Science.gov

Sample records for 2-d seismic velocity

  1. Seismic Velocity Structure Across the Quebrada and Gofar Oceanic Transform Faults from 2D Refraction Tomography - A Comparison of Faults with High and Low Seismic Slip Deficits

    NASA Astrophysics Data System (ADS)

    Roland, E. C.; McGuire, J. J.; Collins, J. A.; Lizarralde, D.

    2009-12-01

    We perform two 2-D tomographic inversions using data collected as a part of the Quebrada-Discovery-Gofar (QDG) Transform Fault Active/Passive Experiment. The QDG transform faults are located in the southern Pacific Ocean and offset the East Pacific Rise (EPR) at approximately 4° south. In the spring of 2008, two ~100 km refraction profiles were collected, each using 8 short period Ocean Bottom Seismometers (OBS) from OBSIP and over 900 shots from the RV Marcus Langseth, across the easternmost segments of the Quebrada and Gofar transform faults. The two refraction profiles are modeled using a 2-D tomographic code that allows joint inversion of the Pg, PmP, and Pn arrivals (Korenaga et al., 2000). Variations in crustal velocity and thickness, as well as the width and depth extent of a significant low velocity zone within and below the transform valley provide some insight into the material properties of each of the fault-zones. Reduced seismic velocities that are 0.5 to over 1.0 km/s slower than velocities associated with the oceanic crust outside the fault zone may indicate the highly fractured fault zone lithology. The low velocity zone associated with the Quebrada fault also extends to the south of the active fault zone, beneath a fossil fault trace. Because Gofar is offset by an intratransform spreading center, we are able to compare ‘normal’ oceanic crust produced at the EPR to the south of the fault with crust associated with the ~15 km intratransform spreading center to the north. These two high slip rate (14 cm/yr) faults look similar morphologically and demonstrate comparable microseismicity characteristics, however their abilities to generate large earthquakes differ significantly. Gofar generates large earthquakes (Mw ~6) regularly every few years, but in the past 24 years only one large (Mw 5.6) event has been reliably located on Quebrada. The contrasting seismic behavior of these faults represents the range of behavior observed in the global

  2. Blind test of methods for obtaining 2-D near-surface seismic velocity models from first-arrival traveltimes

    USGS Publications Warehouse

    Zelt, Colin A.; Haines, Seth; Powers, Michael H.; Sheehan, Jacob; Rohdewald, Siegfried; Link, Curtis; Hayashi, Koichi; Zhao, Don; Zhou, Hua-wei; Burton, Bethany L.; Petersen, Uni K.; Bonal, Nedra D.; Doll, William E.

    2013-01-01

    Seismic refraction methods are used in environmental and engineering studies to image the shallow subsurface. We present a blind test of inversion and tomographic refraction analysis methods using a synthetic first-arrival-time dataset that was made available to the community in 2010. The data are realistic in terms of the near-surface velocity model, shot-receiver geometry and the data's frequency and added noise. Fourteen estimated models were determined by ten participants using eight different inversion algorithms, with the true model unknown to the participants until it was revealed at a session at the 2011 SAGEEP meeting. The estimated models are generally consistent in terms of their large-scale features, demonstrating the robustness of refraction data inversion in general, and the eight inversion algorithms in particular. When compared to the true model, all of the estimated models contain a smooth expression of its two main features: a large offset in the bedrock and the top of a steeply dipping low-velocity fault zone. The estimated models do not contain a subtle low-velocity zone and other fine-scale features, in accord with conventional wisdom. Together, the results support confidence in the reliability and robustness of modern refraction inversion and tomographic methods.

  3. The seismic analyzer: interpreting and illustrating 2D seismic data.

    PubMed

    Patel, Daniel; Giertsen, Christopher; Thurmond, John; Gjelberg, John; Gröller, M Eduard

    2008-01-01

    We present a toolbox for quickly interpreting and illustrating 2D slices of seismic volumetric reflection data. Searching for oil and gas involves creating a structural overview of seismic reflection data to identify hydrocarbon reservoirs. We improve the search of seismic structures by precalculating the horizon structures of the seismic data prior to interpretation. We improve the annotation of seismic structures by applying novel illustrative rendering algorithms tailored to seismic data, such as deformed texturing and line and texture transfer functions. The illustrative rendering results in multi-attribute and scale invariant visualizations where features are represented clearly in both highly zoomed in and zoomed out views. Thumbnail views in combination with interactive appearance control allows for a quick overview of the data before detailed interpretation takes place. These techniques help reduce the work of seismic illustrators and interpreters.

  4. Reconstruction of a 2D seismic wavefield by seismic gradiometry

    NASA Astrophysics Data System (ADS)

    Maeda, Takuto; Nishida, Kiwamu; Takagi, Ryota; Obara, Kazushige

    2016-12-01

    We reconstructed a 2D seismic wavefield and obtained its propagation properties by using the seismic gradiometry method together with dense observations of the Hi-net seismograph network in Japan. The seismic gradiometry method estimates the wave amplitude and its spatial derivative coefficients at any location from a discrete station record by using a Taylor series approximation. From the spatial derivatives in horizontal directions, the properties of a propagating wave packet, including the arrival direction, slowness, geometrical spreading, and radiation pattern can be obtained. In addition, by using spatial derivatives together with free-surface boundary conditions, the 2D vector elastic wavefield can be decomposed into divergence and rotation components. First, as a feasibility test, we performed an analysis with a synthetic seismogram dataset computed by a numerical simulation for a realistic 3D medium and the actual Hi-net station layout. We confirmed that the wave amplitude and its spatial derivatives were very well-reproduced for period bands longer than 25 s. Applications to a real large earthquake showed that the amplitude and phase of the wavefield were well reconstructed, along with slowness vector. The slowness of the reconstructed wavefield showed a clear contrast between body and surface waves and regional non-great-circle-path wave propagation, possibly owing to scattering. Slowness vectors together with divergence and rotation decomposition are expected to be useful for determining constituents of observed wavefields in inhomogeneous media.

  5. 2D Time-lapse Seismic Tomography Using An Active Time Constraint (ATC) Approach

    EPA Science Inventory

    We propose a 2D seismic time-lapse inversion approach to image the evolution of seismic velocities over time and space. The forward modeling is based on solving the eikonal equation using a second-order fast marching method. The wave-paths are represented by Fresnel volumes rathe...

  6. On Animating 2D Velocity Fields

    NASA Technical Reports Server (NTRS)

    Kao, David; Pang, Alex

    2000-01-01

    A velocity field. even one that represents a steady state flow implies a dynamical system. Animated velocity fields is an important tool in understanding such complex phenomena. This paper looks at a number of techniques that animate velocity fields and propose two new alternatives, These are texture advection and streamline cycling. The common theme among these techniques is the use of advection on some texture to generate a realistic animation of the velocity field. Texture synthesis and selection for these methods are presented. Strengths and weaknesses of the techniques are also discussed in conjunction with several examples.

  7. On Animating 2D Velocity Fields

    NASA Technical Reports Server (NTRS)

    Kao, David; Pang, Alex; Yan, Jerry (Technical Monitor)

    2001-01-01

    A velocity field, even one that represents a steady state flow, implies a dynamical system. Animated velocity fields is an important tool in understanding such complex phenomena. This paper looks at a number of techniques that animate velocity fields and propose two new alternatives. These are texture advection and streamline cycling. The common theme among these techniques is the use of advection on some texture to generate a realistic animation of the velocity field. Texture synthesis and selection for these methods are presented. Strengths and weaknesses of the techniques are also discussed in conjunctions with several examples.

  8. ''Super 2D,'' Innovative seismic reprocessing: A case history

    SciTech Connect

    Conne, D.K.M.; Bolander, A.G.; MacDonald, R.J.; Strelioff, D.M.

    1988-01-01

    The ''Super 2D'' processing sequence involves taking a randomly oriented grid of multivintage two-dimensional seismic data and reprocessing to tie the data where required, then interpolating the data set to a regular grid suitable for three-dimensional processing and interpretation. A data set from Alberta, provided by a Canadian oil company, comprises 15 two-dimensional seismic lines collected and processed over a period of 6 years by various contractors. Field conditions, advances in technology, and changing objectives combined to result in a data set that densely sampled a small area, but did not tie in well enough to be interpreted as a whole. The data mistied in time, phase, and frequency, as well as having a problem with multiples in the zone of interest that had been partly attenuated in varying degrees. Therefore, the first objective of reprocessing was to resolve these problems. The authors' current land data processing sequence, which includes frequency balancing followed by source wavelet designature, F/K multiple attenuation, trim statics, and F-X filtering, as well as close attention to statics and velocity control, resolved all the mistie issues and produced a standardized data volume. This data volume was now suitable for the second stage of this sequence (i.e., interpolating to a regular grid and subsequent three-dimensional processing). The volume was three-dimensionally migrated (finite difference), filtered, and scaled. The full range of three-dimensional display and interpretational options, including loading on an interactive system, are now possible. This, along with standardizing the data set and improving the spatial location of events via three-dimensional migration are the key results of the ''Super 2D'' sequence.

  9. 2D Seismic Reflection Data across Central Illinois

    SciTech Connect

    Smith, Valerie; Leetaru, Hannes

    2014-09-30

    In a continuing collaboration with the Midwest Geologic Sequestration Consortium (MGSC) on the Evaluation of the Carbon Sequestration Potential of the Cambro-Ordovician Strata of the Illinois and Michigan Basins project, Schlumberger Carbon Services and WesternGeco acquired two-dimensional (2D) seismic data in the Illinois Basin. This work included the design, acquisition and processing of approximately 125 miles of (2D) seismic reflection surveys running west to east in the central Illinois Basin. Schlumberger Carbon Services and WesternGeco oversaw the management of the field operations (including a pre-shoot planning, mobilization, acquisition and de-mobilization of the field personnel and equipment), procurement of the necessary permits to conduct the survey, post-shoot closure, processing of the raw data, and provided expert consultation as needed in the interpretation of the delivered product. Three 2D seismic lines were acquired across central Illinois during November and December 2010 and January 2011. Traversing the Illinois Basin, this 2D seismic survey was designed to image the stratigraphy of the Cambro-Ordovician sections and also to discern the basement topography. Prior to this survey, there were no regionally extensive 2D seismic data spanning this section of the Illinois Basin. Between the NW side of Morgan County and northwestern border of Douglas County, these seismic lines ran through very rural portions of the state. Starting in Morgan County, Line 101 was the longest at 93 miles in length and ended NE of Decatur, Illinois. Line 501 ran W-E from the Illinois Basin – Decatur Project (IBDP) site to northwestern Douglas County and was 25 miles in length. Line 601 was the shortest and ran N-S past the IBDP site and connected lines 101 and 501. All three lines are correlated to well logs at the IBDP site. Originally processed in 2011, the 2D seismic profiles exhibited a degradation of signal quality below ~400 millisecond (ms) which made

  10. Development of the Borehole 2-D Seismic Tomography Software Using MATLAB

    NASA Astrophysics Data System (ADS)

    Nugraha, A. D.; Syahputra, A.; Fatkhan, F.; Sule, R.; Hendriyana, A.

    2011-12-01

    We developed 2-D borehole seismic tomography software that we called "EARTHMAX-2D TOMOGRAPHY" to image subsurface physical properties including P-wave and S-wave velocities between two boreholes. We used Graphic User Interface (GUI) facilities of MATLAB programming language to create the software. In this software, we used travel time of seismic waves from source to receiver by using pseudo bending ray tracing method as input for tomography inversion. We can also set up a model parameterization, initial velocity model, ray tracing processes, conduct borehole seismic tomography inversion, and finally visualize the inversion results. The LSQR method was applied to solve of tomography inversion solution. We provided the Checkerboard Test Resolution (CTR) to evaluate the model resolution of the tomography inversion. As validation of this developed software, we tested it for geotechnical purposes. We then conducted data acquisition in the "ITB X-field" that is located on ITB campus. We used two boreholes that have a depth of 39 meters. Seismic wave sources were generated by impulse generator and sparker and then they were recorded by borehole hydrophone string type 3. Later on, we analyzed and picked seismic arrival time as input for tomography inversion. As results, we can image the estimated weathering layer, sediment layer, and basement rock in the field depicted by seismic wave structures. More detailed information about the developed software will be presented. Keywords: borehole, tomography, earthmax-2D, inversion

  11. Calibration method helps in seismic velocity interpretation

    SciTech Connect

    Guzman, C.E.; Davenport, H.A.; Wilhelm, R.

    1997-11-03

    Acoustic velocities derived from seismic reflection data, when properly calibrated to subsurface measurements, help interpreters make pure velocity predictions. A method of calibrating seismic to measured velocities has improved interpretation of subsurface features in the Gulf of Mexico. In this method, the interpreter in essence creates a kind of gauge. Properly calibrated, the gauge enables the interpreter to match predicted velocities to velocities measured at wells. Slow-velocity zones are of special interest because they sometimes appear near hydrocarbon accumulations. Changes in velocity vary in strength with location; the structural picture is hidden unless the variations are accounted for by mapping in depth instead of time. Preliminary observations suggest that the presence of hydrocarbons alters the lithology in the neighborhood of the trap; this hydrocarbon effect may be reflected in the rock velocity. The effect indicates a direct use of seismic velocity in exploration. This article uses the terms seismic velocity and seismic stacking velocity interchangeably. It uses ground velocity, checkshot average velocity, and well velocity interchangeably. Interval velocities are derived from seismic stacking velocities or well average velocities; they refer to velocities of subsurface intervals or zones. Interval travel time (ITT) is the reciprocal of interval velocity in microseconds per foot.

  12. Newberry EGS Seismic Velocity Model

    DOE Data Explorer

    Templeton, Dennise

    2013-10-01

    We use ambient noise correlation (ANC) to create a detailed image of the subsurface seismic velocity at the Newberry EGS site down to 5 km. We collected continuous data for the 22 stations in the Newberry network, together with 12 additional stations from the nearby CC, UO and UW networks. The data were instrument corrected, whitened and converted to single bit traces before cross correlation according to the methodology in Benson (2007). There are 231 unique paths connecting the 22 stations of the Newberry network. The additional networks extended that to 402 unique paths crossing beneath the Newberry site.

  13. The development and testing of a 2D laboratory seismic modelling system for heterogeneous structure investigations

    NASA Astrophysics Data System (ADS)

    Mo, Yike; Greenhalgh, Stewart A.; Robertsson, Johan O. A.; Karaman, Hakki

    2015-05-01

    Lateral velocity variations and low velocity near-surface layers can produce strong scattered and guided waves which interfere with reflections and lead to severe imaging problems in seismic exploration. In order to investigate these specific problems by laboratory seismic modelling, a simple 2D ultrasonic model facility has been recently assembled within the Wave Propagation Lab at ETH Zurich. The simulated geological structures are constructed from 2 mm thick metal and plastic sheets, cut and bonded together. The experiments entail the use of a piezoelectric source driven by a pulse amplifier at ultrasonic frequencies to generate Lamb waves in the plate, which are detected by piezoelectric receivers and recorded digitally on a National Instruments recording system, under LabVIEW software control. The 2D models employed were constructed in-house in full recognition of the similitude relations. The first heterogeneous model features a flat uniform low velocity near-surface layer and deeper dipping and flat interfaces separating different materials. The second model is comparable but also incorporates two rectangular shaped inserts, one of low velocity, the other of high velocity. The third model is identical to the second other than it has an irregular low velocity surface layer of variable thickness. Reflection as well as transmission experiments (crosshole & vertical seismic profiling) were performed on each model. The two dominant Lamb waves recorded are the fundamental symmetric mode (non-dispersive) and the fundamental antisymmetric (flexural) dispersive mode, the latter normally being absent when the source transducer is located on a model edge but dominant when it is on the flat planar surface of the plate. Experimental group and phase velocity dispersion curves were determined and plotted for both modes in a uniform aluminium plate. For the reflection seismic data, various processing techniques were applied, as far as pre-stack Kirchhoff migration. The

  14. Factors Affecting Seismic Velocity in Alluvium

    NASA Astrophysics Data System (ADS)

    Huckins-Gang, H.; Mercadante, J.; Prothro, L.

    2015-12-01

    Yucca Flat at the Nevada National Security Site has been selected as the Source Physics Experiment (SPE) Dry Alluvium Geology Phase II site. The alluvium in this part of Yucca Flat is typical of desert basin fill, with discontinuous beds that are highly variable in clast size and provenance. Detailed understanding of the subsurface geology will be needed for interpretation of the SPE seismic data. A 3D seismic velocity model, created for Yucca Flat using interval seismic velocity data, shows variations in velocity within alluvium near the SPE Phase II site beyond the usual gradual increase of density with depth due to compaction. In this study we examined borehole lithologic logs, geophysical logs, downhole videos, and laboratory analyses of sidewall core samples to understand which characteristics of the alluvium are related to these variations in seismic velocity. Seismic velocity of alluvium is generally related to its density, which can be affected by sediment provenance, clast size, gravel percentage, and matrix properties, in addition to compaction. This study presents a preliminary subdivision of the alluvial strata in the SPE Phase II area into mappable units expected to be significant to seismic modeling. Further refinements of the alluvial units may be possible when seismic data are obtained from SPE Phase II tests. This work was done by National Security Technologies, LLC, under Contract No. DE-AC52-06NA25946 with the U.S. Department of Energy.

  15. Velocity structure and seismicity of southeastern Tennessee

    NASA Astrophysics Data System (ADS)

    Kaufmann, Ronald Douglas; Long, Leland Timothy

    1996-04-01

    The seismic zone in southeastern Tennessee is at the confluence of major crustal features, which have been interpreted largely from potential data, and their relation to seismicity could help us understand why major earthquakes sometimes occur in the eastern United States. In this paper we solve for the previously unknown velocity structure of the upper crust by an inversion of travel time residuals from relocated earthquakes. The gravity anomalies are included by using a linear relation between average anomalous density and average anomalous velocity. The velocity model demonstrates that the seismicity is concentrated in areas of average to below average velocity and does not appear to be associated with one of the previously identified major crustal features. The high-velocity zones mark areas that are generally lacking in seismicity. The association of earthquake hypocenters with regions of low-velocity crustal rocks is consistent with other intraplate seismic zones, and this association supports the conjecture that intraplate earthquakes occur in crust that may have been weakened. The velocity anomalies at midcrustal depths do not support the New York-Alabama (NY-AL) lineament as a linear feature extending through southeastern Tennessee and parallel to contours in gravity anomalies as originally proposed. A continuation of the (NY-AL) lineament to the southwest requires either a 15 degree southwestward change in direction or a displacement to be consistent with the velocity anomalies. The seismically active areas in southeastern Tennessee do not appear to be constrained by the major crustal features, but instead, the seismicity is characterized by the distribution of hypocenters and their association with low-velocity regions at midcrustal depths.

  16. Numerical upscaling in 2-D heterogeneous poroelastic rocks: Anisotropic attenuation and dispersion of seismic waves

    NASA Astrophysics Data System (ADS)

    Rubino, J. Germán.; Caspari, Eva; Müller, Tobias M.; Milani, Marco; Barbosa, Nicolás. D.; Holliger, Klaus

    2016-09-01

    The presence of stiffness contrasts at scales larger than the typical pore sizes but smaller than the predominant seismic wavelengths can produce seismic attenuation and velocity dispersion in fluid-saturated porous rocks. This energy dissipation mechanism is caused by wave-induced fluid pressure diffusion among the different components of the probed geological formations. In many cases, heterogeneities have elongated shapes and preferential orientations, which implies that the overall response of the medium is anisotropic. In this work, we propose a numerical upscaling procedure that permits to quantify seismic attenuation and phase velocity considering fluid pressure diffusion effects as well as generic anisotropy at the sample's scale. The methodology is based on a set of three relaxation tests performed on a 2-D synthetic rock sample representative of the medium of interest. It provides a complex-valued frequency-dependent equivalent stiffness matrix through a least squares procedure. We also derive an approach for computing various poroelastic fields associated with the considered sample in response to the propagation of a seismic wave with arbitrary incidence angle. Using this approach, we provide an energy-based estimation of seismic attenuation. A comprehensive numerical analysis indicates that the methodology is suitable for handling complex media and different levels of overall anisotropy. Comparisons with the energy-based estimations demonstrate that the dynamic-equivalent viscoelastic medium assumption made by the numerical upscaling procedure is reasonable even in the presence of high levels of overall anisotropy. This work also highlights the usefulness of poroelastic fields for the physical interpretation of seismic wave phenomena in strongly heterogeneous and complex media.

  17. The Hontomin CO2 geologic storage site: results from 2D seismic survey

    NASA Astrophysics Data System (ADS)

    Calahorrano, A.; Martí, D.; Alcalde, J.; Marzán, I.; Ayarza, P.; Carbonell, R.; Pérez-Estaún, A.

    2012-04-01

    The Spanish research program on Carbon dioxide Capture and Storage (CCS), leaded by the state-owned foundation CIUDEN, initiated the storage project with the creation of the first Spanish technological laboratory devoted to subsurface storage of carbon dioxide (CO2) in 2010 near the village of Hontomín (North West of Spain). This research site aims investigating the different phases involved in the CO2 injection process in underground geologic formations at real scale and monitoring its long-term behavior. The seismic baseline study consist on five innovative and non-standard seismic experiments including: 1) a 35 km2 of 3D seismic survey, 2) a 2D seismic survey, 3) a Seismovie survey, 4) a 30 passive-seismic network and 5) a Vertical Seismic Profile (VSP) survey programmed for this year. Here we focus on the 2D seismic reflection survey that was acquired with new generation 3-component receivers. A total of 408 receivers with 25 m interval were deployed along 2 orthogonal profiles, orientated ~NS-EW, centered near the injection point. The seismic source consisted on 4 15-Tn M22 vibroseis trucks with a 16-sec sweep vibrating at each 25 m distance. Data processing included static corrections, spherical divergence correction, airwave muting, predictive deconvolution, stack, time-variant band-pass filtering and time migration. First analysis of the vertical component data confirm the dome-geometry of the reservoir observed by previous studies and give details on the tectonic structure of the potential injection zone. The data also show two main seismic features corresponding to 1) a loss of the P-wave first arrival amplitudes resulting in a shadow zone at offsets of ~600-1500 m. and 2) a high-amplitude reflection at the base of the shadow zone. We related the presence of the shadow zone with a ~750 m-thick layer of low velocity or small velocity-gradient, associated to Early-Middle Cretaceous deposits that globally correspond to variable grain-size siliciclastic

  18. Seismic velocity estimation from time migration

    SciTech Connect

    Cameron, Maria Kourkina

    2007-01-01

    earth becomes horizontally nonconstant. Even mild lateral velocity variations can significantly distort subsurface structures on the time migrated images. Conversely, depth migration provides the potential for more accurate reconstructions, since it can handle significant lateral variations. However, this approach requires good input data, known as a 'velocity model'. We address the problem of estimating seismic velocities inside the earth, i.e., the problem of constructing a velocity model, which is necessary for obtaining seismic images in regular Cartesian coordinates. The main goals are to develop algorithms to convert time-migration velocities to true seismic velocities, and to convert time-migrated images to depth images in regular Cartesian coordinates. Our main results are three-fold. First, we establish a theoretical relation between the true seismic velocities and the 'time migration velocities' using the paraxial ray tracing. Second, we formulate an appropriate inverse problem describing the relation between time migration velocities and depth velocities, and show that this problem is mathematically ill-posed, i.e., unstable to small perturbations. Third, we develop numerical algorithms to solve regularized versions of these equations which can be used to recover smoothed velocity variations. Our algorithms consist of efficient time-to-depth conversion algorithms, based on Dijkstra-like Fast Marching Methods, as well as level set and ray tracing algorithms for transforming Dix velocities into seismic velocities. Our algorithms are applied to both two-dimensional and three-dimensional problems, and we test them on a collection of both synthetic examples and field data.

  19. Seismicity and Improved Velocity Structure in Kuwait

    NASA Astrophysics Data System (ADS)

    Gok, R.; Rodgers, A.; Al-Enezi, A.

    2005-12-01

    The Kuwait National Seismic Network (KNSN) began operation in 1997 and consists of nine three-component stations (eight short-period and one broadband). Although the region is largely believed to be aseismic, considerable local seismicity is recorded by KNSN. Seismic events in Kuwait are clustered in two main groups, one in the south and another in the north. The KNSN station distribution is able to capture the southern cluster within the footprint of the network but the northern cluster is poorly covered. We have analyzed KNSN recordings of nearly 200 local events to improve understanding of seismic events and crustal structure in Kuwait, performing several analyses with increasing complexity. First, we obtained an optimized one-dimensional (1D) velocity model for the entire region using the KNSN bulletin locations. We observe a consistency of this model with the model obtained from the joint inversion of receiver function and surface wave group velocities. Crustal structure is capped by the thick (~ 7 km) sedimentary rocks of the Arabian Platform and normal velocities for stable continental crust. We then used a double-difference tomography technique (tomoDD) and the optimized 1D model to jointly locate the events and estimate three-dimensional (3D) structure by tomographic inversion. TomoDD is based on hypoDD relocation algorithm and it makes use of both absolute and relative arrival times. We obtained ~1500 absolute P and S arrival times and ~3200 P and S wave arrival time differences. Finally, we calculated Mw's of nearly 100 events using the coda magnitude technique of Mayeda et al., (2003). Although the current studies will not be able to reveal the source of current seismicity in Kuwait, we obtain a considerable amount of improvement in the velocity model and the reduced scatter of travel time residuals relative to the routine KNSN bulletin. The new velocity model and moment magnitudes will be utilized in ground motion prediction and hazard estimate studies

  20. 1D and 2D simulations of seismic wave propagation in fractured media

    NASA Astrophysics Data System (ADS)

    Möller, Thomas; Friederich, Wolfgang

    2016-04-01

    Fractures and cracks have a significant influence on the propagation of seismic waves. Their presence causes reflections and scattering and makes the medium effectively anisotropic. We present a numerical approach to simulation of seismic waves in fractured media that does not require direct modelling of the fracture itself, but uses the concept of linear slip interfaces developed by Schoenberg (1980). This condition states that at an interface between two imperfectly bonded elastic media, stress is continuous across the interface while displacement is discontinuous. It is assumed that the jump of displacement is proportional to stress which implies a jump in particle velocity at the interface. We use this condition as a boundary condition to the elastic wave equation and solve this equation in the framework of a Nodal Discontinuous Galerkin scheme using a velocity-stress formulation. We use meshes with tetrahedral elements to discretise the medium. Each individual element face may be declared as a slip interface. Numerical fluxes have been derived by solving the 1D Riemann problem for slip interfaces with elastic and viscoelastic rheology. Viscoelasticity is realised either by a Kelvin-Voigt body or a Standard Linear Solid. These fluxes are not limited to 1D and can - with little modification - be used for simulations in higher dimensions as well. The Nodal Discontinuous Galerkin code "neXd" developed by Lambrecht (2013) is used as a basis for the numerical implementation of this concept. We present examples of simulations in 1D and 2D that illustrate the influence of fractures on the seismic wavefield. We demonstrate the accuracy of the simulation through comparison to an analytical solution in 1D.

  1. Seismicity and Improved Velocity Structure in Kuwait

    SciTech Connect

    Gok, R M; Rodgers, A J; Al-Enezi, A

    2006-01-26

    The Kuwait National Seismic Network (KNSN) began operation in 1997 and consists of nine three-component stations (eight short-period and one broadband) and is operated by the Kuwait Institute for Scientific Research. Although the region is largely believed to be aseismic, considerable local seismicity is recorded by KNSN. Seismic events in Kuwait are clustered in two main groups, one in the south and another in the north. The KNSN station distribution is able to capture the southern cluster within the footprint of the network but the northern cluster is poorly covered. Events tend to occur at depths ranging from the free surface to about 20 km. Events in the northern cluster tend to be deeper than those in south, however this might be an artifact of the station coverage. We analyzed KNSN recordings of nearly 200 local events to improve understanding of seismic events and crustal structure in Kuwait, performing several analyses with increasing complexity. First, we obtained an optimized one-dimensional (1D) velocity model for the entire region using the reported KNSN arrival times and routine locations. The resulting model is consistent with a recently obtained model from the joint inversion of receiver functions and surface wave group velocities. Crustal structure is capped by the thick ({approx} 7 km) sedimentary rocks of the Arabian Platform underlain by normal velocities for stable continental crust. Our new model has a crustal thickness of 44 km, constrained by an independent study of receiver functions and surface wave group velocities by Pasyanos et al (2006). Locations and depths of events after relocation with the new model are broadly consistent with those reported by KISR, although a few events move more than a few kilometers. We then used a double-difference tomography technique (tomoDD) to jointly locate the events and estimate three-dimensional (3D) velocity structure. TomoDD is based on hypoDD relocation algorithm and it makes use of both absolute and

  2. Lateral variations in lower mantle seismic velocity

    NASA Technical Reports Server (NTRS)

    Duffy, Thomas S.; Ahrens, Thomas J.

    1992-01-01

    To obtain a theoretical model which provides a rationale for the observed high values of velocity variations, the effect of a 0.1 to 0.2 percent partially molten volatile-rich material in various geometries which are heterogeneously dispersed in the lower mantle is examined. Data obtained indicate that, depending on aspect ratio and geometry, 0.1-0.2 percent partial melting in conjunction with about 100 K thermal anomalies can explain the seismic variations provided the compressibility of the melt differs by less than about 20 percent from the surrounding solid.

  3. Uppermost mantle seismic velocity structure beneath USArray

    NASA Astrophysics Data System (ADS)

    Buehler, J. S.; Shearer, P. M.

    2017-01-01

    We apply Pn tomography beneath the entire USArray footprint to image uppermost mantle velocity structure and anisotropy, as well as crustal thickness constraints, beneath the United States. The sparse source distribution in the eastern United States and the resulting longer raypaths provide new challenges and justify the inclusion of additional parameters that account for the velocity gradient in the mantle lid. At large scale, Pn velocities are higher in the eastern United States compared to the west, but we observe patches of lower velocities around the New Madrid seismic zone and below the eastern Appalachians. For much of the mantle lid below the central and eastern United States we find a moderate positive velocity gradient. In the western United States, we observe a moderate gradient in the region of the Juan de Fuca subduction zone, but no significant gradient to the south and east of this region. In terms of anisotropy, we find that the Pn fast axes generally do not agree with SKS splitting orientations, suggesting significant vertical changes in anisotropy in the upper mantle. In particular the circular pattern of the fast polarization direction of SKS in the western United States is much less pronounced in the Pn results, and in the eastern US the dominant Pn fast direction is approximately north-south, whereas the SKS fast polarizations are oriented roughly parallel to the absolute plate motion direction.

  4. Seismic Velocity Measurements at Expanded Seismic Network Sites

    SciTech Connect

    Woolery, Edward W; Wang, Zhenming

    2005-01-01

    Structures at the Paducah Gaseous Diffusion Plant (PGDP), as well as at other locations in the northern Jackson Purchase of western Kentucky may be subjected to large far-field earthquake ground motions from the New Madrid seismic zone, as well as those from small and moderate-sized local events. The resultant ground motion a particular structure is exposed from such event will be a consequence of the earthquake magnitude, the structures' proximity to the event, and the dynamic and geometrical characteristics of the thick soils upon which they are, of necessity, constructed. This investigation evaluated the latter. Downhole and surface (i.e., refraction and reflection) seismic velocity data were collected at the Kentucky Seismic and Strong-Motion Network expansion sites in the vicinity of the Paducah Gaseous Diffusion Plant (PGDP) to define the dynamic properties of the deep sediment overburden that can produce modifying effects on earthquake waves. These effects are manifested as modifications of the earthquake waves' amplitude, frequency, and duration. Each of these three ground motion manifestations is also fundamental to the assessment of secondary earthquake engineering hazards such as liquefaction.

  5. Fast seismic velocity analysis using parsimonious Kirchhoff depth migration

    NASA Astrophysics Data System (ADS)

    Fei, Weihong

    Migration-based velocity analysis is the most efficient, and accurate velocity inversion technique. It generally involves time-consuming prestack depth migration, and picking of the depth residuals in common-image gathers (CIGs) in each iteration. Two modifications are proposed to minimize the time of prestack depth migration and the picking work in velocity analysis: one approach is to invert the velocity model in layer-stripping style; the other is based on a grid parametrization of the velocity model. Both approaches are based on the idea of parsimonious depth migration, which is the fastest depth migration currently available. Both approaches have four basic steps: (1) Picking the primary, most consistent reflection events from one reference seismic section or volume. (2) Depending on whether the reference data is 2-D poststack, 2-D common-offset, 3-D poststack, or 3-D common-offset, the corresponding parsimonious depth migration is used to migrate all the picked time samples to their spatial locations and to give their orientations. (3) Ray-tracing defines the CRP gathers for each reflection point. (4) Velocity updating. For the layer-stripping approach, a small (2-3) number of iterations converge to a 2-D model of layer shape and interval velocity. The computation time of this layer-stripping approach is of the same order as that of the standard (1-D) rms velocity scan method, and is much faster than current iterative prestack depth migration velocity analysis methods for typical field data. For the grid-based approach, it is not necessary to define continuous reflectors and that the time at any offset (not only zero offset) can be used as the reference time for a reflection. Truncations, and multi-valued layers, which need much effort in the layer-stripping approach, are handled naturally and implicitly in the grid-based approach. Two important features of the proposed algorithms are: the traveltime picking is limited to only a stacked or common

  6. Absolute Plate Velocities from Seismic Anisotropy

    NASA Astrophysics Data System (ADS)

    Kreemer, Corné; Zheng, Lin; Gordon, Richard

    2015-04-01

    The orientation of seismic anisotropy inferred beneath plate interiors may provide a means to estimate the motions of the plate relative to the sub-asthenospheric mantle. Here we analyze two global sets of shear-wave splitting data, that of Kreemer [2009] and an updated and expanded data set, to estimate plate motions and to better understand the dispersion of the data, correlations in the errors, and their relation to plate speed. We also explore the effect of using geologically current plate velocities (i.e., the MORVEL set of angular velocities [DeMets et al. 2010]) compared with geodetically current plate velocities (i.e., the GSRM v1.2 angular velocities [Kreemer et al. 2014]). We demonstrate that the errors in plate motion azimuths inferred from shear-wave splitting beneath any one tectonic plate are correlated with the errors of other azimuths from the same plate. To account for these correlations, we adopt a two-tier analysis: First, find the pole of rotation and confidence limits for each plate individually. Second, solve for the best fit to these poles while constraining relative plate angular velocities to consistency with the MORVEL relative plate angular velocities. The SKS-MORVEL absolute plate angular velocities (based on the Kreemer [2009] data set) are determined from the poles from eight plates weighted proportionally to the root-mean-square velocity of each plate. SKS-MORVEL indicates that eight plates (Amur, Antarctica, Caribbean, Eurasia, Lwandle, Somalia, Sundaland, and Yangtze) have angular velocities that differ insignificantly from zero. The net rotation of the lithosphere is 0.25±0.11° Ma-1 (95% confidence limits) right-handed about 57.1°S, 68.6°E. The within-plate dispersion of seismic anisotropy for oceanic lithosphere (σ=19.2° ) differs insignificantly from that for continental lithosphere (σ=21.6° ). The between-plate dispersion, however, is significantly smaller for oceanic lithosphere (σ=7.4° ) than for continental

  7. 2D soil and engineering-seismic bedrock modeling of eastern part of Izmir inner bay/Turkey

    NASA Astrophysics Data System (ADS)

    Pamuk, Eren; Akgün, Mustafa; Özdağ, Özkan Cevdet; Gönenç, Tolga

    2017-02-01

    Soil-bedrock models are used as a base when the earthquake-soil common behaviour is defined. Moreover, the medium which is defined as bedrock is classified as engineering and seismic bedrock in itself. In these descriptions, S-wave velocity is (Vs) used as a base. The mediums are called soil where the Vs is < 760 m/s, the bigger ones are called bedrock as well. Additionally, the parts are called engineering bedrock where the Vs is between 3000 m/s and 760 m/s, the parts where are bigger than 3000 m/s called seismic bedrock. The interfacial's horizontal topography where is between engineering and seismic bedrock is effective on earthquake's effect changing on the soil surface. That's why, 2D soil-bedrock models must be used to estimate the earthquake effect that could occur on the soil surface. In this research, surface wave methods and microgravity method were used for occuring the 2D soil-bedrock models in the east of İzmir bay. In the first stage, velocity values were obtained by the studies using surface wave methods. Then, density values were calculated from these velocity values by the help of the empiric relations. 2D soil-bedrock models were occurred based upon both Vs and changing of density by using these density values in microgravity model. When evaluating the models, it was determined that the soil is 300-400 m thickness and composed of more than one layers in parts where are especially closer to the bay. Moreover, it was observed that the soil thickness changes in the direction of N-S. In the study area, geologically, it should be thought the engineering bedrock is composed of Bornova melange and seismic bedrock unit is composed of Menderes massif. Also, according to the geophysical results, Neogene limestone and andesite units at between 200 and 400 m depth show that engineering bedrock characteristic.

  8. Explore Seismic Velocity Change Associated with the 2010 Kaohsiung Earthquake by Ambient Noise Tomography

    NASA Astrophysics Data System (ADS)

    Ku, Chin-Shang; Wu, Yih-Min; Huang, Bor-Shouh; Huang, Win-Gee; Liu, Chun-Chi

    2016-04-01

    A ML 6.4 earthquake occurred on 4 March 2010 in Kaohsiung, the southern part of Taiwan, this shallow earthquake is the largest one of that area in the past few years. Some damages occurred on buildings and bridges after the earthquake, obvious surface deformation up to few cm was observed and the transportation including road and train traffic was also affected near the source area. Some studies about monitoring the velocity change induced by the big earthquake were carried out recently, most of studies used cross-correlation of the ambient noise-based method and indicated velocity drop was observed immediately after the big earthquake. However, this method is not able to constrain the depth of velocity change, and need to assume a homogeneous seismic velocity change during the earthquake. In this study, we selected 25 broadband seismic stations in the southern Taiwan and time period is from 2009/03 to 2011/03. Then we explored the velocity change associated with the 2010 Kaohsiung earthquake by applying ambient noise tomography (ANT) method. ANT is a way of using interferometry to image subsurface seismic velocity variations by using surface wave dispersions extracted from the ambient noise cross-correlation of seismic station-pairs, then the 2-D group velocity map with different periods could be extracted. Compare to ambient noise-based cross-correlation analysis, we estimated sensitivity kernel of dispersion curves and converted 2-D group velocity map from "with the period" to "with the depth" to have more constraints on the depth of velocity change. By subtracting shear velocity between "before" and "after" the earthquake, we could explore velocity change associated with the earthquake. Our result shows velocity reduction about 5-10% around the focal depth after the 2010 Kaohsiung earthquake and the post-seismic velocity recovery was observed with time period increasing, which may suggest a healing process of damaged rocks.

  9. Anisotropic seismic-waveform inversion: Application to a seismic velocity model from Eleven-Mile Canyon in Nevada

    SciTech Connect

    Chen, Yu; Gao, Kai; Huang, Lianjie; Sabin, Andrew

    2016-03-31

    Accurate imaging and characterization of fracture zones is crucial for geothermal energy exploration. Aligned fractures within fracture zones behave as anisotropic media for seismic-wave propagation. The anisotropic properties in fracture zones introduce extra difficulties for seismic imaging and waveform inversion. We have recently developed a new anisotropic elastic-waveform inversion method using a modified total-variation regularization scheme and a wave-energy-base preconditioning technique. Our new inversion method uses the parameterization of elasticity constants to describe anisotropic media, and hence it can properly handle arbitrary anisotropy. We apply our new inversion method to a seismic velocity model along a 2D-line seismic data acquired at Eleven-Mile Canyon located at the Southern Dixie Valley in Nevada for geothermal energy exploration. Our inversion results show that anisotropic elastic-waveform inversion has potential to reconstruct subsurface anisotropic elastic parameters for imaging and characterization of fracture zones.

  10. Discrimination of porosity and fluid saturation using seismic velocity analysis

    DOEpatents

    Berryman, James G.

    2001-01-01

    The method of the invention is employed for determining the state of saturation in a subterranean formation using only seismic velocity measurements (e.g., shear and compressional wave velocity data). Seismic velocity data collected from a region of the formation of like solid material properties can provide relatively accurate partial saturation data derived from a well-defined triangle plotted in a (.rho./.mu., .lambda./.mu.)-plane. When the seismic velocity data are collected over a large region of a formation having both like and unlike materials, the method first distinguishes the like materials by initially plotting the seismic velocity data in a (.rho./.lambda., .mu./.lambda.)-plane to determine regions of the formation having like solid material properties and porosity.

  11. Eurasian Seismic Surveillance - 2D FD Seismic Synthetics and Event Discrimination

    DTIC Science & Technology

    1993-12-22

    for 2D finite difference (FD) synthetic seismogram experiments . The results here are encouraging in the sense that models incorporating small scale... ProMAX screendump of synthetic seismograms generated for the model shown in Fig. 2.4.1. The receivers were placed with 3 km intervals in the range x=13 to...our 2D FD synthetic seismogram experiments is that a simple lithosphere model, being moderately heterogeneous, gives rise to complex seismograms which

  12. Modeling the seismic response of 2D models of asteroid 433 Eros, based on the spectral-element method.

    NASA Astrophysics Data System (ADS)

    Blitz, Celine; Komatitsch, Dimitri; Lognonné, Philippe; Martin, Roland; Le Goff, Nicolas

    The understanding of the interior structure of Near Earth Objects (NEOs) is a fundamental issue to determine their evolution and origin, and also, to design possible mitigation techniques (Walker and Huebner, 2004). Indeed, if an oncoming Potentially Hazardous Object (PHO) were to threaten the Earth, numerous methods are suggested to prevent it from colliding our planet. Such mitigation techniques may involve nuclear explosives on or below the object surface, impact by a projectile, or concentration of solar energy using giant mirrors (Holsapple, 2004). The energy needed in such mitigation techniques highly depends on the porosity of the hazardous threatening object (asteroid or comet), as suggested by Holsapple, 2004. Thus, for a given source, the seismic response of a coherent homogeneous asteroid should be very different from the seismic response of a fractured or rubble-pile asteroid. To assess this hypothesis, we performed numerical simulations of wave propagation in different interior models of the Near Earth Asteroid 433 Eros. The simulations of wave propagation required a shape model of asteroid Eros, kindly provided by A. Cheng and O. Barnouin-Jha (personal communication). A cross-section along the longest axis has been chosen to define our 2D geometrical model, and we study two models of the interior: a homogeneous one, and a complex one characterized by fault networks below the main crosscut craters, and covered by a regolith layer of thickness ranging from 50 m to 150 m. To perform the numerical simulations we use the spectral-element method, which solves the variational weak form of the seismic wave equation (Komatitsch and Tromp, 1999) on the meshes of the 2D models of asteroid Eros. The homogeneous model is composed of an elastic material characterized by a pressure wave velocity Vp = 3000 m.s-1 , a shear wave velocity Vs = 1700 m.s-1 and a density of 2700 kg.m-3 . The fractured model possesses the same characteristics except for the presence of

  13. Neural network estimate of seismic velocities and resistivity of rocks from electromagnetic and seismic sounding data

    NASA Astrophysics Data System (ADS)

    Spichak, V. V.; Goidina, A. G.

    2016-05-01

    The neural network estimates of seismic P- and S-wave velocities from electrical resistivity of the rocks and, vice versa, resistivity estimates from seismic velocities are presented. It is shown that, depending on the ratio between the volumes of the known data and the data to be reconstructed, the accuracy of the estimates of the P- and S-wave velocities ranges within 1-4 and 4-6%, respectively. The logarithmic resistivity is estimated from seismic P- and S-velocities as accurately as up to 15-17%. In all cases, the biggest errors are obtained when the estimates are based on correlated data.

  14. Reconstruction of 2D seismic wavefield from Long-Period Seismogram and Short-Period Seismogram Envelope by Seismic Gradiometry applied to the Hi-net Array

    NASA Astrophysics Data System (ADS)

    Maeda, Takuto; Nishida, Kiwamu; Takagi, Ryota; Obara, Kazushige

    2016-04-01

    /arrival directions together with divergence/rotation decomposition will be useful for pursuing constituents of observed wavefield in inhomogeneous medium. In contrast, short-period waves are quite incoherent at stations mostly due to wave significant wave scattering. However, their envelope shapes resemble at neighbor stations. Therefore, we may be able to extract seismic wave energy propagation by seismogram envelope analysis. Based on this idea, we applied the same method to the time-integration of seismogram envelope to estimate its spatial derivatives. Together with seismogram envelope, we succeeded in reconstructing 2D envelope field and in estimating its arrival direction as well as long-period waveforms, without using phase information of seismic waves. Our results show that the seismic gradiometry suits the Hi-net to extract wave propagation characteristics both at long and short periods. This method is appealing that it can estimate waves at homogeneous grid to monitor seismic wave as a wavefield. It is promising to obtain phase velocity variation from direct waves, and to understand scattering and/or attenuation from coda envelopes, by applying the seismic gradiometry to Hi-net.

  15. Seismic attenuation and velocity constraints on the formation of oceanic lithosphere and the origin of the low-velocity zone

    NASA Astrophysics Data System (ADS)

    Yang, Y.; Forsyth, D. W.; Weeraratne, D. S.

    2005-12-01

    Seismic attenuation has long been neglected in traditional seismic tomography since attenuation effects on amplitude are too hard to separate from other effects such as multi-pathing, focusing/defocusing and scattering. However, attenuation is an important property of Earth's materials and can provide us additional knowledge other than elastic velocities about temperature, fluid content, phase changes, and density of solid-state defects in the crust and mantle. Fundamental mode surface wave studies at different periods allow us to constrain regional and vertical variation of the quality factor Q. We use 2-D sensitivity kernels for surface waves based on single-scattering (Born) approximation to account for the effects of scattering on amplitude in regional surface wave studies. We invert phase and amplitude data of Rayleigh waves for shear wave velocities and attenuation (Qu-1) in very young (less than 10 Ma) Pacific regions using teleseismic sources recorded by ocean-bottom seismometers (OBSs). There is a high seismic velocity lid underlain by a low velocity zone. Qu shows a similar variation pattern: large Qu at depths shallower than 50 km and much smaller Qu at depths greater than 60 km. Models that attribute the origin of the low velocity zone beneath old seafloors solely to temperature and pressure effects predict Qu values an order of magnitude too low beneath young seafloor. An alternative model considering the variation of water content in the upper mantle can explain partially the variation pattern of velocities and attenuation. Partial melting in the shallow upper mantle at mid-oceanic ridges during the production of the oceanic crust effectively removes the water in the MORB source region and leads to a (°)dry depleted peridotite layer underlain by a (°)wet fertile peridotite. The presence of water in the asthenosphere lowers Qu and seismic velocity beneath old seafloor, so that the effects attributed to thermal variations are much smaller and thus

  16. Seismic investigation of gas hydrates in the Gulf of Mexico: Results from 2013 high-resolution 2D and multicomponent seismic surveys

    NASA Astrophysics Data System (ADS)

    Haines, S. S.; Hart, P. E.; Shedd, W. W.; Frye, M.; Agena, W.; Miller, J. J.; Ruppel, C. D.

    2013-12-01

    In the spring of 2013, the U.S. Geological Survey led a 16-day seismic acquisition cruise aboard the R/V Pelican in the Gulf of Mexico to survey two established gas hydrate study sites. We used a pair of 105/105 cubic inch generator/injector airguns as the seismic source, and a 450-m 72-channel hydrophone streamer to record two-dimensional (2D) data. In addition, we also deployed at both sites an array of 4-component ocean-bottom seismometers (OBS) to record P- and S-wave energy at the seafloor from the same seismic source positions as the streamer data. At lease block Green Canyon 955 (GC955), we acquired 400 km of 2-D streamer data, in a 50- to 250-m-spaced grid augmented by several 20-km transects that provide long offsets for the OBS. The seafloor recording at GC955 was accomplished by a 2D array of 21 OBS at approximately 400-m spacing, including instruments carefully positioned at two of the three boreholes where extensive logging-while-drilling data is available to characterize the presence of gas hydrate. At lease block Walker Ridge 313 (WR313), we acquired 450 km of streamer data in a set of 11-km, 150- to 1,000-m-spaced, dip lines and 6- to 8-km, 500- to 1000-m-spaced strike lines. These were augmented by a set of 20-km lines that provide long offsets for a predominantly linear array of 25 400- to 800-m spaced OBS deployed in the dip direction in and around WR313. The 2D data provide at least five times better resolution of the gas hydrate stability zone than the available petroleum industry seismic data from the area; this enables considerably improved analysis and interpretation of stratigraphic and structural features including previously unseen faults and gas chimneys that may have considerable impact on gas migration. Initial processing indicates that the OBS data quality is good, and we anticipate that these data will yield estimates of P- and S-wave velocities, as well as PP (reflected) and PS (converted wave) images beneath each sensor location.

  17. Multiple triangulation analysis: application to determine the velocity of 2-D structures

    NASA Astrophysics Data System (ADS)

    Zhou, X.-Z.; Zong, Q.-G.; Wang, J.; Pu, Z. Y.; Zhang, X. G.; Shi, Q. Q.; Cao, J. B.

    2006-11-01

    In order to avoid the ambiguity of the application of the Triangulation Method (multi-spacecraft timing method) to two-dimensional structures, another version of this method, the Multiple Triangulation Analysis (MTA) is used, to calculate the velocities of these structures based on 4-point measurements. We describe the principle of MTA and apply this approach to a real event observed by the Cluster constellation on 2 October 2003. The resulting velocity of the 2-D structure agrees with the ones obtained by some other methods fairly well. So we believe that MTA is a reliable version of the Triangulation Method for 2-D structures, and thus provides us a new way to describe their motion.

  18. Hall-velocity limited magnetoconductivity in a 2D Wigner solid

    NASA Astrophysics Data System (ADS)

    Fozooni, P.; Djerfi, K.; Kristensen, Anders; Lea, M. J.; Richardson, P. J.; Santrich-Badal, A.; Blackburn, A.; van der Heijden, R. W.

    1996-01-01

    The magnetoconductivity σ( B) of a classical 2D electron crystal on superfluid4He is non-linear. Experimentally we find a contribution to σ( B) which at constant field, gives σ( B)∞ J x, the current density, while at constant current, σ( B) ∞ 1/ B. In this region the Hall velocity νH slowly approaches the ripplon velocity νI at the first reciprocal lattice vector, due to strong electron-ripplon interactions with the helium. The magnetoconductivity decreases sharply for νH>νI. Fluctuations in σ( B) are seen above the melting temperature.

  19. Joint analysis of the seismic data and velocity gravity model

    NASA Astrophysics Data System (ADS)

    Belyakov, A. S.; Lavrov, V. S.; Muchamedov, V. A.; Nikolaev, A. V.

    2016-03-01

    We performed joint analysis of the seismic noises recorded at the Japanese Ogasawara station located on Titijima Island in the Philippine Sea using the STS-2 seismograph at the OSW station in the winter period of January 1-15, 2015, over the background of a velocity gravity model. The graphs prove the existence of a cause-and-effect relation between the seismic noise and gravity and allow us to consider it as a desired signal.

  20. Constraining seismic velocity features combining short and long period signals: Test ground is Turkey

    NASA Astrophysics Data System (ADS)

    Bulut, Fatih; Eken, Tuna; Yolsal-Çevikbilen, Seda; Taymaz, Tuncay

    2015-04-01

    Verifying the seismic velocity models requires combining different techniques to obtain more reliable basement for further steps, e.g., earthquake location, moment tensor analysis etc. Especially, 2D/3D heterogeneities and velocity contrasts are the key unknowns to be addressed in order to achieve the best-possible setup for further analysis. In that frame, short and long period signals are combined to better constrain the unusual velocity features. Our approach employs P-wave particle motions and receiver functions to discriminate the velocity structure of different crustal blocks. P-wave particle motions are basically used to differentiate direction of incoming waves, which is an indirect measure of potential velocity contrast/heterogeneity in horizontal axis. In the meanwhile, P-wave receiver functions are used to estimate frequency dependent S-wave velocities at different crustal spots. Turkey, seismically the most active region in Europe, is selected to be the test ground for joint analysis scheme. The region has been continuously monitored by AFAD (Prime Ministry, Ankara) and Kandilli Observatory (Boğaziçi Üniversity, Istanbul). Furthermore, some particular regions have been densely monitored for a couple of years by temporary seismic networks, e.g., the IRIS network deployed in the frame of the North Anatolian Fault experiment. We integrated all available data to reach to the highest possible coverage for selected test sites. The results are jointly interpreted to refine existing crustal models in Turkey.

  1. Catalog of velocity distributions around a reconnection site in 2D PIC simulations

    NASA Astrophysics Data System (ADS)

    Lechner, Lukas; Bourdin, Philippe-A.; Nakamura, Takuma K. M.; Nakamura, Rumi; Narita, Yasuhito

    2016-04-01

    The velocity distribution of electrons and ions are known to be a marker for regions where magnetic reconnection develops. Past theoretical and computational works demonstrated that non-gyrotropic and anisotropic distributions depending on particle meandering motions and accelerations are seen around the reconnection point. The Magnetospheric Multiscale (MMS) mission is expected to resolve such kinetic scale reconnection regions. We present a catalog of velocity distribution functions that can give hints on the location within the current sheet relative to the reconnection point, which is sometimes unclear from pure spacecraft observations. We use 2D PIC simulations of anti-parallel magnetic reconnection to obtain velocity distributions at different locations, like in the center of the reconnection site, the ion and electron diffusion regions, or the reconnection inflow and outflow regions. With sufficiently large number of particles we resolve the distribution functions also in rather small regions. Such catalog may be compared with future MMS observations of the Earth's magnetotail.

  2. Predicting Seismic Velocities in Marine Sesiments Using Clay Content

    NASA Astrophysics Data System (ADS)

    Stroujkova, A.; Pratson, L. F.

    2001-12-01

    The ability to calculate seismic velocity accurately over the extent of a survey is a problem of interest to the seismic record. Velocity and other lithologic properties can be well resolved in boreholes, but due to structural and stratigraphic variations, these measurements are limited to very near the borehole. Clay content is shown to be the chief variable that affects velocity in sand/shale systems. It controls porosity and bulk density, and plays a major role in determining seismic wave velocity. Despite its importance, high-resolution measurements of clay content are frequently unavailable for many boreholes. As such, a proxy for clay content, such as gamma ray measurements, must be used in estimating clay volumes near a borehole. A forward model is presented that calculates lithologic and acoustic properties of sediment using several petrophysical formulations. The model's primary input is clay content (or gamma ray measurements), and modeled values include porosity, bulk density, overburden pressure, elastic moduli, and wave velocity. Seismic velocities are estimated based on self-consistent elastic moduli by Berryman (1980). The unknown geometric factors needed for Berryman's model are found using simulated annealing optimization. The model is then applied to five wells from the Amazon Fan with measured gamma, porosities, bulk densities and P-wave velocities. The model performs well for porosity, bulk density and velocity predictions for binary mixtures with high contrast in particle sizes (sand/clay). However, if a significant volume of silt or intermediate size particles are present (for example for mass flow deposits), the models fails to predicts these properties.

  3. Specific target determination by planting anomalous densities applied to seismic migration-velocity improvements

    NASA Astrophysics Data System (ADS)

    Santos, Henrique; Macedo, Daniel; Santos, Edgar; Schleicher, Joerg; Novais, Amélia

    2014-05-01

    Over the years, time and depth migration has been regularly applied to seismic imaging, where good starting velocity models are expected. However, automatic and/or efficient velocity model construction tools are still a challenge. Most present-day model-building techniques are iterative procedures that improve a starting model based on intermediate results. We present a new tool for initial seismic migration-velocity model building based on a new gravity inversion method. This inversion process consists of an iterative algorithm that provides a 3D density-contrast distribution on a grid of prisms, being the starting point an user-specified prismatic elements called "seed". By this planting anomalous densities technique, we are able to interpret multiple bodies with different density contrasts. Therefore, the present method does not require the solution of a large equation system, which greatly reduces the computational demand. In this work, we discuss the application of the estimated density-contrast distribution, i.e., the geometry of the body, as a first guess for the velocity model. Our suggestion is to extract the skeleton of the inverted body and fill each prism with a velocity consistent with the presumed geology. This is an alternative way to improve the knowledge of complex structures, for example, salt structures and sub-salt sediments, regions where the seismic imaging is limited by the effects of wavefield transmission, scattering and absorption. To evaluate the capability of this tool, we modeled the gravimetric effect of several 3D bodies with different geometries and different densities while jointly producing similar 2D seismic models that simulate slices of the three-dimensional model. By means of these models we performed the robust gravity inversion and 2D depth- and time-migration for the seismic data using the velocity models constructed as previously described. Our results show the capacity of the proposed velocity-model-building algorithm to

  4. Monitoring seismic wave velocities in situ

    USGS Publications Warehouse

    McEvilly, T.V.; Clymer, R.

    1979-01-01

    Beginning in the early 1960's, reports from the Soviet Union described travel-time anomalies of 5 to 20 percent preceding large earthquakes. In the early 970's, similar observations began to be reported outside the U.S.S.R. The most convincing were anomalously low values of the velocity ration, Vp/Vs, before four earthquakes of magnitudes 2.5 to 3.3 at Blue Mountain Lake, N.Y.; the anomalies were based on large amounts of high-quality data. In Japan, significant decreases were observed in the travel-time ratio, ts/tp, before two thrust-type earthquakes of magnitudes 6. and 5.3. Finally, there is the much discussed report of an anomaly before the magnitude 6.4 San Fernando, Calif., earthquake of 1971 and the implication that the change was caused principally by a decrease in the velocity of the primary (P) wave.

  5. Using group velocities of seismic phases for regional event discrimination

    NASA Astrophysics Data System (ADS)

    Pinsky, Vladimir; Shapira, Avi; Gitterman, Yefim

    1999-06-01

    We examined over the Israel Seismic Network (ISN) the seismogram envelopes vs. group velocity V= R/ T, where R is the epicenter distance and T the travel time, and found out a persistent difference between quarry blasts and earthquakes. The data include 53 seismic events occurring in northern Israel with magnitudes of ML=1.0-2.6 and at distances of 15-310 km. Within the 1-4 km/s range we measured the velocity Vms at which the envelope reaches its maximum for each ISN station. A simple linear discrimination function c= b+0.33 a, based on an empirical relationship between the Vms and R: Vms= a+ b ln( R) provides effective separation between the regional earthquakes and explosions. These results are attributed to different excitation of regional surface waves from these two types of seismic events.

  6. Brady 1D seismic velocity model ambient noise prelim

    SciTech Connect

    Mellors, Robert J.

    2013-10-25

    Preliminary 1D seismic velocity model derived from ambient noise correlation. 28 Green's functions filtered between 4-10 Hz for Vp, Vs, and Qs were calculated. 1D model estimated for each path. The final model is a median of the individual models. Resolution is best for the top 1 km. Poorly constrained with increasing depth.

  7. Geomorphological relationships through the use of 2-D seismic reflection data, Lidar, and aerial imagery

    NASA Astrophysics Data System (ADS)

    Alesce, Meghan Elizabeth

    Barrier Islands are crucial in protecting coastal environments. This study focuses on Dauphin Island, Alabama, located within the Northern Gulf of Mexico (NGOM) Barrier Island complex. It is one of many islands serving as natural protection for NGOM ecosystems and coastal cities. The NGOM barrier islands formed at 4 kya in response to a decrease in rate of sea level rise. The morphology of these islands changes with hurricanes, anthropogenic activity, and tidal and wave action. This study focuses on ancient incised valleys and and the impact on island morphology on hurricane breaches. Using high frequency 2-D seismic reflection data four horizons, including the present seafloor, were interpreted. Subaerial portions of Dauphin Island were imaged using Lidar data and aerial imagery over a ten-year time span, as well as historical maps. Historical shorelines of Dauphin Island were extracted from aerial imagery and historical maps, and were compared to the location of incised valleys seen within the 2-D seismic reflection data. Erosion and deposition volumes of Dauphin Island from 1998 to 2010 (the time span covering hurricanes Ivan and Katrina) in the vicinity of Katrina Cut and Pelican Island were quantified using Lidar data. For the time period prior to Hurricane Ivan an erosional volume of 46,382,552 m3 and depositional volume of 16,113.6 m3 were quantified from Lidar data. The effects of Hurricane Ivan produced a total erosion volume of 4,076,041.5 m3. The erosional and depositional volumes of Katrina Cut being were 7,562,068.5 m3 and 510,936.7 m3, respectively. More volume change was found within Pelican Pass. For the period between hurricanes Ivan and Katrina the erosion volume was 595,713.8 m3. This was mostly located within Katrina Cut. Total deposition for the same period, including in Pelican Pass, was 15,353,961 m3. Hurricane breaches were compared to ancient incised valleys seen within the 2-D seismic reflection results. Breaches from hurricanes from 1849

  8. A crustal seismic velocity model for the UK, Ireland and surrounding seas

    USGS Publications Warehouse

    Kelly, A.; England, R.W.; Maguire, Peter K.H.

    2007-01-01

    A regional model of the 3-D variation in seismic P-wave velocity structure in the crust of NW Europe has been compiled from wide-angle reflection/refraction profiles. Along each 2-D profile a velocity-depth function has been digitised at 5 km intervals. These 1-D velocity functions were mapped into three dimensions using ordinary kriging with weights determined to minimise the difference between digitised and interpolated values. An analysis of variograms of the digitised data suggested a radial isotropic weighting scheme was most appropriate. Horizontal dimensions of the model cells are optimised at 40 ?? 40 km and the vertical dimension at 1 km. The resulting model provides a higher resolution image of the 3-D variation in seismic velocity structure of the UK, Ireland and surrounding areas than existing models. The construction of the model through kriging allows the uncertainty in the velocity structure to be assessed. This uncertainty indicates the high density of data required to confidently interpolate the crustal velocity structure, and shows that for this region the velocity is poorly constrained for large areas away from the input data. ?? 2007 The Authors Journal compilation ?? 2007 RAS.

  9. MSNoise: a Python Package for Monitoring Seismic Velocity Changes using Ambient Seismic Noise

    NASA Astrophysics Data System (ADS)

    Lecocq, T.; Caudron, C.; Brenguier, F.

    2013-12-01

    Earthquakes occur every day all around the world and are recorded by thousands of seismic stations. In between earthquakes, stations are recording "noise". In the last 10 years, the understanding of this noise and its potential usage have been increasing rapidly. The method, called "seismic interferometry", uses the principle that seismic waves travel between two recorders and are multiple-scattered in the medium. By cross-correlating the two records, one gets an information on the medium below/between the stations. The cross-correlation function (CCF) is a proxy to the Green Function of the medium. Recent developments of the technique have shown those CCF can be used to image the earth at depth (3D seismic tomography) or study the medium changes with time. We present MSNoise, a complete software suite to compute relative seismic velocity changes under a seismic network, using ambient seismic noise. The whole is written in Python, from the monitoring of data archives, to the production of high quality figures. All steps have been optimized to only compute the necessary steps and to use 'job'-based processing. We present a validation of the software on a dataset acquired during the UnderVolc[1] project on the Piton de la Fournaise Volcano, La Réunion Island, France, for which precursory relative changes of seismic velocity are visible for three eruptions betwee 2009 and 2011.

  10. 2D Seismic Imaging of Elastic Parameters by Frequency Domain Full Waveform Inversion

    NASA Astrophysics Data System (ADS)

    Brossier, R.; Virieux, J.; Operto, S.

    2008-12-01

    Thanks to recent advances in parallel computing, full waveform inversion is today a tractable seismic imaging method to reconstruct physical parameters of the earth interior at different scales ranging from the near- surface to the deep crust. We present a massively parallel 2D frequency-domain full-waveform algorithm for imaging visco-elastic media from multi-component seismic data. The forward problem (i.e. the resolution of the frequency-domain 2D PSV elastodynamics equations) is based on low-order Discontinuous Galerkin (DG) method (P0 and/or P1 interpolations). Thanks to triangular unstructured meshes, the DG method allows accurate modeling of both body waves and surface waves in case of complex topography for a discretization of 10 to 15 cells per shear wavelength. The frequency-domain DG system is solved efficiently for multiple sources with the parallel direct solver MUMPS. The local inversion procedure (i.e. minimization of residuals between observed and computed data) is based on the adjoint-state method which allows to efficiently compute the gradient of the objective function. Applying the inversion hierarchically from the low frequencies to the higher ones defines a multiresolution imaging strategy which helps convergence towards the global minimum. In place of expensive Newton algorithm, the combined use of the diagonal terms of the approximate Hessian matrix and optimization algorithms based on quasi-Newton methods (Conjugate Gradient, LBFGS, ...) allows to improve the convergence of the iterative inversion. The distribution of forward problem solutions over processors driven by a mesh partitioning performed by METIS allows to apply most of the inversion in parallel. We shall present the main features of the parallel modeling/inversion algorithm, assess its scalability and illustrate its performances with realistic synthetic case studies.

  11. Local variations of seismic velocity in the Imperial Valley, California

    SciTech Connect

    Jackson, D.D.; Lee, W.B.

    1981-12-01

    The authors inverted local earthquake arrival times to estimate spatial variations of seismic velocity. Their model consisted of near-surface station corrections and local perturbations to a standard crustal velocity model. The authors found a zone of relatively high-velocity trending southeast from the Salton Sea. This zone corresponds to the region of thickest sediments. The authors compared results with those of teleseismic studies by Savino et al (1977). The agreement was excellent, suggesting that the teleseismic delays are caused primarily by crustal velocity variations. Residual delays between the teleseismic observations and predicted crustal delays imply crustal thinning of 3 or 4 km along the axis of the valley. Known geothermal resource areas at Salton Sea (or Obsidian Buttes), Brawley, and East Mesa, lie on the axis of a zone of thin crust, and they may be intimately related to the Brawley fault. Neither local earthquake nor teleseismic arrival times can discriminate between these hypotheses, but the issue might be resolved by combining both types of data. Known geothermal resource areas at Heber, Dunes, and Glamis, lie away from the projected trace of the Brawley fault. These areas are nearly aseismic, and overlie crust with apparent seismic velocities only mildly higher than the regional average. These apparent velocity anomalies could be related to crustal thinning, but because of the very mild Bouguer gravity anomalies in these areas, it seems more likely that the velocity anomalies occur entirely within the crust. 7 references, 6 figures, 3 tables.

  12. Velocity Structure in the West Bohemia Seismic Zone: Velocity Models Retrieved from different Earthquake Swarms

    NASA Astrophysics Data System (ADS)

    Alexandrakis, C.; Löberich, E.; Kieslich, A.; Calo, M.; Vavrycuk, V.; Buske, S.

    2015-12-01

    Earthquake swarms, fluid migration and gas springs are indications of the ongoing geodynamic processes within the West Bohemia seismic zone located at the Czech-German border. The possible relationship between the fluids, gas and seismicity is of particular interest and has motivated numerous past, ongoing and future studies, including a multidisciplinary monitoring proposal through the International Continental Scientific Drilling Program (ICDP). The most seismically active area within the West Bohemia seismic zone is located at the Czech town Nový Kostel. The Nový Kostel zone experiences frequent swarms of several hundreds to thousands of earthquakes over a period of weeks to several months. The seismicity is always located in the same area and depth range (~5-15 km), however the activated fault segments and planes differ. For example, the 2008 swarm activated faults along the southern end of the seismic zone, the 2011 swarm activated the northern segment, and the recent 2014 swarm activated the middle of the seismic zone. This indicates changes to the local stress field, and may relate to fluid migration and/or the complicated tectonic situation. The West Bohemia Seismic Network (WEBNET) is ideally located for studying the Nový Kostel swarm area and provides good azimuthal coverage. Here, we use the high quality P- and S-wave arrival picks recorded by WEBNET to calculate swarm-dependent velocity models for the 2008 and 2011 swarms, and an averaged (swarm independent) model using earthquakes recorded between 1991 and 2011. To this end, we use double-difference tomography to calculate P- and S-wave velocity models. The models are compared and examined in terms of swarm-dependent velocities and structures. Since the P-to-S velocity ratio is particularly sensitive to the presence of pore fluids, we derive ratio models directly from the inverted P- and S-wave models in order to investigate the potential influence of fluids on the seismicity. Finally, clustering

  13. Stress-Release Seismic Source for Seismic Velocity Measurement in Mines

    NASA Astrophysics Data System (ADS)

    Swanson, P. L.; Clark, C.; Richardson, J.; Martin, L.; Zahl, E.; Etter, A.

    2014-12-01

    Accurate seismic event locations are needed to delineate roles of mine geometry, stress and geologic structures in developing rockburst conditions. Accurate absolute locations are challenging in mine environments with rapid changes in seismic velocity due to sharp contrasts between individual layers and large time-dependent velocity gradients attending excavations. Periodic use of controlled seismic sources can help constrain the velocity in this continually evolving propagation medium comprising the miners' workplace. With a view to constructing realistic velocity models in environments in which use of explosives is problematic, a seismic source was developed subject to the following design constraints: (i) suitable for use in highly disturbed zones surrounding mine openings, (ii) able to produce usable signals over km-scale distances in the frequency range of typical coal mine seismic events (~10-100 Hz), (iii) repeatable, (iv) portable, (v) non-disruptive to mining operations, and (vi) safe for use in potentially explosive gaseous environments. Designs of the compressed load column seismic source (CLCSS), which generates a stress, or load, drop normal to the surface of mine openings, and the fiber-optic based source-initiation timer are presented. Tests were conducted in a coal mine at a depth of 500 m (1700 ft) and signals were recorded on the surface with a 72-ch (14 Hz) exploration seismograph for load drops of 150-470 kN (16-48 tons). Signal-to-noise ratios of unfiltered signals ranged from ~200 immediately above the source (500 m (1700 ft)) to ~8 at the farthest extent of the array (slant distance of ~800 m (2600 ft)), suggesting the potential for use over longer range. Results are compared with signals produced by weight drop and sledge hammer sources, indicating the superior waveform quality for first-arrival measurements with the CLCSS seismic source.

  14. Coda wave interferometry for estimating nonlinear behavior in seismic velocity.

    PubMed

    Snieder, Roel; Grêt, Alexandre; Douma, Huub; Scales, John

    2002-03-22

    In coda wave interferometry, one records multiply scattered waves at a limited number of receivers to infer changes in the medium over time. With this technique, we have determined the nonlinear dependence of the seismic velocity in granite on temperature and the associated acoustic emissions. This technique can be used in warning mode, to detect the presence of temporal changes in the medium, or in diagnostic mode, where the temporal change in the medium is quantified.

  15. Obtaining anisotropic velocity data for proper depth seismic imaging

    SciTech Connect

    Egerev, Sergey; Yushin, Victor; Ovchinnikov, Oleg; Dubinsky, Vladimir; Patterson, Doug

    2012-05-24

    The paper deals with the problem of obtaining anisotropic velocity data due to continuous acoustic impedance-based measurements while scanning in the axial direction along the walls of the borehole. Diagrams of full conductivity of the piezoceramic transducer were used to derive anisotropy parameters of the rock sample. The measurements are aimed to support accurate depth imaging of seismic data. Understanding these common anisotropy effects is important when interpreting data where it is present.

  16. Peak Ground Velocities for Seismic Events at Yucca Mountain, Nevada

    SciTech Connect

    K. Coppersmith; R. Quittmeyer

    2005-02-16

    This report describes a scientific analysis to bound credible horizontal peak ground velocities (PGV) for the repository waste emplacement level at Yucca Mountain. Results are presented as a probability distribution for horizontal PGV to represent uncertainties in the analysis. The analysis also combines the bound to horizontal PGV with results of ground motion site-response modeling (BSC 2004 [DIRS 170027]) to develop a composite hazard curve for horizontal PGV at the waste emplacement level. This result provides input to an abstraction of seismic consequences (BSC 2004 [DIRS 169183]). The seismic consequence abstraction, in turn, defines the input data and computational algorithms for the seismic scenario class of the total system performance assessment (TSPA). Planning for the analysis is documented in Technical Work Plan TWP-MGR-GS-000001 (BSC 2004 [DIRS 171850]). The bound on horizontal PGV at the repository waste emplacement level developed in this analysis complements ground motions developed on the basis of PSHA results. In the PSHA, ground motion experts characterized the epistemic uncertainty and aleatory variability in their ground motion interpretations. To characterize the aleatory variability they used unbounded lognormal distributions. As a consequence of these characterizations, as seismic hazard calculations are extended to lower and lower annual frequencies of being exceeded, the ground motion level increases without bound, eventually reaching levels that are not credible (Corradini 2003 [DIRS 171191]). To provide credible seismic inputs for TSPA, in accordance with 10 Code of Federal Regulations (CFR) 63.102(j) [DIRS 156605], this complementary analysis is carried out to determine reasonable bounding values of horizontal PGV at the waste emplacement level for annual frequencies of exceedance as low as 10{sup -8}. For each realization of the TSPA seismic scenario, the results of this analysis provide a constraint on the values sampled from the

  17. Methods to determine the Orientation and Velocity of 2-D structures based on multi- spacecraft data

    NASA Astrophysics Data System (ADS)

    Zhang, X.; Pu, Z.; Zhou, X.; Wang, J.; Zong, Q.; Shi, Q.

    2006-12-01

    Many techniques have been developed to study the axial orientation and/or velocity of 2-D structures (flux ropes), by analyzing in situ data from single or multiple spacecraft. To obtain the axial orientation, there are magnetic based MVA (BMVA), current based MVA (CMVA), Minimum Direction Derivative (MDD) and Multiple Triangulation Analysis (MTA) as a modified version of timing method. To further calculate the velocity, we have DeHoffmann-Teller analysis, Spatio-Temporal Difference (STD) and several version of timing method including MTA. After a brief introduction on the principle of these methods, we theoretically estimate their error ranges based on modeled structures to examine the validity of these techniques. Because of their different principles, their error bars are shown to be distinct, depending on the parameters (such as radius, model selected and even the satellite crossing path) of the certain structure. The error estimation thus provides us some clue on the selection of methods under different conditions. Some real events are further analyzed using these techniques as the example.

  18. pySeismicFMM: Python based travel time calculation in regular 2D and 3D grids in Cartesian and geographic coordinates using Fast Marching Method

    NASA Astrophysics Data System (ADS)

    Polkowski, Marcin

    2016-04-01

    Seismic wave travel time calculation is the most common numerical operation in seismology. The most efficient is travel time calculation in 1D velocity model - for given source, receiver depths and angular distance time is calculated within fraction of a second. Unfortunately, in most cases 1D is not enough to encounter differentiating local and regional structures. Whenever possible travel time through 3D velocity model has to be calculated. It can be achieved using ray calculation or time propagation in space. While single ray path calculation is quick it is complicated to find the ray path that connects source with the receiver. Time propagation in space using Fast Marching Method seems more efficient in most cases, especially when there are multiple receivers. In this presentation a Python module pySeismicFMM is presented - simple and very efficient tool for calculating travel time from sources to receivers. Calculation requires regular 2D or 3D velocity grid either in Cartesian or geographic coordinates. On desktop class computer calculation speed is 200k grid cells per second. Calculation has to be performed once for every source location and provides travel time to all receivers. pySeismicFMM is free and open source. Development of this tool is a part of authors PhD thesis. National Science Centre Poland provided financial support for this work via NCN grant DEC-2011/02/A/ST10/00284.

  19. Surface wave phase velocities from 2-D surface wave tomography studies in the Anatolian plate

    NASA Astrophysics Data System (ADS)

    Arif Kutlu, Yusuf; Erduran, Murat; Çakır, Özcan; Vinnik, Lev; Kosarev, Grigoriy; Oreshin, Sergey

    2014-05-01

    We study the Rayleigh and Love surface wave fundamental mode propagation beneath the Anatolian plate. To examine the inter-station phase velocities a two-station method is used along with the Multiple Filter Technique (MFT) in the Computer Programs in Seismology (Herrmann and Ammon, 2004). The near-station waveform is deconvolved from the far-station waveform removing the propagation effects between the source and the station. This method requires that the near and far stations are aligned with the epicentre on a great circle path. The azimuthal difference of the earthquake to the two-stations and the azimuthal difference between the earthquake and the station are restricted to be smaller than 5o. We selected 3378 teleseismic events (Mw >= 5.7) recorded by 394 broadband local stations with high signal-to-noise ratio within the years 1999-2013. Corrected for the instrument response suitable seismogram pairs are analyzed with the two-station method yielding a collection of phase velocity curves in various period ranges (mainly in the range 25-185 sec). Diffraction from lateral heterogeneities, multipathing, interference of Rayleigh and Love waves can alter the dispersion measurements. In order to obtain quality measurements, we select only smooth portions of the phase velocity curves, remove outliers and average over many measurements. We discard these average phase velocity curves suspected of suffering from phase wrapping errors by comparing them with a reference Earth model (IASP91 by Kennett and Engdahl, 1991). The outlined analysis procedure yields 3035 Rayleigh and 1637 Love individual phase velocity curves. To obtain Rayleigh and Love wave travel times for a given region we performed 2-D tomographic inversion for which the Fast Marching Surface Tomography (FMST) code developed by N. Rawlinson at the Australian National University was utilized. This software package is based on the multistage fast marching method by Rawlinson and Sambridge (2004a, 2004b). The

  20. Seismic Velocity Anomalies beneath Tatun Volcano Group, Northern Taiwan

    NASA Astrophysics Data System (ADS)

    Lin, Tzu-yu; Lin, Cheng-Horng; Yang, Tsanyao Frank; Chang, Li-Chin

    2015-04-01

    Volcanic eruption has been a natural disaster for human society. Taiwan is located in the Pacific Ring of Fire. Although there is no obvious phenomenon of volcanic activity in Taiwan, some volcanoes need to be monitored, especially the Tatun Volcano Group (TVG), which exhibits very active hydrothermal activity, is located on the tip of southwestern Ryukyu arc. TVG is about 15 km north to Taipei, capital of Taiwan, and is nearby two nuclear power plants along the northern coast of Taiwan. If TVG erupts, there must be a serious impact and damage to Taiwan. Since TVG is located within the Yangmingshan National Park, any artificial seismic source is not allowed to estimate possible eruption site and the degree of volcanic disaster. Instead, we use natural seismic waves generated by earthquakes to image the possible velocity anomaly of magma chamber and/or hydrothermal system beneath TVG. We systematically compare the differences of arrival times generated by some local earthquakes and recorded at 42 seismic stations in 2014 for finding any low-velocity zone within the crust. The results show that the arrival times always appeared significant delay at some particular seismic stations, such as Chi-Hsin-Shan (CHS), Siao-You-Keng (SYK) and some other stations at TVG, no matter where the earthquakes occurred. It implies that possible low-velocity zones, which could be the location of magma chamber and/or active hydrothermal system, exist beneath the CHS and SYK areas. This feature is generally consistent with the clustered micro-earthquakes in the shallow crust beneath the CHS area in the last decade.

  1. Depth maps from seismic velocities help Wilcox exploration

    SciTech Connect

    Guzman, C.E.; Ramaswamy, M.; Wright, B.K.; Lawler, K.P.

    1996-10-28

    Depth maps generated from a combination of time maps and maximum coherency seismic (MCS) velocities have proven useful in the Tertiary Wilcox play in Louisiana and Texas. Applied aggressively in conjunction with new processing techniques, depth maps generated in this fashion can identify prospects not visible on time maps. Since depth conversion depends on velocities, the method relies on precision velocity measurements derived from an event-oriented algorithm. The velocities are carefully analyzed for misties and then contoured within geologic boundaries. Well information, if any, is also incorporated into the velocity map, and then the time map is converted to a depth map. Two case studies presented here calibrate the method. Other examples show how the technique helped locate a drill-site and predict geologic horizon depth and how it identified a structure not visible on time maps. The paper discusses Wilcox characteristics, the depth-conversion method, constant-velocity calibration, varying-velocity calibration, two applications, and coarse lithology prediction.

  2. A novel simple procedure to consider seismic soil structure interaction effects in 2D models

    NASA Astrophysics Data System (ADS)

    Jaramillo, Juan Diego; Gómez, Juan David; Restrepo, Doriam; Rivera, Santiago

    2014-09-01

    A method is proposed to estimate the seismic soil-structure-interaction (SSI) effects for use in engineering practice. It is applicable to 2D structures subjected to vertically incident shear waves supported by homogenous half-spaces. The method is attractive since it keeps the simplicity of the spectral approach, overcomes some of the difficulties and inaccuracies of existing classical techniques and yet it considers a physically consistent excitation. This level of simplicity is achieved through a response spectra modification factor that can be applied to the free-field 5%-damped response spectra to yield design spectral ordinates that take into account the scattered motions introduced by the interaction effects. The modification factor is representative of the Transfer Function (TF) between the structural relative displacements and the free-field motion, which is described in terms of its maximum amplitude and associated frequency. Expressions to compute the modification factor by practicing engineers are proposed based upon a parametric study using 576 cases representative of actual structures. The method is tested in 10 cases spanning a wide range of common fundamental vibration periods.

  3. Relationship Between Seismic Velocity Anomalies and Rheological Anomalies

    NASA Astrophysics Data System (ADS)

    Karato, S.

    2001-05-01

    One of the ultimate goals of high-resolution Earth models is to reveal anomalies (lateral variations) in thermal and rheological structures. Although such a relationship has been well known at a qualitative level, no quantitative relationship has been established to allow estimate of anomalies in viscosity from seismological data. In this presentation, I formulate such a relationship for Earth's upper mantle, based on the latest mineral physics observations. The key in doing this is the quantitative analysis of the effects of water on seismic wave velocities. Earlier analysis indicated the importance of water on seismic wave velocities through enhanced attenuation (Karato, 1995). I have quantified this notion by combining laboratory observations on attenuation at limited conditions (Jackson et al., 1992) with the recent quantitative data on the effects of water on rheology at wider conditions (Karato and Jung, 2001). I show that both seismic wave velocities and rheology (viscosity) of Earth materials are controlled by "rheologically effective temperature (Teff)" that depends on temperature as well as water content. Such an analysis allows us to define the relationships between velocity anomalies and anomalies in Teff and hence anomalies in viscosity. The present formulation has been applied to the upper mantle beneath northeastern Japan where the high-resolution tomographic images are available. The results show that anomalies in effective temperatures of ~+400 K occur in these regions indicating that viscosity there could be lower than the average values by a factor of ~10 to ~1000. References Jackson, I. et al. (1992), Geophys. J. Int., 108: 517-534. Karato, S. (1995), Proc. Japan Academy, B71: 61-66. Karato, S. and Jung, H. (2001), submitted to Philos. Mag.

  4. Upper Mississippi embayment shallow seismic velocities measured in situ

    USGS Publications Warehouse

    Liu, Huaibao P.; Hu, Y.; Dorman, J.; Chang, T.-S.; Chiu, J.-M.

    1997-01-01

    Vertical seismic compressional- and shear-wave (P- and S-wave) profiles were collected from three shallow boreholes in sediment of the upper Mississippi embayment. The site of the 60-m hole at Shelby Forest, Tennessee, is on bluffs forming the eastern edge of the Mississippi alluvial plain. The bluffs are composed of Pleistocene loess, Pliocene-Pleistocene alluvial clay and sand deposits, and Tertiary deltaic-marine sediment. The 36-m hole at Marked Tree, Arkansas, and the 27-m hole at Risco, Missouri, are in Holocene Mississippi river floodplain sand, silt, and gravel deposits. At each site, impulsive P- and S-waves were generated by man-made sources at the surface while a three-component geophone was locked downhole at 0.91-m intervals. Consistent with their very similar geology, the two floodplain locations have nearly identical S-wave velocity (VS) profiles. The lowest VS values are about 130 m s-1, and the highest values are about 300 m s-1 at these sites. The shear-wave velocity profile at Shelby Forest is very similar within the Pleistocene loess (12m thick); in deeper, older material, VS exceeds 400 m s-1. At Marked Tree, and at Risco, the compressional-wave velocity (VP) values above the water table are as low as about 230 m s-1, and rise to about 1.9 km s-1 below the water table. At Shelby Forest, VP values in the unsaturated loess are as low as 302 m s-1. VP values below the water table are about 1.8 km s-1. For the two floodplain sites, the VP/VS ratio increases rapidly across the water table depth. For the Shelby Forest site, the largest increase in the VP/VS ratio occurs at ???20-m depth, the boundary between the Pliocene-Pleistocene clay and sand deposits and the Eocene shallow-marine clay and silt deposits. Until recently, seismic velocity data for the embayment basin came from earthquake studies, crustal-scale seismic refraction and reflection profiles, sonic logs, and from analysis of dispersed earthquake surface waves. Since 1991, seismic data

  5. Effect of Velocity of Detonation of Explosives on Seismic Radiation

    NASA Astrophysics Data System (ADS)

    Stroujkova, A. F.; Leidig, M.; Bonner, J. L.

    2014-12-01

    We studied seismic body wave generation from four fully contained explosions of approximately the same yields (68 kg of TNT equivalent) conducted in anisotropic granite in Barre, VT. The explosions were detonated using three types of explosives with different velocities of detonation (VOD): Black Powder (BP), Ammonium Nitrate Fuel Oil/Emulsion (ANFO), and Composition B (COMP B). The main objective of the experiment was to study differences in seismic wave generation among different types of explosives, and to determine the mechanism responsible for these differences. The explosives with slow burn rate (BP) produced lower P-wave amplitude and lower corner frequency, which resulted in lower seismic efficiency (0.35%) in comparison with high burn rate explosives (2.2% for ANFO and 3% for COMP B). The seismic efficiency estimates for ANFO and COMP B agree with previous studies for nuclear explosions in granite. The body wave radiation pattern is consistent with an isotropic explosion with an added azimuthal component caused by vertical tensile fractures oriented along pre-existing micro-fracturing in the granite, although the complexities in the P- and S-wave radiation patterns suggest that more than one fracture orientation could be responsible for their generation. High S/P amplitude ratios and low P-wave amplitudes suggest that a significant fraction of the BP source mechanism can be explained by opening of the tensile fractures as a result of the slow energy release.

  6. Seismic velocities for hydrate-bearing sediments using weighted equation

    USGS Publications Warehouse

    Lee, M.W.; Hutchinson, D.R.; Collett, T.S.; Dillon, William P.

    1996-01-01

    A weighted equation based on the three-phase time-average and Wood equations is applied to derive a relationship between the compressional wave (P wave) velocity and the amount of hydrates filling the pore space. The proposed theory predicts accurate P wave velocities of marine sediments in the porosity range of 40-80% and provides a practical means of estimating the amount of in situ hydrate using seismic velocity. The shear (S) wave velocity is derived under the assumption that the P to S wave velocity ratio of the hydrated sediments is proportional to the weighted average of the P to S wave velocity ratios of the constituent components of the sediment. In the case that all constituent components are known, a weighted equation using multiphase time-average and Wood equations is possible. However, this study showed that a three-phase equation with modified matrix velocity, compensated for the clay content, is sufficient to accurately predict the compressional wave velocities for the marine sediments. This theory was applied to the laboratory measurements of the P and S wave velocities in permafrost samples to infer the amount of ice in the unconsolidated sediment. The results are comparable to the results obtained by repeatedly applying the two-phase wave scattering theory. The theory predicts that the Poisson's ratio of the hydrated sediments decreases as the hydrate concentration increases and the porosity decreases. In consequence, the amplitude versus offset (AVO) data for the bottom-simulating reflections may reveal positive, negative, or no AVO anomalies depending on the concentration of hydrates in the sediments.

  7. Seismic Q and velocity at depth. [of lunar outgassed rock

    NASA Technical Reports Server (NTRS)

    Tittmann, B. R.; Nadler, H.; Clark, V.; Coombe, L.

    1979-01-01

    Measurements of the p-wave and s-wave internal friction quality factors (Q) and velocities of samples of a moderately outgassed terrestrial analog of lunar basalt exposed simultaneously to temperatures and hydrostatic confining pressures in accordance with the best available estimates of the lunar selenotherm are presented. Q values and velocities are found to increase with simulated depth, and an extrapolation of the Q value to a thoroughly outgassed states provides a Q value in reasonable agreement with those derived from lunar seismic data, suggesting a very dry lunar crust. Results also imply that similar seismic determinations for Mars would be able to distinguish between a dry crust and a crust containing water trapped beneath a layer of ice. Results of thermal cracking tests which demonstrate that high degrees of cracking associated with thermal cycling, as during the lunar day, are not inconsistent with high Q in a dry environment are presented, and it is shown that volatiles with diple moments comparable to H2O can greatly affect Q. Possible attenuation mechanisms are then considered, and velocity measurements on a synthetic anorthosite are presented.

  8. Wave-equation migration velocity inversion using passive seismic sources

    NASA Astrophysics Data System (ADS)

    Witten, B.; Shragge, J. C.

    2015-12-01

    Seismic monitoring at injection sites (e.g., CO2 sequestration, waste water disposal, hydraulic fracturing) has become an increasingly important tool for hazard identification and avoidance. The information obtained from this data is often limited to seismic event properties (e.g., location, approximate time, moment tensor), the accuracy of which greatly depends on the estimated elastic velocity models. However, creating accurate velocity models from passive array data remains a challenging problem. Common techniques rely on picking arrivals or matching waveforms requiring high signal-to-noise data that is often not available for the magnitude earthquakes observed over injection sites. We present a new method for obtaining elastic velocity information from earthquakes though full-wavefield wave-equation imaging and adjoint-state tomography. The technique exploits the fact that the P- and S-wave arrivals originate at the same time and location in the subsurface. We generate image volumes by back-propagating P- and S-wave data through initial Earth models and then applying a correlation-based extended-imaging condition. Energy focusing away from zero lag in the extended image volume is used as a (penalized) residual in an adjoint-state tomography scheme to update the P- and S-wave velocity models. We use an acousto-elastic approximation to greatly reduce the computational cost. Because the method requires neither an initial source location or origin time estimate nor picking of arrivals, it is suitable for low signal-to-noise datasets, such as microseismic data. Synthetic results show that with a realistic distribution of microseismic sources, P- and S-velocity perturbations can be recovered. Although demonstrated at an oil and gas reservoir scale, the technique can be applied to problems of all scales from geologic core samples to global seismology.

  9. Absolute plate velocities from seismic anisotropy: Importance of correlated errors

    NASA Astrophysics Data System (ADS)

    Zheng, Lin; Gordon, Richard G.; Kreemer, Corné

    2014-09-01

    The errors in plate motion azimuths inferred from shear wave splitting beneath any one tectonic plate are shown to be correlated with the errors of other azimuths from the same plate. To account for these correlations, we adopt a two-tier analysis: First, find the pole of rotation and confidence limits for each plate individually. Second, solve for the best fit to these poles while constraining relative plate angular velocities to consistency with the MORVEL relative plate angular velocities. Our preferred set of angular velocities, SKS-MORVEL, is determined from the poles from eight plates weighted proportionally to the root-mean-square velocity of each plate. SKS-MORVEL indicates that eight plates (Amur, Antarctica, Caribbean, Eurasia, Lwandle, Somalia, Sundaland, and Yangtze) have angular velocities that differ insignificantly from zero. The net rotation of the lithosphere is 0.25 ± 0.11° Ma-1 (95% confidence limits) right handed about 57.1°S, 68.6°E. The within-plate dispersion of seismic anisotropy for oceanic lithosphere (σ = 19.2°) differs insignificantly from that for continental lithosphere (σ = 21.6°). The between-plate dispersion, however, is significantly smaller for oceanic lithosphere (σ = 7.4°) than for continental lithosphere (σ = 14.7°). Two of the slowest-moving plates, Antarctica (vRMS = 4 mm a-1, σ = 29°) and Eurasia (vRMS = 3 mm a-1, σ = 33°), have two of the largest within-plate dispersions, which may indicate that a plate must move faster than ≈ 5 mm a-1 to result in seismic anisotropy useful for estimating plate motion. The tendency of observed azimuths on the Arabia plate to be counterclockwise of plate motion may provide information about the direction and amplitude of superposed asthenospheric flow or about anisotropy in the lithospheric mantle.

  10. Extracting physical parameters from marine seismic data: New methods in seismic oceanography and velocity inversion

    NASA Astrophysics Data System (ADS)

    Fortin, Will F. J.

    The utility and meaning of a geophysical dataset is dependent on good interpretation informed by high-quality data, processing, and attribute examination via technical methodologies. Active source marine seismic reflection data contains a great deal of information in the location, phase, and amplitude of both pre- and post-stack seismic reflections. Using pre- and post-stack data, this work has extracted useful information from marine reflection seismic data in novel ways in both the oceanic water column and the sub-seafloor geology. In chapter 1 we develop a new method for estimating oceanic turbulence from a seismic image. This method is tested on synthetic seismic data to show the method's ability to accurately recover both distribution and levels of turbulent diffusivity. Then we apply the method to real data offshore Costa Rica where we observe lee waves. Our results find elevated diffusivities near the seafloor as well as above the lee waves five times greater than surrounding waters and 50 times greater than open ocean diffusivities. Chapter 2 investigates subsurface geology in the Cascadia Subduction Zone and outlines a workflow for using pre-stack waveform inversion to produce highly detailed velocity models and seismic images. Using a newly developed inversion code, we achieve better imaging results as compared to the product of a standard, user-intensive method for building a velocity model. Our results image the subduction interface ~30 km farther landward than previous work and better images faults and sedimentary structures above the oceanic plate as well as in the accretionary prism. The resultant velocity model is highly detailed, inverted every 6.25 m with ~20 m vertical resolution, and will be used to examine the role of fluids in the subduction system. These results help us to better understand the natural hazards risks associated with the Cascadia Subduction Zone. Chapter 3 returns to seismic oceanography and examines the dynamics of nonlinear

  11. Absolute Plate Velocities from Seismic Anisotropy: Importance of Correlated Errors

    NASA Astrophysics Data System (ADS)

    Gordon, R. G.; Zheng, L.; Kreemer, C.

    2014-12-01

    The orientation of seismic anisotropy inferred beneath the interiors of plates may provide a means to estimate the motions of the plate relative to the deeper mantle. Here we analyze a global set of shear-wave splitting data to estimate plate motions and to better understand the dispersion of the data, correlations in the errors, and their relation to plate speed. The errors in plate motion azimuths inferred from shear-wave splitting beneath any one tectonic plate are shown to be correlated with the errors of other azimuths from the same plate. To account for these correlations, we adopt a two-tier analysis: First, find the pole of rotation and confidence limits for each plate individually. Second, solve for the best fit to these poles while constraining relative plate angular velocities to consistency with the MORVEL relative plate angular velocities. Our preferred set of angular velocities, SKS-MORVEL, is determined from the poles from eight plates weighted proportionally to the root-mean-square velocity of each plate. SKS-MORVEL indicates that eight plates (Amur, Antarctica, Caribbean, Eurasia, Lwandle, Somalia, Sundaland, and Yangtze) have angular velocities that differ insignificantly from zero. The net rotation of the lithosphere is 0.25±0.11º Ma-1 (95% confidence limits) right-handed about 57.1ºS, 68.6ºE. The within-plate dispersion of seismic anisotropy for oceanic lithosphere (σ=19.2°) differs insignificantly from that for continental lithosphere (σ=21.6°). The between-plate dispersion, however, is significantly smaller for oceanic lithosphere (σ=7.4°) than for continental lithosphere (σ=14.7°). Two of the slowest-moving plates, Antarctica (vRMS=4 mm a-1, σ=29°) and Eurasia (vRMS=3 mm a-1, σ=33°), have two of the largest within-plate dispersions, which may indicate that a plate must move faster than ≈5 mm a-1 to result in seismic anisotropy useful for estimating plate motion.

  12. Seismic wave attenuation and velocity dispersion in UAE carbonates

    NASA Astrophysics Data System (ADS)

    Ogunsami, Abdulwaheed Remi

    Interpreting the seismic property of fluids in hydrocarbon reservoirs at low frequency scale has been a cherished goal of petroleum geophysics research for decades. Lately, there has been tremendous interest in understanding attenuation as a result of fluid flow in porous media. Although interesting, the emerging experimental and theoretical information still remain ambiguous and are practically not utilized for reasons not too obscure. Attenuation is frequency dependent and hard to measure in the laboratory at low frequency. This thesis describes and reports the results of an experimental study of low frequency attenuation and velocity dispersion on a selected carbonate reservoir samples in the United Arab Emirates (UAE). For the low frequency measurements, stress-strain method was used to measure the moduli from which the velocity is derived. Attenuation was measured as the phase difference between the applied stress and the strain. For the ultrasonic component, the pulse propagation method was employed. To study the fluid effect especially at reservoir in situ conditions, the measurements were made dry and saturated with liquid butane and brine at differential pressures of up to 5000 psi with pore pressure held constant at 500 psi. Similarly to what has been documented in the literatures for sandstone, attenuation of the bulk compressibility mode dominates the losses in these dry and somewhat partially saturated carbonate samples with butane and brine. Overall, the observed attenuation cannot be simply said to be frequency dependent within this low seismic band. While attenuation seems to be practically constant in the low frequency band for sample 3H, such conclusion cannot be made for sample 7H. For the velocities, significant dispersion is observed and Gassmann generally fails to match the measured velocities. Only the squirt model fairly fits the velocities, but not at all pressures. Although the observed dispersion is larger than Biot's prediction, the fact

  13. Seismic Constraints on Geometry, Seismic Velocity and Anisotropy of the "African Anomaly"

    NASA Astrophysics Data System (ADS)

    Wang, Y.; Wen, L.

    2006-05-01

    Seismic evidence shows that the "African Anomaly", a prominent low-velocity structure in the lower mantle beneath Africa, has a broad base near the core-mantle boundary (CMB) and extends at least 1000 km upward into the mid-lower mantle. Waveform modeling results indicate that its base is a very-low velocity province (VLVP) in the lowermost 200-300 km of the Earth's mantle with rapidly varying geometries and a strong Vs reduction gradient of -2% - -12% from top to bottom. These features unambiguously indicate the VLVP is compositionally distinct and can be best explained by partial melting driven by a compositional change produced in the early Earth's history [Wen, 2001; Wen et. al, 2001; Wang and Wen, 2004]. Seismic structure for the mid-lower mantle portion of the "African Anomaly" and the anisotropic behavior related to the VLVP remain unclear. In this presentation, we will present seismic data to constrain geometry and both P- and S- velocity perturbations for the "African Anomaly" along the great arc from the East Pacific Rise to the Japan Sea, and discuss seismic anisotropic behavior inside the VLVP and in the surrounding areas. We collected direct S, ScS, SKS, and SKKS waveforms data sets for 9 earthquakes recorded at the temporary broadband Kaapvaal, Tanzania, and Ethiopia/Kenya seismic arrays in Africa. These seismic data provide reasonably good coverage for the "African Anomaly" along a great circle path in opposite directions. We corrected for the effects of the earthquake mislocation and the seismic heterogeneities outside the anomaly. Seismic data suggest that the "African Anomaly" exhibits a "cusp-like" shape along the great arc and continuously extends from the CMB to about 1300 km above the CMB with both sides tilting toward its center beneath southern Africa. The magnitude of these travel time residuals can be best explained by a shear velocity structure with average Vs reductions of -5% for the basal layer and -2% - -3% for the portion in the

  14. The USGS 3D Seismic Velocity Model for Northern California

    NASA Astrophysics Data System (ADS)

    Brocher, T. M.; Aagaard, B.; Simpson, R. W.; Jachens, R. C.

    2006-12-01

    We present a new regional 3D seismic velocity model for Northern California for use in strong motion simulations of the 1906 San Francisco and other earthquakes. The model includes compressional-wave velocity (Vp), shear-wave velocity (Vs), density, and intrinsic attenuation (Qp, Qs). These properties were assigned for each rock type in a 3D geologic model derived from surface outcrops, boreholes, gravity and magnetic data, and seismic reflection, refraction, and tomography studies. A detailed description of the model, USGS Bay Area Velocity Model 05.1.0, is available online [http://www.sf06simulation.org/geology/velocitymodel]. For ground motion simulations Vs and Qs are more important parameters than Vp and Qp because the strongest ground motions are generated chiefly by shear and surface wave arrivals. Because Vp data are more common than Vs data, however, we first developed Vp versus depth relations for each rock type and then converted these to Vs versus depth relations. For the most important rock types in Northern California we compiled measurements of Vp versus depth using borehole logs, laboratory measurements on hand samples, seismic refraction profiles, and tomography models. These rock types include Salinian and Sierran granitic rocks, metagraywackes and greenstones of the Franciscan Complex, Tertiary and Mesozoic sedimentary and volcanic rocks, and Quaternary and Holocene deposits (Brocher, USGS OFR 05-1317, 2005). Vp versus depth curves were converted to Vs versus depth curves using new empirical nonlinear relations between Vs and Vp (Brocher, BSSA, 2005). These relations, showing that Poisson's ratio is a nonlinear function of Vp, were similarly based on compilations of diverse Vs and Vp measurements on a large suite of rock types, mainly from California and the Pacific Northwest. The model is distributed in a discretized form with routines to query the model using C++, C, and Fortran 77 programming languages. The geologic model was discretized at

  15. Cross Gradient Based Joint Inversion of 2D Wide Angle Seismic Reflection/Refraction and Gravity Data Along the Profile Through the 2010 Ms 7.1 Yushu Earthquake, China

    NASA Astrophysics Data System (ADS)

    Xiang, S.; Zhang, H.

    2015-12-01

    2D wide-angle seismic reflection/refraction survey has been widely used to investigate crustal structure and Moho topography. Similarly gravity survey is also very important in the study of local and regional earth features. Seismic survey is sensitive to the seismic velocity parameters and interface variations. For gravity survey, it is sensitive to density parameters of the medium but the resolution along the vertical direction is relatively poor. In this study, we have developed a strategy to jointly invert for seismic velocity model, density model and interface positions using the gravity observations and seismic arrival times from different phases. For the joint inversion of seismic and gravity data, it often relies on the empirical relationship between seismic velocity and density. In comparison, our joint inversion strategy also includes the cross-gradient based structure constraint for seismic velocity and density models in addition to the empirical relationship between them. The objective function for the joint inversion includes data misfit terms for seismic travel times and gravity observations, the cross-gradient constraint, the smoothness terms for two models, and the data misfit term between predicted gravity data based on density model converted from velocity model using the empirical relationship. Each term has its respective weight. We have applied the new joint inversion method to the Riwoqe-Yushu-Maduo profile in northwest China. The profile crosses through the Qiangtang block and Bayan Har block from southwest to northeast, respectively. The 2010 Ms 7.1 Yushu earthquake is located on the profile, around the Ganzi-Yushu fault zone. The joint inversion produces the velocity and density models that are similar in structure and at the same time fit their respective data sets well. Compared to separate seismic inversion using seismic travel times, the joint inversion with gravity data gives a velocity model that better delineates the fault zones. Low

  16. The Reconstruction of the pre Storegga Slide Seafloor and Stratigraphy Using a Dense Grid of 2D Seismic Records.

    NASA Astrophysics Data System (ADS)

    Forsberg, C. F. M.

    2014-12-01

    This work was performed as part of the Storegga Slide study that was part of the Ormen Lange Gas Field development on the Mid Norwegian continental margin. The purpose of the reconstruction was to use seismic reflection data as a basis to provide slide volume estimates, pre slide stratigraphy and seafloor morphology that could be used as input to separate conceptual and numerical slide models. A comprehensive database of 2D high resolution and 2D exploration seismic reflection profiles was used. Additionally, the seismic stratigraphy on both sides of the Storegga Slide scar was well known, but had to be applied/interpreted on most of the seismic sections in the database to provide geographical grids of the horizon depths. The reconstruction was performed by "filling" The Storegga Slide scar from bottom up through interpolation and gridding of the thicknesses of successively younger units removed by the slide. The estimated volume of the slide was 3500 km3 with a maximum removal of 500 m of overburden. The loss of overburden due sliding estimated from the reconstructon was confirmed at several sites where geotechnical boreholes had been drilled.

  17. 3-D seismic velocity and attenuation structures in the geothermal field

    SciTech Connect

    Nugraha, Andri Dian; Syahputra, Ahmad; Fatkhan,; Sule, Rachmat

    2013-09-09

    We conducted delay time tomography to determine 3-D seismic velocity structures (Vp, Vs, and Vp/Vs ratio) using micro-seismic events in the geothermal field. The P-and S-wave arrival times of these micro-seismic events have been used as input for the tomographic inversion. Our preliminary seismic velocity results show that the subsurface condition of geothermal field can be fairly delineated the characteristic of reservoir. We then extended our understanding of the subsurface physical properties through determining of attenuation structures (Qp, Qs, and Qs/Qp ratio) using micro-seismic waveform. We combined seismic velocities and attenuation structures to get much better interpretation of the reservoir characteristic. Our preliminary attanuation structures results show reservoir characterization can be more clearly by using the 3-D attenuation model of Qp, Qs, and Qs/Qp ratio combined with 3-D seismic velocity model of Vp, Vs, and Vp/Vs ratio.

  18. Mineralization, crystallography, and longitudinal seismic wave velocity of speleothems

    SciTech Connect

    Williams, R.S.; Grant, S.K. . Dept. of Geology and Geophysics); Haas, C.J. . Dept. of Mining Engineering)

    1993-03-01

    Speleothems, or cave deposits, of Fisher Cave in Sullivan, Missouri, display unique arrangements of overlapping and interwoven crystals that provide the foundation for intricate shapes and patterns. Research has found that the deposition of such forms are affected by many variables associated with carbonate petrology. An active cave system having a consistent yearly rate of water flow will deposit trace, non-carbonate mineralization at locations of initial contact with the cave environment. Deposit specimens were tested using X-ray diffraction methods resulting in the identification of a manganese oxide coating of a psilomelane. Speleothems, considered a natural resource, are protected along with the cave from industrial advancements outside the cave environment. When the detonation of explosives during the construction of a highway near Crystal Cave in Springfield, Missouri threatened the speleothegenic decoration, a study of the damaging resonant frequency of the speleothems was instigated. To calculate this frequency, the longitudinal and transverse seismic wave velocity was measured by geophysical techniques.

  19. Estimation of Random Medium Parameters from 2D Post-Stack Seismic Data and Its Application in Seismic Inversion

    NASA Astrophysics Data System (ADS)

    Yang, X.; Zhu, P.; Gu, Y.; Xu, Z.

    2015-12-01

    Small scale heterogeneities of subsurface medium can be characterized conveniently and effectively using a few simple random medium parameters (RMP), such as autocorrelation length, angle and roughness factor, etc. The estimation of these parameters is significant in both oil reservoir prediction and metallic mine exploration. Poor accuracy and low stability existed in current estimation approaches limit the application of random medium theory in seismic exploration. This study focuses on improving the accuracy and stability of RMP estimation from post-stacked seismic data and its application in the seismic inversion. Experiment and theory analysis indicate that, although the autocorrelation of random medium is related to those of corresponding post-stacked seismic data, the relationship is obviously affected by the seismic dominant frequency, the autocorrelation length, roughness factor and so on. Also the error of calculation of autocorrelation in the case of finite and discrete model decreases the accuracy. In order to improve the precision of estimation of RMP, we design two improved approaches. Firstly, we apply region growing algorithm, which often used in image processing, to reduce the influence of noise in the autocorrelation calculated by the power spectrum method. Secondly, the orientation of autocorrelation is used as a new constraint in the estimation algorithm. The numerical experiments proved that it is feasible. In addition, in post-stack seismic inversion of random medium, the estimated RMP may be used to constrain inverse procedure and to construct the initial model. The experiment results indicate that taking inversed model as random medium and using relatively accurate estimated RMP to construct initial model can get better inversion result, which contained more details conformed to the actual underground medium.

  20. Velocity Structure Determination Through Seismic Waveform Modeling and Time Deviations

    NASA Astrophysics Data System (ADS)

    Savage, B.; Zhu, L.; Tan, Y.; Helmberger, D. V.

    2001-12-01

    Through the use of seismic waveforms recorded by TriNet, a dataset of earthquake focal mechanisms and deviations (time shifts) relative to a standard model facilitates the investigation of the crust and uppermost mantle of southern California. The CAP method of focal mechanism determination, in use by TriNet on a routine basis, provides time shifts for surface waves and Pnl arrivals independently relative to the reference model. These shifts serve as initial data for calibration of local and regional seismic paths. Time shifts from the CAP method are derived by splitting the Pnl section of the waveform, the first arriving Pn to just before the arrival of the S wave, from the much slower surface waves then cross-correlating the data with synthetic waveforms computed from a standard model. Surface waves interact with the entire crust, but the upper crust causes the greatest effect. Whereas, Pnl arrivals sample the deeper crust, upper mantle, and source region. This natural division separates the upper from lower crust for regional calibration and structural modeling and allows 3-D velocity maps to be created using the resulting time shifts. Further examination of Pnl and other arrivals which interact with the Moho illuminate the complex nature of this boundary. Initial attempts at using the first 10 seconds of the Pnl section to determine upper most mantle structure have proven insightful. Two large earthquakes north of southern California in Nevada and Mammoth Lakes, CA allow the creation of record sections from 200 to 600 km. As the paths swing from east to west across southern California, simple 1-D models turn into complex structure, dramatically changing the waveform character. Using finite difference models to explain the structure, we determine that a low velocity zone is present at the base of the crust and extends to 100 km in depth. Velocity variations of 5 percent of the mantle in combination with steeply sloping edges produces complex waveform variations

  1. Surface related multiple elimination (SRME) and radon transform forward multiple modeling methods applied to 2D multi-channel seismic profiles from the Chukchi Shelf, Arctic Ocean

    NASA Astrophysics Data System (ADS)

    Ilhan, I.; Coakley, B. J.

    2013-12-01

    The Chukchi Edges project was designed to establish the relationship between the Chukchi Shelf and Borderland and indirectly test theories of opening for the Canada Basin. During this cruise, ~5300 km of 2D multi-channel reflection seismic profiles and other geophysical data (swath bathymetry, gravity, magnetics, sonobuoy refraction seismic) were collected from the RV Marcus G. Langseth across the transition between the Chukchi Shelf and Chukchi Borderland, where the water depths vary from 30 m to over 3 km. Multiples occur when seismic energy is trapped in a layer and reflected from an acoustic interface more than once. Various kinds of multiples occur during seismic data acquisition. These depend on the ray-path the seismic energy follows through the layers. One of the most common multiples is the surface related multiple, which occurs due to strong acoustic impedance contrast between the air and water. The reflected seismic energy from the water surface is trapped within the water column, thus reflects from the seafloor multiple times. Multiples overprint the primary reflections and complicate data interpretation. Both surface related multiple elimination (SRME) and forward parabolic radon transform multiple modeling methods were necessary to attenuate the multiples. SRME is applied to shot gathers starting with the near offset interpolation, multiple estimation using water depths, and subtracting the model multiple from the shot gathers. This method attenuated surface related multiple energy, however, peg-leg multiples remained in the data. The parabolic radon transform method minimized the effect of these multiples. This method is applied to normal moveout (NMO) corrected common mid-point gathers (CMP). The CMP gathers are fitted or modeled with curves estimated from the reference offset, moveout range, moveout increment parameters. Then, the modeled multiples are subtracted from the data. Preliminary outputs of these two methods show that the surface related

  2. Method to Rapidly Collect Thousands of Velocity Observations to Validate Million-Element 2D Hydrodynamic Models

    NASA Astrophysics Data System (ADS)

    Barker, J. R.; Pasternack, G. B.; Bratovich, P.; Massa, D.; Reedy, G.; Johnson, T.

    2010-12-01

    Two-dimensional (depth-averaged) hydrodynamic models have existed for decades and are used to study a variety of hydrogeomorphic processes as well as to design river rehabilitation projects. Rapid computer and coding advances are revolutionizing the size and detail of 2D models. Meanwhile, advances in topo mapping and environmental informatics are providing the data inputs to drive large, detailed simulations. Million-element computational meshes are in hand. With simulations of this size and detail, the primary challenge has shifted to finding rapid and inexpensive means for testing model predictions against observations. Standard methods for collecting velocity data include boat-mounted ADCP and point-based sensors on boats or wading rods. These methods are labor intensive and often limited to a narrow flow range. Also, they generate small datasets at a few cross-sections, which is inadequate to characterize the statistical structure of the relation between predictions and observations. Drawing on the long-standing oceanographic method of using drogues to track water currents, previous studies have demonstrated the potential of small dGPS units to obtain surface velocity in rivers. However, dGPS is too inaccurate to test 2D models. Also, there is financial risk in losing drogues in rough currents. In this study, an RTK GPS unit was mounted onto a manned whitewater kayak. The boater positioned himself into the current and used floating debris to maintain a speed and heading consistent with the ambient surface flow field. RTK GPS measurements were taken ever 5 sec. From these positions, a 2D velocity vector was obtained. The method was tested over ~20 km of the lower Yuba River in California in flows ranging from 500-5000 cfs, yielding 5816 observations. To compare velocity magnitude against the 2D model-predicted depth-averaged value, kayak-based surface values were scaled down by an optimized constant (0.72), which had no negative effect on regression analysis

  3. A hybrid experimental-numerical technique for determining 3D velocity fields from planar 2D PIV data

    NASA Astrophysics Data System (ADS)

    Eden, A.; Sigurdson, M.; Mezić, I.; Meinhart, C. D.

    2016-09-01

    Knowledge of 3D, three component velocity fields is central to the understanding and development of effective microfluidic devices for lab-on-chip mixing applications. In this paper we present a hybrid experimental-numerical method for the generation of 3D flow information from 2D particle image velocimetry (PIV) experimental data and finite element simulations of an alternating current electrothermal (ACET) micromixer. A numerical least-squares optimization algorithm is applied to a theory-based 3D multiphysics simulation in conjunction with 2D PIV data to generate an improved estimation of the steady state velocity field. This 3D velocity field can be used to assess mixing phenomena more accurately than would be possible through simulation alone. Our technique can also be used to estimate uncertain quantities in experimental situations by fitting the gathered field data to a simulated physical model. The optimization algorithm reduced the root-mean-squared difference between the experimental and simulated velocity fields in the target region by more than a factor of 4, resulting in an average error less than 12% of the average velocity magnitude.

  4. Uncertainty in calculating vorticity from 2D velocity fields using circulation and least-squares approaches

    NASA Astrophysics Data System (ADS)

    Abrahamson, S.; Lonnes, S.

    1995-11-01

    The most common method for determining vorticity from planar velocity information is the circulation method. Its performance has been evaluated using a plane of velocity data obtained from a direct numerical simulation (DNS) of a three dimensional plane shear layer. Both the ability to reproduce the vorticity from the exact velocity field and one perturbed by a 5% random “uncertainty” were assessed. To minimize the sensitivity to velocity uncertainties, a new method was developed using a least-squares approach. The local velocity data is fit to a model velocity field consisting of uniform translation, rigid rotation, a point source, and plane shear. The least-squares method was evaluated in the same manner as the circulation method. The largest differences between the actual and calculated vorticity fields were due to the filter-like nature of the methods. The new method is less sensitive to experimental uncertainty. However the circulation method proved to be slightly better at reproducing the DNS field. The least-squares method provides additional information beyond the circulation method results. Using the correlation overline {Pω ω } and a vorticity threshold criteria to identify regions of rigid rotation (or eddies), the rigid rotation component of the least-squares method indicates these same regions.

  5. Probing the Detailed Seismic Velocity Structure of Subduction Zones Using Advanced Seismic Tomography Methods

    NASA Astrophysics Data System (ADS)

    Zhang, H.; Thurber, C. H.

    2005-12-01

    Subduction zones are one of the most important components of the Earth's plate tectonic system. Knowing the detailed seismic velocity structure within and around subducting slabs is vital to understand the constitution of the slab, the cause of intermediate depth earthquakes inside the slab, the fluid distribution and recycling, and tremor occurrence [Hacker et al., 2001; Obara, 2002].Thanks to the ability of double-difference tomography [Zhang and Thurber, 2003] to resolve the fine-scale structure near the source region and the favorable seismicity distribution inside many subducting slabs, it is now possible to characterize the fine details of the velocity structure and earthquake locations inside the slab, as shown in the study of the Japan subduction zone [Zhang et al., 2004]. We further develop the double-difference tomography method in two aspects: the first improvement is to use an adaptive inversion mesh rather than a regular inversion grid and the second improvement is to determine a reliable Vp/Vs structure using various strategies rather than directly from Vp and Vs [see our abstract ``Strategies to solve for a better Vp/Vs model using P and S arrival time'' at Session T29]. The adaptive mesh seismic tomography method is based on tetrahedral diagrams and can automatically adjust the inversion mesh according to the ray distribution so that the inversion mesh nodes are denser where there are more rays and vice versa [Zhang and Thurber, 2005]. As a result, the number of inversion mesh nodes is greatly reduced compared to a regular inversion grid with comparable spatial resolution, and the tomographic system is more stable and better conditioned. This improvement is quite valuable for characterizing the fine structure of the subduction zone considering the highly uneven distribution of earthquakes within and around the subducting slab. The second improvement, to determine a reliable Vp/Vs model, lies in jointly inverting Vp, Vs, and Vp/Vs using P, S, and S

  6. Las Vegas Basin Seismic Response Project: Measured Shallow Soil Velocities

    NASA Astrophysics Data System (ADS)

    Luke, B. A.; Louie, J.; Beeston, H. E.; Skidmore, V.; Concha, A.

    2002-12-01

    The Las Vegas valley in Nevada is a deep (up to 5 km) alluvial basin filled with interlayered gravels, sands, and clays. The climate is arid. The water table ranges from a few meters to many tens of meters deep. Laterally extensive thin carbonate-cemented lenses are commonly found across parts of the valley. Lenses range beyond 2 m in thickness, and occur at depths exceeding 200 m. Shallow seismic datasets have been collected at approximately ten sites around the Las Vegas valley, to characterize shear and compression wave velocities in the near surface. Purposes for the surveys include modeling of ground response to dynamic loads, both natural and manmade, quantification of soil stiffness to aid structural foundation design, and non-intrusive materials identification. Borehole-based measurement techniques used include downhole and crosshole, to depths exceeding 100 m. Surface-based techniques used include refraction and three different methods involving inversion of surface-wave dispersion datasets. This latter group includes two active-source techniques, the Spectral Analysis of Surface Waves (SASW) method and the Multi-Channel Analysis of Surface Waves (MASW) method; and a new passive-source technique, the Refraction Mictrotremor (ReMi) method. Depths to halfspace for the active-source measurements ranged beyond 50 m. The passive-source method constrains shear wave velocities to 100 m depths. As expected, the stiff cemented layers profoundly affect local velocity gradients. Scale effects are evident in comparisons of (1) very local measurements typified by borehole methods, to (2) the broader coverage of the SASW and MASW measurements, to (3) the still broader and deeper resolution made possible by the ReMi measurements. The cemented layers appear as sharp spikes in the downhole datasets and are problematic in crosshole measurements due to refraction. The refraction method is useful only to locate the depth to the uppermost cemented layer. The surface

  7. Excavatability Assessment of Weathered Sedimentary Rock Mass Using Seismic Velocity Method

    NASA Astrophysics Data System (ADS)

    Bin Mohamad, Edy Tonnizam; Saad, Rosli; Noor, Muhazian Md; Isa, Mohamed Fauzi Bin Md.; Mazlan, Ain Naadia

    2010-12-01

    Seismic refraction method is one of the most popular methods in assessing surface excavation. The main objective of the seismic data acquisition is to delineate the subsurface into velocity profiles as different velocity can be correlated to identify different materials. The physical principal used for the determination of excavatability is that seismic waves travel faster through denser material as compared to less consolidated material. In general, a lower velocity indicates material that is soft and a higher velocity indicates more difficult to be excavated. However, a few researchers have noted that seismic velocity method alone does not correlate well with the excavatability of the material. In this study, a seismic velocity method was used in Nusajaya, Johor to assess the accuracy of this seismic velocity method with excavatability of the weathered sedimentary rock mass. A direct ripping run by monitoring the actual production of ripping has been employed at later stage and compared to the ripper manufacturer's recommendation. This paper presents the findings of the seismic velocity tests in weathered sedimentary area. The reliability of using this method with the actual rippability trials is also presented.

  8. Excavatability Assessment of Weathered Sedimentary Rock Mass Using Seismic Velocity Method

    SciTech Connect

    Bin Mohamad, Edy Tonnizam; Noor, Muhazian Md; Isa, Mohamed Fauzi Bin Md.; Mazlan, Ain Naadia; Saad, Rosli

    2010-12-23

    Seismic refraction method is one of the most popular methods in assessing surface excavation. The main objective of the seismic data acquisition is to delineate the subsurface into velocity profiles as different velocity can be correlated to identify different materials. The physical principal used for the determination of excavatability is that seismic waves travel faster through denser material as compared to less consolidated material. In general, a lower velocity indicates material that is soft and a higher velocity indicates more difficult to be excavated. However, a few researchers have noted that seismic velocity method alone does not correlate well with the excavatability of the material. In this study, a seismic velocity method was used in Nusajaya, Johor to assess the accuracy of this seismic velocity method with excavatability of the weathered sedimentary rock mass. A direct ripping run by monitoring the actual production of ripping has been employed at later stage and compared to the ripper manufacturer's recommendation. This paper presents the findings of the seismic velocity tests in weathered sedimentary area. The reliability of using this method with the actual rippability trials is also presented.

  9. 3D Reservoir Modeling of Semutang Gas Field: A lonely Gas field in Chittagong-Tripura Fold Belt, with Integrated Well Log, 2D Seismic Reflectivity and Attributes.

    NASA Astrophysics Data System (ADS)

    Salehin, Z.; Woobaidullah, A. S. M.; Snigdha, S. S.

    2015-12-01

    Bengal Basin with its prolific gas rich province provides needed energy to Bangladesh. Present energy situation demands more Hydrocarbon explorations. Only 'Semutang' is discovered in the high amplitude structures, where rest of are in the gentle to moderate structures of western part of Chittagong-Tripura Fold Belt. But it has some major thrust faults which have strongly breached the reservoir zone. The major objectives of this research are interpretation of gas horizons and faults, then to perform velocity model, structural and property modeling to obtain reservoir properties. It is needed to properly identify the faults and reservoir heterogeneities. 3D modeling is widely used to reveal the subsurface structure in faulted zone where planning and development drilling is major challenge. Thirteen 2D seismic and six well logs have been used to identify six gas bearing horizons and a network of faults and to map the structure at reservoir level. Variance attributes were used to identify faults. Velocity model is performed for domain conversion. Synthetics were prepared from two wells where sonic and density logs are available. Well to seismic tie at reservoir zone shows good match with Direct Hydrocarbon Indicator on seismic section. Vsh, porosity, water saturation and permeability have been calculated and various cross plots among porosity logs have been shown. Structural modeling is used to make zone and layering accordance with minimum sand thickness. Fault model shows the possible fault network, those liable for several dry wells. Facies model have been constrained with Sequential Indicator Simulation method to show the facies distribution along the depth surfaces. Petrophysical models have been prepared with Sequential Gaussian Simulation to estimate petrophysical parameters away from the existing wells to other parts of the field and to observe heterogeneities in reservoir. Average porosity map for each gas zone were constructed. The outcomes of the research

  10. Earthquake dynamics. Mapping pressurized volcanic fluids from induced crustal seismic velocity drops.

    PubMed

    Brenguier, F; Campillo, M; Takeda, T; Aoki, Y; Shapiro, N M; Briand, X; Emoto, K; Miyake, H

    2014-07-04

    Volcanic eruptions are caused by the release of pressure that has accumulated due to hot volcanic fluids at depth. Here, we show that the extent of the regions affected by pressurized fluids can be imaged through the measurement of their response to transient stress perturbations. We used records of seismic noise from the Japanese Hi-net seismic network to measure the crustal seismic velocity changes below volcanic regions caused by the 2011 moment magnitude (M(w)) 9.0 Tohoku-Oki earthquake. We interpret coseismic crustal seismic velocity reductions as related to the mechanical weakening of the pressurized crust by the dynamic stress associated with the seismic waves. We suggest, therefore, that mapping seismic velocity susceptibility to dynamic stress perturbations can be used for the imaging and characterization of volcanic systems.

  11. 3-D Velocity Model of the Coachella Valley, Southern California Based on Explosive Shots from the Salton Seismic Imaging Project

    NASA Astrophysics Data System (ADS)

    Persaud, P.; Stock, J. M.; Fuis, G. S.; Hole, J. A.; Goldman, M.; Scheirer, D. S.

    2014-12-01

    We have analyzed explosive shot data from the 2011 Salton Seismic Imaging Project (SSIP) across a 2-D seismic array and 5 profiles in the Coachella Valley to produce a 3-D P-wave velocity model that will be used in calculations of strong ground shaking. Accurate maps of seismicity and active faults rely both on detailed geological field mapping and a suitable velocity model to accurately locate earthquakes. Adjoint tomography of an older version of the SCEC 3-D velocity model shows that crustal heterogeneities strongly influence seismic wave propagation from moderate earthquakes (Tape et al., 2010). These authors improve the crustal model and subsequently simulate the details of ground motion at periods of 2 s and longer for hundreds of ray paths. Even with improvements such as the above, the current SCEC velocity model for the Salton Trough does not provide a match of the timing or waveforms of the horizontal S-wave motions, which Wei et al. (2013) interpret as caused by inaccuracies in the shallow velocity structure. They effectively demonstrate that the inclusion of shallow basin structure improves the fit in both travel times and waveforms. Our velocity model benefits from the inclusion of known location and times of a subset of 126 shots detonated over a 3-week period during the SSIP. This results in an improved velocity model particularly in the shallow crust. In addition, one of the main challenges in developing 3-D velocity models is an uneven stations-source distribution. To better overcome this challenge, we also include the first arrival times of the SSIP shots at the more widely spaced Southern California Seismic Network (SCSN) in our inversion, since the layout of the SSIP is complementary to the SCSN. References: Tape, C., et al., 2010, Seismic tomography of the Southern California crust based on spectral-element and adjoint methods: Geophysical Journal International, v. 180, no. 1, p. 433-462. Wei, S., et al., 2013, Complementary slip distributions

  12. Anisotropic P-wave velocity analysis and seismic imaging in onshore Kutch sedimentary basin of India

    NASA Astrophysics Data System (ADS)

    Behera, Laxmidhar; Khare, Prakash; Sarkar, Dipankar

    2011-08-01

    The long-offset P-wave seismic reflection data has observable non-hyperbolic moveout, which depend on two parameters such as normal moveout velocity ( Vnmo) and the anisotropy parameter( η). Anisotropy (e.g., directional dependence of velocity at a fixed spatial location in a medium) plays an important role in seismic imaging. It is difficult to know the presence of anisotropy in the subsurface geological formations only from P-wave seismic data and special analysis is required for this. The presence of anisotropy causes two major distortions of moveout in P-wave seismic reflection data. First, in contrast to isotropic media, normal-moveout (NMO) velocity differs from the vertical velocity; and the second is substantial increase of deviations in hyperbolic moveout in an anisotropic layer. Hence, with the help of conventional velocity analysis based on short-spread moveout (stacking) velocities do not provide enough information to determine the true vertical velocity in a transversely isotropic media with vertical symmetry axis (VTI media). Therefore, it is essential to estimate the single anisotropic parameter ( η) from the long-offset P-wave seismic data. It has been demonstrated here as a case study with long-offset P-wave seismic data acquired in onshore Kutch sedimentary basin of western India that suitable velocity analysis using Vnmo and η can improve the stacking image obtained from conventional velocity analysis.

  13. The Southern Andes between 36° and 40°S latitude: seismicity and average seismic velocities

    NASA Astrophysics Data System (ADS)

    Bohm, Mirjam; Lüth, Stefan; Echtler, Helmut; Asch, Günter; Bataille, Klaus; Bruhn, Carsten; Rietbrock, Andreas; Wigger, Peter

    2002-10-01

    The project ISSA 2000 (Integrated Seismological experiment in the Southern Andes) consists of a temporary seismological network and a seismic refraction profile. A network of 62 seismological stations was deployed across the Southern Andes at ˜38°S. Three hundred thirty-three local seismic events were observed in a 3-month period. P and S arrival times of a subset of high quality data were inverted simultaneously for 1-D velocity structure, hypocentral coordinates and station delays. Seismic refraction data along a transect at 39°S provide further constraints on the crustal structure. Low crustal velocities beneath the forearc may be either due to subducted trench sediments or serpentinized mantle material of the continental lithosphere. The continental Moho is not clearly observed in this region. Average velocities of the crust beneath the arc are higher than those beneath the forearc. Crustal thickness is about 40 km. Crustal seismicity concentrates in the forearc region along the Bio-Bio and Gastre fault zones. The area between these two prominent fault zones seems to be nearly devoid of crustal seismicity but shows highest uplift and topography in the forearc region. Benioff seismicity is observed down to 150 km depth resulting in the first accurate image of the Benioff zone in the Southern Andes. A maximum of seismicity at 60 km depth may be caused by dehydration embrittlement.

  14. 3D crustal seismic velocity model for the Gulf of Cadiz and adjacent areas (SW Iberia margin) based on seismic reflection and refraction profiles

    NASA Astrophysics Data System (ADS)

    Lozano, Lucía; Cantavella, Juan Vicente; Barco, Jaime; Carranza, Marta; Burforn, Elisa

    2016-04-01

    The Atlantic margin of the SW Iberian Peninsula and northern Morocco has been subject of study during the last 30 years. Many seismic reflection and refraction profiles have been carried out offshore, providing detailed information about the crustal structure of the main seafloor tectonic domains in the region, from the South Portuguese Zone and the Gulf of Cadiz to the Abyssal Plains and the Josephine Seamount. The interest to obtain a detailed and realistic velocity model for this area, integrating the available data from these studies, is clear, mainly to improve real-time earthquake hypocentral location and for tsunami and earthquake early warning. Since currently real-time seismic location tools allow the implementation of 3D velocity models, we aim to generate a full 3D crustal model. For this purpose we have reviewed more than 50 profiles obtained in different seismic surveys, from 1980 to 2008. Data from the most relevant and reliable 2D seismic velocity published profiles were retrieved. We first generated a Moho depth map of the studied area (latitude 32°N - 41°N and longitude 15°W - 5°W) by extracting Moho depths along each digitized profile with a 10 km spacing, and then interpolating this dataset using ordinary kriging method and generating the contour isodepth map. Then, a 3D crustal velocity model has been obtained. Selected vertical sections at different distances along each profile were considered to retrieve P-wave velocity values at each interface in order to reproduce the geometry and the velocity gradient within each layer. A double linear interpolation, both in distance and depth, with sampling rates of 10 km and 1 km respectively, was carried out to generate a (latitude, longitude, depth, velocity) matrix. This database of all the profiles was interpolated to obtain the P-wave velocity distribution map every kilometer of depth. The new 3D velocity model has been integrated in NonLinLoc location program to relocate several representative

  15. Quantifying uncertainty in velocity models for seismic imaging using a Bayesian approach with application to the Mentelle Basin - Australia

    NASA Astrophysics Data System (ADS)

    Michelioudakis, Dimitrios; Hobbs, Richard; Caiado, Camila

    2015-04-01

    Determining the depths of key horizons from seismic reflection data is one of the most important aspects of exploration geophysics. Here, we present Bayesian methods based on an elicitation tool and Gaussian processes to build a detailed and robust velocity model of the Mentelle Basin, located south west of Australia, with the ultimate goal to identify possible drilling targets for the Integrated Ocean Drilling Program (IODP). The Mentelle Basin is a deep water sedimentary basin located between the Naturaliste Plateau and the southern part of the Western Australian Shelf. It is among the few regions of the world where we can investigate the effects of the Cretaceous hot-house and its collapse at high latitude. The Mentelle Basin hosts a continuous shale sequence for this period that it is over a kilometer thick, the study of which, is crucial for the correlation between the paleoclimate conditions and the tectonic history of the region. By reprocessing 2D multichannel seismic reflection profiles around the proposed drill - sites, we create a detailed subsurface velocity model which is used as a priori input to the Bayesian approach. The final goal is to build a multi-layered model to estimate the depth and the root mean square velocity of each layer, both for the isotropic and anisotropic cases in terms of a multivariate posterior distribution. Having determined the RMS velocities for each layer, we can calculate, by inference, their interval velocities and finally estimate the depth of each sequence of interest with improved accuracy. The key advantage of the Bayesian approach and the major difference compared to the traditional semblance spectrum velocity analysis procedure is the calculation of uncertainty of the output model. As a result, our statistical approach can construct a robust velocity model which encompasses the noise and the band-limited nature of the data as an error function. We use this model to control the depth migration of the seismic data and

  16. Seismic Wave Velocities in Deep Sediments in Poland: Borehole and Refraction Data Compilation

    NASA Astrophysics Data System (ADS)

    Polkowski, Marcin; Grad, Marek

    2015-06-01

    Sedimentary cover has significant influence on seismic wave travel times and knowing its structure is of great importance for studying deeper structures of the Earth. Seismic tomography is one of the methods that require good knowledge of seismic velocities in sediments and unfortunately by itself cannot provide detailed information about distribution of seismic velocities in sedimentary cover. This paper presents results of P-wave velocity analysis in the old Paleozoic sediments in area of Polish Lowland, Folded Area, and all sediments in complicated area of the Carpathian Mountains in Poland. Due to location on conjunction of three major tectonic units — the Precambrian East European Craton, the Paleozoic Platform of Central and Western Europe, and the Alpine orogen represented by the Carpathian Mountains the maximum depth of these sediments reaches up to 25 000 m in the Carpathian Mountains. Seismic velocities based on 492 deep boreholes with vertical seismic profiling and a total of 741 vertical seismic profiles taken from 29 seismic refraction profiles are analyzed separately for 14 geologically different units. For each unit, velocity versus depth relations are approximated by second or third order polynomials.

  17. Exploring the relative contribution of mineralogy and CPO to the seismic velocity anisotropy of evaporites

    NASA Astrophysics Data System (ADS)

    Vargas-Meleza, Liliana; Healy, David; Alsop, G. Ian; Timms, Nicholas E.

    2015-01-01

    We present the influence of mineralogy and microstructure on the seismic velocity anisotropy of evaporites. Bulk elastic properties and seismic velocities are calculated for a suite of 20 natural evaporite samples, which consist mainly of halite, anhydrite, and gypsum. They exhibit strong fabrics as a result of tectonic and diagenetic processes. Sample mineralogy and crystallographic preferred orientation (CPO) were obtained with the electron backscatter diffraction (EBSD) technique and the data used for seismic velocity calculations. Bulk seismic properties for polymineralic evaporites were evaluated with a rock recipe approach. Ultrasonic velocity measurements were also taken on cube shaped samples to assess the contribution of grain-scale shape preferred orientation (SPO) to the total seismic anisotropy. The sample results suggest that CPO is responsible for a significant fraction of the bulk seismic properties, in agreement with observations from previous studies. Results from the rock recipe indicate that increasing modal proportion of anhydrite grains can lead to a greater seismic anisotropy of a halite-dominated rock. Conversely, it can lead to a smaller seismic anisotropy degree of a gypsum-dominated rock until an estimated threshold proportion after which anisotropy increases again. The difference between the predicted anisotropy due to CPO and the anisotropy measured with ultrasonic velocities is attributed to the SPO and grain boundary effects in these evaporites.

  18. Effective filtering and interpolation of 2D discrete velocity fields with Navier-Stokes equations

    NASA Astrophysics Data System (ADS)

    Saumier, Louis-Philippe; Khouider, Boualem; Agueh, Martial

    2016-11-01

    We introduce a new variational technique to interpolate and filter a two-dimensional velocity vector field which is discretely sampled in a region of {{{R}}}2 and sampled only once at a time, on a small time-interval [0,{{Δ }}t]. The main idea is to find a solution of the Navier-Stokes equations that is closest to a prescribed field in the sense that it minimizes the l 2 norm of the difference between this solution and the target field. The minimization is performed on the initial vorticity by expanding it into radial basis functions of Gaussian type, with a fixed size expressed by a parameter ɛ. In addition, a penalty term with parameter k e is added to the minimizing functional in order to select a solution with a small kinetic energy. This additional term makes the minimizing functional strongly convex, and therefore ensures that the minimization problem is well-posed. The interplay between the parameters k e and ɛ effectively contributes to smoothing the discrete velocity field, as demonstrated by the numerical experiments on synthetic and real data.

  19. Upper mantle seismic velocity anomaly beneath southern Taiwan as revealed by teleseismic relative arrival times

    NASA Astrophysics Data System (ADS)

    Chen, Po-Fei; Huang, Bor-Shouh; Chiao, Ling-Yun

    2011-01-01

    Probing the lateral heterogeneity of the upper mantle seismic velocity structure beneath southern and central Taiwan is critical to understanding the local tectonics and orogeny. A linear broadband array that transects southern Taiwan, together with carefully selected teleseismic sources with the right azimuth provides useful constraints. They are capable of differentiating the lateral heterogeneity along the profile with systematic coverage of ray paths. We implement a scheme based on the genetic algorithm to simultaneously determine the relative delayed times of the teleseismic first arrivals of array data. The resulting patterns of the delayed times systematically vary as a function of the incident angle. Ray tracing attributes the observed variations to a high velocity anomaly dipping east in the mantle beneath the southeast of Taiwan. Combining the ray tracing analysis and a pseudo-spectral method to solve the 2-D wave propagations, we determine the extent of the anomaly that best fits the observations via the forward grid search. The east-dipping fast anomaly in the upper mantle beneath the southeast of Taiwan agrees with the results from several previous studies and indicates that the nature of the local ongoing arc-continent collision is likely characterized by the thin-skinned style.

  20. Using micro-seismicity and seismic velocities to map subsurface geologic and hydrologic structure within the Coso geothermal field, California

    USGS Publications Warehouse

    Kaven, Joern Ole; Hickman, Stephen H.; Davatzes, Nicholas C.

    2012-01-01

    Geothermal reservoirs derive their capacity for fluid and heat transport in large part from faults and fractures. Micro-seismicity generated on such faults and fractures can be used to map larger fault structures as well as secondary fractures that add access to hot rock, fluid storage and recharge capacity necessary to have a sustainable geothermal resource. Additionally, inversion of seismic velocities from micro-seismicity permits imaging of regions subject to the combined effects of fracture density, fluid pressure and steam content, among other factors. We relocate 14 years of seismicity (1996-2009) in the Coso geothermal field using differential travel times and simultaneously invert for seismic velocities to improve our knowledge of the subsurface geologic and hydrologic structure. We utilize over 60,000 micro-seismic events using waveform cross-correlation to augment to expansive catalog of P- and S-wave differential travel times recorded at Coso. We further carry out rigorous uncertainty estimation and find that our results are precise to within 10s of meters of relative location error. We find that relocated micro-seismicity outlines prominent, through-going faults in the reservoir in some cases. We also find that a significant portion of seismicity remains diffuse and does not cluster into more sharply defined major structures. The seismic velocity structure reveals heterogeneous distributions of compressional (Vp) and shear (Vs) wave speed, with Vp generally lower in the main field when compared to the east flank and Vs varying more significantly in the shallow portions of the reservoir. The Vp/Vs ratio appears to outline the two main compartments of the reservoir at depths of -0.5 to 1.5 km (relative to sea-level), with a ridge of relatively high Vp/Vs separating the main field from the east flank. In the deeper portion of the reservoir this ridge is less prominent. Our results indicate that high-precision relocations of micro-seismicity can provide

  1. Ultrasonic laboratory measurements of the seismic velocity changes due to CO2 injection

    NASA Astrophysics Data System (ADS)

    Park, K. G.; Choi, H.; Park, Y. C.; Hwang, S.

    2009-04-01

    Monitoring the behavior and movement of carbon dioxide (CO2) in the subsurface is a quite important in sequestration of CO2 in geological formation because such information provides a basis for demonstrating the safety of CO2 sequestration. Recent several applications in many commercial and pilot scale projects and researches show that 4D surface or borehole seismic methods are among the most promising techniques for this purpose. However, such information interpreted from the seismic velocity changes can be quite subjective and qualitative without petrophysical characterization for the effect of CO2 saturation on the seismic changes since seismic wave velocity depends on various factors and parameters like mineralogical composition, hydrogeological factors, in-situ conditions. In this respect, we have developed an ultrasonic laboratory measurement system and have carried out measurements for a porous sandstone sample to characterize the effects of CO2 injection to seismic velocity and amplitude. Measurements are done by ultrasonic piezoelectric transducer mounted on both ends of cylindrical core sample under various pressure, temperature, and saturation conditions. According to our fundamental experiments, injected CO2 introduces the decrease of seismic velocity and amplitude. We identified that the velocity decreases about 6% or more until fully saturated by CO2, but the attenuation of seismic amplitude is more drastically than the velocity decrease. We also identified that Vs/Vp or elastic modulus is more sensitive to CO2 saturation. We note that this means seismic amplitude and elastic modulus change can be an alternative target anomaly of seismic techniques in CO2 sequestration monitoring. Thus, we expect that we can estimate more quantitative petrophysical relationships between the changes of seismic attributes and CO2 concentration, which can provide basic relation for the quantitative assessment of CO2 sequestration by further researches.

  2. Detailed temporally resolved 2-D Velocity Measurements in a Novel Heat Exchanger Surface

    NASA Astrophysics Data System (ADS)

    Guezennec, Yann G.; Ko, Jang-Hyok; Choi, Woong-Chul

    1998-11-01

    Using flow visualization as a primary tool, a novel, high-performance heat transfer surface for compact heat exchangers was designed, specifically for low Reynolds number applications. This geometry was specifically created to enhance or generate strong three-dimensional transport even at low Reynolds number. It consists of a staggered array of "pin" mounted normal to the fins. A 15:1 model of this heat exchanger surface core was built out of Plexiglas to provide optical access and this model was placed in a 1'x1' water channel. The flow speed was adjusted to match the Reynolds based on the hydraulic diameter based on the fin pitch. The flow was seeded with small polystyrene particles and illuminated by a laser sheet from an Argon Ion laser. The fluid motion was recorded using a CCD camera and an S-VHS video recorder. In post-processing, the video records were automatically digitized and processed using a cinematographic PIV technique. The temporal evolution of the 2-D flow field (side view) clearly shows the presence of unsteady, shed vortical regions behind the pins, modulated by the spatially-periodic acceleration/deceleration and meandering of the mean flow between the periodic array of staggered pins. In the perpendicular view (top view), the results show the presence of two strong cross-stream transport mechanisms, mainly the horse-shoe vortex near the pin-fin junctions and the very strong spanwise transport in the separated wake region of the pins. This transport is most likely associated with the strong interaction of the longitudinal vortices (emanating form the horseshoe) and the spanwise vortices from the pin wake. This vortex interaction sets up a strong spanwise pressure gradient inducing large cross-stream transport from the fin to the core flow. Animation of the results illustrating these effects will be presented.

  3. Terrace Zone Structure in the Chicxulub Impact Crater Based on 2-D Seismic Reflection Profiles: Preliminary Results From EW#0501

    NASA Astrophysics Data System (ADS)

    McDonald, M. A.; Gulick, S. P.; Gorney, D. L.; Christeson, G. L.; Barton, P. J.; Morgan, J. V.; Warner, M. R.; Urrutia-Fucugauchi, J.; Melosh, H. J.; Vermeesch, P. M.; Surendra, A. T.; Goldin, T.; Mendoza, K.

    2005-05-01

    Terrace zones, central peaks, and flat floors characterize complex craters like the Chicxulub impact crater located near the northeast coast of the Yucatan Peninsula. The subsurface crater structure was studied using seismic reflection surveying in Jan/Feb 2005 by the R/V Maurice Ewing. We present 2-D seismic profiles including constant radius, regional, and grid profiles encompassing the 195 km width of the crater. These diversely oriented lines clearly show the terrace zones and aid in the search for crater ejecta as we investigate the formation of the crater including the incidence angle and direction of the extraterrestrial object that struck the Yucatan Peninsula 65 million years ago (K-T boundary). Terrace zones form in complex craters after the modification stage as a result of the gravitational collapse of overextended sediment back into the crater cavity. The terrace zone is clearly imaged on seismic profiles confirming the complex structure of the Chixculub crater. Recent work on reprocessed 1996 profiles found different sizes and spacing of the terraces and concluded that the variations in radial structure are a result of an oblique impact. A SW-NE profile from this study was the only line to show a concentration of deformation near the crater rim hinting that the northeast was the downrange direction of impact. We confirm this narrowing in terrace spacing using a profile with a similar orientation in the 2005 images. Through integration of the new dense grid of profiles and radial lines from the 1996 and 2005 surveys we map the 3-D variability of the terrace zones to further constrain impact direction and examine the formative processes of the Chixculub and other large impact craters.

  4. Detecting hazardous New Zealand faults at depth using seismic velocity gradients

    NASA Astrophysics Data System (ADS)

    Ellis, S.; Van Dissen, R.; Eberhart-Phillips, D.; Reyners, M.; Dolan, J. F.; Nicol, A.

    2017-04-01

    Many large damaging earthquakes occur along previously unmapped faults, because it is difficult to locate active faults that have slow average slip rates, long recurrence intervals, and weak surface expression. We use recently collected seismic wave velocity data from New Zealand to test whether there is a strong correlation between seismic velocity gradients deep in the earth's crust, known active faults, and large shallow historical earthquakes. The correlation with active faults is significant at the 99% confidence level, suggesting that seismic velocity gradients at depth can pinpoint active - and in some cases unmapped - faults that may reactivate and rupture in infrequent earthquakes. In addition, all eight of the post-1840 Mw > 7 upper crustal earthquakes in New Zealand within the region of good tomographic coverage are spatially correlated with mid-crustal seismic velocity gradients and ruptured faults that intersect them. Many of the seismic velocity gradients coincide with the faulted edges of strong blocks within basement rocks, consistent with these marking preferred sites for fault reactivation owing to inherited strength contrasts. We propose that seismic velocity gradients provide a means to map potentially hazardous undiscovered faults at mid-crustal depths, in advance of their activation in future damaging earthquakes.

  5. Seismic velocity change and slip rate during the 2006 Guerrero (Mexico) slow slip event

    NASA Astrophysics Data System (ADS)

    Rivet, Diane; Radiguet, Mathilde; Campillo, Michel; Cotton, Fabrice; Shapiro, Nikolai; Krishna Singh, Shri; Kostoglodov, Vladimir

    2010-05-01

    We measure temporal change of the seismic velocity in the crust below the Guerrero region during the 2006 slow sleep event (SSE). We use repeated cross-correlations of ambient seismic noise recorded at 26 broad-band stations of the MesoAmerica Seismic Experiment (MASE). The cross-correlations are computed over 90 days with a moving window of 10 days from January 2005 to July 2007. To insure measurements independent of noise source variations, we only take into account the travel time change within the coda. For period of 8 to 20s, we observe a decrease in velocity starting in April 2006 with a maximum change of -0.3% of the initial velocity in June 2006. At these periods, the Rayleigh waves are sensitive to velocity changes down to the lower crust. In the other hand, we compute the deformation rate below the MASE array from a slip propagation model of the SSE observed by means of the displacement time-series of 15 continuous GPS stations. Slip initiates in the western part of the Guerrero Gap and propagates southeastward. The propagation velocity is of the order of 1 km/day. We then compare the seismic velocity change measured from continuous seismological data with the deformation rate inferred from geodetic measurements below the MASE array. We obtain a good agreement between the time of maximal seismic velocity change (July 2006) and the time of maximum deformation associated with the SSE (July to August 2006). This result shows that the long-term velocity change associated with the SSE can be detected using continuous seismic recordings. Since the SSE does not emit seismic waves, which interact with the superficial layers, the result indicates that the velocity change is due to deformation at depth.

  6. Using stochastic borehole seismic velocity tomography and Bayesian simulation to estimate Ni, Cu and Co grades.

    NASA Astrophysics Data System (ADS)

    Perozzi, Lorenzo; Gloaguen, Erwan; Rondenay, Stephane; Leite, André; McDowell, Glenn; Wheeler, Robert

    2010-05-01

    In the mining industry, classic methods to build a grade model for ore deposits are based on kriging or cokriging of grades for targeted minerals measured in drill core in fertile geological units. As the complexity of the geological geometry increases, so does the complexity of grade estimations. For example, in layered mafic or ultramafic intrusions, it is necessary to know the layering geometry in order to perform kriging of grades in the most fertile zones. Without additional information on geological framwork, the definition of fertile zones is a low-precision exercise that requires extensive experience and good ability from the geologist. Recently, thanks to computer and geophysical tool improvements, seismic tomography became very attractive for many application fields. Indeed, this non-intrusive technique allows inferring the mechanical properties of the ground using travel times and amplitude analysis of the transmitted wavelet between two boreholes, hence provide additional information on the nature of the deposit. Commonly used crosshole seismic velocity tomography algorithms estimate 2D slowness models (inverse of velocity) in the plane between the boreholes using the measured direct wave travel times from the transmitter (located in one of the hole) to the receivers (located in the other hole). Furthermore, geophysical borehole logging can be used to constrain seismic tomography between drill holes. Finally, this project aims to estimate grade of economically worth mineral by integrating seismic tomography data with respectively drill core measured grades acquired by Vale Inco for one of their mine sites in operation. In this study, a new type algorithm that combines geostatistical simulation and tomography in the same process (namely stochastic tomography) has been used. The principle of the stochastic tomography is based on the straight ray approximation and use the linear relationship between travel time and slowness to estimate the slowness

  7. Changes in Seismic Velocity During the 2004 - 2008 Eruption of Mount St. Helens Volcano

    NASA Astrophysics Data System (ADS)

    Hotovec-Ellis, A. J.; Vidale, J. E.; Gomberg, J. S.; Moran, S. C.; Thelen, W. A.

    2013-12-01

    Mount St. Helens (MSH) effusively erupted in late 2004, following an 18-year quiescence. Many swarms of repeating earthquakes accompanied the extrusion and in some cases the waveforms from these earthquakes evolved slowly, possibly reflecting changes in the properties of the volcano that affect seismic wave propagation. We use coda-wave interferometry to quantify these changes in terms of small (usually <1%) changes in seismic velocity structure by determining how relatively condensed or stretched the coda is between two similar earthquakes. We then utilize several hundred distinct families of repeating earthquakes at once to create a continuous function of velocity change observed at any station in the seismic network. The rate of earthquakes allows us to track these changes on a daily or even hourly time scale. Following years of no seismic velocity changes larger than those due to climatic processes (tenths of a percent), we observed decreases in seismic velocity of >1% coincident with the onset of increased earthquake activity beginning September 23, 2004. These changes are largest near the summit of the volcano, and likely related to shallow deformation as magma first worked its way to the surface. Changes in velocity are often attributed to deformation, especially volumetric strain and the opening or closing of cracks, but also with nonlinear responses to ground shaking and fluid intrusion. We compare velocity changes across the eruption with other available observations, such as deformation (e.g., GPS, tilt, photogrammetry), to better constrain the relationships between velocity change and its possible causes.

  8. Elastic properties of plagioclase aggregates and seismic velocities in the moon

    NASA Technical Reports Server (NTRS)

    Wang, H.; Todd, T.; Richter, D.; Simmons, G.

    1973-01-01

    The compressional velocities of Apollo 16 gabbroic anorthosites in which the cracks have been closed match the seismic velocity of 7 km/sec in the 25 to 65 km depth region of the moon beneath the Imbrium Basin. The intrinsic velocities of plagioclase aggregates indicate that a velocity of 7 km/sec in a highly calcic gabbroic anorthosite is consistent only with a very small pyroxene component. Because mare basalts and gabbroic-anorthosites both have intrinsic velocities of 7 km/sec, the laboratory velocity data do not require a compositional change from basalt to anorthosite at the 25 km discontinuity. The laboratory velocity data only imply that the 25 km seismic discontinuity is one of microcrack density. The physical rather than the chemical or mineralogical state is constrained.

  9. Imaging of 3-D seismic velocity structure of Southern Sumatra region using double difference tomographic method

    NASA Astrophysics Data System (ADS)

    Lestari, Titik; Nugraha, Andri Dian

    2015-04-01

    Southern Sumatra region has a high level of seismicity due to the influence of the subduction system, Sumatra fault, Mentawai fault and stretching zone activities. The seismic activities of Southern Sumatra region are recorded by Meteorological Climatological and Geophysical Agency (MCGA's) Seismograph network. In this study, we used earthquake data catalog compiled by MCGA for 3013 events from 10 seismic stations around Southern Sumatra region for time periods of April 2009 - April 2014 in order to invert for the 3-D seismic velocities structure (Vp, Vs, and Vp/Vs ratio). We applied double-difference seismic tomography method (tomoDD) to determine Vp, Vs and Vp/Vs ratio with hypocenter adjustment. For the inversion procedure, we started from the initial 1-D seismic velocity model of AK135 and constant Vp/Vs of 1.73. The synthetic travel time from source to receiver was calculated using ray pseudo-bending technique, while the main tomographic inversion was applied using LSQR method. The resolution model was evaluated using checkerboard test and Derivative Weigh Sum (DWS). Our preliminary results show low Vp and Vs anomalies region along Bukit Barisan which is may be associated with weak zone of Sumatran fault and migration of partial melted material. Low velocity anomalies at 30-50 km depth in the fore arc region may indicated the hydrous material circulation because the slab dehydration. We detected low seismic seismicity in the fore arc region that may be indicated as seismic gap. It is coincides contact zone of high and low velocity anomalies. And two large earthquakes (Jambi and Mentawai) also occurred at the contact of contrast velocity.

  10. Imaging of 3-D seismic velocity structure of Southern Sumatra region using double difference tomographic method

    SciTech Connect

    Lestari, Titik; Nugraha, Andri Dian

    2015-04-24

    Southern Sumatra region has a high level of seismicity due to the influence of the subduction system, Sumatra fault, Mentawai fault and stretching zone activities. The seismic activities of Southern Sumatra region are recorded by Meteorological Climatological and Geophysical Agency (MCGA’s) Seismograph network. In this study, we used earthquake data catalog compiled by MCGA for 3013 events from 10 seismic stations around Southern Sumatra region for time periods of April 2009 – April 2014 in order to invert for the 3-D seismic velocities structure (Vp, Vs, and Vp/Vs ratio). We applied double-difference seismic tomography method (tomoDD) to determine Vp, Vs and Vp/Vs ratio with hypocenter adjustment. For the inversion procedure, we started from the initial 1-D seismic velocity model of AK135 and constant Vp/Vs of 1.73. The synthetic travel time from source to receiver was calculated using ray pseudo-bending technique, while the main tomographic inversion was applied using LSQR method. The resolution model was evaluated using checkerboard test and Derivative Weigh Sum (DWS). Our preliminary results show low Vp and Vs anomalies region along Bukit Barisan which is may be associated with weak zone of Sumatran fault and migration of partial melted material. Low velocity anomalies at 30-50 km depth in the fore arc region may indicated the hydrous material circulation because the slab dehydration. We detected low seismic seismicity in the fore arc region that may be indicated as seismic gap. It is coincides contact zone of high and low velocity anomalies. And two large earthquakes (Jambi and Mentawai) also occurred at the contact of contrast velocity.

  11. Seismic velocity changes associated with aseismic deformations of a fault stimulated by fluid injection

    NASA Astrophysics Data System (ADS)

    Rivet, Diane; De Barros, Louis; Guglielmi, Yves; Cappa, Frédéric; Castilla, Raymi; Henry, Pierre

    2016-09-01

    Fluid pressure plays an important role in the stability of tectonic faults. However, the in situ mechanical response of faults to fluid pressure variations is still poorly known. To address this question, we performed a fluid injection experiment in a fault zone in shales while monitoring fault movements at the injection source and seismic velocity variations from a near-distance (<10 m) monitoring network. We measured and located the P and S wave velocity perturbations in and around the fault using repetitive active sources. We observed that seismic velocity perturbations dramatically increase above 1.5 MPa of injection pressure. This is consistent with an increase of fluid flow associated with an aseismic dilatant shearing of the fault as shown by numerical modeling. We find that seismic velocity changes are sensitive to both fault opening by fluid invasion and effective stress variations and can be an efficient measurement for monitoring fluid-driven aseismic deformations of faults.

  12. In-situ measurements of seismic velocities in the San Francisco Bay Region; part III

    USGS Publications Warehouse

    Gibbs, James F.; Fumal, Thomas E.; Borcherdt, Roger D.; Roth, Edward F.

    1977-01-01

    Seismic wave velocities (compressional and shear) are important parameters for estimating the seismic response characteristics of various geologic units when subjected to strong earthquake ground shaking. Seismic velocities of various units often show a strong correlation with the amounts of damage following large earthquakes and have been used as a basis for certain types of seismic zonation studies. In the current program seismic velocities have been measured at 59 locations 1n the San Francisco Bay Region. This report is the third in a series of Open-File Reports and describes the in-situ velocity measurements at locations 35-59. At each location seismic travel times are measured in drill holes, normally at 2.5-m intervals to a depth of 30 m. Geologic logs are determined from drill cuttings, undisturbed (cored) samples, and penetrometer samples. The data provide a detailed comparison of geologic and seismic characteristics and provide parameters for estimating strong earthquake ground motions quantitatively at each of the sites. A major emphasis of this program is to obtain a detailed comparison of geologic and seismic data on a regional scale for use in seismic zonation. There is a variety of geologic and seismic data available in the San Francisco Bay Region for use 1n developing the general zoning techniques which can then be applied to other areas. Shear wave velocities 1n near-surface geologic materials are of especial interest for engineering seismology and seismic zonation studies, yet in general, they are difficult to measure because of contamination by compressional waves. A comparison of various in-situ techniques by Warrick (1974) establishes the reliability of the method utilizing a "horizontal traction" source for sites underlain by bay mud and alluvium. Gibbs, and others (1975a) present data from 12 holes and establishes the reliability of the method for sites underlain by a variety of different rock units and suggest extending the measurements to

  13. Multiple plates subducting beneath Colombia, as illuminated by seismicity and velocity from the joint inversion of seismic and gravity data

    NASA Astrophysics Data System (ADS)

    Syracuse, Ellen M.; Maceira, Monica; Prieto, Germán A.; Zhang, Haijiang; Ammon, Charles J.

    2016-06-01

    Subduction beneath the northernmost Andes in Colombia is complex. Based on seismicity distributions, multiple segments of slab appear to be subducting, and arc volcanism ceases north of 5° N. Here, we illuminate the subduction system through hypocentral relocations and Vp and Vs models resulting from the joint inversion of local body wave arrivals, surface wave dispersion measurements, and gravity data. The simultaneous use of multiple data types takes advantage of the differing sensitivities of each data type, resulting in velocity models that have improved resolution at both shallower and deeper depths than would result from traditional travel time tomography alone. The relocated earthquake dataset and velocity model clearly indicate a tear in the Nazca slab at 5° N, corresponding to a 250-km shift in slab seismicity and the termination of arc volcanism. North of this tear, the slab is flat, and it comprises slabs of two sources: the Nazca and Caribbean plates. The Bucaramanga nest, a small region of among the most intense intermediate-depth seismicity globally, is associated with the boundary between these two plates and possibly with a zone of melting or elevated water content, based on reduced Vp and increased Vp/Vs. We also use relocated seismicity to identify two new faults in the South American plate, one related to plate convergence and one highlighted by induced seismicity.

  14. Multiple plates subducting beneath Colombia, as illuminated by seismicity and velocity from the joint inversion of seismic and gravity data

    SciTech Connect

    Syracuse, Ellen M.; Maceira, Monica; Prieto, German A.; Zhang, Haijiang; Ammon, Charles J.

    2016-04-12

    Subduction beneath the northernmost Andes in Colombia is complex. Based on seismicity distributions, multiple segments of slab appear to be subducting, and arc volcanism ceases north of 5° N. Here, we illuminate the subduction system through hypocentral relocations and Vp and Vs models resulting from the joint inversion of local body wave arrivals, surface wave dispersion measurements, and gravity data. The simultaneous use of multiple data types takes advantage of the differing sensitivities of each data type, resulting in velocity models that have improved resolution at both shallower and deeper depths than would result from traditional travel time tomography alone. The relocated earthquake dataset and velocity model clearly indicate a tear in the Nazca slab at 5° N, corresponding to a 250-km shift in slab seismicity and the termination of arc volcanism. North of this tear, the slab is flat, and it comprises slabs of two sources: the Nazca and Caribbean plates. The Bucaramanga nest, a small region of among the most intense intermediate-depth seismicity globally, is associated with the boundary between these two plates and possibly with a zone of melting or elevated water content, based on reduced Vp and increased Vp/Vs. As a result, we also use relocated seismicity to identify two new faults in the South American plate, one related to plate convergence and one highlighted by induced seismicity.

  15. Multiple plates subducting beneath Colombia, as illuminated by seismicity and velocity from the joint inversion of seismic and gravity data

    DOE PAGES

    Syracuse, Ellen M.; Maceira, Monica; Prieto, German A.; ...

    2016-04-12

    Subduction beneath the northernmost Andes in Colombia is complex. Based on seismicity distributions, multiple segments of slab appear to be subducting, and arc volcanism ceases north of 5° N. Here, we illuminate the subduction system through hypocentral relocations and Vp and Vs models resulting from the joint inversion of local body wave arrivals, surface wave dispersion measurements, and gravity data. The simultaneous use of multiple data types takes advantage of the differing sensitivities of each data type, resulting in velocity models that have improved resolution at both shallower and deeper depths than would result from traditional travel time tomography alone.more » The relocated earthquake dataset and velocity model clearly indicate a tear in the Nazca slab at 5° N, corresponding to a 250-km shift in slab seismicity and the termination of arc volcanism. North of this tear, the slab is flat, and it comprises slabs of two sources: the Nazca and Caribbean plates. The Bucaramanga nest, a small region of among the most intense intermediate-depth seismicity globally, is associated with the boundary between these two plates and possibly with a zone of melting or elevated water content, based on reduced Vp and increased Vp/Vs. As a result, we also use relocated seismicity to identify two new faults in the South American plate, one related to plate convergence and one highlighted by induced seismicity.« less

  16. The proportionality between relative plate velocity and seismicity in subduction zones

    NASA Astrophysics Data System (ADS)

    Ide, Satoshi

    2013-09-01

    Maximum earthquake magnitude and the rate of seismic activity apparently differ among subduction zones. This variation is attributed to factors such as subduction zone temperature and stress, and the type of material being subducted. The relative velocity between the downgoing and overriding plates controls their tectonic deformation. It is also thought to correlate with seismicity. Here I use the epidemic type aftershock sequence model to calculate the background seismicity rate--the frequency of seismic events above magnitude 4.5--for 117 sections of subduction zones worldwide, during the past century. I demonstrate a proportionality relationship whereby relative plate velocity correlates positively with seismicity rate. This relationship is prominent in the southwestern Pacific Ocean. However, although seismically active, this region has not experienced a magnitude 9 earthquake since 1900. In contrast, the Cascadia, Nankai, southern Chilean and Alaskan subduction zones exhibit low background seismicity rates, yet have experienced magnitude 9 earthquakes in the past century. Slow slip occurs in many of these regions, implying that slow deformation may aid nucleation of very large earthquakes. The proportionality relationship could be used to assess the seismic risk between two endmembers: active subduction zones that generate moderate earthquakes and quiet subduction zones that generate extremely large earthquakes.

  17. Mesozoic and Cenozoic plate tectonics in the High Arctic: new 2D seismic data and geodynamic models

    NASA Astrophysics Data System (ADS)

    Nikishin, Anatoly; Kazmin, Yuriy; Glumov, Ivan; Petrov, Eugene; Poselov, Viktor; Burov, Evgueni; Gaina, Carmen

    2014-05-01

    Our paper is mainly based on the interpretation of 2D seismic lines, obtained from Arctic-2001 and Arctic-2012 projects. We also analyzed all available open-source data concerning Arctic geology. Three domains are distinguished in the abyssal part of Arctic Ocean: (1) Canada Basin, (2) Lomonosov-Podvodnikov-Alpha-Mendeleev-Nautilus-Chukchi Plateau (LPAMNCP) area, (3) Eurasia Basin. Canada Basin has oceanic and transitional crust of different structure. The formation time of this oceanic basin is probably 134-117 Ma. New seismic data for LPAMNCP area shows numerous rift structures parallel to the Lomonosov Ridge and Mendeleev Ridge. These rift structures are also nearly orthogonal to the Canada Basin spreading axis, and this may indicate either a different mechanism for the formation of the LPAMNCP region and Canada Basin, or a very complicated basin architecture formed by processes we do not yet understand. We also observe at the base of the LPAMNCP area sedimentary cover packages of bright reflectors, they were interpreted as basalt flows probably related to the Cretaceous plume volcanism. Approximate time of the volcanism is about 125 Ma. After this event, the area experienced stretching and transtension as documented by large scale rifting structures. The younger Eurasian Basin has oceanic crust of Eocene to Recent age, and our new seismic data confirms that Gakkel Ridge has typical ultraslow-spreading zone topography. Perhaps, Eurasia Basin crust was partly formed by exhumed and serpentinized mantle. Lomonosov and Alpha-Mendeleev Ridges has typical present-day basin and range topography with Oligocene to Recent faults. It means, that all LPAMNCP area was subjected to regional intra-plate stretching during Neogene to Recent time. We assume, that this intra-plate stretching was related to the Gakkel Ridge extension. We suppose, that the deep-water part of Arctic Ocean was formed during three main stages: (1) Valanginian - Early Aptian: formation of Canada Basin

  18. Preliminary 3d depth migration of a network of 2d seismic lines for fault imaging at a Pyramid Lake, Nevada geothermal prospect

    SciTech Connect

    Frary, R.; Louie, J.; Pullammanappallil, S.; Eisses, A.

    2016-08-01

    Roxanna Frary, John N. Louie, Sathish Pullammanappallil, Amy Eisses, 2011, Preliminary 3d depth migration of a network of 2d seismic lines for fault imaging at a Pyramid Lake, Nevada geothermal prospect: presented at American Geophysical Union Fall Meeting, San Francisco, Dec. 5-9, abstract T13G-07.

  19. Extremal inversion of lunar travel time data. [seismic velocity structure

    NASA Technical Reports Server (NTRS)

    Burkhard, N.; Jackson, D. D.

    1975-01-01

    The tau method, developed by Bessonova et al. (1974), of inversion of travel times is applied to lunar P-wave travel time data to find limits on the velocity structure of the moon. Tau is the singular solution to the Clairaut equation. Models with low-velocity zones, with low-velocity zones at differing depths, and without low-velocity zones, were found to be consistent with data and within the determined limits. Models with and without a discontinuity at about 25-km depth have been found which agree with all travel time data to within two standard deviations. In other words, the existence of the discontinuity and its size and location have not been uniquely resolved. Models with low-velocity channels are also possible.

  20. Joint hypocenter-velocity inversion for the eastern Tennessee seismic zone

    NASA Astrophysics Data System (ADS)

    Vlahovic, Gordana; Powell, Christine A.; Chapman, Martin C.; Sibol, Matthew S.

    1998-03-01

    A joint hypocenter-velocity inversion for the eastern Tennessee seismic zone (ETSZ) has resolved velocity features in basement rock below detached Appalachian thrust sheets. P and S wave arrival times from 492 earthquakes have been inverted for one-(1-D) and three-dimensional (3-D) velocity models to midcrustal depths. The 3-D P and S wave velocity solutions are computed independly and are very similar. In relation to the 1-D model, velocity anomalies range from -8% to +16% in the first layer (upper 5 km) and between ±7% in deeper layers. Prominent velocity anomalies parallel the seismic zone and are consistent from layer to layer. The most persistent anomaly is a low-velocity region that borders the seismic zone to the northwest and is flanked on either side by regions of anomalously high velocity. The New York-Alabama (NY-AL) magnetic lineament coincides with or lies close to the southeast boundary of the prominent velocity low in both the P and S wave velocity images. The spatial coincidence between velocity, gravity, and magnetic gradients suggests that major discontinuities are present in the basement. Relocation in the 3-D velocity model reduced the number of very deep earthquakes (below 20 km) and further accentuated differences in seismogenic properties on either side of the NY-AL lineament. After relocation, most earthquakes occur in a vertically bounded region roughly 30 km wide extending from 4 to 22 km in depth. Most earthquakes occur in regions characterized by either average velocity or small velocity anomalies.

  1. Modelling of a coal seam of the deposit Đurđevik (BiH) by means of 2D reflection seismic imaging

    NASA Astrophysics Data System (ADS)

    Arsenović, Siniša; Urošević, Milovan; Sretenović, Branislav; Cvetkov, Vesna; Životić, Dragana

    2016-06-01

    A low cost 2D reflection seismic survey was used to map the continuity of the main seams as well as the numerous faults at the Đurđevik sub-bituminous coal deposit (BiH). A 24-channel seismic data acquisition system was available for this survey. The natural high reflectivity of the coal seams and a favourable geometry of seismic profiles enabled the identification and correlation of major faults across the area. Rugged terrain presented challenges to both data acquisition and processing. Stacks of acceptable quality were obtained only after the application of surface consistent statics and careful application of multi-channel filtering. A set of recorded 2D lines was interpreted in a 3D environment. Inferred structural elements disrupting the seam continuity were identified and were in agreement with available drilling results and mine workings. The result of this work was used to reduce mining hazards and also to help optimise mine planning.

  2. The distribution of seismic velocities and attenuation in the earth. Ph.D. Thesis

    NASA Technical Reports Server (NTRS)

    Hart, R. S.

    1977-01-01

    Estimates of the radial distribution of seismic velocities and density and of seismic attenuation within the earth are obtained through inversion of body wave, surface wave, and normal mode data. The effect of attenuation related dispersion on gross earth structure, and on the reliability of eigenperiod identifications is discussed. The travel time baseline discrepancies between body waves and free oscillation models are examined and largely resolved.

  3. High-Resolution Seismic Velocity and Attenuation Models of Eastern Tibet and Adjacent Regions (Post Print)

    DTIC Science & Technology

    2012-06-04

    Basin. QLg and QPg models have been determined using a Reverse Two- station/event Method, which shows a high seismic attenuation zone along the...been determined using a Reverse Two-station/event Method, which shows a high seismic attenuation zone along the Kunlun belt. We have also observed...Like Pn and body wave results, low velocity anomalies occur across and within major strike-slip fault zones in the Qiangtang and Songpan-Ganzi

  4. A Vs30-derived Near-surface Seismic Velocity Model

    NASA Astrophysics Data System (ADS)

    Ely, G. P.; Jordan, T. H.; Small, P.; Maechling, P. J.

    2010-12-01

    Shallow material properties, S-wave velocity in particular, strongly influence ground motions, so must be accurately characterized for ground-motion simulations. Available near-surface velocity information generally exceeds that which is accommodated by crustal velocity models, such as current versions of the SCEC Community Velocity Model (CVM-S4) or the Harvard model (CVM-H6). The elevation-referenced CVM-H voxel model introduces rasterization artifacts in the near-surface due to course sample spacing, and sample depth dependence on local topographic elevation. To address these issues, we propose a method to supplement crustal velocity models, in the upper few hundred meters, with a model derived from available maps of Vs30 (the average S-wave velocity down to 30 meters). The method is universally applicable to regions without direct measures of Vs30 by using Vs30 estimates from topographic slope (Wald, et al. 2007). In our current implementation for Southern California, the geology-based Vs30 map of Wills and Clahan (2006) is used within California, and topography-estimated Vs30 is used outside of California. Various formulations for S-wave velocity depth dependence, such as linear spline and polynomial interpolation, are evaluated against the following priorities: (a) capability to represent a wide range of soil and rock velocity profile types; (b) smooth transition to the crustal velocity model; (c) ability to reasonably handle poor spatial correlation of Vs30 and crustal velocity data; (d) simplicity and minimal parameterization; and (e) computational efficiency. The favored model includes cubic and square-root depth dependence, with the model extending to a depth of 350 meters. Model parameters are fit to Boore and Joyner's (1997) generic rock profile as well as CVM-4 soil profiles for the NEHRP soil classification types. P-wave velocity and density are derived from S-wave velocity by the scaling laws of Brocher (2005). Preliminary assessment of the new model

  5. Seismic velocity deviation log: An effective method for evaluating spatial distribution of reservoir pore types

    NASA Astrophysics Data System (ADS)

    Shirmohamadi, Mohamad; Kadkhodaie, Ali; Rahimpour-Bonab, Hossain; Faraji, Mohammad Ali

    2017-04-01

    Velocity deviation log (VDL) is a synthetic log used to determine pore types in reservoir rocks based on a combination of the sonic log with neutron-density logs. The current study proposes a two step approach to create a map of porosity and pore types by integrating the results of petrographic studies, well logs and seismic data. In the first step, velocity deviation log was created from the combination of the sonic log with the neutron-density log. The results allowed identifying negative, zero and positive deviations based on the created synthetic velocity log. Negative velocity deviations (below - 500 m/s) indicate connected or interconnected pores and fractures, while positive deviations (above + 500 m/s) are related to isolated pores. Zero deviations in the range of [- 500 m/s, + 500 m/s] are in good agreement with intercrystalline and microporosities. The results of petrographic studies were used to validate the main pore type derived from velocity deviation log. In the next step, velocity deviation log was estimated from seismic data by using a probabilistic neural network model. For this purpose, the inverted acoustic impedance along with the amplitude based seismic attributes were formulated to VDL. The methodology is illustrated by performing a case study from the Hendijan oilfield, northwestern Persian Gulf. The results of this study show that integration of petrographic, well logs and seismic attributes is an instrumental way for understanding the spatial distribution of main reservoir pore types.

  6. The proportionality between relative plate velocity and seismicity in subduction zones

    NASA Astrophysics Data System (ADS)

    Ide, S.

    2013-12-01

    Seismic activity differs among subduction zones due to various factors such as relative plate velocity, temperature, stress, and subducting materials. Relative plate velocity has a direct control on tectonic deformation and an overall correlation with seismicity has been suggested, as a global average or for large regions. Here I show a positive correlation between relative plate velocity and seismicity by estimating the background seismicity rate for 117 sections of subduction zones worldwide using the epidemic type aftershock sequence (ETAS) model. The background rate is stably estimated even for the period following M9-class earthquakes in Chile and Japan. A prominent proportional relationship is evident in the southwestern Pacific Ocean. Given that M9-class earthquakes occur independently of one another, the lack of M9 earthquakes in the southwestern Pacific Ocean over the last century is difficult to explain by chance. On the other hand, some subduction zones have extremely low background seismicity, and have experienced very large earthquakes. Slow earthquakes have been discovered in many of these quiet zones. Thus, this proportionality relation may be useful in assessing the seismic risk in subduction zones worldwide between two apparently confusing end members: 'active and moderate' and 'quiet and extreme'.

  7. Hemispherical variations in seismic velocity at the top of the Earth's inner core.

    PubMed

    Niu, F; Wen, L

    2001-04-26

    Knowledge of the seismic velocity structure at the top of the Earth's inner core is important for deciphering the physical processes responsible for inner-core growth. Previous global seismic studies have focused on structures found 100 km or deeper within the inner core, with results for the uppermost 100 km available for only isolated regions. Here we present constraints on seismic velocity variations just beneath the inner-core boundary, determined from the difference in travel time between waves reflected at the inner-core boundary and those transmitted through the inner core. We found that these travel-time residuals-observed on both global seismograph stations and several regional seismic networks-are systematically larger, by about 0.8 s, for waves that sample the 'eastern hemisphere' of the inner core (40 degrees E to 180 degrees E) compared to those that sample the 'western hemisphere' (180 degrees W to 40 degrees E). These residuals show no correlation with the angle at which the waves traverse the inner core; this indicates that seismic anisotropy is not strong in this region and that the isotropic seismic velocity of the eastern hemisphere is about 0.8% higher than that of the western hemisphere.

  8. Near-surface velocity structure from borehole and refraction seismic surveys

    SciTech Connect

    Parry, D.; Lawton, D.C.

    1994-12-31

    Seismic refraction and borehole reflection data have been used in conjunction with other geophysical tools to characterize the near-surface geology in the vicinity of a shallow well near Calgary, Alberta. The investigated section is comprised primarily of glacial tills and gravels. Seismic waves generated in the lower gravel units travel as compressional waves up to the till/gravel interface, where they are converted to shear waves upon transmission. Velocity structure from a reverse vertical seismic profile (RVSP) survey agrees closely with that from refraction surveying.

  9. The Salton Seismic Imaging Project: Seismic velocity structure of the Brawley Seismic Zone, Salton Buttes and Geothermal Field, Salton Trough, California

    NASA Astrophysics Data System (ADS)

    Delph, J.; Hole, J. A.; Fuis, G. S.; Stock, J. M.; Rymer, M. J.

    2011-12-01

    The Salton Trough is an active rift in southern California in a step-over between the plate-bounding Imperial and San Andreas Faults. In March 2011, the Salton Seismic Imaging Project (SSIP) investigated the rift's crustal structure by acquiring several seismic refraction and reflection lines. One of the densely sampled refraction lines crosses the northern-most Imperial Valley, perpendicular to the strike-slip faults and parallel to a line of small Quaternary rhyolitic volcanoes. The line crosses the obliquely extensional Brawley Seismic Zone and goes through one of the most geothermally productive areas in the United States. Well logs indicate the valley is filled by several kilometers of late Pliocene-recent lacustrine, fluvial, and shallow marine sediment. The 42-km long seismic line was comprised of eleven 110-460 kg explosive shots and receivers at a 100 m spacing. First arrival travel times were used to build a tomographic seismic velocity image of the upper crust. Velocity in the valley increases smoothly from <2 km/s to >5 km/s, indicating diagenesis and gradational metamorphism of rift sediments at very shallow depth due to an elevated geotherm. The velocity gradient is much smaller in the relatively low velocity (<6 km/s) crystalline basement comprised of recently metamorphosed sediment reaching greenschist to lower amphibolite facies. The depth of this basement is about 4-km below the aseismic region of the valley west of the Brawley Seismic Zone, but rises sharply to ~2 km depth beneath the seismically, geothermally, and volcanically active area of the Brawley Seismic Zone. The basement deepens to the northeast of the active tectonic zone and then is abruptly offset to shallower depth on the northeast side of the valley. This offset may be the subsurficial expression of a paleofault, most likely an extension of the Sand Hills Fault, which bounds the basin to the east. Basement velocity east of the fault is ~5.7 km/s, consistent with the granitic rocks

  10. Variations and healing of the seismic velocity (Beno Gutenberg Medal Lecture)

    NASA Astrophysics Data System (ADS)

    Snieder, Roel

    2016-04-01

    Scattering of waves leads to a complexity of waveforms that is often seen by seismologists as a nuisance. And indeed, the complicated wave paths of multiple scattered waves makes it difficult to use these waves for imaging. Yet, the long wave paths of multiple scattered waves makes these waves an ideal tool for measuring minute velocity changes. This has led to the development of coda wave interferometry as a tool for measuring small velocity changes in the laboratory and with field data. Combined with the use of noise cross correlations - seismic interferometry - this method is even more useful because it follows for a quasi-continuous measurement of velocity changes. I will show examples of detecting velocity changes in the laboratory, the earth's near surface, and in engineered structures. Perhaps surprisingly, the seismic velocity is not constant at all, and varies with the seasons, temperature, precipitation, as the weather does. In addition, the seismic velocity usually drops as a result of deformation. Most of these changes likely occur in the near surface or the region of deformation, and a drawback of using strongly scattered waves is that it is difficult to localize the spatial area of the velocity change. I will present laboratory measurements that show that a certain spatial localization of the velocity change can be achieved. One of the intriguing observations is that after deformation the seismic velocity recovers logarithmically with time. The reason for this particular time-dependence is the presence of healing mechanisms that operate at different time scales. Since this is feature of many physical systems, the logarithmic healing is a widespread behavior and is akin in its generality to the Gutenberg-Richter law.

  11. Monitoring changes in seismic velocity related to an ongoing rapid inflation event at Okmok volcano, Alaska

    USGS Publications Warehouse

    Bennington, Ninfa; Haney, Matt; De Angelis, Silvio; Thurber, Clifford; Freymueller, Jeff

    2015-01-01

    Okmok is one of the most active volcanoes in the Aleutian Arc. In an effort to improve our ability to detect precursory activity leading to eruption at Okmok, we monitor a recent, and possibly ongoing, GPS-inferred rapid inflation event at the volcano using ambient noise interferometry (ANI). Applying this method, we identify changes in seismic velocity outside of Okmok’s caldera, which are related to the hydrologic cycle. Within the caldera, we observe decreases in seismic velocity that are associated with the GPS-inferred rapid inflation event. We also determine temporal changes in waveform decorrelation and show a continual increase in decorrelation rate over the time associated with the rapid inflation event. Themagnitude of relative velocity decreases and decorrelation rate increases are comparable to previous studies at Piton de la Fournaise that associate such changes with increased production of volatiles and/ormagmatic intrusion within the magma reservoir and associated opening of fractures and/or fissures. Notably, the largest decrease in relative velocity occurs along the intrastation path passing nearest to the center of the caldera. This observation, along with equal amplitude relative velocity decreases revealed via analysis of intracaldera autocorrelations, suggests that the inflation sourcemay be located approximately within the center of the caldera and represent recharge of shallow magma storage in this location. Importantly, there is a relative absence of seismicity associated with this and previous rapid inflation events at Okmok. Thus, these ANI results are the first seismic evidence of such rapid inflation at the volcano.

  12. Key elements of regional seismic velocity models for long period ground motion simulations

    USGS Publications Warehouse

    Brocher, T.M.

    2008-01-01

    Regional 3-D seismic velocity models used for broadband strong motion simulations must include compressional-wave velocity (Vp), shear-wave velocity (Vs), intrinsic attenuation (Qp, Qs), and density. Vs and Qs are the most important of these parameters because the strongest ground motions are generated chiefly by shear- and surface-wave arrivals. Because Vp data are more common than Vs data, many researchers first develop a Vp model and convert it to a Vs model. I describe recent empirical relations between Vs, Vp, Qs, Qp, and density that allow velocity models to be rapidly and accurately calculated. ?? Springer Science+Business Media B.V. 2007.

  13. A bayesian approach for determining velocity and uncertainty estimates from seismic cone penetrometer testing or vertical seismic profiling data

    USGS Publications Warehouse

    Pidlisecky, A.; Haines, S.S.

    2011-01-01

    Conventional processing methods for seismic cone penetrometer data present several shortcomings, most notably the absence of a robust velocity model uncertainty estimate. We propose a new seismic cone penetrometer testing (SCPT) data-processing approach that employs Bayesian methods to map measured data errors into quantitative estimates of model uncertainty. We first calculate travel-time differences for all permutations of seismic trace pairs. That is, we cross-correlate each trace at each measurement location with every trace at every other measurement location to determine travel-time differences that are not biased by the choice of any particular reference trace and to thoroughly characterize data error. We calculate a forward operator that accounts for the different ray paths for each measurement location, including refraction at layer boundaries. We then use a Bayesian inversion scheme to obtain the most likely slowness (the reciprocal of velocity) and a distribution of probable slowness values for each model layer. The result is a velocity model that is based on correct ray paths, with uncertainty bounds that are based on the data error. ?? NRC Research Press 2011.

  14. Seismic velocity variation along the Izu-Bonin arc estaimated from traveltime tomography using OBS data

    NASA Astrophysics Data System (ADS)

    Obana, K.; Tamura, Y.; Takahashi, T.; Kodaira, S.

    2014-12-01

    The Izu-Bonin (Ogasawara) arc is an intra-oceanic island arc along the convergent plate boundary between the subducting Pacific and overriding Philippine Sea plates. Recent active seismic studies in the Izu-Bonin arc reveal significant along-arc variations in crustal structure [Kodaira et al., 2007]. The thickness of the arc crust shows a remarkable change between thicker Izu (~30 km) and thinner Bonin (~10 km) arcs. In addition to this, several geological and geophysical contrasts, such as seafloor topography and chemical composition of volcanic rocks, between Izu and Bonin arc have been reported [e.g., Yuasa 1992]. We have conducted earthquake observations using ocean bottom seismographs (OBSs) to reveal seismic velocity structure of the crust and mantle wedge in the Izu-Bonin arc and to investigate origin of the along-arc structure variations. We deployed 40 short-period OBSs in Izu and Bonin area in 2006 and 2009, respectively. The OBS data were processed with seismic data recorded at routine seismic stations on Hachijo-jima, Aoga-shima, and Chichi-jima operated by National Research Institute for Earth Science and Disaster Prevention (NIED). More than 5000 earthquakes were observed during about three-months observation period in each experiment. We conducted three-dimensional seismic tomography using manually picked P- and S-wave arrival time data. The obtained image shows a different seismic velocity structures in the mantle beneath the volcanic front between Izu and Bonin arcs. Low P-wave velocity anomalies in the mantle beneath the volcanic front in the Izu arc are limited at depths deeper than those in the Bonin arc. On the other hand, P-wave velocity in the low velocity anomalies beneath volcanic front in the Bonin arc is slower than that in the Izu arc. These large-scale along-arc structure variations in the mantle could relate to the geological and geophysical contrasts between Izu and Bonin arcs.

  15. Chemical Variations Affect Seismic Velocities Less Than Grain Size Variations

    NASA Astrophysics Data System (ADS)

    de Jong, B. H.; Jacobs, M. H.

    2001-12-01

    It is well known that mantle velocities depend on the ``Magnesium number'' of constituent minerals. According to our recently developed equation of state (Jacobs & Oonk, Calphad 24, 133--147, 2000) this speed varies almost linearly between 6.7422 (Mg2SiO4) and 6.0113 (Fe2SiO4) km/sec at 10 GPa and 1500 K, i.e. a velocity contrast of 730 m/sec, the canonical mantle composition at 400 km depth being 52% Mg2SiO4 in accordance with the estimates by Lee et al. (1998). We have shown experimentally elsewhere that grain size variations of isochemical, equal density, holocrystalline alkali disilicates affect acoustic velocities. These vary at room temperature and ambient pressure between 6.6 km/sec (coarse grained) and 7.7 km/sec (fine grained), a difference of 1100 m/sec, i.e. substantially larger than the above mentioned 730 m/sec for chemical variations. Such differences in grain size occur because of variations in time, temperature, transformation (TTT) conditions to which a material is subjected. Thus velocity variations as observed in the mantle do not necessarily reflect current hottter or colder localities or compositional variations. They more likely reflect different TTT conditions with concomitant fabric variation during subduction.

  16. Seismic Evidence for a Low-Velocity Zone in the Upper Crust Beneath Mount Vesuvius

    NASA Astrophysics Data System (ADS)

    Zollo, A.; Gasparini, P.; Virieux, J.; Le Meur, H.; de Natale, G.; Biella, G.; Boschi, E.; Capuano, P.; de Franco, R.; dell'Aversna, P.; de Matteis, R.; Guerra, I.; Iannaccone, G.; Mirabile, L.; Vilardo, G.

    1996-10-01

    A two-dimensional active seismic experiment was performed on Mount Vesuvius: Explosive charges were set off at three sites, and the seismic signal along a dense line of 82 seismometers was recorded. A high-velocity basement, formed by Mesozoic carbonates, was identified 2 to 3 kilometers beneath the volcano. A slower (P-wave velocity V_P backsimeq 3.4 to 3.8 kilometers per second) and shallower high-velocity zone underlies the central part of the volcano. Large-amplitude late arrivals with a dominant horizontal wave motion and low-frequency content were identified as a P to S phase converted at a depth of about 10 kilometers at the top of a low-velocity zone (V_P < 3 kilometers per second), which might represent a melting zone.

  17. 2D shear wave velocity mapping of the Hartoušov CO2 degassing area in the Cheb Basin, NW Bohemia (Czech Republic), using Multichannel Analysis of Surface Waves

    NASA Astrophysics Data System (ADS)

    Flores Estrella, H.; Henke, M.

    2015-12-01

    For the characterization of the subsurface of the Hartoušov CO2 degassing area in the Cheb Basin, NW Bohemia, Czech Republic several different approaches have been made. However, no active seismic characterization has been presented, nor published. The Multi­channel Analysis of Surface Waves (MASW) offers an useful tool to estimate vertical and horizontal velocity changes of the shallow subsurface. This can correlate to variations on rock elastic properties and/or fluid content, and represents the subsurface-layering.Surface waves were stimulated using a sledgehammer as source, and were measured with 48 vertical geophones with spacing of 1 m and the roll along method with a setup dis­placement of 2 m. Two source offsets, 10 m and 30 m, were used to increase the data quality and the resolution.The analysis of propagation velocities leads to dispersion curves from which 1D shear wave velocity profiles can be inverted. Those will be interpolated to create a 2D ground stiffness map. The measurements were taken in the NW area of the main degassing zone and are partially in the same spot of former investigations, i.e. CO2 concentration and gas flux measurements, electric and gravimetric surveys and continuous seismic noise mea­surements.Changes in the structure of the 2D velocity maps can be explained potentially with the oc­currence of fluid paths and their diffusion in the subsurface or the existence of the Počatky-Plesná fault zone, which position is not fully understood yet or both features in combination.

  18. Imaging seismic velocities for hydrate-bearing sediments using converted waves near Yuan-An Ridge, off southwest Taiwan

    NASA Astrophysics Data System (ADS)

    Cheng, W. B.; Shih, T. Y.; Lin, W. Y.; Wang, T. K.; Liu, C. S.; Wang, Y.

    2014-10-01

    Data from P-waves and from S-waves generated by P-S conversion on reflection from airgun shots recorded along four lines of ocean bottom seismometers were used to construct 2-D velocity sections near the Yuan-An Ridge, off southwest Taiwan. The locations of the ocean bottom seismometers were determined to high accuracy by an inversion based on the shot traveltimes. Traveltime inversion and forward modeling of multicomponent wide-angle seismic data result in detailed P-wave (Vp) and S-wave (Vs) velocities of hydrate-bearing sediment layers. The inversion indicates a relatively high P-wave velocity beneath topographic ridges which represent a series of thrust-cored anticlines develop in the accretionary wedge. S-wave velocities of the sediments over the entire section, down to 400 m below seafloor, range from 320 to 570 ms-1. We suggested the lateral variation in Vp/Vs profiles in the hydrate-affected zones may be related to the migration conduit of gas-rich fluid and a characteristic of hydrate content. We model Vp using equations based on a modification of Wood’s equation to estimate the gas hydrate saturation. The hydrate saturation varies from 5% at the top ∼200 m below the seafloor to 10-15% of pore space close to the bottom simulating reflector (BSR) in the survey area.

  19. Potential Misidentification of Love-Wave Phase Velocity Based on Three-Component Ambient Seismic Noise

    NASA Astrophysics Data System (ADS)

    Xu, Zongbo; Xia, Jianghai; Luo, Yinhe; Cheng, Feng; Pan, Yudi

    2016-04-01

    People have calculated Rayleigh-wave phase velocities from vertical component of ambient seismic noise for several years. Recently, researchers started to extract Love waves from transverse component recordings of ambient noise, where "transverse" is defined as the direction perpendicular to a great-circle path or a line in small scale through observation sensors. Most researches assumed Rayleigh waves could be negligible, but Rayleigh waves can exist in the transverse component when Rayleigh waves propagate in other directions besides radial direction. In study of data acquired in western Junggar Basin near Karamay city, China, after processing the transverse component recordings of ambient noise, we obtain two energy trends, which are distinguished with Rayleigh-wave and Love-wave phase velocities, in the frequency-velocity domain using multichannel analysis of surface waves (MASW). Rayleigh waves could be also extracted from the transverse component data. Because Rayleigh-wave and Love-wave phase velocities are close in high frequencies (>0.1 Hz), two kinds of surface waves might be merged in the frequency-velocity domain. Rayleigh-wave phase velocities may be misidentified as Love-wave phase velocities. To get accurate surface-wave phase velocities from the transverse component data using seismic interferometry in investigating the shallow geology, our results suggest using MASW to calculate real Love-wave phase velocities.

  20. Seismic velocity models for the Denali fault zone along the Richardson Highway, Alaska

    USGS Publications Warehouse

    Brocher, T.M.; Fuis, G.S.; Lutter, W.J.; Christensen, N.I.; Ratchkovski, N.A.

    2004-01-01

    Crustal-scale seismic-velocity models across the Denali fault zone along the Richardson Highway show a 50-km-thick crust, a near vertical fault trace, and a 5-km-wide damage zone associated with the fault near Trans-Alaska Pipeline Pump Station 10, which provided the closest strong ground motion recordings of the 2002 Denali fault earthquake. We compare models, derived from seismic reflection and refraction surveys acquired in 1986 and 1987, to laboratory measurements of seismic velocities for typical metamorphic rocks exposed along the profiles. Our model for the 1986 seismic reflection profile indicates a 5-km-wide low-velocity zone in the upper 1 km of the Denali fault zone, which we interpret as fault gouge. Deeper refractions from our 1987 line image a 40-km wide, 5-km-deep low-velocity zone along the Denali fault and nearby associated fault strands, which we attribute to a composite damage zone along several strands of the Denali fault zone and to the obliquity of the seismic line to the fault zone. Our velocity model and other geophysical data indicate a nearly vertical Denali fault zone to a depth of 30 km. After-shocks of the 2002 Denali fault earthquake and our velocity model provide evidence for a flower structure along the fault zone consisting of faults dipping toward and truncated by the Denali fault. Wide-angle reflections indicate that the crustal thickness beneath the Denali fault is transitional between the 60-km-thick crust beneath the Alaska Range to the south, and the extended, 30-km-thick crust of the Yukon-Tanana terrane to the north.

  1. Investigation of Apparent Seismic Velocity Changes Caused by Microseism Noise Source Variability

    NASA Astrophysics Data System (ADS)

    Volk, M. F.; Bean, C. J.; Lokmer, I.; Craig, D.

    2013-12-01

    Currently there is strong interest in monitoring temporal changes in seismic wave velocity in various geological settings. These settings can range from volcano monitoring to reservoir monitoring amongst others. Green's functions are often used to observe temporal variations in seismic wave velocity as their arrival times contain information about velocity changes. Green's functions are typically retrieved by cross correlating ambient noise recorded at given pair of stations. Theoretically the recorded wavefields used for the cross correlation should be diffuse. For applications in seismic imagery, the background noise sources should be uniformly distributed in space or the wavefield must be highly scattered but neither condition typically occur in nature. However temporal and spatial variations of non-uniformly distributed noise sources may lead to apparent changes in Green's functions which are related to the source not the path. This could lead to a misinterpretation of temporal changes in wave velocity. We track the spatial and temporal distribution of the noise sources using seismic arrays, located in Ireland. It is a good location in which to study these effects, as it is tectonically very quiet and is relatively close to large microseism noise sources in the North Atlantic, allowing a quantification of noise source heterogeneity. The temporal variations in seismic wave velocity are calculated and compared to the temporal and spatial distribution of the microseism noise sources. The initial results show how the direct arrival waveform and the arrival time of the Green's functions correlate with spatial and temporal variability of the microseism noise sources. Under these conditions we also explore the minimum noise trace length required for the Green's functions to converge. We quantify the degree to which apparent velocity variations using direct arrivals are caused by changes in the sources and assess the use of coda wave arrivals in mitigating source

  2. Relationships among seismic velocity, metamorphism, and seismic and aseismic fault slip in the Salton Sea Geothermal Field region

    USGS Publications Warehouse

    McGuire, Jeffrey J.; Lohman, Rowena B.; Catchings, Rufus D.; Rymer, Michael J.; Goldman, Mark R.

    2015-01-01

    The Salton Sea Geothermal Field is one of the most geothermally and seismically active areas in California and presents an opportunity to study the effect of high-temperature metamorphism on the properties of seismogenic faults. The area includes numerous active tectonic faults that have recently been imaged with active source seismic reflection and refraction. We utilize the active source surveys, along with the abundant microseismicity data from a dense borehole seismic network, to image the 3-D variations in seismic velocity in the upper 5 km of the crust. There are strong velocity variations, up to ~30%, that correlate spatially with the distribution of shallow heat flow patterns. The combination of hydrothermal circulation and high-temperature contact metamorphism has significantly altered the shallow sandstone sedimentary layers within the geothermal field to denser, more feldspathic, rock with higher P wave velocity, as is seen in the numerous exploration wells within the field. This alteration appears to have a first-order effect on the frictional stability of shallow faults. In 2005, a large earthquake swarm and deformation event occurred. Analysis of interferometric synthetic aperture radar data and earthquake relocations indicates that the shallow aseismic fault creep that occurred in 2005 was localized on the Kalin fault system that lies just outside the region of high-temperature metamorphism. In contrast, the earthquake swarm, which includes all of the M > 4 earthquakes to have occurred within the Salton Sea Geothermal Field in the last 15 years, ruptured the Main Central Fault (MCF) system that is localized in the heart of the geothermal anomaly. The background microseismicity induced by the geothermal operations is also concentrated in the high-temperature regions in the vicinity of operational wells. However, while this microseismicity occurs over a few kilometer scale region, much of it is clustered in earthquake swarms that last from

  3. 1-D seismic velocity model and hypocenter relocation using double difference method around West Papua region

    SciTech Connect

    Sabtaji, Agung E-mail: agung.sabtaji@bmkg.go.id; Nugraha, Andri Dian

    2015-04-24

    West Papua region has fairly high of seismicity activities due to tectonic setting and many inland faults. In addition, the region has a unique and complex tectonic conditions and this situation lead to high potency of seismic hazard in the region. The precise earthquake hypocenter location is very important, which could provide high quality of earthquake parameter information and the subsurface structure in this region to the society. We conducted 1-D P-wave velocity using earthquake data catalog from BMKG for April, 2009 up to March, 2014 around West Papua region. The obtained 1-D seismic velocity then was used as input for improving hypocenter location using double-difference method. The relocated hypocenter location shows fairly clearly the pattern of intraslab earthquake beneath New Guinea Trench (NGT). The relocated hypocenters related to the inland fault are also observed more focus in location around the fault.

  4. Integration of 2D and 3D reflection seismic data with deep boreholes in the Kevitsa Ni-Cu-PGE deposit, northern Finland

    NASA Astrophysics Data System (ADS)

    Koivisto, Emilia; Malehmir, Alireza; Voipio, Teemu; Wijns, Chris

    2013-04-01

    Kevitsa is a large disseminated sulphide Ni-Cu-PGE deposit hosted by the Kevitsa mafic-ultramafic intrusion in northern Finland and dated as about 2.06 Ga old. The Geological Survey of Finland first discovered the Kevitsa deposit in 1987. Open pit mining by Kevitsa Mining Oy/First Quantum Minerals Ltd. commenced in June 2012. The final pit depth is planned to be 550-600 m. The estimated ore reserves of the Kevitsa intrusion are about 240 million tones (using a nickel cut-off grade of 0.1%). The expected life-of-mine is 20-30 years. More than 400 hundred holes have been drilled in the Kevitsa area, but most are concentrated close to the known deposit and do not provide a comprehensive understanding of the extent of the intrusion. The basal contact of the intrusion is penetrated by only about 30 drill holes, most of which are shallow. A better knowledge of the geometry of the intrusion would provide a framework for near-mine and deep exploration in the area. An exact knowledge on the basal contact of the intrusion would also provide an exploration target for the contact-type mineralization that is often more massive and richer in Ni-Cu. In December 2007, a series of 2D reflection seismic profiles was acquired in the Kevitsa area. It consisted of four connected survey lines between 6 and 11 km long. In 2010, the initial positive results of the 2D seismic survey led Kevitsa Mining Oy/First Quantum Minerals Ltd. to initiate a 3D reflection seismic survey. The 3D seismic survey is limited to the closer vicinity of the known deposit, while the 2D seismic survey was designed to provide a more regional view of the Kevitsa intrusive complex. The main aims of the 2D and 3D seismic surveys were to delineate the shape and extent of the ore-bearing Kevitsa intrusion and the geometry of some of the host rock and surrounding units, and extract information about the larger-scale structures and structures important for mine-planning purposes. The 2D and 3D seismic data were used to

  5. Three-dimensional seismic velocity structure of Mauna Loa and Kilauea volcanoes in Hawaii from local seismic tomography

    USGS Publications Warehouse

    Lin, Guoqing; Shearer, Peter M.; Matoza, Robin S.; Okubo, Paul G.; Amelung, Falk

    2016-01-01

    We present a new three-dimensional seismic velocity model of the crustal and upper mantle structure for Mauna Loa and Kilauea volcanoes in Hawaii. Our model is derived from the first-arrival times of the compressional and shear waves from about 53,000 events on and near the Island of Hawaii between 1992 and 2009 recorded by the Hawaiian Volcano Observatory stations. The Vp model generally agrees with previous studies, showing high-velocity anomalies near the calderas and rift zones and low-velocity anomalies in the fault systems. The most significant difference from previous models is in Vp/Vs structure. The high-Vp and high-Vp/Vs anomalies below Mauna Loa caldera are interpreted as mafic magmatic cumulates. The observed low-Vp and high-Vp/Vs bodies in the Kaoiki seismic zone between 5 and 15 km depth are attributed to the underlying volcaniclastic sediments. The high-Vp and moderate- to low-Vp/Vs anomalies beneath Kilauea caldera can be explained by a combination of different mafic compositions, likely to be olivine-rich gabbro and dunite. The systematically low-Vp and low-Vp/Vs bodies in the southeast flank of Kilauea may be caused by the presence of volatiles. Another difference between this study and previous ones is the improved Vp model resolution in deeper layers, owing to the inclusion of events with large epicentral distances. The new velocity model is used to relocate the seismicity of Mauna Loa and Kilauea for improved absolute locations and ultimately to develop a high-precision earthquake catalog using waveform cross-correlation data.

  6. InSight detection of a Lithospheric Low Seismic Velocity Zone in Mars

    NASA Astrophysics Data System (ADS)

    Zheng, Y.; Nimmo, F.; Lay, T.

    2014-12-01

    Most seismological models for the interior of Mars lack an upper mantle low velocity zone. However, there is expected to be a large thermal gradient across the stagnant conductive lid (lithosphere) of Mars. This gradient should tend to decrease elastic wave velocities with increasing depth, with this effect dominating the opposing tendency caused by increasing pressure with depth because Mars has low gravity. An upper mantle lithosphere with a low velocity zone (LVZ) beneath a thin high velocity "seismic lid" is thus predicted. The upcoming NASA InSight mission includes a three-component seismometer, which should provide the first opportunity to directly detect any lithospheric LVZ in Mars. Seismic wavefields expected for Mars mantle velocity structures with or without a strong LVZ are very distinct and may be distinguished by observing a modest number of seismic sources at different epicentral ranges. The LVZ models predict shadow zones for high-frequency seismic body wave phases such as P, S, PP and SS, etc. The most diagnostic waves that can be used to evaluate presence of a lithospheric LVZ given a single seismometer are intermediate period surface waves, which travel along the great circle from a seismic source to the seismometer along both minor- and (if the source is large enough) major-arc directions. An LVZ produces distinctive dispersion, with a Rayleigh wave Airy phase around 100 s period and very different surface wave seismograms compared to a model with no LVZ. Even a single observation of long-period surface waves from a known range can be diagnostic of the lithospheric structure. Establishing the existence of an LVZ has major implications for thermal evolution, volatile content and internal dynamics of the planet.

  7. Using seismically constrained magnetotelluric inversion to recover velocity structure in the shallow lithosphere

    NASA Astrophysics Data System (ADS)

    Moorkamp, M.; Fishwick, S.; Jones, A. G.

    2015-12-01

    Typical surface wave tomography can recover well the velocity structure of the upper mantle in the depth range between 70-200km. For a successful inversion, we have to constrain the crustal structure and assess the impact on the resulting models. In addition,we often observe potentially interesting features in the uppermost lithosphere which are poorly resolved and thus their interpretationhas to be approached with great care.We are currently developing a seismically constrained magnetotelluric (MT) inversion approach with the aim of better recovering the lithospheric properties (and thus seismic velocities) in these problematic areas. We perform a 3D MT inversion constrained by a fixed seismic velocity model from surface wave tomography. In order to avoid strong bias, we only utilize information on structural boundaries to combine these two methods. Within the region that is well resolved by both methods, we can then extract a velocity-conductivity relationship. By translating the conductivitiesretrieved from MT into velocities in areas where the velocity model is poorly resolved, we can generate an updated velocity model and test what impactthe updated velocities have on the predicted data.We test this new approach using a MT dataset acquired in central Botswana over the Okwa terrane and the adjacent Kaapvaal and Zimbabwe Cratons togetherwith a tomographic models for the region. Here, both datasets have previously been used to constrain lithospheric structure and show some similarities.We carefully asses the validity of our results by comparing with observations and petrophysical predictions for the conductivity-velocity relationship.

  8. Effects of fluid pressures to the seismic velocity of crustal rocks

    NASA Astrophysics Data System (ADS)

    Harada, Y.; Katayama, I.

    2012-12-01

    Introduction Water of the earth interior is mainly supplied at the subduction zone and has important role on seismic activity and volcanism in island arc. It is suggested that slow slip events and tremors occurring at this region are related to water (e.g., Obara, 2000). Based on the seismic tomography beneath Kanto district, high Poisson's ratio area (~0.337) was observed and suggested weak seismic coupling at plate interface (Kamiya and Kobayashi, 2000). Similar high Poisson's ratio is detected beneath Tonankai and Shikoku district, exceeding 0.3. Those regions correspond to the plate boundary generating slow slip events or tremors (Kodaira et al., 2004 ; Shelly et al., 2006). Because relatively young oceanic plates are subducting in districts from Kanto to Sikoku, antigorite which Poisson's ratio is ~0.29 may exist stably in those areas. In this case, the observed high Poisson's ratio requires excess pore fluids in addition to the serpentinized mantle. In order to clarify geometry and the abundance of water, we investigate seismic velocity of crustal rocks under high confining pressure and pore fluid pressure. Experimental methods For the measurement of seismic velocity, we used the hydraulic pressure vessel in Hiroshima University, in which seismic velocity was calculated by using pulse echo method. We used the Aji granite as a test sample, which was prepared into a cylindrical shape with 20 mm diameter and 5-10 mm length. The top and bottom of sample were polished mirror surfaces within 0.001 mm difference. We measured seismic velocity under dry and wet conditions. In the later case, distilled water is supplied into the sample with pore pressure up to 100 MPa, and we also measured permeable time of water at Pc = 20 MPa, Pp = 0 MPa and Pc =40 MPa, Pp =20 MPa. Results and discussion Under dry experiments, seismic velocities of granite were measured up to confining pressure as high as 200 MPa. Calculated velocities were Vp = 5.900 km/s, Vs = 3.478 km/s at

  9. Evidence of Velocity Variations During the Recent Mt. Etna Eruptive Activity Detected by Temporal Seismic Tomography

    NASA Astrophysics Data System (ADS)

    Barberi, G.; Zhang, H.; Cocina, O.; Patanè, D.; Thurber, C. H.

    2005-12-01

    After nearly 10 years without any major flank eruption, volcanic activity resumed at Mt. Etna on July 17, 2001, giving rise to the first of the two most striking flank eruptions on this volcano in recent times. Fifteen months after the end (August 09, 2001) of this eruptive episode, a new eruption started abruptly on October 26, 2002 with only a few hours of premonitory seismicity accompanying the opening of eruptive fissures along a bi-radial direction. Since the end of this last eruption (January 2003), a period of weak volcanic activity occurred. On September 7, 2004 a new eruption occurred along a WNW-ESE to NW-SE oriented fracture system at the base of the South East summit crater. Compared to the previous two flank eruptions, the 2004 eruption did not have any measurable short-period seismicity and deformation variations. Since 2001, Mt. Etna is well covered by the INGV-CT permanent network and some temporary networks. This provides a unique opportunity to investigate seismic velocity variations before, during and after the three most recent eruptions. Characterizing spatial and temporal variations in seismic velocity in detail will yield a better understanding of the complex plumbing system beneath Mt. Etna and the triggering mechanisms for each eruption. The conventional way to detect temporal velocity changes is to separately invert velocity models for each data set and then examine their differences. This may, however, cause some artifacts in the velocity changes due to different data quality and distribution. Here we present a true temporal seismic tomography algorithm by constraining velocity models for different periods through a temporal smoothing operator. This technique considers the fact that the main features of the velocity models for different periods are similar. The temporal seismic tomography algorithm is based on the double-difference tomography code tomoDD that uses both absolute and differential arrival times to simultaneously determine

  10. Group velocity tomography of the upper crust in the eastern Tennessee seismic zone from ambient noise data

    NASA Astrophysics Data System (ADS)

    Brandmayr, Enrico; Kuponiyi, Ayodeji Paul; Arroucau, Pierre; Vlahovic, Gordana

    2016-10-01

    The eastern Tennessee seismic zone (ETSZ) is the second most seismically active area in the central and eastern United States after the New Madrid seismic zone, but the relatively weak seismicity and the absence of correlation between the seismicity distribution and the surface geology make its seismogenic potential controversial. In this work we investigate the structure of the upper crust in the ETSZ by means of group velocity tomography maps from seismic noise data. Results show that the seismic activity is associated with a relatively low velocity anomaly mainly located in one or more basement blocks. These blocks, bounded to the NW by the NY-AL lineament and to the SE by the Clingman lineaments, are buried beneath low velocity strata consistent with the presence of a relatively thick sedimentary cover. The imaged low velocity anomaly migrates towards the SE at increasing periods, suggesting a possible SE dipping weak structure where most of the seismic activity takes place. The correlation between the NY-AL magnetic signature and the position of the seismic velocity anomalies supports the interpretation of the low velocity zone as a major basement fault projected to the surface as the NY-AL magnetic lineaments. The fault juxtaposes Granite-Rhyolite basement to the NW with Grenville southern Appalachian basement to the SE.

  11. Precursory changes in seismic velocity for the spectrum of earthquake failure modes

    NASA Astrophysics Data System (ADS)

    Scuderi, M. M.; Marone, C.; Tinti, E.; di Stefano, G.; Collettini, C.

    2016-09-01

    Temporal changes in seismic velocity during the earthquake cycle have the potential to illuminate physical processes associated with fault weakening and connections between the range of fault slip behaviours including slow earthquakes, tremor and low-frequency earthquakes. Laboratory and theoretical studies predict changes in seismic velocity before earthquake failure; however, tectonic faults fail in a spectrum of modes and little is known about precursors for those modes. Here we show that precursory changes of wave speed occur in laboratory faults for the complete spectrum of failure modes observed for tectonic faults. We systematically altered the stiffness of the loading system to reproduce the transition from slow to fast stick-slip and monitored ultrasonic wave speed during frictional sliding. We find systematic variations of elastic properties during the seismic cycle for both slow and fast earthquakes indicating similar physical mechanisms during rupture nucleation. Our data show that accelerated fault creep causes reduction of seismic velocity and elastic moduli during the preparatory phase preceding failure, which suggests that real-time monitoring of active faults may be a means to detect earthquake precursors.

  12. Density and seismic velocity of hydrous melts under crustal and upper mantle conditions

    NASA Astrophysics Data System (ADS)

    Ueki, Kenta; Iwamori, Hikaru

    2016-05-01

    We present a new model for calculating the density of hydrous silicate melts as a function of P, T, H2O concentration, and melt composition. We optimize VPr,Tr, ∂V/∂T, ∂V/∂P, ∂V2/∂T∂P, and K' of H2O end-member components in hydrous silicate melts, as well as K' of anhydrous silicate melts, using previously reported experimental results. The parameter set for H2O end-member component in silicate melt optimized in this study is internally consistent with the parameter values for the properties of anhydrous silicate melt reported by Lange and Carmichael (1987, 1990). The model calculation developed in this study reproduces the experimentally determined densities of various hydrous melts, and can be used to calculate the relationships between pressures, temperatures, and H2O concentrations of various hydrous melts from ultramafic to felsic compositions at pressures of 0-4.29 GPa. Using the new parameter set, we investigate the effects of H2O content on the seismic velocity of hydrous melts, as well as seismic velocities in partially molten regions of subduction zones. The results show that water content in silicate melt plays a key role in determining seismic velocity structure, and therefore must be taken into account when interpreting seismic tomography.

  13. Precursory changes in seismic velocity for the spectrum of earthquake failure modes.

    PubMed

    Scuderi, M M; Marone, C; Tinti, E; Di Stefano, G; Collettini, C

    2016-09-01

    Temporal changes in seismic velocity during the earthquake cycle have the potential to illuminate physical processes associated with fault weakening and connections between the range of fault slip behaviors including slow earthquakes, tremor and low frequency earthquakes1. Laboratory and theoretical studies predict changes in seismic velocity prior to earthquake failure2, however tectonic faults fail in a spectrum of modes and little is known about precursors for those modes3. Here we show that precursory changes of wave speed occur in laboratory faults for the complete spectrum of failure modes observed for tectonic faults. We systematically altered the stiffness of the loading system to reproduce the transition from slow to fast stick-slip and monitored ultrasonic wave speed during frictional sliding. We find systematic variations of elastic properties during the seismic cycle for both slow and fast earthquakes indicating similar physical mechanisms during rupture nucleation. Our data show that accelerated fault creep causes reduction of seismic velocity and elastic moduli during the preparatory phase preceding failure, which suggests that real time monitoring of active faults may be a means to detect earthquake precursors.

  14. Precursory changes in seismic velocity for the spectrum of earthquake failure modes

    PubMed Central

    Scuderi, M.M.; Marone, C.; Tinti, E.; Di Stefano, G.; Collettini, C.

    2016-01-01

    Temporal changes in seismic velocity during the earthquake cycle have the potential to illuminate physical processes associated with fault weakening and connections between the range of fault slip behaviors including slow earthquakes, tremor and low frequency earthquakes1. Laboratory and theoretical studies predict changes in seismic velocity prior to earthquake failure2, however tectonic faults fail in a spectrum of modes and little is known about precursors for those modes3. Here we show that precursory changes of wave speed occur in laboratory faults for the complete spectrum of failure modes observed for tectonic faults. We systematically altered the stiffness of the loading system to reproduce the transition from slow to fast stick-slip and monitored ultrasonic wave speed during frictional sliding. We find systematic variations of elastic properties during the seismic cycle for both slow and fast earthquakes indicating similar physical mechanisms during rupture nucleation. Our data show that accelerated fault creep causes reduction of seismic velocity and elastic moduli during the preparatory phase preceding failure, which suggests that real time monitoring of active faults may be a means to detect earthquake precursors. PMID:27597879

  15. Contrasting behavior between dispersive seismic velocity and attenuation: advantages in subsoil characterization.

    PubMed

    Zhubayev, Alimzhan; Ghose, Ranajit

    2012-02-01

    A careful look into the pertinent models of poroelasticity reveals that in water-saturated sediments or soils, the seismic (P and S wave) velocity dispersion and attenuation in the low field-seismic frequency band (20-200 Hz) have a contrasting behavior in the porosity-permeability domain. Taking advantage of this nearly orthogonal behavior, a new approach has been proposed, which leads to unique estimates of both porosity and permeability simultaneously. Through realistic numerical tests, the effect of maximum frequency content in data and the integration of P and S waves on the accuracy and robustness of the estimates are demonstrated.

  16. Seismic wave velocity of rocks in the Oman ophiolite: constraints for petrological structure of oceanic crust

    NASA Astrophysics Data System (ADS)

    Saito, S.; Ishikawa, M.; Shibata, S.; Akizuki, R.; Arima, M.; Tatsumi, Y.; Arai, S.

    2010-12-01

    Evaluation of rock velocities and comparison with velocity profiles defined by seismic refraction experiments are a crucial approach for understanding the petrological structure of the crust. In this study, we calculated the seismic wave velocities of various types of rocks from the Oman ophiolite in order to constrain a petrological structure of the oceanic crust. Christensen & Smewing (1981, JGR) have reported experimental elastic velocities of rocks from the Oman ophiolite under oceanic crust-mantle conditions (6-430 MPa). However, in their relatively low-pressure experiments, internal pore-spaces might affect the velocity and resulted in lower values than the intrinsic velocity of sample. In this study we calculated the velocities of samples based on their modal proportions and chemical compositions of mineral constituents. Our calculated velocities represent the ‘pore-space-free’ intrinsic velocities of the sample. We calculated seismic velocities of rocks from the Oman ophiolite including pillow lavas, dolerites, plagiogranites, gabbros and peridotites at high-pressure-temperature conditions with an Excel macro (Hacker & Avers 2004, G-cubed). The minerals used for calculations for pillow lavas, dolerites and plagiogranites were Qtz, Pl, Prh, Pmp, Chl, Ep, Act, Hbl, Cpx and Mag. Pl, Hbl, Cpx, Opx and Ol were used for the calculations for gabbros and peridotites. Assuming thermal gradient of 20° C/km and pressure gradient of 25 MPa/km, the velocities were calculated in the ranges from the atmospheric pressure (0° C) to 200 MPa (160° C). The calculation yielded P-wave velocities (Vp) of 6.5-6.7 km/s for the pillow lavas, 6.6-6.8 km/s for the dolerites, 6.1-6.3 km/s for the plagiogranites, 6.9-7.5 km/s for the gabbros and 8.1-8.2 km/s for the peridotites. On the other hand, experimental results reported by Christensen & Smewing (1981, JGR) were 4.5-5.9 km/s for the pillow lavas, 5.5-6.3 km/s for the dolerites, 6.1-6.3 km/s for the plagiogranites, 6

  17. Three-dimensional shear velocity anisotropic model of Piton de la Fournaise Volcano (La Réunion Island) from ambient seismic noise

    NASA Astrophysics Data System (ADS)

    Mordret, Aurélien; Rivet, Diane; Landès, Matthieu; Shapiro, Nikolaï M.

    2015-01-01

    We cross correlate 4 years of seismic noise from the seismic network of Piton de la Fournaise Volcano (La Réunion Island) to measure the group velocity dispersion curves of Rayleigh and Love waves. We average measurements from vertical and radial components to obtain 577 Rayleigh wave dispersion curves. The transverse components provided 395 Love wave dispersion curves. We regionalize the group velocities measurements into 2-D velocity maps between 0.4 and 8 s. Finally, we locally inverted these maps for a pseudo 3-D anisotropic shear-velocity model down to 3 km below the sea level using a Neighborhood Algorithm. The 3-D isotropic shear-wave model shows three distinct high-velocity anomalies surrounded by a low-velocity ring. The anomaly located below the present "Plaine des Sables" could be related to an old intrusive body at the location of the former volcanic center before it migrated toward its present location. The second high-velocity body located below the summit of the volcano likely corresponds to the actual preferential dyke intrusion zone as highlighted by the seismicity. The third high-velocity anomaly located below the "Grandes Pentes" and the "Grand Brûlé" areas and is an imprint of the solidified magma chamber of the dismantled "Les Alizés" Volcano. Radial anisotropy shows two main anomalies: positive anisotropy above sea level highlighting the recent edifice of Piton de la Fournaise with an accumulation of horizontal lava flows and the second one below the sea level with a negative anisotropy corresponding to the ancient edifice of Piton de la Fournaise dominated by intrusions of vertical dykes.

  18. Modeling continuous seismic velocity changes due to ground shaking in Chile

    NASA Astrophysics Data System (ADS)

    Gassenmeier, Martina; Richter, Tom; Sens-Schönfelder, Christoph; Korn, Michael; Tilmann, Frederik

    2015-04-01

    In order to investigate temporal seismic velocity changes due to earthquake related processes and environmental forcing, we analyze 8 years of ambient seismic noise recorded by the Integrated Plate Boundary Observatory Chile (IPOC) network in northern Chile between 18° and 25° S. The Mw 7.7 Tocopilla earthquake in 2007 and the Mw 8.1 Iquique earthquake in 2014 as well as numerous smaller events occurred in this area. By autocorrelation of the ambient seismic noise field, approximations of the Green's functions are retrieved. The recovered function represents backscattered or multiply scattered energy from the immediate neighborhood of the station. To detect relative changes of the seismic velocities we apply the stretching method, which compares individual autocorrelation functions to stretched or compressed versions of a long term averaged reference autocorrelation function. We use time windows in the coda of the autocorrelations, that contain scattered waves which are highly sensitive to minute changes in the velocity. At station PATCX we observe seasonal changes in seismic velocity as well as temporary velocity reductions in the frequency range of 4-6 Hz. The seasonal changes can be attributed to thermal stress changes in the subsurface related to variations of the atmospheric temperature. This effect can be modeled well by a sine curve and is subtracted for further analysis of short term variations. Temporary velocity reductions occur at the time of ground shaking usually caused by earthquakes and are followed by a recovery. We present an empirical model that describes the seismic velocity variations based on continuous observations of the local ground acceleration. Our hypothesis is that not only the shaking of earthquakes provokes velocity drops, but any small vibrations continuously induce minor velocity variations that are immediately compensated by healing in the steady state. We show that the shaking effect is accumulated over time and best described by

  19. Multicomponent, 3-D, and High-Resolution 2-D Seismic Characterization of Gas Hydrate Study Sites in the Gulf of Mexico

    NASA Astrophysics Data System (ADS)

    Haines, S. S.; Hart, P. E.; Ruppel, C. D.; Collett, T. S.; Shedd, W.; Lee, M. W.; Miller, J.

    2012-12-01

    High saturations of gas hydrates have been identified within coarse-grained sediments in the Green Canyon 955 and Walker Ridge 313 lease blocks of the deepwater northern Gulf of Mexico. The thickness, lateral extent, and hydrate saturations in these deposits are constrained by geological and geophysical data and state-of-the-art logging-while-drilling information obtained in multiple boreholes at each site during a 2009 expedition. Presently lacking are multicomponent seismic data that can provide a thorough understanding of the in-situ compressional and shear seismic properties of the hydrate-bearing sediments. Such data may represent an important tool for future characterization of gas hydrate resources. To address this data gap, the U.S. Geological Survey, the U.S. Department of Energy, and the Bureau of Ocean Energy Management will collaborate on a 20-day research expedition to acquire wide-angle ocean bottom seismometer and high-resolution vertical incidence 2-D seismic data at the study sites. In preparation for this mid-2013 expedition, we have analyzed existing industry 3-D seismic data, along with numerically modeled multicomponent data. The 3-D seismic data allow us to identify and rank specific survey targets and can be combined with the numerical modeling results to determine optimal survey line orientation and acquisition parameters. Together, these data also provide a more thorough understanding of the gas hydrate systems at these two sites.

  20. Seismological implications of a lithospheric low seismic velocity zone in Mars

    NASA Astrophysics Data System (ADS)

    Zheng, Yingcai; Nimmo, Francis; Lay, Thorne

    2015-03-01

    Most seismological models for the interior of Mars lack an upper mantle low velocity zone. However, there is expected to be a large thermal gradient across the stagnant conductive lid (lithosphere) of Mars. This gradient should tend to decrease elastic wave velocities with increasing depth, with this effect dominating the opposing tendency caused by increasing pressure with depth because Mars has low gravity. An upper mantle lithosphere with a low velocity zone (LVZ) beneath a thin high velocity "seismic lid" is thus predicted. The upcoming NASA InSight mission includes a three-component seismometer, which should provide the first opportunity to directly detect any lithospheric LVZ in Mars. Seismic wavefields expected for Mars mantle velocity structures with or without a strong LVZ are very distinct. The LVZ models predict shadow zones for high-frequency seismic body wave phases such as P, S, PP and SS, etc. The most diagnostic waves that can be used to evaluate presence of a lithospheric LVZ given a single seismometer are intermediate-period global surface waves, which travel along the great circle from a seismic source to the seismometer. An LVZ produces distinctive dispersion, with a Rayleigh wave Airy phase around 100 s period and very different surface wave seismograms compared to a model with no LVZ. Even a single observation of long-period surface waves from a known range can be diagnostic of the lithospheric structure. Establishing the existence of an LVZ has major implications for thermal evolution, volatile content and internal dynamics of the planet.

  1. Seismic evidence for a wide-spread low velocity layer atop the 410-km discontinuity

    NASA Astrophysics Data System (ADS)

    Tauzin, B.; Debayle, E.; Wittlinger, G.

    2009-12-01

    The origin of a low seismic-velocity layer observed in a few regions in the world atop the upper boundary of the mantle transition zone (the 410-km seismic discontinuity) is debated. It has been attributed to the dehydration of subductions, the dehydration of water-bearing silicate beneath continental platforms in the vicinity of mantle plumes, or to dehydration-induced partial melting of ascending ambient mantle rising out of a high-water-solubility transition zone. These interpretations suggest the effect of water which reduces the solidus of mantle silicate rocks and favors partial melting. We present global multiple frequency observations of P-to-S receiver functions indicating that this low velocity layer is actually a wide-spread feature of the upper mantle. Its location is uncorrelated with any tectonic or geodynamic environment. The estimated layer thickness varies over short lateral wavelengths (~200 km) in a range 30 to 100 km. This complexity suggests a compositional origin with a lens-type lateral extension. Dehydration in the vicinity of subductions or mantle plumes cannot solely explain the observed layer implantation. (A) Synthetic receiver functions (RFs) obtained at four lower corner periods for different thicknesses of a low velocity layer (LVL) atop the "410". Steep downward increases of seismic velocities (e.g. the "410") show up as positive (white) amplitudes on the RFs. Steep downward velocity decreases (e.g. the top of the LVL) show up as negative (black) amplitudes. (B) Multiple-frequency RFs obtained at 42 seismic stations after alignment on the "410" waveform. The "410" waveform has a positive amplitude and is colored in white. Under these stations, the top of a LVL is visible. It shows up as a negative (black) amplitude and is emphasized with the small white crosses. The RFs have been ordered by increasing LVL thickness. (C) Synthetic RFs computed using the same LVL thickness distribution as observed on the data.

  2. Aspect Controls on Bedrock Fracturing and Seismic Velocity within the Boulder Creek Critical Zone Observatory

    NASA Astrophysics Data System (ADS)

    Bandler, A.; Magill, C.; Hendricks, S.; Singha, K.

    2015-12-01

    We investigate the controls of slope aspect on groundwater flow and geomorphic weathering within the Boulder Creek Critical Zone Observatory by studying the orientation and density of bedrock fracturing. Based on a series of seismic refraction surveys, we compare the seismic velocities and anisotropy of the subsurface soil and regolith with the distribution of fractures observed in 7 geophysical borehole logs. Conflicting hypotheses exist as to whether bedrock fracturing, and thus hydraulic conductivity, is controlled more by the regional tectonic stress field or by slope aspect. We examine bedrock fracturing on north- and south-facing slopes via the relationship between fracture orientation and seismic velocity, and find that our south-facing slope demonstrates pronounced seismic anisotropy, with velocities of up to 2,000 m/s in the E-W direction, and approximately 1,000 m/s in the N-S direction. By contrast, the north-facing aspect demonstrates no significant anisotropy, with velocities ranging from approximately 800-1,500 m/s. Similarly, borehole logs show conjugate sets of fractures on south-facing slopes striking in a general E-W direction, while north-facing borehole data reveal a high density of fracturing with less pronounced directional dependence. Based on current models of hillslope weathering, we interpret the slower and more isotropic velocities of the north-facing slope to be a more random orientation of fractures, caused primarily by more intense weathering processes. On the south-facing slope, we interpret the conjugate fracture sets and pronounced anisotropy to be fracturing resulting from tectonic stress. Assuming that both slopes experience similar tectonic stress, results suggest that slope aspect controls weathering and groundwater flow, and north-facing slopes demonstrate a more advanced state of weathering.

  3. Seismic dynamic monitoring in CO2 flooding based on characterization of frequency-dependent velocity factor

    NASA Astrophysics Data System (ADS)

    Zhang, Jun-Hua; Li, Jun; Xiao, Wen; Tan, Ming-You; Zhang, Yun-Ying; Cui, Shi-Ling; Qu, Zhi-Peng

    2016-06-01

    The phase velocity of seismic waves varies with the propagation frequency, and thus frequency-dependent phenomena appear when CO2 gas is injected into a reservoir. By dynamically considering these phenomena with reservoir conditions it is thus feasible to extract the frequency-dependent velocity factor with the aim of monitoring changes in the reservoir both before and after CO2 injection. In the paper, we derive a quantitative expression for the frequency-dependent factor based on the Robinson seismic convolution model. In addition, an inversion equation with a frequency-dependent velocity factor is constructed, and a procedure is implemented using the following four processing steps: decomposition of the spectrum by generalized S transform, wavelet extraction of cross-well seismic traces, spectrum equalization processing, and an extraction method for frequency-dependent velocity factor based on the damped least-square algorithm. An attenuation layered model is then established based on changes in the Q value of the viscoelastic medium, and spectra of migration profiles from forward modeling are obtained and analyzed. Frequency-dependent factors are extracted and compared, and the effectiveness of the method is then verified using a synthetic data. The frequency-dependent velocity factor is finally applied to target processing and oil displacement monitoring based on real seismic data obtained before and after CO2 injection in the G89 well block within Shengli oilfield. Profiles and slices of the frequency-dependent factor determine its ability to indicate differences in CO2 flooding, and the predicting results are highly consistent with those of practical investigations within the well block.

  4. Seismic investigation of gas hydrates in the Gulf of Mexico: 2013 multi-component and high-resolution 2D acquisition at GC955 and WR313

    USGS Publications Warehouse

    Haines, Seth S.; Hart, Patrick E.; Shedd, William W.; Frye, Matthew

    2014-01-01

    The U.S. Geological Survey led a seismic acquisition cruise at Green Canyon 955 (GC955) and Walker Ridge 313 (WR313) in the Gulf of Mexico from April 18 to May 3, 2013, acquiring multicomponent and high-resolution 2D seismic data. GC955 and WR313 are established, world-class study sites where high gas hydrate saturations exist within reservoir-grade sands in this long-established petroleum province. Logging-while-drilling (LWD) data acquired in 2009 by the Gulf of Mexico Gas Hydrates Joint Industry Project provide detailed characterization at the borehole locations, and industry seismic data provide regional- and local-scale structural and stratigraphic characterization. Significant remaining questions regarding lithology and hydrate saturation between and away from the boreholes spurred new geophysical data acquisition at these sites. The goals of our 2013 surveys were to (1) achieve improved imaging and characterization at these sites and (2) refine geophysical methods for gas hydrate characterization in other locations. In the area of GC955 we deployed 21 ocean-bottom seismometers (OBS) and acquired approximately 400 km of high-resolution 2D streamer seismic data in a grid with line spacing as small as 50 m and along radial lines that provide source offsets up to 10 km and diverse azimuths for the OBS. In the area of WR313 we deployed 25 OBS and acquired approximately 450 km of streamer seismic data in a grid pattern with line spacing as small as 250 m and along radial lines that provide source offsets up to 10 km for the OBS. These new data afford at least five times better resolution of the structural and stratigraphic features of interest at the sites and enable considerably improved characterization of lithology and the gas and gas hydrate systems. Our recent survey represents a unique application of dedicated geophysical data to the characterization of confirmed reservoir-grade gas hydrate accumulations.

  5. Three Dimensional Seismic Velocity Structure of the Subducted Pacific Slab Beneath NE Japan

    NASA Astrophysics Data System (ADS)

    Tsuji, Y.; Nakajima, J.; Okada, T.; Matsuzawa, T.; Hasegawa, A.

    2006-12-01

    The occurrence of earthquakes in the subducting slab is an enigma because the fact that lithostatic pressure at such depths appears to be too high for any brittle fracture. Dehydration embrittlement has been proposed as a possible mechanism for triggering intraslab earthquakes. It is accepted that the slab is hydrated prior to subduction principally through infiltration of seawater via normal or transform faulting [e.g. Kirby et al., 1996] and/or through hot-spot magmatism [Seno and Yamanaka, 1996]. During subduction, the fluids released by dehydration reactions induce in situ mechanical instability and brittle deformation by increasing pore pressure. Mishra and Zhao [2004] revealed the existence of low-velocity zone around the hypocenter of the 2003 Miyagi- Oki intraslab earthquake (M7.1). Nakajima and Hasegawa [2006] detected a linear alignment of seismicity and a narrow low-velocity zone along it within the Pacific slab beneath Kanto, Japan. These results suggest that the occurrence of intraslab earthquakes is closely associated with the heterogeneous structure in the subducted slab. This study is the first attempt to investigate 3D seismic velocity structure in the subducted Pacific slab for the entire NE Japan. A detailed investigation of heterogeneous structure is essential to understand the mechanism for triggering intraslab earthquake. We apply the Double-Difference Tomogaphy method (Zhang and Thurber, 2003) to arrival-time data of 208,026 and 142,259 P and S waves, respectively, obtained from 3131 earthquakes that occurred from October 1997 to March 2006. The total number of stations used in this study is 206. We adopted a grid spacing of 10km-40km in the horizontal direction and 5-30km in the vertical direction. At the first inversion, we used only absolute travel-time data and determine large scale velocity structure, and then differential travel-time data were added to the absolute data to investigate slab structure in detail. The obtained results show

  6. Seismic Velocity and Thickness of Sediments Beneath the Aleutian Basin, Bering Sea

    NASA Astrophysics Data System (ADS)

    Scheirer, D. S.; Barth, G. A.; Sliter, R. W.; Hart, P. E.; Childs, J. R.

    2014-12-01

    The thickness and seismic velocity structure of sediments of the Aleutian Basin were mapped during a 2011 multichannel seismic (MCS) cruise of the R/V Langseth. Combined with legacy MCS, sonobuoy, and scientific drilling data, the Langseth observations allowed us to study the history of sedimentation in this area. Semblance velocity analyses from common-depth-point gathers of the 8-km-long streamer data were conducted at-sea every 6.25 km. Post-cruise, these semblance analyses were refined and supplemented with new analyses where significant basement topography is present. The flat-lying nature of both the seafloor and the within-sediment reflectors allowed determination of interval velocity and thickness values with high precision using the Dix equation. Two prominent bottom-simulating reflections (BSRs) are common within the sediment column: a shallower one inferred to represent the base of gas hydrate stability, and a deeper one inferred to represent the diagenetic transformation from opal-A to opal-CT. This latter transition was reached by the one deep hole (Site 190, DSDP Leg19) drilled into the Aleutian Basin, where the lithologic contrast prevented further penetration. The gas hydrate BSR is associated with subvertical velocity-amplitude anomalies, and the opal A/CT transition is associated with a large decrease in reflector amplitudes beneath it, indicating the decrease in acoustic impedance contrasts associated with diagenetic dewatering. Seismic interval velocities range from 1600 m/sec at the top of the sediment column to 2800-3500 m/sec at its base. The largest step in interval velocity occurs at the opal A/CT transition. Interval velocities are laterally continuous over many tens of kilometers, and this continuity allows the generation of seismic travel-time vs. sediment thickness relationships across the basin. A second-degree polynomial relationship between time and thickness, developed by regression of all of the semblance velocity analyses from the

  7. Three-dimensional seismic velocity structure of the San Francisco Bay area

    USGS Publications Warehouse

    Hole, J.A.; Brocher, T.M.; Klemperer, S.L.; Parsons, T.; Benz, H.M.; Furlong, K.P.

    2000-01-01

    Seismic travel times from the northern California earthquake catalogue and from the 1991 Bay Area Seismic Imaging Experiment (BASIX) refraction survey were used to obtain a three-dimensional model of the seismic velocity structure of the San Francisco Bay area. Nonlinear tomography was used to simultaneously invert for both velocity and hypocenters. The new hypocenter inversion algorithm uses finite difference travel times and is an extension of an existing velocity tomography algorithm. Numerous inversions were performed with different parameters to test the reliability of the resulting velocity model. Most hypocenters were relocated 12 km under the Sacramento River Delta, 6 km beneath Livermore Valley, 5 km beneath the Santa Clara Valley, and 4 km beneath eastern San Pablo Bay. The Great Valley Sequence east of San Francisco Bay is 4-6 km thick. A relatively high velocity body exists in the upper 10 km beneath the Sonoma volcanic field, but no evidence for a large intrusion or magma chamber exists in the crust under The Geysers or the Clear Lake volcanic center. Lateral velocity contrasts indicate that the major strike-slip faults extend subvertically beneath their surface locations through most of the crust. Strong lateral velocity contrasts of 0.3-0.6 km/s are observed across the San Andreas Fault in the middle crust and across the Hayward, Rogers Creek, Calaveras, and Greenville Faults at shallow depth. Weaker velocity contrasts (0.1-0.3 km/s) exist across the San Andreas, Hayward, and Rogers Creek Faults at all other depths. Low spatial resolution evidence in the lower crust suggests that the top of high-velocity mafic rocks gets deeper from west to east and may be offset under the major faults. The data suggest that the major strike-slip faults extend subvertically through the middle and perhaps the lower crust and juxtapose differing lithology due to accumulated strike-slip motion. The extent and physical properties of the major geologic units as

  8. High-Resolution Subduction Zone Seismicity and Velocity Structure in Ibaraki, Japan

    NASA Astrophysics Data System (ADS)

    Shelly, D. R.; Beroza, G. C.; Zhang, H.; Thurber, C. H.; Ide, S.

    2004-12-01

    We use double-difference tomography (tomoDD) [Zhang and Thurber, 2003] and waveform-derived cross-correlation differential arrival times to invert for the earthquake locations and P- and S-wave velocity distributions in the subduction zone under Ibaraki Prefecture of north-central Honshu, Japan. The Ibaraki region is attractive for its high rate of slab seismicity and for the presence of an intermediate-depth double seismic zone. We relocate ~8000 events occurring in this region between June 2002 and June 2004. We use a combination of ~200,000 absolute travel times, ~5 million catalog-derived differential times, and ~5 million cross-correlation differential times derived from more than 150,000 waveforms, with roughly equal numbers of P- and S-wave data. Many of the waveforms are from HiNet borehole stations that provide particularly high-quality data. We also use data from JMA, the University of Tokyo, and Tohoku University. Since it is natural to expect sharp velocity contrasts in a subduction zone, we regularize the inversion using the total variation (TV) approach implemented through iteratively reweighted least squares. Because TV is an L1-norm regularization, sharp changes in velocity are penalized no more than gradual ones, but undulations in the velocity model remain damped. We will compare the TV results with those determined by standard least-squares, L2-norm regularization. Our results show increasingly organized seismicity including narrowing by up to 50% of the upper and lower limbs of the double seismic zone as viewed in cross-section. We find a zone of interplate events extending as deep as 60 km, forming a very distinct lineation in cross-section. Focal mechanisms support the interpretation that these are low angle, subduction interface events. These earthquakes are accompanied by a zone of very high Vp/Vs ratio within the downgoing plate, just beneath the seismicity, suggesting that high pore-pressures may enable seismic slip on the subduction

  9. Multiplets and Detection of Seismic Velocity Changes During the 1998-99 Seismic Series at Deception Island Volcano, Antarctica

    NASA Astrophysics Data System (ADS)

    Carmona, E.; Martini, F.; Ibanez, J. M.; Bean, C. J.

    2007-12-01

    During the 1998-1999 Antarctic summer, the pattern of seismicity at Deception Island Volcano changed significantly with respect to previous years. This was characterized by the occurrence of an intense swarm of local earthquakes. More than 2000 local earthquakes were recorded in the period January-February 1999. The average moment magnitude was around 0.5, with the exception of two earthquakes of magnitude 2.3 and 3.4; array analysis was used to establish the hypocentral distribution of the earthquakes. A regional origin of the seismicity, or direct involvement of magmatic fluids, was demonstrated to be unlikely. Most earthquakes in the series were found to be related to small (<0.4 bar) stress changes on small faults which can be explained by lubrication by pressurized fluids (Ibanez et al. 2003). The presence of fluids in the source area could explain the fracturing process and is supported by the observation of hybrid events in the same source region. The study of the spatial distribution of the first motion of the P waves suggests that different source mechanisms acted in a very small volume, and often at the same time. Many distinct families of events with very similar waveforms were identified. When recorded at the same station, the similarity of repeating earthquakes indicates that source and wavepath are the same, and therefore any observed difference in waveforms is related to a change in the medium. Employing Coda Wave Interferometry (Snieder et al., 2002), the families of events identified in the series show a drop in the velocity over a short time period around the two events with bigger magnitudes. These variations may be related to cracking and/or fluid influx. After the seismic crisis, a change in the composition of the fumarolic gases was observed with the appearance of sulfur deposits around the fumaroles, and a clear uplift and inflation of a few centimeters was detected (Garcia et al., 2001). The seismic characteristics and the spatial and

  10. MEASUREMENT OF COMPRESSIONAL-WAVE SEISMIC VELOCITIES IN 29 WELLS AT THE HANFORD SITE

    SciTech Connect

    PETERSON SW

    2010-10-08

    Check shot seismic velocity surveys were collected in 100 B/C, 200 East, 200-PO-1 Operational Unit (OU), and the Gable Gap areas in order to provide time-depth correlation information to aid the interpretation of existing seismic reflection data acquired at the Hanford Site (Figure 1). This report details results from 5 wells surveyed in fiscal year (FY) 2008, 7 wells in FY 2009, and 17 wells in FY 2010 and provides summary compressional-wave seismic velocity information to help guide future seismic survey design as well as improve current interpretations of the seismic data (SSC 1979/1980; SGW-39675; SGW-43746). Augmenting the check shot database are four surveys acquired in 2007 in support of the Bechtel National, Inc. Waste Treatment Plant construction design (PNNL-16559, PNNL-16652), and check shot surveys in three wells to support seismic testing in the 200 West Area (Waddell et al., 1999). Additional sonic logging was conducted during the late 1970s and early 1980s as part of the Basalt Waste Isolation Program (BWIP) (SSC 1979/1980) and check shot/sonic surveys as part of the safety report for the Skagit/Hanford Nuclear project (RDH/10-AMCP-0164). Check shot surveys are used to obtain an in situ measure of compressional-wave seismic velocity for sediment and rock in the vicinity of the well point, and provide the seismic-wave travel time to geologic horizons of interest. The check shot method deploys a downhole seismic receiver (geophone) to record the arrival of seismic waves generated by a source at the ground surface. The travel time of the first arriving seismic-wave is determined and used to create a time-depth function to correlate encountered geologic intervals with the seismic data. This critical tie with the underlying geology improves the interpretation of seismic reflection profile information. Fieldwork for this investigation was conducted by in house staff during the weeks of September 22, 2008 for 5 wells in the 200 East Area (Figure 2); June 1

  11. Relative velocity changes using ambient seismic noise at Okmok and Redoubt volcanoes, Alaska

    NASA Astrophysics Data System (ADS)

    Bennington, N. L.; Haney, M. M.; De Angelis, S.; Thurber, C. H.

    2013-12-01

    Okmok and Redoubt are two of the most active volcanoes in the Aleutian Arc. Leading up to its most recent eruption, Okmok, a shield volcano on Umnak Island, showed precursors to volcanic activity only five hours before it erupted explosively in July 2008. Redoubt, a stratovolcano located along the Cook Inlet, displayed several months of precursory activity leading up to its March 2009 eruption. Frequent activity at both volcanoes poses a major hazard due to heavy traffic along the North Pacific air routes. Additionally, Okmok is adjacent to several of the world's most productive fisheries and Redoubt is located only 110 miles SW of Anchorage, the major population center of Alaska. For these reasons, it is imperative that we improve our ability to detect early signs of unrest, which could potentially lead to eruptive activity at these volcanoes. We take advantage of continuous waveforms recorded on seismic networks at Redoubt and Okmok in an attempt to identify seismic precursors to the recent eruptions at both volcanoes. We perform seismic interferometry using ambient noise, following Brenguier et al. (2008), in order to probe the subsurface and determine temporal changes in relative seismic velocity from pre- through post-eruption, for the 2008 Okmok and 2009 Redoubt eruptions. In a preliminary investigation, we analyzed 6 months of noise cross-correlation functions averaged over 10-day intervals leading up to the 2009 eruption at Redoubt. During February 2009, station pairs RSO-DFR and RDN-RSO showed a decrease in seismic velocity of ~0.02%. By the beginning of March, the relative velocity changes returned to background levels. Stations RSO and RDN are located within the summit breach, and station DFR is to the north. Although these results are preliminary, it is interesting to note that the decrease in seismic velocity at both station pairs overlaps with the time period when Grapenthin et al. (2012) hypothesize magma in the mid-to-deep crustal reservoir was

  12. Mechanical muscle fibre conduction velocity of the biceps as measured by a new seismic technique.

    PubMed

    Journée, H L; de Jonge, A B; van Calker, R; Gräler, G

    1995-01-01

    A recently-developed technique, called seismic myography (SMG) has the characteristic of recording fast micro-mechanical response times. These times can be determined with sub-millisecond accuracy. The response times can be compared to response times of EMG recordings. The "muscular electro-seismic response" (MESR) latencies, due to direct electrical stimulation of the biceps muscle, are used for explorative measurements of the mechanical conduction velocity of the muscle fibres. The measurements are performed by means of a general-purpose physiological multimeter which is equiped with the micro-seismic function. Measurements are performed on two healthy subjects, aged 22 years. The MESR-latencies are measured along a medial and a lateral trajectory on their biceps muscles. The MESR-latencies at stimulus-cathodal to seismic transducer distances of 2,0-3,5 cm, are in the range of 2.0-3.8 ms, while at distances in the range of 7.5-8.9 cm the MESR-latencies varied between 3.4 and 4.7 ms. The calculated mechanical muscle fibre conduction velocities (MMFCV) are in the range between 36 and 89 m/s. There is a reproducability error of maximum 20%. The MMFCV's of the lateral and medial trajectory do not differ within the accuracy of the present method. However, the MMFCV's are considerably higher than the electrical muscle fibre conduction velocities of MUAPS ((E)MFCV). Some aspects of the MMFCV and possible consequences to surface EMG recordings are discussed. It is concluded that this seismic method for measuring MMFCV is a new accessible and simple to handle tool for the description of muscle function, and offers an interesting new contribution in experimental muscular research.

  13. Velocity changes at Volcán de Colima: Seismic and Experimental observations

    NASA Astrophysics Data System (ADS)

    Lamb, Oliver; Lavallée, Yan; De Angelis, Silvio; Varley, Nick; Reyes-Dávila, Gabriel; Arámbula-Mendoza, Raúl; Hornby, Adrian; Wall, Richard; Kendrick, Jackie

    2016-04-01

    Immediately prior to dome-building eruptions, volcano-seismic swarms are a direct consequence of strain localisation in the ascending magma. A deformation mechanism map of magma subjected to strain localisation will help develop accurate numerical models, which, coupled to an understanding of the mechanics driving monitored geophysical signals prior to lava eruption, will enhance forecasts. Here we present how seismic data from Volcán de Colima, Mexico, is combined with experimental work to give insights into fracturing in and around magma. Volcán de Colima is a dome-forming volcano that has been almost-continuously erupting since November 1998. We use coda-wave interferometry to quantify small changes in seismic velocity structure between pairs of similar earthquakes, employing waveforms from clusters of repeating earthquakes. The changes in all pairs of events were then used together to create a continuous function of velocity change at all stations within 7 km of the volcano from October to December 1998. We complement our seismic data with acoustic emission data from tensional experiments using samples collected at Volcán de Colima. Decreases in velocity and frequency reflect changes in the sample properties prior to failure. By comparing experimental and seismic observations, we may place constraints on the conditions of the natural seismogenic processes. Using a combination of field and experimental data promises a greater understanding of the processes affecting the rise of magma during an eruption. This will help with the challenge of forecasting and hazard mitigation during dome-forming eruptions worldwide.

  14. Temporal variations of Seismic Velocities after the 2006 Mw6.1 Taitung Earthquake in Taiwan

    NASA Astrophysics Data System (ADS)

    Yu, T.; Hung, S.

    2010-12-01

    Impulse response (Green’s function) of a diffusive medium retrieved from cross-correlation of ambient noise at two stations has become widely used in monitoring small temporal changes of subsurface seismic velocities associated with earthquake and volcanic activities. Eastern Taiwan is a seismically very active region resulting from oblique collision between the Eurasian plate under the Philippine Sea plate. A Mw 6.1 shallow earthquake struck eastern Taiwan near Taitung in the southern Longitudinal Valley fault and caused significant coseismic deformation. To detect potential variations in subsurface seismic velocities associated with internal strain change before and after the quake, we construct the Green’s functions from auto-correlation of continuous, one-day long seismic noise on the vertical component in the two months before and after the quake, recorded by seven short-period stations of Central Weather Bureau (CWB) within less than 50 km from the epicenter. Before computing autocorrelation functions (ACF) in frequent domain at each station two months before and after the quake, we employ the time-domain normalization to eliminate earthquake-related signals. A three-order Butterworth band-pass filter between 2 and 8 Hz is then applied to the retrieved ACFs. The spectra of some ACFs within 2-8 Hz show very narrow band-limited resonant peaks which are further removed by a band-stop filter. All the filtered autocorrelation functions with waveform correlation coefficients greater than 0.5 are stacked to obtain reference Green’s function (RGF). We compare the time shift of each daily-long autocorrelation function between 2 and 15-s lapse times with the corresponding RGF. The station TWG, located ~6 km apart from the epicenter on the southern part of the rupture zone yields a clear step-wise time shift after the quake, which corresponds to the increase in seismic velocity by about 1.66% assuming the velocity change in the medium is uniform. The station TTN

  15. Italy - Adriatic Sea - Barbara - A giant gas field marked by seismic velocity anomaly - A subtle trap

    SciTech Connect

    Ianniello, A.; Bolelli, W.; Di Scala, L. )

    1990-09-01

    Barbara gas field, discovered in 1971, is located in the northern sector of the Adriatic offshore. The field is a gentle anticline involving Quaternary clastic sediments and shaped by carbonate Mesozoic morphology. The presence of shallow gas pockets at the crest of the structure distort the seismic signal to such an extent that structural reconstruction using seismic data is not possible. Moreover, time delays and ray-path anomalies do not allow the use of staking velocities for the depth conversion. Seismic attribute analysis, instead of velocities, and time delays on the isochrone maps are providing a key to the understanding of seismic anomalies and are an indirect tool for reconstructing the real structural configuration of the field. The appraisal story of the field illustrates how the previously mentioned complications influenced its delineation and how an understanding of these complications helped in upgrading the reserves from an initial value of 10 billion ECM of gas to 40 billion ECM. Additional data acquired with the development wells tend to increase the estimate. Therefore, Barbara field is the most important Italian gas field of the decade. The producing formation is composed of very thin-bedded sandstone and shale intercalations, representing the peculiarity of this reservoir. Development of the field is being achieved with six production platforms and 72 wells.

  16. Weak velocity anomaly in the Earth's outer core from seismic data

    NASA Astrophysics Data System (ADS)

    Ovtchinnikov, V. M.; Kaazik, P. B.; Krasnoshchekov, D. N.

    2012-03-01

    Experimental data on the differential travel time t BC- t DF of seismic waves PKPDF and PKPBC in the Earth's core under Africa and Australia are analyzed. The differential travel-time residuals beneath Africa in a narrow range of angles from 21° to 25° between the direction of the seismic ray in the core and the Earth's rotation axis exhibit a scoop-shaped peculiarity not accounted for by cylindrical anisotropy in the inner core. A model with a 0.2-0.8% P-wave velocity anomaly with a radius of 1375 km in the cylindrical region in the outer core is proposed, which closely fits the experimental data. We suggest that the velocity anomaly is generated by the dynamical processes occurring in the outer core, namely, the growth of the inner core and the convection in the outer core, both leading to the formation of a low-density anomaly in the outer core.

  17. Methods to improve computer-assisted seismic interpretation using seismic attributes: Multiattribute display, spectral data reduction, and attributes to quantify structural deformation and velocity anisotropy

    NASA Astrophysics Data System (ADS)

    Guo, Hao

    Computer-assisted seismic interpretation gained widespread acceptance in the mid 1980s that no 3D survey and few 2D surveys are interpreted without the aid of an interpretation workstation. Geoscientists routinely quantify features of geologic interest and enhance their interpretation through the use of seismic attributes. Typically these attributes are examined sequentially, or within different interpretation windows. In this dissertation, I present two novel means of presenting the information content of multiple attributes by a single image. In the first approach, I show how two, three, or four attributes can be displayed by an appropriate use of color. I use a colorstack model of Red, Green, and Blue (RGB) to map attributes of similar type such as volumes of near-, mid-, and far-angle amplitude or low-, moderate-, high-frequency spectral components. I use an HLS model to display a theme attribute modulated by another secondary attribute, such as dip magnitude modulating dip azimuth, or amplitude of the peak spectral frequency modulating the phase measured at the peak frequency. Transparency/opacity provides a 4th color dimension and provides additional attribute modulation capabilities. In the second approach I use principal component analysis to reduce the multiplicity of redundant data into a smaller, more manageable number of components. The importance of each principal component is proportional to its corresponding eigenvalue. By mapping the three largest principal components against red, green, and blue, we can represent more than 80% of the original information with a single colored image. I then use these tools to help quantify and correlate structural deformation with velocity anisotropy. I develop an innovative algorithm that automatically counts the azimuth distribution of the fast P-wave velocity (or alternatively, the strike of the structural lineaments) weighted by the amount of anisotropy (or the intensity of the lineaments) at any point in the

  18. Low-velocity zone atop the 410-km seismic discontinuity in the northwestern United States.

    PubMed

    Song, Teh-Ru Alex; Helmberger, Don V; Grand, Stephen P

    2004-02-05

    The seismic discontinuity at 410 km depth in the Earth's mantle is generally attributed to the phase transition of (Mg,Fe)2SiO4 (refs 1, 2) from the olivine to wadsleyite structure. Variation in the depth of this discontinuity is often taken as a proxy for mantle temperature owing to its response to thermal perturbations. For example, a cold anomaly would elevate the 410-km discontinuity, because of its positive Clapeyron slope, whereas a warm anomaly would depress the discontinuity. But trade-offs between seismic wave-speed heterogeneity and discontinuity topography often inhibit detailed analysis of these discontinuities, and structure often appears very complicated. Here we simultaneously model seismic refracted waves and scattered waves from the 410-km discontinuity in the western United States to constrain structure in the region. We find a low-velocity zone, with a shear-wave velocity drop of 5%, on top of the 410-km discontinuity beneath the northwestern United States, extending from southwestern Oregon to the northern Basin and Range province. This low-velocity zone has a thickness that varies from 20 to 90 km with rapid lateral variations. Its spatial extent coincides with both an anomalous composition of overlying volcanism and seismic 'receiver-function' observations observed above the region. We interpret the low-velocity zone as a compositional anomaly, possibly due to a dense partial-melt layer, which may be linked to prior subduction of the Farallon plate and back-arc extension. The existence of such a layer could be indicative of high water content in the Earth's transition zone.

  19. Treatise on seismicity and velocity structure of the northern Mississippi Embayment

    NASA Astrophysics Data System (ADS)

    Mostafanejad, Akramalsadat

    Seismicity of the New Madrid seismic zone, velocity structure of the northern Mississippi Embayment and extent of lithospheric discontinuities have been investigated in this work. Spatial variations of seismic b-value in the NMSZ have been determined. A region of high b-value (b˜1.8) in the northern segment of the Reelfoot fault has been found which reflects higher frequency in the occurrence rate of small earthquakes. This is attributed to fault creep in a medium with high silica content, high pore fluid pressure and extensive velocity heterogeneity. In another study, power spectral ratios of horizontal to vertical (H/V) and vertical to horizontal (V/H) components of teleseismic P-waves recorded by broadband seismic stations inside the Mississippi embayment have been examined to produce a 3-D average velocity map of the sediments. Fundamental resonance frequencies for S-wave reverberations in the northern Mississippi Embayment are about 0.2 to 0.4 Hz. Detailed linear gradient velocity models for Vp and Vs have also been calculated using teleseismic vertical and radial transfer functions at 60 broadband stations inside the Mississippi embayment and simultaneously inverting for velocity parameters. This led to a detailed 3-D linear gradient Vp and Vs model of the sediments for the first time. P-wave velocity starts at about 1.0 km/s near the surface and increases with depth to 3.5 to 4 km/s in deeper parts of the embayment. S-wave velocities vary from 0.3km/s to 1.6 km/s in deeper sections to the southwest. This detailed velocity structure of the unconsolidated sediments is developed so that it could be used to downward continue the transfer functions to the depth of 5 km to remove the effects of observed amplification, reverberation and large P-S conversions that occurs at the sediment-bedrock interface. The resulting waveforms are depth migrated to image the lateral and vertical changes of major reflectors with depth. The Moho boundary is observed with high

  20. Full waveform inversion of repeating seismic events to estimate time-lapse velocity changes

    NASA Astrophysics Data System (ADS)

    Kamei, R.; Lumley, D.

    2017-02-01

    Seismic monitoring provides valuable information regarding the time-varying changes in subsurface physical properties caused by natural or man-made processes. However, the resulting changes in the earth's subsurface properties are often small both in terms of magnitude and spatial extent, leading to minimal time-lapse differences in seismic amplitude or traveltime. In order to better extract information from the time-lapse data, we show that exploiting the full seismic waveform information can be critical. In this study, we develop and test methods of full waveform inversion that estimate an optimal subsurface model of time-varying elastic properties in order to fit the observed time-lapse seismic data with predicted waveforms based on numerical solutions of the wave equation. Time-lapse full waveform inversion is non-linear and non-unique, and depends on the knowledge of the baseline velocity model before a change, and (non-)repeatability of earthquake source and sensor parameters, and of ambient and cultural noise. We propose to use repeating earthquake data sets acquired with permanent arrays of seismic sensors to enhance the repeatability of source and sensor parameters. We further develop and test time-lapse parallel, double-difference and bootstrapping inversion strategies to mitigate the dependence on the baseline velocity model. The parallel approach uses a time-invariant full waveform inversion method to estimate velocity models independently of the different source event times. The double-difference approach directly estimates velocity changes from time-lapse waveform differences, requiring excellent repeatability. The bootstrapping approach inverts for velocity models sequentially in time, implicitly constraining the time-lapse inversions, while relaxing an explicit requirement for high data repeatability. We assume that prior to the time-lapse inversion, we can estimate the true source locations and the origin time of the events, and also we can also

  1. Seismic velocity structure of the subducting Pacific plate in the Izu-Bonin region

    SciTech Connect

    Iidaka, Takashi; Mizoue, Megumi; Suyehiro, Kiyoshi )

    1992-10-01

    Observed travel time residual data from a spatially dense seismic network above deep earthquakes in the Izu-Bonin region are compared with 3D ray tracing calculations. The data are inconsistent with a homogeneous slab model and consistent with a heterogenous slab model with regional velocity variations. The residual data can be explained by a model that has a velocity gradient within the slab. In the subducting Pacific plate, the velocity near the center of the slab is faster than that near the upper boundary, and gradually decreases toward the bottom of the plate. A model with a velocity decrease of 3 percent, as predicted by a thermal profile, explains the observed data. 52 refs.

  2. Sms1: Seismic Wave Velocities Variations With Tectonic Stress From Controlled Source Experiment.

    NASA Astrophysics Data System (ADS)

    Chastin, Sebastien; Crampin, Stuart; Shear-Wave Analysis Group

    We present clear observations of seismic velocity variations following comparatively distant seismic activity and a consequently change in tectonic stress. The Stress- Monitoring Site SMSITES at Húsavík in Northern Iceland, described in paper SMS2 at this meeting, was used to monitor short-term variations in absolute seismic velocity. The survey took place between the 10th and 23rd of August 2001. The signal from the controlled source, a DOV (Downhole Orbital Vibrator), was transmitted repeatedly between two boreholes at 315m-offset along a single sub- horizontal direct ray path ray path at ~500m depth. The azimuthal direction between the wells is almost parallel to the strike of the Húsavík-Flatey Transform Fault (HFF) of the Mid-Atlantic Ridge, and is about 200m from the surface break. Source and receivers are in a 200m-thick layer of sandstone sandwiched between fractured layers. The DOV source was swept every 12s and the three-component recordings summed every 100 sweeps. This routine was repeated 24hours a day for 13days. Statistical analysis of the source signal stability indicates the source is coherent at 20µs and that velocity variations can be resolved at close to 1 part in 10-5. Variations in relative velocities of 2% to 5%, are observed peak to peak for Vp, Vsh, and Vsv. The behaviour of P-wave and S-wave velocities is strikingly different and correlates with a swarm of ~110 velocities also correlates with a sudden decrease in water level at a well on the Island of Flatey about 20 km from SMSITES, immediately above the HFF. The seismic activity on the 11th of August marks the start of a damped oscillation in S-waves velocities and a sudden 4% decrease of Vp. Following the swarm, Vp increases linearly, whereas Vs follows a typical "S"-shaped relaxation-curve increase to higher (presumably equilibrium) values. This is believed to be the first time that such well

  3. Low velocity normal fault structures associated with intermediate depth seismicity - insights from body wave dispersion

    NASA Astrophysics Data System (ADS)

    Garth, T.; Rietbrock, A.

    2012-12-01

    Low velocity structures in the upper slab have been inferred from guided wave studies (e.g Abers 2000) and subsequently resolved by a number of geophysical methods including receiver function analyses and high resolution seismic tomography . These low velocity structures are potentially explained by the presence of hydrous mineral assemblages in the subducted oceanic crust. This supports the long proposed theory that mineral dehydration during subduction may weaken the crust and allow for intermediate depth seismicity. Recently it has been proposed that normal faulting in the slab may provide a mechanism for hydration deep in the slab, as stress changes due to slab bending promotes the downward pumping of fluids (Faccenda et al. 2009). At greater depth, the reactivation of outer rise normal faults has been postulated by Ranero et al. (2005) as a cause Wadati-Benioff zone seismicity. However there is no direct seismological evidence of normal faults at intermediate depths. Here we present seismic evidence that these faults are in fact associated with low velocities, possibly caused by hydrous minerals or the presence of fluids. We analyse dispersive P-wave arrivals from intermediate depth events in Northern Japan. Finite difference wave propagation models are used to constrain the structure related to this dispersion. Dispersion of deeper events (>150 km) can be explained by a low velocity layer (LVL) at the top of the slab acting as a waveguide. This LVL has a thickness of ~8 km, and a 5 - 12% reduction in velocity. Shallower events (70 - 150 km depth) that occur well below the top of the slab also show dispersion. This cannot be attributed to the upper LVL as the event must be on or near to the waveguide for dispersion to occur. Numerical modeling shows that these shallower dispersive events can be explained by very low velocity structures dipping with a normal fault geometry. We propose that these dipping planes might indicate hydrated material along normal

  4. Shear wave velocity, seismic attenuation, and thermal structure of the continental upper mantle

    USGS Publications Warehouse

    Artemieva, I.M.; Billien, M.; Leveque, J.-J.; Mooney, W.D.

    2004-01-01

    Seismic velocity and attenuation anomalies in the mantle are commonly interpreted in terms of temperature variations on the basis of laboratory studies of elastic and anelastic properties of rocks. In order to evaluate the relative contributions of thermal and non-thermal effects on anomalies of attenuation of seismic shear waves, QS-1, and seismic velocity, VS, we compare global maps of the thermal structure of the continental upper mantle with global QS-1 and Vs maps as determined from Rayleigh waves at periods between 40 and 150 S. We limit the comparison to three continental mantle depths (50, 100 and 150 km), where model resolution is relatively high. The available data set does not indicate that, at a global scale, seismic anomalies in the upper mantle are controlled solely by temperature variations. Continental maps have correlation coefficients of <0.56 between VS and T and of <0.47 between QS and T at any depth. Such low correlation coefficients can partially be attributed to modelling arrefacts; however, they also suggest that not all of the VS and QS anomalies in the continental upper mantle can be explained by T variations. Global maps show that, by the sign of the anomaly, VS and QS usually inversely correlate with lithospheric temperatures: most cratonic regions show high VS and QS and low T, while most active regions have seismic and thermal anomalies of the opposite sign. The strongest inverse correlation is found at a depth of 100 km, where the attenuation model is best resolved. Significantly, at this depth, the contours of near-zero QS anomalies approximately correspond to the 1000 ??C isotherm, in agreement with laboratory measurements that show a pronounced increase in seismic attenuation in upper mantle rocks at 1000-1100 ??C. East-west profiles of VS, QS and T where continental data coverage is best (50??N latitude for North America and 60??N latitude for Eurasia) further demonstrate that temperature plays a dominant, but non-unique, role in

  5. Three-dimensional seismic velocity model of the West Bohemia/Vogtland seismoactive region

    NASA Astrophysics Data System (ADS)

    Růžek, Bohuslav; Horálek, Josef

    2013-11-01

    In this paper, we present a smooth 3-D seismic model WB2012 for the West Bohemia/Vogtland earthquake swarm region derived by means of seismic tomography. Inverted data were represented by a set of 2920 P-wave traveltimes from controlled shots fired in a framework of different experiments and a set of 11339 P- and S-wave arrival times from 661 local earthquakes between 1991 December and 2010 March. We used a standard tomographic approach for independent calculation of P- and S-wave velocity fields in a rectangular grid whose size was 1 km in all coordinates. The traveltimes and rays were calculated by a numerical solution of the eiconal equation. While locating seismic events, our new WB2012 model yielded arrival time residuals on average by 13 per cent lower and hypocentre depths by 0.95 km shallower compared to the locations of the foci in the standard 1-D vertically inhomogeneous isotropic velocity model of the West Bohemia swarm region WB2005. Further, we converted the P- and S-wave velocities to the bulk modulus K and Poisson's ratio ν. The bulk modulus (˜40-70 GPa) correlates acceptably with the tectonic and geological structure of the area. The anomalously low values of the Poisson's ratio (˜0.15) are typical for the most active focal zones of Nový Kostel and Lazy in West Bohemia.

  6. Comparative velocity structure of active Hawaiian volcanoes from 3-D onshore-offshore seismic tomography

    USGS Publications Warehouse

    Park, J.; Morgan, J.K.; Zelt, C.A.; Okubo, P.G.; Peters, L.; Benesh, N.

    2007-01-01

    We present a 3-D P-wave velocity model of the combined subaerial and submarine portions of the southeastern part of the Island of Hawaii, based on first-arrival seismic tomography of marine airgun shots recorded by the onland seismic network. Our model shows that high-velocity materials (6.5-7.0??km/s) lie beneath Kilauea's summit, Koae fault zone, and the upper Southwest Rift Zone (SWRZ) and upper and middle East Rift Zone (ERZ), indicative of magma cumulates within the volcanic edifice. A separate high-velocity body of 6.5-6.9??km/s within Kilauea's lower ERZ and upper Puna Ridge suggests a distinct body of magma cumulates, possibly connected to the summit magma cumulates at depth. The two cumulate bodies within Kilauea's ERZ may have undergone separate ductile flow seaward, influencing the submarine morphology of Kilauea's south flank. Low velocities (5.0-6.3??km/s) seaward of Kilauea's Hilina fault zone, and along Mauna Loa's seaward facing Kao'iki fault zone, are attributed to thick piles of volcaniclastic sediments deposited on the submarine flanks. Loihi seamount shows high-velocity anomalies beneath the summit and along the rift zones, similar to the interpreted magma cumulates below Mauna Loa and Kilauea volcanoes, and a low-velocity anomaly beneath the oceanic crust, probably indicative of melt within the upper mantle. Around Kilauea's submarine flank, a high-velocity anomaly beneath the outer bench suggests the presence of an ancient seamount that may obstruct outward spreading of the flank. Mauna Loa's southeast flank is also marked by a large, anomalously high-velocity feature (7.0-7.4??km/s), interpreted to define an inactive, buried volcanic rift zone, which might provide a new explanation for the westward migration of Mauna Loa's current SWRZ and the growth of Kilauea's SWRZ. ?? 2007 Elsevier B.V. All rights reserved.

  7. Crustal and uppermost mantle velocity structure beneath northwestern China from seismic ambient noise tomography

    NASA Astrophysics Data System (ADS)

    Li, Hongyi; Li, S.; Song, X. D.; Gong, M.; Li, X.; Jia, J.

    2012-01-01

    In this paper, we conduct ambient noise seismic tomography of northwestern China and adjacent regions. The data include 9 months (2009 January to 2009 September) three-component continuous data recorded at 146 seismic stations of newly upgraded China Provincial Digital Seismic Networks and regional Kyrgyzstan and Kazakhstan networks. Empirical Rayleigh and Love wave Green's functions are obtained from interstation cross-correlations. Group velocity dispersion curves for both Rayleigh and Love waves between 7 and 50 s periods were measured for each interstation path by applying the multiple-filter analysis method with phase-matched processing. The group velocity maps show clear lateral variations which correlate well with major geological structures and tectonic units in the study region. Shear wave velocity structures are inverted from Rayleigh wave and love wave dispersion maps. The results show that the Tibetan Plateau has a very thick crust with a low-velocity zone in its mid-lower crust. Along the northern margin of the plateau where a steep topographic gradient is present, the low-velocity zone does not extend to the Tarim basin which may indicate that crustal materials beneath the Tarim basin are colder and stronger than beneath the plateau, therefore inhibit the extension of mid-lower crustal flow and deformation of the Tibetan Plateau, resulting in very sharp topography contrasts. In the northeastern margin with a gentle topographic gradient toward the Ordos platform, the low-velocity zone diminishes around the eastern KunLun fault. Meanwhile, our results reveal obvious lateral velocity changes in the crust beneath the Tarim basin. In the upper crust, the Manjaer depression in the eastern Tarim basin is featured with very low velocities and the Bachu uplift in the western Tarim basin with high velocities; in the mid-lower crust, the northern Tarim basin in general displays lower velocities than the southern part along latitude ˜40° N with an east

  8. Accurate Measurement of Velocity and Acceleration of Seismic Vibrations near Nuclear Power Plants

    NASA Astrophysics Data System (ADS)

    Arif, Syed Javed; Imdadullah; Asghar, Mohammad Syed Jamil

    In spite of all prerequisite geological study based precautions, the sites of nuclear power plants are also susceptible to seismic vibrations and their consequent effects. The effect of the ongoing nuclear tragedy in Japan caused by an earthquake and its consequent tsunami on March 11, 2011 is currently beyond contemplations. It has led to a rethinking on nuclear power stations by various governments around the world. Therefore, the prediction of location and time of large earthquakes has regained a great importance. The earth crust is made up of several wide, thin and rigid plates like blocks which are in constant motion with respect to each other. A series of vibrations on the earth surface are produced by the generation of elastic seismic waves due to sudden rupture within the plates during the release of accumulated strain energy. The range of frequency of seismic vibrations is from 0 to 10 Hz. However, there appears a large variation in magnitude, velocity and acceleration of these vibrations. The response of existing or conventional methods of measurement of seismic vibrations is very slow, which is of the order of tens of seconds. A systematic and high resolution measurement of velocity and acceleration of these vibrations are useful to interpret the pattern of waves and their anomalies more accurately, which are useful for the prediction of an earthquake. In the proposed work, a fast rotating magnetic field (RMF) is used to measure the velocity and acceleration of seismic vibrations in the millisecond range. The broad spectrum of pulses within one second range, measured by proposed method, gives all possible values of instantaneous velocity and instantaneous acceleration of the seismic vibrations. The spectrum of pulses in millisecond range becomes available which is useful to measure the pattern of fore shocks to predict the time and location of large earthquakes more accurately. Moreover, instead of average, the peak values of these quantities are helpful

  9. A seismic waves velocity model for Gran Canaria Island from ambient noise correlations

    NASA Astrophysics Data System (ADS)

    García-Jerez, Antonio; Almendros, Javier; Martínez-Arévalo, Carmen; de Lis Mancilla, Flor; Luzón, Francisco; Carmona, Enrique; Martín, Rosa; Sánchez, Nieves

    2014-05-01

    We have analysed continuous ambient seismic noise recorded by a temporary array in Gran Canaria (Canary Islands, Spain) in order to find a velocity model for the top few kilometers. The SISTEVOTENCAN-IGN seismic array consisted of five broadband stations surrounding a sixth central one placed close to Pico de las Nieves, at the center of the island. The array had a radius of 12-14 km, with interstation distances ranging from 10 to 27 km. This network was operative from December 2009 to November 2011. The Green's functions between the 15 pairs of stations have been estimated in the time domain by stacking cross-correlations of 60-s time windows for the whole recording period (~2 years). The effects of several processing adjustments such as 1-bit normalization and spectral whitening are discussed. We observe significant differences (mainly in amplitude) between causal and acausal parts of the estimated Green's functions, which can be associated to an uneven distribution of the seismic noise sources. The application of a phase-matched filter based on an average dispersion curve allowed the effective reduction of some spurious early arrivals and the selection of fundamental-mode Rayleigh wave pulses, making possible an automatic extraction of their group velocities. Then, Rayleigh-wave dispersion curves were retrieved for the set of paths by using frequency-time analysis (FTAN) as well as by following the procedure described by Herrin and Goforth (1977, BSSA) based on the iterative fitting of a phase-matched filter which optimally undisperses the signal. Reliable curves were obtained from 1 s to 6-7 s with group velocities ranging between 1.5 and 2.2 km/s. Some lateral variations in velocity have been detected in spite of the limited spatial coverage and path density, which substantially restricted the resolution. A mean S-wave velocity model has been inverted for this area down to ~3 km.

  10. Variations of seismic velocities in the Kachchh rift zone, Gujarat, India, during 2001-2013

    NASA Astrophysics Data System (ADS)

    Mandal, Prantik

    2016-03-01

    We herein study variations of seismic velocities in the main rupture zone (MRZ) of the Mw 7.7 2001 Bhuj earthquake for the time periods [2001-05, 2006-08, 2009-10 and 2011-13], by constructing dVp(%), dVs(%) and d(Vp/Vs)(%) tomograms using high-quality arrival times of 28,902 P- and 28,696 S-waves from 4644 precise JHD (joint hypocentral determination) relocations of local events. Differential tomograms for 2001-05 reveal a marked decrease in seismic velocities (low dVp, low dVs and high d(Vp/Vs)) in the MRZ (at 5-35 km depths) during 2001-10, which is attributed to an increase in crack/fracture density (higher pore fluid pressure) resulted from the intense fracturing that occurred during the mainshock and post-seismic periods. While we observe a slight recovery or increase in seismic velocities 2011-13, this could be related to the healing process (lower pore fluid pressure due to sealing of cracks) of the causative fault zone of the 2001 Bhuj mainshock. The temporal reduction in seismic velocities is observed to be higher at deeper levels (more fluid enrichment under near-lithostatic pressure) than that at shallower levels. Fluid source for low velocity zone (LVZ) at 0-10 km depths (with high d(Vp/Vs)) could be attributed to the presence of meteoric water or soft alluvium sediments with higher water content, while fluid source for LVZ at 10-35 km depths could be due to the presence of brine fluids (released from the metamorphic dewatering) and volatile CO2 (emanating from the crystallization of carbonatite melts in the asthenosphere), in fractures and pores. We also imaged two prominent LVZs associated with the Katrol Hill fault zone and Island Belt fault zone, extending from shallow upper-crust to sub-crustal depth, which might be facilitating the deeper circulation of metamorphic fluids/volatile CO2, thereby, the generation of lower crustal earthquakes occurring in the Kachchh rift zone.

  11. Salt Tectonics of Basin and Range Systems in the Sub-Himalayas of Northern Pakistan Using InSAR and 2D Seismic Interpretation

    NASA Astrophysics Data System (ADS)

    Ahmad Abir, I.; Khan, S.; Wulamu, A.; Tariq, S.; Tahir Shah, M.

    2014-12-01

    The western end of the Sub-Himalayas is located in northern Pakistan, where salt tectonics greatly affects its deformation style of geological structures, hydrocarbon exploration and seismology. Three foreland sub-basins are located adjacent to each other in this area: the Potwar Plateau-Salt Range, Kohat Plateau-Surghar Range and the Bannu Basin-Marwat-Khisor Ranges. It is strongly believed that the difference in deformation intensity between these sub-basins is attributed to the presence or absence of a Pre-Cambrian salt layer. This study is an attempt to investigate the extent and role of salt in the geological deformation of northern Pakistan using the Small Baseline Subset Interferograms (SBAS) technique and 2-D seismic interpretations. 10 PALSAR images and 5 seismic profiles from the Potwar Plateau-Salt Range region were used in this study. SBAS results, derived from PALSAR images spanning from 2007 to 2010, suggest that the Potwar Plateau-Salt Range may still be tectonically active with the western portion of the region experiencing an uplift at an average rate of 12 mm/year. Time-migrated seismic profiles were interpreted, showing basement ramps due to normal faults. These ramps are believed to act as transition zones between different roles of salt; the salt layer acts as a decollement in northern Potwar Plateau while salt flow-induced structures are prominent in southern Potwar Plateau. These normal fault ramps are located in the central Salt Range and may be affecting the flow of salt by impeding the flow, which results in the salt being pushed to either side of the ramp. The integration of SBAS and 2D seismic interpretation has led to the suggestion that both the presence of the salt layer and the geometry of the basement influence the deformation style in northern Pakistan.

  12. Shallow Shear Velocity and Seismic Microzonation of the Las Vegas Urban Basin

    NASA Astrophysics Data System (ADS)

    Rasmussen, T.; Smith, S. B.; Clark, M.; Lopez, C.; Loughner, C.; Park, H.; Scott, J. B.; Thelen, W.; Greschke, B.; Louie, J. N.

    2003-12-01

    In July 2003 we performed a seismic microzonation study of the Las Vegas basin along a 15 kilometer transect. Using 120 Reftek RT-125 "Texans" on loan from PASSCAL, we completed this transect in two days. 4.5-Hz geophones collected Rayleigh-wave data for dispersion analysis and velocity-profile modeling. Only passive urban seismic noise sources are needed for this refraction microtremor analysis; freeway and commuter traffic are used in this case. Using a geophone spacing of 20 meters, fifty 260-m array sections were analyzed to create a transect of 30-m shear velocity measurements 15 km long. The transect runs approximately parallel to Interstate 15 from Cheyenne Avenue at the north to Tropicana Avenue at the south, passing most of The Strip and downtown Las Vegas. We added a few refraction lines, with a sledgehammer source, to augment the microtremor dispersion data with P velocities. The lowest shear velocities observed in Las Vegas are in the NEHRP class D range, at 230 m/s, well above the NEHRP class E range. These lower velocities are found near Interstate 15 and Lake Mead Blvd. Velocities then rise smoothly southward to the middle of the NEHRP-C range (450-600 m/s) near Sahara Blvd. to the south. There appears to be a slight decline further south to Tropicana Blvd. Our results from only 3 km out of the 15-km-long transect have velocities near or below the NEHRP-C/D boundary at 350 m/s. This survey suggests a medium-scale study with a limited budget can be completed in a short time. The study is a crucial new step in the characterization of the effects of ground shaking due to a seismic source in the surrounding region. Similar studies have been completed in the Reno area basin and in the Los Angeles Basin. All of these studies suggest that shallow shear velocity does not correlate well with geologic map units. The range of velocities within one map unit is greater than the average difference between units.

  13. Seismic velocity variations beneath central Mongolia: Evidence for upper mantle plumes?

    NASA Astrophysics Data System (ADS)

    Zhang, Fengxue; Wu, Qingju; Grand, Stephen P.; Li, Yonghua; Gao, Mengtan; Demberel, Sodnomsambuu; Ulziibat, Munkhuu; Sukhbaatar, Usnikh

    2017-02-01

    Central Mongolia is marked by wide spread recent volcanism as well as significant topographic relief even though it is far from any plate tectonic boundaries. The cause of the recent magmatism and topography remains uncertain partially because little is known of the underlying mantle seismic structure due to the lack of seismic instrumentation in the region. From August 2011 through August 2013, 69 broadband seismic stations were deployed in central Mongolia. Teleseismic traveltime residuals were measured using waveform correlation and were inverted to image upper mantle P and S velocity variations. Significant lateral variations in seismic velocity are imaged in the deep upper mantle (100 to 800 km depth). Most significant are two continuous slow anomalies from the deep upper mantle to near the surface. One slow feature has been imaged previously and may be a zone of deep upwelling bringing warm mantle to beneath the Hangay Dome resulting in uplift and magmatism including the active Khanuy Gol and Middle Gobi volcanoes. The second, deep low velocity anomaly is seen in the east from 800 to 150 km depth. The anomaly ends beneath the Gobi Desert that is found to have fast shallow mantle indicating a relatively thick lithosphere. We interpret the second deep slow anomaly as a mantle upwelling that is deflected by the thick Gobi Desert lithosphere to surrounding regions such as the Hentay Mountains to the north. The upwellings are a means of feeding warmer than normal asthenospheric mantle over a widely distributed region beneath Mongolia resulting in distributed volcanic activity and uplift. There is no indication that the upwellings are rooted in the deep lower mantle i.e. classic plumes. We speculate the upwellings may be related to deep subduction of the Pacific and Indian plates and are thus plumes anchored in the upper mantle.

  14. Seismic velocity structure and earthquake relocation for the magmatic system beneath Long Valley Caldera, eastern California

    NASA Astrophysics Data System (ADS)

    Lin, Guoqing

    2015-04-01

    A new three-dimensional (3-D) seismic velocity model and high-precision location catalog for earthquakes between 1984 and 2014 are presented for Long Valley Caldera and its adjacent fault zones in eastern California. The simul2000 tomography algorithm is applied to derive the 3-D Vp and Vp/Vs models using first-arrivals of 1004 composite earthquakes obtained from the original seismic data at the Northern California Earthquake Data Center. The resulting Vp model reflects geological structures and agrees with previous local tomographic studies. The simultaneously resolved Vp/Vs model is a major contribution of this study providing an important complement to the Vp model for the interpretation of structural heterogeneities and physical properties in the study area. The caldera is dominated by low Vp anomalies at shallow depths due to postcaldera fill. High Vp and low Vp/Vs values are resolved from the surface to ~ 3.4 km depth beneath the center of the caldera, corresponding to the structural uplift of the Resurgent Dome. An aseismic body with low Vp and high Vp/Vs anomalies at 4.2-6.2 km depth below the surface is consistent with the location of partial melt suggested by previous studies based on Vp models only and the inflation source locations based on geodetic modeling. The Sierran crystalline rocks outside the caldera are generally characterized with high Vp and low Vp/Vs values. The newly resolved velocity model improves absolute location accuracy for the seismicity in the study area and ultimately provides the basis for a high-precision earthquake catalog based on similar-event cluster analysis and waveform cross-correlation data. The fine-scale velocity structure and precise earthquake relocations are useful for investigating magma sources, seismicity and stress interaction and other seismological studies in Long Valley.

  15. Perpendicular ultrasound velocity measurement by 2D cross correlation of RF data. Part A: validation in a straight tube

    NASA Astrophysics Data System (ADS)

    Beulen, Bart; Bijnens, Nathalie; Rutten, Marcel; Brands, Peter; van de Vosse, Frans

    2010-11-01

    An ultrasound velocity assessment technique was validated, which allows the estimation of velocity components perpendicular to the ultrasound beam, using a commercially available ultrasound scanner equipped with a linear array probe. This enables the simultaneous measurement of axial blood velocity and vessel wall position, rendering a viable and accurate flow assessment. The validation was performed by comparing axial velocity profiles as measured in an experimental setup to analytical and computational fluid dynamics calculations. Physiologically relevant pulsating flows were considered, employing a blood analog fluid, which mimics both the acoustic and rheological properties of blood. In the core region (| r|/ a < 0.9), an accuracy of 3 cm s-1 was reached. For an accurate estimation of flow, no averaging in time was required, making a beat to beat analysis of pulsating flows possible.

  16. Seismic evidence of crustal low velocity beneath Eastern Ghat Mobile Belt, India

    NASA Astrophysics Data System (ADS)

    Chaudhuri, Kuntal; Borah, Kajaljyoti; Gupta, Sandeep

    2016-12-01

    The Eastern Ghat Mobile Belt (EGMB), a tectonically active area extends along the eastern margin of Peninsular India, is divided into three provinces, namely, Eastern Ghat Province, the Jeypore Province, and the Krishna Province. The Ongole domain of Krishna Province is a seismically active region that has experienced four moderate earthquakes of magnitude ⩾5.0, of which largest one is of magnitude 5.4 occurred on 27th March 1967. The crustal shear wave velocity structure in the Eastern Ghat Mobile Belt has been investigated using joint inversion of receiver functions and Rayleigh wave group velocity at 5 locations in the study region. The results show crustal thickness variation from 37 to 42 km and average shear velocity variation from 3.67 to 3.78 km/s in the study region. A low velocity layer of variable thickness and velocities 3.54-3.7 km/s) is also observed in the region. The low velocity layer in most of the stations is observed at a depth of ∼20 km. This low velocity layer may be due to the presence of fluid in the crust, which also be one of the causes of the intraplate earthquakes in the study region.

  17. Developing a comprehensive seismic velocity model of the Cascadia subduction zone

    NASA Astrophysics Data System (ADS)

    Gao, H.; Shen, Y.

    2011-12-01

    A comprehensive and high-resolution velocity model is essential to understand the subduction dynamics and continental accretion in the Cascadia subduction zone. In this study, we image the seismic structure of the crust and upper mantle with the application of a full-wave tomographic method. The tomographic result provides important insights on addressing such scientific questions as the along-strike segmentation of Cascadia and the role of (de-)hydration of the slab/crust, which is thought to be critical for the occurrence of the episodic tremor and slip. We use continuous seismic data recorded between 1995 and 2011 by about 600 stations in an area covering from northernmost California to northern Vancouver Island, Canada. The empirical Green's functions are recovered from inter-station cross correlation at periods of 7-200 seconds. At the periods of our interest, the empirical Green's functions from cross correlation of vertical-vertical channels are primarily Rayleigh waves. We simulate full-wave propagation within a 3D reference velocity model. The travel time anomalies are measured from the observed and synthetic Green's functions at stations. The shear and compressional velocities are inverted jointly as Rayleigh waves are sensitive to both Vp and Vs. The solution from inversion is used to iteratively update the 3D reference model. The integration of various waves in a physically consistent way refines absolute P and S velocities and Vp/Vs ratio, which allows for more robust and reliable geodynamic interpretations.

  18. S-wave velocity measurements applied to the seismic microzonation of Basel, Upper Rhine Graben

    NASA Astrophysics Data System (ADS)

    Havenith, Hans-Balder; Fäh, Donat; Polom, Ulrich; Roullé, Agathe

    2007-07-01

    An extensive S-wave velocity survey had been carried out in the frame of a recent seismic microzonation study of Basel and the border areas between Switzerland, France and Germany. The aim was to better constrain the seismic amplification potential of the surface layers. The survey included single station (H/V spectral ratios) and ambient vibration array measurements carried out by the Swiss team, as well as active S-wave velocity measurements performed by the German and French partners. This paper is focused on the application of the array technique, which consists in recording ambient vibrations with a number of seismological stations. Several practical aspects related to the field measurements are outlined. The signal processing aims to determine the dispersion curves of surface waves contained in the ambient vibrations. The inversion of the dispersion curve provides a 1-D S-wave velocity model for the investigated site down to a depth related to the size of the array. Since the size of arrays is theoretically not limited, arrays are known to be well adapted for investigations in deep sediment basins, such as the Upper Rhine Graben including the area of the city of Basel. In this region, 27 array measurements with varying station configurations have been carried out to determine the S-wave velocity properties of the geological layers down to a depth of 100-250 m. For eight sites, the outputs of the array measurements have been compared with the results of the other investigations using active sources, the spectral analysis of surface waves (SASW) and S-wave reflection seismics. Borehole information available for a few sites could be used to calibrate the geophysical measurements. By this comparison, the advantages and disadvantages of the array method and the other techniques are outlined with regard to the effectiveness of the methods and the required investigation depth. The dispersion curves measured with the arrays and the SASW technique were also combined

  19. Seismic Velocity Structure of the Mantle beneath the Hawaiian Hotspot and Geodynamic Perspectives

    NASA Astrophysics Data System (ADS)

    Wolfe, C. J.; Laske, G.; Ballmer, M. D.; Ito, G.; Collins, J. A.; Solomon, S. C.; Rychert, C. A.

    2012-12-01

    Data from the PLUME deployments of land and ocean bottom seismometers have provided unprecedented new constraints on regional seismic structure of the mantle beneath the Hawaiian Islands and motivated a new generation of geodynamic models for understanding hotspot origins. Three-dimensional finite-frequency body-wave tomographic images of S- and P-wave velocity structure reveal an upper-mantle low-velocity anomaly beneath Hawaii that is elongated in the direction of the island chain and surrounded by a high-velocity anomaly in the shallow upper mantle that is parabolic in map view. Low velocities continue downward to the mantle transition zone between 410 and 660 km depth and extend into the topmost lower mantle southeast of Hawaii. Upper mantle structure from both S and P waves is asymmetric about the island chain, with lower velocities just southwest of the island of Hawaii and higher velocities to the east. Independent Rayleigh-wave tomography displays a similarly asymmetric structure in the lower lithosphere and asthenosphere, and also reveals a low-velocity anomaly (with horizontal dimensions of 100 by 300 km across and along the chain, respectively) beneath the hotspot swell that reaches to depths of at least 140 km. Shear-wave splitting observations dominantly reflect fossil lithospheric anisotropy, although a signature of asthenospheric flow also may be resolvable. S-to-P receiver function imaging of the lithosphere-asthenosphere boundary suggests shoaling from 100 km west of Hawaii to 80 km beneath the island, a pattern consistent with results from Rayleigh wave imaging. In terms of mantle plume geodynamic models, the broad upper-mantle low-velocity region beneath the Hawaiian Islands may reflect the "diverging pancake" at the top of the upwelling zone; the surrounding region of high velocities could represent a downwelling curtain of relatively cool sublithospheric material; and the low-velocity anomalies southeast of Hawaii in the transition zone and

  20. Crustal high-velocity anomaly at the East European Craton margin in SE Poland (TESZ) modelled by 3-D seismic tomography of refracted and reflected arrivals

    NASA Astrophysics Data System (ADS)

    Środa, Piotr; Dec, Monika

    2016-04-01

    The area of Trans-European Suture Zone in SE Poland represents a contact of major tectonic units of different consolidation age - from the Precambrian East European Craton, through Palaeozoic West European Platform to Cenozoic Carpathian orogen. The region was built by several phases of crustal accretion, which resulted in a complex collage of tectonic blocks. In 2000, this region was studied by several seismic wide-angle profiles of CELEBRATION 2000 experiment, providing a dense coverage of seismic data in SE Poland and allowing for detailed investigations of the crustal structure and properties in this area. Beneath the marginal part of the EEC, the 2-D modelling of in-line data form several CELEBRATION profiles revealed a prominent high P-wave velocity anomaly in the upper crust, with Vp of 6.7-7.1 km/s, starting at 10-16 km depth (e.g., Środa et al., 2006). Anomalously high velocities are observed in the area located approximately beneath Lublin trough, to the NE of Teisseyre-Tornquist Zone. Based on 3-D tomography of first arrivals of in- and off-line CELEBRATION 2000 recordings (Malinowski et al., 2008), elevated velocities are also reported in the same area and seem to continue to the SW, off the craton margin. Gravimetric modelling also revealed anomalously high density in the same region at similar depths. High seismic velocities and densities are interpreted as indicative for a pronounced mafic intrusion, possibly related to extensional processes at the EEC margin. Previous 3-D models of the high-velocity intrusion were based on first arrivals (crustal refractions) only. In this study, also off-line reflections (not modelled up to now) are used, in order to enlarge the data set and to better constrain the geometry and properties of the velocity anomaly. A code for 3-D joint tomographic inversion of refracted and reflected arrivals, with model parametrization allowing for velocity discontinuities was used (Rawlinson, 2007). With this approach, besides the

  1. In-situ measurements of seismic velocity at 27 locations in the Los Angeles, California region

    USGS Publications Warehouse

    Gibbs, James F.; Fumal, Thomas E.; Roth, Edward F.

    1980-01-01

    Studies conducted in the San Francisco Bay Region (Gibbs, Fumal and Borcherdt, 1980) have shown that average shear-wave velocity can be readily tied to quantitative estimates of ground motion such as ground amplification and earthquake intensity. Furthermore, when certain physical properties of the geologic materials such as texture, hardness and fracture spacing are observed during geologic mapping, a method can be used to predict shear-wave velocity from the descriptions of geologic units. By measuring shear-wave velocities in key units together with the above data, regional maps depicting the earthquake shaking hazard can be compiled. The goals of the current program are to provide shear-wave data in the Los Angeles area to compare with that in the San Francisco Bay Region where high-strain intensity data are available. Data from twenty-seven locations are summarized in this report as part of a continuing project to seismically zone the Los Angeles area.

  2. Combined migration velocity model-building and its application in tunnel seismic prediction

    NASA Astrophysics Data System (ADS)

    Gong, Xiang-Bo; Han, Li-Guo; Niu, Jian-Jun; Zhang, Xiao-Pei; Wang, De-Li; Du, Li-Zhi

    2010-09-01

    We propose a combined migration velocity analysis and imaging method based on Kirchhoff integral migration and reverse time migration, using the residual curvature analysis and layer stripping strategy to build the velocity model. This method improves the image resolution of Kirchhoff integral migration and reduces the computations of the reverse time migration. It combines the advantages of efficiency and accuracy of the two migration methods. Its application in tunnel seismic prediction shows good results. Numerical experiments show that the imaging results of reverse time migration are better than the imaging results of Kirchhoff integral migration in many aspects of tunnel prediction. Field data show that this method has efficient computations and can establish a reasonable velocity model and a high quality imaging section. Combination with geological information can make an accurate prediction of the front of the tunnel geological structure.

  3. Transformation of seismic velocity data to extract porosity and saturation values for rocks

    PubMed

    Berryman; Berge; Bonner

    2000-06-01

    For wave propagation at low frequencies in a porous medium, the Gassmann-Domenico relations are well-established for homogeneous partial saturation by a liquid. They provide the correct relations for seismic velocities in terms of constituent bulk and shear moduli, solid and fluid densities, porosity and saturation. It has not been possible, however, to invert these relations easily to determine porosity and saturation when the seismic velocities are known. Also, the state (or distribution) of saturation, i.e., whether or not liquid and gas are homogeneously mixed in the pore space, is another important variable for reservoir evaluation. A reliable ability to determine the state of saturation from velocity data continues to be problematic. It is shown how transforming compressional and shear wave velocity data to the (rho/lambda, mu/lambda)-plane (where lambda and mu are the Lame parameters and rho is the total density) results in a set of quasi-orthogonal coordinates for porosity and liquid saturation that greatly aids in the interpretation of seismic data for the physical parameters of most interest. A second transformation of the same data then permits isolation of the liquid saturation value, and also provides some direct information about the state of saturation. By thus replotting the data in the (lambda/mu, rho/mu)-plane, inferences can be made concerning the degree of patchy (inhomogeneous) versus homogeneous saturation that is present in the region of the medium sampled by the data. Our examples include igneous and sedimentary rocks, as well as man-made porous materials. These results have potential applications in various areas of interest, including petroleum exploration and reservoir characterization, geothermal resource evaluation, environmental restoration monitoring, and geotechnical site characterization.

  4. Regional velocity structure in northern California from inversion of scattered seismic surface waves

    NASA Astrophysics Data System (ADS)

    Pollitz, Fred F.

    1999-07-01

    Seismic surface waves recorded by the Berkeley Digital Seismic Network have been analyzed in order to constrain three-dimensional lateral heterogeneity of the upper mantle under northern California. A total of 2164 seismograms from 173 teleseismic events were windowed for the fundamental mode Rayleigh wave, followed by estimation of complex amplitude spectra over the period range 16 to 100 s using a multiple-taper method. Since Rayleigh waves at shorter periods, particularly below 35 s, suffer from serious multipathing or "non-plane" wave arrivals, these amplitude spectra have been interpreted as the product of wavefront distortion along the teleseismic propagation path and seismic structure beneath the network. The amplitude spectra are first modeled in terms of non-plane incoming wavefields and structural phase velocity perturbations period by period. After corrections for Moho and surface topography, the phase velocity maps are inverted for three-dimensional shear velocity perturbations δνs down to a depth of 200 km. The δνs maps are in good agreement with the results of body studies over a broad spatial scale. The dominant signals are associated with the thermal effects of the active Gorda and fossil Farallon subducted slab stretching from Mount Shasta through the western Sierran foothills to the southern Great Valley and asthenospheric upwelling beneath the northern Coast Ranges. The southern Sierra Nevada Range is characterized by fast δνs down to ˜50 km and slow velocities between ˜60 and 120 km depth, in agreement with independent inferences of a cold crust and warm upper mantle, which may provide the buoyancy forces necessary to support the elevation of the range.

  5. A Three-Dimensional Seismic Velocity Model of the Arabian Plate, Iranian and Turkish Plateaus

    NASA Astrophysics Data System (ADS)

    Ghalib, Hafidh; Gritto, Roland; Sibol, Matthew; Herrmann, Robert; Aleqabi, Ghassan; Carron, Pierre; Wagner, Robert; Ali, Bakir; Ali, Ali

    2010-05-01

    Translational and rotational interaction between the Arabian, African and Eurasian plates over time has resulted in a challenging seismotectonic framework that is least understood in the Middle East region, in particular. Sea floor spreading along the Red Sea and Gulf of Aden, transform faulting along the Dead Sea and Own fracture zone, and compressional suture zones form the seismic and tectonic boundaries between the Arabian plate, the Iranian and Turkish plateaus. One objective of this effort is to map the three-dimensional shear-wave velocity variation using surface waves recorded by the broadband stations of North Iraq Seismographic Network (NISN), re-established Iraq Seismographic Network (ISN), and local stations of the Global Seismographic Network (GSN). Analysis of the seismograms netted a new seismicity map for the region consisting of about 2000 well located small to medium size earthquakes using all available phase arrivals including those published by the neighboring Syrian, Iranian and Turkish networks. Analysis of Rayleigh wave pure-path dispersion curves produced detailed maps showing the lateral and vertical variation of seismic velocities throughout the Middle East. These maps show a thick (10-15km) sedimentary layer that overlay the crystalline basement and a Conrad and Moho discontinuities at depths of 20-25km and 45-55km, respectively. The maps also show that the Arabian plate exhibits higher shear-wave velocities than found across the Turkish and Iranian plateaus; imprint of the Zagros Mountain roots extends down as deep as the Moho; and that the tectonic boundaries along the Dead Sea, Taurus and Zagros are more pronounced with depth describing a 60km or thicker Arabian plate. Future plans involving body wave velocity tomography modeling, high frequency wave attenuation, and moment tensor analysis to estimate the focal mechanism and magnitude of events are in preparation.

  6. Shear-wave velocity-based probabilistic and deterministic assessment of seismic soil liquefaction potential

    USGS Publications Warehouse

    Kayen, R.; Moss, R.E.S.; Thompson, E.M.; Seed, R.B.; Cetin, K.O.; Der Kiureghian, A.; Tanaka, Y.; Tokimatsu, K.

    2013-01-01

    Shear-wave velocity (Vs) offers a means to determine the seismic resistance of soil to liquefaction by a fundamental soil property. This paper presents the results of an 11-year international project to gather new Vs site data and develop probabilistic correlations for seismic soil liquefaction occurrence. Toward that objective, shear-wave velocity test sites were identified, and measurements made for 301 new liquefaction field case histories in China, Japan, Taiwan, Greece, and the United States over a decade. The majority of these new case histories reoccupy those previously investigated by penetration testing. These new data are combined with previously published case histories to build a global catalog of 422 case histories of Vs liquefaction performance. Bayesian regression and structural reliability methods facilitate a probabilistic treatment of the Vs catalog for performance-based engineering applications. Where possible, uncertainties of the variables comprising both the seismic demand and the soil capacity were estimated and included in the analysis, resulting in greatly reduced overall model uncertainty relative to previous studies. The presented data set and probabilistic analysis also help resolve the ancillary issues of adjustment for soil fines content and magnitude scaling factors.

  7. Seismic Velocities Imaging around "AFA" Hydrothermal Area in West Java, Indonesia derived from Dense Seimometer Network

    NASA Astrophysics Data System (ADS)

    Fanani Akbar, Akhmad; Nugraha, Andri Dian; Jousset, Philippe GM; Ryannugroho, Riskiray; Gassner, Alexandra; Jaya, Makky S.; Sule, Rachmat; Diningrat, Wahyuddin; Hendryana, Andri; Kusnadi, Yosep; Umar, Muksin; Indrinanto, Yudi; Erbas, Kemal

    2015-04-01

    We have deployed about 48 three component seismometers around "AFA" hydrothermal are in West Java, Indonesia from October 2012 up to October 2014 in order to detect microseismic event and to enhance our knowledge about subsurface seismic stucture. The seismometer network in this study, is the first dense seismometer array monitoring around hydrothermal area in Indonesia so far. We analyzed a huge waveform data set to distinguish microseismic, local and regional events. Then, we picked the onset of P-and S-wave arrival of microseismic events carefully visually by eye. We determined the initial microseismic event by applying Geiger's method with uniform seismic velocity model. Totally, we have been successfully determined 2,497 microseismic events around this hydrothermal area. We also improved 1D seismic velocities (Vp, Vs) and simultaneously with hypocenter adjustment as input for the tomography inversion in this study. Overall, the microseismic events are concentrated around production area activities and we also found strong cluster microseismic event in Southern part of this region which still need to be investigated in more details. Now, we are going on tomographic inversion step by using double-difference method. We are going to show more information during the meeting.

  8. High resolution applications of seismic tomography: low velocity anomalies and static corrections using wave-equation datuming

    NASA Astrophysics Data System (ADS)

    Flecha, I.; Marti, D.; Escuder, J.; Perez-Estaun, A.; Carbonell, R.

    2003-04-01

    A detailed characterization of the internal structure and physical properties of shallow surface can be obtained using high-resolution seismic tomography. Two applications of high resolution seismic tomography are presented in this study. Several synthetics simulations have been carried out to asses the resolving power of this methodology in different cases. The first studied case is the detection of low velocity anomalies in the shallow subsoil. Underground cavities (mines), water flows (formation wich loose sand), etc., are geological features present in the shallow subsurface characterized by low seismic velocities, and are targets of considerable social interest. We have considered a 400m×50m two dimensional velocity model consisting of a background velocity gradient in depth from 3 to 4 Km/s which included a rectangular low velocity anomaly (300 m/s). This anomaly was placed between 10m and 30m in depth and between 180m and 220m in length. The inversions schemes provided estimates of the velocity, however the tomograms and the ray tracing diagrams indicated a low resolution for the anomaly. In the second case we have applied wave-equation datuming to pre-stack layer replacement. The standard seismic data processing applies a vertical time shift to the data traces. However, it is not a good option when we are dealing with rugged topography or bathymetry, and when the media presents a high heterogeneity. Wave-equation datuming extrapolates seismic time data to some level datum keeping consistency between raypaths and wavefield propagation. It improves considerably seismic reflectors imaging. In order to implement this technique a velocity model is required, and usually a constant velocity is used to propagate the wavefield; instead of it we have used seismic tomography to provide an accurate velocity model.

  9. Seismic velocity structure of the sediment seaward of Cascadia Subduction Zone deformation front

    NASA Astrophysics Data System (ADS)

    Han, S.; Gibson, J. C.; Carbotte, S. M.; Canales, J. P.; Nedimovic, M. R.; Carton, H. D.

    2015-12-01

    We present seismic velocity structure of the sediment section seaward of the Cascadia Subduction Zone deformation front (DF), derived from multichannel seismic data acquired during the 2012 Juan de Fuca Ridge to Trench experiment. Detailed velocity analyses are conducted on every 100th prestack-time-migrated common reflection point gather (625 m spacing) within 45 km seaward of the DF along two ridge-to-trench transects offshore Oregon at 44.6˚N and Washington at 47.4˚N respectively, and on every 200th common mid-point gather (1250 m spacing) along a ~400 km-long trench-parallel transect ~15 km from the DF. We observe a landward increase of sediment velocity starting from ~15-20 km from the DF on both Oregon and Washington transects, which may result from increased horizontal compressive tectonic stress within the accretionary wedge and thermally induced dehydration processes in the sediment column. Although the velocity of near-basement sediments at 30 km from the DF is similar (~3.1 km/s) on both transects, the velocity increases are larger on the Washington transect, to ~4.0 km/s beneath the DF (sediment thickness ~3.2 km), than on the Oregon transect, to ~3.6 km/s beneath the DF (sediment thickness ~3.5 km). The long-wavelength sediment velocity structure on the trench-parallel transect confirms this regional difference in deep sediment velocity and also highlights variations related to a group of WNW-trending strike-slip faults along the margin. Offshore Washington, where higher sediment velocity seaward of the DF is observed, the accretionary wedge is wide with a decollement located close to the basement and landward-verging thrust faults. By contrast, offshore Oregon, the lower sediment velocity seaward of the DF is associated with a narrow accretionary wedge, a shallow decollement ~1 km above the basement, and seaward-verging thrust faults. The regional differences in deep sediment velocity may be related to the along-strike variation in sediment

  10. Instantaneous 2D Velocity and Temperature Measurements in High Speed Flows Based on Spectrally Resolved Molecular Rayleigh Scattering

    NASA Technical Reports Server (NTRS)

    Seasholtz, Richard G.

    1995-01-01

    A Rayleigh scattering diagnostic for high speed flows is described for the simultaneous, instantaneous measurement of gas temperature and velocity at a number (up to about one hundred) of locations in a plane illuminated by an injection-seeded, frequency doubled Nd:YAG laser. Molecular Rayleigh scattered light is collected and passed through a planar mirror Fabry-Perot interferometer. The resulting image is analyzed to determine the gas temperature and bulk velocity at each of the regions. The Cramer Rao lower bound for measurement uncertainty is calculated. Experimental data is presented for a free jet and for preliminary measurements in the Lewis 4 inch by 10 inch supersonic wind tunnel.

  11. Low S-wave-velocity layers in the transition zone: a review of seismic data

    NASA Astrophysics Data System (ADS)

    Vinnik, Lev

    2010-05-01

    I review the seismic data that suggest the presence of thin (a few tens km wide) low-S-velocity zones atop the 410-km discontinuity and in a depth range of 450 - 520 km. Most of the data are obtained with receiver function techniques. Contrary to the prediction of Bercovici and Karato (2003), the low velocity atop the 410-km discontinuity is found mostly in association with plume-like structures in the mantle of the Kaapvaal craton, the Siberian craton, the Arabian plate, West Siberia, China, West Africa and Antarctica (Vinnik and Farra, 2002, 2007). In southern Africa (Vinnik et al.,GJI 2009) this structure seems to be anisotropic. The latest observations of the low velocity atop the 410-km discontinuity are made in the western US and California (e.g. Vinnik et al. JGR 2010, in press). In southern California and the neighboring Pacific this layer, found with the S receiver function techniques, can be related to the Baja-Guadalupe hot-spot. The low velocity can be related to the high solubilty of water in wadsleyite in the mantle transition zone relative to olivine in the overlaying mantle, but other possibilities cannot be excluded. Most observations of the low-velocity zone in a depth range of 450-520 km are also related to plumes and plume-like structures (Afar, Iceland, Azores, Cameroon, south-eastern Atlantic). A plausible theory of this phenomenon should explain why the low S velocity never extends to depths exceeding 520 km.

  12. Lunar Seismic Velocity and Crustal Thickness Inversions Using Constraints from Apollo and GRAIL Data

    NASA Astrophysics Data System (ADS)

    Blanchette-Guertin, J. F.; Drilleau, M.; Kawamura, T.; Lognonne, P. H.; Wieczorek, M. A.

    2015-12-01

    We present results from new Markov Chain Monte Carlo inversions of (i) 1-D lunar crustal and upper mantle velocity models and (ii) 3-D lateral crustal thickness models anchored by crustal thicknesses under the Apollo stations and the artificial and natural impact sites. These new generation models are constrained by both the Apollo impact event seismic data arrival times and by the more recent GRAIL gravimetric data. In all models, 1-D seismic velocities are parameterized using C1 Bézier polynomials, using two independent sets to represent the crust and the underlying mantle. Other parameters of the inversions include the depth and velocity amplitude of the Bézier control points, the depth of the crust-mantle discontinuity, the thickness of the crust under each Apollo station and impact epicenter, the vp/vs ratio, as well as location-specific time delays. Inverting for station-specific crustal thicknesses and velocity delays highlights geology-related differences between stations (e.g. contrasts in megaregolith thickness, in shallow subsurface composition and structure). These differences have already been observed by other analytical methods in the past, as detailed in the literature. We also test the possibility of having a dual-layered crust. However, some of the finer structural elements might be difficult to observe with the available data and might fall within the inherent uncertainty of the dataset. We use the more precise LROC-located epicentral locations for the lunar modules and Saturn-IV booster artificial impacts, reducing that way some of the uncertainty observed in past models. Natural impact epicentral locations are relocated during the inversions. Constraints from deep and shallow moonquakes will be included in future inversions to potentially refine the velocity and crustal models. This work falls within the NASA InSight mission to Mars seismic investigation (SEIS). Accordingly, the method and analytical software developed for this study will be

  13. Application of high-resolution 2D-3C seismic for characterization of the perspective Jurassic shale play in Central Poland

    NASA Astrophysics Data System (ADS)

    Cyz, M.; Malinowski, M.; Krzywiec, P.; Mulińska, M.; Słonka, Ł.

    2016-10-01

    Here we show the application of broadband (4-120 Hz) 2D-3C seismic for characterization of the perspective Jurassic shale play in Central Poland. Data were acquired along a network of 250 km 2D profiles using single-point, densely spaced receivers (digital 3C sensors) and acquisition was focused on providing both high-resolution and broadband seismic that would enable structural imaging and quantitative interpretation of the key stratigraphic horizons in the Mesozoic sedimentary cover. Such acquisition parameters resulted in good quality data and allowed for more flexibility during processing, e.g., unaliased F-K filtering or digital group forming for ground-roll removal. Processing was oriented to preserve relative amplitudes and the broadband character of the dataset as the input for future quantitative interpretation. We obtained a high-resolution stratigraphic image of the target Upper Jurassic (Upper Kimmeridgian-Tithonian) sequence as well as overall structural portrait of this part of Mid-Polish Trough characterized by strong imprint of the salt tectonics. Lateral continuity of particular stratigraphic sequences has been determined and a more precise structural context for deposition and present-day structure of the Upper Kimmeridgian-Tithonian has been established.

  14. Generation of a pseudo-2D shear-wave velocity section by inversion of a series of 1D dispersion curves

    USGS Publications Warehouse

    Luo, Y.; Xia, J.; Liu, J.; Xu, Y.; Liu, Q.

    2008-01-01

    Multichannel Analysis of Surface Waves utilizes a multichannel recording system to estimate near-surface shear (S)-wave velocities from high-frequency Rayleigh waves. A pseudo-2D S-wave velocity (vS) section is constructed by aligning 1D models at the midpoint of each receiver spread and using a spatial interpolation scheme. The horizontal resolution of the section is therefore most influenced by the receiver spread length and the source interval. The receiver spread length sets the theoretical lower limit and any vS structure with its lateral dimension smaller than this length will not be properly resolved in the final vS section. A source interval smaller than the spread length will not improve the horizontal resolution because spatial smearing has already been introduced by the receiver spread. In this paper, we first analyze the horizontal resolution of a pair of synthetic traces. Resolution analysis shows that (1) a pair of traces with a smaller receiver spacing achieves higher horizontal resolution of inverted S-wave velocities but results in a larger relative error; (2) the relative error of the phase velocity at a high frequency is smaller than at a low frequency; and (3) a relative error of the inverted S-wave velocity is affected by the signal-to-noise ratio of data. These results provide us with a guideline to balance the trade-off between receiver spacing (horizontal resolution) and accuracy of the inverted S-wave velocity. We then present a scheme to generate a pseudo-2D S-wave velocity section with high horizontal resolution using multichannel records by inverting high-frequency surface-wave dispersion curves calculated through cross-correlation combined with a phase-shift scanning method. This method chooses only a pair of consecutive traces within a shot gather to calculate a dispersion curve. We finally invert surface-wave dispersion curves of synthetic and real-world data. Inversion results of both synthetic and real-world data demonstrate that

  15. Three-dimensional seismic velocity structure and earthquake relocations at Katmai, Alaska

    USGS Publications Warehouse

    Murphy, Rachel; Thurber, Clifford; Prejean, Stephanie G.; Bennington, Ninfa

    2014-01-01

    We invert arrival time data from local earthquakes occurring between September 2004 and May 2009 to determine the three-dimensional (3D) upper crustal seismic structure in the Katmai volcanic region. Waveforms for the study come from the Alaska Volcano Observatory's permanent network of 20 seismic stations in the area (predominantly single-component, short period instruments) plus a densely spaced temporary array of 11 broadband, 3-component stations. The absolute and relative arrival times are used in a double-difference seismic tomography inversion to solve for 3D P- and S-wave velocity models for an area encompassing the main volcanic centers. The relocated hypocenters provide insight into the geometry of seismogenic structures in the area, revealing clustering of events into four distinct zones associated with Martin, Mageik, Trident-Novarupta, and Mount Katmai. The seismic activity extends from about sea level to 2 km depth (all depths referenced to mean sea level) beneath Martin, is concentrated near 2 km depth beneath Mageik, and lies mainly between 2 and 4 km depth below Katmai and Trident-Novarupta. Many new features are apparent within these earthquake clusters. In particular, linear features are visible within all clusters, some associated with swarm activity, including an observation of earthquake migration near Trident in 2008. The final velocity model reveals a possible zone of magma storage beneath Mageik, but there is no clear evidence for magma beneath the Katmai-Novarupta area where the 1912 eruptive activity occurred, suggesting that the storage zone for that eruption may have largely been evacuated, or remnant magma has solidified.

  16. Field observations of seismic velocity changes caused by shaking-induced damage and healing due to mesoscopic nonlinearity

    NASA Astrophysics Data System (ADS)

    Gassenmeier, M.; Sens-Schönfelder, C.; Eulenfeld, T.; Bartsch, M.; Victor, P.; Tilmann, F.; Korn, M.

    2016-03-01

    To investigate temporal seismic velocity changes due to earthquake related processes and environmental forcing in Northern Chile, we analyse 8 yr of ambient seismic noise recorded by the Integrated Plate Boundary Observatory Chile (IPOC). By autocorrelating the ambient seismic noise field measured on the vertical components, approximations of the Green's functions are retrieved and velocity changes are measured with Coda Wave Interferometry. At station PATCX, we observe seasonal changes in seismic velocity caused by thermal stress as well as transient velocity reductions in the frequency range of 4-6 Hz. Sudden velocity drops occur at the time of mostly earthquake-induced ground shaking and recover over a variable period of time. We present an empirical model that describes the seismic velocity variations based on continuous observations of the local ground acceleration. The model assumes that not only the shaking of large earthquakes causes velocity drops, but any small vibrations continuously induce minor velocity variations that are immediately compensated by healing in the steady state. We show that the shaking effect is accumulated over time and best described by the integrated envelope of the ground acceleration over the discretization interval of the velocity measurements, which is one day. In our model, the amplitude of the velocity reduction as well as the recovery time are proportional to the size of the excitation. This model with two free scaling parameters fits the data of the shaking induced velocity variation in remarkable detail. Additionally, a linear trend is observed that might be related to a recovery process from one or more earthquakes before our measurement period. A clear relationship between ground shaking and induced velocity reductions is not visible at other stations. We attribute the outstanding sensitivity of PATCX to ground shaking and thermal stress to the special geological setting of the station, where the subsurface material

  17. Complete regional waveform modeling to estimate seismic velocity structure and source parameters for CTBT monitoring

    SciTech Connect

    Bredbeck, T; Rodgers, A; Walter, W

    1999-07-23

    The velocity structures and source parameters estimated by waveform modeling provide valuable information for CTBT monitoring. The inferred crustal and uppermost mantle structures advance understanding of tectonics and guides regionalization for event location and identification efforts. Estimation of source parameters such as seismic moment, depth and mechanism (whether earthquake, explosion or collapse) is crucial to event identification. In this paper we briefly outline some of the waveform modeling research for CTBT monitoring performed in the last year. In the future we will estimate structure for new regions by modeling waveforms of large well-observed events along additional paths. Of particular interest will be the estimation of velocity structure in aseismic regions such as most of Africa and the Former Soviet Union. Our previous work on aseismic regions in the Middle East, north Africa and south Asia give us confidence to proceed with our current methods. Using the inferred velocity models we plan to estimate source parameters for smaller events. It is especially important to obtain seismic moments of earthquakes for use in applying the Magnitude-Distance Amplitude Correction (MDAC; Taylor et al., 1999) to regional body-wave amplitudes for discrimination and calibrating the coda-based magnitude scales.

  18. Imaging the Ferron Member of the Mancos Shale formation using reprocessed high-resolution 2-D seismic reflection data: Emery County, Utah

    USGS Publications Warehouse

    Taylor, D.J.

    2003-01-01

    Late in 1982 and early in 1983, Arco Exploration contracted with Rocky Mountain Geophysical to acquired four high-resolution 2-D multichannel seismic reflection lines in Emery County, Utah. The primary goal in acquiring this data was an attempt to image the Ferron Member of the Upper Cretaceous Mancos Shale. Design of the high-resolution 2-D seismic reflection data acquisition used both a short geophone group interval and a short sample interval. An explosive energy source was used which provided an input pulse with broad frequency content and higher frequencies than typical non-explosive Vibroseis?? sources. Reflections produced by using this high-frequency energy source when sampled at a short interval are usually able to resolve shallow horizons that are relatively thin compared to those that can be resolved using more typical oil and gas exploration seismic reflection methods.The U.S. Geological Survey-Energy Resources Program, Geophysical Processing Group used the processing sequence originally applied by Arco in 1984 as a guide and experimented with processing steps applied in a different order using slightly different parameters in an effort to improve imaging the Ferron Member horizon. As with the Arco processed data there are sections along all four seismic lines where the data quality cannot be improved upon, and in fact the data quality is so poor that the Ferron horizon cannot be imaged at all.Interpretation of the seismic and core hole data indicates that the Ferron Member in the study area represent a deltaic sequence including delta front, lower delta plain, and upper delta plain environments. Correlating the depositional environments for the Ferron Member as indicated in the core holes with the thickness of Ferron Member suggests the presence of a delta lobe running from the northwest to the southeast through the study area. The presence of a deltaic channel system within the delta lobe complex might prove to be an interesting conventional

  19. Improved 2-D attenuation analysis for Northern Italy using a merged dataset from selected regional seismic networks

    NASA Astrophysics Data System (ADS)

    Morasca, Paola; Massa, Marco; Laprocina, Enrica; Mayeda, Kevin; Phillips, Scott; Malagnini, Luca; Spallarossa, Daniele; Costa, Giovanni; Augliera, Paolo

    2010-10-01

    A merged, high-quality waveform dataset from different seismic networks has been used to improve our understanding of lateral seismic attenuation for Northern Italy. In a previous study on the same region, Morasca et al. (Bull Seismol Soc Am 98:1936-1946, 2008) were able to resolve only a small area due to limited data coverage. For this reason, the interpretation of the attenuation anomalies was difficult given the complexity of the region and the poor resolution of the available data. In order to better understand the lateral changes in the crustal structure and thickness of this region, we selected 770 earthquakes recorded by 54 stations for a total of almost 16,000 waveforms derived from seismic networks operating totally or partially in Northern Italy. Direct S-wave and coda attenuation images were obtained using an amplitude ratio technique that eliminates source terms from the formulation. Both direct and early-coda amplitudes are used as input for the inversions, and the results are compared. Results were obtained for various frequency bands ranging between 0.3 and 25.0 Hz and in all cases show significant improvement with respect to the previous study since the resolved area has been extended and more crossing paths have been used to image smaller scale anomalies. Quality-factor estimates are consistent with the regional tectonic structure exhibiting a general trend of low attenuation under the Po Plain basin and higher values for the Western Alps and Northern Apennines. The interpretation of the results for the Eastern Alps is not simple, possibly because our resolution for this area is still not adequate to resolve small-scale structures.

  20. Analytical modeling of seismic wave scattered from a 2D fracture simulated by a low-aspect ratio elliptical cylinder

    NASA Astrophysics Data System (ADS)

    Chen, T.; Wang, P.; Fehler, M.; Zhang, Y.; Burns, D.

    2009-12-01

    Localizing subsurface fractures and estimating their mechanical parameters and geometric properties are very important in oil and gas industry as well as geothermal energy research. It is essential to quantitatively understand how the elastic wave propagation is affected by these fractures. In this paper, an analytical expression for the scattered P- and SV waves from a 2D fracture is formulated based on a normal mode method, where the 2D fracture is modeled by a low-aspect ratio elliptical cylinder. The scatter function of this 2D fracture are expressed in terms of the incident angle, the orientation and aspect ratio of the fracture as well as the elastic impedance contrast between the surrounding medium and the inhomogeneity inside the fracture. Results from this analytical solution match well with those from a finite-difference approach. Solutions of this analytical model at two limiting cases (a circular cylinder with aspect ratio equal to one and a strip with aspect ratio equal to zero) are also compared to analytical solutions directly derived for the circular cylinder and strip by other studies.

  1. Grain size evolution in the mantle and its effect on geodynamics, seismic velocities and attenuation

    NASA Astrophysics Data System (ADS)

    Dannberg, Juliane; Eilon, Zach; Gassmoeller, Rene; Moulik, Pritwiraj; Myhill, Robert; Faul, Ulrich; Asimow, Paul

    2015-04-01

    Dynamic models of Earth's convecting mantle usually implement flow laws with constant grain size, stress-independent viscosity and a limited treatment of variations associated with changes in mineral assemblage. These simplifications greatly reduce computational requirements but preclude effects such as shear localisation and transient changes in rheology associated with phase transitions, which have the potential to fundamentally change flow patterns in the mantle. Here we use the finite-element code ASPECT (Bangerth et al., 2013) to model grain size evolution and the interplay between grain size, stress and strain rate in the convecting mantle. We include the simultaneous and competing effects of dynamic recrystallisation resulting from work done by dislocation creep, grain growth in multiphase assemblages and recrystallisation at phase transitions. Grain size variations also affect seismic properties of mantle materials. We use several published formulations to relate intrinsic variables (P, T, and grain size) from our numerical models to seismic velocity (Vs) and attenuation (Q). Our calculations use thermodynamically self-consistent anharmonic elastic moduli determined for the mineral assemblages in the mantle using HeFESTo (Stixrude and Lithgow-Bertelloni, 2013). We investigate the effect of realistically heterogeneous grain sizes by computing body wave travel times, ray paths, and attenuation (t*) at different frequencies. We highlight the frequency-dependent sensitivity of seismic waves to grain size, which is important when interpreting Vs and Q observations in terms of mineral assemblage and temperature. Our models show that rapid metamorphic reactions in mantle upwellings and downwellings lead to high lateral viscosity contrasts, as a result of gradual grain size evolution. Positive feedback between grain size reduction and viscosity reduction results in shear localisation. As a result, the edges of thermal plumes have smaller grain sizes and lower

  2. Well log and 2D seismic data character of the Wilcox Group in south-central Louisiana

    USGS Publications Warehouse

    Enomoto, Catherine B.

    2014-01-01

    The Wilcox Group is productive in updip areas of Texas and Louisiana from fluvial, deltaic, and near-shore marine shelf sandstones. The reported presence of porous sandstones at 29,000 feet within the Wilcox Group containing about 200 feet of gas in the Davy Jones 1 discovery well in the offshore Louisiana South Marsh Island area illustrates a sand-rich system developed during the Paleocene and early Eocene. This study describes some of the well log and reflection seismic data characteristics of the slope and basin-floor reservoirs with gas-discovery potential that may be in the area between the producing trend onshore Louisiana and the offshore discovery.

  3. Crust and Upper Mantle Velocity Structure of the New Madrid Seismic Zone

    NASA Astrophysics Data System (ADS)

    Nyamwandha, C. A.; Powell, C. A.; Langston, C. A.

    2014-12-01

    Detailed P wave velocity (Vp) and S wave velocity models (Vs) and Vp/Vs ratios for the crust and upper mantle associated with the New Madrid Seismic Zone (NMSZ) are presented. The specific study region spans latitude 34 to 39.5 degrees north and longitude 87 to 93 degrees west and extends to a depth of at least 500 km. The density of data from three networks - The Cooperative New Madrid Seismic Network (CNMSN) operated by CERI, the Earthscope transportable array (TA), and the FlexArray (FA) Northern Embayment Lithospheric Embayment (NELE) project stations - provides us with the opportunity to derive detailed velocity models for this region. We use arrival times from local and regional earthquakes and travel time residuals from teleseismic earthquakes recorded by the three networks from September 2011 to date. The teleseismic body wave arrival times are measured using an Automated and Interactive Measurement of Body Wave Arrival Times (AIMBAT) package (Lou et al., 2012). We perform a joint local and teleseismic inversion (Zhao et al.,1994) to determine the velocity structure. For the local events, the hypocenters are relocated iteratively in the inversion process using an efficient 3-D ray tracing technique. We image a significant low velocity anomaly in the upper mantle with a concentration at about 200 - 300 km depth and it is a consistent feature in both the Vp and Vs tomography results. Checkerboard tests show that the spatial resolution is high in the upper mantle especially for the Vp model. The spatial resolution in the crust is fairly high for most of the study area except at the edges and the southeastern part, which can be attributed to diminished local earthquake activity. We perform synthetic tests to isolate smearing effects and further confirm the features in the tomographic images. Vp/Vs ratios are determined for the portions of the model with highest resolution. Preliminary results indicate that significant Vp/Vs ratio variations are present only at

  4. Elastic Velocity Updating through Image-Domain Tomographic Inversion of Passive Seismic Data

    NASA Astrophysics Data System (ADS)

    Witten, B.; Shragge, J. C.

    2014-12-01

    Seismic monitoring at injection sites (e.g., CO2sequestration, waste water disposal, hydraulic fracturing) has become an increasingly important tool for hazard identification and avoidance. The information obtained from this data is often limited to seismic event properties (e.g., location, approximate time, moment tensor), the accuracy of which greatly depends on the estimated elastic velocity models. However, creating accurate velocity models from passive array data remains a challenging problem. Common techniques rely on picking arrivals or matching waveforms requiring high signal-to-noise data that is often not available for the magnitude earthquakes observed over injection sites. We present a new method for obtaining elastic velocity information from earthquakes though full-wavefield wave-equation imaging and adjoint-state tomography. The technique exploits images of the earthquake source using various imaging conditions based upon the P- and S-wavefield data. We generate image volumes by back propagating data through initial models and then applying a correlation-based imaging condition. We use the P-wavefield autocorrelation, S-wavefield autocorrelation, and P-S wavefield cross-correlation images. Inconsistencies in the images form the residuals, which are used to update the P- and S-wave velocity models through adjoint-state tomography. Because the image volumes are constructed from all trace data, the signal-to-noise in this space is increased when compared to the individual traces. Moreover, it eliminates the need for picking and does not require any estimation of the source location and timing. Initial tests show that with reasonable source distribution and acquisition array, velocity anomalies can be recovered. Future tests will apply this methodology to other scales from laboratory to global.

  5. The Southern Andes Between 36o and 40o S Latitude: Seismicity and Average Velocities

    NASA Astrophysics Data System (ADS)

    Bohm, M.; Bruhn, C.; Asch, G.; Bataille, K.; Rietbrock, A.; ISSA Working Group,; ISSA Working Group,; ISSA Working Group,; ISSA Working Group,; ISSA Working Group,

    2001-12-01

    A temporary seismological network was installed as part of the project ISSA 2000 (Integrated Seismological experiment in the Southern Andes) between 36o and 40o S above the active continental margin in the Southern Andes reaching from the Chilean Pacific coast to 68o W in Argentina. The network consisted of 62 seismographs recording continuously from November 1999 to April 2000. We recorded on average 3 to 4 local earthquakes per day, mainly concentrated in the northwestern part of the network, resulting in a data set of 300 seismic events. High quality P and S arrival times of 120 earthquakes were inverted simultanously for 1-D velocity structure and hypocentral coordinates. Precise hypocenter locations of local earthquakes are determinted resulting in the first accurate image of the Wadati-Benioff zone south of Concepcion. The 1-D velocity model serves as initial reference model of seismic velocity tomographic studies, preliminary results of which will be presented. A further research interest of this seismological experiment is the determination of source mechanisms. Moment tensor inversions provide important information on the current stress field. It is postulated by several authors that dehydration processes are the cause of intermediate depth earthquakes while the focal mechanisms in the seismic coupling zone will be controlled by the deformation processes of the continental crust. A distinct non double couple part of the moment tensor will be expected in the zones of dehydration processes. The recorded data base allows a detailed investigation of local events in a higher frequency range. Instead of using the seismograms directly, the inversion for the moment tensor can also be performed on amplitude spectra. This method has the advantage that slight misalignments between seismograms and Greens functions do not bias the outcome, because the phase spectrum is not used at all.

  6. Seismic velocity structure around the shallow megathrust zone of the 2011 Tohoku earthquake deduced from onshore and offshore seismic observations

    NASA Astrophysics Data System (ADS)

    Yamamoto, Y.; Obana, K.; Machida, Y.; Nakahigashi, K.; Shinohara, M.; Suzuki, K.; Ito, Y.; Hino, R.; Kodaira, S.; Kaneda, Y.; Murai, Y.; Sato, T.; Uehira, K.; Yakiwara, H.; Hirata, K.; Sugioka, H.; Ito, A.; Suetsugu, D.

    2012-12-01

    The coseismic rupture area of the 2011 Tohoku Earthquake has been estimated to be over the wide region from the coastline to near the Japan Trench. Several kinds of studies, such as tsunami source inversion [e.g., Fujii et al., 2011], coseismic slip inversion [e.g., Ide et al., 2011], submarine topography change [Fujiwara et al., 2011] and seafloor displacement observation [Sato et al., 2011; Ito et al., 2011; Kido et al., 2011], share the common feature that the largest coseismic slip occurred at the shallow plate boundary in close vicinity to the Japan Trench. However, the structural image just beneath the largest coseismic slip area was unclear since the observation areas of previous ocean bottom seismographs (OBSs) in this region were limited and there were few OBSs near the Japan Trench [e.g., Yamamoto et al., 2011]. To understand the relationship between the coseismic rupture behavior and structural heterogeneities, it is necessary to know the seismic velocity structure around the plate boundary near the trench axis. After the occurrence of the 2011 earthquake, some National Universities (Hokkaido, Tohoku, Chiba, Tokyo, Kyushu, and Kagoshima), JAMSTEC, and Meteorological Research Institute together have conducted the aftershock observations along the landward slope of the Japan Trench to obtain detail hypocenter distribution [Shinohara et al., 2012]. Tohoku University has performed the other OBS observation off Miyagi prefecture from 2010 to 2011. During this observation, a sequence of foreshocks, the mainshock, and aftershocks of the 2011 Tohoku earthquake were recorded [Suzuki et al., 2012]. In addition, JAMSTEC has conducted the aftershock observation at outer slope of Japan Trench, around the epicenter of a Mw 7.6 earthquake that occurred about 40 minutes after the 2011 mainshock, from May to June in 2011[Obana et al., 2012]. In this study, we attempt to obtain the three-dimensional seismic velocity structure around the largest coseismic slip zone of the

  7. Continuous Data Assimilation for a 2D Bénard Convection System Through Horizontal Velocity Measurements Alone

    NASA Astrophysics Data System (ADS)

    Farhat, Aseel; Lunasin, Evelyn; Titi, Edriss S.

    2017-01-01

    In this paper we propose a continuous data assimilation (downscaling) algorithm for a two-dimensional Bénard convection problem. Specifically we consider the two-dimensional Boussinesq system of a layer of incompressible fluid between two solid horizontal walls, with no-normal flow and stress-free boundary conditions on the walls, and the fluid is heated from the bottom and cooled from the top. In this algorithm, we incorporate the observables as a feedback (nudging) term in the evolution equation of the horizontal velocity. We show that under an appropriate choice of the nudging parameter and the size of the spatial coarse mesh observables, and under the assumption that the observed data are error free, the solution of the proposed algorithm converges at an exponential rate, asymptotically in time, to the unique exact unknown reference solution of the original system, associated with the observed data on the horizontal component of the velocity.

  8. First seismic shear wave velocity profile of the lunar crust as extracted from the Apollo 17 active seismic data by wavefield gradient analysis

    NASA Astrophysics Data System (ADS)

    Sollberger, David; Schmelzbach, Cedric; Robertsson, Johan O. A.; Greenhalgh, Stewart A.; Nakamura, Yosio; Khan, Amir

    2016-04-01

    We present a new seismic velocity model of the shallow lunar crust, including, for the first time, shear wave velocity information. So far, the shear wave velocity structure of the lunar near-surface was effectively unconstrained due to the complexity of lunar seismograms. Intense scattering and low attenuation in the lunar crust lead to characteristic long-duration reverberations on the seismograms. The reverberations obscure later arriving shear waves and mode conversions, rendering them impossible to identify and analyze. Additionally, only vertical component data were recorded during the Apollo active seismic experiments, which further compromises the identification of shear waves. We applied a novel processing and analysis technique to the data of the Apollo 17 lunar seismic profiling experiment (LSPE), which involved recording seismic energy generated by several explosive packages on a small areal array of four vertical component geophones. Our approach is based on the analysis of the spatial gradients of the seismic wavefield and yields key parameters such as apparent phase velocity and rotational ground motion as a function of time (depth), which cannot be obtained through conventional seismic data analysis. These new observables significantly enhance the data for interpretation of the recorded seismic wavefield and allow, for example, for the identification of S wave arrivals based on their lower apparent phase velocities and distinct higher amount of generated rotational motion relative to compressional (P-) waves. Using our methodology, we successfully identified pure-mode and mode-converted refracted shear wave arrivals in the complex LSPE data and derived a P- and S-wave velocity model of the shallow lunar crust at the Apollo 17 landing site. The extracted elastic-parameter model supports the current understanding of the lunar near-surface structure, suggesting a thin layer of low-velocity lunar regolith overlying a heavily fractured crust of basaltic

  9. Seismic scattering and velocity structure near the Earth's core-mantle boundary beneath the South China Sea and north Indonesia

    NASA Astrophysics Data System (ADS)

    Yao, J.; Wen, L.

    2013-12-01

    We constrain seismic scatterers near the Earth's core-mantle boundary beneath the South China Sea and north Indonesia using the observed PKP precursory energy and velocity structure in the region using the travel time of the core-reflected phases. The PKP precursor data are collected from the seismic data recorded in the USArray and the core-reflected seismic data include ScS and ScP phases recorded in the China National Digital Seismographic Network, the F-net in Japan, the Global Seismographic Network and several regional arrays. Migration of PKP precursory energy reveals crescent-shaped scatterers distributed from the middle of the South China Sea to the north of Sulawesi Island. ScSH-SH differential-travel-times suggest a complex shear-velocity structure near the core-mantle boundary, changing from a low-velocity patch to a high shear-velocity patch and to another low shear-velocity patch from east to west beneath the middle of the South China Sea. ScP-P differential travel-time residuals reveal a low-velocity patch in northeast of Sulawesi Sea, a high-velocity patch in north of Sulawesi Sea, another low-velocity patch in the middle of Sulawesi Sea and another high-velocity patch in north of the Kalimantan Island. Overall, the seismic structure in the region can be characterized by alternative presence of high- and low-velocity patches near the core-mantle boundary, with the abrupt shear-wave velocity changes between the patches being the source of seismic scattering in the region.

  10. Monitoring in situ deformation induced by a fluid injection in a fault zone in shale using seismic velocity changes

    NASA Astrophysics Data System (ADS)

    Rivet, D.; De Barros, L.; Guglielmi, Y.; Castilla, R.

    2015-12-01

    We monitor seismic velocity changes during an experiment at decametric scale aimed at artificially reactivate a fault zone by a high-pressure hydraulic injection in a shale formation of the underground site of Tournemire, South of France. A dense and a multidisciplinary instrumentation, with measures of pressure, fluid flow, strain, seismicity, seismic properties and resistivity allow for the monitoring of this experiment. We couple hydromechanical and seismic observations of the fault and its adjacent areas to better understand the deformation process preceding ruptures, and the role played by fluids. 9 accelerometers recorded repeated hammers shots on the tunnel walls. For each hammer shot we measured small travel time delays on direct P and S waves. We then located the seismic velocity perturbations using a tomography method. At low injection pressure, i.e. P< 15 Bars, we observe an increase of P-waves velocity around the injection, while we measure no change in S waves velocity. When the pressure overcomes 15 Bars, velocity perturbations dramatically increase with both P and S waves affected. A decrease of velocity is observed close to the injection point and is surrounded by regions of increasing velocity. Our observations are consistent with hydromechanical measures. Below 15 Bars, we interpret the P-wave velocity increase to be related to the compression of the fault zone around the injection chamber. Above 15 Bars, we measure a shear and dilatant fault movement, and a rapid increase in the injected fluid flow. At this step, our measures are coherent with a poroelastic opening of the fault with velocities decrease at the injection source and velocities increase related to stress transfer in the far field. Velocity changes prove to be efficient to monitor stress/strain variation in an activated fault, even if these observations might produce complex signals due to the highly contrasted hydromechanical responses in a heterogeneous media such as a fault zone.

  11. Changes in seismic velocity during the first 14 months of the 2004-2008 eruption of Mount St. Helens, Washington

    NASA Astrophysics Data System (ADS)

    Hotovec-Ellis, A. J.; Vidale, J. E.; Gomberg, J.; Thelen, W.; Moran, S. C.

    2015-09-01

    Mount St. Helens began erupting in late 2004 following an 18 year quiescence. Swarms of repeating earthquakes accompanied the extrusion of a mostly solid dacite dome over the next 4 years. In some cases the waveforms from these earthquakes evolved slowly, likely reflecting changes in the properties of the volcano that affect seismic wave propagation. We use coda-wave interferometry to quantify small changes in seismic velocity structure (usually <1%) between two similar earthquakes and employed waveforms from several hundred families of repeating earthquakes together to create a continuous function of velocity change observed at permanent stations operated within 20 km of the volcano. The high rate of earthquakes allowed tracking of velocity changes on an hourly time scale. Changes in velocity were largest near the newly extruding dome and likely related to shallow deformation as magma first worked its way to the surface. We found strong correlation between velocity changes and the inverse of real-time seismic amplitude measurements during the first 3 weeks of activity, suggesting that fluctuations of pressure in the shallow subsurface may have driven both seismicity and velocity changes. Velocity changes during the remainder of the eruption likely result from a complex interplay of multiple effects and are not well explained by any single factor alone, highlighting the need for complementary geophysical data when interpreting velocity changes.

  12. Waveform inversion of seismic velocities and attenuation from low-frequency waves in cylindrical bars

    SciTech Connect

    Tang, Xiao Ming )

    1993-10-01

    A new technique for laboratory measurement of seismic wave velocities and attenuation in the frequency range of 10--150 kHz consists of measuring extensional waveforms using two cylindrical bars of the same material but unequal length. Based on the dispersion equation of the bar and rough estimates of compressional and shear velocities of the bar material, the waveform measured within the shorter bar is theoretically continued to the length of the longer bar to match with the waveform measured there. An inversion is then performed to minimize the phase difference between the two waveforms. The velocities are obtained when the phase difference reaches a minimum, at which the two waveforms attain the optimum phase match. After the phase match, a further inversion is performed to minimize the amplitude difference between the two waveforms to derive the extensional wave attenuation within the bar. By this inversion procedure, wave velocities and attenuation can be jointly determined at frequencies much lower than those of the ultrasonic measurements. By using the technique, compressional and shear velocities and extensional attenuation values in a lucite material and in dry Sierra White granite were measured. The results from the present technique are consistent with the results from other techniques (resonant bar and ultrasonic), if the effect of intrinsic attenuation is accounted for.

  13. The structure and stratigraphy of the sedimentary succession in the Swedish sector of the Baltic Basin: New insights from vintage 2D marine seismic data

    NASA Astrophysics Data System (ADS)

    Sopher, Daniel; Erlström, Mikael; Bell, Nicholas; Juhlin, Christopher

    2016-04-01

    We present five interpreted regional seismic profiles, describing the full sedimentary sequence across the Swedish sector of the Baltic Sea. The data for the study are part of an extensive and largely unpublished 2D seismic dataset acquired between 1970 and 1990 by the Swedish Oil Prospecting Company (OPAB). The Baltic Basin is an intracratonic basin located in northern Europe. Most of the Swedish sector of the basin constitutes the NW flank of a broad synclinal depression, the Baltic Basin. In the SW of the Swedish sector lies the Hanö Bay Basin, formed by subsidence associated with inversion of the Tornquist Zone during the Late Cretaceous. The geological history presented here is broadly consistent with previously published works. We observe an area between the Hanö Bay and the Baltic Basin where the Palaeozoic strata has been affected by transpression and subsequent inversion, associated with the Tornquist Zone during the late Carboniferous-Early Permian and Late Cretaceous, respectively. We propose that the Christiansø High was a structural low during the Late Jurassic, which was later inverted in the Late Cretaceous. We suggest that a fan shaped feature in the seismic data, adjacent to the Christiansø Fault within the Hanö Bay Basin, represents rapidly deposited, coarse-grained sediments eroded from the inverted Christiansø High during the Late Cretaceous. We identify a number of faults within the deeper part of the Baltic Basin, which we also interpret to be transpressional in nature, formed during the Caledonian Orogeny in the Late Silurian-Early Devonian. East of Gotland a number of sedimentary structures consisting of Silurian carbonate reefs and Ordovician carbonate mounds, as well as a large Quaternary glacial feature are observed. Finally, we use the seismic interpretation to infer the structural and stratigraphic history of the Baltic and Hanö Bay basins within the Swedish sector.

  14. Tomographic three-dimensional seismic velocity structure of the SW Ibero-Maghrebian region

    NASA Astrophysics Data System (ADS)

    Timoulali, Youssef; Bezzeghoud, Mourad; Caldeira, Bento; Borges, José Fernando; Hahou, Youssef

    2010-05-01

    The present tomographic study focuses on SW Ibero-Maghrebian region. To locate the seismic events and find the local velocity structure of epicentral area, the P and S arrivals at 42 stations located at north of Morocco, south of Portugal and Spain are used. The arrival times data used, in this study, were obtained by the "Instituto de Meteorologia" (IM, Lisbon, Portugal), the National Institute of Geophysics (CNRST, Rabat, Morocco) and the "Instituto Geografico Nacional" (IGN, Madrid, Spain) (between 12/1988 and 30/2008). The preliminary estimate of origin times and hypocentral coordinates are determined by the hypocenter 3.2 program. In this study we use a linearized inversion procedure comprising two steps: 1) finding the minimal 1-D model and simultaneous relocation of hypocenters and 2) determination of local velocity structure assuming a continuous velocity field. The earth structure is represented in three dimensions by velocity at discrete points, and velocity at any intervening point is determined by linear interpolation among the surrounding eight grid points. The resolutions tests results indicate that the calculated images give near true structure for the studied region at 15, 30, 45 and 60 km depth. At 5km depth it gives near true structure in the continental region of Portugal, Spain, and Morocco. This study shows that the total crustal thickness varies from 30 to 35 km and contains low-velocity anomalies. A prominent low velocity anomaly that shows a maximum decrease in P-wave velocity of approximately 6 per cent in the Gibraltar region is observed extending down to a depth of approximately 30 km. This low velocity demarcates a small bloc located between Iberia and Nubia plates. The resulting tomographic image has a prominent high velocity anomaly that shows a maximum increase in P-wave velocity of approximately 6 per cent between 45 to 60 km depth beneath South of Portugal and the Golf of Cadiz. High-velocity anomalies could be associated with the

  15. Refining the 3D seismic velocity and attenuation models for Katmai National Park, Alaska

    NASA Astrophysics Data System (ADS)

    Murphy, R. A.; Thurber, C. H.; Prejean, S. G.

    2009-12-01

    We invert data from approximately 4,000 local earthquakes occurring between September 2004 and August 2009 to determine the 3D P-wave velocity and P-wave attenuation structures in the Katmai volcanic region. Arrival information and waveforms for the study come from the Alaska Volcano Observatory’s permanent network of 20 seismometers in the area, which are predominantly single-component, short period instruments. The absolute and relative arrival times are used in a double-difference seismic tomography inversion to solve for an improved velocity model for the main volcanic centers. We use the resulting 3D velocity model to relocate all catalog earthquakes in Katmai between January 1996 and August 2009. Inversions for the quality factor Q are completed using a spectral decay approach to determine source parameters, t*, and site response with a nonlinear inversion. Using the final 3D velocity model to define the ray paths, t* values are then inverted to determine frequency-independent Q models. The final models developed through these inversions reveal a low velocity and low Q zone from the surface to ~7 km depth centered on the volcanic axis and extending ~25 km between Martin and Katmai volcanoes. The relocated hypocenters provide insight into the geometry of seismogenic structures in the area, revealing clustering of events into four distinct zones associated with Martin, Mageik, Trident, and Katmai. While the Martin, Mageik, and Katmai clusters are all at 3-4 km depth, the Trident cluster is slightly deeper at 4-6 km. Many new features are apparent within these clusters, including a strand of earthquakes trending NE-SW between the main Martin and Mageik clusters. Smaller linear features are also visible in the Katmai cluster along with a small migrating swarm which occurred NW of the Katmai caldera during mid-2006. Data from an array of 11 three-component broadband instruments currently deployed in the area between Mageik volcano and Katmai caldera will be

  16. Seismic velocity structure and spatial distribution of reflection intensity off the Boso Peninsula, Central Japan, revealed by an ocean bottom seismographic experiment

    NASA Astrophysics Data System (ADS)

    Kono, Akihiro; Sato, Toshinori; Shinohara, Masanao; Mochizuki, Kimihiro; Yamada, Tomoaki; Uehira, Kenji; Shinbo, Takashi; Machida, Yuuya; Hino, Ryota; Azuma, Ryosuke

    2016-04-01

    Off the Boso Peninsula, central Japan, where the Sagami Trough is in the south and the Japan Trench is in the east, there is a triple junction where the Pacific plate (PAC), the Philippine Sea plate (PHS) and the Honshu island arc (HIA) meet each other. In this region, the PAC subducts beneath the PHS and the HIA, and the PHS subducts beneath the HIA. Due to the subduction of 2 oceanic plates, numerous seismic events took place in the past. In order to understand these events, it is important to image structure of these plates. Hence, many researchers attempted to reveal the substructure from natural earthquakes and seismic experiments. Because most of the seismometers are placed inland area and the regular seismicity off Boso is inactive, it is difficult to reveal the precise substructure off Boso area using only natural earthquakes. Although several marine seismic experiments using active sources were conducted, vast area remains unclear off Boso Peninsula. In order to improve the situation, a marine seismic experiment, using airgun as an active source, was conducted from 30th July to 4th of August, 2009. The survey line has 216 km length and 20 Ocean Bottom Seismometers (OBSs) were placed on it. We estimated 2-D P-wave velocity structure from the airgun data using the PMDM (Progressive Model Development Method; Sato and Kenett, 2000) and the FAST (First Arrival Seismic Tomography ; Zelt and Barton, 1998). Furthermore, we identified the probable reflection phases from the data and estimated the location of reflectors using Travel time mapping method (Fujie et al. 2006). We found some reflection phases from the data, and the reflectors are located near the region where P-wave velocity is 5.0 km/s. We interpret that the reflectors indicate the plate boundary between the PHS and the HIA. The variation of the intensity of reflection along the upper surface of PHS seems to be consistent with the result from previous reflection seismic experiment conducted by Kimura et

  17. Sub-glacial processes interpreted from 3D and high-resolution 2D seismic data from the Central North Sea

    NASA Astrophysics Data System (ADS)

    Buckley, Francis

    2013-04-01

    A near complete record of Quaternary deposition, comprising more than 1000m of sediments, is preserved within the Central North Sea (CNS). This study presents evidence interpreted from seismic data of sub-glacial processes at a variety of scales for several Pleistocene glacial events. The study area has been the subject of hydrocarbon exploration since the mid 1960s and is covered by 3D seismic datasets up to 1000km2 as well as high-resolution 2D (HR2D) seismic datasets covering areas of 1-25km2. These data have been examined using a variety of techniques and attributes, including time-slicing, horizon slicing, topographic mapping and attribute analysis, to map erosion surfaces, depositional bodies, sedimentary textures and deformation events. An Early Pleistocene seismic event has been identified on 3D data, at 800-1000m MSL, within the southern part of the CNS, which marks the first appearance of iceberg ploughmarks. This event has been traced into the northern part of the study area, where iceberg ploughmarks are absent, but a set of mega-scale lineations at 700-800ms TWT are interpreted as ice-stream scour marks. A series of complex seismic events overlying the ice-scoured surface are interpreted as glacial deposits, at the top of which a network of channels, interpreted to be the result of glacial meltwaters, is associated with features interpreted as over-bank sand bodies. Higher in the sequence, timeslice images of Early to Middle Pleistocene deposits show trains of sub-parallel, curvi-linear, events, several km in length and 50-300m in width. Analysis of these events on HR2D data reveals them to consist of series of short, imbricated, dipping reflectors, terminated by complex, mounded structures. Individual sheets display up to 60ms TWT (55m) vertical displacement over horizontal distances of 200-250m. Two deformed packages are evident on HR2D data. A lower sequence, consisting of discrete thrust sheets lies above an erosion or dislocation surface (MP1

  18. Deep crustal structure of magma-rich passive margin as revealed by the Northeast GreenlandSPAN 2D seismic survey and airborne Full Tensor Gradiometry

    NASA Astrophysics Data System (ADS)

    Mazur, Stanislaw; Rippington, Stephen; Silva, Mercia; Houghton, Phill; Helwig, Jim

    2014-05-01

    The objective of our project was to integrate the results from the Northeast GreenlandSPAN™ 2D seismic survey with newly acquired airborne Full Tensor Gradiometry (FTG) and Magnetic potential field data over the Danmarkshaven Ridge area, NE Greenland. The potential field data were constrained by 32 long offset pre stack depth migrated seismic profiles selected from the Northeast GreenlandSPAN™ survey. The results provide a new insight in the deep crustal architecture of the Greenland passive margin. They also shed a new light on crustal-scale deformation and igneous activity in a magma-rich continental margin. The structural data set is based on the integrated interpretation of 2D seismic data and FTG data, which was further supplemented by the airborne magnetic data plus the gravity and magnetic shipborne data. 2D gravity and magnetic forward modelling was used for testing geological/seismic models against the potential field data. A regional Moho grid derived from 3D gravity inversion was as a starting point and reference for the 2D modelling. The resultant horizons from the 2D potential fields models were subsequently gridded to help create a 3D structural model. The computed residual signal from the 3D model, the difference between the observed gravity and the forward calculated model response, allowed the accuracy of the structural interpretation to be tested. The area is dominated by three structural trends: (1) N-S to NNE-SSW, (2) WNW-ESE, and (3) NW-SE. The first trend is represented by Early Cretaceous normal faults defining the Danmarkshaven Ridge whereas the second set of structures corresponds to the WNW-ESE oriented right-lateral strike slip faults. The third structural trend is delineated by the NW-SE oriented Greenland Fracture Zone (GFZ). Importantly, a distinct step in the COB suggests post-break-up reactivation of the GFZ with left-lateral kinematics. There is a good match between the modelled Moho and the GFZ suggesting its continuation

  19. Seismic modelling study of P-wave attenuation and velocity dispersion in patchy-saturated porous media

    NASA Astrophysics Data System (ADS)

    Li, Xiaobo; Dong, Liangguo; Zhao, Qun

    2014-12-01

    Seismic wave propagation in patchy-saturated porous media is studied by numerical simulation in time domain at the seismic frequency band (1-1000 Hz). The models consist of hundreds of representative elementary volumes (REVs), where the REV is partially saturated with water and gas pockets. Seismic modelling experiments are implemented in a traditional way, with ‘periodic’ boundary conditions applied to get rid of undrained boundary conditions at the outer edges of the REVs. The characteristics of confining pressure, induced pore pressure, solid particle velocities and Darcy filtration velocities are analysed. The snapshots show that strong pore pressure gradients are generated across the interface between gas and water phases, and significant fluid flow occurs. The conversion of a fast P-wave into a dissipating slow P-wave takes place at seismic frequencies, and the converted slow P-wave diffuses strongly in both gas- and water-saturated phases. These numerical results can help us to understand the loss mechanism at seismic frequencies. Then, P-wave attenuation and velocity dispersion of a heterogeneous REV are calculated during traditional seismic modelling at seismic frequencies. The numerical results show good agreement with theoretical predictions obtained from patchy saturation theory. Furthermore, the effects of different fluid distributions on P-wave attenuation and velocity dispersion are analysed numerically. A series of experiments are implemented by considering large, small and random gas-patchy inclusions. The decrease of gas pocket size makes the peak frequency move towards high frequencies. Random distribution of gas patches may affect both the peak attenuation and peak frequencies. Seismic attenuation caused by Biot global flow, elastic scattering and wave-induced fluid flow (WIFF) associated with patchy saturation are computed numerically. The results show that the contribution of Biot’s global flow and scattering to the overall attenuation

  20. Seismic detection of a low-velocity layer beneath the southeast flank of Mauna Loa, Hawaii

    SciTech Connect

    Thurber, C.H.; Li, Yingping ); Johnson, C.

    1989-07-01

    The authors have identified seismic phases reflected off the top and bottom of a low velocity layer (LVL) by analysis of seismograms from six small earthquakes in Hawaii. These events occurred almost directly beneath station AIN of the Hawaiian Volcano Observatory (HVO) seismic network, located within the Kaoiki seismic zone on the southeast flank of Mauna Loa. The polarity reversals of the first reflected phases provide clear evidence for the existence of a LVL beneath this station. The LVL is estimated to be at a depth of about 11.5 km, with a thickness of about 800 m. The estimated depth to the top of the LVL is consistent with the depth distribution of low-angle thrust faulting events from the aftershock sequence of the 1983 Kaoiki earthquake. Presumably, this zone is the marine sediment layer buried beneath the volcanic pile, along which the volcanic edifice may slip easily to cause large earthquakes. Mapping the interface between the volcanic pile and oceanic crust and thus determining the depth and thickness of the buried sediment layer is essential for understanding the tectonics of large earthquakes in Hawaii.

  1. DIRDOP: a directivity approach to determining the seismic rupture velocity vector

    NASA Astrophysics Data System (ADS)

    Caldeira, Bento; Bezzeghoud, Mourad; Borges, José F.

    2010-07-01

    Directivity effects are a characteristic of seismic source finiteness and are a consequence of the rupture spread in preferential directions. These effects are manifested through seismic spectral deviations as a function of the observation location. The directivity by Doppler effect method permits estimation of the directions and rupture velocities, beginning from the duration of common pulses, which are identified in waveforms or relative source time functions. The general model of directivity that supports the method presented here is a Doppler analysis based on a kinematic source model of rupture (Haskell, Bull Seismol Soc Am 54:1811-1841, 1964) and a structural medium with spherical symmetry. To evaluate its performance, we subjected the method to a series of tests with synthetic data obtained from ten typical seismic ruptures. The experimental conditions studied correspond with scenarios of simple and complex, unilaterally and bilaterally extended ruptures with different mechanisms and datasets with different levels of azimuthal coverage. The obtained results generally agree with the expected values. We also present four real case studies, applying the method to the following earthquakes: Arequipa, Peru ( M w = 8.4, June 23, 2001); Denali, AK, USA ( M w = 7.8; November 3, 2002); Zemmouri-Boumerdes, Algeria ( M w = 6.8, May 21, 2003); and Sumatra, Indonesia ( M w = 9.3, December 26, 2004). The results obtained from the dataset of the four earthquakes agreed, in general, with the values presented by other authors using different methods and data.

  2. The thin section rock physics: Modeling and measurement of seismic wave velocity on the slice of carbonates

    SciTech Connect

    Wardaya, P. D. Noh, K. A. B. M. Yusoff, W. I. B. W.; Ridha, S.; Nurhandoko, B. E. B.

    2014-09-25

    This paper discusses a new approach for investigating the seismic wave velocity of rock, specifically carbonates, as affected by their pore structures. While the conventional routine of seismic velocity measurement highly depends on the extensive laboratory experiment, the proposed approach utilizes the digital rock physics view which lies on the numerical experiment. Thus, instead of using core sample, we use the thin section image of carbonate rock to measure the effective seismic wave velocity when travelling on it. In the numerical experiment, thin section images act as the medium on which wave propagation will be simulated. For the modeling, an advanced technique based on artificial neural network was employed for building the velocity and density profile, replacing image's RGB pixel value with the seismic velocity and density of each rock constituent. Then, ultrasonic wave was simulated to propagate in the thin section image by using finite difference time domain method, based on assumption of an acoustic-isotropic medium. Effective velocities were drawn from the recorded signal and being compared to the velocity modeling from Wyllie time average model and Kuster-Toksoz rock physics model. To perform the modeling, image analysis routines were undertaken for quantifying the pore aspect ratio that is assumed to represent the rocks pore structure. In addition, porosity and mineral fraction required for velocity modeling were also quantified by using integrated neural network and image analysis technique. It was found that the Kuster-Toksoz gives the closer prediction to the measured velocity as compared to the Wyllie time average model. We also conclude that Wyllie time average that does not incorporate the pore structure parameter deviates significantly for samples having more than 40% porosity. Utilizing this approach we found a good agreement between numerical experiment and theoretically derived rock physics model for estimating the effective seismic wave

  3. A California statewide three-dimensional seismic velocity model from both absolute and differential times

    USGS Publications Warehouse

    Lin, G.; Thurber, C.H.; Zhang, H.; Hauksson, E.; Shearer, P.M.; Waldhauser, F.; Brocher, T.M.; Hardebeck, J.

    2010-01-01

    We obtain a seismic velocity model of the California crust and uppermost mantle using a regional-scale double-difference tomography algorithm. We begin by using absolute arrival-time picks to solve for a coarse three-dimensional (3D) P velocity (VP) model with a uniform 30 km horizontal node spacing, which we then use as the starting model for a finer-scale inversion using double-difference tomography applied to absolute and differential pick times. For computational reasons, we split the state into 5 subregions with a grid spacing of 10 to 20 km and assemble our final statewide VP model by stitching together these local models. We also solve for a statewide S-wave model using S picks from both the Southern California Seismic Network and USArray, assuming a starting model based on the VP results and a VP=VS ratio of 1.732. Our new model has improved areal coverage compared with previous models, extending 570 km in the SW-NE directionand 1320 km in the NW-SE direction. It also extends to greater depth due to the inclusion of substantial data at large epicentral distances. Our VP model generally agrees with previous separate regional models for northern and southern California, but we also observe some new features, such as high-velocity anomalies at shallow depths in the Klamath Mountains and Mount Shasta area, somewhat slow velocities in the northern Coast Ranges, and slow anomalies beneath the Sierra Nevada at midcrustal and greater depths. This model can be applied to a variety of regional-scale studies in California, such as developing a unified statewide earthquake location catalog and performing regional waveform modeling.

  4. Seismic velocity structure and seismotectonics of the eastern San Francisco Bay region, California

    USGS Publications Warehouse

    Hardebeck, J.L.; Michael, A.J.; Brocher, T.M.

    2007-01-01

    The Hayward Fault System is considered the most likely fault system in the San Francisco Bay Area, California, to produce a major earthquake in the next 30 years. To better understand this fault system, we use microseismicity to study its structure and kinematics. We present a new 3D seismic-velocity model for the eastern San Francisco Bay region, using microseismicity and controlled sources, which reveals a ???10% velocity contrast across the Hayward fault in the upper 10 km, with higher velocity in the Franciscan Complex to the west relative to the Great Valley Sequence to the east. This contrast is imaged more sharply in our localized model than in previous regional-scale models. Thick Cenozoic sedimentary basins, such as the Livermore basin, which may experience particularly strong shaking during an earthquake, are imaged in the model. The accurate earthquake locations and focal mechanisms obtained by using the 3D model allow us to study fault complexity and its implications for seismic hazard. The relocated hypocenters along the Hayward Fault in general are consistent with a near-vertical or steeply east-dipping fault zone. The southern Hayward fault merges smoothly with the Calaveras fault at depth, suggesting that large earthquakes may rupture across both faults. The use of the 3D velocity model reveals that most earthquakes along the Hayward fault have near-vertical strike-slip focal mechanisms, consistent with the large-scale orientation and sense of slip of the fault, with no evidence for zones of complex fracturing acting as barriers to earthquake rupture.

  5. 2D ion velocity distribution function measurements by laser-induced fluorescence above a radio-frequency biased silicon wafer

    NASA Astrophysics Data System (ADS)

    Moore, Nathaniel; Gekelman, Walter; Pribyl, Patrick; Zhang, Yiting; Kushner, Mark

    2012-10-01

    Ion dynamics have been measured in the sheath above a 30 cm diameter, 2.2 MHz-biased silicon wafer in a plasma processing etch tool using laser-induced fluorescence (LIF). The velocity distribution function of argon ions was measured at thousands of positions above and radially along the edge of the wafer by sending a planar laser sheet from a pulsed, tunable dye laser into the tool. The RF sheath is clearly resolved. The laser sheet entered the machine both parallel and perpendicular to the wafer in order to measure the distribution function for both parallel and perpendicular velocities/energies (0.4 eV < Emax<600 eV). The resulting fluorescence was recorded using a fast CCD camera, which provided spatial (0.4 mm) and temporal (30 ns) resolution. Data was taken at eight different phases of the 2.2 MHz cycle. The distribution functions were found to be spatially non-uniform near the edge of the wafer and the distribution of energies extremely phase-dependent. Several cm above the wafer the distribution is Maxwellian and independent of phase. Results are compared with simulations; for example, the experimental time-averaged ion energy distribution function compares favorably with a computer model carefully constructed to emulate the device.

  6. 2D ion velocity distribution function measurements by laser-induced fluorescence above a radio-frequency biased silicon wafer

    NASA Astrophysics Data System (ADS)

    Moore, Nathaniel; Gekelman, Walter; Pribyl, Patrick; Zhang, Yiting; Kushner, Mark

    2012-10-01

    Ion dynamics have been measured in the sheath above a 30 cm diameter, 2.2 MHz-biased silicon wafer in a plasma processing etch tool using laser-induced fluorescence (LIF). The velocity distribution function of argon ions was measured at thousands of positions above and radially along the edge of the wafer by sending a planar laser sheet from a pulsed, tunable dye laser into the tool. The RF sheath is clearly resolved. The laser sheet entered the machine both parallel and perpendicular to the wafer in order to measure the distribution function for both parallel and perpendicular velocities/energies (0.4 eV < Emax< 600 eV). The resulting fluorescence was recorded using a fast CCD camera, which provided spatial (0.4 mm) and temporal (30 ns) resolution. Data was taken at eight different phases of the 2.2 MHz cycle. The distribution functions were found to be spatially non-uniform near the edge of the wafer and the distribution of energies extremely phase-dependent. Several cm above the wafer the distribution is Maxwellian and independent of phase. Results are compared with simulations; for example, the experimental time-averaged ion energy distribution function compares favorably with a computer model carefully constructed to emulate the device.

  7. Crustal seismic velocity structure from Eratosthenes Seamount to Hecataeus Rise across the Cyprus Arc, eastern Mediterranean

    NASA Astrophysics Data System (ADS)

    Welford, J. Kim; Hall, Jeremy; Hübscher, Christian; Reiche, Sönke; Louden, Keith

    2015-02-01

    Wide-angle reflection/refraction seismic profiles were recorded across the Cyprus Arc, the plate boundary between the African Plate and the Aegean-Anatolian microplate, from the Eratosthenes Seamount to the Hecataeus Rise immediately south of Cyprus. The resultant models were able to resolve detail of significant lateral velocity variations, though the deepest crust and Moho are not well resolved from the seismic data alone. Conclusions from the modelling suggest that (i) Eratosthenes Seamount consists of continental crust but exhibits a laterally variable velocity structure with a thicker middle crust and thinner lower crust to the northeast; (ii) the Hecataeus Rise has a thick sedimentary rock cover on an indeterminate crust (likely continental) and the crust is significantly thinner than Eratosthenes Seamount based on gravity modelling; (iii) high velocity basement blocks, coincident with highs in the magnetic field, occur in the deep water between Eratosthenes and Hecataeus, and are separated and bounded by deep low-velocity troughs and (iv) one of the high velocity blocks runs parallel to the Cyprus Arc, while the other two appear linked based on the magnetic data and run NW-SE, parallel to the margin of the Hecataeus Rise. The high velocity block beneath the edge of Eratosthenes Seamount is interpreted as an older magmatic intrusion while the linked high velocity blocks along Hecataeus Rise are interpreted as deformed remnant Tethyan oceanic crust or mafic intrusives from the NNW-SSE oriented transform margin marking the northern boundary of Eratosthenes Seamount. Eratosthenes Seamount, the northwestern limit of rifted continental crust from the Levant Margin, is part of a jagged rifted margin transected by transform faults on the northern edge of the lower African Plate that is being obliquely subducted under the Aegean-Anatolian upper plate. The thicker crust of Eratosthenes Seamount may be acting as an asperity on the subducting slab, locally locking up

  8. Velocity structure of the Kapuskasing Uplift, northern Ontario, from seismic refraction studies

    NASA Astrophysics Data System (ADS)

    Boland, A. V.; Ellis, R. M.

    1989-06-01

    A crustal scale seismic refraction experiment was conducted over the Kapuskasing structural zone, northern Ontario, in 1984. The zone cuts obliquely across the east-west structural grain of the Superior Province in the Canadian shield and has been proposed as a cross section of Archean crust exposed by thrust faulting along the Ivanhoe Lake cataclastic zone during early Proterozoic time. Five seismic refraction lines of 360-450 km were shot over the area. There were 18 profile shots and two fan shots with a recorder spacing of 2-5 km. We have modeled the travel times and amplitudes of the data from the profile lines and analyzed reflections from the crust-mantle boundary on the fan shots. We have imaged a low-velocity zone under the Abitibi greenstone belt ranging from 4-5 to 9-12 km depth that is underlain by a highly reflective zone. There is a considerable deepening of the Moho from 40-43 km to 50-53 km under and to the west of the southern end of the Kapuskasing structural zone. A high-velocity anomaly of 6.6-6.7 km/s has been imaged in the upper crust down to 20 km depth beneath the Kapuskasing structure with a suggested dip of 15°±2° to the west. This corresponds well to the proposed location of a granulite zone thrust up from the middle or lower crust in the early Proterozoic.

  9. One-dimensional seismic response of two-layer soil deposits with shear wave velocity inversion

    SciTech Connect

    Ding Yuqin; Pagliaroli, Alessandro; Lanzo, Giuseppe

    2008-07-08

    The paper presents the results of a parametric study with the purpose of investigating the 1D linear and equivalent linear seismic response of a 30 meters two-layer soil deposits characterized by a stiff layer overlying a soft layer. The thickness of the soft layer was assumed equal to 0.25, 0.5 and 0.75 H, being H the total thickness of the deposit. The shear wave velocity of the soft layer was assumed equal to V{sub s} = 90 and 180 m/s while for the stiff layer V{sub s} = 360, 500 and 700 m/s were considered. Six accelerograms extracted by an Italian database characterized by different predominant periods ranging from 0.1 to 0.7 s were used as input outcropping motion. For the equivalent liner analyses, the accelerograms were scaled at three different values of peak ground acceleration (PGA), namely 0.1, 0.3 and 0.5 g. The numerical results show that the two-layer ground motion is generally deamplified in terms of PGA with respect to the outcrop PGA. This reduction is mainly controlled by the shear wave velocity of the soft layer, being larger for lower V{sub s} values, by the amount of nonlinearity experienced by the soft soil during the seismic shaking and, to a minor extent, by the thickness of the soft soil layer.

  10. Seismic evidence for ultralow-velocity zones beneath Africa and eastern Atlantic

    NASA Astrophysics Data System (ADS)

    Helmberger, Don; Ni, Sidao; Wen, Lianxing; Ritsema, Jeroen

    2000-10-01

    SKS waveforms recorded at distances of about 110° are extremely useful to constrain seismic velocity structure at the base of the mantle. SKS waves near this distance develop a complicated interference pattern with the phases SPdKS and SKPdS. We report anomalous behavior of this interference in a number of recordings of deep earthquakes beneath South America from stations in Europe and Africa. We model these data with two-dimensional dome-like structures at the base of the mantle which extend laterally by a few hundred kilometers and in which the shear velocity is up to 30% lower than in the Preliminary Reference Earth Model (PREM). The spatial extent of these structures, their position with respect to the SKS core exit points, and their seismic characteristics can not be uniquely determined. However, the presence of a dipping or a concaved upper interface is a key attribute of successful models. Models that invoke flat layers are insufficiently complex to explain the most erratic waveform behavior. The most anomalous data correspond to sampling regions at the base of the mantle beneath the East African Rift and beneath the Iceland, where possibly, whole mantle upwellings form.

  11. HIGH-RESOLUTION SEISMIC VELOCITY AND ATTENUATION MODELS OF THE CAUCASUS-CASPIAN REGION

    SciTech Connect

    Mellors, R; Gok, R; Sandvol, E

    2007-07-10

    The southwest edge of Eurasia is a tectonically and structurally complex region that includes the Caspian and Black Sea basins, the Caucasus Mountains, and the high plateaus south of the Caucasus. Crustal and upper mantle velocities show great heterogeneity in this region and regional phases display variations in both amplitudes and travel time. Furthermore, due to a lack of quality data, the region has largely been unexplored in terms of the detailed lithospheric seismic structure. A unified high-resolution 3D velocity and attenuation model of the crust and upper mantle will be developed and calibrated. This model will use new data from 23 new broadband stations in the region analyzed with a comprehensive set of techniques. Velocity models of the crust and upper mantle will be developed using a joint inversion of receiver functions and surface waves. The surface wave modeling will use both event-based methods and ambient noise tomography. Regional phase (Pg, Pn, Sn, and Lg) Q model(s) will be constructed using the new data in combination with existing data sets. The results of the analysis (both attenuation and velocity modeling) will be validated using modeling of regional phases, calibration with selected events, and comparison with previous work. Preliminary analyses of receiver functions show considerable variability across the region. All results will be integrated into the KnowledgeBase.

  12. An empirical method to estimate shear wave velocity of soils in the New Madrid seismic zone

    USGS Publications Warehouse

    Wei, B.-Z.; Pezeshk, S.; Chang, T.-S.; Hall, K.H.; Liu, Huaibao P.

    1996-01-01

    In this study, a set of charts are developed to estimate shear wave velocity of soils in the New Madrid seismic zone (NMSZ), using the standard penetration test (SPT) N values and soil depths. Laboratory dynamic test results of soil samples collected from the NMSZ showed that the shear wave velocity of soils is related to the void ratio and the effective confining pressure applied to the soils. The void ratio of soils can be estimated from the SPT N values and the effective confining pressure depends on the depth of soils. Therefore, the shear wave velocity of soils can be estimated from the SPT N value and the soil depth. To make the methodology practical, two corrections should be made. One is that field SPT N values of soils must be adjusted to an unified SPT N??? value to account the effects of overburden pressure and equipment. The second is that the effect of water table to effective overburden pressure of soils must be considered. To verify the methodology, shear wave velocities of five sites in the NMSZ are estimated and compared with those obtained from field measurements. The comparison shows that our approach and the field tests are consistent with an error of less than of 15%. Thus, the method developed in this study is useful for dynamic study and practical designs in the NMSZ region. Copyright ?? 1996 Elsevier Science Limited.

  13. Demonstration of synchronised scanning Lidar measurements of 2D velocity fields in a boundary-layer wind tunnel

    NASA Astrophysics Data System (ADS)

    van Dooren, M. F.; Kühn, M.; PetroviĆ, V.; Bottasso, C. L.; Campagnolo, F.; Sjöholm, M.; Angelou, N.; Mikkelsen, T.; Croce, A.; Zasso, A.

    2016-09-01

    This paper combines the currently relevant research methodologies of scaled wind turbine model experiments in wind tunnels with remote-sensing short-range WindScanner Lidar measurement technology. The wind tunnel of the Politecnico di Milano was equipped with three wind turbine models and two short-range WindScanner Lidars to demonstrate the benefits of synchronised scanning Lidars in such experimental surroundings for the first time. The dual- Lidar system can provide fully synchronised trajectory scans with sampling time scales ranging from seconds to minutes. First, staring mode measurements were compared to hot wire probe measurements commonly used in wind tunnels. This yielded goodness of fit coefficients of 0.969 and 0.902 for the 1 Hz averaged u- and v-components of the wind speed, respectively, validating the 2D measurement capability of the Lidar scanners. Subsequently, the measurement of wake profiles on a line as well as wake area scans were executed to illustrate the applicability of Lidar scanning to measuring small scale wind flow effects. The downsides of Lidar with respect to the hot wire probes are the larger measurement probe volume and the loss of some measurements due to moving blades. In contrast, the benefits are the high flexibility in conducting both point measurements and area scanning, and the fact that remote sensing techniques do not disturb the flow while measuring. The research campaign revealed a high potential for using short-range WindScanner Lidar for accurately measuring small scale flow structures in a wind tunnel.

  14. Three-dimensional P-wave velocity structure of Bandai volcano in northeastern Japan inferred from active seismic survey

    NASA Astrophysics Data System (ADS)

    Yamawaki, Teruo; Tanaka, Satoru; Ueki, Sadato; Hamaguchi, Hiroyuki; Nakamichi, Haruhisa; Nishimura, Takeshi; Oikawa, Jun; Tsutsui, Tomoki; Nishi, Kiyoshi; Shimizu, Hiroshi; Yamaguchi, Sosuke; Miyamachi, Hiroki; Yamasato, Hitoshi; Hayashi, Yutaka

    2004-12-01

    The three-dimensional P-wave velocity structure of the Bandai volcano has been revealed by tomographic inversion using approximately 2200 travel-time data collected during an active seismic survey comprising 298 temporary seismic stations and eight artificial shots. The key result of this study is the delineation of a high-velocity anomaly (Vp>4.6 km/s at sea-level) immediately below the summit peak. This feature extends to depths of 1-2 km below sea-level. The near-surface horizontal position of the high-velocity anomaly coincides well with that of a positive Bouguer gravity anomaly. Geological data demonstrate that sector collapses have occurred in all directions from the summit and that the summit crater has been repeatedly refilled with magmatic material. These observations suggest that the high-velocity region revealed in this study is a manifestation of an almost-solidified magmatic plumbing system. We have also noted that a near-surface low-velocity region (Vp<3.0 km/s at sea-level) on the southern foot of the volcano corresponds to the position of volcanic sediments including ash and debris avalanche material. In addition, we have made use of the tomographic results to recompute the hypocenters of earthquake occurring during seismic swarms beneath the summit in 1988 and 2000. Relocating the earthquakes using the three-dimensional velocity model clearly indicates that they predominantly occurred on two steeply dipping planes. Low-frequency earthquakes observed during the swarms in 2000 occurred in the seismic gap between the two clusters. The hypocentral regions of the seismic swarms and the low-frequency earthquakes are close to the higher-velocity zone beneath the volcano's summit. These observations suggest that the recent seismic activity beneath the summit is likely associated with thermal energy being released within the solidifying magmatic plumbing system.

  15. 3D crustal velocity structure beneath the broadband seismic array in the Gyeongju area of Korea by receiver function analyses

    NASA Astrophysics Data System (ADS)

    Lee, Dong Hun; Lee, Jung Mo; Cho, Hyun-Moo; Kang, Tae-Seob

    2016-10-01

    A temporary seismic array was in operation between October 2010 and March 2013 in the Gyeongju area of Korea. Teleseismic records of the seismic array appropriate for receiver function analysis were collected, and selected seismograms were split into five groups based on epicenters-the Banda-Molucca, Sumatra, Iran, Aleutian, and Vanuatu groups. 1D velocity structures beneath each seismic station were estimated by inverting the stacked receiver functions for possible groups. The inversion was done by applying a genetic algorithm, whereas surface wave dispersion data were used as constraints to avoid non-uniqueness in the inversion. The composite velocity structure was constructed by averaging the velocity structures weighted by the number of receiver functions used in stacking. The uncertainty analysis for the velocity structures showed that the average of 95% confidence intervals was ± 0.1 km/s. The 3D velocity structure was modeled through interpolation of 1D composite velocity structures. Moho depths were determined in each composite velocity structure based on the AK135-F S-wave velocity model, and the depths were similar to the H-κ analysis results. The deepest Moho depth in the study area was found to be 31.9 km, and the shallowest, was 25.9 km. The Moho discontinuity dips in a southwestward direction beneath the area. A low velocity layer was also detected between 4 and 14 km depth. Adakitic intrusions and/or a high geothermal gradient appear to be the causes of this low velocity layer. The 3D velocity structure can be used to reliably assess seismic hazards in this area.

  16. Joint inversion of seismic velocities and source location without rays using the truncated Newton and the adjoint-state method

    NASA Astrophysics Data System (ADS)

    Virieux, J.; Bretaudeau, F.; Metivier, L.; Brossier, R.

    2013-12-01

    computed in the internal loop, each parameter being rescaled by its corresponding Hessian. The velocities and the source attributes are then updated in the external loop where the line search is performed. As the TCN method uses an iterative algorithm to compute Δm, it also needs a stopping criteria to avoid time-consuming large number of iterations and return the truncated solution of the normal equation. The strategy proposed by Eisenstat and Walker (1994) and used by Métivier et al. (2012) for FWI ensures superlinear convergence far from the solution and quadratic convergence in its attraction basin. In order to obtain better convergence of the resolution of the Newton system, it is also possible to use specific preconditioners for each inverted parameter. In particular, the exact Hessian for source parameters can be directly used as a preconditioner for the inversion. As it allows to consider the full Hessian operator, the TCN method mitigates scaling and trade-offs between seismic velocities and source parameters. We compare in this study the performances of various optimization algorithms (steepest descent, conjugate gradient, LBFGS and TCN) used with and without preconditioning, for this multi-parameter inversion problem. Tests are performed here on 2D models, but extensions to 3D is affordable.

  17. Insights into Gulf of Mexico Gas Hydrate Study Sites GC955 and WR313 from New Multicomponent and High-Resolution 2D Seismic Data

    NASA Astrophysics Data System (ADS)

    Haines, S. S.; Hart, P. E.; Collett, T. S.; Shedd, W. W.; Frye, M.

    2014-12-01

    In 2013, the U.S. Geological Survey led a seismic acquisition expedition in the Gulf of Mexico, acquiring multicomponent data and high-resolution 2D multichannel seismic (MCS) data at Green Canyon 955 (GC955) and Walker Ridge 313 (WR313). Based on previously collected logging-while-drilling (LWD) borehole data, these gas hydrate study sites are known to include high concentrations of gas hydrate within sand layers. At GC955 our new 2D data reveal at least three features that appear to be fluid-flow pathways (chimneys) responsible for gas migration and thus account for some aspects of the gas hydrate distribution observed in the LWD data. Our new data also show that the main gas hydrate target, a Pleistocene channel/levee complex, has an areal extent of approximately 5.5 square kilometers and that a volume of approximately 3 x 107 cubic meters of this body lies within the gas hydrate stability zone. Based on LWD-inferred values and reasonable assumptions for net sand, sand porosity, and gas hydrate saturation, we estimate a total equivalent gas-in-place volume of approximately 8 x 108 cubic meters for the inferred gas hydrate within the channel/levee deposits. At WR313 we are able to map the thin hydrate-bearing sand layers in considerably greater detail than that provided by previous data. We also can map the evolving and migrating channel feature that persists in this area. Together these data and the emerging results provide valuable new insights into the gas hydrate systems at these two sites.

  18. USING RECENT ADVANCES IN 2D SEISMIC TECHNOLOGY AND SURFACE GEOCHEMISTRY TO ECONOMICALLY REDEVELOP A SHALLOW SHELF CARBONATE RESERVOIR: VERNON FIELD, ISABELLA COUNTY, MI.

    SciTech Connect

    James R. Wood; T.J. Bornhorst; William B. Harrison; W. Quinlan

    2002-04-01

    The fault study continues to find more faults and develop new techniques to visualize them. Data from the Dundee Formation has been used to document 11 major faults in the Michigan Basin which have now been verified using data from other horizons. These faults control the locations of many of the large anticlinal structures in the Michigan Basin and likely controlled fluid movements as well. The surface geochemistry program is also moving along well with emphasis on measuring samples collected last sampling season. The new GC laboratory is now functional and has been fully staffed as of December. The annual project review was held March 7-9 in Tampa, Florida. Contracts are being prepared for drilling the Bower's prospects in Isabella County, Michigan, this spring or summer. A request was made to extend the scope of the project to include the Willison Basin. A demonstration well has been suggested in Burke County, N. Dakota, following a review of 2D seismic and surface geochem. A 3D seismic survey is scheduled for the prospect.

  19. New insights in the velocity dependency of the external mass transfer coefficient in 2D and 3D porous media for liquid chromatography.

    PubMed

    Deridder, Sander; Desmet, Gert

    2012-03-02

    Numerical calculations of the mobile zone mass transfer rate in a variety of ordered 2D and 3D structures are presented. These calculations are in line with earlier theoretical and experimental findings made in the field of chemical engineering and suggest that the Sherwood-number (Sh(m)) appearing in the mobile phase mass transfer term of the general plate height expression of liquid chromatography is not correctly predicted by the Wilson-Geankoplis--or the Kataoka--or the penetration model expression that have been used up to now to in the field of LC, and that at least more research is needed before these expressions can be continued to be used with confidence. The aforementioned expressions were obtained by neglecting the effect of axial dispersion on the mass transfer process, and it seems that they therefore underestimate the true Sh(m)-number by a factor of 2-5 around the minimum of the van Deemter-curve. New correlations describing the variation of the Sh(m)-coefficient as a function of the reduced velocity for a number of other packing geometries (tetrahedral monolith, 2D pillar array) are proposed. These correlations are in agreement with earlier theoretical and experimental studies showing that at low velocities the local-driving force-based Sh(m)-value is of the order of 10-20 in a packed bed column with an external porosity on the order of 35-40%.

  20. The relationship between seismic velocity structure and the seismic coupling in the Hyuga-nada region, southwest Japan, deduced from onshore and offshore seismic observations

    NASA Astrophysics Data System (ADS)

    Uehira, K.; Yakiwara, H.; Yamada, T.; Umakoshi, K.; Nakao, S.; Kobayashi, R.; Goto, K.; Miyamachi, H.; Mochizuki, K.; Nakahigashi, K.; Shinohara, M.; Kanazawa, T.; Hino, R.; Goda, M.; Shimizu, H.

    2011-12-01

    In Hyuga-nada region, the Philippine Sea (PHS) plate is subducting beneath the Eurasian (EU) plate (the southwest Japan arc) along the Nankai trough at a rate of about 5 cm per year. Big earthquakes (M7 class) have occurred in the north region from latitude 31.6 degrees north, but it has not occurred in the south region from latitude 31.6 degrees north. The largest earthquake ever recorded in Hyuga-nada region is the 1968 Hyuga-nada earthquake (Mw 7.5). And microseismicity varies spatially. There are non-seismic slip events in Hyuga-nada region. For example, the after-slips associated with events for 19 October 1996 and 3 December 1996 were observed (Yagi et al., 2001), and in the same region, the slow-slip events were also observed by GPS measurements (GSI, 2011). We performed extraordinary seismic observations for 75 days from April to July 2006, for 73 days from April to July 2008, and for 77 days from April to July 2009. About 25 pop-up type ocean-bottom seismometers were deployed above hypocentral region in Hyuga-nada using Nagasaki-maru. And three data loggers were deployed on land in order to compensate a regular seismic network. We used these data and permanent stations for this analysis. In order to obtain precise hypocenter distribution, focal mechanisms, and a 3D seismic velocity structure around the Hyuga-nada region, we used Double-Difference (DD) Tomography method developed by Zhang and Thurber (2003). In northern part of Hyuga-nada, Vp/Vs ratio is high along the upper part of PHS slab, and this layer is interpreted as the subducting oceanic crust. On the other hand, Vp/Vs ratio is about 1.73 in southern part of Hyuga-nada, and this is interpreted as the subducted Kyushu-Palau Ridge, old island arc, which is made by granitic rock. More over, there is a difference of Poisson's ratio at mantle wedge. This value is high (> 0.3) in northern part of Hyuga-nada. The high Poisson's mantle wedge is suggesting that the zone probably corresponds to a

  1. Spreading and slope instability at the continental margin offshore Mt Etna, imaged by high-resolution 2D seismic data

    NASA Astrophysics Data System (ADS)

    Gross, Felix; Krastel, Sebastian; Behrmann, Jan-Hinrich; Papenberg, Cord; Geersen, Jacob; Ridente, Domenico; Latino Chiocci, Francesco; Urlaub, Morelia; Bialas, Jörg; Micallef, Aaron

    2015-04-01

    Mount Etna is the largest active volcano in Europe. Its volcano edifice is located on top of continental crust close to the Ionian shore in east Sicily. Instability of the eastern flank of the volcano edifice is well documented onshore. The continental margin is supposed to deform as well. Little, however, is known about the offshore extension of the eastern volcano flank and its adjacent continental margin, which is a serious shortcoming in stability models. In order to better constrain the active tectonics of the continental margin offshore the eastern flank of the volcano, we acquired and processed a new marine high-resolution seismic and hydro-acoustic dataset. The data provide new detailed insights into the heterogeneous geology and tectonics of shallow continental margin structures offshore Mt Etna. In a similiar manner as observed onshore, the submarine realm is characterized by different blocks, which are controlled by local- and regional tectonics. We image a compressional regime at the toe of the continental margin, which is bound to an asymmetric basin system confining the eastward movement of the flank. In addition, we constrain the proposed southern boundary of the moving flank, which is identified as a right lateral oblique fault movement north of Catania Canyon. From our findings, we consider a major coupled volcano edifice instability and continental margin gravitational collapse and spreading to be present at Mt Etna, as we see a clear link between on- and offshore tectonic structures across the entire eastern flank. The new findings will help to evaluate hazards and risks accompanied by Mt Etna's slope- and continental margin instability and will be used as a base for future investigations in this region.

  2. A pseudo-spectral method for the simulation of poro-elastic seismic wave propagation in 2D polar coordinates using domain decomposition

    SciTech Connect

    Sidler, Rolf; Carcione, José M.; Holliger, Klaus

    2013-02-15

    We present a novel numerical approach for the comprehensive, flexible, and accurate simulation of poro-elastic wave propagation in 2D polar coordinates. An important application of this method and its extensions will be the modeling of complex seismic wave phenomena in fluid-filled boreholes, which represents a major, and as of yet largely unresolved, computational problem in exploration geophysics. In view of this, we consider a numerical mesh, which can be arbitrarily heterogeneous, consisting of two or more concentric rings representing the fluid in the center and the surrounding porous medium. The spatial discretization is based on a Chebyshev expansion in the radial direction and a Fourier expansion in the azimuthal direction and a Runge–Kutta integration scheme for the time evolution. A domain decomposition method is used to match the fluid–solid boundary conditions based on the method of characteristics. This multi-domain approach allows for significant reductions of the number of grid points in the azimuthal direction for the inner grid domain and thus for corresponding increases of the time step and enhancements of computational efficiency. The viability and accuracy of the proposed method has been rigorously tested and verified through comparisons with analytical solutions as well as with the results obtained with a corresponding, previously published, and independently benchmarked solution for 2D Cartesian coordinates. Finally, the proposed numerical solution also satisfies the reciprocity theorem, which indicates that the inherent singularity associated with the origin of the polar coordinate system is adequately handled.

  3. The density, compressibility and seismic velocity of hydrous melts at crustal and upper mantle conditions

    NASA Astrophysics Data System (ADS)

    Ueki, K.; Iwamori, H.

    2015-12-01

    Various processes of subduction zone magmatism, such as upward migration of partial melts and fractional crystallization depend on the density of the hydrous silicate melt. The density and the compressibility of the hydrous melt are key factors for the thermodynamic calculation of phase relation of the hydrous melt, and the geophysical inversion to predict physicochemical conditions of the melting region based on the seismic velocity. This study presents a new model for the calculations of the density of the hydrous silicate melts as a function of T, P, H2O content and melt composition. The Birch-Murnaghan equation is used for the equation of state. We compile the experimentally determined densities of various hydrous melts, and optimize the partial molar volume, compressibility, thermal expansibility and its pressure derivative, and K' of the H2O component in the silicate melt. P-T ranges of the calibration database are 0.48-4.29 GPa and 1033-2073 K. As such, this model covers the P-T ranges of the entire melting region of the subduction zone. Parameter set provided by Lange and Carmichael [1990] is used for the partial molar volume and KT value of the anhydrous silicate melt. K' of anhydrous melt is newly parameterized as a function of SiO2 content. The new model accurately reproduces the experimentally determined density variations of various hydrous melts from basalt to rhyolite. Our result shows that the hydrous melt is more compressive and less dense than the anhydrous melt; with the 5 wt% of H2O in melt, density and KT decrease by ~10% and ~30% from those of the anhydrous melt, respectively. For the application of the model, we calculated the P-wave velocity of the hydrous melt. With the 5 wt% of H2O, P-wave velocity of the silicate melt decreases by >10%. Based on the melt P-wave velocity, we demonstrate the effect of the melt H2O content on the seismic velocity of the partially molten zone of the subduction zone.

  4. Distribution Of Seismic Velocity Change Associated With The May 12, 2008 M7.9 Wenchuan Earthquake

    NASA Astrophysics Data System (ADS)

    Chen, J.; Froment, B.; Liu, Q.; Campillo, M.

    2009-12-01

    We used continuous recordings in Sichuan, China to track the temporal evolution of the seismic velocity in a 2 year period which includes the great Wenchuan earthquake. The data are recorded by a temporary network of 84 out of 297 broad-band seismometers run by the Institute of Geology of the China Earthquake Administration. We analyzed the data from the stations in a 400*300km2 region that includes the southern 2/3 of the fault system activated during the Wenchuan event. We computed the cross correlation functions of seismic noise in a 30-day moving window for period between 1 and 3 seconds. We interpret them as an approximation of the actual Green function between the recorders. We then performed a doublet analysis to detect temporal changes of velocity with respect to a reference correlation. We deduce a relative average velocity change from the high quality delay measurements obtained for the ensemble of stations pairs. We found clear evidences that the seismic velocity drops after the earthquake by an average amount of about 0.1% in the fault region when measured with waves in the period range 1-3 seconds. We found that, according to our measurements, the velocity fluctuates within 0.02% in the months before the earthquake. The co-seismic variation is therefore well above the resolution of the measurements. We found that the co-seismic variation has similar amplitude for station groups in the Sichuan basin or in the Longmen Shan range, indicating that the co-seismic change is not fully controlled by the non-linear response of the shallow sediments. To investigate the velocity variations for different part in the region, we used a 0.5-degree station searching radius on 0.5°×0.5° grids to define sub-arrays, and measured the velocity variation for station pairs in the sub-arrays. We compared the measurements of velocity changes in different sub-arrays with a map of stress change deduced from a kinematic rupture model (Ji and Shao, personal communication) and

  5. Very long-period GPS waveforms. What can GPS bring to Earth seismic velocity models?

    NASA Astrophysics Data System (ADS)

    Kelevitz, K.; Houlie, N.; Nissen-Meyer, T.; Boschi, L.; Giardini, D.; Rothacher, M.

    2014-12-01

    It is now admitted that high rate GPS observations can provide reliable surface displacement waveforms. For long-period (T > 5s) transients, it was shown that GPS and seismometer (STS-1) displacements are in agreement at least for vertical component [Houlié et al., 2011]. We propose here to supplement existing long-period seismic networks with high rate (>= 1Hz) GPS data in order to improve the resolution of global seismic velocity models. We aim at extending the use of GPS measurements beyond the range of STS-1 in the low frequency end (T>1000s). We present the results of the processing of 1Hz GPS records of the Hokkaido, Sumatra and Tohoku earthquakes (25th of September, 2003, Mw = 8.3; 26th of December, 2004, Mw = 8.9; 11th of March, 2011, Mw = 9.1, respectively). 3D waveforms phase time-series have been used to recover the ground motion histories at the GPS sites. Through the better resolution of inversion of the GPS phase observations, we determine displacement waveforms of periods ranging from 30 seconds to 1300 seconds for a selection of sites. We compare inverted GPS waveforms with STS-1 waveforms, superconducting gravity waveforms and synthetic waveforms computed using 3D global wave propagation with SPECFEM. We find that the GPS waveforms are in agreement with the SPECFEM synthetic data and are able to fill the period-gap between the broadband seismometer STS-1 data and the normal mode period range detected by the superconducting gravimeters. References: Houlié, N., G. Occhipinti, T. Blanchard, N. Shapiro, P. Lognonne, and M. Murakami (2011), New approach to detect seismic surface waves in 1Hz-sampled GPS time series, Scientific reports, 1, 44.

  6. Simultaneous 2-D Measurements of Transient Velocity and Temperature Fields in a Thermal Starting Plume: Laboratory Models of Entrainment and Structure of Mantle Plumes

    NASA Astrophysics Data System (ADS)

    Kumagai, I.; Yanagisawa, T.; Kurita, K.

    2002-12-01

    Both numerical and experimental models of thermal plumes suggest that mantle plumes entrain surrounding mantle and their morphology (temperature and compositional fields in the plume head) evolves as they rise. Recent geochemical and isotopic studies of mantle plume products have revealed mixing of the ambient mantle with the primitive plume source. In order to make a quantitative comparison of the geophysical modeling with geological evidences, it is desired to show a precise image of spatial and temporal evolution of temperature and compositional fields in the plumes. Here, we present preliminary results of our laboratory experiments on thermal starting plumes using a quantitative technique of digital image processing. By coupling Particle Image Velocimetry (PIV) with Laser Induced Fluorescence (LIF) we can measure simultaneous 2-dimensional transient velocity and temperature fields in a thermal plume. Our experiments were conducted in a transparent rectangular tank containing a viscous fluid. Buoyancy in the form of heat was injected into the fluid by operating a heater at the base of the tank. The flow was marked with tracer particles for velocity and with the fluorescence dye, Rhodamine B, for temperature measurements. The particles and the fluorescence dye were illuminated and exited by a thin vertical sheet of laser light that was oriented to contain the axis of symmetry. We succeeded in simultaneous measurements of ascent velocity of the plume head, precise velocity field within the plume head, and evolution of the temperature field. This makes clear their relation and is useful for considering the entrainment process of plumes. Our aim of this study is to clarify the physics of entrainment and mixing phenomena of starting plumes, and to make quantitative geophysical models of mantle plumes connecting with geological and seismic evidences. In this presentation, we will show that this quantitative technique is a powerful tool for approaching these issues.

  7. High resolution velocity structure beneath Mount Vesuvius from seismic array data

    NASA Astrophysics Data System (ADS)

    Scarpa, Roberto; Tronca, Fabrizio; Bianco, Francesca; Del Pezzo, Edoardo

    2002-11-01

    A high resolution P-wave image of Mt. Vesuvius edifice has been derived from simultaneous inversion of travel times and hypocentral parameters of local earthquakes, land based shots and small aperture array data. The results give details down to 300-500 m. The relocated local seismicity appears to extend down to 5 km below the central crater, distributed in a major cluster, centered at 3 km below the central crater and in a minor group, with diffuse hypocenters inside the volcanic edifice. The two clusters are separated by an anomalously high Vp region at around 1 km depth. A zone with high Vp/Vs in the upper layers is interpreted as produced by the presence of intense fluid circulation. The highest energy quakes (up to M = 3.6) are located in the deeper cluster, in a high P-wave velocity zone. Our results favor an interpretation in terms of absence of shallow magma reservoirs.

  8. Can we go From Tomographically Determined Seismic Velocities to Composition? Amplitude Resolution Issues in Local Earthquake Tomography

    NASA Astrophysics Data System (ADS)

    Wagner, L.

    2007-12-01

    There have been a number of recent papers (i.e. Lee (2003), James et al. (2004), Hacker and Abers (2004), Schutt and Lesher (2006)) which calculate predicted velocities for xenolith compositions at mantle pressures and temperatures. It is tempting, therefore, to attempt to go the other way ... to use tomographically determined absolute velocities to constrain mantle composition. However, in order to do this, it is vital that one is able to accurately constrain not only the polarity of the determined velocity deviations (i.e. fast vs slow) but also how much faster, how much slower relative to the starting model, if absolute velocities are to be so closely analyzed. While much attention has been given to issues concerning spatial resolution in seismic tomography (i.e. what areas are fast, what areas are slow), little attention has been directed at the issue of amplitude resolution (how fast, how slow). Velocity deviation amplitudes in seismic tomography are heavily influenced by the amount of regularization used and the number of iterations performed. Determining these two parameters is a difficult and little discussed problem. I explore the effect of these two parameters on the amplitudes obtained from the tomographic inversion of the Chile Argentina Geophysical Experiment (CHARGE) dataset, and attempt to determine a reasonable solution space for the low Vp, high Vs, low Vp/Vs anomaly found above the flat slab in central Chile. I then compare this solution space to the range in experimentally determined velocities for peridotite end-members to evaluate our ability to constrain composition using tomographically determined seismic velocities. I find that in general, it will be difficult to constrain the compositions of normal mantle peridotites using tomographically determined velocities, but that in the unusual case of the anomaly above the flat slab, the observed velocity structure still has an anomalously high S wave velocity and low Vp/Vs ratio that is most

  9. Depth variations in seismic velocity in the subducting crust: Evidence for fluid-related embrittlement for intermediate-depth earthquakes

    NASA Astrophysics Data System (ADS)

    Shiina, Takahiro; Nakajima, Junichi; Matsuzawa, Toru; Toyokuni, Genti; Kita, Saeko

    2017-01-01

    We investigated seismic wave velocity in the subducting crust of the Pacific slab beneath eastern Hokkaido, northern Japan. To detect depth-dependent properties of the seismic velocities in the crust, we analyzed guided waves that propagate in the crust and estimated P wave velocity (Vp) of 6.5-7.5 km/s and S wave velocity (Vs) of 3.6-4.2 km/s at depths of 50-100 km. The results show that the obtained Vp and Vs are 10-15% lower than those expected for the fully hydrated mid-ocean ridge basalt, suggesting the existence of aqueous fluids by 1 vol % in the crust at this depth range. Our observations suggest that overpressurized fluids channeled in the subducting crust plays as a dominant factor for facilitating the genesis of crustal earthquakes at intermediate depths.

  10. Three-dimensional seismic velocity structure in the Sichuan basin, China

    NASA Astrophysics Data System (ADS)

    Wang, Maomao; Hubbard, Judith; Plesch, Andreas; Shaw, John H.; Wang, Lining

    2016-02-01

    We present a new three-dimensional velocity model of the crust in the eastern margin of the Tibetan Plateau. The model describes the velocity structure of the Sichuan basin and surrounding thrust belts. The model consists of 3-D surfaces representing major geologic unit contacts and faults and is parameterized with Vp velocity-depth functions calibrated using sonic logs. The model incorporates data from 1166 oil wells, industry isopach maps, geological maps, and a digital elevation model. The geological surfaces were modeled based on structure contour maps for various units from oil wells and seismic reflection profiles. These surfaces include base Quaternary, Mesozoic, Paleozoic, and Proterozoic horizons. The horizons locally exhibit major offsets that are compatible with the locations and displacements of important faults systems. This layered, upper crustal 3-D model extends down to 10-15 km depth and illustrates lateral and vertical variations of velocity that reflect the complex evolution of tectonics and sedimentation in the basin. The model also incorporates 3-D descriptions of Vs and density for sediments that are obtained from empirical relationships with Vp using direct measurements of these properties in borehole logs. To illustrate the impact of our basin model on earthquake hazards assessment, we use it to calculate ground motions and compare these with observations for the 2013 Lushan earthquake. The result demonstrates the effects of basin amplification in the western Sichuan basin. The Sichuan CVM model is intended to facilitate fault systems analysis, strong ground motion prediction, and earthquake hazards assessment for the densely populated Sichuan region.

  11. Shear velocity structure beneath the central United States: implications for the origin of the Illinois Basin and intraplate seismicity

    NASA Astrophysics Data System (ADS)

    Chen, Chen; Gilbert, Hersh; Andronicos, Christopher; Hamburger, Michael W.; Larson, Timothy; Marshak, Stephen; Pavlis, Gary L.; Yang, Xiaotao

    2016-03-01

    We present new estimates of lithospheric shear velocities for the intraplate seismic zones and the Illinois Basin in the U.S. midcontinent by analyzing teleseismic Rayleigh waves. We find that relatively high crustal shear velocities (VS) characterize the southern Illinois Basin, while relatively low crustal velocities characterize the middle and lower crust of the central and northern Illinois Basin. The observed high crustal velocities may correspond to high-density mafic intrusions emplaced into the crust during the development of the Reelfoot Rift, which may have contributed to the subsidence of the Illinois Basin. The low crustal VS beneath the central and northern basin follow the La Salle deformation belt. We also observe relatively low velocities in the mantle beneath the New Madrid seismic zone where VS decreases by about 7% compared to those outside of the rift. The low VS in the upper mantle also extends beneath the Wabash Valley and Ste. Genevieve seismic zones. Testing expected VS reductions based on plausible thermal heterogeneities for the midcontinent indicates that the 7% velocity reduction would not result from elevated temperatures alone. Instead this scale of anomaly requires a contribution from some combination of increased iron and water content. Both rifting and interaction with a mantle plume could introduce these compositional heterogeneities. Similar orientations for the NE-SW low-velocity zone and the Reelfoot Rift suggest a rift origin to the reduced velocities. The low VS upper mantle represents a weak region and the intraplate seismic zones would correspond to concentrated crustal deformation above weak mantle.

  12. Determination of temporal changes in seismic velocity caused by volcanic activity in and around Hakone volcano, central Japan, using ambient seismic noise records

    NASA Astrophysics Data System (ADS)

    Yukutake, Yohei; Ueno, Tomotake; Miyaoka, Kazuki

    2016-12-01

    Autocorrelation functions (ACFs) for ambient seismic noise are considered to be useful tools for estimating temporal changes in the subsurface structure. Velocity changes at Hakone volcano in central Japan, where remarkable swarm activity has often been observed, were investigated in this study. Significant velocity changes were detected during two seismic activities in 2011 and 2013. The 2011 activity began immediately after the 2011 Tohoku-oki earthquake, suggesting remote triggering by the dynamic stress changes resulting from the earthquake. During the 2013 activity, which exhibited swarm-like features, crustal deformations were detected by Global Navigation Satellite System (GNSS) stations and tiltmeters, suggesting a pressure increment of a Mogi point source at a depth of 7 km and two shallow open cracks. Waveforms that were bandpass-filtered between 1 and 3 Hz were used to calculate ACFs using a one-bit correlation technique. Fluctuations in the velocity structure were obtained using the stretching method. A gradual decrease in the velocity structure was observed prior to the 2013 activity at the KOM station near the central cone of the caldera, which started after the onset of crustal expansion observed by the GNSS stations. Additionally, a sudden significant velocity decrease was observed at the OWD station near a fumarolic area just after the onset of the 2013 activity and the tilt changes. The changes in the stress and strain caused by the deformation sources were likely the main contributors to these decreases in velocity. The precursory velocity reduction at the KOM station likely resulted from the inflation of the deep Mogi source, whereas the sudden velocity decrease at the OWD station may reflect changes in the strain caused by the shallow open-crack source. Rapid velocity decreases were also detected at many stations in and around the volcano after the 2011 Tohoku-oki earthquake. The velocity changes may reflect the redistribution of hydrothermal

  13. MTCLAB: A MATLAB ®-based program for traveltime quality analysis and pre-inversion velocity tuning in 2D transmission tomography

    NASA Astrophysics Data System (ADS)

    Fernández-Martínez, J. L.; Fernández-Alvarez, J. P.; Pedruelo-González, L. M.

    2008-03-01

    A MATLAB ®-based computer code that analyses the traveltime distribution and performs quality analysis at the pre-inversion stage for 2D transmission experiments is presented. The core tools of this approach are the so-called mean traveltime curves. For any general recording geometry, the user may select any pair of subsets of contiguous sources and receivers. The portion of the domain swept by the implied rays defines a zone of analysis, and for each source (receiver) the outcoming (incoming) ray fan is named a source (receiver) gather. The empirical mean traveltime curves are constructed, for each zone, by assigning the average and the standard deviation of the traveltimes in the gathers to the positions of the sources (receivers). The theoretical expressions assume isotropic homogeneous velocity inside each zone. The empirical counterparts use the observed traveltimes and make no assumptions. Isotropic velocity in each zone is inferred by least-squares fitting of the empirical mean traveltime curves. The user may refine the analysis considering different zones (multi-zone analysis). Initially the whole domain is modelled as a single zone. The procedure compares empirical versus theoretical curves. In addition, residuals can be plotted using source-receiver positions as plane coordinates. The results are used to unravel the possible presence of anomalous gathers, heterogeneities, anisotropies, etc. Depending on the kind of anomalies, velocity estimation and mean time residuals are different in the source and receiver gather curves. This software helps to grasp a better understanding of the data variability before the inversion and provides to the geophysicist an approximate zonal isotropic model and a range of velocity variation that can be used in the inverse problem as a priori information (regularization term). Its use is described through tutorial examples. A guided user interface leads the user through the algorithm steps.

  14. Developing Strength Chart of Saturated Concrete by Using Seismic P and S-Wave Velocities in Laboratory

    NASA Astrophysics Data System (ADS)

    Ekinci, B.; Sabbağ, N.; Uyanik, O.; Öncü, Z.; Akdemir, S.; Türker, E.

    2014-12-01

    Determining of concrete strength can be used by destructive or non-destructive methods. Concrete strength is determined with uniaxial compressive test as destructive in laboratory and with Seismic Ultrasonic P- (Compressional) and S-wave (Shear) measurements as non-destructive in-situ or laboratory. In this study, strength of saturated concrete is investigated by using seismic P and S-wave velocities. For this, concrete samples were formed with using the cube samples in size 15x15x15cm. Different strength designs were made for obtain different strengths in these samples. The aim is to create concrete strengths of between the lowest 5MPa and the highest 100 MPa. After the end of the curing time of created the cube concrete samples Seismic P and S waves measurements were made in the laboratory by Ultrasonic test equipment. Hence, P and S wave velocities of the sample were calculated. After these, for determine the strength of the samples uniaxial compression strength test was performed. As a result, P and S wave velocities and concrete strength values of concrete samples were obtained. By correlating these values over %90 exponential relationships were determined. By using this relationship, concrete strength can be determined sensitively from P and S wave velocities. In addition, by using P and S wave velocities elastic parameters values and Poisson's ratio of concrete specimens can be calculated. Keywords: Concrete, Strength, Compressional and Shear-wave velocities, Empirical Relationship

  15. FWT2D: A massively parallel program for frequency-domain full-waveform tomography of wide-aperture seismic data—Part 1: Algorithm

    NASA Astrophysics Data System (ADS)

    Sourbier, Florent; Operto, Stéphane; Virieux, Jean; Amestoy, Patrick; L'Excellent, Jean-Yves

    2009-03-01

    This is the first paper in a two-part series that describes a massively parallel code that performs 2D frequency-domain full-waveform inversion of wide-aperture seismic data for imaging complex structures. Full-waveform inversion methods, namely quantitative seismic imaging methods based on the resolution of the full wave equation, are computationally expensive. Therefore, designing efficient algorithms which take advantage of parallel computing facilities is critical for the appraisal of these approaches when applied to representative case studies and for further improvements. Full-waveform modelling requires the resolution of a large sparse system of linear equations which is performed with the massively parallel direct solver MUMPS for efficient multiple-shot simulations. Efficiency of the multiple-shot solution phase (forward/backward substitutions) is improved by using the BLAS3 library. The inverse problem relies on a classic local optimization approach implemented with a gradient method. The direct solver returns the multiple-shot wavefield solutions distributed over the processors according to a domain decomposition driven by the distribution of the LU factors. The domain decomposition of the wavefield solutions is used to compute in parallel the gradient of the objective function and the diagonal Hessian, this latter providing a suitable scaling of the gradient. The algorithm allows one to test different strategies for multiscale frequency inversion ranging from successive mono-frequency inversion to simultaneous multifrequency inversion. These different inversion strategies will be illustrated in the following companion paper. The parallel efficiency and the scalability of the code will also be quantified.

  16. Seismic velocity structure of the crust and shallow mantle of the Central and Eastern United States by seismic surface wave imaging

    USGS Publications Warehouse

    Pollitz, Fred; Mooney, Walter D.

    2016-01-01

    Seismic surface waves from the Transportable Array of EarthScope's USArray are used to estimate phase velocity structure of 18 to 125 s Rayleigh waves, then inverted to obtain three-dimensional crust and upper mantle structure of the Central and Eastern United States (CEUS) down to ∼200 km. The obtained lithosphere structure confirms previously imaged CEUS features, e.g., the low seismic-velocity signature of the Cambrian Reelfoot Rift and the very low velocity at >150 km depth below an Eocene volcanic center in northwestern Virginia. New features include high-velocity mantle stretching from the Archean Superior Craton well into the Proterozoic terranes and deep low-velocity zones in central Texas (associated with the late Cretaceous Travis and Uvalde volcanic fields) and beneath the South Georgia Rift (which contains Jurassic basalts). Hot spot tracks may be associated with several imaged low-velocity zones, particularly those close to the former rifted Laurentia margin.

  17. Coal-seismic, desktop computer programs in BASIC; Part 6, Develop rms velocity functions and apply mute and normal movement

    USGS Publications Warehouse

    Hasbrouck, W.P.

    1983-01-01

    Processing of data taken with the U.S. Geological Survey's coal-seismic system is done with a desktop, stand-alone computer. Programs for this computer are written in the extended BASIC language utilized by the Tektronix 4051 Graphic System. This report presents computer programs used to develop rms velocity functions and apply mute and normal moveout to a 12-trace seismogram.

  18. Apparent Attenuation and Dispersion Arising in Seismic Body-Wave Velocity Retrieval

    NASA Astrophysics Data System (ADS)

    Wirgin, Armand

    2016-07-01

    The fact that seismologists often make measurements, using natural seismic solicitations, of properties of the Earth on rather large scales (laterally and in terms of depth) has led to interrogations as to whether attenuation of body waves is dispersive and even significant. The present study, whose aim is to clarify these complicated issues, via a controlled thought measurement, concerns the retrieval of a single, real body wave velocity of a simple geophysical configuration (involving two homogeneous, isotropic, non-dissipative media, one occupying the layer, the other the substratum), from its simulated response to pulsed plane wave probe radiation. This inverse problem is solved, at all frequencies within the bandwidth of the pulse. Due to discordance between the models associated with the assumed and trial responses, the imaginary part of the retrieved velocity turns out to be non-nil even when both the layer and substratum are non-lossy, and, in fact, to be all the greater, the larger is the discordance. The reason for this cannot be due to intrinsic attenuation, scattering, or geometrical spreading since these phenomena are absent in the chosen thought experiment, but rather to uncertainty in the measurement model.

  19. Complex seismic anisotropy at the border of a very low velocity province at the base of the Earth's mantle

    NASA Astrophysics Data System (ADS)

    Wang, Yi; Wen, Lianxing

    2007-09-01

    We constrain the anisotropy associated with a very low velocity province (VLVP) at the base of the Earth's mantle using the SKS and SKKS waves sampling the region. Our selected high-quality data sets consist of 415 SKS and 111 SKKS waveforms for 127 deep earthquakes recorded at distances between 90° and 150° by the seismic stations in three temporary broadband PASSCAL seismic arrays: the Kaapvaal seismic array (1997-1999), the Tanzania seismic array (1994-1995), and the Ethiopia/Kenya seismic array (1999-2001), as well as the permanent stations in the Global Seismographic Network. These seismic data provide good sampling coverage for some portion of the VLVP and its surrounding areas. Our results show, when the SKS or SKKS phases sample the regions away from the border of the VLVP (inside or outside the VLVP), the apparent splitting parameters inferred from the SKS phases are consistent with those inferred from the SKKS phases, and their variations strongly correlate with seismic stations but not with the exit points at the core-mantle boundary of these seismic phases. However, when the SKS or SKKS phases sample near the border of the VLVP, the apparent splitting parameters inferred from the SKS phases and SKKS phases are different, and their variations no longer correlate with seismic stations. These features indicate that part of the shear wave splitting for the seismic data sampling the border of the VLVP has to originate from deep mantle, most likely near the border of the VLVP. We assume that the anisotropy in the shallow mantle beneath seismic stations has a horizontal hexagonal symmetry axis and infer the splitting parameters associated with the shallow anisotropy beneath the seismic stations using the SKS and SKKS waveforms for the seismic data sampling the regions away from the border of the VLVP. We then obtain the splitting parameters associated with the lowermost mantle anisotropy using the SKS and SKKS waveforms corrected for the inferred shallow

  20. Velocity Ellipsoids for Crustal Seismic Anisotropy: Pumpkins and Melons Have Dimples and Bulges

    NASA Astrophysics Data System (ADS)

    Okaya, D.; Christensen, N.

    2003-12-01

    Geological causes of crustal anisotropy include regional fractures and cracks, isotropic heterogeneity or layering, and material composition and textural properties. In addition, shear or metamorphic foliations in fault zones or structural terranes serve as proxies for intracrustal deformation in a manner analogous to lattice preferred orientation of olivine produced by mantle shear. The primary factor in the production of crustal seismic anisotropy is the relative angle between a seismic wave and the (dipping) symmetry axes representing the crustal material even as either change along the propagation raypath. As a result, in order to analyze observations of crustal anisotropy we must understand the behavior of compressional and shear wave velocities in all propagation directions parallel to and in-between the principal symmetry axes which represent the crustal materials. In this poster we use Christoffel equations and physical properties obtained from petrophysical lab measurements in order to examine anisotropic velocities and travel-time effects for bulk rocks representative of different crustal levels. Ellipses and ellipsoids are commonly used to represent the P- and S-wave velocity directional behavior for materials described using hexagonal and orthorhombic symmetries, respectively. While olivine and pyroxene-based mantle rocks are characteristically fast symmetry axes (the "melons" of Levin and Park, 1997), crustal rocks are typically slow symmetry axes ("pumpkins") due to the predominance of fractures or textural foliations. Careful application of Christoffel solutions indicate that for most crustal (and mantle) rocks the surfaces of their pumpkins or melons are not exact analytical ellipsoids. Rather, the surfaces in the non-axial directions have second-order deflections (bulges or dimples) which potentially may produce observable azimuthal travel-time or shear splitting effects. In the case when the P-wave surface on average is slow (dimpled), due to SV

  1. Evaluation of the southern California seismic velocity models through simulation of recorded events

    NASA Astrophysics Data System (ADS)

    Taborda, Ricardo; Azizzadeh-Roodpish, Shima; Khoshnevis, Naeem; Cheng, Keli

    2016-06-01

    Significant effort has been devoted over the last two decades to the development of various seismic velocity models for the region of southern California, United States. These models are mostly used in forward wave propagation simulation studies, but also as base models for tomographic and source inversions. Two of these models, the community velocity models CVM-S and CVM-H, are among the most commonly used for this region. This includes two alternative variations to the original models, the recently released CVM-S4.26 which incorporates results from a sequence of tomographic inversions into CVM-S, and the user-controlled option of CVM-H to replace the near-surface profiles with a VS30-based geotechnical model. Although either one of these models is regarded as acceptable by the modeling community, it is known that they have differences in their representation of the crustal structure and sedimentary deposits in the region, and thus can lead to different results in forward and inverse problems. In this paper, we evaluate the accuracy of these models when used to predict the ground motion in the greater Los Angeles region by means of an assessment of a collection of simulations of recent events. In total, we consider 30 moderate-magnitude earthquakes (3.5 < Mw < 5.5) between 1998 and 2014, and compare synthetics with data recorded by seismic networks during these events. The simulations are done using a finite-element parallel code, with numerical models that satisfy a maximum frequency of 1 Hz and a minimum shear wave velocity of 200 m s-1. The comparisons between data and synthetics are ranked quantitatively by means of a goodness-of-fit (GOF) criteria. We analyse the regional distribution of the GOF results for all events and all models, and draw conclusions from the results and how these correlate to the models. We find that, in light of our comparisons, the model CVM-S4.26 consistently yields better results.

  2. 2D Dynamic Models of Subduction: Links between Surface Plate Motion and Deformation in the Transition Zone from Observations of Deep Slab Seismicity

    NASA Astrophysics Data System (ADS)

    Arredondo, K.; Billen, M. I.

    2015-12-01

    Observations of seismicity and seismic tomography provide constraints on the geometry of slabs within mantle, while compression/tension axis derived from moment tensor solutions provide constraints on the internal deformation of slabs. However, since these observations provide only a somewhat blurred or incomplete snapshot of the slab in time, it is difficult to directly relate these observations to the evolution of the slab geometry and the forces acting on and within the slab. In contrast, plate tectonic reconstructions provide time-dependent constraints on the surface motion of plates and the trench at subduction zones, which are related to the dynamical evolution of the slab. We use 2D geodynamical simulations of subduction to explore the relationship between dynamical process within the deforming slab and the observations of surface plate motion and the state-of-stress in slabs. Specifically we utilize models that include the extended Boussinesq approximation (shear heating and latent heat terms in the energy equation), a layered lithosphere with pyrolite, harzburgite and basalt/eclogite, compositionally-dependent phase transitions, and a composite rheology with yielding. The models employ a weak crustal layer that decouples the overriding and subducting plates and allows for dynamically determined trench motion. Here we show that, 1) multiple phase transitions increase slab folding, 2) ridge push significantly increases trench retreat, and 3) strength of the weak crustal layer influences slab detachment. Compared to past studies a more realistic treatment of the phase transitions makes trench retreat more difficult to generate: a weaker plate may encourage slab retreat but detaches once the slab tip crosses into the transition zone due to the rapid increase in slab density. As suggested by previous studies, slab folding within the transition zone changes the direction of forces on the slab and causes periodic changes from trench retreat to trench advance. We

  3. Mapping Deep Low Velocity Zones in Alaskan Arctic Coastal Permafrost using Seismic Surface Waves

    NASA Astrophysics Data System (ADS)

    Dou, S.; Ajo Franklin, J. B.; Dreger, D. S.

    2012-12-01

    Permafrost degradation may be an important amplifier of climate change; Thawing of near-surface sediments holds the potential of increasing greenhouse gas emissions due to microbial decomposition of preserved organic carbon. Recently, the characterization of "deep" carbon pools (several meters below the surface) in circumpolar frozen ground has increased the estimated amount of soil carbon to three times higher than what was previously thought. It is therefore potentially important to include the characteristics and processes of deeper permafrost strata (on the orders of a few to tens of meters below surface) in climate models for improving future predictions of accessible carbon and climate feedbacks. This extension is particularly relevant if deeper formations are not completely frozen and may harbor on-going microbial activity despite sub-zero temperatures. Unfortunately, the characterization of deep permafrost systems is non-trivial; logistics and drilling constraints often limit direct characterization to relatively shallow units. Geophysical measurements, either surface or airborne, are often the most effective tools for evaluating these regions. Of the available geophysical techniques, the analysis of seismic surface waves (e.g. MASW) has several unique advantages, mainly the ability to provide field-scale information with good depth resolution as well as penetration (10s to 100s of m with small portable sources). Surface wave methods are also able to resolve low velocity regions, a class of features that is difficult to characterize using traditional P-wave refraction methods. As part of the Department of Energy (DOE) Next-Generation Ecosystem Experiments (NGEE-Arctic) project, we conducted a three-day seismic field survey (May 12 - 14, 2012) at the Barrow Environmental Observatory, which is located within the Alaskan Arctic Coastal Plain. Even though permafrost at the study site is continuous, ice-rich and thick (>= 350m), our Multichannel Analysis of

  4. Additional Constraints on the Shallow Seismic Velocity Structure of the Atlantis Massif Oceanic Core Complex

    NASA Astrophysics Data System (ADS)

    Henig, A. S.; Blackman, D. K.; Harding, A. J.; Kent, G. M.; Canales, J. P.

    2008-12-01

    We investigate the detailed structure of the uppermost ~km of Atlantis Massif, an oceanic core complex at 30°N on the Mid Atlantic Ridge, using pre-existing multichannel seismic data. The Synthetic On- Bottom Experiment (SOBE) method that we employ downward continues both the shots and receivers to a depth just above the seafloor. This allows us to pick refracted arrivals recorded on the streamer at very-near offset, providing constraints from rays that are received within the 300-2000 m range that was unavailable to earlier studies where standard shot gathers had been analyzed. Thus, we can better model the upper few hundred meters of the section which, in turn, adds confidence for determining the deeper (400-1500 m) structure. New work on a ridge-parallel line has been added to last year's work on a cross-axis line over the Central Dome of the massif. Tomographic results are similar for these crossing lines: a thin (100-150 m) low velocity (< 3 km/s) layer caps the dome; high horizontal gradients (>1.25 s-1) occur in local (1-2 km wide) regions within these 6-8 km long subsections of the MCS lines analyzed to date; and very high vertical velocity gradients, greater than 3.75 s-1, occur within the km just below the exposed detachment in these areas. We obtain general agreement with Canales et al., 2008, results over the Central Dome but our models suggest a finer scale lateral heterogeneity. We have begun analysis of additional and extended MCS lines over the domal core of the massif and our priority for this presentation is to assess the detailed structure of the Southern Ridge. In at least some areas the thin, low velocity layer contrasts sufficiently with underlying material that a clear refracted arrival is visible in supergathers. We will determine whether the low velocity layer persists over the whole dome or if it is restricted to the Central Dome. An important question is whether its thickness on the Southern Ridge, if it exists there, differs from that

  5. The limits of seaward spreading and slope instability at the continental margin offshore Mt Etna, imaged by high-resolution 2D seismic data

    NASA Astrophysics Data System (ADS)

    Gross, Felix; Krastel, Sebastian; Geersen, Jacob; Behrmann, Jan Hinrich; Ridente, Domenico; Chiocci, Francesco Latino; Bialas, Jörg; Papenberg, Cord; Cukur, Deniz; Urlaub, Morelia; Micallef, Aaron

    2016-01-01

    Mount Etna is the largest active volcano in Europe. Instability of its eastern flank is well documented onshore, and continuously monitored by geodetic and InSAR measurements. Little is known, however, about the offshore extension of the eastern volcano flank, defining a serious shortcoming in stability models. In order to better constrain the active tectonics of the continental margin offshore the eastern flank of the volcano, we acquired a new high-resolution 2D reflection seismic dataset. The data provide new insights into the heterogeneous geology and tectonics at the continental margin offshore Mt Etna. The submarine realm is characterized by different blocks, which are controlled by local- and regional tectonics. A compressional regime is found at the toe of the continental margin, which is bound to a complex basin system. Both, the clear link between on- and offshore tectonic structures as well as the compressional regime at the easternmost flank edge, indicate a continental margin gravitational collapse as well as spreading to be present at Mt Etna. Moreover, we find evidence for the offshore southern boundary of the moving flank, which is identified as a right lateral oblique fault north of Catania Canyon. Our findings suggest a coupled volcano edifice/continental margin instability at Mt Etna, demonstrating first order linkage between on- and offshore tectonic processes.

  6. USING RECENT ADVANCES IN 2D SEISMIC TECHNOLOGY AND SURFACE GEOCHEMISTRY TO ECONOMICALLY REDEVELOP A SHALLOW SHELF CARBONATE RESERVOIR: VERNON FIELD, ISABELLA COUNTY, MI

    SciTech Connect

    James R. Wood; A. Wylie; W. Quinlan

    2004-10-01

    One of the principal objectives of this demonstration project is to test surface geochemical techniques for detecting trace amounts of light hydrocarbons in pore gases as a means of reducing risk in hydrocarbon exploration and production. During this reporting period, microbial samples were collected from the Trusty Steed prospect area in Grand Traverse County, Michigan. The samples were analyzed using the Microbial Oil Surveying Technique (MOST) technique and revealed only a local (1-point) anomaly. A decision to resample over that point is pending, but drilling has been postponed for the time being. The main news this reporting period is that in the Bear Lake area, northwest Michigan, Federated Oil & Gas Properties' Charlich-Fauble 2-9HD horizontal lateral, has cumulative production of more than 72,000 barrels of oil and is still producing 50 to 75 bopd from a Silurian Niagaran reef reservoir eighteen months after the well was completed. Surface geochemical surveys conducted in the demonstration area were consistent with production results although the ultimate decision to drill was based on interpretation of conventional subsurface and 2D seismic data. The surface geochemical techniques employed were Solid Phase MicroExtraction (SPME) and MOST. The geochemical results have been submitted to World Oil for publication. New geochemical surveys are planned for November in the Springdale quadrangle in Manistee County, Michigan. These surveys will concentrate on sampling over the trace of the proposed horizontal wells rather than a broad grid survey.

  7. P and S Wave Velocity Structure and Vp/Vs Ratios for the New Madrid Seismic Zone

    NASA Astrophysics Data System (ADS)

    Dunn, M.; Deshon, H.; Powell, C.

    2008-12-01

    Three dimensional P and S wave velocity models have been constructed for the New Madrid Seismic Zone (NMSZ) using double difference local earthquake tomography (tomoDD). TomoDD incorporates catalog arrival times with catalog and waveform cross correlation differential times to solve for P and S wave velocity and for high resolution earthquake locations. For the NMSZ, we utilized 101504 P wave differential times and 67811 S wave differential times from 1157 earthquakes recorded over the time period 2000 to 2007 by the Cooperative NMSZ Network. The NMSZ consists of three intersecting arms of seismicity located in the central United States. There are approximately 200 earthquakes a year in the NMSZ despite the absence of a major plate boundary. Most earthquakes occur along the central Reelfoot Fault leading to uneven source distribution. We use a finite difference travel time calculator combined with an irregular inversion grid of nodes spaced every 5 to 20 kilometers horizontally and 1 to 3 kilometers vertically. Model resolution was examined using chessboard and spike tests and indicated that resolution is highest close to the source region between depths of 5 to 12 kilometers. P and S wave models indicate that velocities close to the source region are slightly low relative to the 1D starting model. The decrease in velocities may be indicative of rock properties, such as increased fluid content and fracturing. A high P and S wave velocity anomaly located away from known faults is associated with a known mafic intrusion to the northwest of seismicity.

  8. Broadband Waveform Modeling to Evaluate the USGS Seismic Velocity Model for the San Francisco Bay Area

    NASA Astrophysics Data System (ADS)

    Rodgers, A.; Petersson, A.; Nilsson, S.; Sjogreen, B.; McCandless, K.

    2006-12-01

    As part of the 1906 San Francisco earthquake centenary, the USGS developed a three-dimensional seismic velocity and attenuation model for Northern California based on detailed geologic and geophysical constraints. The model was used to predict ground motions for the 1906 rupture. In this study we evaluate the model to assess its ability to accurately predict ground motions from moderate earthquakes recorded on broadband stations. Satisfactory prediction of ground motions from these events will provide hope for accurate modeling of future scenario earthquakes. Simulations were performed on large parallel computer(s) with a new elastic finite difference code developed at LLNL. We simulated broadband ground motions (0-0.25 Hz) for several moderate (magnitude 3.5-5.0) earthquakes in the region observed at Berkeley Digital Seismic Network (BDSN) broadband stations. These events are well located and can be modeled with simple point moment tensor sources (taken from the Berkeley Seismological Laboratory catalog), helping to isolate the effects of structure on the waveforms. These data sample the region's diverse tectonic structures, such as the bay muds, sedimentary basins and hard rock complexes. Preliminary results indicate that the simulations reproduce many important features in the data. For example, observed long duration surface waves are often predicted for complex paths (traveling across contrasting structures) and through sedimentary basins. Excellent waveform fits were frequently obtained for long-period comparisons (0.02-0.1) and good fits were often obtained for shorter periods. We will attempt higher frequency simulations to test the ability of the model to match the high frequency response. Finally, we performed large scenario earthquake simulations for the Hayward Fault. These simulations predict large amplifications across the Santa Clara and San Ramon/Livermore Valley sedimentary basins and with the Sacramento/San Joaquin River Delta.

  9. The preliminary results: Internal seismic velocity structure imaging beneath Mount Lokon

    SciTech Connect

    Firmansyah, Rizky; Nugraha, Andri Dian; Kristianto

    2015-04-24

    Historical records that before the 17{sup th} century, Mount Lokon had been dormant for approximately 400 years. In the years between 1350 and 1400, eruption ever recorded in Empung, came from Mount Lokon’s central crater. Subsequently, in 1750 to 1800, Mount Lokon continued to erupt again and caused soil damage and fall victim. After 1949, Mount Lokon dramatically increased in its frequency: the eruption interval varies between 1 – 5 years, with an average interval of 3 years and a rest interval ranged from 8 – 64 years. Then, on June 26{sup th}, 2011, standby alert set by the Center for Volcanology and Geological Hazard Mitigation. Peak activity happened on July 4{sup th}, 2011 that Mount Lokon erupted continuously until August 28{sup th}, 2011. In this study, we carefully analyzed micro-earthquakes waveform and determined hypocenter location of those events. We then conducted travel time seismic tomographic inversion using SIMULPS12 method to detemine Vp, Vs and Vp/Vs ratio structures beneath Lokon volcano in order to enhance our subsurface geological structure. During the tomographic inversion, we started from 1-D seismic velocities model obtained from VELEST33 method. Our preliminary results show low Vp, low Vs, and high Vp/Vs are observed beneath Mount Lokon-Empung which are may be associated with weak zone or hot material zones. However, in this study we used few station for recording of micro-earthquake events. So, we suggest in the future tomography study, the adding of some seismometers in order to improve ray coverage in the region is profoundly justified.

  10. The shallow P-velocity structure of the southern Dead Sea basin derived from near-vertical incidence reflection seismic data in project DESIRE

    NASA Astrophysics Data System (ADS)

    Ryberg, T.; Paschke, M.; Stiller, M.; Weber, M. H.; Desire Group

    2010-12-01

    As a part of the DEad Sea Integrated REsearch (DESIRE) project a seismic near-vertical incidence reflection (NVR) experiment with a profile length of 122 km was completed in spring 2006. The profile crossed the southern Dead Sea basin (DSB), a pull-apart basin due to the strike-slip motion along the Dead Sea Transform (DST). The DST is part of a multi-stage left lateral fault system which connects the spreading centre in the Red Sea with the Taurus collision zone in Turkey over a length of about 1,100 km. The experiment, with the main aim to explore lithologic structures in this area, was carried out in a roll-along acquisition procedure and comprises 972 source locations and 1.045 receiver locations. Each source was recorded by ~180 active receivers and a field dataset with 175,000 traces was created. From this dataset, 124,444 P-wave first-break traveltimes has been picked for this study. A tomographic inversion was carried out, resulting in a 2-D P-wave velocity model. Within the DSB, the model shows clearly the position of the Lisan salt diapir, identified by a high velocity zone. Further features are low velocity zones with P-velocities of ~3 km/s embedded in regions with ~4 km/s in the shallow part on the west side of the DSB. To verify the existence of this low velocity zone, a recovery test and also inversions with different starting models has been carried out. Correlations between the velocity model, a migrated NVR depth section and a geological model based on borehole and surface information will be presented.

  11. Combined use of repeated active shots and ambient noise to detect temporal changes in seismic velocity: application to Sakurajima volcano, Japan

    NASA Astrophysics Data System (ADS)

    Hirose, Takashi; Nakahara, Hisashi; Nishimura, Takeshi

    2017-03-01

    Coda-wave interferometry is a technique to detect small seismic velocity changes using phase changes in similar waveforms from repeating natural or artificial sources. Seismic interferometry is another technique for detecting seismic velocity changes from cross-correlation functions of ambient seismic noise. We simultaneously use these two techniques to clarify seismic velocity changes at Sakurajima volcano, one of the most active volcanoes in Japan, examining the two methods. We apply coda-wave interferometry to the records of repeated active seismic experiments conducted once a year from 2011 to 2014, and seismic interferometry to the ambient seismic noise data. We directly compare seismic velocity changes from these two techniques. In coda-wave interferometry analyses, we detect significant seismic velocity increases between 2011 and 2013, and seismic velocity decreases between 2013 and 2014 at the northern and eastern flanks of the volcano. The absolute values are at a maximum 0.47 ± 0.06% for 2-4 Hz, 0.24 ± 0.03% for 4-8 Hz, and 0.15 ± 0.03% for 8-16 Hz, respectively. In seismic interferometry analyses, vertical-vertical cross-correlations in 1-2, 2-4, and 4-8 Hz bands indicate seismic velocity increases and decreases during 3 years of 2012-2014 with the maximum amplitudes of velocity change of ±0.3% for 1-2 Hz, ±0.4% for 2-4 Hz, and ±0.2% for 4-8 Hz, respectively. Relative velocity changes indicate the almost annual change. These periodical changes are well matched with volcano deformation detected by GNSS receivers deployed around the volcano. We compare the results from coda-wave interferometry with those from seismic interferometry on the shot days and find that most of them are consistent. This study illustrates that the combined use of coda-wave interferometry and seismic interferometry is useful to obtain accurate and continuous measurements of seismic velocity changes.[Figure not available: see fulltext.

  12. Shear wave velocity estimation of the near-surface materials of Chittagong City, Bangladesh for seismic site characterization

    NASA Astrophysics Data System (ADS)

    Rahman, Md. Zillur; Siddiqua, Sumi; Kamal, A. S. M. Maksud

    2016-11-01

    The average shear wave velocity of the near-surface materials down to a depth of 30 m (Vs30) is essential for seismic site characterization to estimate the local amplification factor of the seismic waves during an earthquake. Chittagong City is one of the highest risk cities of Bangladesh for its seismic vulnerability. In the present study, the Vs30 is estimated for Chittagong City using the multichannel analysis of surface waves (MASW), small scale microtremor measurement (SSMM), downhole seismic (DS), and correlation between the shear wave velocity (Vs) and standard penetration test blow count (SPT-N). The Vs30 of the near-surface materials of the city varies from 123 m/s to 420 m/s. A Vs30 map is prepared from the Vs30 of each 30 m grid using the relationship between the Holocene soil thickness and the Vs30. Based on the Vs30, the near-surface materials of Chittagong City are classified as site classes C, D, and E according to the National Earthquake Hazards Reduction Program (NEHRP), USA and as site classes B, C, and D according to the Eurocode 8. The Vs30 map can be used for seismic microzonation, future planning, and development of the city to improve the earthquake resiliency of the city.

  13. Joint Inversion of Seismic and Gravity Data for Velocity Structure and Hypocentral Locations of the Colombian Subduction Zone

    NASA Astrophysics Data System (ADS)

    Syracuse, E. M.; Maceira, M.; Prieto, G. A.; Zhang, H.; Ammon, C. J.

    2014-12-01

    Joint inversions of geophysical data recover models that simultaneously fit multiple types of constraints while playing upon the various sensitivities of each data type. Here, we combine body wave arrival times with surface wave dispersion measurements and gravity observations to develop a combined 3D P- and S-wave velocity model for the crust and upper mantle of Colombia. P- and S-wave arrival times were obtained for local earthquakes from instruments in the Colombian National Seismic Network. Rayleigh wave dispersion curves were inverted for using a subset of network stations and larger local earthquakes. Gravity observations were extracted from the global satellite-based model EGM2008. Preliminary results using body waves only show reduced velocities beneath the volcanic arc in the upper 25 km of the crust. Crustal velocities are also reduced from the 1D starting model beneath the Eastern Cordillera in the northern half of the country. Relocations of intermediate-depth seismicity clearly indicate a discontinuity in the slab centered 5° N latitude, where the southern portion of the slab is ~200 km trenchward of the northern portion, coincident with the termination of arc volcanism and in recent years interpreted as due to a slab tear [Vargas and Mann, 2013]. Seismicity below 100 km depth in the southern portion of the subduction zone­­­ is surrounded by a ~100-km-thick region of elevated velocities, associated with the subduction of the Nazca Plate, and embedded within a broader region of reduced velocities. The northern portion of the subduction zone at 100 km depth and below is characterized by a broad region of elevated velocities, which may be consistent with a slab of an old, thickened Caribbean Plate origin. The overlapping of the edges of the Nazca and Caribbean slabs may contribute to the seismicity of the Bucaramanga nest.

  14. Comparison of P- and S-wave velocity profiles obtained from surface seismic refraction/reflection and downhole data

    USGS Publications Warehouse

    Williams, R.A.; Stephenson, W.J.; Odum, J.K.

    2003-01-01

    High-resolution seismic-reflection/refraction data were acquired on the ground surface at six locations to compare with near-surface seismic-velocity downhole measurements. Measurement sites were in Seattle, WA, the San Francisco Bay Area, CA, and the San Fernando Valley, CA. We quantitatively compared the data in terms of the average shear-wave velocity to 30-m depth (Vs30), and by the ratio of the relative site amplification produced by the velocity profiles of each data type over a specified set of quarter-wavelength frequencies. In terms of Vs30, similar values were determined from the two methods. There is <15% difference at four of the six sites. The Vs30 values at the other two sites differ by 21% and 48%. The relative site amplification factors differ generally by less than 10% for both P- and S-wave velocities. We also found that S-wave reflections and first-arrival phase delays are essential for identifying velocity inversions. The results suggest that seismic reflection/refraction data are a fast, non-invasive, and less expensive alternative to downhole data for determining Vs30. In addition, we emphasize that some P- and S-wave reflection travel times can directly indicate the frequencies of potentially damaging earthquake site resonances. A strong correlation between the simple S-wave first-arrival travel time/apparent velocity on the ground surface at 100 m offset from the seismic source and the Vs30 value for that site is an additional unique feature of the reflection/refraction data that could greatly simplify Vs30 determinations. ?? 2003 Elsevier Science B.V. All rights reserved.

  15. P and S velocity tomography of the Mariana subduction system from a combined land-sea seismic deployment

    NASA Astrophysics Data System (ADS)

    Barklage, Mitchell; Wiens, Douglas A.; Conder, James A.; Pozgay, Sara; Shiobara, Hajime; Sugioka, Hiroko

    2015-03-01

    Seismic imaging provides an opportunity to constrain mantle wedge processes associated with subduction, volatile transport, arc volcanism, and back-arc spreading. We investigate the seismic velocity structure of the upper mantle across the Central Mariana subduction system using data from the 2003-2004 Mariana Subduction Factory Imaging Experiment, an 11 month deployment consisting of 20 broadband seismic stations installed on islands and 58 semibroadband ocean bottom seismographs. We determine the three-dimensional VP and VP/VS structure using over 25,000 local and over 2000 teleseismic arrival times. The mantle wedge is characterized by slow velocity and high VP/VS beneath the fore arc, an inclined zone of slow velocity underlying the volcanic front, and a strong region of slow velocity beneath the back-arc spreading center. The slow velocities are strongest at depths of 20-30 km in the fore arc, 60-70 km beneath the volcanic arc, and 20-30 km beneath the spreading center. The fore-arc slow velocity anomalies occur beneath Big Blue seamount and are interpreted as resulting from mantle serpentinization. The depths of the maximum velocity anomalies beneath the arc and back arc are nearly identical to previous estimates of the final equilibrium depths of mantle melts from thermobarometry, strongly indicating that the low-velocity zones delineate regions of melt production in the mantle. The arc and back-arc melt production regions are well separated at shallow depths, but may be connected at depths greater than 80 km.

  16. Fine-scale velocity structure of upper oceanic crust from full waveform inversion of downward continued seismic reflection data at the Lucky Strike Volcano, Mid-Atlantic Ridge

    NASA Astrophysics Data System (ADS)

    Arnulf, A. F.; Harding, A. J.; Singh, S. C.; Kent, G. M.; Crawford, W.

    2012-04-01

    We present a fine-scale 2D velocity structure beneath the Lucky Strike Volcano on the Mid-Atlantic Ridge (MAR) using an elastic full waveform inversion (FWI) method. The FWI is a data driven procedure that allows simultaneous exploitation of both reflections and refractions energy in multi-channel seismic data to create a single self-consistent, high-resolution velocity image of the upper crust that can be used for geologic interpretation. The long-wavelength background P-wave velocity model required by the local optimization approach was created using a combination of downward continuation and 3D first-arrival travel-time tomography. The elastic waveform inversion was applied to carefully windowed downward continued data, where wide-angle reflections and refractions arrive in front of the water-wave and are thus isolated from the high-amplitude seafloor scattering energy that is particularly acute in areas of rough igneous seafloor. Waveform inversion reduces the misfit of the initial model by 76% after 19 iterations and strongly reduced the size of the residuals relative to the signal size. The final model shows fine scale structure beneath the northern part of the Lucky Strike volcano on a resolution of tens of meters. Evidence for successive lava sequences testifies to the constructional origin of the upper section of layer 2A. Normal faults are revealed within the shallow crust and are strongly correlated with seafloor observations.

  17. Focused fluid-flow processes through high-quality bathymetric, 2D seismic and Chirp data from the southern parts of the Bay of Biscay, France

    NASA Astrophysics Data System (ADS)

    Baudon, Catherine; Gillet, Hervé; Cremer, Michel

    2013-04-01

    High-quality bathymetric, 2D seismic and Chirp data located in the southern parts of the Bay of Biscay, France, collected by the University of Bordeaux 1 (Cruises ITSAS 2, 2001; PROSECAN 3, 2006 and SARGASS, 2010) have recently been compiled. The survey area widely covers the Capbreton Canyon, which lies on the boundary between two major structural zones: the Aquitanian passive margin to the North, and the Basque-Cantabrian margin to the South which corresponds to the offshore Pyrenean front. The dataset revealed a large number of key seafloor features potentially associated with focused fluid-flow processes and subsurface sediment-remobilization. Focused fluid migration through sub-seabed sediments is a common phenomenon on continental margins worldwide and has widespread implications from both industrial and fundamental perspectives, from seafloor marine environmental issues to petroleum exploration and hazard assessments. Our study analyses the relationships between seafloor features, deeper structures and fluid migration through the Plio-Quaternary sedimentary pile. The geometrical characteristics, mechanisms of formation and kinematics of four main groups of seabed features have been investigated. (i) A 150km2 field of pockmarks can be observed on the Basque margin. These features are cone-shaped circular or elliptical depressions that are either randomly distributed as small pockmarks (diameter < 20m) or aligned in trains of large pockmarks (ranging from 200 to 600m in diameter) along shallow troughs leading downstream to the Capbreton Canyon. Seismic data show that most pockmarks reach the seabed through vertically staked V-shaped features but some are buried and show evidence of lateral migration through time. (ii) A second field of widely-spaced groups of pockmarks pierce the upper slope of the Aquitanian margin. These depressions are typically a few hundred meters in diameter and seem to be preferentially located in the troughs or on the stoss sides of

  18. Seismic velocities in Southern Tibet lower crust: a receiver function approach for eclogite detection

    NASA Astrophysics Data System (ADS)

    Wittlinger, Gérard; Farra, Véronique; Hetényi, György; Vergne, Jérôme; Nábělek, John

    2009-06-01

    Beneath the Tibet plateau, the deficit of crustal thickening with respect to what is expected from the plate tectonic constraints is thought to be absorbed either by lateral extrusion or by vertical rock-mass transfer. To nourish the unsettled debate of the relative importance of these two processes, we propose a new approach, based on the S-to-P and the P-to-S wave conversions, enabling the precise determination of the seismic velocities. The weighted amplitudes of the direct conversion and of reverberations are stacked at their predicted arrival times for various values of layer thickness and vP/vS ratio separately for two sets of P- and S-receiver functions. For each set of receiver functions, coherent stack gives the vP/ vS ratio and thickness for the considered layer (the grid search stacking method). The values of vP/vS ratio and layer thickness are functions of the velocity used for stacking the set of receiver functions, but using the P- and S-receiver functions allows us to solve this indetermination and to find the effective parameters of the layer: velocity vS, vP/ vS ratio and thickness. We use a bootstrap resampling of the receiver function data sets to estimate the parameters uncertainties. For the Southern Lhasa Block, the migrated sections of both P- and S-receiver functions (Hi-CLIMB experiment data) show a layer in the lower crust that may be related to the lower Indian crust underplated beneath Tibet. With the grid search stacking method, high shear wave velocities (vS ~ 4.73 km s-1) and low vP/vS ratios (~1.69) are detected in this layer. Such values are typical for high-grade eclogites, and the low vP/vS ratio precludes the confusion with mafic granulites. There is no evidence for partial eclogitization near and south of the Yarlung-Tsangpo Suture, and the about 19 km thick eclogitic layer extends northwards only to about the middle of the Lhasa terrane.

  19. Pyrometamorphism of Fault Zone Rocks Induced by Frictional Heating in High-velocity Friction Tests: Reliable Records of Seismic Slip?

    NASA Astrophysics Data System (ADS)

    Ree, J.; Ando, J.; Kim, J.; Han, R.; Shimamoto, T.

    2008-12-01

    Recognition of seismic slip zone is important for a better understanding of earthquake generation processes in fault zones and paleoseismology. However, there has been no reliable record of ancient seismic slip except pseudotachylyte. Recently, it has been suggested that decomposition (dehydration or decarbonation) products due to frictional heating can be used as a seismic slip record. The decomposition products, however, can be easily rehydrated or recarbonated with pervasive fluid migration in the fault zone after seismic slip, raising some question about their stability as a seismic slip record. Here, we review microstructural and mineralogical changes of the simulated fault zones induced by frictional heating (pyrometamorphism) from high-velocity friction tests (HVFT) on siltstone, sandstone and carbonates at seismic slip rates, and discuss on their stability after seismic slip. HVFT on siltstone generates pseuodotachylyte in the principal slip zone (0.30-0.75 mm thick) with 'damage' layer (0.1-0.2 mm thick) along its margins. Chlorite in the damage layer suffers an incipient dehydration with many voids (0.2-1.0 μm in diameter) in transmission electron microscopy (TEM), appearing as dark tiny spots both in plane-polarized light and back-scattered electron (BSE) photomicrographs. HVFT on brown sandstone induces a color change of wall rocks adjacent to the principal slip zone (brown to red) due to the dehydration of iron hydroxides with frictional heating. These dehydration products in siltstone and sandstone due to frictional heating may be unstable since they would be easily rehydrated with fluid infiltration after a seismic slip. HVFT on carbonates including Carrara marble and siderite-bearing gouges produces decarbonation products of nano-scale lime (CaO) and magnetite (Fe3O4), respectively. Lime is a very unstable phase whereas magnetite is a stable and thus may be used as an indicator of seismic slip. The simulated fault zones of Carrara marble contain

  20. Towards Simulating a Realistic Planetary Seismic Wavefield: The Contribution of the Megaregolith and Low-Velocity Waveguides

    NASA Technical Reports Server (NTRS)

    Schmerr, Nicholas C.; Weber, Renee C.; Lin, Pei-Ying Patty; Thorne, Michael Scott; Garnero, Ed J.

    2011-01-01

    Lunar seismograms are distinctly different from their terrestrial counterparts. The Apollo lunar seismometers recorded moonquakes without distinct P- or S-wave arrivals; instead waves arrive as a diffuse coda that decays over several hours making the identification of body waves difficult. The unusual character of the lunar seismic wavefield is generally tied to properties of the megaregolith: it consists of highly fractured and broken crustal rock, the result of extensive bombardment of the Moon. The megaregolith extends several kilometers into the lunar crust, possibly into the mantle in some regions, and is covered by a thin coating of fine-scale dust. These materials possess very low seismic velocities that strongly scatter the seismic wavefield at high frequencies. Directly modeling the effects of the megaregolith to simulate an accurate lunar seismic wavefield is a challenging computational problem, owing to the inherent 3-D nature of the problem and the high frequencies (greater than 1 Hz) required. Here we focus on modeling the long duration code, studying the effects of the low velocities found in the megaregolith. We produce synthetic seismograms using 1-D slowness integration methodologies, GEMINI and reflectivity, and a 3-D Cartesian finite difference code, Wave Propagation Program, to study the effect of thin layers of low velocity on the surface of a planet. These codes allow us generate seismograms with dominant frequencies of approximately 1 Hz. For background lunar seismic structure we explore several models, including the recent model of Weber et al., Science, 2011. We also investigate variations in megaregolithic thickness, velocity, attenuation, and seismogram frequency content. Our results are compared to the Apollo seismic dataset, using both a cross correlation technique and integrated envelope approach to investigate coda decay. We find our new high frequency results strongly support the hypothesis that the long duration of the lunar seismic

  1. Carbonate reservoir characterization using seismic velocity and amplitude variation with offset analysis: Hardeman basin, Texas, test case

    SciTech Connect

    Pigott, J.D.; Shrestha, R.K. ); Warwick, R.A. )

    1991-03-01

    Mississippian bioherms in the Hardeman basin, Texas, produce from dolomitized mud cores with porosities that can vary from 10 to 40%. These carbonate buildups, though often similar in seismic reflector boundary configuration, can vary remarkably in reservoir quality (e.g., porosity) owing to diagenesis. However, imaging these lateral variations of porosity and determining the reservoir pressure is possible with detailed seismic velocity control and amplitude variation with offset (AVO) analysis. The investigated 24-fold seismic profile was acquired by four Vibroseis trucks in the Hardeman basin across two bioherms, one oil-productive and other tight and water-filled. Detailed stacking velocity analyses on the relative amplitude processed line directly delineate areas of increasing and decreasing gross porosity and dramatically differentiate the two mounds. Moreover, the detailed velocity analyses help provide a more accurate stacked section with resultant better definition of the external mound configuration. Analysis of available laboratory compressional and shear wave velocity data for carbonate rocks reveal that Young's modulus in carbonates is a function of porosity and differential pressure. Comparison of the derived Young's modulus from an inversion of the AVO data for the unstacked line with the experimental laboratory data yield porosity and differential pressure estimates over the productive bioherm which are within 18% and 15%, respectively, of those observed in the borehole.

  2. Modeling and validation of a 3D velocity structure for the Santa Clara Valley, California, for seismic-wave simulations

    USGS Publications Warehouse

    Hartzell, S.; Harmsen, S.; Williams, R.A.; Carver, D.; Frankel, A.; Choy, G.; Liu, P.-C.; Jachens, R.C.; Brocher, T.M.; Wentworth, C.M.

    2006-01-01

    A 3D seismic velocity and attenuation model is developed for Santa Clara Valley, California, and its surrounding uplands to predict ground motions from scenario earthquakes. The model is developed using a variety of geologic and geophysical data. Our starting point is a 3D geologic model developed primarily from geologic mapping and gravity and magnetic surveys. An initial velocity model is constructed by using seismic velocities from boreholes, reflection/refraction lines, and spatial autocorrelation microtremor surveys. This model is further refined and the seismic attenuation is estimated through waveform modeling of weak motions from small local events and strong-ground motion from the 1989 Loma Prieta earthquake. Waveforms are calculated to an upper frequency of 1 Hz using a parallelized finite-difference code that utilizes two regions with a factor of 3 difference in grid spacing to reduce memory requirements. Cenozoic basins trap and strongly amplify ground motions. This effect is particularly strong in the Evergreen Basin on the northeastern side of the Santa Clara Valley, where the steeply dipping Silver Creek fault forms the southwestern boundary of the basin. In comparison, the Cupertino Basin on the southwestern side of the valley has a more moderate response, which is attributed to a greater age and velocity of the Cenozoic fill. Surface waves play a major role in the ground motion of sedimentary basins, and they are seen to strongly develop along the western margins of the Santa Clara Valley for our simulation of the Loma Prieta earthquake.

  3. Derivation of site-specific relationships between hydraulic parameters and p-wave velocities based on hydraulic and seismic tomography

    SciTech Connect

    Brauchler, R.; Doetsch, J.; Dietrich, P.; Sauter, M.

    2012-01-10

    In this study, hydraulic and seismic tomographic measurements were used to derive a site-specific relationship between the geophysical parameter p-wave velocity and the hydraulic parameters, diffusivity and specific storage. Our field study includes diffusivity tomograms derived from hydraulic travel time tomography, specific storage tomograms, derived from hydraulic attenuation tomography, and p-wave velocity tomograms, derived from seismic tomography. The tomographic inversion was performed in all three cases with the SIRT (Simultaneous Iterative Reconstruction Technique) algorithm, using a ray tracing technique with curved trajectories. The experimental set-up was designed such that the p-wave velocity tomogram overlaps the hydraulic tomograms by half. The experiments were performed at a wellcharacterized sand and gravel aquifer, located in the Leine River valley near Göttingen, Germany. Access to the shallow subsurface was provided by direct-push technology. The high spatial resolution of hydraulic and seismic tomography was exploited to derive representative site-specific relationships between the hydraulic and geophysical parameters, based on the area where geophysical and hydraulic tests were performed. The transformation of the p-wave velocities into hydraulic properties was undertaken using a k-means cluster analysis. Results demonstrate that the combination of hydraulic and geophysical tomographic data is a promising approach to improve hydrogeophysical site characterization.

  4. Crustal seismicity and the earthquake catalog maximum moment magnitudes (Mcmax) in stable continental regions (SCRs): correlation with the seismic velocity of the lithosphere

    USGS Publications Warehouse

    Mooney, Walter D.; Ritsema, Jeroen; Hwang, Yong Keun

    2012-01-01

    A joint analysis of global seismicity and seismic tomography indicates that the seismic potential of continental intraplate regions is correlated with the seismic properties of the lithosphere. Archean and Early Proterozoic cratons with cold, stable continental lithospheric roots have fewer crustal earthquakes and a lower maximum earthquake catalog moment magnitude (Mcmax). The geographic distribution of thick lithospheric roots is inferred from the global seismic model S40RTS that displays shear-velocity perturbations (δVS) relative to the Preliminary Reference Earth Model (PREM). We compare δVS at a depth of 175 km with the locations and moment magnitudes (Mw) of intraplate earthquakes in the crust (Schulte and Mooney, 2005). Many intraplate earthquakes concentrate around the pronounced lateral gradients in lithospheric thickness that surround the cratons and few earthquakes occur within cratonic interiors. Globally, 27% of stable continental lithosphere is underlain by δVS≥3.0%, yet only 6.5% of crustal earthquakes with Mw>4.5 occur above these regions with thick lithosphere. No earthquakes in our catalog with Mw>6 have occurred above mantle lithosphere with δVS>3.5%, although such lithosphere comprises 19% of stable continental regions. Thus, for cratonic interiors with seismically determined thick lithosphere (1) there is a significant decrease in the number of crustal earthquakes, and (2) the maximum moment magnitude found in the earthquake catalog is Mcmax=6.0. We attribute these observations to higher lithospheric strength beneath cratonic interiors due to lower temperatures and dehydration in both the lower crust and the highly depleted lithospheric root.

  5. The tectonostratigraphic evolution of the offshore Gippsland Basin, Victoria, Australia---results from 3D seismic interpretation and 2D section restoration

    NASA Astrophysics Data System (ADS)

    Weller, Mitchell

    The Gippsland Basin is located primarily offshore Victoria, Australia (between the Australian mainland and Tasmania) approximately 200 km east of Melbourne. The formation of the east-west trending Gippsland Basin is associated with the break-up of Gondwana during the late Jurassic/early Cretaceous and the basin has endured multiple rifting and inversion events. Strong tectonic control on the sedimentary development of the basin is reflected in the deposition of several major, basin scale sequences ranging in age from the early Cretaceous to Neogene, which are usually bounded by angular unconformities. Schlumberger's Petrel software package has been used to structurally and stratigraphically interpret a basin-wide 3D seismic data set provided by the Australian Government (Geoscience Australia) and four 2D kinematic reconstruction/restorations through the basin have been completed with Midland Valley's Move software to achieve a better understanding of the structural evolution of the Gippsland Basin. Rift phase extension calculated from the restorations (5.0--10.5%) appears anomalously low to accommodate the amount of sediment that has been deposited in the basin (>10km). Distributed extension on small faults and subsidence history from backstripping are employed to answer this anomaly. The 2D restorations completed illustrate structural time relationships across the basin and allow for a minimum estimate of erosion that has occurred along the inverted northern basin margin. Differences between previous work completed by Power et al. (2001) and this study as well as several extension models and associated implications are discussed as they relate to the interpretation carried out in this study. Extension calculated from section restorations ranged from approximately 5.0--10.5%. These measured extensional values appear too low to wholly accommodate the accumulated sediment thickness in the basin. Subsidence modelling and backstripping estimates approximately 50

  6. The shallow P-velocity structure of the southern Dead Sea basin derived from near-vertical incidence reflection seismic data in project DESIRE

    NASA Astrophysics Data System (ADS)

    Paschke, M.; Stiller, M.; Ryberg, T.; Weber, M.

    2012-02-01

    As a part of the DEad Sea Integrated REsearch (DESIRE) project a near-vertical incidence reflection (NVR) experiment with a profile length of 122 km was completed in spring 2006. The profile crossed the southern Dead Sea basin (DSB), a pull-apart basin due to the strike-slip motion along the Dead Sea Transform (DST). The DST with a total displacement of 107 km since about 18 Ma is part of a left-lateral fault system which connects the spreading centre in the Red Sea with the Taurus collision zone in Turkey over a distance of about 1100 km. The seismic experiment comprises 972 source locations and 1045 receiver locations. Each source was recorded by ˜180 active receivers and a field data set with 175 000 traces was created. From this data set, 124 444 P-wave first-break traveltimes have been picked. With these traveltimes a tomographic inversion was carried out, resulting in a 2-D P-wave velocity model with a rms error of 20.9 ms. This model is dominated by a low-velocity region associated with the DSB. Within the DSB, the model shows clearly the position of the Lisan salt diapir, identified by a high-velocity zone. A further feature is an unexpected laterally low-velocity zone with P-velocities of 3 km s-1 embedded in regions with 4 km s-1 in the shallow part on the west side of the DSB. Another observation is an anticlinal structure west of the DSB interpretated to the related Syrian arc fold belt.

  7. Benchmarking passive seismic methods of estimating the depth of velocity interfaces down to ~300 m

    NASA Astrophysics Data System (ADS)

    Czarnota, Karol; Gorbatov, Alexei

    2016-04-01

    In shallow passive seismology it is generally accepted that the spatial autocorrelation (SPAC) method is more robust than the horizontal-over-vertical spectral ratio (HVSR) method at resolving the depth to surface-wave velocity (Vs) interfaces. Here we present results of a field test of these two methods over ten drill sites in western Victoria, Australia. The target interface is the base of Cenozoic unconsolidated to semi-consolidated clastic and/or carbonate sediments of the Murray Basin, which overlie Paleozoic crystalline rocks. Depths of this interface intersected in drill holes are between ~27 m and ~300 m. Seismometers were deployed in a three-arm spiral array, with a radius of 250 m, consisting of 13 Trillium Compact 120 s broadband instruments. Data were acquired at each site for 7-21 hours. The Vs architecture beneath each site was determined through nonlinear inversion of HVSR and SPAC data using the neighbourhood algorithm, implemented in the geopsy modelling package (Wathelet, 2005, GRL v35). The HVSR technique yielded depth estimates of the target interface (Vs > 1000 m/s) generally within ±20% error. Successful estimates were even obtained at a site with an inverted velocity profile, where Quaternary basalts overlie Neogene sediments which in turn overlie the target basement. Half of the SPAC estimates showed significantly higher errors than were obtained using HVSR. Joint inversion provided the most reliable estimates but was unstable at three sites. We attribute the surprising success of HVSR over SPAC to a low content of transient signals within the seismic record caused by low levels of anthropogenic noise at the benchmark sites. At a few sites SPAC waveform curves showed clear overtones suggesting that more reliable SPAC estimates may be obtained utilizing a multi-modal inversion. Nevertheless, our study indicates that reliable basin thickness estimates in the Australian conditions tested can be obtained utilizing HVSR data from a single

  8. Fault rupture as a series of nano-seismic events during high-velocity shear experiments

    NASA Astrophysics Data System (ADS)

    Zu, X.; Reches, Z.; Chen, X.; Chang, J. C.; Carpenter, B. M.

    2015-12-01

    The rupture process of experimental faults is investigated here by monitoring nano-seismic events (NSE) during slip in a rotary shear apparatus. Our experimental faults are made of two rock blocks with one to four miniature 3D accelerometers that are glued to the stationary block at distance of ~ 2 cm from the fault surface. Accelerations in the frequency range of 1 Hz to 200 kHz are recorded in slip-parallel (x), slip-transverse (y), and slip-vertical (z) directions. We conducted a series of 45 experiments on diorite and dolomite samples in two loading styles: classical velocity controlled loading, and power-density loading, in which the power-density (shear stress times slip velocity) is selected, and stick-slip events develop spontaneously according to the experimental fault response. The 3D accelerometer data were recorded at 106 samples/s, with acceleration resolution of 10 mV/g in recoding range of +/- 5 V. The experiments were conducted at slip-velocity of 0.001-0.8 m/s and slip distance up to 1.38 m. The accelerometer observations revealed tens to hundreds of NSEs per slip in both loading styles; peak acceleration ranged from 1g to over 500g. A typical stick-slip with tens of NSEs in Fig. 1, shows: (1) An initial NSE at ~59.72 s (green) that coincides with a small stress drop (~10%, red); (2) Simultaneous macroscopic slip initiation (blue); (3) A swarm of NSEs occur as the fault slips, each NSE lasts 1-2 milliseconds; and (4) Details of the initial NSE are shown in Fig. 2. Based on waveform cross-correlation between frequency band from 20 kHz to 70kHz, we identify several groups of NSE clusters, and apply empirical Green's function method to analyze event source spectra based on Brune-type source model. These NSEs are indicators of rupture propagation during the experimental fault slip.

  9. Velocity inversion in cross-hole seismic tomography bycounter-propagation neural network, genetic algorithmand evolutionary programming techniques

    NASA Astrophysics Data System (ADS)

    Nath, Sankar Kumar; Chakraborty, Subrata; Singh, Sanjiv Kumar; Ganguly, Nilanjan

    1999-07-01

    The disadvantages of conventional seismic tomographic ray tracing and inversion by calculus-based techniques include the assumption of a single ray path for each source-receiver pair, the non-inclusion of head waves, long computation times, and the difficulty in finding ray paths in a complicated velocity distribution. A ray-tracing algorithm is therefore developed using the reciprocity principle and dynamic programming approach. This robust forward calculation routine is subsequently used for the cross-hole seismic velocity inversion. Seismic transmission tomography can be considered to be a function approximation problem; that is, of mapping the traveltime vector to the velocity vector. This falls under the purview of pattern classification problems, so we propose a forward-only counter-propagation neural network (CPNN) technique for the tomographic imaging of the subsurface. The limitation of neural networks, however, lies in the requirement of exhaustive training for its use in routine interpretation. Since finding the optimal solution, sometimes from poor initial models, is the ultimate goal, global optimization and search techniques such as simulated evolution are also implemented in the cross-well traveltime tomography. Genetic algorithms (GA), evolution strategies and evolutionary programming (EP) are the main avenues of research in simulated evolution. Part of this investigation therefore deals with GA and EP schemes for tomographic applications. In the present work on simulated evolution, a new genetic operator called `region-growing mutation' is introduced to speed up the search process. The potential of the forward-only CPNN, GA and EP methods is demonstrated in three synthetic examples. Velocity tomograms of the first model present plausible images of a diagonally orientated velocity contrast bounding two constant-velocity areas by both the CPNN and GA schemes, but the EP scheme could not image the model completely. In the second case, while GA and EP

  10. Fine-scale thermohaline ocean structure retrieved with 2-D prestack full-waveform inversion of multichannel seismic data: Application to the Gulf of Cadiz (SW Iberia)

    NASA Astrophysics Data System (ADS)

    Dagnino, D.; Sallarès, V.; Biescas, B.; Ranero, C. R.

    2016-08-01

    This work demonstrates the feasibility of 2-D time-domain, adjoint-state acoustic full-waveform inversion (FWI) to retrieve high-resolution models of ocean physical parameters such as sound speed, temperature and salinity. The proposed method is first described and then applied to prestack multichannel seismic (MCS) data acquired in the Gulf of Cadiz (SW Iberia) in 2007 in the framework of the Geophysical Oceanography project. The inversion strategy flow includes specifically designed data preconditioning for acoustic noise reduction, followed by the inversion of sound speed in the shotgather domain. We show that the final sound speed model has a horizontal resolution of ˜ 70 m, which is two orders of magnitude better than that of the initial model constructed with coincident eXpendable Bathy Thermograph (XBT) data, and close to the theoretical resolution of O(λ). Temperature (T) and salinity (S) are retrieved with the same lateral resolution as sound speed by combining the inverted sound speed model with the thermodynamic equation of seawater and a local, depth-dependent T-S relation derived from regional conductivity-temperature-depth (CTD) measurements of the National Oceanic and Atmospheric Administration (NOAA) database. The comparison of the inverted T and S models with XBT and CTD casts deployed simultaneously to the MCS acquisition shows that the thermohaline contrasts are resolved with an accuracy of 0.18oC for temperature and 0.08 PSU for salinity. The combination of oceanographic and MCS data into a common, pseudo-automatic inversion scheme allows to quantitatively resolve submeso-scale features that ought to be incorporated into larger-scale ocean models of oceans structure and circulation.

  11. High-Resolution Seismic Images and 3-D Seismic Velocities of the San Andreas Fault Zone at Burro Flats, Southern California

    NASA Astrophysics Data System (ADS)

    Tsai, C.; Catchings, R. D.; Rymer, M. J.; Goldman, M. R.

    2003-12-01

    The southern San Andreas fault (SAF) has produced large earthquakes in the past 1500 yrs. Burro Flats, a basin within the San Bernardino Mountains, is bounded on the southwest by the southern San Andreas fault. Burro Flats has been the site of paleoseismological investigations to determine the slip history of the fault. Additional paleoseismic studies at this location are needed to further resolve the structure and slip history of the SAF. In addition to the main trace of the SAF at Burro Flats, there are splay faults, suggesting a complex geometry for the fault. To better understand the structure of the SAF, we acquired a 3-D, combined seismic reflection/refraction profile centered on the main trace at Burro Flats. The seismic investigation included a 60 m by 70 m rectangular array. Sensors were spaced every 5 m; seismic sources, likewise with a spacing of 5 m, consisted of a combination of down-hole explosives and shallow (approximately 0.3 m) Betsy Seisgun shots. Data were recorded without acquisition filters for 5 s at a 0.5-ms sampling rate. To analyze the data for velocity structure, we used a tomographic inversion procedure to invert first-arrival refractions. Preliminary measurements from shot gathers show that near-surface velocities range between 700 m/s and 1500 m/s. We observe apparent travel-time delays of approximately 7 ms near the main surface trace of the SAF, suggesting that seismic imaging methods may be useful in identifying this and other fault traces. These results will be useful for paleoseismic investigations.

  12. Seismic Study of the Velocity Structure and Earthquake FocalMechanisms beneath the Krafla Central Volcano, NE Iceland

    NASA Astrophysics Data System (ADS)

    Martens, H. R.; Schuler, J.; Greenfield, T. S.; White, R. S.; Roecker, S. W.; Brandsdottir, B.; Stock, J. M.; Tarasewicz, J.; Pugh, D. J.

    2015-12-01

    We investigated the seismic velocity structure of the Krafla central volcano, NE Iceland, and its shallow geothermal fields. In our 3D tomographic inversions, we used passive seismic data recorded between 2009-2012 from a temporary local network as well as active seismic legacy data to constrain the velocity models. We find high P-wave velocities (Vp) underneath regions of elevated topographic relief as well as two low-Vp anomalies that coincide spatially with two attenuating bodies outlined from S-wave shadows during the Krafla rifting episode of 1974-1985. Within the Krafla geothermal reservoir, which is developed for energy production, we imaged a shallow low-Vp/Vs zone overlying a deeper high-Vp/Vs zone and interpreted them as steam- and brine-bearing formations, respectively. Previously undertaken borehole measurements support our findings. A prominent low-Vp/Vs anomaly underlies these zones at rock depths greater than 1.5 km, where a super-heated zone within felsic overlies rhyolitic within the geothermal melt. Calculations systems show that of the most earthquake focal events are mechanisms consistent double-couple source models with only a few clear non-shear source models.

  13. A three-dimensional tomographic velocity model above Mid Atlantic magma chamber from simulated seafloor multi-channel seismic refraction experiment

    NASA Astrophysics Data System (ADS)

    Arnulf, A. F.; Harding, A. J.; Kent, G.; Singh, S. C.

    2009-12-01

    With multi-channel seismic (MCS) data recorded on the sea surface, refraction arrivals from the upper crust typically arrive as secondary arrivals after the seafloor reflection, and therefore they do not contain any information on near seafloor velocity. Here we use a Synthetic On Bottom Experiment (SOBE) method to downward continue both shots and receivers to a depth close to the seafloor, which causes refraction arrivals from the upper crust to become first arrivals that can be followed to close to zero source receiver offsets, providing information about near surface velocity. Moreover, the high density of shots and receivers in MCS-based travel-time tomography produces a multiplicity of ray paths never reached by classical travel time tomography methods based on OBS datasets, and hence providing a high-resolution velocity of the sub-surface. We have applied this new technique to the MCS data from the SISMOMAR 3D seismic reflection survey carried out in 2005 over the Lucky Strike Segment of the Mid-Atlantic Ridge. The survey area was 18.55 km by 3.8 km, with a shot spacing of 37.5 m, receiver spacing of 12.5 m and the line spacing of 100 m. It has been the first segment of the MAR to be shown to have a quasi-steady state magma chamber, and we are creating now a high resolution velocity model to investigate in detail the links between magmatism, hydrothermal circulation and faulting in this segment. First, the data was downward continued to 1.0-1.7 km below the sea surface. Then a highly efficient algorithm was used to pick ~800,000 travel times. Because of the the high density of ray paths (up to 7 million), the first arrivals of every fifth shots was picked. To control the picking consistency along a line, picks from the preceding shot was used to guide the current one. Travel time residuals, ~10 ms, and chi-squared of the final 2D model testify to excellent picking accuracy. A 3D velocity cube was then interpolated using ten equi-spaced 2D velocity models

  14. 3D seismic velocity structure in the rupture area of the 2014 M8.2 Iquique earthquake in Northern Chile

    NASA Astrophysics Data System (ADS)

    Woollam, Jack; Fuenzallida, Amaya; Garth, Tom; Rietbrock, Andreas; Ruiz, Sergio; Tavera, Hernando

    2016-04-01

    Seismic velocity tomography is one of the key tools in Earth sciences to image the physical properties of the subsurface. In recent years significant advances have been made to image the Chilean subductions zone, especially in the area of the 2010 M8.8 Maule earthquake (e.g. Hicks et al., 2014), providing much needed physical constraints for earthquakes source inversions and rupture models. In 2014 the M8.2 Iquique earthquake struck the northern part of the Chilean subduction zone in close proximity to the Peruvian boarder. The pre- and aftershock sequence of this major earthquake was recorded by a densified seismological network in Northern Chile and Southern Peru, which provides an excellent data set to study in depth the 3D velocity structure along the subduction megathrust. Based on an automatic event catalogue of nearly 10,000 events spanning the time period March to May 2014 we selected approximately 450 events for a staggered 3D inversion approach. Events are selected to guarantee an even ray coverage through the inversion volume. We only select events with a minimum GAP of 200 to improve depth estimates and therefore increase resolution in the marine forearc. Additionally, we investigate secondary arrivals between the P- and S-wave arrival to improve depth location. Up to now we have processed about 450 events, from which about 150 with at least 30 P- and S-wave observations have been selected for the subsequent 3D tomography. Overall the data quality is very high, which allows arrival time estimates better than 0.05s on average. We will show results from the 1D, 2D, and preliminary 3D inversions and discuss the results together with the obtained seismicity distribution.

  15. Evaluation of stress and saturation effects on seismic velocity and electrical resistivity - laboratory testing of rock samples

    NASA Astrophysics Data System (ADS)

    Vilhelm, Jan; Jirků, Jaroslav; Slavík, Lubomír; Bárta, Jaroslav

    2016-04-01

    Repository, located in a deep geological formation, is today considered the most suitable solution for disposal of spent nuclear fuel and high-level waste. The geological formations, in combination with an engineered barrier system, should ensure isolation of the waste from the environment for thousands of years. For long-term monitoring of such underground excavations special monitoring systems are developed. In our research we developed and tested monitoring system based on repeated ultrasonic time of flight measurement and electrical resistivity tomography (ERT). As a test site Bedřichov gallery in the northern Bohemia was selected. This underground gallery in granitic rock was excavated using Tunnel Boring Machine (TBM). The seismic high-frequency measurements are performed by pulse-transmission technique directly on the rock wall using one seismic source and three receivers in the distances of 1, 2 and 3 m. The ERT measurement is performed also on the rock wall using 48 electrodes. The spacing between electrodes is 20 centimeters. An analysis of relation of seismic velocity and electrical resistivity on water saturation and stress state of the granitic rock is necessary for the interpretation of both seismic monitoring and ERT. Laboratory seismic and resistivity measurements were performed. One series of experiments was based on uniaxial loading of dry and saturated granitic samples. The relation between stress state and ultrasonic wave velocities was tested separately for dry and saturated rock samples. Other experiments were focused on the relation between electrical resistivity of the rock sample and its saturation level. Rock samples with different porosities were tested. Acknowledgments: This work was partially supported by the Technology Agency of the Czech Republic, project No. TA 0302408

  16. Use of Seismic Reflection Data and Traveltime Tomography to Image the Near Surface Velocity Structure in the Mississippi Embayment

    NASA Astrophysics Data System (ADS)

    Ge, J.; Magnani, M.; Waldron, B.; Powell, C.

    2007-12-01

    The Memphis aquifer represents one of the highest quality reservoirs of drinking water in the nation and it is separated from the shallow unconfined aquifer by the Upper Claiborne clay. Recent studies show that the confining unit might be discontinuous over the greater Memphis area exposing the Memphis aquifer to potential contamination. We present the results of a seismic reflection profile collected near Memphis, TN with the goal of imaging the structures and potential breaches in the Upper Claiborne confining clay. The imaged area is characterized by a highly heterogeneous shallow velocity structure and low P wave velocities in the ultrashallow unconsolidated materials. The data were collected using a shotgun source and a 1 m source spacing, 0.25 m receiver spacing and a 168-geophone spread for a max offset of 42 m. Raw seismic data show several reflected arrivals in the first 200ms, widespread ground roll, and air wave energy as well as consistent refracted phases across the 1 km - long profile. In addition to the reflection profile we present the preliminary results of first arrival travel time tomography performed along the profile to constrain the velocity field in the shallow portion of the profile. The velocity was then used to remove the effect of the near surface velocity variations. The main data processing steps included elevation statics and frequency and FK filtering. First arrival travel time modeling started with an initial estimate of the 2-layer velocity model using the slope/intercept method. We then modeled first-arrival picks on 1095 shot gathers using the Geo TOMO+ package. The algorithm computes travel times by tracing turning rays and is also able to handle raypaths through low-velocity zones (blind zones). The final resolution is estimated through a ray-information density map, which shows the cumulative contribution of the ray segments traversing different areas of the model. Synthetic models were generated and tested for the tomography

  17. High-resolution seismic velocities and shallow structure of the San Andreas fault zone at Middle Mountain, Parkfield, California

    USGS Publications Warehouse

    Catchings, R.D.; Rymer, M.J.; Goldman, M.R.; Hole, J.A.; Huggins, R.; Lippus, C.

    2002-01-01

    A 5-km-long, high-resolution seismic imaging survey across the San Andreas fault (SAF) zone and the proposed San Andreas Fault Observatory at Depth (SAFOD) drill site near Parkfield, California, shows that velocities vary both laterally and vertically. Velocities range from 4.0 km/sec) probably correspond to granitic rock of the Salinian block, which is exposed a few kilometers southwest of the SAF. The depth to the top of probable granitic rock varies laterally along the seismic profile but is about 600 m below the surface at the proposed SAFOD site. We observe a prominent, lateral low-velocity zone (LVZ) beneath and southwest of the surface trace of the SAF. The LVZ is about 1.5 km wide at 300-m depth but tapers to about 600 m wide at 750-m depth. At the maximum depth of the velocity model (750 m), the LVZ is centered approximately 400 m southwest of the surface trace of the SAF. Similar velocities and velocity gradients are observed at comparable depths on both sides of the LVZ, suggesting that the LVZ is anomalous relative to rocks on either side of it. Velocities within the LVZ are lower than those of San Andreas fault gouge, and the LVZ is also anomalous with respect to gravity, magnetic, and resistivity measurements. Because of its proximity to the surface trace of the SAF, it is tempting to suggest that the LVZ represents a zone of fractured crystalline rocks at depth. However, the LVZ instead probably represents a tectonic sliver of sedimentary rock that now rests adjacent to or encompasses the SAF. Such a sliver of sedimentary rock implies fault strands on both sides and possibly within the sliver, suggesting a zone of fault strands at least 1.5 km wide at a depth of 300 m, tapering to about 600 m wide at 750-m depth. Fluids within the sedimentary sliver are probably responsible for observed low-resistivity values.

  18. Nature and origin of upper crustal seismic velocity fluctuations and associated scaling properties: Combined stochastic analyses of KTB velocity and lithology logs

    USGS Publications Warehouse

    Goff, J.A.; Holliger, K.

    1999-01-01

    The main borehole of the German Continental Deep Drilling Program (KTB) extends over 9000 m into a crystalline upper crust consisting primarily of interlayered gneiss and metabasite. We present a joint analysis of the velocity and lithology logs in an effort to extract the lithology component of the velocity log. Covariance analysis of lithology log, approximated as a binary series, indicates that it may originate from the superposition of two Brownian stochastic processes (fractal dimension 1.5) with characteristic scales of ???2800 m and ???150 m, respectively. Covariance analysis of the velocity fluctuations provides evidence for the superposition of four stochastic process with distinct characteristic scales. The largest two scales are identical to those derived from the lithology, confirming that these scales of velocity heterogeneity are caused by lithology variations. The third characteristic scale, ???20 m, also a Brownian process, is probably related to fracturing based on correlation with the resistivity log. The superposition of these three Brownian processes closely mimics the commonly observed 1/k decay (fractal dimension 2.0) of the velocity power spectrum. The smallest scale process (characteristic scale ???1.7 m) requires a low fractal dimension, ???1.0, and accounts for ???60% of the total rms velocity variation. A comparison of successive logs from 6900-7140 m depth indicates that such variations are not repeatable and thus probably do not represent true velocity variations in the crust. The results of this study resolve disparity between the differing published estimates of seismic heterogeneity based on the KTB sonic logs, and bridge the gap between estimates of crustal heterogeneity from geologic maps and borehole logs. Copyright 1999 by the American Geophysical Union.

  19. Seismic Technology Adapted to Analyzing and Developing Geothermal Systems Below Surface-Exposed High-Velocity Rocks Final Report

    SciTech Connect

    Hardage, Bob A.; DeAngelo, Michael V.; Ermolaeva, Elena; Hardage, Bob A.; Remington, Randy; Sava, Diana; Wagner, Donald; Wei, Shuijion

    2013-02-01

    The objective of our research was to develop and demonstrate seismic data-acquisition and data-processing technologies that allow geothermal prospects below high-velocity rock outcrops to be evaluated. To do this, we acquired a 3-component seismic test line across an area of exposed high-velocity rocks in Brewster County, Texas, where there is high heat flow and surface conditions mimic those found at numerous geothermal prospects. Seismic contractors have not succeeded in creating good-quality seismic data in this area for companies who have acquired data for oil and gas exploitation purposes. Our test profile traversed an area where high-velocity rocks and low-velocity sediment were exposed on the surface in alternating patterns that repeated along the test line. We verified that these surface conditions cause non-ending reverberations of Love waves, Rayleigh waves, and shallow critical refractions to travel across the earth surface between the boundaries of the fast-velocity and slow-velocity material exposed on the surface. These reverberating surface waves form the high level of noise in this area that does not allow reflections from deep interfaces to be seen and utilized. Our data-acquisition method of deploying a box array of closely spaced geophones allowed us to recognize and evaluate these surface-wave noise modes regardless of the azimuth direction to the surface anomaly that backscattered the waves and caused them to return to the test-line profile. With this knowledge of the surface-wave noise, we were able to process these test-line data to create P-P and SH-SH images that were superior to those produced by a skilled seismic data-processing contractor. Compared to the P-P data acquired along the test line, the SH-SH data provided a better detection of faults and could be used to trace these faults upward to the boundaries of exposed surface rocks. We expanded our comparison of the relative value of S-wave and P-wave seismic data for geothermal

  20. Basement blocks and basin inversion structures mapped using reprocessed Gulfrex 2D seismic data, Caribbean-South American oblique collisional zone

    NASA Astrophysics Data System (ADS)

    Escalona, A.; Sena, A.; Mann, P.

    2003-12-01

    We have reprocessed and reinterpreted more than 10,000 km of "Gulfrex" multi-channel 2D seismic reflection lines collected by Gulf Oil Corporation in 1972 along the northern margin of South America (offshore Venezuela and Trinidad). These digital data were donated to the University of Texas Institute for Geophysics and represent the largest single, digital reflection survey of the region. Reprocessing of these data included: format correction, filtering, post-stack multiple suppression, and fk migration. Reprocessed data were loaded and interpreted on a workstation. The data straddle a 2,000,000 km2 zone of Paleocene-Recent, time-transgressive, oblique collision between the Caribbean arc system and the passive continental margin of northern South America. Free-air, satellite gravity data shows the remarkable 1000-km-scale continuity of four basement ridges between the uncollided part of the Caribbean arc system (NS-trending Lesser Antilles arc) and the EW-trending collisional area north of Venezuela. The basement ridges involved in the Venezuelan collisional zone include: 1) Aruba-Bonaire-Curacao ridge that can be traced as a continuous feature to the Aves ridge remnant arc of the Lesser Antilles; 2) the partially inverted Blanquilla-Bonaire basin that can be traced into the Grenada back-arc basin; 3) Margarita-Los Testigos platform that can be traced to the Lesser Antilles volcanic arc; and 4) foreland basins and fold-thrust belts of eastern Venezuela (Serrania del Interior and Maturin basin) that can be traced to the Tobago forearc basin and Barbados accretionary prism. Gulfrex data document the progressive change of basinal fault systems from NS-striking normal faults formed in extensional, Lesser Antilles intra-arc settings to rotated and inverted, NE and EW-striking normal faults deformed in the collisional area north of Venezuela. Age of initial shortening of basinal areas and inversion of normal faults setting does not follow the simple, expected pattern of

  1. Detection of fault structure under a near-surface low velocity layer by seismic tomography: synthetics studies

    NASA Astrophysics Data System (ADS)

    Sanny, Teuku A.; Sassa, Koichi

    1996-09-01

    We have developed a new method to detect a fault structure under a near-surface low velocity layer (LVL) by seismic tomography. The field study showed that the tomography image reconstructed using borehole-surface configuration had a different result from that of using a crosshole configuration. The image reconstructed by using a borehole-surface configuration showed a decrease in seismic velocities along boreholes, and also the tomogram result using both configurations can not detect the subsurface fault structure. These phenomena are caused by the low velocity layer (LVL) at the top of investigation area. The basic idea hard is based on a downward continuation principle. By knowing the thickness of the LVL and the top of bedrock enables us to place 'virtual receiver' and/or 'virtual source' below the LVL. In this way, we can reconstruct the image by various tomographic methodologies. As an advantage, this method is easy to be use with the aid of ray tracing methodology. It can also reduce the effect of the near-surface LVL and can maximize the reconstructed image. The final result of our synthetic images by ILST, SIRT, and modified SIRT shows high accuracy and resolution for detection of fault structure under the low velocity layer.

  2. Calibration formulae and values for velocity seismometers used in the 1998 Santa Clara Valley, California seismic experiment

    USGS Publications Warehouse

    Lindh, Allan G.; Eaton, Jerry P.; O'Neill Allen, Mary; Healy, John H.; Stewart, Samuel W.; Damerell, Lu

    1999-01-01

    Eaton (1975), Bakun and Dratler (1976), Eaton (1977), Healy and O’Neil (1977), Asten (1977), Stewart and O'Neill (1980), Liu and Peselnick (1986), Eaton (1991), Rodgers et al. (1995), and many others (see Asten (1977) for a list of earlier references) have presented formulae for calculating the damped generator constant (or motor constant), and the damping constant (or fractional damping ratio) for magnetically damped velocity seismometers. Unfortunately the notation varies between authors, and not all the formulae allow for some of the significant variables -- differences in input impedance of the recording system in particular. This has become particularly relevant because the USGS seismic networks in California have traditionally set up their velocity sensors for the 10K Ohm impedance of the standard USGS analog telemetry systems (Eaton, 1977), but modern digital recording systems are usually set up with high input impedances, often of a megaohm or greater. Thus the nominal calibration values valid for USGS velocity sensors in their “normal” configuration are incorrect when they are recorded on other systems. In this short note we have collected the relevant formulae needed, and computed the seismometer responses for the various velocity sensors used in the recent Santa Clara Valley Seismic Experiment (SCVSE, see Lindh et al., 1999).

  3. Surface seismic measurements of near-surface P-and S-wave seismic velocities at earthquake recording stations, Seattle, Washington

    USGS Publications Warehouse

    Williams, R.A.; Stephenson, W.J.; Frankel, A.D.; Odum, J.K.

    1999-01-01

    We measured P-and S-wave seismic velocities to about 40-m depth using seismic-refraction/reflection data on the ground surface at 13 sites in the Seattle, Washington, urban area, where portable digital seismographs recently recorded earthquakes. Sites with the lowest measured Vs correlate with highest ground motion amplification. These sites, such as at Harbor Island and in the Duwamish River industrial area (DRIA) south of the Kingdome, have an average Vs in the upper 30 m (V??s30) of 150 to 170 m/s. These values of V??s30 place these sites in soil profile type E (V??s30 < 180 m/s). A "rock" site, located at Seward Park on Tertiary sedimentary deposits, has a V??S30 of 433 m/s, which is soil type C (V??s30: 360 to 760 m/s). The Seward Park site V??s30 is about equal to, or up to 200 m/s slower than sites that were located on till or glacial outwash. High-amplitude P-and S-wave seismic reflections at several locations appear to correspond to strong resonances observed in earthquake spectra. An S-wave reflector at the Kingdome at about 17 to 22 m depth probably causes strong 2-Hz resonance that is observed in the earthquake data near the Kingdome.

  4. Seismic Velocities for Quality Control of Compacted Soil at Embankment Dam: a Case - Serik Akbas DAM (antalya)

    NASA Astrophysics Data System (ADS)

    Ekinci, B.; Sabbağ, N.; Uyanik, O.; Kök, M. N.

    2014-12-01

    In this study, lateral and vertical compactness were investigated in the cohesive and non-cohesive soil fill materials in at embankment dam. Field compaction process of fill materials were performed by a sheepsfoot roller and a vibration roller. In general, "the test methods for rapid determination of percent compaction", "the water replacement method" are used for quality control of compacted soil. In addition to these methods, "multichannel analysis of surface waves method" and "seismic refraction method" were applied for compaction quality-control tests in the Serik Akbaş Dam (in Manavgat-Antalya) located in the north of Turkey. The Results obtained from each methods were compared. Seismic methods has linear and areal value wheas classical methods has point density value. Therefore, varations of lateral and vertical units were defined using seismic methods. Furthermore, Young's modulus (E), Shear modulus (G), Bulk Modulus (K) and Poisson's ratio (µ) of compacted soil were calculated. The results show that it is seen that seismic velocities are increased when soil compress at a percentage of a standard maximum density and optimum moisture content.

  5. The seismic velocity structure of a foreshock zone on an oceanic transform fault: Imaging a rupture barrier to the 2008 Mw 6.0 earthquake on the Gofar fault, EPR

    NASA Astrophysics Data System (ADS)

    Roland, E. C.; McGuire, J. J.; Lizarralde, D.; Collins, J. A.

    2010-12-01

    from ~100 km refraction profiles crossing the two faults, each using 8 short period ocean bottom seismometers from OBSIP and over 900 shots from the RV Marcus Langseth. These data are modeled using a 2-D tomographic code that allows joint inversion of the Pg, PmP, and Pn arrivals. We resolve a significant low velocity zone associated with the faults, which likely indicates rocks that have undergone intensive brittle deformation. Low velocities may also signify the presence of metamorphic alteration and/or elevated fluid pressures, both of which could have a significant affect on the friction laws that govern fault slip in these regions. A broad low velocity zone is apparent in the shallow crust (< 3km) at both faults, with velocities that are reduced by more than 1 km/s relative to the surrounding oceanic crust. A narrower zone of reduced seismic velocity appears to extend to mantle depths, and particularly on the Gofar fault, this corresponds with the seismogenic zone inferred from located foreshock seismicity, spanning depths of 3-9 km beneath the seafloor.

  6. Microplasticity effect in low-velocity zone induced by seismic wave

    NASA Astrophysics Data System (ADS)

    Mashinskii, E. I.

    2012-08-01

    Microplasticity effects in loam caused by seismic wave of frequency about 1000 Hz are detected in the borehole-to-borehole measurements. Microplasticity manifestations on seismic record are presented as the ladder-like stepwise changes in amplitude course. The step (plateau) on seismic trace is time delay, its duration depends on the strain-amplitude value. Time delay changes the frequency characteristic of stress pulse, nonlinearly transforms wave front, and shifts the amplitude maximum along time axis. The microplastic process occurs owing to the anomalous realignment of the internal stresses on the microstructural defects in the area of small deformations. This is the useful contribution to wave propagation physics. The received results can also be used in solving the applied problems in material science, seismic prospecting, diagnostics, etc.

  7. Frictional Behavior of Amphibolite at Seismic Slip Rates from High-velocity Rotary Shear Experiments

    NASA Astrophysics Data System (ADS)

    Jung, S.; Ree, J.; Hirose, T.; Lee, S.

    2012-12-01

    Gabbroic rocks of oceanic crust transform into amphibolite with depth at subduction zone, and thus frictional property of amphibolite may be important for a better understanding of subduction zone earthquakes. We report preliminary results of high-velocity rotary shear experiments on amphibolite at a seismic slip rate (~1.05 m/s) and normal stresses of 2-15 MPa. Amphibolite from the Imjingang belt of South Korea is composed of hornblende (0.5-1.5 mm) and plagioclase (0.25-0.5 mm) with rare occurrence of quartz. The frictional behavior of the amphibolite is characterized by two phases of unstable slip weakening separated by strengthening, followed by a final weakening with a very low steady-state friction coefficient of 0.07. The average coefficient of the first, second and final peak frictions is 0.48, 0.36 and 0.22, respectively. The fault zone consists of a principal slip zone (PSZ, 200-300 μm thick) with molten material mantled by damage zone (1-3 mm thick). In the damage zone, the color of hornblende grains becomes darker toward the PSZ and thin, black stripes occur along cleavage planes of hornblende in plane-polarized light. Also fracture density of hornblende and plagioclase increases relative to those of wall rock. The PSZ comprises molten material and mineral clasts (25-50 μm) and the clasts tend to concentrate along the center of the PSZ. The surface temperature of the fault zones measured by a radiation thermography during experiments is about 1060°C and the internal temperature of the fault zones could be higher than the measured temperature in view of the melting of hornblende and plagioclase. The frictional behavior of amphibolite is much different from that of gabbro where the overall friction is much higher with the final peak friction of 0.84-1.09 and steady-state friction of ~0.6 (Hirose and Shimamoto, 2005 in Journal of Geophysical Research). This difference may be due to dehydration of hornblende by frictional heating and lower viscosity of

  8. Non-Linear Seismic Velocity Estimation from Multiple Waveform Functionals and Formal Assessment of Constraints

    DTIC Science & Technology

    2011-09-01

    for Lithospheric Structure Beneath Asia and North Africa, 27th Seismic Research Review: Ground-Based Nuclear Explosion Monitoring Technologies, LA...Tomography for Lithospheric Structure Beneath the Middle East and North Africa, in Proceedings of the 26th Seismic Research , Review - Trends in Nuclear...dispersion and teleseismic receiver functions: Implications for lithospheric structure of the Arabian Peninsula. J. Geophys. Res., 111(B11311): 10.1029

  9. Correlations between seismic wave velocities and physical properties of near-surface geologic materials in the southern San Francisco Bay region, California

    USGS Publications Warehouse

    Fumal, Thomas E.

    1978-01-01

    To identify geologic units with distinctly different seismic responses for the purposes of seismic zonation, compressional and shear wave velocities have been measured in boreholes at 59 sites in the San Francisco Bay region in a wide range of near-surface (0-30m) geologic materials. Several physical parameters, which can be readily determined in the field, were found to correlate with the shear wave velocities and were used to define seismically distinct groups. For the unconsolidated to semiconsolidated sediments, texture, standard penetration resistance and depth were used to define eight seismically distinct groups. For the bedrock materials, fracture spacing and hardness were used to differentiate ten distinct categories. The correlation obtained between shear wave velocity and the physical parameters were used to regroup the map units defined for the San Francisco Bay region into seismically distinct units. The map units for the younger unconsolidated sediments can be really differentiated seismically. In contrast, the older semiconsolidated sedimentary deposits and bedrock units, which have experienced significant variations in post-depositial changes, show wider and overlapping velocity ranges. The map units for the sedimentary deposits have been regrouped into eight seismically distinct geotechnical units. The bedrock map units have been broadly regrouped into five distinct categories. Compressional wave velocities were not found to be well correlated with the physical parameters dependent on the soil or rock structure. For materials above the water table, the wide velocity variations found for each geotechnical group can be attributed to differences in degree of saturation. The strong correlations observed between shear wave velocity and other readily determine physical properties suggest that geologic maps which incorporate these parameters are most useful for seismic zonation.

  10. Temporal Changes of Seismic Velocity of Shallow Structure Associated With the 2000 Miyakejima Volcano Activity as Inferred From Ambient Seismic Noise Correlation Analyses

    NASA Astrophysics Data System (ADS)

    Anggono, T.; Nishimura, T.; Sato, H.; Ueda, H.; Ukawa, M.

    2008-12-01

    Miyakejima Island, which is located about 170 km to the south of Tokyo, Japan, is an active volcano of basaltic magma. In 2000 volcanic activity started with magma ascent and migration northwestwardly on June 26 - 27. Then, the volcano formed a caldera on the summit in July, and large amount of volcanic gas emission continued from late August until now. We analyze the ambient seismic noise recorded at three NIED seismic stations (MKK, MKT, and MKS) in the island in order to study the volcano structure behavior associated with such significant volcanic activities. We apply cross correlation analyses to the continuous records of vertical component of short period seismometers (1 s). The data are sampled at a frequency of 100 Hz with an A/D resolution of 16-bit. We calculate cross correlation functions (CCFs) for time window of 60 s for each station pair. We stack the CCFs for each month and bandpass filter the stacked data at frequency band 0.4 - 0.8 Hz. The stacked CCFs, which may represent the Green function between two stations, at station pairs MKK - MKS (the distance is 1.8 km) and MKT - MKS (the distance is 3.9 km) show wave packets with large amplitudes at both sides (positive and negative time delays). The wave packets propagate at group velocities of about 0.8 - 1.0 km/s. The stacked CCFs for MKK - MKT (the distance is 3.1 km) is one sided (negative time delay). Such asymmetric might be due to the inhomogeneous distribution of propagation direction of ambient seismic noise, so we do not use the data for the following analyses. Comparing the CCFs obtained for periods from July 1999 to June 2000 with that of October 2002, we observe small phase difference of the main wave packet. Our results show that for station pair MKK - MKS, whose path crosses the northern part of the island, velocity increased about 1.6 % after the 2000 volcanic activity. For MKT - MKS, whose path closely crosses the newly formed caldera, we estimate the velocity decrease of about 1

  11. Seismicity patterns along the Ecuadorian subduction zone: new constraints from earthquake location in a 3-D a priori velocity model

    NASA Astrophysics Data System (ADS)

    Font, Yvonne; Segovia, Monica; Vaca, Sandro; Theunissen, Thomas

    2013-04-01

    To improve earthquake location, we create a 3-D a priori P-wave velocity model (3-DVM) that approximates the large velocity variations of the Ecuadorian subduction system. The 3-DVM is constructed from the integration of geophysical and geological data that depend on the structural geometry and velocity properties of the crust and the upper mantle. In addition, specific station selection is carried out to compensate for the high station density on the Andean Chain. 3-D synthetic experiments are then designed to evaluate the network capacity to recover the event position using only P arrivals and the MAXI technique. Three synthetic earthquake location experiments are proposed: (1) noise-free and (2) noisy arrivals used in the 3-DVM, and (3) noise-free arrivals used in a 1-DVM. Synthetic results indicate that, under the best conditions (exact arrival data set and 3-DVM), the spatiotemporal configuration of the Ecuadorian network can accurately locate 70 per cent of events in the frontal part of the subduction zone (average azimuthal gap is 289° ± 44°). Noisy P arrivals (up to ± 0.3 s) can accurately located 50 per cent of earthquakes. Processing earthquake location within a 1-DVM almost never allows accurate hypocentre position for offshore earthquakes (15 per cent), which highlights the role of using a 3-DVM in subduction zone. For the application to real data, the seismicity distribution from the 3-D-MAXI catalogue is also compared to the determinations obtained in a 1-D-layered VM. In addition to good-quality location uncertainties, the clustering and the depth distribution confirm the 3-D-MAXI catalogue reliability. The pattern of the seismicity distribution (a 13 yr record during the inter-seismic period of the seismic cycle) is compared to the pattern of rupture zone and asperity of the Mw = 7.9 1942 and the Mw = 7.7 1958 events (the Mw = 8.8 1906 asperity patch is not defined). We observe that the nucleation of 1942, 1958 and 1906 events coincides with

  12. Estimation of seismic velocity in the subducting crust of the Pacific slab beneath Hokkaido, northern Japan by using guided waves

    NASA Astrophysics Data System (ADS)

    Shiina, T.; Nakajima, J.; Toyokuni, G.; Kita, S.; Matsuzawa, T.

    2014-12-01

    A subducting crust contains a large amount of water as a form of hydrous minerals (e.g., Hacker et al., 2003), and the crust plays important roles for water transportation and seismogenesis in subduction zones at intermediate depths (e.g., Kirby et al., 1996; Iwamori, 2007). Therefore, the investigation of seismic structure in the crust is important to understand ongoing physical processes with subduction of oceanic lithosphere. A guided wave which propagates in the subducting crust is recorded in seismograms at Hokkaido, northern Japan (Shiina et al., 2014). Here, we estimated P- and S-wave velocity in the crust with guided waves, and obtained P-wave velocity of 6.6-7.3 km/s and S-wave velocity of 3.6-4.2 km/s at depths of 50-90 km. Moreover, Vp/Vs ratio in the crust is calculated to be 1.80-1.85 in that depth range. The obtained P-wave velocity about 6.6km/s at depths of 50-70 km is consistent with those estimated in Tohoku, northeast Japan (Shiina et al., 2013), and this the P-wave velocity is lower than those expected from models of subducting crustal compositions, such as metamorphosed MORB model (Hacker et al., 2003). In contrast, at greater depths (>80 km), the P-wave velocity marks higher velocity than the case of NE Japan and the velocity is roughly comparable to those of the MORB model. The obtained S-wave velocity distribution also shows characteristics similar to P waves. This regional variation may be caused by a small variation in thermal regime of the Pacific slab beneath the two regions as a result of the normal subduction in Tohoku and oblique subduction in Hokkaido. In addition, the effect of seismic anisotropy in the subducting crust would not be ruled out because rays used in the analysis in Hokkaido propagate mostly in the trench-parallel direction, while those in Tohoku are sufficiently criss-crossed.

  13. Seismic Velocity Structure and Depth-Dependence of Anisotropy in the Red Sea and Arabian Shield from Surface Wave Analysis

    SciTech Connect

    Hansen, S; Gaherty, J; Schwartz, S; Rodgers, A; Al-Amri, A

    2007-07-25

    We investigate the lithospheric and upper mantle structure as well as the depth-dependence of anisotropy along the Red Sea and beneath the Arabian Peninsula using receiver function constraints and phase velocities of surface waves traversing two transects of stations from the Saudi Arabian National Digital Seismic Network. Frequency-dependent phase delays of fundamental-mode Love and Rayleigh waves, measured using a cross-correlation procedure, require very slow shear velocities and the presence of anisotropy throughout the upper mantle. Linearized inversion of these data produce path-averaged 1D radially anisotropic models with about 4% anisotropy in the lithosphere, increasing to about 4.8% anisotropy across the lithosphere-asthenosphere boundary (LAB). Models with reasonable crustal velocities in which the mantle lithosphere is isotropic cannot satisfy the data. The lithospheric lid, which ranges in thickness from about 70 km near the Red Sea coast to about 90 km beneath the Arabian Shield, is underlain by a pronounced low-velocity zone with shear velocities as low as 4.1 km/s. Forward models, which are constructed from previously determined shear-wave splitting estimates, can reconcile surface and body wave observations of anisotropy. The low shear velocity values are similar to many other continental rift and oceanic ridge environments. These low velocities combined with the sharp velocity contrast across the LAB may indicate the presence of partial melt beneath Arabia. The anisotropic signature primarily reflects a combination of plate- and density-driven flow associated with active rifting processes in the Red Sea.

  14. Changes in seismic velocity during the first 14 months of the 2004–2008 eruption of Mount St. Helens, Washington

    USGS Publications Warehouse

    Hotovec-Ellis, A.J.; Vidale, J.E.; Gomberg, Joan S.; Thelen, Weston A.; Moran, Seth C.

    2015-01-01

    Mount St. Helens began erupting in late 2004 following an 18 year quiescence. Swarms of repeating earthquakes accompanied the extrusion of a mostly solid dacite dome over the next 4 years. In some cases the waveforms from these earthquakes evolved slowly, likely reflecting changes in the properties of the volcano that affect seismic wave propagation. We use coda-wave interferometry to quantify small changes in seismic velocity structure (usually <1%) between two similar earthquakes and employed waveforms from several hundred families of repeating earthquakes together to create a continuous function of velocity change observed at permanent stations operated within 20 km of the volcano. The high rate of earthquakes allowed tracking of velocity changes on an hourly time scale. Changes in velocity were largest near the newly extruding dome and likely related to shallow deformation as magma first worked its way to the surface. We found strong correlation between velocity changes and the inverse of real-time seismic amplitude measurements during the first 3 weeks of activity, suggesting that fluctuations of pressure in the shallow subsurface may have driven both seismicity and velocity changes. Velocity changes during the remainder of the eruption likely result from a complex interplay of multiple effects and are not well explained by any single factor alone, highlighting the need for complementary geophysical data when interpreting velocity changes.

  15. Towards a Comprehensive Seismic Velocity Model for the Broader Africa-Eurasia Collision Region, to Improve Nuclear Explosion Monitoring

    SciTech Connect

    der Lee, S v; Flanagan, M P; Rodgers, A J; Pasyanos, M E; Marone, F; Romanowicz, B

    2005-07-13

    We report on progress towards a new, comprehensive three-dimensional model of seismic velocity in a broad region encompassing the Middle East, northern Africa, the Mediterranean Sea, the Levant, the Arabian Peninsula, the Turkish-Iranian Plateau, Indus Valley, and the Hindu Kush. Our model will be based on regional waveform fits, surface wave group velocity measurements, teleseismic arrival times of S and P waves, receiver functions, and published results from active source experiments. We are in the process of assembling each of these data sets and testing the joint inversion for subsets of the data. Seismograms come from a variety of permanent and temporary seismic stations in the region. Some of the data is easily accessible through, for example, IRIS, while collection of other data is more involved. This work builds on ongoing work by Schmid et al. (GJI, 2004, and manuscript in preparation). In these proceedings we highlight our data sets and their inferences, demonstrate the proposed new data-inversion modeling methodology, discuss results from preliminary inversions of subsets of the data, and demonstrate the prediction of arrival times with three-dimensional velocity models. We compare our preliminary inversion results to the results of Schmid et al., and the predicted arrival times to ground-truth data from the NNSA Knowledge Base. Our data sets are simultaneously redundant and highly complementary. The combined data coverage will ensure that our three-dimensional model comprises the crust, the upper mantle, including the transition zone, and the top of the lower mantle, with spatially varying, but useful resolution. The region of interest is one of the most structurally heterogeneous in the world. Continental collision, rifting and sea-floor spreading, back-arc spreading, oceanic subduction, rotating micro plates, continental shelf, and stable platforms, are just some of the region's characteristics. Seismicity and the distribution of seismic stations are

  16. Characteristics of Offshore Hawai';i Island Seismicity and Velocity Structure, including Lo';ihi Submarine Volcano

    NASA Astrophysics Data System (ADS)

    Merz, D. K.; Caplan-Auerbach, J.; Thurber, C. H.

    2013-12-01

    The Island of Hawai';i is home to the most active volcanoes in the Hawaiian Islands. The island's isolated nature, combined with the lack of permanent offshore seismometers, creates difficulties in recording small magnitude earthquakes with accuracy. This background offshore seismicity is crucial in understanding the structure of the lithosphere around the island chain, the stresses on the lithosphere generated by the weight of the islands, and how the volcanoes interact with each other offshore. This study uses the data collected from a 9-month deployment of a temporary ocean bottom seismometer (OBS) network fully surrounding Lo';ihi volcano. This allowed us to widen the aperture of earthquake detection around the Big Island, lower the magnitude detection threshold, and better constrain the hypocentral depths of offshore seismicity that occurs between the OBS network and the Hawaii Volcano Observatory's land based network. Although this study occurred during a time of volcanic quiescence for Lo';ihi, it establishes a basis for background seismicity of the volcano. More than 480 earthquakes were located using the OBS network, incorporating data from the HVO network where possible. Here we present relocated hypocenters using the double-difference earthquake location algorithm HypoDD (Waldhauser & Ellsworth, 2000), as well as tomographic images for a 30 km square area around the summit of Lo';ihi. Illuminated by using the double-difference earthquake location algorithm HypoDD (Waldhauser & Ellsworth, 2000), offshore seismicity during this study is punctuated by events locating in the mantle fault zone 30-50km deep. These events reflect rupture on preexisting faults in the lower lithosphere caused by stresses induced by volcano loading and flexure of the Pacific Plate (Wolfe et al., 2004; Pritchard et al., 2007). Tomography was performed using the double-difference seismic tomography method TomoDD (Zhang & Thurber, 2003) and showed overall velocities to be slower than

  17. Site response, shallow shear-wave velocity, and wave propagation at the San Jose, California, dense seismic array

    USGS Publications Warehouse

    Hartzell, S.; Carver, D.; Williams, R.A.; Harmsen, S.; Zerva, A.

    2003-01-01

    Ground-motion records from a 52-element dense seismic array near San Jose, California, are analyzed to obtain site response, shallow shear-wave velocity, and plane-wave propagation characteristics. The array, located on the eastern side of the Santa Clara Valley south of the San Francisco Bay, is sited over the Evergreen basin, a 7-km-deep depression with Miocene and younger deposits. Site response values below 4 Hz are up to a factor of 2 greater when larger, regional records are included in the analysis, due to strong surface-wave development within the Santa Clara Valley. The pattern of site amplification is the same, however, with local or regional events. Site amplification increases away from the eastern edge of the Santa Clara Valley, reaching a maximum over the western edge of the Evergreen basin, where the pre-Cenozoic basement shallows rapidly. Amplification then decreases further to the west. This pattern may be caused by lower shallow shear-wave velocities and thicker Quaternary deposits further from the edge of the Santa Clara Valley and generation/trapping of surface waves above the shallowing basement of the western Evergreen basin. Shear-wave velocities from the inversion of site response spectra based on smaller, local earthquakes compare well with those obtained independently from our seismic reflection/refraction measurements. Velocities from the inversion of site spectra that include larger, regional records do not compare well with these measurements. A mix of local and regional events, however, is appropriate for determination of site response to be used in seismic hazard evaluation, since large damaging events would excite both body and surface waves with a wide range in ray parameters. Frequency-wavenumber, plane-wave analysis is used to determine the backazimuth and apparent velocity of coherent phases at the array. Conventional, high-resolution, and multiple signal characterization f-k power spectra and stacked slowness power spectra are

  18. Inversion of ambient seismic noise HVSR to evaluate velocity and structural models of the Lower Tagus Basin, Portugal

    NASA Astrophysics Data System (ADS)

    Borges, J. F.; Silva, H. G.; Torres, R. J. G.; Caldeira, B.; Bezzeghoud, M.; Furtado, J. A.; Carvalho, J.

    2016-07-01

    During its history, several significant earthquakes have shaken the Lower Tagus Valley (Portugal). These earthquakes were destructive; some strong earthquakes were produced by large ruptures in offshore structures located southwest of the Portuguese coastline, and other moderate earthquakes were produced by local faults. In recent years, several studies have successfully obtained strong-ground motion syntheses for the Lower Tagus Valley using the finite difference method. To confirm the velocity model of this sedimentary basin obtained from geophysical and geological data, we analysed the ambient seismic noise measurements by applying the horizontal to vertical spectral ratio (HVSR) method. This study reveals the dependence of the frequency and amplitude of the low-frequency (HVSR) peaks (0.2-2 Hz) on the sediment thickness. We have obtained the depth of the Cenozoic basement along a profile transversal to the basin by the inversion of these ratios, imposing constraints from seismic reflection, boreholes, seismic sounding and gravimetric and magnetic potentials. This technique enables us to improve the existing three-dimensional model of the Lower Tagus Valley structure. The improved model will be decisive for the improvement of strong motion predictions in the earthquake hazard analysis of this highly populated basin. The methodology discussed can be applied to any other sedimentary basin.

  19. Detecting and Locating Seismic Events Without Phase Picks or Velocity Models

    NASA Astrophysics Data System (ADS)

    Arrowsmith, S.; Young, C. J.; Ballard, S.; Slinkard, M.

    2015-12-01

    The standard paradigm for seismic event monitoring is to scan waveforms from a network of stations and identify the arrival time of various seismic phases. A signal association algorithm then groups the picks to form events, which are subsequently located by minimizing residuals between measured travel times and travel times predicted by an Earth model. Many of these steps are prone to significant errors which can lead to erroneous arrival associations and event locations. Here, we revisit a concept for event detection that does not require phase picks or travel time curves and fuses detection, association and location into a single algorithm. Our pickless event detector exploits existing catalog and waveform data to build an empirical stack of the full regional seismic wavefield, which is subsequently used to detect and locate events at a network level using correlation techniques. Because the technique uses more of the information content of the original waveforms, the concept is particularly powerful for detecting weak events that would be missed by conventional methods. We apply our detector to seismic data from the University of Utah Seismograph Stations network and compare our results with the earthquake catalog published by the University of Utah. We demonstrate that the pickless detector can detect and locate significant numbers of events previously missed by standard data processing techniques.

  20. Insights into induced earthquakes and aftershock activity with in-situ measurements of seismic velocity variations in an active underground mine

    NASA Astrophysics Data System (ADS)

    Brenguier, F.; Olivier, G.; Campillo, M.; Roux, P.; Shapiro, N.; Lynch, R.

    2015-12-01

    The behaviour of the crust shortly after large earthquakes has been the subject of numerous studies, but many co- and post-seismic processes remain poorly understood. Damage and healing of the bulk rock mass, post-seismic deformation and the mechanisms of earthquake triggering are still not well understood. These processes are important to properly model and understand the behaviour of faults and earthquake cycles.In this presentation, we will show how in-situ measurements of seismic velocity variations have given new insights into these co- and post-seismic processes. An experiment was performed where a blast was detonated in a tunnel in an underground mine, while seismic velocity variations were accurately (0.005 %) measured with ambient seismic noise correlations. Additionally, aftershock activity was examined and the influence of the removal of a piece of solid rock was estimated with elastic static stress modelling. The majority of the aftershocks were delayed with respect to the passing of the dynamic waves from the blast, while the locations of the aftershocks appeared clustered and not homogeneously spread around the blast location. A significant velocity drop is visible during the time of the blast, which is interpreted as co-seismic damage and plastic deformation. These non-elastic effects are healed by the confining stresses over a period of 5 days until the seismic velocity converges to a new baseline level. The instantaneous weakening and gradual healing observed from the velocity variations are qualitatively similar to results reported in laboratory studies. The change in the baseline level of the seismic velocity before and after the blast indicate a change in the static stress that is comparable to the results of elastic static stress modelling. The differences between the elastic model predictions and the seismic velocity variations could be due to zones of fractured rock, indicated by the spatial clustering of the aftershocks, that are not

  1. The effect of fault-bend folding on seismic velocity in the marginal ridge of accretionary prisms

    USGS Publications Warehouse

    Cai, Y.; Wang, Chun-Yong; Hwang, W.-t.; Cochrane, G.R.

    1995-01-01

    Fluid venting in accretionary prisms, which feeds chemosynthetic biological communities, occurs mostly on the marginal thrust ridge. New seismic data for the marginal ridge of the Cascadia prism show significantly lower velocity than that in the adjacent oceanic basin and place important constraints on the interpretations of why fluid venting occurs mostly on the marginal ridge. We employed a finite-element method to analyze a typical fault-bend folding model to explain the phenomenon. The fault in the model is simulated by contact elements. The elements are characterized not only by finite sliding along a slide line, but also by elastoplastic deformation. We present the results of a stress analysis which show that the marginal ridge is under subhorizontal extension and the frontal thrust is under compression. This state of stress favors the growth of tensile cracks in the marginal ridge, facilitates fluid flow and reduces seismic velocities therein; on the other hand, it may close fluid pathways along the frontal thrust and divert fluid flow to the marginal ridge. ?? 1995 Birkha??user Verlag.

  2. Phase relations in a harzburgite composition: implications for splitting of 660-km seismic discontinuity and seismic velocities in mantle transition zone

    NASA Astrophysics Data System (ADS)

    Nishiyama, N.; Kato, T.; Kinoshita, Y.; Irifune, T.

    2011-12-01

    density phase, Pv, and can cause the accumulation of harzburgite component at the base of MTZ. We calculated seismic velocities, Vp and Vs, of harzburgite using thermoelastic parameters determined in previous studies. Harzburgite is faster than pyrolite and 1D earth models, like PREM, at the lower half of MTZ (between 500 and 660 km depth) because of presence of St, Ak, and Pv in addition to the lower density caused by the low-Fe content. It has been demonstrated that pyrolite is slower than the 1D earth models in this region because of low velocity of majorite garnet. Mechanical mixture of pyrolite and harzgurgite can explain 1D earth models, which strongly indicates that harzburgite is accumulated and stagnant at the base of the MTZ. In addition, harzburgite can produce many seismic discontinuities in the non-olivine component, like Ak-Pv transition at 630 km depth, which are superimposed on phase transitions in olivine. Thus, presence of harzburgite in MTZ may explain regionally observed splitting of seismic discontinuities. The splitting of the seismic discontinuities may be caused by chemical heterogeneity, presence of harzburgite.

  3. Complex Seismic Anisotropy at the Edges of a Very-low Velocity Province in the Lowermost Mantle

    NASA Astrophysics Data System (ADS)

    Wang, Y.; Wen, L.

    2005-12-01

    A prominent very-low velocity province (VLVP) in the lowermost mantle is revealed, and has been extensively mapped out in recent seismic studies (e.g., Wang and Wen, 2004). Seismic evidence unambiguously indicates that the VLVP is compositionally distinct, and its seismic structure can be best explained by partial melting driven by a compositional change produced in the early Earth's history (Wen, 2001; Wen et. al, 2001; Wang and Wen, 2004). In this presentation, we study the seismic anisotropic behavior inside the VLVP and its surrounding area using SKS and SKKS waveform data. We collect 272 deep earthquakes recorded by more than 80 stations in the Kaapvaal seismic array in southern Africa from 1997 to 1999. Based on the data quality, we choose SKS and SKKS waveform data for 16 earthquakes to measure the anisotropic parameters: the fast polarization direction and the splitting time, using the method of Silver and Chan (1991). A total of 162 high-quality measurements are obtained based on the statistics analysis of shear wave splitting results. The obtained anisotropy exhibits different patterns for the SKS and SKKS phases sampling inside the VLVP and at the edges of the VLVP. When the SKS and SKKS phases sample inside the VLVP, their fast polarization directions exhibit a pattern that strongly correlates with stations, gradually changing from 11°N~to 80°N~across the seismic array from south to north and rotating back to the North direction over short distances for several northernmost stations. The anisotropy pattern obtained from the analysis of the SKKS phases is the same as that from the SKS phases. However, when the SKS and SKKS phases sample at the edges of the VLVP, the measured anisotropy exhibits a very complex pattern. The obtained fast polarization directions change rapidly over a small distance, and they no longer correlate with stations; the measurements obtained from the SKS analysis also differ with those from the SKKS analysis. As the SKS and SKKS

  4. Seismic velocity estimation from well log data with genetic algorithms in comparison to neural networks and multilinear approaches

    NASA Astrophysics Data System (ADS)

    Aleardi, Mattia

    2015-06-01

    Predicting missing log data is a useful capability for geophysicists. Geophysical measurements in boreholes are frequently affected by gaps in the recording of one or more logs. In particular, sonic and shear sonic logs are often recorded over limited intervals along the well path, but the information these logs contain is crucial for many geophysical applications. Estimating missing log intervals from a set of recorded logs is therefore of great interest. In this work, I propose to estimate the data in missing parts of velocity logs using a genetic algorithm (GA) optimisation and I demonstrate that this method is capable of extracting linear or exponential relations that link the velocity to other available logs. The technique was tested on different sets of logs (gamma ray, resistivity, density, neutron, sonic and shear sonic) from three wells drilled in different geological settings and through different lithologies (sedimentary and intrusive rocks). The effectiveness of this methodology is demonstrated by a series of blind tests and by evaluating the correlation coefficients between the true versus predicted velocity values. The combination of GA optimisation with a Gibbs sampler (GS) and subsequent Monte Carlo simulations allows the uncertainties in the final predicted velocities to be reliably quantified. The GA method is also compared with the neural networks (NN) approach and classical multilinear regression. The comparisons show that the GA, NN and multilinear methods provide velocity estimates with the same predictive capability when the relation between the input logs and the seismic velocity is approximately linear. The GA and NN approaches are more robust when the relations are non-linear. However, in all cases, the main advantages of the GA optimisation procedure over the NN approach is that it directly provides an interpretable and simple equation that relates the input and predicted logs. Moreover, the GA method is not affected by the disadvantages

  5. Anisotropic 3-D Crustal Velocity Structure of Idaho/ Oregon from a Joint Inversion of Group and Phase Velocities of Love and Rayleigh Waves from Ambient Seismic Noise: Results from the IDOR Project

    NASA Astrophysics Data System (ADS)

    Bremner, P. M.; Panning, M. P.; Russo, R.; Mocanu, V. I.; Stanciu, A. C.; Torpey, M. E.; Hongsresawat, S.; VanDecar, J. C.

    2015-12-01

    We present new 3-D radially anisotropic and isotropic crustal velocity models beneath central Idaho and eastern Oregon. We produced the velocity models from Love and horizontal component Rayleigh wave group and phase velocity measurements on the IDaho/ORegon (IDOR) Passive seismic network, 86 broadband seismic stations, dataset using ambient noise tomography and the methods of Gallego et. al (2010) and Lin et. al (2008). We calculated inter-station group/phase velocities in narrow frequency bands from travel-time measurements of the rotated stacked horizontal component cross-correlations (bandpass filtered between 2 and 30 seconds), which we used to invert for velocity structure beneath the network. We derived group and phase velocity maps for each frequency band using the damped least-squares inversion method of Tarantola (2005), and then jointly inverted for velocity with depth. Moho depths are prescribed in the joint inversions based on receiver functions, also from the IDOR seismic data, and provides a starting crustal velocity model. Goals of our work include refining models of crustal structure in the accreted Blue Mountain terranes in the western study area; determining the depth extent of the Salmon River Suture/West Idaho Shear Zone (WISZ), which crosses north-south through the middle of the network; determining the architecture of the Idaho batholith, an extensive largely crustal-derived pluton; and examining the nature of the autochthonous (?) North American crust and lithosphere beneath and east of the batholith.

  6. Low seismic velocity layers in the Earth's crust beneath Eastern Siberia (Russia) and Central Mongolia: receiver function data and their possible geological implication

    NASA Astrophysics Data System (ADS)

    Zorin, Yu. A.; Mordvinova, V. V.; Turutanov, E. Kh; Belichenko, B. G.; Artemyev, A. A.; Kosarev, G. L.; Gao, S. S.

    2002-12-01

    Analysis of teleseismic receiver functions at digital stations along the Bratsk-Irkutsk-Ulanbaatar-Undurshil profile suggests that low-velocity layers in the Earth's crust exist not only beneath the Baikal rift zone, where such a layer was found earlier by Deep Seismic Sounding (DSS), but also beneath Early Paleozoic Sayan-Baikal, Paleozoic Mongolian, Early Mesozoic Mongolia-Okhotsk fold areas, and beneath the Siberian platform. The reliability of detection of the low-velocity layers by receiver function analysis has been checked by numerical modeling. The results of this modeling demonstrate that receiver functions can reveal the low-velocity layers in the crust if the initial model (starting approximation) is close to real velocity distribution, and if the model medium is divided into thin layers. Averaged DSS velocity model without low-velocity layers was used as starting approximation for the inversion of observed receiver functions. The low-velocity layers are interpreted to reflect inhomogeneities of the Earth's crust formed during its evolution. Most of these layers are presumed to correspond to thick mylonite zones related to large pre-Cenozoic thrusts. The mylonites possess a great seismic anisotropy caused by the mineral orientation formed by the ductile flow in large thrust zones. They can result in low-velocity layers only for seismic waves whose rays are oriented perpendicular to the mylonite foliation, i.e., in the direction of the minimum velocity; the velocities along the foliation direction can be rather high. Therefore, the low-angle mylonite zones can be distinguished by the receiver function method, which uses the waves from the teleseismic events with nearly vertically oriented rays. The suggestion that the low-velocity layers mark low-angle thrusts is in agreement with gravity and geological data. The amount of overthrusting is estimated to be as large as several hundred kilometers. Multichannel seismic profiling can be used to verify the

  7. Seismic velocities and attenuation from borehole measurements near the Parkfield prediction zone, Central California

    USGS Publications Warehouse

    Gibbs, James F.; Roth, Edward F.

    1989-01-01

    Shear (S)- and compressional (P)- wave velocities were measured to a depth of 195 m in a borehole near the San Andreas fault where a recurrence of a moderate Parkfield earthquake is predicted. S-wave velocities determined from orthogonal directions of the S-wave source show velocity differences of approximately 20 percent. An average shear-wave Q of 4 was determined in relatively unconsolidated sands and gravels of the Paso Robles Formation in the depth interval 57.5-102.5 m.

  8. 3D time-lapse seismic traveltime tomography for detecting near surface velocity variations: a case study from the Ketzin CO2 storage pilot site

    NASA Astrophysics Data System (ADS)

    Zhang, Fengjiao; Juhlin, Christopher; Huang, Fei; Lüth, Stefan

    2016-04-01

    Time-lapse seismic methods are an important tool for monitoring CO2 migration and storage in geological formations. Near surface variations are one of the major problems which may introduce time-lapse noise in the application of land based seismic monitoring. Conventional reflection seismic methods have difficulties in imaging near surface structures (10-30 m depth) due to the limitation of the methods themselves. Traveltime tomography is a commonly used method to reconstruct the subsurface velocity model. It can often provide extra information on near surface structures which is difficult to obtain by the conventional reflection seismic method. In this study, we apply traveltime tomography to 3D time-lapse seismic data sets acquired from at the Ketzin CO2 storage site. We also test different inversion strategies for traveltime tomography to investigate which one is more suitable for this case study. The results show good correlation with near surface variations obtained by other studies.

  9. Seismic microzonation and velocity models of El Ejido area (SE Spain) from the diffuse-field H/V method

    NASA Astrophysics Data System (ADS)

    García-Jerez, Antonio; Seivane, Helena; Navarro, Manuel; Piña-Flores, José; Luzón, Francisco; Vidal, Francisco; Posadas, Antonio M.; Aranda, Carolina

    2016-04-01

    El Ejido town is located in the Campo de Dalías coastal plain (Almería province, SE Spain), emplaced in one of the most seismically active regions of Spain. The municipality has 84000 inhabitants and presented a high growth rate during the last twenty years. The most recent intense seismic activity occurred close to this town was in 1993 and 1994, with events of Mb = 4.9 and Mb = 5.0, respectively. To provide a basis for site-specific hazard analysis, we first carried out a seismic microzonation of this town in terms of predominant periods and geotechnical properties. The predominant periods map was obtained from ambient noise observations on a grid of 250 x 250 m in the main urban area, and sparser measurements on the outskirts. These broad-band records, of about 20 minutes long each, were analyzed by using the horizontal-to-vertical spectral ratio technique (H/V). Dispersion curves obtained from two array measurements of ambient noise and borehole data provided additional geophysical information. All the surveyed points in the town were found to have relatively long predominant periods ranging from 0.8 to 2.3 s and growing towards the SE. Secondary high-frequency (> 2Hz) peaks were found at about the 10% of the points only. On the other hand, Vs30 values of 550 - 650 m/s were estimated from the array records, corresponding to cemented sediments and medium-hard rocks. The local S-wave velocity structure has been inverted from the H/V curves for a subset of the measurement sites. We used an innovative full-wavefield method based on the diffuse-wavefield approximation (Sánchez-Sesma et al., 2011) combined with the simulated annealing algorithm. Shallow seismic velocities and deep boreholes data were used as constraints. The results show that the low-frequency resonances are related with the impedance contrast between several hundred meters of medium-hard sedimentary rocks (marls and calcarenites) with the stiffer basement of the basin, which dips to the SE. These

  10. Refining Estimates of the Seismic Velocities of the Crust and Upper Mantle

    NASA Astrophysics Data System (ADS)

    BARMIN, M.; SHAPIRO, N. M.; Ritzwoller, M. H.; Levin, V.; Park, J.

    2001-12-01

    We discuss recent efforts to improve a global shear-velocity model of the crust and upper mantle by advancing surface wave methodology as well as by introducing new types of geophysical data in the inversion. The primary data-set used to construct the model consists of broad-band Rayleigh and Love wave group-velocity (CU-Boulder) and phase-velocity (Harvard, Utrecht) dispersion curves. The first step of the inversion is surface wave tomography in which group and phase velocity maps are constructed. We present a new method of surface wave tomography called "diffraction tomography" that is based on a physical model of the surface wave Fresnel zone rather than on ray-theory and ad hoc regularization. Diffraction tomography accounts for path-length dependent sensitivity, wave-form healing and associated diffraction effects, and provides a more accurate assessment of spatially variable resolution than traditional tomographic methods. The second step is Monte-Carlo inversion of the dispersion maps for an ensemble of acceptable shear velocity models of the crust and uppermost mantle. Because surface waves have limited vertical resolution, we apply constraints on the model derived from other types of geophysical observations. We consider two types of additional data: teleseismic receiver functions and heat flow measurements. Receivers functions are formed by P-S converted waves that arise from sharp boundaries close to the Earth's surface, and thus provide important constraints on the crustal structure. Their use in the inversion mitigates the tradeoff between the crust (where surface waves have poor sensitivity) and the deeper part of the model. Heat-flow data constrain mantle shear velocities through the conversion of heat-flow into temperature and subsequently into shear velocity at the top of the upper mantle. We present results from the joint inversion and discuss how the combination of different types of data reduces both uncertainties and systematic bias in the

  11. Seismic anisotropy and velocity structure beneath the southern half of the Iberian Peninsula

    NASA Astrophysics Data System (ADS)

    Serrano, I.; Hearn, T. M.; Morales, J.; Torcal, F.

    2005-06-01

    Travel times of 11,612 Pn arrivals collected from 7675 earthquakes are inverted to image the uppermost mantle velocity and anisotropy structure beneath the southern half of the Iberian Peninsula and surrounding regions. Pn phases are routinely identified and picked for epicentral distances from 200 to 1200 km. The method used in this study allows simultaneous imaging of variations of Pn velocity and anisotropy. The results show an average uppermost mantle velocity beneath the study area of 8.0 km/s. The peninsular area covered by the Iberian massif is characterized by high Pn velocity, as expected in tectonically stable regions, indicating areas of the Hercynian belt that have not recently been reactivated. The margins of the Iberian Peninsula have undergone a great number of recent tectonic events and are characterized by a pronouncedly low Pn velocity, as is common in areas greatly affected by recent tectonic and magmatic activity. Our model indicates that the Betic crustal root might be underlined by a negative anomaly beneath the southeastern Iberian Peninsula. In the Atlantic Ocean, we find a sharp variation in the uppermost mantle velocities that coincides with the structural complexity of the European and African plate boundary in the Gulf of Cadiz. Our results show a very pronounced low-velocity anomaly offshore from Cape San Vicente whereas high velocities are distributed along the coast in the Gulf of Cadiz. In the Alboran Sea and northern Morocco, the direction of the fastest Pn velocity found is almost parallel to the Africa-Eurasia plate convergence vector (northwest-southeast) whereas to the north, this direction is almost parallel to the main trend of the Betic Cordillera, i.e. east-west in its central part and north-south in the curvature of the Arc of Gibraltar. This suggests that a significant portion of the uppermost mantle has been involved in the orogenic deformation that produced the arcuate structure of the Betic Cordillera. However, we

  12. High Temperature Simulations of the Seismic Wave Velocities on FeNi Alloys at the Conditions of Earth's Inner Core

    NASA Astrophysics Data System (ADS)

    Martorell Masip, B.; Brodholt, J. P.; Wood, I. G.; Vocadlo, L.

    2012-12-01

    its effect on the seismic properties of Fe under core pressures and temperatures. [1] Martorell, B., Bordholt, J., Wood, I., Vočadlo, L., The effect of nickel on the properties of iron at the conditions of Earth's inner core: ab initio calculations of seismic wave velocities of Fe-Ni alloys. Earth Planet. Scie. Let. (2012) On review. [2] Alfè, D., Temperature of the inner-core boundary of the Earth: Melting of iron at high pressure from first-principles coexistence simulations. Phys. Rev. B 79 (2009) 060101.

  13. Monitoring CO2 drainage and imbibition in a heterogeneous sandstone using both seismic velocity and electrical resistivity measurements

    NASA Astrophysics Data System (ADS)

    Kim, Jongwook; Nam, Myung Jin; Matsuoka, Toshifumi

    2016-02-01

    In a laboratory fluid-injection experiment, seismic velocity and electrical resistivity were measured simultaneously to monitor injected carbon dioxide (CO2) during CO2 drainage and imbibition within a heterogeneous, clay-containing Tako sandstone sample. In the CO2 drainage process, supercritical CO2 (10 MPa at 40°C) was injected under a condition similar to that of an in situ reservoir. After the CO2 drainage process, water was injected into the CO2-injected sandstone for the CO2 imbibition stage. Employing strategies based on Gassmann fluid-substitution and Archie's equation, P-wave velocities and electrical resistivities were interpreted to evaluate CO2 saturation (SCO2). Estimated values of SCO2 during the CO2 drainage process were compared with those of volume-derived SCO2, which were obtained by evaluating the volumes of injected and drained fluid. When Tako sandstone SCO2 is < 0.1, SCO2 estimation from P-wave velocity based on the Gassmann-Brie equation (with e = 12) is more precise than resistivity index (RI)-based Archie's equation estimations from electrical resistivity. For further analysis, a modified RI equation was also employed to estimate SCO2, and the results were compared with those of the original RI-based Archie strategy.

  14. Estimation of seismic wave velocity at seafloor surface and sound source localization based on transmitted wave observation with an ocean bottom seismometer offshore of Kamaishi, Japan

    NASA Astrophysics Data System (ADS)

    Iwase, Ryoichi

    2016-07-01

    An in situ method of estimating the seismic wave velocity at the seafloor surface by observing the particle motion of a wave transmitted into the sediment is presented; this method uses a sound source whose location is known. Conversely, a sound source localization method using the obtained seismic velocities and involving particle motion observation is also presented. Although this method is applicable only when the sound source exists within the critical incidence angle range, it is expected to contribute to the tracing of vocalizing baleen whales, which are unknown around Japanese waters.

  15. Hillslope characterization in terms of geophysical units based on the joint interpretation of electrical resistivity and seismic velocity data

    NASA Astrophysics Data System (ADS)

    Feskova, Tatiana; Dietrich, Peter

    2015-04-01

    Hydrological conditions in a catchment depend on many factors such as climatic, geological, geomorphological, biological and human, which interact with each other and influence water balance in a catchment. This interaction leads to the subordination in the landscape structure, namely the weak elements subordinate to the powerful elements. Thereby, geological and geomorphological factors play an essential role in catchment development and organization. A hillslope consequently can be allocated to one class of the representative units because the important flow processes run at the hillslope. Moreover, a hillslope can be subdivided into stratigraphic subsurface units and significant hillslope areas based on the lithological change of contrasting interfaces. The knowledge of subsurface structures is necessary to understand and predicate complex hydrological processes in a catchment. Geophysical techniques provide a good opportunity to explore the subsurface. A complete geophysical investigation of subsurface in a catchment with difficult environmental conditions never will be achieved because of large time effort in the field, equipment logistic, and ambiguity in the data interpretation. The case study demonstrates how a catchment can be investigated using geophysical methods in an effective manner in terms of characterization of representative units with respect to a functional role in the catchment. This case study aims to develop combined resistivity and seismic velocity hillslope subsurface models for the distinction of representative functional units. In order to identify the contrasting interfaces of the hillslope, to localize significant hillslope areas, and to address the ambiguity in the geophysical data interpretation, the case study combined resistivity surveys (vertical electrical soundings and electrical resistivity tomography) with refraction seismic method, and conducted these measurements at one single profile along the hillslope transect and

  16. Upper mantle P velocity structure beneath the Baikal Rift from modeling regional seismic data

    NASA Astrophysics Data System (ADS)

    Brazier, Richard A.; Nyblade, Andrew A.

    2003-02-01

    Uppermost mantle P wave velocity structure beneath the Baikal rift and southern margin of the Siberian Platform has been investigated by using a grid search method to model Pnl waveforms from two moderate earthquakes recorded by station TLY at the southwestern end of Lake Baikal. The results yielded a limited number of successful models which indicate the presence of upper mantle P wave velocities beneath the rift axis and the margin of the platform that are 2-5% lower than expected. The magnitude of the velocity anomalies and their location support the presence of a thermal anomaly that extends laterally beyond the rift proper, possibly created by small-scale convection or a plume-like, thermal upwelling.

  17. Seismic moment tensor inversion using 3D velocity model and its application to the 2013 Lushan earthquake sequence

    NASA Astrophysics Data System (ADS)

    Zhu, Lupei; Zhou, Xiaofeng

    2016-10-01

    Source inversion of small-magnitude events such as aftershocks or mine collapses requires use of relatively high frequency seismic waveforms which are strongly affected by small-scale heterogeneities in the crust. In this study, we developed a new inversion method called gCAP3D for determining general moment tensor of a seismic source using Green's functions of 3D models. It inherits the advantageous features of the "Cut-and-Paste" (CAP) method to break a full seismogram into the Pnl and surface-wave segments and to allow time shift between observed and predicted waveforms. It uses grid search for 5 source parameters (relative strengths of the isotropic and compensated-linear-vector-dipole components and the strike, dip, and rake of the double-couple component) that minimize the waveform misfit. The scalar moment is estimated using the ratio of L2 norms of the data and synthetics. Focal depth can also be determined by repeating the inversion at different depths. We applied gCAP3D to the 2013 Ms 7.0 Lushan earthquake and its aftershocks using a 3D crustal-upper mantle velocity model derived from ambient noise tomography in the region. We first relocated the events using the double-difference method. We then used the finite-differences method and reciprocity principle to calculate Green's functions of the 3D model for 20 permanent broadband seismic stations within 200 km from the source region. We obtained moment tensors of the mainshock and 74 aftershocks ranging from Mw 5.2 to 3.4. The results show that the Lushan earthquake is a reverse faulting at a depth of 13-15 km on a plane dipping 40-47° to N46° W. Most of the aftershocks occurred off the main rupture plane and have similar focal mechanisms to the mainshock's, except in the proximity of the mainshock where the aftershocks' focal mechanisms display some variations.

  18. Seismic velocity structure and microearthquake source properties at The Geysers, California, geothermal area

    SciTech Connect

    O'Connell, D.R.

    1986-12-01

    The method of progressive hypocenter-velocity inversion has been extended to incorporate S-wave arrival time data and to estimate S-wave velocities in addition to P-wave velocities. S-wave data to progressive inversion does not completely eliminate hypocenter-velocity tradeoffs, but they are substantially reduced. Results of a P and S-wave progressive hypocenter-velocity inversion at The Geysers show that the top of the steam reservoir is clearly defined by a large decrease of V/sub p//V/sub s/ at the condensation zone-production zone contact. The depth interval of maximum steam production coincides with minimum observed V/sub p//V/sub s/, and V/sub p//V/sub s/ increses below the shallow primary production zone suggesting that reservoir rock becomes more fluid saturated. The moment tensor inversion method was applied to three microearthquakes at The Geysers. Estimated principal stress orientations were comparable to those estimated using P-wave firstmotions as constraints. Well constrained principal stress orientations were obtained for one event for which the 17 P-first motions could not distinguish between normal-slip and strike-slip mechanisms. The moment tensor estimates of principal stress orientations were obtained using far fewer stations than required for first-motion focal mechanism solutions. The three focal mechanisms obtained here support the hypothesis that focal mechanisms are a function of depth at The Geysers. Progressive inversion as developed here and the moment tensor inversion method provide a complete approach for determining earthquake locations, P and S-wave velocity structure, and earthquake source mechanisms.

  19. Velocity variations associated with the large 2010 eruption of Merapi volcano, Java, retrieved from seismic multiplets and ambient noise cross-correlation

    NASA Astrophysics Data System (ADS)

    Budi-Santoso, Agus; Lesage, Philippe

    2016-07-01

    We present a study of the seismic velocity variations that occurred in the structure before the large 2010 eruption of Merapi volcano. For the first time to our knowledge, the technique of coda wave interferometry is applied to both families of similar events (multiplets) and to correlation functions of seismic noise. About half of the seismic events recorded at the summit stations belong to one of the ten multiplets identified, including 120 similar events that occurred in the last 20 hr preceding the eruption onset. Daily noise cross-correlation functions (NCF) were calculated for the six pairs of short-period stations available. Using the stretching method, we estimate time-series of apparent velocity variation (AVV) for each multiplet and each pair of stations. No significant velocity change is detected until September 2010. From 10 October to the beginning of the eruption on 26 October, a complex pattern of AVV is observed with amplitude of up to ±1.5 per cent. Velocity decrease is first observed from families of deep events and then from shallow earthquakes. In the same period, AVV with different signs and chronologies are estimated from NCF calculated for various station pairs. The location in the horizontal plane of the velocity perturbations related with the AVV obtained from NCF is estimated by using an approach based on the radiative transfer approximation. Although their spatial resolution is limited, the resulting maps display velocity decrease in the upper part of the edifice in the period 12-25 October. After the eruption onset, the pattern of velocity perturbations is significantly modified with respect to the previous one. We interpret these velocity variations in the framework of a scenario of magmatic intrusion that integrates most observations. The perturbation of the stress field associated with the magma migration can induce both decrease and increase of the seismic velocity of rocks. Thus the detected AVVs can be considered as precursors of

  20. Integrated well log and 2-D seismic data interpretation to image the subsurface stratigraphy and structure in north-eastern Bornu (Chad) basin

    NASA Astrophysics Data System (ADS)

    Isyaku, Aminu A.; Rust, Derek; Teeuw, Richard; Whitworth, Malcolm

    2016-09-01

    Structural and stratigraphic mapping within the Bornu Basin in north east Nigeria was commonly carried out using traditional field geological methods. However, such traditional approaches remain inadequate in the semi-arid region characterised by topographically flat areas and lack of continuous bedrock outcrops that are mostly concealed beneath sand cover. Previous studies in the north-eastern part of the basin carried out using ditch cuttings from few wells and disconnected seismic data were largely inadequate and the resulting stratigraphic analyses were more often generalised. This paper presents an integrated structural and stratigraphic study of the basin using combined subsurface geophysical datasets. A Combined Log Pattern (CLP) method is a well log analysis, which utilises various well log data including gamma ray, resistivity, bulk density and sonic logs to identify lithology and stratigraphic boundaries of subsurface formations. This method is applied to constrain the subsurface stratigraphy of the north-eastern part of the Bornu Basin bordering the Lake Chad. In addition to qualitative combined well log analysis, the time-depth relationship of the sonic log and seismic data was quantitatively determined by tying a well with an intersecting seismic section to validate the stratigraphic facies horizons identified. Four well log facies and their environments of deposition were characterised from the combined well log analysis of the different log types. It is discovered that the Cretaceous basement structural features controlled the deposition of overlying formations in the basin. Without intact core data, the shallower wells were discovered to have bottomed over subsurface horst features while deeper wells penetrated into the basal facies contained mainly within the grabens. Main subsurface structural lineaments in the area include NW-SE, NE-SW and NNW-SSE trending faults, which mainly formed the horst and graben features. Some stratigraphic formations

  1. Evidence for strong lateral seismic velocity variation in the lower crust and upper mantle beneath the California margin

    NASA Astrophysics Data System (ADS)

    Lai, Voon Hui; Graves, Robert W.; Wei, Shengji; Helmberger, Don

    2017-04-01

    Regional seismograms from earthquakes in Northern California show a systematic difference in arrival times across Southern California where long period (30-50 s) SH waves arrive up to 15 s earlier at stations near the coast compared with sites towards the east at similar epicentral distances. We attribute this time difference to heterogeneity of the velocity structure at the crust-mantle interface beneath the California margin. To model these observations, we propose a fast seismic layer, with thickness growing westward from the San Andreas along with a thicker and slower continental crust to the east. Synthetics generated from such a model are able to match the observed timing of SH waveforms better than existing 3D models. The presence of a strong upper mantle buttressed against a weaker crust has a major influence in how the boundary between the Pacific plate and North American plate deforms and may explain the observed asymmetric strain rate across the boundary.

  2. Double seismic zone of the Nazca plate in northern Chile: High-resolution velocity structure, petrological implications, and thermomechanical modeling

    NASA Astrophysics Data System (ADS)

    Dorbath, Catherine; Gerbault, Muriel; Carlier, Gabriel; Guiraud, Michel

    2008-07-01

    This paper presents an interdisciplinary study of the northern Chile double seismic zone. First, a high-resolution velocity structure of the subducting Nazca plate has been obtained by the tomoDD double-difference tomography method. The double seismic zone (DSZ) is observed between 80 and 140 km depth, and the two seismic planes is 20 km apart. Then, the chemical and petrologic characteristics of the oceanic lithosphere associated with this DSZ are deduced by using current thermal-petrological-seismological models and are compared to pressure-temperature conditions provided by a numerical thermomechanical model. Our results agree with the common hypothesis that seismicity in both upper and lower planes is related to fluid releases associated with metamorphic dehydration reactions. In the seismic upper plane located within the upper crust, these reactions would affect material of basaltic (MORB) composition and document different metamorphic reactions occurring within high-P (>2.4 GPa) and low-T (<570°C) jadeite-lawsonite blueschists and, at greater depth (>130 km), lawsonite-amphibole eclogite conditions. The lower plane lying in the oceanic mantle can be associated with serpentinite dehydration reactions. The Vp and Vs characteristics of the region in between both planes are consistent with a partially (˜25-30 vol % antigorite, ˜0-10% vol % brucite, and ˜4-10 vol % chlorite) hydrated harzburgitic material. Discrepancies persist that we attribute to complexities inherent to heterogeneous structural compositions. While various geophysical indicators evidence particularly cold conditions in both the descending Nazca plate and the continental fore arc, thermomechanical models indicate that both seismic planes delimit the inner slab compressional zone around the 400°C (±50°C) isotherm. Lower plane earthquakes are predicted to occur in the slab's flexural neutral plane, where fluids released from surrounding metamorphic reactions could accumulate and trigger

  3. Experimental determination of compressional-wave seismic velocity of talc at high temperature at 0.5 GPa

    NASA Astrophysics Data System (ADS)

    Bailey, Edward

    2000-10-01

    Compressional wave velocity, VP, in talc has been measured as a function of temperature at 0.5 GPa by a time of flight ultrasonic method in an internally heated gas pressure vessel. At this pressure, VP decreases from 5.27 +/- 0.23 km s-1 at 25°C to 4.35 +/- 0.15 km s-1 at 800°C. VP in a hydrated peridotite has also been measured, at 0.5 GPa, 600°C, but with no useable results. Combining the results for talc with a previously published bulk modulus K and deltaK/deltaP, gives a Poissons ratio, nu, of 0.268 and a shear modulus, G, of 22.6 GPa under atmospheric conditions. Assuming nu is independent of temperature gives a deltaKs/deltaT value of -19.3 +/- 0.64 MPa K-1 at 0.5 GPa. These experimental data, in combination with published data, have been used to calculate the Voigt, Reuss, and Hashin-Shtrikman-Walpole bounds, and the Voigt-Reuss-Hill average of the elastic moduli of a peridotite, hydrated with talc, just above a cold subducting lithosphere, and seismic velocities derived from those. A talc-beating assemblage containing only 0.9 weight% H2O has elastic wave velocities (calculated from the Voigt-Reuss-FEII average) slower than the anhydrous rock by an average of 7.6% for VP , and 9.7% for shear waves Vs at 700°C, between 0.5 and 4 GPa. These results are examined in connection with seismic observations of converted elastic wave phase behavior near the surface of cold subducting slabs in the northern Pacific. Although a layer of peridotite, just above the subducting slab, hydrated by talc could explain these observations at depths shallower than 155 km, the silica content of peridotite is not high enough to stabilize talc at these depths. The hypothesis that the low velocity layer is caused by a metastable subducting oceanic crust better explains the observations. Talc is likely, however to be an important hydrous phase at depths between 30 and 60 km, i.e. from the top of the mantle down to the pressure stability limit of talc. In some regions of

  4. Regional three-dimensional seismic velocity model of the crust and uppermost mantle of northern California

    NASA Astrophysics Data System (ADS)

    Thurber, Clifford; Zhang, Haijiang; Brocher, Thomas; Langenheim, Victoria

    2009-01-01

    We present a three-dimensional (3D) tomographic model of the P wave velocity (Vp) structure of northern California. We employed a regional-scale double-difference tomography algorithm that incorporates a finite-difference travel time calculator and spatial smoothing constraints. Arrival times from earthquakes and travel times from controlled-source explosions, recorded at network and/or temporary stations, were inverted for Vp on a 3D grid with horizontal node spacing of 10 to 20 km and vertical node spacing of 3 to 8 km. Our model provides an unprecedented, comprehensive view of the regional-scale structure of northern California, putting many previously identified features into a broader regional context and improving the resolution of a number of them and revealing a number of new features, especially in the middle and lower crust, that have never before been reported. Examples of the former include the complex subducting Gorda slab, a steep, deeply penetrating fault beneath the Sacramento River Delta, crustal low-velocity zones beneath Geysers-Clear Lake and Long Valley, and the high-velocity ophiolite body underlying the Great Valley. Examples of the latter include mid-crustal low-velocity zones beneath Mount Shasta and north of Lake Tahoe.

  5. Regional three-dimensional seismic velocity model of the crust and uppermost mantle of northern California

    USGS Publications Warehouse

    Thurber, C.; Zhang, H.; Brocher, T.; Langenheim, V.

    2009-01-01

    We present a three-dimensional (3D) tomographic model of the P wave velocity (Vp) structure of northern California. We employed a regional-scale double-difference tomography algorithm that incorporates a finite-difference travel time calculator and spatial smoothing constraints. Arrival times from earthquakes and travel times from controlled-source explosions, recorded at network and/or temporary stations, were inverted for Vp on a 3D grid with horizontal node spacing of 10 to 20 km and vertical node spacing of 3 to 8 km. Our model provides an unprecedented, comprehensive view of the regional-scale structure of northern California, putting many previously identified features into a broader regional context and improving the resolution of a number of them and revealing a number of new features, especially in the middle and lower crust, that have never before been reported. Examples of the former include the complex subducting Gorda slab, a steep, deeply penetrating fault beneath the Sacramento River Delta, crustal low-velocity zones beneath Geysers-Clear Lake and Long Valley, and the high-velocity ophiolite body underlying the Great Valley. Examples of the latter include mid-crustal low-velocity zones beneath Mount Shasta and north of Lake Tahoe. Copyright 2009 by the American Geophysical Union.

  6. Seismic velocities at the core-mantle boundary inferred from P waves diffracted around the core

    NASA Astrophysics Data System (ADS)

    Sylvander, Matthieu; Ponce, Bruno; Souriau, Annie

    1997-05-01

    The very base of the mantle is investigated with core-diffracted P-wave (P diff) travel times published by the International Seismological Centre (ISC) for the period 1964-1987. Apparent slownesses are computed for two-station profiles using a difference method. As the short-period P diff mostly sample a very thin layer above the core-mantle boundary (CMB), a good approximation of the true velocity structure at the CMB can be derived from the apparent slownesses. More than 27000 profiles are built, and this provides an unprecedented P diff sampling of the CMB. The overall slowness distribution has an average value of 4.62 s/deg, which corresponds to a velocity more than 4% lower than that of most mean radial models. An analysis of the residuals of absolute ISC P and P diff travel times is independently carried out and confirms this result. It also shows that the degree of heterogeneities is significantly higher at the CMB than in the lower mantle. A search for lateral velocity variations is then undertaken; a first large-scale investigation reveals the presence of coherent slowness anomalies of very large dimensions of the order of 3000 km at the CMB. A tomographic inversion is then performed, which confirms the existence of pronounced (±8-10%) lateral velocity variations and provides a reliable map of the heterogeneities in the northern hemisphere. The influence of heterogeneity in the overlying mantle, of noise in the data and of CMB topography is evaluated; it seemingly proves minor compared with the contribution of heterogeneities at the CMB. Our results support the rising idea of a thin, low-velocity laterally varying boundary layer at the base of the D″ layer. The two principal candidate interpretations are the occurrence of partial melting, or the presence of a chemically distinct layer, featuring infiltrated core material.

  7. Seismic velocities and geologic logs from boreholes at three downhole arrays in San Francisco, California

    USGS Publications Warehouse

    Gibbs, James F.; Fumal, Thomas E.; Borcherdt, Roger D.; Warrick, Richard E.; Liu, Hsi-Ping; Westerlund, Robert E.

    1994-01-01

    The Loma Prieta earthquake of October 17, 1989 (1704 PST), has reinforced observations made by Wood and others (1908) after the 1906 San Francisco earthquake, that poor ground conditions (soft soil) increase the likelihood of shaking damage to structures. Since 1908 many studies (for example Borcherdt, 1970, Borcherdt and Gibbs, 1976, Borcherdt and Glassmoyer, 1992) have shown that soft soils amplify seismic waves at frequencies that can be damaging to structures. Damage in the City of San Francisco from the Loma Prieta earthquake was concentrated in the Marina District, the Embarcadero, and the China Basin areas. Each of these areas, to some degree, is underlain by soft soil deposits. These concentrations of damage raise important questions regarding the amplification effects of such deposits at damaging levels of motion. Unfortunately, no strong-motion recordings were obtained in these areas during the Loma Prieta earthquake and only a limited number (< 10) have been obtained on other soft soil sites in the United States. Consequently, important questions exist regarding the response of such deposits during damaging earthquakes, especially questions regarding the nonlinear soil response. Towards developing a data set to address these important questions, borehole strong-motion arrays have been installed at three locations. These arrays consist of groups of wide-dynamic-range pore-pressure transducers and three-component accelerometers, the outputs of which are recorded digitally. The arrays are designed to provide an integrated set of data on ground shaking, liquifaction-induced ground failure, and structural response. This report describes the detailed geologic, seismic, and material-property determinations derived at each of these sites.

  8. Joint Inversion of Body-Wave Arrival Times and Surface-Wave Dispersion Data for Three-Dimensional Seismic Velocity Structure Around SAFOD

    NASA Astrophysics Data System (ADS)

    Zhang, H.; Thurber, C. H.; Maceira, M.; Roux, P.

    2013-12-01

    The crust around the San Andreas Fault Observatory at depth (SAFOD) has been the subject of many geophysical studies aimed at characterizing in detail the fault zone structure and elucidating the lithologies and physical properties of the surrounding rocks. Seismic methods in particular have revealed the complex two-dimensional (2D) and three-dimensional (3D) structure of the crustal volume around SAFOD and the strong velocity reduction in the fault damage zone. In this study we conduct a joint inversion using body-wave arrival times and surface-wave dispersion data to image the P-and S-wave velocity structure of the upper crust surrounding SAFOD. The two data types have complementary strengths - the body-wave data have good resolution at depth, albeit only where there are crossing rays between sources and receivers, whereas the surface waves have very good near-surface resolution and are not dependent on the earthquake source distribution because they are derived from ambient noise. The body-wave data are from local earthquakes and explosions, comprising the dataset analyzed by Zhang et al. (2009). The surface-wave data are for Love waves from ambient noise correlations, and are from Roux et al. (2011). The joint inversion code is based on the regional-scale version of the double-difference (DD) tomography algorithm tomoDD. The surface-wave inversion code that is integrated into the joint inversion algorithm is from Maceira and Ammon (2009). The propagator matrix solver in the algorithm DISPER80 (Saito, 1988) is used for the forward calculation of dispersion curves from layered velocity models. We examined how the structural models vary as we vary the relative weighting of the fit to the two data sets and in comparison to the previous separate inversion results. The joint inversion with the 'optimal' weighting shows more clearly the U-shaped local structure from the Buzzard Canyon Fault on the west side of SAF to the Gold Hill Fault on the east side.

  9. Velocity and structural model of the Lower Tagus Basin according to the study of environmental seismic noise

    NASA Astrophysics Data System (ADS)

    Gomes Torres, Ricardo Jorge; Furtado, José Augusto; Gonçalves Silva, Hugo; Borges, José Fernando; Caldeira, Bento; Bezzeghoud, Mourad; Carvalho, João

    2013-04-01

    Along his history the Lower Tagus Valley (LTV) region was shaken by several earthquakes, some of them produced in large ruptures of offshore structures located southwest of the Portuguese coastline. Among these is the Lisbon earthquake of 1 November 1755 (M~8.5-8.7), and other moderates earthquakes that were produced by local sources such as the 1344 (M6.0), 1531 (M7.1) and 1909 (M6.0) earthquakes. Previous simulations [1] have shown high velocity amplification in the region. The model used in the simulations was updated from low to high resolution using all the new available geophysical and geotechnical data on the area (seismic reflection, aeromagnetic, gravimetric, deep wells and geological outcrops) [2]. To confirm this model in the areas where it was derived by potential field methods we use broadband ambient noise measurements collected in about 200 points along seven profiles on the LTV basin, six perpendicular and one parallel to the basin axis. We applied the horizontal to vertical (H/V) spectral ratio method [3] to the seismic noise profiles in order to estimate the distribution of amplification in the basin. The H/V curves obtained reveals the existence of two low frequency peaks centered on 0.2 and 1 Hz [4]. These peaks are strongly related with the thickness of Cenozoic and alluvial sediments. The velocity model obtained by inversion of the H/V curves is in good agreement with borehole data, and results obtained using seismic reflection and gravimetric methods. However, aeromagnetic data overestimates the depth of the base of Cenozoic in the areas where it overlies directly the paleozoic basement, which we attribute either to the existence of Mesozoic units or higher magnetic susceptibilities than expected for the Paleozoic. References: [1] Bezzeghoud, M., Borges, J.F., M., Caldeira (2011). Ground motion simulations of the SW Iberia margin: rupture directivity and earth structure effects. Natural Hazards, pages 1-17. doi:10.1007/s11069-011-9925-2 [2

  10. Accretion and Subduction of Oceanic Lithosphere: 2D and 3D Seismic Studies of Off-Axis Magma Lenses at East Pacific Rise 9°37-40'N Area and Downgoing Juan de Fuca Plate at Cascadia Subduction Zone

    NASA Astrophysics Data System (ADS)

    Han, Shuoshuo

    Two thirds of the Earth's lithosphere is covered by the ocean. The oceanic lithosphere is formed at mid-ocean ridges, evolves and interacts with the overlying ocean for millions of years, and is eventually consumed at subduction zones. In this thesis, I use 2D and 3D multichannel seismic (MCS) data to investigate the accretionary and hydrothermal process on the ridge flank of the fast-spreading East Pacific Rise (EPR) at 9°37-40'N and the structure of the downgoing Juan de Fuca plate at the Cascadia subduction zone offshore Oregon and Washington. Using 3D multichannel seismic (MCS) data, I image a series of off-axis magma lenses (OAML) in the middle or lower crust, 2-10 km from the ridge axis at EPR 9°37-40'N. The large OAMLs are associated with Moho travel time anomalies and local volcanic edifices above them, indicating off-axis magmatism contributes to crustal accretion though both intrusion and eruption (Chapter 1). To assess the effect of OAMLs on the upper crustal structure, I conduct 2-D travel time tomography on downward continued MCS data along two across-axis lines above a prominent OAML in our study area. I find higher upper crustal velocity in a region ~ 2 km wide above this OAML compared with the surrounding crust. I attribute these local anomalies to enhanced precipitation of alteration minerals in the pore space of upper crust associated with high-temperature off-axis hydrothermal circulation driven by the OAML (Chapter 2). At Cascadia, a young and hot end-member of the global subduction system, the state of hydration of the downgoing Juan de Fuca (JdF) plate is important to a number of subduction processes, yet is poorly known. As local zones of higher porosity and permeability, faults constitute primary conduits for seawater to enter the crust and potentially uppermost mantle. From pre-stack time migrated MCS images, I observe pervasive faulting in the sediment section up to 200 km from the deformation front. Yet faults with large throw and

  11. Parameters of Seismic Velocities and their Relationship to the Geomechanical Characteristic of the Podlesí Granites

    NASA Astrophysics Data System (ADS)

    Broz, M.; Novakova, L.; Sosna, K.; Najser, J.; Novak, P.

    2012-04-01

    In the Czech Republic, the optimal rock environment for geological waste disposal is granite. The ongoing research aims to analyze and evaluate rock matrix properties across a range of granites within the Czech Republic. Thegeophysical, physical, and geomechanical parameters of the Podlesí granites in the western part of the Krušné hory Mts., near the village of Potůčky are analyzed in the presented study. The samples were collected at depths of between 35 and 105 metres. Seismic P-wave and S-wave velocities were measured using ultrasonic scanning. The samples were water-saturated, unsaturated, and dried. The measured data were used to calculate dynamic Young's modulus, dynamic shear modulus, and Poisson's ratio. The deformational characteristics of the rock were specified from uniaxial loading. The shear and longitudinal deformation of each sample was measured using a resistive strain gauge fixed directly on the sample. Intermittent loading of the symplex proceeded using a uniform gradient of axial stress of 1 MPa.s-1. Static Young's and shear modulus, and Poisson's ratio were calculated. All the obtained data demonstrate a correlation between the properties of the granite and depth within the borehole. P-wave velocities do not show any anisotropy in the studied samples, their velocities vary from 4.15 km.s-1 to 6.03 km.s-1 while S-wave velocities vary from 2.74 km.s-1 to 3.63 km.s-1. The highest velocities were measured in the saturated samples while the lowest velocities were measured in the dried samples. Dynamic Young's modulus varies from 42.5 GPa to 83.9 GPa while static Younǵs modulus varies from 31.4 GPa to 57.1 GPa. Dynamic Young's modulus is approximately 44% higher than static Young's modulus. Dynamic and static shear moduli show a similar relationship. Dynamic shear modulus varies from 19.0 GPa to 34.5 GPa whist static shear modulus varies from 13.0 GPa to 23.4 GPa. Poisson's ratio between 0.16 and 0.25 was measured. The porosity of the studied

  12. HIGH-RESOLUTION SEISMIC VELOCITY AND ATTENUATION MODELS OF THE CAUCASUS-CASPIAN REGION

    SciTech Connect

    Mellors, R; Gok, R; Pasyanos, M; Skobeltsyn, G; Teoman, U; Godoladze, T; Sandvol, E

    2008-07-01

    The southwest edge of Eurasia is a tectonically and structurally complex region that includes the Caspian and Black Sea basins, the Caucasus Mountains, and the high plateaus south of the Caucasus. Using data from 25 broadband stations located in the region, new estimates of crustal and upper mantle thickness, velocity structure, and attenuation are being developed. Receiver functions have been determined for all stations. Depth to Moho is estimated using slant stacking of the receiver functions, forward modeling, and inversion. Moho depths along the Caspian and in the Kura Depression are in general poorly constrained using only receiver functions due to thick sedimentary basin sediments. The best fitting models suggest a low velocity upper crust with Moho depths ranging from 30 to 40 km. Crustal thicknesses increase in the Greater Caucasus with Moho depths of 40 to 50 km. Pronounced variations with azimuth of source are observed indicating 3D structural complexity and upper crustal velocities are higher than in the Kura Depression to the south. In the Lesser Caucasus, south and west of the Kura Depression, the crust is thicker (40 to 50 km) and upper crustal velocities are higher. Work is underway to refine these models with the event based surface wave dispersion and ambient noise correlation measurements from continuous data. Regional phase (Lg and Pg) attenuation models as well as blockage maps for Pn and Sn are being developed. Two methods are used to estimate Q: the two-station method to estimate inter-station Q and the reversed, two-station, two event method. The results are then inverted to create Lg and Pg Q maps. Initial results suggest substantial variations in both Pg and Lg Q in the region. A zone of higher Pg Q extends west from the Caspian between the Lesser and Greater Caucasus and a narrow area of higher Lg Q is observed.

  13. High-Resolution Seismic Velocity and Attenuation Models of the Caucasus-Caspian Region

    DTIC Science & Technology

    2008-09-30

    Langston, 1979; Ammon et al., 1990; Zhu and Kanamori , 2000) that use teleseismic P (or S) phases to estimate crustal and upper mantle velocity...forward model (red). stacking (e.g., Zhu and Kanamori , 2000) was applied to all data to provide an estimate of the depth to Moho and VpVs ratio. In...mountain range. Figure 4. Stations and estimated depths to Moho based on the stacking technique of Zhu and Kanamori (2000). These results include data

  14. Analytic solutions for seismic travel time and ray path geometry through simple velocity models.

    SciTech Connect

    Ballard, Sanford

    2007-12-01

    The geometry of ray paths through realistic Earth models can be extremely complex due to the vertical and lateral heterogeneity of the velocity distribution within the models. Calculation of high fidelity ray paths and travel times through these models generally involves sophisticated algorithms that require significant assumptions and approximations. To test such algorithms it is desirable to have available analytic solutions for the geometry and travel time of rays through simpler velocity distributions against which the more complex algorithms can be compared. Also, in situations where computational performance requirements prohibit implementation of full 3D algorithms, it may be necessary to accept the accuracy limitations of analytic solutions in order to compute solutions that satisfy those requirements. Analytic solutions are described for the geometry and travel time of infinite frequency rays through radially symmetric 1D Earth models characterized by an inner sphere where the velocity distribution is given by the function V (r) = A-Br{sup 2}, optionally surrounded by some number of spherical shells of constant velocity. The mathematical basis of the calculations is described, sample calculations are presented, and results are compared to the Taup Toolkit of Crotwell et al. (1999). These solutions are useful for evaluating the fidelity of sophisticated 3D travel time calculators and in situations where performance requirements preclude the use of more computationally intensive calculators. It should be noted that most of the solutions presented are only quasi-analytic. Exact, closed form equations are derived but computation of solutions to specific problems generally require application of numerical integration or root finding techniques, which, while approximations, can be calculated to very high accuracy. Tolerances are set in the numerical algorithms such that computed travel time accuracies are better than 1 microsecond.

  15. Anticorrelated seismic velocity anomalies from post-perovskite in the lowermost mantle

    USGS Publications Warehouse

    Hutko, Alexander R.; Lay, T.; Revenaugh, Justin; Garnero, E.J.

    2008-01-01

    Earth's lowermost mantle has thermal, chemical, and mineralogical complexities that require precise seismological characterization. Stacking, migration, and modeling of over 10,000 P and S waves that traverse the deep mantle under the Cocos plate resolve structures above the core-mantle boundary. A small -0.07 ?? 0.15% decrease of P wave velocity (Vp) is accompanied by a 1.5 ?? 0.5% increase in S wave velocity (Vs) near a depth of 2570 km. Bulk-sound velocity [Vb = (V p2 - 4/3Vs2)1/2] decreases by -1.0 ?? 0.5% at this depth. Transition of the primary lower-mantle mineral, (Mg1-x-y FexAly)(Si,Al) O3 perovskite, to denser post-perovskite is expected to have a negligible effect on the bulk modulus while increasing the shear modulus by ???6%, resulting in local anticorrelation of Vb and Vs anomalies; this behavior explains the data well.

  16. Anticorrelated seismic velocity anomalies from post-perovskite in the lowermost mantle.

    PubMed

    Hutko, Alexander R; Lay, Thorne; Revenaugh, Justin; Garnero, Edward J

    2008-05-23

    Earth's lowermost mantle has thermal, chemical, and mineralogical complexities that require precise seismological characterization. Stacking, migration, and modeling of over 10,000 P and S waves that traverse the deep mantle under the Cocos plate resolve structures above the core-mantle boundary. A small -0.07 +/- 0.15% decrease of P wave velocity (Vp) is accompanied by a 1.5 +/- 0.5% increase in S wave velocity (V(s)) near a depth of 2570 km. Bulk-sound velocity [Vb = (Vp2 - 4/3Vs2)1/2] decreases by -1.0 +/- 0.5% at this depth. Transition of the primary lower-mantle mineral, (Mg(1-x-y) Fe(x)Al(y))(Si,Al)O3 perovskite, to denser post-perovskite is expected to have a negligible effect on the bulk modulus while increasing the shear modulus by approximately 6%, resulting in local anticorrelation of Vb and Vs anomalies; this behavior explains the data well.

  17. Characterization of transform faults within the South Georgia Rift using 2-D seismic line SCO2-3 correlated with well data

    NASA Astrophysics Data System (ADS)

    Mccormack, K. A.; Heffner, D. M.; Knapp, J. H.

    2012-12-01

    The South Georgia Rift Basin (SGR) has long been thought to be relatively simple on terms of its geology: with coastal plain sediments that vary gradually in thickness overlying a relatively uniform basalt province known as the "J-horizon". However recent re-examination of well data collected throughout the SGR suggests there are a number of generally NW-SE striking transform faults within the area due to the fact that the depth of the coastal plain sediments vary drastically over short lateral distances. (Hefner, D.M., 2011) To better understand these anomalies, we interpret the seismic line SCO2-3 collected in 2010 that looks to cross a transform fault at a high angle. By doing so and correlating it with available well and gravity data we will contribute to a better understanding of the South Georgia Rift (SGR) by determining the location and orientation of this transform fault. These possible faults are currently only constrained by well data and thus their exact strike, location and extent remain poorly understood. The characterization of the transform faults within this area is important due to the possibility of CO2 sequestration in parts of the SGR. It has also been suggested that the transform faults cutting through the SGR may line up with, and have originally been connected to, the transform faults that are found along the Mid Atlantic Ridge today. A better understanding of the extent, orientation and movement of these faults through seismic studies is essential to understanding the overall geology of the Sough Georgia Rift Basin.

  18. Hypocenter relocation using a fast grid search method and a 3-D seismic velocity model for the Sumatra region

    SciTech Connect

    Nugroho, Hendro; Widiyantoro, Sri; Nugraha, Andri Dian

    2013-09-09

    Determination of earthquake hypocenter in Indonesia conducted by the Meteorological, Climatological, and Geophysical Agency (MCGA) has still used a 1-D seismic velocity model. In this research, we have applied a Fast Grid Search (FGM) method and a 3-D velocity model resulting from tomographic imaging to relocate earthquakes in the Sumatran region. The data were taken from the MCGA data catalog from 2009 to 2011 comprising of subduction zone and on land fault earthquakes with magnitude greater than 4 Mw. Our preliminary results show some significant changes in the depths of the relocated earthquakes which are in general deeper than the depths of hypocenters from the MCGA data catalog. The residual times resulting from the relocation process are smaller than those prior to the relocation. Encouraged by these results, we will continue to conduct hypocenter relocation for all events from the MCGA data catalog periodically in order to produce a new data catalog with good quality. We hope that the new data catalog will be useful for further studies.

  19. Double layering of thermochemical-plume material can reconcile upper-mantle seismic velocity structure beneath Hawaii

    NASA Astrophysics Data System (ADS)

    Ballmer, M. D.; Ito, G.; Wolfe, C. J.; Laske, G.; Solomon, S. C.

    2011-12-01

    Volcanism far from plate boundaries, in Hawaii and elsewhere, has traditionally been explained by "classical" plume theory. Classical plumes are typically described as narrow thermal upwellings that rise through the entire mantle to be deflected into a thin (<100 km), bilaterally symmetric "pancake" beneath the overriding lithosphere. New high-resolution seismic velocity images obtained from the PLUME seismic experiment indeed support the concept of a deep-rooted mantle plume to feed Hawaiian volcanism. However, in detail these images challenge classical concepts inasmuch as they indicate a low-velocity body in the upper mantle that is too thick (~400 km) and asymmetric to be interpreted as a pancake. Classical plumes are, moreover, inconsistent with geochemical aspects of Hawaiian volcanism, which indicate a heterogeneous mantle source involving mafic lithologies such as eclogite, and not an exclusively thermal (i.e., isochemical) origin. To explore the dynamical behavior and melting of plumes with a substantial fraction of eclogite (10-18%), we performed thermochemical three-dimensional numerical experiments. Relative to the ambient-mantle peridotite, eclogite is intrinsically dense. This chemical density contrast is sensitive to phase changes in the upper mantle peaking at depths of 410-300 km and fading at 250-190 km, where eclogite is removed by partial melting. For models with an eclogite content >12%, these effects cause a complex regime of plume upwelling. The thermochemical plume forms a broad and thick pool at depths of 480-300 km (deep eclogite pool, or DEP), from which one or two secondary plumes rise to feed a hot shallow pancake that supports the seafloor swell. The rising secondary plumes undergo decompression melting at their deflection points to supply shield stage and rejuvenated stage volcanism. Their transience in vigor can reconcile observations of temporal variability of Hawaiian hotspot volcanism. The double layering of hot plume material

  20. Constraints on temporal velocity variations associated with an underground gas storage in the Gulf of Valencia using earthquake and seismic ambient noise data

    NASA Astrophysics Data System (ADS)

    Ugalde, Arantza; Gaite, Beatriz; Villaseñor, Antonio

    2016-04-01

    During September 2013, the injection of the base gas in a depleted oil reservoir used as an underground natural gas storage (CASTOR) caused a sudden seismic activity increase in the eastern coast of Spain. As a result, a compact cluster of more than 550 earthquakes with magnitudes mbLg > 0.7 were located in the shallow offshore area of the Gulf of Valencia during two months. The strongest event, having a magnitude of Mw=4.2, was followed by two Mw=4.1 events the day after and took place once the gas injection activities had finished. Using the seismic data recorded by permanent stations at more than 25 km from the injection well, we applied coda wave interferometry to monitor changes in seismic velocity structure between similar earthquakes. Then we solved for a continuous function of velocity changes with time by combining observations from all the closely located earthquake sources. The rate of repeating events allowed measurements of relative velocity variations for about 30 days on a daily scale. To extend the analysis in time, we also processed the continuous data using the autocorrelation of band-pass filtered ambient seismic noise. A 10-day average was required to achieve a sufficient signal-to-noise ratio in the 0.2-0.5 Hz and 0.5-1 Hz frequency bands. We quantified the time lags between two traces in the frequency and time domains by means of the Moving Window Cross Spectral Analysis and a Dynamic Time Warping technique, respectively. Injection of fluids in geologic formations causes variations in seismic velocities associated to changes in fluid saturation, increase in pore pressure or opening or enlargement of cracks due to the injection process. Time delays associated with stress changes caused by moderate to large earthquakes have also been established. In this work, we found no velocity changes during the gas injection period nor on the occasion of the Mw 4.2 earthquake. The sensitivity of the method is dependent on the seismic network geometry and

  1. Refined Local and Regional Seismic Velocity and Attenuation Models from Finite-Frequency Waveforms

    DTIC Science & Technology

    2008-09-30

    the velocities and quality factors of P and S waves specified on a l°xl ° horizontal grid and at 24 depths from 0 to 660 km. Figure 3 shows a few map...Technologies VPHf*"d VPh 0,a Xbr. dgo,u am 42SO 404 30 30 MW 3500 go am a’-s 42 5000 2 40 44o55 s50 0 45 s 6 o 4 35 4500 40 400 24 39 42 rNO 34400 am St

  2. Constraints from sill intrusions and their deeper source magma chambers (seismic high velocity bodies) on the origins of volcanic rifted margins

    NASA Astrophysics Data System (ADS)

    Rohrman, M.

    2015-12-01

    Volcanic rifted margins are characterized by massive igneous activity originating from the rift margin, characterized by seaward dipping reflectors. These consist of basalt flows and associated magmatic products, from deep magma chambers imaged on seismic data as High Velocity Bodies (HVB) with seismic velocities between 7 and 7.5 km/s. The relationship between rifting and decompression melting have been well quantified, using the HVB's as constraints on magmatic production to match extension models. Crucial in this approach are the relationship between extension and mantle plumes, with HVB's generated by mantle plumes often indicative of velocities between 7.5 - 7.8 km/s. Here I address information that can be obtained from sill complexes in sedimentary basins associated with rifting, representing the earliest phase of magmatism. I use a simple crustal scale hydrostatic model for dikes while incorporating the presence of sills by calculating magmatic overpressures from differences in pressure gradients. It transpires that the presence of sills as observed on seismic reflection and outcrop data, can be predicted. Modelling further suggests that the source of these sill complexes are large magma chambers at or near the Moho, and equate to HVB's observed on seismic data. Utilizing simple mass balance calculations, the ratio of cumulate thickness (from HVB thickness) and expelled melt (from accumulated sill thicknesses) can be related to MgO content in expelled liquids, primary magma and cumulates. Higher MgO content translates in higher seismic velocities. Thus, HVB velocity can subsequently be used to discriminate between mantle plume, or shallow rift related melting. The theory is applied to various basins bordering the northern North Atlantic (Vøring Basin, Jameson Land Basin and Rockall Basin) and South Atlantic rifts (Namibia), associated with the Paleocene/Eocene Iceland mantle plume and the Early Cretaceous Tristan da Cunha mantle plume magmatism respectively.

  3. Seismic Velocities and Thicknesses of Alluvial Deposits along Baker Creek in the Great Basin National Park, East-Central Nevada

    USGS Publications Warehouse

    Allander, Kip K.; Berger, David L.

    2009-01-01

    To better understand how proposed large-scale water withdrawals in Snake Valley may affect the water resources and hydrologic processes in the Great Basin National Park, the National Park Service needs to have a better understanding of the relations between streamflow and groundwater flow through alluvium and karst topography of the Pole Canyon Limestone. Information that is critical to understanding these relations is the thickness of alluvial deposits that overlay the Pole Canyon Limestone. In mid-April 2009, the U.S. Geological Survey and National Park Service used seismic refraction along three profiles adjacent to Baker Creek to further refine understanding of the local geology. Two refractors and three distinct velocity layers were detected along two of the profiles and a single refractor and two distinct velocity layers were detected along a third profile. In the unsaturated alluvium, average velocity was 2,000 feet per second, thickness ranged from about 7 to 20 feet along two profiles downstream of the Narrows, and thickness was at least 100 feet along a single profile upstream of the Narrows. Saturated alluvium was only present downstream of the Narrows - average velocity was 4,400 feet per second, and thickness ranged from about 40 to 110 feet. The third layer probably represented Pole Canyon Limestone or Tertiary granitic rock units with an average velocity of 12,500 feet per second. Along the upstream and middle profiles (profiles 3 and 1, respectively), the depth to top of the third layer ranged from at least 60 to 110 feet below land surface and is most likely the Pole Canyon Limestone. The third layer at the farthest downstream profile (profile 2) may be a Tertiary granitic rock unit. Baker Creek is disconnected from the groundwater system along the upstream profile (profile 3) and streamflow losses infiltrate vertically downward to the Pole Canyon Limestone. Along the downstream and middle profiles (profiles 2 and 1, respectively), the presence of

  4. USING RECENT ADVANCES IN 2D SEISMIC TECHNOLOGY AND SURFACE GEOCHEMISTRY TO ECONOMICALLY REDEVELOP A SHALLOW SHELF CARBONATE RESERVOIR: VERNON FIELD, ISABELLA COUNTY, MI.

    SciTech Connect

    James R. Wood; W. Quinlan

    2003-07-01

    The principal objective of this demonstration project is to test surface geochemical techniques for detecting trace amounts of light hydrocarbons in pore gases as a means of reducing risk in hydrocarbon exploration and production. As part of the project, a field demonstration was undertaken to assess the validity and usefulness of the microbial surface geochemical technique. The surface geochemistry data showed a strong anomaly in the Myrtle Beach area that would justify drilling by itself and even more so in conjunction with the structural interpretation from the 3D seismic data. The Myrtle Beach geochemical survey indicated a good to excellent prospect which was confirmed by drilling. Presented in this quarterly report is the Case History and Well Summary for the Myrtle Beach area in Burke County, North Dakota. This case history presents the important technical details regarding the geochemistry and the two vertical wells that are part of this field demonstration, and the applicability of these results to other demonstration projects. This format could be duplicated for other demonstration projects and is being used on all subsequent field demonstrations as they near completion.

  5. Simulation of seismic wave propagation in 2-D poroelastic media using weighted-averaging finite difference stencils in the frequency-space domain

    NASA Astrophysics Data System (ADS)

    Yang, Qingjie; Mao, Weijian

    2017-01-01

    The poroelastodynamic equations are used to describe the dynamic solid-fluid interaction in the reservoir. To obtain the intrinsic properties of reservoir rocks from geophysical data measured in both laboratory and field, we need an accurate solution of the wave propagation in porous media. At present, the poroelastic wave equations are mostly solved in the time domain, which involves a difficult and complicated time convolution. In order to avoid the issues caused by the time convolution, we propose a frequency-space domain method. The poroelastic wave equations are composed of a linear system in the frequency domain, which easily takes into account the effects of all frequencies on the dispersion and attenuation of seismic wave. A 25-point weighted-averaging finite different scheme is proposed to discretize the equations. For the finite model, the perfectly matched layer technique is applied at the model boundaries. We validated the proposed algorithm by testing three numerical examples of poroelastic models, which are homogenous, two-layered and heterogeneous with different fluids, respectively. The testing results are encouraging in the aspects of both computational accuracy and efficiency.

  6. USING RECENT ADVANCES IN 2D SEISMIC TECHNOLOGY AND SURFACE GEOCHEMISTRY TO ECONOMICALLY REDEVELOP A SHALLOW SHELF CARBONATE RESERVOIR: VERNON FIELD, ISABELLA COUNTY, MI.

    SciTech Connect

    James R. Wood; T.J. Bornhorst; S.D. Chittichk; William B. Harrison; W. Quinlan

    2001-01-01

    The geochemical sampling team collected additional 148 samples at Vernon Field along 5 new traverses. Most of the locations were sampled for three types of analyses: microbial, iodine and enzyme leach; no results from the second batch of samples were available in time for this report. In addition to the sampling, a study was begun on the feasibility of collecting and analyzing hydrocarbon gases (C1-C8) directly. Although several companies offer these services, the cost ($200-300/sample w/o sampling fee) is high, on par with the cost of a 3D seismic survey, and may not include the raw data. However direct sampling of reservoir gases collecting in the soil appear to offer the best approach and should be included in this study. It would probably work well at Vernon Field. It may be possible to lower costs considerably; initial estimates of $20/sample for GCMS (Gas Chromatography--mass spectrometry) analysis are attractive and might induce to Michigan producers to include soil surveys in their routine field work-ups. A complete set of digital data was assembled for Vernon Field and nearby locations. The set consists of well locations, formation top picks, lithologies and scanned images of driller's reports and scout tickets. Well logs are still being located. The annual meeting for the Class Revisit work group is tentatively scheduled for the week of March 1-7 in Tampa, Fl. By that time all of the geochemical data will be available and final decisions regarding drilling can be made.

  7. Validation of 3D Seismic Velocity Models Using the Spectral Element Method

    NASA Astrophysics Data System (ADS)

    Maceira, M.; Larmat, C. S.; Porritt, R. W.; Higdon, D.; Allen, R. M.

    2012-12-01

    For over a decade now, many research institutions have been focusing on addressing the Earth's 3D heterogeneities and complexities by improving tomographic methods. Utilizing dense array datasets, these efforts have led to unprecedented 3D seismic images, but little is done in terms of model validation or to provide any absolute assessment of model uncertainty. Furthermore, the question of "How good is a 3D geophysical model at representing the Earth's true physics? " remains largely not addressed in a time when 3D Earth models are used for societal and energy security. In the last few years, new horizons have opened up in earth structure imaging, with the advent of new numerical and mathematical methods in computational seismology and statistical sciences. We use these methods to tackle the question of model validation taking advantage of unique and extensive High Performance Computing resources available at Los Alamos National Laboratory. We present results from a study focused on validating 3D models for the Western USA generated using both ray-theoretical and finite-frequency approximations. In this manner we do not validate just the model but also the imaging technique. For this test case, we utilize the Dynamic North America (DNA) model family of UC Berkeley, as they are readily available in both formulations. We evaluate model performances by comparing observed and synthetic seismograms generated using the Spectral Element Method. Results show that both, finite-frequency and ray-theoretical DNA09 models, predict the observations well. Waveform cross-correlation coefficients show a difference in performance between models obtained with the finite-frequency or ray-theory limited to smallest periods (<15s), with no perceptible difference at longer periods (50-200s). At those shortest periods, and based on statistical analyses on S-wave phase delay measurements, finite-frequency shows an improvement over ray theory. We are also investigating the breakdown of ray

  8. High-Resolution Seismic Refraction and Reflection Images and Velocities Across the Mission Creek Strand of the San Andreas Fault, Desert Hot Springs, San Bernadino County, CA

    NASA Astrophysics Data System (ADS)

    Gandhok, G.; Rymer, M.; Goldman, M.

    2001-12-01

    In March 1998, the U.S. Geological Survey and Michigan Tech conducted a 700-m-long, high-resolution (5-m shot point and geophone spacing) seismic reflection/refraction survey across the Mission Creek strand of the San Andreas fault (SAF) in the town of Desert Hot Springs, California. Desert Hot Springs is located about 150 km east of Los Angeles along the San Andreas fault and experiences considerable seismic activity, including a 1948 M 6.5 earthquake. The Mission Creek fault (MCF) poses an obvious earthquake hazard to Desert Hot Springs and other nearby desert communities, including Palm Springs, but it also affects the ground-water resources available to the desert communities because the fault forms a known ground-water barrier. The principal objectives of the seismic imaging survey were: to measure seismic velocities in the upper 100 m, to better locate the principal trace of the MCF in the upper few hundred meters, and to determine lateral variations in the depth of the ground-water table. Because of the acquisition method used, both seismic reflections and refractions were available from the same data. We inverted first-arrival refractions to develop a velocity model and used the resulting velocity model to stack and migrate the reflection images. Velocities range from about 800 m/s at the surface to about 3500 m/s at depths ranging from 50 m to about 200 m, with deeper depths to basement on the southeast side of the MCF. Sediments with a velocity of 1500 m/s, the velocity of the water table in unconsolidated sediments, is about 10 m deep on the northern end of the profile but increases rapidly to 80 m across the MCF. Seismic reflection images show multiple faults along the 700-m-long profile, and several faults appear to form a flower structure similar to the SAF at Parkfield, California. The Mission Creek strand of the SAF, therefore, represents a fault zone that is at least hundreds of meters wide. The proximity of the MCF to Desert Hot Springs and other

  9. Post-seismic velocity changes along the 2008 M7.9 Wenchuan earthquake rupture zone revealed by S coda of repeating events

    NASA Astrophysics Data System (ADS)

    Li, Le; Niu, Fenglin; Chen, Qi-Fu; Su, Jinrong; He, Jiabin

    2017-02-01

    We investigated post-seismic velocity changes within the fault zone of the 2008 M7.9 Wenchuan earthquake using coda wave data of repeating small earthquakes. We employed template matching and grid search methods to identify well-defined repeating earthquakes in order to minimize artefacts induced by variations in source location. We identified a total of 12 isolated patches in the fault zone that ruptured more than twice in a 1 yr period after the M7.9 earthquake. We applied the coda wave interferometry technique to the waveform data of the 34 identified repeating earthquakes to estimate velocity changes between the first and subsequent events in each cluster. We found that major post-seismic velocity changes occurred in the southwestern part of the rupture area, where the main rupture was initiated and characterized by thrust motion, while the Beichuan area in the northeastern part of the rupture zone appears to experience very little post-seismic velocity changes.

  10. Analysis and algorithms for a regularized Cauchy problem arising from a non-linear elliptic PDE for seismic velocity estimation

    SciTech Connect

    Cameron, M.K.; Fomel, S.B.; Sethian, J.A.

    2009-01-01

    In the present work we derive and study a nonlinear elliptic PDE coming from the problem of estimation of sound speed inside the Earth. The physical setting of the PDE allows us to pose only a Cauchy problem, and hence is ill-posed. However we are still able to solve it numerically on a long enough time interval to be of practical use. We used two approaches. The first approach is a finite difference time-marching numerical scheme inspired by the Lax-Friedrichs method. The key features of this scheme is the Lax-Friedrichs averaging and the wide stencil in space. The second approach is a spectral Chebyshev method with truncated series. We show that our schemes work because of (1) the special input corresponding to a positive finite seismic velocity, (2) special initial conditions corresponding to the image rays, (3) the fact that our finite-difference scheme contains small error terms which damp the high harmonics; truncation of the Chebyshev series, and (4) the need to compute the solution only for a short interval of time. We test our numerical scheme on a collection of analytic examples and demonstrate a dramatic improvement in accuracy in the estimation of the sound speed inside the Earth in comparison with the conventional Dix inversion. Our test on the Marmousi example confirms the effectiveness of the proposed approach.

  11. The derivation of an anisotropic velocity model from combined surface and borehole seismic experiments at the COSC-1 borehole, central Sweden

    NASA Astrophysics Data System (ADS)

    Simon, Helge; Krauß, Felix; Hedin, Peter; Buske, Stefan; Giese, Rüdiger; Juhlin, Christopher

    2016-04-01

    The Scandinavian Caledonides provide a well preserved example of a Paleozoic continent-continent collision, where the surface geology in combination with geophysical data provide control of the geometry of parts of the Caledonian structure. The project COSC (Collisional Orogeny in the Scandinavian Caledonides) investigates the structure and physical conditions of the orogen units and the underlying basement with two approximately 2.5 km deep fully cored boreholes in western Jämtland, central Sweden. In 2014 the COSC-1 borehole was successfully drilled through the Seve Nappe Complex. This unit, mainly consisting of gneisses, belongs to the so-called Middle Allochthons and has been ductilely deformed and transported during collisional orogeny. A major seismic survey was conducted in and around the COSC-1 borehole which comprised both seismic reflection and transmission experiments. Combined with core analysis and downhole logging, the survey will allow extrapolation of the structures away from the borehole. The survey consisted of three parts: 1) a high-resolution zero-offset Vertical Seismic Profile (VSP), 2) a multi-azimuthal walkaway VSP in combination with three long offset surface receiver lines, and 3) a limited 3D seismic survey. Data from the multi-azimuthal walkaway VSP experiment and the long offset surface lines were used to derive a detailed velocity model around the borehole from the inversion of first arrival traveltimes. The comparison of velocities from these tomography results with a velocity function calculated from the zero-offset VSP revealed clear differences in velocities for mainly horizontally and vertically traveling waves. Therefore, an anisotropic VTI model was constructed, using the P-wave velocity function from zero-offset VSP and the Thomson parameters ɛ and δ. The latter were partly derived from ultrasonic lab measurements on COSC-1 core samples. Traveltimes were calculated with an anisotropic eikonal solver and serve as the basis

  12. West Flank Coso, CA FORGE Seismic Reflection

    SciTech Connect

    Doug Blankenship

    2016-05-16

    PDFs of seismic reflection profiles 101,110, 111 local to the West Flank FORGE site. 45 line kilometers of seismic reflection data are processed data collected in 2001 through the use of vibroseis trucks. The initial analysis and interpretation of these data was performed by Unruh et al. (2001). Optim processed these data by inverting the P-wave first arrivals to create a 2-D velocity structure. Kirchhoff images were then created for each line using velocity tomograms (Unruh et al., 2001).

  13. USING RECENT ADVANCES IN 2D SEISMIC TECHNOLOGY AND SURFACE GEOCHEMISTRY TO ECONOMICALLY REDEVELOP A SHALLOW SHELF CARBONATE RESERVOIR: VERNON FIELD, ISABELLA COUNTY, MI

    SciTech Connect

    James R. Wood; A. Wylie; W. Quinlan

    2004-04-01

    One of the main objectives of this demonstration project is to test surface geochemical techniques for detecting trace amounts of light hydrocarbons in pore gases as a means of reducing risk in hydrocarbon exploration and production. As part of the project, several field demonstrations were undertaken to assess the validity and usefulness of the microbial surface geochemical technique. The important observations from each of these field demonstrations are briefly reviewed in this annual report. These demonstrations have been successful in identifying the presence or lack of hydrocarbons in the subsurface and can be summarized as follows: (1) The surface geochemistry data showed a fair-to-good microbial anomaly that may indicate the presence of a fault or stratigraphic facies change across the drilling path of the State Springdale & O'Driscoll No.16-16 horizontal demonstration well in Manistee County, Michigan. The well was put on production in December 2003. To date, the well is flowing nearly 100 barrels of liquid hydrocarbons per day plus gas, which is a good well in Michigan. Reserves have not been established yet. Two successful follow-up horizontal wells have also been drilled in the Springdale area. Additional geochemistry data will be collected in the Springdale area in 2004. (2) The surface geochemistry sampling in the Bear Lake demonstration site in Manistee County, Michigan was updated after the prospect was confirmed and production begun; the original subsurface and seismic interpretation used to guide the location of the geochemical survey for the Charlich Fauble re-entry was different than the interpretation used by the operator who ultimately drilled the well. As expected, the anomaly appears to be diminishing as the positive (apical) microbial anomaly is replaced by a negative (edge) anomaly, probably due to the pressure draw-down in the reservoir. (3) The geochemical sampling program over the Vernon Field, Isabella County, Michigan is now

  14. Seismic Velocity and Attenuation Images of the Nankai Subduction Zone: New Insight into Megathrust Earthquakes

    NASA Astrophysics Data System (ADS)

    Zhao, D.; Liu, X.

    2015-12-01

    Dapeng Zhao, Xin Liu (Tohoku University, Japan) Many large interplate earthquakes (M > 7) occurred on the megathrust fault of the Nankai subduction zone, where the young Philippine Sea plate is subducting beneath the Eurasian plate along the Nankai Trough. The most significant megathrust events in this region are the 1944 Tonankai (Mw 8.1), the 1946 Nankai (Mw 8.3) and the 1968 Hyuganada (Mw 7.5) earthquakes. The landward down-dip limit of the Nankai megathrust seismogenic zone is located at a depth of ~30-40 km, marked by the occurrence of episodic tremors and slips. The seaward up-dip limit is not very distinct, being generally at a depth of ~10 km and correlated with a suite of diagenetic to low-grade metamorphic processes. To clarify the causal mechanism of the megathrust earthquakes, we studied the detailed three-dimensional P and S wave velocity (Vp and Vs), attenuation (Qp and Qs), and Poisson's ratio (σ) structures of the SW Japan forearc, using a large number of high-quality arrival time and t* data measured precisely from seismograms of local earthquakes. The suboceanic earthquakes used are relocated precisely using sP depth phase and ocean bottom seismometer data. Our results show the existence of two prominent high-V, high-Q, and low-σ patches separated by low-V, low-Q, and high-σ anomalies in the Nankai megathrust zone. Megathrust earthquakes during 1900 to 2013 nucleated in or around the high-V, high-Q, and low-σ patches, which may represent strongly coupled areas (i.e., asperities) in the megathrust zone. This feature is very similar to that of the NE Japan megathrust zone where the great Tohoku-oki earthquake (Mw 9.0) occurred on 11 March 2011 (e.g., Zhao, 2015). These results indicate that structural heterogeneities in the megathrust zone, such as the subducting seafloor topography and compositional variations, control the nucleation of megathrust earthquakes.

  15. Crustal shear wave velocity structure of the western United States inferred from ambient seismic noise and earthquake data

    NASA Astrophysics Data System (ADS)

    Moschetti, M. P.; Ritzwoller, M. H.; Lin, F.-C.; Yang, Y.

    2010-10-01

    Surface wave dispersion measurements from ambient seismic noise and array-based measurements from teleseismic earthquakes observed with the EarthScope/USArray Transportable Array (TA) are inverted using a Monte Carlo method for a 3-D VS model of the crust and uppermost mantle beneath the western United States. The combination of data from these methods produces exceptionally broadband dispersion information from 6 to 100 s period, which constrains shear wave velocity structures in the crust and uppermost mantle to a depth of more than 100 km. The high lateral resolution produced by the TA network and the broadbandedness of the dispersion information motivate the question of the appropriate parameterization for a 3-D model, particularly for the crustal part of the model. We show that a relatively simple model in which VS increases monotonically with depth in the crust can fit the data well across more than 90% of the study region, except in eight discrete areas where greater crustal complexity apparently exists. The regions of greater crustal complexity are the Olympic Peninsula, the MendocinoTriple Junction, the Yakima Fold Belt, the southern Cascadia back arc, the Great Central Valley of California, the Salton Trough, the Snake River Plain, and the Wasatch Mountains. We also show that a strong Rayleigh-Love discrepancy exists across much of the western United States, which can be resolved by introducing radial anisotropy in both the mantle and notably the crust. We focus our analysis on demonstrating the existence of crustal radial anisotropy and primarily discuss the crustal part of the isotropic model that results from the radially anisotropic model by Voigt averaging. Model uncertainties from the Monte Carlo inversion are used to identify robust isotropic features in the model. The uppermost mantle beneath the western United States is principally composed of four large-scale shear wave velocity features, but lower crustal velocity structure exhibits far greater

  16. Frictional Properties and Microstructure of Calcite-Rich Fault Gouges Sheared at Sub-Seismic Sliding Velocities

    NASA Astrophysics Data System (ADS)

    Verberne, B. A.; Spiers, C. J.; Niemeijer, A. R.; De Bresser, J. H. P.; De Winter, D. A. M.; Plümper, O.

    2014-10-01

    We report an experimental and microstructural study of the frictional properties of simulated fault gouges prepared from natural limestone (96 % CaCO3) and pure calcite. Our experiments consisted of direct shear tests performed, under dry and wet conditions, at an effective normal stress of 50 MPa, at 18-150 °C and sliding velocities of 0.1-10 μm/s. Wet experiments used a pore water pressure of 10 MPa. Wet gouges typically showed a lower steady-state frictional strength ( μ = 0.6) than dry gouges ( μ = 0.7-0.8), particularly in the case of the pure calcite samples. All runs showed a transition from stable velocity strengthening to (potentially) unstable velocity weakening slip above 80-100 °C. All recovered samples showed patchy, mirror-like surfaces marking boundary shear planes. Optical study of sections cut normal to the shear plane and parallel to the shear direction showed both boundary and inclined shear bands, characterized by extreme grain comminution and a crystallographic preferred orientation. Cross-sections of boundary shears, cut normal to the shear direction using focused ion beam—SEM, from pure calcite gouges sheared at 18 and 150 °C, revealed dense arrays of rounded, ~0.3 μm-sized particles in the shear band core. Transmission electron microscopy showed that these particles consist of 5-20 nm sized calcite nanocrystals. All samples showed evidence for cataclasis and crystal plasticity. Comparing our results with previous models for gouge friction, we suggest that frictional behaviour was controlled by competition between crystal plastic and granular flow processes active in the shear bands, with water facilitating pressure solution, subcritical cracking and intergranular lubrication. Our data have important implications for the depth of the seismogenic zone in tectonically active limestone terrains. Contrary to recent claims, our data also demonstrate that nanocrystalline mirror-like slip surfaces in calcite(-rich) faults are not

  17. Deep Downhole Seismic Testing at the Waste Treatment Plant Site, Hanford, WA. Volume VI S-Wave Measurements in Borehole C4997 Seismic Records, Wave-Arrival Identifications and Interpreted S-Wave Velocity Profile.

    SciTech Connect

    Stokoe, Kenneth H.; Li, Song Cheng; Cox, Brady R.; Menq, Farn-Yuh

    2007-06-06

    Velocity measurements in shallow sediments from ground surface to approximately 370 to 400 feet bgs were collected by Redpath Geophysics using impulsive S- and P-wave seismic sources (Redpath 2007). Measurements below this depth within basalt and sedimentary interbeds were made by UTA between October and December 2006 using the T-Rex vibratory seismic source in each of the three boreholes. Results of these measurements including seismic records, wave-arrival identifications and interpreted velocity profiles are presented in the following six volumes: I. P-Wave Measurements in Borehole C4993 II. P-Wave Measurements in Borehole C4996 III. P-Wave Measurements in Borehole C4997 IV. S-Wave Measurements in Borehole C4993 V. S-Wave Measurements in Borehole C4996 VI. S-Wave Measurements in Borehole C4997 In this volume (VI), all S-wave measurements are presented that were performed in Borehole C4997 at the WTP with T-Rex as the seismic source and the Lawrence Berkeley National Laboratory (LBNL) 3-D wireline geophone as the at-depth borehole receiver.

  18. Deep Downhole Seismic Testing at the Waste Treatment Plant Site, Hanford, WA. Volume V S-Wave Measurements in Borehole C4996 Seismic Records, Wave-Arrival Identifications and Interpreted S-Wave Velocity Profile.

    SciTech Connect

    Stokoe, Kenneth H.; Li, Song Cheng; Cox, Brady R.; Menq, Farn-Yuh

    2007-06-06

    Velocity measurements in shallow sediments from ground surface to approximately 370 to 400 feet bgs were collected by Redpath Geophysics using impulsive S- and P-wave seismic sources (Redpath 2007). Measurements below this depth within basalt and sedimentary interbeds were made by UTA between October and December 2006 using the T-Rex vibratory seismic source in each of the three boreholes. Results of these measurements including seismic records, wave-arrival identifications and interpreted velocity profiles are presented in the following six volumes: I. P-Wave Measurements in Borehole C4993 II. P-Wave Measurements in Borehole C4996 III. P-Wave Measurements in Borehole C4997 IV. S-Wave Measurements in Borehole C4993 V. S-Wave Measurements in Borehole C4996 VI. S-Wave Measurements in Borehole C4997 In this volume (V), all S-wave measurements are presented that were performed in Borehole C4996 at the WTP with T-Rex as the seismic source and the Lawrence Berkeley National Laboratory (LBNL) 3-D wireline geophone as the at-depth borehole receiver.

  19. Velocity measurements in reservoir rock samples from a limestone unit using various pore fluids, and integration with well logs and seismic data

    NASA Astrophysics Data System (ADS)

    Purcell, Christopher C.

    One of the most promising methods proposed to mitigate excess global CO2 is carbon sequestration, a process in which CO2 is pressurized and injected into geologic formations. A technical challenge surrounding the geologic sequestration of CO2 is tracking the movement of the fluids pumped underground. Monitoring, verification and accounting activities related to CO2 storage are important for assuring that sequestered CO2 does not escape to the surface. Tracking this carbon dioxide can be considerably aided by reflection seismic-based detection methods. This thesis employs lab scale velocity measurements of core samples, under in situ reservoir pressure and temperature conditions, combined with multiple 3D reflection seismic surveys, to effectively track the movements of CO2 after injection. The National Energy Technology Laboratory (NETL) of the United States Department of Energy began to participate in research of an enhanced oil recovery project including the injection of CO2 deep into a reservoir structure, repeat reflection seismic surveys, collection of well logs, and rock physics analysis of sample core material. Our study is concentrated on a small area of this field around the injection site. At this site, hydrocarbons were previously moved via water injection. We obtained ultrasonic elastic wave velocity measurements that were conducted under several different saturation scenarios, including CO2 saturated samples, so a quantification of the conditions in different parts of the reservoir could be determined. This approach can help to characterize what is taking place inside the reservoir. Core-scale velocity measurements under in situ conditions allow us to predict changes in future well log or seismic surveys. The large amounts of CO2 accumulated over the past four decades in this reservoir give us a real world example of how an EOR site matures. Combining core scale, well log scale, and seismic scale measurements allows a better understanding of the

  20. Slip rates and seismic potential on the East Anatolian Fault System using an improved GPS velocity field

    NASA Astrophysics Data System (ADS)

    Aktug, B.; Ozener, H.; Dogru, A.; Sabuncu, A.; Turgut, B.; Halicioglu, K.; Yilmaz, O.; Havazli, E.

    2016-03-01

    The East Anatolian Fault System (EAFS) is the second major fault system in Turkey, following the North Anatolian Fault System (NAFS). Unlike the NAFS, which produced 11 large earthquakes in the last ∼75 years, the EAFS has been relatively quiet during the same period of time. While historical records show that the EAFS has the potential to produce large earthquakes, the fault slip rates on the EAFS were not studied in detail, and were not quantified sufficiently. This is possibly due to the relatively low seismicity and slow slip-rates of the EAFS with respect to the NAFS. However, the determination of the slip rates of the EAFS is equally important in order to understand the kinematics of the Anatolian plate. In this study, we collected and analyzed new survey-type GPS data, and homogeneously combined published velocities from other studies, to form the most complete GPS data set covering the EAFS. In particular, continuous GPS observations were utilized for the first time to study the northern part of the EAFS. The results of the analysis give well-constrained slip rates of the northwestern segments of the EAFS, which is further connected to the Dead Sea Fault System (DSFS) in the south. The results show that while the slip rate of the EAFS is nearly constant (∼10 mm/yr) to the north of Türkoğlu, it then decreases to 4.5 mm/yr in the south. The slip rate on the northern part of the Dead Sea Fault System (DSFS) was also found to be 4.2 ± 1.3 mm/yr, consistent with earlier studies. The contraction rates along the EAFS are below 5 mm/yr, except for the northernmost part near Karliova, where it reaches a maximum value of 6.3 ± 1.0 mm/yr. The results also show that two well-known seismic gaps across the EAFS, Palu-Sincik and Çelikhan-Türkoğlu segments, have slip deficits of 1.5 m and 5.2 m and have the potential to produce earthquakes with magnitudes of Mw7.4 and Mw7.7, respectively.

  1. Seismic velocity model of the central United States (Version 1): Description and simulation of the 18 April 2008 Mt. Carmel, Illinois, Earthquake

    USGS Publications Warehouse

    Ramírez‐Guzmán, Leonardo; Boyd, Oliver S.; Hartzell, Stephen; Williams, Robert A.

    2012-01-01

    We have developed a new three‐dimensional seismic velocity model of the central United States (CUSVM) that includes the New Madrid Seismic Zone (NMSZ) and covers parts of Arkansas, Mississippi, Alabama, Illinois, Missouri, Kentucky, and Tennessee. The model represents a compilation of decades of crustal research consisting of seismic, aeromagnetic, and gravity profiles; geologic mapping; geophysical and geological borehole logs; and inversions of the regional seismic properties. The density, P‐ and S‐wave velocities are synthesized in a stand‐alone spatial database that can be queried to generate the required input for numerical seismic‐wave propagation simulations. We test and calibrate the CUSVM by simulating ground motions of the 18 April 2008 Mw 5.4 Mt. Carmel, Illinois, earthquake and comparing the results with observed records within the model area. The selected stations in the comparisons reflect different geological site conditions and cover distances ranging from 10 to 430 km from the epicenter. The results, based on a qualitative and quantitative goodness‐of‐fit (GOF) characterization, indicate that both within and outside the Mississippi Embayment the CUSVM reasonably reproduces: (1) the body and surface‐wave arrival times and (2) the observed regional variations in ground‐motion amplitude, cumulative energy, duration, and frequency content up to a frequency of 1.0 Hz. In addition, we discuss the probable structural causes for the ground‐motion patterns in the central United States that we observed in the recorded motions of the 18 April Mt. Carmel earthquake.

  2. Seismic velocity structure of the Juan de Fuca and Gorda plates revealed by a joint inversion of ambient noise and regional earthquakes

    NASA Astrophysics Data System (ADS)

    Gao, Haiying

    2016-05-01

    The crust and upper mantle seismic structure, spanning from the Juan de Fuca and Gorda spreading centers to the Cascade back arc, is imaged with full-wave propagation simulation and a joint inversion of ambient noise and regional earthquake recordings. The spreading c