NASA Technical Reports Server (NTRS)
Dahl, Milo D.
2000-01-01
An acoustic source inside of a 2-D jet excites an instability wave in the shear layer resulting in sound radiating away from the shear layer. Solve the linearized Euler equations to predict the sound radiation outside of the jet. The jet static pressure is assumed to be constant. The jet flow is parallel and symmetric about the x-axis. Use a symmetry boundary condition along the x-axis.
A scanning-mode 2D shear wave imaging (s2D-SWI) system for ultrasound elastography.
Qiu, Weibao; Wang, Congzhi; Li, Yongchuan; Zhou, Juan; Yang, Ge; Xiao, Yang; Feng, Ge; Jin, Qiaofeng; Mu, Peitian; Qian, Ming; Zheng, Hairong
2015-09-01
Ultrasound elastography is widely used for the non-invasive measurement of tissue elasticity properties. Shear wave imaging (SWI) is a quantitative method for assessing tissue stiffness. SWI has been demonstrated to be less operator dependent than quasi-static elastography, and has the ability to acquire quantitative elasticity information in contrast with acoustic radiation force impulse (ARFI) imaging. However, traditional SWI implementations cannot acquire two dimensional (2D) quantitative images of the tissue elasticity distribution. This study proposes and evaluates a scanning-mode 2D SWI (s2D-SWI) system. The hardware and image processing algorithms are presented in detail. Programmable devices are used to support flexible control of the system and the image processing algorithms. An analytic signal based cross-correlation method and a Radon transformation based shear wave speed determination method are proposed, which can be implemented using parallel computation. Imaging of tissue mimicking phantoms, and in vitro, and in vivo imaging test are conducted to demonstrate the performance of the proposed system. The s2D-SWI system represents a new choice for the quantitative mapping of tissue elasticity, and has great potential for implementation in commercial ultrasound scanners.
2D instabilities of surface gravity waves on a linear shear current
NASA Astrophysics Data System (ADS)
Francius, Marc; Kharif, Christian
2016-04-01
Periodic 2D surface water waves propagating steadily on a rotational current have been studied by many authors (see [1] and references therein). Although the recent important theoretical developments have confirmed that periodic waves can exist over flows with arbitrary vorticity, their stability and their nonlinear evolution have not been much studied extensively so far. In fact, even in the rather simple case of uniform vorticity (linear shear), few papers have been published on the effect of a vertical shear current on the side-band instability of a uniform wave train over finite depth. In most of these studies [2-5], asymptotic expansions and multiple scales method have been used to obtain envelope evolution equations, which allow eventually to formulate a condition of (linear) instability to long modulational perturbations. It is noted here that this instability is often referred in the literature as the Benjamin-Feir or modulational instability. In the present study, we consider the linear stability of finite amplitude two-dimensional, periodic water waves propagating steadily on the free surface of a fluid with constant vorticity and finite depth. First, the steadily propagating surface waves are computed with steepness up to very close to the highest, using a Fourier series expansions and a collocation method, which constitutes a simple extension of Fenton's method [6] to the cases with a linear shear current. Then, the linear stability of these permanent waves to infinitesimal 2D perturbations is developed from the fully nonlinear equations in the framework of normal modes analysis. This linear stability analysis is an extension of [7] to the case of waves in the presence of a linear shear current and permits the determination of the dominant instability as a function of depth and vorticity for a given steepness. The numerical results are used to assess the accuracy of the vor-NLS equation derived in [5] for the characteristics of modulational
Generation and Radiation of Acoustic Waves from a 2-D Shear Layer using the CE/SE Method
NASA Technical Reports Server (NTRS)
Loh, Ching Y.; Wang, Xiao Y.; Chang, Sin-Chung; Jorgenson, Philip C. E.
2000-01-01
In the present work, the generation and radiation of acoustic waves from a 2-D shear layer problem is considered. An acoustic source inside of a 2-D jet excites an instability wave in the shear layer, resulting in sound Mach radiation. The numerical solution is obtained by solving the Euler equations using the space time conservation element and solution element (CE/SE) method. Linearization is achieved through choosing a small acoustic source amplitude. The Euler equations are nondimensionalized as instructed in the problem statement. All other conditions are the same except that the Crocco's relation has a slightly different form. In the following, after a brief sketch of the CE/SE method, the numerical results for this problem are presented.
Periodically sheared 2D Yukawa systems
Kovács, Anikó Zsuzsa; Hartmann, Peter; Donkó, Zoltán
2015-10-15
We present non-equilibrium molecular dynamics simulation studies on the dynamic (complex) shear viscosity of a 2D Yukawa system. We have identified a non-monotonic frequency dependence of the viscosity at high frequencies and shear rates, an energy absorption maximum (local resonance) at the Einstein frequency of the system at medium shear rates, an enhanced collective wave activity, when the excitation is near the plateau frequency of the longitudinal wave dispersion, and the emergence of significant configurational anisotropy at small frequencies and high shear rates.
Generation and Radiation of Acoustic Waves from a 2-D Shear Layer
NASA Technical Reports Server (NTRS)
Agarwal, Anurag; Morris, Philip J.
2000-01-01
A parallel numerical simulation of the radiation of sound from an acoustic source inside a 2-D jet is presented in this paper. This basic benchmark problem is used as a test case for scattering problems that are presently being solved by using the Impedance Mismatch Method (IMM). In this technique, a solid body in the domain is represented by setting the acoustic impedance of each medium, encountered by a wave, to a different value. This impedance discrepancy results in reflected and scattered waves with appropriate amplitudes. The great advantage of the use of this method is that no modifications to a simple Cartesian grid need to be made for complicated geometry bodies. Thus, high order finite difference schemes may be applied simply to all parts of the domain. In the IMM, the total perturbation field is split into incident and scattered fields. The incident pressure is assumed to be known and the equivalent sources for the scattered field are associated with the presence of the scattering body (through the impedance mismatch) and the propagation of the incident field through a non-uniform flow. An earlier version of the technique could only handle uniform flow in the vicinity of the source and at the outflow boundary. Scattering problems in non-uniform mean flow are of great practical importance (for example, scattering from a high lift device in a non-uniform mean flow or the effects of a fuselage boundary layer). The solution to this benchmark problem, which has an acoustic wave propagating through a non-uniform mean flow, serves as a test case for the extensions of the IMM technique.
Tian, Jie; Liu, Qianqi; Wang, Xi; Xing, Ping; Yang, Zhuowen; Wu, Changjun
2017-01-01
As breast cancer tissues are stiffer than normal tissues, shear wave elastography (SWE) can locally quantify tissue stiffness and provide histological information. Moreover, tissue stiffness can be observed on three-dimensional (3D) colour-coded elasticity maps. Our objective was to evaluate the diagnostic performances of quantitative features in differentiating breast masses by two-dimensional (2D) and 3D SWE. Two hundred ten consecutive women with 210 breast masses were examined with B-mode ultrasound (US) and SWE. Quantitative features of 3D and 2D SWE were assessed, including elastic modulus standard deviation (ESDE) measured on SWE mode images and ESDU measured on B-mode images, as well as maximum elasticity (Emax). Adding quantitative features to B-mode US improved the diagnostic performance (p < 0.05) and reduced false-positive biopsies (p < 0.0001). The area under the receiver operating characteristic curve (AUC) of 3D SWE was similar to that of 2D SWE for ESDE (p = 0.026) and ESDU (p = 0.159) but inferior to that of 2D SWE for Emax (p = 0.002). Compared with ESDU, ESDE showed a higher AUC on 2D (p = 0.0038) and 3D SWE (p = 0.0057). Our study indicates that quantitative features of 3D and 2D SWE can significantly improve the diagnostic performance of B-mode US, especially 3D SWE ESDE, which shows considerable clinical value. PMID:28106134
Luo, Y.; Xia, J.; Liu, J.; Xu, Y.; Liu, Q.
2008-01-01
Multichannel Analysis of Surface Waves utilizes a multichannel recording system to estimate near-surface shear (S)-wave velocities from high-frequency Rayleigh waves. A pseudo-2D S-wave velocity (vS) section is constructed by aligning 1D models at the midpoint of each receiver spread and using a spatial interpolation scheme. The horizontal resolution of the section is therefore most influenced by the receiver spread length and the source interval. The receiver spread length sets the theoretical lower limit and any vS structure with its lateral dimension smaller than this length will not be properly resolved in the final vS section. A source interval smaller than the spread length will not improve the horizontal resolution because spatial smearing has already been introduced by the receiver spread. In this paper, we first analyze the horizontal resolution of a pair of synthetic traces. Resolution analysis shows that (1) a pair of traces with a smaller receiver spacing achieves higher horizontal resolution of inverted S-wave velocities but results in a larger relative error; (2) the relative error of the phase velocity at a high frequency is smaller than at a low frequency; and (3) a relative error of the inverted S-wave velocity is affected by the signal-to-noise ratio of data. These results provide us with a guideline to balance the trade-off between receiver spacing (horizontal resolution) and accuracy of the inverted S-wave velocity. We then present a scheme to generate a pseudo-2D S-wave velocity section with high horizontal resolution using multichannel records by inverting high-frequency surface-wave dispersion curves calculated through cross-correlation combined with a phase-shift scanning method. This method chooses only a pair of consecutive traces within a shot gather to calculate a dispersion curve. We finally invert surface-wave dispersion curves of synthetic and real-world data. Inversion results of both synthetic and real-world data demonstrate that
Thiele, M; Madsen, B S; Procopet, B; Hansen, J F; Møller, L M S; Detlefsen, S; Berzigotti, A; Krag, A
2016-06-07
Purpose: Liver stiffness measurement by real-time 2-dimensional shear wave elastography (2D-SWE) lacks universal reliability criteria. We sought to assess whether previously published 2D-SWE reliability criteria for portal hypertension were applicable for the evaluation of liver fibrosis and cirrhosis, and to look for criteria that minimize the risk of misclassification in this setting. Materials and Methods: In a biopsy-controlled diagnostic study, we obtained five 2D-SWE measurements of optimal image quality. Correctly classified cases of fibrosis and cirrhosis were compared to misclassified cases. We compared reliability predictors (standard deviation (SD), SD/mean, size of region of interest (ROI) and difference between a single measurement and the patient's median) with those obtained in a prior study on clinically significant portal hypertension. Results: We obtained 678 2D-SWE measurements from 142 patients. Overall, the variability in liver stiffness within single 2D-SWE measurements was low (SD = 1.1 ± 1.5kPa; SD/mean = 12 ± 9 %). Intra-observer analysis showed almost perfect concordance (intraclass correlation coefficient = 0.95; 95 % CI 0.94 - 0.96; average difference from median = 0.4 ± 0.9kPa). For the diagnosis of cirrhosis, a smaller SD (optimally ≤ 1.75 kPa) and larger ROI size (optimally ≥ 18 mm) were associated with higher accuracy. Similarly, within the published cohort of patients assessed for portal hypertension, a low variability of measurements was associated with high reliability. Conclusion: A high quality 2D-SWE elastogram ensures low variability and high reliability, regardless of indication. We recommend aiming for a combination of low standard deviation and large ROI.
Gerber, Ludmila; Kasper, Daniela; Fitting, Daniel; Knop, Viola; Vermehren, Annika; Sprinzl, Kathrin; Hansmann, Martin L; Herrmann, Eva; Bojunga, Joerg; Albert, Joerg; Sarrazin, Christoph; Zeuzem, Stefan; Friedrich-Rust, Mireen
2015-09-01
Two-dimensional shear wave elastography (2-D SWE) is an ultrasound-based elastography method integrated into a conventional ultrasound machine. It can evaluate larger regions of interest and, therefore, might be better at determining the overall fibrosis distribution. The aim of this prospective study was to compare 2-D SWE with the two best evaluated liver elastography methods, transient elastography and acoustic radiation force impulse (point SWE using acoustic radiation force impulse) imaging, in the same population group. The study included 132 patients with chronic hepatopathies, in which liver stiffness was evaluated using transient elastography, acoustic radiation force impulse imaging and 2-D SWE. The reference methods were liver biopsy for the assessment of liver fibrosis (n = 101) and magnetic resonance imaging/computed tomography for the diagnosis of liver cirrhosis (n = 31). No significant difference in diagnostic accuracy, assessed as the area under the receiver operating characteristic curve (AUROC), was found between the three elastography methods (2-D SWE, transient elastography, acoustic radiation force impulse imaging) for the diagnosis of significant and advanced fibrosis and liver cirrhosis in the "per protocol" (AUROCs for fibrosis stages ≥2: 0.90, 0.95 and 0.91; for fibrosis stage [F] ≥3: 0.93, 0.95 and 0.94; for F = 4: 0.92, 0.96 and 0.92) and "intention to diagnose" cohort (AUROCs for F ≥2: 0.87, 0.92 and 0.91; for F ≥3: 0.91, 0.93 and 0.94; for F = 4: 0.88, 0.90 and 0.89). Therefore, 2-D SWE, ARFI imaging and transient elastography seem to be comparably good methods for non-invasive assessment of liver fibrosis.
2D continuous spectrum of shear Alfvén waves in the presence of a magnetic island
NASA Astrophysics Data System (ADS)
Biancalani, Alessandro; Chen, Liu; Pegoraro, Francesco; Zonca, Fulvio
2011-02-01
The radial structure of the continuous spectrum of shear Alfvén modes is calculated in the presence of a magnetic island in tokamak plasmas. Modes with the same helicity as the magnetic island are considered in a slab model approximation. In this framework, with an appropriate rotation of the coordinates the problem reduces to two dimensions. Geometrical effects due to the shape of the flux surface's cross-section are retained to all orders. On the other hand, we neglect toroidal couplings but fully take into account curvature effects responsible for the beta-induced gap in the low-frequency part of the continuous spectrum. New continuum accumulation points are found at the O-point of the magnetic island. The beta-induced Alfvén eigenmodes (BAE) continuum accumulation point is found to be positioned at the separatrix flux surface. The most remarkable result is the modification of the BAE continuum accumulation point frequency, due to the presence of the magnetic island.
NASA Astrophysics Data System (ADS)
Flores Estrella, H.; Henke, M.
2015-12-01
For the characterization of the subsurface of the Hartoušov CO2 degassing area in the Cheb Basin, NW Bohemia, Czech Republic several different approaches have been made. However, no active seismic characterization has been presented, nor published. The Multichannel Analysis of Surface Waves (MASW) offers an useful tool to estimate vertical and horizontal velocity changes of the shallow subsurface. This can correlate to variations on rock elastic properties and/or fluid content, and represents the subsurface-layering.Surface waves were stimulated using a sledgehammer as source, and were measured with 48 vertical geophones with spacing of 1 m and the roll along method with a setup displacement of 2 m. Two source offsets, 10 m and 30 m, were used to increase the data quality and the resolution.The analysis of propagation velocities leads to dispersion curves from which 1D shear wave velocity profiles can be inverted. Those will be interpolated to create a 2D ground stiffness map. The measurements were taken in the NW area of the main degassing zone and are partially in the same spot of former investigations, i.e. CO2 concentration and gas flux measurements, electric and gravimetric surveys and continuous seismic noise measurements.Changes in the structure of the 2D velocity maps can be explained potentially with the occurrence of fluid paths and their diffusion in the subsurface or the existence of the Počatky-Plesná fault zone, which position is not fully understood yet or both features in combination.
Ultrasonic shear wave couplant
Kupperman, David S.; Lanham, Ronald N.
1985-01-01
Ultrasonically testing of an article at high temperatures is accomplished by the use of a compact layer of a dry ceramic powder as a couplant in a method which involves providing an ultrasonic transducer as a probe capable of transmitting shear waves, coupling the probe to the article through a thin compact layer of a dry ceramic powder, propagating a shear wave from the probe through the ceramic powder and into the article to develop echo signals, and analyzing the echo signals to determine at least one physical characteristic of the article.
Shear wave transmissivity measurement by color Doppler shear wave imaging
NASA Astrophysics Data System (ADS)
Yamakoshi, Yoshiki; Yamazaki, Mayuko; Kasahara, Toshihiro; Sunaguchi, Naoki; Yuminaka, Yasushi
2016-07-01
Shear wave elastography is a useful method for evaluating tissue stiffness. We have proposed a novel shear wave imaging method (color Doppler shear wave imaging: CD SWI), which utilizes a signal processing unit in ultrasound color flow imaging in order to detect the shear wave wavefront in real time. Shear wave velocity is adopted to characterize tissue stiffness; however, it is difficult to measure tissue stiffness with high spatial resolution because of the artifact produced by shear wave diffraction. Spatial average processing in the image reconstruction method also degrades the spatial resolution. In this paper, we propose a novel measurement method for the shear wave transmissivity of a tissue boundary. Shear wave wavefront maps are acquired by changing the displacement amplitude of the shear wave and the transmissivity of the shear wave, which gives the difference in shear wave velocity between two mediums separated by the boundary, is measured from the ratio of two threshold voltages required to form the shear wave wavefronts in the two mediums. From this method, a high-resolution shear wave amplitude imaging method that reconstructs a tissue boundary is proposed.
Shear viscosity measurements in a 2D Yukawa liquid
NASA Astrophysics Data System (ADS)
Nosenko, Volodymyr
2005-03-01
Shear viscosity was measured for a 2D strongly-coupled Yukawa liquid. First, we formed a dilute monolayer suspension of microspheres in a partially-ionized rarefied gas, i.e., a dusty plasma. In the absence of manipulation, the suspension forms a 2D triangular lattice. We used a new in-situ method of applying a shear stress using the scattering forces applied by counter-propagating laser beams. The lattice melted and a shear flow formed. Using digital video microscopy for direct imaging and particle tracking, the microscopic dynamics of the shear flow are observed. Averaging the velocities of individual microspheres, a velocity flow profile was calculated. Using the Navier-Stokes equation with an additional frictional term to account for gas drag, we fit the velocity profile. The fit yielded the value of the shear viscosity. The kinematic viscosity of our particle suspension is of order 1 mm^2s-1, which is comparable to that for liquid water. We believe this is the first report of a rheological measurement in a 2D dusty plasma. This talk is based on V. Nosenko and J. Goree, PRL 93, 155004 (2004).
A new method for shear wave speed estimation in shear wave elastography.
Engel, Aaron J; Bashford, Gregory R
2015-12-01
Visualization of mechanical properties of tissue can aid in noninvasive pathology diagnosis. Shear wave elastography (SWE) measures the elastic properties of soft tissues by estimation of local shear wave propagation speed. In this paper, a new robust method for estimation of shear wave speed is introduced which has the potential for simplifying continuous filtering and real-time elasticity processing. Shear waves were generated by external mechanical excitation and imaged at a high frame rate. Three homogeneous phantoms of varying elastic moduli and one inclusion phantom were imaged. Waves propagating in separate directions were filtered and shear wave speed was estimated by inversion of the 1-D first-order wave equation. Final 2-D shear wave speed maps were constructed by weighted averaging of estimates from opposite traveling directions. Shear wave speed results for phantoms with gelatin concentrations of 5%, 7%, and 9% were 1.52 ± 0.10 m/s, 1.86 ± 0.10 m/s, and 2.37 ± 0.15 m/s, respectively, which were consistent with estimates computed from three other conventional methods, as well as compression tests done with a commercial texture analyzer. The method was shown to be able to reconstruct a 2-D speed map of an inclusion phantom with good image quality and variance comparable to conventional methods. Suggestions for further work are given.
NASA Astrophysics Data System (ADS)
Di Fiore, V.; Cavuoto, G.; Tarallo, D.; Punzo, M.; Evangelista, L.
2016-05-01
A joint analysis of down-hole (DH) and multichannel analysis of surface waves (MASW) measurements offers a complete evaluation of shear wave velocity profiles, especially for sites where a strong lateral variability is expected, such as archeological sites. In this complex stratigraphic setting, the high "subsoil anisotropy" (i.e., sharp lithological changes due to the presence of anthropogenic backfill deposits and/or buried man-made structures) implies a different role for DH and MASW tests. This paper discusses some results of a broad experimental program conducted on the Palatine Hill, one of the most ancient areas of the city of Rome (Italy). The experiments were part of a project on seismic microzoning and consisted of 20 MASW and 11 DH tests. The main objective of this study was to examine the difficulties related to the interpretation of the DH and MASW tests and the reliability limits inherent in the application of the noninvasive method in complex stratigraphic settings. As is well known, DH tests provide good determinations of shear wave velocities (Vs) for different lithologies and man-made materials, whereas MASW tests provide average values for the subsoil volume investigated. The data obtained from each method with blind tests were compared and were correlated to site-specific subsurface conditions, including lateral variability. Differences between punctual (DH) and global (MASW) Vs measurements are discussed, quantifying the errors by synthetic comparison and by site response analyses. This study demonstrates that, for archeological sites, VS profiles obtained from the DH and MASW methods differ by more than 15 %. However, the local site effect showed comparable results in terms of natural frequencies, whereas the resolution of the inverted shear wave velocity was influenced by the fundamental mode of propagation.
Calculating tissue shear modulus and pressure by 2D Log-Elastographic methods
McLaughlin, Joyce R; Zhang, Ning; Manduca, Armando
2010-01-01
Shear modulus imaging, often called elastography, enables detection and characterization of tissue abnormalities. In this paper the data is two displacement components obtained from successive MR or ultrasound data sets acquired while the tissue is excited mechanically. A 2D plane strain elastic model is assumed to govern the 2D displacement, u. The shear modulus, μ, is unknown and whether or not the first Lamé parameter, λ, is known the pressure p = λ∇ · u which is present in the plane strain model cannot be measured and is unreliably computed from measured data and can be shown to be an order one quantity in the units kPa. So here we present a 2D Log-Elastographic inverse algorithm that: (1) simultaneously reconstructs the shear modulus, μ, and p, which together satisfy a first order partial differential equation system, with the goal of imaging μ; (2) controls potential exponential growth in the numerical error; and (3) reliably reconstructs the quantity p in the inverse algorithm as compared to the same quantity computed with a forward algorithm. This work generalizes the Log-Elastographic algorithm in [20] which uses one displacement component, is derived assuming the component satisfies the wave equation, and is tested on synthetic data computed with the wave equation model. The 2D Log-Elastographic algorithm is tested on 2D synthetic data and 2D in-vivo data from Mayo Clinic. We also exhibit examples to show that the 2D Log-Elastographic algorithm improves the quality of the recovered images as compared to the Log-Elastographic and Direct Inversion algorithms. PMID:21822349
NASA Technical Reports Server (NTRS)
Bechert, D. W.
1982-01-01
The generation of instability waves in free shear layers is investigated. The model assumes an infinitesimally thin shear layer shed from a semi-infinite plate which is exposed to sound excitation. The acoustical shear layer excitation by a source further away from the plate edge in the downstream direction is very weak while upstream from the plate edge the excitation is relatively efficient. A special solution is given for the source at the plate edge. The theory is then extended to two streams on both sides of the shear layer having different velocities and densities. Furthermore, the excitation of a shear layer in a channel is calculated. A reference quantity is found for the magnitude of the excited instability waves. For a comparison with measurements, numerical computations of the velocity field outside the shear layer were carried out.
Turbulent Shear and Internal Waves
NASA Astrophysics Data System (ADS)
Munroe, James; Sutherland, Bruce
2008-11-01
A series of experiments is presented that model the generation of non-hydrostatic internal gravity waves in upper ocean by the forcing of wind driven turbulent eddies in the surface mixed layer. A turbulent shear layer is forced by a conveyor belt with affixed flat plates near the surface of a stratified fluid and downward propagating internal waves are generated. The turbulence in the shear layer is characterized using particle image velocimetry to measure the kinetic energy as well as length and time scales. The internal waves are measured using synthetic schlieren to determine the amplitudes, frequencies, momentum fluxes, and the energy of the generated waves. The fraction of energy that leaks from the mixed layer to the internal wave field is presented. Consistent with other studies, it is found that the frequencies of internal waves generated by turbulence are an approximate constant fraction of the buoyancy frequency. Implications to internal waves propagating into the deep ocean will be discussed.
NASA Astrophysics Data System (ADS)
Miles, John
2001-09-01
The eigenvalue problem for gravity waves on a shear flow of depth h and non-inflected velocity profile U(y) (typically parabolic) is revisited, following Burns (1953) and Yih (1972). Complementary variational formulations that provide upper and lower bounds to the Froude number F as a function of the wave speed c and wavenumber k are constructed. These formulations are used to improve Burns's long-wave approximation and to determine Yih's critical wavenumber k[low asterisk], for which the wave is stationary (c = 0) and to which k must be inferior for the existence of an upstream running wave.
Shear wave elastography with a new reliability indicator.
Dietrich, Christoph F; Dong, Yi
2016-09-01
Non-invasive methods for liver stiffness assessment have been introduced over recent years. Of these, two main methods for estimating liver fibrosis using ultrasound elastography have become established in clinical practice: shear wave elastography and quasi-static or strain elastography. Shear waves are waves with a motion perpendicular (lateral) to the direction of the generating force. Shear waves travel relatively slowly (between 1 and 10 m/s). The stiffness of the liver tissue can be assessed based on shear wave velocity (the stiffness increases with the speed). The European Federation of Societies for Ultrasound in Medicine and Biology has published Guidelines and Recommendations that describe these technologies and provide recommendations for their clinical use. Most of the data available to date has been published using the Fibroscan (Echosens, France), point shear wave speed measurement using an acoustic radiation force impulse (Siemens, Germany) and 2D shear wave elastography using the Aixplorer (SuperSonic Imagine, France). More recently, also other manufacturers have introduced shear wave elastography technology into the market. A comparison of data obtained using different techniques for shear wave propagation and velocity measurement is of key interest for future studies, recommendations and guidelines. Here, we present a recently introduced shear wave elastography technology from Hitachi and discuss its reproducibility and comparability to the already established technologies.
Magnetized stratified rotating shear waves.
Salhi, A; Lehner, T; Godeferd, F; Cambon, C
2012-02-01
stability of the solution at infinite vertical wavelength (k(3) = 0): There is an oscillatory behavior for τ > 1+|K(2)/k(1)|, where τ = St is a dimensionless time and K(2) is the radial component of the wave vector at τ = 0. The model is suitable to describe instabilities leading to turbulence by the bypass mechanism that can be relevant for the analysis of magnetized stratified Keplerian disks with a purely azimuthal field. For initial isotropic conditions, the time evolution of the spectral density of total energy (kinetic + magnetic + potential) is considered. At k(3) = 0, the vertical motion is purely oscillatory, and the sum of the vertical (kinetic + magnetic) energy plus the potential energy does not evolve with time and remains equal to its initial value. The horizontal motion can induce a rapid transient growth provided K(2)/k(1)>1. This rapid growth is due to the aperiodic velocity vortex mode that behaves like K(h)/k(h) where k(h)(τ)=[k(1)(2) + (K(2) - k(1)τ)(2)](1/2) and K(h) =k(h)(0). After the leading phase (τ > K(2)/k(1)>1), the horizontal magnetic energy and the horizontal kinetic energy exhibit a similar (oscillatory) behavior yielding a high level of total energy. The contribution to energies coming from the modes k(1) = 0 and k(3) = 0 is addressed by investigating the one-dimensional spectra for an initial Gaussian dense spectrum. For a magnetized Keplerian disk with a purely vertical field, it is found that an important contribution to magnetic and kinetic energies comes from the region near k(1) = 0. The limit at k(1) = 0 of the streamwise one-dimensional spectra of energies, or equivalently, the streamwise two-dimensional (2D) energy, is then computed. The comparison of the ratios of these 2D quantities with their three-dimensional counterparts provided by previous direct numerical simulations shows a quantitative agreement.
Modeling shear wave splitting observations from Iceland
NASA Astrophysics Data System (ADS)
Fu, Y. V.; Li, A.; Ito, G.; Hung, S.
2010-12-01
The goal of this research is to investigate the sources of shear-wave splitting in Iceland using synthetic waveforms generated from a variety of models. We employ a pseudospectral method in waveform modeling that allows 3-D heterogeneity and anisotropy. Several 1-D and 2-D models have been tested for a vertically propagating plane shear wave. For the two-layer models with horizontal symmetry axes, our results show that the apparent fast direction is towards the fast orientation in the upper layer. This experiment may explain why shear wave splitting measurements tend to be correlated with surface geology. We have also tested models with lateral anisotropic variations including a dike and a plume. The anisotropic boundary can be well resolved based on the change of fast directions and delay times. The splitting parameters near the boundary are affected by the laterally varied structure and the affected distance depends on wavelength, which is about 40 km for periods of 4-6 s and 50 km for periods of 8-10 s. We are currently performing experiments on a radial flow model from a plume stem. Synthetic shear-wave splitting measurements will be conducted from two more realistic geodynamic models. The first one is the “radial flow” model with low Rayleigh number. The pounding plume material is much thicker than the lithosphere and therefore does not strongly “feel” the lithosphere thickening away from the axis. Thus the plume spreads as fast away from the axis as it does along it. The other one is the “channel flow” model with high Rayleigh number. In this model the plume stem is much narrower and the thickness of the pounding plume material beneath the lithosphere much thinner. Thus the very low viscosity plume material is channeled more along axis by the thickening lithosphere. Combing the synthetic with the observed splitting results, we expect to determine the best geodynamic models for Iceland that fit seismic constraints.
Mellema, Daniel C; Song, Pengfei; Kinnick, Randall R; Urban, Matthew W; Greenleaf, James F; Manduca, Armando; Chen, Shigao
2016-09-01
Ultrasound shear wave elastography (SWE) utilizes the propagation of induced shear waves to characterize the shear modulus of soft tissue. Many methods rely on an acoustic radiation force (ARF) "push beam" to generate shear waves. However, specialized hardware is required to generate the push beams, and the thermal stress that is placed upon the ultrasound system, transducer, and tissue by the push beams currently limits the frame-rate to about 1 Hz. These constraints have limited the implementation of ARF to high-end clinical systems. This paper presents Probe Oscillation Shear Elastography (PROSE) as an alternative method to measure tissue elasticity. PROSE generates shear waves using a harmonic mechanical vibration of an ultrasound transducer, while simultaneously detecting motion with the same transducer under pulse-echo mode. Motion of the transducer during detection produces a "strain-like" compression artifact that is coupled with the observed shear waves. A novel symmetric sampling scheme is proposed such that pulse-echo detection events are acquired when the ultrasound transducer returns to the same physical position, allowing the shear waves to be decoupled from the compression artifact. Full field-of-view (FOV) two-dimensional (2D) shear wave speed images were obtained by applying a local frequency estimation (LFE) technique, capable of generating a 2D map from a single frame of shear wave motion. The shear wave imaging frame rate of PROSE is comparable to the vibration frequency, which can be an order of magnitude higher than ARF based techniques. PROSE was able to produce smooth and accurate shear wave images from three homogeneous phantoms with different moduli, with an effective frame rate of 300 Hz. An inclusion phantom study showed that increased vibration frequencies improved the accuracy of inclusion imaging, and allowed targets as small as 6.5 mm to be resolved with good contrast (contrast-to-noise ratio ≥ 19 dB) between the target and
Shear wave elastography quantification of blood elasticity during clotting.
Bernal, Miguel; Gennisson, Jean-Luc; Flaud, Patrice; Tanter, Mickael
2012-12-01
Deep venous thrombosis (DVT) affects millions of people worldwide. A fatal complication occurs when the thrombi detach and create a pulmonary embolism. The diagnosis and treatment of DVT depends on clot's age. The elasticity of thrombi is closely related to its age. Blood was collected from pigs and anticoagulated using ethylenediaminetetraacetic acid (EDTA). Coagulation was initiated using calcium ions. Supersonic shear wave imaging was used to generate shear waves using 100 μs tone bursts of 8 MHz. Tracking of the shear waves was done by ultrafast imaging. Postprocessing of the data was done using Matlab(®). Two-dimensional (2-D) maps of elasticity were obtained by calculating the speed of shear wave propagation. Elasticity varied with time from around 50 Pa at coagulation to 1600 Pa at 120 min after which the elasticity showed a natural decreased (17%) because of thrombolytic action of plasmin. Ejection of the serum from the clot showed a significant decrease in the elasticity of the clot next to the liquid pool (65% decrease), corresponding to the detachment of the clot from the beaker wall. The use of a thrombolytic agent (Urokinase) on the coagulated blood decreased the shear elasticity close to the point of injection, which varied with time and distance. Supersonic imaging proved to be useful mapping the 2-D clot's elasticity. It allowed the visualization of the heterogeneity of mechanical properties of thrombi and has potential use in predicting thrombi breakage as well as in monitoring thrombolytic therapy.
Coded excitation plane wave imaging for shear wave motion detection.
Song, Pengfei; Urban, Matthew W; Manduca, Armando; Greenleaf, James F; Chen, Shigao
2015-07-01
Plane wave imaging has greatly advanced the field of shear wave elastography thanks to its ultrafast imaging frame rate and the large field-of-view (FOV). However, plane wave imaging also has decreased penetration due to lack of transmit focusing, which makes it challenging to use plane waves for shear wave detection in deep tissues and in obese patients. This study investigated the feasibility of implementing coded excitation in plane wave imaging for shear wave detection, with the hypothesis that coded ultrasound signals can provide superior detection penetration and shear wave SNR compared with conventional ultrasound signals. Both phase encoding (Barker code) and frequency encoding (chirp code) methods were studied. A first phantom experiment showed an approximate penetration gain of 2 to 4 cm for the coded pulses. Two subsequent phantom studies showed that all coded pulses outperformed the conventional short imaging pulse by providing superior sensitivity to small motion and robustness to weak ultrasound signals. Finally, an in vivo liver case study on an obese subject (body mass index = 40) demonstrated the feasibility of using the proposed method for in vivo applications, and showed that all coded pulses could provide higher SNR shear wave signals than the conventional short pulse. These findings indicate that by using coded excitation shear wave detection, one can benefit from the ultrafast imaging frame rate and large FOV provided by plane wave imaging while preserving good penetration and shear wave signal quality, which is essential for obtaining robust shear elasticity measurements of tissue.
A new shear wave imaging system for ultrasound elastography.
Qiu, Weibao; Wang, Congzhi; Xiao, Yang; Qian, Ming; Zheng, Hairong
2015-08-01
Ultrasound elastography is able to provide a non-invasive measurement of tissue elasticity properties. Shear wave imaging (SWI) technique is a quantitative method for tissue stiffness assessment. However, traditional SWI implementations cannot acquire 2D quantitative images of tissue elasticity distribution. In this study, a new shear wave imaging system is proposed and evaluated. Detailed delineation of hardware and image processing algorithms are presented. Programmable devices are selected to support flexible control of the system and the image processing algorithms. Analytic signal based cross-correlation method and a Radon transform based shear wave speed determination method are proposed with parallel computation ability. Tissue mimicking phantom imaging, and in vitro imaging measurements are conducted to demonstrate the performance of the proposed system. The system has the ability to provide a new choice for quantitative mapping of the tissue elasticity, and has good potential to be implemented into commercial ultrasound scanner.
Couette shear of an ideal 2D photo-elastic granular system
NASA Astrophysics Data System (ADS)
Behringer, Robert; Zheng, Hu; Barés, Jonathan; Wang, Dong
2016-11-01
In this study, Couette shear experiments are conducted using 2D photoelastic granular particles, which allows us to apply infinite shear strain to the granular system. We obtain force information at the granular scale using the calibrated photo-elastic grain force response. The whole granular system is density matched in salt solution, which guarantees an ideal 2D system without basal friction between the particles and the table. The viscosity is negligible at the very small shear strain rate (0.017 rpm). This talk will address two main points: i) how does the system reach a jammed state; ii) how does system reach a long term stable state and what are the properties of that state. We acknowledge support from NSF Grant No. DMR1206351, NASA Grant No. NNX15AD38G and the W.M. Keck Foundation.
Continuous wave laser for wind shear detection
NASA Technical Reports Server (NTRS)
Nelson, Loren
1991-01-01
Details of the design and development of a continuous-wave heterodyne carbon dioxide laser which has wind shear detection capabilities are given in viewgraph form. The goal of the development was to investigate the lower cost CW (rather than pulsed) lidar option for look-ahead wind shear detection from aircraft. The device has potential utility for ground based wind shear detection at secondary airports where the high cost of a Terminal Doppler Weather Radar system is not justifiable.
Shear wave velocity measurements in marine sediments
NASA Astrophysics Data System (ADS)
Matthews, J. E.
1982-09-01
Pulsed ultrasonic techniques for the measurement of sound speed are reliable and well documented. Extension of these techniques to the measurement of shear wave velocities in marine sediments, generally was unsuccessful. Recently developed shear wave transducers, based upon piezoelectric benders operated at sonic frequencies, provide significantly improved transducer-sample mechanical coupling. This improved coupling allows the application of pulsed techniques to the measurement of shear wave velocities in marine sediments, and the rapid determination of sediment dynamic elastic properties. Two types of bender-based shear wave transducer and preliminary data are described: 1) a probe configuration for box core samples, and 2) a modification to the Hamilton Frame Velocimeter for cut samples.
Song, Pengfei; Macdonald, Michael; Behler, Russell; Lanning, Justin; Wang, Michael; Urban, Matthew; Manduca, Armando; Zhao, Heng; Callstrom, Matthew; Alizad, Azra; Greenleaf, James; Chen, Shigao
2015-02-01
Two-dimensional shear-wave elastography presents 2-D quantitative shear elasticity maps of tissue, which are clinically useful for both focal lesion detection and diffuse disease diagnosis. Realization of 2-D shear-wave elastography on conventional ultrasound scanners, however, is challenging because of the low tracking pulse-repetition-frequency (PRF) of these systems. Although some clinical and research platforms support software beamforming and plane-wave imaging with high PRF, the majority of current clinical ultrasound systems do not have the software beamforming capability, which presents a critical challenge for translating the 2-D shear-wave elastography technique from laboratory to clinical scanners. To address this challenge, this paper presents a time-aligned sequential tracking (TAST) method for shear-wave tracking on conventional ultrasound scanners. TAST takes advantage of the parallel beamforming capability of conventional systems and realizes high-PRF shear-wave tracking by sequentially firing tracking vectors and aligning shear wave data in the temporal direction. The comb-push ultrasound shear elastography (CUSE) technique was used to simultaneously produce multiple shear wave sources within the field-of-view (FOV) to enhance shear wave SNR and facilitate robust reconstructions of 2-D elasticity maps. TAST and CUSE were realized on a conventional ultrasound scanner. A phantom study showed that the shear-wave speed measurements from the conventional ultrasound scanner were in good agreement with the values measured from other 2-D shear wave imaging technologies. An inclusion phantom study showed that the conventional ultrasound scanner had comparable performance to a state-of-the-art shear-wave imaging system in terms of bias and precision in measuring different sized inclusions. Finally, in vivo case analysis of a breast with a malignant mass, and a liver from a healthy subject demonstrated the feasibility of using the conventional ultrasound
Longitudinal shear wave and transverse dilatational wave in solids.
Catheline, S; Benech, N
2015-02-01
Dilatation wave involves compression and extension and is known as the curl-free solution of the elastodynamic equation. Shear wave on the contrary does not involve any change in volume and is the divergence-free solution. This letter seeks to examine the elastodynamic Green's function through this definition. By separating the Green's function in divergence-free and curl-free terms, it appears first that, strictly speaking, the longitudinal wave is not a pure dilatation wave and the transverse wave is neither a pure shear wave. Second, not only a longitudinal shear wave but also a transverse dilatational wave exists. These waves are shown to be a part of the solution known as coupling terms. Their special motion is carefully described and illustrated.
Coded Excitation Plane Wave Imaging for Shear Wave Motion Detection
Song, Pengfei; Urban, Matthew W.; Manduca, Armando; Greenleaf, James F.; Chen, Shigao
2015-01-01
Plane wave imaging has greatly advanced the field of shear wave elastography thanks to its ultrafast imaging frame rate and the large field-of-view (FOV). However, plane wave imaging also has decreased penetration due to lack of transmit focusing, which makes it challenging to use plane waves for shear wave detection in deep tissues and in obese patients. This study investigated the feasibility of implementing coded excitation in plane wave imaging for shear wave detection, with the hypothesis that coded ultrasound signals can provide superior detection penetration and shear wave signal-to-noise-ratio (SNR) compared to conventional ultrasound signals. Both phase encoding (Barker code) and frequency encoding (chirp code) methods were studied. A first phantom experiment showed an approximate penetration gain of 2-4 cm for the coded pulses. Two subsequent phantom studies showed that all coded pulses outperformed the conventional short imaging pulse by providing superior sensitivity to small motion and robustness to weak ultrasound signals. Finally, an in vivo liver case study on an obese subject (Body Mass Index = 40) demonstrated the feasibility of using the proposed method for in vivo applications, and showed that all coded pulses could provide higher SNR shear wave signals than the conventional short pulse. These findings indicate that by using coded excitation shear wave detection, one can benefit from the ultrafast imaging frame rate and large FOV provided by plane wave imaging while preserving good penetration and shear wave signal quality, which is essential for obtaining robust shear elasticity measurements of tissue. PMID:26168181
Shear wave speed recovery in sonoelastography using crawling wave data.
Lin, Kui; McLaughlin, Joyce; Renzi, Daniel; Thomas, Ashley
2010-07-01
The crawling wave experiment, in which two harmonic sources oscillate at different but nearby frequencies, is a development in sonoelastography that allows real-time imaging of propagating shear wave interference patterns. Previously the crawling wave speed was recovered and used as an indicator of shear stiffness; however, it is shown in this paper that the crawling wave speed image can have artifacts that do not represent a change in stiffness. In this paper, the locations and shapes of some of the artifacts are exhibited. In addition, a differential equation is established that enables imaging of the shear wave speed, which is a quantity strongly correlated with shear stiffness change. The full algorithm is as follows: (1) extract the crawling wave phase from the spectral variance data; (2) calculate the crawling wave phase wave speed; (3) solve a first-order PDE for the phase of the wave emanating from one of the sources; and (4) compute and image the shear wave speed on a grid in the image plane.
3-D FDTD simulation of shear waves for evaluation of complex modulus imaging.
Orescanin, Marko; Wang, Yue; Insana, Michael
2011-02-01
The Navier equation describing shear wave propagation in 3-D viscoelastic media is solved numerically with a finite differences time domain (FDTD) method. Solutions are formed in terms of transverse scatterer velocity waves and then verified via comparison to measured wave fields in heterogeneous hydrogel phantoms. The numerical algorithm is used as a tool to study the effects on complex shear modulus estimation from wave propagation in heterogeneous viscoelastic media. We used an algebraic Helmholtz inversion (AHI) technique to solve for the complex shear modulus from simulated and experimental velocity data acquired in 2-D and 3-D. Although 3-D velocity estimates are required in general, there are object geometries for which 2-D inversions provide accurate estimations of the material properties. Through simulations and experiments, we explored artifacts generated in elastic and dynamic-viscous shear modulus images related to the shear wavelength and average viscosity.
Seismic shear waves as Foucault pendulum
NASA Astrophysics Data System (ADS)
Snieder, Roel; Sens-Schönfelder, Christoph; Ruigrok, Elmer; Shiomi, Katsuhiko
2016-03-01
Earth's rotation causes splitting of normal modes. Wave fronts and rays are, however, not affected by Earth's rotation, as we show theoretically and with observations made with USArray. We derive that the Coriolis force causes a small transverse component for P waves and a small longitudinal component for S waves. More importantly, Earth's rotation leads to a slow rotation of the transverse polarization of S waves; during the propagation of S waves the particle motion behaves just like a Foucault pendulum. The polarization plane of shear waves counteracts Earth's rotation and rotates clockwise in the Northern Hemisphere. The rotation rate is independent of the wave frequency and is purely geometric, like the Berry phase. Using the polarization of ScS and ScS2 waves, we show that the Foucault-like rotation of the S wave polarization can be observed. This can affect the determination of source mechanisms and the interpretation of observed SKS splitting.
Shear waves in acoustic anisotropic media
Grechka, Vladimir; Zhang, Linbin; Rector, James W.
2003-01-02
Acoustic transversely isotropic (TI) media are defined by artificially setting the shear-wave velocity in the direction of symmetry axis, VS0, to zero. Contrary to conventional wisdom that equating VS0 = 0 eliminates shear waves, we demonstrate their presence and examine their properties. Specifically, we show that SV-waves generally have finite nonzero phase and group velocities in acoustic TI media. In fact, these waves have been observed in full waveform modeling, but apparently they were not understood and labeled as numerical artifacts. Acoustic TI media are characterized by extreme, in some sense infinite strength of anisotropy. It makes the following unusual wave phenomena possible: (1) there are propagation directions, where the SV-ray is orthogonal to the corresponding wavefront normal, (2) the SV-wave whose ray propagates along the symmetry axis is polarized parallel to the P-wave propagating in the same direction, (3) P-wave singularities, that is, directions where P- and SV -wave phase velocities coincide might exist in acoustic TI media. We also briefly discuss some aspects of wave propagation in low-symmetry acoustic anisotropic models. Extreme anisotropy in those media creates bizarre phase- and group-velocity surfaces that might bring intellectual delight to an anisotropic guru.
Nonlinear standing waves in 2-D acoustic resonators.
Cervenka, Milan; Bednarik, Michal
2006-12-22
This paper deals with 2-D simulation of finite-amplitude standing waves behavior in rectangular acoustic resonators. Set of three partial differential equations in third approximation formulated in conservative form is derived from fundamental equations of gas dynamics. These equations form a closed set for two components of acoustic velocity vector and density, the equations account for external driving force, gas dynamic nonlinearities and thermoviscous dissipation. Pressure is obtained from solution of the set by means of an analytical formula. The equations are formulated in the Cartesian coordinate system. The model equations set is solved numerically in time domain using a central semi-discrete difference scheme developed for integration of sets of convection-diffusion equations with two or more spatial coordinates. Numerical results show various patterns of acoustic field in resonators driven using vibrating piston with spatial distribution of velocity. Excitation of lateral shock-wave mode is observed when resonant conditions are fulfilled for longitudinal as well as for transversal direction along the resonator cavity.
2D modeling of electromagnetic waves in cold plasmas
Crombé, K.; Van Eester, D.; Koch, R.; Kyrytsya, V.
2014-02-12
The consequences of sheath (rectified) electric fields, resulting from the different mobility of electrons and ions as a response to radio frequency (RF) fields, are a concern for RF antenna design as it can cause damage to antenna parts, limiters and other in-vessel components. As a first step to a more complete description, the usual cold plasma dielectric description has been adopted, and the density profile was assumed to be known as input. Ultimately, the relevant equations describing the wave-particle interaction both on the fast and slow timescale will need to be tackled but prior to doing so was felt as a necessity to get a feeling of the wave dynamics involved. Maxwell's equations are solved for a cold plasma in a 2D antenna box with strongly varying density profiles crossing also lower hybrid and ion-ion hybrid resonance layers. Numerical modelling quickly becomes demanding on computer power, since a fine grid spacing is required to capture the small wavelengths effects of strongly evanescent modes.
Shear surface waves in phononic crystals.
Kutsenko, A A; Shuvalov, A L
2013-02-01
The existence of shear horizontal (SH) surface waves in two-dimensional periodic phononic crystals with an asymmetric depth-dependent profile is theoretically reported. Examples of dispersion spectra with bandgaps for subsonic and supersonic SH surface waves are demonstrated. The link between the effective (quasistatic) speeds of the SH bulk and surface waves is established. Calculation and analysis is based on the integral form of a projector on the subspace of evanescent modes which means no need for their explicit finding. This method can be extended to the vector waves and the three-dimensional case.
A Parametric Investigation of Breaking Bow Waves using a 2D+T Wave Maker
NASA Astrophysics Data System (ADS)
Maxeiner, E. A.; Shakeri, M.; Duncan, J. H.
2008-11-01
An experimental study of bow waves generated by a 2D+T (Two Dimensions plus Time) wave maker in a tank that is 14.8 m long, 1.2 m wide and 2.2 m deep is presented. Rather than simulating a specific ship hull, here we use a parametric set of wave maker motions with each parameter simulating a common feature of a ship hull form. Three categories of wave maker motions are used: ``slap'' (rotation of the wave board (held flat) about the keel), ``fixed'' (translation the wave board while it is upper part remains flat and at a fixed angle relative to horizontal), and ``full'' (simultaneous rotation and translation). The wave maker motions are run over a range of speeds and, in the ``fixed'' cases, over a range of angles. The temporal histories of the wave profiles were measured using a cinematic LIF technique. The relationship between various geometrical features of the waves and the wave maker motion parameters is explored. Each category of wave maker motions produces waves that develop and break in markedly different ways, thus highlighting the complex nature of bow waves. The wave crest speeds vary between 2 and 2.5 times the maximum speed of the wave maker and, for a given class of wave maker motion, vary with wave maker speed.
Shear wave speed and dispersion measurements using crawling wave chirps.
Hah, Zaegyoo; Partin, Alexander; Parker, Kevin J
2014-10-01
This article demonstrates the measurement of shear wave speed and shear speed dispersion of biomaterials using a chirp signal that launches waves over a range of frequencies. A biomaterial is vibrated by two vibration sources that generate shear waves inside the medium, which is scanned by an ultrasound imaging system. Doppler processing of the acquired signal produces an image of the square of vibration amplitude that shows repetitive constructive and destructive interference patterns called "crawling waves." With a chirp vibration signal, successive Doppler frames are generated from different source frequencies. Collected frames generate a distinctive pattern which is used to calculate the shear speed and shear speed dispersion. A special reciprocal chirp is designed such that the equi-phase lines of a motion slice image are straight lines. Detailed analysis is provided to generate a closed-form solution for calculating the shear wave speed and the dispersion. Also several phantoms and an ex vivo human liver sample are scanned and the estimation results are presented.
Spatial correlation of shear-wave velocity within San Francisco Bay Sediments
Thompson, E.M.; Baise, L.G.; Kayen, R.E.
2006-01-01
Sediment properties are spatially variable at all scales, and this variability at smaller scales influences high frequency ground motions. We show that surface shear-wave velocity is highly correlated within San Francisco Bay Area sediments using shear-wave velocity measurements from 210 seismic cone penetration tests. We use this correlation to estimate the surface sediment velocity structure using geostatistics. We find that the variance of the estimated shear-wave velocity is reduced using ordinary kriging, and that including this velocity structure in 2D ground motion simulations of a moderate sized earthquake improves the accuracy of the synthetics. Copyright ASCE 2006.
Fan-structure waves in shear ruptures
NASA Astrophysics Data System (ADS)
Tarasov, Boris
2016-04-01
This presentation introduces a recently identified shear rupture mechanism providing a paradoxical feature of hard rocks - the possibility of shear rupture propagation through the highly confined intact rock mass at shear stress levels significantly less than frictional strength. According to the fan-mechanism the shear rupture propagation is associated with consecutive creation of small slabs in the fracture tip which, due to rotation caused by shear displacement of the fracture interfaces, form a fan-structure representing the fracture head. The fan-head combines such unique features as: extremely low shear resistance (below the frictional strength), self-sustaining stress intensification in the rupture tip (providing easy formation of new slabs), and self-unbalancing conditions in the fan-head (making the failure process inevitably spontaneous and violent). An important feature of the fan-mechanism is the fact that for the initial formation of the fan-structure an enhanced local shear stress is required, however, after completion of the fan-structure it can propagate as a dynamic wave through intact rock mass at shear stresses below the frictional strength. Paradoxically low shear strength of pristine rocks provided by the fan-mechanism determines the correspondingly low transient strength of the lithosphere, which favours generation of new earthquake faults in the intact rock mass adjoining pre-existing faults in preference to frictional stick-slip instability along these faults. The new approach reveals an alternative role of pre-existing faults in earthquake activity: they represent local stress concentrates in pristine rock adjoining the fault where special conditions for the fan-mechanism nucleation are created, while further dynamic propagation of the new fault (earthquake) occurs at low field stresses even below the frictional strength.
2D Kinetic Particle in Cell Simulations of a Shear-Flow Stabilized Z-Pinch
NASA Astrophysics Data System (ADS)
Tummel, Kurt; Higginson, Drew; Schmidt, Andrea; Link, Anthony; McLean, Harry; Shumlak, Uri; Nelson, Brian; Golingo, Raymond; Claveau, Elliot; Lawrence Livermore National Lab Team; University of Washington Team
2016-10-01
The Z-pinch is a relatively simple and attractive potential fusion reactor design, but attempts to develop such a reactor have consistently struggled to overcome Z-pinch instabilities. The ``sausage'' and ``kink'' modes are among the most robust and prevalent Z-pinch instabilities, but theory and simulations suggest that axial flow-shear, dvz / dr ≠ 0 , can suppress these modes. Experiments have confirmed that Z-pinch plasmas with embedded axial flow-shear display a significantly enhanced resilience to the sausage and kink modes at a demonstration current of 50kAmps. A new experiment is under way to test the concept at higher current, and efforts to model these plasmas are being expanded. The performance and stability of these devices will depend on features like the plasma viscosity, anomalous resistivity, and finite Larmor radius effects, which are most accurately characterized in kinetic models. To predict these features, kinetic simulations using the particle in cell code LSP are now in development, and initial benchmarking and 2D stability analyses of the sausage mode are presented here. These results represent the first kinetic modeling of the flow-shear stabilized Z-pinch. This work is funded by the USDOE/ARPAe Alpha Program. Prepared by LLNL under Contract DE-AC52-07NA27344.
Demonstration of Shear Waves, Lamb Waves, and Rayleigh Waves by Mode Conversion.
ERIC Educational Resources Information Center
Leung, W. P.
1980-01-01
Introduces an experiment that can be demonstrated in the classroom to show that shear waves, Rayleigh waves, and Lamb waves can be easily generated and observed by means of mode conversion. (Author/CS)
Shear Wave Attenuation in Unconsolidated Laboratory Sediments.
1983-06-01
pressure) exponent of one-fourth for prediction of shear wave velocities in sands. This recommendation is based upon both in situ and laboratory...measurements. However, as we have seen from the data presented, there is consider- able scatter in the pressure exponent with values varying from...standard deviation of 0.98. Hamilton 5 4 takes % . -. ... .... . ...... .. ............ ...... 21 exception to this frequency exponent , pointing out
Waves in Turbulent Stably Stratified Shear Flow
NASA Technical Reports Server (NTRS)
Jacobitz, F. G.; Rogers, M. M.; Ferziger, J. H.; Parks, John W. (Technical Monitor)
2002-01-01
Two approaches for the identification of internal gravity waves in sheared and unsheared homogeneous stratified turbulence are investigated. First, the phase angle between the vertical velocity and density fluctuations is considered. It was found, however, that a continuous distribution of the phase angle is present in weakly and strongly stratified flow. Second, a projection onto the solution of the linearized inviscid equations of motion of unsheared stratified flow is investigated. It was found that a solution of the fully nonlinear viscous Navier-Stokes equations can be represented by the linearized inviscid solution. The projection yields a decomposition into vertical wave modes and horizontal vortical modes.
Horizontal Shear Wave Imaging of Large Optics
Quarry, M J
2007-09-05
When complete the National Ignition Facility (NIF) will be the world's largest and most energetic laser and will be capable of achieving for the first time fusion ignition in the laboratory. Detecting optics features within the laser beamlines and sizing them at diameters of 0.1 mm to 10 mm allows timely decisions concerning refurbishment and will help with the routine operation of the system. Horizontally polarized shear waves at 10 MHz were shown to accurately detect, locate, and size features created by laser operations from 0.5 mm to 8 mm by placing sensors at the edge of the optic. The shear wave technique utilizes highly directed beams. The outer edge of an optic can be covered with shear wave transducers on four sides. Each transducer sends a pulse into the optic and any damage reflects the pulse back to the transmitter. The transducers are multiplexed, and the collected time waveforms are enveloped and replicated across the width of the element. Multiplying the data sets from four directions produces a map of reflected amplitude to the fourth power, which images the surface of the optic. Surface area can be measured directly from the image, and maximum depth was shown to be correlated to maximum amplitude of the reflected waveform.
ML shear wave velocity tomography for the Iranian Plateau
NASA Astrophysics Data System (ADS)
Maheri-Peyrov, Mehdi; Ghods, Abdolreza; Abbasi, Madjid; Bergman, Eric; Sobouti, Farhad
2016-04-01
Iranian Plateau reflects several different tectonic styles of collision, and large-scale strike-slip faults. We calculate a high-resolution 2-D ML shear velocity map for the Iranian Plateau to detect lateral crustal thickness changes associated with different tectonic boundaries. The ML velocity is very sensitive to strong lateral variations of crustal thickness and varies between the velocity of Lg and Sn phases. Our data set consists of 65 795 ML amplitude velocity measurements from 2531 precisely relocated events recorded by Iranian networks in the period 1996-2014. Using a constrained least-squares inversion scheme, we inverted the ML velocities for a 2-D shear velocity map of Iran. Our results show that the Zagros and South Caspian Basin (SCB) have shear wave velocities close to the Sn phase, and are thus Lg-blocking regions. High velocities in the High Zagros and the Simply Folded Belt imply significant crustal undulations within these zones. We note that in the central and south Zagros, the velocity border between the Zagros and central Iran is not coincident with the Zagros suture line that marks underthrusting of the Arabian plate beneath central Iran. The low plains of Gilan and Gorgan to the south of the Caspian Sea show high shear velocities similar to the SCB, implying that they are either underlain by an oceanic type crust or a transitional crust with a strong lateral crustal thickness gradient. The Lut block is an Lg-passing block implying that it is not surrounded by any sudden crustal thickness changes along its borders with central Iran. In the Alborz, NW Iran, Kopeh-Dagh, Binalud and most of the central Iran, low shear velocity near the Lg velocity is attributed to smooth or minor Moho undulations within these regions.
Ion acoustic wave collapse via two-ion wave decay: 2D Vlasov simulation and theory
NASA Astrophysics Data System (ADS)
Chapman, Thomas; Berger, Richard; Banks, Jeffrey; Brunner, Stephan
2015-11-01
The decay of ion acoustic waves (IAWs) via two-ion wave decay may transfer energy from the electric field of the IAWs to the particles, resulting in a significant heating of resonant particles. This process has previously been shown in numerical simulations to decrease the plasma reflectivity due to stimulated Brillouin scattering. Two-ion wave decay is a fundamental property of ion acoustic waves that occurs over most if not all of the parameter space of relevance to inertial confinement fusion experiments, and can lead to a sudden collapse of IAWs. The treatment of all species kinetically, and in particular the electrons, is required to describe the decay process correctly. We present fully kinetic 2D+2V Vlasov simulations of IAWs undergoing decay to a highly nonlinear turbulent state using the code LOKI. The scaling of the decay rate with characteristic plasma parameters and wave amplitude is shown. A new theory describing two-ion wave decay in 2D, that incorporates key kinetic properties of the electrons, is presented and used to explain quantitatively for the first time the observed decay of IAWs. Work performed under auspices of U.S. DoE by LLNL, Contract DE-AC52-07NA2734. Funded by LDRD 15-ERD-038 and supported by LLNL Grand Challenge allocation.
Shear waves in inhomogeneous, compressible fluids in a gravity field.
Godin, Oleg A
2014-03-01
While elastic solids support compressional and shear waves, waves in ideal compressible fluids are usually thought of as compressional waves. Here, a class of acoustic-gravity waves is studied in which the dilatation is identically zero, and the pressure and density remain constant in each fluid particle. These shear waves are described by an exact analytic solution of linearized hydrodynamics equations in inhomogeneous, quiescent, inviscid, compressible fluids with piecewise continuous parameters in a uniform gravity field. It is demonstrated that the shear acoustic-gravity waves also can be supported by moving fluids as well as quiescent, viscous fluids with and without thermal conductivity. Excitation of a shear-wave normal mode by a point source and the normal mode distortion in realistic environmental models are considered. The shear acoustic-gravity waves are likely to play a significant role in coupling wave processes in the ocean and atmosphere.
Hammering Yucca Flat, Part Two: Shear-Wave Velocity
NASA Astrophysics Data System (ADS)
Finlay, T. S.; Abbott, R. E.; Knox, H. A.; Tang, D. G.; James, S. R.; Haney, M. M.; Hampshire, J. B., II
2015-12-01
In preparation for the next phase of the Source Physics Experiment (SPE), we conducted an active-source seismic survey of Yucca Flat, Nevada, on the Nevada National Security Site. Results from this survey will be used to inform the geologic models associated with the SPE project. For this study, we used a novel 13,000 kilogram weight-drop seismic source to interrogate an 18-km North-South transect of Yucca Flat. Source points were spaced every 200 meters and were recorded by 350 to 380 3-component 2-Hz geophones with variable spacings of 10, 20, and 100 meters. We utilized the Refraction-Microtremor (ReMi) technique to create multiple 1D dispersion curves, which were then inverted for shear-wave velocity profiles using the Dix inversion method (Tsai and Haney, 2015). Each of these 1D velocity models was subsequently stitched together to create a 2D profile over the survey area. The dispersion results indicate a general decrease in surface-wave phase velocity to the south. This result is supported by slower shear-wave velocity sediments and increasing basin depth towards the survey's southern extent. Sandia National Laboratories is a multi-program laboratory managed and operated by Sandia Corporation, a wholly owned subsidiary of Lockheed Martin Corporation, for the U.S. Department of Energy's National Nuclear Security Administration under contract DE-AC04-94AL85000.
2-D traveling-wave patterns in binary fluid convection
Surko, C.M.; Porta, A.L.
1996-12-31
An overview is presented of recent experiments designed to study two-dimensional traveling-wave convection in binary fluid convection in a large aspect ratio container. Disordered patterns are observed when convection is initiated. As time proceeds, they evolve to more ordered patterns, consisting of several domains of traveling-waves separated by well-defined domain boundaries. The detailed character of the patterns depends sensitively on the Rayleigh number. Numerical techniques are described which were developed to provide a quantitative characterization of the traveling-wave patterns. Applications of complex demodulation techniques are also described, which make a detailed study of the structure and dynamics of the domain boundaries possible.
From supersonic shear wave imaging to full-field optical coherence shear wave elastography
NASA Astrophysics Data System (ADS)
Nahas, Amir; Tanter, Mickaël; Nguyen, Thu-Mai; Chassot, Jean-Marie; Fink, Mathias; Claude Boccara, A.
2013-12-01
Elasticity maps of tissue have proved to be particularly useful in providing complementary contrast to ultrasonic imaging, e.g., for cancer diagnosis at the millimeter scale. Optical coherence tomography (OCT) offers an endogenous contrast based on singly backscattered optical waves. Adding complementary contrast to OCT images by recording elasticity maps could also be valuable in improving OCT-based diagnosis at the microscopic scale. Static elastography has been successfully coupled with full-field OCT (FF-OCT) in order to realize both micrometer-scale sectioning and elasticity maps. Nevertheless, static elastography presents a number of drawbacks, mainly when stiffness quantification is required. Here, we describe the combination of two methods: transient elastography, based on speed measurements of shear waves induced by ultrasonic radiation forces, and FF-OCT, an en face OCT approach using an incoherent light source. The use of an ultrafast ultrasonic scanner and an ultrafast camera working at 10,000 to 30,000 images/s made it possible to follow shear wave propagation with both modalities. As expected, FF-OCT is found to be much more sensitive than ultrafast ultrasound to tiny shear vibrations (a few nanometers and micrometers, respectively). Stiffness assessed in gel phantoms and an ex vivo rat brain by FF-OCT is found to be in good agreement with ultrasound shear wave elastography.
From supersonic shear wave imaging to full-field optical coherence shear wave elastography.
Nahas, Amir; Tanter, Mickaël; Nguyen, Thu-Mai; Chassot, Jean-Marie; Fink, Mathias; Claude Boccara, A
2013-12-01
Elasticity maps of tissue have proved to be particularly useful in providing complementary contrast to ultrasonic imaging, e.g., for cancer diagnosis at the millimeter scale. Optical coherence tomography (OCT) offers an endogenous contrast based on singly backscattered optical waves. Adding complementary contrast to OCT images by recording elasticity maps could also be valuable in improving OCT-based diagnosis at the microscopic scale. Static elastography has been successfully coupled with full-field OCT (FF-OCT) in order to realize both micrometer-scale sectioning and elasticity maps. Nevertheless, static elastography presents a number of drawbacks, mainly when stiffness quantification is required. Here, we describe the combination of two methods: transient elastography, based on speed measurements of shear waves induced by ultrasonic radiation forces, and FF-OCT, an en face OCT approach using an incoherent light source. The use of an ultrafast ultrasonic scanner and an ultrafast camera working at 10,000 to 30,000 images/s made it possible to follow shear wave propagation with both modalities. As expected, FF-OCT is found to be much more sensitive than ultrafast ultrasound to tiny shear vibrations (a few nanometers and micrometers, respectively). Stiffness assessed in gel phantoms and an ex vivo rat brain by FF-OCT is found to be in good agreement with ultrasound shear wave elastography.
A unifying fractional wave equation for compressional and shear waves.
Holm, Sverre; Sinkus, Ralph
2010-01-01
This study has been motivated by the observed difference in the range of the power-law attenuation exponent for compressional and shear waves. Usually compressional attenuation increases with frequency to a power between 1 and 2, while shear wave attenuation often is described with powers less than 1. Another motivation is the apparent lack of partial differential equations with desirable properties such as causality that describe such wave propagation. Starting with a constitutive equation which is a generalized Hooke's law with a loss term containing a fractional derivative, one can derive a causal fractional wave equation previously given by Caputo [Geophys J. R. Astron. Soc. 13, 529-539 (1967)] and Wismer [J. Acoust. Soc. Am. 120, 3493-3502 (2006)]. In the low omegatau (low-frequency) case, this equation has an attenuation with a power-law in the range from 1 to 2. This is consistent with, e.g., attenuation in tissue. In the often neglected high omegatau (high-frequency) case, it describes attenuation with a power-law between 0 and 1, consistent with what is observed in, e.g., dynamic elastography. Thus a unifying wave equation derived properly from constitutive equations can describe both cases.
Standing shear waves in anisotropic viscoelastic media
NASA Astrophysics Data System (ADS)
Krit, T.; Golubkova, I.; Andreev, V.
2015-10-01
We studied standing shear waves in anisotropic resonator represented by a rectangular parallelepiped (layer) fixed without slipping between two wooden plates of finite mass. The viscoelastic layer with edges of 70 mm × 40 mm × 15 mm was made of a rubber-like polymer plastisol with rubber bands inside. The bands were placed vertical between the top and the bottom plate. Mechanical properties of the plastisol itself were carefully measured previously. It was found that plastisol shows a cubic nonlinear behavior, i.e. the stress-strain curve could be represented as: σ = μɛ + βμɛ3, where ɛ stands for shear strain and σ is an applied shear stress. The value of shear modulus μ depends on frequency and was found to be several kilopascals which is common for such soft solids. Nonlinear parameter β is frequency dependent too and varies in range from tenths to unity at 1-100 Hz frequency range, decreasing with frequency growth. Stretching the rubber bands inside the layer leads to change of elastic properties in resonator. Such effect could be noticed due to frequency response of the resonator. The numerical model of the resonator was based on finite elements method (FEM) and performed in MatLab. The resonator was cut in hundreds of right triangular prisms. Each prism was provided with viscoelastic properties of the layer except for the top prisms provided with the wooden plate properties and the prisms at the site of the rubber bands provided with the rubber properties. The boundary conditions on each prism satisfied the requirements that resonator is inseparable and all its boundaries but bottom are free. The bottom boundary was set to move horizontally with constant acceleration amplitude. It was shown numerically that the resonator shows anisotropic behavior expressed in different frequency response to oscillations applied to a bottom boundary in different directions.
Origin of crustal anisotropy: Shear wave splitting studies in Japan
Kaneshima, Satoshi )
1990-07-10
Shear wave splitting manifested as leading shear wave polarization, that is, parallel alignment of leading shear wave particle motions from a variety of sources, has been observed at a number of seismograph stations in Japan. Detected on shear wave seismograms from crustal earthquakes over a wide range of source zones and source-receiver azimuths, the shear wave splitting can be attributed to crustal anisotropy. This paper discusses the relation between leading shear wave polarization directions and tectonic features of Japan. To explain the observed shear wave splitting, the author proposes that at least three phenomena should be taken into account: stress-induced microcracks primarily aligned in vertical or subvertical planes; cracks or fractures in the vicinity of active faults having their orientation parallel to the fault planes; and intrinsic rock anisotropy resulting from preferred orientation of minerals. Travel time differences between leading and slower split shear waves from crustal and upper mantle earthquakes analyzed for about one third of the stations suggest that the crustal anisotropy which causes the observed shear wave splitting may be limited to the upper 15-25 km. This implies that the density of nonhorizontally aligned cracks or fractures below 15-25 km and into the upper mantle is much smaller than that in the crust above 15-25 km.
Shear Wave Splitting Beneath the Galapagos Archipelago
NASA Astrophysics Data System (ADS)
Fontaine, F. R.; Burkett, P. G.; Hooft, E. E.; Toomey, D. R.; Solomon, S. C.; Silver, P. G.
2004-12-01
We report measurements of teleseismic shear wave splitting in the Galápagos Archipelago. The inferred lateral variations in azimuthal anisotropy allow us to examine the dynamics of an evolving hotspot-ridge system. The data are from SKS and SKKS phases, as well as S waves from deep sources, recorded by a relatively dense network of 10 portable broadband seismometers deployed from 1999 to 2003 for the IGUANA (Imaging Galápagos Upwelling and Neotectonics of the Archipelago) experiment and from the GSN broadband station in Santa Cruz (PAYG). We find a delay time between fast and slow shear waves of 0.4 to 0.9 s and fast polarization directions of N85-90° E beneath five stations at the leading and southern edge of the archipelago. Despite clear seismic signals, we did not find any anisotropy at the six stations located in the interior of the archipelago. For those stations that show shear wave splitting, there is an increase in the delay time toward the expected location of the Galápagos hotspot at the western edge of the archipelago. With the exception of Española, fast polarization directions (N85-90° E) are close to the current direction of absolute plate motion of the overlying Nazca plate (N91° E). The lack of azimuthal anisotropy in the interior of the archipelago is interpreted as an absence of strongly oriented mantle fabric beneath these stations. The apparent isotropy in this dynamic region, where we expect considerable mantle strain, is surprising. It is not likely that the olivine a-axis is oriented vertically beneath the interior of the archipelago as the Galápagos plume is thought to lie at the western edge. It is also unlikely that there are two layers of perpendicularly-oriented anisotropy which are solely confined to the center of the archipelago. However, there appears to be some correlation between the region of apparent isotropy and a zone of anomalously low upper mantle velocities imaged beneath Santiago and Marchena from surface waves by
Delensing gravitational wave standard sirens with shear and flexion maps
NASA Astrophysics Data System (ADS)
Shapiro, C.; Bacon, D. J.; Hendry, M.; Hoyle, B.
2010-05-01
Supermassive black hole binary (SMBHB) systems are standard sirens - the gravitational wave analogue of standard candles - and if discovered by gravitational wave detectors, they could be used as precise distance indicators. Unfortunately, gravitational lensing will randomly magnify SMBHB signals, seriously degrading any distance measurements. Using a weak lensing map of the SMBHB line of sight, we can estimate its magnification and thereby remove some uncertainty in its distance, a procedure we call `delensing'. We find that delensing is significantly improved when galaxy shears are combined with flexion measurements, which reduce small-scale noise in reconstructed magnification maps. Under a Gaussian approximation, we estimate that delensing with a 2D mosaic image from an Extremely Large Telescope could reduce distance errors by about 25-30 per cent for an SMBHB at z = 2. Including an additional wide shear map from a space survey telescope could reduce distance errors by nearly a factor of 2. Such improvement would make SMBHBs considerably more valuable as cosmological distance probes or as a fully independent check on existing probes.
Opportunities for shear energy scaling in bulk acoustic wave resonators.
Jose, Sumy; Hueting, Raymond J E
2014-10-01
An important energy loss contribution in bulk acoustic wave resonators is formed by so-called shear waves, which are transversal waves that propagate vertically through the devices with a horizontal motion. In this work, we report for the first time scaling of the shear-confined spots, i.e., spots containing a high concentration of shear wave displacement, controlled by the frame region width at the edge of the resonator. We also demonstrate a novel methodology to arrive at an optimum frame region width for spurious mode suppression and shear wave confinement. This methodology makes use of dispersion curves obtained from finite-element method (FEM) eigenfrequency simulations for arriving at an optimum frame region width. The frame region optimization is demonstrated for solidly mounted resonators employing several shear wave optimized reflector stacks. Finally, the FEM simulation results are compared with measurements for resonators with Ta2O5/ SiO2 stacks showing suppression of the spurious modes.
Shear wavelength estimation based on inverse filtering and multiple-point shear wave generation
NASA Astrophysics Data System (ADS)
Kitazaki, Tomoaki; Kondo, Kengo; Yamakawa, Makoto; Shiina, Tsuyoshi
2016-07-01
Elastography provides important diagnostic information because tissue elasticity is related to pathological conditions. For example, in a mammary gland, higher grade malignancies yield harder tumors. Estimating shear wave speed enables the quantification of tissue elasticity imaging using time-of-flight. However, time-of-flight measurement is based on an assumption about the propagation direction of a shear wave which is highly affected by reflection and refraction, and thus might cause an artifact. An alternative elasticity estimation approach based on shear wavelength was proposed and applied to passive configurations. To determine the elasticity of tissue more quickly and more accurately, we proposed a new method for shear wave elasticity imaging that combines the shear wavelength approach and inverse filtering with multiple shear wave sources induced by acoustic radiation force (ARF). The feasibility of the proposed method was verified using an elasticity phantom with a hard inclusion.
Reverberant shear wave fields and estimation of tissue properties
NASA Astrophysics Data System (ADS)
Parker, Kevin J.; Ormachea, Juvenal; Zvietcovich, Fernando; Castaneda, Benjamin
2017-02-01
The determination of shear wave speed is an important subject in the field of elastography, since elevated shear wave speeds can be directly linked to increased stiffness of tissues. MRI and ultrasound scanners are frequently used to detect shear waves and a variety of estimators are applied to calculate the underlying shear wave speed. The estimators can be relatively simple if plane wave behavior is assumed with a known direction of propagation. However, multiple reflections from organ boundaries and internal inhomogeneities and mode conversions can create a complicated field in time and space. Thus, we explore the mathematics of multiple component shear wave fields and derive the basic properties, from which efficient estimators can be obtained. We approach this problem from the historic perspective of reverberant fields, a conceptual framework used in architectural acoustics and related fields. The framework can be recast for the alternative case of shear waves in a bounded elastic media, and the expected value of displacement patterns in shear reverberant fields are derived, along with some practical estimators of shear wave speed. These are applied to finite element models and phantoms to illustrate the characteristics of reverberant fields and provide preliminary confirmation of the overall framework.
Mixing and reaction in the subsonic 2-D turbulent free shear layer
NASA Astrophysics Data System (ADS)
Frieler, Clifford Eugene
Several aspects of mixing and reaction in a turbulent two-dimensional shear layer have been studied. Experiments have been performed with reacting H2, F2, and NO in inert diluent gases. Sensing the heat release by these reactions, several aspects of the mixing process can be examined without the usual resolution limitations. For example, in contrast with direct measurements of composition, the amount of mixed fluid can be conservatively estimated with the results of the "flip" experiments. These have been performed over a range of density ratios, Reynolds numbers and heat release.The effects of initial conditions are of primary importance when comparisons to other studies are undertaken. Aspects as fundamental as growth rate of the turbulent region, or as obscure as the mixed fluid flux ratio depend strongly on the boundary conditions of this flow. These effects are examined in conjunction with those of Reynolds number and density ratio. For most cases studied here, tripping of the high speed boundary layer led to growth rate decreases. An exception was found for the case of high density ratio where the opposite effect was observed. This anomalous result occurred at conditions under which a new mode of instability has been shown to exist. Parallels exist between this unusual result and those of Batt in the uniform density case.An extensive study of the effects of density ratio on the mixing and reaction in the 2-D shear layer has been performed. Results indicate that several aspects of the mixing process are remarkably similar. Profiles of mixed fluid change little as the density ratio varies by a factor of 30. The integral amount of mixed fluid varies less than 6% for all density ratios examined. This insensitivity contrasts with that of the profiles of mixed fluid composition. While having very similar shapes the profiles are offset by an amount which depends very strongly upon the density ratio. The entrainment into the mixing layer has also been examined. Power
Piezoelectric shear wave resonator and method of making same
Wang, J.S.; Lakin, K.M.; Landin, A.R.
1983-10-25
An acoustic shear wave resonator comprising a piezoelectric film having its C-axis substantially inclined from the film normal such that the shear wave coupling coefficient significantly exceeds the longitudinal wave coupling coefficient, whereby the film is capable of shear wave resonance, and means for exciting said film to resonate. The film is prepared by deposition in a dc planar magnetron sputtering system to which a supplemental electric field is applied. The resonator structure may also include a semiconductor material having a positive temperature coefficient of resonance such that the resonator has a temperature coefficient of resonance approaching 0 ppM//sup 0/C.
Piezoelectric shear wave resonator and method of making same
Wang, J.S.; Lakin, K.M.; Landin, A.R.
1985-05-20
An acoustic shear wave resonator comprising a piezoelectric film having its C-axis substantially inclined from the film normal such that the shear wave coupling coefficient significantly exceeds the longitudinal wave coupling coefficient, whereby the film is capable of shear wave resonance, and means for exciting said film to resonate. The film is prepared by deposition in a dc planar magnetron sputtering system to which a supplemental electric field is applied. The resonator structure may also include a semiconductor material having a positive temperature coefficient of resonance such that the resonator has a temperature coefficient of resonance approaching 0 ppM//sup 0/C.
Method of making a piezoelectric shear wave resonator
Wang, Jin S.; Lakin, Kenneth M.; Landin, Allen R.
1987-02-03
An acoustic shear wave resonator comprising a piezoelectric film having its C-axis substantially inclined from the film normal such that the shear wave coupling coefficient significantly exceeds the longitudinal wave coupling coefficient, whereby the film is capable of shear wave resonance, and means for exciting said film to resonate. The film is prepared by deposition in a dc planar magnetron sputtering system to which a supplemental electric field is applied. The resonator structure may also include a semiconductor material having a positive temperature coefficient of resonance such that the resonator has a temperature coefficient of resonance approaching 0 ppm/.degree.C.
Piezoelectric shear wave resonator and method of making same
Wang, Jin S.; Lakin, Kenneth M.; Landin, Allen R.
1988-01-01
An acoustic shear wave resonator comprising a piezoelectric film having its C-axis substantially inclined from the film normal such that the shear wave coupling coefficient significantly exceeds the longitudinal wave coupling coefficient, whereby the film is capable of shear wave resonance, and means for exciting said film to resonate. The film is prepared by deposition in a dc planar magnetron sputtering system to which a supplemental electric field is applied. The resonator structure may also include a semiconductor material having a positive temperature coefficient of resonance such that the resonator has a temperature coefficient of resonance approaching 0 ppm/.degree.C.
Rouze, Ned C; Palmeri, Mark L; Nightingale, Kathryn R
2015-08-01
Recent measurements of shear wave propagation in viscoelastic materials have been analyzed by constructing the two-dimensional Fourier transform (2D-FT) of the spatial-temporal shear wave signal and using an analysis procedure derived under the assumption the wave is described as a plane wave, or as the asymptotic form of a wave expanding radially from a cylindrically symmetric source. This study presents an exact, analytic expression for the 2D-FT description of shear wave propagation in viscoelastic materials following asymmetric Gaussian excitations and uses this expression to evaluate the bias in 2D-FT measurements obtained using the plane or cylindrical wave assumptions. A wide range of biases are observed depending on specific values of frequency, aspect ratio R of the source asymmetry, and material properties. These biases can be reduced significantly by weighting the shear wave signal in the spatial domain to correct for the geometric spreading of the shear wavefront using a factor of x(p). The optimal weighting power p is found to be near the theoretical value of 0.5 for the case of a cylindrical source with R = 1, and decreases for asymmetric sources with R > 1.
Shear wave splitting survey of Western Tibet
NASA Astrophysics Data System (ADS)
Shakhnovich, M.; Levin, V. L.; Cao, Z.
2011-12-01
The goal of our study is to investigate the distribution of seismic anisotropy beneath the western part of the Tibetan plateau to better understand the tectonic processes dominating it. We used new data from 29 portable seismic stations in the Western Tibet that operated from 2007 to 2011. The network covered an approximately triangular area between the Karakorum fault (KF) in the south and the Banggong-Nujiang Suture (BNS) in the north, between longitudes of 79.5 and 83.5 east. In our study we used the data covering approximately two and a half years, from July 2007 to December 2009. Ten stations were operating from 2007, and additional 19 were introduced in 2009. We used earthquakes with magnitudes over 5.5, and picked and analyzed 130 well-recorded SKS phases. We employed three different algorithms of shear wave splitting estimation (cross-correlation, minimization of transverse component and an eigenvalue minimization technique) and used agreement in their respective results to assess the relative quality of our measurements. Observations that yielded radical disagreement in results from different algorithms were designated as NULLs. For a subset of NULLs we verified the absence of shear wave birefringence by visual inspection of particle motion. We report a set of 231 nulls and 310 splitting measurements, of which 128 we deem to be good (i.e., three techniques yield consistent results), and 182 are fair (two out of three methods agree). The delay time in good splitting observation varied from as little as 0.3s to 2.2s, with majority of measurements falling below 1 s. Fast polarizations display directional variability at individual observing sites, and also change laterally. We can identify four regions with distinct patterns of splitting. In the area between the KF and the BNS, fast direction of 40-65SE dominates, and most good splitting measurements yield delays ~1s. At most sites here we also see minor changes in fast direction with backazimuth. Two sites
Anisotropic Power Law Strain Correlations in Sheared Amorphous 2D Solids
Maloney, C. E.; Robbins, M. O.
2009-06-05
The local deformation of steadily sheared two-dimensional Lennard-Jones glasses is studied via computer simulations at zero temperature. In the quasistatic limit, spatial correlations in the incremental strain field are highly anisotropic. The data show power law behavior with a strong angular dependence of the scaling exponent, and the strongest correlations along the directions of maximal shear stress. These results support the notion that the jamming transition at the onset of flow is critical, but suggest unusual critical behavior. The predicted behavior is testable through experiments on sheared amorphous materials such as bubble rafts, foams, emulsions, granular packings, and other systems where particle displacements can be tracked.
2D ocean waves spectra from space: a challenge for validation and synergetic use
NASA Astrophysics Data System (ADS)
Mouche, A.; Wang, H.; Husson, R.; Guitton, G.; Chapron, B.; Li, H.
2016-05-01
Sentinel-1 A now routinely acquires data over the ocean since 2014. Data are processed by ESA through the Payload Data Ground Segment up to Level-2 for Copernicus users. Level-2 products consist of geo-located geophysical parameters related to wind, waves and ocean current. In particular, Sentinel-1A wave measurements provide 2D ocean swell spectra (2D wave energy distribution as a function of wavelength and direction) as well as integrated parameters such as significant wave height, dominant wavelength and direction for each partition. In 2016, Sentinel-1 B will be launched by ESA and GF-3 by CNSA. Then in 2018, CFOSAT (China France Oceanography Satellite project), a joint mission from the Chinese and French Space Agencies, will be launched. They will also provide 2D Ocean waves spectra. This paper focuses on the techniques used to validate 2D-ocean waves as measured by satellite and the challenges and opportunities of such a program for ocean waves measurements from space.
Shear wave splitting and shear wave splitting tomography of the southern Puna plateau
NASA Astrophysics Data System (ADS)
Calixto, Frank J.; Robinson, Danielle; Sandvol, Eric; Kay, Suzanne; Abt, David; Fischer, Karen; Heit, Ben; Yuan, Xiaohui; Comte, Diana; Alvarado, Patricia
2014-11-01
We have investigated the seismic anisotropy beneath the Central Andean southern Puna plateau by applying shear wave splitting analysis and shear wave splitting tomography to local S waves and teleseismic SKS, SKKS and PKS phases. Overall, a very complex pattern of fast directions throughout the southern Puna plateau region and a circular pattern of fast directions around the region of the giant Cerro Galan ignimbrite complex are observed. In general, teleseismic lag times are much greater than those for local events which are interpreted to reflect a significant amount of sub and inner slab anisotropy. The complex pattern observed from shear wave splitting analysis alone is the result of a complex 3-D anisotropic structure under the southern Puna plateau. Our application of shear wave splitting tomography provides a 3-D model of anisotropy in the southern Puna plateau that shows different patterns depending on the driving mechanism of upper-mantle flow and seismic anisotropy. The trench parallel a-axes in the continental lithosphere above the slab east of 68W may be related to deformation of the overriding continental lithosphere since it is under compressive stresses which are orthogonal to the trench. The more complex pattern below the Cerro Galan ignimbrite complex and above the slab is interpreted to reflect delamination of continental lithosphere and upwelling of hot asthenosphere. The a-axes beneath the Cerro Galan, Cerro Blanco and Carachi Pampa volcanic centres at 100 km depth show some weak evidence for vertically orientated fast directions, which could be due to vertical asthenospheric flow around a delaminated block. Additionally, our splitting tomographic model shows that there is a significant amount of seismic anisotropy beneath the slab. The subslab mantle west of 68W shows roughly trench parallel horizontal a-axes that are probably driven by slab roll back and the relatively small coupling between the Nazca slab and the underlying mantle. In
Shear waves in vegetal tissues at ultrasonic frequencies
NASA Astrophysics Data System (ADS)
Fariñas, M. D.; Sancho-Knapik, D.; Peguero-Pina, J. J.; Gil-Pelegrín, E.; Gómez Álvarez-Arenas, T. E.
2013-03-01
Shear waves are investigated in leaves of two plant species using air-coupled ultrasound. Magnitude and phase spectra of the transmission coefficient around the first two orders of the thickness resonances (normal and oblique incidence) have been measured. A bilayer acoustic model for plant leaves (comprising the palisade parenchyma and the spongy mesophyll) is proposed to extract, from measured spectra, properties of these tissues like: velocity and attenuation of longitudinal and shear waves and hence Young modulus, rigidity modulus, and Poisson's ratio. Elastic moduli values are typical of cellular solids and both, shear and longitudinal waves exhibit classical viscoelastic losses. Influence of leaf water content is also analyzed.
Multiple-frequency tomography with shear waves and Love waves
NASA Astrophysics Data System (ADS)
Tian, Yue
In this thesis I study the velocity and attenuation structure of the North American mantle using multiple-frequency shear-wave and Love-wave measurements, together with finite-frequency sensitivity kernels. The software for dynamic ray tracing and fast computation of body-wave finite-frequency sensitivity kernels is described and extensively validated and tested for accuracy. The program works for arbitrarily defined phases and one-dimensional background models. In kinematic and dynamic ray tracing, an integration step size of about 20 km is needed to produce travel-time errors under 0.1 s for the most common seismic phases. In kernel computation, a minimum integration step size of 10--30 km is sufficient to obtain numerical errors of the kernel's spatial quadrature below observational uncertainties. Larger errors may occur for long-period minimax phases such as SS . The paraxial approximation fails and errors become intolerable at epicentral distances larger than 140°. A global data set is built to contain multiple-frequency SH-wave travel-time and amplitude anomalies and SS-wave differential delays, estimated by band-pass filtering and cross-correlation. Most of the data are recorded at USArray stations. Frequency dependence is observed for all three types of data, and is strongest for amplitudes. The shallow structure is constrained by the addition of Love-wave phase delays. Velocity and attenuation heterogeneities are simultaneously estimated by allowing for focusing. The velocity model shows evidence of heavy fragmentation of the Farallon slab, including two separate subduction systems under western and eastern North America respectively, trench-perpendicular slab tears, and blob-like slab fragments in the lower mantle. The velocity model reveals a lower-mantle plume originating at about 1500 km depth beneath the Yellowstone area and tilting about 40° from vertical. Complex interaction between the plume and slab fragments is observed. High correlation
NASA Astrophysics Data System (ADS)
Köhn, D.; Wilken, D.; Rabbel, W.
2012-04-01
The FINO3 project is aimed at the construction of an offshore research platform in the north-sea, hosting research projects dealing with offshore wind energy topics. As part of FINO3 our sub-project deals with the development of new seismic acquisition and inversion concepts for offshore-building foundation soil analysis. We are focussed on the determination of seismic parameters and structural information of the building plot of the platform. Possible changes of the shear modulus of the sediments in the vicinity of the FINO3 monopile due to mechanic loads on the platform are estimated by a tube-waveform tomography. The tube-waves are excited by a hammer blow at the internal wall of the FINO3 monopile above the water line. The tube-waves are propagating through the water column and the sediments and are measured in situ by hydrophones at the external wall of the monopile. Homogenous long wavelength starting models for the waveform tomography are estimated using simple 2D finite difference models. Possible shear-wave velocity starting models range from 150-300 m/s. The resolution of the tube-waveform tomography is estimated by simple chequerboard and random media models. Additionally first results of the data application in the vicinity of the monopile are presented.
Image reconstruction with acoustic radiation force induced shear waves
NASA Astrophysics Data System (ADS)
McAleavey, Stephen A.; Nightingale, Kathryn R.; Stutz, Deborah L.; Hsu, Stephen J.; Trahey, Gregg E.
2003-05-01
Acoustic radiation force may be used to induce localized displacements within tissue. This phenomenon is used in Acoustic Radiation Force Impulse Imaging (ARFI), where short bursts of ultrasound deliver an impulsive force to a small region. The application of this transient force launches shear waves which propagate normally to the ultrasound beam axis. Measurements of the displacements induced by the propagating shear wave allow reconstruction of the local shear modulus, by wave tracking and inversion techniques. Here we present in vitro, ex vivo and in vivo measurements and images of shear modulus. Data were obtained with a single transducer, a conventional ultrasound scanner and specialized pulse sequences. Young's modulus values of 4 kPa, 13 kPa and 14 kPa were observed for fat, breast fibroadenoma, and skin. Shear modulus anisotropy in beef muscle was observed.
Effect of shear on failure waves in soda lime glass
NASA Astrophysics Data System (ADS)
Clifton, R. J.; Mello, M.; Brar, N. S.
1998-07-01
By means of in-material stress gauges, failure waves in shock-compressed soda lime glass have been shown to be distinguished by a marked reduction in shear stress. To explore further the relation between failure waves and shearing resistance, a series of pressure-shear impact experiments have been performed involving the impact of a glass plate by a steel flyer plate and vice versa. The latter configuration is designed to allow direct measurements of the shearing resistance of the failed material. In both configurations, the normal and transverse motion of the free surface of the target is monitored using laser interferometry. The transverse velocity-time profiles show a pronounced loss in shearing resistance of the glass at impact velocities above the threshold for failure waves to occur.
2-D Path Corrections for Local and Regional Coda Waves: A Test of Transportability
Mayeda, K M; Malagnini, L; Phillips, W S; Walter, W R; Dreger, D S; Morasca, P
2005-07-13
Reliable estimates of the seismic source spectrum are necessary for accurate magnitude, yield, and energy estimation. In particular, how seismic radiated energy scales with increasing earthquake size has been the focus of recent debate within the community and has direct implications on earthquake source physics studies as well as hazard mitigation. The 1-D coda methodology of Mayeda et al. [2003] has provided the lowest variance estimate of the source spectrum when compared against traditional approaches that use direct S-waves, thus making it ideal for networks that have sparse station distribution. The 1-D coda methodology has been mostly confined to regions of approximately uniform complexity. For larger, more geophysically complicated regions, 2-D path corrections may be required. We will compare performance of 1-D versus 2-D path corrections in a variety of regions. First, the complicated tectonics of the northern California region coupled with high quality broadband seismic data provides for an ideal ''apples-to-apples'' test of 1-D and 2-D path assumptions on direct waves and their coda. Next, we will compare results for the Italian Alps using high frequency data from the University of Genoa. For Northern California, we used the same station and event distribution and compared 1-D and 2-D path corrections and observed the following results: (1) 1-D coda results reduced the amplitude variance relative to direct S-waves by roughly a factor of 8 (800%); (2) Applying a 2-D correction to the coda resulted in up to 40% variance reduction from the 1-D coda results; (3) 2-D direct S-wave results, though better than 1-D direct waves, were significantly worse than the 1-D coda. We found that coda-based moment-rate source spectra derived from the 2-D approach were essentially identical to those from the 1-D approach for frequencies less than {approx}0.7-Hz, however for the high frequencies (0.7 {le} f {le} 8.0-Hz), the 2-D approach resulted in inter-station scatter
Flipping and scooping of curved 2D rigid fibers in simple shear: The Jeffery equations
NASA Astrophysics Data System (ADS)
Crowdy, Darren
2016-05-01
The dynamical system governing the motion of a curved rigid two-dimensional circular-arc fiber in simple shear is derived in analytical form. This is achieved by finding the solution for the associated low-Reynolds-number flow around such a fiber using the methods of complex analysis. Solutions of the dynamical system display the "flipping" and "scooping" recently observed in computational studies of three-dimensional fibers using linked rigid rod and bead-shell models [J. Wang et al., "Flipping, scooping, and spinning: Drift of rigid curved nonchiral fibers in simple shear flows," Phys. Fluids 24, 123304 (2012)]. To complete the Jeffery-type equations for a curved fiber in a linear flow field we also derive its evolution equations in an extensional flow. It is expected that the equations derived here also govern the motion of slender, curved, three-dimensional rigid fibers when they evolve purely in the plane of shear or strain.
Optimized shear wave generation using hybrid beamforming methods.
Nabavizadeh, Alireza; Greenleaf, James F; Fatemi, Mostafa; Urban, Matthew W
2014-01-01
Elasticity imaging is a medical imaging modality that measures tissue elasticity as an aid in the diagnosis of certain diseases. Shear wave-based methods have been developed to perform elasticity measurements in soft tissue. These methods often use the radiation force mechanism of focused ultrasound to induce shear waves in soft tissue such as liver, kidney, breast, thyroid and skeletal muscle. The efficiency of the ultrasound beam in producing broadband extended shear waves in soft tissue is very important to the widespread use of this modality. Hybrid beamforming combines two types of focusing, conventional spherical focusing and axicon focusing, to produce a beam for generating a shear wave that has increased depth-of-field (DOF) so that measurements can be made with a shear wave with a consistent wave front. Spherical focusing is used in many applications to achieve high lateral resolution, but has low DOF. Axicon focusing, with a cone-shaped transducer, can provide good lateral resolution with large DOF. We describe our linear aperture design and beam optimization performed using angular spectrum simulations. We performed a large parametric simulation study in which we varied the focal depth for the spherical focusing portion of the aperture, the numbers of elements devoted to the spherical and axicon focusing portions of the aperture and the opening angle used for axicon focusing. The hybrid beamforming method was experimentally tested in two phantoms, and shear wave speed measurement accuracy and DOF for each hybrid beam were evaluated. We compared our results with those for shear waves generated using only spherical focusing. The results of this study indicate that hybrid beamforming is capable of producing a beam with increased DOF over which accurate shear wave speed measurements can be made for different-size apertures and at different focal depths.
NASA Astrophysics Data System (ADS)
Bidari, Pooya Sobhe; Alirezaie, Javad; Tavakkoli, Jahan
2017-03-01
This paper presents a method for modeling and simulation of shear wave generation from a nonlinear Acoustic Radiation Force Impulse (ARFI) that is considered as a distributed force applied at the focal region of a HIFU transducer radiating in nonlinear regime. The shear wave propagation is simulated by solving the Navier's equation from the distributed nonlinear ARFI as the source of the shear wave. Then, the Wigner-Ville Distribution (WVD) as a time-frequency analysis method is used to detect the shear wave at different local points in the region of interest. The WVD results in an estimation of the shear wave time of arrival, its mean frequency and local attenuation which can be utilized to estimate medium's shear modulus and shear viscosity using the Voigt model.
Flipping and scooping of curved 2D rigid fibers in simple shear: the Jeffery equations
NASA Astrophysics Data System (ADS)
Crowdy, Darren
2015-11-01
The dynamical system (or ``Jeffery equations'') governing the orbits of a curved rigid two-dimensional fiber in simple shear is derived in analytical form. The study is motivated by the need to understand the dynamics of isolated non-axisymmetric rod-like particles in simple flows for use in suspension modeling. Solutions of the dynamical system are shown to display the ``flipping'' and ``scooping'' recently observed in computational studies of three-dimensional fibers using linked rigid rod and bead-shell models. Indeed the equations we derive are expected to be the same ones governing curved 3D slender fibers executing motions in the plane of shear.
Shear Wave Propagation Across Filled Joints with the Effect of Interfacial Shear Strength
NASA Astrophysics Data System (ADS)
Li, J. C.; Liu, T. T.; Li, H. B.; Liu, Y. Q.; Liu, B.; Xia, X.
2015-07-01
The thin-layer interface model for filled joints is extended to analyze shear wave propagation across filled rock joints when the interfacial shear strength between the filling material and the rocks is taken into account. During the wave propagation process, the two sides of the filled joint are welded with the adjacent rocks first and slide on each other when the shear stress on the joint is greater than the interfacial shear strength. By back analysis, the relation between the shear stress and the relative tangential deformation of the filled joints is obtained from the present approach, which is shown as a cycle parallelogram. Comparison between the present approach and the existing method based on the zero-thickness interface model indicates that the present approach is efficient to analyze shear wave propagation across rock joints with slippery behavior. The calculation results show that the slippery behavior of joints is related to the interfacial failure. In addition, the interaction between the shear stress wave and the two sides of the filling joint influences not only the wave propagation process but also the dynamic response of the filled joint.
NASA Astrophysics Data System (ADS)
Zvietcovich, Fernando; Yao, Jianing; Chu, Ying-Ju; Meemon, Panomsak; Rolland, Jannick P.; Parker, Kevin J.
2016-03-01
Optical Coherence Elastography (OCE) is a widely investigated noninvasive technique for estimating the mechanical properties of tissue. In particular, vibrational OCE methods aim to estimate the shear wave velocity generated by an external stimulus in order to calculate the elastic modulus of tissue. In this study, we compare the performance of five acquisition and processing techniques for estimating the shear wave speed in simulations and experiments using tissue-mimicking phantoms. Accuracy, contrast-to-noise ratio, and resolution are measured for all cases. The first two techniques make the use of one piezoelectric actuator for generating a continuous shear wave propagation (SWP) and a tone-burst propagation (TBP) of 400 Hz over the gelatin phantom. The other techniques make use of one additional actuator located on the opposite side of the region of interest in order to create an interference pattern. When both actuators have the same frequency, a standing wave (SW) pattern is generated. Otherwise, when there is a frequency difference df between both actuators, a crawling wave (CrW) pattern is generated and propagates with less speed than a shear wave, which makes it suitable for being detected by the 2D cross-sectional OCE imaging. If df is not small compared to the operational frequency, the CrW travels faster and a sampled version of it (SCrW) is acquired by the system. Preliminary results suggest that TBP (error < 4.1%) and SWP (error < 6%) techniques are more accurate when compared to mechanical measurement test results.
Dawson, Alexander J; Michaels, Jennifer E; Kummer, Joseph W; Michaels, Thomas E
2017-03-01
Nondestructive evaluation methods rely on prior knowledge of the expected interaction of ultrasonic waves with defects to inform detection and characterization decisions. Wavefield imaging, which refers to the measurement of signals originating from a spatially fixed source on a 2-D rectilinear grid, can be applied to visualize the effect of a subsurface scatterer on surface-measured wave motion. Here, obliquely incident shear waves are directed at the far surface of a plate containing a through-hole using the well-known angle-beam ultrasonic inspection method. A laser vibrometer and laboratory scanner are used to record the resulting out-of-plane motion on the plate surface in the vicinity of the through-hole both before and after a far-surface corner notch is introduced and subsequently enlarged. Waves scattered from the notch are isolated from the incident and hole-scattered waves via baseline subtraction of wavefields. The scattered wavefields are then filtered in the frequency-wavenumber domain to separate Rayleigh, shear, and longitudinal contributions to the scattered wavefield. The filtered wavefields are interpolated in space to obtain 2-D radial wavefield slices originating at the base of the notch. Each radial slice is analyzed to quantify scattering as a function of observation direction, resulting in Rayleigh, shear, and longitudinal scattering profiles for each notch size. The results are compared for four different notch sizes and two transducer orientations.
Surface wave phase velocities from 2-D surface wave tomography studies in the Anatolian plate
NASA Astrophysics Data System (ADS)
Arif Kutlu, Yusuf; Erduran, Murat; Çakır, Özcan; Vinnik, Lev; Kosarev, Grigoriy; Oreshin, Sergey
2014-05-01
We study the Rayleigh and Love surface wave fundamental mode propagation beneath the Anatolian plate. To examine the inter-station phase velocities a two-station method is used along with the Multiple Filter Technique (MFT) in the Computer Programs in Seismology (Herrmann and Ammon, 2004). The near-station waveform is deconvolved from the far-station waveform removing the propagation effects between the source and the station. This method requires that the near and far stations are aligned with the epicentre on a great circle path. The azimuthal difference of the earthquake to the two-stations and the azimuthal difference between the earthquake and the station are restricted to be smaller than 5o. We selected 3378 teleseismic events (Mw >= 5.7) recorded by 394 broadband local stations with high signal-to-noise ratio within the years 1999-2013. Corrected for the instrument response suitable seismogram pairs are analyzed with the two-station method yielding a collection of phase velocity curves in various period ranges (mainly in the range 25-185 sec). Diffraction from lateral heterogeneities, multipathing, interference of Rayleigh and Love waves can alter the dispersion measurements. In order to obtain quality measurements, we select only smooth portions of the phase velocity curves, remove outliers and average over many measurements. We discard these average phase velocity curves suspected of suffering from phase wrapping errors by comparing them with a reference Earth model (IASP91 by Kennett and Engdahl, 1991). The outlined analysis procedure yields 3035 Rayleigh and 1637 Love individual phase velocity curves. To obtain Rayleigh and Love wave travel times for a given region we performed 2-D tomographic inversion for which the Fast Marching Surface Tomography (FMST) code developed by N. Rawlinson at the Australian National University was utilized. This software package is based on the multistage fast marching method by Rawlinson and Sambridge (2004a, 2004b). The
Coupled BOUSS-2D and CMS-Wave Modeling Approach for Harbor Projects
2012-08-01
channels, erosion problems at coastal inlets, and aid in design and Report Documentation Page Form ApprovedOMB No. 0704-0188 Public reporting burden for...Harbor Projects by Lihwa Lin and Zeki Demirbilek PURPOSE: This Coastal and Hydraulics Engineering Technical Note (CHETN) describes the coupled...application of two advanced coastal wave models, BOUSS-2D and CMS-Wave, for harbor applications. The two models have different computational features and
Analysis of vegetation effect on waves using a vertical 2-D RANS model
Technology Transfer Automated Retrieval System (TEKTRAN)
A vertical two-dimensional (2-D) model has been applied in the simulation of wave propagation through vegetated water bodies. The model is based on an existing model SOLA-VOF which solves the Reynolds-Averaged Navier-Stokes (RANS) equations with the finite difference method on a staggered rectangula...
Shear horizontal guided wave modes to infer the shear stiffness of adhesive bond layers.
Le Crom, Bénédicte; Castaings, Michel
2010-04-01
This paper presents a non-destructive, ultrasonic technique to evaluate the quality of bonds between substrates. Shear-horizontally polarized (SH) wave modes are investigated to infer the shear stiffness of bonds, which is necessarily linked to the shear resistance that is a critical parameter for bonded structures. Numerical simulations are run for selecting the most appropriate SH wave modes, i.e., with higher sensitivity to the bond than to other components, and experiments are made for generating-detecting pre-selected SH wave modes and for measuring their phase velocities. An inverse problem is finally solved, consisting of the evaluation of the shear stiffness modulus of a bond layer at different curing times between a metallic plate and a composite patch, such assembly being investigated in the context of repair of aeronautical structures.
A 2D spring model for the simulation of ultrasonic wave propagation in nonlinear hysteretic media.
Delsanto, P P; Gliozzi, A S; Hirsekorn, M; Nobili, M
2006-07-01
A two-dimensional (2D) approach to the simulation of ultrasonic wave propagation in nonclassical nonlinear (NCNL) media is presented. The approach represents the extension to 2D of a previously proposed one dimensional (1D) Spring Model, with the inclusion of a PM space treatment of the intersticial regions between grains. The extension to 2D is of great practical relevance for its potential applications in the field of quantitative nondestructive evaluation and material characterization, but it is also useful, from a theoretical point of view, to gain a better insight of the interaction mechanisms involved. The model is tested by means of virtual 2D experiments. The expected NCNL behaviors are qualitatively well reproduced.
On System Dependent Sources of Uncertainty and Bias in Ultrasonic Quantitative Shear Wave Imaging
Deng, Yufeng; Rouze, Ned C.; Palmeri, Mark L.; Nightingale, Kathryn R.
2016-01-01
Ultrasonic quantitative shear wave imaging methods have been developed over the last decade to estimate tissue elasticity by measuring the speed of propagating shear waves following acoustic radiation force excitation. This work discusses eight sources of uncertainty and bias arising from ultrasound system dependent parameters in ultrasound shear wave speed (SWS) measurements. Each of the eight sources of error are discussed in the context of a linear, isotropic, elastic, homogeneous medium, combining previously reported analyses with Field II simulations, full-wave 2D acoustic propagation simulations and experimental studies. Errors arising from both spatial and temporal sources lead to errors in SWS measurements. Arrival time estimation noise, speckle bias, hardware fluctuations, and phase aberration cause uncertainties (variance) in SWS measurements, while pulse repetition frequency and beamforming errors, as well as coupling medium sound speed mismatch, cause biases in SWS measurements (accuracy errors). Calibration of the sources of bias is an important step in the development of shear wave imaging systems. In a well-calibrated system, where the sources of bias are minimized, and averaging over an ROI is employed to reduce the sources of uncertainty, a SWS error < 3% can be expected. PMID:26886980
Drift Wave Test Particle Transport in Reversed Shear Profile
Horton, W.; Park, H.B.; Kwon, J.M.; Stronzzi, D.; Morrison, P.J.; Choi, D.I.
1998-06-01
Drift wave maps, area preserving maps that describe the motion of charged particles in drift waves, are derived. The maps allow the integration of particle orbits on the long time scale needed to describe transport. Calculations using the drift wave maps show that dramatic improvement in the particle confinement, in the presence of a given level and spectrum of E x B turbulence, can occur for q(r)-profiles with reversed shear. A similar reduction in the transport, i.e. one that is independent of the turbulence, is observed in the presence of an equilibrium radial electric field with shear. The transport reduction, caused by the combined effects of radial electric field shear and both monotonic and reversed shear magnetic q-profiles, is also investigated.
Cardiac Shear Wave Velocity Detection in the Porcine Heart.
Vos, Hendrik J; van Dalen, Bas M; Heinonen, Ilkka; Bosch, Johan G; Sorop, Oana; Duncker, Dirk J; van der Steen, Antonius F W; de Jong, Nico
2017-04-01
Cardiac muscle stiffness can potentially be estimated non-invasively with shear wave elastography. Shear waves are present on the septal wall after mitral and aortic valve closure, thus providing an opportunity to assess stiffness in early systole and early diastole. We report on the shear wave recordings of 22 minipigs with high-frame-rate echocardiography. The waves were captured with 4000 frames/s using a programmable commercial ultrasound machine. The wave pattern was extracted from the data through a local tissue velocity estimator based on one-lag autocorrelation. The wave propagation velocity was determined with a normalized Radon transform, resulting in median wave propagation velocities of 2.2 m/s after mitral valve closure and 4.2 m/s after aortic valve closure. Overall the velocities ranged between 0.8 and 6.3 m/s in a 95% confidence interval. By dispersion analysis we found that the propagation velocity only mildly increased with shear wave frequency.
Measurement of Oblique Impact-generated Shear Waves
NASA Technical Reports Server (NTRS)
Dahl, J. M.; Schultz, P. H.
2001-01-01
Experimental strain measurements reveal that oblique impacts can generate shear waves with displacements as large as those in the P-wave. Large oblique impacts may thus be more efficient sources of surface disruption than vertical impacts. Additional information is contained in the original extended abstract.
Acoustomicrofluidic application of quasi-shear surface waves.
Darinskii, A N; Weihnacht, M; Schmidt, H
2017-02-20
The paper analyzes the possibility of using predominantly boundary polarized surface acoustic waves for actuating fluidic effects in microchannels fabricated inside containers made of PDMS. The aim is to remove a shortcoming peculiar to conventionally utilized predominantly vertically polarized waves. Such waves strongly attenuate while they propagate under container side walls because of the leakage into them. Due to a specific feature of PDMS - extremely small shear elastic modulus - losses of boundary polarized modes should be far smaller. The amplitude of vertical mechanical displacements can be increased right inside the channel owing to the scattering of acoustic fields. As an example, the predominantly vertically polarized surface wave on 128YX LiNbO3 is compared with the quasi-shear leaky wave on 64YX LiNbO3. Our computations predict that, given the electric power supplied to the launching transducer, the quasi-shear wave will drive the fluid more efficiently than the surface wave on 128YX LiNbO3 when the container wall thickness is larger than 25-30 wavelengths, if there are no additional scatterers inside the channel. In the presence of a scatterer, such as a thin gold strip, the quasi-shear wave can be more efficient when the wall thickness exceeds 10-15 wavelengths.
Ismail, A.; Anderson, N.
2007-01-01
Shear-wave velocity (Vs) as a function of soil stiffness is an essential parameter in geotechnical characterization of the subsurface. In this study, multichannel analysis of surface wave (MASW) and downhole methods were used to map the shear-wave velocity-structure and depth to the bed-rock surface at a 125m ?? 125m geotechnical site in Missouri. The main objective was to assess the suitability of the site for constructing a large, heavy building. The acquired multichannel surface wave data were inverted to provide 1D shear-wave velocity profile corresponding to each shot gather. These 1D velocity profiles were interpolated and contoured to generate a suite of 2D shear-wave velocity sections. Integrating the shear-wave velocity data from the MASW method with the downhole velocity data and the available borehole lithologic information enabled us to map shear-wave velocity-structure to a depth on the order of 20m. The bedrock surface, which is dissected by a significant cut-and-fill valley, was imaged. The results suggest that the study site will require special consideration prior to construction. The results also demonstrate the successful use of MASW methods, when integrated with downhole velocity measurements and borehole lithologic information, in the characterization of the near surface at the geotechnical sites. ?? 2007 European Association of Geoscientists & Engineers.
Well-posedness and generalized plane waves simulations of a 2D mode conversion model
Imbert-Gérard, Lise-Marie
2015-12-15
Certain types of electro-magnetic waves propagating in a plasma can undergo a mode conversion process. In magnetic confinement fusion, this phenomenon is very useful to heat the plasma, since it permits to transfer the heat at or near the plasma center. This work focuses on a mathematical model of wave propagation around the mode conversion region, from both theoretical and numerical points of view. It aims at developing, for a well-posed equation, specific basis functions to study a wave mode conversion process. These basis functions, called generalized plane waves, are intrinsically based on variable coefficients. As such, they are particularly adapted to the mode conversion problem. The design of generalized plane waves for the proposed model is described in detail. Their implementation within a discontinuous Galerkin method then provides numerical simulations of the process. These first 2D simulations for this model agree with qualitative aspects studied in previous works.
Explicit wave action conservation for water waves on vertically sheared flows
NASA Astrophysics Data System (ADS)
Quinn, B. E.; Toledo, Y.; Shrira, V. I.
2017-04-01
This paper addresses a major shortcoming of the current generation of wave models, namely their inability to describe wave propagation upon ambient currents with vertical shear. The wave action conservation equation (WAE) for linear waves propagating in horizontally inhomogeneous vertically-sheared currents is derived following Voronovich (1976). The resulting WAE specifies conservation of a certain depth-averaged quantity, the wave action, a product of the wave amplitude squared, eigenfunctions and functions of the eigenvalues of the boundary value problem for water waves upon a vertically sheared current. The formulation of the WAE is made explicit using known asymptotic solutions of the boundary value problem which exploit the smallness of the current magnitude compared to the wave phase velocity and/or its vertical shear and curvature; the adopted approximations are shown to be sufficient for most of the conceivable applications. In the limit of vanishing current shear, the new formulation reduces to that of Bretherton and Garrett (1968) without shear and the invariant is calculated with the current magnitude taken at the free surface. It is shown that in realistic oceanic conditions, the neglect of the vertical structure of the currents in wave modelling which is currently universal might lead to significant errors in wave amplitude. The new WAE which takes into account the vertical shear can be better coupled to modern circulation models which resolve the three-dimensional structure of the uppermost layer of the ocean.
Transmission of acoustic waves through mixing layers and 2D isotropic turbulence
NASA Astrophysics Data System (ADS)
Juve, D.; Blanc-Benon, P.; Comte-Bellot, G.
Ray tracing and parabolic equation methods have been used to study the properties of acoustic waves transmitted through turbulent velocity fields. A numerical simulation permits individual realizations of the turbulent field, which then allow, if desired, an ensemble averaging of the fields. Two flows have been considered, 2D isotropic turbulence and a 2D mixing layer. The following complementary aspects are developed: the occurrence of caustics, the reinforced or weakened zones of the acoustic field, the eigenrays between a source and a receiver, and the associated travel times, variances, and scintillation index.
Normal and shear strain imaging using 2D deformation tracking on beam steered linear array datasets
Xu, Haiyan; Varghese, Tomy
2013-01-01
Purpose: Previous publications have reported on the use of one-dimensional cross-correlation analysis with beam-steered echo signals. However, this approach fails to accurately track displacements at larger depths (>4.5 cm) due to lower signal-to-noise. In this paper, the authors present the use of adaptive parallelogram shaped two-dimensional processing blocks for deformation tracking. Methods: Beam-steered datasets were acquired using a VFX 9L4 linear array transducer operated at a 6 MHz center frequency for steered angles from −15 to 15° in increments of 1°, on both uniformly elastic and single-inclusion tissue-mimicking phantoms. Echo signals were acquired to a depth of 65 mm with the focus set at 40 mm corresponding to the center of phantom. Estimated angular displacements along and perpendicular to the beam direction are used to compute axial and lateral displacement vectors using a least-squares approach. Normal and shear strain tensor component are then estimated based on these displacement vectors. Results: Their results demonstrate that parallelogram shaped two-dimensional deformation tracking significantly improves spatial resolution (factor of 7.79 along the beam direction), signal-to-noise (5 dB improvement), and contrast-to-noise (8–14 dB improvement) associated with strain imaging using beam steering on linear array transducers. Conclusions: Parallelogram shaped two-dimensional deformation tracking is demonstrated in beam-steered radiofrequency data, enabling its use in the estimation of normal and shear strain components. PMID:23298118
Magnetic resonance imaging of shear wave propagation in excised tissue.
Bishop, J; Poole, G; Leitch, M; Plewes, D B
1998-01-01
The propagation of shear waves in ex vivo tissue samples, agar/gel phantoms, and human volunteers was investigated. A moving coil apparatus was constructed to generate low acoustic frequency shear perturbations of 50 to 400 Hz. Oscillating gradients phase-locked with the shear stimulus were used to generate a series of phase contrast images of the shear waves at different time-points throughout the wave cycle. Quantitative measurements of wave velocity and attenuation were obtained to evaluate the effects of temperature, frequency, and tissue anisotropy. Results of these experiments demonstrate significant variation in shear wave behavior with tissue type, whereas frequency and anisotropic behavior was mixed. Temperature-dependent behavior related mainly to the presence of fat. Propagation velocities ranged from 1 to 5 m/sec, and attenuation coefficients of from 1 to 3 nepers/unit wavelength, depending on tissue type. These results confirm the potential of elastic imaging attributable to the intrinsic variability of elastic properties observed in normal tissue, although some difficulty may be experienced in clinical implementation because of viscous attenuation in fat.
Arnal, Bastien; Pernot, Mathieu; Tanter, Mickael
2011-08-01
The clinical applicability of high-intensity focused ultrasound (HIFU) for noninvasive therapy is currently hampered by the lack of robust and real-time monitoring of tissue damage during treatment. The goal of this study is to show that the estimation of local tissue elasticity from shear wave imaging (SWI) can lead to a precise mapping of the lesion. HIFU treatment and monitoring were respectively performed using a confocal setup consisting of a 2.5-MHz single element transducer focused at 34 mm on ex vivo samples and an 8-MHz ultrasound diagnostic probe. Ultrasound-based strain imaging was combined with shear wave imaging on the same device. The SWI sequences consisted of 2 successive shear waves induced at different lateral positions. Each wave was created with pushing beams of 100 μs at 3 depths. The shear wave propagation was acquired at 17,000 frames/s, from which the elasticity map was recovered. HIFU sonications were interleaved with fast imaging acquisitions, allowing a duty cycle of more than 90%. Thus, elasticity and strain mapping was achieved every 3 s, leading to real-time monitoring of the treatment. When thermal damage occurs, tissue stiffness was found to increase up to 4-fold and strain imaging showed strong shrinkages that blur the temperature information. We show that strain imaging elastograms are not easy to interpret for accurate lesion characterization, but SWI provides a quantitative mapping of the thermal lesion. Moreover, the concept of shear wave thermometry (SWT) developed in the companion paper allows mapping temperature with the same method. Combined SWT and shear wave imaging can map the lesion stiffening and temperature outside the lesion, which could be used to predict the eventual lesion growth by thermal dose calculation. Finally, SWI is shown to be robust to motion and reliable in vivo on sheep muscle.
Miao, Hongchen; Huan, Qiang; Wang, Qiangzhong; Li, Faxin
2017-02-01
The non-dispersive fundamental shear horizontal (SH0) wave in plate-like structures is of practical importance in non-destructive testing (NDT) and structural health monitoring (SHM). Theoretically, an omnidirectional SH0 transducer phased array system can be used to inspect defects in a large plate in the similar manner to the phased array transducers used in medical B-scan ultrasonics. However, very few omnidirectional SH0 transducers have been proposed so far. In this work, an omnidirectional SH0 wave piezoelectric transducer (OSH-PT) was proposed, which consists of a ring array of twelve face-shear (d24) trapezoidal PZT elements. Each PZT element can produce face-shear deformation under applied voltage, resulting in circumferential shear deformation in the OSH-PT and omnidirectional SH0 waves in the hosting plate. Both finite element simulations and experiments were conducted to examine the performance of the proposed OSH-PT. Experimental testing shows that the OSH-PT exhibits good omnidirectional properties, no matter it is used as a SH0 wave transmitter or a SH0 wave receiver. This work may greatly promote the applications of SH0 waves in NDT and SHM.
Gravitational Wave Signals from 2D and 3D Core Collapse Supernova Explosions
NASA Astrophysics Data System (ADS)
Yakunin, Konstantin; Mezzacappa, Anthony; Marronetti, Pedro; Bruenn, Stephen; Hix, W. Raphael; Lentz, Eric J.; Messer, O. E. Bronson; Harris, J. Austin; Endeve, Eirik; Blondin, John
2016-03-01
We study two- and three-dimensional (2D and 3D) core-collapse supernovae (CCSN) using our first-principles CCSN simulations performed with the neutrino hydrodynamics code CHIMERA. The following physics is included: Newtonian hydrodynamics with a nuclear equation of state capable of describing matter in both NSE and non-NSE, MGFLD neutrino transport with realistic neutrino interactions, an effective GR gravitational potential, and a nuclear reaction network. Both our 2D and 3D models achieve explosion, which in turn enables us to determine their complete gravitational wave signals. In this talk, we present them, and we analyze the similarities and differences between the 2D and 3D signals.
Yielding, Plasticity, and Microstructure in a 2D Jammed Material under Shear Deformation
NASA Astrophysics Data System (ADS)
Arratia, Paulo; Keim, Nathan
2015-03-01
In this talk, we discuss an experimental investigation on the yielding and plastic deformation of disordered solids. Experiments are performed on colloidal particles that are adsorbed at an oil-water interface and form a dense disordered monolayer. The rheological properties (G', G'') of this dense monolayer are obtained in a custom-built interfacial stress rheometer that uses a magnetic needle within the material. This configuration allows for the simultaneous characterization of both microstructure (tracking ~ 105 particles) and bulk rheology. Results show that for oscillatory shear below a certain strain amplitude, the microstructure becomes reversible after a transient. Above this strain amplitude, the microstructure continues to evolve through many irreversible events. We argue that this boundary between a reversible and irreversible steady state is a yielding transition, and that our experiments measure a meaningful yield stress. Further, we find that reversible plastic deformation is possible. That is, the material can reorganize itself so that the link between plasticity and irreversibility is broken: the material flows slightly, and yet at the end of each deformation cycle, it is exactly unchanged. Now at California Polytechnic State University at San Luis Obispo.
Wave-current interaction, experiments with controlled uniform shear
NASA Astrophysics Data System (ADS)
Simon, Bruno; Touboul, Julien; Rey, Vincent
2016-04-01
Vertically varying currents have a non negligible impact on the propagation of waves. Even though the analytical aspect of the interaction between wave and sheared current is being an active subject of research, experimental data remain rare. Here, the effects of a uniformly shear were investigated in the 10 m long by 0.3 m wide wave flume of the Université de Toulon, France. The main difficulty of the study was to produce several conditions of current with constant shear (du/dz = cst) that would persist along the channel. This was achieved by using curved wire screens upstream the channel (Dunn and Tavoularis, 2007). The geometry and properties of the screens were adjusted to deflect the streamline towards the channel bed or the free surface in order to change the velocity profile. The study focused on regular wave propagating against the current for several wave frequencies and amplitudes. Properties of the free surface and flow velocity are discussed for current with positive and negative shear in order to quantify the influence of the current on the waves. ACKNOWLEDGEMENTS The DGA (Direction Générale de l'Armement, France) is acknowledged for its financial support through the ANR grant N° ANR-13-ASTR-0007.
Wave propagation in carbon nanotubes under shear deformation
NASA Astrophysics Data System (ADS)
Dong, K.; Wang, X.
2006-06-01
This paper reports the results of an investigation on the effect of shear deformations on wave propagation in carbon nanotubes embedded in an elastic matrix. A multi-walled carbon nanotube is considered as a multiple shell coupled together through van der Waals forces between two adjacent tubes. The surrounding matrix is considered as a spring element defined by the Winkler model. Using the variational calculus of Hamilton's principle, dynamic governing equations considering the shear deformation and rotary inertia terms are derived. Numerical examples describe the effects of shear deformation, rotary inertia and elastic matrix on the velocity, the critical frequency, the cut-off frequency and the amplitude ratio of wave propagation in multi-walled carbon nanotubes embedded in an elastic matrix, respectively. The results obtained show that wave propagation in carbon nanotubes appears in a critical frequency or a cut-off frequency for different wave modes; the effect of shear deformation decreases the value of critical frequency; the critical frequency increases as the matrix stiffness increases; the inertia rotary has an obvious influence on the wave velocity for some wave modes in the higher frequency region.
Could linear hysteresis contribute to shear wave losses in tissues?
Parker, Kevin J
2015-04-01
For nearly 100 y in the study of cyclical motion in materials, a particular phenomenon called "linear hysteresis" or "ideal hysteretic damping" has been widely observed. More recently in the field of shear wave elastography, the basic mechanisms underlying shear wave losses in soft tissues are in question. Could linear hysteresis play a role? An underlying theoretical question must be answered: Is there a real and causal physical model that is capable of producing linear hysteresis over a band of shear wave frequencies used in diagnostic imaging schemes? One model that can approximately produce classic linear hysteresis behavior, by examining a generalized Maxwell model with a specific power law relaxation spectrum, is described here. This provides a theoretical plausibility for the phenomenon as a candidate for models of tissue behavior.
Terrane-controlled crustal shear wave splitting in Taiwan
NASA Astrophysics Data System (ADS)
Okaya, David; Christensen, Nikolas I.; Ross, Zachary E.; Wu, Francis T.
2016-01-01
Taiwan is the result of arc-continent collision associated with the convergence of the Philippine Sea plate with the eastern Eurasian plate continental margin. The locus of deformation is found in eastern Taiwan in the form of mountain building (Central Range) with underlying thickened lithosphere. Rapid tectonic exhumation in the Central Range has uncovered low-to-high-grade metamorphic rocks marked by steep cleavage. We carried out a crustal seismic anisotropy study across Taiwan, producing a database of over 27,000 local earthquake shear wave splitting measurements. Additionally, we carried out rock physics measurements of metamorphic outcrop samples to quantify shear wave rock anisotropy. We produced a map of station-averaged splitting measurements across Taiwan. Patterns of fast shear wave directions correlate with tectonic terranes produced by plate convergence. Deformation-related mineral-preferred orientation in the metamorphic rocks produces a significant amount of the crustal anisotropy in the Taiwan collision zone.
Lithology and shear-wave velocity in Memphis, Tennessee
Gomberg, J.; Waldron, B.; Schweig, E.; Hwang, H.; Webbers, A.; Van Arsdale, R.; Tucker, K.; Williams, R.; Street, R.; Mayne, P.; Stephenson, W.; Odum, J.; Cramer, C.; Updike, R.; Hutson, S.; Bradley, M.
2003-01-01
We have derived a new three-dimensional model of the lithologic structure beneath the city of Memphis, Tennessee, and examined its correlation with measured shear-wave velocity profiles. The correlation is sufficiently high that the better-constrained lithologic model may be used as a proxy for shear-wave velocities, which are required to calculate site-amplification for new seismic hazard maps for Memphis. The lithologic model and its uncertainties are derived from over 1200 newly compiled well and boring logs, some sampling to 500 m depth, and a moving-least-squares algorithm. Seventy-six new shear-wave velocity profiles have been measured and used for this study, most sampling to 30 m depth or less. All log and velocity observations are publicly available via new web sites.
Shear wave velocity structures of the Arabian Peninsula
NASA Astrophysics Data System (ADS)
Mokhtar, Talal A.; Al-Saeed, Mohammed M.
1994-02-01
The shear velocity structures of the different tectonic provinces of the Arabian Peninsula has been studied using surface wave data recorded by the RYD (Riyadh) station. The inversion of Rayleigh wave group velocities indicates that the Arabian shield can be modeled by two layers, each of which is 20 km thick with a shear velocity of 3.61 km/s in the upper crust and 3.88 km/s in the lower crust. The underlying upper mantle velocity is 4.61 km/s. Inversion of both Love and Rayleigh waves group velocities shows that the Arabian platform upper and lower crusts are comparable in their thicknesses to those of the shield, but with shear velocities of 3.4 and 4 km/s, respectively. The upper mantle velocity beneath the platform is 4.4 km/s and the average total thickness of the crust is 45 km.
Two-dimensional shear wave speed and crawling wave speed recoveries from in vitro prostate data
Lin, Kui; McLaughlin, Joyce R.; Thomas, Ashley; Parker, Kevin; Castaneda, Benjamin; Rubens, Deborah J.
2011-01-01
The crawling wave experiment was developed to capture a shear wave induced moving interference pattern that is created by two harmonic vibration sources oscillating at different but almost the same frequencies. Using the vibration sonoelastography technique, the spectral variance image reveals a moving interference pattern. It has been shown that the speed of the moving interference pattern, i.e., the crawling wave speed, is proportional to the shear wave speed with a nonlinear factor. This factor can generate high-speed artifacts in the crawling wave speed images that do not actually correspond to increased stiffness. In this paper, an inverse algorithm is developed to reconstruct both the crawling wave speed and the shear wave speed using the phases of the crawling wave and the shear wave. The feature for the data is the application to in vitro prostate data, while the features for the algorithm include the following: (1) A directional filter is implemented to obtain a wave moving in only one direction; and (2) an L1 minimization technique with physics inspired constraints is employed to calculate the phase of the crawling wave and to eliminate jump discontinuities from the phase of the shear wave. The algorithm is tested on in vitro prostate data measured at the Rochester Center for Biomedical Ultrasound and University of Rochester. Each aspect of the algorithm is shown to yield image improvement. The results demonstrate that the shear wave speed images can have less artifacts than the crawling wave images. Examples are presented where the shear wave speed recoveries have excellent agreement with histology results on the size, shape, and location of cancerous tissues in the glands. PMID:21786924
Two-dimensional shear wave speed and crawling wave speed recoveries from in vitro prostate data.
Lin, Kui; McLaughlin, Joyce R; Thomas, Ashley; Parker, Kevin; Castaneda, Benjamin; Rubens, Deborah J
2011-07-01
The crawling wave experiment was developed to capture a shear wave induced moving interference pattern that is created by two harmonic vibration sources oscillating at different but almost the same frequencies. Using the vibration sonoelastography technique, the spectral variance image reveals a moving interference pattern. It has been shown that the speed of the moving interference pattern, i.e., the crawling wave speed, is proportional to the shear wave speed with a nonlinear factor. This factor can generate high-speed artifacts in the crawling wave speed images that do not actually correspond to increased stiffness. In this paper, an inverse algorithm is developed to reconstruct both the crawling wave speed and the shear wave speed using the phases of the crawling wave and the shear wave. The feature for the data is the application to in vitro prostate data, while the features for the algorithm include the following: (1) A directional filter is implemented to obtain a wave moving in only one direction; and (2) an L(1) minimization technique with physics inspired constraints is employed to calculate the phase of the crawling wave and to eliminate jump discontinuities from the phase of the shear wave. The algorithm is tested on in vitro prostate data measured at the Rochester Center for Biomedical Ultrasound and University of Rochester. Each aspect of the algorithm is shown to yield image improvement. The results demonstrate that the shear wave speed images can have less artifacts than the crawling wave images. Examples are presented where the shear wave speed recoveries have excellent agreement with histology results on the size, shape, and location of cancerous tissues in the glands.
2D Traveling Wave Array Employing a Trapezoidal Dielectric Wedge for Beam Steering
NASA Technical Reports Server (NTRS)
Host, Nicholas K.; Chen, Chi-Chih; Volakis, John L.; Miranada, Felix A.
2014-01-01
This presentation addresses the progress made so far in the development of an antenna array with reconfigurable transmission line feeds connecting each element in series. In particular, 2D traveling wave array employing trapezoidal Dielectric Wedge for Beam Steering will be discussed. The presentation includes current status of the effort and suggested future work. The work is being done as part of the NASA Office of the Chief Technologist's Space Technology Research Fellowship (NSTRF).
Transverse instability of electron plasma waves study via direct 2 +2D Vlasov simulations
NASA Astrophysics Data System (ADS)
Silantyev, Denis; Lushnikov, Pavel; Rose, Harvey
2016-10-01
Transverse instability can be viewed as initial stage of electron plasma waves (EPWs) filamentation. We performed direct 2 +2D Vlasov-Poisson simulations of collisionless plasma to systematically study the growth rates of oblique modes of finite-amplitude EPW depending on its amplitude, wavenumber, angle of the oblique mode wavevector relative to the EPW's wavevector and the configuration of the trapped electrons in the EPW. Simulation results are compared to the predictions of theoretical models.
Shear-Alfv'en Waves in Gyrokinetic Particle Simulation
NASA Astrophysics Data System (ADS)
Dickerson, Thomas D.; Startsev, Edward A.; Lee, W. W.
2012-10-01
Numerical properties of shear-Alfv'en waves in slab geometry have been studied using a Particle-in-Cell code implementing the recently developed double split-weight scheme [1]. This scheme separates the non-adiabatic response of the particles from both their adiabatic responses and the field-line bending effects arising from the background density and temperature gradients of both the electrons and the ions. This scheme is an improvement over the original split-weight scheme [2] in the presence of the zeroth-order inhomogeneities. The present studies consist of testing numerical restrictions on temporal resolution in the simulation of these waves in one and two dimensions, and on spatial resolutions on the formation of shear Alfv'en eigenmodes in two dimensional sheared slab simulations. For example, it is found that the correct behavior of ion temperature gradient modes in terms of frequencies and growth rates can be maintained with time steps larger than the limit imposed by the shear-Alfven waves. Details will be reported.[4pt] [1] E. A. Startsev and W. W. Lee, ``Finite-Beta Simulation of Microinstabilities,'' manuscript in preparation (2012). [0pt] [2] W. W. Lee, J. L. V. Lewandowski, T. S. Hahm and Z. Lin, ``Shear-Alf'en Waves in Gyrokinetic Plasmas,'' Phys. Plasmas 10, 4435 (2001).
The parametric decay of Alfven waves into shear Alfven waves and dust lower hybrid waves
Jamil, M.; Shah, H. A.; Zubia, K.; Zeba, I.; Uzma, Ch.; Salimullah, M.
2010-07-15
The parametric decay instability of Alfven wave into low-frequency electrostatic dust-lower-hybrid and electromagnetic shear Alfven waves has been investigated in detail in a dusty plasma in the presence of external/ambient uniform magnetic field. Magnetohydrodynamic fluid equations of plasmas have been employed to find the linear and nonlinear response of the plasma particles for this three-wave nonlinear coupling in a dusty magnetoplasma. Here, relatively high frequency electromagnetic Alfven wave has been taken as the pump wave. It couples with other two low-frequency internal possible modes of the dusty magnetoplasma, viz., the dust-lower-hybrid and shear Alfven waves. The nonlinear dispersion relation of the dust-lower-hybrid wave has been solved to obtain the growth rate of the parametric decay instability. The growth rate is maximum for small value of external magnetic field B{sub s}. It is noticed that the growth rate is proportional to the unperturbed electron number density n{sub oe}.
A Multiresolution Approach to Shear Wave Image Reconstruction
Hollender, Peter; Bottenus, Nick; Trahey, Gregg
2015-01-01
Shear wave imaging techniques build maps of local elasticity estimating the local group velocity of induced mechanical waves. Velocity estimates are formed using the time delay in the motion profile of the medium at two or more points offset from the shear wave source. Because the absolute time-of-flight between any pair of locations scales with the distance between them, there is an inherent trade-off between robustness to time-of-flight errors and lateral spatial resolution based on the number and spacing of the receive points used for each estimate. This work proposes a method of using the time delays measured between all combinations of locations to estimate a noise-robust, high-resolution image. The time-of-flight problem is presented as an overdetermined system of linear equations that can be directly solved with and without spatial regularization terms. Finite element method simulations of acoustic radiation force-induced shear waves are used to illustrate the method, demonstrating superior contrast-to-noise ratio and lateral edge resolution characteristics compared to linear regression of arrival times. This technique may improve shear wave imaging in situations where time-of-flight noise is a limiting factor. PMID:26276953
Wave Propagation in 2-D Granular Matrix and Dust Mitigation of Fabrics for Space Exploration Mission
NASA Technical Reports Server (NTRS)
Thanh, Phi Hung X.
2004-01-01
Wave Propagation study is essential to exploring the soil on Mars or Moon and Dust Mitigation is a necessity in terms of crew's health in exploration missions. The study of Dust Mitigation has a significant impact on the crew s health when astronauts track dust back into their living space after exploration trips. We are trying to use piezoelectric fiber to create waves and vibrations at certain critical frequencies and amplitudes so that we can shake the particles off from the astronaut s fabrics. By shaking off the dust and removing it, the astronauts no longer have to worry about breathing in small and possibly hazardous materials, when they are back in their living quarters. The Wave Propagation in 2-D Granular Matrix studies how the individual particles interact with each other when a pressure wave travels through the matrix. This experiment allows us to understand how wave propagates through soils and other materials. By knowing the details about the interactions of particles when they act as a medium for waves, we can better understand how wave propagates through soils and other materials. With this experiment, we can study how less gravity effects the wave propagation and hence device a way to study soils in space and on Moon or Mars. Some scientists treat the medium that waves travel through as a "black box", they did not pay much attention to how individual particles act as wave travels through them. With this data, I believe that we can use it to model ways to measure the properties of different materials such as density and composition. In order to study how the particles interact with each other, I have continued Juan Agui's experiment of the effects of impacts on a 2-D matrix. By controlling the inputs and measuring the outputs of the system, I will be able to study now the particles in that system interact with each other. I will also try to model this with the software called PFC2D in order to obtain theoretical data to compare with the experiment
On the initiation of surface waves by turbulent shear flow
NASA Astrophysics Data System (ADS)
Teixeira, M. A. C.; Belcher, S. E.
2006-02-01
An analytical model is developed for the initial stage of surface wave generation at an air-water interface by a turbulent shear flow in either the air or in the water. The model treats the problem of wave growth departing from a flat interface and is relevant for small waves whose forcing is dominated by turbulent pressure fluctuations. The wave growth is predicted using the linearised and inviscid equations of motion, essentially following Phillips [Phillips, O.M., 1957. On the generation of waves by turbulent wind. J. Fluid Mech. 2, 417-445], but the pressure fluctuations that generate the waves are treated as unsteady and related to the turbulent velocity field using the rapid-distortion treatment of Durbin [Durbin, P.A., 1978. Rapid distortion theory of turbulent flows. PhD thesis, University of Cambridge]. This model, which assumes a constant mean shear rate Γ, can be viewed as the simplest representation of an oceanic or atmospheric boundary layer. For turbulent flows in the air and in the water producing pressure fluctuations of similar magnitude, the waves generated by turbulence in the water are found to be considerably steeper than those generated by turbulence in the air. For resonant waves, this is shown to be due to the shorter decorrelation time of turbulent pressure in the air (estimated as ∝ 1/ Γ), because of the higher shear rate existing in the air flow, and due to the smaller length scale of the turbulence in the water. Non-resonant waves generated by turbulence in the water, although being somewhat gentler, are still steeper than resonant waves generated by turbulence in the air. Hence, it is suggested that turbulence in the water may have a more important role than previously thought in the initiation of the surface waves that are subsequently amplified by feedback instability mechanisms.
Shear wave velocity structure of Reed Bank, southern continental margin of the South China Sea
NASA Astrophysics Data System (ADS)
Wei, Xiaodong; Ruan, Aiguo; Zhao, Minghui; Qiu, Xuelin; Wu, Zhenli; Niu, Xiongwei
2015-03-01
The shear wave velocity structure of a wide angle seismic profile (OBS973-2) across Reed Bank in the southern continental margin of the South China Sea (SCS) is simulated by 2-D ray-tracing method, based on its previous P-wave model. This profile is 369-km-long and consists of fifteen three-component ocean bottom seismometers (OBS). The main results are as follows.(1) The model consists of seven layers and the shear wave velocity increases from 0.7 km/s at the top of sediment layer to 4.0 km/s in the lower crust. (2) The Moho depth decreases from 20-22 km at the Reed Bank to 9-11 km at the deep oceanic basin with the shear wave velocity of 4.2 km/s below the Moho. (3) The Vp/Vs ratio decreases with depth through the sedimentary layers, attributed to increased compaction and consolidation of the rocks. (4) In the continental upper crust (at model distance 90-170 km), S-wave velocity (2.5-3.2 km/s) is relatively low and Vp/Vs ratio (1.75-1.82) is relatively high compared with the other parts of the crust, corresponding to the lower P-wave velocity in the previous P-wave model and normal faults revealed by MCS data, indicating that a strong regional extensional movement had occurred during the formation process of the SCS at the Reed Bank area. (5) The S-wave structures indicate that Reed Bank crust has different rock compositions from that in the east section of the northern margin, denying the presence of conjugate relationship of Reed Bank with Dongsha islands. According to P-wave models and other data, we inferred that Reed Bank and Macclesfield were separated from the same continental crust during the rifting and break-up process.
Stratification and Dissipation Effects in Running 2D Surface and Internal Gravity Waves
NASA Astrophysics Data System (ADS)
Kistovich, A. V.; Chashechkin, Yu. D.
2012-04-01
Problem of 2D gravity wave propagation inside and along a free surface of a deep viscous stratified fluid is analyzed analytically basing on set of fundamental governing equations that are continuity and Navier-Stokes neglecting by compressibility effects. Conventional boundary conditions taking into account solid films on the free surface where used. In a limit of clean fluid surface the set is transformed into partial differential equation of the fourth order for a stream function. The sense of applied approximations is discussed. In infinitesimal limit the equation is split on independent sub-equations with characteristic dispersion relations describing propagating independent surface and internal waves. Waves are supplemented by fine flow components. Relations between amplitude of regular waves and singular perturbed components corresponding of a fine structure are derived and discussed. Expressions for vorticity and rate of baroclinic generation of vorticity are presented. Waves of finite amplitudes are investigated in the limit of non-viscous fluid. Two kinds of the running surface wave forms for different values of the wave steepness were calculated and discussed. New approximate non-linear equations was solved and a set of solutions for stratified and homogeneous fluids describing running waves of small finite and large steepness of the waves are constructed. Received expressions for drift velocity are transferred into well-known Stokes solutions in limit of small steepness. Calculations of running periodic internal waves are compared with data of laboratory experiments performed on USU "HPC IPMech RAS" under support of Ministry of Education and Science of the Russian Federation (Goscontract No. 16.518.11.7059. Extrapolation results of calculations on the environmental conditions are speculated.
Stiffener bond line monitoring using ultrasonic shear guided waves
NASA Astrophysics Data System (ADS)
Fan, Z.; Castaings, M.; Lowe, M. J. S.; Fromme, P.; Biateau, C.
2012-05-01
Adhesively bonded stiffeners are employed in aerospace applications to increase structural stiffness. The potential of shear guided wave modes for the verification of adhesion and bond line thickness in difficult to access regions has been investigated. The properties of guided wave modes propagating along a T-shaped stiffener bonded to an aluminium plate were calculated using the Semi-Analytical Finite Element (SAFE) method. Shear modes were identified as well suited with energy concentrated at the stiffener and bond line, limiting energy radiation into the plate and thus achieving increased inspection length. The influence of bond line properties and thickness was investigated from SAFE and 3D Finite Element calculations and a significant influence of the epoxy shear (Coulomb) modulus on the phase velocity found. Experiments were conducted during the curing of an epoxy adhesive, bonding a stiffener to the plate with bond strength and stiffness increasing over time. The excited shear mode was measured using a laser interferometer. The measured phase velocity changed significantly during curing. The frequency dependency matches well with the SAFE calculations for a variation of the Coulomb's modulus of the adhesive layer. The potential of the shear guided wave mode for bond line inspection and monitoring has been shown.
Fast Acceleration of 2D Wave Propagation Simulations Using Modern Computational Accelerators
Wang, Wei; Xu, Lifan; Cavazos, John; Huang, Howie H.; Kay, Matthew
2014-01-01
Recent developments in modern computational accelerators like Graphics Processing Units (GPUs) and coprocessors provide great opportunities for making scientific applications run faster than ever before. However, efficient parallelization of scientific code using new programming tools like CUDA requires a high level of expertise that is not available to many scientists. This, plus the fact that parallelized code is usually not portable to different architectures, creates major challenges for exploiting the full capabilities of modern computational accelerators. In this work, we sought to overcome these challenges by studying how to achieve both automated parallelization using OpenACC and enhanced portability using OpenCL. We applied our parallelization schemes using GPUs as well as Intel Many Integrated Core (MIC) coprocessor to reduce the run time of wave propagation simulations. We used a well-established 2D cardiac action potential model as a specific case-study. To the best of our knowledge, we are the first to study auto-parallelization of 2D cardiac wave propagation simulations using OpenACC. Our results identify several approaches that provide substantial speedups. The OpenACC-generated GPU code achieved more than speedup above the sequential implementation and required the addition of only a few OpenACC pragmas to the code. An OpenCL implementation provided speedups on GPUs of at least faster than the sequential implementation and faster than a parallelized OpenMP implementation. An implementation of OpenMP on Intel MIC coprocessor provided speedups of with only a few code changes to the sequential implementation. We highlight that OpenACC provides an automatic, efficient, and portable approach to achieve parallelization of 2D cardiac wave simulations on GPUs. Our approach of using OpenACC, OpenCL, and OpenMP to parallelize this particular model on modern computational accelerators should be applicable to other computational models of wave propagation in
Ormachea, Juvenal; Lavarello, Roberto J; McAleavey, Stephen A; Parker, Kevin J; Castaneda, Benjamin
2016-09-01
Elastography provides tissue stiffness information that attempts to characterize the elastic properties of tissue. However, there is still limited literature comparing elastographic modalities for tissue characterization. This study focuses on two quantitative techniques using different vibration sources that have not been compared to date: crawling wave sonoelastography (CWS) and single tracking location shear wave elasticity imaging (STL-SWEI). To understand each technique's performance, shear wave speed (SWS) was measured in homogeneous phantoms and ex vivo beef liver tissue. Then, the contrast, contrast-to-noise ratio (CNR), and lateral resolution were measured in an inclusion and two-layer phantoms. The SWS values obtained with both modalities were validated with mechanical measurements (MM) which serve as ground truth. The SWS results for the three different homogeneous phantoms (10%, 13%, and 16% gelatin concentrations) and ex vivo beef liver tissue showed good agreement between CWS, STL-SWEI, and MM as a function of frequency. For all gelatin phantoms, the maximum accuracy errors were 2.52% and 2.35% using CWS and STL-SWEI, respectively. For the ex vivo beef liver, the maximum accuracy errors were 9.40% and 7.93% using CWS and STL-SWEI, respectively. For lateral resolution, contrast, and CNR, both techniques obtained comparable measurements for vibration frequencies less than 300 Hz (CWS) and distances between the push beams ( ∆x ) between 3 mm and 5.31 mm (STL-SWEI). The results obtained in this study agree over an SWS range of 1-6 m/s. They are expected to agree in perfectly linear, homogeneous, and isotropic materials, but the SWS overlap is not guaranteed in all materials because each of the three methods have unique features.
Shear horizontal (SH) ultrasound wave propagation around smooth corners.
Petcher, P A; Burrows, S E; Dixon, S
2014-04-01
Shear horizontal (SH) ultrasound guided waves are being used in an increasing number of non-destructive testing (NDT) applications. One advantage SH waves have over some wave types, is their ability to propagate around curved surfaces with little energy loss; to understand the geometries around which they could propagate, the wave reflection must be quantified. A 0.83mm thick aluminium sheet was placed in a bending machine, and a shallow bend was introduced. Periodically-poled magnet (PPM) electromagnetic acoustic transducers (EMATs), for emission and reception of SH waves, were placed on the same side of the bend, so that reflected waves were received. Additional bending of the sheet demonstrated a clear relationship between bend angles and the reflected signal. Models suggest that the reflection is a linear superposition of the reflections from each bend segment, such that sharp turns lead to a larger peak-to-peak amplitude, in part due to increased phase coherence.
Designing of sparse 2D arrays for Lamb wave imaging using coarray concept
NASA Astrophysics Data System (ADS)
Ambroziński, Łukasz; Stepinski, Tadeusz; Uhl, Tadeusz
2015-03-01
2D ultrasonic arrays have considerable application potential in Lamb wave based SHM systems, since they enable equivocal damage imaging and even in some cases wave-mode selection. Recently, it has been shown that the 2D arrays can be used in SHM applications in a synthetic focusing (SF) mode, which is much more effective than the classical phase array mode commonly used in NDT. The SF mode assumes a single element excitation of subsequent transmitters and off-line processing the acquired data. In the simplest implementation of the technique, only single multiplexed input and output channels are required, which results in significant hardware simplification. Application of the SF mode for 2D arrays creates additional degrees of freedom during the design of the array topology, which complicates the array design process, however, it enables sparse array designs with performance similar to that of the fully populated dense arrays. In this paper we present the coarray concept to facilitate synthesis process of an array's aperture used in the multistatic synthetic focusing approach in Lamb waves-based imaging systems. In the coherent imaging, performed in the transmit/receive mode, the sum coarray is a morphological convolution of the transmit/receive sub-arrays. It can be calculated as the set of sums of the individual sub-arrays' elements locations. The coarray framework will be presented here using a an example of a star-shaped array. The approach will be discussed in terms of beampatterns of the resulting imaging systems. Both simulated and experimental results will be included.
Designing of sparse 2D arrays for Lamb wave imaging using coarray concept
Ambroziński, Łukasz Stepinski, Tadeusz Uhl, Tadeusz
2015-03-31
2D ultrasonic arrays have considerable application potential in Lamb wave based SHM systems, since they enable equivocal damage imaging and even in some cases wave-mode selection. Recently, it has been shown that the 2D arrays can be used in SHM applications in a synthetic focusing (SF) mode, which is much more effective than the classical phase array mode commonly used in NDT. The SF mode assumes a single element excitation of subsequent transmitters and off-line processing the acquired data. In the simplest implementation of the technique, only single multiplexed input and output channels are required, which results in significant hardware simplification. Application of the SF mode for 2D arrays creates additional degrees of freedom during the design of the array topology, which complicates the array design process, however, it enables sparse array designs with performance similar to that of the fully populated dense arrays. In this paper we present the coarray concept to facilitate synthesis process of an array’s aperture used in the multistatic synthetic focusing approach in Lamb waves-based imaging systems. In the coherent imaging, performed in the transmit/receive mode, the sum coarray is a morphological convolution of the transmit/receive sub-arrays. It can be calculated as the set of sums of the individual sub-arrays’ elements locations. The coarray framework will be presented here using a an example of a star-shaped array. The approach will be discussed in terms of beampatterns of the resulting imaging systems. Both simulated and experimental results will be included.
2-D Coda and Direct Wave Attenuation Tomography in Northern Italy
Morasca, P; Mayeda, K; Gok, R; Phillips, W S; Malagnini, L
2007-10-17
A 1-D coda method was proposed by Mayeda et al. (2003) in order to obtain stable seismic source moment-rate spectra using narrowband coda envelope measurements. That study took advantage of the averaging nature of coda waves to derive stable amplitude measurements taking into account all propagation, site, and Sto-coda transfer function effects. Recently this methodology was applied to micro earthquake data sets from three sub-regions of northern Italy (i.e., western Alps, northern Apennines and eastern Alps). Since the study regions were small, ranging between local-to-near-regional distances, the simple 1-D path assumptions used in the coda method worked very well. The lateral complexity of this region would suggest, however, that a 2-D path correction might provide even better results if the datasets were combined, especially when paths traverse larger distances and complicated regions. The structural heterogeneity of northern Italy makes the region ideal to test the extent to which coda variance can be reduced further by using a 2-D Q tomography technique. The approach we use has been developed by Phillips et al. (2005) and is an extension of previous amplitude ratio techniques to remove source effects from the inversion. The method requires some assumptions such as isotropic source radiation which is generally true for coda waves. Our results are compared against direct Swave inversions for 1/Q and results from both share very similar attenuation features that coincide with known geologic structures. We compare our results with those derived from direct waves as well as some recent results from northern California obtained by Mayeda et al. (2005) which tested the same tomographic methodology applied in this study to invert for 1/Q. We find that 2-D coda path corrections for this region significantly improve upon the 1-D corrections, in contrast to California where only a marginal improvement was observed. We attribute this difference to stronger lateral
High-frequency shear-horizontal surface acoustic wave sensor
Branch, Darren W
2013-05-07
A Love wave sensor uses a single-phase unidirectional interdigital transducer (IDT) on a piezoelectric substrate for leaky surface acoustic wave generation. The IDT design minimizes propagation losses, bulk wave interferences, provides a highly linear phase response, and eliminates the need for impedance matching. As an example, a high frequency (.about.300-400 MHz) surface acoustic wave (SAW) transducer enables efficient excitation of shear-horizontal waves on 36.degree. Y-cut lithium tantalate (LTO) giving a highly linear phase response (2.8.degree. P-P). The sensor has the ability to detect at the pg/mm.sup.2 level and can perform multi-analyte detection in real-time. The sensor can be used for rapid autonomous detection of pathogenic microorganisms and bioagents by field deployable platforms.
High-frequency shear-horizontal surface acoustic wave sensor
Branch, Darren W
2014-03-11
A Love wave sensor uses a single-phase unidirectional interdigital transducer (IDT) on a piezoelectric substrate for leaky surface acoustic wave generation. The IDT design minimizes propagation losses, bulk wave interferences, provides a highly linear phase response, and eliminates the need for impedance matching. As an example, a high frequency (.about.300-400 MHz) surface acoustic wave (SAW) transducer enables efficient excitation of shear-horizontal waves on 36.degree. Y-cut lithium tantalate (LTO) giving a highly linear phase response (2.8.degree. P-P). The sensor has the ability to detect at the pg/mm.sup.2 level and can perform multi-analyte detection in real-time. The sensor can be used for rapid autonomous detection of pathogenic microorganisms and bioagents by field deployable platforms.
NASA Astrophysics Data System (ADS)
Miao, Hongchen; Huan, Qiang; Li, Faxin
2016-11-01
The fundamental shear horizontal (SH0) wave in plate-like structures is of great importance in non-destructive testing (NDT) and structural health monitoring (SHM) as it is non-dispersive, while excitation or reception of SH0 waves using piezoelectrics is always a challenge. In this work, we firstly demonstrate via finite element simulations that face-shear piezoelectrics is superior to thickness-shear piezoelectrics in driving SH waves. Next, by using a newly defined face-shear d24 PZT wafer as an actuator and face-shear d36 PMN-PT wafers as sensors, pure SH0 wave was successfully excited in an aluminum plate from 130 to 180 kHz. Then, it was shown that the face-shear d24 PZT wafer could receive the SH0 wave only and filter the Lamb waves over a wide frequency range (120-230 kHz). The directionality of the excited SH0 wave was also investigated using face-shear d24 PZT wafers as both actuators and sensors. Results show that pure SH0 wave can be excited symmetrically along two orthogonal directions (0° and 90°) and the amplitude of the excited SH0 wave can keep over 90% of the maximum amplitude when the deviate angle is within 30°. This work could greatly promote the applications of SH0 wave in NDT and SHM.
Instability of subharmonic resonances in magnetogravity shear waves.
Salhi, A; Nasraoui, S
2013-12-01
We study analytically the instability of the subharmonic resonances in magnetogravity waves excited by a (vertical) time-periodic shear for an inviscid and nondiffusive unbounded conducting fluid. Due to the fact that the magnetic potential induction is a Lagrangian invariant for magnetohydrodynamic Euler-Boussinesq equations, we show that plane-wave disturbances are governed by a four-dimensional Floquet system in which appears, among others, the parameter ɛ representing the ratio of the periodic shear amplitude to the vertical Brunt-Väisälä frequency N(3). For sufficiently small ɛ and when the magnetic field is horizontal, we perform an asymptotic analysis of the Floquet system following the method of Lebovitz and Zweibel [Astrophys. J. 609, 301 (2004)]. We determine the width and the maximal growth rate of the instability bands associated with subharmonic resonances. We show that the instability of subharmonic resonance occurring in gravity shear waves has a maximal growth rate of the form Δ(m)=(3√[3]/16)ɛ. This instability persists in the presence of magnetic fields, but its growth rate decreases as the magnetic strength increases. We also find a second instability involving a mixing of hydrodynamic and magnetic modes that occurs for all magnetic field strengths. We also elucidate the similarity between the effect of a vertical magnetic field and the effect of a vertical Coriolis force on the gravity shear waves considering axisymmetric disturbances. For both cases, plane waves are governed by a Hill equation, and, when ɛ is sufficiently small, the subharmonic instability band is determined by a Mathieu equation. We find that, when the Coriolis parameter (or the magnetic strength) exceeds N(3)/2, the instability of the subharmonic resonance vanishes.
Are transient and shear wave elastography useful tools in Gaucher disease?
Webb, Muriel; Zimran, Ari; Dinur, Tama; Shibolet, Oren; Levit, Stella; Steinberg, David M; Salomon, Ophira
2016-12-23
Up to now, there are no reliable biochemical markers or imaging that could reveal early tissue damage in Gaucher disease. Therefore, we addressed whether elastography technique can serve as a tool for evaluating patients with Gaucher disease. The study included 42 patients with Gaucher disease type I and 33 patients with liver cirrhosis as well as 22 healthy volunteers. Ultrasound and Doppler examination was performed on each participant prior to apply transient and 2D shear wave elastography. In Gaucher disease the median stiffness of the spleen as assessed by transient elastography (TE) and shear wave elastography (SWE) was 35KPa and 22KPa respectively in contrast to the median stiffness of healthy controls (16.95 and 17.5KPa, p=0.0028 and p=0.0002, respectively) and of patients with cirrhosis (45KPa and 34.5KPa, p=0.015 and p<0.0001 respectively). The liver stiffness in GD as measured by TE and SWE had median values of 7.1KPa and 7KPa respectively, slightly higher than in the healthy controls, but much smaller than for the cirrhotic patients (medians of 24.2KPa and 21KPa). In conclusion, a transient and shear wave elastography show a significant promise as noninvasive and reproducible tools to differentiate Gaucher disease from healthy controls and among those with splenomegaly from cirrhotic patients.
Ion cyclotron emission calculations using a 2D full wave numerical code
NASA Astrophysics Data System (ADS)
Batchelor, D. B.; Jaeger, E. F.; Colestock, P. L.
1987-09-01
Measurement of radiation in the HF band due to cyclotron emission by energetic ions produced by fusion reactions or neutral beam injection promises to be a useful diagnostic on large devices which are entering the reactor regime of operation. A number of complications make the modelling and interpretation of such measurements difficult using conventional geometrical optics methods. In particular the long wavelength and lack of high directivity of antennas in this frequency regime make observation of a single path across the plasma into a viewing dump impractical. Pickup antennas effectively see the whole plasma and wall reflection effects are important. We have modified our 2D full wave ICRH code2 to calculate wave fields due to a distribution of energetic ions in tokamak geometry. The radiation is modeled as due to an ensemble of localized source currents distributed in space. The spatial structure of the coherent wave field is then calculated including cyclotron harmonic damping as compared to the usual procedure of incoherently summing powers of individual radiators. This method has the advantage that phase information from localized radiating currents is globally retained so the directivity of the pickup antennas is correctly represented. Also standing waves and wall reflections are automatically included.
Probing the shear-band formation in granular media with sound waves
NASA Astrophysics Data System (ADS)
Khidas, Y.; Jia, X.
2012-05-01
We investigate the mechanical responses of dense granular materials, using a direct shear box combined with simultaneous acoustic measurements. Measured shear wave speeds evidence the structural change of the material under shear, from the jammed state to the flowing state. There is a clear acoustic signature when the shear band is formed. Subjected to cyclic shear, both shear stress and wave speed show the strong hysteretic dependence on the shear strain, likely associated with the geometry change in the packing structure. Moreover, the correlation function of configuration-specific multiply scattered waves reveals an intermittent behavior before the failure of material.
Shear waves in a resonator with cubic nonlinearity
NASA Astrophysics Data System (ADS)
Andreev, V. G.; Krit, T. B.; Sapozhnikov, O. A.
2011-11-01
Shear waves with finite amplitude in a one-dimensional resonator in the form of a layer of a rubber-like medium with a rigid plate of finite mass at the upper surface of the layer are investigated. The lower boundary of the layer oscillates according to a harmonic law with a preset acceleration. The equation of motion for particles in a resonator is determined using a model of a medium with a single relaxation time and cubical dependence of the shear modulus on deformation. The amplitude and form of shear waves in a resonator are calculated numerically by the finite difference method at shifted grids. Resonance curves are obtained at different acceleration amplitudes at the lower boundary of a layer. It is demonstrated that, as the oscillation amplitude in the resonator grows, the value of the resonance frequency increases and the shape of the resonance curve becomes asymmetrical. At sufficiently large amplitudes, a bistability region is observed. Measurements were conducted with a resonator, where a layer with the thickness of 15 mm was manufactured of a rubber-like polymer called plastisol. The shear modulus of the polymer at small deformations and the nonlinearity coefficient were determined according to the experimental dependence of mechanical stress on shear deformation. Oscillation amplitudes in the resonator attained values when the maximum shear deformations in the layer were 0.4-0.6, which provided an opportunity to observe nonlinear effects. Measured dependences of the resonance frequency on the oscillation amplitude corresponded to the calculated ones that were obtained at a smaller value of the nonlinear coefficient.
Shear Alfvén waves in turbulent plasmas.
Núñez, Manuel
2002-03-01
The rate of decay of shear Alfvén waves along a magnetic field line of a diffusive plasma grows with the number of nodes of the initial perturbation. It is reasonable to think that the energy dissipation produced by this decay will be small if the perturbation was localized in a small set. This does not happen in turbulent plasmas: transport of the oscillation by the flow involves the whole domain. A general relation is obtained proving that the global energy dissipation is bounded below by an exponential of the number of nodes of any shear Alfvén wave along a segment of any field line of the average magnetic field.
Phase Aberration and Attenuation Effects on Acoustic Radiation Force-Based Shear Wave Generation.
Carrascal, Carolina Amador; Aristizabal, Sara; Greenleaf, James F; Urban, Matthew W
2016-02-01
Elasticity is measured by shear wave elasticity imaging (SWEI) methods using acoustic radiation force to create the shear waves. Phase aberration and tissue attenuation can hamper the generation of shear waves for in vivo applications. In this study, the effects of phase aberration and attenuation in ultrasound focusing for creating shear waves were explored. This includes the effects of phase shifts and amplitude attenuation on shear wave characteristics such as shear wave amplitude, shear wave speed, shear wave center frequency, and bandwidth. Two samples of swine belly tissue were used to create phase aberration and attenuation experimentally. To explore the phase aberration and attenuation effects individually, tissue experiments were complemented with ultrasound beam simulations using fast object-oriented C++ ultrasound simulator (FOCUS) and shear wave simulations using finite-element-model (FEM) analysis. The ultrasound frequency used to generate shear waves was varied from 3.0 to 4.5 MHz. Results: The measured acoustic pressure and resulting shear wave amplitude decreased approximately 40%-90% with the introduction of the tissue samples. Acoustic intensity and shear wave displacement were correlated for both tissue samples, and the resulting Pearson's correlation coefficients were 0.99 and 0.97. Analysis of shear wave generation with tissue samples (phase aberration and attenuation case), measured phase screen, (only phase aberration case), and FOCUS/FEM model (only attenuation case) showed that tissue attenuation affected the shear wave generation more than tissue aberration. Decreasing the ultrasound frequency helped maintain a focused beam for creation of shear waves in the presence of both phase aberration and attenuation.
Phase Aberration and Attenuation Effects on Acoustic Radiation Force-Based Shear Wave Generation
Amador, Carolina; Aristizabal, Sara; Greenleaf, James F.; Urban, Matthew W.
2016-01-01
Tissue elasticity is measured by shear wave elasticity imaging methods using acoustic radiation force to create the shear waves. Phase aberration and tissue attenuation can hamper the generation of shear waves for in vivo applications. In this study effects of phase aberration and attenuation in ultrasound focusing for creating shear waves were explored. This includes the effects of phase shifts and amplitude attenuation on shear wave characteristics such as shear wave amplitude, shear wave speed, shear wave center frequency and bandwidth. Two samples of swine belly tissue were used to create phase aberration and attenuation experimentally. To explore the phase aberration and attenuation effects individually, tissue experiments were complemented with ultrasound beam simulations using FOCUS and shear wave simulations using Finite Element Model (FEM) analysis. The ultrasound frequency used to generate shear waves was varied from 3.0 to 4.5 MHz. Results The measured acoustic pressure and resulting shear wave amplitude decreased approximately 40% to 90% with the introduction of the tissue samples. Acoustic intensity and shear wave displacement were correlated for both tissue samples, the resulting Pearson’s correlation coefficients were 0.99 and 0.97. Analysis of shear wave generation with tissue samples (Phase Aberration and Attenuation case), measured phase screen (Only Phase Aberration case) and FOCUS/FEM model (Only Attenuation case) showed that tissue attenuation affected the shear wave generation more than tissue aberration. Decreasing the ultrasound frequency helped maintain a focused beam for creation of shear waves in the presence of both phase aberration and attenuation. PMID:26742131
Finite-difference modeling of SH-wave conversions in shallow shear-wave refraction surveying
NASA Astrophysics Data System (ADS)
Mi, Binbin; Xia, Jianghai; Xu, Yixian
2015-08-01
The shallow shear-wave refraction method works successfully in an area with a series of horizontal layers. Complex near-surface geology, however, may not fit into the assumption of a series of horizontal layers. It is theoretically inevitable that a plane SH-wave undergoes wave-type conversions along an interface in an area of non-horizontal layers. One real example has shown that the shallow SH-wave refraction method provides velocities of a converted wave rather than SH-wave. Moreover, it is impossible to identify the converted wave by refraction data itself. In this paper, we implement numerical simulation for conversion of SH- to P-wave in 3D heterogeneous medium with the finite-difference method. An SH-wave source excitation method that we give in the numerical simulation is testified, which can only generate SH-wave without P-wave. The numerical modeling results demonstrate that the conversion of the SH-wave to other wave-types will occur in an area of non-horizontal layers. All the converted P-wave arrivals are shown reversed polarity like S-wave arrivals in the modeling of reverse of the source and we have clarified the peculiar properties of converted P-waves from the S-wave. Our numerical simulation results confirm that velocities calculated from an SH-wave refraction survey are velocities of converted waves. Therefore, special attention should be paid to this pitfall in the real world.
Laboratory measurements of compressional and shear wave speeds through methane hydrate
Waite, W.F.; Helgerud, M.B.; Nur, A.; Pinkston, J.C.; Stern, L.A.; Kirby, S.H.; Durham, W.B.
2000-01-01
Simultaneous measurements of compressional and shear wave speeds through polycrystalline methane hydrate have been made. Methane hydrate, grown directly in a wave speed measurement chamber, was uniaxially compacted to a final porosity below 2%. At 277 K, the compacted material had a compressional wave speed of 3650 ?? 50 m/s. The shear wave speed, measured simultaneously, was 1890 ?? 30 m/s. From these wave speed measurements, we derive V(p)/V(s), Poisson's ratio, bulk, shear, and Young's moduli.
Spatial Statistics of Deep-Water Ambient Noise; Dispersion Relations for Sound Waves and Shear Waves
2015-09-30
Environmental and system data will also be depth-profiled, including temperature , salinity, pressure and (directly measured) sound speed, along...configurations, and an environmental sensor package [Conductivity- Temperature - Depth sensor (CTD) plus sound speed sensor (SVX)]. The system is untethered...Dispersion Relations for Sound Waves and Shear Waves Michael J. Buckingham Marine Physical Laboratory, Scripps Institution of Oceanography University
Ultrasonic tracking of shear waves using a particle filter
Ingle, Atul N.; Ma, Chi; Varghese, Tomy
2015-01-01
Purpose: This paper discusses an application of particle filtering for estimating shear wave velocity in tissue using ultrasound elastography data. Shear wave velocity estimates are of significant clinical value as they help differentiate stiffer areas from softer areas which is an indicator of potential pathology. Methods: Radio-frequency ultrasound echo signals are used for tracking axial displacements and obtaining the time-to-peak displacement at different lateral locations. These time-to-peak data are usually very noisy and cannot be used directly for computing velocity. In this paper, the denoising problem is tackled using a hidden Markov model with the hidden states being the unknown (noiseless) time-to-peak values. A particle filter is then used for smoothing out the time-to-peak curve to obtain a fit that is optimal in a minimum mean squared error sense. Results: Simulation results from synthetic data and finite element modeling suggest that the particle filter provides lower mean squared reconstruction error with smaller variance as compared to standard filtering methods, while preserving sharp boundary detail. Results from phantom experiments show that the shear wave velocity estimates in the stiff regions of the phantoms were within 20% of those obtained from a commercial ultrasound scanner and agree with estimates obtained using a standard method using least-squares fit. Estimates of area obtained from the particle filtered shear wave velocity maps were within 10% of those obtained from B-mode ultrasound images. Conclusions: The particle filtering approach can be used for producing visually appealing SWV reconstructions by effectively delineating various areas of the phantom with good image quality properties comparable to existing techniques. PMID:26520761
Nonlinear evolution of oblique waves on compressible shear layers
NASA Technical Reports Server (NTRS)
Goldstein, M. E.; Leib, S. J.
1989-01-01
The effects of critical-layer nonlinearity on spatially growing oblique instability waves on compressible shear layers between two parallel streams are considered. The analysis shows that mean temperature nonuniformities cause nonlinearity to occur at much smaller amplitudes than it does when the flow is isothermal. The nonlinear instability wave growth rate effects are described by an integrodifferential equation which bears some resemblance to the Landau equation, in that it involves a cubic-type nonlinearity. The numerical solutions to this equation are worked out and discussed in some detail. Inviscid solutions always end in a singularity at a finite downstream distance, but viscosity can eliminate this singularity for certain parameter ranges.
Heating of ionospheric O(+) ions by shear Alfven waves
NASA Technical Reports Server (NTRS)
Winglee, R. M.; Ashour-Abdalla, M.; Sydora, R. D.
1987-01-01
Ionospheric ions, in particular O(+) ions, which have been transversely heated, are often observed flowing upward along auroral field lines. A new mechanism, heating by current-driven shear (or kinetic) Alfven waves (SAW), is proposed. An electron current drives oblique SAWs unstable near a wave frequency of about the oxygen cyclotron frequency, and these waves are in turn gyroresonantly absorbed by the ions. The mechanism is similar to ion heating by current-driven electrostatic ion cyclotron waves (EICW). However, the SAW differs from the EICW in that as the perpendicular temperature of the ions increases, growth of the SAW can still occur, whereas growth of the EICW becomes suppressed. As a consequence, the SAW is able to provide sustained perpendicular heating of ions with smaller currents being required for the heating than for heating via EICWs.
Shear flow induced wave couplings in the solar wind
Poedts, S.; Rogava, A.D. |; Mahajan, S.M. |
1998-01-01
A sheared background flow in a plasma induces coupling between different MHD wave modes, resulting in their mutual transformations with corresponding energy redistributing between the modes. In this way, the energy can be transfered from one wave mode to the other, but energy can also be added to or extracted from the background flow. In the present paper it is investigated whether the wave coupling and energy transfer mechanisms can operate under solar wind conditions. It is shown that this is indeed the case. Hence, the long-period waves observed in the solar wind at r > 0.3 AU might be generated by much faster periodic oscillations in the photosphere of the Sun. Other possible consequences for observable beat phenomena in the wind and the acceleration of the solar wind particles are also discussed.
Shear waves in a cubic nonlinear inhomogeneous resonator
NASA Astrophysics Data System (ADS)
Krit, Timofey B.; Andreev, Valery G.; Sapozhnikov, Oleg A.
2012-09-01
We study finite-amplitude shear waves in one-dimensional resonator represented by a layer of rubber-like medium with inhomogeneities in the form of through holes made on the side face. The holes are parallel to the bases and perpendicular to the direction of vibrations. Two different configurations of the resonator: with holes at the bottom and at the top are studied. A rigid plate of finite mass is fixed on the upper surface. The lower boundary of the layer oscillates harmonically with a given acceleration. The equation of motion of particles in the resonator was found using the model of medium with one relaxation time, and a cubic dependence of the shear modulus of deformation. The measurements were performed in a resonator in the form of a rectangular parallelepiped of 15 mm thickness made of a rubber-like polymer plastisol. The linear shear modulus and shear viscosity of the polymer at the first resonant frequency were determined using the finite element method. The amplitudes of the oscillations in the resonator reached a point where the maximum shear strain in the resonator is 0.4 - 0.6, making it possible to observe nonlinear effects. The evolution of the resonance curves at different amplitudes of acceleration was investigated. A harmonic analysis of the acceleration profiles of the upper boundary was performed. The dependence of nonlinear effects on the holes position was studied.
NASA Technical Reports Server (NTRS)
Marvin, Joseph G.; Brown, James L.; Gnoffo, Peter A.
2013-01-01
A database compilation of hypersonic shock-wave/turbulent boundary layer experiments is provided. The experiments selected for the database are either 2D or axisymmetric, and include both compression corner and impinging type SWTBL interactions. The strength of the interactions range from attached to incipient separation to fully separated flows. The experiments were chosen based on criterion to ensure quality of the datasets, to be relevant to NASA's missions and to be useful for validation and uncertainty assessment of CFD Navier-Stokes predictive methods, both now and in the future. An emphasis on datasets selected was on surface pressures and surface heating throughout the interaction, but include some wall shear stress distributions and flowfield profiles. Included, for selected cases, are example CFD grids and setup information, along with surface pressure and wall heating results from simulations using current NASA real-gas Navier-Stokes codes by which future CFD investigators can compare and evaluate physics modeling improvements and validation and uncertainty assessments of future CFD code developments. The experimental database is presented tabulated in the Appendices describing each experiment. The database is also provided in computer-readable ASCII files located on a companion DVD.
A 2D wavelet-based spectral finite element method for elastic wave propagation
NASA Astrophysics Data System (ADS)
Pahlavan, L.; Kassapoglou, C.; Suiker, A. S. J.; Gürdal, Z.
2012-10-01
A wavelet-based spectral finite element method (WSFEM) is presented that may be used for an accurate and efficient analysis of elastic wave propagation in two-dimensional (2D) structures. The approach is characterised by a temporal transformation of the governing equations to the wavelet domain using a wavelet-Galerkin approach, and subsequently performing the spatial discretisation in the wavelet domain with the finite element method (FEM). The final solution is obtained by transforming the nodal displacements computed in the wavelet domain back to the time domain. The method straightforwardly eliminates artificial temporal edge effects resulting from the discrete wavelet transform and allows for the modelling of structures with arbitrary geometries and boundary conditions. The accuracy and applicability of the method is demonstrated through (i) the analysis of a benchmark problem on axial and flexural waves (Lamb waves) propagating in an isotropic layer, and (ii) the study of a plate subjected to impact loading. The wave propagation response for the impact problem is compared to the result computed with standard FEM equipped with a direct time-integration scheme. The effect of anisotropy on the response is demonstrated by comparing the numerical result for an isotropic plate to that of an orthotropic plate, and to that of a plate made of two dissimilar materials, with and without a cut-out at one of the plate corners. The decoupling of the time-discretised equations in the wavelet domain makes the method inherently suitable for parallel computation, and thus an appealing candidate for efficiently studying high-frequency wave propagation in engineering structures with a large number of degrees of freedom.
Optimal implicit 2-D finite differences to model wave propagation in poroelastic media
NASA Astrophysics Data System (ADS)
Itzá, Reymundo; Iturrarán-Viveros, Ursula; Parra, Jorge O.
2016-08-01
Numerical modeling of seismic waves in heterogeneous porous reservoir rocks is an important tool for the interpretation of seismic surveys in reservoir engineering. We apply globally optimal implicit staggered-grid finite differences (FD) to model 2-D wave propagation in heterogeneous poroelastic media at a low-frequency range (<10 kHz). We validate the numerical solution by comparing it to an analytical-transient solution obtaining clear seismic wavefields including fast P and slow P and S waves (for a porous media saturated with fluid). The numerical dispersion and stability conditions are derived using von Neumann analysis, showing that over a wide range of porous materials the Courant condition governs the stability and this optimal implicit scheme improves the stability of explicit schemes. High-order explicit FD can be replaced by some lower order optimal implicit FD so computational cost will not be as expensive while maintaining the accuracy. Here, we compute weights for the optimal implicit FD scheme to attain an accuracy of γ = 10-8. The implicit spatial differentiation involves solving tridiagonal linear systems of equations through Thomas' algorithm.
Energy spectra of 2D gravity and capillary waves with narrow frequency band excitation
NASA Astrophysics Data System (ADS)
Kartashova, E.
2012-02-01
In this letter we present a new method, called increment chain equation method (ICEM), for computing a cascade of distinct modes in a two-dimensional weakly nonlinear wave system generated by narrow frequency band excitation. The ICEM is a means for computing the quantized energy spectrum as an explicit function of frequency ω0 and stationary amplitude A0 of excitation. The physical mechanism behind the generation of the quantized cascade is modulation instability. The ICEM can be used in numerous 2D weakly nonlinear wave systems with narrow frequency band excitation appearing in hydrodynamics, nonlinear optics, electrodynamics, convection theory etc. In this letter the ICEM is demonstrated with examples of gravity and capillary waves with dispersion functions ω(k)~k1/2 and ω(k)~k3/2, respectively, and for two different levels of nonlinearity ɛ=A0k0: small (ɛ~0.1 to 0.25) and moderate (ɛ~0.25 to 0.4).
Shape Waves in 2D Josephson Junctions: Exact Solutions and Time Dilation
NASA Astrophysics Data System (ADS)
Gulevich, D. R.; Kusmartsev, F. V.; Savel'Ev, Sergey; Yampol'Skii, V. A.; Nori, Franco
2008-09-01
We predict a new class of excitations propagating along a Josephson vortex in two-dimensional Josephson junctions. These excitations are associated with the distortion of a Josephson vortex line and have an analogy with shear waves in solid mechanics. Their shapes can have an arbitrary profile, which is retained when propagating. We derive a universal analytical expression for the energy of arbitrary shape excitations, investigate their influence on the dynamics of a vortex line, and discuss conditions where such excitations can be created. Finally, we show that such excitations play the role of a clock for a relativistically moving Josephson vortex and suggest an experiment to measure a time dilation effect analogous to that in special relativity.
Shape waves in 2D Josephson junctions: exact solutions and time dilation.
Gulevich, D R; Kusmartsev, F V; Savel'ev, Sergey; Yampol'skii, V A; Nori, Franco
2008-09-19
We predict a new class of excitations propagating along a Josephson vortex in two-dimensional Josephson junctions. These excitations are associated with the distortion of a Josephson vortex line and have an analogy with shear waves in solid mechanics. Their shapes can have an arbitrary profile, which is retained when propagating. We derive a universal analytical expression for the energy of arbitrary shape excitations, investigate their influence on the dynamics of a vortex line, and discuss conditions where such excitations can be created. Finally, we show that such excitations play the role of a clock for a relativistically moving Josephson vortex and suggest an experiment to measure a time dilation effect analogous to that in special relativity.
Zhu, Jiang; Qu, Yueqiao; Ma, Teng; Li, Rui; Du, Yongzhao; Huang, Shenghai; Shung, K Kirk; Zhou, Qifa; Chen, Zhongping
2015-05-01
We report on a novel acoustic radiation force orthogonal excitation optical coherence elastography (ARFOE-OCE) technique for imaging shear wave and quantifying shear modulus under orthogonal acoustic radiation force (ARF) excitation using the optical coherence tomography (OCT) Doppler variance method. The ARF perpendicular to the OCT beam is produced by a remote ultrasonic transducer. A shear wave induced by ARF excitation propagates parallel to the OCT beam. The OCT Doppler variance method, which is sensitive to the transverse vibration, is used to measure the ARF-induced vibration. For analysis of the shear modulus, the Doppler variance method is utilized to visualize shear wave propagation instead of Doppler OCT method, and the propagation velocity of the shear wave is measured at different depths of one location with the M scan. In order to quantify shear modulus beyond the OCT imaging depth, we move ARF to a deeper layer at a known step and measure the time delay of the shear wave propagating to the same OCT imaging depth. We also quantitatively map the shear modulus of a cross-section in a tissue-equivalent phantom after employing the B scan.
Soloway, Alexander G; Dahl, Peter H; Odom, Robert I
2015-10-01
Experimental measurements of Scholte waves from underwater explosions collected off the coast of Virginia Beach, VA in shallow water are presented. It is shown here that the dispersion of these explosion-generated Scholte waves traveling in the sandy seabed can be modeled using a power-law dependent shear wave speed profile and an empirical source model that determines the pressure time-series at 1 m from the source as a function of TNT-equivalent charge weight.
Imaging feedback of histotripsy treatments using ultrasound shear wave elastography.
Wang, Tzu-Yin; Hall, Timothy L; Xu, Zhen; Fowlkes, J Brian; Cain, Charles A
2012-06-01
Histotripsy is a cavitation-based ultrasound therapy that mechanically fractionates soft solid tissues into fluid-like homogenates. This paper investigates the feasibility of imaging the tissue elasticity change during the histotripsy process as a tool to provide feedback for the treatments. The treatments were performed on agar tissue phantoms and ex vivo kidneys using 3-cycle ultrasound pulses delivered by a 750-kHz therapeutic array at peak negative/positive pressure of 17/108 MPa and a repetition rate of 50 Hz. Lesions with different degrees of damage were created with increasing numbers of therapy pulses from 0 to 2000 pulses per treatment location. The elasticity of the lesions was measured with ultrasound shear wave elastography, in which a quasi-planar shear wave was induced by acoustic radiation force generated by the therapeutic array, and tracked with ultrasound imaging at 3000 frames per second. Based on the shear wave velocity calculated from the sequentially captured frames, the Young's modulus was reconstructed. Results showed that the lesions were more easily identified on the shear wave velocity images than on B-mode images. As the number of therapy pulses increased from 0 to 2000 pulses/location, the Young's modulus decreased exponentially from 22.1 ± 2.7 to 2.1 ± 1.1 kPa in the tissue phantoms (R2 = 0.99, N = 9 each), and from 33.0 ± 7.1 to 4.0 ± 2.5 kPa in the ex vivo kidneys (R2 = 0.99, N = 8 each). Correspondingly, the tissues transformed from completely intact to completely fractionated as examined via histology. A good correlation existed between the lesions' Young's modulus and the degree of tissue fractionation as examined with the percentage of remaining structurally intact cell nuclei (R2 = 0.91, N = 8 each). These results indicate that lesions produced by histotripsy can be detected with high sensitivity using shear wave elastography. Because the decrease in the tissue elasticity corresponded well with the morphological and
Song, Shaozhen; Huang, Zhihong; Nguyen, Thu-Mai; Wong, Emily Y.; Arnal, Bastien; O’Donnell, Matthew
2013-01-01
Abstract. We propose an integrated method combining low-frequency mechanics with optical imaging to map the shear modulus within the biological tissue. Induced shear wave propagating in tissue is tracked in space and time using phase-sensitive optical coherence tomography (PhS-OCT). Local estimates of the shear-wave speed obtained from tracking results can image the local shear modulus. A PhS-OCT system remotely records depth-resolved, dynamic mechanical waves at an equivalent frame rate of ∼47 kHz with the high spatial resolution. The proposed method was validated by examining tissue-mimicking phantoms made of agar and light scattering material. Results demonstrate that the shear wave imaging can accurately map the elastic moduli of these phantoms. PMID:24213539
2D full wave modeling for a synthetic Doppler backscattering diagnostic
Hillesheim, J. C.; Schmitz, L.; Kubota, S.; Rhodes, T. L.; Carter, T. A.; Holland, C.
2012-10-15
Doppler backscattering (DBS) is a plasma diagnostic used in tokamaks and other magnetic confinement devices to measure the fluctuation level of intermediate wavenumber (k{sub {theta}}{rho}{sub s}{approx} 1) density fluctuations and the lab frame propagation velocity of turbulence. Here, a synthetic DBS diagnostic is described, which has been used for comparisons between measurements in the DIII-D tokamak and predictions from nonlinear gyrokinetic simulations. To estimate the wavenumber range to which a Gaussian beam would be sensitive, a ray tracing code and a 2D finite difference, time domain full wave code are used. Experimental density profiles and magnetic geometry are used along with the experimental antenna and beam characteristics. An example of the effect of the synthetic diagnostic on the output of a nonlinear gyrokinetic simulation is presented.
The stability of freely-propagating ion acoustic waves in 2D systems
NASA Astrophysics Data System (ADS)
Chapman, Thomas; Berger, Richard; Banks, Jeffrey; Brunner, Stephan
2014-10-01
The stability of a freely-propagating ion acoustic wave (IAW) is a basic science problem that is made difficult by the need to resolve electron kinetic effects over a timescale that greatly exceeds the IAW period during numerical simulation. Recent results examining IAW stability using a 1D+1V Vlasov-Poisson solver indicate that instability is a fundamental property of IAWs that occurs over most if not all of the parameter space of relevance to ICF experiments. We present here new results addressing the fundamental question of IAW stability across a broad range of plasma conditions in a 2D+2V system using LOKI, ranging from a regime of relatively weak to a regime of relatively strong ion kinetic effects. Work performed under the auspices of the U.S. DOE by LLNL (DE-AC52-07NA27344) and funded by the LDRD Program at LLNL (12-ERD-061).
NASA Astrophysics Data System (ADS)
Sund, Richard; Scharer, John
2002-11-01
We examine a new method for generating sheared flows in advanced tokamak D-T reactors with the goal of creating and controlling internal transport barriers. Ion-Bernstein waves (IBWs) have the recognized capacity to create internal transport barriers through sheared plasma flows resulting from ion absorption. Under reactor conditions, the IBW can be generated by mode conversion of a fast magnetosonic wave incident from the high-field side (HFS) on the second harmonic resonance of a minority hydrogen component, with near 100200 MHz) minimizes parasitic absorption and permits the converted IBW to approach the fifth tritium harmonic. It also facilitates compact antennas and feeds, and efficient fast wave launch. Placement of the 5T absorption layer on the HFS is advantageous for shear production. The scheme is applicable to reactors with aspect ratio < 3 such that the conversion and absorption layers are both on the high field side of the magnetic axis. Various factors (adequate separation of the mode conversion layer from the magnetic axis, concentration of the fast wave near the midplane, large machine size, and plasma elongation) minimize poloidal field effects in the conversion zone and permit a slab analysis. We use a 1-D full-wave code to analyze the conversion and absorption. A 2-D ray-tracing code incorporating poloidal magnetic fields is used to follow the IBW for various equilibria. Within this analysis a weak bean shape appears most favorable. This is an attractive scheme for future advanced tokamak reactors. *Research supported by the Univ. of Wisconsin, Madison
Validation of Shear Wave Elastography in Skeletal Muscle
Eby, Sarah F.; Song, Pengfei; Chen, Shigao; Chen, Qingshan; Greenleaf, James F.; An, Kai-Nan
2013-01-01
Skeletal muscle is a very dynamic tissue, thus accurate quantification of skeletal muscle stiffness throughout its functional range is crucial to improve the physical functioning and independence following pathology. Shear wave elastography (SWE) is an ultrasound-based technique that characterizes tissue mechanical properties based on the propagation of remotely induced shear waves. The objective of this study is to validate SWE throughout the functional range of motion of skeletal muscle for three ultrasound transducer orientations. We hypothesized that combining traditional materials testing (MTS) techniques with SWE measurements will show increased stiffness measures with increasing tensile load, and will correlate well with each other for trials in which the transducer is parallel to underlying muscle fibers. To evaluate this hypothesis, we monitored the deformation throughout tensile loading of four porcine brachialis whole-muscle tissue specimens, while simultaneously making SWE measurements of the same specimen. We used regression to examine the correlation between Young's modulus from MTS and shear modulus from SWE for each of the transducer orientations. We applied a generalized linear model to account for repeated testing. Model parameters were estimated via generalized estimating equations. The regression coefficient was 0.1944, with a 95% confidence interval of (0.1463 – 0.2425) for parallel transducer trials. Shear waves did not propagate well for both the 45° and perpendicular transducer orientations. Both parallel SWE and MTS showed increased stiffness with increasing tensile load. This study provides the necessary first step for additional studies that can evaluate the distribution of stiffness throughout muscle. PMID:23953670
New Biosensor Using Shear Horizontal Surface Acoustic Wave Device
NASA Astrophysics Data System (ADS)
Kondoh, Jun; Matsui, Yoshikazu; Shiokawa, Showko
1993-05-01
This paper describes a new biosensor to detect an enzyme reaction in liquid using surface acoustic wave (SAW) devices fabricated on 36°-rotated Y-cut, X-propagating LiTaO3. The sensing wave on the substrate is a predominantly shear-horizontal-mode SAW (SH-SAW) and is affected by a strong acoustoelectric interaction between the piezoelectric potential and electrical properties of the materials in the adjacent liquid. As an example of an electrical property, pH change associated with an enzyme reaction leads to measurable perturbation in the wave-propagation characteristic. Taking advantage of this phenomenon we realized a SAW biosensor which consists of an immobilized urease membrane on the surface. Also, highly sensitive detection for the urea solution was obtained in our preliminary experiments.
Generation of intermediately long sea waves by weakly sheared winds
NASA Astrophysics Data System (ADS)
Chernyavski, V. M.; Shtemler, Y. M.; Golbraikh, E.; Mond, M.
2011-01-01
The present study is concerned with the numerical modeling of sea-wave instability under the effect of logarithmic-wind profile in hurricane conditions. The central point of the study is the calculation of the wave growth rate, which is proportional to the fractional input energy from the weakly sheared (logarithmic) wind to the wave exponentially varying with time. It is shown for hurricane conditions that the Miles-type stability model based on the Charnock's formula with the standard constant coefficient underestimates the growth rate ˜5-50 times as compared with the model that employs the roughness adopted from the experimental data for hurricane winds. The drag reduction with wind speed at hurricane conditions coupled with the similar behavior of the dimensionless gravity acceleration leads to the minimum in the maximal growth rate and the maximum in the most unstable wavelength.
Wang, Tao; Green, Ryan; Nair, Rajesh Ramakrishnan; Howell, Mark; Mohapatra, Subhra; Guldiken, Rasim; Mohapatra, Shyam Sundar
2015-01-01
Detection and quantification of cell viability and growth in two-dimensional (2D) and three-dimensional (3D) cell cultures commonly involve harvesting of cells and therefore requires a parallel set-up of several replicates for time-lapse or dose–response studies. Thus, developing a non-invasive and touch-free detection of cell growth in longitudinal studies of 3D tumor spheroid cultures or of stem cell regeneration remains a major unmet need. Since surface acoustic waves (SAWs) permit mass loading-based biosensing and have been touted due to their many advantages including low cost, small size and ease of assembly, we examined the potential of SAW-biosensing to detect and quantify cell growth. Herein, we demonstrate that a shear horizontal-surface acoustic waves (SH-SAW) device comprising two pairs of resonators consisting of interdigital transducers and reflecting fingers can be used to quantify mass loading by the cells in suspension as well as within a 3D cell culture platform. A 3D COMSOL model was built to simulate the mass loading response of increasing concentrations of cells in suspension in the polydimethylsiloxane (PDMS) well in order to predict the characteristics and optimize the design of the SH-SAW biosensor. The simulated relative frequency shift from the two oscillatory circuit systems (one of which functions as control) were found to be concordant to experimental data generated with RAW264.7 macrophage and A549 cancer cells. In addition, results showed that SAW measurements per se did not affect viability of cells. Further, SH-SAW biosensing was applied to A549 cells cultured on a 3D electrospun nanofiber scaffold that generate tumor spheroids (tumoroids) and the results showed the device's ability to detect changes in tumor spheroid growth over the course of eight days. Taken together, these results demonstrate the use of SH-SAW device for detection and quantification of cell growth changes over time in 2D suspension cultures and in 3D cell
Wang, Tao; Green, Ryan; Nair, Rajesh Ramakrishnan; Howell, Mark; Mohapatra, Subhra; Guldiken, Rasim; Mohapatra, Shyam Sundar
2015-12-19
Detection and quantification of cell viability and growth in two-dimensional (2D) and three-dimensional (3D) cell cultures commonly involve harvesting of cells and therefore requires a parallel set-up of several replicates for time-lapse or dose-response studies. Thus, developing a non-invasive and touch-free detection of cell growth in longitudinal studies of 3D tumor spheroid cultures or of stem cell regeneration remains a major unmet need. Since surface acoustic waves (SAWs) permit mass loading-based biosensing and have been touted due to their many advantages including low cost, small size and ease of assembly, we examined the potential of SAW-biosensing to detect and quantify cell growth. Herein, we demonstrate that a shear horizontal-surface acoustic waves (SH-SAW) device comprising two pairs of resonators consisting of interdigital transducers and reflecting fingers can be used to quantify mass loading by the cells in suspension as well as within a 3D cell culture platform. A 3D COMSOL model was built to simulate the mass loading response of increasing concentrations of cells in suspension in the polydimethylsiloxane (PDMS) well in order to predict the characteristics and optimize the design of the SH-SAW biosensor. The simulated relative frequency shift from the two oscillatory circuit systems (one of which functions as control) were found to be concordant to experimental data generated with RAW264.7 macrophage and A549 cancer cells. In addition, results showed that SAW measurements per se did not affect viability of cells. Further, SH-SAW biosensing was applied to A549 cells cultured on a 3D electrospun nanofiber scaffold that generate tumor spheroids (tumoroids) and the results showed the device's ability to detect changes in tumor spheroid growth over the course of eight days. Taken together, these results demonstrate the use of SH-SAW device for detection and quantification of cell growth changes over time in 2D suspension cultures and in 3D cell
NASA Astrophysics Data System (ADS)
Helfenstein-Didier, C.; Andrade, R. J.; Brum, J.; Hug, F.; Tanter, M.; Nordez, A.; Gennisson, J.-L.
2016-03-01
The shear wave velocity dispersion was analyzed in the Achilles tendon (AT) during passive dorsiflexion using a phase velocity method in order to obtain the tendon shear modulus (C 55). Based on this analysis, the aims of the present study were (i) to assess the reproducibility of the shear modulus for different ankle angles, (ii) to assess the effect of the probe locations, and (iii) to compare results with elasticity values obtained with the supersonic shear imaging (SSI) technique. The AT shear modulus (C 55) consistently increased with the ankle dorsiflexion (N = 10, p < 0.05). Furthermore, the technique showed a very good reproducibility (all standard error of the mean values <10.7 kPa and all coefficient of variation (CV) values ⩽0.05%). In addition, independently from the ankle dorsiflexion, the shear modulus was significantly higher in the proximal location compared to the more distal one. The shear modulus provided by SSI was always lower than C55 and the difference increased with the ankle dorsiflexion. However, shear modulus values provided by both methods were highly correlated (R = 0.84), indicating that the conventional shear wave elastography technique (SSI technique) can be used to compare tendon mechanical properties across populations. Future studies should determine the clinical relevance of the shear wave dispersion analysis, for instance in the case of tendinopathy or tendon tear.
Electrostatic drift waves in a 2D magnetic current sheet - a new kinetic theory
NASA Astrophysics Data System (ADS)
Fruit, G.; Louarn, P.; Tur, A.
2015-12-01
In the general context of understanding the possible destabilization of the magnetotail before a substorm, a kinetic model for electromagnetic instabilities in resonant interaction with trapped bouncing electrons has been proposed for several years. Fruit et al. 2013 already used it to investigate the possibilities for electrostatic instabilities. Tur et al. 2014 generalizes the model for full electromagnetic perturbations.It turns out that some corrections should be added to the electrostatic version of Fruit et al. 2013. We propose to revist the theory in this present paper.Starting with a modified 2D Harris sheet as equilibrium state, the linearized gyrokinetic Vlasov equation is solved for electrostatic fluctuations with period of the order of the electron bounce period (a few seconds). The particle motion is restricted to its first Fourier component along the magnetic field and this allows the complete time integration of the non local perturbed distribution functions. The dispersion relation for electrostatic modes is finally obtained through the quasineutrality condition.The new feature of the present model is the inclusion of diamagnetic drift effects due to the density gradient in the tail. It is well known in MHD theory that drift waves are driven unstable through collisions or other dissipative effects. Here electrostatic drift waves are revisited in this more complete kinetic model including bouncing electrons and finite Larmor radius effects. A new mode has been found with original propagation proprieties. It is moreover mildly unstable due to electron or ion damping (dissipative instability).
1D and 2D simulations of seismic wave propagation in fractured media
NASA Astrophysics Data System (ADS)
Möller, Thomas; Friederich, Wolfgang
2016-04-01
Fractures and cracks have a significant influence on the propagation of seismic waves. Their presence causes reflections and scattering and makes the medium effectively anisotropic. We present a numerical approach to simulation of seismic waves in fractured media that does not require direct modelling of the fracture itself, but uses the concept of linear slip interfaces developed by Schoenberg (1980). This condition states that at an interface between two imperfectly bonded elastic media, stress is continuous across the interface while displacement is discontinuous. It is assumed that the jump of displacement is proportional to stress which implies a jump in particle velocity at the interface. We use this condition as a boundary condition to the elastic wave equation and solve this equation in the framework of a Nodal Discontinuous Galerkin scheme using a velocity-stress formulation. We use meshes with tetrahedral elements to discretise the medium. Each individual element face may be declared as a slip interface. Numerical fluxes have been derived by solving the 1D Riemann problem for slip interfaces with elastic and viscoelastic rheology. Viscoelasticity is realised either by a Kelvin-Voigt body or a Standard Linear Solid. These fluxes are not limited to 1D and can - with little modification - be used for simulations in higher dimensions as well. The Nodal Discontinuous Galerkin code "neXd" developed by Lambrecht (2013) is used as a basis for the numerical implementation of this concept. We present examples of simulations in 1D and 2D that illustrate the influence of fractures on the seismic wavefield. We demonstrate the accuracy of the simulation through comparison to an analytical solution in 1D.
2D spectral element modeling of GPR wave propagation in inhomogeneous media
NASA Astrophysics Data System (ADS)
Zarei, Sajad; Oskooi, Behrooz; Amini, Navid; Dalkhani, Amin Rahimi
2016-10-01
We present a spectral element method, for simulation of ground-penetrating radar (GPR) in two dimensions. The technique is based upon a weak formulation of the equations of Maxwell and combines the flexibility of the elemental-based methods with the accuracy of the spectral based methods. The wave field on the elements is discretized using high-degree Lagrange interpolation and integration over an element is accomplished based upon the Gauss-Lobatto-Legendre integration rule. As a result, the mass matrix and the damping matrix are always diagonal, which drastically reduces the computational cost. We first develop the formulation of 2D spectral element method (SEM) in the time-domain based on Maxwell's equations. The presented formulation is with matrix notation that simplifies the implementation of the relations in computer programs, especially in MATLAB application. We discuss the differences between spectral element method and finite-element method in the time-domain. Also, we show that the SEM numerical dispersion is much lower than FEM. To absorb waves at the edges of the modeling domain, we implement first order Clayton and Engquist absorbing boundary conditions (CE-ABC) introduced in numerical finite-difference modeling of seismic wave propagation. We used the SEM to simulate a complex model to show its abilities and limitations. As well as, one distinct advantage of SEM is that we can easily define our model features in nodal points, because the integration points and the interpolation points are similar that makes it very flexible in simulation of complex models.
NASA Astrophysics Data System (ADS)
Rubino, J. Germán.; Caspari, Eva; Müller, Tobias M.; Milani, Marco; Barbosa, Nicolás. D.; Holliger, Klaus
2016-09-01
The presence of stiffness contrasts at scales larger than the typical pore sizes but smaller than the predominant seismic wavelengths can produce seismic attenuation and velocity dispersion in fluid-saturated porous rocks. This energy dissipation mechanism is caused by wave-induced fluid pressure diffusion among the different components of the probed geological formations. In many cases, heterogeneities have elongated shapes and preferential orientations, which implies that the overall response of the medium is anisotropic. In this work, we propose a numerical upscaling procedure that permits to quantify seismic attenuation and phase velocity considering fluid pressure diffusion effects as well as generic anisotropy at the sample's scale. The methodology is based on a set of three relaxation tests performed on a 2-D synthetic rock sample representative of the medium of interest. It provides a complex-valued frequency-dependent equivalent stiffness matrix through a least squares procedure. We also derive an approach for computing various poroelastic fields associated with the considered sample in response to the propagation of a seismic wave with arbitrary incidence angle. Using this approach, we provide an energy-based estimation of seismic attenuation. A comprehensive numerical analysis indicates that the methodology is suitable for handling complex media and different levels of overall anisotropy. Comparisons with the energy-based estimations demonstrate that the dynamic-equivalent viscoelastic medium assumption made by the numerical upscaling procedure is reasonable even in the presence of high levels of overall anisotropy. This work also highlights the usefulness of poroelastic fields for the physical interpretation of seismic wave phenomena in strongly heterogeneous and complex media.
Shear wave induced resonance elastography of spherical masses with polarized torsional waves
NASA Astrophysics Data System (ADS)
Hadj Henni, Anis; Schmitt, Cédric; Trop, Isabelle; Cloutier, Guy
2012-03-01
Shear wave induced resonance (SWIR) is a technique for dynamic ultrasound elastography of confined mechanical inclusions. It was developed for breast tumor imaging and tissue characterization. This method relies on the polarization of torsional shear waves modeled with the Helmholtz equation in spherical coordinates. To validate modeling, an invitro set-up was used to measure and image the first three eigenfrequencies and eigenmodes of a soft sphere. A preliminary invivo SWIR measurement on a breast fibroadenoma is also reported. Results revealed the potential of SWIR elastography to detect and mechanically characterize breast lesions for early cancer detection.
Estimation of near-surface shear-wave velocity by inversion of Rayleigh waves
Xia, J.; Miller, R.D.; Park, C.B.
1999-01-01
The shear-wave (S-wave) velocity of near-surface materials (soil, rocks, pavement) and its effect on seismic-wave propagation are of fundamental interest in many groundwater, engineering, and environmental studies. Rayleigh-wave phase velocity of a layered-earth model is a function of frequency and four groups of earth properties: P-wave velocity, S-wave velocity, density, and thickness of layers. Analysis of the Jacobian matrix provides a measure of dispersion-curve sensitivity to earth properties. S-wave velocities are the dominant influence on a dispersion curve in a high-frequency range (>5 Hz) followed by layer thickness. An iterative solution technique to the weighted equation proved very effective in the high-frequency range when using the Levenberg-Marquardt and singular-value decomposition techniques. Convergence of the weighted solution is guaranteed through selection of the damping factor using the Levenberg-Marquardt method. Synthetic examples demonstrated calculation efficiency and stability of inverse procedures. We verify our method using borehole S-wave velocity measurements.Iterative solutions to the weighted equation by the Levenberg-Marquardt and singular-value decomposition techniques are derived to estimate near-surface shear-wave velocity. Synthetic and real examples demonstrate the calculation efficiency and stability of the inverse procedure. The inverse results of the real example are verified by borehole S-wave velocity measurements.
Nonlinear physics of shear Alfvén waves
Zonca, Fulvio; Chen, Liu
2014-02-12
Shear Alfvén waves (SAW) play fundamental roles in thermonuclear plasmas of fusion interest, since they are readily excited by energetic particles in the MeV range as well as by the thermal plasma components. Thus, understanding fluctuation induced transport in burning plasmas requires understanding nonlinear SAW physics. There exist two possible routes to nonlinear SAW physics: (i) wave-wave interactions and the resultant spectral energy transfer; (ii) nonlinear wave-particle interactions of SAW instabilities with energetic particles. Within the first route, it is advantageous to understand and describe nonlinear processes in term of proximity of the system to the Alfvénic state, where wave-wave interactions are minimized due to the cancellation of Reynolds and Maxwell stresses. Here, various wave-wave nonlinear dynamics are elucidated in terms of how they break the Alfvénic state. In particular, we discuss the qualitative and quantitative modification of the SAW parametric decay process due to finite ion compressibility and finite ion Larmor radius. We also show that toroidal geometry plays a crucial role in the nonlinear excitation of zonal structures by Alfvén eigenmodes. Within the second route, the coherent nonlinear dynamics of structures in the energetic particle phase space, by which secular resonant particle transport can occur on meso- and macro-scales, must be addressed and understood. These 'nonlinear equilibria' or 'phase-space zonal structures' dynamically evolve on characteristic (fluctuation induced) turbulent transport time scales, which are generally of the same order of the nonlinear time scale of the underlying fluctuations. In this work, we introduce the general structure of nonlinear Schrödinger equations with complex integro-differential nonlinear terms, which govern these physical processes. To elucidate all these aspects, theoretical analyses are presented together with numerical simulation results.
Explicit wave action conservation for water waves on vertically sheared flows
NASA Astrophysics Data System (ADS)
Quinn, Brenda; Toledo, Yaron; Shrira, Victor
2016-04-01
Water waves almost always propagate on currents with a vertical structure such as currents directed towards the beach accompanied by an under-current directed back toward the deep sea or wind-induced currents which change magnitude with depth due to viscosity effects. On larger scales they also change their direction due to the Coriolis force as described by the Ekman spiral. This implies that the existing wave models, which assume vertically-averaged currents, is an approximation which is far from realistic. In recent years, ocean circulation models have significantly improved with the capability to model vertically-sheared current profiles in contrast with the earlier vertically-averaged current profiles. Further advancements have coupled wave action models to circulation models to relate the mutual effects between the two types of motion. Restricting wave models to vertically-averaged non-turbulent current profiles is obviously problematic in these cases and the primary goal of this work is to derive and examine a general wave action equation which accounts for these shortcoming. The formulation of the wave action conservation equation is made explicit by following the work of Voronovich (1976) and using known asymptotic solutions of the boundary value problem which exploit the smallness of the current magnitude compared to the wave phase velocity and/or its vertical shear and curvature. The adopted approximations are shown to be sufficient for most of the conceivable applications. This provides correction terms to the group velocity and wave action definition accounting for the shear effects, which are fitting for application to operational wave models. In the limit of vanishing current shear, the new formulation reduces to the commonly used Bretherton & Garrett (1968) no-shear wave action equation where the invariant is calculated with the current magnitude taken at the free surface. It is shown that in realistic oceanic conditions, the neglect of the vertical
Complex Shear Wave Velocity Structure Imaged Beneath Africa and Iceland.
Ritsema; van Heijst HJ; Woodhouse
1999-12-03
A model of three-dimensional shear wave velocity variations in the mantle reveals a tilted low velocity anomaly extending from the core-mantle boundary (CMB) region beneath the southeastern Atlantic Ocean into the upper mantle beneath eastern Africa. This anomaly suggests that Cenozoic flood basalt volcanism in the Afar region and active rifting beneath the East African Rift is linked to an extensive thermal anomaly at the CMB more than 45 degrees away. In contrast, a low velocity anomaly beneath Iceland is confined to the upper mantle.
Laser-based linear and nonlinear guided elastic waves at surfaces (2D) and wedges (1D).
Hess, Peter; Lomonosov, Alexey M; Mayer, Andreas P
2014-01-01
The characteristic features and applications of linear and nonlinear guided elastic waves propagating along surfaces (2D) and wedges (1D) are discussed. Laser-based excitation, detection, or contact-free analysis of these guided waves with pump-probe methods are reviewed. Determination of material parameters by broadband surface acoustic waves (SAWs) and other applications in nondestructive evaluation (NDE) are considered. The realization of nonlinear SAWs in the form of solitary waves and as shock waves, used for the determination of the fracture strength, is described. The unique properties of dispersion-free wedge waves (WWs) propagating along homogeneous wedges and of dispersive wedge waves observed in the presence of wedge modifications such as tip truncation or coatings are outlined. Theoretical and experimental results on nonlinear wedge waves in isotropic and anisotropic solids are presented.
Berryman, J G
2004-02-24
Layered earth models are well justified by experience, and provide a simple means of studying fairly general behavior of the elastic and poroelastic characteristics of seismic waves in the earth. Thomsen's anisotropy parameters for weak elastic and poroelastic anisotropy are now commonly used in exploration, and can be conveniently expressed in terms of the layer averages of Backus. Since our main interest is usually in the fluids underground, it would be helpful to have a set of general equations relating the Thomsen parameters as directly as possible to the fluid properties. This end can be achieved in a rather straightforward fashion for these layered earth models, and the present paper develops and then discusses these relations. Furthermore, it is found that, although there are five effective shear moduli for any layered VTI medium, one and only one effective shear modulus for the layered system contains all the dependence of pore fluids on the elastic or poroelastic constants that can be observed in vertically polarized shear waves in VTI media. The effects of the pore fluids on this effective shear modulus can be substantial - an increase of shear wave speed on the order of 10% is shown to be possible when circumstances are favorable -when the medium behaves in an undrained fashion, and the shear modulus fluctuations are large (resulting in strong anisotropy). These effects are expected to be seen at higher frequencies such as sonic and ultrasonic waves for well-logging or laboratory experiments, or at seismic wave frequencies for low permeability regions of reservoirs, prior to hydrofracing. Results presented are strictly for velocity analysis.
Measuring shear-wave speed with point shear-wave elastography and MR elastography: a phantom study
Kishimoto, Riwa; Suga, Mikio; Koyama, Atsuhisa; Omatsu, Tokuhiko; Tachibana, Yasuhiko; Ebner, Daniel K; Obata, Takayuki
2017-01-01
Objectives To compare shear-wave speed (SWS) measured by ultrasound-based point shear-wave elastography (pSWE) and MR elastography (MRE) on phantoms with a known shear modulus, and to assess method validity and variability. Methods 5 homogeneous phantoms of different stiffnesses were made. Shear modulus was measured by a rheometer, and this value was used as the standard. 10 SWS measurements were obtained at 4 different depths with 1.0–4.5 MHz convex (4C1) and 4.0–9.0 MHz linear (9L4) transducers using pSWE. MRE was carried out once per phantom, and SWSs at 5 different depths were obtained. These SWSs were then compared with those from a rheometer using linear regression analyses. Results SWSs obtained with both pSWE as well as MRE had a strong correlation with those obtained by a rheometer (R2>0.97). The relative difference in SWS between the procedures was from −25.2% to 25.6% for all phantoms, and from −8.1% to 6.9% when the softest and hardest phantoms were excluded. Depth dependency was noted in the 9L4 transducer of pSWE and MRE. Conclusions SWSs from pSWE and MRE showed a good correlation with a rheometer-determined SWS. Although based on phantom studies, SWSs obtained with these methods are not always equivalent, the measurement can be thought of as reliable and these SWSs were reasonably close to each other for the middle range of stiffness within the measurable range. PMID:28057657
The Gaussian Shear Wave in a Dispersive Medium
Parker, Kevin J.; Baddour, Natalie
2014-01-01
Within the field of “imaging the biomechanical properties of tissues,” a number of approaches analyze shear wave propagation initiated by a short radiation force push. Unfortunately, it is experimentally observed that the displacement vs. time curves in lossy tissues are rapidly damped and distorted in ways that confound any simple tracking approach. This paper addresses the propagation, decay, and distortion of pulses in lossy and dispersive media, in order to derive closed form analytic expressions for the propagating pulses. The theory identifies key terms that drive the distortion and broadening of the pulse. Furthermore, the approach taken is not dependent on any particular viscoelastic model of tissue, but instead takes a general first order approach to dispersion. Examples with a Gaussian beam pattern and realistic dispersion parameters are given along with general guidelines for identifying the features of the distorting wave that are the most compact. PMID:24412170
Shear Wave Speed Estimation in the Human Uterine Cervix
Carlson, Lindsey C.; Feltovich, Helen; Palmeri, Mark L.; Dahl, Jeremy J.; del Rio, Alejandro Munoz; Hall, Timothy J.
2014-01-01
Objectives Our goals were to explore the spatial variability within the cervix and the sensitivity of shear wave speeds (SWS) to assess softness/stiffness differences in ripened (softened) versus unripened tissue. Methods We obtained SWS estimates from hysterectomy specimens (n=22), a subset of which were ripened (n = 13). Multiple measurements were made longitudinally along the cervical canal on both the anterior and posterior sides of the cervix. Statistical tests of differences in the proximal vs. distal, anterior vs. posterior, and ripened vs. unripened cervix were performed with individual two-sample t-tests and a linear mixed model. Results We discovered that SWS estimates monotonically increase from distal to proximal longitudinally along the cervix, that they also vary in the anterior compared to the posterior cervix, and that they are significantly different in ripened vs. unripened cervical tissue. Specifically, the mid position SWS estimates for the unripened group were 3.45±0.95 m/s (anterior) and 3.56±0.92 m/s (posterior), and 2.11±0.45 m/s (anterior) and 2.68±0.57 m/s (posterior) for the ripened (p<0.001). Conclusions We propose that shear wave speed estimation may be a valuable research and, ultimately, diagnostic tool for objective quantification of cervical stiffness/softness. PMID:23836486
Pengfei Song; Heng Zhao; Urban, Matthew W; Manduca, Armando; Pislaru, Sorin V; Kinnick, Randall R; Pislaru, Cristina; Greenleaf, James F; Shigao Chen
2013-12-01
Ultrasound tissue harmonic imaging is widely used to improve ultrasound B-mode imaging quality thanks to its effectiveness in suppressing imaging artifacts associated with ultrasound reverberation, phase aberration, and clutter noise. In ultrasound shear wave elastography (SWE), because the shear wave motion signal is extracted from the ultrasound signal, these noise sources can significantly deteriorate the shear wave motion tracking process and consequently result in noisy and biased shear wave motion detection. This situation is exacerbated in in vivo SWE applications such as heart, liver, and kidney. This paper, therefore, investigated the possibility of implementing harmonic imaging, specifically pulse-inversion harmonic imaging, in shear wave tracking, with the hypothesis that harmonic imaging can improve shear wave motion detection based on the same principles that apply to general harmonic B-mode imaging. We first designed an experiment with a gelatin phantom covered by an excised piece of pork belly and show that harmonic imaging can significantly improve shear wave motion detection by producing less underestimated shear wave motion and more consistent shear wave speed measurements than fundamental imaging. Then, a transthoracic heart experiment on a freshly sacrificed pig showed that harmonic imaging could robustly track the shear wave motion and give consistent shear wave speed measurements of the left ventricular myocardium while fundamental imaging could not. Finally, an in vivo transthoracic study of seven healthy volunteers showed that the proposed harmonic imaging tracking sequence could provide consistent estimates of the left ventricular myocardium stiffness in end-diastole with a general success rate of 80% and a success rate of 93.3% when excluding the subject with Body Mass Index higher than 25. These promising results indicate that pulse-inversion harmonic imaging can significantly improve shear wave motion tracking and thus potentially
Wang, Lihong V.
2012-01-01
Abstract. Using a recently developed reconstruction method for photoacoustic tomography (PAT) valid for a planar measurement geometry parallel to a layered medium, we investigate the effects of shear wave propagation in the solid layer upon the ability to estimate Fourier components of the object. We examine this ability as a function of the thickness of the layer supporting shear waves as well as of the incidence angle of the field in the planewave representation. Examples are used to demonstrate the importance of accounting for shear waves in transcranial PAT. Error measures are introduced to quantify the error found when omitting shear waves from the forward model in PAT. PMID:22734745
The relationship between ELF-VHF waves and magnetic shear at the dayside magnetopause
Zhu, Z.; Song, P.
1996-04-01
ELF-VLF waves within the current layer of the dayside magnetopause are studied using ISEE-1 data. The database consists of 272 current layer crossings at the dayside magnetopause from 1977 to 1979. For each crossing, the average intensity of ELF-VLF waves inside the current layer is obtained and the magnetic shear angle across the current layer is calculated from the magnetometer data. It is found that the wave amplitudes (both electric and magnetic fields), after normalization by the average magnetic field strength in the current layer, are proportional to the local magnetic shear angle, i.e. large magnetic shear corresponds to strong wave emission and vice versa. From the dispersion relation of the waves for different shear angles, the phase velocity of the waves increases with the magnetic shear and peaks around 700 Hz to 1 kHz. The dispersion curve of the waves is consistent with that of whistler modes. 21 refs., 3 fig.
A wave action equation for water waves propagating on vertically sheared flows
NASA Astrophysics Data System (ADS)
Quinn, Brenda; Toledo, Yaron; Shrira, Victor
2015-04-01
The coexistence of motions of different scales in oceans and other natural water basins presents a challenge for their dynamic modeling. For water waves on currents, an asymptotic procedure exploiting the separation of scales allows the modeling of two motions of a qualitatively different nature, the fast shortwaves on the surface and the dynamics of the slow, long currents. Most wave forecast models are based on the wave action equation which is a conservation equation which takes into account the propagation of the wave energy in geographic space, shoaling, refraction, diffraction and also source terms which account for generation, wave-wave interactions and dissipation of the energy. Water waves almost always propagate on currents with a vertical structure such as currents directed towards the beach accompanied by an under-current directed back toward the deep sea or wind-induced currents which change magnitude with depth due to viscosity effects. On larger scales they also change their direction due to the Coriolis force as described by the Ekman spiral. This implies that the existing wave models, which assume vertically-averaged currents, is an approximation which is far from realistic. In recent years, ocean circulation models have significantly improved with the capability to model vertically-sheared current profiles in contrast with the earlier vertically-averaged current profiles. Further advancements have coupled wave action models to circulation models to relate the mutual effects between the two types of motion. Restricting wave models to vertically-averaged current profiles is obviously problematic in these cases and the primary goal of this work is to derive and examine a general wave action equation which accounts for this shortcoming. Combining two previous theoretical approaches [Voronovich, 1976; Skop, 1987], the developed wave action formulation greatly improves the representation of linear wave-current interaction in the case of tidal inlets
Ouared, Abderrahmane; Montagnon, Emmanuel; Cloutier, Guy
2015-10-21
A method based on adaptive torsional shear waves (ATSW) is proposed to overcome the strong attenuation of shear waves generated by a radiation force in dynamic elastography. During the inward propagation of ATSW, the magnitude of displacements is enhanced due to the convergence of shear waves and constructive interferences. The proposed method consists in generating ATSW fields from the combination of quasi-plane shear wavefronts by considering a linear superposition of displacement maps. Adaptive torsional shear waves were experimentally generated in homogeneous and heterogeneous tissue mimicking phantoms, and compared to quasi-plane shear wave propagations. Results demonstrated that displacement magnitudes by ATSW could be up to 3 times higher than those obtained with quasi-plane shear waves, that the variability of shear wave speeds was reduced, and that the signal-to-noise ratio of displacements was improved. It was also observed that ATSW could cause mechanical inclusions to resonate in heterogeneous phantoms, which further increased the displacement contrast between the inclusion and the surrounding medium. This method opens a way for the development of new noninvasive tissue characterization strategies based on ATSW in the framework of our previously reported shear wave induced resonance elastography (SWIRE) method proposed for breast cancer diagnosis.
Shear Wave Generation by Explosions in Anisotropic Crystalline Rock
NASA Astrophysics Data System (ADS)
Rogers-Martinez, M. A.; Sammis, C. G.; Stroujkova, A. F.
2015-12-01
The use of seismic waves to discriminate between earthquakes and underground explosions is complicated by the observation that explosions routinely radiate strong S waves. Whether these S waves are primarily generated by non-linear processes at the source, or by mode conversions and scattering along the path remains an open question. It has been demonstrated that S waves are generated at the source by any mechanism that breaks the spherical symmetry of the explosion. Examples of such mechanisms include tectonic shear stress, spall, and anisotropy in the emplacement medium. Many crystalline rock massifs are transversely isotropic because they contain aligned fractures over a range of scales from microfractures at the grain scale (called the rift) to regional sets of joints. In this study we use a micromechanical damage mechanics to model the fracture damage patterns and seismic radiation generated by explosions in a material in which the initial distribution of fractures has a preferred direction. Our simulations are compared with a set of field experiments in a granite quarry in Barre, VT conducted by New England Research and Weston Geophysical. Barre granite has a strong rift plane of aligned microfractures. Our model captures two important results of these field studies: 1) the spatial extent of rock fracture and generation of S waves depends on the burn-rate of the explosion and 2) the resultant damage is anisotropic with most damage occurring in the preferred direction of the microfractures (the rift plane in the granite). The physical reason damage is enhanced in the rift direction is that the mode I stress intensity factor is large for each fracture in the array of parallel fractures in the rift plane. Tensile opening on the rift plane plus sliding on the preexisting fractures make strong non-spherical contributions to the moment tensor in the far-field.
Improved shear wave motion detection using coded excitation for transient elastography.
He, Xiao-Nian; Diao, Xian-Fen; Lin, Hao-Ming; Zhang, Xin-Yu; Shen, Yuan-Yuan; Chen, Si-Ping; Qin, Zheng-Di; Chen, Xin
2017-03-15
Transient elastography (TE) is well adapted for use in studying liver elasticity. However, because the shear wave motion signal is extracted from the ultrasound signal, the weak ultrasound signal can significantly deteriorate the shear wave motion tracking process and make it challenging to detect the shear wave motion in a severe noise environment, such as within deep tissues and within obese patients. This paper, therefore, investigated the feasibility of implementing coded excitation in TE for shear wave detection, with the hypothesis that coded ultrasound signals can provide robustness to weak ultrasound signals compared with traditional short pulse. The Barker 7, Barker 13, and short pulse were used for detecting the shear wave in the TE application. Two phantom experiments and one in vitro liver experiment were done to explore the performances of the coded excitation in TE measurement. The results show that both coded pulses outperform the short pulse by providing superior shear wave signal-to-noise ratios (SNR), robust shear wave speed measurement, and higher penetration intensity. In conclusion, this study proved the feasibility of applying coded excitation in shear wave detection for TE application. The proposed method has the potential to facilitate robust shear elasticity measurements of tissue.
Improved shear wave motion detection using coded excitation for transient elastography
He, Xiao-Nian; Diao, Xian-Fen; Lin, Hao-Ming; Zhang, Xin-Yu; Shen, Yuan-Yuan; Chen, Si-Ping; Qin, Zheng-Di; Chen, Xin
2017-01-01
Transient elastography (TE) is well adapted for use in studying liver elasticity. However, because the shear wave motion signal is extracted from the ultrasound signal, the weak ultrasound signal can significantly deteriorate the shear wave motion tracking process and make it challenging to detect the shear wave motion in a severe noise environment, such as within deep tissues and within obese patients. This paper, therefore, investigated the feasibility of implementing coded excitation in TE for shear wave detection, with the hypothesis that coded ultrasound signals can provide robustness to weak ultrasound signals compared with traditional short pulse. The Barker 7, Barker 13, and short pulse were used for detecting the shear wave in the TE application. Two phantom experiments and one in vitro liver experiment were done to explore the performances of the coded excitation in TE measurement. The results show that both coded pulses outperform the short pulse by providing superior shear wave signal-to-noise ratios (SNR), robust shear wave speed measurement, and higher penetration intensity. In conclusion, this study proved the feasibility of applying coded excitation in shear wave detection for TE application. The proposed method has the potential to facilitate robust shear elasticity measurements of tissue. PMID:28295027
Wave-interference Effects in the Presence of a Shear Current
NASA Astrophysics Data System (ADS)
Li, Yan; Ellingsen, Simen; Noblesse, Francis
2016-11-01
Wave-interference effects, based on a 2-point wavemaker model of monohull ships, are analysed when a shear current of uniform vorticity is present. Indeed, wave interferences in the presence of a shear current, similar to the cases in finite water depth, are considerably more complicated than in deep water without vorticity. The effects of a shear current on far-field waves that are formed by 2-point wavemaker models greatly depend on the shear Froude number VS/g, where V is the speed of the ship, S is the uniform vorticity of the shear, g is the gravitational acceleration, as well as the angle between the ship's motion direction and the shear current. Various circumstances, under which ray angles of the highest waves that are associated with constructive interferences between waves are much narrower than the wake angles of the cusps or the asymptotes of wave patterns formed by Kelvin's classical 1-point wavemaker, are shown. In particular, cusp shear Froude numbers Frscusp where ray angles of the highest waves are equal to the cusp angles are determined. As for shear Froude numbers VS/g that are larger than Frscusp, the apparent angles where highest waves are found are significantly smaller than the cusp/asymptote angles. Furthermore, the asymmetry due to the presence of a shear current results in remarkable differences between the cases where a ship moves upstream or downstream.
Propagation of global shear Alfven waves in gyrokinetic tokamak plasmas
NASA Astrophysics Data System (ADS)
Nishimura, Y.; Lin, Z.; Holod, I.; Chen, L.; Decyk, V.; Klasky, S.; Ma, K.; Adams, M.; Ethier, S.; Hahm, T.; Lee, W.; Lewandowski, J.; Rewoldt, G.; Wang, W.
2006-04-01
Employing the electromagnetic gyrokinetic simulation models, Alfven wave dynamics in global tokamak geometry is studied. Based on a small parameter expansion by the square-root of the electron-ion mass ratio, the fluid-kinetic hybrid electron model solves the adiabatic response in the lowest order and solves the kinetic response in the higher orders. We verify the propagation of shear Alfven waves in the absence of drives or damping mechanisms by perturbing the magnetic field lines at t=0 in a global eigenmode structure. The Alfven wave experiences continuum damping. In the presence of energetic particles, excitations of toroidal Alfven eigenmode (TAE) is expected within the frequency gap. With the ηi gradient drive, at a critical β value, the kinetic ballooning mode (KBM) is excited below the ideal MHD limit. W.W.Lee et al., Phys. Plasmas 8, 4435 (2001). Z.Lin and L.Chen, Phys. Plasmas 8, 1447 (2001). J.A.Tataronis and W. Grossman, Z. Phys. 14, 203 (1973). C.Z.Cheng, L.Chen, and M.S.Chance, Ann.Phys. 161, 21 (1984). C.Z.Cheng, Nucl. Fusion 22, 773 (1982).
Three-Dimensional Shear Wave Velocity Structure of the Peru Flat Slab Subduction Segment
NASA Astrophysics Data System (ADS)
Knezevic Antonijevic, S.; Wagner, L. S.; Beck, S. L.; Zandt, G.; Long, M. D.
2012-12-01
Recent studies focused on flat slab subduction segments in central Chile (L. S. Wagner, 2006) and Alaska (B. R. Hacker and G. A. Aber, 2012) suggest significant differences in seismic velocity structures, and hence, composition in the mantle wedge between flat and normal "steep" subducting slabs. Instead of finding the low velocities and high Vp/Vs ratios common in normal subduction zones, these studies find low Vp, high Vs, and very low Vp/Vs above flat slabs. This may indicate the presence of dry, cold material in the mantle wedge. In order to investigate the seismic velocities of the upper mantle above the Peruvian flat segment, we have inverted for 2D Rayleigh wave phase velocity maps using data from the currently deployed 40 station PULSE seismic network and some adjacent stations from the CAUGHT seismic network. We then used the sensitivity of surface waves to shear wave velocity structure with depth to develop a 3D shear wave velocity model. This model will allow us to determine the nature of the mantle lithosphere above the flat slab, and how this may have influenced the development of local topography. For example, dry conditions (high Vs velocities) above the flat slab would imply greater strength of this material, possibly making it capable of causing further inland overthrusting, while wet conditions (low Vs) would imply weaker material. This could provide some insight into the ongoing debate over whether the Fitzcarrald arch (along the northern most flank of the Altiplano) could be a topographical response to the subducted Nazca ridge hundred kilometers away from the trench (N. Espurt, 2012, P. Baby, 2005, V. A. Ramos, 2012) or not (J. Martinod, 2005, M. Wipf, 2008, T. Gerya, 2008).
Razani, Marjan; Mariampillai, Adrian; Sun, Cuiru; Luk, Timothy W H; Yang, Victor X D; Kolios, Michael C
2012-05-01
In this work, we explored the potential of measuring shear wave propagation using optical coherence elastography (OCE) based on a swept-source optical coherence tomography (OCT) system. Shear waves were generated using a 20 MHz piezoelectric transducer (circular element 8.5 mm diameter) transmitting sine-wave bursts of 400 μs, synchronized with the OCT swept source wavelength sweep. The acoustic radiation force (ARF) was applied to two gelatin phantoms (differing in gelatin concentration by weight, 8% vs. 14%). Differential OCT phase maps, measured with and without the ARF, demonstrate microscopic displacement generated by shear wave propagation in these phantoms of different stiffness. We present preliminary results of OCT derived shear wave propagation velocity and modulus, and compare these results to rheometer measurements. The results demonstrate the feasibility of shear wave OCE (SW-OCE) for high-resolution microscopic homogeneous tissue mechanical property characterization.
Shear wave velocities of unconsolidated shallow sediments in the Gulf of Mexico
Lee, Myung W.
2013-01-01
Accurate shear-wave velocities for shallow sediments are important for a variety of seismic applications such as inver-sion and amplitude versus offset analysis. During the U.S. Department of Energy-sponsored Gas Hydrate Joint Industry Project Leg II, shear-wave velocities were measured at six wells in the Gulf of Mexico using the logging-while-drilling SonicScope acoustic tool. Because the tool measurement point was only 35 feet from the drill bit, the adverse effect of the borehole condition, which is severe for the shallow unconsolidated sediments in the Gulf of Mexico, was mini-mized and accurate shear-wave velocities of unconsolidated sediments were measured. Measured shear-wave velocities were compared with the shear-wave velocities predicted from the compressional-wave velocities using empirical formulas and the rock physics models based on the Biot-Gassmann theory, and the effectiveness of the two prediction methods was evaluated. Although the empirical equation derived from measured shear-wave data is accurate for predicting shear-wave velocities for depths greater than 500 feet in these wells, the three-phase Biot-Gassmann-theory -based theory appears to be optimum for predicting shear-wave velocities for shallow unconsolidated sediments in the Gulf of Mexico.
Drift-wave transport in the velocity shear layer
NASA Astrophysics Data System (ADS)
Rosalem, K. C.; Roberto, M.; Caldas, I. L.
2016-07-01
Particle drift driven by electrostatic wave fluctuations is numerically computed to describe the transport in a gradient velocity layer at the tokamak plasma edge. We consider an equilibrium plasma in large aspect ratio approximation with E × B flow and specified toroidal plasma velocity, electric field, and magnetic field profiles. A symplectic map, previously derived for infinite coherent time modes, is used to describe the transport dependence on the electric, magnetic, and plasma velocity shears. We also show that resonant perturbations and their correspondent islands in the Poincaré maps are much affected by the toroidal velocity profiles. Moreover, shearless transport barriers, identified by extremum values of the perturbed rotation number profiles of the invariant curves, allow chaotic trajectories trapped into the plasma. We investigate the influence of the toroidal plasma velocity profile on these shearless transport barriers.
Luo, Xin; Lu, Xin; Cong, Chunxiao; Yu, Ting; Xiong, Qihua; Quek, Su Ying
2015-10-15
2D layered materials have recently attracted tremendous interest due to their fascinating properties and potential applications. The interlayer interactions are much weaker than the intralayer bonds, allowing the as-synthesized materials to exhibit different stacking sequences, leading to different physical properties. Here, we show that regardless of the space group of the 2D materials, the Raman frequencies of the interlayer shear modes observed under the typical z(xx)z configuration blue shift for AB stacked materials, and red shift for ABC stacked materials, as the number of layers increases. Our predictions are made using an intuitive bond polarizability model which shows that stacking sequence plays a key role in determining which interlayer shear modes lead to the largest change in polarizability (Raman intensity); the modes with the largest Raman intensity determining the frequency trends. We present direct evidence for these conclusions by studying the Raman modes in few layer graphene, MoS2, MoSe2, WSe2 and Bi2Se3, using both first principles calculations and Raman spectroscopy. This study sheds light on the influence of stacking sequence on the Raman intensities of intrinsic interlayer modes in 2D layered materials in general, and leads to a practical way of identifying the stacking sequence in these materials.
[INVITED] Laser generation and detection of ultrafast shear acoustic waves in solids and liquids
NASA Astrophysics Data System (ADS)
Pezeril, Thomas
2016-09-01
The aim of this article is to provide an overview of the up-to-date findings related to ultrafast shear acoustic waves. Recent progress obtained for the laser generation and detection of picosecond shear acoustic waves in solids and liquids is reviewed. Examples in which the transverse isotropic symmetry of the sample structure is broken in order to permit shear acoustic wave generation through sudden laser heating are described in detail. Alternative photo-induced mechanisms for ultrafast shear acoustic generation in metals, semiconductors, insulators, magnetostrictive, piezoelectric and electrostrictive materials are reviewed as well. With reference to key experiments, an all-optical technique employed to probe longitudinal and shear structural dynamics in the GHz frequency range in ultra-thin liquid films is described. This technique, based on specific ultrafast shear acoustic transducers, has opened new perspectives that will be discussed for ultrafast shear acoustic probing of viscoelastic liquids at the nanometer scale.
On the interaction of deep water waves and exponential shear currents
NASA Astrophysics Data System (ADS)
Cheng, Jun; Cang, Jie; Liao, Shi-Jun
2009-05-01
A train of periodic deep-water waves propagating on a steady shear current with a vertical distribution of vorticity is investigated by an analytic method, namely the homotopy analysis method (HAM). The magnitude of the vorticity varies exponentially with the magnitude of the stream function, while remaining constant on a particular streamline. The so-called Dubreil-Jacotin transformation is used to transfer the original exponentially nonlinear boundary-value problem in an unknown domain into an algebraically nonlinear boundary-value problem in a known domain. Convergent series solutions are obtained not only for small amplitude water waves on a weak current but also for large amplitude waves on a strong current. The nonlinear wave-current interaction is studied in detail. It is found that an aiding shear current tends to enlarge the wave phase speed, sharpen the wave crest, but shorten the maximum wave height, while an opposing shear current has the opposite effect. Besides, the amplitude of waves and fluid velocity decay over the depth more quickly on an aiding shear current but more slowly on an opposing shear current than that of waves on still water. Furthermore, it is found that Stokes criteria of wave breaking is still valid for waves on a shear current: a train of propagating waves on a shear current breaks as the fiuid velocity at crest equals the wave phase speed. Especially, it is found that the highest waves on an opposing shear current are even higher and steeper than that of waves on still water. Mathematically, this analytic method is rather general in principle and can be employed to solve many types of nonlinear partial differential equations with variable coefficients in science, finance and engineering.
Amador Carrascal, Carolina; Chen, Shigao; Manduca, Armando; Greenleaf, James F; Urban, Matthew W
2017-04-01
Quantitative ultrasound elastography is increasingly being used in the assessment of chronic liver disease. Many studies have reported ranges of liver shear wave velocity values for healthy individuals and patients with different stages of liver fibrosis. Nonetheless, ongoing efforts exist to stabilize quantitative ultrasound elastography measurements by assessing factors that influence tissue shear wave velocity values, such as food intake, body mass index, ultrasound scanners, scanning protocols, and ultrasound image quality. Time-to-peak (TTP) methods have been routinely used to measure the shear wave velocity. However, there is still a need for methods that can provide robust shear wave velocity estimation in the presence of noisy motion data. The conventional TTP algorithm is limited to searching for the maximum motion in time profiles at different spatial locations. In this paper, two modified shear wave speed estimation algorithms are proposed. The first method searches for the maximum motion in both space and time [spatiotemporal peak (STP)]; the second method applies an amplitude filter [spatiotemporal thresholding (STTH)] to select points with motion amplitude higher than a threshold for shear wave group velocity estimation. The two proposed methods (STP and STTH) showed higher precision in shear wave velocity estimates compared with TTP in phantom. Moreover, in a cohort of 14 healthy subjects, STP and STTH methods improved both the shear wave velocity measurement precision and the success rate of the measurement compared with conventional TTP.
Modelling the impulse diffraction field of shear waves in transverse isotropic viscoelastic medium
NASA Astrophysics Data System (ADS)
Chatelin, Simon; Gennisson, Jean-Luc; Bernal, Miguel; Tanter, Mickael; Pernot, Mathieu
2015-05-01
The generation of shear waves from an ultrasound focused beam has been developed as a major concept for remote palpation using shear wave elastography (SWE). For muscular diagnostic applications, characteristics of the shear wave profile will strongly depend on characteristics of the transducer as well as the orientation of muscular fibers and the tissue viscoelastic properties. The numerical simulation of shear waves generated from a specific probe in an anisotropic viscoelastic medium is a key issue for further developments of SWE in fibrous soft tissues. In this study we propose a complete numerical tool allowing 3D simulation of a shear wave front in anisotropic viscoelastic media. From the description of an ultrasonic transducer, the shear wave source is simulated by using Field’s II software and shear wave propagation described by using the Green’s formalism. Finally, the comparison between simulations and experiments are successively performed for both shear wave velocity and dispersion profile in a transverse isotropic hydrogel phantom, in vivo forearm muscle and in vivo biceps brachii.
Shear wave velocities from noise correlation at local scale
De Nisco, G.; Nunziata, C.; Vaccari, F.; Panza, G. F.
2008-07-08
Cross correlations of ambient seismic noise recordings have been studied to infer shear seismic velocities with depth. Experiments have been done in the crowded and noisy historical centre of Napoli over inter-station distances from 50 m to about 400 m, whereas active seismic spreadings are prohibitive, even for just one receiver. Group velocity dispersion curves have been extracted with FTAN method from the noise cross correlations and then the non linear inversion of them has resulted in Vs profiles with depth. The information of near by stratigraphies and the range of Vs variability for samples of Neapolitan soils and rocks confirms the validity of results obtained with our expeditious procedure. Moreover, the good comparison of noise H/V frequency of the first main peak with 1D and 2D spectral amplifications encourages to continue experiments of noise cross-correlation. If confirmed in other geological settings, the proposed approach could reveal a low cost methodology to obtain reliable and detailed Vs velocity profiles.
Anomalous shear wave delays and surface wave velocities at Yellowstone Caldera, Wyoming
Daniel, R.G.; Boore, D.M.
1982-04-10
To investigate the effects of a geothermal area on the propagation of intermediate-period (1--30 s) teleseismic body waves and surface waves, a specially designed portable seismograph system was operated in Yellowstone Caldera, Wyoming. Travel time residuals, relative to a station outside the caldera, of up to 2 s for compressional phases are in agreement with short-period residuals for P phases measured by other investigators. Travel time delays for shear arrivals in the intermediate-period band range from 2 to 9 s and decrease with increasing dT/d..delta... Measured Rayleigh wave phase velocities are extremely low, ranging from 3.2 km/s at 27-s period to 2.0 km/s at 7-s period; the estimated uncertainty associated with these values is 15%. We propose a model for compressional and shear velocities and Poisson's ratio beneath the Yellowstone caldera which fits the teleseismic body and surface wave data: it consists of a highly anomalous crust with an average shear velocity of 3.0 km/s overlying an upper mantle with average velocity of 4.1 km/s. The high average value of Poisson's ratio in the crust (0.34) suggests the presence of fluids there; Poisson's ratio in the mantle between 40 and approximately 200 km is more nearly normal (0.29) than in the crust. A discrepancy between normal values of Poisson's ratio in the crust calculated from short-period data and high values calculated from teleseismic data can be resolved by postulating a viscoelastic crustal model with frequency-dependent shear velocity and attenuation.
A shear-wave polarization study in the Wellington region New Zealand
Gledhill, K.R. )
1990-08-01
A month of digital data from two three component seismograph stations near Wellington, New Zealand, was analyzed as part of a feasibility study for a major project to investigate shear-wave splitting. Although the total number of earthquakes studies was small (14), some suggestive results were obtained. Almost all events recorded within the shear wave window showed a phase reversal of the horizontal components after one or two shear wave cycles, suggesting that there are actually two shear-wave arrivals. The measured polarization of the first shear wave arrivals was N (31 {plus minus} 11) E. This polarization alignment cannot be explained by focal mechanisms, and it is unlikely to be due to topography because of the station-to-station correlation. The present evidence suggests the most likely cause is crustal anistropy due to the geological structure at shallow depth, rather than stress aligned micro-cracks.
NASA Astrophysics Data System (ADS)
Makhin, Volodymyr; Sotnikov, Vladimir; Bauer, Bruno; Lindemuth, Irvin; Sheehey, Peter
2001-10-01
1D modeling of the initial state of wire explosions (“cold start” with updated SESAME tables) was examined using 1D version of the Eulerian Magnetohydrodynamic Radiative Code (MHRDR). Simulations were carried out for two regimes: with (black body radiative model) and without radiative losses. Results of the simulations revealed strong dependence of the time of explosion and expansion speed of the wire on the implemented radiative model. This shows that it is necessary to accurately include radiative losses to model “cold start” wire explosions. 2D modeling of the m=0 sausage instability with sheared axial flow. The MHRDR simulations were used to obtain the growth rate of the m=0 sausage instability in plasma column with initial Bennett equilibrium profile with and without shear flow. These growth rates appeared to be in good agreement with growth rates calculated from the linearized MHD equations.
NASA Astrophysics Data System (ADS)
Suryanarayanan, Saikishan; Narasimha, Roddam
2017-02-01
Although the free-shear or mixing layer has been a subject of extensive research over nearly a century, there are certain fundamental issues that remain controversial. These include the influence of initial and downstream conditions on the flow, the effect of velocity ratio across the layer, and the nature of any possible coupling between small scale dynamics and the large scale evolution of layer thickness. In the spirit of the temporal vortex-gas simulations of Suryanarayanan et al. ["Free turbulent shear layer in a point vortex gas as a problem in nonequilibrium statistical mechanics," Phys. Rev. E 89, 013009 (2014)], we revisit the simple 2D inviscid vortex-gas model with extensive computations and detailed analysis, in order to gain insights into some of the above issues. Simulations of the spatially evolving vortex-gas shear layer are carried out at different velocity ratios using a computational model based on the work of Basu et al. ["Vortex sheet simulation of a plane canonical mixing layer," Comput. Fluids 21, 1-30 (1992) and "Modelling plane mixing layers using vortex points and sheets," Appl. Math. Modell. 19, 66-75 (1995)], but with a crucial improvement that ensures conservation of global circulation. The simulations show that the conditions imposed at the origin of the free shear layer and at the exit to the computational domain can affect flow evolution in their respective downstream and upstream neighbourhoods, the latter being particularly strong in the single stream limit. In between these neighbourhoods at the ends is a regime of universal self-preserving growth rate given by a universal function of velocity ratio. The computed growth rates are generally located within the scatter of experimental data on plane mixing layers and closely agree with recent high Reynolds number experiments and 3D large eddy simulation studies. These findings support the view that observed free-shear layer growth can be largely explained by the 2D vortex dynamics of
Xia, J.; Miller, R.D.; Park, C.B.; Hunter, J.A.; Harris, J.B.; Ivanov, J.
2002-01-01
Recent field tests illustrate the accuracy and consistency of calculating near-surface shear (S)-wave velocities using multichannel analysis of surface waves (MASW). S-wave velocity profiles (S-wave velocity vs. depth) derived from MASW compared favorably to direct borehole measurements at sites in Kansas, British Columbia, and Wyoming. Effects of changing the total number of recording channels, sampling interval, source offset, and receiver spacing on the inverted S-wave velocity were studied at a test site in Lawrence, Kansas. On the average, the difference between MASW calculated Vs and borehole measured Vs in eight wells along the Fraser River in Vancouver, Canada was less than 15%. One of the eight wells was a blind test well with the calculated overall difference between MASW and borehole measurements less than 9%. No systematic differences were observed in derived Vs values from any of the eight test sites. Surface wave analysis performed on surface data from Wyoming provided S-wave velocities in near-surface materials. Velocity profiles from MASW were confirmed by measurements based on suspension log analysis. ?? 2002 Elsevier Science Ltd. All rights reserved.
Measurement of sound speed vs. depth in South Pole ice: pressure waves and shear waves
IceCube Collaboration; Klein, Spencer
2009-06-04
We have measured the speed of both pressure waves and shear waves as a function of depth between 80 and 500 m depth in South Pole ice with better than 1% precision. The measurements were made using the South Pole Acoustic Test Setup (SPATS), an array of transmitters and sensors deployed in the ice at the South Pole in order to measure the acoustic properties relevant to acoustic detection of astrophysical neutrinos. The transmitters and sensors use piezoceramics operating at {approx}5-25 kHz. Between 200 m and 500 m depth, the measured profile is consistent with zero variation of the sound speed with depth, resulting in zero refraction, for both pressure and shear waves. We also performed a complementary study featuring an explosive signal propagating vertically from 50 to 2250 m depth, from which we determined a value for the pressure wave speed consistent with that determined for shallower depths, higher frequencies, and horizontal propagation with the SPATS sensors. The sound speed profile presented here can be used to achieve good acoustic source position and emission time reconstruction in general, and neutrino direction and energy reconstruction in particular. The reconstructed quantities could also help separate neutrino signals from background.
High speed all optical shear wave imaging optical coherence elastography (Conference Presentation)
NASA Astrophysics Data System (ADS)
Song, Shaozhen; Hsieh, Bao-Yu; Wei, Wei; Shen, Tueng; O'Donnell, Matthew; Wang, Ruikang K.
2016-03-01
Optical Coherence Elastography (OCE) is a non-invasive testing modality that maps the mechanical property of soft tissues with high sensitivity and spatial resolution using phase-sensitive optical coherence tomography (PhS-OCT). Shear wave OCE (SW-OCE) is a leading technique that relies on the speed of propagating shear waves to provide a quantitative elastography. Previous shear wave imaging OCT techniques are based on repeated M-B scans, which have several drawbacks such as long acquisition time and repeated wave stimulations. Recent developments of Fourier domain mode-locked high-speed swept-source OCT system has enabled enough speed to perform KHz B-scan rate OCT imaging. Here we propose ultra-high speed, single shot shear wave imaging to capture single-shot transient shear wave propagation to perform SW-OCE. The frame rate of shear wave imaging is 16 kHz, at A-line rate of ~1.62 MHz, which allows the detection of high-frequency shear wave of up to 8 kHz. The shear wave is generated photothermal-acoustically, by ultra-violet pulsed laser, which requires no contact to OCE subjects, while launching high frequency shear waves that carries rich localized elasticity information. The image acquisition and processing can be performed at video-rate, which enables real-time 3D elastography. SW-OCE measurements are demonstrated on tissue-mimicking phantoms and porcine ocular tissue. This approach opens up the feasibility to perform real-time 3D SW-OCE in clinical applications, to obtain high-resolution localized quantitative measurement of tissue biomechanical property.
McAleavey, Stephen A
2014-05-01
Shear wave induced phase encoding (SWIPE) imaging generates ultrasound backscatter images of tissue-like elastic materials by using traveling shear waves to encode the lateral position of the scatters in the phase of the received echo. In contrast to conventional ultrasound B-scan imaging, SWIPE offers the potential advantages of image formation without beam focusing or steering from a single transducer element, lateral resolution independent of aperture size, and the potential to achieve relatively high lateral resolution with low frequency ultrasound. Here a Fourier series description of the phase modulated echo signal is developed, demonstrating that echo harmonics at multiples of the shear wave frequency reveal target k-space data at identical multiples of the shear wavenumber. Modulation transfer functions of SWIPE imaging systems are calculated for maximum shear wave acceleration and maximum shear constraints, and compared with a conventionally focused aperture. The relative signal-to-noise ratio of the SWIPE method versus a conventionally focused aperture is found through these calculations. Reconstructions of wire targets in a gelatin phantom using 1 and 3.5 MHz ultrasound and a cylindrical shear wave source are presented, generated from the fundamental and second harmonic of the shear wave modulation frequency, demonstrating weak dependence of lateral resolution with ultrasound frequency.
Shear wave measurements in shock-induced, high-pressure phases
Aidun, J.B.
1993-01-01
Structural phase transformations under shock loading are of considerable interest for understanding the response of solids under nonhydrostatic stresses and at high strain-rates. Examining shock-induced transformations from continuum level measurements is fundamentally constrained by the inability to directly identify microscopic processes, and also by the limited number of material properties that can be directly measured. ne latter limitation can be reduced by measuring both shear and compression waves using Lagrangian gauges in combined, compression and shear loading. The shear wave serves as an important, real-time probe of the shocked state and unloading response. Using results from a recent study of CaCO[sub 3], the unique information obtained from the shear wave speed and the detailed structure of the shear wave are shown to be useful for distinguishing the effects of phase transformations from yielding, as well as in characterizing the high-pressure phases and the yielding process under shock loading.
Shear wave measurements in shock-induced, high-pressure phases
Aidun, J.B.
1993-07-01
Structural phase transformations under shock loading are of considerable interest for understanding the response of solids under nonhydrostatic stresses and at high strain-rates. Examining shock-induced transformations from continuum level measurements is fundamentally constrained by the inability to directly identify microscopic processes, and also by the limited number of material properties that can be directly measured. ne latter limitation can be reduced by measuring both shear and compression waves using Lagrangian gauges in combined, compression and shear loading. The shear wave serves as an important, real-time probe of the shocked state and unloading response. Using results from a recent study of CaCO{sub 3}, the unique information obtained from the shear wave speed and the detailed structure of the shear wave are shown to be useful for distinguishing the effects of phase transformations from yielding, as well as in characterizing the high-pressure phases and the yielding process under shock loading.
Effect of Shear on Failure Waves in Shocked Soda Lime Glass
NASA Astrophysics Data System (ADS)
Brar, N. S.; Mello, M.; Clifton, R. J.
1997-07-01
Failure waves in shock-compressed soda lime glass are thought to involve a loss of shearing resistance because in-material stress gauges have shown a marked increase in the transverse stress, and consequent reduction in the shear stress on arrival of the failure wave. To explore the relation between failure waves and shearing resistance, a series of pressure-shear (oblique impact) are being performed in the 4-inch gas gun at Brown University. These experiments involve the impact of a glass plate by a steel flyer plate or vice versa. The former configuration is designed to relate failure wave phenomena in oblique impact to those reported for normal impact, whereas the latter configuration is designed to allow direct measurements of the shearing resistance of the failed material. In both configurations, the normal and transverse motion of the free surface of the target is monitored using laser interferometery. Initial results from these experiments will be reported.
3D mapping of elastic modulus using shear wave optical micro-elastography
NASA Astrophysics Data System (ADS)
Zhu, Jiang; Qi, Li; Miao, Yusi; Ma, Teng; Dai, Cuixia; Qu, Yueqiao; He, Youmin; Gao, Yiwei; Zhou, Qifa; Chen, Zhongping
2016-10-01
Elastography provides a powerful tool for histopathological identification and clinical diagnosis based on information from tissue stiffness. Benefiting from high resolution, three-dimensional (3D), and noninvasive optical coherence tomography (OCT), optical micro-elastography has the ability to determine elastic properties with a resolution of ~10 μm in a 3D specimen. The shear wave velocity measurement can be used to quantify the elastic modulus. However, in current methods, shear waves are measured near the surface with an interference of surface waves. In this study, we developed acoustic radiation force (ARF) orthogonal excitation optical coherence elastography (ARFOE-OCE) to visualize shear waves in 3D. This method uses acoustic force perpendicular to the OCT beam to excite shear waves in internal specimens and uses Doppler variance method to visualize shear wave propagation in 3D. The measured propagation of shear waves agrees well with the simulation results obtained from finite element analysis (FEA). Orthogonal acoustic excitation allows this method to measure the shear modulus in a deeper specimen which extends the elasticity measurement range beyond the OCT imaging depth. The results show that the ARFOE-OCE system has the ability to noninvasively determine the 3D elastic map.
3D mapping of elastic modulus using shear wave optical micro-elastography
Zhu, Jiang; Qi, Li; Miao, Yusi; Ma, Teng; Dai, Cuixia; Qu, Yueqiao; He, Youmin; Gao, Yiwei; Zhou, Qifa; Chen, Zhongping
2016-01-01
Elastography provides a powerful tool for histopathological identification and clinical diagnosis based on information from tissue stiffness. Benefiting from high resolution, three-dimensional (3D), and noninvasive optical coherence tomography (OCT), optical micro-elastography has the ability to determine elastic properties with a resolution of ~10 μm in a 3D specimen. The shear wave velocity measurement can be used to quantify the elastic modulus. However, in current methods, shear waves are measured near the surface with an interference of surface waves. In this study, we developed acoustic radiation force (ARF) orthogonal excitation optical coherence elastography (ARFOE-OCE) to visualize shear waves in 3D. This method uses acoustic force perpendicular to the OCT beam to excite shear waves in internal specimens and uses Doppler variance method to visualize shear wave propagation in 3D. The measured propagation of shear waves agrees well with the simulation results obtained from finite element analysis (FEA). Orthogonal acoustic excitation allows this method to measure the shear modulus in a deeper specimen which extends the elasticity measurement range beyond the OCT imaging depth. The results show that the ARFOE-OCE system has the ability to noninvasively determine the 3D elastic map. PMID:27762276
Surface and downhole shear wave seismic methods for thick soil site investigations
Hunter, J.A.; Benjumea, B.; Harris, J.B.; Miller, R.D.; Pullan, S.E.; Burns, R.A.; Good, R.L.
2002-01-01
Shear wave velocity-depth information is required for predicting the ground motion response to earthquakes in areas where significant soil cover exists over firm bedrock. Rather than estimating this critical parameter, it can be reliably measured using a suite of surface (non-invasive) and downhole (invasive) seismic methods. Shear wave velocities from surface measurements can be obtained using SH refraction techniques. Array lengths as large as 1000 m and depth of penetration to 250 m have been achieved in some areas. High resolution shear wave reflection techniques utilizing the common midpoint method can delineate the overburden-bedrock surface as well as reflecting boundaries within the overburden. Reflection data can also be used to obtain direct estimates of fundamental site periods from shear wave reflections without the requirement of measuring average shear wave velocity and total thickness of unconsolidated overburden above the bedrock surface. Accurate measurements of vertical shear wave velocities can be obtained using a seismic cone penetrometer in soft sediments, or with a well-locked geophone array in a borehole. Examples from thick soil sites in Canada demonstrate the type of shear wave velocity information that can be obtained with these geophysical techniques, and show how these data can be used to provide a first look at predicted ground motion response for thick soil sites. ?? 2002 Published by Elsevier Science Ltd.
Viscosity measurement based on shear-wave laser speckle contrast analysis
NASA Astrophysics Data System (ADS)
Cheng, Yi; Li, Sinan; Eckersley, Robert J.; Elson, Daniel S.; Tang, Meng-Xing
2013-12-01
Tissue viscosity is correlated with tissue pathological changes and provides information for tissue characterization. In this study, we report an optical method to track continuous shear-wave propagation at centimeter depths in an optically turbid medium. Shear-wave attenuation coefficients were measured at multiple frequencies using shear-wave laser speckle contrast analysis (SW-LASCA) to quantitatively estimate tissue viscosity using the Voigt model. Shear waves were generated within tissue-mimicking phantoms by an amplitude-modulated ultrasound (modulation frequency: 100 to 600 Hz) and tracked by time-resolved laser speckle contrast difference received on a charged-coupled device camera. Averaged contrast difference over a selected time window was related to shear-wave amplitude and used to calculate the shear-wave attenuation coefficient. Phantoms of varying viscosities (0.1 and 0.3 Pa s) were studied. Attenuation coefficients for different shear-wave frequencies (100 to 600 Hz) were calculated. Derived viscosity values had a maximum standard deviation of 9%, and these values were consistent with the independent measurements reported in a previous study using nonoptical methods.
Statistical Analysis of Shear Wave Speed in the Uterine Cervix
Carlson, Lindsey C.; Feltovich, Helen; Palmeri, Mark L.; del Rio, Alejandro Muñoz; Hall, Timothy J.
2014-01-01
Although cervical softening is critical in pregnancy, there currently is no objective method for assessing the softness of the cervix. Shear wave speed (SWS) estimation is a noninvasive tool used to measure tissue mechanical properties such as stiffness. The goal of this study was to determine the spatial variability and assess the ability of SWS to classify ripened vs. unripened tissue samples. Ex vivo human hysterectomy samples (n = 22) were collected, a subset (n = 13) were ripened. SWS estimates were made at 4–5 locations along the length of the canal on both anterior and posterior halves. A linear mixed model was used for a robust multivariate analysis. Receiver operating characteristic (ROC) analysis and the area under the ROC curve (AUC) were calculated to describe the utility of SWS to classify ripened vs. unripened tissue samples. Results showed that all variables used in the linear mixed model were significant (p<0.05). Estimates at the mid location for the unripened group were 3.45 ± 0.95 m/s (anterior) and 3.56 ± 0.92 m/s (posterior), and 2.11 ± 0.45 m/s (anterior) and 2.68 ± 0.57 m/s (posterior) for the ripened (p < 0.001). The AUC’s were 0.91 and 0.84 for anterior and posterior respectively suggesting SWS estimates may be useful for quantifying cervical softening. PMID:25392863
Shear Alfven waves with Landau and collisional effects
Hedrick, C.L.; Leboeuf, J.; Spong, D.A.
1995-06-01
Shear Alfven waves can be driven unstable by hot particles such as alpha particles in an ignited fusion device or hot ions in existing devices. Motivated by rather collisional Wendelstein 7 Advanced Stellarator (W7-AS) [Phys. Rev. Lett. {bold 72}, 1220 (1994)] beam-driven global Alfven instability experiments, the effect of electron and ion collisions on these modes has been examined. Collisions broaden and suppress the peak associated with Landau effects. This broadening makes ion damping more important, while the electron damping is suppressed. Additional resistive effects provide increased damping for the main part of the spectrum, which can have a rather high phase velocity. Of more general interest is the fact that collisional and collisionless resistivity has a numerically stabilizing effect that is known to be important for nonlinear resistive magnetohydrodynamics (MHD). This can preclude the need for introducing and testing the sensitivity to similar ad hoc effects. Numerical and analytic results for both a particle-conserving Krook collision operator and a Lorentz (pitch angle) collision operator are compared and contrasted.
Shear Wave Splitting Across Eastern, Western and Southern Africa
NASA Astrophysics Data System (ADS)
Nyblade, A.; Ramirez, C.; Bagley, B. C.; Mulibo, G. D.; Tugume, F.; Wysession, M. E.; Wiens, D. A.
2014-12-01
The expansion of the AfricaArray network across eastern, western and southern Africa, in conjunction with seismic data from many PASSCAL deployments over the past 20 years, is helping to fill in major gaps in the global coverage of shear wave splitting measurements. New results from stations in Ghana, Nigeria, Mozambique, Botswana, Angola, Namibia and South Africa are presented in this study that when combined with previously published measurements help to map the pattern of seismic anisotropy over much of the African continent. A general pattern of fast polarization directions, characterized by NE orientations, is found, and superimposed on this subcontinental-scale pattern is local and regional variability, most notably around the Archean Tanzania craton in eastern Africa. The subcontinental-scale pattern, as well as local and regional variations in this pattern, are interpreted in terms of large-scale mantle flow from the African Superplume, fossil anisotropy in the lithosphere, and shape anisotropy in magmatic regions of the East African rift system.
Gravitational, shear and matter waves in Kantowski-Sachs cosmologies
Keresztes, Zoltán; Gergely, László Á.; Forsberg, Mats; Bradley, Michael; Dunsby, Peter K.S. E-mail: forsberg.mats.a.b@gmail.com E-mail: peter.dunsby@uct.ac.za
2015-11-01
A general treatment of vorticity-free, perfect fluid perturbations of Kantowski-Sachs models with a positive cosmological constant are considered within the framework of the 1+1+2 covariant decomposition of spacetime. The dynamics is encompassed in six evolution equations for six harmonic coefficients, describing gravito-magnetic, kinematic and matter perturbations, while a set of algebraic expressions determine the rest of the variables. The six equations further decouple into a set of four equations sourced by the perfect fluid, representing forced oscillations and two uncoupled damped oscillator equations. The two gravitational degrees of freedom are represented by pairs of gravito-magnetic perturbations. In contrast with the Friedmann case one of them is coupled to the matter density perturbations, becoming decoupled only in the geometrical optics limit. In this approximation, the even and odd tensorial perturbations of the Weyl tensor evolve as gravitational waves on the anisotropic Kantowski-Sachs background, while the modes describing the shear and the matter density gradient are out of phase dephased by π /2 and share the same speed of sound.
Gravitational, shear and matter waves in Kantowski-Sachs cosmologies
NASA Astrophysics Data System (ADS)
Keresztes, Zoltán; Forsberg, Mats; Bradley, Michael; Dunsby, Peter K. S.; Gergely, László Á.
2015-11-01
A general treatment of vorticity-free, perfect fluid perturbations of Kantowski-Sachs models with a positive cosmological constant are considered within the framework of the 1+1+2 covariant decomposition of spacetime. The dynamics is encompassed in six evolution equations for six harmonic coefficients, describing gravito-magnetic, kinematic and matter perturbations, while a set of algebraic expressions determine the rest of the variables. The six equations further decouple into a set of four equations sourced by the perfect fluid, representing forced oscillations and two uncoupled damped oscillator equations. The two gravitational degrees of freedom are represented by pairs of gravito-magnetic perturbations. In contrast with the Friedmann case one of them is coupled to the matter density perturbations, becoming decoupled only in the geometrical optics limit. In this approximation, the even and odd tensorial perturbations of the Weyl tensor evolve as gravitational waves on the anisotropic Kantowski-Sachs background, while the modes describing the shear and the matter density gradient are out of phase dephased by π /2 and share the same speed of sound.
A comparative study of strain and shear-wave elastography in an elasticity phantom.
Carlsen, Jonathan F; Pedersen, Malene R; Ewertsen, Caroline; Săftoiu, Adrian; Lönn, Lars; Rafaelsen, Søren R; Nielsen, Michael B
2015-03-01
OBJECTIVE. The purpose of this study was to assess the diagnostic accuracy of strain and shear-wave elastography for determining targets of varying stiffness in a phantom. The effect of target diameter on elastographic assessments and the effect of depth on shear-wave velocity were also investigated. MATERIALS AND METHODS. We examined 20 targets of varying diameters (2.5-16.7 mm) and stiffnesses (8, 14, 45, and 80 kPa) with a 4-9-MHz linear-array transducer. Targets were evaluated 10 times with three different methods-shear-wave elastography, strain ratio, and strain histogram analysis-yielding 600 evaluations. AUCs were calculated for data divided between different stiffnesses. A 1.5-6-MHz curved-array transducer was used to assess the effect of depth (3.5 vs 6 cm) on shear-wave elastography in 80 scans. Mixed model analysis was performed to assess the effect of target diameter and depth. RESULTS. Strain ratio and strain histogram AUCs were higher than the shear-wave velocity AUC (p < 0.001) in data divided as 80 versus 45, 14, and 8 kPa. In data divided as 80 and 45 versus 14 and 8 kPa, the methods were equal (p = 0.959 and p = 1.000, respectively). Strain ratios were superior (p = 0.030), whereas strain histograms were not significantly better (p = 0.083) than shear-wave elastography in data divided as 80, 45, and 14 versus 8 kPa. Target diameter had an effect on all three methods (p = 0.001). Depth had an effect on shear-wave velocity (p = 0.001). CONCLUSION. The ability to discern different target stiffnesses varies between shear-wave and strain elastography. Target diameter affected all methods. Shear-wave elastography is affected by target depth.
Johnston, J.E.; Christensen, N.I. . Dept. of Earth and Atmospheric Sciences)
1992-01-01
The physical properties of a sequence of Paleozoic sedimentary rocks have been examined in detail, with an emphasis on laboratory measurements of density, shear wave velocity, shear wave splitting, and Vp/Vs ratios. Seismic properties of 147 cores from 49 rock samples collected from the thorn hill sedimentary sequence of eastern Tennessee are examined in terms of implications for future seismic studies in the southern Appalachians. The shear wave velocities of these rocks are strongly influenced by the relatively high shear wave velocity of quartz. Shear wave velocity anisotropy is present in most of the lithologic groups: it is highest in the shales while being almost insignificant in the dolostones. The related phenomenon of shear wave splitting occurs to some degree in all of the lithologies studied and at high pressures originates from mineral orientation. Compressional to shear velocity (Vp/Vs) ratios of approximately 1.82 (dolostones) and 1.95 (limestones) effectively characterize the carbonates while other lithologies display wider ranges of Vp/Vs, primarily due to the influence of accessory minerals such as quartz. Densities of the sample suite range from 2.34 g/cm[sup 3] (shale) to 2.86 g/cm[sup 3] (dolostone). Normal incidence shear and compressional wave synthetic seismograms of the entire Thorn Hill section indicate that three zones of high amplitude reflections would be seen on reflection records obtained over this 3,327 meter thick sequence. differences are seen at some interfaces in the Mississippian-Devonian interval, which are more reflective to shear waves, and in the Ordovician Martinsburg Formation, which appears more reflective to compressional waves.
NASA Technical Reports Server (NTRS)
Dewan, E. M.
1986-01-01
The problem of how to empirically distinguish between velocity fluctuations due to turbulence and those due to atmospheric waves is addressed. The physical differences between waves and turbulence are reviewed. New theoretical ideas on the subject of bouyancy range turbulence are presented. A unique scale K sub B is given that allows one to differentiate between waves and turbulence for the special case of theta = 0 (i.e., horizontal propagating waves).
Daneshmand, Farhang; Ghavanloo, Esmaeal; Amabili, Marco
2011-07-07
Wave propagation along the microtubules is one of the issues of major concern in various microtubule cellular functions. In this study, the general wave propagation behavior in protein microtubules is investigated based on a first-order shear deformation shell theory for orthotropic materials, with particular emphasis on the role of strongly anisotropic elastic properties of microtubules. According to experimental observation, the first-order shear deformation theory is used for the modeling of microtubule walls. A general displacement representation is introduced and a type of coupled polynomial eigenvalue problem is developed. Numerical examples describe the effects of shear deformation and rotary inertia on wave velocities in orthotropic microtubules. Finally, the influences of the microtubule shear modulus, axial external force, effective thickness and material temperature dependency on wave velocities along the microtubule protofilaments, helical pathway and radial directions are elucidated. Most results presented in the present investigation have been absent from the literature for the wave propagation in microtubules.
NASA Astrophysics Data System (ADS)
Grasland-Mongrain, Pol; Miller-Jolicoeur, Erika; Tang, An; Catheline, Stefan; Cloutier, Guy
2016-03-01
This study presents the first observation of shear waves induced remotely within soft tissues. It was performed through the combination of a transcranial magnetic stimulation device and a permanent magnet. A physical model based on Maxwell and Navier equations was developed. Experiments were performed on a cryogel phantom and a chicken breast sample. Using an ultrafast ultrasound scanner, shear waves of respective amplitudes of 5 and 0.5 μm were observed. Experimental and numerical results were in good agreement. This study constitutes the framework of an alternative shear wave elastography method.
Packo, P.; Staszewski, W. J.; Uhl, T.
2016-01-01
Properties of soft biological tissues are increasingly used in medical diagnosis to detect various abnormalities, for example, in liver fibrosis or breast tumors. It is well known that mechanical stiffness of human organs can be obtained from organ responses to shear stress waves through Magnetic Resonance Elastography. The Local Interaction Simulation Approach is proposed for effective modelling of shear wave propagation in soft tissues. The results are validated using experimental data from Magnetic Resonance Elastography. These results show the potential of the method for shear wave propagation modelling in soft tissues. The major advantage of the proposed approach is a significant reduction of computational effort. PMID:26884808
Angle-beam shear wave scattering from buried crack-like defects in bonded specimens
NASA Astrophysics Data System (ADS)
Maki, Carson T.; Michaels, Jennifer E.; Weng, Yu; Michaels, Thomas E.
2017-02-01
Ultrasonic wavefield imaging, which refers to the measurement of wave motion on a 2-D rectilinear grid resulting from a fixed source, has been previously applied to angle-beam shear wave propagation in simple plates with through-holes and far-surface notches. In this prior work, scattered waves were analyzed using baseline subtraction of wavefields acquired before and after a notch was introduced. In practice, however, defects of interest often occur between bonded layers and it is generally not possible to record data from the same specimen in both the undamaged and damaged states, even in the laboratory. Direct baseline subtraction of wavefields thus becomes impractical as a tool for analyzing scattering. This present work considers measurement and analysis of angle-beam waves in bonded specimens with and without buried defects originating from fastener holes. Data from fastener holes with and without simulated damage in the form of notches are compared, and it is shown that wavefield baseline subtraction, even after correcting for misalignment between scans, is ineffective for isolating scattering from the notch. A combination of frequency-wavenumber filtering and spatial windowing is proposed and implemented as an alternative approach to quantify scattering from damage. Despite unavoidable deviations from specimen-to-specimen caused by factors such as variations in bonding, transducer mounting, and fastener hole machining, it is shown that scattering from buried notches can be clearly visualized in recorded wavefield data of bonded plates containing a buried defect as opposed to "baseline" wavefield data taken from a nominally similar specimen with no defect present. Backscattering is further quantified in the form of scattering patterns at different scattering frames to quantify the effect of the notch on the total backscattered wavefield.
NASA Astrophysics Data System (ADS)
Chen, T.; Wang, P.; Fehler, M.; Zhang, Y.; Burns, D.
2009-12-01
Localizing subsurface fractures and estimating their mechanical parameters and geometric properties are very important in oil and gas industry as well as geothermal energy research. It is essential to quantitatively understand how the elastic wave propagation is affected by these fractures. In this paper, an analytical expression for the scattered P- and SV waves from a 2D fracture is formulated based on a normal mode method, where the 2D fracture is modeled by a low-aspect ratio elliptical cylinder. The scatter function of this 2D fracture are expressed in terms of the incident angle, the orientation and aspect ratio of the fracture as well as the elastic impedance contrast between the surrounding medium and the inhomogeneity inside the fracture. Results from this analytical solution match well with those from a finite-difference approach. Solutions of this analytical model at two limiting cases (a circular cylinder with aspect ratio equal to one and a strip with aspect ratio equal to zero) are also compared to analytical solutions directly derived for the circular cylinder and strip by other studies.
Tomography from diffuse waves: Passive shear wave imaging using low frame rate scanners
NASA Astrophysics Data System (ADS)
Catheline, S.; Souchon, R.; Rupin, M.; Brum, J.; Dinh, A. H.; Chapelon, J.-Y.
2013-07-01
We present an approach to extract from the local measurement of a complex field a wavelength tomography. In contrast with noise correlation techniques developed in recent years in seismology or ultrasound, field measurement is under-sampled which opens applications to slow imaging devices. Through simulations and experiments, it is demonstrated that the loss of time and/or spatial coherence of the field measurement is not an obstacle for tomography reconstruction. We present an application in shear wave imaging: a conventional ultrasonic scanner working at 25 Hz is tested in a medical phantom and in the thyroid of a healthy volunteer.
Impact of bounded noise on the formation and instability of spiral wave in a 2D Lattice of neurons
Yao, Yuangen; Deng, Haiyou; Yi, Ming; Ma, Jun
2017-01-01
Spiral waves in the neocortex may provide a spatial framework to organize cortical oscillations, thus help signal communication. However, noise influences spiral wave. Many previous theoretical studies about noise mainly focus on unbounded Gaussian noise, which contradicts that a real physical quantity is always bounded. Furthermore, non-Gaussian noise is also important for dynamical behaviors of excitable media. Nevertheless, there are no results concerning the effect of bounded noise on spiral wave till now. Based on Hodgkin-Huxley neuron model subjected to bounded noise with the form of Asin[ωt + σW(t)], the influences of bounded noise on the formation and instability of spiral wave in a two-dimensional (2D) square lattice of neurons are investigated in detail by separately adjusting the intensity σ, amplitude A, and frequency f of bounded noise. It is found that the increased intensity σ can facilitate the formation of spiral wave while the increased amplitude A tends to destroy spiral wave. Furthermore, frequency of bounded noise has the effect of facilitation or inhibition on pattern synchronization. Interestingly, for the appropriate intensity, amplitude and frequency can separately induce resonance-like phenomenon. PMID:28220877
Impact of bounded noise on the formation and instability of spiral wave in a 2D Lattice of neurons
NASA Astrophysics Data System (ADS)
Yao, Yuangen; Deng, Haiyou; Yi, Ming; Ma, Jun
2017-02-01
Spiral waves in the neocortex may provide a spatial framework to organize cortical oscillations, thus help signal communication. However, noise influences spiral wave. Many previous theoretical studies about noise mainly focus on unbounded Gaussian noise, which contradicts that a real physical quantity is always bounded. Furthermore, non-Gaussian noise is also important for dynamical behaviors of excitable media. Nevertheless, there are no results concerning the effect of bounded noise on spiral wave till now. Based on Hodgkin-Huxley neuron model subjected to bounded noise with the form of Asin[ωt + σW(t)], the influences of bounded noise on the formation and instability of spiral wave in a two-dimensional (2D) square lattice of neurons are investigated in detail by separately adjusting the intensity σ, amplitude A, and frequency f of bounded noise. It is found that the increased intensity σ can facilitate the formation of spiral wave while the increased amplitude A tends to destroy spiral wave. Furthermore, frequency of bounded noise has the effect of facilitation or inhibition on pattern synchronization. Interestingly, for the appropriate intensity, amplitude and frequency can separately induce resonance-like phenomenon.
NASA Astrophysics Data System (ADS)
Sherman, Christopher Scott
compressional wave energy may be generated within the shear radiation node of the source. Interestingly, in some cases this shear wave may arise as a coherent pulse, which may be used to improve seismic imaging efforts. In the third and fourth chapters, I discuss the results of a numerical analysis and field study of seismic near-surface tunnel detection methods. Detecting unknown tunnels and voids, such as old mine workings or solution cavities in karst terrain, is a challenging prob- lem in geophysics and has implications for geotechnical design, public safety, and domestic security. Over the years, a number of different geophysical methods have been developed to locate these objects (microgravity, resistivity, seismic diffraction, etc.), each with varying results. One of the major challenges facing these methods is understanding the influence of geologic heterogeneity on their results, which makes this problem a natural extension of the modeling work discussed in previous chapters. In the third chapter, I present the results of a numerical study of surface-wave based tunnel detection methods. The results of this analysis show that these methods are capable of detecting a void buried within one wavelength of the surface, with size potentially much less than one wavelength. In addition, seismic surface- wave based detection methods are effective in media with moderate heterogeneity (epsilon < 5 %), and in fact, this heterogeneity may serve to increase the resolution of these methods. In the fourth chapter, I discuss the results of a field study of tunnel detection methods at a site within the Black Diamond Mines Regional Preserve, near Antioch California. I use a com- bination of surface wave backscattering, 1D surface wave attenuation, and 2D attenuation tomography to locate and determine the condition of two tunnels at this site. These results compliment the numerical study in chapter 3 and highlight their usefulness for detecting tunnels at other sites.
NASA Astrophysics Data System (ADS)
Velioǧlu, Deniz; Cevdet Yalçıner, Ahmet; Zaytsev, Andrey
2016-04-01
Tsunamis are huge waves with long wave periods and wave lengths that can cause great devastation and loss of life when they strike a coast. The interest in experimental and numerical modeling of tsunami propagation and inundation increased considerably after the 2011 Great East Japan earthquake. In this study, two numerical codes, FLOW 3D and NAMI DANCE, that analyze tsunami propagation and inundation patterns are considered. Flow 3D simulates linear and nonlinear propagating surface waves as well as long waves by solving three-dimensional Navier-Stokes (3D-NS) equations. NAMI DANCE uses finite difference computational method to solve 2D depth-averaged linear and nonlinear forms of shallow water equations (NSWE) in long wave problems, specifically tsunamis. In order to validate these two codes and analyze the differences between 3D-NS and 2D depth-averaged NSWE equations, two benchmark problems are applied. One benchmark problem investigates the runup of long waves over a complex 3D beach. The experimental setup is a 1:400 scale model of Monai Valley located on the west coast of Okushiri Island, Japan. Other benchmark problem is discussed in 2015 National Tsunami Hazard Mitigation Program (NTHMP) Annual meeting in Portland, USA. It is a field dataset, recording the Japan 2011 tsunami in Hilo Harbor, Hawaii. The computed water surface elevation and velocity data are compared with the measured data. The comparisons showed that both codes are in fairly good agreement with each other and benchmark data. The differences between 3D-NS and 2D depth-averaged NSWE equations are highlighted. All results are presented with discussions and comparisons. Acknowledgements: Partial support by Japan-Turkey Joint Research Project by JICA on earthquakes and tsunamis in Marmara Region (JICA SATREPS - MarDiM Project), 603839 ASTARTE Project of EU, UDAP-C-12-14 project of AFAD Turkey, 108Y227, 113M556 and 213M534 projects of TUBITAK Turkey, RAPSODI (CONCERT_Dis-021) of CONCERT
Spatial correlation of shear-wave velocity in the San Francisco Bay Area sediments
Thompson, E.M.; Baise, L.G.; Kayen, R.E.
2007-01-01
Ground motions recorded within sedimentary basins are variable over short distances. One important cause of the variability is that local soil properties are variable at all scales. Regional hazard maps developed for predicting site effects are generally derived from maps of surficial geology; however, recent studies have shown that mapped geologic units do not correlate well with the average shear-wave velocity of the upper 30 m, Vs(30). We model the horizontal variability of near-surface soil shear-wave velocity in the San Francisco Bay Area to estimate values in unsampled locations in order to account for site effects in a continuous manner. Previous geostatistical studies of soil properties have shown horizontal correlations at the scale of meters to tens of meters while the vertical correlations are on the order of centimeters. In this paper we analyze shear-wave velocity data over regional distances and find that surface shear-wave velocity is correlated at horizontal distances up to 4 km based on data from seismic cone penetration tests and the spectral analysis of surface waves. We propose a method to map site effects by using geostatistical methods based on the shear-wave velocity correlation structure within a sedimentary basin. If used in conjunction with densely spaced shear-wave velocity profiles in regions of high seismic risk, geostatistical methods can produce reliable continuous maps of site effects. ?? 2006 Elsevier Ltd. All rights reserved.
Point shear wave elastography method for assessing liver stiffness
Ferraioli, Giovanna; Tinelli, Carmine; Lissandrin, Raffaella; Zicchetti, Mabel; Dal Bello, Barbara; Filice, Gaetano; Filice, Carlo
2014-01-01
AIM: To estimate the validity of the point shear-wave elastography method by evaluating its reproducibility and accuracy for assessing liver stiffness. METHODS: This was a single-center, cross-sectional study. Consecutive patients with chronic viral hepatitis scheduled for liver biopsy (LB) (Group 1) and healthy volunteers (Group 2) were studied. In each subject 10 consecutive point shear-wave elastography (PSWE) measurements were performed using the iU22 ultrasound system (Philips Medical Systems, Bothell, WA, United States). Patients in Group 1 underwent PSWE, transient elastography (TE) using FibroScan (Echosens, Paris, France) and ultrasound-assisted LB. For the assessment of PSWE reproducibility two expert raters (rater 1 and rater 2) independently performed the examinations. The performance of PSWE was compared to that of TE using LB as a reference standard. Fibrosis was staged according to the METAVIR scoring system. Receiver operating characteristic curve analyses were performed to calculate the area under the receiver operating characteristic curve (AUC) for F ≥ 2, F ≥ 3 and F = 4. The intraobserver and interobserver reproducibility of PSWE were assessed by calculating Lin’s concordance correlation coefficient. RESULTS: To assess the performance of PSWE, 134 consecutive patients in Group 1 were studied. The median values of PSWE and TE (in kilopascals) were 4.7 (IQR = 3.8-5.4) and 5.5 (IQR = 4.7-6.5), respectively, in patients at the F0-F1 stage and 3.5 (IQR = 3.2-4.0) and 4.4 (IQR = 3.5-4.9), respectively, in the healthy volunteers in Group 2 (P < 10-5). In the univariate analysis, the PSWE and TE values showed a high correlation with the fibrosis stage; low correlations with the degree of necroinflammation, aspartate aminotransferase and gamma-glutamyl transferase (GGT); and a moderate negative correlation with the platelet count. A multiple regression analysis confirmed the correlations of both PSWE and TE with fibrosis stage and GGT but not with
Combining 2D synchrosqueezed wave packet transform with optimization for crystal image analysis
NASA Astrophysics Data System (ADS)
Lu, Jianfeng; Wirth, Benedikt; Yang, Haizhao
2016-04-01
We develop a variational optimization method for crystal analysis in atomic resolution images, which uses information from a 2D synchrosqueezed transform (SST) as input. The synchrosqueezed transform is applied to extract initial information from atomic crystal images: crystal defects, rotations and the gradient of elastic deformation. The deformation gradient estimate is then improved outside the identified defect region via a variational approach, to obtain more robust results agreeing better with the physical constraints. The variational model is optimized by a nonlinear projected conjugate gradient method. Both examples of images from computer simulations and imaging experiments are analyzed, with results demonstrating the effectiveness of the proposed method.
3-Dimensional shear wave elastography of breast lesions
Chen, Ya-ling; Chang, Cai; Zeng, Wei; Wang, Fen; Chen, Jia-jian; Qu, Ning
2016-01-01
Abstract Color patterns of 3-dimensional (3D) shear wave elastography (SWE) is a promising method in differentiating tumoral nodules recently. This study was to evaluate the diagnostic accuracy of color patterns of 3D SWE in breast lesions, with special emphasis on coronal planes. A total of 198 consecutive women with 198 breast lesions (125 malignant and 73 benign) were included, who underwent conventional ultrasound (US), 3D B-mode, and 3D SWE before surgical excision. SWE color patterns of Views A (transverse), T (sagittal), and C (coronal) were determined. Sensitivity, specificity, and the area under the receiver operating characteristic curve (AUC) were calculated. Distribution of SWE color patterns was significantly different between malignant and benign lesions (P = 0.001). In malignant lesions, “Stiff Rim” was significantly more frequent in View C (crater sign, 60.8%) than in View A (51.2%, P = 0.013) and View T (54.1%, P = 0.035). AUC for combination of “Crater Sign” and conventional US was significantly higher than View A (0.929 vs 0.902, P = 0.004) and View T (0.929 vs 0.907, P = 0.009), and specificity significantly increased (90.4% vs 78.1%, P = 0.013) without significant change in sensitivity (85.6% vs 88.0%, P = 0.664) as compared with conventional US. In conclusion, combination of conventional US with 3D SWE color patterns significantly increased diagnostic accuracy, with “Crater Sign” in coronal plane of the highest value. PMID:27684820
The origin of shear wave splitting beneath Iceland
NASA Astrophysics Data System (ADS)
Ito, Garrett; Dunn, Robert; Li, Aibing
2015-06-01
The origin of shear wave splitting (SWS) in the mantle beneath Iceland is examined using numerical models that simulate 3-D mantle flow and the development of seismic anisotropy due to lattice-preferred orientation (LPO). Using the simulated anisotropy structure, we compute synthetic SKS waveforms, invert them for fast polarization directions and split times, and then compare the predictions with the results from three observational studies of Iceland. Models that simulate a mantle plume interacting with the Mid-Atlantic Ridge in which the shallow-most mantle has a high viscosity due to the extraction of water with partial melting, or in which C-type olivine LPO fabric is present due to high water content in the plume, produce the largest chi-squared misfits to the SWS observations and are thus rejected. Models of a low-viscosity mantle plume with A-type olivine fabric everywhere, or with the added effects of E-type fabric in the plume below the solidus produce lower misfits. The lowest misfits are produced by models that include a rapid (˜50 km Myr-1) northward regional flow (NRF) in the mid-upper mantle, either with or without a plume. NRF was previously indicated by a receiver function study and a regional tomography study, and is shown here to be a major cause of the azimuthal anisotropy beneath Iceland. The smallest misfits for the models with both a plume and NRF are produced when LPO forms above depths of 300-400 km, which, by implication, also mark the depths above which dislocation creep dominates over diffusion creep. This depth of transition between dislocation and diffusion creep is greater than expected beneath normal oceanic seafloor, and is attributed to the unusually rapid strain rates associated with an Iceland plume and the NRF.
The Origin of Shear Wave Splitting Beneath Iceland
NASA Astrophysics Data System (ADS)
Ito, Garrett; Dunn, Robert; Li, Aibing
2016-04-01
The origin of shear wave splitting (SWS) in the mantle beneath Iceland is examined using numerical models that simulate three-dimensional mantle flow and the development of seismic anisotropy due to lattice-preferred orientation (LPO). Using the simulated anisotropy structure, we compute synthetic SKS waveforms, invert them for fast polarization directions and split times, and then compare the predictions with the results from three observational studies of Iceland. Models that simulate a mantle plume interacting with the Mid-Atlantic Ridge in which the shallow-most mantle has a high viscosity due to the extraction of water with partial melting, or in which C-type olivine LPO fabric is present due to high water content in the plume, produce the largest chi-squared misfits to the SWS observations and are thus rejected. Models of a low-viscosity mantle plume with A-type olivine fabric everywhere, or with the added effects of E-type fabric in the plume below the solidus produce lower misfits. The lowest misfits are produced by models that include a rapid (~50 km/Myr) northward regional flow (NRF) in the mid-upper mantle, either with or without a plume. NRF was previously indicated by a receiver function study and a regional tomography study, and is shown here to be a major cause of the azimuthal anisotropy beneath Iceland. The smallest misfits for the models with both a plume and NRF are produced when LPO forms above a depth of 300-400 km, which, by implication, also marks the depth range in which dislocation creep dominates over diffusion creep. This depth of transition between dislocation and diffusion creep is greater than expected beneath normal oceanic seafloor, and is attributed to the unusually rapid strain-rates associated with an Iceland plume and the NRF.
The effect of subducting slabs in global shear wave tomography
NASA Astrophysics Data System (ADS)
Lu, Chang; Grand, Stephen P.
2016-05-01
Subducting slabs create strong short wavelength seismic anomalies in the upper mantle where much of Earth's seismicity is located. As such, they have the potential to bias longer wavelength seismic tomography models. To evaluate the effect of subducting slabs in global tomography, we performed a series of inversions using a global synthetic shear wave traveltime data set for a theoretical slab model based on predicted thermal anomalies within slabs. The spectral element method was applied to predict the traveltime anomalies produced by the 3-D slab model for paths corresponding to our current data used in actual tomography models. Inversion tests have been conducted first using the raw traveltime anomalies to check how well the slabs can be imaged in global tomography without the effect of earthquake mislocation. Our results indicate that most of the slabs can be identified in the inversion result but with smoothed and reduced amplitude. The recovery of the total mass anomaly in slab regions is about 88 per cent. We then performed another inversion test to investigate the effect of mislocation caused by subducting slabs. We found that source mislocation largely removes slab signal and significantly degrades the imaging of subducting slabs-potentially reducing the recovery of mass anomalies in slab regions to only 41 per cent. We tested two source relocation procedures-an iterative relocation inversion and joint relocation inversion. Both methods partially recover the true source locations and improve the inversion results, but the joint inversion method worked significantly better than the iterative method. In all of our inversion tests, the amplitudes of artefact structures in the lower mantle caused by the incorrect imaging of slabs (up to ˜0.5 per cent S velocity anomalies) are comparable to some large-scale lower-mantle heterogeneities seen in global tomography studies. Based on our inversion tests, we suggest including a-priori subducting slabs in the
Monitoring polymer properties using shear horizontal surface acoustic waves.
Gallimore, Dana Y; Millard, Paul J; Pereira da Cunha, Mauricio
2009-10-01
Real-time, nondestructive methods for monitoring polymer film properties are increasingly important in the development and fabrication of modern polymer-containing products. Online testing of industrial polymer films during preparation and conditioning is required to minimize material and energy consumption, improve the product quality, increase the production rate, and reduce the number of product rejects. It is well-known that shear horizontal surface acoustic wave (SH-SAW) propagation is sensitive to mass changes as well as to the mechanical properties of attached materials. In this work, the SH-SAW was used to monitor polymer property changes primarily dictated by variations in the viscoelasticity. The viscoelastic properties of a negative photoresist film were monitored throughout the ultraviolet (UV) light-induced polymer cross-linking process using SH-SAW delay line devices. Changes in the polymer film mass and viscoelasticity caused by UV exposure produced variations in the phase velocity and attenuation of the SH-SAW propagating in the structure. Based on measured polymer-coated delay line scattering transmission responses (S(21)) and the measured polymer layer thickness and density, the viscoelastic constants c(44) and eta(44) were extracted. The polymer thickness was found to decrease 0.6% during UV curing, while variations in the polymer density were determined to be insignificant. Changes of 6% in c(44) and 22% in eta(44) during the cross-linking process were observed, showing the sensitivity of the SH-SAW phase velocity and attenuation to changes in the polymer film viscoelasticity. These results indicate the potential for SH-SAW devices as online monitoring sensors for polymer film processing.
Experimental and computational studies on complex spiral waves in 2-D cardiac substrates
NASA Astrophysics Data System (ADS)
Bursac, Nenad
2005-03-01
A variety of chemical and biological nonlinear excitable media including heart tissue can support stable, self-organized waves of activity in a form of rotating single-arm spirals. In the heart tissue, stable single-arm spirals can underlie highly periodic activity such as monomorphic ventricular tachycardia (VT), while unstable spirals that continuously form and break up are shown to underlie aperiodic and lethal heart activity, namely fibrillation. Although fast pacing from a point in the heart is commonly used to terminate VT, it can occasionally yield a transient or stable acceleration of tachicardia rate and/or fibrillation. In this study we tested the effect of rapid point pacing on sustained spiral waves in the uniformly anisotropic cultures of cardiac myocytes. In 15/79 cultures, rapid pacing induced a stable formation of multiple bound spiral waves (a complex spiral) and acceleration of overall excitation rate in the tissue, as assessed by pseudo ECG (pECG). The level of rate acceleration correlated with the number of rotating waves. Further rapid point pacing decelerated, terminated, or further accelerated the complex spiral activity via a change in the number of coexisting rotating waves. The dynamic restitution analysis revealed no alternans in action potential duration in any of the cultures. Stable formation of complex spirals was accomplished only in the cultures that showed relatively broad and steep impulse wavelength and conduction velocity restitutions. A necessary condition for rate acceleration in a medium with monotonic restitution is that the rate of rotation of a single spiral wave is significantly lower than maximum sustainable rate of excitation in the medium. Preliminary data in a homogeneous medium using 3-variable Fenton-Karma (FK) based model of cardiac tissue suggest that decrease of fast inward current (excitability) can shift the spiral rate away from the break point on the restitution curve, enabling a necessary condition for rate
Stochastic analysis of shear-wave splitting length scales
NASA Astrophysics Data System (ADS)
Becker, Thorsten W.; Browaeys, Jules T.; Jordan, Thomas H.
2007-07-01
The coherence of azimuthal seismic anisotropy, as inferred from shear-wave splitting measurements, decreases with the relative distance between stations. Stochastic models of a two-dimensional vector field defined by a von Karma'n [T. von Karma'n, Progress in the statistical theory of turbulence, J. Mar. Res., 7 (1948) 252-264.] autocorrelation function with horizontal correlation length L provide a useful means to evaluate this heterogeneity and coherence lengths. We use the compilation of SKS splitting measurements by Fouch [M. Fouch, Upper mantle anisotropy database, accessed in 06/2006, http://geophysics.asu.edu/anisotropy/upper/] and supplement it with additional studies, including automated measurements by Evans et al. [Evans, M.S., Kendall, J.-M., Willemann, R.J., 2006. Automated SKS splitting and upper-mantle anisotropy beneath Canadian seismic stations, Geophys. J. Int. 165, 931-942, Evans, M.S., Kendall, J.-M., Willemann, R.J. Automated splitting project database, Online at http://www.isc.ac.uk/SKS/, accessed 02/2006]. The correlation lengths of this dataset depend on the geologic setting in the continental regions: in young Phanerozoic orogens and magmatic zones L ˜ 600 km, smaller than the smooth L ˜ 1600 km patterns in tectonically more stable regions such as Phanerozoic platforms. Our interpretation is that the relatively large coherence underneath older crust reflects large-scale tectonic processes (e.g. continent-continent collisions) that are frozen into the tectosphere. In younger continental regions, smaller scale flow (e.g. slab anomaly induced) may predominantly affect anisotropy. In this view, remnant anisotropy is dominant in the old continents and deformation-induced anisotropy caused by recent asthenospheric flow is dominant in active continental regions and underneath oceanic plates. Auxiliary analysis of surface-wave anisotropy and combined mantle flow and anisotropic texture modeling is consistent with this suggestion. In continental
NASA Astrophysics Data System (ADS)
Garth, T.; Rietbrock, A.
2011-12-01
Dispersion of body wave arrivals observed in the fore-arc have been attributed to high frequency guided waves being retained and delayed by a low velocity layer (LVL) in the subducted crust. Lower frequency seismic waves travel at higher velocities in the surrounding mantle. These subduction zone guided waves have the potential to offer unique insights into subducting oceanic crust. Two and three dimensional finite difference (FD) wave propagation models are used to investigate the factors controlling guided wave dispersion and to test which features of the subducted crust can be resolved by guided waves. Other factors that may affect the frequency content of arrivals in the fore-arc such as elevated attenuation are also investigated. Modeling results are compared to observed guided wave dispersion in the Japan, Aleutian and Central American subduction zones. Modeling has shown that trade-offs occur between the velocity contrast and the thickness of the waveguide, with both parameters potentially affecting the frequency content that is delayed. We combine amplitude spectra plots with displacement spectrograms so that the relative amplitudes and relative arrival times of different frequencies can be compared. This allows the specific effects of given parameters to be understood. The effect of elevated attenuation on the frequency content of arrivals in the fore-arc is investigated using a visco-elastic FD wave propagation model (Bohlen 2002). The sensitivity of observed dispersion to variations in the Vp/Vs ratio of the waveguide material is also investigated. Understanding the relative dispersion of P and S waves as well as the relative importance of attenuation in the subduction system may allow us to understand more about the hydrous conditions in subduction zones. Systematic variations in the contrast between the LVL and the surrounding material are investigated. Modeling is designed to test if guided wave dispersion can resolve down dip velocity changes in the
Improvement of Shear Wave Motion Detection Using Harmonic Imaging in Healthy Human Liver.
Amador, Carolina; Song, Pengfei; Meixner, Duane D; Chen, Shigao; Urban, Matthew W
2016-05-01
Quantification of liver elasticity is a major application of shear wave elasticity imaging (SWEI) to non-invasive assessment of liver fibrosis stages. SWEI measurements can be highly affected by ultrasound image quality. Ultrasound harmonic imaging has exhibited a significant improvement in ultrasound image quality as well as for SWEI measurements. This was previously illustrated in cardiac SWEI. The purpose of this study was to evaluate liver shear wave particle displacement detection and shear wave velocity (SWV) measurements with fundamental and filter-based harmonic ultrasound imaging. In a cohort of 17 patients with no history of liver disease, a 2.9-fold increase in maximum shear wave displacement, a 0.11 m/s decrease in the overall interquartile range and median SWV and a 17.6% increase in the success rate of SWV measurements were obtained when filter-based harmonic imaging was used instead of fundamental imaging.
NASA Astrophysics Data System (ADS)
Tabaru, Marie; Azuma, Takashi; Hashiba, Kunio
2010-07-01
Acoustic radiation force (ARF) imaging has been developed as a novel elastography technology to diagnose hepatic disease and breast cancer. The accuracy of shear wave speed estimation, which is one of the applications of ARF elastography, is studied. The Young's moduli of pig liver and foie gras samples estimated from the shear wave speed were compared with those measured the static Young's modulus measurement. The difference in the two methods was 8%. Distance attenuation characteristics of the shear wave were also studied using finite element method (FEM) analysis. We found that the differences in the axial and lateral beam widths in pressure and ARF are 16 and 9% at F-number=0.9. We studied the relationship between two branch points in distance attenuation characteristics and the shape of ARF. We found that the maximum measurable length to estimate shear wave speed for one ARF excitation was 8 mm.
NASA Astrophysics Data System (ADS)
Marie Tabaru,; Takashi Azuma,; Kunio Hashiba,
2010-07-01
Acoustic radiation force (ARF) imaging has been developed as a novel elastography technology to diagnose hepatic disease and breast cancer. The accuracy of shear wave speed estimation, which is one of the applications of ARF elastography, is studied. The Young’s moduli of pig liver and foie gras samples estimated from the shear wave speed were compared with those measured the static Young’s modulus measurement. The difference in the two methods was 8%. Distance attenuation characteristics of the shear wave were also studied using finite element method (FEM) analysis. We found that the differences in the axial and lateral beam widths in pressure and ARF are 16 and 9% at F-number=0.9. We studied the relationship between two branch points in distance attenuation characteristics and the shape of ARF. We found that the maximum measurable length to estimate shear wave speed for one ARF excitation was 8 mm.
What do we know about shear wave dispersion in normal and steatotic livers?
Parker, Kevin J; Partin, Alexander; Rubens, Deborah J
2015-05-01
A number of new approaches to measure the viscoelastic properties of the liver are now available to clinicians, many involving shear waves. However, we are at an early stage in understanding the physical processes that govern shear wave propagation in normal liver, with more unknowns added when pathologies such as steatosis are present. This technical note focuses on what is known about the characterization of normal and steatotic (or fatty) livers, with a particular focus on dispersion. Some studies in phantoms and mouse livers support the hypothesis that, starting with a normal liver, increasing accumulations of micro- and macrosteatosis will increase the lossy viscoelastic properties of shear waves in a medium. This results in an increased dispersion (or slope) of shear wave speed and attenuation in the steatotic livers. Theoretical and empirical findings across a number of studies are summarized.
Regional Coda 2-D P and S-wave Calibration, Support, and Coda Tool Development
Mayeda, Kevin
2016-09-30
The following describes work completed between April 2014 through February 2016. As in past years, Dr. Mayeda is a point of contact for LLNL’s colleagues in Florida and provides calibration, troubleshooting support, integration of new coda-related products, and processing for events and regions of interest. He has been responsible for integrating new coda-related products from ongoing BAA projects with his LLNL counterparts. Over the past two years Dr. Mayeda visited with Florida scientists to spot check and validate 1-D coda calibrations for the YSKP, BARM, and Zagros regions. In addition, a new region of interest was identified and will be the subject of ongoing research into the next fiscal year. Dr. Mayeda is consulting with LLNL scientists on how best to transition and test 2-D coda calibrations for the broader Middle East region using GT source spectra as constraints. This region is laterally very complicated and initial coda studies show that variance reduction could be significant if 2-D path and envelope shape are incorporated.
Modal method for the 2D wave propagation in heterogeneous anisotropic media.
Maurel, Agnès; Mercier, Jean-François; Félix, Simon
2015-05-01
A multimodal method based on a generalization of the admittance matrix is used to analyze wave propagation in heterogeneous two-dimensional anisotropic media. The heterogeneity of the medium can be due to the presence of anisotropic inclusions with arbitrary shapes, to a succession of anisotropic media with complex interfaces between them, or both. Using a modal expansion of the wave field, the problem is reduced to a system of two sets of first-order differential equations for the modal components of the field, similar to the system obtained in the rigorous coupled wave analysis. The system is solved numerically, using the admittance matrix, which leads to a stable numerical method, the basic properties of which are discussed. The convergence of the method is discussed, considering arrays of anisotropic inclusions with complex shapes, which tend to show that Li's rules are not concerned within our approach. The method is validated by comparison with a subwavelength layered structure presenting an effective anisotropy at the wave scale.
2014-06-30
AFRL-RV-PS- AFRL-RV-PS- TR-2014-0167 TR-2014-0167 EVALUATING MACRO AND MICROSCOPIC ROCK DAMAGE FROM EXPLOSIONS AND THE EFFECTS ON SHEAR WAVE...Macro and Microscopic Rock Damage from Explosions and the Effects on Shear Wave Generation 5a. CONTRACT NUMBER FA9453-10-C-0257 5b. GRANT NUMBER...the rock was highly pulverized and granulated. Outward and above the emplacement level, the granite was characterized by high angle fractures
Sketches of a hammer-impact, spiked-base, shear-wave source
Hasbrouck, W.P.
1983-01-01
Generation of shear waves in shallow seismic investigations (those to depths usually less than 100 m) can be accomplished by horizontally striking with a hammer either the end of a wood plank or metal structure embedded at the ground surface. The dimensioned sketches of this report are of a steel, hammer-impact, spiked-base, shear-wave source. It has been used on outcrops and in a desert environment and for conducting experiments on the effect of rotating source direction.
Shallow Water Sediment Properties Derived from High-Frequency Shear and Interface Waves
1992-04-10
FREQUENCY SHEAR ONR N00014-88-C-1238 AND INTERFACE WAVES 6. AUTHOR(S) JOHN EWING, JERRY A. CARTER, GEORGE H. SUTTON AND NOEL BARSTOW 7. PERFORMING...B4. PAGES 4739--4762. APRIL 10. 1992 Shallow Water Sediment Properties Derived From High-Frequency Shear and Interface Waves JOHN EWING Woods Hole...calculating thickness. The amplitude falloff with range establishes a Q velocity gradients and penetration depths [ Nettleton . 19401 estimate of 40 in
Measurement of shear-wave velocity by ultrasound critical-angle reflectometry (UCR)
NASA Technical Reports Server (NTRS)
Mehta, S.; Antich, P.; Blomqvist, C. G. (Principal Investigator)
1997-01-01
There exists a growing body of research that relates the measurement of pressure-wave velocity in bone to different physiological conditions and treatment modalities. The shear-wave velocity has been less studied, although it is necessary for a more complete understanding of the mechanical properties of bone. Ultrasound critical-angle reflectometry (UCR) is a noninvasive and nondestructive technique previously used to measure pressure-wave velocities both in vitro and in vivo. This note describes its application to the measurement of shear-wave velocity in bone, whether directly accessible or covered by soft tissue.
Micropolar dissipative models for the analysis of 2D dispersive waves in periodic lattices
NASA Astrophysics Data System (ADS)
Reda, H.; Ganghoffer, J. F.; Lakiss, H.
2017-03-01
The computation of the dispersion relations for dissipative periodic lattices having the attributes of metamaterials is an actual research topic raising the interest of researchers in the field of acoustics and wave propagation phenomena. We analyze in this contribution the impact of wave damping on the dispersion features of periodic lattices, which are modeled as beam-lattices. The band diagram structure and damping ratio are computed for different repetitive lattices, based on the homogenized continuum response of the initially discrete lattice architecture, modeled as Kelvin-Voigt viscoelastic beams. Three of these lattices (reentrant hexagonal, chiral diamond, hexachiral lattice) are auxetic metamaterials, since they show negative Poisson's ratio. The effective viscoelastic anisotropic continuum behavior of the lattices is first computed in terms of the homogenized stiffness and viscosity matrices, based on the discrete homogenization technique. The dynamical equations of motion are obtained for an equivalent homogenized micropolar continuum evaluated based on the homogenized properties, and the dispersion relation and damping ratio are obtained by inserting an harmonic plane waves Ansatz into these equations. The comparison of the acoustic properties obtained in the low frequency range for the four considered lattices shows that auxetic lattices attenuate waves at lower frequencies compared to the classical hexagonal lattice. The diamond chiral lattice shows the best attenuation properties of harmonic waves over the entire Brillouin zone, and the hexachiral lattice presents better acoustic properties than the reentrant hexagonal lattice. The range of validity of the effective continuum obtained by the discrete homogenization has been assessed by comparing the frequency band structure of this continuum with that obtained by a Floquet-Bloch analysis.
Simulations of P-SV wave scattering due to cracks by the 2-D finite difference method
NASA Astrophysics Data System (ADS)
Suzuki, Yuji; Shiina, Takahiro; Kawahara, Jun; Okamoto, Taro; Miyashita, Kaoru
2013-12-01
We simulate P-SV wave scattering by 2-D parallel cracks using the finite difference method (FDM). Here, special emphasis is put on simplicity; we apply a standard FDM (second-order velocity-stress scheme with a staggered grid) to media including traction-free, infinitesimally thin cracks, which are expressed in a simple manner. As an accuracy test of the present method, we calculate the displacement discontinuity along an isolated crack caused by harmonic waves using the method, which is compared with the corresponding results based on a reliable boundary integral equation method. The test resultantly indicates that the present method yields sufficient accuracy. As an application of this method, we also simulate wave propagation in media with randomly distributed cracks. We experimentally determine the attenuation and velocity dispersion induced by scattering from the synthetic seismograms, using a waveform averaging technique. It is shown that the results are well explained by a theory based on the Foldy approximation, if the crack density is sufficiently low. The theory appears valid with a crack density up to at least 0.1 for SV wave incidence, whereas the validity limit appears lower for P wave incidence.
NASA Astrophysics Data System (ADS)
Kozlov, Evgeny
2011-06-01
Presented are new results on the kinetics of stress relaxation on the elastic and phase precursors in hardened 30KhGSA steel (HRC 35...40), as well as results how parameters of the main plastic wave and spall signals change throughout wedge samples and semispherical shells. Comparative study of specificities in the fracture of wedge samples and semispherical shells of 12Kh18N10T and 30KhGSA steels (HRC 35...40) was made using optical lever method, multi-channel laser interferometry, mild recovery and calorimetric measurement of converged shells, their multi-angleshot gamma-tomography; the high-rate and heavily deformed material was investigated using optical, scanning, and transmission electron microscopy. Mechanisms of the high-rate developed deformation including issues on localization of deformation and nocrystallographic flow of crystals are briefly discussed. I'd like to express gratitude and appreciation to my co-workers V.I. Tarzhanov, I.V. Telichko, D.G. Pankratov, S.A. Brichikov, D.S. Boyarnikov, L.P. Brezgina, V.N. Povyshev and collaborators A.V. Dobromyslov, N.I. Taluts for their contribution to experimental research.
Three-dimensional shear wave velocity structure in the Atlantic upper mantle
NASA Astrophysics Data System (ADS)
James, Esther Kezia Candace
Oceanic lithosphere constitutes the upper boundary layer of the Earth's convecting mantle. Its structure and evolution provide a vital window on the dynamics of the mantle and important clues to how the motions of Earth's surface plates are coupled to convection in the mantle below. The three-dimensional shear-velocity structure of the upper mantle beneath the Atlantic Ocean is investigated to gain insight into processes that drive formation of oceanic lithosphere. Travel times are measured for approximately 10,000 fundamental-mode Rayleigh waves, in the period range 30-130 seconds, traversing the Atlantic basin. Paths with >30% of their length through continental upper mantle are excluded to maximize sensitivity to the oceanic upper mantle. The lateral distribution of Rayleigh wave phase velocity in the Atlantic upper mantle is explored with two approaches. One, phase velocity is allowed to vary only as a function of seafloor age. Two, a general two-dimensional parameterization is utilized in order to capture perturbations to age-dependent structure. Phase velocity shows a strong dependence on seafloor age, and removing age-dependent velocity from the 2-D maps highlights areas of anomalously low velocity, almost all of which are proximal to locations of hotspot volcanism. Depth-dependent variations in vertically-polarized shear velocity (Vsv) are determined with two sets of 3-D models: a layered model that requires constant VSV in each depth layer, and a splined model that allows VSV to vary continuously with depth. At shallow depths (˜75 km) the seismic structure shows the expected dependence on seafloor age. At greater depths (˜200 km) high-velocity lithosphere is found only beneath the oldest seafloor; velocity variations beneath younger seafloor may result from temperature or compositional variations within the asthenosphere. The age-dependent phase velocities are used to constrain temperature in the mantle and show that, in contrast to previous results for
A new method to test shear wave splitting: Improving statistical assessment of splitting parameters
NASA Astrophysics Data System (ADS)
Corbalan Castejon, Ana
Shear wave splitting has proved to be a very useful technique to probe for seismic anisotropy in the earth's interior, and measurements of seismic anisotropy are perhaps the best way to constrain the strain history of the lithosphere and asthenosphere. However, existent methods of shear wave splitting analysis do not estimate uncertainty correctly, and do not allow for careful statistical modeling of anisotropy and uncertainty in complex scenarios. Consequently, the interpretation of shear wave splitting measurements has an undesirable subjective component. This study illustrates a new method to characterize shear wave splitting and the associated uncertainty based on the cross-convolution method [Menke and Levin, 2003]. This new method has been tested on synthetic data and benchmarked with data from the Pasadena, California seismic station (PAS). Synthetic tests show that the method can successfully obtain the splitting parameters from observed split shear waves. PAS results are very reasonable and consistent with previous studies [Liu et al., 1995; Ozalaybey and Savage, 1995; Polet and Kanamori, 2002]. As presented, the Menke and Levin [2003] method does not explicitly model the errors. Our method works on noisy data without any particular need for processing, it fully accounts for correlation structures on the noise, and it models the errors with a proper bootstrapping approach. Hence, the method presented here casts the analysis of shear wave splitting into a more formal statistical context, allowing for formal hypothesis testing and more nuanced interpretation of seismic anisotropy results.
Shear-wave velocity of slope sediments near Hudson Canyon from analysis of ambient noise
NASA Astrophysics Data System (ADS)
Miller, N. C.; Ten Brink, U. S.; Collins, J. A.; McGuire, J. J.; Flores, C. H.
2014-12-01
We present new ambient noise data that help constrain the shear strength of marine sediments on the continental slope north of Hudson Canyon on the U.S. Atlantic margin. Sediment shear strength is a key parameter in models of potentially tsunamigenic, submarine slope failures, but shear strength is difficult to measure in situ and is expected to evolve in time with changes in pore pressure. The ambient noise data were recorded by 11 short-period, ocean-bottom seismometers and hydrophones deployed in a ~1 by 1.5 km array for ~6 months on the continental slope. These high frequency (~0.1 - 50 Hz), narrow-aperture data are expected to record noise propagating as interface waves and/or resonating in the upper ~500 m of sediment. Propagation of interface waves is controlled by the shear-wave velocity of the sediment, which we measure by calculating lag-times in cross-correlations of waveforms recorded by pairs of receivers. These measurements of shear-wave velocity will be used to constrain shear strength. The data also appear to record wind-generated noise resonating in layered sediment. We expect this resonance to also be sensitive to shear-wave velocity, and spectral analysis and modeling of harmonics may provide a second constraint on sediment shear strength. Both the correlogram- and spectral-based measurements can be made using hour- to day-long segments of data, enabling us to constrain temporal evolution of shear-wave velocity and potential forcing mechanisms (e.g., tidal and storm loading and submarine groundwater discharge) through the ~6 month deployment.
NASA Astrophysics Data System (ADS)
Yu, Ting; Chaix, Jean-François; Komatitsch, Dimitri; Garnier, Vincent; Audibert, Lorenzo; Henault, Jean-Marie
2017-02-01
Multiple scattering is important when ultrasounds propagate in a heterogeneous medium such as concrete, the scatterer size of which is in the order of the wavelength. The aim of this work is to build a 2D numerical model of ultrasonic wave propagation integrating the multiple scattering phenomena in SPECFEM software. The coherent field of multiple scattering could be obtained by averaging numerical wave fields, and it is used to determine the effective phase velocity and attenuation corresponding to an equivalent homogeneous medium. After the creation of numerical model under several assumptions, its validation is completed in a case of scattering by one cylinder through the comparison with analytical solution. Two cases of multiple scattering by a set of cylinders at different concentrations are simulated to perform a parametric study (of frequency, scatterer concentration, scatterer size). The effective properties are compared with the predictions of Waterman-Truell model as well, to verify its validity.
Apparatus for checking the direction of polarization of shear-wave ultrasonic transducers
Karplus, Henry H. B.
1980-01-01
An apparatus for checking the direction of polarization of shear-wave ultrasonic transducers comprises a first planar surface for mounting the shear-wave transducer, a second planar surface inclined at a predetermined angle to the first surface to generate longitudinal waves by mode conversion, and a third planar surface disposed at a second predetermined angle to the first for mounting a longitudinal-wave ultrasonic transducer. In an alternate embodiment, two second planar surfaces at the predetermined angle are placed at an angle to each other. The magnitude of the shear wave is a function of the angle between the direction of polarization of the transducer and the mode-conversion surface.
Apparatus for checking the direction of polarization of shear-wave ultrasonic transducers
Karplus, H.H.B.; Forster, G.A.
An apparatus for checking the direction of polarization of shear-wave ultrasonic transducers comprises a first planar surface for mounting the shear-wave transducer, a second planar surface inclined at a predetermined angle to the first surface to generate longitudinal waves by mode conversion, and a third planar surface disposed at a second predetermined angle to the first for mounting a longitudinal-wave ultransonic transducer. In an alternate embodiment, two second planar surfaces at the predetermined angle are placed at an angle to each other. The magnitude of the shear wave is a function of the angle between the direction of polarization of the transducer and the mode-conversion surface.
Nonlinear interactions of kink-unstable flux ropes and shear Alfvén waves
NASA Astrophysics Data System (ADS)
Vincena, S.; Gekelman, W.; Dehaas, T.; Tripathi, S. K. P.
2016-10-01
Magnetic flux ropes and shear Alfvén waves occur simultaneously in plasmas ranging from solar prominences, the solar wind, and the earth's magnetotail. If the flux ropes evolve to become unstable to the kink mode, interactions between the kink oscillations and the shear waves can arise, and may even lead to nonlinear phenomena. Experiments aimed at elucidating such interactions are performed in the upgraded Large Plasma Device at UCLA. Flux ropes are generated using a 20 cm × 20 cm LaB6 cathode discharge (with L=18 m and β 0.1 .) The ropes are embedded in a otherwise current-free, cylindrical (r = 30 cm) ambient plasma produced by a second, BaO cathode. Shear Alfvén waves are launched using either internal antennas, or by modulating the BaO cathode-anode discharge current. In the latter case, kink unstable oscillations and driven shear waves nonlinearly generate sidebands about the higher shear wave frequency (evident in power spectra) via three-wave coupling; this is demonstrated though bi-coherence calculations and k-matching. Informational complexity and entropy of the time series are also investigated. Future work will focus on antenna-launched waves to control amplitude and frequency, as well as a possible evolution to a turbulent state. Work performed at the Basic Plasma Science Facility which is funded by the DoE OFES and the NSF.
NASA Astrophysics Data System (ADS)
Trofimov, Vyacheslav A.; Egorenkov, Vladimir A.; Loginova, Mariya M.
2015-08-01
We analyze laser-induced periodic structure developing in a semiconductor under the condition of both optical bistability existence and action of 2D external electric field. Optical bistability occurs because of nonlinear dependence of semiconductor absorption coefficient on charged particles concentration. The electron mobility, diffusion of electrons and laser-induced electric field are taken into account for laser pulse propagation analyzing. 2D external electric field together with electric field, induced by free electrons and ionized donors, governs the charged particle motion. Under certain conditions, the additional positive inverse loop between electron motion and electric field, caused by redistribution of free charged particles, appears. As a result, the helical wave for free charged particle concentration of electron-hole plasma in semiconductor develops under the electric field action. For computer simulation of a problem under consideration, a new finite-difference scheme is proposed. The main feature of proposed method consists in constructed two-step iteration process. We pay a special attention for calculation of initial functions distributions. For their calculation we solve the set of 2D stationary partial differential equations by using additional iteration process that is similar to the iteration process, applied for the main problem solution.
Shear wave elastography in medullary thyroid carcinoma diagnostics
Gumińska, Anna; Bakuła-Zalewska, Elwira; Mlosek, Krzysztof; Słapa, Rafał Z.; Wareluk, Paweł; Krauze, Agnieszka; Ziemiecka, Agnieszka; Migda, Bartosz; Jakubowski, Wiesław; Dedecjus, Marek
2015-01-01
Shear wave elastography (SWE) is a modern method for the assessment of tissue stiffness. There has been a growing interest in the use of this technique for characterizing thyroid focal lesions, including preoperative diagnostics. Aim The aim of the study was to assess the clinical usefulness of SWE in medullary thyroid carcinoma (MTC) diagnostics. Materials and methods A total of 169 focal lesions were identified in the study group (139 patients), including 6 MTCs in 4 patients (mean age: 45 years). B-mode ultrasound and SWE were performed using Aixplorer (SuperSonic, Aix-en-Provence), with a 4–15 MHz linear probe. The ultrasound was performed to assess the echogenicity and echostructure of the lesions, their margin, the halo sign, the height/width ratio (H/W ratio), the presence of calcifications and the vascularization pattern. This was followed by an analysis of maximum and mean Young's (E) modulus values for MTC (EmaxLR, EmeanLR) and the surrounding thyroid tissues (EmaxSR, EmeanSR), as well as mean E-values (EmeanLRz) for 2 mm region of interest in the stiffest zone of the lesion. The lesions were subject to pathological and/or cytological evaluation. Results The B-mode assessment showed that all MTCs were hypoechogenic, with no halo sign, and they contained micro- and/ or macrocalcifications. Ill-defined lesion margin were found in 4 out of 6 cancers; 4 out of 6 cancers had a H/W ratio > 1. Heterogeneous echostructure and type III vascularity were found in 5 out of 6 lesions. In the SWE, the mean value of EmaxLR for all of the MTCs was 89.5 kPa and (the mean value of EmaxSR for all surrounding tissues was) 39.7 kPa Mean values of EmeanLR and EmeanSR were 34.7 kPa and 24.4 kPa, respectively. The mean value of EmeanLRz was 49.2 kPa. Conclusions SWE showed MTCs as stiffer lesions compared to the surrounding tissues. The lesions were qualified for fine needle aspiration biopsy based on B-mode assessment. However, the diagnostic algorithm for MTC is based on the
Global existence of solutions for semilinear damped wave equation in 2-D exterior domain
NASA Astrophysics Data System (ADS)
Ikehata, Ryo
We consider a mixed problem of a damped wave equation utt-Δ u+ ut=| u| p in the two dimensional exterior domain case. Small global in time solutions can be constructed in the case when the power p on the nonlinear term | u| p satisfies p ∗=2
Trapped Particles by Large-Amplitude Waves in 2D Yukawa Liquids
Hou Lujing; Piel, Alexander
2008-09-07
In an ordinary plasma, trapping of a particle of velocity {nu} occurs when its kinetic energy in the wave frame is smaller than the wave potential, i.e., when q{phi}{sub pp}>(1/2)m({nu}-{nu}{sub {phi}}){sup 2}. However, simulation with Brownian Dynamics method shows that the situation is quite different in a strongly-coupled complex plasma (SCCP), where trapping of a particle requires additional energy to overcome the potential barrier formed by all the other particles (the ''cage''), and the trapping condition then reads: q{phi}{sub pp}>(1/2)m({nu}-{nu}{sub {phi}}){sup 2}+{phi}{sub c}. It is found that, because of strong-coupling effect, the particle trapping has no direct connection with so-called ''resonant'' particles. Meanwhile, detrapping process becomes significant in SCCP, and all trapped particles have a finite trapping lifetime decaying exponentially with a rate related to its mean free path.
NASA Astrophysics Data System (ADS)
Dupont, S.; Gazalet, J.; Kastelik, J. C.
2014-03-01
Phononic crystal is a structured media with periodic modulation of its physical properties that influences the propagation of elastic waves and leads to a peculiar behaviour, for instance the phononic band gap effect by which elastic waves cannot propagate in certain frequency ranges. The formulation of the problem leads to a second order partial differential equation with periodic coefficients; different methods exist to determine the structure of the eigenmodes propagating in the material, both in the real or Fourier domain. Brillouin explains the periodicity of the band structure as a direct result of the discretization of the crystal in the real domain. Extending the Brillouin vision, we introduce digital signal processing tools developed in the frame of distribution functions theory. These tools associate physical meaning to mathematical expressions and reveal the correspondence between real and Fourier domains whatever is the physical domain under consideration. We present an illustrative practical example concerning two dimensions phononic crystals and highlight the appreciable shortcuts brought by the method and the benefits for physical interpretation.
Flexible 2D Crystals of Polycyclic Aromatics Stabilized by Static Distortion Waves
2016-01-01
The epitaxy of many organic films on inorganic substrates can be classified within the framework of rigid lattices which helps to understand the origin of energy gain driving the epitaxy of the films. Yet, there are adsorbate–substrate combinations with distinct mutual orientations for which this classification fails and epitaxy cannot be explained within a rigid lattice concept. It has been proposed that tiny shifts in atomic positions away from ideal lattice points, so-called static distortion waves (SDWs), are responsible for the observed orientational epitaxy in such cases. Using low-energy electron diffraction and scanning tunneling microscopy, we provide direct experimental evidence for SDWs in organic adsorbate films, namely hexa-peri-hexabenzocoronene on graphite. They manifest as wave-like sub-Ångström molecular displacements away from an ideal adsorbate lattice which is incommensurate with graphite. By means of a density-functional-theory based model, we show that, due to the flexibility in the adsorbate layer, molecule–substrate energy is gained by straining the intermolecular bonds and that the resulting total energy is minimal for the observed domain orientation, constituting the orientational epitaxy. While structural relaxation at an interface is a common assumption, the combination of the precise determination of the incommensurate epitaxial relation, the direct observation of SDWs in real space, and their identification as the sole source of epitaxial energy gain constitutes a comprehensive proof of this effect. PMID:27014920
Görner, Claudia; Wendler, Johann Jakob; Liehr, Uwe-Bernd; Lux, Anke; Siedentopf, Sandra; Schostak, Martin; Pech, Maciej
2016-01-01
Aim This study was designed to assess the possible usefulness of shear-wave elastography in differentiating between benign and malignant tissue in prostate neoplasia. Patients and methods A total of 120 prostate tissue samples were obtained from 10 patients treated by radical prostatectomy and investigated pre-operatively by ultrasound elastography followed by directed biopsy. After resection, whole-mount sectioning and histological examination was performed. The predictions based on shear-wave elastography were compared with biopsy and histological results. Results The comparison between the results of shear-wave elastography and those of biopsy was performed by receiver operating characteristic analysis, which suggested an optimum cut-off tissue elasticity value of 50 kPa, in agreement with earlier studies aimed at distinguishing between benign and malignant tissue. However, the diagnostic selectivity (and thus the diagnostic power) was poor (area under the curve 0.527, which hardly differs from the value of 0.500 that would correspond to a complete lack of predictive power); furthermore, application of this cut-off value to the samples led to a sensitivity of only 74% and a specificity of only 43%. An analogous comparison between the results of shear-wave elastography and those of whole-mount histology, which itself is more reliable than biopsy, gave an even poorer diagnostic selectivity (sensitivity of 62%, specificity of 35%). Meaningful association with Gleason score was not found for D’Amico risk groups (p = 0.35). Conclusions The (negative) findings of this investigation add to the dissonance among results of studies investigating the possible value of shear-wave elastography as a diagnostic tool to identify malignant neoplasia. There is a clear need for further research to elucidate the diversity of study results and to identify the usefulness, if any, of the method in question. PMID:28138406
NASA Astrophysics Data System (ADS)
Song, T.; Liu, L.; Kawakatsu, H.
2011-12-01
Oceanic asthenosphere is characterized as a low seismic velocity, low viscosity, and strongly anisotropic channel separating from the oceanic lithosphere through a sharp shear wave velocity contrast. It has been a great challenge to reconcile all these observations and ultimately illuminate the fate of oceanic asthenosphere near convergent plate margins. Sub-slab shear wave splitting patterns are particularly useful to address the fate of oceanic asthenosphere since they are directly linked to deformation induced by the mantle flow beneath the subducting slab. To address slab entrainment of oceanic asthenosphere through shear wave splitting, it is important to recognize that oceanic asthenosphere is characterized by azimuthal anisotropy (1-3%) as well as strong P wave and S wave radial anisotropy (3-7%) for horizontally travelling P wave (VPH > VPV) and S wave (VSH > VSV), making it effectively an orthorhombic medium. Here we show that entrained asthenosphere predicts sub-slab SKS splitting pattern, where the fast splitting direction changes from predominantly trench-normal under shallow subduction zones to predominantly trench-parallel under relatively steep subduction zones. This result can be recognized by the 90 degrees shift in the polarization of the fast wave at about 20 degrees incident angle, where VSH equals to VSV forming a classical point singularity (Crampin, 1991). The thickness of the entrained asthenosphere is estimated to be on the order of 100 km, which predicts SKS splitting time varying from 0.5 seconds to 2 seconds. After briefly discussing improvement of the millefeuille model (Kawakatsu et al. 2009) of the asthenosphere upon this new constraint and long wave Backus averaging of orthorhombic solid and melt, we will illustrate that, in the range of observed trench migration speed, dynamic models of 2-D mantle convection with temperature-dependent viscosity do support thick subducting slab entrainment of asthenosphere under ranges of
Modified ion-acoustic solitary waves in plasmas with field-aligned shear flows
Saleem, H.; Haque, Q.
2015-08-15
The nonlinear dynamics of ion-acoustic waves is investigated in a plasma having field-aligned shear flow. A Korteweg-deVries-type nonlinear equation for a modified ion-acoustic wave is obtained which admits a single pulse soliton solution. The theoretical result has been applied to solar wind plasma at 1 AU for illustration.
Rayleigh surface wave interaction with the 2D exciton Bose-Einstein condensate
Boev, M. V.; Kovalev, V. M.
2015-06-15
We describe the interaction of a Rayleigh surface acoustic wave (SAW) traveling on the semiconductor substrate with the excitonic gas in a double quantum well located on the substrate surface. We study the SAW attenuation and its velocity renormalization due to the coupling to excitons. Both the deformation potential and piezoelectric mechanisms of the SAW-exciton interaction are considered. We focus on the frequency and excitonic density dependences of the SAW absorption coefficient and velocity renormalization at temperatures both above and well below the critical temperature of Bose-Einstein condensation of the excitonic gas. We demonstrate that the SAW attenuation and velocity renormalization are strongly different below and above the critical temperature.
Stability of Solitary Waves and Vortices in a 2D Nonlinear Dirac Model.
Cuevas-Maraver, Jesús; Kevrekidis, Panayotis G; Saxena, Avadh; Comech, Andrew; Lan, Ruomeng
2016-05-27
We explore a prototypical two-dimensional massive model of the nonlinear Dirac type and examine its solitary wave and vortex solutions. In addition to identifying the stationary states, we provide a systematic spectral stability analysis, illustrating the potential of spinor solutions to be neutrally stable in a wide parametric interval of frequencies. Solutions of higher vorticity are generically unstable and split into lower charge vortices in a way that preserves the total vorticity. These conclusions are found not to be restricted to the case of cubic two-dimensional nonlinearities but are found to be extended to the case of quintic nonlinearity, as well as to that of three spatial dimensions. Our results also reveal nontrivial differences with respect to the better understood nonrelativistic analogue of the model, namely the nonlinear Schrödinger equation.
NASA Astrophysics Data System (ADS)
Vijay Prakash, S.; Sonti, Venkata R.
2016-02-01
Nonlinear acoustic wave propagation in an infinite rectangular waveguide is investigated. The upper boundary of this waveguide is a nonlinear elastic plate, whereas the lower boundary is rigid. The fluid is assumed to be inviscid with zero mean flow. The focus is restricted to non-planar modes having finite amplitudes. The approximate solution to the acoustic velocity potential of an amplitude modulated pulse is found using the method of multiple scales (MMS) involving both space and time. The calculations are presented up to the third order of the small parameter. It is found that at some frequencies the amplitude modulation is governed by the Nonlinear Schrödinger equation (NLSE). The first objective here is to study the nonlinear term in the NLSE. The sign of the nonlinear term in the NLSE plays a role in determining the stability of the amplitude modulation. Secondly, at other frequencies, the primary pulse interacts with its higher harmonics, as do two or more primary pulses with their resultant higher harmonics. This happens when the phase speeds of the waves match and the objective is to identify the frequencies of such interactions. For both the objectives, asymptotic coupled wavenumber expansions for the linear dispersion relation are required for an intermediate fluid loading. The novelty of this work lies in obtaining the asymptotic expansions and using them for predicting the sign change of the nonlinear term at various frequencies. It is found that when the coupled wavenumbers approach the uncoupled pressure-release wavenumbers, the amplitude modulation is stable. On the other hand, near the rigid-duct wavenumbers, the amplitude modulation is unstable. Also, as a further contribution, these wavenumber expansions are used to identify the frequencies of the higher harmonic interactions. And lastly, the solution for the amplitude modulation derived through the MMS is validated using these asymptotic expansions.
Shear wave polarization anisotropy in the upper mantle beneath Honshu, Japan
Ando, M.; Ishikawa, Y.; Yamazaki, F.
1983-07-10
Shear wave polarization anisotropy in the wedge portion of the upper mantle between a subducting plate and the earth's surface is investigated using three-component seismograms of intermediate depth and deep earthquakes recorded at 14 local stations in Honshu, Japan. Eighty nine high-quality seismograms were selected from a period of 3 years. The data used in this study are restricted such that incidence angles are smaller than the critical angle of 30/sup 0/ to the earth's surface in order to avoid phase shifts in the shear wave train. To find directions of the maximum and minimum velocities in split shear waves, where shear waves are resolved into two phases with the maximum time separation, each set of the two horizontal component seismograms is rotated in the horizontal plane. The split shear waves thus obtained are again recombined after the correction of anisotropy, and the anisotropy-corrected particle motion is compared with the focal mechanism for a cross-check of the observed anisotropy. Directions of the maximum axes are plotted on azimuth-incidence angle stereograms at each station. The stereograms and the cross sections of seismic ray paths show that (1) the anisotropic material is distributed at intermediate locations between earthquake sources and receiving stations, and (2) the anisotropic region is separated into two parts: one in the north of the present study area with the polarization of the maximum velocity shear wave trending 0/sup 0/ to 30/sup 0/ from the north (north anisotropy) and the other in the south with it trending 90/sup 0/ to 120/sup 0/ (south anisotropy). The maximum time delays between the two shear waves along a vertical seismic ray is about 1 s for both the anisotropic regions. The horizontal extent of the anisotropic area in the north is 50 km at depths of 50 to 150 km. perhaps prevalent in west Honshu.
Generation of shear Alfven waves by a rotating magnetic field source: Three-dimensional simulations
Karavaev, A. V.; Gumerov, N. A.; Papadopoulos, K.; Shao, Xi; Sharma, A. S.; Gekelman, W.; Wang, Y.; Van Compernolle, B.; Pribyl, P.; Vincena, S.
2011-03-15
The paper discusses the generation of polarized shear Alfven waves radiated from a rotating magnetic field source created via a phased orthogonal two-loop antenna. A semianalytical three-dimensional cold two-fluid magnetohydrodynamics model was developed and compared with recent experiments in the University of California, Los Angeles large plasma device. Comparison of the simulation results with the experimental measurements and the linear shear Alfven wave properties, namely, spatiotemporal wave structure, a dispersion relation with nonzero transverse wave number, the magnitude of the wave dependences on the wave frequency, show good agreement. From the simulations it was found that the energy of the Alfven wave generated by the rotating magnetic field source is distributed between the kinetic energy of ions and electrons and the electromagnetic energy of the wave as: {approx}1/2 is the energy of the electromagnetic field, {approx}1/2 is the kinetic energy of the ion fluid, and {approx}2.5% is the kinetic energy of electron fluid for the experiment. The wave magnetic field power calculated from the experimental data and using a fluid model differ by {approx}1% and is {approx}250 W for the experimental parameters. In both the experiment and the three-dimensional two-fluid magnetohydrodynamics simulations the rotating magnetic field source was found to be very efficient for generating shear Alfven waves.
Suppression of drift wave instability due to sheared field-aligned flow and negative ions
NASA Astrophysics Data System (ADS)
Ichiki, Ryuta; Hayashi, Kenichiro; Kaneko, Toshiro; Hatakeyama, Rikizo
2006-10-01
Sheared field-aligned plasma flow is a significant topic in space/circumterrestrial plasmas. Taking into account negative ions or dust grains will make the space plasma physics more general and accurate. Using the QT-Upgrade Machine, we have conducted laboratory experiments to examine negative ion effects on shear-modified drift waves. Field-aligned K^+ ion flow and its shear strength are controlled with a concentrically segmented W hot plate. Negative ions SF6^- are produced by introducing SF6 gas in the plasma. The drift wave shows a gradual monotonic decrease in amplitude as the shear strength is increased from zero. However, as the shear strength is decreased from zero to negative values, the amplitude increases up to a certain shear strength and rapidly decreases after the peaking. The negative ion introduction, in general, suppresses this instability while retaining the dependence of the amplitude on the shear. These wave characteristics are interpreted using the theories of current-driven (kinetic) and of D’Angelo (fluid) instabilities.
Hollender, Peter; Bradway, David; Wolf, Patrick; Goswami, Robi; Trahey, Gregg
2013-01-01
Four pigs, three with focal infarctions in the apical intraventricular septum (IVS) and/or left ventricular free wall (LVFW), were imaged with an intracardiac echocardiography (ICE) transducer. Custom beam sequences were used to excite the myocardium with focused acoustic radiation force (ARF) impulses and image the subsequent tissue response. Tissue displacement in response to the ARF excitation was calculated with a phase-based estimator, and transverse wave magnitude and velocity were each estimated at every depth. The excitation sequence was repeated rapidly, either in the same location to generate 40 Hz M-Modes at a single steering angle, or with a modulated steering angle to synthesize 2-D displacement magnitude and shear wave velocity images at 17 points in the cardiac cycle. Both types of images were acquired from various views in the right and left ventricles, in and out of infarcted regions. In all animals, ARFI and SWEI estimates indicated diastolic relaxation and systolic contraction in non-infarcted tissues. The M-Mode sequences showed high beat-to-beat spatio-temporal repeatability of the measurements for each imaging plane. In views of noninfarcted tissue in the diseased animals, no significant elastic remodeling was indicated when compared to the control. Where available, views of infarcted tissue were compared to similar views from the control animal. In views of the LVFW, the infarcted tissue presented as stiff and non-contractile compared to the control. In a view of the IVS, no significant difference was seen between infarcted and healthy tissue, while in another view, a heterogeneous infarction was seen presenting itself as non-contractile in systole. PMID:25004538
Enhanced Doppler reflectometry power response: physical optics and 2D full wave modelling
NASA Astrophysics Data System (ADS)
Pinzón, J. R.; Happel, T.; Blanco, E.; Conway, G. D.; Estrada, T.; Stroth, U.
2017-03-01
The power response of a Doppler reflectometer is investigated by means of the physical optics model; a simple model which considers basic scattering processes at the reflection layer. Apart from linear and saturated scattering regimes, non-linear regimes with an enhanced backscattered power are found. The different regimes are characterized and understood based on analytical calculations. The power response is also studied with two-dimensional full wave simulations, where the enhanced backscattered power regimes are also found in qualitative agreement with the physical optics results. The ordinary and extraordinary modes are compared for the same angle of incidence, with the conclusion that the ordinary mode is better suited for Doppler reflectometry turbulence level measurements due to the linearity of its response. The scattering efficiency is studied and a first approximation to describe it is proposed. At the end, the application of the physical optics results to experimental data analysis is discussed. In particular, a formula to assess the linearity of Doppler reflectometry measurements is provided.
Resonance analysis of a 2D alluvial valley subjected to seismic waves.
Chai, Juin-Fu; Teng, Tsung-Jen; Yeh, Chau-Shioung; Shyu, Wen-Shinn
2002-08-01
The T-matrix formalism and an ultrasonic experiment are developed to study the scattering of in-plane waves for an alluvial valley embedded in a two-dimensional half-space. The solution of the in-plane scattering problem can be determined by the T-matrix method, where the basis functions are defined by the singular solutions of Lamb's problems with surface loading in both horizontal and vertical directions. In the experiment, a thin steel plate with a semicircular aluminum plate attached on the edge is used to simulate the two-dimensional alluvial valley in the state of plane stress. Based on the spectra of displacement signals measured at the free edge of the scatterer, the resonance frequencies where the peaks appear can be identified. It can be shown that the nondimensional resonance frequency is one of the characteristic properties of the scattering system. Furthermore, it is noted that the nondimensional resonance frequencies measured experimentally are in good agreement with those calculated theoretically.
Hollender, Peter J.; Wolf, Patrick D.; Goswami, Robi; Trahey, Gregg E.
2012-01-01
Acoustic Radiation Force (ARF)-based methods have been demonstrated to be a viable tool for noninvasively estimating tissue elastic properties, and shear wave velocimetry has been used to quantitatively measure the stiffening and relaxation of myocardial tissue in open-chest experiments. Dynamic stiffness metrics may prove to be indicators for certain cardiac diseases, but a clinically-viable means of remotely generating and tracking transverse wave propagation in myocardium is needed. Intracardiac echocardiography (ICE) catheter-tip transducers are demonstrated here as a viable tool for making this measurement. ICE probes achieve favorable proximity to the myocardium, enabling the use of shear wave velocimetry from within the right ventricle throughout the cardiac cycle. This work describes the techniques used to overcome the challenges of using a small probe to perform ARF-driven shear wave velocimetry, and presents in vivo porcine data showing the effectiveness of this method in the interventricular septum. Acoustic Radiation Force (ARF)-based methods have been demonstrated to be a viable tool for noninvasively estimating tissue elastic properties, and shear wave velocimetry has been used to quantitatively measure the stiffening and relaxation of myocardial tissue in open-chest experiments. Dynamic stiffness metrics may prove to be indicators for certain cardiac diseases, but a clinically-viable means of remotely generating and tracking transverse wave propagation in myocardium is needed. Intracardiac echocardiography (ICE) catheter-tip transducers are demonstrated here as a viable tool for making this measurement. ICE probes achieve favorable proximity to the myocardium, enabling the use of shear wave velocimetry from within the right ventricle throughout the cardiac cycle. This work describes the techniques used to overcome the challenges of using a small probe to perform ARF-driven shear wave velocimetry, and presents in vivo porcine data showing the
Li, Peng; Cheng, Li
2017-02-07
The propagation of thickness shear waves in a periodically corrugated quartz crystal plate is investigated in the present paper using a power series expansion technique. In the proposed simulation model, an equivalent continuity of shear stress moment is introduced as an approximation to handle sectional interfaces with abrupt thickness changes. The Bloch theory is applied to simulate the band structures for three different thickness variation patterns. It is shown that the power series expansion method exhibits good convergence and accuracy, in agreement with results by finite element method (FEM). A broad stop band can be obtained in the power transmission spectra owing to the trapped thickness shear modes excited by the thickness variation, whose physical mechanism is totally different from the well-known Bragg scattering effect and is insensitive to the structural periodicity. Based on the observed energy trapping phenomenon, an acoustic wave filter is proposed in a quartz plate with sectional decreasing thickness, which inhibits wave propagation in different regions.
Ren, Baiyang; Cho, Hwanjeong; Lissenden, Cliff J
2017-03-01
Guided waves in plate-like structures have been widely investigated for structural health monitoring. Lamb waves and shear horizontal (SH) waves, two commonly used types of waves in plates, provide different benefits for the detection of various types of defects and material degradation. However, there are few sensors that can detect both Lamb and SH waves and also resolve their modal content, namely the wavenumber-frequency spectrum. A sensor that can detect both waves is desirable to take full advantage of both types of waves in order to improve sensitivity to different discontinuity geometries. We demonstrate that polyvinylidene difluoride (PVDF) film provides the basis for a multi-element array sensor that detects both Lamb and SH waves and also measures their modal content, i.e., the wavenumber-frequency spectrum.
Ren, Baiyang; Cho, Hwanjeong; Lissenden, Cliff J.
2017-01-01
Guided waves in plate-like structures have been widely investigated for structural health monitoring. Lamb waves and shear horizontal (SH) waves, two commonly used types of waves in plates, provide different benefits for the detection of various types of defects and material degradation. However, there are few sensors that can detect both Lamb and SH waves and also resolve their modal content, namely the wavenumber-frequency spectrum. A sensor that can detect both waves is desirable to take full advantage of both types of waves in order to improve sensitivity to different discontinuity geometries. We demonstrate that polyvinylidene difluoride (PVDF) film provides the basis for a multi-element array sensor that detects both Lamb and SH waves and also measures their modal content, i.e., the wavenumber-frequency spectrum. PMID:28257065
NASA Astrophysics Data System (ADS)
Yoshizawa, K.
2014-10-01
A new radially anisotropic shear wave speed model for the Australasian region is constructed from multi-mode phase dispersion of Love and Rayleigh waves. An automated waveform fitting technique based on a global optimization with the Neighbourhood Algorithm allows the exploitation of large numbers of three-component broad-band seismograms to extract path-specific dispersion curves covering the entire continent. A 3-D shear wave model is constructed including radial anisotropy from a set of multi-mode phase speed maps for both Love and Rayleigh waves. These maps are derived from an iterative inversion scheme incorporating the effects of ray-path bending due to lateral heterogeneity, as well as the finite frequency of the surface waves for each mode. The new S wave speed model exhibits major tectonic features of this region that are in good agreement with earlier shear wave models derived primarily from Rayleigh waves. The lateral variations of depth and thickness of the lithosphere-asthenosphere transition (LAT) are estimated from the isotropic (Voigt average) S wave speed model and its vertical gradient, which reveals correlations between the lateral variations of the LAT and radial anisotropy. The thickness of the LAT is very large beneath the Archean cratons in western Australia, whereas that in south Australia is thinner. The radial anisotropy model shows faster SH wave speed than SV beneath eastern Australia and the Coral Sea at the lithospheric depth. The faster SH anomaly in the lithosphere is also seen in the suture zone between the three cratonic blocks of Australia. One of the most conspicuous features of fast SH anisotropy is found in the asthenosphere beneath the central Australia, suggesting anisotropy induced by shear flow in the asthenosphere beneath the fast drifting Australian continent.
Changes in shear-wave splitting before volcanic eruptions
NASA Astrophysics Data System (ADS)
Liu, Sha; Crampin, Stuart
2015-04-01
We have shown that observations of shear-wave splitting (SWS) monitor stress-accumulation and stress-relaxation before earthquakes which allows the time, magnitude, and in some circumstances fault-plane of impending earthquakes to be stress-forecast. (We call this procedure stress-forecasting rather than predicting or forecasting to emphasise the different formalism.) We have stress-forecast these parameters successfully three-days before a 1988 M5 earthquake in SW Iceland, and identified characteristic anomalies retrospectively before ~16 other earthquakes in Iceland and elsewhere. SWS monitors microcrack geometry and shows that microcracks are so closely spaced that they verge on fracturing and earthquakes. Phenomena verging on failure in this way are critical-systems with 'butterfly wings' sensitivity. Such critical-systems are very common. The Earth is an archetypal complex heterogeneous interactive phenomenon and must be expected to be a critical-system. We claim this critical system as a New Geophysics of a critically-microcracked rock mass. Such critical systems impose a range of fundamentally-new properties on conventional sub-critical physics/geophysics, one of which is universality. Consequently it is expected that we observe similar stress-accumulation and stress-relaxation before volcanic eruptions to those before earthquakes. There are three eruptions where appropriate changes in SWS have been observed similar to those observed before earthquakes. These are: the 1996 Gjálp fissure eruption, Vatnajökull, Iceland; a 2001 flank eruption on Mount Etna, Sicily (reported by Francesca Bianco, INGV, Naples); and the 2010 Eyjafjajökull ash-cloud eruption, SW Iceland. These will be presented in the same normalised format as is used before earthquakes. The 1996 Gjálp eruption showed a 2½-month stress-accumulation, and a ~1-year stress-relaxation (attributed to the North Atlantic Ridge adjusting to the magma injection beneath the Vatnajökull Ice Cap). The
Multi-Channel Optical Coherence Elastography Using Relative and Absolute Shear-Wave Time of Flight
Elyas, Eli; Grimwood, Alex; Erler, Janine T.; Robinson, Simon P.; Cox, Thomas R.; Woods, Daniel; Clowes, Peter; De Luca, Ramona; Marinozzi, Franco; Fromageau, Jérémie; Bamber, Jeffrey C.
2017-01-01
Elastography, the imaging of elastic properties of soft tissues, is well developed for macroscopic clinical imaging of soft tissues and can provide useful information about various pathological processes which is complementary to that provided by the original modality. Scaling down of this technique should ply the field of cellular biology with valuable information with regard to elastic properties of cells and their environment. This paper evaluates the potential to develop such a tool by modifying a commercial optical coherence tomography (OCT) device to measure the speed of shear waves propagating in a three-dimensional (3D) medium. A needle, embedded in the gel, was excited to vibrate along its long axis and the displacement as a function of time and distance from the needle associated with the resulting shear waves was detected using four M-mode images acquired simultaneously using a commercial four-channel swept-source OCT system. Shear-wave time of arrival (TOA) was detected by tracking the axial OCT-speckle motion using cross-correlation methods. Shear-wave speed was then calculated from inter-channel differences of TOA for a single burst (the relative TOA method) and compared with the shear-wave speed determined from positional differences of TOA for a single channel over multiple bursts (the absolute TOA method). For homogeneous gels the relative method provided shear-wave speed with acceptable precision and accuracy when judged against the expected linear dependence of shear modulus on gelatine concentration (R2 = 0.95) and ultimate resolution capabilities limited by 184μm inter-channel distance. This overall approach shows promise for its eventual provision as a research tool in cancer cell biology. Further work is required to optimize parameters such as vibration frequency, burst length and amplitude, and to assess the lateral and axial resolutions of this type of device as well as to create 3D elastograms. PMID:28107368
Multi-Channel Optical Coherence Elastography Using Relative and Absolute Shear-Wave Time of Flight.
Elyas, Eli; Grimwood, Alex; Erler, Janine T; Robinson, Simon P; Cox, Thomas R; Woods, Daniel; Clowes, Peter; De Luca, Ramona; Marinozzi, Franco; Fromageau, Jérémie; Bamber, Jeffrey C
2017-01-01
Elastography, the imaging of elastic properties of soft tissues, is well developed for macroscopic clinical imaging of soft tissues and can provide useful information about various pathological processes which is complementary to that provided by the original modality. Scaling down of this technique should ply the field of cellular biology with valuable information with regard to elastic properties of cells and their environment. This paper evaluates the potential to develop such a tool by modifying a commercial optical coherence tomography (OCT) device to measure the speed of shear waves propagating in a three-dimensional (3D) medium. A needle, embedded in the gel, was excited to vibrate along its long axis and the displacement as a function of time and distance from the needle associated with the resulting shear waves was detected using four M-mode images acquired simultaneously using a commercial four-channel swept-source OCT system. Shear-wave time of arrival (TOA) was detected by tracking the axial OCT-speckle motion using cross-correlation methods. Shear-wave speed was then calculated from inter-channel differences of TOA for a single burst (the relative TOA method) and compared with the shear-wave speed determined from positional differences of TOA for a single channel over multiple bursts (the absolute TOA method). For homogeneous gels the relative method provided shear-wave speed with acceptable precision and accuracy when judged against the expected linear dependence of shear modulus on gelatine concentration (R2 = 0.95) and ultimate resolution capabilities limited by 184μm inter-channel distance. This overall approach shows promise for its eventual provision as a research tool in cancer cell biology. Further work is required to optimize parameters such as vibration frequency, burst length and amplitude, and to assess the lateral and axial resolutions of this type of device as well as to create 3D elastograms.
Qiang, Bo; Brigham, John C.; Aristizabal, Sara; Greenleaf, James F.; Zhang, Xiaoming; Urban, Matthew W.
2015-01-01
In this paper, we propose a method to model the shear wave propagation in transversely isotropic, viscoelastic and incompressible media. The targeted application is ultrasound-based shear wave elastography for viscoelasticity measurements in anisotropic tissues such as the kidney and skeletal muscles. The proposed model predicts that if the viscoelastic parameters both across and along fiber directions can be characterized as a Voigt material, then the spatial phase velocity at any angle is also governed by a Voigt material model. Further, with the aid of Taylor expansions, it is shown that the spatial group velocity at any angle is close to a Voigt type for weakly attenuative materials within a certain bandwidth. The model is implemented in a finite element code by a time domain explicit integration scheme and shear wave simulations are conducted. The results of the simulations are analyzed to extract the shear wave elasticity and viscosity for both the spatial phase and group velocities. The estimated values match well with theoretical predictions. The proposed theory is further verified by an ex vivo tissue experiment measured in a porcine skeletal muscle by an ultrasound shear wave elastography method. The applicability of the Taylor expansion to analyze the spatial velocities is also discussed. We demonstrate that the approximations from the Taylor expansions are subject to errors when the viscosities across or along the fiber directions are large or the maximum frequency considered is beyond the bandwidth defined by radii of convergence of the Taylor expansions. PMID:25591921
NASA Astrophysics Data System (ADS)
Pitarka, A.
2015-12-01
Arben Pitarka, Souheil M. Ezzedine, Oleg Y. Vorobiev, Tarabay H. Antoun, Lew A. Glenn, William R. Walter, Robert J. Mellors, and Evan Hirakawa. We have analyzed effects of wave scattering due to near-source structural complexity and sliding joint motion on generation of shear waves from SPE-4Pprime, a shallow chemical explosion conducted at the Nevada National Security Site. In addition to analyzing far-field ground motion recorded on three-component geophones, we performed high-frequency simulations of the explosion using a finite difference method and heterogeneous media with stochastic variability. The stochastic variations of seismic velocity were modeled using Gaussian correlation functions. Using simulations and recorded waveforms we demonstrate the implication of wave scattering on generation of shear motion, and show the gradual increase of shear motion energy as the waves propagate through media with variable scattering. The amplitude and duration of shear waves resulting from wave scattering are found to be dependent on the model complexity and to a lesser extent to source distance. Analysis of shear-motion generation due to joint motion were conducted using numerical simulations performed with GEODYN-L, a parallelized Lagrangian hydrocode, while a stochastic approach was used in depicting the properties of joints. Separated effects of source and wave scattering on shear motion generation will be shown through simulated motion. This work was performed under the auspices of the U.S. Department of Energy by Lawrence Livermore National Laboratory under Contract DE-AC52-07NA27344 Release Number: LLNL-ABS-675570
Shear wave identification near by shallow seismic source
NASA Astrophysics Data System (ADS)
Vilhelm, Jan; Rudajev, Vladimír.; Živor, Roman
2010-05-01
Interference of P- and S-waves occurs during the first period of P-wave when the shallow seismic measurement is realized near the seismic source (the distance is less or equal to one P-wave wavelength). Polarization analysis method (particle motion) is suitable for the determination of S-wave arrival time in these conditions. Three component geophones are usually used in this case for the registration of seismic waves generated by a hammer blow. With regard to P- and S-waves polarization it is advantageous to orientate the three component orthogonal system of geophones so that separate components make an angle of 35.26° to horizontal plane (Galperin geophone configuration). Azimuth angle between separate components is 120° in this case. This configuration insures the equivalent gravity force moments affect all the three components in the same way. It is in the contrast to the standard arrangement of the three component geophone with two horizontal and one vertical component. The inclined arrangement results in equal frequency responses for all the three components. Phase and amplitude characteristics between the components should therefore be the same. This facilitates the S-wave arrival detection. An example of application of this method to the determination of seismic wave propagation velocity anisotropy is presented.
Helgerud, M.B.; Waite, W.F.; Kirby, S.H.; Nur, A.
2003-01-01
We report on laboratory measurements of compressional- and shear-wave speeds in a compacted, polycrystalline ice-Ih sample. The sample was made from triply distilled water that had been frozen into single crystal ice, ground into small grains, and sieved to extract the 180-250 ??m diameter fraction. Porosity was eliminated from the sample by compacting the granular ice between a hydraulically driven piston and a fixed end plug, both containing shear-wave transducers. Based on simultaneous compressional- and shear-wave-speed measurements, we calculated Poisson's ratio and compressional-wave, bulk, and shear moduli from -20 to -5??C and 22 to 33 MPa.
Nonlinear electron acoustic waves in presence of shear magnetic field
Dutta, Manjistha; Khan, Manoranjan; Ghosh, Samiran; Chakrabarti, Nikhil
2013-12-15
Nonlinear electron acoustic waves are studied in a quasineutral plasma in the presence of a variable magnetic field. The fluid model is used to describe the dynamics of two temperature electron species in a stationary positively charged ion background. Linear analysis of the governing equations manifests dispersion relation of electron magneto sonic wave. Whereas, nonlinear wave dynamics is being investigated by introducing Lagrangian variable method in long wavelength limit. It is shown from finite amplitude analysis that the nonlinear wave characteristics are well depicted by KdV equation. The wave dispersion arising in quasineutral plasma is induced by transverse magnetic field component. The results are discussed in the context of plasma of Earth's magnetosphere.
Large-scale magnetic field generation by randomly forced shearing waves.
Heinemann, T; McWilliams, J C; Schekochihin, A A
2011-12-16
A rigorous theory for the generation of a large-scale magnetic field by random nonhelically forced motions of a conducting fluid combined with a linear shear is presented in the analytically tractable limit of low magnetic Reynolds number (Rm) and weak shear. The dynamo is kinematic and due to fluctuations in the net (volume-averaged) electromotive force. This is a minimal proof-of-concept quasilinear calculation aiming to put the shear dynamo, a new effect recently found in numerical experiments, on a firm theoretical footing. Numerically observed scalings of the wave number and growth rate of the fastest-growing mode, previously not understood, are derived analytically. The simplicity of the model suggests that shear dynamo action may be a generic property of sheared magnetohydrodynamic turbulence.
Water-waves on linear shear currents. A comparison of experimental and numerical results.
NASA Astrophysics Data System (ADS)
Simon, Bruno; Seez, William; Touboul, Julien; Rey, Vincent; Abid, Malek; Kharif, Christian
2016-04-01
Propagation of water waves can be described for uniformly sheared current conditions. Indeed, some mathematical simplifications remain applicable in the study of waves whether there is no current or a linearly sheared current. However, the widespread use of mathematical wave theories including shear has rarely been backed by experimental studies of such flows. New experimental and numerical methods were both recently developed to study wave current interactions for constant vorticity. On one hand, the numerical code can simulate, in two dimensions, arbitrary non-linear waves. On the other hand, the experimental methods can be used to generate waves with various shear conditions. Taking advantage of the simplicity of the experimental protocol and versatility of the numerical code, comparisons between experimental and numerical data are discussed and compared with linear theory for validation of the methods. ACKNOWLEDGEMENTS The DGA (Direction Générale de l'Armement, France) is acknowledged for its financial support through the ANR grant N° ANR-13-ASTR-0007.
Gravity shear waves atop the cirrus layer of intense convective storms
NASA Technical Reports Server (NTRS)
Stobie, J. G.
1975-01-01
Recent visual satellite photographs of certain intense convective storms have revealed concentric wave patterns. A model for the generation and growth of these waves is proposed. The proposed initial generating mechanism is similar to the effect noticed when a pebble is dropped into a calm pond. The penetration of the tropopause by overshooting convection is analogous to the pebble's penetration of the water's surface. The model for wave growth involves instability due to the wind shear resulting from the cirrus outflow. This model is based on an equation for the waves' phase speed which is similar to the Helmholtz equation. It, however, does not assume an incompressible atmosphere, but rather assumes density is a logarithmic function of height. Finally, the model is evaluated on the two mid-latitude and three tropical cases. The data indicate that shearing instability may be a significant factor in the appearance of these waves.
Madhukar, Amit; Chen, Ying; Ostoja-Starzewski, Martin
2017-03-14
The MRI-based computational model, previously validated by tagged MRI and HARP imaging analysis technique on in vivo human brain deformation, is employed to study transient wave dynamics during blunt head trauma. Three different constitutive models are used for the cerebrospinal fluid (CSF): incompressible solid elastic, viscoelastic and fluid-like elastic using an equation of state model. Three impact cases are simulated which indicate that the blunt impacts give rise not only to a fast pressure wave but also to a slow, and potentially much more damaging, shear (distortional) wave that converges spherically towards the brain center. The wave amplification due to spherical geometry is balanced by damping due to tissues' viscoelasticity and the heterogeneous brain structure, suggesting a stochastic competition of these two opposite effects. It is observed that this convergent shear wave is dependent on the constitutive property of the CSF whereas the peak pressure is not as significantly affected.
Yang, Yu-Ping; Xu, Xiao-Hong; Guo, Le-Hang; He, Ya-Ping; Wang, Dan; Liu, Bo-Ji; Zhao, Chong-Ke; Chen, Bao-Ding; Xu, Hui-Xiong
2017-01-01
To evaluate the diagnostic performance of a new two-dimensional shear wave speed (SWS) imaging (i.e. Toshiba shear wave elastography, T-SWE) in differential diagnosis of breast lesions. 225 pathologically confirmed breast lesions in 218 patients were subject to conventional ultrasound and T-SWE examinations. The mean, standard deviation and ratio of SWS values (m/s) and elastic modulus (KPa) on T-SWE were computed. Besides, the 2D elastic images were classified into four color patterns. The area under the receiver operating characteristic (AUROC) curve analysis was performed to evaluate the diagnostic performance of T-SWE in differentiation of breast lesions. Compared with other quantitative T-SWE parameters, mean value expressed in KPa had the highest AUROC value (AUROC = 0.943), with corresponding cut-off value of 36.1 KPa, sensitivity of 85.1%, specificity of 96.6%, accuracy of 94.2%, PPV of 87.0%, and NPV of 96.1%. The AUROC of qualitative color patterns in this study obtained the best performance (AUROC = 0.957), while the differences were not significant except for that of Eratio expressed in m/s (AUROC = 0.863) (P = 0.03). In summary, qualitative color patterns of T-SWE obtained the best performance in all parameters, while mean stiffness (36.05 KPa) provided the best diagnostic performance in the quantitative parameters. PMID:28102328
Generation of shear waves by laser in soft media in the ablative and thermoelastic regimes
NASA Astrophysics Data System (ADS)
Grasland-Mongrain, Pol; Lu, Yuankang; Lesage, Frédéric; Catheline, Stefan; Cloutier, Guy
2016-11-01
This article describes the generation of elastic shear waves in a soft medium using a laser beam. Our experiments show two different regimes depending on laser energy. Physical modeling of the underlying phenomena reveals a thermoelastic regime caused by a local dilatation resulting from temperature increase and an ablative regime caused by a partial vaporization of the medium by the laser. The computed theoretical displacements are close to the experimental measurements. A numerical study based on the physical modeling gives propagation patterns comparable to those generated experimentally. These results provide a physical basis for the feasibility of a shear wave elastography technique (a technique that measures a soft solid stiffness from shear wave propagation) by using a laser beam.
Parallel-velocity-shear-modified drift wave in negative ion plasmas
NASA Astrophysics Data System (ADS)
Ichiki, R.; Kaneko, T.; Hayashi, K.; Tamura, S.; Hatakeyama, R.
2009-03-01
A systematic investigation of the effects of a parallel velocity shear and negative ions on the collisionless drift wave instability has for the first time been realized by simultaneously using a segmented tungsten hot plate of a Q-machine and sulfur hexafluoride (SF6) gas in a magnetized potassium plasma. The parallel velocity shear of the positive ion flow tends to decrease the fluctuation level of the drift wave. The introduction of negative ions first increases the fluctuation level and then starts to decrease it at the negative ion exchange fraction of around 10%, while keeping the above-mentioned shear effect qualitatively. In addition, a simple dispersion relation based on the local model has been calculated to show that it can predict wave characteristics similar to the experimental results. Our findings provide a potential for gaining a more profound insight into the physics of space/circumterrestrial plasmas.
NASA Astrophysics Data System (ADS)
Biswas, Rajib; Baruah, Saurabh
2016-12-01
We made an attempt to assess the shear wave velocity values VSand, to a lesser extent, the VP values from ambient noise recordings in an array configuration. Five array sites were situated in the close proximity to borehole sites. Shear wave velocity profiles were modeled at these five array sites with the aid of two computational techniques, viz. spatial autocorrelation (SPAC) and H/V ellipticity. Out of these five array sites, velocity estimates could be reliably inferred at three locations. The shear wave velocities estimated by these methods are found to be quite consistent with each other. The computed VS values up to 30 m depth are in the range from 275 to 375 m/s in most of the sites, which implies prevalence of a low velocity zone at some pocket areas. The results were corroborated by evidence of site geology as well as geotechnical information.
Generation of Shear Waves by Laser in Soft Media in the Ablative and Thermoelastic Regimes
Grasland-Mongrain, Pol; Lu, Yuankang; Lesage, Frederic; Catheline, Stefan; Cloutier, Guy
2016-01-01
This article describes the generation of elastic shear waves in a soft medium using a laser beam. Our experiments show two different regimes depending on laser energy. Physical modeling of the underlying phenomena reveals a thermoelastic regime caused by a local dilatation resulting from temperature increase, and an ablative regime caused by a partial vaporization of the medium by the laser. Computed theoretical displacements are close to experimental measurements. A numerical study based on the physical modeling gives propagation patterns comparable to those generated experimentally. These results provide a physical basis for the feasibility of a shear wave elastography technique (a technique which measures a soft solid stiffness from shear wave propagation) by using a laser beam. PMID:28090117
NASA Astrophysics Data System (ADS)
Mochizuki, Yuta; Taki, Hirofumi; Kanai, Hiroshi
2016-07-01
An elastic property of biological soft tissue is an important indicator of the tissue status. Therefore, quantitative and noninvasive methods for elasticity evaluation have been proposed. Our group previously proposed a method using acoustic radiation pressure irradiated from two directions for elastic property evaluation, in which by measuring the propagation velocity of the shear wave generated by the acoustic radiation pressure inside the object, the elastic properties of the object were successfully evaluated. In the present study, we visualized the propagation of the shear wave in a three-dimensional space by the synchronization of signals received at various probe positions. The proposed method succeeded in visualizing the shear wave propagation clearly in the three-dimensional space of 35 × 41 × 4 mm3. These results show the high potential of the proposed method to estimate the elastic properties of the object in the three-dimensional space.
Imaging of Shear Waves Induced by Lorentz Force in Soft Tissues
NASA Astrophysics Data System (ADS)
Grasland-Mongrain, P.; Souchon, R.; Cartellier, F.; Zorgani, A.; Chapelon, J. Y.; Lafon, C.; Catheline, S.
2014-07-01
This study presents the first observation of elastic shear waves generated in soft solids using a dynamic electromagnetic field. The first and second experiments of this study showed that Lorentz force can induce a displacement in a soft phantom and that this displacement was detectable by an ultrasound scanner using speckle-tracking algorithms. For a 100 mT magnetic field and a 10 ms, 100 mA peak-to-peak electrical burst, the displacement reached a magnitude of 1 μm. In the third experiment, we showed that Lorentz force can induce shear waves in a phantom. A physical model using electromagnetic and elasticity equations was proposed. Computer simulations were in good agreement with experimental results. The shear waves induced by Lorentz force were used in the last experiment to estimate the elasticity of a swine liver sample.
Tariq, Sabeen; Mirza, Arshad M.; Masood, W.
2010-10-15
The propagation of high and low frequency (in comparison with the cyclotron frequency) electrostatic drift-waves is investigated in a nonuniform, dense magnetoplasma (composed of electrons and ions), in the presence of parallel shear flow, by employing the quantum magnetohydrodynamic (QMHD) model. Using QMHD model, a new set of equations is presented in order to investigate linear properties of electrostatic drift-waves with sheared plasma flows for dense plasmas. In this regard, dispersion relations for coupled electron-thermal and drift-ion acoustic modes are derived and several interesting limiting cases are discussed. For instance, it is found that sheared ion flow parallel to the external magnetic field can drive the quantum drift-ion acoustic wave unstable, etc. The present investigation may have relevance in dense astrophysical environments where quantum effects are significant.
Reflective grating interferometer: a folded reversal and shearing wave-front interferometer.
Ferraro, Pietro; De, Nicola Sergio; Finizio, Andrea; Pierattini, Giovanni
2002-01-10
The reflecting grating interferometer (RGI) is a folded and reversal wave-front interferometer sensitive only to asymmetrical aberrations such as third-order coma. The RGI can isolate and evaluate coma both in nearly collimated and in noncollimated beams. We propose a RGI with a different optical configuration that includes a lateral shearing in addition to folding and reversal operations. With lateral shear, the RGI also becomes sensitive to other terms of third-order aberrations such as defocusing, astigmatism, and spherical aberration. Optical path difference equations for interpreting interferograms and numerical simulations are presented to show how the interferometer works in the shearing configuration. Its potential applications are described and discussed.
Giannoula, Alexia; Cobbold, Richard S C
2009-03-01
An effective way to generate localized narrowband low-frequency shear waves within tissue noninvasively, is by the modulated radiation force, resulting from the interference of two confocal quasi-CW ultrasound beams of slightly different frequencies. By using approximate viscoelastic Green's functions, investigations of the properties of the propagated shear-field component at the fundamental modulation frequency were previously reported by our group. However, high-amplitude source excitations may be needed to increase the signal-to-noise-ratio for shear-wave detection in tissue. This paper reports a study of the generation and propagation of dynamic radiation force components at harmonics of the modulation frequency for conditions that generally correspond to diagnostic safety standards. We describe the propagation characteristics of the resulting harmonic shear waves and discuss how they depend on the parameters of nonlinearity, focusing gain, and absorption. For conditions of high viscosity (believed to be characteristic of soft tissue) and higher modulation frequencies, the approximate shear wave Green's function is inappropriate. A more exact viscoelastic Green's function is derived in k-space, and using this, it is shown that the lowpass and dispersive effects, associated with a Voigt model of tissue, are more accurately represented. Finally, it is shown how the viscoelastic properties of the propagating medium can be estimated, based on several spectral components of the shearwave spectrum.
Variable aspect ratio method in the Xu-White model for shear-wave velocity estimation
NASA Astrophysics Data System (ADS)
Bai, Jun-Yu; Yue, Cheng-Qi; Liang, Yi-Qiang; Song, Zhi-Xiang; Ling, Su; Zhang, Yang; Wu, Wei
2013-06-01
Shear-wave velocity logs are useful for various seismic interpretation applications, including bright spot analyses, amplitude-versus-offset analyses and multicomponent seismic interpretations. This paper presents a method for predicting the shear-wave velocity of argillaceous sandstone from conventional log data and experimental data, based on Gassmann's equations and the Xu-White model. This variable aspect ratio method takes into account all the influences of the matrix nature, shale content, porosity size and pore geometry, and the properties of pore fluid of argillaceous sandstone, replacing the fixed aspect ratio assumption in the conventional Xu-White model. To achieve this, we first use the Xu-White model to derive the bulk and shear modulus of dry rock in a sand-clay mixture. Secondly, we use Gassmann's equations to calculate the fluid-saturated elastic properties, including compressional and shear-wave velocities. Finally, we use the variable aspect ratio method to estimate the shear-wave velocity. The numerical results indicate that the variable aspect ratio method provides an important improvement in the application of the Xu-White model for sand-clay mixtures and allows for a variable aspect ratio log to be introduced into the Xu-White model instead of the constant aspect ratio assumption. This method shows a significant improvement in predicting velocities over the conventional Xu-White model.
Efficient simulation of 2+2-D multi-species plasmas waves using an Eulerian Vlasov code
NASA Astrophysics Data System (ADS)
Banks, Jeffrey; Berger, Richard; Chapman, Thomas; Hittinger, Jeffrey; Bruner, Stephan
2013-10-01
We discuss multi-species aspects of the Eulerian-based kinetic code LOKI that evolves the Vlasov-Poisson system in 2+2-dimensional phase space (Banks et al., Phys. Plasmas 18, 052102 (2011)). In order to control the inherent cost associated with phase-space simulation, our approach uses a minimally diffuse, fourth-order-accurate finite-volume discretization (Banks and Hittinger, IEEE T. Plasma Sci. 39, 2198-2207). The scheme is discretely conservative and controls unphysical oscillations. The details of the numerical scheme will be presented, and the implementation on modern highly concurrent parallel computers will be discussed. We will present results of 2D simulations of propagating ion acoustic waves (IAWs) created using an external driving potential. The evolution of the plasma wave field and associated self-consistent distribution of trapped electrons and ions is studied after the external drive is turned off. This work was performed under the auspices of the U.S. Department of Energy by Lawrence Livermore National Laboratory under Contract DE-AC52-07NA27344 and funded by the Laboratory Research and Development Program at LLNL under project tracking code 12-ERD-061.
Nealy, Jennifer L; Collis, Jon M; Frank, Scott D
2016-04-01
Normal mode solutions to range-independent seismo-acoustic problems are benchmarked against elastic parabolic equation solutions and then used to benchmark the shear elastic parabolic equation self-starter [Frank, Odom, and Collis, J. Acoust. Soc. Am. 133, 1358-1367 (2013)]. The Pekeris waveguide with an elastic seafloor is considered for a point source located in the ocean emitting compressional waves, or in the seafloor, emitting both compressional and shear waves. Accurate solutions are obtained when the source is in the seafloor, and when the source is at the interface between the fluid and elastic layers.
Single tracking location methods suppress speckle noise in shear wave velocity estimation.
Elegbe, Etana C; McAleavey, Stephen A
2013-04-01
In ultrasound-based elastography methods, the estimation of shear wave velocity typically involves the tracking of speckle motion due to an applied force. The errors in the estimates of tissue displacement, and thus shear wave velocity, are generally attributed to electronic noise and decorrelation due to physical processes. We present our preliminary findings on another source of error, namely, speckle-induced bias in phase estimation. We find that methods that involve tracking in a single location, as opposed to multiple locations, are less sensitive to this source of error since the measurement is differential in nature and cancels out speckle-induced phase errors.
Nonlinear Interaction of Shear Alfven Waves with Gradient Driven Instabilities
NASA Astrophysics Data System (ADS)
Auerbach, David William
An experimental study of the interactions between gradient-driven instabilities (GDI) and beat waves driven between two Alfven waves is presented. A cylindrical density depletion is imposed on the otherwise uniform plasma in the Large Plasma Device (LAPD) by selectively blocking the electron beam that produces the plasma. Coherent, single mode fluctuations in density, temperature, plasma potential, and magnetic field are observed to be unstable on the gradient. Measurements of the relative cross-phase between the density and potential fluctuations indicate that the fluctuations are not likely to drive significant cross field transport. Comparisons of the properties of the modes to theoretical predictions for Kelvin-Helmholtz (KH) and drift wave modes indicate that the fluctuations are likely to be a hybrid of the two instabilities. Analytic eigenmode solutions to the linearized Braginskii fluid equations using the experimentally measured gradient profiles support the conclusion that both instabilities are active. A beat wave between two driven Alfven waves is broadcast into the gradient region using a pair of loop antennas with independently controlled frequency and power. This beat wave is observed to resonantly drive the unstable mode, as well as a second otherwise stable mode slightly higher in frequency and azimuthal mode number. During the drive of the secondary stable mode, the growth of the primary instability is suppressed. The broadcast of the Alfven waves and the beat wave is also observed to drive other fluctuations in the plasma at frequencies higher than either the spontaneous instability or the second, stable mode. Both the resonant drive of the modes and the control of the mode number are observed to have non-linear threshold and saturation behavior.
Guided torsional wave generation of a linear in-plane shear piezoelectric array in metallic pipes.
Zhou, Wensong; Yuan, Fuh-Gwo; Shi, Tonglu
2016-02-01
Cylindrical guided waves based techniques are effective and promising tools for damage detection in long pipes. The essential operations are generation and reception of guided waves in the structures utilizing transducers. A novel in-plane shear (d36 type) PMNT wafer is proposed to generate and receive the guided wave, especially the torsional waves, in metallic pipes. In contrast to the traditional wafer, this wafer will directly introduce in-plane shear deformation when electrical field is conveniently applied through its thickness direction. A single square d36 PMNT wafer is bonded on the surface of the pipe positioned collinearly with its axis, when actuated can predominantly generate torsional (T) waves along the axial direction, circumferential shear horizontal (C-SH) waves along circumferential direction, and other complex cylindrical Lamb-like wave modes along other helical directions simultaneously. While a linear array of finite square size d36 PMNT wafers was equally spaced circumferentially, when actuated simultaneously can nearly uniform axisymmetric torsional waves generate in pipes and non-symmetric wave modes can be suppressed greatly if the number of the d36 PMNT wafer is sufficiently large. This paper first presents the working mechanism of the linear d36 PMNT array from finite element analysis (FEA) by examining the constructive and destructive displacement wavefield phenomena in metallic pipes. Furthermore, since the amplitude of the received fundamental torsional wave signal strongly depends on frequency, a series of experiments are conducted to determine the frequency tuning curve for the torsional wave mode. All results indicate the linear d36 PMNT array has potential for efficiently generating uniform torsional wavefield of the fundamental torsional wave mode, which is more effective in monitoring structural health in metallic pipes.
Shear Wave Generation by Decoupled and Partially Coupled Explosions
NASA Astrophysics Data System (ADS)
Baker, G. E.; Xu, H.; Stevens, J. L.
2008-12-01
Decoupling is a means of evading detection by detonation of an explosion within a large cavity, which reduces the amplitude of the seismic waves. Such explosions are however still detectable with the current global seismic network, so their discrimination is important. A fully decoupled explosion detonated in the center of a spherical cavity will be a purely compressional seismic source, and so its discrimination should be straightforward. In practice however, decoupled explosions generate S waves, often identical to and sometimes even larger (relative to P) than S waves from comparable tamped explosions. If the source were purely compressional, the S waves must be the result of conversion from P and/or Rg. Asymmetries however, such as asphericity of the cavity or offset or asymmetry of the explosion, can lead to the direct generation of S waves even from a fully decoupled explosion. Fracturing or asymmetry of the nonlinear region about the cavity of a partially decoupled explosion could also result in direct generation of S waves. Most historical decoupling data have been studied extensively, but usually with the goal of quantifying P-wave decoupling. We identify S waves in the historical records, identify observations that can be used to distinguish their genesis, and model the observations to test the proposed mechanisms. Travel times and a bubble pulse peak in the P but not S spectra of water-filled cavity explosions in salt at the Soviet Azgir test site indicate that the S is generated at the source. The observed nearfield S radiation pattern of the US decoupled explosion Sterling is matched by source modeling that includes the flat floor (due to melted and recrystallized salt) of the cavity. The similarity of the Sterling coda waveforms with distance indicates their source is at or very near the cavity. Calculations of the extent and orientation of fracturing by both the Azgir and Sterling explosions predict minimal effects on the resulting waveforms. Both
Mass sensitivity of layered shear-horizontal surface acoustic wave devices for sensing applications
NASA Astrophysics Data System (ADS)
Kalantar-Zadeh, Kourosh; Trinchi, Adrian; Wlodarski, Wojtek; Holland, Anthony; Galatsis, Kosmas
2001-11-01
Layered Surface Acoustic Wave (SAW) devices that allow the propagation of Love mode acoustic waves will be studied in this paper. In these devices, the substrate allows the propagation of Surface Skimming Bulks Waves (SSBWs). By depositing layers, that the speed of Shear Horizontal (SH) acoustic wave propagation is less than that of the substrate, the propagation mode transforms to Love mode. Love mode devices which will be studied in this paper, have SiO2 and ZnO acoustic guiding layers. As Love mode of propagation has no movement of particles component normal to the active sensor surface, they can be employed for the sensing applications in the liquid media.
Planar shear horizontal guided wave inspection of a plate using piezoelectric fiber transducers
NASA Astrophysics Data System (ADS)
Soorgee, M. H.; Lissenden, C. J.; Rose, J. L.; Yousefi-Koma, A.
2013-01-01
Fundamental Shear Horizontal (SH0) guided waves have been simulated using finite element software in order to locate a crack in a plate structure. Long but narrow piezoelectric fiber composite strips have been considered as transducers to excite and receive SH guided waves. A segmented transducer, which enables piecewise sensing, has been shown by finite element analysis to be capable of locating a tiny through-thickness crack. The main benefits are that SH waves could be used to inspect fluid loaded structures and that it is possible to detect a crack oriented parallel to the wave vector.
Cortes, Daniel H.; Suydam, Stephen M.; Silbernagel, Karin Grävare; Buchanan, Thomas S.; Elliott, Dawn M.
2015-01-01
Viscoelastic mechanical properties are frequently altered after tendon injuries and during recovery. Therefore, non-invasive measurements of shear viscoelastic properties may help evaluate tendon recovery and compare the effectiveness of different therapies. The objectives of this study are to present an elastography method to measure localized viscoelastic properties of tendon and to present initial results in healthy and injured human Achilles and semitendinosus tendons. The technique used an external actuator to generate the shear waves in the tendon at different frequencies and plane wave imaging to measure shear wave displacements. For each of the excitation frequencies, maps of direction specific wave speeds were calculated using Local Frequency Estimation. Maps of viscoelastic properties were obtained using a pixel wise curve-fit of wave speed and frequency. The method was validated by comparing measurements of wave speed in agarose gels to those obtained using magnetic resonance elastography. Measurements in human healthy Achilles tendons revealed a pronounced increase in wave speed as function of frequency that highlights the importance of tendon viscoelasticity. Additionally, the viscoelastic properties of the Achilles tendon were larger than those reported for other tissues. Measurements in a tendinopathic Achilles tendon showed that it is feasible to quantify local viscoeasltic properties. Similarly, measurement in the semitendinosus tendon showed a substantial differences in viscoelastic properties between the healthy and contralateral tendons. Consequently, this technique has the potential of evaluating localized changes in tendon viscoelastic properties due to injury and during recovery in a clinical setting. PMID:25796414
Monitoring dyke injection and strain field evolution using shear-wave splitting.
NASA Astrophysics Data System (ADS)
Kendall, J.-M.; Verdon, J. P.; Keir, D.; Baird, A.
2012-04-01
Magma storage and dyke injection in the shallow crust is a fundamental process in rifting and volcanic environments. The dyking will tend to align with directions of maximum compressive stress, and the associated aligned fracturing and melt migration provides a very effective means of generating seismic anisotropy. Observations of shear-wave splitting provide one of the most unambiguous indicators of such anisotropy. As such, shear-wave splitting can be used to monitor the evolving strain field in volcanic and rifting environments. Here we apply lessons learned from monitoring fracture propagation during the hydraulic stimulation of tight-gas reservoirs. In a number of experiments we observe spatial and temporal variations in shear-wave splitting magnitude and orientation. We invert shear-wave observations for fracture properties, including the tangential and normal compliance, the ratio of which is a good indicator of fluid flow and permeability. Frequency dependent affects can be also used to indicate the length scales of the causative cracks or fractures. We apply these insights to microseismic data recently acquired across the volcanically active Afar triple junction in Ethiopia. The pattern of S-wave splitting in Afar is best explained by anisotropy from deformation-related structures, with the dramatic change in splitting parameters into the rift axis from the increased density of dyke-induced faulting combined with a contribution from oriented melt pockets near volcanic centres. The results help in our understanding of the role of melt in strain accommodation in rifting and volcanic environments.
Measurement of mechanical properties of homogeneous tissue with ultrasonically induced shear waves
NASA Astrophysics Data System (ADS)
Greenleaf, James F.; Chen, Shigao
2007-03-01
Fundamental mechanical properties of tissue are altered by many diseases. Regional and systemic diseases can cause changes in tissue properties. Liver stiffness is caused by cirrhosis and fibrosis. Vascular wall stiffness and tone are altered by smoking, diabetes and other diseases. Measurement of tissue mechanical properties has historically been done with palpation. However palpation is subjective, relative, and not quantitative or reproducible. Elastography in which strain is measured due to stress application gives a qualitative estimate of Young's modulus at low frequency. We have developed a method that takes advantage of the fact that the wave equation is local and shear wave propagation depends only on storage and loss moduli in addition to density, which does not vary much in soft tissues. Our method is called shearwave dispersion ultrasonic velocity measurement (SDUV). The method uses ultrasonic radiation force to produce repeated motion in tissue that induces shear waves to propagate. The shear wave propagation speed is measured with pulse echo ultrasound as a function of frequency of the shear wave. The resulting velocity dispersion curve is fit with a Voight model to determine the elastic and viscous moduli of the tissue. Results indicate accurate and precise measurements are possible using this "noninvasive biopsy" method. Measurements in beef along and across the fibers are consistent with the literature values.
Effect of two ion species on the propagation of shear Alfven waves of small transverse scale
Vincena, S. T.; Morales, G. J.; Maggs, J. E.
2010-05-15
The results of a theoretical modeling study and experimental investigation of the propagation properties of shear Alfven waves of small transverse scale in a plasma with two ion species are reported. In the two ion plasma, depending on the mass of the heavier species, ion kinetic effects can become prominent, and significant parallel electric fields result in electron acceleration. The theory predicts the appearance of frequency propagation gaps at the ion-ion hybrid frequency and between harmonics of the lower cyclotron frequency. Within these frequency bands spatial structures arise that mix the cone-propagation characteristics of Alfven waves with radially expanding ion Bernstein modes. The experiments, performed at the Basic Plasma Science Facility (BaPSF) at UCLA, consist of the spatial mapping of shear waves launched by a loop antenna. Although a variety of two ion-species combinations were explored, only results from a helium-neon mix are reported. A clear signature of a shear wave propagation gap, as well as propagation between multiple harmonics, is found for this gas combination. The evanescence of shear waves beyond the reflection point at the ion-ion hybrid frequency in the presence of an axial magnetic field gradient is also documented.
NASA Astrophysics Data System (ADS)
Kumari, Pato; Sharma, Vikash Kumar; Modi, Chitra
2016-04-01
In the present study, propagation of magnetoelastic shear wave due to a momentary point source in a viscoelastic crustal layer over inhomogeneous viscoelastic half space has been discussed. Green's function technique and Fourier transform along with method of successive approximation are used to find the closed-form solutions for displacement and generalized shear wave period equation. Attenuation of the resultant shear wave is computed and effects of magnetic field, width of the layer, complex wave number, viscosity, and inhomogeneity parameters are distinctly marked on dissipation curves using two-dimensional and surface plots. It is found that effect of layer's magnetoelastic coupling parameter on attenuation pattern of shear wave is just the reverse of half space magnetoelastic coupling parameter. Similarly, internal friction of layer has somewhat different effect on shear wave angular frequency than lower half space viscosity. Certain published results are also derived as special cases to the present study.
Wave excitation by nonlinear coupling among shear Alfvén waves in a mirror-confined plasma
Ikezoe, R. Ichimura, M.; Okada, T.; Hirata, M.; Yokoyama, T.; Iwamoto, Y.; Sumida, S.; Jang, S.; Takeyama, K.; Yoshikawa, M.; Kohagura, J.; Shima, Y.; Wang, X.
2015-09-15
A shear Alfvén wave at slightly below the ion-cyclotron frequency overcomes the ion-cyclotron damping and grows because of the strong anisotropy of the ion temperature in the magnetic mirror configuration, and is called the Alfvén ion-cyclotron (AIC) wave. Density fluctuations caused by the AIC waves and the ion-cyclotron range of frequencies (ICRF) waves used for ion heating have been detected using a reflectometer in a wide radial region of the GAMMA 10 tandem mirror plasma. Various wave-wave couplings are clearly observed in the density fluctuations in the interior of the plasma, but these couplings are not so clear in the magnetic fluctuations at the plasma edge when measured using a pick-up coil. A radial dependence of the nonlinearity is found, particularly in waves with the difference frequencies of the AIC waves; bispectral analysis shows that such wave-wave coupling is significant near the core, but is not so evident at the periphery. In contrast, nonlinear coupling with the low-frequency background turbulence is quite distinct at the periphery. Nonlinear coupling associated with the AIC waves may play a significant role in the beta- and anisotropy-limits of a mirror-confined plasma through decay of the ICRF heating power and degradation of the plasma confinement by nonlinearly generated waves.
Wave excitation by nonlinear coupling among shear Alfvén waves in a mirror-confined plasma
NASA Astrophysics Data System (ADS)
Ikezoe, R.; Ichimura, M.; Okada, T.; Hirata, M.; Yokoyama, T.; Iwamoto, Y.; Sumida, S.; Jang, S.; Takeyama, K.; Yoshikawa, M.; Kohagura, J.; Shima, Y.; Wang, X.
2015-09-01
A shear Alfvén wave at slightly below the ion-cyclotron frequency overcomes the ion-cyclotron damping and grows because of the strong anisotropy of the ion temperature in the magnetic mirror configuration, and is called the Alfvén ion-cyclotron (AIC) wave. Density fluctuations caused by the AIC waves and the ion-cyclotron range of frequencies (ICRF) waves used for ion heating have been detected using a reflectometer in a wide radial region of the GAMMA 10 tandem mirror plasma. Various wave-wave couplings are clearly observed in the density fluctuations in the interior of the plasma, but these couplings are not so clear in the magnetic fluctuations at the plasma edge when measured using a pick-up coil. A radial dependence of the nonlinearity is found, particularly in waves with the difference frequencies of the AIC waves; bispectral analysis shows that such wave-wave coupling is significant near the core, but is not so evident at the periphery. In contrast, nonlinear coupling with the low-frequency background turbulence is quite distinct at the periphery. Nonlinear coupling associated with the AIC waves may play a significant role in the beta- and anisotropy-limits of a mirror-confined plasma through decay of the ICRF heating power and degradation of the plasma confinement by nonlinearly generated waves.
Second-harmonic generation in shear wave beams with different polarizations
Spratt, Kyle S. Ilinskii, Yurii A.; Zabolotskaya, Evgenia A.; Hamilton, Mark F.
2015-10-28
A coupled pair of nonlinear parabolic equations was derived by Zabolotskaya [1] that model the transverse components of the particle motion in a collimated shear wave beam propagating in an isotropic elastic solid. Like the KZK equation, the parabolic equation for shear wave beams accounts consistently for the leading order effects of diffraction, viscosity and nonlinearity. The nonlinearity includes a cubic nonlinear term that is equivalent to that present in plane shear waves, as well as a quadratic nonlinear term that is unique to diffracting beams. The work by Wochner et al. [2] considered shear wave beams with translational polarizations (linear, circular and elliptical), wherein second-order nonlinear effects vanish and the leading order nonlinear effect is third-harmonic generation by the cubic nonlinearity. The purpose of the current work is to investigate the quadratic nonlinear term present in the parabolic equation for shear wave beams by considering second-harmonic generation in Gaussian beams as a second-order nonlinear effect using standard perturbation theory. In order for second-order nonlinear effects to be present, a broader class of source polarizations must be considered that includes not only the familiar translational polarizations, but also polarizations accounting for stretching, shearing and rotation of the source plane. It is found that the polarization of the second harmonic generated by the quadratic nonlinearity is not necessarily the same as the polarization of the source-frequency beam, and we are able to derive a general analytic solution for second-harmonic generation from a Gaussian source condition that gives explicitly the relationship between the polarization of the source-frequency beam and the polarization of the second harmonic.
Excitation of instability waves in a two-dimensional shear layer by sound
NASA Technical Reports Server (NTRS)
Tam, C. K. W.
1978-01-01
The excitation of instability waves in a plane compressible shear layer by sound waves is studied. The problem is formulated mathematically as an inhomogeneous boundary-value problem. A general solution for abitrary incident sound wave is found by first constructing the Green's function of the problem. Numerical values of the coupling constants between incident sound waves and excited instability waves for a range of flow Mach number are calculated. The effect of the angle of incidence in the case of a beam of acoustic waves is analyzed. It is found that for moderate subsonic Mach numbers a narrow beam aiming at an angle between 50 to 80 deg to the flow direction is most effective in exciting instability waves.
Viscous Shear Layers Formed by Non-Bifurcating Shock Waves in Shock-Tubes
NASA Astrophysics Data System (ADS)
Grogan, Kevin; Ihme, Matthias
2015-11-01
Shock-tubes are test apparatuses that are used extensively for chemical kinetic measurements. Under ideal conditions, shock-tubes provide a quiescent region behind a reflected shock wave where combustion may take place without complications arising from gas-dynamic effects. However, due to the reflected shock wave encountering a boundary layer, significant inhomogeneity may be introduced into the test region. The bifurcation of the reflected shock-wave is well-known to occur under certain conditions; however, a viscous shear layer may form behind a non-bifurcating reflected shock wave as well and may affect chemical kinetics and ignition of certain fuels. The focus of this talk is on the development of the viscous shear layer and the coupling to the ignition in the regime corresponding to the negative temperature conditions.
NASA Astrophysics Data System (ADS)
Yoo, Byungseok
2011-12-01
In almost all industries of mechanical, aerospace, and civil engineering fields, structural health monitoring (SHM) technology is essentially required for providing the reliable information of structural integrity of safety-critical structures, which can help reduce the risk of unexpected and sometimes catastrophic failures, and also offer cost-effective inspection and maintenance of the structures. State of the art SHM research on structural damage diagnosis is focused on developing global and real-time technologies to identify the existence, location, extent, and type of damage. In order to detect and monitor the structural damage in plate-like structures, SHM technology based on guided Lamb wave (GLW) interrogation is becoming more attractive due to its potential benefits such as large inspection area coverage in short time, simple inspection mechanism, and sensitivity to small damage. However, the GLW method has a few critical issues such as dispersion nature, mode conversion and separation, and multiple-mode existence. Phased array technique widely used in all aspects of civil, military, science, and medical industry fields may be employed to resolve the drawbacks of the GLW method. The GLW-based phased array approach is able to effectively examine and analyze complicated structural vibration responses in thin plate structures. Because the phased sensor array operates as a spatial filter for the GLW signals, the array signal processing method can enhance a desired signal component at a specific direction while eliminating other signal components from other directions. This dissertation presents the development, the experimental validation, and the damage detection applications of an innovative signal processing algorithm based on two-dimensional (2-D) spiral phased array in conjunction with the GLW interrogation technique. It starts with general backgrounds of SHM and the associated technology including the GLW interrogation method. Then, it is focused on the
Compressional and shear wave velocities in granular materials to 2.5 kilobars
NASA Technical Reports Server (NTRS)
Talwani, P.; Nur, A.; Kovach, R. L.
1973-01-01
The velocities of seismic compressional waves and, for the first time, shear wave velocities in silica sand, volcanic ash, and basalt powder were determined under hydrostatic confining pressures to 2.5 kb. Simultaneously, the porosity of these materials was obtained as a function of confining pressure. The presented results have important implications for the self-compaction hypothesis that has been postulated to explain the lunar near-surface seismic velocity variation.
Compensation of shear waves in photoacoustic tomography with layered acoustic media
Schoonover, Robert W.; Anastasio, Mark A.
2012-01-01
An image reconstruction formula is presented for photoacoustic computed tomography that accounts for conversion between longitudinal and shear waves in a planar-layered acoustic medium. We assume the optical absorber that produces the photoacoustic wave field is embedded in a single fluid layer and any elastic solid layers present are separated by one or more fluid layers. The measurement aperture is assumed to be planar. Computer simulation studies are conducted to demonstrate and investigate the proposed reconstruction formula. PMID:21979514
Compensation of shear waves in photoacoustic tomography with layered acoustic media.
Schoonover, Robert W; Anastasio, Mark A
2011-10-01
An image reconstruction formula is presented for photoacoustic computed tomography that accounts for conversion between longitudinal and shear waves in a planar-layered acoustic medium. We assume the optical absorber that produces the photoacoustic wave field is embedded in a single fluid layer and any elastic solid layers present are separated by one or more fluid layers. The measurement aperture is assumed to be planar. Computer simulation studies are conducted to demonstrate and investigate the proposed reconstruction formula.
Imaging shear wave propagation for elastic measurement using OCT Doppler variance method
NASA Astrophysics Data System (ADS)
Zhu, Jiang; Miao, Yusi; Qu, Yueqiao; Ma, Teng; Li, Rui; Du, Yongzhao; Huang, Shenghai; Shung, K. Kirk; Zhou, Qifa; Chen, Zhongping
2016-03-01
In this study, we have developed an acoustic radiation force orthogonal excitation optical coherence elastography (ARFOE-OCE) method for the visualization of the shear wave and the calculation of the shear modulus based on the OCT Doppler variance method. The vibration perpendicular to the OCT detection direction is induced by the remote acoustic radiation force (ARF) and the shear wave propagating along the OCT beam is visualized by the OCT M-scan. The homogeneous agar phantom and two-layer agar phantom are measured using the ARFOE-OCE system. The results show that the ARFOE-OCE system has the ability to measure the shear modulus beyond the OCT imaging depth. The OCT Doppler variance method, instead of the OCT Doppler phase method, is used for vibration detection without the need of high phase stability and phase wrapping correction. An M-scan instead of the B-scan for the visualization of the shear wave also simplifies the data processing.
NASA Astrophysics Data System (ADS)
Wang, Enjiang; Liu, Yang; Sen, Mrinal K.
2016-09-01
The 2-D acoustic wave equation is commonly solved numerically by finite-difference (FD) methods in which the accuracy of solution is significantly affected by the FD stencils. The commonly used cross stencil can reach either only second-order accuracy for space domain dispersion-relation-based FD method or (2M)th-order accuracy along eight specific propagation directions for time-space domain dispersion-relation-based FD method, if the conventional (2M)th-order spatial FD and second-order temporal FD are used to discretize the equation. One other newly developed rhombus stencil can reach arbitrary even-order accuracy. However, this stencil adds significantly to computational cost when the operator length is large. To achieve a balance between the solution accuracy and efficiency, we develop a new FD stencil to solve the 2-D acoustic wave equation. This stencil is a combination of the cross stencil and rhombus stencil. A cross stencil with an operator length parameter M is used to approximate the spatial partial derivatives while a rhombus stencil with an operator length parameter N together with the conventional second-order temporal FD is employed in approximating the temporal partial derivatives. Using this stencil, a new FD scheme is developed; we demonstrate that this scheme can reach (2M)th-order accuracy in space and (2N)th-order accuracy in time when spatial FD coefficients and temporal FD coefficients are derived from respective dispersion relation using Taylor-series expansion (TE) method. To further increase the accuracy, we derive the FD coefficients by employing the time-space domain dispersion relation of this FD scheme using TE. We also use least-squares (LS) optimization method to reduce dispersion at high wavenumbers. Dispersion analysis, stability analysis and modelling examples demonstrate that our new scheme has greater accuracy and better stability than conventional FD schemes, and thus can adopt large time steps. To reduce the extra
Shear-wave velocity variation in jointed rock: an attempt to measure tide-induced variations
Beem, L.I.
1987-08-01
The use of the perturbation of seismic wave velocities by solid earth tides as a possible method of exploration for fractured media is discussed. Velocity of compressional seismic waves in fractured homogeneous rock has been observed to vary through solid earth tide cycles by a significant 0.5-0.9%. This variation of seismic velocities may be attributed to the opening and closing of joints by tidal stresses. In an attempt to see if shear-wave velocities show a similar velocity variation, a pneumatic shear-wave generator was used for the source. The 5 receivers, 3-component, 2.0 Hz, moving-coil geophones, were connected to a GEOS digital recorder. The two receivers located 120 m and 110 m from the source showed large shear-to-compression amplitude ratio and a high signal-to-noise ratio. A glaciated valley was chosen for the experiment site, since topography is flat and the granodiorite is jointed by a set of nearly orthogonal vertical joints, with superimposed horizontal sheeting joints. A slight velocity variation was noted in the first 200 consecutive firings; after which, the amplitude of the shear-wave begun to increase. This increase has been attributed to the compacting of the soil beneath the shear-wave generator (SWG). In the future, the soil will be compacted prior to placing the SWG or the SWG will be coupled directly to the rock to alleviate the amplitude fluctuation problem. This research may have application in exploration for fracture permeability in the rock mass between existing wells, by measuring seismic velocities from well to well through the tidal cycle.
Okamoto, RJ; Clayton, EH; Bayly, PV
2011-01-01
Magnetic resonance elastography (MRE) is used to quantify the viscoelastic shear modulus, G*, of human and animal tissues. Previously, values of G* determined by MRE have been compared to values from mechanical tests performed at lower frequencies. In this study, a novel dynamic shear test (DST) was used to measure G* of a tissue-mimicking material at higher frequencies for direct comparison to MRE. A closed form solution, including inertial effects, was used to extract G* values from DST data obtained between 20 and 200 Hz. MRE was performed using cylindrical “phantoms” of the same material in an overlapping frequency range of 100 to 400 Hz. Axial vibrations of a central rod caused radially propagating shear waves in the phantom. Displacement fields were fit to a viscoelastic form of Navier’s equation using a total least squares approach to obtain local estimates of G*. DST estimates of the storage G′ (Re[G*]) and loss modulus, G″ (Im [G*]) for the tissue-mimicking material increased with frequency from 0.86 to 0.97 kPa (20 – 200 Hz, n = 16), while MRE estimates of G′ increased from 1.06 to 1.15 kPa (100–400 Hz, n=6). The loss factor (Im[G*]/Re[G*]) also increased with frequency for both test methods: 0.06 to 0.14 (20 – 200 Hz, DST) and 0.1 to 0.23 (100 – 400 Hz, MRE). Close agreement between MRE and DST results at overlapping frequencies indicates that G* can be locally estimated with MRE over a wide frequency range. Low signal-to-noise ratio, long shear wavelengths and boundary effects were found to increase residual fitting error, reinforcing the use of an error metric to assess confidence in local parameter estimates obtained by MRE. PMID:21908903
Shear wave anisotropy and stress direction in and near Long Valley caldera, California, 1979-1988
Savage, M.K.; Peppin, W.A.; Vetter, U.R. )
1990-07-10
The authors observed shear wave splitting (birefringence) for two temporary surface deployments of three-component, digital seismographs, that were in place before and after M=6+ earthquakes near the Long Valley caldera, California. In one of these deployments, the data sample precedes the large events of the May 1980 Mammoth Lakes earthquake sequence by 6 months and cover the two most active months of the May 1980 aftershock sequence; one of the stations (WIT) from this deployment was reoccupied with identical instrumentation in 1988. Another deployment preceded the 1986 Chalfant Valley mainshock by 2 days and recorded events for 6 days. The polarization of the faster shear wave changes from N30{degree}W at Mammoth to due north at Chalfant Valley and in both cases is parallel to the strike of nearby surface faults and to the mean direction of P axes determined from focal mechanism groupings. Observations from nearby stations yield fast directions nearly at 23{degree} from each other, and time separations of fast and slow shear waves show considerable station-to-station variation, showing no correlation with earthquake-station distance or earthquake depth. These observations suggest that the observed anisotropy results primarily from near-station (presumably shallow) effects rather than from widespread aligned microcracks. The records at Long Valley station WIT show a slight variation of average fast shear wave polarization from 1979 to 1980, but with the limited amount of data available, this difference is not statistically significant.
Internal gravity-shear waves in the atmospheric boundary layer from acoustic remote sensing data
NASA Astrophysics Data System (ADS)
Lyulyukin, V. S.; Kallistratova, M. A.; Kouznetsov, R. D.; Kuznetsov, D. D.; Chunchuzov, I. P.; Chirokova, G. Yu.
2015-03-01
The year-round continuous remote sounding of the atmospheric boundary layer (ABL) by means of the Doppler acoustic radar (sodar) LATAN-3 has been performed at the Zvenigorod Scientific Station of the Obukhov Institute of Atmospheric Physics, Russian Academy of Sciences, since 2008. A visual analysis of sodar echograms for four years revealed a large number of wavelike patterns in the intensity field of a scattered sound signal. Similar patterns were occasionally identified before in sodar, radar, and lidar sounding data. These patterns in the form of quasi-periodic inclined stripes, or cat's eyes, arise under stable stratification and significant vertical wind shears and result from the loss of the dynamic stability of the flow. In the foreign literature, these patterns, which we call internal gravity-shear waves, are often associated with Kelvin-Helmholtz waves. In the present paper, sodar echograms are classified according to the presence or absence of wavelike patterns, and a statistical analysis of the frequency of their occurrence by the year and season was performed. A relationship between the occurrence of the patterns and wind shear and between the wave length and amplitude was investigated. The criteria for the identification of gravity-shear waves, meteorological conditions of their excitation, and issues related to their observations were discussed.
Extensions of the Ferry shear wave model for active linear and nonlinear microrheology
Mitran, Sorin M.; Forest, M. Gregory; Yao, Lingxing; Lindley, Brandon; Hill, David B.
2009-01-01
The classical oscillatory shear wave model of Ferry et al. [J. Polym. Sci. 2:593-611, (1947)] is extended for active linear and nonlinear microrheology. In the Ferry protocol, oscillation and attenuation lengths of the shear wave measured from strobe photographs determine storage and loss moduli at each frequency of plate oscillation. The microliter volumes typical in biology require modifications of experimental method and theory. Microbead tracking replaces strobe photographs. Reflection from the top boundary yields counterpropagating modes which are modeled here for linear and nonlinear viscoelastic constitutive laws. Furthermore, bulk imposed strain is easily controlled, and we explore the onset of normal stress generation and shear thinning using nonlinear viscoelastic models. For this paper, we present the theory, exact linear and nonlinear solutions where possible, and simulation tools more generally. We then illustrate errors in inverse characterization by application of the Ferry formulas, due to both suppression of wave reflection and nonlinearity, even if there were no experimental error. This shear wave method presents an active and nonlinear analog of the two-point microrheology of Crocker et al. [Phys. Rev. Lett. 85: 888 - 891 (2000)]. Nonlocal (spatially extended) deformations and stresses are propagated through a small volume sample, on wavelengths long relative to bead size. The setup is ideal for exploration of nonlinear threshold behavior. PMID:20011614
An empirical method to estimate shear wave velocity of soils in the New Madrid seismic zone
Wei, B.-Z.; Pezeshk, S.; Chang, T.-S.; Hall, K.H.; Liu, Huaibao P.
1996-01-01
In this study, a set of charts are developed to estimate shear wave velocity of soils in the New Madrid seismic zone (NMSZ), using the standard penetration test (SPT) N values and soil depths. Laboratory dynamic test results of soil samples collected from the NMSZ showed that the shear wave velocity of soils is related to the void ratio and the effective confining pressure applied to the soils. The void ratio of soils can be estimated from the SPT N values and the effective confining pressure depends on the depth of soils. Therefore, the shear wave velocity of soils can be estimated from the SPT N value and the soil depth. To make the methodology practical, two corrections should be made. One is that field SPT N values of soils must be adjusted to an unified SPT N??? value to account the effects of overburden pressure and equipment. The second is that the effect of water table to effective overburden pressure of soils must be considered. To verify the methodology, shear wave velocities of five sites in the NMSZ are estimated and compared with those obtained from field measurements. The comparison shows that our approach and the field tests are consistent with an error of less than of 15%. Thus, the method developed in this study is useful for dynamic study and practical designs in the NMSZ region. Copyright ?? 1996 Elsevier Science Limited.
Radiation force of ultrasound as shear wave source in microscopic magnetic resonance elastography
NASA Astrophysics Data System (ADS)
Othman, Shadi F.; Ozer, M. Bulent; Xu, Huihui; Royston, Thomas J.; Magin, Richard L.
2005-09-01
Microscopic magnetic resonance elastography (micro-MRE) is a high-resolution imaging technique for measuring the viscoelastic properties of small synthetic and biological samples. Taking MRE to the microscopic scale requires stronger static fields, stronger magnetic field gradients, higher performance RF coils, and more compact, higher frequency shear wave actuators. Prior work by our group has been conducted at 11.74 T. A needle attached to a vibrating cantilever beam was placed in contact with the surface of the sample to generate shear waves up to 800 Hz. At higher frequencies, the excited shear waves attenuate within an extremely short distance such that only a very small region in the vicinity of the actuator can be studied due to inherent dynamic range limitations. In principle, modulated focused radiation force of US should be able to create a localized shear wave source within the test sample at a distance from the US transducer, thereby enabling micro-MRE probing of the sample at very high frequencies (up to 5 kHz). A confocal US transducer was fabricated to create such a source within the working constraints of the micro-MRE system. Initial feasibility studies are reviewed in this presentation. [Research supported by NIH Grant No. EB004885-01.
Quantification of Rock Damage from Small Explosions and Its Effect on Shear-Wave Generation
2009-06-15
independent) measurements of PPV. The location of the WWII anchor chain shop was close to the nearest residential structure. Our plan was to shoot the...cavity, and elastic radii? Although we were not able to solve the shear wave source enigma , the data we collected contains information that may
Bazou, Despina; Kuznetsova, Larisa A; Coakley, W Terence
2005-03-01
2-D mammalian cell aggregates can be formed and levitated in a 1.5 MHz single half wavelength ultrasound standing wave trap. The physical environment of cells in such a trap has been examined. Attention was paid to parameters such as temperature, acoustic streaming, cavitation and intercellular forces. The extent to which these factors might be intrusive to a neural cell aggregate levitated in the trap was evaluated. Neural cells were exposed to ultrasound at a pressure amplitude of 0.54 MPa for 30 s; a small aggregate had been formed at the center of the trap. The pressure amplitude was then decreased to 0.27 MPa for 2 min, at which level the aggregation process continued at a slower rate. The pressure amplitude was then decreased to 0.06 MPa for 1 h. Temperature measurements that were conducted in situ with a 200 microm thermocouple over a 30 min period showed that the maximum temperature rise was less than 0.5 K. Acoustic streaming was measured by the particle image velocimetry method (PIV). It was shown that the hydrodynamic stress imposed on cells by acoustic streaming is less than that imposed by gentle preparative centrifugation procedures. Acoustic spectrum analysis showed that cavitation activity does not occur in the cell suspensions sonicated at the above pressures. White noise was detected only at a pressure amplitude of 1.96 MPa. Finally, it was shown that the attractive acoustic force between ultrasonically agglomerated cells is small compared with the normal attractive van der Waals force that operates at close cell surface separations. It is concluded that the standing wave trap operates only to concentrate cells locally, as in tissue, and does not modify the in vitro expression of surface receptor interactions.
Measurement of viscosity and shear wave velocity of a liquid or slurry for on-line process control.
Greenwood, Margaret Stautberg; Bamberger, Judith Ann
2002-08-01
An on-line sensor to measure the density of a liquid or slurry, based on longitudinal wave reflection at the solid-fluid interface, has been developed by the staff at Pacific Northwest National Laboratory. The objective of this research is to employ shear wave reflection at the solid-fluid interface to provide an on-line measurement of viscosity as well. Both measurements are of great interest for process control in many industries. Shear wave reflection measurements were conducted for a variety of liquids. By analyzing multiple reflections within the solid (only 0.63 cm thick-similar to pipe wall thickness) we increased the sensitivity of the measurement. At the sixth echo, sensitivity was increased sufficiently and this echo was used for fluid interrogation. Shear wave propagation of ultrasound in liquids is dependent upon the viscosity and the shear modulus. The data are analyzed using the theory for light liquids (such as water and sugar water solutions) and also using the theory for highly viscous liquids (such as silicone oils). The results show that, for light liquids, the shear wave reflection measurements interrogate the viscosity. However, for highly viscous liquids, it is the shear wave modulus that dominates the shear wave reflection. Since the density is known, the shear wave velocity in the liquid can be determined from the shear wave modulus. The results show that shear wave velocities in silicone oils are very small and range from 315 to 2389 cm/s. Shear wave reflection measurements are perhaps the only way that shear wave velocity in liquids can be determined, because the shear waves in liquids are highly attenuated. These results show that, depending on the fluid characteristics, either the viscosity or the shear wave velocity can be used for process control. There are several novel features of this sensor: (1) The sensor can be mounted as part of the wall of a pipeline or tank or submerged in a tank. (2) The sensor is very compact and can be
Quantification of muscle co-contraction using supersonic shear wave imaging.
Raiteri, Brent J; Hug, François; Cresswell, Andrew G; Lichtwark, Glen A
2016-02-08
Muscle stiffness estimated using shear wave elastography can provide an index of individual muscle force during isometric contraction and may therefore be a promising method for quantifying co-contraction. We estimated the shear modulus of the lateral gastrocnemius (LG) muscle using supersonic shear wave imaging and measured its myoelectrical activity using surface electromyography (sEMG) during graded isometric contractions of plantar flexion and dorsiflexion (n=7). During dorsiflexion, the average shear modulus was 26 ± 6 kPa at peak sEMG amplitude, which was significantly less (P=0.02) than that measured at the same sEMG level during plantar flexion (42 ± 10 kPa). The passive tension during contraction was estimated using the passive LG muscle shear modulus during a passive ankle rotation measured at an equivalent ankle angle to that measured during contraction. The passive shear modulus increased significantly (P<0.01) from the plantar flexed position (16 ± 5 kPa) to the dorsiflexed position (26 ± 9 kPa). Once this change in passive tension from joint rotation was accounted for, the average LG muscle shear modulus due to active contraction was significantly greater (P<0.01) during plantar flexion (26 ± 8 kPa) than at sEMG-matched levels of dorsiflexion (0 ± 4 kPa). The negligible shear modulus estimated during isometric dorsiflexion indicates negligible active force contribution by the LG muscle, despite measured sEMG activity of 19% of maximal voluntary plantar flexion contraction. This strongly suggests that the sEMG activity recorded from the LG muscle during isometric dorsiflexion was primarily due to cross-talk. However, it is clear that passive muscle tension changes can contribute to joint torque during isometric dorsiflexion.
Crustal shear-wave anisotropy in the New Madrid and Wabash Valley seismic regions of the Central US
NASA Astrophysics Data System (ADS)
Jemberie, A. L.
2012-12-01
Local and regional earthquakes recorded by the US Array , the New Madrid and GSN - IRIS/USGS network of stations are analyzed to study crustal shear-wave anisotropy of the New Madrid and Wabash Valley seismic zones of the Central United States. The N-S and E-W components of the ground motion are cross-correlated to obtain the polarization angle of the fast shear-wave, and delay time of the slow shear-wave. Data with high signal to noise ratio, and incidence angle at a station less than 35 degrees are selected for further analysis. Preliminary results from data recorded by select stations show that the fast shear-wave is polarized in the direction of regional maximum horizontal compressional stress. Time delays over 100 ms are observed between the fast and the slow shear-waves.
NASA Astrophysics Data System (ADS)
Wang, Shang; Lopez, Andrew L.; Morikawa, Yuka; Tao, Ge; Li, Jiasong; Larina, Irina V.; Martin, James F.; Larin, Kirill V.
2015-03-01
Optical coherence elastography (OCE) is an emerging low-coherence imaging technique that provides noninvasive assessment of tissue biomechanics with high spatial resolution. Among various OCE methods, the capability of quantitative measurement of tissue elasticity is of great importance for tissue characterization and pathology detection across different samples. Here we report a quantitative OCE technique, termed quantitative shear wave imaging optical coherence tomography (Q-SWI-OCT), which enables noncontact measurement of tissue Young's modulus based on the ultra-fast imaging of the shear wave propagation inside the sample. A focused air-puff device is used to interrogate the tissue with a low-pressure short-duration air stream that stimulates a localized displacement with the scale at micron level. The propagation of this tissue deformation in the form of shear wave is captured by a phase-sensitive OCT system running with the scan of the M-mode imaging over the path of the wave propagation. The temporal characteristics of the shear wave is quantified based on the cross-correlation of the tissue deformation profiles at all the measurement locations, and linear regression is utilized to fit the data plotted in the domain of time delay versus wave propagation distance. The wave group velocity is thus calculated, which results in the quantitative measurement of the Young's modulus. As the feasibility demonstration, experiments are performed on tissuemimicking phantoms with different agar concentrations and the quantified elasticity values with Q-SWI-OCT agree well with the uniaxial compression tests. For functional characterization of myocardium with this OCE technique, we perform our pilot experiments on ex vivo mouse cardiac muscle tissues with two studies, including 1) elasticity difference of cardiac muscle under relaxation and contract conditions and 2) mechanical heterogeneity of the heart introduced by the muscle fiber orientation. Our results suggest the
NASA Astrophysics Data System (ADS)
Peureux, Charles; Ardhuin, Fabrice
2016-04-01
The stereo-video reconstuction method [Leckler et al. 2015] allows now for the full reconstruction of 3D frequency-wavenumber spectra of short waves. A new field campaign in 2013 on the Katsiveli platform (Black Sea) provided such spectra in various wind and waves conditions, and particularly a stormy event, after which very mature waves had been generated. The short waves energies are found to be mostly located around a dispersion relation of the form, () ° ----------- ω ⃗k = gktanh(kH)+ ⃗kṡ ⃗Ueff The effective advection velocity [Kirby and Chen 1989] ⃗Ueff(k) integrates contributions from both the Stokes drift and quasi-eulerian current [Groeneweg and Klopman 1998]. We find that the effective drift velocity has a very weak wavenumber dependancy, as a result the eulerian current must be vertically sheared. This shear is relevant to the breaking of small scale waves [Banner and Phillips 1974]. It is possible that in field conditions the wind drift is much less important than in the laboratory. Bibliography Banner, M. L. and Phillips, O. M., On the incipient breaking of small scale waves, J. Fluid Mech., 1974, 65, 647. Groeneweg, J. and Klopman, G., Changes of the mean velocity profiles in the combined wave-current motion described in a GLM formulation, J. Fluid Mech., 1998, 370, 271-296. Kirby, J. T. and Chen, T. M., Surface waves on vertically sheared flows : Approximate dispersion relations, J. Geophys. Res., 1989, 94, 1013. Leckler, F., Ardhuin, F., Peureux, C.,Benetazzo, A., Bergamasco, F. and Dulov, V., Analysis and interpretation of frequency-wavenumber spectra of young wind-waves, J. Phys. Oceanogr., 2015, 45, 2484-2496.
Harris, J.B.
1996-01-01
Determining the extent and location of surface/near-surface structural deformation in the New Madrid seismic zone (NMSZ) is very important for evaluating earthquake hazards. A shallow shear-wave splitting experiment, located near the crest of the Lake County uplift (LCU) in the central NMSZ, shows the presence of near-surface azimuthal anisotropy believed to be associated with neotectonic deformation. A shallow fourcomponent data set, recorded using a hammer and mass source, displayed abundant shallow reflection energy on records made with orthogonal source-receiver orientations, an indicator of shear-wave splitting. Following rotation of the data matrix by 40??, the S1 and S2 sections (principal components of the data matrix) were aligned with the natural coordinate system at orientations of N35??W and N55??E, respectively. A dynamic mis-tie of 8 ms at a two-way traveltime of 375 ms produced an average azimuthal anisotropy of ???2% between the target reflector (top of Quaternary gravel at a depth of 35 m) and the surface. Based on the shear-wave polarization data, two explanations for the azimuthal anisotropy in the study area are (1) fractures/cracks aligned in response to near-surface tensional stress produced by uplift of the LCU, and (2) faults/fractures oriented parallel to the Kentucky Bend scarp, a recently identified surface deformation feature believed to be associated with contemporary seismicity in the central NMSZ. In addition to increased seismic resolution by the use of shear-wave methods in unconsolidated, water-saturated sediments, measurement of near-surface directional polarizations, produced by shear-wave splitting, may provide valuable information for identifying neotectonic deformation and evaluating associated earthquake hazards.
NASA Astrophysics Data System (ADS)
Sapozhnikov, Oleg A.; Cleveland, Robin O.; Bailey, Michael R.; Crum, Lawrence A.
2003-10-01
A number of stone comminution mechanisms have been studied in lithotripsy. Except cavitation erosion, these mechanisms (namely, spallation, dynamic fatigue, shear, and circumferential compression) are associated with stresses generated in the stone by the shock wave. The mechanical load on the stone depends on the waveform and stone structure, size, and shape. We modeled the propagation of lithotripter shock waves through a cylindrical stone with a finite differences simulation based on Lame's equation. The stone parameters were similar to those of natural kidney stones. A new mechanism of tensile stress generation is predicted that may be 5-10 times more efficient than spalling. Shear elasticity of the stone gave rise to the peak tensile strain in the bulk of the stone; this strain occurs near the stone axis due to coherent arrival of shear waves from the front edges of the stone. The position of the region of maximum strain and direction of corresponding tensile forces is similar to those predicted by the spalling mechanism. The modeling also showed that circumferential compression is not activated by the dynamic load produced by a short shock wave typical for lithotripsy. [Work supported by NIH PO1 DK43881, RO1 DK55674 and FOGARTY, CDRF, ONRIFO, and NSBRI.
Zeng, C.; Xia, J.; Miller, R.D.; Tsoflias, G.P.
2011-01-01
Conventional surface wave inversion for shallow shear (S)-wave velocity relies on the generation of dispersion curves of Rayleigh waves. This constrains the method to only laterally homogeneous (or very smooth laterally heterogeneous) earth models. Waveform inversion directly fits waveforms on seismograms, hence, does not have such a limitation. Waveforms of Rayleigh waves are highly related to S-wave velocities. By inverting the waveforms of Rayleigh waves on a near-surface seismogram, shallow S-wave velocities can be estimated for earth models with strong lateral heterogeneity. We employ genetic algorithm (GA) to perform waveform inversion of Rayleigh waves for S-wave velocities. The forward problem is solved by finite-difference modeling in the time domain. The model space is updated by generating offspring models using GA. Final solutions can be found through an iterative waveform-fitting scheme. Inversions based on synthetic records show that the S-wave velocities can be recovered successfully with errors no more than 10% for several typical near-surface earth models. For layered earth models, the proposed method can generate one-dimensional S-wave velocity profiles without the knowledge of initial models. For earth models containing lateral heterogeneity in which case conventional dispersion-curve-based inversion methods are challenging, it is feasible to produce high-resolution S-wave velocity sections by GA waveform inversion with appropriate priori information. The synthetic tests indicate that the GA waveform inversion of Rayleigh waves has the great potential for shallow S-wave velocity imaging with the existence of strong lateral heterogeneity. ?? 2011 Elsevier B.V.
Overstability of acoustic waves in strongly magnetized anisotropic magnetohydrodynamic shear flows
Uchava, E. S.; Shergelashvili, B. M.; Tevzadze, A. G.; Poedts, S.
2014-08-15
We present a linear stability analysis of the perturbation modes in anisotropic magnetohydrodynamic (MHD) flows with velocity shear and strong magnetic field. Collisionless or weakly collisional plasma is described within the 16-momentum MHD fluid closure model that takes into account not only the effect of pressure anisotropy but also the effect of anisotropic heat fluxes. In this model, the low frequency acoustic wave is revealed into a standard acoustic mode and higher frequency fast thermo-acoustic and lower frequency slow thermo-acoustic waves. It is shown that thermo-acoustic waves become unstable and grow exponentially when the heat flux parameter exceeds some critical value. It seems that velocity shear makes thermo-acoustic waves overstable even at subcritical heat flux parameters. Thus, when the effect of heat fluxes is not profound acoustic waves will grow due to the velocity shear, while at supercritical heat fluxes the flow reveals compressible thermal instability. Anisotropic thermal instability should be also important in astrophysical environments, where it will limit the maximal value of magnetic field that a low density ionized anisotropic flow can sustain.
Pandey, Vikash; Holm, Sverre
2016-12-01
The characteristic time-dependent viscosity of the intergranular pore-fluid in Buckingham's grain-shearing (GS) model [Buckingham, J. Acoust. Soc. Am. 108, 2796-2815 (2000)] is identified as the property of rheopecty. The property corresponds to a rare type of a non-Newtonian fluid in rheology which has largely remained unexplored. The material impulse response function from the GS model is found to be similar to the power-law memory kernel which is inherent in the framework of fractional calculus. The compressional wave equation and the shear wave equation derived from the GS model are shown to take the form of the Kelvin-Voigt fractional-derivative wave equation and the fractional diffusion-wave equation, respectively. Therefore, an analogy is drawn between the dispersion relations obtained from the fractional framework and those from the GS model to establish the equivalence of the respective wave equations. Further, a physical interpretation of the characteristic fractional order present in the wave equations is inferred from the GS model. The overall goal is to show that fractional calculus is not just a mathematical framework which can be used to curve-fit the complex behavior of materials. Rather, it can also be derived from real physical processes as illustrated in this work by the example of GS.
A cumulative shear mechanism for tissue injury initiation in shock-wave lithotripsy
NASA Astrophysics Data System (ADS)
Freund, Jonathan
2007-11-01
Considerable injury to renal tissue often accompanies treatment when shocks waves are delivered to break up kidney stones. The most severe injuries seem to involve cavitation damage, driven by the expansive portion of the lithotripor's wave. However, data from animal studies indicate that inverted shock waves, which should preclude cavitation, still cause local injury near the tip of the renal papilla, which seems particularly susceptible to injury in general. We develop a model of papilla tissue, which consists mostly of parallel fluid filled elastic 10 to 30μm diameter tubules, to assess whether or not the shear of repeated shocks can accumulate to cause injury. Material properties are estimated from reported measurements of renal basement membranes. A Stokes-flow boundary integral algorithm is used to estimate the net viscoelastic properties of the tissue. It is predicted that the particular microstructure of the tissue near the tip of the papilla is indeed susceptible to shear accumulation as consistent with several observations.
Analytical and numerical modeling of non-collinear shear wave mixing at an imperfect interface
NASA Astrophysics Data System (ADS)
Zhang, Ziyin; Nagy, Peter B.; Hassan, Waled
2016-02-01
Non-collinear shear wave mixing at an imperfect interface between two solids can be exploited for nonlinear ultrasonic assessment of bond quality. In this study we developed two analytical models for nonlinear imperfect interfaces. The first model uses a finite nonlinear interfacial stiffness representation of an imperfect interface of vanishing thickness, while the second model relies on a thin nonlinear interphase layer to represent an imperfect interface region. The second model is actually a derivative of the first model obtained by calculating the equivalent interfacial stiffness of a thin isotropic nonlinear interphase layer in the quasi-static approximation. The predictions of both analytical models were numerically verified by comparison to COMSOL finite element simulations. These models can accurately predict the excess nonlinearity caused by interface imperfections based on the strength of the reflected and transmitted mixed longitudinal waves produced by them under non-collinear shear wave interrogation.
Ultrasonic Backscatter Imaging by Shear-Wave-Induced Echo Phase Encoding of Target Locations
McAleavey, Stephen
2011-01-01
We present a novel method for ultrasound backscatter image formation wherein lateral resolution of the target is obtained by using traveling shear waves to encode the lateral position of targets in the phase of the received echo. We demonstrate that the phase modulation as a function of shear wavenumber can be expressed in terms of a Fourier transform of the lateral component of the target echogenicity. The inverse transform, obtained by measurements of the phase modulation over a range of shear wave spatial frequencies, yields the lateral scatterer distribution. Range data are recovered from time of flight as in conventional ultrasound, yielding a B-mode-like image. In contrast to conventional ultrasound imaging, where mechanical or electronic focusing is used and lateral resolution is determined by aperture size and wavelength, we demonstrate that lateral resolution using the proposed method is independent of the properties of the aperture. Lateral resolution of the target is achieved using a stationary, unfocused, single-element transducer. We present simulated images of targets of uniform and non-uniform shear modulus. Compounding for speckle reduction is demonstrated. Finally, we demonstrate image formation with an unfocused transducer in gelatin phantoms of uniform shear modulus. PMID:21244978
A Frequency-Shift Method to Measure Shear-Wave Attenuation in Soft Tissues.
Bernard, Simon; Kazemirad, Siavash; Cloutier, Guy
2017-03-01
In vivo quantification of shear-wave attenuation in soft tissues may help to better understand human tissue rheology and lead to new diagnostic strategies. Attenuation is difficult to measure in acoustic radiation force elastography because the shear-wave amplitude decreases due to a combination of diffraction and viscous attenuation. Diffraction correction requires assuming a cylindrical wavefront and an isotropic propagation medium, which may not be the case in some applications. In this paper, the frequency-shift method, used in ultrasound imaging and seismology, was adapted for shear-wave attenuation measurement in elastography. This method is not sensitive to diffraction effects. For a linear frequency dependence of the attenuation, a closed-form relation was obtained between the decrease in the peak frequency of the gamma-distributed wave amplitude spectrum and the attenuation coefficient of the propagation medium. The proposed method was tested against a plane-wave reference method in homogeneous agar-gelatin phantoms with 0%, 10%, and 20% oil concentrations, and hence different attenuations of 0.117, 0.202, and 0.292 [Formula: see text]/Hz, respectively. Applicability to biological tissues was demonstrated with two ex vivo porcine liver samples (0.79 and 1.35 [Formula: see text]/Hz) and an in vivo human muscle, measured along (0.43 [Formula: see text]/Hz) and across (1.77 [Formula: see text]/Hz) the tissue fibers. In all cases, the data supported the assumptions of a gamma-distributed spectrum for the source and linear frequency attenuation for the tissue. This method provides tissue attenuation, which is relevant diagnostic information to model viscosity, in addition to shear-wave velocity used to assess elasticity. Data processing is simple and could be performed automatically in real time for clinical applications.
Kim, Hoe Woong; Lee, Joo Kyung; Kim, Yoon Young
2013-02-01
Several investigations report effective uses of magnetostrictive patch transducers to generate and measure longitudinal and torsional guided waves in a pipe. They can be used to form a phased array for the circumferential inspection of pipes. Although there are circumferential phased arrays employing piezoelectric transducers or EMAT's, no magnetostrictive patch transducer based array system has been attempted. In this investigation, we aim to develop a circumferential phased magnetostrictive patch transducer (PMPT) array that can focus shear-horizontal waves at any target point on a cylindrical surface of a pipe. For the development, a specific configuration of a PMPT array employing six magnetostrictive patch transducers is proposed. A wave simulation model is also developed to determine time delays and amplitudes of signals generated by the transducers of the array. This model should be able to predict accurately the angular profiles of shear-horizontal waves generated by the transducers. For wave focusing, the time reversal idea will be utilized. The wave focusing ability of the developed PMPT array is tested with multiple-crack detection experiments. Imaging of localized surface inspection regions is also attempted by using wave signals measured by the developed PMPT array system.
Stability of steady rotational water-waves of finite amplitude on arbitrary shear currents
NASA Astrophysics Data System (ADS)
Seez, William; Abid, Malek; Kharif, Christian
2016-04-01
A versatile solver for the two-dimensional Euler equations with an unknown free-surface has been developed. This code offers the possibility to calculate two-dimensional, steady rotational water-waves of finite amplitude on an arbitrary shear current. Written in PYTHON the code incorporates both pseudo-spectral and finite-difference methods in the discretisation of the equations and thus allows the user to capture waves with large steepnesses. As such it has been possible to establish that, in a counter-flowing situation, the existence of wave solutions is not guaranteed and depends on a pair of parameters representing mass flux and vorticity. This result was predicted, for linear solutions, by Constantin. Furthermore, experimental comparisons, both with and without vorticity, have proven the precision of this code. Finally, waves propagating on top of highly realistic shear currents (exponential profiles under the surface) have been calculated following current profiles such as those used by Nwogu. In addition, a stability analysis routine has been developed to study the stability regimes of base waves calculated with the two-dimensional code. This linear stability analysis is based on three dimensional perturbations of the steady situation which lead to a generalised eigenvalue problem. Common instabilities of the first and second class have been detected, while a third class of wave-instability appears due to the presence of strong vorticity. {1} Adrian Constantin and Walter Strauss. {Exact steady periodic water waves with vorticity}. Communications on Pure and Applied Mathematics, 57(4):481-527, April 2004. Okey G. Nwogu. {Interaction of finite-amplitude waves with vertically sheared current fields}. Journal of Fluid Mechanics, 627:179, May 2009.
The radiation of sound by the instability waves of a compressible plane turbulent shear layer
NASA Technical Reports Server (NTRS)
Tam, C. K. W.; Morris, P. J.
1980-01-01
The problem of acoustic radiation generated by instability waves of a compressible plane turbulent shear layer is solved. The solution provided is valid up to the acoustic far-field region. It represents a significant improvement over the solution obtained by classical hydrodynamic-stability theory which is essentially a local solution with the acoustic radiation suppressed. The basic instability-wave solution which is valid in the shear layer and the near-field region is constructed in terms of an asymptotic expansion using the method of multiple scales. This solution accounts for the effects of the slightly divergent mean flow. It is shown that the multiple-scales asymptotic expansion is not uniformly valid far from the shear layer. Continuation of this solution into the entire upper half-plane is described. The extended solution enables the near- and far-field pressure fluctuations associated with the instability wave to be determined. Numerical results show that the directivity pattern of acoustic radiation into the stationary medium peaks at 20 degrees to the axis of the shear layer in the downstream direction for supersonic flows. This agrees qualitatively with the observed noise-directivity patterns of supersonic jets.
Mantle shear-wave tomography and the fate of subducted slabs.
Grand, Steven P
2002-11-15
A new seismic model of the three-dimensional variation in shear velocity throughout the Earth's mantle is presented. The model is derived entirely from shear bodywave travel times. Multibounce shear waves, core-reflected waves and SKS and SKKS waves that travel through the core are used in the analysis. A unique aspect of the dataset used in this study is the use of bodywaves that turn at shallow depths in the mantle, some of which are triplicated. The new model is compared with other global shear models. Although competing models show significant variations, several large-scale structures are common to most of the models. The high-velocity anomalies are mostly associated with subduction zones. In some regions the anomalies only extend into the shallow lower mantle, whereas in other regions tabular high-velocity structures seem to extend to the deepest mantle. The base of the mantle shows long-wavelength high-velocity zones also associated with subduction zones. The heterogeneity seen in global tomography models is difficult to interpret in terms of mantle flow due to variations in structure from one subduction zone to another. The simplest interpretation of the seismic images is that slabs in general penetrate to the deepest mantle, although the flow is likely to be sporadic. The interruption in slab sinking is likely to be associated with the 660 km discontinuity.
Greenwood, Margaret S; Adamson, Justus D; Bond, Leonard J
2006-12-22
We have developed an on-line computer-controlled sensor, based on ultrasound reflection measurements, to determine the product of the viscosity and density of a liquid or slurry for Newtonian fluids and the shear impedance of the liquid for non-Newtonian fluids. A 14 MHz shear wave transducer is bonded to one side of a 45-90 degrees fused silica wedge and the base is in contract with the liquid. Twenty-eight echoes were observed due to the multiple reflections of an ultrasonic shear horizontal (SH) wave within the wedge. The fast Fourier transform of each echo was obtained for a liquid and for water, which serves as the calibration fluid, and the reflection coefficient at the solid-liquid interface was obtained. Data were obtained for 11 sugar water solutions ranging in concentration from 10% to 66% by weight. The viscosity values are shown to be in good agreement with those obtained independently using a laboratory viscometer. The data acquisition time is 14s and this can be reduced by judicious selection of the echoes for determining the reflection coefficient. The measurement of the density results in a determination of the viscosity for Newtonian fluids or the shear wave velocity for non-Newtonian fluids. The sensor can be deployed for process control in a pipeline, with the base of the wedge as part of the pipeline wall, or immersed in a tank.
Coupling of the Okuda-Dawson model with a shear current-driven wave and the associated instability
NASA Astrophysics Data System (ADS)
Masood, W.; Saleem, H.; Saleem
2013-12-01
It is pointed out that the Okuda-Dawson mode can couple with the newly proposed current-driven wave. It is also shown that the Shukla-Varma mode can couple with these waves if the density inhomogeneity is taken into account in a plasma containing stationary dust particles. A comparison of several low-frequency electrostatic waves and instabilities driven by shear current and shear plasma flow in an electron-ion plasma with and without stationary dust is also presented.
Scattering of antiplane shear waves by layered circular elastic cylinder.
Cai, Liang-Wu
2004-02-01
An exact analytical solution for the scattering of antiplane elastic waves by a layered elastic circular cylinder is obtained. The solution and its degenerate cases are compared with other simpler models of circular cylindrical scatterers. The effects of the geometrical and physical properties of the interphase are studied. Numerical results confirm the existence of a resonance mode in which the scatterer's core undergoes a rigid-body motion when the outer layer of the scatterer is very compliant. This resonance mode has been attributed [Liu et al., Science 289, 1734 (2000)] to a new mechanism for the band gap formed in the extremely low frequency range for phononic crystals made of layered spherical scatterers. Numerical results also show the existence of a similar resonance mode when the outer layer of the scatterer has very high mass density.
Kinetic theory for electrostatic waves due to transverse velocity shears
NASA Technical Reports Server (NTRS)
Ganguli, G.; Lee, Y. C.; Palmadesso, P. J.
1988-01-01
A kinetic theory in the form of an integral equation is provided to study the electrostatic oscillations in a collisionless plasma immersed in a uniform magnetic field and a nonuniform transverse electric field. In the low temperature limit the dispersion differential equation is recovered for the transverse Kelvin-Helmholtz modes for arbitrary values of K parallel, where K parallel is the component of the wave vector in the direction of the external magnetic field assumed in the z direction. For higher temperatures the ion-cyclotron-like modes described earlier in the literature by Ganguli, Lee and Plamadesso are recovered. In this article, the integral equation is reduced to a second-order differential equation and a study is made of the kinetic Kelvin-Helmholtz and ion-cyclotron-like modes that constitute the two branches of oscillation in a magnetized plasma including a transverse inhomogeneous dc electric field.
NASA Astrophysics Data System (ADS)
Rios, Celia; Dahm, Torsten; Jegen, Marion
2010-05-01
Seafloor compliance is the transfer function between pressure and vertical displacement at the seafloor Infragravity waves in the oceanic layer have long periods in the range of 30 - 500 s and obey a simple frequency-wavenumber relation. Seafloor compliance from infragravity waves can be analyzed with single station recordings to determinate sub-seafloor shear wave velocities. Previous studies in the Pacific Ocean have demonstrated that reliable near-surface shear wave profiles can be derived from infragravity wave compliance. However, these studies indicate that, beside the water depth the compliance measurements are limited by instrument sensitivity, calibration uncertainties and possibly other effects. In this work seafloor compliance and infragravity waves are observed at two different locations in the Atlantic Ocean: the Logatchev hydrothermal field at the Mid Atlantic Ridge and the Azores (Sao Miguel Island). The data was acquired with the broadband ocean compliance station developed at the University of Hamburg as well as ocean station from the German instrument pool for amphibian seismology (DEPAS) equipped with broadband seismometers and pressure sensors. Vertical velocity and pressure data were used to calculate power spectral densities and normalized compliance along two profiles (one in each location). Power spectral densities show a dominant peak at low frequencies (0.01-0.035Hz) limited by the expected cut-off frequency, which is dependent on the water depth at each station. The peak has been interpreted as a strong infragravity wave with values between 10-14 and 10-11 (m/s2)2/Hz and 104 and 106 (Pa2)2/Hz for acceleration and pressure respectively. The results show compliance values between 10-10 and 10-8 1/Pa and its estimations take into account the coherence between seismic and pressure signals in order to confirm that the seismic signals in the infragravity waves are caused by pressure sources. Shear wave velocity models, with depth resolution
Generalized concept of shear horizontal acoustic plate mode and Love wave sensors
NASA Astrophysics Data System (ADS)
McHale, Glen
2003-11-01
An approach to mass and liquid sensitivity for both the phase velocity and insertion loss of shear mode acoustic wave sensors based on the dispersion equations for layered systems is outlined. The approach is sufficiently general to allow for viscoelastic guiding layers. An equation for the phase velocity and insertion loss sensitivities is given which depends on the slope of the complex phase velocity dispersion curves. This equation contains the equivalent of the Sauerbrey and Kanazawa equations for loading of a quartz crystal microbalance by rigid mass and Newtonian liquids, respectively, and also describes surface loading by viscoelastic layers. The theoretical approach can be applied to a four-layer system, with any of the four layers being viscoelastic, so that mass deposition from a liquid can also be modelled. The theoretical dispersion equation based approach to layer-guided shear horizontal acoustic wave modes on finite substrates presented in this work provides a unified view of Love wave and shear horizontal acoustic plate mode (SH-APM) devices, which have been generally regarded as distinct in sensor research. It is argued that SH-APMs with guiding layers possessing shear acoustic speeds lower than that of the substrate and Love waves are two branches of solution of the same dispersion equation. The layer guided SH-APMs have a phase velocity higher than that of the substrate and the Love waves a phase velocity lower than that of the substrate. Higher-order Love wave modes are continuations of the layer-guided SH-APMs. The generalized concept of SH-APMs and Love waves provides a basis for understanding the change in sensitivity with higher-frequency operation and the relationship between multiple modes in Love wave sensors. It also explains why a relatively thick layer of a high-loss polymer can be used as a waveguide layer and so extends the range of materials that can be considered experimentally. Moreover, it is predicted that a new type of sensor, a
Transmission, attenuation and reflection of shear waves in the human brain.
Clayton, Erik H; Genin, Guy M; Bayly, Philip V
2012-11-07
Traumatic brain injuries (TBIs) are caused by acceleration of the skull or exposure to explosive blast, but the processes by which mechanical loads lead to neurological injury remain poorly understood. We adapted motion-sensitive magnetic resonance imaging methods to measure the motion of the human brain in vivo as the skull was exposed to harmonic pressure excitation (45, 60 and 80 Hz). We analysed displacement fields to quantify the transmission, attenuation and reflection of distortional (shear) waves as well as viscoelastic material properties. Results suggest that internal membranes, such as the falx cerebri and the tentorium cerebelli, play a key role in reflecting and focusing shear waves within the brain. The skull acts as a low-pass filter over the range of frequencies studied. Transmissibility of pressure waves through the skull decreases and shear wave attenuation increases with increasing frequency. The skull and brain function mechanically as an integral structure that insulates internal anatomic features; these results are valuable for building and validating mathematical models of this complex and important structural system.
NASA Astrophysics Data System (ADS)
Lorenzo, J. M.; Goff, D.; Hayashi, K.
2015-12-01
Unconsolidated Holocene deltaic sediments comprise levee foundation soils in New Orleans, USA. Whereas geotechnical tests at point locations are indispensable for evaluating soil stability, the highly variable sedimentary facies of the Mississippi delta create difficulties to predict soil conditions between test locations. Combined electrical resistivity and seismic shear wave studies, calibrated to geotechnical data, may provide an efficient methodology to predict soil types between geotechnical sites at shallow depths (0- 10 m). The London Avenue Canal levee flank of New Orleans, which failed in the aftermath of Hurricane Katrina, 2005, presents a suitable site in which to pioneer these geophysical relationships. Preliminary cross-plots show electrically resistive, high-shear-wave velocity areas interpreted as low-permeability, resistive silt. In brackish coastal environments, low-resistivity and low-shear-wave-velocity areas may indicate both saturated, unconsolidated sands and low-rigidity clays. Via a polynomial approximation, soil sub-types of sand, silt and clay can be estimated by a cross-plot of S-wave velocity and resistivity. We confirm that existent boring log data fit reasonably well with the polynomial approximation where 2/3 of soil samples fall within their respective bounds—this approach represents a new classification system that could be used for other mid-latitude, fine-grained deltas.
Deep Mantle Large Low Shear-Wave Velocity Provinces: Principally Thermal Structures?
NASA Astrophysics Data System (ADS)
Davies, R.; Goes, S. D. B.
2014-12-01
The two large low shear-wave velocity provinces (LLSVPs) that dominate lower-mantle structure may hold key information on Earth's thermal and chemical evolution. It is generally accepted that these provinces are hotter than background mantle and are likely the main source of mantle plumes. Increasingly, it is also proposed that they hold a dense (primitive and/or recycled) compositional component. The principle evidence that LLSVPs may represent thermo-chemical `piles' comes from seismic constraints, including: (i) their long-wavelength nature; (ii) sharp gradients in shear-wave velocity at their margins; (iii) non-Gaussian distributions of deep mantle shear-wave velocity anomalies; (iv) anti-correlated shear-wave and bulk-sound velocity anomalies (and elevated ratios between shear- and compressional-wave velocity anomalies); (v) anti-correlated shear-wave and density anomalies; and (vi) 1-D/radial profiles of seismic velocity that deviate from those expected for an isochemical, well-mixed mantle. In addition, it has been proposed that hotspots and the reconstructed eruption sites of large igneous provinces correlate in location with LLSVP margins. Here, we review recent results, which indicate that the majority of these constraints do not require thermo-chemical piles: they are equally well (or poorly) explained by thermal heterogeneity alone. Our analyses and conclusions are largely based on comparisons between imaged seismic structure and synthetic seismic structures from a set of thermal and thermo-chemical mantle convection models, which are constrained by 300 Myr of plate motion histories. Modelled physical structure (temperature, pressure and composition) is converted into seismic velocities via a thermodynamic approach that accounts for elastic, anelastic and phase contributions and, subsequently, a tomographic resolution filter is applied to account for the damping and geographic bias inherent to seismic imaging. Our results indicate that, in terms of
Jugé, Lauriane; Petiet, Anne; Lambert, Simon A; Nicole, Pascal; Chatelin, Simon; Vilgrain, Valerie; Van Beers, Bernard E; Bilston, Lynne E; Sinkus, Ralph
2015-12-01
Magnetic Resonance Elastography (MRE) uses macroscopic shear wave propagation to quantify mechanical properties of soft tissues. Micro-obstacles are capable of affecting the macroscopic dispersion properties of shear waves. Since disease or therapy can change the mechanical integrity and organization of vascular structures, MRE should be able to sense these changes if blood vessels represent a source for wave scattering. To verify this, MRE was performed to quantify alteration of the shear wave speed cs due to the presence of vascular outgrowths using an aortic ring model. Eighteen fragments of rat aorta included in a Matrigel matrix (n=6 without outgrowths, n=6 with a radial outgrowth extent of ~600 µm and n=6 with ~850 µm) were imaged using a 7 Tesla MR scanner (Bruker, PharmaScan). High resolution anatomical images were acquired in addition to multi-frequency MRE (ν = 100, 115, 125, 135 and 150 Hz). Average cs was measured within a ring of ~900 µm thickness encompassing the aorta and were normalized to cs0 of the corresponding Matrigel. The frequency dependence was fit to the power law model cs ~ν(y). After scanning, optical microscopy was performed to visualize outgrowths. Results demonstrated that in presence of vascular outgrowths (1) normalized cs significantly increased for the three highest frequencies (Kruskal-Wallis test, P = 0.0002 at 125 Hz and P = 0.002 at 135 Hz and P = 0.003 at 150 Hz) but not for the two lowest (Kruskal-Wallis test, P = 0.63 at 100 Hz and P = 0.87 at 115 Hz), and (2) normalized cs followed a power law behavior not seen in absence of vascular outgrowths (ANOVA test, P < 0.0001). These results showed that vascular outgrowths acted as micro-obstacles altering the dispersion relationships of propagating shear waves and that MRE could provide valuable information about microvascular changes.
NASA Astrophysics Data System (ADS)
Pratt, Martin J.; Wysession, Michael E.; Aleqabi, Ghassan; Wiens, Douglas A.; Nyblade, Andrew A.; Shore, Patrick; Rambolamanana, Gérard; Andriampenomanana, Fenitra; Rakotondraibe, Tsiriandrimanana; Tucker, Robert D.; Barruol, Guilhem; Rindraharisaona, Elisa
2017-01-01
The crust and upper mantle of the Madagascar continental fragment remained largely unexplored until a series of recent broadband seismic experiments. An island-wide deployment of broadband seismic instruments has allowed the first study of phase velocity variations, derived from surface waves, across the entire island. Late Cenozoic alkaline intraplate volcanism has occurred in three separate regions of Madagascar (north, central and southwest), with the north and central volcanism active until <1 Ma, but the sources of which remains uncertain. Combined analysis of three complementary surface wave methods (ambient noise, Rayleigh wave cross-correlations, and two-plane-wave) illuminate the upper mantle down to depths of 150 km. The phase-velocity measurements from the three methods for periods of 8-182 s are combined at each node and interpolated to generate the first 3-D shear-velocity model for sub-Madagascar velocity structure. Shallow (upper 10 km) low-shear-velocity regions correlate well with sedimentary basins along the west coast. Upper mantle low-shear-velocity zones that extend to at least 150 km deep underlie the north and central regions of recent alkali magmatism. These anomalies appear distinct at depths <100 km, suggesting that any connection between the zones lies at depths greater than the resolution of surface-wave tomography. An additional low-shear velocity anomaly is also identified at depths 50-150 km beneath the southwest region of intraplate volcanism. We interpret these three low-velocity regions as upwelling asthenosphere beneath the island, producing high-elevation topography and relatively low-volume magmatism.
NASA Astrophysics Data System (ADS)
Brum, J.; Bernal, M.; Gennisson, J. L.; Tanter, M.
2014-02-01
Non-invasive evaluation of the Achilles tendon elastic properties may enhance diagnosis of tendon injury and the assessment of recovery treatments. Shear wave elastography has shown to be a powerful tool to estimate tissue mechanical properties. However, its applicability to quantitatively evaluate tendon stiffness is limited by the understanding of the physics on the shear wave propagation in such a complex medium. First, tendon tissue is transverse isotropic. Second, tendons are characterized by a marked stiffness in the 400 to 1300 kPa range (i.e. fast shear waves). Hence, the shear wavelengths are greater than the tendon thickness leading to guided wave propagation. Thus, to better understand shear wave propagation in tendons and consequently to properly estimate its mechanical properties, a dispersion analysis is required. In this study, shear wave velocity dispersion was measured in vivo in ten Achilles tendons parallel and perpendicular to the tendon fibre orientation. By modelling the tendon as a transverse isotropic viscoelastic plate immersed in fluid it was possible to fully describe the experimental data (deviation<1.4%). We show that parallel to fibres the shear wave velocity dispersion is not influenced by viscosity, while it is perpendicularly to fibres. Elasticity (found to be in the range from 473 to 1537 kPa) and viscosity (found to be in the range from 1.7 to 4 Pa.s) values were retrieved from the model in good agreement with reported results.
Observation of fast-ion Doppler-shifted cyclotron resonance with shear Alfven waves
Zhang Yang; Heidbrink, W. W.; Boehmer, H.; McWilliams, R.; Vincena, S.; Carter, T. A.; Gekelman, W.; Leneman, D.; Pribyl, P.
2008-10-15
The Doppler-shifted cyclotron resonance ({omega}-k{sub z}v{sub z}={omega}{sub f}) between fast ions and shear Alfven waves is experimentally investigated ({omega}, wave frequency; k{sub z}, axial wavenumber; v{sub z}, fast-ion axial speed; {omega}{sub f}, fast-ion cyclotron frequency). A test particle beam of fast ions is launched by a Li{sup +} source in the helium plasma of the LArge Plasma Device (LAPD) [W. Gekelman, H. Pfister, Z. Lucky, J. Bamber, D. Leneman, and J. Maggs, Rev. Sci. Instrum. 62, 2875 (1991)], with shear Alfven waves (SAW) (amplitude {delta} B/B up to 1%) launched by a loop antenna. A collimated fast-ion energy analyzer measures the nonclassical spreading of the beam, which is proportional to the resonance with the wave. A resonance spectrum is observed by launching SAWs at 0.3-0.8{omega}{sub ci}. Both the magnitude and frequency dependence of the beam-spreading are in agreement with the theoretical prediction using a Monte Carlo Lorentz code that launches fast ions with an initial spread in real/velocity space and random phases relative to the wave. Measured wave magnetic field data are used in the simulation.
NASA Astrophysics Data System (ADS)
Kayen, R.; Carkin, B.; Minasian, D.
2006-12-01
Strong motion recording (SMR) networks often have little or no shear wave velocity measurements at stations where characterization of site amplification and site period effects is needed. Using the active Spectral Analysis of Surface Waves (SASW) method, and passive H/V microtremor method we have investigated nearly two hundred SMR sites in California, Alaska, Japan, Australia, China and Taiwan. We are conducting these studies, in part, to develop a new hybridized method of site characterization that utilizes a parallel array of harmonic-wave sources for active-source SASW, and a single long period seismometer for passive-source microtremor measurement. Surface wave methods excel in their ability to non-invasively and rapidly characterize the variation of ground stiffness properties with depth below the surface. These methods are lightweight, inexpensive to deploy, and time-efficient. They have been shown to produce accurate and deep soil stiffness profiles. By placing and wiring shakers in a large parallel circuit, either side-by-side on the ground or in a trailer-mounted array, a strong in-phase harmonic wave can be produced. The effect of arraying many sources in parallel is to increase the amplitude of waves received at far-away spaced seismometers at low frequencies so as to extend the longest wavelengths of the captured dispersion curve. The USGS system for profiling uses this concept by arraying between two and eight electro-mechanical harmonic-wave shakers. With large parallel arrays of vibrators, a dynamic force in excess of 1000 lb can be produced to vibrate the ground and produce surface waves. We adjust the harmonic wave through a swept-sine procedure to profile surface wave dispersion down to a frequency of 1 Hz and out to surface wave-wavelengths of 200-1000 meters, depending on the site stiffness. The parallel-array SASW procedure is augmented using H/V microtremor data collected with the active source turned off. Passive array microtremor data
Experimental verification of nanofluid shear-wave reconversion in ultrasonic fields
NASA Astrophysics Data System (ADS)
Forrester, Derek Michael; Huang, Jinrui; Pinfield, Valerie J.; Luppé, Francine
2016-03-01
Here we present the verification of shear-mediated contributions to multiple scattering of ultrasound in suspensions. Acoustic spectroscopy was carried out with suspensions of silica of differing particle sizes and concentrations in water to find the attenuation at a broad range of frequencies. As the particle sizes approach the nanoscale, commonly used multiple scattering models fail to match experimental results. We develop a new model, taking into account shear mediated contributions, and find excellent agreement with the attenuation spectra obtained using two types of spectrometer. The results determine that shear-wave phenomena must be considered in ultrasound characterisation of nanofluids at even relatively low concentrations of scatterers that are smaller than one micrometre in diameter.
Experimental verification of nanofluid shear-wave reconversion in ultrasonic fields.
Forrester, Derek Michael; Huang, Jinrui; Pinfield, Valerie J; Luppé, Francine
2016-03-14
Here we present the verification of shear-mediated contributions to multiple scattering of ultrasound in suspensions. Acoustic spectroscopy was carried out with suspensions of silica of differing particle sizes and concentrations in water to find the attenuation at a broad range of frequencies. As the particle sizes approach the nanoscale, commonly used multiple scattering models fail to match experimental results. We develop a new model, taking into account shear mediated contributions, and find excellent agreement with the attenuation spectra obtained using two types of spectrometer. The results determine that shear-wave phenomena must be considered in ultrasound characterisation of nanofluids at even relatively low concentrations of scatterers that are smaller than one micrometre in diameter.
Chao, Pei-Yu; Li, Pai-Chi
2016-08-22
The high imaging resolution and motion sensitivity of optical-based shear wave detection has made it an attractive technique in biomechanics studies with potential for improving the capabilities of shear wave elasticity imaging. In this study we implemented laser speckle contrast imaging for two-dimensional (X-Z) tracking of transient shear wave propagation in agarose phantoms. The mechanical disturbances induced by the propagation of the shear wave caused temporal and spatial fluctuations in the local speckle pattern, which manifested as local blurring. By mechanically moving the sample in the third dimension (Y), and performing two-dimensional shear wave imaging at every scan position, the three-dimensional shear wave velocity distribution of the phantom could be reconstructed. Based on comparisons with the reference shear wave velocity measurements obtained using a commercial ultrasound shear wave imaging system, the developed system can estimate the shear wave velocity with an error of less than 6% for homogeneous phantoms with shear moduli ranging from 1.52 kPa to 7.99 kPa. The imaging sensitivity of our system makes it capable of measuring small variations in shear modulus; the estimated standard deviation of the shear modulus was found to be less than 0.07 kPa. A submillimeter spatial resolution for three-dimensional shear wave imaging has been achieved, as demonstrated by the ability to detect a 1-mm-thick stiff plate embedded inside heterogeneous agarose phantoms.
Shallow water sediment properties derived from high-frequency shear and interface waves
NASA Astrophysics Data System (ADS)
Ewing, John; Carter, Jerry A.; Sutton, George H.; Barstow, Noel
1992-04-01
Low-frequency sound propagation in shallow water environments is not restricted to the water column but also involves the subbottom. Thus, as well as being important for geophysical description of the seabed, subbottom velocity/attenuation structure is essential input for predictive propagation models. To estimate this structure, bottom-mounted sources and receivers were used to make measurements of shear and compressional wave propagation in shallow water sediments of the continental shelf, usually where boreholes and high-resolution reflection profiles give substantial supporting geologic information about the subsurface. This colocation provides an opportunity to compare seismically determined estimates of physical properties of the seabed with the "ground truth" properties. Measurements were made in 1986 with source/detector offsets up to 200 m producing shear wave velocity versus depth profiles of the upper 30-50 m of the seabed (and P wave profiles to lesser depths). Measurements in 1988 were made with smaller source devices designed to emphasize higher frequencies and recorded by an array of 30 sensors spaced at 1-m intervals to improve spatial sampling and resolution of shallow structure. These investigations with shear waves have shown that significant lateral and vertical variations in the physical properties of the shallow seabed are common and are principally created by erosional and depositional processes associated with glacial cycles and sea level oscillations during the Quaternary. When the seabed structure is relatively uniform over the length of the profiles, the shear wave fields are well ordered, and the matching of the data with full waveform synthetics has been successful, producing velocity/attenuation models consistent with the subsurface lithology indicated by coring results. Both body waves and interface waves have been modeled for velocity/attenuation as a function of depth with the aid of synthetic seismograms and other analytical
NASA Astrophysics Data System (ADS)
O'Donnell, J. P.; Adams, A.; Nyblade, A. A.; Mulibo, G. D.; Tugume, F.
2013-08-01
An expanded model of the 3-D shear wave velocity structure of the uppermost mantle beneath eastern Africa has been developed using earthquakes recorded by the AfricaArray East African Seismic Experiment in conjunction with data from permanent stations and previously deployed temporary stations. The combined data set comprises 331 earthquakes recorded on a total of 95 seismic stations spanning Kenya, Uganda, Tanzania, Zambia and Malawi. In this study, data from 149 earthquakes were used to determine fundamental-mode Rayleigh wave phase velocities at periods ranging from 20 to 182 s using the two-plane wave method, and then combined with the similarly processed published measurements and inverted for a 3-D shear wave velocity model of the uppermost mantle. New features in the model include (1) a low-velocity region in western Zambia, (2) a high-velocity region in eastern Zambia, (3) a low-velocity region in eastern Tanzania and (4) low-velocity regions beneath the Lake Malawi rift. When considered in conjunction with mapped seismicity, these results support a secondary western rift branch striking southwestwards from Lake Tanganyika, likely exploiting the relatively weak lithosphere of the southern Kibaran Belt between the Bangweulu Block and the Congo Craton. We estimate a lithospheric thickness of ˜150-200 km for the substantial fast shear wave anomaly imaged in eastern Zambia, which may be a southward subsurface extension of the Bangweulu Block. The low-velocity region in eastern Tanzania suggests that the eastern rift branch trends southeastwards offshore eastern Tanzania coincident with the purported location of the northern margin of the proposed Ruvuma microplate. Pronounced velocity lows along the Lake Malawi rift are found beneath the northern and southern ends of the lake, but not beneath the central portion of the lake.
The limits of ray theory when measuring shear wave splitting in the lowermost mantle with ScS waves
NASA Astrophysics Data System (ADS)
Nowacki, Andy; Wookey, James
2016-12-01
Observations of shear wave splitting provide unambiguous evidence of the presence of anisotropy in the Earth's lowermost mantle, a region known as D″. Much recent work has attempted to use these observations to place constraints on strain above the core-mantle boundary (CMB), as this may help map flow throughout the mantle. Previously, this interpretation has relied on the assumption that waves can be modelled as infinite-frequency rays, or that the Earth is radially symmetric. Due to computational constraints it has not been possible to test these approximations until now. We use fully 3-D, generally anisotropic simulations of ScS waves at the frequencies of the observations to show that ray methods are sometimes inadequate to interpret the signals seen. We test simple, uniform models, and for a D″ layer as thin as 50 km, significant splitting may be produced, and we find that recovered fast orientations usually reflect the imposed fast orientation above the CMB. Ray theory in these cases provides useful results, though there are occasional, notable differences between forward methods. Isotropic models do not generate apparent splitting. We also test more complex models, including ones based on our current understanding of mineral plasticity and elasticity in D″. The results show that variations of anisotropy over even several hundred kilometres cause the ray-theoretical and finite-frequency calculations to differ greatly. Importantly, models with extreme mineral alignment in D″ yield splitting times not dissimilar to observations (δt ≤ 3 s), suggesting that anisotropy in the lowermost mantle is probably much stronger than previously thought-potentially ˜10 per cent shear wave anisotropy or more. We show that if the base of the mantle is as complicated as we believe, future studies of lowermost mantle anisotropy will have to incorporate finite-frequency effects to fully interpret observations of shear wave splitting.
NASA Astrophysics Data System (ADS)
Papadopoulos, K.; Eliasson, B.; Shao, X.; Labenski, J.; Chang, C.
2011-12-01
A new concept of generating ionospheric currents in the ULF/ELF range with modulated HF heating using ground-based transmitters even in the absence of electrojet currents is presented. The new concept relies on using HF heating of the F-region to modulate the electron temperature and has been given the name Ionospheric Current Drive (ICD). In ICD, the pressure gradient associated with anomalous or collisional F-region electron heating drives a local diamagnetic current that acts as an antenna to inject mainly Magneto-Sonic (MS) waves in the ionospheric plasma. The electric field associated with the MS wave drives Hall currents when it reaches the E region of the ionosphere. The Hall currents act as a secondary antenna that inject waves in the Earth-Ionosphere Waveguide (EIW) below and shear Alfven waves or EMIC waves upwards towards the conjugate regions. The paper presents: (i) Theoretical results using a cold Hall MHD model to study ICD and the generation of ULF/ELF waves by the modulation of the electron pressure at the F2-region with an intense HF electromagnetic wave. The model solves equations governing the dynamics of the shear Alfven and magnetosonic modes, of the damped modes in the diffusive Pedersen layer, and of the weakly damped helicon wave mode in the Hall-dominated E-region. The model incorporates realistic profile of the ionospheric conductivities and magnetic field configuration. We use the model to simulate propagation and dynamics of the low-frequency waves and their injection into the magnetosphere from the HAARP and Arecibo ionospheric heaters. (ii) Proof of principle experiments using the HAARP ionospheric heater in conjunction with measurements by the DEMETER satellite This work is supported by ONR MURI grant and DARPA BRIOCHE Program
Hartzell, S.; Carver, D.; Williams, R.A.; Harmsen, S.; Zerva, A.
2003-01-01
Ground-motion records from a 52-element dense seismic array near San Jose, California, are analyzed to obtain site response, shallow shear-wave velocity, and plane-wave propagation characteristics. The array, located on the eastern side of the Santa Clara Valley south of the San Francisco Bay, is sited over the Evergreen basin, a 7-km-deep depression with Miocene and younger deposits. Site response values below 4 Hz are up to a factor of 2 greater when larger, regional records are included in the analysis, due to strong surface-wave development within the Santa Clara Valley. The pattern of site amplification is the same, however, with local or regional events. Site amplification increases away from the eastern edge of the Santa Clara Valley, reaching a maximum over the western edge of the Evergreen basin, where the pre-Cenozoic basement shallows rapidly. Amplification then decreases further to the west. This pattern may be caused by lower shallow shear-wave velocities and thicker Quaternary deposits further from the edge of the Santa Clara Valley and generation/trapping of surface waves above the shallowing basement of the western Evergreen basin. Shear-wave velocities from the inversion of site response spectra based on smaller, local earthquakes compare well with those obtained independently from our seismic reflection/refraction measurements. Velocities from the inversion of site spectra that include larger, regional records do not compare well with these measurements. A mix of local and regional events, however, is appropriate for determination of site response to be used in seismic hazard evaluation, since large damaging events would excite both body and surface waves with a wide range in ray parameters. Frequency-wavenumber, plane-wave analysis is used to determine the backazimuth and apparent velocity of coherent phases at the array. Conventional, high-resolution, and multiple signal characterization f-k power spectra and stacked slowness power spectra are
NASA Astrophysics Data System (ADS)
Hunt, Julian C. R.; Moustaoui, Mohamed; Mahalov, Alex
2015-09-01
High resolution three-dimensional simulations are presented of the interactions between turbulent shear flows moving with mean relative velocity ΔU below a stably stratified region with buoyancy frequency (N+). An artificial forcing in the simulation, with a similar effect as a small negative eddy viscosity, leads to a steady state flow which models thin interfaces. Characteristic eddies of the turbulence have length scale L. If the bulk Richardson number Rib=(LN+/ΔU)2 lies between lower and upper critical values denoted as Ri∗(<1/5) and R~i(˜ 1), a "detached" layer is formed in the stable region with thickness L+ greater than L, in which rotational fluctuations and inhomogeneous turbulence are induced above an interface with large gradients of density/temperature. Comparisons are made with shear turbulent interfaces with no stratification. When Rib>R~i, vertical propagating waves are generated, with shear stresses carrying significant momentum flux and progressively less as Rib increases. Simulations for a jet and a turbulent mixing layer show similar results. A perturbation analysis, using inhomogeneous Rapid Distortion Theory, models the transition zone between shear eddies below the interface and the fluctuations in the stratified region, consistent with the simulations. It demonstrates how the wave-momentum-flux has a maximum when Rib˜2 and then decreases as Rib increases. This coupling mechanism between eddies and waves, which is neglected in eddy viscosity models for shear layers, can drive flows in the stratosphere and the deeper ocean, with significant consequences for short- and long-term flow phenomena. The "detached layer" is a mechanism that contributes to the formation of stratus clouds and polluted layers above the atmospheric boundary layer.
NASA Astrophysics Data System (ADS)
Ballmer, M. D.; Lekic, V.; Thomas, C.; Schumacher, L.; Ito, G.
2015-12-01
Seismic tomography reveals two antipodal LLSVPs in the Earth's mantle, each extending from the core-mantle boundary (CMB) up to ~1000 km depth. The LLSVPs are thought to host primitive mantle materials that bear witness of early-Earth processes, and/or subducted basalt that has cumulated in the mantle over billions of years. A compositional distinction between the LLSVPs and the ambient mantle is supported by anti-correlation of bulk-sound and shear-wave velocity (Vs) anomalies as well as abrupt lateralgradients in Vs along LLSVP margins. Both of these observations, however, are mainly restricted to the LLSVP bottom domains (2300~2900 km depth). Comparison of seismic observations with mineral-physics data suggests that these bottom domains are more likely to be composed of primitive mantle than of basaltic material. On the other hand, the seismic signature of the LLSVP shallow domains (1000~2300 km depth) is consistent with a basaltic composition, though a purely thermal origin cannot be ruled out. Here, we explore the dynamical, seismological, and geochemical implications of the hypothesis that the LLSVPs are compositionally layered with a primitive bottom domain and a basaltic shallow domain (see Fig.). We test this hypothesis using 2D thermochemical mantle-convection models. Depending on the density difference between primitive and basaltic materials, the materials either mix or remain separate as they join to form thermochemical piles in the deep mantle. Separation of both materials within the piles provides an explanation for LLSVP seismic properties, including substantial internal vertical gradients in Vs observed at 400-700 km height above the CMB. Geodynamic models predict short-lived "secondary" plumelets to rise from the roofs of these compositionally layered piles while entraining basaltic material that has evolved in the lower mantle. Long-lived "primary" plumes rise from LLSVP margins and entrain a mix of materials, including small fractions of
NASA Astrophysics Data System (ADS)
Ballmer, Maxim; Lekic, Vedran; Schumacher, Lina; Ito, Garrett; Thomas, Christine
2016-04-01
Seismic tomography reveals two antipodal LLSVPs in the Earth's mantle, each extending from the core-mantle boundary (CMB) up to ~1000 km depth. The LLSVPs are thought to host primordial mantle materials that bear witness of early-Earth processes, and/or subducted basalt that has accumulated in the mantle over billions of years. A compositional distinction between the LLSVPs and the ambient mantle is supported by anti-correlation of bulk-sound and shear-wave velocity (Vs) anomalies as well as abrupt lateral gradients in Vs along LLSVP margins. Both of these observations, however, are mainly restricted to the LLSVP bottom domains (2300~2900 km depth), or hereinafter referred to as "deep distinct domains" (DDD). Seismic sensitivity calculations suggest that DDDs are more likely to be composed of primordial mantle material than of basaltic material. On the other hand, the seismic signature of LLSVP shallow domains (1000~2300 km depth) is consistent with a basaltic composition, though a purely thermal origin cannot be ruled out. Here, we explore the dynamical, seismological, and geochemical implications of the hypothesis that the LLSVPs are compositionally layered with a primordial bottom domain (or DDD) and a basaltic shallow domain. We test this hypothesis using 2D thermochemical mantle-convection models. Depending on the density difference between primordial and basaltic materials, the materials either mix or remain separate as they join to form thermochemical piles in the deep mantle. Separation of both materials within these piles provides an explanation for LLSVP seismic properties, including substantial internal vertical gradients in Vs observed at 400-700 km height above the CMB, as well as out-of-plane reflections on LLSVP sides over a range of depths. Predicted geometry of thermochemical piles is compared to LLSVP and DDD shapes as constrained by seismic cluster analysis. Geodynamic models predict short-lived "secondary" plumelets to rise from LLSVP roofs and
Blanloeuil, Philippe; Croxford, Anthony J; Meziane, Anissa
2014-04-01
The nonlinear interaction of shear waves with a frictional interface are presented and modeled using simple Coulomb friction. Analytical and finite difference implementations are proposed with both in agreement and showing a unique trend in terms of the generated nonlinearity. A dimensionless parameter ξ is proposed to uniquely quantify the nonlinearity produced. The trends produced in the numerical study are then validated with good agreement experimentally. This is carried out loading an interface between two steel blocks and exciting this interface with different amplitude normal incidence shear waves. The experimental results are in good agreement with the numerical results, suggesting the simple friction model does a reasonable job of capturing the fundamental physics. The resulting approach offers a potential way to characterize a contacting interface; however, the difficulty in activating that interface may ultimately limit its applicability.
NASA Astrophysics Data System (ADS)
Miao, Qingjie; Liu, Xiqiang
2017-03-01
The seismicity in Rushan region of Shandong Province is characterized by small swarms after the ML3.8 Rushan earthquake on October 1, 2013, and this situation continues up to now. Four earthquakes with ML4.7, ML4.5, ML4.1 and ML5.0 occurred from January of 2014 to May of 2015 cause great social effects. Based on the seismic records from the Rushan station, this paper calculated the shear-wave splitting parameters of 224 small earthquakes of Rushan earthquake swarm. The result shows that the polarization direction of the fast shear-wave is consistent with the principal compressive stress direction of the Shandong peninsula; on the other hand, the time delay has obvious change before and after the four earthquakes, that is, it raised about one month and declined about twelve days before earthquake. All the characteristics can be taken as the precursor indicator for earthquake prediction based on stress.
Development of a low frequency omnidirectional piezoelectric shear horizontal wave transducer
NASA Astrophysics Data System (ADS)
Belanger, Pierre; Boivin, Guillaume
2016-04-01
Structural health monitoring (SHM) may offer an alternative to time based maintenance of safety critical components. Ultrasonic guided waves have recently emerged as a prominent option because their propagation carries information regarding the location, severity and types of damage. The fundamental shear horizontal ultrasonic guided wave mode has recently attracted interest in SHM because of its unique properties. This mode is not dispersive and has no attenuation due to fluid loading. In order to cover large areas using an SHM system, omnidirectional transduction is desired. Omnidirectional transduction of SH0 is challenging because of the required torsional surface stress. This paper presents a concept based on the discretisation of a torsional surface stress source using shear piezoelectric trapezoidal elements. Finite element simulation and experimental results are used to demonstrate the performance of this concept. The experimental modal selectivity is 17 dB and the transducer has a true omnidirectional behaviour.
TH-A-207B-00: Shear-Wave Imaging and a QIBA US Biomarker Update.
Carson, Paul
2016-06-01
Imaging of tissue elastic properties is a relatively new and powerful approach to one of the oldest and most important diagnostic tools. Imaging of shear wave speed with ultrasound is has been added to most high-end ultrasound systems. Understanding this exciting imaging mode aiding its most effective use in medicine can be a rewarding effort for medical physicists and other medical imaging and treatment professionals. Assuring consistent, quantitative measurements across the many ultrasound systems in a typical imaging department will constitute a major step toward realizing the great potential of this technique and other quantitative imaging. This session will target these two goals with two presentations. A. Basics and Current Implementations of Ultrasound Imaging of Shear Wave Speed and Elasticity - Shigao Chen, Ph.D. Learning objectives-To understand: 1.
Shear-wave velocity compilation for Northridge strong-motion recording sites
Borcherdt, Roger D.; Fumal, Thomas E.
2002-01-01
Borehole and other geotechnical information collected at the strong-motion recording sites of the Northridge earthquake of January 17, 1994 provide an important new basis for the characterization of local site conditions. These geotechnical data, when combined with analysis of strong-motion recordings, provide an empirical basis to evaluate site coefficients used in current versions of US building codes. Shear-wave-velocity estimates to a depth of 30 meters are derived for 176 strong-motion recording sites. The estimates are based on borehole shear-velocity logs, physical property logs, correlations with physical properties and digital geologic maps. Surface-wave velocity measurements and standard penetration data are compiled as additional constraints. These data as compiled from a variety of databases are presented via GIS maps and corresponding tables to facilitate use by other investigators.
Shear driven electromagnetic drift-waves in a nonuniform dense magnetoplasma
Tariq, Sabeen; Mirza, Arshad M.; Masood, Waqas
2011-08-15
Linear characteristic properties of high- and low-frequency (in comparison with the cyclotron frequency) electromagnetic drift-waves are studied in a nonuniform, dense magnetoplasma (composed of electrons and ions), in the presence of parallel (magnetic field-aligned) velocity shear, by using quantum magnetohydrodynamic model. By applying the drift-approximation (viz., |{partial_derivative} {sub t}|<<{omega}{sub ci}<<{omega}{sub ce}) to the quantum momentum equations, together with the continuity equations and the Poisson equation, we derive the governing equations for electromagnetic drift-waves with the shear flow. These linear equations are then Fourier transformed to obtain the dispersion relation in both high-frequency and low-frequency regimes. The dispersion relations are then discussed under various limiting cases.
Interfacial slip on a transverse-shear mode acoustic wave device
NASA Astrophysics Data System (ADS)
Ellis, Jonathan S.; Hayward, Gordon L.
2003-12-01
This article describes a mathematical relationship between the slip parameter α and the slip length b for a slip boundary condition applied to the transverse-shear model for a quartz-crystal acoustic wave device. The theory presented here reduces empirical determination of slip to a one-parameter fit. It shows that the magnitude and phase of the slip parameter, which describes the relative motion of the surface and liquid in the transverse-shear model, can be linked to the slip length. Furthermore, the magnitude and phase of the slip parameter are shown to depend on one another. An experiment is described to compare the effects of liquid-surface affinity on the resonant properties of a transverse-shear mode wave device by applying different polar and nonpolar liquids to surfaces of different polarity. The theory is validated with slip values determined from the transverse-shear model and compared to slip length values from literature. Agreement with literature values of slip length is within one order of magnitude.
Effects of neutral interactions on velocity-shear-driven plasma waves
Enloe, C. L.; Tejero, E. M.; Amatucci, W. E.; Crabtree, C.; Ganguli, G.; Sotnikov, V.
2014-06-15
In a laboratory experiment, we demonstrate the substantial effects that collisions between charged and neutral particles have on low-frequency (Ω{sub i} ≪ ω ≪ Ω{sub e}) shear-driven electrostatic lower hybrid waves in a plasma. We establish a strong (up to 2.5 kV/m) highly localized electric field with a length scale shorter than the ion gyroradius, so that the ions in the plasma, unlike the electrons, do not develop the full E × B drift velocity. The resulting shear in the particle velocities initiates the electron-ion hybrid (EIH) instability, and we observe the formation of strong waves in the vicinity of the shear with variations in plasma densities of 10% or greater. Our experimental configuration allows us to vary the neutral background density by more than a factor of two while holding the charged particle density effectively constant. Not surprisingly, increasing the neutral density decreases the growth rate/saturation amplitude of the waves and increases the threshold electric field necessary for wave formation, but the presence of neutrals affects the dominant wave frequency as well. We show that a 50% increase in the neutral density decreases the wave frequency by 20% while also suppressing the electric field dependence of the frequency that is observed when fewer neutrals are present. The majority of these effects, as well as the values of the frequencies we observe, closely match the predictions of previously developed linear EIH instability theory, for which we present the results of a numerical solution.
Guo, Min; Abbott, Derek; Lu, Minhua; Liu, Huafeng
2016-03-01
Shear wave propagation speed has been regarded as an attractive indicator for quantitatively measuring the intrinsic mechanical properties of soft tissues. While most existing techniques use acoustic radiation force (ARF) excitation with focal spot region based on linear array transducers, we try to employ a special ARF with a focal line region and apply it to viscoelastic materials to create shear waves. First, a two-dimensional capacitive micromachined ultrasonic transducer with 64 × 128 fully controllable elements is realised and simulated to generate this special ARF. Then three-dimensional finite element models are developed to simulate the resulting shear wave propagation through tissue phantom materials. Three different phantoms are explored in our simulation study using: (a) an isotropic viscoelastic medium, (b) within a cylindrical inclusion, and (c) a transverse isotropic viscoelastic medium. For each phantom, the ARF creates a quasi-plane shear wave which has a preferential propagation direction perpendicular to the focal line excitation. The propagation of the quasi-plane shear wave is investigated and then used to reconstruct shear moduli sequentially after the estimation of shear wave speed. In the phantom with a transverse isotropic viscoelastic medium, the anisotropy results in maximum speed parallel to the fiber direction and minimum speed perpendicular to the fiber direction. The simulation results show that the line excitation extends the displacement field to obtain a large imaging field in comparison with spot excitation, and demonstrate its potential usage in measuring the mechanical properties of anisotropic tissues.
Shear wave induced resonance elastography of venous thrombi: a proof-of-concept.
Schmitt, Cédric; Montagnon, Emmanuel; Henni, Anis Hadj; Qi, Shijie; Cloutier, Guy
2013-03-01
Shear wave induced resonance elastography (SWIRE) is proposed for deep venous thrombosis (DVT) elasticity assessment. This new imaging technique takes advantage of properly polarized shear waves to induce resonance of a confined mechanical heterogeneity. Realistic phantoms (n = 9) of DVT total and partial clot occlusions with elasticities from 406 to 3561 Pa were built for in vitro experiments. An ex vivo study was also performed to evaluate the elasticity of two fresh porcine venous thrombi in a pig model. Transient shear waves at 45-205 Hz were generated by the vibration of a rigid plate (plane wavefront) or by a needle to simulate a radiation pressure on a line segment (cylindrical wavefront). Induced propagation of shear waves was imaged with an ultrafast ultrasound scanner and a finite element method was developed to simulate tested experimental conditions. An inverse problem was then formulated considering the first resonance frequency of the DVT inclusion. Elasticity agreements between SWIRE and a reference spectroscopy instrument (RheoSpectris) were found in vitro for total clots either in plane (r(2) = 0.989) or cylindrical (r(2) = 0.986) wavefront configurations. For total and partial clots, elasticity estimation errors were 9.0 ±4.6% and 9.3 ±11.3%, respectively. Ex vivo, the blood clot elasticity was 498 ±58 Pa within the inferior vena cava and 436 ±45 Pa in the right common iliac vein (p = 0.22). To conclude, the SWIRE technique seems feasible to quantitatively assess blood clot elasticity in the context of DVT ultrasound imaging.
Mapping of Crustal Anisotropy in the New Madrid Seismic Zone with Shear Wave Splitting
NASA Astrophysics Data System (ADS)
Martin, P.; Arroucau, P.; Vlahovic, G.
2013-12-01
Crustal anisotropy in the New Madrid seismic zone (NMSZ) is investigated by analyzing shear wave splitting measurements from local earthquake data. For the initial data set, the Center for Earthquake Research and Information (CERI) provided over 3000 events, along with 900 seismograms recorded by the Portable Array for Numerical Data Acquisition (PANDA) network. Data reduction led to a final data set of 168 and 43 useable events from the CERI and PANDA data, respectively. From this, 186 pairs of measurements were produced from the CERI data set as well as 49 from the PANDA data set, by means of the automated shear wave splitting measurement program MFAST. Results from this study identified two dominant fast polarization directions, striking NE-SW and WNW-ESE. These are interpreted to be due to stress aligned microcracks in the upper crust. The NE-SW polarization direction is consistent with the maximum horizontal stress orientation of the region and has previously been observed in the NMSZ, while the WNW-ESE polarization direction has not. Path normalized time delays from this study range from 1-33 ms/km for the CERI network data, and 2-31 ms/km for the PANDA data, giving a range of estimated differential shear wave anisotropy between 1% and 8%, with the majority of large path normalized time delays (>20 ms/km) located along the Reelfoot fault segment. The estimated differential shear wave anisotropy values from this study are higher than those previously determined in the region, and are attributed to high crack densities and high pore fluid pressures, which agree with previous results from local earthquake tomography and microseismic swarm analysis in the NMSZ.
NASA Astrophysics Data System (ADS)
Zeng, Lei; Parvasi, Seyed Mohammad; Kong, Qingzhao; Huo, Linsheng; Lim, Ing; Li, Mo; Song, Gangbing
2015-12-01
Concrete-encased composite structure exhibits improved strength, ductility and fire resistance compared to traditional reinforced concrete, by incorporating the advantages of both steel and concrete materials. A major drawback of this type of structure is the bond slip introduced between steel and concrete, which directly reduces the load capacity of the structure. In this paper, an active sensing approach using shear waves to provide monitoring and early warning of the development of bond slip in the concrete-encased composite structure is proposed. A specimen of concrete-encased composite structure was investigated. In this active sensing approach, shear mode smart aggregates (SAs) embedded in the concrete act as actuators and generate desired shear stress waves. Distributed piezoceramic transducers installed in the cavities of steel plates act as sensors and detect the wave response from shear mode SAs. Bond slip acts as a form of stress relief and attenuates the wave propagation energy. Experimental results from the time domain analysis clearly indicate that the amplitudes of received signal by lead zirconate titanate sensors decreased when bond slip occurred. In addition, a wavelet packet-based analysis was developed to compute the received signal energy values, which can be used to determine the initiation and development of bond slip in concrete-encased composite structure. In order to establish the validity of the proposed method, a 3D finite element analysis of the concrete-steel bond model is further performed with the aid of the commercial finite element package, Abaqus, and the numerical results are compared with the results obtained in experimental study.
Nonlinear evolution of interacting oblique waves on two-dimensional shear layers
NASA Technical Reports Server (NTRS)
Goldstein, M. E.; Choi, S.-W.
1989-01-01
The effects of critical layer nonlinearity are considered on spatially growing oblique instability waves on nominally two-dimensional shear layers between parallel streams. The analysis shows that three-dimensional effects cause nonlinearity to occur at much smaller amplitudes than it does in two-dimensional flows. The nonlinear instability wave amplitude is determined by an integro-differential equation with cubic type nonlinearity. The numerical solutions to this equation are worked out and discussed in some detail. The numerical solutions always end in a singularity at a finite downstream distance.
Excitation and propagation of shear-horizontal-type surface and bulk acoustic waves.
Hashimoto, K Y; Yamaguchi, M
2001-09-01
This paper reviews the basic properties of shear-horizontal (SH)-type surface acoustic waves (SAWs) and bulk acoustic waves (BAWs). As one of the simplest cases, the structure supporting Bleustein-Gulyaev-Shimizu waves is considered, and their excitation and propagation are discussed from various view points. First, the formalism based on the complex integral theory is presented, where the surface is assumed to be covered with an infinitesimally thin metallic film, and it is shown how the excitation and propagation of SH-type waves are affected by the surface perturbation. Then, the analysis is extended to a periodic grating structure, and the behavior of SH-type SAWs under the grating structure is discussed. Finally, the origin of the leaky nature is explained.
Correia, Mafalda; Provost, Jean; Chatelin, Simon; Villemain, Olivier; Tanter, Mickael; Pernot, Mathieu
2016-01-01
Transthoracic shear wave elastography of the myocardium remains very challenging due to the poor quality of transthoracic ultrafast imaging and the presence of clutter noise, jitter, phase aberration, and ultrasound reverberation. Several approaches, such as, e.g., diverging-wave coherent compounding or focused harmonic imaging have been proposed to improve the imaging quality. In this study, we introduce ultrafast harmonic coherent compounding (UHCC), in which pulse-inverted diverging-waves are emitted and coherently compounded, and show that such an approach can be used to enhance both Shear Wave Elastography (SWE) and high frame rate B-mode Imaging. UHCC SWE was first tested in phantoms containing an aberrating layer and was compared against pulse-inversion harmonic imaging and against ultrafast coherent compounding (UCC) imaging at the fundamental frequency. In-vivo feasibility of the technique was then evaluated in six healthy volunteers by measuring myocardial stiffness during diastole in transthoracic imaging. We also demonstrated that improvements in imaging quality could be achieved using UHCC B-mode imaging in healthy volunteers. The quality of transthoracic images of the heart was found to be improved with the number of pulse-inverted diverging waves with reduction of the imaging mean clutter level up to 13.8-dB when compared against UCC at the fundamental frequency. These results demonstrated that UHCC B-mode imaging is promising for imaging deep tissues exposed to aberration sources with a high frame-rate. PMID:26890730
A global shear velocity model of the mantle from normal modes and surface waves
NASA Astrophysics Data System (ADS)
durand, S.; Debayle, E.; Ricard, Y. R.; Lambotte, S.
2013-12-01
We present a new global shear wave velocity model of the mantle based on the inversion of all published normal mode splitting functions and the large surface wave dataset measured by Debayle & Ricard (2012). Normal mode splitting functions and surface wave phase velocity maps are sensitive to lateral heterogeneities of elastic parameters (Vs, Vp, xi, phi, eta) and density. We first only consider spheroidal modes and Rayleigh waves and restrict the inversion to Vs, Vp and the density. Although it is well known that Vs is the best resolved parameter, we also investigate whether our dataset allows to extract additional information on density and/or Vp. We check whether the determination of the shear wave velocity is affected by the a priori choice of the crustal model (CRUST2.0 or 3SMAC) or by neglecting/coupling poorly resolved parameters. We include the major discontinuities, at 400 and 670 km. Vertical smoothing is imposed through an a priori gaussian covariance matrix on the model and we discuss the effect of coupling/decoupling the inverted structure above and below the discontinuities. We finally discuss the large scale structure of our model and its geodynamical implications regarding the amount of mass exchange between the upper and lower mantle.
Generation of polarized shear Alfven waves by a rotating magnetic field source
Gigliotti, A.; Gekelman, W.; Pribyl, P.; Vincena, S.; Karavaev, A.; Shao, X.; Sharma, A. Surjalal; Papadopoulos, D.
2009-09-15
Experiments are performed in the Large Plasma Device at the University of California, Los Angeles to study the propagation of field-aligned, polarized kinetic shear Alfven waves radiated from a rotating magnetic field source created via a novel phased orthogonal loop antenna. Both right and left hand circular polarizations are generated at a wide range of frequencies from 0.21{<=}{omega}/{omega}{sub ci}<0.93. Propagation parallel to the background magnetic field near the Alfven velocity is observed along with a small parallel wave magnetic field component implying a shear mode. The peak-to-peak magnitude of the wave magnetic field, 33 cm away from the antenna, is on the order of 0.8% of the background field and drops off in the far field. The full width at half maximum of the wave energy changes little over a distance of 2.5 parallel wavelengths while the exponential decrease in wave energy as a function of distance can be attributed to collisional damping. Evidence of electron heating and ionization is observed during the pulse.
Shear wave velocity structure of the Anatolian Plate: anomalously slow crust in southwestern Turkey
NASA Astrophysics Data System (ADS)
Delph, Jonathan R.; Biryol, C. Berk; Beck, Susan L.; Zandt, George; Ward, Kevin M.
2015-07-01
The Anatolian Plate is composed of different lithospheric blocks and ribbon continents amalgamated during the closure of the Paleotethys Ocean and Neotethys Ocean along a subduction margin. Using ambient noise tomography, we investigate the crustal and uppermost mantle shear wave velocity structure of the Anatolian Plate. A total of 215 broad-band seismic stations were used spanning 7 yr of recording to compute 13 778 cross-correlations and obtain Rayleigh wave dispersion measurements for periods between 8 and 40 s. We then perform a shear wave inversion to calculate the seismic velocity structure of the crust and uppermost mantle. Our results show that the overall crustal shear wave velocities of the Anatolian crust are low (˜3.4 km s-1), indicative of a felsic overall composition. We find that prominent lateral seismic velocity gradients correlate with Tethyan suture zones, supporting the idea that the neotectonic structures of Turkey are exploiting the lithospheric weaknesses associated with the amalgamation of Anatolia. Anomalously slow shear wave velocities (˜3.15 km s-1 at 25 km) are located in the western limb of the Isparta Angle in southwestern Turkey. In the upper crust, we find that these low shear wave velocities correlate well with the projected location of a carbonate platform unit (Bey Dağlari) beneath the Lycian Nappe complex. In the lower crust and upper mantle of this region, we propose that the anomalously slow velocities are due to the introduction of aqueous fluids related to the underplating of accretionary material from the underthrusting of a buoyant, attenuated continental fragment similar to the Eratosthenes seamount. We suggest that this fragment controlled the location of the formation of the Subduction-Transform Edge Propagator fault in the eastern Aegean Sea during rapid slab rollback of the Aegean Arc in early Miocene times. Lastly, we observe that the uppermost mantle beneath continental Anatolia is generally slow (˜4.2 km s-1
Variation of shear and compressional wave modulus upon saturation for pure pre-compacted sands
NASA Astrophysics Data System (ADS)
Bhuiyan, M. H.; Holt, R. M.
2016-07-01
Gassmann's fluid substitution theory is commonly used to predict seismic velocity change upon change in saturation, and is hence essential for 4-D seismic and AVO studies. This paper addresses the basics assumptions of the Gassmann theory, in order to see how well they are fulfilled in controlled laboratory experiments. Our focus is to investigate the sensitivity of shear modulus to fluid saturation, and the predictability of Gassmann's fluid substitution theory for P-wave modulus. Ultrasonic P- and S-wave velocities in dry and saturated (3.5 wt per cent NaCl) unconsolidated clean sands (Ottawa and Columbia) were measured in an oedometer test system (uniaxial strain conditions) over a range of 0.5-10 MPa external vertical stress. This study shows shear modulus hardening upon brine saturation, which is consistent with previous data found in the literature. Analysis of the data shows that most of the hardening of the ultrasonic shear modulus may be explained by Biot dispersion. Isotropic Gassmann's fluid substitution is found to underestimate the P-wave modulus upon fluid saturation. However, adding the Biot dispersion effect improves the prediction. More work is required to obtain good measurements of parameters influencing dispersion, such as tortuosity, which is very ambiguous and challenging to measure accurately.
NASA Astrophysics Data System (ADS)
Aldrin, John C.; Hopkins, Deborah; Datuin, Marvin; Warchol, Mark; Warchol, Lyudmila; Forsyth, David S.; Buynak, Charlie; Lindgren, Eric A.
2017-02-01
For model benchmark studies, the accuracy of the model is typically evaluated based on the change in response relative to a selected reference signal. The use of a side drilled hole (SDH) in a plate was investigated as a reference signal for angled beam shear wave inspection for aircraft structure inspections of fastener sites. Systematic studies were performed with varying SDH depth and size, and varying the ultrasonic probe frequency, focal depth, and probe height. Increased error was observed with the simulation of angled shear wave beams in the near-field. Even more significant, asymmetry in real probes and the inherent sensitivity of signals in the near-field to subtle test conditions were found to provide a greater challenge with achieving model agreement. To achieve quality model benchmark results for this problem, it is critical to carefully align the probe with the part geometry, to verify symmetry in probe response, and ideally avoid using reference signals from the near-field response. Suggested reference signals for angled beam shear wave inspections include using the `through hole' corner specular reflection signal and the full skip' signal off of the far wall from the side drilled hole.
Holzer, T.L.; Bennett, M.J.; Noce, T.E.; Tinsley, J. C.
2005-01-01
Shear-wave velocities of shallow surficial geologic units were measured at 210 sites in a 140-km2 area in the greater Oakland, California, area near the margin of San Francisco Bay. Differences between average values of shear-wave velocity for each geologic unit computed by alternative approaches were in general smaller than the observed variability. Averages estimated by arithmetic mean, geometric mean, and slowness differed by 1 to 8%, while coefficients of variation ranged from 14 to 25%. With the exception of the younger Bay mud that underlies San Francisco Bay, velocities of the geologic units are approximately constant with depth. This suggests that shear-wave velocities measured at different depths in these surficial geologic units do not need to be normalized to account for overburden stress in order to compute average values. The depth dependence of the velocity of the younger Bay mud most likely is caused by consolidation. Velocities of each geologic unit are consistent with a normal statistical distribution. Average values increase with geologic age, as has been previously reported. Velocities below the water table are about 7% less than those above it. ?? 2005, Earthquake Engineering Research Institute.
Reduced Patellar Tendon Elasticity with Aging: In Vivo Assessment by Shear Wave Elastography.
Hsiao, Ming-Yen; Chen, Yi-Ching; Lin, Che-Yu; Chen, Wen-Shian; Wang, Tyng-Guey
2015-11-01
How aging affects the elasticity of tendons has long been debated, partly because of the limited methods for in vivo evaluation, which differ vastly from those for in vitro animal studies. In this study, we tested the reliability of shear wave elastography (SWE) in the evaluation of patellar tendons and their change in elasticity with age. We recruited 62 healthy participants in three age groups: 20-30 years (group 1), 40-50 years (group 2) and 60-70 years (group 3). Shear wave velocity and elastic modulus were measured at the proximal, middle and distal areas of the patellar tendon. Reliability was excellent at the middle area and fair to good at both ends. Compared with the other groups, group 3 had significantly decreased elastic modulus and shear wave velocity values (p ≤ 0.001 vs. group 1 or 2), with significant increased side-to-side differences. SWE may be valuable in detecting aging tendons before visible abnormalities are observed on B-mode ultrasonography.
Numerical analysis of piezoelectric probe for beam forming of longitudinal and shear waves
NASA Astrophysics Data System (ADS)
Aoyanagi, Masafumi; Wakatsuki, Naoto; Mizutani, Koichi; Ebihara, Tadashi
2017-03-01
In this study, we propose and evaluate an ultrasonic probe for the beam forming of longitudinal and shear waves by the two-dimensional finite element method. Ultrasonic probes for longitudinal and shear waves are used in industrial fields for nondestructive testing. Among the ultrasonic probes, array probes can undertake a range of inspections from a single location, and so are more flexible than single-element probes. Most types of array can be used to produce images at each test location. This allows rapid visualization of the internal structure of a component. In order to restrain artifacts for an ultrasonic array flaw-detecting method, we propose an array probe with three degrees of freedom. Operations of the probe were verified using the two-dimensional finite element method. In the case of transmission, we found that secondarily generated beams that might be artifacts were restrained by controlling the vibration direction of the proposed probes; for reception, an array of proposed probes could obtain the direction of particle displacement. Thus, the results suggest that an array of the proposed probes can distinguish longitudinal from shear waves.
Shear Wave Splitting from Local Earthquakes in the New Madrid Seismic Zone
NASA Astrophysics Data System (ADS)
Martin, P.; Arroucau, P.; Vlahovic, G.
2012-12-01
In this study we investigate crustal anisotropy in the New Madrid seismic zone (NMSZ), by analyzing shear wave splitting from local earthquake data. The NMSZ is centrally located in the United States, spanning portions of western Tennessee, northeastern Arkansas, and southeastern Missouri. The NMSZ is also the location in which three of the largest known earthquakes took place in North America, occurring in 1811-1812. Although many seismic studies have been performed in this region, there is no consensus about which driving mechanism could satisfy both the current observations, as well as the historically observed seismicity. Therefore, it is important to continue investigating the NMSZ, to gain a better understanding of its seismicity, and the possible mechanisms that drive it. The automated technique developed by Savage et al. (2010) is used to perform the shear wave splitting measurements at 120 seismic stations within the NMSZ. The Center for Earthquake Research and Information (CERI) at the University of Memphis provided data for 1151 earthquakes spanning the years 2003-2011. The initial event selection was reduced to 245 earthquakes ranging in magnitude from 2.0 to 4.6, which fell within the shear wave window of one or more of the stations. The results of this study provide information about orientation of microcracks in the upper portion of the crust; future work will include analysis for temporal and spatial variations in order to assess the state of stress in the region.
Anatomy of Drift Ridges Revealed by Shallow Seismic Shear Wave Profiling
NASA Astrophysics Data System (ADS)
Phillips, A. C.
2005-12-01
Ridges, up to 30 m high and generally oriented NE-SW across the Illinois Episode drift plain in southern Illinois, USA, have been variously interpreted as eskers, crevasse fills, moraines, and kames. The ice contact diamictons and sorted sediments that occur in these ridges are typically Illinois Episode in age and likely record the final melting of the Laurentide Ice Sheet near its southernmost extent in the continental U.S. Shallow shear wave seismic profiles across several of these ridges help reveal their complex origins. Borehole control includes sediment cores with shear wave and natural gamma logs. The shear wave profiles reveal m-scale features of drift and bedrock over a depth range of 1 up to 100 m. Terrapin Ridge overlies a bedrock valley with drift up to 70 m thick. Dipping seismic reflectors on the stoss side are interpreted as imbricated till sheets, whereas horizontal reflectors on the lee side are interpreted as mainly outwash sediments over basal till and glacilacustrine sediment. Although most ridges were probably formed during the Illinois Episode, based on current data, the core of this particular ridge may be a remnant moraine from a pre-Illinois Episode glaciation.
In situ measurements of shear stresses of a flushing wave in a circular sewer using ultrasound.
Staufer, P; Pinnekamp, J
2008-01-01
Deposits build up in sewer networks during both spells of dry weather and in connection with storm water events. In order to reduce the negative effects of deposit on the environment, different cleaning technologies and strategies are applied to remove the deposits. Jet cleaning represents the most widely used method to clean sewers. Another alternative cleaning procedure is flushing. On account of new developments in measurement and control panels, the flushing method is becoming more important. Therefore, in the last few years a number of new flushing devices have been constructed for application in basins, main sewers and initial reaches. Today, automatic flushing gates are able to accomplish cleaning procedures under economical and ecological conditions. The properties of flushing waves for cleaning sewers have been determined by several mathematical-numerical studies. These various investigations use altering numerical schemes, are based on different sets of physical equations and take one- or more dimensional aspects into account. Considering that bottom shear stress is the key value to evaluate the beginning of motion of any deposit, one may use this value that has to be determined by measurements. This paper deals with shear stresses caused by flushing waves which have been measured by an ultrasonic device that can determine the velocity in different depths of flow. Thus, it is possible, within certain limits, to calculate bottom shear stresses based on the log-wall law. Further discussion will deal with the requirements of measurements, its uncertainty and aspects in respect to the application of simulation of flushing waves.
Shear wave prediction using committee fuzzy model constrained by lithofacies, Zagros basin, SW Iran
NASA Astrophysics Data System (ADS)
Shiroodi, Sadjad Kazem; Ghafoori, Mohammad; Ansari, Hamid Reza; Lashkaripour, Golamreza; Ghanadian, Mostafa
2017-02-01
The main purpose of this study is to introduce the geological controlling factors in improving an intelligence-based model to estimate shear wave velocity from seismic attributes. The proposed method includes three main steps in the framework of geological events in a complex sedimentary succession located in the Persian Gulf. First, the best attributes were selected from extracted seismic data. Second, these attributes were transformed into shear wave velocity using fuzzy inference systems (FIS) such as Sugeno's fuzzy inference (SFIS), adaptive neuro-fuzzy inference (ANFIS) and optimized fuzzy inference (OFIS). Finally, a committee fuzzy machine (CFM) based on bat-inspired algorithm (BA) optimization was applied to combine previous predictions into an enhanced solution. In order to show the geological effect on improving the prediction, the main classes of predominate lithofacies in the reservoir of interest including shale, sand, and carbonate were selected and then the proposed algorithm was performed with and without lithofacies constraint. The results showed a good agreement between real and predicted shear wave velocity in the lithofacies-based model compared to the model without lithofacies especially in sand and carbonate.
NASA Astrophysics Data System (ADS)
Iwasaki, Ryosuke; Takagi, Ryo; Nagaoka, Ryo; Jimbo, Hayato; Yoshizawa, Shin; Saijo, Yoshifumi; Umemura, Shin-ichiro
2016-07-01
Shear wave elastography (SWE) is expected to be a noninvasive monitoring method of high-intensity focused ultrasound (HIFU) treatment. However, conventional SWE techniques encounter difficulty in inducing shear waves with adequate displacements in deep tissue. To observe tissue coagulation at the HIFU focal depth via SWE, in this study, we propose using a two-dimensional-array therapeutic transducer for not only HIFU exposure but also creating shear sources. The results show that the reconstructed shear wave velocity maps detected the coagulated regions as the area of increased propagation velocity even in deep tissue. This suggests that “HIFU-push” shear elastography is a promising solution for the purpose of coagulation monitoring in deep tissue, because push beams irradiated by the HIFU transducer can naturally reach as deep as the tissue to be coagulated by the same transducer.
NASA Astrophysics Data System (ADS)
Song, Shaozhen; Le, Nhan Minh; Wang, Ruikang K.; Huang, Zhihong
2015-03-01
Shear Wave Optical Coherence Elastography (SW-OCE) uses the speed of propagating shear waves to provide a quantitative measurement of localized shear modulus, making it a valuable technique for the elasticity characterization of tissues such as skin and ocular tissue. One of the main challenges in shear wave elastography is to induce a reliable source of shear wave; most of nowadays techniques use external vibrators which have several drawbacks such as limited wave propagation range and/or difficulties in non-invasive scans requiring precisions, accuracy. Thus, we propose linear phase array ultrasound transducer as a remote wave source, combined with the high-speed, 47,000-frame-per-second Shear-wave visualization provided by phase-sensitive OCT. In this study, we observed for the first time shear waves induced by a 128 element linear array ultrasound imaging transducer, while the ultrasound and OCT images (within the OCE detection range) were triggered simultaneously. Acoustic radiation force impulses are induced by emitting 10 MHz tone-bursts of sub-millisecond durations (between 50 μm - 100 μm). Ultrasound beam steering is achieved by programming appropriate phase delay, covering a lateral range of 10 mm and full OCT axial (depth) range in the imaging sample. Tissue-mimicking phantoms with agarose concentration of 0.5% and 1% was used in the SW-OCE measurements as the only imaging samples. The results show extensive improvements over the range of SW-OCE elasticity map; such improvements can also be seen over shear wave velocities in softer and stiffer phantoms, as well as determining the boundary of multiple inclusions with different stiffness. This approach opens up the feasibility to combine medical ultrasound imaging and SW-OCE for high-resolution localized quantitative measurement of tissue biomechanical property.
NASA Astrophysics Data System (ADS)
Delph, J. R.; Beck, S. L.; Zandt, G.; Biryol, C. B.; Ward, K. M.
2013-12-01
The Anatolian Plate consists of various lithospheric terranes amalgamated during the closure of the Tethys Ocean, and is currently extruding to the west in response to a combination of the collision of the Arabian plate in the east and the roll back of the Aegean subduction zone in the west. We used Ambient Noise Tomography (ANT) at periods <= 40s to investigate the crust and uppermost mantle structure of the Anatolian Plate. We computed a total of 13,779 unique cross-correlations using one sample-per-second vertical component broadband seismic data from 215 stations from 8 different networks over a period of 7 years to compute fundamental-mode Rayleigh wave dispersion curves following the method of Benson et al. (2007). We then inverted the dispersion data to calculate phase velocity maps for 11 periods from 8 s - 40 s throughout Anatolia and the Aegean regions (Barmin et al. 2001). Using smoothed Moho values derived from Vanacore et al. (2013) in our starting models, we inverted our dispersion curves using a linear least-squares iterative inversion scheme (Herrmann & Ammon 2004) to produce a 3-D shear-wave velocity model of the crust and uppermost mantle throughout Anatolia and the Aegean. We find a good correlation between our seismic shear wave velocities and paleostructures (suture zones) and modern deformation (basin formation and fault deformation). The most prominent crustal velocity contrasts occur across intercontinental sutures zones, resulting from the juxtaposition of the compositionally different basements of the amalgamated terranes. At shallow depths, seismic velocity contrasts correspond closely with surficial features. The Thrace, Cankiri and Tuz Golu basins, and accretionary complexes related to the closure of the Neotethys are characterized by slow shear wave velocities, while the Menderes and Kirsehir Massifs, Pontides, and Istanbul Zone are characterized by fast velocities. We find that the East Anatolia Plateau has slow shear-wave velocities
Generation of shear Alfvén waves by repetitive electron heating
NASA Astrophysics Data System (ADS)
Wang, Y.; Gekelman, W.; Pribyl, P.; Van Compernolle, B.; Papadopoulos, K.
2016-01-01
ELF/ULF waves are powerful tools for submarine communication, geophysical mapping, and radiation belt remediation. However, due to their large wavelength (on the order of 102-104 km or 0.1-10 RE) it is difficult to launch them using ground-based antennas. Alternatively, these waves can be generated by modulating the temperature of the ionosphere using ground-based HF transmitters. The paper reports a detailed laboratory study on the generation of shear Alfvén waves by repetitive electron heating. The experiments were conducted on the large plasma device at University of California, Los Angeles. In the experiment, 10 pulses of high-power microwaves (250 kW, 1 µs each) near the plasma frequency modulated at a variable fraction between 0.1 and 1.0 of fci are launched transverse to the background field. In addition to bulk electron heating the interaction generates a population of fast electrons in the tail of the distribution function. The field-aligned current carried by the fast electrons acts as an antenna that radiates shear Alfvén waves. It is demonstrated that a shear Alfvén wave at a controllable, arbitrary frequency (f < fci) can be coherently driven by the repetitive microwave pulses. The radiation pattern and power dependence of the virtual antenna are also presented. The experiments provide a novel virtual antenna concept relevant to the equatorial region where the Earth's magnetic field is horizontal and the field-aligned plasma density gradient is small. The results are important to design of new mobile ionospheric heaters for equatorial and middle latitude locations.
Nenadic, Ivan Z.; Urban, Matthew W.; Bernal, Miguel; Greenleaf, James F.
2011-01-01
In the past several decades, the fields of ultrasound and magnetic resonance elastography have shown promising results in noninvasive estimates of mechanical properties of soft tissues. These techniques often rely on measuring shear wave velocity due to an external or internal source of force and relating the velocity to viscoelasticity of the tissue. The mathematical relationship between the measured velocity and material properties of the myocardial wall, arteries, and other organs with non-negligible boundary conditions is often complicated and computationally expensive. A simple relationship between the Lamb–Rayleigh dispersion and the shear wave dispersion is derived for both the velocity and attenuation. The relationship shows that the shear wave velocity is around 20% higher than the Lamb–Rayleigh velocity and that the shear wave attenuation is about 20% lower than the Lamb–Rayleigh attenuation. Results of numerical simulations in the frequency range 0–500 Hz are presented. PMID:22225009
Nenadic, Ivan Z; Urban, Matthew W; Bernal, Miguel; Greenleaf, James F
2011-12-01
In the past several decades, the fields of ultrasound and magnetic resonance elastography have shown promising results in noninvasive estimates of mechanical properties of soft tissues. These techniques often rely on measuring shear wave velocity due to an external or internal source of force and relating the velocity to viscoelasticity of the tissue. The mathematical relationship between the measured velocity and material properties of the myocardial wall, arteries, and other organs with non-negligible boundary conditions is often complicated and computationally expensive. A simple relationship between the Lamb-Rayleigh dispersion and the shear wave dispersion is derived for both the velocity and attenuation. The relationship shows that the shear wave velocity is around 20% higher than the Lamb-Rayleigh velocity and that the shear wave attenuation is about 20% lower than the Lamb-Rayleigh attenuation. Results of numerical simulations in the frequency range 0-500 Hz are presented.
NASA Astrophysics Data System (ADS)
Confal, Judith M.; Eken, Tuna; Tilmann, Frederik; Yolsal-Çevikbilen, Seda; Çubuk-Sabuncu, Yeşim; Saygin, Erdinc; Taymaz, Tuncay
2016-12-01
The subduction and roll-back of the African plate beneath the Eurasian plate along the arcuate Hellenic trench is the dominant geodynamic process in the Aegean and western Anatolia. Mantle flow and lithospheric kinematics in this region can potentially be understood better by mapping seismic anisotropy. This study uses direct shear-wave splitting measurements based on the Reference Station Technique in the southern Aegean Sea to reveal seismic anisotropy in the mantle. The technique overcomes possible contamination from source-side anisotropy on direct S-wave signals recorded at a station pair by maximizing the correlation between the seismic traces at reference and target stations after correcting the reference stations for known receiver-side anisotropy and the target stations for arbitrary splitting parameters probed via a grid search. We obtained splitting parameters at 35 stations with good-quality S-wave signals extracted from 81 teleseismic events. Employing direct S-waves enabled more stable and reliable splitting measurements than previously possible, based on sparse SKS data at temporary stations, with one to five events for local SKS studies, compared with an average of 12 events for each station in this study. The fast polarization directions mostly show NNE-SSW orientation with splitting time delays between 1.15 s and 1.62 s. Two stations in the west close to the Hellenic Trench and one in the east show N-S oriented fast polarizations. In the back-arc region three stations exhibit NE-SW orientation. The overall fast polarization variations tend to be similar to those obtained from previous SKS splitting studies in the region but indicate a more consistent pattern, most likely due to the usage of a larger number of individual observations in direct S-wave derived splitting measurements. Splitting analysis on direct shear waves typically resulted in larger split time delays compared to previous studies, possibly because S-waves travel along a longer path
Cluster observations of Shear-mode surface waves diverging from Geomagnetic Tail reconnection
NASA Astrophysics Data System (ADS)
Dai, L.; Wygant, J. R.; Dombeck, J. P.; Cattell, C. A.; Thaller, S. A.; Mouikis, C.; Balogh, A.; Reme, H.
2010-12-01
We present the first Cluster spacecraft study of the intense (δB/B~0.5, δE/VAB~0.5) equatorial plane surface waves diverging from magnetic reconnection in the geomagnetic tail at ~17 Re. Using phase lag analysis with multi-spacecraft measurements, we quantitatively determine the wavelength and phase velocity of the waves with spacecraft frame frequencies from 0.03 Hz to 1 Hz and wavelengths from much larger (4Re) than to comparable to the H+ gyroradius (~300km). The phase velocities track the strong variations in the equatorial plane projection of the reconnection outflow velocity perpendicular to the magnetic field. The propagation direction and wavelength of the observed surface waves resemble those of flapping waves of the magnetotail current sheet, suggesting a same origin shared by both of these waves. The observed waves appear ubiquitous in the outflows near magnetotail reconnection. Evidence is found that the observed waves are associated with velocity shear in reconnection outflows. Analysis shows that observed waves are associated with strong field-aligned Alfvenic Poynting flux directed away from the reconnection region toward Earth. These observations present a scenario in which the observed surface waves are driven and convected through a velocity-shear type instability by high-speed (~1000km) reconnection outflows tending to slow down due to power dissipation through Poynting flux. The mapped Poynting flux (100ergs/cm2s) and longitudinal scales (10-100 km) to 100km altitude suggest that the observed waves and their motions are an important boundary condition for night-side aurora. Figure: a) The BX-GSM in the geomagnetic tail current sheet. b) The phase difference wavelet spectrum between Bz_GSM from SC2 and SC3, used to determine the wave phase velocity, is correlated with the reconnection outflow velocity (represented by H+ VX-GSM) c) The spacecraft trajectory through magnetotail reconnection. d) The observed equatorial plane surface wave
A cumulative shear mechanism for tissue damage initiation in shock-wave lithotripsy
Freund, Jonathan B.; Colonius, Tim; Evan, Andrew P.
2007-01-01
Evidence suggests that inertial cavitation plays an important role in the renal injury incurred during shock-wave lithotripsy. However, it is unclear how tissue damage is initiated, and significant injury typically occurs only after a sufficient dose of shock waves. While it has been suggested that shock-induced shearing might initiate injury, estimates indicate that individual shocks do not produce sufficient shear to do so. In this paper, we hypothesize that the cumulative shear of the many shocks is damaging. This mechanism depends upon whether there is sufficient time between shocks for tissue to relax to its unstrained state. We investigate the mechanism with a physics-based simulation model wherein the the basement membranes that define the tubules and vessels in the inner medulla are represented as elastic shells surrounded by viscous fluid. Material properties are estimated from in vitro tests of renal basement membranes and documented mechanical properties of cells and extracellular gels. Estimates for the net shear deformation from a typical lithotripter shock (~ 0.1%) are found from a separate dynamic shock simulation. The results suggest that the larger interstitial volume (~ 40%) near the papilla tip gives the tissue there a relaxation time comparable to clinical shock delivery rates (~ 1Hz), thus allowing shear to accumulate. Away from the papilla tip, where the interstitial volume is smaller (≲ 20%), the model tissue relaxes completely before the next shock would be delivered. Implications of the model are that slower delivery rates and broader focal zones should both decrease injury, consistent with some recent observations. PMID:17507147
Dalyander, P. Soupy; Butman, Bradford; Sherwood, Christopher R.; Signell, Richard P.; Wilkin, John L.
2013-01-01
Waves and currents create bottom shear stress, a force at the seabed that influences sediment texture distribution, micro-topography, habitat, and anthropogenic use. This paper presents a methodology for assessing the magnitude, variability, and driving mechanisms of bottom stress and resultant sediment mobility on regional scales using numerical model output. The analysis was applied to the Middle Atlantic Bight (MAB), off the U.S. East Coast, and identified a tidally-dominated shallow region with relatively high stress southeast of Massachusetts over Nantucket Shoals, where sediment mobility thresholds are exceeded over 50% of the time; a coastal band extending offshore to about 30 m water depth dominated by waves, where mobility occurs more than 20% of the time; and a quiescent low stress region southeast of Long Island, approximately coincident with an area of fine-grained sediments called the “Mud Patch”. The regional high in stress and mobility over Nantucket Shoals supports the hypothesis that fine grain sediment winnowed away in this region maintains the Mud Patch to the southwest. The analysis identified waves as the driving mechanism for stress throughout most of the MAB, excluding Nantucket Shoals and sheltered coastal bays where tides dominate; however, the relative dominance of low-frequency events varied regionally, and increased southward toward Cape Hatteras. The correlation between wave stress and local wind stress was lowest in the central MAB, indicating a relatively high contribution of swell to bottom stress in this area, rather than locally generated waves. Accurate prediction of the wave energy spectrum was critical to produce good estimates of bottom shear stress, which was sensitive to energy in the long period waves.
Magnetoelastic shear wave propagation in pre-stressed anisotropic media under gravity
NASA Astrophysics Data System (ADS)
Kumari, Nirmala; Chattopadhyay, Amares; Singh, Abhishek K.; Sahu, Sanjeev A.
2017-02-01
The present study investigates the propagation of shear wave (horizontally polarized) in two initially stressed heterogeneous anisotropic (magnetoelastic transversely isotropic) layers in the crust overlying a transversely isotropic gravitating semi-infinite medium. Heterogeneities in both the anisotropic layers are caused due to exponential variation (case-I) and linear variation (case-II) in the elastic constants with respect to the space variable pointing positively downwards. The dispersion relations have been established in closed form using Whittaker's asymptotic expansion and were found to be in the well-agreement to the classical Love wave equations. The substantial effects of magnetoelastic coupling parameters, heterogeneity parameters, horizontal compressive initial stresses, Biot's gravity parameter, and wave number on the phase velocity of shear waves have been computed and depicted by means of a graph. As a special case, dispersion equations have been deduced when the two layers and half-space are isotropic and homogeneous. The comparative study for both cases of heterogeneity of the layers has been performed and also depicted by means of graphical illustrations.
Identification of Necessary Conditions for Super-shear Wave Rupture Speeds: The San Andreas Fault
NASA Astrophysics Data System (ADS)
Das, S.
2007-12-01
The 2001 Kunlun, Tibet earthquake taught us that the portion of a strike-slip fault most likely to propagate at super-shear speeds are the long straight portions. This is only a necessary (but not sufficient) condition. That is, once a fault accelerates to the maximum permissible speed, it can continue at this speed provided it is straight and there are no obstacles along the way, and provided the fault friction is low. For the Tibet earthquake, the 100 km region of highest rupture speed also had the highest slip rate, the highest slip and the highest stress drop (Robinson et al., JGR, 2006). Off-fault cracks due to the passage of the Mach cone exists in only that portion of the fault identified as travelling at super-shear speed and not in other places along the fault (Bhat et al., JGR, 2007). Re-examination of earlier reports of super-shear rupture speeds on the North Anatolian fault and the Denali fault show that such speeds did occur on the straight section of these faults. Of course all straight portions of faults will not reach super-shear speeds. So what can the Tibet earthquake teach us about the San Andreas fault? Both the 1906 and the 1857 have long, straight portions, the former having been identified by Song et al. (EOS, 2005) as having reached super-shear speeds to the north of San Francisco, the region of highest slip. If the repeat of the 1857 starts in the central valley, as it is believed to have done in 1857, it has the potential to propagate at super-shear speeds through the long, straight portion of the San Andread fault in the Carrizo Plain, the region believed to have had the largest displacement in 1857 based on paleoseismic studies. The resulting shock waves would strike the highly populated regions of Santa Barbara and the Los Angeles Basin (Das, Science, 2007).
Razani, Marjan; Luk, Timothy W H; Mariampillai, Adrian; Siegler, Peter; Kiehl, Tim-Rasmus; Kolios, Michael C; Yang, Victor X D
2014-03-01
In this work, we explored the potential of measuring shear wave propagation using optical coherence elastography (OCE) in an inhomogeneous phantom and carotid artery samples based on a swept-source optical coherence tomography (OCT) system. Shear waves were generated using a piezoelectric transducer transmitting sine-wave bursts of 400 μs duration, applying acoustic radiation force (ARF) to inhomogeneous phantoms and carotid artery samples, synchronized with a swept-source OCT (SS-OCT) imaging system. The phantoms were composed of gelatin and titanium dioxide whereas the carotid artery samples were embedded in gel. Differential OCT phase maps, measured with and without the ARF, detected the microscopic displacement generated by shear wave propagation in these phantoms and samples of different stiffness. We present the technique for calculating tissue mechanical properties by propagating shear waves in inhomogeneous tissue equivalent phantoms and carotid artery samples using the ARF of an ultrasound transducer, and measuring the shear wave speed and its associated properties in the different layers with OCT phase maps. This method lays the foundation for future in-vitro and in-vivo studies of mechanical property measurements of biological tissues such as vascular tissues, where normal and pathological structures may exhibit significant contrast in the shear modulus.
Shear Wave Structure in the Lithosphere of Texas from Ambient Noise Tomography
NASA Astrophysics Data System (ADS)
Yao, Y.; Li, A.
2014-12-01
Texas contains several distinct tectonic provinces, the Laurentia craton, the Ouachita belt, and the Gulf coastal plain. Although numerous geophysical experiments have been conducted in Texas for petroleum exploration, the lithosphere structure of Texas has not been well studied. We present here the Texas-wide shear wave structure using seismic ambient noise data recorded at 87 stations from the Transportable Array of the USArray between March 2010 and February 2011. Rayleigh wave phase velocities between pairs of stations are obtained by cross-correlating long ambient noise sequences and are used to develop phase velocity maps from 6 to 40 s. These measured phase velocities are used to construct 1-D and 3-D shear wave velocity models, which consist of four crust layers and one upper mantle layer. Shear wave velocity maps reveal a close correlation with major geological features. From the surface to 25 km depth, Positive anomalies coincide with the Laurentia craton, and negative anomalies coincide with the continental margin. The boundary of positive-negative anomaly perfectly matches the Ouachita belt. The Llano Uplift is imaged as the highest velocity through the mid-crust because the igneous rock forming the uplift has faster seismic velocity than the normal continental crust. Similarly, three small high-velocity areas exist beneath the Waco Uplift, Devils River Uplift, and Benton Uplift, even though surface geological traces are absent in these areas. The lowest velocity at the shallow crust appears in northeastern and southeastern Texas separated by the San Marcos Arch, correlating with thick sediment layers. An exceptional low velocity is imaged in southernmost Texas in the lower crust and upper mantle, probably caused by subducted wet oceanic crust before the rifting in the Gulf of Mexico. In the uppermost mantle, positive shear wave anomalies extend southeastward from the Ouachita belt to the Gulf coast, likely evidencing the subducted oceanic lithosphere
NASA Astrophysics Data System (ADS)
Li, Faxin; Miao, Hongchen
2016-10-01
The non-dispersive fundamental shear horizontal (SH0) wave is extremely useful in guided-wave-based inspection techniques. However, the generation or reception of the SH0 wave by using a piezoelectric transducer is always a challenge. In this work, first, we realized the apparent face-shear (d36) mode in PbZr1-xTixO3 (PZT) ceramics via two-dimensional antiparallel poling. Then, we demonstrated via finite element simulations that the apparent d36 mode PZT wafer can behave as both a SH0 wave actuator and a SH0 wave sensor. Next, by using the apparent d36 PZT wafer as an actuator and a face-shear d36 0.72[Pb(Mg1/3Nb2/3)O3]-0.28[PbTiO3] crystal as the sensor, almost a pure SH0 wave with a high signal-to-noise ratio was successfully excited in an aluminum plate from 180 kHz to 200 kHz. Later, experiments showed that the proposed apparent d36 PZT wafer can also serve as a sensor to detect the SH0 wave over a wide frequency range (160 kHz to 230 kHz). Finally, the amplitude directivity of the SH0 wave generated by the apparent d36 PZT wafer was also investigated. The wave amplitude reaches its maxima at the main direction (0° and 90°) and then decreases monotonically when the propagation direction deviates from the main directions, with the symmetric axis along the 45° direction. The proposed apparent d36 PZT wafer is very suitable for severing as SH0 wave actuators and sensors in structural health monitoring systems.
Nguyen, Man M; Zhou, Shiwei; Robert, Jean-Luc; Shamdasani, Vijay; Xie, Hua
2014-01-01
Because tissues consist of solid and fluid materials, their mechanical properties should be characterized in terms of both elasticity and viscosity. Although the elastic properties of tissue-mimicking phantoms have been extensively studied and well characterized in commercially available phantoms, their viscous properties have not been fully investigated. In this article, a set of 14 tissue-mimicking phantoms with different concentrations of gelatin and castor oil were fabricated and characterized in terms of acoustic and viscoelastic properties. The results indicate that adding castor oil to gelatin phantoms decreases shear modulus, but increases shear wave dispersion. For 3% gelatin phantoms containing 0%, 10%, 20% and 40% oil, the measured shear moduli are 2.01 ± 0.26, 1.68 ± 0.25, 1.10 ± 0.22 and 0.88 ± 0.17 kPa, and the Voigt-model coupled shear viscosities are 0.60 ± 0.11, 0.89 ± 0.07, 1.05 ± 0.11 and 1.06 ± 0.13 Pa·s, respectively. The results also confirm that increasing the gelatin concentration increases shear modulus. For phantoms containing 3%, 4%, 5%, 6% and 7% gelatin, the measured shear moduli are 2.01 ± 0.26, 3.10 ± 0.34, 4.18 ± 0.84, 8.05 ± 1.00 and 10.24 ± 1.80 kPa at 0% oil and 1.10 ± 0.22, 1.97 ± 0.20, 3.13 ± 0.63, 4.60 ± 0.60 and 8.43 ± 1.39 kPa at 20% oil, respectively. The phantom recipe developed in this study can be used in validating ultrasound shear wave elastography techniques for soft tissues.
NASA Astrophysics Data System (ADS)
Rosa, Angelika D.; Sanchez-Valle, Carmen; Nisr, Carole; Evans, Shaun R.; Debord, Regis; Merkel, Sébastien
2013-09-01
Regions of low seismic velocity and high shear anisotropies in cold subducted slabs have often been related to anisotropic fabrics in hydrous phases mainly induced by slab deformation. The interpretation of these seismic anomalies in terms of hydration thus relies on a better knowledge of the elasticity and plastic deformation mechanisms of candidate hydrous phases. Here we investigate the development of lattice preferred orientations (LPO) in phase D [MgSi2H2O6, 10-18 wt% H2O], the ultimate water carrier in hydrous subducted peridotite. The samples were deformed non-hydrostatically up to 48 GPa in a diamond anvil cell and the texture and strength were obtained from analysis of the X-ray diffraction patterns collected in radial diffraction geometry. We find that at low strains the layered structure of phase D displays strong 0001 texture, where the stacking fault axis (c-axis) preferentially align parallel to the compression axis. A subsidiary 101¯0 texture develops at higher strains. Plasticity simulations in polycrystalline aggregates using a viscoplastic self-consistent model suggest that these LPO patterns are consistent with shape preferred orientation mechanism during the first compaction steps and, with dominant easy glide on basal planes and harder first order pyramidal slip, respectively, upon further compression. We find that phase D displays the lowest strength and the highest anisotropy among phases in hydrous peridotite in the uppermost lower mantle and might thus control the shear wave anisotropy generated in subducted slabs below the transition zone. We further evaluate the effect of textured phase D on the seismic velocity structure and shear wave anisotropy of deformed hydrous peridotite and compare the results to seismic observations in Tonga subduction. We show that 16 vol% of phase D in hydrous subducted peridotite is required to explain the negative velocity anomalies of 3%, the extent of shear wave splitting (0.9±0.3%) and the shear wave ray
NASA Astrophysics Data System (ADS)
Rotemberg, V.; Palmeri, M.; Nightingale, R.; Rouze, N.; Nightingale, K.
2012-01-01
Increased hepatic venous pressure can be observed in patients with advanced liver disease and congestive heart failure. This elevated portal pressure also leads to variation in acoustic radiation-force-derived shear wave-based liver stiffness estimates. These changes in stiffness metrics with hepatic interstitial pressure may confound stiffness-based predictions of liver fibrosis stage. The underlying mechanism for this observed stiffening behavior with pressurization is not well understood and is not explained with commonly used linear elastic mechanical models. An experiment was designed to determine whether the stiffness increase exhibited with hepatic pressurization results from a strain-dependent hyperelastic behavior. Six excised canine livers were subjected to variations in interstitial pressure through cannulation of the portal vein and closure of the hepatic artery and hepatic vein under constrained conditions (in which the liver was not free to expand) and unconstrained conditions. Radiation-force-derived shear wave speed estimates were obtained and correlated with pressure. Estimates of hepatic shear stiffness increased with changes in interstitial pressure over a physiologically relevant range of pressures (0-35 mmHg) from 1.5 to 3.5 m s-1. These increases were observed only under conditions in which the liver was free to expand while pressurized. This behavior is consistent with hyperelastic nonlinear material models that could be used in the future to explore methods for estimating hepatic interstitial pressure noninvasively.
Heffernan, Kevin S; Lefferts, Wesley K; Kasprowicz, Ari G; Tarzia, Brendan J; Thijssen, Dick H; Brutsaert, Tom D
2013-07-01
Exposure of the arterial wall to retrograde shear acutely leads to endothelial dysfunction and chronically contributes to a proatherogenic vascular phenotype. Arterial stiffness and increased pressure from wave reflections are known arbiters of blood flow in the systemic circulation and each related to atherosclerosis. Using distal external compression of the calf to increase upstream retrograde shear in the superficial femoral artery (SFA), we examined the hypothesis that changes in retrograde shear are correlated with changes in SFA stiffness and pressure from wave reflections. For this purpose, a pneumatic cuff was applied to the calf and inflated to 0, 35, and 70 mmHg (5 min compression, randomized order, separated by 5 min) in 16 healthy young men (23 ± 1 years of age). Doppler ultrasound and wave intensity analysis was used to measure SFA retrograde shear rate, reflected pressure wave intensity (negative area [NA]), elastic modulus (Ep), and a single-point pulse wave velocity (PWV) during acute cuff inflation. Cuff inflation resulted in stepwise increases in retrograde shear rate (P < 0.05 for main effect). There were also significant cuff pressure-dependent increases in NA, Ep, and PWV across conditions (P < 0.05 for main effects). Change in NA, but not Ep or PWV, was associated with change in retrograde shear rate across conditions (P < 0.05). In conclusion, external compression of the calf increases retrograde shear, arterial stiffness, and pressure from wave reflection in the upstream SFA in a dose-dependent manner. Wave reflection intensity, but not arterial stiffness, is correlated with changes in peripheral retrograde shear with this hemodynamic manipulation.
Characterizing Wave- and Current-Induced Bottom Shear Stress: U.S. Middle Atlantic Bight
NASA Astrophysics Data System (ADS)
Dalyander, S.; Butman, B.
2011-12-01
The combined action of waves and currents at the seabed creates bottom shear stress, impacting local geology, habitat, and anthropogenic use. In this study, a methodology is developed to characterize the magnitude of benthic disturbance based on spatially and seasonally-resolved statistics (mean, standard deviation, 95th percentile) of wave-current bottom shear stress. The frequency of stress forcing is used to distinguish regions dominated by storms (return interval longer than 33 hours) from those dominated by the tides (periods shorter than 33 hours). In addition, the relative magnitude of the contribution to stress from waves, tides, and storm-driven currents is investigated by comparing wave stress, tidal current stress, and stress from the residual current (currents with tides removed), as well as through cross-correlation of wave and current stress. The methodology is applied to numerical model time-series data for the Middle Atlantic Bight (MAB) off the U.S. East Coast for April 2010 to April 2011; currents are provided from the Integrated Ocean Observing System (IOOS) operational hydrodynamic forecast Experimental System for Predicting Shelf and Slope Optics (ESPreSSO) and waves are provided from a Simulating WAves Nearshore (SWAN) hindcast developed for this project. Spatial resolution of the model is about 5 km and time-series wave and current data are at 1 and 2-hours respectively. Regions of the MAB delineated by stress characteristics include a tidally-dominated shallow region with relative high stress southeast of Massachusetts over Nantucket Shoals; a coastal band extending offshore to about 30 m water depth dominated by waves; a region dominated by waves and wind-driven currents offshore of the Outer Banks of North Carolina; and a low stress region southeast of Long Island, approximately coincident with an area of fine-grained sediments called the "Mud Patch". Comparison of the stress distribution with surface sediment texture data shows that
Anomalous shear wave attenuation in the shallow crust beneath the Coso volcanic region, California
Sanders, C.; Ho-Liu, P.; Rinn, D.; Kanamori, H.
1988-04-10
We use seismograms of local earthquakes to image relative shear wave attenuation structure in the shallow crust beneath the region containing the Coso volcanic-geothermal area of eastern California. SV and P wave amplitudes were measured from vertical component seismograms of earthquakes that occurred in the Coso-southern Sierra Nevada region from July 1983 to 1985. Seismograms of 16 small earthquakes show SV amplitudes which are greatly diminished at some azimuths and takeoff angles, indicating strong lateral variations in S wave attenuation in the area. Three-dimensional images of the relative S wave attenuation structure are obtained from forward modeling and a back projection inversion of the amplitude data. The results indicate regions within a 20 by 30 by 10 km volume of the shallow crust (one shallower than 5 km) that severely attenuate SV waves passing through them. These anomalies lie beneath the Indian Wells Valley 30 km south of the Coso volcanic field, and are coincident with the epicentral locations of recent earthquake swarms. No anomalous attenuation is seen beneath the Coso volcanic field above about 5 km depth. Geologic relations and the coincidence of anomalous slow P wave velocities suggest that the attenuation anomalies may be related to magmatism along the eastern Sierra front. copyright American Geophysical Union 1988
NASA Astrophysics Data System (ADS)
Confal, Judith; Eken, Tuna; Tilmann, Frederik; Yolsal-evikbilen, Seda; Çubuk, Yeşim; Saygin, Erdinc; Taymaz, Tuncay
2016-04-01
Direct shear-wave splitting measurements based on the Reference Station Technique in the southern Aegean Sea revealed significant seismic anisotropy. The technique overcomes possible contamination from the source-side anisotropy on direct S-wave signals recorded at a station pair by maximizing the correlation between the seismic traces at reference and target stations after correcting the reference stations for known receiver-side anisotropy and the target stations for arbitrary splitting parameters probed via a grid search. We initially determined receiver-side anisotropy derived from SKS splitting measurements performed at four broadband stations. Following the bootstrap approach, in which only these four stations with well-constrained SKS splitting parameters are used as seeds to determine the splitting parameters of seismic stations of the EGELADOS temporary network in an iterative manner, we obtained splitting parameters at 35 stations with good-quality S-wave signals extracted from 82 teleseismic events. The fast polarization directions (φ) show a general trend of NNE-SSW orientation that ranges from 5.8° to 51.8°. Two stations in the west close to the Hellenic Trench and one in the east show N-S oriented fast polarizations. In the back-arc region three stations exhibit NE-SW orientation. Split time delays (δt) vary between 1.0s and 1.6s. Employing direct S-waves enabled more stable and reliable splitting measurements, with an average of 46 individual measurements. The overall fast polarization variations tend to be similar to those obtained from previous SKS splitting studies in the region but indicate a more consistent pattern. Splitting analyses on direct shear waves resulted in larger split time delays compared to the previous studies, possibly because they travel along a longer path in the same anisotropic structure. Observed differences between direct shear waves-derived (this study) and previous SKS splitting measurements could be due to the fact
Seismic heterogeneity in the mantle—strong shear wave signature of slabs from joint tomography
NASA Astrophysics Data System (ADS)
Kennett, B. L. N.; Gorbatov, A.
2004-08-01
The primary source of information on heterogeneity within the Earth comes from seismic tomography. A powerful tool for examining the character of heterogeneity comes from the comparison of images of bulk-sound and shear wavespeed extracted in a single inversion, since this isolates the dependencies on the elastic moduli. However, particularly in such multi-parameter inversions there are many hidden facets which can have a strong influence on the results, such as the weightings between parameters and in the misfit functions. Joint inversion with restricted data sets giving comparable cover for P and S waves provides useful checks on more inclusive studies, and can provide relatively high resolution in some areas. The relative behaviour of bulk-sound and shear wavespeed can provide a useful guide to the definition of heterogeneity regimes. For subduction zones a large part of the tomographic signal comes from S wavespeed variations. In the upper mantle and transition there can be significant bulk-sound speed contributions for younger slabs, and in stagnant slabs associated with slab roll-back. For subducted oceanic lithosphere older than about 90 Ma shear wavespeed variations nearly always are dominant and so the P wave images are controlled by shear modulus variations. The narrow segments of fast wavespeeds in the depth range 900-1500 km in the lower mantle are dominated by S variations, with very little bulk-sound contribution. Deep in the mantle there are many fast features without obvious association with subduction in the last 100 Ma, which suggests long-lived preservation of components of the geodynamic cycle.
NASA Technical Reports Server (NTRS)
Wang, C. R.; Hingst, W. R.; Porro, A. R.
1991-01-01
The properties of 2-D shock wave/turbulent boundary layer interaction flows were calculated by using a compressible turbulent Navier-Stokes numerical computational code. Interaction flows caused by oblique shock wave impingement on the turbulent boundary layer flow were considered. The oblique shock waves were induced with shock generators at angles of attack less than 10 degs in supersonic flows. The surface temperatures were kept at near-adiabatic (ratio of wall static temperature to free stream total temperature) and cold wall (ratio of wall static temperature to free stream total temperature) conditions. The computational results were studied for the surface heat transfer, velocity temperature correlation, and turbulent shear stress in the interaction flow fields. Comparisons of the computational results with existing measurements indicated that (1) the surface heat transfer rates and surface pressures could be correlated with Holden's relationship, (2) the mean flow streamwise velocity components and static temperatures could be correlated with Crocco's relationship if flow separation did not occur, and (3) the Baldwin-Lomax turbulence model should be modified for turbulent shear stress computations in the interaction flows.
Global SH-wave propagation in a 2D whole Moon model using the parallel hybrid PSM/FDM method
NASA Astrophysics Data System (ADS)
Jiang, Xianghua; Wang, Yanbin; Qin, Yanfang; Takenaka, Hiroshi
2015-06-01
We present numerical modeling of SH-wave propagation for the recently proposed whole Moon model and try to improve our understanding of lunar seismic wave propagation. We use a hybrid PSM/FDM method on staggered grids to solve the wave equations and implement the calculation on a parallel PC cluster to improve the computing efficiency. Features of global SH-wave propagation are firstly discussed for a 100-km shallow and 900-km deep moonquakes, respectively. Effects of frequency range and lateral variation of crust thickness are then investigated with various models. Our synthetic waveforms are finally compared with observed Apollo data to show the features of wave propagation that were produced by our model and those not reproduced by our models. Our numerical modeling show that the low-velocity upper crust plays significant role in the development of reverberating wave trains. Increasing frequency enhances the strength and duration of the reverberations. Surface multiples dominate wavefields for shallow event. Core-mantle reflections can be clearly identified for deep event at low frequency. The layered whole Moon model and the low-velocity upper crust produce the reverberating wave trains following each phases consistent with observation. However, more realistic Moon model should be considered in order to explain the strong and slow decay scattering between various phases shown on observation data.
A global horizontal shear velocity model of the upper mantle from multimode Love wave measurements
NASA Astrophysics Data System (ADS)
Ho, Tak; Priestley, Keith; Debayle, Eric
2016-10-01
Surface wave studies in the 1960s provided the first indication that the upper mantle was radially anisotropic. Resolving the anisotropic structure is important because it may yield information on deformation and flow patterns in the upper mantle. The existing radially anisotropic models are in poor agreement. Rayleigh waves have been studied extensively and recent models show general agreement. Less work has focused on Love waves and the models that do exist are less well-constrained than are Rayleigh wave models, suggesting it is the Love wave models that are responsible for the poor agreement in the radially anisotropic structure of the upper mantle. We have adapted the waveform inversion procedure of Debayle & Ricard to extract propagation information for the fundamental mode and up to the fifth overtone from Love waveforms in the 50-250 s period range. We have tomographically inverted these results for a mantle horizontal shear wave-speed model (βh(z)) to transition zone depths. We include azimuthal anisotropy (2θ and 4θ terms) in the tomography, but in this paper we discuss only the isotropic βh(z) structure. The data set is significantly larger, almost 500 000 Love waveforms, than previously published Love wave data sets and provides ˜17 000 000 constraints on the upper-mantle βh(z) structure. Sensitivity and resolution tests show that the horizontal resolution of the model is on the order of 800-1000 km to transition zone depths. The high wave-speed roots beneath the oldest parts of the continents appear to extend deeper for βh(z) than for βv(z) as in previous βh(z) models, but the resolution tests indicate that at least parts of these features could be artefacts. The low wave speeds beneath the mid-ocean ridges fade by ˜150 km depth except for the upper mantle beneath the East Pacific Rise which remains slow to ˜250 km depth. The resolution tests suggest that the low wave speeds at deeper depths beneath the East Pacific Rise are not solely due
Anisotropic Shear-wave Velocity Structure of East Asian Upper Mantle from Waveform Tomography
NASA Astrophysics Data System (ADS)
Chong, J.; Yuan, H.; French, S. W.; Romanowicz, B. A.; Ni, S.
2012-12-01
East Asia is a seismically active region featuring active tectonic belts, such as the Himalaya collision zone, western Pacific subduction zones and the Tianshan- Baikal tectonic belt. In this study, we applied full waveform time domain tomography to image 3D isotropic, radially and azimuthally anisotropic upper mantle shear velocity structure of East Asia. High quality teleseismic waveforms were collected for both permanent and temporary stations in the target and its adjacent regions, providing good ray path coverage of the study region. Fundamental and overtone wave packets, filtered down to 60 sec, were inverted for isotropic and radially anisotropic shear wave structure using normal mode asymptotic coupling theory (NACT: Li and Romanowicz, 1995). Joint inversion of SKS measurements and seismic waveforms was then carried out following the methodology described in (Marone and Romanowicz, 2007). The 3D velocity model shows strong lateral heterogeneities in the target region, which correlate well with the surface geology in East Asia. Our model shows that Indian lithosphere has subducted beneath Tibet with a different northern reach from western to eastern Tibet,. We also find variations of the slab geometry in Western Pacific subduction zones. Old and stable regions, such as, Indian shield, Siberia platform, Tarim and Yangtze blocks are found to have higher shear wave velocity in the upper mantle. Lower velocity anomalies are found in regions like Baikal rift, Tienshan, Indochina block, and the regions along Japan island-Ryukyu Trench and Izu-bonin Trench. The dominant fast and slow velocity boundaries in the study region are well correlated with tectonic belts, such as the central Asian orogenic belt and Alty/Qilian-Qinling/Dabie orogenic belt. Our radially anisotropic model shows Vsh> Vsv in oceanic regions and at larger depths(>300km), and Vsv > Vsh in some orogenic zones.. We'll show preliminary results of azimuthally anisotropic joint inversion of SKS
Variations in Shear Wave Splitting Beneath Southern Arabia and the Gulf of Aden
NASA Astrophysics Data System (ADS)
Gallacher, R. J.; Eakin, C. M.; Keir, D.; Leroy, S. D.; Stuart, G. W.; Harmon, N.; Ahmed, A.
2015-12-01
Mantle flow beneath Southern Arabia and the Gulf of Aden remains enigmatic due to a paucity of seismic measurements in the region. Potential processes contributing to mantle flow include northward progression of the African Superplume, radial flow from the Afar plume and vertical flow from small-scale convection along the margins of the Gulf of Aden. These would result in characteristic mantle flow directions, creating mantle anisotropy that can be detected by shear wave splitting. We analyse SKS, SKKS & PKS phases for shear wave splitting at 141 stations deployed throughout Yemen, Oman and Socotra along the margins of the Gulf of Aden. Large numbers of null measurements from a range of back azimuths are found beneath the entire region. These may indicate that vertical anisotropy is present in the upper mantle beneath the region, consistent with models of small-scale convection. The null measurements may also be due to complicated layering of crustal anisotropy interfering destructively and precluding measurement of shear wave splitting. Splitting measurements bordering the Red Sea show North-South orientations that may result from shallow aligned melt along the Red Sea or from variations in lower mantle flow. Fast polarization directions of splitting measurements along the Northern margin of the Gulf of Aden are rift parallel suggesting a shallow source such as rift related faulting might be responsible. These results show that anisotropy beneath the region is not controlled by the northward progression of the African Superplume or radial flow from the Afar plume. Upper mantle flow is likely vertical with splitting occurring either in the crust or the lower mantle.
Shear Wave Reflection Seismics Image Internal Structure of Quick-Clay Landslides in Sweden
NASA Astrophysics Data System (ADS)
Polom, U.; Krawczyk, C. M.; Malehmir, A.
2014-12-01
Covering many different sizes of scale, landslides are widespread and pose a severe hazard in many areas as soon as humans or infrastructure are affected. In order to provide geophysical tools and techniques to better characterize sites prone to sliding, a geophysical assessment working towards a geotechnical understanding of landslides is necessary. As part of a joint project studying clay-related landslides in Nordic countries by a suite of geophysical methods, we therefore tested the use of shear wave reflection seismics to survey shallow structures that are known to be related to quick-clay landslide processes in southern Sweden. On two crossing profiles, a land streamer consisting of 120 SH-geophones with 1 m spacing was deployed, and an ELVIS micro-vibrator was shaking every 4 m to generate the shear wave signal. SH-wave data of high quality were thereby acquired to resolve the gaps between P-wave data and electrical and surface wave based methods of lower resolution. After quality control, correlation, subtractive stack, and geometry setup, single shot gathers already demonstrate the high data quality gained in the region, especially on a gravel road. The migrated depth sections image the structural inventory down to ca. 50 m depth with vertical resolution of less than 1 m. Horizontally layered sediments are visible in the upper 40 m of soft (marine) sediments, followed by top basement with a rough topography varying between ca. 20-40 m depth. The imaged, bowl-shaped basement morphology centres near the profile crossing, and basement is exposed at three sides of the profiles. Three distinct sediment sequences are separated by high-amplitude unconformities. The quick-clay layer may be located above the marked reflection set that lies on top of the more transparent sequence that levels out the basement. Located between 15-20 m depth, this correlates with the height of the last scarp that occurred in the area. In addition, shear wave velocities are determined
Nguyen, Thu-Mai; Arnal, Bastien; Song, Shaozhen; Huang, Zhihong; Wang, Ruikang K.; O’Donnell, Matthew
2015-01-01
Abstract. Investigating the elasticity of ocular tissue (cornea and intraocular lens) could help the understanding and management of pathologies related to biomechanical deficiency. In previous studies, we introduced a setup based on optical coherence tomography for shear wave elastography (SWE) with high resolution and high sensitivity. SWE determines tissue stiffness from the propagation speed of shear waves launched within tissue. We proposed acoustic radiation force to remotely induce shear waves by focusing an ultrasound (US) beam in tissue, similar to several elastography techniques. Minimizing the maximum US pressure is essential in ophthalmology for safety reasons. For this purpose, we propose a pulse compression approach. It utilizes coded US emissions to generate shear waves where the energy is spread over a long emission, and then numerically compressed into a short, localized, and high-energy pulse. We used a 7.5-MHz single-element focused transducer driven by coded excitations where the amplitude is modulated by a linear frequency-swept square wave (1 to 7 kHz). An inverse filter approach was used for compression. We demonstrate the feasibility of performing shear wave elastography measurements in tissue-mimicking phantoms at low US pressures (mechanical index <0.6). PMID:25554970
Multi-channel analysis of surface waves MASW of models with high shear-wave velocity contrast
Ivanov, J.; Miller, R.D.; Peterie, S.; Zeng, C.; Xia, J.; Schwenk, T.
2011-01-01
We use the multi-channel analysis of surface waves MASW method to analyze synthetic seismic data calculated using models with high shear-wave velocity Vs contrast. The MASW dispersion-curve images of the Rayleigh wave are obtained using various sets of source-offset and spread-size configurations from the synthetic seismic data and compared with the theoretically calculated fundamental- and higher-mode dispersion-curves. Such tests showed that most of the dispersion-curve images are dominated by higher-mode energy at the low frequencies, especially when analyzing data from long receiver offsets and thus significantly divert from numerically expected dispersion-curve trends, which can lead to significant Vs overestimation. Further analysis showed that using data with relatively short spread lengths and source offsets can image the desired fundamental-mode of the Rayleigh wave that matches the numerically expected dispersion-curve pattern. As a result, it was concluded that it might be possible to avoid higher-mode contamination at low frequencies at sites with high Vs contrast by appropriate selection of spread size and seismic source offset. ?? 2011 Society of Exploration Geophysicists.
Shear wave velocity measurements of thin epoxy adhesive samples using broadband EMATs
NASA Astrophysics Data System (ADS)
Dixon, S.; Edwards, C.; Palmer, S. B.
2002-05-01
This paper describes an ultrasonic analysis of thin epoxy resin samples using normal incidence radially polarized shear wave ElectroMagnetic Acoustic Transducers (EMATs). The adhesive thickness in the first set of experiments was approximately 0.5 mm. The adhesive used in the first set of experiments was obtained from a 2 component cartridge and it was found that adhesive extruded from such cartridges can be inhomogeneous within the same cartridge. The second experiment described here demonstrated how material property changes of a thin adhesive layer (70 μm) could be ultrasonically measured during cure via spectral analysis.
NASA Astrophysics Data System (ADS)
Aristizabal, Sara; Amador, Carolina; Qiang, Bo; Kinnick, Randall R.; Nenadic, Ivan Z.; Greenleaf, James F.; Urban, Matthew W.
2014-12-01
Ultrasound radiation force-based methods can quantitatively evaluate tissue viscoelastic material properties. One of the limitations of the current methods is neglecting the inherent anisotropy nature of certain tissues. To explore the phenomenon of anisotropy in a laboratory setting, we created two phantom designs incorporating fibrous and fishing line material with preferential orientations. Four phantoms were made in a cube-shaped mold; both designs were arranged in multiple layers and embedded in porcine gelatin using two different concentrations (8%, 14%). An excised sample of pork tenderloin was also studied. Measurements were made in the phantoms and the pork muscle at different angles by rotating the phantom with respect to the transducer, where 0° and 180° were defined along the fibers, and 90° and 270° across the fibers. Shear waves were generated and measured by a Verasonics ultrasound system equipped with a linear array transducer. For the fibrous phantom, the mean and standard deviations of the shear wave speeds along (0°) and across the fibers (90°) with 8% gelatin were 3.60 ± 0.03 and 3.18 ± 0.12 m s-1 and with 14% gelatin were 4.10 ± 0.11 and 3.90 ± 0.02 m s-1. For the fishing line material phantom, the mean and standard deviations of the shear wave speeds along (0°) and across the fibers (90°) with 8% gelatin were 2.86 ± 0.20 and 2.44 ± 0.24 m s-1 and with 14% gelatin were 3.40 ± 0.09 and 2.84 ± 0.14 m s-1. For the pork muscle, the mean and standard deviations of the shear wave speeds along the fibers (0°) at two different locations were 3.83 ± 0.16 and 3.86 ± 0.12 m s-1 and across the fibers (90°) were 2.73 ± 0.18 and 2.70 ± 0.16 m s-1, respectively. The fibrous and fishing line gelatin-based phantoms exhibited anisotropy that resembles that observed in the pork muscle.
Inertial effects on thin-film wave structures with imposed surface shear on an inclined plane
NASA Astrophysics Data System (ADS)
Sivapuratharasu, M.; Hibberd, S.; Hubbard, M. E.; Power, H.
2016-06-01
This study provides an extended approach to the mathematical simulation of thin-film flow on a flat inclined plane relevant to flows subject to high surface shear. Motivated by modelling thin-film structures within an industrial context, wave structures are investigated for flows with moderate inertial effects and small film depth aspect ratio ε. Approximations are made assuming a Reynolds number, Re ∼ O(ε-1) and depth-averaging used to simplify the governing Navier-Stokes equations. A parallel Stokes flow is expected in the absence of any wave disturbance and a generalisation for the flow is based on a local quadratic profile. This approach provides a more general system which includes inertial effects and is solved numerically. Flow structures are compared with studies for Stokes flow in the limit of negligible inertial effects. Both two-tier and three-tier wave disturbances are used to study film profile evolution. A parametric study is provided for wave disturbances with increasing film Reynolds number. An evaluation of standing wave and transient film profiles is undertaken and identifies new profiles not previously predicted when inertial effects are neglected.
Sanders, C.; Ho-Liu, P.; Rinn, D.; Hiroo, Kanamori
1988-01-01
We use seismograms of local earthquakes to image relative shear wave attenuation structure in the shallow crust beneath the region containing the Coso volcanic-geothermal area of E California. Seismograms of 16 small earthquakes show SV amplitudes which are greatly diminished at some azimuths and takeoff angles, indicating strong lateral variations in S wave attenuation in the area. 3-D images of the relative S wave attenuation structure are obtained from forward modeling and a back projection inversion of the amplitude data. The results indicate regions within a 20 by 30 by 10 km volume of the shallow crust (one shallower than 5 km) that severely attenuate SV waves passing through them. These anomalies lie beneath the Indian Wells Valley, 30 km S of the Coso volcanic field, and are coincident with the epicentral locations of recent earthquake swarms. No anomalous attenuation is seen beneath the Coso volcanic field above about 5 km depth. Geologic relations and the coincidence of anomalously slow P wave velocities suggest that the attenuation anomalies may be related to magmatism along the E Sierra front.-from Authors
Shear Wave Velocity Structure of the Pampean Flat Slab Region from Ambient Noise Tomography
NASA Astrophysics Data System (ADS)
Porter, R. C.; Beck, S. L.; Zandt, G.; Warren, L. M.; Alvarado, P. M.; Gilbert, H. J.
2010-12-01
The South American Cordillera formed by the subduction of the Nazca plate beneath South America. While this is often considered a ‘typical’ compressive upper plate subduction zone, there are several along-strike variations in both the nature of subduction and the style of deformation. From 30° to 32° S the Nazca plate flattens out at 100 km depth for ~300 km before resuming a steeper angle of subduction. Flat slab subduction shutoff of arc magmatism and caused deformation to migrate inboard into the Sierras Pampeanas. While flat slab subduction has had a profound impact on the regions’s tectonics, the presence of preexisting features related to the rifting of Gondwanaland and the accretion of terranes have also had a large impact on deformation. We use ambient noise tomography (ANT) to calculate regional shear wave velocities to better understand the tectonic development of the Pampean flat slab region. ANT utilizes the cross correlation of seismic noise to approximate the Green’s function between two seismic stations. Using this technique, we measure Rayleigh wave phase velocities at periods between 8 and 30 seconds, allowing us to measure shear wave velocities down to 40 km depth. Initial tomography results show a strong correlation between phase velocity and basin structure. Fast phase velocities at the 10 second period correlate with the Sierra de Pie de Palo, Sierra de Valle Fertil in the west and the Sierras de Cordoba in the east, while slow velocities correlate with the Bermejo and Cuyo basins. At longer periods (beyond 20 seconds), there is a pattern of slow phase velocities in the west beneath the Precordillera and the high Andes while fast phase velocities are present in the east beneath the Sierras Pampeanas. These fast velocities most likely reflect faster mid- to lower crustal velocities and a shallower Moho. To further our interpretation we inverted phase velocities to calculate regional shear wave structure. At shallow depths (< 15 km) the