationship between dynamical process within the deforming slab and the observations of surface plate motion and the state-of-stress in slabs. Specifically we utilize models that include the extended Boussinesq approximation (shear heating and latent heat terms in the energy equation), a layered lithosphere with pyrolite, harzburgite and basalt/eclogite, compositionally-dependent phase transitions, and a composite rheology with yielding. The models employ a weak crustal layer that decouples the overriding and subducting plates and allows for dynamically determined trench motion. Here we show that, 1) multiple phase transitions increase slab folding, 2) ridge push significantly increases trench retreat, and 3) strength of the weak crustal layer influences slab detachment. Compared to past studies a more realistic treatment of the phase transitions makes trench retreat more difficult to generate: a weaker plate may encourage slab retreat but detaches once the slab tip crosses into the transition zone due to the rapid increase in slab density. As suggested by previous studies, slab folding within the transition zone changes the direction of forces on the slab and causes periodic changes from trench retreat to trench advance. We

  3. Upper Crustal Seismic Velocity Structure of the Endeavour Segment, Juan de Fuca Ridge

    NASA Astrophysics Data System (ADS)

    Weekly, R. T.; Wilcock, W. S.; Toomey, D. R.; Hooft, E. E.; Wells, A. E.

    2010-12-01

    We report preliminary results from an active-source seismic tomography experiment that was conducted along the intermediate-spreading Endeavour Segment of the Juan de Fuca Ridge in 2009. The overarching objective of the experiment is to test competing hypotheses for what governs the scale and intensity of magmatic and hydrothermal processes at mid-ocean ridges. Previous models of crustal accretion inferred that ridge-basin topography observed at the Endeavour results from alternating periods of enhanced or reduced magma supply from the mantle. Alternatively, a recent seismic reflection study has imaged a crustal magma chamber underlying the central portion of the Endeavour, which may indicate that variations in seafloor topography instead result from dike-induced faulting that occurs within the upper crust, adjacent to the axial magma chamber. The first model predicts a thicker high-porosity eruptive layer and lower velocities beneath topographic highs, while the second model is compatible with a uniform pattern of volcanic accretion. The experiment used 68 four-component ocean-bottom seismometers (OBSs) at 64 sites to record 5,567 airgun shots from the 6600 in3 airgun array of the R/V Marcus G. Langseth. Three nested shooting grids were collected to image the three-dimensional crustal and upper mantle velocity structure of the segment at multiple spatial scales. We use first-arriving crustal phases (Pg) recorded by the two grids with the densest shot-receiver spacing, the 24 x 8 km2 vent field grid and the 60 x 20 km2 crustal grid, to image the fine-scale (< 1 km) three-dimensional velocity structure of the upper few kilometers of crust at the segment scale. We employ a non-linear tomographic method that utilizes a shortest-path ray-tracing algorithm with columns of nodes sheared vertically to include effects of seafloor topography. To date, we have manually picked 13,000 Pg phases located within 10 km of 17 OBSs. The full analysis will include ~40,000 Pg travel

  4. High velocity anomaly beneath the Deccan volcanic province: Evidence from seismic tomography

    USGS Publications Warehouse

    Iyer, H.M.; Gaur, V.K.; Rai, S.S.; Ramesh, D.S.; Rao, C.V.R.; Srinagesh, D.; Suryaprakasam, K.

    1989-01-01

    Analysis of teleseismic P-wave residuals observed at 15 seismograph stations operated in the Deccan volcanic province (DVP) in west central India points to the existence of a large, deep anomalous region in the upper mantle where the velocity is a few per cent higher than in the surrounding region. The seismic stations were operated in three deployments together with a reference station on precambrian granite at Hyderabad and another common station at Poona. The first group of stations lay along a west-northwesterly profile from Hyderabad through Poona to Bhatsa. The second group roughly formed an L-shaped profile from Poona to Hyderabad through Dharwar and Hospet. The third group of stations lay along a northwesterly profile from Hyderabad to Dhule through Aurangabad and Latur. Relative residuals computed with respect to Hyderabad at all the stations showed two basic features: a large almost linear variation from approximately +1s for teleseisms from the north to-1s for those from the southeast at the western stations, and persistance of the pattern with diminishing magnitudes towards the east. Preliminary ray-plotting and three-dimensional inversion of the P-wave residual data delineate the presence of a 600 km long approximately N-S trending anomalous region of high velocity (1-4% contrast) from a depth of about 100 km in the upper mantle encompassing almost the whole width of the DVP. Inversion of P-wave relative residuals reveal the existence of two prominent features beneath the DVP. The first is a thick high velocity zone (1-4% faster) extending from a depth of about 100 km directly beneath most of the DVP. The second feature is a prominent low velocity region which coincides with the westernmost part of the DVP. A possible explanation for the observed coherent high velocity anomaly is that it forms the root of the lithosphere which coherently translates with the continents during plate motions, an architecture characteristic of precambrian shields. The low

  5. Toward Improved Methods of Estimating Attenuation, Phase and Group velocity of surface waves observed on Shallow Seismic Records

    NASA Astrophysics Data System (ADS)

    Diallo, M. S.; Holschneider, M.; Kulesh, M.; Scherbaum, F.; Ohrnberger, M.; Lück, E.

    2004-05-01

    This contribution is concerned with the estimate of attenuation and dispersion characteristics of surface waves observed on a shallow seismic record. The analysis is based on a initial parameterization of the phase and attenuation functions which are then estimated by minimizing a properly defined merit function. To minimize the effect of random noise on the estimates of dispersion and attenuation we use cross-correlations (in Fourier domain) of preselected traces from some region of interest along the survey line. These cross-correlations are then expressed in terms of the parameterized attenuation and phase functions and the auto-correlation of the so-called source trace or reference trace. Cross-corelation that enter the optimization are selected so as to provide an average estimate of both the attenuation function and the phase (group) velocity of the area under investigation. The advantage of the method over the standard two stations method using Fourier technique is that uncertainties related to the phase unwrapping and the estimate of the number of 2π cycle skip in the phase phase are eliminated. However when mutliple modes arrival are observed, its become merely impossible to obtain reliable estimate the dipsersion curves for the different modes using optimization method alone. To circumvent this limitations we using the presented approach in conjunction with the wavelet propagation operator (Kulesh et al., 2003) which allows the application of band pass filtering in (ω -t) domain, to select a particular mode for the minimization. Also by expressing the cost function in the wavelet domain the optimization can be performed either with respect to the phase, the modulus of the transform or a combination of both. This flexibility in the design of the cost function provides an additional mean of constraining the optimization results. Results from the application of this dispersion and attenuation analysis method are shown for both synthetic and real 2D shallow

  6. Developing Strength Chart of Saturated Concrete by Using Seismic P and S-Wave Velocities in Laboratory

    NASA Astrophysics Data System (ADS)

    Ekinci, B.; Sabbağ, N.; Uyanik, O.; Öncü, Z.; Akdemir, S.; Türker, E.

    2014-12-01

    Determining of concrete strength can be used by destructive or non-destructive methods. Concrete strength is determined with uniaxial compressive test as destructive in laboratory and with Seismic Ultrasonic P- (Compressional) and S-wave (Shear) measurements as non-destructive in-situ or laboratory. In this study, strength of saturated concrete is investigated by using seismic P and S-wave velocities. For this, concrete samples were formed with using the cube samples in size 15x15x15cm. Different strength designs were made for obtain different strengths in these samples. The aim is to create concrete strengths of between the lowest 5MPa and the highest 100 MPa. After the end of the curing time of created the cube concrete samples Seismic P and S waves measurements were made in the laboratory by Ultrasonic test equipment. Hence, P and S wave velocities of the sample were calculated. After these, for determine the strength of the samples uniaxial compression strength test was performed. As a result, P and S wave velocities and concrete strength values of concrete samples were obtained. By correlating these values over %90 exponential relationships were determined. By using this relationship, concrete strength can be determined sensitively from P and S wave velocities. In addition, by using P and S wave velocities elastic parameters values and Poisson's ratio of concrete specimens can be calculated. Keywords: Concrete, Strength, Compressional and Shear-wave velocities, Empirical Relationship

  7. Comprehensive observation and modeling of earthquake and temperature-related seismic velocity changes in northern Chile with passive image interferometry

    NASA Astrophysics Data System (ADS)

    Richter, Tom; Sens-Schönfelder, Christoph; Kind, Rainer; Asch, Günter

    2014-06-01

    We report on earthquake and temperature-related velocity changes in high-frequency autocorrelations of ambient noise data from seismic stations of the Integrated Plate Boundary Observatory Chile project in northern Chile. Daily autocorrelation functions are analyzed over a period of 5 years with passive image interferometry. A short-term velocity drop recovering after several days to weeks is observed for the Mw 7.7 Tocopilla earthquake at most stations. At the two stations PB05 and PATCX, we observe a long-term velocity decrease recovering over the course of around 2 years. While station PB05 is located in the rupture area of the Tocopilla earthquake, this is not the case for station PATCX. Station PATCX is situated in an area influenced by salt sediment in the vicinity of Salar Grande and presents a superior sensitivity to ground acceleration and periodic surface-induced changes. Due to this high sensitivity, we observe a velocity response of several regional earthquakes at PATCX, and we can show for the first time a linear relationship between the amplitude of velocity drops and peak ground acceleration for data from a single station. This relationship does not hold true when comparing different stations due to the different sensitivity of the station environments. Furthermore, we observe periodic annual velocity changes at PATCX. Analyzing data at a temporal resolution below 1 day, we are able to identify changes with a period of 24 h, too. The characteristics of the seismic velocity with annual and daily periods indicate an atmospheric origin of the velocity changes that we confirm with a model based on thermally induced stress. This comprehensive model explains the lag time dependence of the temperature-related seismic velocity changes involving the distribution of temperature fluctuations, the relationship between temperature, stress and velocity change, plus autocorrelation sensitivity kernels.

  8. Friction falls towards zero in quartz rock as slip velocity approaches seismic rates.

    PubMed

    Di Toro, Giulio; Goldsby, David L; Tullis, Terry E

    2004-01-29

    An important unsolved problem in earthquake mechanics is to determine the resistance to slip on faults in the Earth's crust during earthquakes. Knowledge of coseismic slip resistance is critical for understanding the magnitude of shear-stress reduction and hence the near-fault acceleration that can occur during earthquakes, which affects the amount of damage that earthquakes are capable of causing. In particular, a long-unresolved problem is the apparently low strength of major faults, which may be caused by low coseismic frictional resistance. The frictional properties of rocks at slip velocities up to 3 mm s(-1) and for slip displacements characteristic of large earthquakes have been recently simulated under laboratory conditions. Here we report data on quartz rocks that indicate an extraordinary progressive decrease in frictional resistance with increasing slip velocity above 1 mm s(-1). This reduction extrapolates to zero friction at seismic slip rates of approximately 1 m s(-1), and appears to be due to the formation of a thin layer of silica gel on the fault surface: it may explain the low strength of major faults during earthquakes. PMID:14749829

  9. Apparent Attenuation and Dispersion Arising in Seismic Body-Wave Velocity Retrieval

    NASA Astrophysics Data System (ADS)

    Wirgin, Armand

    2016-04-01

    The fact that seismologists often make measurements, using natural seismic solicitations, of properties of the Earth on rather large scales (laterally and in terms of depth) has led to interrogations as to whether attenuation of body waves is dispersive and even significant. The present study, whose aim is to clarify these complicated issues, via a controlled thought measurement, concerns the retrieval of a single, real body wave velocity of a simple geophysical configuration (involving two homogeneous, isotropic, non-dissipative media, one occupying the layer, the other the substratum), from its simulated response to pulsed plane wave probe radiation. This inverse problem is solved, at all frequencies within the bandwidth of the pulse. Due to discordance between the models associated with the assumed and trial responses, the imaginary part of the retrieved velocity turns out to be non-nil even when both the layer and substratum are non-lossy, and, in fact, to be all the greater, the larger is the discordance. The reason for this cannot be due to intrinsic attenuation, scattering, or geometrical spreading since these phenomena are absent in the chosen thought experiment, but rather to uncertainty in the measurement model.

  10. Apparent Attenuation and Dispersion Arising in Seismic Body-Wave Velocity Retrieval

    NASA Astrophysics Data System (ADS)

    Wirgin, Armand

    2016-07-01

    The fact that seismologists often make measurements, using natural seismic solicitations, of properties of the Earth on rather large scales (laterally and in terms of depth) has led to interrogations as to whether attenuation of body waves is dispersive and even significant. The present study, whose aim is to clarify these complicated issues, via a controlled thought measurement, concerns the retrieval of a single, real body wave velocity of a simple geophysical configuration (involving two homogeneous, isotropic, non-dissipative media, one occupying the layer, the other the substratum), from its simulated response to pulsed plane wave probe radiation. This inverse problem is solved, at all frequencies within the bandwidth of the pulse. Due to discordance between the models associated with the assumed and trial responses, the imaginary part of the retrieved velocity turns out to be non-nil even when both the layer and substratum are non-lossy, and, in fact, to be all the greater, the larger is the discordance. The reason for this cannot be due to intrinsic attenuation, scattering, or geometrical spreading since these phenomena are absent in the chosen thought experiment, but rather to uncertainty in the measurement model.

  11. Seismic velocity structure of the crust and shallow mantle of the Central and Eastern United States by seismic surface wave imaging

    USGS Publications Warehouse

    Pollitz, Fred; Mooney, Walter D.

    2016-01-01

    Seismic surface waves from the Transportable Array of EarthScope's USArray are used to estimate phase velocity structure of 18 to 125 s Rayleigh waves, then inverted to obtain three-dimensional crust and upper mantle structure of the Central and Eastern United States (CEUS) down to ∼200 km. The obtained lithosphere structure confirms previously imaged CEUS features, e.g., the low seismic-velocity signature of the Cambrian Reelfoot Rift and the very low velocity at >150 km depth below an Eocene volcanic center in northwestern Virginia. New features include high-velocity mantle stretching from the Archean Superior Craton well into the Proterozoic terranes and deep low-velocity zones in central Texas (associated with the late Cretaceous Travis and Uvalde volcanic fields) and beneath the South Georgia Rift (which contains Jurassic basalts). Hot spot tracks may be associated with several imaged low-velocity zones, particularly those close to the former rifted Laurentia margin.

  12. Coal-seismic, desktop computer programs in BASIC; Part 6, Develop rms velocity functions and apply mute and normal movement

    USGS Publications Warehouse

    Hasbrouck, W.P.

    1983-01-01

    Processing of data taken with the U.S. Geological Survey's coal-seismic system is done with a desktop, stand-alone computer. Programs for this computer are written in the extended BASIC language utilized by the Tektronix 4051 Graphic System. This report presents computer programs used to develop rms velocity functions and apply mute and normal moveout to a 12-trace seismogram.

  13. Evaluation of the southern California seismic velocity models through simulation of recorded events

    NASA Astrophysics Data System (ADS)

    Taborda, Ricardo; Azizzadeh-Roodpish, Shima; Khoshnevis, Naeem; Cheng, Keli

    2016-06-01

    Significant effort has been devoted over the last two decades to the development of various seismic velocity models for the region of southern California, United States. These models are mostly used in forward wave propagation simulation studies, but also as base models for tomographic and source inversions. Two of these models, the community velocity models CVM-S and CVM-H, are among the most commonly used for this region. This includes two alternative variations to the original models, the recently released CVM-S4.26 which incorporates results from a sequence of tomographic inversions into CVM-S, and the user-controlled option of CVM-H to replace the near-surface profiles with a VS30-based geotechnical model. Although either one of these models is regarded as acceptable by the modeling community, it is known that they have differences in their representation of the crustal structure and sedimentary deposits in the region, and thus can lead to different results in forward and inverse problems. In this paper, we evaluate the accuracy of these models when used to predict the ground motion in the greater Los Angeles region by means of an assessment of a collection of simulations of recent events. In total, we consider 30 moderate-magnitude earthquakes (3.5 < Mw < 5.5) between 1998 and 2014, and compare synthetics with data recorded by seismic networks during these events. The simulations are done using a finite-element parallel code, with numerical models that satisfy a maximum frequency of 1 Hz and a minimum shear wave velocity of 200 m s-1. The comparisons between data and synthetics are ranked quantitatively by means of a goodness-of-fit (GOF) criteria. We analyse the regional distribution of the GOF results for all events and all models, and draw conclusions from the results and how these correlate to the models. We find that, in light of our comparisons, the model CVM-S4.26 consistently yields better results.

  14. Evaluation of the Southern California Seismic Velocity Models through Simulation of Recorded Events

    NASA Astrophysics Data System (ADS)

    Taborda, Ricardo; Azizzadeh-Roodpish, Shima; Khoshnevis, Naeem; Cheng, Keli

    2016-03-01

    Significant effort has been devoted over the last two decades to the development of various seismic velocity models for the region of southern California, United States. These models are mostly used in forward wave propagation simulation studies, but also as base models for tomographic and source inversions. Two of these models, the community velocity models CVM-S and CVM-H, are among the most commonly used for this region. This includes two alternative variations to the original models, the recently released CVM-S4.26 which incorporates results from a sequence of tomographic inversions into CVM-S, and the user-controlled option of CVM-H to replace the near-surface profiles with a VS30-based geotechnical (GTL) model. Although either one of these models is regarded as acceptable by the modeling community, it is known that they have differences in their representation of the crustal structure and sedimentary deposits in the region, and thus can lead to different results in forward and inverse problems. In this article we evaluate the accuracy of these models when used to predict the ground motion in the greater Los Angeles region by means of an assessment of a collection of simulations of recent events. In total, we consider 30 moderate-magnitude earthquakes (3.5 < Mw < 5.5) between 1998 and 2014, and compare synthetics with data recorded by seismic networks during these events. The simulations are done using a finite element parallel code, with numerical models that satisfy a maximum frequency of 1 Hz and a minimum shear wave velocity of 200 m/s. The comparisons between data and synthetics are ranked quantitatively by means of a goodness-of-fit (GOF) criteria. We analyze the regional distribution of the GOF results for all events and all models, and draw conclusions from the results and how these correlate to the models. We find that, in light of our comparisons, the model CVM-S4.26 consistently yields better results.

  15. Velocity Ellipsoids for Crustal Seismic Anisotropy: Pumpkins and Melons Have Dimples and Bulges

    NASA Astrophysics Data System (ADS)

    Okaya, D.; Christensen, N.

    2003-12-01

    Geological causes of crustal anisotropy include regional fractures and cracks, isotropic heterogeneity or layering, and material composition and textural properties. In addition, shear or metamorphic foliations in fault zones or structural terranes serve as proxies for intracrustal deformation in a manner analogous to lattice preferred orientation of olivine produced by mantle shear. The primary factor in the production of crustal seismic anisotropy is the relative angle between a seismic wave and the (dipping) symmetry axes representing the crustal material even as either change along the propagation raypath. As a result, in order to analyze observations of crustal anisotropy we must understand the behavior of compressional and shear wave velocities in all propagation directions parallel to and in-between the principal symmetry axes which represent the crustal materials. In this poster we use Christoffel equations and physical properties obtained from petrophysical lab measurements in order to examine anisotropic velocities and travel-time effects for bulk rocks representative of different crustal levels. Ellipses and ellipsoids are commonly used to represent the P- and S-wave velocity directional behavior for materials described using hexagonal and orthorhombic symmetries, respectively. While olivine and pyroxene-based mantle rocks are characteristically fast symmetry axes (the "melons" of Levin and Park, 1997), crustal rocks are typically slow symmetry axes ("pumpkins") due to the predominance of fractures or textural foliations. Careful application of Christoffel solutions indicate that for most crustal (and mantle) rocks the surfaces of their pumpkins or melons are not exact analytical ellipsoids. Rather, the surfaces in the non-axial directions have second-order deflections (bulges or dimples) which potentially may produce observable azimuthal travel-time or shear splitting effects. In the case when the P-wave surface on average is slow (dimpled), due to SV

  16. USING RECENT ADVANCES IN 2D SEISMIC TECHNOLOGY AND SURFACE GEOCHEMISTRY TO ECONOMICALLY REDEVELOP A SHALLOW SHELF CARBONATE RESERVOIR: VERNON FIELD, ISABELLA COUNTY, MI

    SciTech Connect

    James R. Wood; A. Wylie; W. Quinlan

    2004-10-01

    One of the principal objectives of this demonstration project is to test surface geochemical techniques for detecting trace amounts of light hydrocarbons in pore gases as a means of reducing risk in hydrocarbon exploration and production. During this reporting period, microbial samples were collected from the Trusty Steed prospect area in Grand Traverse County, Michigan. The samples were analyzed using the Microbial Oil Surveying Technique (MOST) technique and revealed only a local (1-point) anomaly. A decision to resample over that point is pending, but drilling has been postponed for the time being. The main news this reporting period is that in the Bear Lake area, northwest Michigan, Federated Oil & Gas Properties' Charlich-Fauble 2-9HD horizontal lateral, has cumulative production of more than 72,000 barrels of oil and is still producing 50 to 75 bopd from a Silurian Niagaran reef reservoir eighteen months after the well was completed. Surface geochemical surveys conducted in the demonstration area were consistent with production results although the ultimate decision to drill was based on interpretation of conventional subsurface and 2D seismic data. The surface geochemical techniques employed were Solid Phase MicroExtraction (SPME) and MOST. The geochemical results have been submitted to World Oil for publication. New geochemical surveys are planned for November in the Springdale quadrangle in Manistee County, Michigan. These surveys will concentrate on sampling over the trace of the proposed horizontal wells rather than a broad grid survey.

  17. The limits of seaward spreading and slope instability at the continental margin offshore Mt Etna, imaged by high-resolution 2D seismic data

    NASA Astrophysics Data System (ADS)

    Gross, Felix; Krastel, Sebastian; Geersen, Jacob; Behrmann, Jan Hinrich; Ridente, Domenico; Chiocci, Francesco Latino; Bialas, Jörg; Papenberg, Cord; Cukur, Deniz; Urlaub, Morelia; Micallef, Aaron

    2016-01-01

    Mount Etna is the largest active volcano in Europe. Instability of its eastern flank is well documented onshore, and continuously monitored by geodetic and InSAR measurements. Little is known, however, about the offshore extension of the eastern volcano flank, defining a serious shortcoming in stability models. In order to better constrain the active tectonics of the continental margin offshore the eastern flank of the volcano, we acquired a new high-resolution 2D reflection seismic dataset. The data provide new insights into the heterogeneous geology and tectonics at the continental margin offshore Mt Etna. The submarine realm is characterized by different blocks, which are controlled by local- and regional tectonics. A compressional regime is found at the toe of the continental margin, which is bound to a complex basin system. Both, the clear link between on- and offshore tectonic structures as well as the compressional regime at the easternmost flank edge, indicate a continental margin gravitational collapse as well as spreading to be present at Mt Etna. Moreover, we find evidence for the offshore southern boundary of the moving flank, which is identified as a right lateral oblique fault north of Catania Canyon. Our findings suggest a coupled volcano edifice/continental margin instability at Mt Etna, demonstrating first order linkage between on- and offshore tectonic processes.

  18. Seismic velocities and anisotropy in subducting slabs: Constrains from high pressure Brillouin scattering studies on hydrous phases

    NASA Astrophysics Data System (ADS)

    Sanchez-Valle, C.

    2009-05-01

    Water transported and released into the upper mantle via subduction of oceanic lithosphere has a profound effect on the physical and mechanical properties of mantle materials and may trigger earthquakes and partial melting. The identification of water storage sites in the slab is therefore necessary to constrain H2O recycling through subduction zones and the effect that its circulation on a global scale has on the dynamics of the Earth's interior. As seismology represents the preferred method to detect hydration, knowledge of the sound velocities and elastic properties of candidate hydrous minerals are essential to interpret the seismic velocity structure and anisotropy of subducted plates. Dense hydrous magnesium silicates (DHMS) are recognized as important host for H2O in the slab, but their elastic properties under the appropriate pressure-temperature conditions are still poorly constrained. Here I present recent high-pressure Brillouin spectroscopy measurements to determine the sound velocities and single-crystal elastic properties of Fe-bearing phase A (phA) and phase E (phE), two DHMS that may transport water into the upper mantle and transition zone. Measurements were performed on samples compressed up to 16.5(2) GPa in the diamond-anvil cell. The results provide new insights into the behavior of hydrous minerals under subduction conditions and the possibility of identifying hydration through seismic observations. In both cases, the shear properties of the materials are important factors in the conclusions reached. The compressional (VP) and shear (VS) wave velocities of phA and phE are significantly lower than those of other phases in slab peridotite with whom they coexist. The new data is used with existing thermoelastic data to compute the density and seismic velocity structure of harzburgitic subducted slabs with various degrees of hydration at pressures corresponding to the upper mantle and transition zone. The results suggest that the seismic

  19. Seismic velocity structure of the central Taupo Volcanic Zone, New Zealand, from local earthquake tomography

    NASA Astrophysics Data System (ADS)

    Sherburn, Steven; Bannister, Stephen; Bibby, Hugh

    2003-03-01

    The 3-D distribution of P-wave velocity (Vp) and the P-wave/S-wave velocity ratio (Vp/Vs) are derived for the crust in the central Taupo Volcanic Zone (TVZ), New Zealand, by tomographic inversion of P- and S-wave arrival time data from local earthquakes. Resolution in the seismogenic mid-crust (4-6 km) is good, but poorer above and below these depths. The 3-D velocity model has several Vp anomalies as large as ±5% in the mid-lower crust (4-10 km) and more than ±10% in the upper crust (0-4 km). The model achieves a 55% reduction in data variance from an initial 1-D model. Young caldera structures, Okataina, Rotorua, and Reporoa, are characterised by low Vp anomalies at a depth of about 4 km and these coincide with large negative residual gravity anomalies. We attribute these anomalies to large volumes of low Vp, low-density, volcaniclastic sediments that have filled these caldera collapse structures. Although there are no Vp anomalies which suggest the presence of molten or semi-molten magma beneath the TVZ, a large, high Vp anomaly of more than +15% and a high Vp/Vs anomaly are observed coincident with a diorite pluton beneath the Ngatamariki geothermal field. However, Vp anomalies cannot be seen beneath the largest geothermal fields, Waimangu, Waiotapu, and Reporoa, and, consequently, if such anomalies exist, they must be below the resolution of our data. A prominent Vp contrast of 5-10% occurs at a depth of about 6 km beneath the boundary between the Taupo-Reporoa Depression and the Taupo Fault Belt (TFB), coincident with the eastern limit of the seismic activity beneath the TFB. We interpret this velocity contrast as being caused by the presence of extensive, non-molten, intrusives beneath the Taupo-Reporoa Depression. We suggest that the high-velocity material beneath the Taupo-Reporoa Depression is isolated from regional extension in the TVZ, and from the resulting faulting and seismicity, which occurs preferentially within the weaker material of the TFB. We

  20. Mapping Deep Low Velocity Zones in Alaskan Arctic Coastal Permafrost using Seismic Surface Waves

    NASA Astrophysics Data System (ADS)

    Dou, S.; Ajo Franklin, J. B.; Dreger, D. S.

    2012-12-01

    Permafrost degradation may be an important amplifier of climate change; Thawing of near-surface sediments holds the potential of increasing greenhouse gas emissions due to microbial decomposition of preserved organic carbon. Recently, the characterization of "deep" carbon pools (several meters below the surface) in circumpolar frozen ground has increased the estimated amount of soil carbon to three times higher than what was previously thought. It is therefore potentially important to include the characteristics and processes of deeper permafrost strata (on the orders of a few to tens of meters below surface) in climate models for improving future predictions of accessible carbon and climate feedbacks. This extension is particularly relevant if deeper formations are not completely frozen and may harbor on-going microbial activity despite sub-zero temperatures. Unfortunately, the characterization of deep permafrost systems is non-trivial; logistics and drilling constraints often limit direct characterization to relatively shallow units. Geophysical measurements, either surface or airborne, are often the most effective tools for evaluating these regions. Of the available geophysical techniques, the analysis of seismic surface waves (e.g. MASW) has several unique advantages, mainly the ability to provide field-scale information with good depth resolution as well as penetration (10s to 100s of m with small portable sources). Surface wave methods are also able to resolve low velocity regions, a class of features that is difficult to characterize using traditional P-wave refraction methods. As part of the Department of Energy (DOE) Next-Generation Ecosystem Experiments (NGEE-Arctic) project, we conducted a three-day seismic field survey (May 12 - 14, 2012) at the Barrow Environmental Observatory, which is located within the Alaskan Arctic Coastal Plain. Even though permafrost at the study site is continuous, ice-rich and thick (>= 350m), our Multichannel Analysis of

  1. Complex seismic anisotropy at the border of a very low velocity province at the base of the Earth's mantle

    NASA Astrophysics Data System (ADS)

    Wang, Yi; Wen, Lianxing

    2007-09-01

    We constrain the anisotropy associated with a very low velocity province (VLVP) at the base of the Earth's mantle using the SKS and SKKS waves sampling the region. Our selected high-quality data sets consist of 415 SKS and 111 SKKS waveforms for 127 deep earthquakes recorded at distances between 90° and 150° by the seismic stations in three temporary broadband PASSCAL seismic arrays: the Kaapvaal seismic array (1997-1999), the Tanzania seismic array (1994-1995), and the Ethiopia/Kenya seismic array (1999-2001), as well as the permanent stations in the Global Seismographic Network. These seismic data provide good sampling coverage for some portion of the VLVP and its surrounding areas. Our results show, when the SKS or SKKS phases sample the regions away from the border of the VLVP (inside or outside the VLVP), the apparent splitting parameters inferred from the SKS phases are consistent with those inferred from the SKKS phases, and their variations strongly correlate with seismic stations but not with the exit points at the core-mantle boundary of these seismic phases. However, when the SKS or SKKS phases sample near the border of the VLVP, the apparent splitting parameters inferred from the SKS phases and SKKS phases are different, and their variations no longer correlate with seismic stations. These features indicate that part of the shear wave splitting for the seismic data sampling the border of the VLVP has to originate from deep mantle, most likely near the border of the VLVP. We assume that the anisotropy in the shallow mantle beneath seismic stations has a horizontal hexagonal symmetry axis and infer the splitting parameters associated with the shallow anisotropy beneath the seismic stations using the SKS and SKKS waveforms for the seismic data sampling the regions away from the border of the VLVP. We then obtain the splitting parameters associated with the lowermost mantle anisotropy using the SKS and SKKS waveforms corrected for the inferred shallow

  2. Focused fluid-flow processes through high-quality bathymetric, 2D seismic and Chirp data from the southern parts of the Bay of Biscay, France

    NASA Astrophysics Data System (ADS)

    Baudon, Catherine; Gillet, Hervé; Cremer, Michel

    2013-04-01

    High-quality bathymetric, 2D seismic and Chirp data located in the southern parts of the Bay of Biscay, France, collected by the University of Bordeaux 1 (Cruises ITSAS 2, 2001; PROSECAN 3, 2006 and SARGASS, 2010) have recently been compiled. The survey area widely covers the Capbreton Canyon, which lies on the boundary between two major structural zones: the Aquitanian passive margin to the North, and the Basque-Cantabrian margin to the South which corresponds to the offshore Pyrenean front. The dataset revealed a large number of key seafloor features potentially associated with focused fluid-flow processes and subsurface sediment-remobilization. Focused fluid migration through sub-seabed sediments is a common phenomenon on continental margins worldwide and has widespread implications from both industrial and fundamental perspectives, from seafloor marine environmental issues to petroleum exploration and hazard assessments. Our study analyses the relationships between seafloor features, deeper structures and fluid migration through the Plio-Quaternary sedimentary pile. The geometrical characteristics, mechanisms of formation and kinematics of four main groups of seabed features have been investigated. (i) A 150km2 field of pockmarks can be observed on the Basque margin. These features are cone-shaped circular or elliptical depressions that are either randomly distributed as small pockmarks (diameter < 20m) or aligned in trains of large pockmarks (ranging from 200 to 600m in diameter) along shallow troughs leading downstream to the Capbreton Canyon. Seismic data show that most pockmarks reach the seabed through vertically staked V-shaped features but some are buried and show evidence of lateral migration through time. (ii) A second field of widely-spaced groups of pockmarks pierce the upper slope of the Aquitanian margin. These depressions are typically a few hundred meters in diameter and seem to be preferentially located in the troughs or on the stoss sides of

  3. The preliminary results: Internal seismic velocity structure imaging beneath Mount Lokon

    SciTech Connect

    Firmansyah, Rizky; Nugraha, Andri Dian; Kristianto

    2015-04-24

    Historical records that before the 17{sup th} century, Mount Lokon had been dormant for approximately 400 years. In the years between 1350 and 1400, eruption ever recorded in Empung, came from Mount Lokon’s central crater. Subsequently, in 1750 to 1800, Mount Lokon continued to erupt again and caused soil damage and fall victim. After 1949, Mount Lokon dramatically increased in its frequency: the eruption interval varies between 1 – 5 years, with an average interval of 3 years and a rest interval ranged from 8 – 64 years. Then, on June 26{sup th}, 2011, standby alert set by the Center for Volcanology and Geological Hazard Mitigation. Peak activity happened on July 4{sup th}, 2011 that Mount Lokon erupted continuously until August 28{sup th}, 2011. In this study, we carefully analyzed micro-earthquakes waveform and determined hypocenter location of those events. We then conducted travel time seismic tomographic inversion using SIMULPS12 method to detemine Vp, Vs and Vp/Vs ratio structures beneath Lokon volcano in order to enhance our subsurface geological structure. During the tomographic inversion, we started from 1-D seismic velocities model obtained from VELEST33 method. Our preliminary results show low Vp, low Vs, and high Vp/Vs are observed beneath Mount Lokon-Empung which are may be associated with weak zone or hot material zones. However, in this study we used few station for recording of micro-earthquake events. So, we suggest in the future tomography study, the adding of some seismometers in order to improve ray coverage in the region is profoundly justified.

  4. The preliminary results: Internal seismic velocity structure imaging beneath Mount Lokon

    NASA Astrophysics Data System (ADS)

    Firmansyah, Rizky; Nugraha, Andri Dian; Kristianto

    2015-04-01

    Historical records that before the 17th century, Mount Lokon had been dormant for approximately 400 years. In the years between 1350 and 1400, eruption ever recorded in Empung, came from Mount Lokon's central crater. Subsequently, in 1750 to 1800, Mount Lokon continued to erupt again and caused soil damage and fall victim. After 1949, Mount Lokon dramatically increased in its frequency: the eruption interval varies between 1 - 5 years, with an average interval of 3 years and a rest interval ranged from 8 - 64 years. Then, on June 26th, 2011, standby alert set by the Center for Volcanology and Geological Hazard Mitigation. Peak activity happened on July 4th, 2011 that Mount Lokon erupted continuously until August 28th, 2011. In this study, we carefully analyzed micro-earthquakes waveform and determined hypocenter location of those events. We then conducted travel time seismic tomographic inversion using SIMULPS12 method to detemine Vp, Vs and Vp/Vs ratio structures beneath Lokon volcano in order to enhance our subsurface geological structure. During the tomographic inversion, we started from 1-D seismic velocities model obtained from VELEST33 method. Our preliminary results show low Vp, low Vs, and high Vp/Vs are observed beneath Mount Lokon-Empung which are may be associated with weak zone or hot material zones. However, in this study we used few station for recording of micro-earthquake events. So, we suggest in the future tomography study, the adding of some seismometers in order to improve ray coverage in the region is profoundly justified.

  5. Near-surface seismic velocity changes in a salt-dominated environment due to shaking and thermal stressing

    NASA Astrophysics Data System (ADS)

    Richter, Tom; Sens-Schönfelder, Christoph; Kind, Rainer; Asch, Günter

    2014-05-01

    We report on results from a seismic station of the Integrated Plate Boundary Observatory Chile (IPOC) showing a superior sensitivity of seismic velocity changes in the surrounding medium to shaking and temperature. 5 years of daily autocorrelations of the IPOC network are analyzed with passive image interferometry. Due to the particular geological conditions we observe a high sensitivity of the medium around the station near Patache (PATCX) resulting in annual periodic velocity variations and temporary velocity reductions induced by ground shaking. We observe a linear relationship between the amplitude of the velocity reductions and the peak ground acceleration (PGA) of nearby earthquakes at station PATCX. Although velocity reductions are also observed at other stations of the IPOC array for the Mw 7.7 Tocopilla earthquake a clear relationship between the PGA of this earthquake and the induced velocity reductions at the different stations is not visible. Furthermore, we observe velocity variations with an annual and daily period. We present different arguments that these periodic changes are caused by variations of the atmospheric temperature. In this context we construct a model that starts at observed temperature variations and evaluates thermal stresses induced by the temperature gradients. Using radiative transfer based sensitivity kernels and third order elastic constants we relate the distribution of thermal stress in the subsurface to observable time shifts of coda waves. The model is able to reproduce the major features confirming that stress changes in the subsurface can be detected with noise based monitoring.

  6. Comparison of P- and S-wave velocity profiles obtained from surface seismic refraction/reflection and downhole data

    USGS Publications Warehouse

    Williams, R.A.; Stephenson, W.J.; Odum, J.K.

    2003-01-01

    High-resolution seismic-reflection/refraction data were acquired on the ground surface at six locations to compare with near-surface seismic-velocity downhole measurements. Measurement sites were in Seattle, WA, the San Francisco Bay Area, CA, and the San Fernando Valley, CA. We quantitatively compared the data in terms of the average shear-wave velocity to 30-m depth (Vs30), and by the ratio of the relative site amplification produced by the velocity profiles of each data type over a specified set of quarter-wavelength frequencies. In terms of Vs30, similar values were determined from the two methods. There is <15% difference at four of the six sites. The Vs30 values at the other two sites differ by 21% and 48%. The relative site amplification factors differ generally by less than 10% for both P- and S-wave velocities. We also found that S-wave reflections and first-arrival phase delays are essential for identifying velocity inversions. The results suggest that seismic reflection/refraction data are a fast, non-invasive, and less expensive alternative to downhole data for determining Vs30. In addition, we emphasize that some P- and S-wave reflection travel times can directly indicate the frequencies of potentially damaging earthquake site resonances. A strong correlation between the simple S-wave first-arrival travel time/apparent velocity on the ground surface at 100 m offset from the seismic source and the Vs30 value for that site is an additional unique feature of the reflection/refraction data that could greatly simplify Vs30 determinations. ?? 2003 Elsevier Science B.V. All rights reserved.

  7. Joint Inversion of Seismic and Gravity Data for Velocity Structure and Hypocentral Locations of the Colombian Subduction Zone

    NASA Astrophysics Data System (ADS)

    Syracuse, E. M.; Maceira, M.; Prieto, G. A.; Zhang, H.; Ammon, C. J.

    2014-12-01

    Joint inversions of geophysical data recover models that simultaneously fit multiple types of constraints while playing upon the various sensitivities of each data type. Here, we combine body wave arrival times with surface wave dispersion measurements and gravity observations to develop a combined 3D P- and S-wave velocity model for the crust and upper mantle of Colombia. P- and S-wave arrival times were obtained for local earthquakes from instruments in the Colombian National Seismic Network. Rayleigh wave dispersion curves were inverted for using a subset of network stations and larger local earthquakes. Gravity observations were extracted from the global satellite-based model EGM2008. Preliminary results using body waves only show reduced velocities beneath the volcanic arc in the upper 25 km of the crust. Crustal velocities are also reduced from the 1D starting model beneath the Eastern Cordillera in the northern half of the country. Relocations of intermediate-depth seismicity clearly indicate a discontinuity in the slab centered 5° N latitude, where the southern portion of the slab is ~200 km trenchward of the northern portion, coincident with the termination of arc volcanism and in recent years interpreted as due to a slab tear [Vargas and Mann, 2013]. Seismicity below 100 km depth in the southern portion of the subduction zone­­­ is surrounded by a ~100-km-thick region of elevated velocities, associated with the subduction of the Nazca Plate, and embedded within a broader region of reduced velocities. The northern portion of the subduction zone at 100 km depth and below is characterized by a broad region of elevated velocities, which may be consistent with a slab of an old, thickened Caribbean Plate origin. The overlapping of the edges of the Nazca and Caribbean slabs may contribute to the seismicity of the Bucaramanga nest.

  8. Large tectonic earthquakes induce sharp temporary decreases in seismic velocity in Volcán de Colima, Mexico

    NASA Astrophysics Data System (ADS)

    Lesage, Philippe; Reyes-Dávila, Gabriel; Arámbula-Mendoza, Raúl

    2014-05-01

    We used the ambient noise cross-correlation and stretching methods to calculate variations in seismic velocities in the region of Volcán de Colima, Mexico. More than 15 years of continuous records were processed, producing long time series of velocity variations related to volcanic activity, meteorological effects, and earthquakes. Velocity variations associated with eruptive activity are tenuous, which probably reflects the open state of the volcano during the study period. Fifteen events among 26 regional tectonic earthquakes produced sharp, temporary decreases in seismic velocities, which then recovered progressively following a linear trend as a function of the logarithm of time. For the 15 events, the amplitude of the perturbation increased almost linearly with the logarithm of the amplitude of the seismic waves that shook the edifice. The most dramatic apparent velocity variation was a drop of up to 2.6% during the nearby M7.4 Tecomán earthquake in 2003. In order to locate the perturbation in the horizontal plane we applied an inverse method based on the radiative transfer approximation. We also used an original approach based on the frequency dependence of velocity variations to estimate the depth of the perturbation. Our results show that the velocity variation was well localized in the shallow layers (< 800 m) of the volcano, with almost no variations occurring outside the edifice. We discuss several possible interpretations and conclude that the most plausible explanation for the velocity decreases is the nonlinear elastic behavior of the granular volcanic material and its mechanical softening induced by transient strains.

  9. P and S velocity tomography of the Mariana subduction system from a combined land-sea seismic deployment

    NASA Astrophysics Data System (ADS)

    Barklage, Mitchell; Wiens, Douglas A.; Conder, James A.; Pozgay, Sara; Shiobara, Hajime; Sugioka, Hiroko

    2015-03-01

    Seismic imaging provides an opportunity to constrain mantle wedge processes associated with subduction, volatile transport, arc volcanism, and back-arc spreading. We investigate the seismic velocity structure of the upper mantle across the Central Mariana subduction system using data from the 2003-2004 Mariana Subduction Factory Imaging Experiment, an 11 month deployment consisting of 20 broadband seismic stations installed on islands and 58 semibroadband ocean bottom seismographs. We determine the three-dimensional VP and VP/VS structure using over 25,000 local and over 2000 teleseismic arrival times. The mantle wedge is characterized by slow velocity and high VP/VS beneath the fore arc, an inclined zone of slow velocity underlying the volcanic front, and a strong region of slow velocity beneath the back-arc spreading center. The slow velocities are strongest at depths of 20-30 km in the fore arc, 60-70 km beneath the volcanic arc, and 20-30 km beneath the spreading center. The fore-arc slow velocity anomalies occur beneath Big Blue seamount and are interpreted as resulting from mantle serpentinization. The depths of the maximum velocity anomalies beneath the arc and back arc are nearly identical to previous estimates of the final equilibrium depths of mantle melts from thermobarometry, strongly indicating that the low-velocity zones delineate regions of melt production in the mantle. The arc and back-arc melt production regions are well separated at shallow depths, but may be connected at depths greater than 80 km.

  10. Seismic velocities in Southern Tibet lower crust: a receiver function approach for eclogite detection

    NASA Astrophysics Data System (ADS)

    Wittlinger, Gérard; Farra, Véronique; Hetényi, György; Vergne, Jérôme; Nábělek, John

    2009-06-01

    Beneath the Tibet plateau, the deficit of crustal thickening with respect to what is expected from the plate tectonic constraints is thought to be absorbed either by lateral extrusion or by vertical rock-mass transfer. To nourish the unsettled debate of the relative importance of these two processes, we propose a new approach, based on the S-to-P and the P-to-S wave conversions, enabling the precise determination of the seismic velocities. The weighted amplitudes of the direct conversion and of reverberations are stacked at their predicted arrival times for various values of layer thickness and vP/vS ratio separately for two sets of P- and S-receiver functions. For each set of receiver functions, coherent stack gives the vP/ vS ratio and thickness for the considered layer (the grid search stacking method). The values of vP/vS ratio and layer thickness are functions of the velocity used for stacking the set of receiver functions, but using the P- and S-receiver functions allows us to solve this indetermination and to find the effective parameters of the layer: velocity vS, vP/ vS ratio and thickness. We use a bootstrap resampling of the receiver function data sets to estimate the parameters uncertainties. For the Southern Lhasa Block, the migrated sections of both P- and S-receiver functions (Hi-CLIMB experiment data) show a layer in the lower crust that may be related to the lower Indian crust underplated beneath Tibet. With the grid search stacking method, high shear wave velocities (vS ~ 4.73 km s-1) and low vP/vS ratios (~1.69) are detected in this layer. Such values are typical for high-grade eclogites, and the low vP/vS ratio precludes the confusion with mafic granulites. There is no evidence for partial eclogitization near and south of the Yarlung-Tsangpo Suture, and the about 19 km thick eclogitic layer extends northwards only to about the middle of the Lhasa terrane.

  11. The tectonostratigraphic evolution of the offshore Gippsland Basin, Victoria, Australia---results from 3D seismic interpretation and 2D section restoration

    NASA Astrophysics Data System (ADS)

    Weller, Mitchell

    The Gippsland Basin is located primarily offshore Victoria, Australia (between the Australian mainland and Tasmania) approximately 200 km east of Melbourne. The formation of the east-west trending Gippsland Basin is associated with the break-up of Gondwana during the late Jurassic/early Cretaceous and the basin has endured multiple rifting and inversion events. Strong tectonic control on the sedimentary development of the basin is reflected in the deposition of several major, basin scale sequences ranging in age from the early Cretaceous to Neogene, which are usually bounded by angular unconformities. Schlumberger's Petrel software package has been used to structurally and stratigraphically interpret a basin-wide 3D seismic data set provided by the Australian Government (Geoscience Australia) and four 2D kinematic reconstruction/restorations through the basin have been completed with Midland Valley's Move software to achieve a better understanding of the structural evolution of the Gippsland Basin. Rift phase extension calculated from the restorations (5.0--10.5%) appears anomalously low to accommodate the amount of sediment that has been deposited in the basin (>10km). Distributed extension on small faults and subsidence history from backstripping are employed to answer this anomaly. The 2D restorations completed illustrate structural time relationships across the basin and allow for a minimum estimate of erosion that has occurred along the inverted northern basin margin. Differences between previous work completed by Power et al. (2001) and this study as well as several extension models and associated implications are discussed as they relate to the interpretation carried out in this study. Extension calculated from section restorations ranged from approximately 5.0--10.5%. These measured extensional values appear too low to wholly accommodate the accumulated sediment thickness in the basin. Subsidence modelling and backstripping estimates approximately 50

  12. Seismic reflectivity of the sediment-covered seafloor: effects of velocity gradients and fine-scale layering

    NASA Astrophysics Data System (ADS)

    Sidler, Rolf; Holliger, Klaus

    2010-04-01

    Knowledge of the reflectivity of the sediment-covered seabed is of significant importance to marine seismic data acquisition and interpretation as it governs the generation of reverberations in the water layer. In this context pertinent, but largely unresolved, questions concern the importance of the typically very prominent vertical seismic velocity gradients as well as the potential presence and magnitude of anisotropy in soft surficial seabed sediments. To address these issues, we explore the seismic properties of granulometric end-member-type clastic sedimentary seabed models consisting of sand, silt, and clay as well as scale-invariant stochastic layer sequences of these components characterized by realistic vertical gradients of the P- and S-wave velocities. Using effective media theory, we then assess the nature and magnitude of seismic anisotropy associated with these models. Our results indicate that anisotropy is rather benign for P-waves, and that the S-wave velocities in the axial directions differ only slightly. Because of the very high P- to S-wave velocity ratios in the vicinity of the seabed our models nevertheless suggest that S-wave triplications may occur at very small incidence angles. To numerically evaluate the P-wave reflection coefficient of our seabed models, we apply a frequency-slowness technique to the corresponding synthetic seismic wavefields. Comparison with analytical plane-wave reflection coefficients calculated for corresponding isotropic elastic half-space models shows that the differences tend to be most pronounced in the vicinity of the elastic equivalent of the critical angle as well as in the post-critical range. We also find that the presence of intrinsic anisotropy in the clay component of our layered models tends to dramatically reduce the overall magnitude of the P-wave reflection coefficient as well as its variation with incidence angle.

  13. Full waveform seismic modelling of Chalk Group rocks from the Danish North Sea - implications for velocity analysis

    NASA Astrophysics Data System (ADS)

    Montazeri, Mahboubeh; Moreau, Julien; Uldall, Anette; Nielsen, Lars

    2015-04-01

    This study aims at understanding seismic wave propagation in the fine-layered Chalk Group, which constitutes the main reservoir for oil and gas production in the Danish North Sea. The starting point of our analysis is the Nana-1XP exploration well, which shows strong seismic contrasts inside the Chalk Group. For the purposes of seismic waveform modelling, we here assume a one-dimensional model with homogeneous and isotropic layers designed to capture the main fluctuations in petrophysical properties observed in the well logs. The model is representative of the stratigraphic sequences of the area and it illustrates highly contrasting properties of the Chalk Group. Finite-difference (FD) full wave technique, both acoustic and elastic equations are applied to the model. Velocity analysis of seismic data is a crucial step for stacking, multiple suppression, migration, and depth conversion of the seismic record. Semblance analysis of the synthetic seismic records shows strong amplitude peaks outside the expected range for the time interval representing the Chalk Group, especially at the base. The various synthetic results illustrate the occurrence and the impact of different types of waves including multiples, converted waves and refracted waves. The interference of these different wave types with the primary reflections can explain the strong anomalous amplitudes in the semblance plot. In particular, the effect of strongly contrasting thin beds plays an important role in the generation of the high anomalous amplitude values. If these anomalous amplitudes are used to pick the velocities, it would impede proper stacking of the data and may result in sub-optimal migration and depth conversion. Consequently this may lead to erroneous or sub-optimal seismic images of the Chalk Group and the underlying layers. Our results highlight the importance of detailed velocity analysis and proper picking of velocity functions in the Chalk Group intervals. We show that application of

  14. Towards Simulating a Realistic Planetary Seismic Wavefield: The Contribution of the Megaregolith and Low-Velocity Waveguides

    NASA Technical Reports Server (NTRS)

    Schmerr, Nicholas C.; Weber, Renee C.; Lin, Pei-Ying Patty; Thorne, Michael Scott; Garnero, Ed J.

    2011-01-01

    Lunar seismograms are distinctly different from their terrestrial counterparts. The Apollo lunar seismometers recorded moonquakes without distinct P- or S-wave arrivals; instead waves arrive as a diffuse coda that decays over several hours making the identification of body waves difficult. The unusual character of the lunar seismic wavefield is generally tied to properties of the megaregolith: it consists of highly fractured and broken crustal rock, the result of extensive bombardment of the Moon. The megaregolith extends several kilometers into the lunar crust, possibly into the mantle in some regions, and is covered by a thin coating of fine-scale dust. These materials possess very low seismic velocities that strongly scatter the seismic wavefield at high frequencies. Directly modeling the effects of the megaregolith to simulate an accurate lunar seismic wavefield is a challenging computational problem, owing to the inherent 3-D nature of the problem and the high frequencies (greater than 1 Hz) required. Here we focus on modeling the long duration code, studying the effects of the low velocities found in the megaregolith. We produce synthetic seismograms using 1-D slowness integration methodologies, GEMINI and reflectivity, and a 3-D Cartesian finite difference code, Wave Propagation Program, to study the effect of thin layers of low velocity on the surface of a planet. These codes allow us generate seismograms with dominant frequencies of approximately 1 Hz. For background lunar seismic structure we explore several models, including the recent model of Weber et al., Science, 2011. We also investigate variations in megaregolithic thickness, velocity, attenuation, and seismogram frequency content. Our results are compared to the Apollo seismic dataset, using both a cross correlation technique and integrated envelope approach to investigate coda decay. We find our new high frequency results strongly support the hypothesis that the long duration of the lunar seismic

  15. Shear wave velocity estimation of cover sediments by seismic array measurements (central Belgium)

    NASA Astrophysics Data System (ADS)

    Van Noten, Koen; Lecocq, Thomas; Camelbeeck, Thierry; Van Camp, Michel

    2015-04-01

    Since 1938, the Royal Observatory of Belgium has first held community inquiries and then online 'Did You Feel It' inquiries to gain information on the distribution of felt events in Belgium. For small magnitude events, mostly a circular macroseismic distribution pattern related to the energy decay by increasing hypocentral distance has been reported. However, few moderate-magnitude earthquakes (ML > 4) have caused an elliptical distribution pattern with higher macroseismic intensities in a consistent E-W direction and stronger intensity decay in a N-S direction. The macroseismic map of the 2011 ML 4.3 earthquake at Goch (Lower Rhine Embayment, Dutch-German border) also showed this E-W oriented distribution. Remarkably, in contrast to the NE of Belgium where this event was barely felt at close epicentral distances, many macroseismic reports were submitted in central Belgium at larger epicentral distances. This peculiar intensity distribution illustrates the important influence of the increasing thickness of the sedimentary cover above the basement rocks of the Brabant Massif from south to north. We will discuss the variation of S-wave velocity with depth of the sedimentary cover. Seismic noise array measurements were performed at different strategic sites at which the thickness of the sedimentary cover systematically increases. From south to north, the chosen sites vary from simple one-unit-over-halfspace configurations, with a clayey alluvium or sandy deposits covering the basement rocks (thickness < 20 m), to multilayer configurations (thickness up to 100 m) with a more complex sedimentary column. Wireless array measurements are performed by conducting CMG6TD Güralp seismometers in a rectangular array network. Subsequent surface wave analysis is executed in GEOPSY by conventional fk- and SPAC analysis to generate dispersion curves that are inverted in Dinver into depth profiles. Eventually, the resulting velocity profiles will help to evaluate the influence of

  16. The comparative analysis of the Earth seismic activity and the variation of the Earth rotation angular velocity.

    NASA Astrophysics Data System (ADS)

    Sasorova, Elena; Levin, Boris

    2013-04-01

    It was shown [Levin, Sasorova 2012], that a cyclic increase and decrease of the seismic activity in different time intervals was observed in spatial-temporal distributions of the earthquakes (EQ) (1900-2012) with magnitude M≥7 in northwest part of the Pacific region. The spatial-temporal analysis revealed the periodic changing of the seismic activity and the depth distributions of the strong events in different time intervals. The Earth rotation angular velocity varies with time. Increasing of the angular velocity of a celestial body rotation leads to growth of oblateness of planet, and vice versa, the oblateness is decreasing with reducing of velocity of rotation. So, well-known effect of instability leads to small pulsations of the Earth surface. The Earth crust in polar areas is compressing with increasing of angular velocity of rotating planet, and it is extensible in the equator zone. The decreasing of rotation velocity leads to opposite result. The objectives of this work is the comparative spatial-temporal analysis of the seismicity regime variation (events with M>=7.0) on the whole Earth and in the Pacific region from 1900 up to date and the Earth rotation instability. The two subsets of the worldwide NEIC (USGS) catalog were used (USGS/NEIC from 1973 up to 2012 and Significant Worldwide Earthquakes (2150 B.C. - 1994 A.D.)). The preliminary standardization of magnitudes and removal of aftershocks was fulfilled for the first mentioned above subset of events. In both cases the entire range of observations was subdivided into several 5-year intervals. The temporal EQ distributions were calculated separately for six latitudinal intervals (belts): 45°-30°N, 30°-15°N, 15°-0°N, 0°-15°S, 15°-30°S, 30°-45°S. The high latitudes do not take in consideration because of very low seismic activity in these latitudes. Separately were analyzed: the EQs with M>=8 for time interval 1900-2012, and the EQs with M>=6 for time interval 1700-1900. The data base (http

  17. Carbonate reservoir characterization using seismic velocity and amplitude variation with offset analysis: Hardeman basin, Texas, test case

    SciTech Connect

    Pigott, J.D.; Shrestha, R.K. ); Warwick, R.A. )

    1991-03-01

    Mississippian bioherms in the Hardeman basin, Texas, produce from dolomitized mud cores with porosities that can vary from 10 to 40%. These carbonate buildups, though often similar in seismic reflector boundary configuration, can vary remarkably in reservoir quality (e.g., porosity) owing to diagenesis. However, imaging these lateral variations of porosity and determining the reservoir pressure is possible with detailed seismic velocity control and amplitude variation with offset (AVO) analysis. The investigated 24-fold seismic profile was acquired by four Vibroseis trucks in the Hardeman basin across two bioherms, one oil-productive and other tight and water-filled. Detailed stacking velocity analyses on the relative amplitude processed line directly delineate areas of increasing and decreasing gross porosity and dramatically differentiate the two mounds. Moreover, the detailed velocity analyses help provide a more accurate stacked section with resultant better definition of the external mound configuration. Analysis of available laboratory compressional and shear wave velocity data for carbonate rocks reveal that Young's modulus in carbonates is a function of porosity and differential pressure. Comparison of the derived Young's modulus from an inversion of the AVO data for the unstacked line with the experimental laboratory data yield porosity and differential pressure estimates over the productive bioherm which are within 18% and 15%, respectively, of those observed in the borehole.

  18. Modeling and validation of a 3D velocity structure for the Santa Clara Valley, California, for seismic-wave simulations

    USGS Publications Warehouse

    Hartzell, S.; Harmsen, S.; Williams, R.A.; Carver, D.; Frankel, A.; Choy, G.; Liu, P.-C.; Jachens, R.C.; Brocher, T.M.; Wentworth, C.M.

    2006-01-01

    A 3D seismic velocity and attenuation model is developed for Santa Clara Valley, California, and its surrounding uplands to predict ground motions from scenario earthquakes. The model is developed using a variety of geologic and geophysical data. Our starting point is a 3D geologic model developed primarily from geologic mapping and gravity and magnetic surveys. An initial velocity model is constructed by using seismic velocities from boreholes, reflection/refraction lines, and spatial autocorrelation microtremor surveys. This model is further refined and the seismic attenuation is estimated through waveform modeling of weak motions from small local events and strong-ground motion from the 1989 Loma Prieta earthquake. Waveforms are calculated to an upper frequency of 1 Hz using a parallelized finite-difference code that utilizes two regions with a factor of 3 difference in grid spacing to reduce memory requirements. Cenozoic basins trap and strongly amplify ground motions. This effect is particularly strong in the Evergreen Basin on the northeastern side of the Santa Clara Valley, where the steeply dipping Silver Creek fault forms the southwestern boundary of the basin. In comparison, the Cupertino Basin on the southwestern side of the valley has a more moderate response, which is attributed to a greater age and velocity of the Cenozoic fill. Surface waves play a major role in the ground motion of sedimentary basins, and they are seen to strongly develop along the western margins of the Santa Clara Valley for our simulation of the Loma Prieta earthquake.

  19. Derivation of site-specific relationships between hydraulic parameters and p-wave velocities based on hydraulic and seismic tomography

    SciTech Connect

    Brauchler, R.; Doetsch, J.; Dietrich, P.; Sauter, M.

    2012-01-10

    In this study, hydraulic and seismic tomographic measurements were used to derive a site-specific relationship between the geophysical parameter p-wave velocity and the hydraulic parameters, diffusivity and specific storage. Our field study includes diffusivity tomograms derived from hydraulic travel time tomography, specific storage tomograms, derived from hydraulic attenuation tomography, and p-wave velocity tomograms, derived from seismic tomography. The tomographic inversion was performed in all three cases with the SIRT (Simultaneous Iterative Reconstruction Technique) algorithm, using a ray tracing technique with curved trajectories. The experimental set-up was designed such that the p-wave velocity tomogram overlaps the hydraulic tomograms by half. The experiments were performed at a wellcharacterized sand and gravel aquifer, located in the Leine River valley near Göttingen, Germany. Access to the shallow subsurface was provided by direct-push technology. The high spatial resolution of hydraulic and seismic tomography was exploited to derive representative site-specific relationships between the hydraulic and geophysical parameters, based on the area where geophysical and hydraulic tests were performed. The transformation of the p-wave velocities into hydraulic properties was undertaken using a k-means cluster analysis. Results demonstrate that the combination of hydraulic and geophysical tomographic data is a promising approach to improve hydrogeophysical site characterization.

  20. Periods of the Earth's seismicity activation and their relationship to variations in the Earth's rotation velocity

    NASA Astrophysics Data System (ADS)

    Sasorova, Elena; Levin, Boris

    2015-04-01

    It is known that Earth's seismic activity (SA) demonstrates distinct roughness (nonuniformity) in time. Periods of intensification of the SA followed by periods of its decaying. For strong earthquakes these periods are continued several decades. It was also noted that there is a pronounced periodic amplification and attenuation of the SA with a period of about 30 years, which is manifested mainly in two latitudinal belts 50°N-30°N and 0°-30°S [Levin, Sasorova, 2014, 2015]. This work deals with the hypothesis that it is the properties of rotating non-uniform rate of the planet may be the cause of the periodicity of manifestations SA. The objective of this work is the searching of the spatial-temporal interconnection between the Earth rotation irregularity and the observed cyclic increasing and decreasing of the Earth's SA. This requires preparation a long series of observations of seismic events with representative data sets (EQ selected from 1895 up to date with a magnitude M> = 7.5, based on the catalog NEIC). Two sources of data on the angular velocity of the Earth's rotation of (length of day, LOD) were adapted: the world-known database IERS (Annual Report, International Earth Rotation Service) and the data, which were presented in the work (McCarthy, D.D., and Babcock A.K., 1986). The first one contains daily observations from 1962 to 2013, the second one was identified semi-annual observations from 1720 to 1984. It was prepared concatenated data set (CLOD) for the period from 1720 to 2013. Characteristic periods in the time series CLOD: 62, 32, and 23 years have been isolated by the use of spectral analysis. Next, it were used a band-pass filters for the four frequency bands from 124 to 45 years, from 37 do 25 years, from 25 to 19 years, and in the range of less than 19 years. In the frequency bands 37-25 years and 25-19 years marked clear periodic oscillations close to a sine wave. The amplitude of the oscillations with the 1720 to 1790 gradually

  1. Determination of a three-dimensional velocity structure for the Southeastern of Mexico, by means of seismic ray tracing.

    NASA Astrophysics Data System (ADS)

    Rodriguez-Perez, Q.; Valdes-Gozalez, C.

    2007-05-01

    The objective of the present study is to obtain a three-dimensional velocity structure for three different tectonic provinces (Oaxaca, Chiapas and north of Guatemala). The Southeastern of Mexico is a seismic active region, in which several geologic structures of great importance are located: the Tehuantepec ridge, the Central-American volcanic arc, the Chiapas batholit, the extension of the Motagua-Polochic fault system, and also the existance of complex tectonostratigrafic terrenes at cortical level. In this area of study, there are a considerable number of tectonic studies and cortical velocity models (1D). For this reason is desired to obtain a three-dimensional realistic velocity model that agrees with the results obtained in previous studies. To make it posible, a preliminary velocity model has been proposed and has been discretized, and is now at the test stage. Also the geometry of the Cocos plate is determined (variation of the subduction angle) and we will try to obtain the interaction between the Motagua-Polochic fault system and the previously described subduction provinces. We will use P and S waves, from local and regional earthquakes from 1994 to 2004 reported by National Seismological Service (SSN) in eight broadband seismic stations in the Southeastern of Mexico (CCIG, CMIG, EVV, HUIG, OXIG, SCX TPX, TUIG). In the study earthquake relocalizations with the DD method will be performed, and a 3-D ray tracing will be used to test the seismic model. The 3-D velocity model will allow us to better understand the wave propagation characteristics, and apply them to the mitigation of the seismic risk in the region. 1. Earth Science Graduate Program. UNAM. 2. Institute of Geophysics. UNAM.

  2. Lithospheric velocity model across the Southern Central Iberian Zone (Variscan Iberian Massif): The ALCUDIA wide-angle seismic reflection transect

    NASA Astrophysics Data System (ADS)

    Ehsan, Siddique Akhtar; Carbonell, Ramon; Ayarza, Puy; Martí, David; Martínez Poyatos, David; Simancas, José Fernando; Azor, Antonio; Ayala, Concepción; Torné, Montserrat; Pérez-Estaún, Andrés.

    2015-03-01

    A P wave seismic velocity model has been obtained for the Central Iberian Zone, the largest continental fragment of the Iberian Variscan Belt. The spatially dense, high-resolution, wide-angle seismic reflection experiment, ALCUDIA-WA, was acquired in 2012 across central Iberia, aiming to constrain the lithospheric structure and resolve the physical properties of the crust and upper mantle. The seismic transect, ~310 km long, crossed the Central Iberian Zone from its suture with the Ossa-Morena Zone to the southern limit of the Central System mountain range. The energy generated by five shots was recorded by ~900 seismic stations. High-amplitude phases were identified in every shot gather for the upper crust (Pg and PiP) and Moho (PmP and Pn). In the upper crust, the P wave velocities increase beneath the Cenozoic Tajo Basin. The base of the upper crust varies from ~13 km to ~20 km between the southernmost Central Iberian Zone and the Tajo Basin. Lower crustal velocities are more homogeneous. From SW-NE, the traveltime of PmP arrivals varies from ~10.5 s to ~11.8 s, indicating lateral variations in the P wave velocity and the crustal thickness, reflecting an increase toward the north related with alpine tectonics and the isostatic response of the crust to the orogenic load. The results suggest that the high velocities of the upper crust near the Central System might correspond to igneous rocks and/or high-grade metamorphic rocks. The contrasting lithologies and the increase in the Moho depth to the north evidence differences in the Variscan evolution.

  3. Near-surface S-wave velocity measured with six-degree-of-freedom seismic sensor Rotaphone

    NASA Astrophysics Data System (ADS)

    Malek, Jiri; Brokesova, Johana

    2015-04-01

    An essential parameter in seismic engineering is the near-surface S-wave velocity. Rotaphone, a six-degree-of-freedom seismic sensor can be used with advantage to retrieve it from collocated rotational and translational measurements. Rotaphone consists of highly sensitive geophones connected to a conjoint datalogger. The geophones are mounted in parallel pairs to a rigid (metal) ground-based frame. The instrument is designed to measure short-period translational ground motion (velocity) and, in addition, differential motion between the paired geophones. The records of those differential motions are used to obtain rotational components. In-situ calibration of individual geophones is performed simultaneously with each measurement, which enables to reach high sensitivity and accuracy of rotational measurements. In our method we utilize seismic waves produced by anthropogenic source - a generator of S waves and rotational ground motions. The generator contains a fixed part (anchored to the ground), a revolving part and a braking mechanism for immediate braking of the rotational part, in which rotational seismic motions are generated by immediately stopping the revolving part, whereby energy is transmitted into the rock massive. The generator produces repeatedly identical source pulses. Due to identity of the source pulses, we can suppress noise by means of stacking data from many generator actions and thus increase the depth range and resolution. The phase velocity retrieval is based on matching relevant acceleration and rotation rate components. Thanks to a near-source distance and high-frequency content of the source pulses, well-known equations for plane-wave approximation must be replaced by more adequate equations relating the individual rotation rate components to the translational ones. These equations are derived under an assumption of spherical wave. The resulting S-wave phase velocity is compared to the value obtained by standard profile measurements. The

  4. Benchmarking passive seismic methods of estimating the depth of velocity interfaces down to ~300 m

    NASA Astrophysics Data System (ADS)

    Czarnota, Karol; Gorbatov, Alexei

    2016-04-01

    In shallow passive seismology it is generally accepted that the spatial autocorrelation (SPAC) method is more robust than the horizontal-over-vertical spectral ratio (HVSR) method at resolving the depth to surface-wave velocity (Vs) interfaces. Here we present results of a field test of these two methods over ten drill sites in western Victoria, Australia. The target interface is the base of Cenozoic unconsolidated to semi-consolidated clastic and/or carbonate sediments of the Murray Basin, which overlie Paleozoic crystalline rocks. Depths of this interface intersected in drill holes are between ~27 m and ~300 m. Seismometers were deployed in a three-arm spiral array, with a radius of 250 m, consisting of 13 Trillium Compact 120 s broadband instruments. Data were acquired at each site for 7-21 hours. The Vs architecture beneath each site was determined through nonlinear inversion of HVSR and SPAC data using the neighbourhood algorithm, implemented in the geopsy modelling package (Wathelet, 2005, GRL v35). The HVSR technique yielded depth estimates of the target interface (Vs > 1000 m/s) generally within ±20% error. Successful estimates were even obtained at a site with an inverted velocity profile, where Quaternary basalts overlie Neogene sediments which in turn overlie the target basement. Half of the SPAC estimates showed significantly higher errors than were obtained using HVSR. Joint inversion provided the most reliable estimates but was unstable at three sites. We attribute the surprising success of HVSR over SPAC to a low content of transient signals within the seismic record caused by low levels of anthropogenic noise at the benchmark sites. At a few sites SPAC waveform curves showed clear overtones suggesting that more reliable SPAC estimates may be obtained utilizing a multi-modal inversion. Nevertheless, our study indicates that reliable basin thickness estimates in the Australian conditions tested can be obtained utilizing HVSR data from a single

  5. Fault rupture as a series of nano-seismic events during high-velocity shear experiments

    NASA Astrophysics Data System (ADS)

    Zu, X.; Reches, Z.; Chen, X.; Chang, J. C.; Carpenter, B. M.

    2015-12-01

    The rupture process of experimental faults is investigated here by monitoring nano-seismic events (NSE) during slip in a rotary shear apparatus. Our experimental faults are made of two rock blocks with one to four miniature 3D accelerometers that are glued to the stationary block at distance of ~ 2 cm from the fault surface. Accelerations in the frequency range of 1 Hz to 200 kHz are recorded in slip-parallel (x), slip-transverse (y), and slip-vertical (z) directions. We conducted a series of 45 experiments on diorite and dolomite samples in two loading styles: classical velocity controlled loading, and power-density loading, in which the power-density (shear stress times slip velocity) is selected, and stick-slip events develop spontaneously according to the experimental fault response. The 3D accelerometer data were recorded at 106 samples/s, with acceleration resolution of 10 mV/g in recoding range of +/- 5 V. The experiments were conducted at slip-velocity of 0.001-0.8 m/s and slip distance up to 1.38 m. The accelerometer observations revealed tens to hundreds of NSEs per slip in both loading styles; peak acceleration ranged from 1g to over 500g. A typical stick-slip with tens of NSEs in Fig. 1, shows: (1) An initial NSE at ~59.72 s (green) that coincides with a small stress drop (~10%, red); (2) Simultaneous macroscopic slip initiation (blue); (3) A swarm of NSEs occur as the fault slips, each NSE lasts 1-2 milliseconds; and (4) Details of the initial NSE are shown in Fig. 2. Based on waveform cross-correlation between frequency band from 20 kHz to 70kHz, we identify several groups of NSE clusters, and apply empirical Green's function method to analyze event source spectra based on Brune-type source model. These NSEs are indicators of rupture propagation during the experimental fault slip.

  6. Crustal seismicity and the earthquake catalog maximum moment magnitudes (Mcmax) in stable continental regions (SCRs): correlation with the seismic velocity of the lithosphere

    USGS Publications Warehouse

    Mooney, Walter D.; Ritsema, Jeroen; Hwang, Yong Keun

    2012-01-01

    A joint analysis of global seismicity and seismic tomography indicates that the seismic potential of continental intraplate regions is correlated with the seismic properties of the lithosphere. Archean and Early Proterozoic cratons with cold, stable continental lithospheric roots have fewer crustal earthquakes and a lower maximum earthquake catalog moment magnitude (Mcmax). The geographic distribution of thick lithospheric roots is inferred from the global seismic model S40RTS that displays shear-velocity perturbations (δVS) relative to the Preliminary Reference Earth Model (PREM). We compare δVS at a depth of 175 km with the locations and moment magnitudes (Mw) of intraplate earthquakes in the crust (Schulte and Mooney, 2005). Many intraplate earthquakes concentrate around the pronounced lateral gradients in lithospheric thickness that surround the cratons and few earthquakes occur within cratonic interiors. Globally, 27% of stable continental lithosphere is underlain by δVS≥3.0%, yet only 6.5% of crustal earthquakes with Mw>4.5 occur above these regions with thick lithosphere. No earthquakes in our catalog with Mw>6 have occurred above mantle lithosphere with δVS>3.5%, although such lithosphere comprises 19% of stable continental regions. Thus, for cratonic interiors with seismically determined thick lithosphere (1) there is a significant decrease in the number of crustal earthquakes, and (2) the maximum moment magnitude found in the earthquake catalog is Mcmax=6.0. We attribute these observations to higher lithospheric strength beneath cratonic interiors due to lower temperatures and dehydration in both the lower crust and the highly depleted lithospheric root.

  7. Seismic Anisotropy and Upper-Mantle Velocity Structures Beneath the Qinling-Dabie Orogenic Beltand Surrounding Regions

    NASA Astrophysics Data System (ADS)

    Yu, Y.; Chen, Y. J.; Feng, Y.; An, M.; Liang, X.; Dong, S.

    2014-12-01

    The Qinling-Dabie orogenic belt was formed as the suture zone by the collision of the North China Block and the South China Block in the Late Triassic and it has been reactivated by the Indo-Asian collision since 60 million years ago. From July 2012 to May 2014 Peking University and Chinese Academy of Geological Science deployed a seismic array of 147 portable broadband seismic stations around the Qinling-Dabie orogenic belt. Here shear-wave splitting analysis of SKS data and finite-frequency tomography were applied to these data to imagine the seismic anisotropy and velocity structures in the upper mantle beneath the region. Large delay times were observed at the southwest corner of the Ordos Block and the northeast of Tibetan Plateau. Where the angles between the fast polarization directions and the GPS velocity vectors are relatively large but those in the Weihe rift and the North China plain are nearly parallel. Delay times are small, as expected, in the southeast of the Ordos Block and the north of Sichuan Basin with inconsistent fast polarization directions. Finite-frequency tomography clearly images a fast velocity anomaly under the Ordos block that extends down to 400 km depth and a slow velocity anomaly under the east of Weihe rift that can be traced down to 300 km depth. More importantly we observe a slow velocity anomaly in the upper mantle extending down to 200 km depth at the southwestern corner of the Ordos Block and the northeast of Tibetan Plateau, and the location corresponds well with the results of shear wave splitting showing large angles between the fast polarization directions and the GPS velocity vectors. These results suggest that it is possible that the mantle lithosphere of the southwestern corner of the Ordos Block could be thermally weakened by the eastward Tibetan mantle flow between the Ordos Block and Sichuan Basin.

  8. Kerogen to oil conversion in source rocks. Pore-pressure build-up and effects on seismic velocities

    NASA Astrophysics Data System (ADS)

    Pinna, Giorgia; Carcione, José M.; Poletto, Flavio

    2011-08-01

    The aim of this work is to obtain a model for source rocks relating to kerogen-oil conversion and pore pressure to seismic velocity and anisotropy. The source rock is described by a porous transversely isotropic medium composed of illite/smectite and organic matter. The rock has a very low permeability and pore-pressure build-up occurs. We consider a basin-evolution model with constant sedimentation rate and geothermal gradient. Kerogen-oil conversion starts at a given depth in a volume whose permeability is sufficiently low so that the increase in pressure due to oil generation greatly exceeds the dissipation of pressure by flow. Assuming a first-order kinetic reaction, with a reaction rate satisfying the Arrhenius equation, the kerogen-oil conversion fraction is calculated. Pore-pressure changes affect the dry-rock stiffnesses, which have an influence on seismic velocities. The properties of the kerogen-oil mixture are obtained with the Kuster and Toksöz model, assuming that oil is the inclusion in a kerogen matrix. We use Gassmann's equations generalized to the anisotropic case to obtain the seismic velocities of the source rock as a function of depth, pressure and oil saturation. The procedure is to obtain the dry-rock stiffnesses by assuming a Poisson medium for the mineral material constrained by the physical stability conditions at the calibration confining pressures. The example considers a sample of the North-Sea Kimmeridge shale. At a given depth, the conversion increases with increasing geothermal gradient and decreasing sedimentation rate, and the porosity increases with depth due to the conversion. As expected, the horizontal velocities are greater than the vertical velocities and the degree of anisotropy increases with depth. The analysis reveals that the vertical P-wave velocity is the main indicator of overpressure.

  9. Seismic imaging and velocity structure around the JFAST drill site in the Japan Trench: low Vp, high Vp/ Vs in the transparent frontal prism

    NASA Astrophysics Data System (ADS)

    Nakamura, Yasuyuki; Kodaira, Shuichi; Cook, Becky J.; Jeppson, Tamara; Kasaya, Takafumi; Yamamoto, Yojiro; Hashimoto, Yoshitaka; Yamaguchi, Mika; Obana, Koichiro; Fujie, Gou

    2014-12-01

    Seismic image and velocity models were obtained from a newly conducted seismic survey around the Integrated Ocean Drilling Program (IODP) Japan Trench Fast Drilling Project (JFAST) drill site in the Japan Trench. Pre-stack depth migration (PSDM) analysis was applied to the multichannel seismic reflection data to produce an accurate depth seismic profile together with a P wave velocity model along a line that crosses the JFAST site location. The seismic profile images the subduction zone at a regional scale. The frontal prism where the drill site is located corresponds to a typically seismically transparent (or chaotic) zone with several landward-dipping semi-continuous reflections. The boundary between the Cretaceous backstop and the frontal prism is marked by a prominent landward-dipping reflection. The P wave velocity model derived from the PSDM analysis shows low velocity in the frontal prism and velocity reversal across the backstop interface. The PSDM velocity model around the drill site is similar to the P wave velocity model calculated from the ocean bottom seismograph (OBS) data and agrees with the P wave velocities measured from the core experiments. The average Vp/ Vs in the hanging wall sediments around the drill site, as derived from OBS data, is significantly larger than that obtained from core sample measurements.

  10. Crustal Layer of Seismic Velocity 6.9 to 7.6 Kilometers per Second under the Deep Oceans.

    PubMed

    Maynard, G L

    1970-04-01

    Refraction measurements made in the deep ocean between the Marshall and Hawaiian islands reveal a layer of seismic velocity 7.3 kilometers per second between the 6.8 kilometer per second oceanic crustal layer and the mantle. This layer, normally masked as a second arrival, is revealed by continuous air gun refraction data. The layer may be widespread in the deep oceans. PMID:17838983

  11. Influence of body-wave velocity characteristic on the seismic data interpretation in TI media with arbitrary spatial orientation

    NASA Astrophysics Data System (ADS)

    Hao, C.; Yao, C.

    2007-12-01

    TI media with arbitrary spatial orientation (ATI) is the actual anisotropic model used to describe tilted PTL (period thin layers) and no vertical fractured rock. We devote our paper to study the Influence of body-wave velocity characteristic on the seismic data interpretation in the ATI media. Based on the method of coordinates transformation for the TI media with arbitrary strength of anisotropy and arbitrary spatial orientation, we present the characteristic of body-wave velocity with incident angle and azimuth variation in the ATI media. The result shows that patterns of body-wave velocity are fixed relative to the symmetry axis, and these fixed patterns are closely relative to Thomsen's anisotropic parameters. Body-wave velocity characteristic depends just on the angle between the propagation direction and the symmetry axis. Therefore, with variations of spatial orientation of the symmetry axis and the surveying line azimuth, patterns of body-wave velocity have a variety, and have some symmetries, gradual changes and repetitions. The result is useful to processing and explaining of seismic data.

  12. Application of seismic velocity tomography in underground coal mines: A case study of Yima mining area, Henan, China

    NASA Astrophysics Data System (ADS)

    Cai, Wu; Dou, Linming; Cao, Anye; Gong, Siyuan; Li, Zhenlei

    2014-10-01

    A better understanding of geological structures, stress regimes, and rock burst risks around longwall mining panels can allow for higher extraction efficiency with reduced safety concerns. In this paper, the stress change of rock mass was first examined by using ultrasonic technique into laboratory-scale rock samples. Subsequently, the active and passive seismic velocity tomograms were simultaneously applied into two study cases with field-scale. Similar characteristics can be found between the active and passive tomography results. More specifically, in the first case, a geological discontinuity was clearly indicated by a linear image in both active and passive seismic tomography results. The results of the second case suggest that seismic tomography can be used to infer stress redistribution, and assess rock burst hazard or locate high-seismicity zones. Ultimately, comparisons have been made between the results of active and passive seismic tomography. Active tomography is found to be better applied in accurately detecting stress distribution and geological structures prior to the extraction of longwall panels, while passive tomography has advantages in continuously monitoring the stress changes and assessing rock burst potential during the mining of longwall panels. This study is expected to increase the safety and efficiency of the underground mining.

  13. 3D seismic velocity structure in the rupture area of the 2014 M8.2 Iquique earthquake in Northern Chile

    NASA Astrophysics Data System (ADS)

    Woollam, Jack; Fuenzallida, Amaya; Garth, Tom; Rietbrock, Andreas; Ruiz, Sergio; Tavera, Hernando

    2016-04-01

    Seismic velocity tomography is one of the key tools in Earth sciences to image the physical properties of the subsurface. In recent years significant advances have been made to image the Chilean subductions zone, especially in the area of the 2010 M8.8 Maule earthquake (e.g. Hicks et al., 2014), providing much needed physical constraints for earthquakes source inversions and rupture models. In 2014 the M8.2 Iquique earthquake struck the northern part of the Chilean subduction zone in close proximity to the Peruvian boarder. The pre- and aftershock sequence of this major earthquake was recorded by a densified seismological network in Northern Chile and Southern Peru, which provides an excellent data set to study in depth the 3D velocity structure along the subduction megathrust. Based on an automatic event catalogue of nearly 10,000 events spanning the time period March to May 2014 we selected approximately 450 events for a staggered 3D inversion approach. Events are selected to guarantee an even ray coverage through the inversion volume. We only select events with a minimum GAP of 200 to improve depth estimates and therefore increase resolution in the marine forearc. Additionally, we investigate secondary arrivals between the P- and S-wave arrival to improve depth location. Up to now we have processed about 450 events, from which about 150 with at least 30 P- and S-wave observations have been selected for the subsequent 3D tomography. Overall the data quality is very high, which allows arrival time estimates better than 0.05s on average. We will show results from the 1D, 2D, and preliminary 3D inversions and discuss the results together with the obtained seismicity distribution.

  14. Seismic Study of the Velocity Structure and Earthquake FocalMechanisms beneath the Krafla Central Volcano, NE Iceland

    NASA Astrophysics Data System (ADS)

    Martens, H. R.; Schuler, J.; Greenfield, T. S.; White, R. S.; Roecker, S. W.; Brandsdottir, B.; Stock, J. M.; Tarasewicz, J.; Pugh, D. J.

    2015-12-01

    We investigated the seismic velocity structure of the Krafla central volcano, NE Iceland, and its shallow geothermal fields. In our 3D tomographic inversions, we used passive seismic data recorded between 2009-2012 from a temporary local network as well as active seismic legacy data to constrain the velocity models. We find high P-wave velocities (Vp) underneath regions of elevated topographic relief as well as two low-Vp anomalies that coincide spatially with two attenuating bodies outlined from S-wave shadows during the Krafla rifting episode of 1974-1985. Within the Krafla geothermal reservoir, which is developed for energy production, we imaged a shallow low-Vp/Vs zone overlying a deeper high-Vp/Vs zone and interpreted them as steam- and brine-bearing formations, respectively. Previously undertaken borehole measurements support our findings. A prominent low-Vp/Vs anomaly underlies these zones at rock depths greater than 1.5 km, where a super-heated zone within felsic overlies rhyolitic within the geothermal melt. Calculations systems show that of the most earthquake focal events are mechanisms consistent double-couple source models with only a few clear non-shear source models.

  15. Seismic waves converted from velocity gradient anomalies in the Earth's upper mantle

    NASA Astrophysics Data System (ADS)

    Bostock, M. G.

    1999-09-01

    Modelling of elastic wave propagation in 1-D structures is frequently performed using reflectivity techniques in which the Earth's velocity profile is approximated by stacks of homogeneous layers. The complete reflection/transmission (R/T) response of a zone with arbitrary 1-D depth variation (including both gradients and discontinuities in material properties) can, however, be calculated using invariant embedding techniques. Results from earlier studies are here extended to derive exact expressions for R/T matrices in arbitrary, 1-D anisotropic media using a form of Born approxi-mation valid for thin scatterers and which does not assume small perturbations in material properties. The R/T matrices are solutions to a system of non-linear, ordinary differential equations of Ricatti type and may be manipulated using standard R/T matrix algebra. In an equivalent description, the wavefield within the heterogeneous zone is considered in terms of depth-dependent contributions from up- and downgoing waves propagating within the embedding reference medium. This leads to efficient calculation of the internal wavefield using R/T matrices of the heterogeneous stratification and portions thereof at minor additional expense. Mode conversion of teleseismic P and S phases from velocity gradients is examined by way of examples and comparison with three-component data from broad-band stations of the Yellowknife seismic array. The frequency dependence of such wave interactions depends on the differences in vertical slowness between incident and scattered modes. It is shown that significant energy is converted from transition zones with extent L

  16. Basement blocks and basin inversion structures mapped using reprocessed Gulfrex 2D seismic data, Caribbean-South American oblique collisional zone

    NASA Astrophysics Data System (ADS)

    Escalona, A.; Sena, A.; Mann, P.

    2003-12-01

    We have reprocessed and reinterpreted more than 10,000 km of "Gulfrex" multi-channel 2D seismic reflection lines collected by Gulf Oil Corporation in 1972 along the northern margin of South America (offshore Venezuela and Trinidad). These digital data were donated to the University of Texas Institute for Geophysics and represent the largest single, digital reflection survey of the region. Reprocessing of these data included: format correction, filtering, post-stack multiple suppression, and fk migration. Reprocessed data were loaded and interpreted on a workstation. The data straddle a 2,000,000 km2 zone of Paleocene-Recent, time-transgressive, oblique collision between the Caribbean arc system and the passive continental margin of northern South America. Free-air, satellite gravity data shows the remarkable 1000-km-scale continuity of four basement ridges between the uncollided part of the Caribbean arc system (NS-trending Lesser Antilles arc) and the EW-trending collisional area north of Venezuela. The basement ridges involved in the Venezuelan collisional zone include: 1) Aruba-Bonaire-Curacao ridge that can be traced as a continuous feature to the Aves ridge remnant arc of the Lesser Antilles; 2) the partially inverted Blanquilla-Bonaire basin that can be traced into the Grenada back-arc basin; 3) Margarita-Los Testigos platform that can be traced to the Lesser Antilles volcanic arc; and 4) foreland basins and fold-thrust belts of eastern Venezuela (Serrania del Interior and Maturin basin) that can be traced to the Tobago forearc basin and Barbados accretionary prism. Gulfrex data document the progressive change of basinal fault systems from NS-striking normal faults formed in extensional, Lesser Antilles intra-arc settings to rotated and inverted, NE and EW-striking normal faults deformed in the collisional area north of Venezuela. Age of initial shortening of basinal areas and inversion of normal faults setting does not follow the simple, expected pattern of

  17. Uppermost mantle seismic velocity and anisotropy in the Euro-Mediterranean region from Pn and Sn tomography

    NASA Astrophysics Data System (ADS)

    Díaz, J.; Gil, A.; Gallart, J.

    2013-01-01

    In the last 10-15 years, the number of high quality seismic stations monitoring the Euro-Mediterranean region has increased significantly, allowing a corresponding improvement in structural constraints. We present here new images of the seismic velocity and anisotropy variations in the uppermost mantle beneath this complex area, compiled from inversion of Pn and Sn phases sampling the whole region. The method of Hearn has been applied to the traveltime arrivals of the International Seismological Center catalogue for the time period 1990-2010. A total of 579 753 Pn arrivals coming from 12 377 events recorded at 1 408 stations with epicentral distances between 220 km and 1 400 km have been retained after applying standard quality criteria (maximum depth, minimum number of recordings, maximum residual values …). Our results show significant features well correlated with surface geology and evidence the heterogeneous character of the Euro-Mediterranean lithosphere. The station terms reflect the existence of marked variations in crustal thickness, consistent with available Moho depths inferred from active seismic experiments. The highest Pn velocities are observed along a continuous band from the Po Basin to the northern Ionian Sea. Other high velocity zones include the Ligurian Basin, the Valencia Trough, the southern Alboran Sea and central part of the Algerian margin. Most significant low-velocity values are associated to orogenic belts (Betics, Pyrenees, Alps, Apennines and Calabrian Arc, Dinarides-Hellenides), and low-velocity zones are also identified beneath Sardinia and the Balearic Islands. The introduction of an anisotropic term enhances significantly the lateral continuity of the anomalies, in particular in the most active tectonic areas. Pn anisotropy shows consistent orientations subparallel to major orogenic structures, such as Betics, Apennines, Calabrian Arc and Alps. The Sn tomographic image has lower resolution but confirms independently most of the

  18. Nature and origin of upper crustal seismic velocity fluctuations and associated scaling properties: Combined stochastic analyses of KTB velocity and lithology logs

    USGS Publications Warehouse

    Goff, J.A.; Holliger, K.

    1999-01-01

    The main borehole of the German Continental Deep Drilling Program (KTB) extends over 9000 m into a crystalline upper crust consisting primarily of interlayered gneiss and metabasite. We present a joint analysis of the velocity and lithology logs in an effort to extract the lithology component of the velocity log. Covariance analysis of lithology log, approximated as a binary series, indicates that it may originate from the superposition of two Brownian stochastic processes (fractal dimension 1.5) with characteristic scales of ???2800 m and ???150 m, respectively. Covariance analysis of the velocity fluctuations provides evidence for the superposition of four stochastic process with distinct characteristic scales. The largest two scales are identical to those derived from the lithology, confirming that these scales of velocity heterogeneity are caused by lithology variations. The third characteristic scale, ???20 m, also a Brownian process, is probably related to fracturing based on correlation with the resistivity log. The superposition of these three Brownian processes closely mimics the commonly observed 1/k decay (fractal dimension 2.0) of the velocity power spectrum. The smallest scale process (characteristic scale ???1.7 m) requires a low fractal dimension, ???1.0, and accounts for ???60% of the total rms velocity variation. A comparison of successive logs from 6900-7140 m depth indicates that such variations are not repeatable and thus probably do not represent true velocity variations in the crust. The results of this study resolve disparity between the differing published estimates of seismic heterogeneity based on the KTB sonic logs, and bridge the gap between estimates of crustal heterogeneity from geologic maps and borehole logs. Copyright 1999 by the American Geophysical Union.

  19. Seismic imaging of the 2001 Bhuj Mw7.7 earthquake source zone: b-value, fractal dimension and seismic velocity tomography studies

    NASA Astrophysics Data System (ADS)

    Mandal, Prantik; Rodkin, Mikhail V.

    2011-11-01

    We use precisely located aftershocks of the 2001 Mw7.7 Bhuj earthquake (2001-2009) to explore the structure of the Kachchh seismic zone by mapping the 3-D distributions of b-value, fractal dimension (D) and seismic velocities. From frequency-magnitude analysis, we find that the catalog is complete above Mw = 3.0. Thus, we analyze 2159 aftershocks with Mw ≥ 3.0 to estimate the 3-D distribution of b-value and fractal dimensions using maximum-likelihood and spatial correlation dimension approaches, respectively. Our results show an area of high b-, D- and Vp/Vs ratio values at 15-35 km depth in the main rupture zone (MRZ), while relatively low b- and D values characterize the surrounding rigid regions and Gedi fault (GF) zone. We propose that higher material heterogeneities in the vicinity of the MRZ and/or circulation of deep aqueous fluid/volatile CO 2 is the main cause of the increased b-, D- and Vp/Vs ratio values at 15-35 km depth. Seismic velocity images also show some low velocity zones continuing in to the deep lower crust, supporting the existence of circulation of deep aqueous fluid / volatile CO 2 in the region (probably released from the eclogitasation of olivine rich lower crustal rocks). The presence of number of high and low velocity patches further reveals the heterogeneous and fractured nature of the MRZ. Interestingly, we observe that Aki (1981)'s relation (D = 2b) is not valid for the spatial b-D correlation of the events in the GF (D 2 = 1.2b) zone. However, the events in the MRZ (D 2 = 1.7b) show a fair agreement with the D = 2b relationship while the earthquakes associated with the remaining parts of the aftershock zone (D 2 = 1.95b) show a strong correlation with the Aki (1981)'s relationship. Thus, we infer that the remaining parts of the aftershock zone are probably behaving like locked un-ruptured zones, where larger stresses accumulate. We also propose that deep fluid involvement may play a key role in generating seismic activity in the

  20. Use of Seismic Reflection Data and Traveltime Tomography to Image the Near Surface Velocity Structure in the Mississippi Embayment

    NASA Astrophysics Data System (ADS)

    Ge, J.; Magnani, M.; Waldron, B.; Powell, C.

    2007-12-01

    The Memphis aquifer represents one of the highest quality reservoirs of drinking water in the nation and it is separated from the shallow unconfined aquifer by the Upper Claiborne clay. Recent studies show that the confining unit might be discontinuous over the greater Memphis area exposing the Memphis aquifer to potential contamination. We present the results of a seismic reflection profile collected near Memphis, TN with the goal of imaging the structures and potential breaches in the Upper Claiborne confining clay. The imaged area is characterized by a highly heterogeneous shallow velocity structure and low P wave velocities in the ultrashallow unconsolidated materials. The data were collected using a shotgun source and a 1 m source spacing, 0.25 m receiver spacing and a 168-geophone spread for a max offset of 42 m. Raw seismic data show several reflected arrivals in the first 200ms, widespread ground roll, and air wave energy as well as consistent refracted phases across the 1 km - long profile. In addition to the reflection profile we present the preliminary results of first arrival travel time tomography performed along the profile to constrain the velocity field in the shallow portion of the profile. The velocity was then used to remove the effect of the near surface velocity variations. The main data processing steps included elevation statics and frequency and FK filtering. First arrival travel time modeling started with an initial estimate of the 2-layer velocity model using the slope/intercept method. We then modeled first-arrival picks on 1095 shot gathers using the Geo TOMO+ package. The algorithm computes travel times by tracing turning rays and is also able to handle raypaths through low-velocity zones (blind zones). The final resolution is estimated through a ray-information density map, which shows the cumulative contribution of the ray segments traversing different areas of the model. Synthetic models were generated and tested for the tomography

  1. High-resolution seismic velocities and shallow structure of the San Andreas fault zone at Middle Mountain, Parkfield, California

    USGS Publications Warehouse

    Catchings, R.D.; Rymer, M.J.; Goldman, M.R.; Hole, J.A.; Huggins, R.; Lippus, C.

    2002-01-01

    A 5-km-long, high-resolution seismic imaging survey across the San Andreas fault (SAF) zone and the proposed San Andreas Fault Observatory at Depth (SAFOD) drill site near Parkfield, California, shows that velocities vary both laterally and vertically. Velocities range from 4.0 km/sec) probably correspond to granitic rock of the Salinian block, which is exposed a few kilometers southwest of the SAF. The depth to the top of probable granitic rock varies laterally along the seismic profile but is about 600 m below the surface at the proposed SAFOD site. We observe a prominent, lateral low-velocity zone (LVZ) beneath and southwest of the surface trace of the SAF. The LVZ is about 1.5 km wide at 300-m depth but tapers to about 600 m wide at 750-m depth. At the maximum depth of the velocity model (750 m), the LVZ is centered approximately 400 m southwest of the surface trace of the SAF. Similar velocities and velocity gradients are observed at comparable depths on both sides of the LVZ, suggesting that the LVZ is anomalous relative to rocks on either side of it. Velocities within the LVZ are lower than those of San Andreas fault gouge, and the LVZ is also anomalous with respect to gravity, magnetic, and resistivity measurements. Because of its proximity to the surface trace of the SAF, it is tempting to suggest that the LVZ represents a zone of fractured crystalline rocks at depth. However, the LVZ instead probably represents a tectonic sliver of sedimentary rock that now rests adjacent to or encompasses the SAF. Such a sliver of sedimentary rock implies fault strands on both sides and possibly within the sliver, suggesting a zone of fault strands at least 1.5 km wide at a depth of 300 m, tapering to about 600 m wide at 750-m depth. Fluids within the sedimentary sliver are probably responsible for observed low-resistivity values.

  2. Evaluation of stress and saturation effects on seismic velocity and electrical resistivity - laboratory testing of rock samples

    NASA Astrophysics Data System (ADS)

    Vilhelm, Jan; Jirků, Jaroslav; Slavík, Lubomír; Bárta, Jaroslav

    2016-04-01

    Repository, located in a deep geological formation, is today considered the most suitable solution for disposal of spent nuclear fuel and high-level waste. The geological formations, in combination with an engineered barrier system, should ensure isolation of the waste from the environment for thousands of years. For long-term monitoring of such underground excavations special monitoring systems are developed. In our research we developed and tested monitoring system based on repeated ultrasonic time of flight measurement and electrical resistivity tomography (ERT). As a test site Bedřichov gallery in the northern Bohemia was selected. This underground gallery in granitic rock was excavated using Tunnel Boring Machine (TBM). The seismic high-frequency measurements are performed by pulse-transmission technique directly on the rock wall using one seismic source and three receivers in the distances of 1, 2 and 3 m. The ERT measurement is performed also on the rock wall using 48 electrodes. The spacing between electrodes is 20 centimeters. An analysis of relation of seismic velocity and electrical resistivity on water saturation and stress state of the granitic rock is necessary for the interpretation of both seismic monitoring and ERT. Laboratory seismic and resistivity measurements were performed. One series of experiments was based on uniaxial loading of dry and saturated granitic samples. The relation between stress state and ultrasonic wave velocities was tested separately for dry and saturated rock samples. Other experiments were focused on the relation between electrical resistivity of the rock sample and its saturation level. Rock samples with different porosities were tested. Acknowledgments: This work was partially supported by the Technology Agency of the Czech Republic, project No. TA 0302408

  3. Seismic Technology Adapted to Analyzing and Developing Geothermal Systems Below Surface-Exposed High-Velocity Rocks Final Report

    SciTech Connect

    Hardage, Bob A.; DeAngelo, Michael V.; Ermolaeva, Elena; Hardage, Bob A.; Remington, Randy; Sava, Diana; Wagner, Donald; Wei, Shuijion

    2013-02-01

    The objective of our research was to develop and demonstrate seismic data-acquisition and data-processing technologies that allow geothermal prospects below high-velocity rock outcrops to be evaluated. To do this, we acquired a 3-component seismic test line across an area of exposed high-velocity rocks in Brewster County, Texas, where there is high heat flow and surface conditions mimic those found at numerous geothermal prospects. Seismic contractors have not succeeded in creating good-quality seismic data in this area for companies who have acquired data for oil and gas exploitation purposes. Our test profile traversed an area where high-velocity rocks and low-velocity sediment were exposed on the surface in alternating patterns that repeated along the test line. We verified that these surface conditions cause non-ending reverberations of Love waves, Rayleigh waves, and shallow critical refractions to travel across the earth surface between the boundaries of the fast-velocity and slow-velocity material exposed on the surface. These reverberating surface waves form the high level of noise in this area that does not allow reflections from deep interfaces to be seen and utilized. Our data-acquisition method of deploying a box array of closely spaced geophones allowed us to recognize and evaluate these surface-wave noise modes regardless of the azimuth direction to the surface anomaly that backscattered the waves and caused them to return to the test-line profile. With this knowledge of the surface-wave noise, we were able to process these test-line data to create P-P and SH-SH images that were superior to those produced by a skilled seismic data-processing contractor. Compared to the P-P data acquired along the test line, the SH-SH data provided a better detection of faults and could be used to trace these faults upward to the boundaries of exposed surface rocks. We expanded our comparison of the relative value of S-wave and P-wave seismic data for geothermal

  4. Calibration formulae and values for velocity seismometers used in the 1998 Santa Clara Valley, California seismic experiment

    USGS Publications Warehouse

    Lindh, Allan G.; Eaton, Jerry P.; O'Neill Allen, Mary; Healy, John H.; Stewart, Samuel W.; Damerell, Lu

    1999-01-01

    Eaton (1975), Bakun and Dratler (1976), Eaton (1977), Healy and O’Neil (1977), Asten (1977), Stewart and O'Neill (1980), Liu and Peselnick (1986), Eaton (1991), Rodgers et al. (1995), and many others (see Asten (1977) for a list of earlier references) have presented formulae for calculating the damped generator constant (or motor constant), and the damping constant (or fractional damping ratio) for magnetically damped velocity seismometers. Unfortunately the notation varies between authors, and not all the formulae allow for some of the significant variables -- differences in input impedance of the recording system in particular. This has become particularly relevant because the USGS seismic networks in California have traditionally set up their velocity sensors for the 10K Ohm impedance of the standard USGS analog telemetry systems (Eaton, 1977), but modern digital recording systems are usually set up with high input impedances, often of a megaohm or greater. Thus the nominal calibration values valid for USGS velocity sensors in their “normal” configuration are incorrect when they are recorded on other systems. In this short note we have collected the relevant formulae needed, and computed the seismometer responses for the various velocity sensors used in the recent Santa Clara Valley Seismic Experiment (SCVSE, see Lindh et al., 1999).

  5. Active faulting and deformation of the Coalinga anticline as interpreted from three-dimensional velocity structure and seismicity

    USGS Publications Warehouse

    Eberhart-Phillips, D.

    1989-01-01

    This work gives a clear picture of the geometry of aftershock seismicity in a large thrust earthquake. Interpretation of hypocenters and fault plane solutions, from the 1983 Coalinga, Coast Range California, earthquake sequence, in combination with the three-dimensional velocity structure shows that the active faulting beneath the fold primarily consists of a set of southwest dipping thrusts uplifting blocks of higher-velocity material. With the three-dimensional velocity model each individual hypocenter moved slightly (0-2km) in accord with the details of the surrounding velocity structure, so that secondary features in the seismicity pattern are more detailed than with a local one-dimensional model and station corrections. The overall character of the fault plane solutions was not altered by the three-dimensional model, but the more accurate ray paths did result in distinct changes. In particular, the mainshock has a fault plane dipping 30?? southwest instead of the 23?? obtained with the one-dimensional model. -from Author

  6. Seismic velocity discontinuities in the crust and uppermost mantle beneath the Tokyo metropolitan area inferred from receiver function analysis

    NASA Astrophysics Data System (ADS)

    Igarashi, T.; Sakai, S.; Hirata, N.

    2010-12-01

    We apply receiver function (RF) analyses to estimate the seismic velocity structure and seismic velocity discontinuities in the crust and uppermost mantle beneath the Tokyo metropolitan area, central Japan. Destructive earthquakes often occurred at various places including the subducting Philippine Sea plate (PSP), the subducting Pacific plate (PAP), and inland earthquake in this area. Investigation on the crustal structure and configurations of the subducting plates is the key to understanding the stress and strain concentration process and important to mitigate future earthquake disasters. A RF analysis is widely used to estimate velocity discontinuities in the crust and mantle beneath each seismic station. However, crustal structure beneath the Kanto plain could not be analyzed for lack of applicable seismic stations. Recently, comprehensive surveys are conducted as the Special Project for Earthquake Disaster Mitigation in the Tokyo Metropolitan area from 2007. The Metropolitan Seismic Observation network (MeSO-net) is constructed under this project. In this study, we searched for the best correlated velocity structure model between an observed RF at each station and synthetic ones by using a grid search method. Synthetic RFs calculated from assumed many one-dimensional velocity structures which consisting of four layers. We further constructed the vertical cross-sections of depth converted RF images transformed the lapse time of time series to depth by using the estimated structure models. MeSO-net data and telemetric seismographic network data operated by NIED, JMA and ERI are used. We used events with magnitudes greater or equal to 5.0 and epicentral distances between 30 and 90 degrees based on USGS catalogues. As a result, we clarify spatial distributions of the crustal S-wave velocities. The Boso Peninsula and Kanto plain are covered in the thick low-velocity sediment layers. We image standard velocity distributions in the deep crust of the Boso Peninsula

  7. Upper Crustal Seismic Structure and Velocity Variations from the Costa Rica Rift to Hole 504B from Multichannel Seismic Reflection and Sonobuoy Data

    NASA Astrophysics Data System (ADS)

    Floyd, J. S.; Carbotte, S. M.; Mutter, J. C.

    2011-12-01

    We present observations from a combined multichannel seismic reflection and sonobuoy refraction survey of the shallow seismic structure of the Costa Rica Rift crust as a function of age, bathymetry, and sedimentation from the rift axis to DSDP/ODP Hole 504B in the Panama Basin. The MCS data were acquired with a 4-km-long, 160 channel hydrophone streamer on two separate segments of leg EW9416 of the R/V Maurice Ewing in 1994, which we call here the northern and Hole 504B MCS survey segments. The northern MCS survey segment covers a ~215-km-long, ~30 km-wide swath from the Costa Rica Rift axis to 5.0 Ma-old crust, located 30.5 km northwest of Hole 504B. It consists of eight ridge-parallel, east-west trending MCS profiles, two ~20 km-long cross-axis profiles and one 214-km-long ridge-perpendicular line that extends from 10.3 km north of the ridge axis to 203 km south of the ridge axis. Upper-crustal velocity constraints are provided by 1-D ray tracing of reflected and refracted waves recorded by 11 sonobuoys with good signal to noise ratios at shot-receiver distances of up 5.3 km to 14.8 km. The Hole 504B segment of the MCS survey covers a 25 km by 25 km area centered around the drill site and consists of six MCS profiles, five north-south lines and one east-west line. Of the six MCS Hole 504B segment profiles, we focus exclusively on the two north-south and east-west oriented profiles that cross DSDP/ODP Hole 504B and allow us to tie seismic observations with physical properties measured at the drill site. Sonobuoy velocities reveal an increase in layer 2A velocities from as low as 3.1 km/s at the ridge axis to 4.6 km/s at 5.3 My-old crust. Velocities at the base of the transition zone to the top of layer 2B range from 5.07 km/s the ridge axis to 6.1 km/s at 5.3 My-old crust, which are very close to transition zone velocities of ~5.3-6.2 km/s found at Hole 504B by Detrick et al. (1998) from tomographic inversion of ocean bottom seismometer data.

  8. Transition from elastic to inelastic deformation identified by a change in trend of seismic attenuation, not seismic velocity - A laboratory study

    NASA Astrophysics Data System (ADS)

    Barnhoorn, Auke; Verheij, Jeroen; Frehner, Marcel; Zhubayev, Alimzhan; Houben, Maartje

    2016-04-01

    The transition from elastic to inelastic deformation occurs at the yield point in a stress-strain diagram. This yield point expresses the moment when a material undergoes permanent deformation and is marked by the onset of fracturing in the brittle field at relatively low pressures and temperatures or the onset of dislocation and/or diffusional creep processes in the ductile field at higher temperatures and pressures. Detection of this transition in materials under stress using an indirect measurement technique is crucial to predict imminent failure, loss of material integrity, or of approaching release of energy by seismic rupture. Here we use a pulse transmission method at ultrasonic frequencies to record the change in acoustic wave form across the transition from elastic to inelastic deformation in a rock-fracturing experiment. In particular, we measure both the acoustic wave velocity and attenuation with increasing strain from the elastic regime all the way to macroscopic failure. Our results show that the transition from elastic to inelastic deformation coincides with a minimum in attenuation. Below this minimum, pre-existing microfractures close, leading to a reduction of attenuation. Above this minimum, formation of new microfractures occurs and attenuation increases until peak stress conditions, at which larger fractures are formed and the rock starts to lose its strength and integrity. At the same time, the acoustic wave velocity continues to increase across the transition from elastic to inelastic deformation; hence the acoustic velocity is not a valid indicator for this elastic to inelastic transition. We propose that analysis of attenuation, not velocity, of acoustic waves through stressed materials may thus be used, for example, to detect imminent failure in materials, onset of crack formation in pipes or the cement casing in boreholes, or onset of fracturing in the near wellbore area. On a larger scale, attenuation monitoring may help predict the

  9. Surface seismic measurements of near-surface P-and S-wave seismic velocities at earthquake recording stations, Seattle, Washington

    USGS Publications Warehouse

    Williams, R.A.; Stephenson, W.J.; Frankel, A.D.; Odum, J.K.

    1999-01-01

    We measured P-and S-wave seismic velocities to about 40-m depth using seismic-refraction/reflection data on the ground surface at 13 sites in the Seattle, Washington, urban area, where portable digital seismographs recently recorded earthquakes. Sites with the lowest measured Vs correlate with highest ground motion amplification. These sites, such as at Harbor Island and in the Duwamish River industrial area (DRIA) south of the Kingdome, have an average Vs in the upper 30 m (V??s30) of 150 to 170 m/s. These values of V??s30 place these sites in soil profile type E (V??s30 < 180 m/s). A "rock" site, located at Seward Park on Tertiary sedimentary deposits, has a V??S30 of 433 m/s, which is soil type C (V??s30: 360 to 760 m/s). The Seward Park site V??s30 is about equal to, or up to 200 m/s slower than sites that were located on till or glacial outwash. High-amplitude P-and S-wave seismic reflections at several locations appear to correspond to strong resonances observed in earthquake spectra. An S-wave reflector at the Kingdome at about 17 to 22 m depth probably causes strong 2-Hz resonance that is observed in the earthquake data near the Kingdome.

  10. Numerical Modeling of seismic wave propagation on Etna Volcano (Italy): Construction of 3D realistic velocity structures

    NASA Astrophysics Data System (ADS)

    Trovato, Claudio; Aochi, Hideo; De Martin, Florent

    2014-05-01

    Understanding the source mechanism of long-period (LP) seismic signals on volcanoes is an important key point in volcanology and for the hazard forecasting. In the last decades, moment tensor inversions have led to various descriptions of the kinematic source mechanism. These inversions suppose a relatively simple structure of the medium. However, the seismic wave propagation in a realistic 3-D volcano model should be taken into account for understanding the complicated physical processes of magma and gas behaviors at depth. We are studying Etna volcano, Italy, to understand the volcanic processes during different stages of activity. We adopt a spectral element method (SEM), a code EFISPEC3D (De Martin, BSSA, 2011), which shows a good accuracy and numerical stability in the simulations of seismic wave propagation. First we construct the geometrical model. We use a digital elevation model (DEM) to generate finite element meshes with a spacing of 50 m on the ground surface. We aim to calculate the ground motions until 3 Hz for the shallowest layer with Vs = ~500 m/s. The minimal size of the hexahedral elements is required to be around 100 m, with a total number of elements n = ~2 10 ^ 6 for the whole model. We compare different velocity structure configurations. We start with a homogeneous medium and add complexities taking in account the shallow low velocity structure. We also introduce a velocity gradient towards depth. Simulations performed in the homogeneous medium turn in approximately 20 hours for calculations parallelized on 16 CPUs. Complex velocity models should take approximately the same time of computation. We then try to simulate the ground motion from the LP sources (0.1-1.5 Hz) obtained by the inversion for the Etna volcano in 2008 (De Barros, GRL, 2009 and De Barros, JGR, 2011). Some vertical and horizontal structures can be added to reproduce injected dikes or sills respectively.

  11. Correlations between seismic wave velocities and physical properties of near-surface geologic materials in the southern San Francisco Bay region, California

    USGS Publications Warehouse

    Fumal, Thomas E.

    1978-01-01

    To identify geologic units with distinctly different seismic responses for the purposes of seismic zonation, compressional and shear wave velocities have been measured in boreholes at 59 sites in the San Francisco Bay region in a wide range of near-surface (0-30m) geologic materials. Several physical parameters, which can be readily determined in the field, were found to correlate with the shear wave velocities and were used to define seismically distinct groups. For the unconsolidated to semiconsolidated sediments, texture, standard penetration resistance and depth were used to define eight seismically distinct groups. For the bedrock materials, fracture spacing and hardness were used to differentiate ten distinct categories. The correlation obtained between shear wave velocity and the physical parameters were used to regroup the map units defined for the San Francisco Bay region into seismically distinct units. The map units for the younger unconsolidated sediments can be really differentiated seismically. In contrast, the older semiconsolidated sedimentary deposits and bedrock units, which have experienced significant variations in post-depositial changes, show wider and overlapping velocity ranges. The map units for the sedimentary deposits have been regrouped into eight seismically distinct geotechnical units. The bedrock map units have been broadly regrouped into five distinct categories. Compressional wave velocities were not found to be well correlated with the physical parameters dependent on the soil or rock structure. For materials above the water table, the wide velocity variations found for each geotechnical group can be attributed to differences in degree of saturation. The strong correlations observed between shear wave velocity and other readily determine physical properties suggest that geologic maps which incorporate these parameters are most useful for seismic zonation.

  12. Seismicity patterns along the Ecuadorian subduction zone: new constraints from earthquake location in a 3-D a priori velocity model

    NASA Astrophysics Data System (ADS)

    Font, Yvonne; Segovia, Monica; Vaca, Sandro; Theunissen, Thomas

    2013-04-01

    To improve earthquake location, we create a 3-D a priori P-wave velocity model (3-DVM) that approximates the large velocity variations of the Ecuadorian subduction system. The 3-DVM is constructed from the integration of geophysical and geological data that depend on the structural geometry and velocity properties of the crust and the upper mantle. In addition, specific station selection is carried out to compensate for the high station density on the Andean Chain. 3-D synthetic experiments are then designed to evaluate the network capacity to recover the event position using only P arrivals and the MAXI technique. Three synthetic earthquake location experiments are proposed: (1) noise-free and (2) noisy arrivals used in the 3-DVM, and (3) noise-free arrivals used in a 1-DVM. Synthetic results indicate that, under the best conditions (exact arrival data set and 3-DVM), the spatiotemporal configuration of the Ecuadorian network can accurately locate 70 per cent of events in the frontal part of the subduction zone (average azimuthal gap is 289° ± 44°). Noisy P arrivals (up to ± 0.3 s) can accurately located 50 per cent of earthquakes. Processing earthquake location within a 1-DVM almost never allows accurate hypocentre position for offshore earthquakes (15 per cent), which highlights the role of using a 3-DVM in subduction zone. For the application to real data, the seismicity distribution from the 3-D-MAXI catalogue is also compared to the determinations obtained in a 1-D-layered VM. In addition to good-quality location uncertainties, the clustering and the depth distribution confirm the 3-D-MAXI catalogue reliability. The pattern of the seismicity distribution (a 13 yr record during the inter-seismic period of the seismic cycle) is compared to the pattern of rupture zone and asperity of the Mw = 7.9 1942 and the Mw = 7.7 1958 events (the Mw = 8.8 1906 asperity patch is not defined). We observe that the nucleation of 1942, 1958 and 1906 events coincides with

  13. Factors controlling the variances of seismic velocity, density, thermal conductivity and heat production of cores from the KTB Pilot Hole

    NASA Astrophysics Data System (ADS)

    Huenges, Ernst

    This paper presents a statistical analysis of about 50000 petrophysical data measured on core samples from the Continental Deep Drilling Project (KTB) of the Federal Republic of Germany. The scattering of the data must be taken into consideration using empirical relationships between pairs of parameters, e.g., sound velocity, density, heat production and thermal conductivity. Such covariances of parameters were calculated and used to find the principle components by applying factor analysis. The reduction of parameters by factor analysis may help other scientists to concentrate on the essential parameters to be measured. About 50% of the variance of all data can be explained by one background variable, the so-called “lithology factor”. The variables that load a factor are either highly correlated or anticorrelated. The lithology factor combines gamma spectroscopy data, density and the mineral contents of quartz, amphibole, garnet and white mica. Seismic velocities and porosity data, however, were less well related to the lithology factor. Therefore, the KTB data indicate that correlation between seismic velocity and one of the lithology factor loading variables is unlikely. The lithology factor distinguishes 3 major “rock types”: metabasites, gneisses and an intermediate type. The variance of the petrophysical parameters within the rock types, plotted in crossplots, show the level of validity of commonly used relationships among these parameters. Measurements under ambient and simulated in-situ conditions are included to enable discussion of chemical, mineralogical and microstructural characteristics of the rocks.

  14. Estimation of seismic velocity in the subducting crust of the Pacific slab beneath Hokkaido, northern Japan by using guided waves

    NASA Astrophysics Data System (ADS)

    Shiina, T.; Nakajima, J.; Toyokuni, G.; Kita, S.; Matsuzawa, T.

    2014-12-01

    A subducting crust contains a large amount of water as a form of hydrous minerals (e.g., Hacker et al., 2003), and the crust plays important roles for water transportation and seismogenesis in subduction zones at intermediate depths (e.g., Kirby et al., 1996; Iwamori, 2007). Therefore, the investigation of seismic structure in the crust is important to understand ongoing physical processes with subduction of oceanic lithosphere. A guided wave which propagates in the subducting crust is recorded in seismograms at Hokkaido, northern Japan (Shiina et al., 2014). Here, we estimated P- and S-wave velocity in the crust with guided waves, and obtained P-wave velocity of 6.6-7.3 km/s and S-wave velocity of 3.6-4.2 km/s at depths of 50-90 km. Moreover, Vp/Vs ratio in the crust is calculated to be 1.80-1.85 in that depth range. The obtained P-wave velocity about 6.6km/s at depths of 50-70 km is consistent with those estimated in Tohoku, northeast Japan (Shiina et al., 2013), and this the P-wave velocity is lower than those expected from models of subducting crustal compositions, such as metamorphosed MORB model (Hacker et al., 2003). In contrast, at greater depths (>80 km), the P-wave velocity marks higher velocity than the case of NE Japan and the velocity is roughly comparable to those of the MORB model. The obtained S-wave velocity distribution also shows characteristics similar to P waves. This regional variation may be caused by a small variation in thermal regime of the Pacific slab beneath the two regions as a result of the normal subduction in Tohoku and oblique subduction in Hokkaido. In addition, the effect of seismic anisotropy in the subducting crust would not be ruled out because rays used in the analysis in Hokkaido propagate mostly in the trench-parallel direction, while those in Tohoku are sufficiently criss-crossed.

  15. A 3D Seismic Velocity Model Offshore Southern California from Ambient Noise Tomography of the ALBACORE OBS Array

    NASA Astrophysics Data System (ADS)

    Kohler, M. D.; Bowden, D. C.; Tsai, V. C.; Weeraratne, D. S.

    2015-12-01

    The Pacific-North America plate boundary in Southern California extends far west of the coastline, and a 12-month ocean bottom seismometer (OBS) array spanned the western side of the plate boundary to image lithospheric seismic velocities. Velocities are modeled through stacked cross correlations of ambient noise data. Twelve months of continuous data were used from 22 OBS stations and ~30 coastal and island Southern California Seismic Network stations. Particular attention has been paid to improving signal-to-noise ratios in the noise correlations with OBS stations by removing the effects of instrument tilt and infragravity waves. Different applications of preprocessing techniques allow us to distinguish the fundamental and first higher order Rayleigh modes, especially in deep water OBS pairs where the water layer dominates crustal sensitivity of the fundamental mode. Standard time domain and frequency domain methods are used to examine surface wave dispersion curves for group and phase velocities between 5 and 50 second periods, and these are inverted for 3D velocity structure. The results define the transition in three dimensions from continental lithospheric structure in the near-shore region to oceanic structure west of the continental borderland. While the most prominent features of the model relate to thinning of the crust west of the Patton Escarpment, other notable anomalies are present north-to-south throughout the continental borderland and along the coast from the Los Angeles Basin to the Peninsular Ranges. The velocity model will help describe the region's tectonic history, as well as provide new constraints for determination of earthquake relocations and rupture styles.

  16. Seismicity and velocity structures along the south-Alpine thrust front of the Venetian Alps (NE-Italy)

    NASA Astrophysics Data System (ADS)

    Anselmi, M.; Govoni, A.; De Gori, P.; Chiarabba, C.

    2011-12-01

    In this paper we show the seismicity and velocity structure of a segment of the Alpine retro-belt front along the continental collision margin of the Venetian Alps (NE Italy). Our goal is to gain insight on the buried structures and deep fault geometry in a "silent" area, i.e., an area with poor instrumental seismicity but high potential for future earthquakes, as indicated by historical earthquakes (1695 Me = 6.7 Asolo and 1936 Ms = 5.8 Bosco del Cansiglio). Local earthquakes recorded by a dense temporary seismic network are used to compute 3-D Vp and Vp/Vs tomographic images, yielding well resolved images of the upper crust underneath the south-Alpine front. We show the presence of two main distinct high Vp S-verging thrust units, the innermost coincides with the piedmont hill and the outermost is buried under a thick pile of sediments in the Po plain. Background seismicity and Vp/Vs anomalies, interpreted as cracked fluid-filled volumes, suggest that the NE portion of the outermost blind thrust and its oblique/lateral ramps may be a zone of high fluid pressure prone to future earthquakes. Three-dimensional focal mechanisms show compressive and transpressive solutions, in agreement with the tectonic setting, stress field maps and geodetic observations. The bulk of the microseismicity is clustered in two different areas, both in correspondence of inherited lateral ramps of the thrust system. Tomographic images highlight the influence of the paleogeographic setting in the tectonic style and seismic activity of the region.

  17. Seismic Velocity Structure and Depth-Dependence of Anisotropy in the Red Sea and Arabian Shield from Surface Wave Analysis

    SciTech Connect

    Hansen, S; Gaherty, J; Schwartz, S; Rodgers, A; Al-Amri, A

    2007-07-25

    We investigate the lithospheric and upper mantle structure as well as the depth-dependence of anisotropy along the Red Sea and beneath the Arabian Peninsula using receiver function constraints and phase velocities of surface waves traversing two transects of stations from the Saudi Arabian National Digital Seismic Network. Frequency-dependent phase delays of fundamental-mode Love and Rayleigh waves, measured using a cross-correlation procedure, require very slow shear velocities and the presence of anisotropy throughout the upper mantle. Linearized inversion of these data produce path-averaged 1D radially anisotropic models with about 4% anisotropy in the lithosphere, increasing to about 4.8% anisotropy across the lithosphere-asthenosphere boundary (LAB). Models with reasonable crustal velocities in which the mantle lithosphere is isotropic cannot satisfy the data. The lithospheric lid, which ranges in thickness from about 70 km near the Red Sea coast to about 90 km beneath the Arabian Shield, is underlain by a pronounced low-velocity zone with shear velocities as low as 4.1 km/s. Forward models, which are constructed from previously determined shear-wave splitting estimates, can reconcile surface and body wave observations of anisotropy. The low shear velocity values are similar to many other continental rift and oceanic ridge environments. These low velocities combined with the sharp velocity contrast across the LAB may indicate the presence of partial melt beneath Arabia. The anisotropic signature primarily reflects a combination of plate- and density-driven flow associated with active rifting processes in the Red Sea.

  18. Changes in seismic velocity during the first 14 months of the 2004–2008 eruption of Mount St. Helens, Washington

    USGS Publications Warehouse

    Hotovec-Ellis, A.J.; Vidale, J.E.; Gomberg, Joan S.; Thelen, Weston A.; Moran, Seth C.

    2015-01-01

    Mount St. Helens began erupting in late 2004 following an 18 year quiescence. Swarms of repeating earthquakes accompanied the extrusion of a mostly solid dacite dome over the next 4 years. In some cases the waveforms from these earthquakes evolved slowly, likely reflecting changes in the properties of the volcano that affect seismic wave propagation. We use coda-wave interferometry to quantify small changes in seismic velocity structure (usually <1%) between two similar earthquakes and employed waveforms from several hundred families of repeating earthquakes together to create a continuous function of velocity change observed at permanent stations operated within 20 km of the volcano. The high rate of earthquakes allowed tracking of velocity changes on an hourly time scale. Changes in velocity were largest near the newly extruding dome and likely related to shallow deformation as magma first worked its way to the surface. We found strong correlation between velocity changes and the inverse of real-time seismic amplitude measurements during the first 3 weeks of activity, suggesting that fluctuations of pressure in the shallow subsurface may have driven both seismicity and velocity changes. Velocity changes during the remainder of the eruption likely result from a complex interplay of multiple effects and are not well explained by any single factor alone, highlighting the need for complementary geophysical data when interpreting velocity changes.

  19. Using Ambient Noise Data from the ALBACORE OBS Array to Determine a 3D Seismic Velocity Model Offshore Southern California

    NASA Astrophysics Data System (ADS)

    Kohler, M. D.; Bowden, D. C.; Tsai, V. C.; Weeraratne, D. S.

    2014-12-01

    The Pacific-North America plate boundary in Southern California extends far west of the coastline, and a 12-month ocean bottom seismometer (OBS) array spanned the western side of the plate boundary in order to image seismic velocities in the lithosphere. Velocities are modeled through stacked cross correlations of ambient noise data. The offshore data come primarily from the OBS array that collected 12 months of continuous data during 2010-2011, combined with Southern California Seismic Network (SCSN) station data. The cross correlations were stacked for noise correlation functions and examined using standard time- and frequency-domain methods to determine phase velocity and group velocity dispersion curves. Signals between the vertical-component OBS and co-located horizontal-component OBS observations associated with tilt noise, and pressure gauge observations associated with infragravity waves, were examined to further improve signals. The non-elastic noise was estimated by calculating the transfer functions between the vertical-to-horizontal and vertical-to-pressure components, and subtracting the coherent signal between the two from the vertical-component time series. We find that these effects are small in our dataset. We are simultaneously inverting all measureable dispersion curves to solve for 3D crustal velocity structure. Shear-wave velocities comprise the direct solution, and Vp/Vs ratios are constrained as much as the data allow. Calculations on data from 780 OBS-OBS, SCSN-SCSN, and OBS-SCSN pairs filtered around multiple narrow bands between 5 and 50 s show clear propagating waves traveling at group velocities between 1.2 and 3.5 km/s. The longer-term outcome of this work will comprise a 3D crustal and uppermost mantle velocity model with areal coverage not attainable before the deployment of the ocean bottom seismometers. The results define the transition in three dimensions from continental lithospheric structure in the near-shore region to oceanic

  20. 3-D Crustal Velocity Structure of Central Idaho/ Eastern Oregon from Joint Inversion of Rayleigh Wave Group and Phase Velocities Derived from Ambient Seismic Noise: Newest Results from the IDOR Project

    NASA Astrophysics Data System (ADS)

    Bremner, P. M.; Panning, M. P.; Russo, R. M.; Mocanu, V. I.; Stanciu, A. C.; Torpey, M. E.; Hongsresawat, S.; VanDecar, J. C.

    2014-12-01

    We present the latest 3-D isotropic crustal velocity model beneath central Idaho and eastern Oregon. We produced the velocity model from vertical component Rayleigh wave group and phase velocity measurements on data from the IDaho/ORegon (IDOR) Passive seismic network, 86 broadband seismic stations, using ambient noise tomography and the methods of Gallego et. al (2010) and Lin et. al (2008). We calculated inter-station group/phase velocities in narrow frequency bands from travel-time measurements of the stacked cross-correlations (bandpass filtered between 2 and 30 seconds), which we used to invert for velocity structure beneath the network. Goals of our work include refining models of crustal structure in the accreted Blue Mountain terranes in the western study area; determining the depth extent of the Salmon River Suture/West Idaho Shear Zone (WISZ), which crosses north-south through the middle of the network; determining the architecture of the Idaho batholith, an extensive largely crustal-derived pluton; and examining the nature of the autochthonous (?) North American crust and lithosphere beneath and east of the batholith. We derived Rayleigh wave group and phase velocity maps for each frequency band using the damped least-squares inversion method of Tarantola (2005), and then jointly inverted for velocity with depth. Moho depths are prescribed in the joint inversions based on receiver functions, also from the IDOR seismic data, and provides a starting crustal velocity model. 3-D checkerboard resolution tests indicate lateral resolution of better than 40 km. Preliminary results show higher S wave velocities in the western study area, and lower velocities in the lower crust on the east side of the network, consistent with Basin-and-Range style extension there. A tabular velocity anomaly juxtaposing higher above lower seismic velocities dips shallow west in the midcrust on the west side of the network.

  1. Towards a Comprehensive Seismic Velocity Model for the Broader Africa-Eurasia Collision Region, to Improve Nuclear Explosion Monitoring

    SciTech Connect

    der Lee, S v; Flanagan, M P; Rodgers, A J; Pasyanos, M E; Marone, F; Romanowicz, B

    2005-07-13

    We report on progress towards a new, comprehensive three-dimensional model of seismic velocity in a broad region encompassing the Middle East, northern Africa, the Mediterranean Sea, the Levant, the Arabian Peninsula, the Turkish-Iranian Plateau, Indus Valley, and the Hindu Kush. Our model will be based on regional waveform fits, surface wave group velocity measurements, teleseismic arrival times of S and P waves, receiver functions, and published results from active source experiments. We are in the process of assembling each of these data sets and testing the joint inversion for subsets of the data. Seismograms come from a variety of permanent and temporary seismic stations in the region. Some of the data is easily accessible through, for example, IRIS, while collection of other data is more involved. This work builds on ongoing work by Schmid et al. (GJI, 2004, and manuscript in preparation). In these proceedings we highlight our data sets and their inferences, demonstrate the proposed new data-inversion modeling methodology, discuss results from preliminary inversions of subsets of the data, and demonstrate the prediction of arrival times with three-dimensional velocity models. We compare our preliminary inversion results to the results of Schmid et al., and the predicted arrival times to ground-truth data from the NNSA Knowledge Base. Our data sets are simultaneously redundant and highly complementary. The combined data coverage will ensure that our three-dimensional model comprises the crust, the upper mantle, including the transition zone, and the top of the lower mantle, with spatially varying, but useful resolution. The region of interest is one of the most structurally heterogeneous in the world. Continental collision, rifting and sea-floor spreading, back-arc spreading, oceanic subduction, rotating micro plates, continental shelf, and stable platforms, are just some of the region's characteristics. Seismicity and the distribution of seismic stations are

  2. Site response, shallow shear-wave velocity, and wave propagation at the San Jose, California, dense seismic array

    USGS Publications Warehouse

    Hartzell, S.; Carver, D.; Williams, R.A.; Harmsen, S.; Zerva, A.

    2003-01-01

    Ground-motion records from a 52-element dense seismic array near San Jose, California, are analyzed to obtain site response, shallow shear-wave velocity, and plane-wave propagation characteristics. The array, located on the eastern side of the Santa Clara Valley south of the San Francisco Bay, is sited over the Evergreen basin, a 7-km-deep depression with Miocene and younger deposits. Site response values below 4 Hz are up to a factor of 2 greater when larger, regional records are included in the analysis, due to strong surface-wave development within the Santa Clara Valley. The pattern of site amplification is the same, however, with local or regional events. Site amplification increases away from the eastern edge of the Santa Clara Valley, reaching a maximum over the western edge of the Evergreen basin, where the pre-Cenozoic basement shallows rapidly. Amplification then decreases further to the west. This pattern may be caused by lower shallow shear-wave velocities and thicker Quaternary deposits further from the edge of the Santa Clara Valley and generation/trapping of surface waves above the shallowing basement of the western Evergreen basin. Shear-wave velocities from the inversion of site response spectra based on smaller, local earthquakes compare well with those obtained independently from our seismic reflection/refraction measurements. Velocities from the inversion of site spectra that include larger, regional records do not compare well with these measurements. A mix of local and regional events, however, is appropriate for determination of site response to be used in seismic hazard evaluation, since large damaging events would excite both body and surface waves with a wide range in ray parameters. Frequency-wavenumber, plane-wave analysis is used to determine the backazimuth and apparent velocity of coherent phases at the array. Conventional, high-resolution, and multiple signal characterization f-k power spectra and stacked slowness power spectra are

  3. Laboratory Velocity Measurements Used for Recovering Soil Distributions from Field Seismic Data

    SciTech Connect

    Berge, P A; Bertete-Aguirre, H

    1999-10-20

    Recent advances in field methods make it possible to obtain high quality compressional (P) and shear (S) velocity data for the shallow subsurface. Environmental and engineering problems require new methods for interpreting the velocity data in terms of sub-surface soil distribution. Recent advances in laboratory measurement techniques have provided high quality velocity data for soils at low pressures that can be used to improve interpretation of field data. We show how laboratory data can be used to infer lithology from field data. We use laboratory ultrasonic velocity measurements from artificial soils made by combining various amounts of sand and peat moss.

  4. Inversion of ambient seismic noise HVSR to evaluate velocity and structural models of the Lower Tagus Basin, Portugal

    NASA Astrophysics Data System (ADS)

    Borges, J. F.; Silva, H. G.; Torres, R. J. G.; Caldeira, B.; Bezzeghoud, M.; Furtado, J. A.; Carvalho, J.

    2016-07-01

    During its history, several significant earthquakes have shaken the Lower Tagus Valley (Portugal). These earthquakes were destructive; some strong earthquakes were produced by large ruptures in offshore structures located southwest of the Portuguese coastline, and other moderate earthquakes were produced by local faults. In recent years, several studies have successfully obtained strong-ground motion syntheses for the Lower Tagus Valley using the finite difference method. To confirm the velocity model of this sedimentary basin obtained from geophysical and geological data, we analysed the ambient seismic noise measurements by applying the horizontal to vertical spectral ratio (HVSR) method. This study reveals the dependence of the frequency and amplitude of the low-frequency (HVSR) peaks (0.2-2 Hz) on the sediment thickness. We have obtained the depth of the Cenozoic basement along a profile transversal to the basin by the inversion of these ratios, imposing constraints from seismic reflection, boreholes, seismic sounding and gravimetric and magnetic potentials. This technique enables us to improve the existing three-dimensional model of the Lower Tagus Valley structure. The improved model will be decisive for the improvement of strong motion predictions in the earthquake hazard analysis of this highly populated basin. The methodology discussed can be applied to any other sedimentary basin.

  5. Inversion of ambient seismic noise HVSR to evaluate velocity and structural models of the Lower Tagus Basin, Portugal

    NASA Astrophysics Data System (ADS)

    Borges, J. F.; Silva, H. G.; Torres, R. J. G.; Caldeira, B.; Bezzeghoud, M.; Furtado, J. A.; Carvalho, J.

    2016-03-01

    During its history, several significant earthquakes have shaken the Lower Tagus Valley (Portugal). These earthquakes were destructive; some strong earthquakes were produced by large ruptures in offshore structures located southwest of the Portuguese coastline, and other moderate earthquakes were produced by local faults. In recent years, several studies have successfully obtained strong-ground motion syntheses for the Lower Tagus Valley using the finite difference method. To confirm the velocity model of this sedimentary basin obtained from geophysical and geological data, we analysed the ambient seismic noise measurements by applying the horizontal to vertical spectral ratio (HVSR) method. This study reveals the dependence of the frequency and amplitude of the low-frequency (HVSR) peaks (0.2-2 Hz) on the sediment thickness. We have obtained the depth of the Cenozoic basement along a profile transversal to the basin by the inversion of these ratios, imposing constraints from seismic reflection, boreholes, seismic sounding and gravimetric and magnetic potentials. This technique enables us to improve the existing three-dimensional model of the Lower Tagus Valley structure. The improved model will be decisive for the improvement of strong motion predictions in the earthquake hazard analysis of this highly populated basin. The methodology discussed can be applied to any other sedimentary basin.

  6. Insights into induced earthquakes and aftershock activity with in-situ measurements of seismic velocity variations in an active underground mine

    NASA Astrophysics Data System (ADS)

    Brenguier, F.; Olivier, G.; Campillo, M.; Roux, P.; Shapiro, N.; Lynch, R.

    2015-12-01

    The behaviour of the crust shortly after large earthquakes has been the subject of numerous studies, but many co- and post-seismic processes remain poorly understood. Damage and healing of the bulk rock mass, post-seismic deformation and the mechanisms of earthquake triggering are still not well understood. These processes are important to properly model and understand the behaviour of faults and earthquake cycles.In this presentation, we will show how in-situ measurements of seismic velocity variations have given new insights into these co- and post-seismic processes. An experiment was performed where a blast was detonated in a tunnel in an underground mine, while seismic velocity variations were accurately (0.005 %) measured with ambient seismic noise correlations. Additionally, aftershock activity was examined and the influence of the removal of a piece of solid rock was estimated with elastic static stress modelling. The majority of the aftershocks were delayed with respect to the passing of the dynamic waves from the blast, while the locations of the aftershocks appeared clustered and not homogeneously spread around the blast location. A significant velocity drop is visible during the time of the blast, which is interpreted as co-seismic damage and plastic deformation. These non-elastic effects are healed by the confining stresses over a period of 5 days until the seismic velocity converges to a new baseline level. The instantaneous weakening and gradual healing observed from the velocity variations are qualitatively similar to results reported in laboratory studies. The change in the baseline level of the seismic velocity before and after the blast indicate a change in the static stress that is comparable to the results of elastic static stress modelling. The differences between the elastic model predictions and the seismic velocity variations could be due to zones of fractured rock, indicated by the spatial clustering of the aftershocks, that are not

  7. Long-term dynamics of Piton de la Fournaise volcano from 13 years of seismic velocity change measurements and GPS observations

    NASA Astrophysics Data System (ADS)

    Rivet, Diane; Brenguier, Florent; Clarke, Daniel; Shapiro, Nikolaï M.; Peltier, Aline

    2014-10-01

    We study the Piton de la Fournaise (PdF) volcano dynamics through the observation of continuous seismic velocity changes from 2000 to 2013. We compute the cross correlations of ambient seismic noise recorded at more than 30 short-period and broadband stations of the UnderVolc temporary seismic experiment and of the PdF volcano observatory network. The velocity changes are estimated from the travel time delay measured on the cross correlations computed between pairs of stations. We average the relative velocity changes for all pairs of stations and obtain a time series of the velocity change of Piton de la Fournaise volcano over 13 years. From the period 0.5 to 4 s, the depth sensitivity of the velocity change is ranging from approximately 100 m to 2500 m. A slow decrease of velocity is measured from 2000 and ends with a major eruption that occurred in April 2007. This eruptive episode is followed by an increase of the velocity. These long-term changes are compared to the deformation of the Piton de la Fournaise edifice estimated from geodetic measurements. An analysis of baseline change between GPS stations indicates an inflation of the volcanic edifice prior to April 2007 followed by a deflation since then. This deflation predominantly affects the terminal cone. Seismic velocity changes and deformation have similar long-term trends with velocity decrease observed during inflation and velocity increase during deflation. However, the velocity change magnitude is about 2 orders of magnitude greater than the deformation. This suggests nonlinear relation between velocity changes and deformation.

  8. The effect of fault-bend folding on seismic velocity in the marginal ridge of accretionary prisms

    USGS Publications Warehouse

    Cai, Y.; Wang, Chun-Yong; Hwang, W.-t.; Cochrane, G.R.

    1995-01-01

    Fluid venting in accretionary prisms, which feeds chemosynthetic biological communities, occurs mostly on the marginal thrust ridge. New seismic data for the marginal ridge of the Cascadia prism show significantly lower velocity than that in the adjacent oceanic basin and place important constraints on the interpretations of why fluid venting occurs mostly on the marginal ridge. We employed a finite-element method to analyze a typical fault-bend folding model to explain the phenomenon. The fault in the model is simulated by contact elements. The elements are characterized not only by finite sliding along a slide line, but also by elastoplastic deformation. We present the results of a stress analysis which show that the marginal ridge is under subhorizontal extension and the frontal thrust is under compression. This state of stress favors the growth of tensile cracks in the marginal ridge, facilitates fluid flow and reduces seismic velocities therein; on the other hand, it may close fluid pathways along the frontal thrust and divert fluid flow to the marginal ridge. ?? 1995 Birkha??user Verlag.

  9. Anisotropic 3-D Crustal Velocity Structure of Idaho/ Oregon from a Joint Inversion of Group and Phase Velocities of Love and Rayleigh Waves from Ambient Seismic Noise: Results from the IDOR Project

    NASA Astrophysics Data System (ADS)

    Bremner, P. M.; Panning, M. P.; Russo, R.; Mocanu, V. I.; Stanciu, A. C.; Torpey, M. E.; Hongsresawat, S.; VanDecar, J. C.

    2015-12-01

    We present new 3-D radially anisotropic and isotropic crustal velocity models beneath central Idaho and eastern Oregon. We produced the velocity models from Love and horizontal component Rayleigh wave group and phase velocity measurements on the IDaho/ORegon (IDOR) Passive seismic network, 86 broadband seismic stations, dataset using ambient noise tomography and the methods of Gallego et. al (2010) and Lin et. al (2008). We calculated inter-station group/phase velocities in narrow frequency bands from travel-time measurements of the rotated stacked horizontal component cross-correlations (bandpass filtered between 2 and 30 seconds), which we used to invert for velocity structure beneath the network. We derived group and phase velocity maps for each frequency band using the damped least-squares inversion method of Tarantola (2005), and then jointly inverted for velocity with depth. Moho depths are prescribed in the joint inversions based on receiver functions, also from the IDOR seismic data, and provides a starting crustal velocity model. Goals of our work include refining models of crustal structure in the accreted Blue Mountain terranes in the western study area; determining the depth extent of the Salmon River Suture/West Idaho Shear Zone (WISZ), which crosses north-south through the middle of the network; determining the architecture of the Idaho batholith, an extensive largely crustal-derived pluton; and examining the nature of the autochthonous (?) North American crust and lithosphere beneath and east of the batholith.

  10. Seismic velocity changes, strain rate and non-volcanic tremors during the 2009-2010 slow slip event in Guerrero, Mexico

    NASA Astrophysics Data System (ADS)

    Rivet, Diane; Campillo, Michel; Radiguet, Mathilde; Zigone, Dimitri; Cruz-Atienza, Victor; Shapiro, Nikolai M.; Kostoglodov, Vladimir; Cotte, Nathalie; Cougoulat, Glenn; Walpersdorf, Andrea; Daub, Eric

    2014-01-01

    We use ambient noise cross-correlations to monitor small but reliable changes in seismic velocities and to analyse non-volcanic tremor (NVT) intensities during the slow slip event (SSE) that occurred in 2009 and 2010 in Guerrero. We test the sensitivity of the seismic velocity to strain variations in absence of strong motions. The 2009-2010 SSE presents a complex slip sequence with two subevents occurring in two different portions of the fault. From a seismic array of 59 seismometers, installed in small antennas, we detect a velocity drop with maximum amplitude at the time of the first subevent. We analyse the velocity change at different period bands and observe that the velocity perturbation associated with the SSE maximizes for periods longer than 12 s. Then a linearized inversion of the velocity change measured at different period bands is applied in order to determine the depth of the portion of the crust affected by this perturbation. No velocity change in the first 10 km is detected. Below, the velocity perturbation increases with depth, affecting the middle and lower crust. Finally, we compute the transient deformation produced by the SSE in an elastic model using the slip evolution recovered from the inversion of co