Spin-Orbit Interaction and Related Transport Phenomena in 2d Electron and Hole Systems
NASA Astrophysics Data System (ADS)
Khaetskii, A.
Spin-orbit interaction is responsible for many physical phenomena which are under intensive study currently. Here we discuss several of them. The first phenomenon is the edge spin accumulation, which appears due to spin-orbit interaction in 2D mesoscopic structures in the presence of a charge current. We consider the case of a strong spin-orbit-related splitting of the electron spectrum, i.e. a spin precession length is small compared to the mean free path l. The structure can be either in a ballistic regime (when the mean free path is the largest scale in the problem) or quasi-ballistic regime (when l is much smaller than the sample size). We show how physics of edge spin accumulation in different situations should be understood from the point of view of unitarity of boundary scattering. Using transparent method of scattering states, we are able to explain some previous puzzling theoretical results. We clarify the important role of the form of the spin-orbit Hamiltonian, the role of the boundary conditions, etc., and reveal the wrong results obtained in the field by other researchers. The relation between the edge spin density and the bulk spin current in different regimes is discussed. The detailed comparison with the existing theoretical works is presented. Besides, we consider several new transport phenomena which appear in the presence of spin-orbit interaction, for example, magnetotransport phenomena in an external classical magnetic field. In particular, new mechanism of negative magneto-resistance appears which is due to destruction of spin fluxes by the magnetic field, and which can be really pronounced in 2D systems with strong scatterers.
Spin-spin correlation functions of spin systems coupled to 2-d quantum gravity for 0 < c < 1.
NASA Astrophysics Data System (ADS)
Ambjørn, J.; Anagnostopoulos, K. N.; Magnea, U.; Thorleifsson, G.
1997-02-01
We perform Monte Carlo simulations of 2-d dynamically triangulated surfaces coupled to Ising and three-states Potts model matter. By measuring spin-spin correlation functions as a function of the geodesic distance we provide substantial evidence for a diverging correlation length at βc. The corresponding scaling exponents are directly related to the KPZ exponents of the matter fields as conjectured in [4].
Magnetotransport properties of 2D fermionic systems with k-cubic Rashba spin-orbit interaction
NASA Astrophysics Data System (ADS)
Mawrie, Alestin; Biswas, Tutul; Kanti Ghosh, Tarun
2014-10-01
The spin-orbit interaction in heavy hole gas formed at p-doped semiconductor heterojunctions and electron gas at SrTiO3 surfaces is cubic in momentum. Here we report magnetotransport properties of k-cubic Rashba spin-orbit coupled 2D fermionic systems. We study longitudinal and Hall components of the resistivity tensor analytically as well as numerically. The longitudinal resistivity shows a beating pattern due to different Shubnikov-de Haas (SdH) oscillation frequencies f± for spin-up and spin-down fermions. We propose empirical forms of f± as exact expressions are not available, which are being used to find locations of the beating nodes. The beating nodes and the number of oscillations between any two successive nodes obtained from exact numerical results are in excellent agreement with those calculated from the proposed empirical formula. In the Hall resistivity, an additional Hall plateau appears between the two conventional ones as the spin-orbit coupling constant increases. The width of this additional plateau increases with spin-orbit coupling constant.
Increase of spin dephasing times in a 2D electron system with degree of initial spin polarization
NASA Astrophysics Data System (ADS)
Stich, D.; Korn, T.; Schulz, R.; Schuh, D.; Wegscheider, W.; Schüller, C.
2008-03-01
We report on time-resolved Faraday/Kerr rotation measurements on a high-mobility 2D electron system. A variable initial spin polarization is created in the sample by a circularly polarized pump pulse, and the spin polarization is tracked by measuring the Faraday/Kerr rotation of a time-delayed probe pulse. By varying the pump intensity, the initial spin polarization is changed from the low-polarization limit to a polarization degree of several percent. The observed spin dephasing time increases from less than 20 ps to more than 200 ps as the initial spin polarization is increased. To exclude sample heating effects, additional measurements with constant pump intensity and variable degree of circular polarization are performed. The results confirm the theoretical prediction by Weng and Wu [Phys. Rev. B 68 (2003) 075312] that the spin dephasing strongly depends on the initial spin polarization degree. The microscopic origin for this is the Hartree-Fock term in the Coulomb interaction, which acts as an effective out-of plane magnetic field.
Ti3CrCu4: A possible 2-D ferromagnetic spin fluctuating system
NASA Astrophysics Data System (ADS)
Dhar, S. K.; Provino, A.; Manfrinetti, P.; Kulkarni, R.; Goyal, Neeraj; Paudyal, D.
2016-05-01
Ti3CrCu4 is a new ternary compound which crystallizes in the tetragonal Ti3Pd5 structure type. The Cr atoms form square nets in the a-b plane (a = 3.124 Å) which are separated by an unusually large distance c = 11.228 Å along the tetragonal axis, thus forming a -2-D Cr-sublattice. The paramagnetic susceptibility is characterized by a low effective moment, μeff = 1.1 μB, a low paramagnetic Curie temperature θP (below 7 K) and a temperature independent χ0 = 6.7 x 10-4 emu/mol. The magnetization at 1.8 K increases rapidly with field nearly saturating to 0.2 μB/f.u. The zero field heat capacity C/T shows an upturn below 7 K (˜190 mJ/mol K2 at ˜0.1K) which is suppressed in applied magnetic fields and interpreted as suggesting the presence of spin fluctuations. The resistivity at low temperatures shows non-Fermi liquid behavior. Overall, the experimental data thus reveal an unusual magnetic state in Ti3CrCu4, which likely has its origin in the layered nature of the Cr sub-lattice and ferromagnetic spin fluctuations. Density functional theoretical calculations reveal a sharp Cr density of states peak just above the Fermi level, indicating the propensity of Ti3CrCu4 to become magnetic.
NASA Astrophysics Data System (ADS)
Nanguneri, Ravindra
-dependent disorder. Further, the finite temperature phase diagram for the 2D attractive fermion Hubbard model with spin-dependent disorder is also considered within BdG mean field theory. Three types of disorder are studied. In the first, only one species is coupled to a random site energy; in the second, the two species both move in random site energy landscapes which are of the same amplitude, but different realizations; and finally, in the third, the disorder is in the hopping rather than the site energy. For all three cases we find that, unlike the case of spin-symmetric randomness, where the energy gap and average order parameter do not vanish as the disorder strength increases, a critical disorder strength exists separating distinct phases. In fact, the energy gap and the average order parameter vanish at distinct transitions,
NASA Astrophysics Data System (ADS)
Yeoh, Lareine; Srinivasan, Ashwin; Klochan, Oleh; Micolich, Adam; Winkler, Roland; Simmons, Michelle; Ritchie, David; Pepper, Michael; Hamilton, Alexander
2014-03-01
Recent interest in spin-orbit coupling has led to studies of quantum confined, hole based semiconductor devices, which naturally possess strong spin-orbit interaction due to the intrinsic spin-3/2 nature of holes. In general both crystal anisotropies and quantum confinement will affect the spin properties of holes. In high symmetry crystals such anisotropies can be ignored, however in low symmetry crystals this complex interplay between the crystal and the confining potential gives rise to intriguing spin behavior, which has no counterpart in spin-1/2 electron-based systems. Here I will present the first direct observations of an unusual effect where a magnetic field applied in the plane of the 2D hole system generates a spin polarization perpendicular to the 2D plane. This out-of-plane spin polarisation is detected in transport measurements of a symmetrically doped, GaAs 2D hole quantum well in tilted magnetic fields. We are able to extract the sign of this off-diagonal component of the Landé g-factor and show that it is consistent with theory.
Spin splitting in 2D monochalcogenide semiconductors
Do, Dat T.; Mahanti, Subhendra D.; Lai, Chih Wei
2015-01-01
We report ab initio calculations of the spin splitting of the uppermost valence band (UVB) and the lowermost conduction band (LCB) in bulk and atomically thin GaS, GaSe, GaTe, and InSe. These layered monochalcogenides appear in four major polytypes depending on the stacking order, except for the monoclinic GaTe. Bulk and few-layer ε-and γ -type, and odd-number β-type GaS, GaSe, and InSe crystals are noncentrosymmetric. The spin splittings of the UVB and the LCB near the Γ-point in the Brillouin zone are finite, but still smaller than those in a zinc-blende semiconductor such as GaAs. On the other hand, the spin splitting is zero in centrosymmetric bulk and even-number few-layer β-type GaS, GaSe, and InSe, owing to the constraint of spatial inversion symmetry. By contrast, GaTe exhibits zero spin splitting because it is centrosymmetric down to a single layer. In these monochalcogenide semiconductors, the separation of the non-degenerate conduction and valence bands from adjacent bands results in the suppression of Elliot-Yafet spin relaxation mechanism. Therefore, the electron- and hole-spin relaxation times in these systems with zero or minimal spin splittings are expected to exceed those in GaAs when the D’yakonov-Perel’ spin relaxation mechanism is also suppressed. PMID:26596907
Spin splitting in 2D monochalcogenide semiconductors
NASA Astrophysics Data System (ADS)
Do, Dat T.; Mahanti, Subhendra D.; Lai, Chih Wei
2015-11-01
We report ab initio calculations of the spin splitting of the uppermost valence band (UVB) and the lowermost conduction band (LCB) in bulk and atomically thin GaS, GaSe, GaTe, and InSe. These layered monochalcogenides appear in four major polytypes depending on the stacking order, except for the monoclinic GaTe. Bulk and few-layer ε-and γ -type, and odd-number β-type GaS, GaSe, and InSe crystals are noncentrosymmetric. The spin splittings of the UVB and the LCB near the Γ-point in the Brillouin zone are finite, but still smaller than those in a zinc-blende semiconductor such as GaAs. On the other hand, the spin splitting is zero in centrosymmetric bulk and even-number few-layer β-type GaS, GaSe, and InSe, owing to the constraint of spatial inversion symmetry. By contrast, GaTe exhibits zero spin splitting because it is centrosymmetric down to a single layer. In these monochalcogenide semiconductors, the separation of the non-degenerate conduction and valence bands from adjacent bands results in the suppression of Elliot-Yafet spin relaxation mechanism. Therefore, the electron- and hole-spin relaxation times in these systems with zero or minimal spin splittings are expected to exceed those in GaAs when the D’yakonov-Perel’ spin relaxation mechanism is also suppressed.
Krishtopenko, S. S.
2015-02-15
The effect of the electron-electron interaction on the spin-resonance frequency in two-dimensional electron systems with Dresselhaus spin-orbit coupling is investigated. The oscillatory dependence of many-body corrections on the magnetic field is demonstrated. It is shown that the consideration of many-body interaction leads to a decrease or an increase in the spin-resonance frequency, depending on the sign of the g factor. It is found that the term cubic in quasimomentum in Dresselhaus spin-orbit coupling partially decreases exchange corrections to the spin resonance energy in a two-dimensional system.
Collective spin excitations in 2D paramagnet with dipole interaction
NASA Astrophysics Data System (ADS)
Tsiberkin, Kirill
2016-02-01
The collective spin excitations in the unbounded 2D paramagnetic system with dipole interactions are studied. The model Hamiltonian includes Zeeman energy and dipole interaction energy, while the exchange vanishes. The system is placed into a constant uniform magnetic field which is orthogonal to the lattice plane. It provides the equilibrium state with spin ordering along the field direction, and the saturation is reached at zero temperature. We consider the deviations of spin magnetic moments from its equilibrium position along the external field. The Holstein-Primakoff representation is applied to spin operators in low-temperature approximation. When the interaction between the spin waves is negligible and only two-magnon terms are taken into account, the Hamiltonian diagonalisation is possible. We obtain the dispersion relation for spin waves in the square and hexagonal honeycomb lattice. Bose-Einstein statistics determine the average number of spin deviations, and total system magnetization. The lattice structure does not influence on magnetization at the long-wavelength limit. The dependencies of the relative magnetization and longitudinal susceptibility on temperature and external field intensity are found. The internal energy and specific heat of the Bose gas of spin waves are calculated. The collective spin excitations play a significant role in the properties of the paramagnetic system at low temperature and strong external magnetic field.
Discovery of a Novel Linear-in-k Spin Splitting for Holes in the 2D GaAs/AlAs System
Luo, J. W.; Chantis, A. N.; van Schilfgaarde, M.; Bester, G.; Zunger, A.
2010-02-12
The spin-orbit interaction generally leads to spin splitting (SS) of electron and hole energy states in solids, a splitting that is characterized by a scaling with the wave vector k. Whereas for 3D bulk zinc blende solids the electron (heavy-hole) SS exhibits a cubic (linear) scaling with k, in 2D quantum wells, the electron (heavy-hole) SS is currently believed to have a mostly linear (cubic) scaling. Such expectations are based on using a small 3D envelope function basis set to describe 2D physics. By treating instead the 2D system explicitly as a system in its own right, we discover a large linear scaling of hole states in 2D. This scaling emerges from coupling of hole bands that would be unsuspected by the standard model that judges coupling by energy proximity. This discovery of a linear Dresselhaus k scaling for holes in 2D implies a different understanding of hole physics in low dimensions.
Hong, Tao; Stock, C.; Cabrera, I.; Broholm, C.; Qiu, Y.; Leao, J. B.; Poulton, S. J.; Copley, J.R.D.
2010-01-01
We report inelastic neutron scattering study of a quasi-two-dimensional S=1/2 dimer system piperazinium hexachlorodicuprate under hydrostatic pressure. The spin gap {Delta} becomes softened with the increase of the hydrostatic pressure up to P = 9.0 kbar. The observed threefold degenerate triplet excitation at P = 6.0 kbar is consistent with the theoretical prediction and the bandwidth of the dispersion relation is unaffected within the experimental uncertainty. At P = 9.0 kbar the spin gap is reduced to {Delta} = 0.55 meV from {Delta} = 1.0 meV at ambient pressure.
Duality Between Spin Networks and the 2D Ising Model
NASA Astrophysics Data System (ADS)
Bonzom, Valentin; Costantino, Francesco; Livine, Etera R.
2016-06-01
The goal of this paper is to exhibit a deep relation between the partition function of the Ising model on a planar trivalent graph and the generating series of the spin network evaluations on the same graph. We provide respectively a fermionic and a bosonic Gaussian integral formulation for each of these functions and we show that they are the inverse of each other (up to some explicit constants) by exhibiting a supersymmetry relating the two formulations. We investigate three aspects and applications of this duality. First, we propose higher order supersymmetric theories that couple the geometry of the spin networks to the Ising model and for which supersymmetric localization still holds. Secondly, after interpreting the generating function of spin network evaluations as the projection of a coherent state of loop quantum gravity onto the flat connection state, we find the probability distribution induced by that coherent state on the edge spins and study its stationary phase approximation. It is found that the stationary points correspond to the critical values of the couplings of the 2D Ising model, at least for isoradial graphs. Third, we analyze the mapping of the correlations of the Ising model to spin network observables, and describe the phase transition on those observables on the hexagonal lattice. This opens the door to many new possibilities, especially for the study of the coarse-graining and continuum limit of spin networks in the context of quantum gravity.
Optimizing Spin Generation in 2D Materials: Topological Insulators and Graphene
NASA Astrophysics Data System (ADS)
Chen, Ching-Tzu
Novel two-dimensional electronic systems with Dirac-like dispersion present unique opportunities for spintronic applications. In this seminar I will discuss two specific examples. First we examine the potential of topological insulators as spin-source materials. Using a new spin-polarized tunneling method, giant charge-spin conversion efficiency in topological insulators is revealed, well exceeding that in conventional magnetic tunnel junctions. Through a comparative study between Bi2Se3 and (Bi,Sb)2Te3, we verify the topological-surface-state origin of the observed giant spin signals and further extract the energy dependence of the effective spin polarization in Bi2Se3. Next we explore the potential of interfacial exchange interaction in 2D materials for spin control and spin generation. Using graphene as a prototype, we demonstrate that its coupling to a model magnetic insulator (EuS) produces a substantial magnetic exchange field (>14 T), which yields orders-of-magnitude enhancement in the spin signal originated from the Zeeman spin-Hall effect. Furthermore, the strong exchange field lifts the spin degeneracy of graphene in the quantum Hall regime, which may lead to interesting spin-polarized edge transport and thus open up new application space for classical and quantum information processing.
Spin Hall effect and spin transport in graphene and 2D heterostructures
NASA Astrophysics Data System (ADS)
Oezyilmaz, Barbaros
Semiconducting 2D materials offer new opportunities in both alternative technologies and fundamental discoveries by using the spin degree freedom of electrons. One of the main challenges in this field is to identify new materials which allow the control of spin currents by means of the electric field effect. This requires either a sizeable spin-orbit coupling strength or a sizeable bandgap or both. Unfortunately, pristine graphene has a negligibly small spin-orbit coupling strength. Recently we have addressed this problem in three distinct ways. First we have used chemical functionalization to introduce locally sp3 type bonding. Next we used metal ad-atoms to increase spin-orbit coupling via local enhancement of the spin-orbit coupling strength due to resonant scattering. Finally, I will show that the proximity of graphene on transition metal dichalcogenides can also lead to a significant enhancement of the spin-orbit coupling strength. I will complete my talk with a brief discussion on the possibility of all electrical spin injection into complementary 2D crystals such as WS2, MoS2 or black phosphorus. Membership Pending in the abstract Special Instructions field.
Simulation of multi-steps thermal transition in 2D spin-crossover nanoparticles
NASA Astrophysics Data System (ADS)
Jureschi, Catalin-Maricel; Pottier, Benjamin-Louis; Linares, Jorge; Richard Dahoo, Pierre; Alayli, Yasser; Rotaru, Aurelian
2016-04-01
We have used an Ising like model to study the thermal behavior of a 2D spin crossover (SCO) system embedded in a matrix. The interaction parameter between edge SCO molecules and its local environment was included in the standard Ising like model as an additional term. The influence of the system's size and the ratio between the number of edge molecules and the other molecules were also discussed.
Spin Circuit Model for 2D Channels with Spin-Orbit Coupling
Hong, Seokmin; Sayed, Shehrin; Datta, Supriyo
2016-01-01
In this paper we present a general theory for an arbitrary 2D channel with “spin momentum locking” due to spin-orbit coupling. It is based on a semiclassical model that classifies all the channel electronic states into four groups based on the sign of the z-component of the spin (up (U), down (D)) and the sign of the x-component of the velocity (+, −). This could be viewed as an extension of the standard spin diffusion model which uses two separate electrochemical potentials for U and D states. Our model uses four: U+, D+, U−, and D−. We use this formulation to develop an equivalent spin circuit that is also benchmarked against a full non-equilibrium Green’s function (NEGF) model. The circuit representation can be used to interpret experiments and estimate important quantities of interest like the charge to spin conversion ratio or the maximum spin current that can be extracted. The model should be applicable to topological insulator surface states with parallel channels as well as to other layered structures with interfacial spin-orbit coupling. PMID:26932563
Spin Circuit Model for 2D Channels with Spin-Orbit Coupling.
Hong, Seokmin; Sayed, Shehrin; Datta, Supriyo
2016-01-01
In this paper we present a general theory for an arbitrary 2D channel with "spin momentum locking" due to spin-orbit coupling. It is based on a semiclassical model that classifies all the channel electronic states into four groups based on the sign of the z-component of the spin (up (U), down (D)) and the sign of the x-component of the velocity (+, -). This could be viewed as an extension of the standard spin diffusion model which uses two separate electrochemical potentials for U and D states. Our model uses four: U+, D+, U-, and D-. We use this formulation to develop an equivalent spin circuit that is also benchmarked against a full non-equilibrium Green's function (NEGF) model. The circuit representation can be used to interpret experiments and estimate important quantities of interest like the charge to spin conversion ratio or the maximum spin current that can be extracted. The model should be applicable to topological insulator surface states with parallel channels as well as to other layered structures with interfacial spin-orbit coupling. PMID:26932563
Spin Circuit Model for 2D Channels with Spin-Orbit Coupling
NASA Astrophysics Data System (ADS)
Hong, Seokmin; Sayed, Shehrin; Datta, Supriyo
2016-03-01
In this paper we present a general theory for an arbitrary 2D channel with “spin momentum locking” due to spin-orbit coupling. It is based on a semiclassical model that classifies all the channel electronic states into four groups based on the sign of the z-component of the spin (up (U), down (D)) and the sign of the x-component of the velocity (+, -). This could be viewed as an extension of the standard spin diffusion model which uses two separate electrochemical potentials for U and D states. Our model uses four: U+, D+, U-, and D-. We use this formulation to develop an equivalent spin circuit that is also benchmarked against a full non-equilibrium Green’s function (NEGF) model. The circuit representation can be used to interpret experiments and estimate important quantities of interest like the charge to spin conversion ratio or the maximum spin current that can be extracted. The model should be applicable to topological insulator surface states with parallel channels as well as to other layered structures with interfacial spin-orbit coupling.
Quantum spin Hall phase in 2D trigonal lattice.
Wang, Z F; Jin, Kyung-Hwan; Liu, Feng
2016-01-01
The quantum spin Hall (QSH) phase is an exotic phenomena in condensed-matter physics. Here we show that a minimal basis of three orbitals (s, px, py) is required to produce a QSH phase via nearest-neighbour hopping in a two-dimensional trigonal lattice. Tight-binding model analyses and calculations show that the QSH phase arises from a spin-orbit coupling (SOC)-induced s-p band inversion or p-p bandgap opening at Brillouin zone centre (Γ point), whose topological phase diagram is mapped out in the parameter space of orbital energy and SOC. Remarkably, based on first-principles calculations, this exact model of QSH phase is shown to be realizable in an experimental system of Au/GaAs(111) surface with an SOC gap of ∼73 meV, facilitating the possible room-temperature measurement. Our results will extend the search for substrate supported QSH materials to new lattice and orbital types. PMID:27599580
Spin-orbit coupling at surfaces and 2D materials.
Krasovskii, E E
2015-12-16
Spin-orbit interaction gives rise to a splitting of surface states via the Rashba effect, and in topological insulators it leads to the existence of topological surface states. The resulting k(//) momentum separation between states with the opposite spin underlies a wide range of new phenomena at surfaces and interfaces, such as spin transfer, spin accumulation, spin-to-charge current conversion, which are interesting for fundamental science and may become the basis for a breakthrough in the spintronic technology. The present review summarizes recent theoretical and experimental efforts to reveal the microscopic structure and mechanisms of spin-orbit driven phenomena with the focus on angle and spin-resolved photoemission and scanning tunneling microscopy. PMID:26580290
The 2D lingual appliance system.
Cacciafesta, Vittorio
2013-09-01
The two-dimensional (2D) lingual bracket system represents a valuable treatment option for adult patients seeking a completely invisible orthodontic appliance. The ease of direct or simplified indirect bonding of 2D lingual brackets in combination with low friction mechanics makes it possible to achieve a good functional and aesthetic occlusion, even in the presence of a severe malocclusion. The use of a self-ligating bracket significantly reduces chair-side time for the orthodontist, and the low-profile bracket design greatly improves patient comfort. PMID:24005953
Spin Circuit Model for Spin Orbit Torques in 2D Channels
NASA Astrophysics Data System (ADS)
Hong, Seokmin
2015-03-01
Recently, the unique coupling between charge and spin in topological insulators has been explored through various types of electrical measurements, which could have interesting applications. In this talk, we present a spin circuit model for spin orbit torques in topological insulator surface states and other 2D channels. We show with a simple example that results from the circuit model agree well with those obtained from nonequilibrium Green's function (NEGF) based quantum transport simulation. Some predictions of our model have already received experimental support and we hope this model can provide a unifying framework that can be used to critically evaluate experimental results, to explore new types of devices as well as to answer fundamental questions regarding these materials. The model for spin-orbit torques described here can be incorporated into a broader spin-circuit approach which, we believe, provides a natural platform for multi-physics, multi-component spintronic devices. This work was supported by FAME, a Semiconductor Research Corporation program sponsored by MARCO and DARPA.
2d Affine XY-Spin Model/4d Gauge Theory Duality and Deconfinement
Anber, Mohamed M.; Poppitz, Erich; Unsal, Mithat; /SLAC /Stanford U., Phys. Dept. /San Francisco State U.
2012-08-16
We introduce a duality between two-dimensional XY-spin models with symmetry-breaking perturbations and certain four-dimensional SU(2) and SU(2) = Z{sub 2} gauge theories, compactified on a small spatial circle R{sup 1,2} x S{sup 1}, and considered at temperatures near the deconfinement transition. In a Euclidean set up, the theory is defined on R{sup 2} x T{sup 2}. Similarly, thermal gauge theories of higher rank are dual to new families of 'affine' XY-spin models with perturbations. For rank two, these are related to models used to describe the melting of a 2d crystal with a triangular lattice. The connection is made through a multi-component electric-magnetic Coulomb gas representation for both systems. Perturbations in the spin system map to topological defects in the gauge theory, such as monopole-instantons or magnetic bions, and the vortices in the spin system map to the electrically charged W-bosons in field theory (or vice versa, depending on the duality frame). The duality permits one to use the two-dimensional technology of spin systems to study the thermal deconfinement and discrete chiral transitions in four-dimensional SU(N{sub c}) gauge theories with n{sub f} {ge} 1 adjoint Weyl fermions.
2D stepping drive for hyperspectral systems
NASA Astrophysics Data System (ADS)
Endrödy, Csaba; Mehner, Hannes; Grewe, Adrian; Sinzinger, Stefan; Hoffmann, Martin
2015-07-01
We present the design, fabrication and characterization of a compact 2D stepping microdrive for pinhole array positioning. The miniaturized solution enables a highly integrated compact hyperspectral imaging system. Based on the geometry of the pinhole array, an inch-worm drive with electrostatic actuators was designed resulting in a compact (1 cm2) positioning system featuring a step size of about 15 µm in a 170 µm displacement range. The high payload (20 mg) as required for the pinhole array and the compact system design exceed the known electrostatic inch-worm-based microdrives.
Periodically sheared 2D Yukawa systems
Kovács, Anikó Zsuzsa; Hartmann, Peter; Donkó, Zoltán
2015-10-15
We present non-equilibrium molecular dynamics simulation studies on the dynamic (complex) shear viscosity of a 2D Yukawa system. We have identified a non-monotonic frequency dependence of the viscosity at high frequencies and shear rates, an energy absorption maximum (local resonance) at the Einstein frequency of the system at medium shear rates, an enhanced collective wave activity, when the excitation is near the plateau frequency of the longitudinal wave dispersion, and the emergence of significant configurational anisotropy at small frequencies and high shear rates.
Magnetic Properties of Restacked 2D Spin 1/2 honeycomb RuCl3Nanosheets
NASA Astrophysics Data System (ADS)
Weber, Daniel; Schoop, Leslie M.; Duppel, Viola; Lippmann, Judith M.; Nuss, Jürgen; Lotsch, Bettina V.
2016-06-01
Spin $\\frac{1}{2}$ honeycomb materials have gained substantial interest due to their exotic magnetism and possible application in quantum computing. However, in all current materials out-of-plane interactions are interfering with the in-plane order, hence a true 2D magnetic honeycomb system is still of demand. Here, we report the exfoliation of the magnetic semiconductor $\\alpha$-RuCl$_3$ into the first halide monolayers and the magnetic characterization of the spin $\\frac{1}{2}$ honeycomb arrangement of turbostratically stacked RuCl$_3$ monolayers. The exfoliation is based on a reductive lithiation/hydration approach, which gives rise to a loss of cooperative magnetism due to the disruption of the spin $\\frac{1}{2}$ state by electron injection into the layers. After an oxidative treatment, cooperative magnetism similar to the bulk is restored. The oxidized pellets of restacked single layers feature a magnetic transition at T$_N$ = 7 K in the in-plane direction, while the magnetic properties in the out-of-plane direction vastly differ from bulk $\\alpha$-RuCl$_3$. The macroscopic pellets of RuCl$_3$ therefore behave like a stack of monolayers without any symmetry relation in the stacking direction. The deliberate introduction of turbostratic disorder to manipulate the spin structure of RuCl$_3$ is of interest for research in frustrated magnetism and complex magnetic order as predicted by the Kitaev-Heisenberg model.
Knight shift and spin relaxation in the single band 2D Hubbard model
NASA Astrophysics Data System (ADS)
Leblanc, James; Chen, Xi; Gull, Emanuel
We study in detail the roles of spin and charge fluctuations in the single band 2D Hubbard model. Using dynamical mean field theory and cluster extensions such as the dynamical cluster approximation (DCA), we compute the full two particle susceptibilities in the spin and charge representations. By performing analytic continuations we obtain the temperature and doping dependence of the spin-lattice relaxation (T1- 1) and knight shift in the 2D Hubbard model relevant to NMR results on doped cuprates and connect these to RPA results in weak coupling limits.
Accelerated 2D magnetic resonance spectroscopy of single spins using matrix completion
Scheuer, Jochen; Stark, Alexander; Kost, Matthias; Plenio, Martin B.; Naydenov, Boris; Jelezko, Fedor
2015-01-01
Two dimensional nuclear magnetic resonance (NMR) spectroscopy is one of the major tools for analysing the chemical structure of organic molecules and proteins. Despite its power, this technique requires long measurement times, which, particularly in the recently emerging diamond based single molecule NMR, limits its application to stable samples. Here we demonstrate a method which allows to obtain the spectrum by collecting only a small fraction of the experimental data. Our method is based on matrix completion which can recover the full spectral information from randomly sampled data points. We confirm experimentally the applicability of this technique by performing two dimensional electron spin echo envelope modulation (ESEEM) experiments on a two spin system consisting of a single nitrogen vacancy (NV) centre in diamond coupled to a single 13C nuclear spin. The signal to noise ratio of the recovered 2D spectrum is compared to the Fourier transform of randomly subsampled data, where we observe a strong suppression of the noise when the matrix completion algorithm is applied. We show that the peaks in the spectrum can be obtained with only 10% of the total number of the data points. We believe that our results reported here can find an application in all types of two dimensional spectroscopy, as long as the measured matrices have a low rank. PMID:26631593
Accelerated 2D magnetic resonance spectroscopy of single spins using matrix completion
NASA Astrophysics Data System (ADS)
Scheuer, Jochen; Stark, Alexander; Kost, Matthias; Plenio, Martin B.; Naydenov, Boris; Jelezko, Fedor
2015-12-01
Two dimensional nuclear magnetic resonance (NMR) spectroscopy is one of the major tools for analysing the chemical structure of organic molecules and proteins. Despite its power, this technique requires long measurement times, which, particularly in the recently emerging diamond based single molecule NMR, limits its application to stable samples. Here we demonstrate a method which allows to obtain the spectrum by collecting only a small fraction of the experimental data. Our method is based on matrix completion which can recover the full spectral information from randomly sampled data points. We confirm experimentally the applicability of this technique by performing two dimensional electron spin echo envelope modulation (ESEEM) experiments on a two spin system consisting of a single nitrogen vacancy (NV) centre in diamond coupled to a single 13C nuclear spin. The signal to noise ratio of the recovered 2D spectrum is compared to the Fourier transform of randomly subsampled data, where we observe a strong suppression of the noise when the matrix completion algorithm is applied. We show that the peaks in the spectrum can be obtained with only 10% of the total number of the data points. We believe that our results reported here can find an application in all types of two dimensional spectroscopy, as long as the measured matrices have a low rank.
Magnetic Properties of Restacked 2D Spin 1/2 honeycomb RuCl3 Nanosheets.
Weber, Daniel; Schoop, Leslie M; Duppel, Viola; Lippmann, Judith M; Nuss, Jürgen; Lotsch, Bettina V
2016-06-01
Spin 1/2 honeycomb materials have gained substantial interest due to their exotic magnetism and possible application in quantum computing. However, in all current materials out-of-plane interactions are interfering with the in-plane order, hence a true 2D magnetic honeycomb system is still in demand. Here, we report the exfoliation of the magnetic semiconductor α-RuCl3 into the first halide monolayers and the magnetic characterization of the spin 1/2 honeycomb arrangement of turbostratically stacked RuCl3 monolayers. The exfoliation is based on a reductive lithiation/hydration approach, which gives rise to a loss of cooperative magnetism due to the disruption of the spin 1/2 state by electron injection into the layers. The restacked, macroscopic pellets of RuCl3 layers lack symmetry along the stacking direction. After an oxidative treatment, cooperative magnetism similar to the bulk is restored. The oxidized pellets of restacked single layers feature a magnetic transition at TN = 7 K if the field is aligned parallel to the ab-plane, while the magnetic properties differ from bulk α-RuCl3 if the field is aligned perpendicular to the ab-plane. The deliberate introduction of turbostratic disorder to manipulate the magnetic properties of RuCl3 is of interest for research in frustrated magnetism and complex magnetic order as predicted by the Kitaev-Heisenberg model. PMID:27176463
NASA Astrophysics Data System (ADS)
Linares, Jorge; Jureschi, Catalin-Maricel; Boulmaali, Ayoub; Boukheddaden, Kamel
2016-04-01
The Ising-like model is used to simulate the thermal behavior of a 2D spin crossover (SC) nanoparticle embedded in a matrix, which affects the ligand field at its surface. First, we discuss the standard case of the isolated nanoparticle, and in the second part we consider the effect of the interaction between edge molecules and their local environment. We found that in the case of an isolated SC nanoparticle presenting a gradual spin transition, the matrix effect may drive a first-order spin transition accompanied with a hysteresis loop. An in-depth analysis of the physical mechanism underlying this unusual property is performed, leading to build up the system's phase diagram which clarifies the conditions of appearance of the first-order transition in the current 2D SC nanoparticles as function of their size and the strength of their interaction with their immediate environment.
Observation of Rashba zero-field spin splitting in a strained germanium 2D hole gas
Morrison, C. Rhead, S. D.; Foronda, J.; Leadley, D. R.; Myronov, M.; Wiśniewski, P.
2014-11-03
We report the observation, through Shubnikov-de Haas oscillations in the magnetoresistance, of spin splitting caused by the Rashba spin-orbit interaction in a strained Ge quantum well epitaxially grown on a standard Si(001) substrate. The Shubnikov-de Haas oscillations display a beating pattern due to the spin split Landau levels. The spin-orbit parameter and Rashba spin-splitting energy are found to be 1.0 × 10{sup −28 } eVm{sup 3} and 1.4 meV, respectively. This energy is comparable to 2D electron gases in III-V semiconductors, but substantially larger than in Si, and illustrates the suitability of Ge for modulated hole spin transport devices.
NASA Astrophysics Data System (ADS)
Guo, Shi; Zhu, Minyi; Hu, Shuming; Mitas, Lubos
2013-03-01
Very recently, a quantum Monte Carlo (QMC) method was proposed for Rashba spin-orbit operators which expands the applicability of QMC to systems with variable spins. It is based on incorporating the spin-orbit into the Green's function and thus samples (ie, rotates) the spinors in the antisymmetric part of the trial function [1]. Here we propose a new alternative for both variational and diffusion Monte Carlo algorithms for calculations of systems with variable spins. Specifically, we introduce a new spin representation which allows us to sample the spin configurations efficiently and without introducing additional fluctuations. We develop the corresponding Green's function which treats the electron spin as a dynamical variable and we use the fixed-phase approximation to eliminate the negative probabilities. The trial wave function is a Slater determinant of spinors and spin-indepedent Jastrow correlations. The method also has the zero variance property. We benchmark the method on the 2D electron gas with the Rashba interaction and we find very good overall agreement with previously obtained results. Research supported by NSF and ARO.
Phase Separation and Pair Condensation in a Spin-Imbalanced 2D Fermi Gas.
Mitra, Debayan; Brown, Peter T; Schauß, Peter; Kondov, Stanimir S; Bakr, Waseem S
2016-08-26
We study a two-component quasi-two-dimensional Fermi gas with imbalanced spin populations. We probe the gas at different interaction strengths and polarizations by measuring the density of each spin component in the trap and the pair momentum distribution after time of flight. For a wide range of experimental parameters, we observe in-trap phase separation characterized by the appearance of a spin-balanced core surrounded by a polarized gas. Our momentum space measurements indicate pair condensation in the imbalanced gas even for large polarizations where phase separation vanishes, pointing to the presence of a polarized pair condensate. Our observation of zero momentum pair condensates in 2D spin-imbalanced gases opens the way to explorations of more exotic superfluid phases that occupy a large part of the phase diagram in lower dimensions. PMID:27610853
Spin-orbit coupling, compass anisotropy and skyrmions in 2D chiral magnets
NASA Astrophysics Data System (ADS)
Banerjee, Sumilan; Erten, Onur; Rowland, James; Randeria, Mohit
2014-03-01
Spin-orbit coupling (SOC) gives rise to the chiral Dzyaloshinskii-Moriya (DM) interaction in systems that lack inversion symmetry like non-centrosymmetric helimagnets, and two-dimensional magnetism at surfaces and interfaces. We explore here the role of SOC in several microscopic exchange mechanisms - superexchange, double exchange and RKKY - in insulating and itinerant electron systems. We show that, in addition to giving rise to the DM interaction, SOC generically leads to compass anisotropy terms. Although seemingly negligible, the compass terms are energetically comparable to DM and play a crucial role in deciding the fate of the magnetic ground state. We demonstrate that the compass terms act as an effective easy-plane anisotropy in 2D chiral magnets and lead to extremely large region of stable skyrmion crystal (SkX) phase in a perpendicular magnetic field. We discuss the electronic properties of SkX in this hitherto unexplored region of the anisotropy-field plane for itinerant systems. We also comment on the possibility of realizing such SkX phase in the oxide interfaces. JR and MR supported by NSF MRSEC DMR-0820414 and SB by DOE-BES DE-SC0005035.
Spin susceptibility of a 2D gas with Rashba spin-orbit in the HF approximation
NASA Astrophysics Data System (ADS)
Giuliani, Gabriele
2005-03-01
The in plane and out of plane spin susceptibility χS^ () (rs, α) in a two dimensional electron gas with Rashba spin-orbit is studied within the Hartree-Fock approximation in both the static (φ->0 first then q ->0) and adiabatic (q ->0 first then φ->0) limits. The latter is related to what is commonly referred to as the spin-Hall conductivity. The behavior of χS^ () (rs, α) as a function of the density parameter rs and the spin-orbit coupling strength α has been explored. At variance with a recent perturbative analysis, we find that, as one would expect, the exchange interaction tends to increase χS^ () (rs, α) over its non interacting value. The interplay between the differential instability of the paramagnetic chiral state as signaled by the divergence of χS^ () (rs, α) and the (first order) spin polarization transition to a spin-textured chiral state will be discussed.
Novel phase-space Monte-Carlo method for quench dynamics in 1D and 2D spin models
NASA Astrophysics Data System (ADS)
Pikovski, Alexander; Schachenmayer, Johannes; Rey, Ana Maria
2015-05-01
An important outstanding problem is the effcient numerical computation of quench dynamics in large spin systems. We propose a semiclassical method to study many-body spin dynamics in generic spin lattice models. The method, named DTWA, is based on a novel type of discrete Monte-Carlo sampling in phase-space. We demonstare the power of the technique by comparisons with analytical and numerically exact calculations. It is shown that DTWA captures the dynamics of one- and two-point correlations 1D systems. We also use DTWA to study the dynamics of correlations in 2D systems with many spins and different types of long-range couplings, in regimes where other numerical methods are generally unreliable. Computing spatial and time-dependent correlations, we find a sharp change in the speed of propagation of correlations at a critical range of interactions determined by the system dimension. The investigations are relevant for a broad range of systems including solids, atom-photon systems and ultracold gases of polar molecules, trapped ions, Rydberg, and magnetic atoms. This work has been financially supported by JILA-NSF-PFC-1125844, NSF-PIF-1211914, ARO, AFOSR, AFOSR-MURI.
Super-long life time for 2D cyclotron spin-flip excitons
Kulik, L. V.; Gorbunov, A. V.; Zhuravlev, A. S.; Timofeev, V. B.; Dickmann, S.; Kukushkin, I. V.
2015-01-01
An experimental technique for the indirect manipulation and detection of electron spins entangled in two-dimensional magnetoexcitons has been developed. The kinetics of the spin relaxation has been investigated. Photoexcited spin-magnetoexcitons were found to exhibit extremely slow relaxation in specific quantum Hall systems, fabricated in high mobility GaAs/AlGaAs structures; namely, the relaxation time reaches values over one hundred microseconds. A qualitative explanation of this spin-relaxation kinetics is presented. Its temperature and magnetic field dependencies are discussed within the available theoretical framework. PMID:25989313
Hysteretic Spin Crossover in Two-Dimensional (2D) Hofmann-Type Coordination Polymers.
Liu, Wei; Wang, Lu; Su, Yu-Jun; Chen, Yan-Cong; Tucek, Jiri; Zboril, Radek; Ni, Zhao-Ping; Tong, Ming-Liang
2015-09-01
Three new two-dimensional (2D) Hofmann-type coordination polymers with general formula [Fe(3-NH2py)2M(CN)4] (3-NH2py = 3-aminopyridine, M = Ni (1), Pd (2), Pt (3)) have been synthesized. Magnetic susceptibility measurements show that they exhibited cooperative spin crossover (SCO) with remarkable hysteretic behaviors. Their hysteresis widths are 25, 37, and 30 K for 1-3, respectively. The single-crystal structure of 1 suggest that the pseudo-octahedral Fe sites are equatorially bridged by [M(CN)4](2-) to form 2D grids and axially coordinated by 3-NH2py ligands. The intermolecular interactions between layers (the offset face-to-face π···π interactions, hydrogen bonds, and weak N(amino)···Ni(II) contacts) together with the covalent bonds bridged by [M(CN)4](2-) units are responsible to the significant cooperativity. PMID:26258593
Vector chiral phases in the frustrated 2D XY model and quantum spin chains.
Schenck, H; Pokrovsky, V L; Nattermann, T
2014-04-18
The phase diagram of the frustrated 2D classical and 1D quantum XY models is calculated analytically. Four transitions are found: the vortex unbinding transitions triggered by strong fluctuations occur above and below the chiral transition temperature. Vortex interaction is short range on small and logarithmic on large scales. The chiral transition, though belonging to the Ising universality class by symmetry, has different critical exponents due to nonlocal interaction. In a narrow region close to the Lifshitz point a reentrant phase transition between paramagnetic and quasiferromagnetic phase appears. Applications to antiferromagnetic quantum spin chains and multiferroics are discussed. PMID:24785067
A new class of large band gap quantum spin hall insulators: 2D fluorinated group-IV binary compounds
Padilha, J. E.; Pontes, R. B.; Schmidt, T. M.; Miwa, R. H.; Fazzio, A.
2016-01-01
We predict a new class of large band gap quantum spin Hall insulators, the fluorinated PbX (X = C, Si, Ge and Sn) compounds, that are mechanically stable two-dimensional materials. Based on first principles calculations we find that, while the PbX systems are not topological insulators, all fluorinated PbX (PbXF2) compounds are 2D topological insulators. The quantum spin Hall insulating phase was confirmed by the explicitly calculation of the Z2 invariant. In addition we performed a thorough investigation of the role played by the (i) fluorine saturation, (ii) crystal field, and (iii) spin-orbital coupling in PbXF2. By considering nanoribbon structures, we verify the appearance of a pair of topologically protected Dirac-like edge states connecting the conduction and valence bands. The insulating phase which is a result of the spin orbit interaction, reveals that this new class of two dimensional materials present exceptional nontrivial band gaps, reaching values up to 0.99 eV at the Γ point, and an indirect band gap of 0.77 eV. The topological phase is arisen without any external field, making this system promising for nanoscale applications, using topological properties. PMID:27212604
Padilha, J E; Pontes, R B; Schmidt, T M; Miwa, R H; Fazzio, A
2016-01-01
We predict a new class of large band gap quantum spin Hall insulators, the fluorinated PbX (X = C, Si, Ge and Sn) compounds, that are mechanically stable two-dimensional materials. Based on first principles calculations we find that, while the PbX systems are not topological insulators, all fluorinated PbX (PbXF2) compounds are 2D topological insulators. The quantum spin Hall insulating phase was confirmed by the explicitly calculation of the Z2 invariant. In addition we performed a thorough investigation of the role played by the (i) fluorine saturation, (ii) crystal field, and (iii) spin-orbital coupling in PbXF2. By considering nanoribbon structures, we verify the appearance of a pair of topologically protected Dirac-like edge states connecting the conduction and valence bands. The insulating phase which is a result of the spin orbit interaction, reveals that this new class of two dimensional materials present exceptional nontrivial band gaps, reaching values up to 0.99 eV at the Γ point, and an indirect band gap of 0.77 eV. The topological phase is arisen without any external field, making this system promising for nanoscale applications, using topological properties. PMID:27212604
A new class of large band gap quantum spin hall insulators: 2D fluorinated group-IV binary compounds
NASA Astrophysics Data System (ADS)
Padilha, J. E.; Pontes, R. B.; Schmidt, T. M.; Miwa, R. H.; Fazzio, A.
2016-05-01
We predict a new class of large band gap quantum spin Hall insulators, the fluorinated PbX (X = C, Si, Ge and Sn) compounds, that are mechanically stable two-dimensional materials. Based on first principles calculations we find that, while the PbX systems are not topological insulators, all fluorinated PbX (PbXF2) compounds are 2D topological insulators. The quantum spin Hall insulating phase was confirmed by the explicitly calculation of the Z2 invariant. In addition we performed a thorough investigation of the role played by the (i) fluorine saturation, (ii) crystal field, and (iii) spin-orbital coupling in PbXF2. By considering nanoribbon structures, we verify the appearance of a pair of topologically protected Dirac-like edge states connecting the conduction and valence bands. The insulating phase which is a result of the spin orbit interaction, reveals that this new class of two dimensional materials present exceptional nontrivial band gaps, reaching values up to 0.99 eV at the Γ point, and an indirect band gap of 0.77 eV. The topological phase is arisen without any external field, making this system promising for nanoscale applications, using topological properties.
Optical imaging systems analyzed with a 2D template.
Haim, Harel; Konforti, Naim; Marom, Emanuel
2012-05-10
Present determination of optical imaging systems specifications are based on performance values and modulation transfer function results carried with a 1D resolution template (such as the USAF resolution target or spoke templates). Such a template allows determining image quality, resolution limit, and contrast. Nevertheless, the conventional 1D template does not provide satisfactory results, since most optical imaging systems handle 2D objects for which imaging system response may be different by virtue of some not readily observable spatial frequencies. In this paper we derive and analyze contrast transfer function results obtained with 1D as well as 2D templates. PMID:22614498
Microscale 2D separation systems for proteomic analysis
Xu, Xin; Liu, Ke; Fan, Z. Hugh
2012-01-01
Microscale 2D separation systems have been implemented in capillaries and microfabricated channels. They offer advantages of faster analysis, higher separation efficiency and less sample consumption than the conventional methods, such as liquid chromatography (LC) in a column and slab gel electrophoresis. In this article, we review their recent advancement, focusing on three types of platforms, including 2D capillary electrophoresis (CE), CE coupling with capillary LC, and microfluidic devices. A variety of CE and LC modes have been employed to construct 2D separation systems via sophistically designed interfaces. Coupling of different separation modes has also been realized in a number of microfluidic devices. These separation systems have been applied for the proteomic analysis of various biological samples, ranging from a single cell to tumor tissues. PMID:22462786
Kosaki-Longo index and classification of charges in 2D quantum spin models
NASA Astrophysics Data System (ADS)
Naaijkens, Pieter
2013-08-01
We consider charge superselection sectors of two-dimensional quantum spin models corresponding to cone localisable charges, and prove that the number of equivalence classes of such charges is bounded by the Kosaki-Longo index of an inclusion of certain observable algebras. To demonstrate the power of this result we apply the theory to the toric code on a 2D infinite lattice. For this model we can compute the index of this inclusion, and conclude that there are four distinct irreducible charges in this model, in accordance with the analysis of the toric code model on compact surfaces. We also give a sufficient criterion for the non-degeneracy of the charge sectors, in the sense that Verlinde's matrix S is invertible.
Spin noise in mixed Spin Systems
NASA Astrophysics Data System (ADS)
Bauch, Erik; Junghyun, Paul; Singh, Swati; Devakul, Trithep; Feguin, Adrian; Hart, Connor; Walsworth, Ronald
2016-05-01
The spin noise due to interaction of multiple spin species in mixed spin systems provides a fundamental limit to ultra-sensitive ensemble sensing and quantum information applications. In our work, we investigate the interaction of dense nuclear 13C spins with electronic nitrogen spins using Nitrogen-Vacancy centers in diamond. Our work shows experimentally and theoretically, that under certain conditions, spin noise is greatly suppressed and the coherence time of NV centers improved by order of magnitudes, providing a pathway to engineering high density ensemble samples with long coherence times at room temperature.
A 2D homochiral inorganic-organic framework exhibiting a spin-flop transition.
Li, Wei; Barton, Phillip T; Burwood, Ryan P; Cheetham, Anthony K
2011-07-21
A 2D homochiral inorganic-organic framework {[Mn(NPTA)(4,4'-bpy)(H(2)O)]·(H(2)O)(2)}(n) was prepared by assembling achiral polar 4-nitrophthalic acid, manganese ions, and ancillary 4,4'-bipyridine ligands (NPTA = 4-nitrophthalate) (4,4'-bpy = 4,4'-bipyridine). The isomorphous Zn(ii) compound was also prepared as a diamagnetic analogue. Adjacent manganese spin centres are linked by the syn-anti carboxylate to form a helical chain, and chains of the same chirality are connected by 4,4'-bpy ligands to generate a homochiral layered framework. Edge-to-face aromatic interactions between neighboring layers lead to a 3D homochiral supramolecular structure. Magnetization and heat capacity measurements indicate that the framework is a weak antiferromagnet at low applied field. The magnetic interactions between adjacent manganese ions in the helical chain can be fitted using the 1D Fisher model, with 2J/k = -0.68 K and g = 2.00. Moreover, the compound displays a unique field-dependent spin-flop transition in high magnetic fields, with a critical field of 23.6 kOe at 1.9 K. PMID:21373656
Pair condensation in a spin-imbalanced 2D Fermi gas
NASA Astrophysics Data System (ADS)
Mitra, Debayan; Brown, Peter; Schauss, Peter; Kondov, Stanimir; Bakr, Waseem
2016-05-01
We study the phase diagram of the strongly-interacting spin-imbalanced Fermi gas in two dimensions, where the low dimensionality enhances correlations and phase fluctuations. Our interest is motivated by the connection of this system with superconductivity in the presence of a large Zeeman field. We observe pair condensation for a range of spin imbalance and interaction strengths. The measurement of the phase diagram opens the door for a detailed investigation of exotic phases such as the Sarma/broken pair phase and the elusive FFLO phase.
On Regularity Criteria for the 2D Generalized MHD System
NASA Astrophysics Data System (ADS)
Jiang, Zaihong; Wang, Yanan; Zhou, Yong
2016-06-01
This paper deals with the problem of regularity criteria for the 2D generalized MHD system with fractional dissipative terms {-Λ^{2α}u} for the velocity field and {-Λ^{2β}b} for the magnetic field respectively. Various regularity criteria are established to guarantee smoothness of solutions. It turns out that our regularity criteria imply previous global existence results naturally.
Strong and Weak 2D Topological Superconductivity in Hidden Quasi-1D Systems
NASA Astrophysics Data System (ADS)
Yang, Fan; Yao, Hong
2014-03-01
Partly motivated by the newly discovered family of bismuth-based superconductors including LaO1-xFxBiS2, we study possible 2D topological superconductivities (TSC) in hidden quasi-1D systems with spin-orbit couplings. By doing RPA calculations and renormalization group (RG) treatment, we theoretically find that in a large portion of the phase diagram with varying interaction strengths and spin-orbit coupling the ground states favors superconductivity with odd-parity pairing, which results in either chiral TSC or time reversal invariant weak-Z2 TSC. We shall discuss several ways to experimentally identify these strong and weak 2D topological superconductivity. Possible applications to the bismuth-based superconductors LaO1-xFxBiS2 will also be remarked.
Resonances of piezoelectric plate with embedded 2D electron system
NASA Astrophysics Data System (ADS)
Suslov, A. V.
2009-02-01
A thin GaAs/AlGaAs plate was studied by the resonant ultrasound spectroscopy (RUS) in the temperature range 0.3-10 K and in magnetic fields of up to 18 T. The resonance frequencies and linewidths were measured. Quantum oscillations of both these values were observed and were associated with the quantum Hall effect occurred in the 2D electron system. For an analysis the sample was treated as a dielectric piezoelectric plate covered on one side by a film with a field dependent conductivity. Screening of the strain-driven electric field was changed due to the variation of the electron relaxation time in the vicinity of the metal-dielectric transitions caused by the magnetic field in the 2D system. The dielectric film does not affect properties of GaAs and thus the resonance frequencies are defined only by the elastic, piezoelectric and dielectric constants of GaAs. A metallic 2D sheet effectively screens the parallel electric field, so the ultrasound wave velocities and resonance frequencies decrease when the sheet conductivity increases. Oscillations of the resonance linewidth reflect the influence of the 2D system on the ultrasound attenuation, which is proportional to the linewidth. A metallic film as well as a dielectric one does not affect this attenuation but at some finite nonzero value of the conductivity the linewidth approaches a maximum. In high magnetic field each oscillation of the conductivity produces one oscillation of a resonance frequency and two linewidth peaks. The observed phenomena can be described by the relaxation type equations and the resonant ultrasound spectroscopy opens another opportunity for contactless studies on 2D electron systems.
NASA High-Speed 2D Photogrammetric Measurement System
NASA Technical Reports Server (NTRS)
Dismond, Harriett R.
2012-01-01
The object of this report is to provide users of the NASA high-speed 2D photogrammetric measurement system with procedures required to obtain drop-model trajectory and impact data for full-scale and sub-scale models. This guide focuses on use of the system for vertical drop testing at the NASA Langley Landing and Impact Research (LandIR) Facility.
ISAKOS classification of meniscal tears-illustration on 2D and 3D isotropic spin echo MR imaging.
Wadhwa, Vibhor; Omar, Hythem; Coyner, Katherine; Khazzam, Michael; Robertson, William; Chhabra, Avneesh
2016-01-01
Magnetic Resonance Imaging is modality of choice for the non-invasive evaluation of meniscal tears. Accurate and uniform documentation of meniscal pathology is necessary for optimal multi-disciplinary communication, to guide treatment options and for validation of patient outcomes studies. The increasingly used ISAKOS arthroscopic meniscus tear classification system has been shown to provide sufficient interobserver reliability among the surgeons. However, the terminology is not in common use in the radiology world. In this article, the authors discuss the MR imaging appearances of meniscal tears based on ISAKOS classification on 2D and multiplanar 3D isotropic spin echo imaging techniques and illustrate the correlations of various meniscal pathologies with relevant arthroscopic images. PMID:26724644
Universal Fabrication of 2D Electron Systems in Functional Oxides.
Rödel, Tobias Chris; Fortuna, Franck; Sengupta, Shamashis; Frantzeskakis, Emmanouil; Fèvre, Patrick Le; Bertran, François; Mercey, Bernard; Matzen, Sylvia; Agnus, Guillaume; Maroutian, Thomas; Lecoeur, Philippe; Santander-Syro, Andrés Felipe
2016-03-01
2D electron systems (2DESs) in functional oxides are promising for applications, but their fabrication and use, essentially limited to SrTiO3 -based heterostructures, are hampered by the need for growing complex oxide overlayers thicker than 2 nm using evolved techniques. It is demonstrated that thermal deposition of a monolayer of an elementary reducing agent suffices to create 2DESs in numerous oxides. PMID:26753522
NASA Astrophysics Data System (ADS)
Gudyma, Iu.; Maksymov, A.; Spinu, L.
2015-10-01
The spin-crossover nanoparticles of different sizes and stochastic perturbations in external field taking into account the influence of the dimensionality of the lattice was studied. The analytical tools used for the investigation of spin-crossover system are based on an Ising-like model described using of the breathing crystal field concept. The changes of transition temperatures characterizing the systems' bistable properties for 2D and 3D lattices, and their dependence on its size and fluctuations strength were obtained. The state diagrams with hysteretic and non-hysteretic behavior regions have also been determined.
Conformal Laplace superintegrable systems in 2D: polynomial invariant subspaces
NASA Astrophysics Data System (ADS)
Escobar-Ruiz, M. A.; Miller, Willard, Jr.
2016-07-01
2nd-order conformal superintegrable systems in n dimensions are Laplace equations on a manifold with an added scalar potential and 2n-1 independent 2nd order conformal symmetry operators. They encode all the information about Helmholtz (eigenvalue) superintegrable systems in an efficient manner: there is a 1-1 correspondence between Laplace superintegrable systems and Stäckel equivalence classes of Helmholtz superintegrable systems. In this paper we focus on superintegrable systems in two-dimensions, n = 2, where there are 44 Helmholtz systems, corresponding to 12 Laplace systems. For each Laplace equation we determine the possible two-variate polynomial subspaces that are invariant under the action of the Laplace operator, thus leading to families of polynomial eigenfunctions. We also study the behavior of the polynomial invariant subspaces under a Stäckel transform. The principal new results are the details of the polynomial variables and the conditions on parameters of the potential corresponding to polynomial solutions. The hidden gl 3-algebraic structure is exhibited for the exact and quasi-exact systems. For physically meaningful solutions, the orthogonality properties and normalizability of the polynomials are presented as well. Finally, for all Helmholtz superintegrable solvable systems we give a unified construction of one-dimensional (1D) and two-dimensional (2D) quasi-exactly solvable potentials possessing polynomial solutions, and a construction of new 2D PT-symmetric potentials is established.
Spin Correlations and Excitations in the Quasi-2D Triangular Bilayer Spin Glass LuCoGaO4
NASA Astrophysics Data System (ADS)
Fritsch, K.; Granroth, G. E.; Savici, A. T.; Noad, H. M. L.; Dabkowska, H. A.; Gaulin, B. D.
2012-02-01
LuCoGaO4 is a layered magnetic-bilayer material wherein Co2+ magnetic moments and nonmagnetic Ga3+ ions are randomly distributed on planar triangular bilayers. This makes it an ideal case to study the interplay between geometric frustration, site disorder and low dimensionality and its influence on the magnetic ground of the system. This novel material has been grown for the first time in single crystal form at McMaster University. We have performed magnetization measurements, revealing a previously identified spin glass transition near Tf˜19K, and a Curie Weiss temperature of Tcw˜-96K, consistent with antiferromagnetic interactions[1]. We discuss time-of-flight neutron scattering measurements using SEQUOIA at SNS which elucidate the evolution of the static and dynamic spin correlations in LuCoGaO4 over a range of temperatures from T<< Tf to T>Tcw. We observe quasielastic scattering at (1/3,1/3,L) positions in reciprocal space and rods of scattering along the c*-direction, consistent with short range antiferromagnetic correlations within decoupled bilayers, and which comfirm the 2-dimensional character of this system. Inelastic scattering measurements show a gapped ˜ 12 meV spin excitation which softens and broadens in energy, filling in the gap on a temperature scale of ˜ Tcw/2. [1] Cava et al., J. Solid State Chem. 140, 337 (1998).
Thermal conductivity measurements in a 2D Yukawa system
NASA Astrophysics Data System (ADS)
Nosenko, V.; Ivlev, A.; Zhdanov, S.; Morfill, G.; Goree, J.; Piel, A.
2007-03-01
Thermal conductivity was measured for a 2D Yukawa system. First, we formed a monolayer suspension of microspheres in a plasma, i.e., a dusty plasma, which is like a colloidal suspension, but with an extremely low volume fraction and a partially-ionized rarefied gas instead of solvent. In the absence of manipulation, the suspension forms a 2D triangular lattice. To melt this lattice and form a liquid, we used a laser-heating method. Two focused laser beams were moved rapidly around in the monolayer. The kinetic temperature of the particles increased with the laser power applied, and above a threshold a melting transition occurred. We used digital video microscopy for direct imaging and particle tracking. The spatial profiles of the particle kinetic temperature were calculated. Using the heat transport equation with an additional term to account for the energy dissipation due to the gas drag, we analyzed the temperature distribution to derive the thermal conductivity.
2-D linear motion system. Innovative technology summary report
1998-11-01
The US Department of Energy's (DOE's) nuclear facility decontamination and decommissioning (D and D) program requires buildings to be decontaminated, decommissioned, and surveyed for radiological contamination in an expeditious and cost-effective manner. Simultaneously, the health and safety of personnel involved in the D and D activities is of primary concern. D and D workers must perform duties high off the ground, requiring the use of manlifts or scaffolding, often, in radiologically or chemically contaminated areas or in areas with limited access. Survey and decontamination instruments that are used are sometimes heavy or awkward to use, particularly when the worker is operating from a manlift or scaffolding. Finding alternative methods of performing such work on manlifts or scaffolding is important. The 2-D Linear Motion System (2-D LMS), also known as the Wall Walker{trademark}, is designed to remotely position tools and instruments on walls for use in such activities as radiation surveys, decontamination, and painting. Traditional (baseline) methods for operating equipment for these tasks require workers to perform duties on elevated platforms, sometimes several meters above the ground surface and near potential sources of contamination. The Wall Walker 2-D LMS significantly improves health and safety conditions by facilitating remote operation of equipment. The Wall Walker 2-D LMS performed well in a demonstration of its precision, accuracy, maneuverability, payload capacity, and ease of use. Thus, this innovative technology is demonstrated to be a viable alternative to standard methods of performing work on large, high walls, especially those that have potential contamination concerns. The Wall Walker was used to perform a final release radiological survey on over 167 m{sup 2} of walls. In this application, surveying using a traditional (baseline) method that employs an aerial lift for manual access was 64% of the total cost of the improved technology
2D induced gravity from the canonically gauged WZNW system
NASA Astrophysics Data System (ADS)
Blagojević, M.; Popović, D. S.; Sazdović, B.
1999-02-01
Starting from the Kac-Moody structure of the WZNW model for SL(2,R) and using the general canonical formalism, we formulate a gauge theory invariant under local SL(2,R)×SL(2,R) and diffeomorphisms. This theory represents a gauge extension of the WZNW system, defined by a difference of two simple WZNW actions. By performing a partial gauge fixing and integrating out some dynamical variables, we prove that the resulting effective theory coincides with the induced gravity in 2D. The geometric properties of the induced gravity are obtained out of the gauge properties of the WZNW system with the help of the Dirac brackets formalism.
2-D scalable optical controlled phased-array antenna system
NASA Astrophysics Data System (ADS)
Chen, Maggie Yihong; Howley, Brie; Wang, Xiaolong; Basile, Panoutsopoulos; Chen, Ray T.
2006-02-01
A novel optoelectronically-controlled wideband 2-D phased-array antenna system is demonstrated. The inclusion of WDM devices makes a highly scalable system structure. Only (M+N) delay lines are required to control a M×N array. The optical true-time delay lines are combination of polymer waveguides and optical switches, using a single polymeric platform and are monolithically integrated on a single substrate. The 16 time delays generated by the device are measured to range from 0 to 175 ps in 11.6 ps. Far-field patterns at different steering angles in X-band are measured.
Symmetries of the 2D magnetic particle imaging system matrix.
Weber, A; Knopp, T
2015-05-21
In magnetic particle imaging (MPI), the relation between the particle distribution and the measurement signal can be described by a linear system of equations. For 1D imaging, it can be shown that the system matrix can be expressed as a product of a convolution matrix and a Chebyshev transformation matrix. For multidimensional imaging, the structure of the MPI system matrix is not yet fully explored as the sampling trajectory complicates the physical model. It has been experimentally found that the MPI system matrix rows have symmetries and look similar to the tensor products of Chebyshev polynomials. In this work we will mathematically prove that the 2D MPI system matrix has symmetries that can be used for matrix compression. PMID:25919400
Measurement of topological invariants in a 2D photonic system
NASA Astrophysics Data System (ADS)
Mittal, Sunil; Ganeshan, Sriram; Fan, Jingyun; Vaezi, Abolhassan; Hafezi, Mohammad
2016-03-01
A hallmark feature of topological physics is the presence of one-way propagating chiral modes at the system boundary. The chirality of edge modes is a consequence of the topological character of the bulk. For example, in a non-interacting quantum Hall model, edge modes manifest as mid-gap states between two topologically distinct bulk bands. The bulk-boundary correspondence dictates that the number of chiral edge modes, a topological invariant called the winding number, is completely determined by the bulk topological invariant, the Chern number. Here, for the first time, we measure the winding number in a 2D photonic system. By inserting a unit flux quantum at the edge, we show that the edge spectrum resonances shift by the winding number. This experiment provides a new approach for unambiguous measurement of topological invariants, independent of the microscopic details, and could possibly be extended to probe strongly correlated topological orders.
Force-chain identification in quasi-2D granular systems
NASA Astrophysics Data System (ADS)
Zhang, Ling; Wu, Jun-Qi; Zhang, Jie
2013-06-01
Understanding the properties of force-chains is essential in understanding the physical and mechanical properties of granular materials. The key is to identify force-chains. In this study, we describe a systematic method to identify individual force-chains in 2D granular systems under different external load-pure shear or isotropic compression, where bi-disperse photo-elastic particles were used in order to measure vector contact forces between particles. Using this method, we studied the statistics of force-chain size distribution in these two systems: in pure shear, the distribution shows a fat tail that deviates from an exponential distribution function, whereas in isotropic compression, the distribution decays exponentially. In addition, we also investigated the dependence of various force-chain statistics on two main parameters defined in the force-chain identification algorithm.
Controlling spin lifetime with Dresselhaus and Rashba fields in the 2D semiconductor MX
NASA Astrophysics Data System (ADS)
Appelbaum, Ian; Li, Pengke
It is widely believed that whenever spin encodes logic state in a semiconductor device, transport channel materials with the longest spin lifetime are the most suitable choice. However, once a logic operation is completed, residual spins can and will interfere with those involved in future operations. We propose to solve this problem by utilizing the unique properties of spin-orbit effects in the electronic structure of monolayer of group-III metal-monochalcogenide (MX) semiconductors. The interplay of Dresselhaus and Rashba effective magnetic fields in these materials will be shown to provide effective external control over spin polarization lifetime, potentially useful for future spin-enabled digital devices. Based upon: Pengke Li and Ian Appelbaum, arXiv:1508.06963 (to appear in Phys. Rev. B). We acknowledge support from NSF, DTRA, and ONR.
Artificial frustrated spin systems
NASA Astrophysics Data System (ADS)
Perrin, Y.; Chioar, I. A.; Nguyen, V. D.; Lacour, D.; Hehn, M.; Montaigne, F.; Canals, B.; Rougemaille, N.
2015-09-01
Complex architectures of nanostructures are routinely elaborated using bottom-up or nanofabrication processes. This technological capability allows scientists to engineer materials with properties that do not exist in nature, but also to manufacture model systems to explore fundamental issues in condensed matter physics. Two-dimensional frustrated arrays of magnetic nanostructures are one class of systems for which theoretical predictions can be tested experimentally. These systems have been the subject of intense research in the last few years and allowed the investigation of a rich physics and fascinating phenomena, such as the exploration of the extensively degenerate ground-state manifolds of spin ice systems, the evidence of new magnetic phases in purely two-dimensional lattices, and the observation of pseudoexcitations involving classical analogues of magnetic monopoles. We show here, experimentally and theoretically, that simple magnetic geometries can lead to unconventional, non-collinear spin textures. For example, kagome arrays of inplane magnetized nano-islands do not show magnetic order. Instead, these systems are characterized by spin textures with intriguing properties, such as chirality, coexistence of magnetic order and disorder, and charge crystallization. Magnetic frustration effects in lithographically patterned kagome arrays of nanomagnets with out-of-plane magnetization also lead to an unusal, and still unknown, magnetic ground state manifold. Besides the influence of the lattice geometry, the micromagnetic nature of the elements constituting the arrays introduce the concept of chiral magnetic monopoles, bringing additional complexity into the physics of artificial frustrated spin systems.
A scanning-mode 2D shear wave imaging (s2D-SWI) system for ultrasound elastography.
Qiu, Weibao; Wang, Congzhi; Li, Yongchuan; Zhou, Juan; Yang, Ge; Xiao, Yang; Feng, Ge; Jin, Qiaofeng; Mu, Peitian; Qian, Ming; Zheng, Hairong
2015-09-01
Ultrasound elastography is widely used for the non-invasive measurement of tissue elasticity properties. Shear wave imaging (SWI) is a quantitative method for assessing tissue stiffness. SWI has been demonstrated to be less operator dependent than quasi-static elastography, and has the ability to acquire quantitative elasticity information in contrast with acoustic radiation force impulse (ARFI) imaging. However, traditional SWI implementations cannot acquire two dimensional (2D) quantitative images of the tissue elasticity distribution. This study proposes and evaluates a scanning-mode 2D SWI (s2D-SWI) system. The hardware and image processing algorithms are presented in detail. Programmable devices are used to support flexible control of the system and the image processing algorithms. An analytic signal based cross-correlation method and a Radon transformation based shear wave speed determination method are proposed, which can be implemented using parallel computation. Imaging of tissue mimicking phantoms, and in vitro, and in vivo imaging test are conducted to demonstrate the performance of the proposed system. The s2D-SWI system represents a new choice for the quantitative mapping of tissue elasticity, and has great potential for implementation in commercial ultrasound scanners. PMID:26025508
NASA Astrophysics Data System (ADS)
Woods, Justin; Bhat, Vinayak; Farmer, Barry; Sklenar, Joseph; Teipel, Eric; Ketterson, John; Hastings, J. Todd; de Long, Lance
2015-03-01
Artificial spin ice (ASI) systems are composed of nanoscale ferromagnetic segments whose shape anisotropy dictates they behave as mesoscopic Ising spins. Most ASI have segments patterned on periodic lattices and a single vertex topology. We have continuously distorted 2D honeycomb and square lattices such that the pattern vertex spacings follow a Fibonacci chain sequence along primitive lattice directions. The Fibonacci distortion is related to the aperiodic translational symmetry of 2D artificial quasicrystals1 that cannot be viewed as continuous distortions of periodic lattices due to their forbidden (e.g., fivefold) rotational symmetries. In contrast, Fibonacci distortions of 2D periodic lattices can be ``turned on'' by control of the ratio of two lattice parameters d1 and d2. Distortions alter film segments such that pattern vertices are no longer equivalent and traditional spin ice rules are no longer strictly valid. We have performed OOMMF simulations of magnetization reversal for samples having different levels of distortion, and found the magnetic reversal to be dramatically slowed by small distortions (d1/d2 ~ 1). Research at Kentucky is supported by U.S. DoE Grant DE-FG02-97ER45653 and NSF Grant EPS-0814194.
Zaletel, Michael P; Bardarson, Jens H; Moore, Joel E
2011-07-01
Universal logarithmic terms in the entanglement entropy appear at quantum critical points (QCPs) in one dimension (1D) and have been predicted in 2D at QCPs described by 2D conformal field theories. The entanglement entropy in a strip geometry at such QCPs can be obtained via the "Shannon entropy" of a 1D spin chain with open boundary conditions. The Shannon entropy of the XXZ chain is found to have a logarithmic term that implies, for the QCP of the square-lattice quantum dimer model, a logarithm with universal coefficient ±0.25. However, the logarithm in the Shannon entropy of the transverse-field Ising model, which corresponds to entanglement in the 2D Ising conformal QCP, is found to have a singular dependence on the replica or Rényi index resulting from flows to different boundary conditions at the entanglement cut. PMID:21797582
NASA Astrophysics Data System (ADS)
Zaletel, Michael P.; Bardarson, Jens H.; Moore, Joel E.
2011-07-01
Universal logarithmic terms in the entanglement entropy appear at quantum critical points (QCPs) in one dimension (1D) and have been predicted in 2D at QCPs described by 2D conformal field theories. The entanglement entropy in a strip geometry at such QCPs can be obtained via the “Shannon entropy” of a 1D spin chain with open boundary conditions. The Shannon entropy of the XXZ chain is found to have a logarithmic term that implies, for the QCP of the square-lattice quantum dimer model, a logarithm with universal coefficient ±0.25. However, the logarithm in the Shannon entropy of the transverse-field Ising model, which corresponds to entanglement in the 2D Ising conformal QCP, is found to have a singular dependence on the replica or Rényi index resulting from flows to different boundary conditions at the entanglement cut.
Fast modular data acquisition system for GEM-2D detector
NASA Astrophysics Data System (ADS)
Kasprowicz, G.; Byszuk, Adrian; Wojeński, A.; Zienkiewicz, P.; Czarski, T.; Chernyshova, M.; Poźniak, K.; Rzadkiewicz, J.; Zabolotny, W.; Juszczyk, B.
2014-11-01
A novel approach to two dimensional Gas Electron Multiplier (GEM) detector readout is presented. Unlike commonly used methods, based on discriminators and analogue FIFOs, the method developed uses simulta- neously sampling high speed ADCs with fast hybrid integrator and advanced FPGA-based processing logic to estimate the energy of every single photon. Such a method is applied to every GEM strip / pixel signal. It is especially useful in case of crystal-based spectrometers for soft X-rays, 2D imaging for plasma tomography and all these applications where energy resolution of every single photon is required. For the purpose of the detector readout, a novel, highly modular and extendable conception of the measurement platform was developed. It is evolution of already deployed measurement system for JET Spectrometer.
Global small solutions of 2-D incompressible MHD system
NASA Astrophysics Data System (ADS)
Lin, Fanghua; Xu, Li; Zhang, Ping
2015-11-01
In this paper, we consider the global wellposedness of 2-D incompressible magneto-hydrodynamical system with smooth initial data which is close to some non-trivial steady state. It is a coupled system between the Navier-Stokes equations and a free transport equation with a universal nonlinear coupling structure. The main difficulty of the proof lies in exploring the dissipative mechanism of the system. To achieve this and to avoid the difficulty of propagating anisotropic regularity for the free transport equation, we first reformulate our system (1.1) in the Lagrangian coordinates (2.19). Then we employ anisotropic Littlewood-Paley analysis to establish the key a prioriL1 (R+ ; Lip (R2)) estimate for the Lagrangian velocity field Yt. With this estimate, we can prove the global wellposedness of (2.19) with smooth and small initial data by using the energy method. We emphasize that the algebraic structure of (2.19) is crucial for the proofs to work. The global wellposedness of the original system (1.1) then follows by a suitable change of variables.
NASA Astrophysics Data System (ADS)
Gopinath, T.; Veglia, Gianluigi
2013-05-01
We propose a general method that enables the acquisition of multiple 2D and 3D solid-state NMR spectra for U-13C, 15N-labeled proteins. This method, called MEIOSIS (Multiple ExperIments via Orphan SpIn operatorS), makes it possible to detect four coherence transfer pathways simultaneously, utilizing orphan (i.e., neglected) spin operators of nuclear spin polarization generated during 15N-13C cross polarization (CP). In the MEIOSIS experiments, two phase-encoded free-induction decays are decoded into independent nuclear polarization pathways using Hadamard transformations. As a proof of principle, we show the acquisition of multiple 2D and 3D spectra of U-13C, 15N-labeled microcrystalline ubiquitin. Hadamard decoding of CP coherences into multiple independent spin operators is a new concept in solid-state NMR and is extendable to many other multidimensional experiments. The MEIOSIS method will increase the throughput of solid-state NMR techniques for microcrystalline proteins, membrane proteins, and protein fibrils.
Spin Waves in Quasiequilibrium Spin Systems
Bedell, Kevin S.; Dahal, Hari P.
2006-07-28
Using the Landau Fermi liquid theory we discovered a new propagating transverse spin wave in a paramagnetic system which is driven slightly out of equilibrium without applying an external magnetic field. We find a gapless mode which describes the uniform precession of the magnetization in the absence of a magnetic field. We also find a gapped mode associated with the precession of the spin current around the internal field. The gapless mode has a quadratic dispersion leading to a T{sup 3/2} contribution to the specific heat. These modes significantly contribute to the dynamic structure function.
Intuitive understanding of T → 0 behavior of 2d spin glasses via renormalization group analysis
NASA Astrophysics Data System (ADS)
Hartmann, A. K.
2012-07-01
Commentary on 'The nature of the different zero-temperature phases in discrete two-dimensional spin glasses: entropy, universality, chaos and cascades in the renormalization group flow', by Thomas Jörg and Florent Krzakala, 2012 J. Stat. Mech. L01001.
Corner transfer matrices for 2D strongly coupled many-body Floquet systems
NASA Astrophysics Data System (ADS)
Kukuljan, Ivan; Prosen, Tomaž
2016-04-01
We develop, based on Baxter’s corner transfer matrices, a renormalizable numerically exact method for computation of the level density of the quasienergy spectra of two-dimensional (2D) locally interacting many-body Floquet systems. We demonstrate its functionality exemplified by the kicked 2D quantum Ising model. Using the method, we are able to treat systems of arbitrarily large finite size (for example lattices of the order of 108 spins). We clearly demonstrate that the density of the Floquet quasienergy spectrum tends to a flat function in the thermodynamic limit for generic values of model parameters. However, contrary to the prediction of random matrices of the circular orthogonal ensemble, the decay rates of the Fourier coefficients of the Floquet level density exhibit rich and non-trivial dependence on the system’s parameters. Remarkably, we find that the method is renormalizable and gives thermodynamically convergent results only in certain regions of the parameter space where the corner transfer matrices have effectively a finite rank for any system size. In the complementary regions, the corner transfer matrices effectively become of full rank and the method becomes non-renormalizable. This may indicate an interesting phase transition from an area- to volume-law of entanglement in the thermodynamic state of a Floquet system.
FFLO Superfluids in 2D Spin-Orbit Coupled Fermi Gases
Zheng, Zhen; Gong, Ming; Zhang, Yichao; Zou, Xubo; Zhang, Chuanwei; Guo, Guangcan
2014-01-01
We show that the combination of spin-orbit coupling and in-plane Zeeman field in a two-dimensional degenerate Fermi gas can lead to a larger parameter region for Fulde-Ferrell-Larkin-Ovchinnikov (FFLO) phases than that using spin-imbalanced Fermi gases. The resulting FFLO superfluids are also more stable due to the enhanced energy difference between FFLO and conventional Bardeen-Cooper-Schrieffer (BCS) excited states. We clarify the crucial role of the symmetry of Fermi surface on the formation of finite momentum pairing. The phase diagram for FFLO superfluids is obtained in the BCS-BEC crossover region and possible experimental observations of FFLO phases are discussed. PMID:25288379
Spin-orbit relaxation of cesium 7 2D in mixtures of helium and argon
NASA Astrophysics Data System (ADS)
Davila, Ricardo C.; Perram, Glen P.
2016-03-01
Pulsed excitation on the two-photon Cs 6 2S1 /2→7 2D3 /2 ,5 /2 transition results in time-resolved fluorescence at 697 and 672 nm. The rates for fine-structure mixing between the 7 2D3 /2 ,5 /2 states have been measured for helium and argon rare-gas collision partners. The mixing rates are very fast, 1.26 ±0.05 ×10-9 cm3/atom s for He and 1.52 ±0.05 ×10-10 cm3/atom s for Ar, driven by the small energy splitting and large radial distribution for the valence electron. The quenching rates are considerably slower, 6.84 ±0.09 ×10-11 and 2.65 ±0.04 ×10-11 cm3/atom s for He and Ar, respectively. The current results are placed in context with similar rates for other alkali-metal-rare-gas collision pairs using adiabaticity arguments.
Spin wave theory for 2D disordered hard-core bosons
Zúñiga, Juan Pablo Álvarez; Lemarié, Gabriel; Laflorencie, Nicolas
2014-08-20
A spin-wave (SW) approach for hard-core bosons is presented to treat the problem of two dimensional boson localization in a random potential. After a short review of the method to compute 1/S-corrected observables, the case of random on-site energy is discussed. Whereas the mean-field solution does not display a Bose glass (BG) phase, 1/S corrections do capture BG physics. In particular, the localization of SW excitations is discussed through the inverse participation ratio.
Formation of a helical channel in a 2D system in a quantum Hall regime
NASA Astrophysics Data System (ADS)
Kazakov, Aleksandr; Kolkovsky, V.; Adamus, Z.; Karczewski, G.; Wojtowicz, T.; Rokhinson, Leonid
A two-dimensional system with reconfigurable network of one-dimensional p-wave superconducting channels is a perfect platform to perform braiding of non-Abelian excitations. Such channels can be realized in CdTe:Mn quantum wells in a quantum Hall effect regime, where counterpropagaring edge states with opposite spin polarization can be formed by electrostatic gating. These edges form helical channels similar to the edges of 2D topological insulators and, coupled to a superconductor, should support non-Abelian excitations. While long channels are localized at low temperatures, we found that resistance in short (<6 μm) helical channels remains finite at low temperatures. Transport data and resistance scaling with channel length will be presented. Work supported by ONR, National Science Centre (Poland) and Foundation for Polish Science.
Stabilization of 2D assemblies of silver nanoparticles by spin-coating polymers
NASA Astrophysics Data System (ADS)
Hu, Longyu; Pfirman, Aubrie; Chumanov, George
2015-12-01
Silver nanoparticles self-assembled on poly(4-vinylpyridine) modified surfaces were spin-coated with poly(methyl methacrylate), poly(butyl methacrylate) and polystyrene from anisole and toluene solutions. The polymers filled the space between the particles thereby providing stabilization of the assemblies against particle aggregation when dried or chemically modified. The polymers did not coat the top surface of the nanoparticles offering the chemical accessibility to the metal surface. This was confirmed by converting the stabilized nanoparticles into silver sulfide and gold clusters. Etching the nanoparticles resulted in crater-like polymeric structures with the cavities extending down to the underlying substrate. Electrochemical reduction of silver inside the craters was performed. The approach can be extended to other nanoparticle assemblies and polymers.
Disappearance of 2D Magnetic Character in Quasi-1D System CoNb2O6 under Magnetic Field
NASA Astrophysics Data System (ADS)
Mitsuda, Setsuo; Kobayashi, Satoru; Katagiri, Kouji; Yoshizawa, Hideki; Ishikawa, Masayasu; Miyatani, Kazuo; Kohn, Kay
1995-07-01
We report neutron scattering as well as ac susceptibility studies on the formation of magnetic ordering in a quasi-1D ferromagnetic chain system CoNb2O6 in magnetic fields up to 600 Oe. At T=1.5 K, a noncollinear ferrimagnetic (FR) phase with up-up-down spin arrangement along the b axis is field-induced in the magnetic field above ˜300 Oe. Interestingly, the pronounced 2D magnetic character previously found in the noncollinear antiferromagnetic phase disappears in the FR phase. This is direct evidence that the 2D magnetic character is due to the cancellation of interchain exchange fields at an apex site of a 2D isosceles-triangular lattice where quasi-1D ferromagnetic chains lie.
2D foam coarsening in a microfluidic system
NASA Astrophysics Data System (ADS)
Marchalot, J.; Lambert, J.; Cantat, I.; Tabeling, P.; Jullien, M.-C.
2008-09-01
We report an experimental study of 2D microfoam coarsening confined in a micrometer scale geometry, the typical bubbles diameter being of the order of 50-100 μm. These experiments raise both fundamental and applicative issues. For applicative issues: what is the typical time of foam ageing (for a polydisperse foam) in microsystems in scope of gas pocket storage in lab-on-a-chips? Experimental results show that a typical time of 2-3 mn is found, leading to the possibility of short-time storing, depending on the application. For fundamental interests, 2D foam ageing is generally described by von Neumann's law (von Neumann J., Metal Interfaces (American Society of Metals, Cleveland) 1952, p. 108) which is based on the hypothesis that bubbles are separated by thin films. Does this hypothesis still hold for foams confined in a 40 μm height geometry? This problematic is analyzed and it is shown that von Neumann's law still holds but that the diffusion coefficient involved in this law is modified by the confinement which imposes a curvature radius at Plateau borders. More precisely, it is shown that the liquid fraction is high on a film cross-section, in contrast with macrometric experiments where drainage occurs. An analytical description of the diffusion is developped taking into account the fact that soap film height is only a fraction of the cell height. While most of microfoams are flowing, the experimental set-up we describe leads to the achievement of a motionless confined microfoam.
NASA Astrophysics Data System (ADS)
Ueberschär, Olaf; Almeida, Maria J.; Matthes, Patrick; Müller, Mathias; Ecke, Ramona; Exner, Horst; Schulz, Stefan E.
2015-09-01
We have designed and fabricated 2D GMR spin valve sensors on the basis of IrMn/CoFe/Cu/CoFe/NiFe nanolayers in monolithic integration for high sensitivity applications. For a maximum signal-to-noise ratio, we realize a focused double full bridge layout featuring an antiparallel exchange bias pinning for neighbouring meanders and an orthogonal pinning for different bridges. This precise alignment is achieved with microscopic precision by laser heating and subsequent in-field cooling. Striving for maximum signal sensitivity and minimum hysteresis, we study in detail the impact of single meander geometry on the total magnetic structure and electronic transport properties. The investigated geometrical parameters include stripe width, stripe length, cross bar material and total meander length. In addition, the influence of the relative alignment between reference magnetization (pinned layer) and shape anisotropy (free layer) is studied. The experimentally obtained data are moreover compared to the predictions of tailored micromagnetic simulations. Using a set of optimum parameters, we demonstrate that our sensor may readily be employed to measure small magnetic fields, such as the ambient (geomagnetic) field, in terms of a 2D vector with high spatial (~200 μm) and temporal (~1 ms) resolution.
Symplectic integrators for spin systems.
McLachlan, Robert I; Modin, Klas; Verdier, Olivier
2014-06-01
We present a symplectic integrator, based on the implicit midpoint method, for classical spin systems where each spin is a unit vector in R{3}. Unlike splitting methods, it is defined for all Hamiltonians and is O(3)-equivariant, i.e., coordinate-independent. It is a rare example of a generating function for symplectic maps of a noncanonical phase space. It yields a new integrable discretization of the spinning top. PMID:25019718
Kohn-Sham Band Structure Benchmark Including Spin-Orbit Coupling for 2D and 3D Solids
NASA Astrophysics Data System (ADS)
Huhn, William; Blum, Volker
2015-03-01
Accurate electronic band structures serve as a primary indicator of the suitability of a material for a given application, e.g., as electronic or catalytic materials. Computed band structures, however, are subject to a host of approximations, some of which are more obvious (e.g., the treatment of the exchange-correlation of self-energy) and others less obvious (e.g., the treatment of core, semicore, or valence electrons, handling of relativistic effects, or the accuracy of the underlying basis set used). We here provide a set of accurate Kohn-Sham band structure benchmarks, using the numeric atom-centered all-electron electronic structure code FHI-aims combined with the ``traditional'' PBE functional and the hybrid HSE functional, to calculate core, valence, and low-lying conduction bands of a set of 2D and 3D materials. Benchmarks are provided with and without effects of spin-orbit coupling, using quasi-degenerate perturbation theory to predict spin-orbit splittings. This work is funded by Fritz-Haber-Institut der Max-Planck-Gesellschaft.
NASA Astrophysics Data System (ADS)
Komura, Yukihiro; Okabe, Yutaka
2014-03-01
We present sample CUDA programs for the GPU computing of the Swendsen-Wang multi-cluster spin flip algorithm. We deal with the classical spin models; the Ising model, the q-state Potts model, and the classical XY model. As for the lattice, both the 2D (square) lattice and the 3D (simple cubic) lattice are treated. We already reported the idea of the GPU implementation for 2D models (Komura and Okabe, 2012). We here explain the details of sample programs, and discuss the performance of the present GPU implementation for the 3D Ising and XY models. We also show the calculated results of the moment ratio for these models, and discuss phase transitions. Catalogue identifier: AERM_v1_0 Program summary URL:http://cpc.cs.qub.ac.uk/summaries/AERM_v1_0.html Program obtainable from: CPC Program Library, Queen’s University, Belfast, N. Ireland Licensing provisions: Standard CPC licence, http://cpc.cs.qub.ac.uk/licence/licence.html No. of lines in distributed program, including test data, etc.: 5632 No. of bytes in distributed program, including test data, etc.: 14688 Distribution format: tar.gz Programming language: C, CUDA. Computer: System with an NVIDIA CUDA enabled GPU. Operating system: System with an NVIDIA CUDA enabled GPU. Classification: 23. External routines: NVIDIA CUDA Toolkit 3.0 or newer Nature of problem: Monte Carlo simulation of classical spin systems. Ising, q-state Potts model, and the classical XY model are treated for both two-dimensional and three-dimensional lattices. Solution method: GPU-based Swendsen-Wang multi-cluster spin flip Monte Carlo method. The CUDA implementation for the cluster-labeling is based on the work by Hawick et al. [1] and that by Kalentev et al. [2]. Restrictions: The system size is limited depending on the memory of a GPU. Running time: For the parameters used in the sample programs, it takes about a minute for each program. Of course, it depends on the system size, the number of Monte Carlo steps, etc. References: [1] K
Luo, Wenbin; Yao, Xiaolan; Hong, Mei
2005-05-01
One of the main mechanisms of membrane protein folding is by spontaneous insertion into the lipid bilayer from the aqueous environment. The bacterial toxin, colicin Ia, is one such protein. To shed light on the conformational changes involved in this dramatic transfer from the polar to the hydrophobic milieu, we carried out 2D magic-angle spinning (13)C NMR experiments on the water-soluble and membrane-bound states of the channel-forming domain of colicin Ia. Proton-driven (13)C spin diffusion spectra of selectively (13)C-labeled protein show unequivocal attenuation of cross-peaks after membrane binding. This attenuation can be assigned to distance increases but not reduction of the diffusion coefficient. Analysis of the statistics of the interhelical and intrahelical (13)C-(13)C distances in the soluble protein structure indicates that the observed cross-peak reduction is well correlated with a high percentage of short interhelical contacts in the soluble protein. This suggests that colicin Ia channel domain becomes open and extended upon membrane binding, thus lengthening interhelical distances. In comparison, cross-peaks with similar intensities between the two states are dominated by intrahelical contacts in the soluble state. This suggests that the membrane-bound structure of colicin Ia channel domain may be described as a "molten globule", in which the helical secondary structure is retained while the tertiary structure is unfolded. This study demonstrates that (13)C spin diffusion NMR is a valuable tool for obtaining qualitative long-range distance constraints on membrane protein folding. PMID:15853348
Potential role of CYP2D6 in the central nervous system
Cheng, Jie; Zhen, Yueying; Miksys, Sharon; Beyoğlu, Diren; Krausz, Kristopher W.; Tyndale, Rachel F.; Yu, Aiming; Idle, Jeffrey R.; Gonzalez, Frank J.
2013-01-01
Cytochrome P450 2D6 (CYP2D6) is a pivotal enzyme responsible for a major human drug oxidation polymorphism in human populations. Distribution of CYP2D6 in brain and its role in serotonin metabolism suggest this CYP2D6 may have a function in central nervous system. To establish an efficient and accurate platform for the study of CYP2D6 in vivo, a transgenic human CYP2D6 (Tg-2D6) model was generated by transgenesis in wild-type C57BL/6 (WT) mice using a P1 phage artificial chromosome clone containing the complete human CYP2D locus, including CYP2D6 gene and 5’- and 3’- flanking sequences. Human CYP2D6 was expressed not only in the liver, but also in brain. The abundance of serotonin and 5-hydroxyindoleacetic acid in brain of Tg-2D6 is higher than in WT mice either basal levels or after harmaline induction. Metabolomics of brain homogenate and cerebrospinal fluid revealed a significant up-regulation of l-carnitine, acetyl-l-carnitine, pantothenic acid, dCDP, anandamide, N-acetylglucosaminylamine, and a down-regulation of stearoyl-l-carnitine in Tg-2D6 mice compared with WT mice. Anxiety tests indicate Tg-2D6 mice have a higher capability to adapt to anxiety. Overall, these findings indicate that the Tg-2D6 mouse model may serve as a valuable in vivo tool to determine CYP2D6-involved neurophysiological metabolism and function. PMID:23614566
Upscaling of upward CO2 migration in 2D system
NASA Astrophysics Data System (ADS)
Behzadi, Hamid; Alvarado, Vladimir
2012-09-01
A procedure for upscaling CO2 buoyancy driven upward migration in finite-difference simulation models is presented in this work. This upscaling procedure accounts for capillary and buoyancy forces to enable CO2 upward migration modeling in coarser grids while accounting for dominant fine-scaled geological effects. The developed method is applied to 2D domains with no-flow boundary conditions. The absolute permeability field is correlated in the horizontal direction, with zero correlation in the vertical direction. Capillary pressure is parameterized using a Leveret J-function. A Dykstra-Parsons coefficient of 0.7 was used to generate a relatively heterogeneous absolute permeability field and hence test the developed algorithm under more stringent conditions. Multiphase flow upscaling is improved by accounting for spatial connectivity (percolation), which enables us to obtain more realistic rock-fluid pseudo-functions and capture effects of local capillary trapping at the fine scale (meso-scale trapping). The upscaling method and estimation of rock-fluid functions are numerically tested and compared with currently accepted single and multiphase flow upscaling methods. Results show that single-phase flow upscaling is insufficient, because it fails to adequately predict mobility and residual saturation, and hence multiphase flow upscaling should be employed. Significant improvement in gas travel time (representative of mobility) and trapped CO2 saturation (representative of trapped saturation) are observed when spatial connectivity (percolation) is included. The simulation execution time reduces 17-fold through upscaling. This speedup will enable simulating 3D CO2 sequestration simulation scenarios.
2-D isotropic negative refractive index in a N-type four-level atomic system
NASA Astrophysics Data System (ADS)
Zhao, Shun-Cai; Wu, Qi-Xuan; Ma, Kun
2015-11-01
2-D(Two-dimensional) isotropic negative refractive index (NRI) is explicitly realized via the orthogonal signal and coupling standing-wave fields coupling the Ntype four-level atomic system. Under some key parameters of the dense vapour media, the atomic system exhibits isotropic NRI with simultaneous negative permittivity and permeability (i.e. left-handedness) in the 2-D x-y plane. Compared with other 2-D NRI schemes, the coherent atomic vapour media in our scheme may be an ideal 2-D isotropic NRI candidate and has some potential advantages, significance or applications in the further investigation.
Disorder-driven loss of phase coherence in a quasi-2D cold atom system
NASA Astrophysics Data System (ADS)
Beeler, M. C.; Reed, M. E. W.; Hong, T.; Rolston, S. L.
2012-07-01
We study the order parameter of a quasi-two-dimensional (quasi-2D) gas of ultracold atoms trapped in an optical potential in the presence of controllable disorder. Our results show that disorder drives phase fluctuations without significantly affecting the amplitude of the quasi-condensate order parameter. This is evidence that disorder can drive phase fluctuations in 2D systems, relevant to the phase-fluctuation mechanism for the superconductor-to-insulator phase transition (SIT) in disordered 2D superconductors.
Novel Raman resonance in ladder spin systems
NASA Astrophysics Data System (ADS)
Donkov, Alexander; Chubukov, Andrey
2006-03-01
We consider Raman intensity in spin S two-leg- spin-ladder, with the goal to understand recent experiments[1,2]. We argue that the Raman intensity has a pseudo-resonance peak whose width is very small at large S. The pseudo-resonance originates from the existence of a local minimum in the magnon excitation spectrum, and is located slightly below twice the magnon energy at the minimum. The physics behind the peak is surprisingly similar to that in the excitonic scenario for the neutron and Raman resonances in a d-wave superconductor. We also consider mid-infrared X-ray scattering in 2D systems and compare the results with recent measurements [3]. [1] A. Gozar et al, Phys. Rev. Lett. 87, 197202 (2001). [2] S. Sugai and M. Suzuki, Phys stat sol (b) 215, 653 (1999). [3] J. P. Hill, G Blumberg et al, [unpublished
GAS DIFFUSION IN A 2-D SOIL SYSTEM
Technology Transfer Automated Retrieval System (TEKTRAN)
Chemical alternatives for methyl bromide appear to be the only viable short to medium range replacements in pre-plant soil fumigation systems. However, current fumigation practices need to be improved to minimize negative societal and environmental impacts. Often the amount of fumigant applied to so...
Screening and transport in 2D semiconductor systems at low temperatures
Das Sarma, S.; Hwang, E. H.
2015-01-01
Low temperature carrier transport properties in 2D semiconductor systems can be theoretically well-understood within RPA-Boltzmann theory as being limited by scattering from screened Coulomb disorder arising from random quenched charged impurities in the environment. In this work, we derive a number of analytical formula, supported by realistic numerical calculations, for the relevant density, mobility, and temperature range where 2D transport should manifest strong intrinsic (i.e., arising purely from electronic effects) metallic temperature dependence in different semiconductor materials arising entirely from the 2D screening properties, thus providing an explanation for why the strong temperature dependence of the 2D resistivity can only be observed in high-quality and low-disorder 2D samples and also why some high-quality 2D materials manifest much weaker metallicity than other materials. We also discuss effects of interaction and disorder on the 2D screening properties in this context as well as compare 2D and 3D screening functions to comment why such a strong intrinsic temperature dependence arising from screening cannot occur in 3D metallic carrier transport. Experimentally verifiable predictions are made about the quantitative magnitude of the maximum possible low-temperature metallicity in 2D systems and the scaling behavior of the temperature scale controlling the quantum to classical crossover. PMID:26572738
3D spin-flop transition in enhanced 2D layered structure single crystalline TlCo2Se2.
Jin, Z; Xia, Z-C; Wei, M; Yang, J-H; Chen, B; Huang, S; Shang, C; Wu, H; Zhang, X-X; Huang, J-W; Ouyang, Z-W
2016-10-01
The enhanced 2D layered structure single crystalline TlCo2Se2 has been successfully fabricated, which exhibits field-induced 3D spin-flop phase transitions. In the case of the magnetic field parallel to the c-axis (B//c), the applied magnetic field induces the evolution of the noncollinear helical magnetic coupling into a ferromagnetic (FM) state with all the magnetization of the Co ion parallel to the c-axis. A striking variation of the field-induced strain within the ab-plane is noticed in the magnetic field region of 20-30 T. In the case of the magnetic field perpendicular to the c-axis (B ⊥ c), the inter-layer helical antiferromagnetic (AFM) coupling may transform to an initial canted AFM coupling, and then part of it transforms to an intermediate metamagnetic phase with the alignment of two-up-one-down Co magnetic moments and finally to an ultimate FM coupling in higher magnetic fields. The robust noncollinear AFM magnetic coupling is completely destroyed above 30 T. In combination with the measurements of magnetization, magnetoresistance and field-induced strain, a complete magnetic phase diagram of the TlCo2Se2 single crystal has been depicted, demonstrating complex magnetic structures even though the crystal geometry itself gives no indication of the magnetic frustration. PMID:27485370
Novel exciton systems in 2D TMD monolayers and heterobilayers
NASA Astrophysics Data System (ADS)
Yu, Hongyi
In this talk, two exciton systems in transition metal dichalcogenides (TMDs) monolayer and heterobilayer will be discussed. In TMD monolayers, the strong e-h Coulomb exchange interaction splits the exciton and trion dispersions into two branches with zero and finite gap, respectively. Each branch is a center-of-mass wave vector dependent coherent superposition of the two valleys, which leads to a valley-orbit coupling and possibly a trion valley Hall effect. The exchange interaction also eliminates the linear polarization of the negative trion PL emission. In TMD heterobilayers with a type-II band alignment, the low energy exciton has an interlayer configuration with the e and h localized in opposite layers. Because of the inevitable twist or/and lattice mismatch between the two layers, the bright interlayer excitons are located at finite center-of-mass velocities with a six-fold degeneracy. The corresponding photon emission is elliptically polarized, with the major axis locked to the direction of exciton velocity, and helicity determined by the valley indices of the e and h. Some experimental results on the interlayer excitons in the WSe2-MoSe2 heterobilayers will also be presented. The interlayer exciton exhibits a long lifetime as well as a long depolarization time, which facilitate the observation of a PL polarization ring pattern due to the valley dependent exciton-exciton interaction induced expansion. The works were supported by the Research Grant Council of Hong Kong (HKU17305914P, HKU705513P), the Croucher Foundation, and the HKU OYRA and ROP.
GEO2D - Two-Dimensional Computer Model of a Ground Source Heat Pump System
James Menart
2013-06-07
This file contains a zipped file that contains many files required to run GEO2D. GEO2D is a computer code for simulating ground source heat pump (GSHP) systems in two-dimensions. GEO2D performs a detailed finite difference simulation of the heat transfer occurring within the working fluid, the tube wall, the grout, and the ground. Both horizontal and vertical wells can be simulated with this program, but it should be noted that the vertical wall is modeled as a single tube. This program also models the heat pump in conjunction with the heat transfer occurring. GEO2D simulates the heat pump and ground loop as a system. Many results are produced by GEO2D as a function of time and position, such as heat transfer rates, temperatures and heat pump performance. On top of this information from an economic comparison between the geothermal system simulated and a comparable air heat pump systems or a comparable gas, oil or propane heating systems with a vapor compression air conditioner. The version of GEO2D in the attached file has been coupled to the DOE heating and cooling load software called ENERGYPLUS. This is a great convenience for the user because heating and cooling loads are an input to GEO2D. GEO2D is a user friendly program that uses a graphical user interface for inputs and outputs. These make entering data simple and they produce many plotted results that are easy to understand. In order to run GEO2D access to MATLAB is required. If this program is not available on your computer you can download the program MCRInstaller.exe, the 64 bit version, from the MATLAB website or from this geothermal depository. This is a free download which will enable you to run GEO2D..
Amundsen, Morten; Linder, Jacob
2016-01-01
An extension of quasiclassical Keldysh-Usadel theory to higher spatial dimensions than one is crucial in order to describe physical phenomena like charge/spin Hall effects and topological excitations like vortices and skyrmions, none of which are captured in one-dimensional models. We here present a numerical finite element method which solves the non-linearized 2D and 3D quasiclassical Usadel equation relevant for the diffusive regime. We show the application of this on three model systems with non-trivial geometries: (i) a bottlenecked Josephson junction with external flux, (ii) a nanodisk ferromagnet deposited on top of a superconductor and (iii) superconducting islands in contact with a ferromagnet. In case (i), we demonstrate that one may control externally not only the geometrical array in which superconducting vortices arrange themselves, but also to cause coalescence and tune the number of vortices. In case (iii), we show that the supercurrent path can be tailored by incorporating magnetic elements in planar Josephson junctions which also lead to a strong modulation of the density of states. The finite element method presented herein paves the way for gaining insight in physical phenomena which have remained largely unexplored due to the complexity of solving the full quasiclassical equations in higher dimensions. PMID:26961921
Amundsen, Morten; Linder, Jacob
2016-01-01
An extension of quasiclassical Keldysh-Usadel theory to higher spatial dimensions than one is crucial in order to describe physical phenomena like charge/spin Hall effects and topological excitations like vortices and skyrmions, none of which are captured in one-dimensional models. We here present a numerical finite element method which solves the non-linearized 2D and 3D quasiclassical Usadel equation relevant for the diffusive regime. We show the application of this on three model systems with non-trivial geometries: (i) a bottlenecked Josephson junction with external flux, (ii) a nanodisk ferromagnet deposited on top of a superconductor and (iii) superconducting islands in contact with a ferromagnet. In case (i), we demonstrate that one may control externally not only the geometrical array in which superconducting vortices arrange themselves, but also to cause coalescence and tune the number of vortices. In case (iii), we show that the supercurrent path can be tailored by incorporating magnetic elements in planar Josephson junctions which also lead to a strong modulation of the density of states. The finite element method presented herein paves the way for gaining insight in physical phenomena which have remained largely unexplored due to the complexity of solving the full quasiclassical equations in higher dimensions. PMID:26961921
2D and 3D Mechanobiology in Human and Nonhuman Systems.
Warren, Kristin M; Islam, Md Mydul; LeDuc, Philip R; Steward, Robert
2016-08-31
Mechanobiology involves the investigation of mechanical forces and their effect on the development, physiology, and pathology of biological systems. The human body has garnered much attention from many groups in the field, as mechanical forces have been shown to influence almost all aspects of human life ranging from breathing to cancer metastasis. Beyond being influential in human systems, mechanical forces have also been shown to impact nonhuman systems such as algae and zebrafish. Studies of nonhuman and human systems at the cellular level have primarily been done in two-dimensional (2D) environments, but most of these systems reside in three-dimensional (3D) environments. Furthermore, outcomes obtained from 3D studies are often quite different than those from 2D studies. We present here an overview of a select group of human and nonhuman systems in 2D and 3D environments. We also highlight mechanobiological approaches and their respective implications for human and nonhuman physiology. PMID:27214883
Electro-optical spin measurement system
NASA Technical Reports Server (NTRS)
Fodale, Robert (Inventor); Hampton, Herbert R. (Inventor)
1990-01-01
An electro-optical spin measurement system for a spin model in a spin tunnel includes a radio controlled receiver/transmitter, targets located on the spin model, optical receivers mounted around the perimeter of the spin tunnel and the base of the spin tunnel for receiving data from the targets, and a control system for accumulating data from the radio controlled receiver and receivers. Six targets are employed. The spin model includes a fuselage, wings, nose, and tail. Two targets are located under the fuselage of the spin model at the nose tip and tail. Two targets are located on the side of the fuselage at the nose tip and tail, and a target is located under each wing tip. The targets under the fuselage at the nose tip and tail measure spin rate of the spin model, targets on the side of the fuselage at the nose tip and tail measure angle of attack of the spin model, and the targets under the wing tips measure roll angle of the spin model. Optical receivers are mounted at 90 degree increments around the periphery of the spin tunnel to determine angle of attack and roll angle measurements of the spin model. Optical receivers are also mounted at the base of the spin tunnel to define quadrant and position of the spin model and to determine the spin rate of the spin model.
Dynamics and Control of a Reduced Order System of the 2-d Navier-Stokes Equations
NASA Astrophysics Data System (ADS)
Smaoui, Nejib; Zribi, Mohamed
2014-11-01
The dynamics and control problem of a reduced order system of the 2-d Navier-Stokes (N-S) equations is analyzed. First, a seventh order system of nonlinear ordinary differential equations (ODE) which approximates the dynamical behavior of the 2-d N-S equations is obtained by using the Fourier Galerkin method. We show that the dynamics of this ODE system transforms from periodic solutions to chaotic attractors through a sequence of bifurcations including a period doubling scenarios. Then three Lyapunov based controllers are designed to either control the system of ODEs to a desired fixed point or to synchronize two ODE systems obtained from the truncation of the 2-d N-S equations under different conditions. Numerical simulations are presented to show the effectiveness of the proposed controllers. This research was supported and funded by the Research Sector, Kuwait University under Grant No. SM02/14.
Comparative study on 3D-2D convertible integral imaging systems
NASA Astrophysics Data System (ADS)
Choi, Heejin; Kim, Joohwan; Kim, Yunhee; Lee, Byoungho
2006-02-01
In spite of significant improvements in three-dimensional (3D) display fields, the commercialization of a 3D-only display system is not achieved yet. The mainstream of display market is a high performance two-dimensional (2D) flat panel display (FPD) and the beginning of the high-definition (HD) broadcasting accelerates the opening of the golden age of HD FPDs. Therefore, a 3D display system needs to be able to display a 2D image with high quality. In this paper, two different 3D-2D convertible methods based on integral imaging are compared and categorized for its applications. One method uses a point light source array and a polymer-dispersed liquid crystal and one display panel. The other system adopts two display panels and a lens array. The former system is suitable for mobile applications while the latter is for home applications such as monitors and TVs.
High performance CCD camera system for digitalisation of 2D DIGE gels.
Strijkstra, Annemieke; Trautwein, Kathleen; Roesler, Stefan; Feenders, Christoph; Danzer, Daniel; Riemenschneider, Udo; Blasius, Bernd; Rabus, Ralf
2016-07-01
An essential step in 2D DIGE-based analysis of differential proteome profiles is the accurate and sensitive digitalisation of 2D DIGE gels. The performance progress of commercially available charge-coupled device (CCD) camera-based systems combined with light emitting diodes (LED) opens up a new possibility for this type of digitalisation. Here, we assessed the performance of a CCD camera system (Intas Advanced 2D Imager) as alternative to a traditionally employed, high-end laser scanner system (Typhoon 9400) for digitalisation of differential protein profiles from three different environmental bacteria. Overall, the performance of the CCD camera system was comparable to the laser scanner, as evident from very similar protein abundance changes (irrespective of spot position and volume), as well as from linear range and limit of detection. PMID:27252121
Spin physics with the PHENIX detector system
Saito, N.; PHENIX Collaboration
1997-12-31
The PHENIX experiment at RHIC has extended its scope to cover spin physics using polarized proton beams. The major goals of the spin physics at RHIC are elucidation of the spin structure of the nucleon and precision tests of the symmetries. Sensitivities of the spin physics measurements with the PHENIX detector system are reviewed.
Design of FBG En/decoders in Coherent 2-D Time-polarization OCDMA Systems
NASA Astrophysics Data System (ADS)
Hou, Fen-fei; Yang, Ming
2012-12-01
A novel fiber Bragg grating (FBG)-based en/decoder for the two-dimensional (2-D) time-spreading and polarization multiplexer optical coding is proposed. Compared with other 2-D en/decoders, the proposed en/decoding for an optical code-division multiple-access (OCDMA) system uses a single phase-encoded FBG and coherent en/decoding. Furthermore, combined with reconstruction-equivalent-chirp technology, such en/decoders can be realized with a conventional simple fabrication setup. Experimental results of such en/decoders and the corresponding system test at a data rate of 5 Gbit/s demonstrate that this kind of 2-D FBG-based en/decoders could improve the performances of OCDMA systems.
Quasi 2D electronic states with high spin-polarization in centrosymmetric MoS2 bulk crystals
Gehlmann, Mathias; Aguilera, Irene; Bihlmayer, Gustav; Młyńczak, Ewa; Eschbach, Markus; Döring, Sven; Gospodarič, Pika; Cramm, Stefan; Kardynał, Beata; Plucinski, Lukasz; Blügel, Stefan; Schneider, Claus M.
2016-01-01
Time reversal dictates that nonmagnetic, centrosymmetric crystals cannot be spin-polarized as a whole. However, it has been recently shown that the electronic structure in these crystals can in fact show regions of high spin-polarization, as long as it is probed locally in real and in reciprocal space. In this article we present the first observation of this type of compensated polarization in MoS2 bulk crystals. Using spin- and angle-resolved photoemission spectroscopy (ARPES), we directly observed a spin-polarization of more than 65% for distinct valleys in the electronic band structure. By additionally evaluating the probing depth of our method, we find that these valence band states at the point in the Brillouin zone are close to fully polarized for the individual atomic trilayers of MoS2, which is confirmed by our density functional theory calculations. Furthermore, we show that this spin-layer locking leads to the observation of highly spin-polarized bands in ARPES since these states are almost completely confined within two dimensions. Our findings prove that these highly desired properties of MoS2 can be accessed without thinning it down to the monolayer limit. PMID:27245646
Quasi 2D electronic states with high spin-polarization in centrosymmetric MoS2 bulk crystals.
Gehlmann, Mathias; Aguilera, Irene; Bihlmayer, Gustav; Młyńczak, Ewa; Eschbach, Markus; Döring, Sven; Gospodarič, Pika; Cramm, Stefan; Kardynał, Beata; Plucinski, Lukasz; Blügel, Stefan; Schneider, Claus M
2016-01-01
Time reversal dictates that nonmagnetic, centrosymmetric crystals cannot be spin-polarized as a whole. However, it has been recently shown that the electronic structure in these crystals can in fact show regions of high spin-polarization, as long as it is probed locally in real and in reciprocal space. In this article we present the first observation of this type of compensated polarization in MoS2 bulk crystals. Using spin- and angle-resolved photoemission spectroscopy (ARPES), we directly observed a spin-polarization of more than 65% for distinct valleys in the electronic band structure. By additionally evaluating the probing depth of our method, we find that these valence band states at the point in the Brillouin zone are close to fully polarized for the individual atomic trilayers of MoS2, which is confirmed by our density functional theory calculations. Furthermore, we show that this spin-layer locking leads to the observation of highly spin-polarized bands in ARPES since these states are almost completely confined within two dimensions. Our findings prove that these highly desired properties of MoS2 can be accessed without thinning it down to the monolayer limit. PMID:27245646
Quasi 2D electronic states with high spin-polarization in centrosymmetric MoS2 bulk crystals
NASA Astrophysics Data System (ADS)
Gehlmann, Mathias; Aguilera, Irene; Bihlmayer, Gustav; Młyńczak, Ewa; Eschbach, Markus; Döring, Sven; Gospodarič, Pika; Cramm, Stefan; Kardynał, Beata; Plucinski, Lukasz; Blügel, Stefan; Schneider, Claus M.
2016-06-01
Time reversal dictates that nonmagnetic, centrosymmetric crystals cannot be spin-polarized as a whole. However, it has been recently shown that the electronic structure in these crystals can in fact show regions of high spin-polarization, as long as it is probed locally in real and in reciprocal space. In this article we present the first observation of this type of compensated polarization in MoS2 bulk crystals. Using spin- and angle-resolved photoemission spectroscopy (ARPES), we directly observed a spin-polarization of more than 65% for distinct valleys in the electronic band structure. By additionally evaluating the probing depth of our method, we find that these valence band states at the point in the Brillouin zone are close to fully polarized for the individual atomic trilayers of MoS2, which is confirmed by our density functional theory calculations. Furthermore, we show that this spin-layer locking leads to the observation of highly spin-polarized bands in ARPES since these states are almost completely confined within two dimensions. Our findings prove that these highly desired properties of MoS2 can be accessed without thinning it down to the monolayer limit.
A multifunctional automated system of 2D laser polarimetry of biological tissues
NASA Astrophysics Data System (ADS)
Zabolotna, Natalia I.; Radchenko, Kostiantyn O.
2014-09-01
Multifunctional automated system of 2D laser polarimetry of biological tissues with enhanced functional capabilities is proposed. Two-layer optically thin (attenuation coefficient τ <= 0,1 ) biological structures, formed by "muscle tissue (MT) - the dermis of the skin (DS)" histological cryosections for the two physiological states (normal - dystrophy) were investigated. Complex of objective indexes which characterized by 2D polarization reproduced distributions under the following criteria: histograms of the distributions; statistical moments of the 1st - 4th order; autocorrelation functions; correlation moments; power spectra logarithmic dependencies of the distributions; fractal dimensions of the distributions; spectra moments are presented.
2-D PSD Diagnostic System for the Pellet Trajectory in LHD Plasmas
NASA Astrophysics Data System (ADS)
Hoshino, Mitsuyasu; Sakamoto, Ryuichi; Yamada, Hiroshi; Itoh, Yasuhiko; Kumagai, Kohki; Kumazawa, Ryuhei; Watari, Tetsuo; LHD Experimental Group
Ablation of a solid hydrogen pellet in hot plasmas of Large Helical Device (LHD) has been studied. A position sensitive detector (PSD) diagnostics has been newly installed to measure the trajectory of ablating pellets. 2-D diagnostics enables the measurement with high time (1 MHz) and spatial resolutions (80 μm). A 3-D pellet trajectory can be described by a combination of 2-D images and information of initial pellet direction and velocity. A deflection of the pellet trajectory in the neutral beam injection (NBI) heated plasmas of LHD has been observed. Means of improving the measurement accuracy of this system are also discussed.
Valley-spin polarization in the magneto-optical response of silicene and other similar 2D crystals.
Tabert, C J; Nicol, E J
2013-05-10
We calculate the magneto-optical conductivity and electronic density of states for silicene, the silicon equivalent of graphene, and similar crystals such as germanene. In the presence of a perpendicular magnetic field and electric field gating, we note that four spin- and valley-polarized levels can be seen in the density of states, and transitions between these levels lead to similarly polarized absorption lines in the longitudinal, transverse Hall, and circularly polarized dynamic conductivity. While previous spin and valley polarization predicted for the conductivity is only present in the response to circularly polarized light, we show that distinct spin and valley polarization can also be seen in the longitudinal magneto-optical conductivity at experimentally attainable energies. The frequency of the absorption lines may be tuned by the electric and magnetic field to onset in a range varying from THz to the infrared. This potential to isolate charge carriers of definite spin and valley label may make silicene a promising candidate for spin- and valleytronic devices. PMID:23705739
Spin fluctuations and excitations in a 2D xy-ferromagnet: CoCl/sub 2/ in graphite
Wiesler, D.G.; Zabel, H.
1989-01-01
We have investigated by neutron scattering the spin fluctuations and excitations in the stage 2 CoCl/sub 2/ -- graphite intercalation compound. This compound has easy-plane anisotropy and sufficiently weak interplanar interaction to qualify as a test material for Kosterlitz-Thouless-Berezinsky type phase transitions. We have carried out quasi-elastic scattering measurements to determine the temperature variation of the spin correlation length /xi/ above the two dimensional ordering transition. We have also probed the dependence on wave vector and temperature of the inelastic scattering cross section, consisting of both a central peak, associated with vortex diffusion, and spin wave, which become strongly damped above the transition temperature. 15 refs., 5 figs.
Priority depth fusion for the 2D to 3D conversion system
NASA Astrophysics Data System (ADS)
Chang, Yu-Lin; Chen, Wei-Yin; Chang, Jing-Ying; Tsai, Yi-Min; Lee, Chia-Lin; Chen, Liang-Gee
2008-02-01
For the sake of providing 3D contents for up-coming 3D display devices, a real-time automatic depth fusion 2D-to-3D conversion system is needed on the home multimedia platform. We proposed a priority depth fusion algorithm with a 2D-to-3D conversion system which generates the depth map from most of the commercial video sequences. The results from different kinds of depth reconstruction methods are integrated into one depth map by the proposed priority depth fusion algorithm. Then the depth map and the original 2D image are converted to stereo images for showing on the 3D display devices. In this paper, a 2D-to-3D conversion algorithm set is combined with the proposed depth fusion algorithm to show the improved results. With the converted 3D contents, the needs for 3D display devices will also increase. As long as the two technologies evolve, the 3D-TV era will come as soon as possible.
2D and 3D Mass Transfer Simulations in β Lyrae System
NASA Astrophysics Data System (ADS)
Nazarenko, V. V.; Glazunova, L. V.; Karetnikov, V. G.
2001-12-01
2D and 3D mass transfer simulations of the mass transfer in β Lyrae binary system. We have received that from a point L3 40 per cent of mass transfer from L1-point is lost.The structure of a gas envelope, around system is calculated.3-D mass transfer simulations has shown presence the spiral shock in the disk around primary star's and a jet-like structures (a mass flow in vertical direction) over a stream.
One Dimensional(1D)-to-2D Crossover of Spin Correlations in the 3D Magnet ZnMn2O4
Disseler, S. M.; Chen, Y.; Yeo, S.; Gasparovic, G.; Piccoli, P. M. B.; Schultz, A. J.; Qiu, Y.; Huang, Q.; Cheong, S. -W.; Ratcliff, W.
2015-12-08
In this paper we report on the intriguing evolution of the dynamical spin correlations of the frustrated spinel ZnMn2O4. Inelastic neutron scattering and magnetization studies reveal that the dynamical correlations at high temperatures are 1D. At lower temperature, these dynamical correlations become 2D. Surprisingly, the dynamical correlations condense into a quasi 2D Ising-like ordered state, making this a rare observation of two dimensional order on the spinel lattice. Remarkably, 3D ordering is not observed down to temperatures as low as 300 mK. This unprecedented dimensional crossover stems from frustrated exchange couplings due to the huge Jahn-Teller distortions around Mn3+ ionsmore » on the spinel lattice.« less
One Dimensional(1D)-to-2D Crossover of Spin Correlations in the 3D Magnet ZnMn2O4
Disseler, S. M.; Chen, Y.; Yeo, S.; Gasparovic, G.; Piccoli, P. M. B.; Schultz, A. J.; Qiu, Y.; Huang, Q.; Cheong, S.-W.; Ratcliff, W.
2015-01-01
We report on the intriguing evolution of the dynamical spin correlations of the frustrated spinel ZnMn2O4. Inelastic neutron scattering and magnetization studies reveal that the dynamical correlations at high temperatures are 1D. At lower temperature, these dynamical correlations become 2D. Surprisingly, the dynamical correlations condense into a quasi 2D Ising-like ordered state, making this a rare observation of two dimensional order on the spinel lattice. Remarkably, 3D ordering is not observed down to temperatures as low as 300 mK. This unprecedented dimensional crossover stems from frustrated exchange couplings due to the huge Jahn-Teller distortions around Mn3+ ions on the spinel lattice. PMID:26644220
One Dimensional(1D)-to-2D Crossover of Spin Correlations in the 3D Magnet ZnMn_{2}O_{4}
Disseler, S. M.; Chen, Y.; Yeo, S.; Gasparovic, G.; Piccoli, P. M. B.; Schultz, A. J.; Qiu, Y.; Huang, Q.; Cheong, S. -W.; Ratcliff, W.
2015-12-08
In this paper we report on the intriguing evolution of the dynamical spin correlations of the frustrated spinel ZnMn_{2}O_{4}. Inelastic neutron scattering and magnetization studies reveal that the dynamical correlations at high temperatures are 1D. At lower temperature, these dynamical correlations become 2D. Surprisingly, the dynamical correlations condense into a quasi 2D Ising-like ordered state, making this a rare observation of two dimensional order on the spinel lattice. Remarkably, 3D ordering is not observed down to temperatures as low as 300 mK. This unprecedented dimensional crossover stems from frustrated exchange couplings due to the huge Jahn-Teller distortions around Mn^{3+} ions on the spinel lattice.
BILL2D - A software package for classical two-dimensional Hamiltonian systems
NASA Astrophysics Data System (ADS)
Solanpää, J.; Luukko, P. J. J.; Räsänen, E.
2016-02-01
We present BILL2D, a modern and efficient C++ package for classical simulations of two-dimensional Hamiltonian systems. BILL2D can be used for various billiard and diffusion problems with one or more charged particles with interactions, different external potentials, an external magnetic field, periodic and open boundaries, etc. The software package can also calculate many key quantities in complex systems such as Poincaré sections, survival probabilities, and diffusion coefficients. While aiming at a large class of applicable systems, the code also strives for ease-of-use, efficiency, and modularity for the implementation of additional features. The package comes along with a user guide, a developer's manual, and a documentation of the application program interface (API).
NASA Astrophysics Data System (ADS)
Chiba, Sachie; Yoshida, Fuka; Takayanagi, Toshiyuki
2014-03-01
Extensive electronic structure calculations have been performed to understand the reaction mechanisms of the N(4S, 2D) + CH3 reaction using ab initio multi-configurational methods. We have located a total of seven structures for the minimum on the seam of singlet/triplet potential energy crossing. According to our computational results, we conclude that triplet/singlet spin-forbidden processes are playing an essential role in this reaction in high contrast with previous theoretical studies. In addition, it is likely that singlet HCN + H2 products are formed through so-called ‘roaming' dynamics.
A 2-D Microdisplay Using An Integrated Microresonating Waveguide Scanning System
Hua, Wei-Shu; Tsui, Chi Leung; Soetanto, William; Wu, Wen-Jong; Wang, Wei-Chih
2012-01-01
Our research team has developed a MEMS based on a 2D micro image display device that can potentially overcome the size reduction limits while maintaining the high image resolution and field of view obtained by mirror based display systems. The basic design of the optical scanner includes a micro-fabricated polymer based cantilever waveguide that is electromechanically deflected by a 2D piezoelectric actuator. From the distal tip of the cantilever waveguide, a light beam is emitted and the direction of propagation is displaced along two orthogonal directions. The waveforms for the X-Y actuators and the LED light modulation are controlled using a field programmable gate array (FPGA). In this paper we will extend our display development by reporting more recent integration of components including actuators and light sources with a controller. Here we will describe the design, fabrication of the latest polymeric waveguide cantilever beam steering device driven by 2-D piezoelectric actuator using aerosol deposited PZT thick film actuators. The mechanical and optical design for the microresonating scanner will be discussed. In addition, the mechanical and optical performance of the 2-D scanner will be presented. PMID:26726320
Parameterising root system growth models using 2D neutron radiography images
NASA Astrophysics Data System (ADS)
Schnepf, Andrea; Felderer, Bernd; Vontobel, Peter; Leitner, Daniel
2013-04-01
Root architecture is a key factor for plant acquisition of water and nutrients from soil. In particular in view of a second green revolution where the below ground parts of agricultural crops are important, it is essential to characterise and quantify root architecture and its effect on plant resource acquisition. Mathematical models can help to understand the processes occurring in the soil-plant system, they can be used to quantify the effect of root and rhizosphere traits on resource acquisition and the response to environmental conditions. In order to do so, root architectural models are coupled with a model of water and solute transport in soil. However, dynamic root architectural models are difficult to parameterise. Novel imaging techniques such as x-ray computed tomography, neutron radiography and magnetic resonance imaging enable the in situ visualisation of plant root systems. Therefore, these images facilitate the parameterisation of dynamic root architecture models. These imaging techniques are capable of producing 3D or 2D images. Moreover, 2D images are also available in the form of hand drawings or from images of standard cameras. While full 3D imaging tools are still limited in resolutions, 2D techniques are a more accurate and less expensive option for observing roots in their environment. However, analysis of 2D images has additional difficulties compared to the 3D case, because of overlapping roots. We present a novel algorithm for the parameterisation of root system growth models based on 2D images of root system. The algorithm analyses dynamic image data. These are a series of 2D images of the root system at different points in time. Image data has already been adjusted for missing links and artefacts and segmentation was performed by applying a matched filter response. From this time series of binary 2D images, we parameterise the dynamic root architecture model in the following way: First, a morphological skeleton is derived from the binary
NASA Astrophysics Data System (ADS)
Abuali, Z.; Golshan, M. M.; Davatolhagh, S.
2016-09-01
The present work is concerned with a report on the effects of Pauli, Rashba and Dresselhaus spin-orbit interactions (SOI) on the energy levels of a 2D circular hydrogenic quantum anti-dot(QAD). To pursue this aim, we first present a brief review on the analytical solutions to the Schrödinger equation of electronic states in a quantum anti-dot when a hydrogenic donor is placed at the center, revealing the degeneracies involved in the ground, first and second excited states. We then proceed by adding the aforementioned spin-orbit interactions to the Hamiltonian and treat them as perturbation, thereby, calculating the energy shifts to the first three states. As we show, the Rashba spin-orbit interaction gives rise to a shift in the energies of the ground and second excited states, while it partially lifts the degeneracy of the first excited state. Our calculations also indicate that the Dresselhaus effect, while keeping the degeneracy of the ground and second excited states intact, removes the degeneracy of the first excited state in the opposite sense. The Pauli spin-orbit interaction, on the other hand, is diagonal in the appropriate bases, and thus its effect is readily calculated. The results show that degeneracy of ℓ = 0 (prevailing in the ground and second excited state) remains but the degeneracy of ℓ = 1 (prevailing in the first excited state) is again partially lifted. Moreover, we present the energy corrections due to the three spin-orbit interactions as functions of anti-dot's radius, Rashba and Dresselhaus strengths discussing how they affect the corresponding states. The material presented in the article conceives the possibility of generating spin currents in the hydrogenic circular anti-dots.
Developing Mobile BIM/2D Barcode-Based Automated Facility Management System
Chen, Yen-Pei
2014-01-01
Facility management (FM) has become an important topic in research on the operation and maintenance phase. Managing the work of FM effectively is extremely difficult owing to the variety of environments. One of the difficulties is the performance of two-dimensional (2D) graphics when depicting facilities. Building information modeling (BIM) uses precise geometry and relevant data to support the facilities depicted in three-dimensional (3D) object-oriented computer-aided design (CAD). This paper proposes a new and practical methodology with application to FM that uses an integrated 2D barcode and the BIM approach. Using 2D barcode and BIM technologies, this study proposes a mobile automated BIM-based facility management (BIMFM) system for FM staff in the operation and maintenance phase. The mobile automated BIMFM system is then applied in a selected case study of a commercial building project in Taiwan to verify the proposed methodology and demonstrate its effectiveness in FM practice. The combined results demonstrate that a BIMFM-like system can be an effective mobile automated FM tool. The advantage of the mobile automated BIMFM system lies not only in improving FM work efficiency for the FM staff but also in facilitating FM updates and transfers in the BIM environment. PMID:25250373
Developing mobile BIM/2D barcode-based automated facility management system.
Lin, Yu-Cheng; Su, Yu-Chih; Chen, Yen-Pei
2014-01-01
Facility management (FM) has become an important topic in research on the operation and maintenance phase. Managing the work of FM effectively is extremely difficult owing to the variety of environments. One of the difficulties is the performance of two-dimensional (2D) graphics when depicting facilities. Building information modeling (BIM) uses precise geometry and relevant data to support the facilities depicted in three-dimensional (3D) object-oriented computer-aided design (CAD). This paper proposes a new and practical methodology with application to FM that uses an integrated 2D barcode and the BIM approach. Using 2D barcode and BIM technologies, this study proposes a mobile automated BIM-based facility management (BIMFM) system for FM staff in the operation and maintenance phase. The mobile automated BIMFM system is then applied in a selected case study of a commercial building project in Taiwan to verify the proposed methodology and demonstrate its effectiveness in FM practice. The combined results demonstrate that a BIMFM-like system can be an effective mobile automated FM tool. The advantage of the mobile automated BIMFM system lies not only in improving FM work efficiency for the FM staff but also in facilitating FM updates and transfers in the BIM environment. PMID:25250373
Phase Transitions in Quasi-2D Plasma-Dust Systems: Simulations and Experiments
NASA Astrophysics Data System (ADS)
Petrov, Oleg; Vasiliev, Mikhail; Statsenko, Konstantin; Koss, Xeniya; Vasilieva, Elena; Myasnikov, Maxim; Lisin, Evgeny
2015-11-01
A nature of phase transition in quasi-2D dusty plasma structures was studied and the influence of the quasi-2D cluster size (a number of particles in it) on the features of the phase transition was investigated. Experiments and numerical simulation was conducted for the systems consisting of small (~ 10) and large (~ 103) number of particles. To investigate the phase state of the system with 7, 18 and 100 particles observed in numerical and laboratory experiments, we used the method based on analysis of dynamic entropy. Numerical modeling of small systems was conducted by the Langevin molecular dynamic method with the Langevin force, responsible for the stochastic nature of the motion of particles with a given kinetic temperature. Phase state of systems with the number of elements in the order of 103, was studied using the methods of statistical thermodynamics. Here we present new results of an experimental study of the change of translational and orientational order and topological defects, and the pair interactions at 2D melting of dust cluster in rf discharge plasma. The experimental results have revealed the existence of hexatic phase as well as solid-to-hexatic phase and hexatic-to-liquid transitions. This work was supported by the Russian Science Foundation (O.F. Petrov, M.M.Vasiliev, K.B. Stacenko, X.G. Koss, E.V. Vasilieva, M.I.Myasnikov and E.?.Lisin) through Grant No. 14-12-01440).
Preliminary work of real-time ultrasound imaging system for 2-D array transducer.
Li, Xu; Yang, Jiali; Ding, Mingyue; Yuchi, Ming
2015-01-01
Ultrasound (US) has emerged as a non-invasive imaging modality that can provide anatomical structure information in real time. To enable the experimental analysis of new 2-D array ultrasound beamforming methods, a pre-beamformed parallel raw data acquisition system was developed for 3-D data capture of 2D array transducer. The transducer interconnection adopted the row-column addressing (RCA) scheme, where the columns and rows were active in sequential for transmit and receive events, respectively. The DAQ system captured the raw data in parallel and the digitized data were fed through the field programmable gate array (FPGA) to implement the pre-beamforming. Finally, 3-D images were reconstructed through the devised platform in real-time. PMID:26405923
Delay-dependent stability and stabilisation of continuous 2D delayed systems with saturating control
NASA Astrophysics Data System (ADS)
Hmamed, Abdelaziz; Kririm, Said; Benzaouia, Abdellah; Tadeo, Fernando
2016-09-01
This paper deals with the stabilisation problem of continuous two-dimensional (2D) delayed systems, in the presence of saturations on the control signals. For this, a new delay decomposition approach is proposed to deal with the stability and stabilisation issues. The idea is that the range of variation of each delay is divided into segments, and a specific Lyapunov- Krasovskii functional is used that contains different weight matrices in each segment. Then, based on this approach, new delay-dependent stability and stabilisation criteria for continuous 2D delayed systems are derived. These criteria are less conservative and include some existing results as special cases. Some numerical examples are provided to show that a significant improvement is achieved using the proposed approach.
Anatomy of a Spin: The Information-Theoretic Structure of Classical Spin Systems
NASA Astrophysics Data System (ADS)
James, Ryan; Vijayaraghavan, Vikram; Crutchfield, James
Collective organization in matter plays a significant role in its expressed physical properties. Typically, it is detected via an order parameter, appropriately defined for a given system's observed emergent patterns. Recent developments in information theory suggest how to quantify collective organization in a system- and phenomenon-agnostic way: decompose the system's thermodynamic entropy density into a localized entropy, that solely contained in the dynamics at a single location, and a bound entropy, that stored in space as domains, clusters, excitations, or other emergent structures. We compute this decomposition and related quantities explicitly for the nearest-neighbor Ising model on the 1D chain, the Bethe lattice with coordination number k = 3, and the 2D square lattice, illustrating its generality and the functional insights it gives near and away from phase transitions. In particular, we consider the roles that different spin motifs play (cluster bulk, cluster edges, and the like) and how these affect the dependencies between spins.
Application of entanglement conditions to spin systems
Zheng Hongjun; Hillery, Mark; Dung, Ho Trung
2010-06-15
There have been numerous studies of entanglement in spin systems. These have usually focused on examining the entanglement between individual spins or determining whether the state of the system is completely separable. Here, we present conditions that allow us to determine whether blocks of spins are entangled. We show that sometimes these conditions can detect entanglement better than conditions involving individual spins. We apply these conditions to study entanglement in spin-wave states, both when there are only a few magnons present and also at finite temperature.
The potential energy surface and chaos in 2D Hamiltonian systems
NASA Astrophysics Data System (ADS)
Li, Jiangdan; Zhang, Suying
2011-02-01
We provide a new insight into the relationship between the geometric property of the potential energy surface and chaotic behavior of 2D Hamiltonian dynamical systems, and give an indicator of chaos based on the geometric property of the potential energy surface by defining Mean Convex Index (MCI). We also discuss a model of unstable Hamiltonian in detail, and show our results in good agreement with HBLSL's (Horwitz, Ben Zion, Lewkowicz, Schiffer and Levitan) new Riemannian geometric criterion.
NASA Astrophysics Data System (ADS)
Derakhshan, V.; Ketabi, S. A.; Moghaddam, A. G.
2016-09-01
We employed the formalism of bond currents, expressed in terms of non-equilibrium Green’s function to obtain the local currents and transport features of zigzag silicene ribbon in the presence of magnetic impurity. When only intrinsic and Rashba spin–orbit interactions are present, silicene behaves as a two-dimensional topological insulator with gapless edge states. But in the presence of finite intrinsic spin–orbit interaction, the edge states start to penetrate into the bulk of the sample by increasing Rashba interaction strength. The exchange interaction induced by local impurities breaks the time-reversal symmetry of the gapless edge states and influences the topological properties strongly. Subsequently, the singularity of partial Berry curvature disappears and the silicene nanoribbon becomes a trivial insulator. On the other hand, when the concentration of the magnetic impurities is low, the edge currents are not affected significantly. In this case, when the exchange field lies in the x–y plane, the spin mixing around magnetic impurity is more profound rather than the case in which the exchange field is directed along the z-axis. Nevertheless, when the exchange field of magnetic impurities is placed in the x–y plane, a spin-polarized conductance is observed. The resulting conductance polarization can be tuned by the concentration of the impurities and even completely polarized spin transport is achievable.
Spin-dependent momentum density distribution and Fermi surface of Ho via 2D-ACAR measurements
NASA Astrophysics Data System (ADS)
Hamid, A. S.; Uedono, A.
2004-03-01
The first direct measurements of the spin-dependent positron-electron momentum density and Fermi surface of Ho are presented. The measurements were performed using two-dimensional angular correlation of annihilation radiation (ACAR) experiments with reversal magnetic field directions parallel and anti-parallel to the polarization direction of the positron. The analysis confirmed that two hybrid bands influence the Fermi surface of Ho. They are 5d-6s conduction hybrid bands and partial hybridization of 4f-5d bands. In fact, the measured Fermi surface revealed the behavior of the magnetic electrons. Further, the reciprocal lattice points revealed the electronic spin density distribution behavior. The general layout of the Fermi surface of Ho showed a multiply connected surface as an open hole running along the A axis with minority spin distribution and two electron surfaces centered on K and H points, respectively. Furthermore, this Fermi surface showed anti-ferromagnetic character. The measured Fermi surface of Ho showed agreement with the results of a previous band structure calculation method. (
Interaction of water molecules with hexagonal 2D systems. A DFT study
NASA Astrophysics Data System (ADS)
Rojas, Ángela; Rey, Rafael
Over the years water sources have been contaminated with many chemical agents, becoming issues that affect health of the world population. The advances of the nanoscience and nanotechnology in the development new materials constitute an alternative for design molecular filters with great efficiencies and low cost for water treatment and purification. In the nanoscale, the process of filtration or separation of inorganic and organic pollutants from water requires to study interactions of these atoms or molecules with different nano-materials. Specifically, it is necessary to understand the role of these interactions in physical and chemical properties of the nano-materials. In this work, the main interest is to do a theoretical study of interaction between water molecules and 2D graphene-like systems, such as silicene (h-Si) or germanene (h-Ge). Using Density Functional Theory we calculate total energy curves as function of separation between of water molecules and 2D systems. Different spatial configurations of water molecules relative to 2D systems are considered. Structural relaxation effects and changes of electronic charge density also are reported. Universidad Nacional de Colombia.
IGUANA: a high-performance 2D and 3D visualisation system
NASA Astrophysics Data System (ADS)
Alverson, G.; Eulisse, G.; Muzaffar, S.; Osborne, I.; Taylor, L.; Tuura, L. A.
2004-11-01
The IGUANA project has developed visualisation tools for multiple high-energy experiments. At the core of IGUANA is a generic, high-performance visualisation system based on OpenInventor and OpenGL. This paper describes the back-end and a feature-rich 3D visualisation system built on it, as well as a new 2D visualisation system that can automatically generate 2D views from 3D data, for example to produce R/Z or X/Y detector displays from existing 3D display with little effort. IGUANA has collaborated with the open-source gl2ps project to create a high-quality vector postscript output that can produce true vector graphics output from any OpenGL 2D or 3D display, complete with surface shading and culling of invisible surfaces. We describe how it works. We also describe how one can measure the memory and performance costs of various OpenInventor constructs and how to test scene graphs. We present good patterns to follow and bad patterns to avoid. We have added more advanced tools such as per-object clipping, slicing, lighting or animation, as well as multiple linked views with OpenInventor, and describe them in this paper. We give details on how to edit object appearance efficiently and easily, and even dynamically as a function of object properties, with instant visual feedback to the user.
Hu, Lin; Wu, Xiaojun; Yang, Jinlong
2016-07-14
To realize antiferromagnetic spintronics in the nanoscale, it is highly desirable to identify new nanometer-scale antiferromagnetic metals with both high Néel temperature and large spin-orbit coupling. In this work, on the basis of first-principles calculation and particle swarm optimization (PSO) global structure search, we demonstrate that a two-dimensional Mn2C monolayer is an antiferromagnetic metal with a Mn magnetic moment of ∼3μB. Mn2C monolayer has an anti-site structure of MoS2 sheet with carbon atoms hexagonally coordinated by neighboring Mn atoms. Remarkably, the in-plane carrier mobility of 2D Mn2C is highly anisotropic, amounting to about 47 000 cm(2) V(-1) s(-1) in the a' direction, which is much higher than that of MoS2 monolayer. The Néel temperature of Mn2C monolayer is high up to 720 K. Due to strong spin-orbit coupling in plane, the magnetic anisotropy energy of Mn2C monolayer is larger than those of pure metals, such as Fe, Co, and Ni. These advantages render 2D Mn2C sheet with great potential applications in nanometer-scale antiferromagnetic spintronics. PMID:27304676
Spin glass and semiconducting behavior in one-dimensional BaFe2-dSe3 (d~2) crystals
Saparov, Bayrammurad I; Calder, Stuart A; Sipos, Balazs; Cao, Huibo; Chi, Songxue; Singh, David J; Christianson, Andrew D; Lumsden, Mark D; Sefat, A. S.
2011-01-01
We investigate the physical properties and electronic structure of BaFe{sub 1.79(2)}Se{sub 3} crystals, which were grown out of tellurium flux. The crystal structure of the compound, an iron-deficient derivative of the ThCr{sub 2}Si{sub 2}-type, is built upon edge-shared FeSe{sub 4} tetrahedra fused into double chains. The semiconducting BaFe{sub 1.79(2)}Se{sub 3} ({rho}{sub 295K} = 0.18 {Omega} {center_dot} cm and E{sub g} = 0.30 eV) does not order magnetically; however, there is evidence for short-range magnetic correlations of spin glass type (T{sub f} {approx} 50 K) in magnetization, heat capacity, and neutron diffraction results. A one-third substitution of selenium with sulfur leads to a slightly higher electrical conductivity ({rho}{sub 295K } = 0.11 {Omega} {center_dot} cm and E{sub g} = 0.22 eV) and a lower spin glass freezing temperature (T{sub f} {approx} 15 K), corroborating with higher electrical conductivity reported for BaFe{sub 2}S{sub 3}. According to the electronic structure calculations, BaFe{sub 2}Se{sub 3} can be considered as a one-dimensional ladder structure with a weak interchain coupling.
Numerical studies of the melting transition in 2D Yukawa systems
Hartmann, P.; Donko, Z.; Kalman, G. J.
2008-09-07
We present the latest results of our systematic studies of the solid--liquid phase transition in 2D classical many-particle systems interacting with the Yukawa potential. Our previous work is extended by applying the molecular dynamic simulations to systems with up to 1.6 million particles in the computational box (for {kappa} = 2 case). Equilibrium simulations are performed for different coupling parameters in the vicinity of the expected melting transition ({gamma}{sub m}{sup {kappa}}{sup ={sup 2}}{approx_equal}415) and a wide range of observables are averaged over uncorrelated samples of the micro-canonical ensemble generated by the simulations.
Evidence for a New Intermediate Phase in a Strongly Correlated 2D System near Wigner Crystallization
NASA Astrophysics Data System (ADS)
Gao, Xuan; Qiu, Richard; Goble, Nicholas; Serafin, Alex; Yin, Liang; Xia, Jian-Sheng; Sullivan, Neil; Pfeiffer, Loren; West, Ken
How the two dimensional (2D) quantum Wigner crystal (WC) transforms into the metallic liquid phase remains an outstanding problem in physics. In theories considering the 2D WC to liquid transition in the clean limit, it was suggested that a number of intermediate phases might exist. We have studied the transformation between the metallic fluid phase and the low magnetic field reentrant insulating phase (RIP) which was interpreted as due to the WC [Qiu et al., PRL 108, 106404 (2012)], in a strongly correlated 2D hole system in GaAs quantum well with large interaction parameter rs (~20-30) and high mobility. Instead of a sharp transition, we found that increasing density (or lowering rs) drives the RIP into a state where the incipient RIP coexists with Fermi liquid. This apparent mixture phase intermediate between Fermi liquid and WC also exhibits a non-trivial temperature dependent resistivity behavior which can be qualitatively understood by the reversed melting of WC in the mixture, in analogy to the Pomeranchuk effect in the solid-liquid mixture of Helium-3. X.G. thanks NSF (DMR-0906415) for supporting work at CWRU. Experiments at the NHMFL High B/T Facility were supported by NSF Grant 0654118 and the State of Florida. L.P. thanks the Gordon and Betty Moore Foundation and NSF MRSEC (DMR-0819860) for support.
NASA Astrophysics Data System (ADS)
Ivanov, Konstantin L.; Sadovsky, Vladimir M.; Lukzen, Nikita N.
2015-08-01
In this work, we treat spin-selective recombination of a geminate radical pair (RP) in a spherical "microreactor," i.e., of a RP confined in a micelle, vesicle, or liposome. We consider the microreactor model proposed earlier, in which one of the radicals is located at the center of the micelle and the other one undergoes three-dimensional diffusion inside the micelle. In addition, we suggest a two-dimensional model, in which one of the radicals is located at the "pole" of the sphere, while the other one diffuses on the spherical surface. For this model, we have obtained a general analytical expression for the RP recombination yield in terms of the free Green function of two-dimensional diffusion motion. In turn, this Green function is expressed via the Legendre functions and thus takes account of diffusion over a restricted spherical surface and its curvature. The obtained expression allows one to calculate the RP recombination efficiency at an arbitrary magnetic field strength. We performed a comparison of the two models taking the same geometric parameters (i.e., the microreactor radius and the closest approach distance of the radicals), chemical reactivity, magnetic interactions in the RP and diffusion coefficient. Significant difference between the predictions of the two models is found, which is thus originating solely from the dimensionality effect: for different dimensionality of space, the statistics of diffusional contacts of radicals becomes different altering the reaction yield. We have calculated the magnetic field dependence of the RP reaction yield and chemically induced dynamic nuclear polarization of the reaction products at different sizes of the microreactor, exchange interaction, and spin relaxation rates. Interestingly, due to the intricate interplay of diffusional contacts of reactants and spin dynamics, the dependence of the reaction yield on the microreactor radius is non-monotonous. Our results are of importance for (i) interpreting
Ivanov, Konstantin L; Sadovsky, Vladimir M; Lukzen, Nikita N
2015-08-28
In this work, we treat spin-selective recombination of a geminate radical pair (RP) in a spherical "microreactor," i.e., of a RP confined in a micelle, vesicle, or liposome. We consider the microreactor model proposed earlier, in which one of the radicals is located at the center of the micelle and the other one undergoes three-dimensional diffusion inside the micelle. In addition, we suggest a two-dimensional model, in which one of the radicals is located at the "pole" of the sphere, while the other one diffuses on the spherical surface. For this model, we have obtained a general analytical expression for the RP recombination yield in terms of the free Green function of two-dimensional diffusion motion. In turn, this Green function is expressed via the Legendre functions and thus takes account of diffusion over a restricted spherical surface and its curvature. The obtained expression allows one to calculate the RP recombination efficiency at an arbitrary magnetic field strength. We performed a comparison of the two models taking the same geometric parameters (i.e., the microreactor radius and the closest approach distance of the radicals), chemical reactivity, magnetic interactions in the RP and diffusion coefficient. Significant difference between the predictions of the two models is found, which is thus originating solely from the dimensionality effect: for different dimensionality of space, the statistics of diffusional contacts of radicals becomes different altering the reaction yield. We have calculated the magnetic field dependence of the RP reaction yield and chemically induced dynamic nuclear polarization of the reaction products at different sizes of the microreactor, exchange interaction, and spin relaxation rates. Interestingly, due to the intricate interplay of diffusional contacts of reactants and spin dynamics, the dependence of the reaction yield on the microreactor radius is non-monotonous. Our results are of importance for (i) interpreting
Ivanov, Konstantin L. Lukzen, Nikita N.; Sadovsky, Vladimir M.
2015-08-28
In this work, we treat spin-selective recombination of a geminate radical pair (RP) in a spherical “microreactor,” i.e., of a RP confined in a micelle, vesicle, or liposome. We consider the microreactor model proposed earlier, in which one of the radicals is located at the center of the micelle and the other one undergoes three-dimensional diffusion inside the micelle. In addition, we suggest a two-dimensional model, in which one of the radicals is located at the “pole” of the sphere, while the other one diffuses on the spherical surface. For this model, we have obtained a general analytical expression for the RP recombination yield in terms of the free Green function of two-dimensional diffusion motion. In turn, this Green function is expressed via the Legendre functions and thus takes account of diffusion over a restricted spherical surface and its curvature. The obtained expression allows one to calculate the RP recombination efficiency at an arbitrary magnetic field strength. We performed a comparison of the two models taking the same geometric parameters (i.e., the microreactor radius and the closest approach distance of the radicals), chemical reactivity, magnetic interactions in the RP and diffusion coefficient. Significant difference between the predictions of the two models is found, which is thus originating solely from the dimensionality effect: for different dimensionality of space, the statistics of diffusional contacts of radicals becomes different altering the reaction yield. We have calculated the magnetic field dependence of the RP reaction yield and chemically induced dynamic nuclear polarization of the reaction products at different sizes of the microreactor, exchange interaction, and spin relaxation rates. Interestingly, due to the intricate interplay of diffusional contacts of reactants and spin dynamics, the dependence of the reaction yield on the microreactor radius is non-monotonous. Our results are of importance for (i) interpreting
FPGA implementation of 2-D discrete cosine transforms algorithm using systemC
NASA Astrophysics Data System (ADS)
Liu, Yifei; Ding, Mingyue
2007-12-01
Discrete Cosine Transform (DCT) is widely applied in image and video compression. This paper presented the software and hardware co-design method based on SystemC. As a case of study, a two dimension (2D) DCT Algorithm was implemented on Programmable Gate Arrays (FPGAs) chip. The short simulation time and verification process greatly increases the design efficiency of SystemC, making the product designed by SystemC more quickly into the market. The design effect using SystemC is compared between the expertise hardware designer and the software designer with little hardware knowledge. The result shows SystemC is an excellent and high efficiency hardware design method for an expertise hardware designer.
Microwave tomography of extremities: 1. Dedicated 2D system and physiological signatures
NASA Astrophysics Data System (ADS)
Semenov, Serguei; Kellam, James; Sizov, Yuri; Nazarov, Alexei; Williams, Thomas; Nair, Bindu; Pavlovsky, Andrey; Posukh, Vitaly; Quinn, Michael
2011-04-01
Microwave tomography (MWT) is a novel imaging modality which might be applicable for non-invasive assessment of functional and pathological conditions of biological tissues. Imaging of the soft tissue of extremities is one of its potential applications. The feasibility of this technology for such applications was demonstrated earlier. This is the first of two companion papers focused on an application of MWT for imaging of the extremity's soft tissues. The goal of this study is to assess the technical performance of the developed 2D MWT system dedicated for imaging of functional and pathological conditions of the extremity's soft tissues. Specifically, the system's performance was tested by its ability to detect signals associated with physiological activity and soft tissue interventions (circulatory related changes, blood flow reduction and a simulated compartmental syndrome)—the so-called physiological signatures. The developed 2D MWT system dedicated to the imaging of animal extremities demonstrates good technical performance allowing for stable and predictable data acquisition with reasonable agreement between the experimentally measured electromagnetic (EM) field and the simulated EM field within a measurement domain. Using the system, we were able to obtain physiological signatures associated with systolic versus diastolic phases of circulation in an animal extremity, reperfusion versus occlusion phases of the blood supply to the animal's extremity and a compartment syndrome. The imaging results are presented and discussed in the second companion paper.
Microwave tomography of extremities: 1. Dedicated 2D system and physiological signatures.
Semenov, Serguei; Kellam, James; Sizov, Yuri; Nazarov, Alexei; Williams, Thomas; Nair, Bindu; Pavlovsky, Andrey; Posukh, Vitaly; Quinn, Michael
2011-04-01
Microwave tomography (MWT) is a novel imaging modality which might be applicable for non-invasive assessment of functional and pathological conditions of biological tissues. Imaging of the soft tissue of extremities is one of its potential applications. The feasibility of this technology for such applications was demonstrated earlier. This is the first of two companion papers focused on an application of MWT for imaging of the extremity's soft tissues. The goal of this study is to assess the technical performance of the developed 2D MWT system dedicated for imaging of functional and pathological conditions of the extremity's soft tissues. Specifically, the system's performance was tested by its ability to detect signals associated with physiological activity and soft tissue interventions (circulatory related changes, blood flow reduction and a simulated compartmental syndrome)--the so-called physiological signatures. The developed 2D MWT system dedicated to the imaging of animal extremities demonstrates good technical performance allowing for stable and predictable data acquisition with reasonable agreement between the experimentally measured electromagnetic (EM) field and the simulated EM field within a measurement domain. Using the system, we were able to obtain physiological signatures associated with systolic versus diastolic phases of circulation in an animal extremity, reperfusion versus occlusion phases of the blood supply to the animal's extremity and a compartment syndrome. The imaging results are presented and discussed in the second companion paper. PMID:21364265
Structural and magnetic properties of quasi-1 and 2D pyrazine-containing spin-1/2 antiferromagnets.
Manson, J. L.; Connor, M. M.; Schlueter, J. A.; Hyzer, K. A.; Kykeem, A.; Materials Science Division; Eastern Washington Univ.
2007-06-01
Aqueous reaction of Cu(BF{sub 4}){sub 2}, NH{sub 4}HF{sub 2}, and pyrazine leads to formation of a novel 3D framework, [Cu(HF{sub 2})(pyz){sub 2}]BF{sub 4} (1), where 2D [Cu(pyz){sub 2}]{sup 2+} square layers are connected via HF{sub 2}{sup -}. A second compound, Cu(ReO{sub 4}){sub 2}(H{sub 2}O){sub 2}(pyz) (2), was the result of our attempt to create the perrhenate analog of 1; a linear chain compound consisting of CuO{sub 4}N{sub 2} octahedra linked through pyrazine ligands formed instead. Both compounds exhibit extensive hydrogen bonding interactions where bifluoride, F...H...F{sup -}, and O-H...O link layers and chains together in 1 and 2, respectively. Broad maxima indicative of short-range magnetic ordering (SRO) were observed in the magnetic susceptibility at 5.5 (1) and 7.7 K (2) while no evidence for the transition to long-range magnetic ordering (LRO) was detected above 2 K.
Electron phase coherent effects in nanostructures and coupled 2D systems
Simmons, J.A.; Lyo, S.K.; Klem, J.F.; Sherwin, M.E.; Harff, N.E.; Eiles, T.M.; Wendt, J.R.
1995-05-01
This report describes the research accomplishments achieved under the LDRD Project ``Electron Phase Coherent Effects in Nanostructures and Coupled 2D Systems.`` The goal of this project was to discover and characterize novel quantum transport phenomena in small semiconductor structures at low temperatures. Included is a description of the purpose of the research, the various approaches used, and a detailed qualitative description of the numerous new results obtained. The first appendix gives a detailed listing of publications, presentations, patent applications, awards received, and various other measures of the LDRD project success. Subsequent appendices consist of reprinted versions of several specific,`` scientific journal publications resulting from this LDRD project.
Interlayer Interaction Effects and Spin-Pseudospin Transfer in 2D MoSe2-WSe2 Heterostructures
NASA Astrophysics Data System (ADS)
Schaibley, John; Rivera, Pasqual; Seyler, Kyle; Yu, Hongyi; Yan, Jiaqiang; Mandrus, David; Yao, Wang; Xu, Xiaodong
Heterostructures composed of MoSe2-WSe2 monolayer semiconductors host spatially indirect interlayer excitons, which are bound states of an electron in the MoSe2 layer and a hole in the WSe2 layer. Interlayer excitons are observable in photoluminescence experiments as a low energy peak whose spectral position is consistent with the predicted type-II band alignment. The electron and hole which form the interlayer exciton are localized in momentum space valleys that occur at the (K and -K) corners of the Brillouin zone. To probe this interlayer valley physics, we perform two color pump-probe measurements to investigate the interactions between intralayer excitons in the heterostructure, resonantly pumping excitons in one layer and probing excitons in the other layer. We observe evidence of interlayer interaction effects in the nonlinear differential reflection spectra. Polarization dependent spectroscopy reveals evidence of interlayer spin-valley pseudospin transfer. We gratefully acknowledge support from the DOE, NSF, Cottrell Scholar Award, Croucher Foundation, and RGC of Hong Kong.
The evaluation system of the 2-D scanning mirror based on CMOS sensor
NASA Astrophysics Data System (ADS)
Zeng, Gui-ying; Xie, Yuan; Chen, Jin-xing
2010-10-01
The high precision two-dimension scanning control technique is being developed for the next geosynchronous satellites FY-4 satellites which is using the three-axis stabilization stages. How to evaluate the point and scanning precision of the scanning mirror is one of the most important technologies. This paper describes the optoelectronic measure method based on CMOS sensors to evaluate the point and scanning precision of the scanning mirror in the laboratory, which is a 2-D dynamic angle measurement system. Some technologies, such as the sup-pixel orientation technology and the CMOS ROI technology, are used in the measurement system. The research shows that the angle measurement system based on IBIS-6600CMOS sensors can attain the 20°× 20° field of view, 2" accuracy, and 1Kframes/s speed. But the system is sensitive to the environment and it can only be worked in the laboratory.
Image compression-encryption scheme based on hyper-chaotic system and 2D compressive sensing
NASA Astrophysics Data System (ADS)
Zhou, Nanrun; Pan, Shumin; Cheng, Shan; Zhou, Zhihong
2016-08-01
Most image encryption algorithms based on low-dimensional chaos systems bear security risks and suffer encryption data expansion when adopting nonlinear transformation directly. To overcome these weaknesses and reduce the possible transmission burden, an efficient image compression-encryption scheme based on hyper-chaotic system and 2D compressive sensing is proposed. The original image is measured by the measurement matrices in two directions to achieve compression and encryption simultaneously, and then the resulting image is re-encrypted by the cycle shift operation controlled by a hyper-chaotic system. Cycle shift operation can change the values of the pixels efficiently. The proposed cryptosystem decreases the volume of data to be transmitted and simplifies the keys distribution simultaneously as a nonlinear encryption system. Simulation results verify the validity and the reliability of the proposed algorithm with acceptable compression and security performance.
Development of 2D Microdisplay Using an Integrated Microresonating Waveguide Scanning System.
Hua, Wei-Shu; Wang, Wei-Chih; Wu, Wen-Jong; Tsui, Chi Leung; Cui, Wei; Shih, Wen-Pin
2011-09-01
Our research team has developed a 2D micro image display device that can potentially overcome the size reduction limits while maintaining the high-image resolution and field of view obtained by mirror-based display systems. The basic design of the optical scanner includes a microfabricated SU-8 cantilever waveguide that is electromechanically deflected by a piezoelectric actuator. From the distal tip of the cantilever waveguide, a light beam is emitted and the direction of propagation is displaced along two orthogonal directions. The waveforms for the actuator and the LED light modulation are generated and controlled using a field programmable gate array. Our recent study is an update to the previously-reported mechanical scanner, replacing the hand-built PZT scanner and fiber waveguide with a microfabricated system incorporating aerosol-deposited PZT thin film and a polymeric SU-8 wave guide. In this article, we report on the design and fabrication of a prototype miniaturized 2D scanner, discuss optical and mechanical the modeling of the system's properties and present the experimental results. PMID:22876080
Microwave tomography of extremities: 1) Dedicated 2D system and physiological signatures
Semenov, Serguei; Kellam, James; Sizov, Yuri; Nazarov, Alexei; Williams, Thomas; Nair, Bindu; Pavlovsky, Andrey; Posukh, Vitaly; Quinn, Michael
2011-01-01
Microwave Tomography (MWT) is a novel imaging modality which might be applicable for non-invasive assessment of functional and pathological conditions of biological tissues. The imaging of the soft tissue of extremities is one of its potential applications. The feasibility of this technology for such applications was demonstrated earlier. This is the first of two companion papers focused on an application of MWT for imaging of the extremity’s soft tissues. The goal of this study is to assess the technical performance of the developed 2D MWT system dedicated for imaging of functional and pathological conditions of the extremity’s soft tissues. Specifically, the system’s performance was tested by its ability to detect signals associated with physiological activity and soft tissue interventions (circulatory related changes, blood flow reduction and a simulated compartmental syndrome) – so called “physiological signatures”. The developed 2D MWT system dedicated for an imaging of animal extremities demonstrates good technical performance allowing for stable and predictable data acquisition with reasonable agreement between experimentally measured electromagnetic (EM) field and simulated EM field within a measurement domain. Using the system we were able to obtain physiological signatures associated with systolic vs diastolic phases of circulation in an animal extremity, reperfusion vs occlusion phases of the blood supply to the animal’s extremity and the a compartment syndrome. The imaging results are presented and discussed in the second companion paper. PMID:21364265
NASA Astrophysics Data System (ADS)
Hu, Lin; Wu, Xiaojun; Yang, Jinlong
2016-06-01
To realize antiferromagnetic spintronics in the nanoscale, it is highly desirable to identify new nanometer-scale antiferromagnetic metals with both high Néel temperature and large spin-orbit coupling. In this work, on the basis of first-principles calculation and particle swarm optimization (PSO) global structure search, we demonstrate that a two-dimensional Mn2C monolayer is an antiferromagnetic metal with a Mn magnetic moment of ~3μB. Mn2C monolayer has an anti-site structure of MoS2 sheet with carbon atoms hexagonally coordinated by neighboring Mn atoms. Remarkably, the in-plane carrier mobility of 2D Mn2C is highly anisotropic, amounting to about 47 000 cm2 V-1 s-1 in the a' direction, which is much higher than that of MoS2 monolayer. The Néel temperature of Mn2C monolayer is high up to 720 K. Due to strong spin-orbit coupling in plane, the magnetic anisotropy energy of Mn2C monolayer is larger than those of pure metals, such as Fe, Co, and Ni. These advantages render 2D Mn2C sheet with great potential applications in nanometer-scale antiferromagnetic spintronics.To realize antiferromagnetic spintronics in the nanoscale, it is highly desirable to identify new nanometer-scale antiferromagnetic metals with both high Néel temperature and large spin-orbit coupling. In this work, on the basis of first-principles calculation and particle swarm optimization (PSO) global structure search, we demonstrate that a two-dimensional Mn2C monolayer is an antiferromagnetic metal with a Mn magnetic moment of ~3μB. Mn2C monolayer has an anti-site structure of MoS2 sheet with carbon atoms hexagonally coordinated by neighboring Mn atoms. Remarkably, the in-plane carrier mobility of 2D Mn2C is highly anisotropic, amounting to about 47 000 cm2 V-1 s-1 in the a' direction, which is much higher than that of MoS2 monolayer. The Néel temperature of Mn2C monolayer is high up to 720 K. Due to strong spin-orbit coupling in plane, the magnetic anisotropy energy of Mn2C monolayer is
Spanning graphene to carbon-nitride: A 2-D semiconductor alloy system of carbon and nitrogen
NASA Astrophysics Data System (ADS)
Therrien, Joel; Li, Yancen; Schmidt, Daniel
2014-03-01
With the explosion of materials that form 2-D structures in the past few years, there have been a much more diverse ecosystem of combinations of characteristics to explore. Yet with the majority of materials investigated, the properties are fixed according to the composition of the material. Ideally, one wishes to have a tunable system similar to the semiconductor alloy systems, such as AlxGa1-xAs. There have been some theoretical studies of transition metal dichalogenides, none have been reported experimentally as of this writing. The tertianary alloy of BCN has been synthesized, however it was found that the boron had the tendency to cause phase segregation of the material into domains of graphene and boron nitride. Here we will report on the synthesis of non-phase seperated carbon-nitrogen 2D alloys ranging from graphene (Eg = 0 eV) to carbon-nitride, or melon, (Eg = 2.7 eV). We will report on synthesis methods and a summary of relevant electronic and material properties of selected alloys.
Schrödinger equation for non-pure dipole potential in 2D systems
NASA Astrophysics Data System (ADS)
Moumni, M.; Falek, M.
2016-07-01
In this work, we analytically study the Schrödinger equation for the (non-pure) dipolar ion potential V(r) = q/r + Dcosθ/r2, in the case of 2D systems (systems in two-dimensional Euclidean plane) using the separation of variables and the Mathieu equations for the angular part. We give the expressions of eigenenergies and eigenfunctions and study their dependence on the dipole moment D. Imposing the condition of reality on the energies En,m implies that the dipole moment must not exceed a maximum value, otherwise the corresponding bound state disappears. We also find that the s states (m = 0) can no longer exist in the system as soon as the dipole term is present.
Radiometer uncertainty equation research of 2D planar scanning PMMW imaging system
NASA Astrophysics Data System (ADS)
Hu, Taiyang; Xu, Jianzhong; Xiao, Zelong
2009-07-01
With advances in millimeter-wave technology, passive millimeter-wave (PMMW) imaging technology has received considerable concerns, and it has established itself in a wide range of military and civil practical applications, such as in the areas of remote sensing, blind landing, precision guidance and security inspection. Both the high transparency of clothing at millimeter wavelengths and the spatial resolution required to generate adequate images combine to make imaging at millimeter wavelengths a natural approach of screening people for concealed contraband detection. And at the same time, the passive operation mode does not present a safety hazard to the person who is under inspection. Based on the description to the design and engineering implementation of a W-band two-dimensional (2D) planar scanning imaging system, a series of scanning methods utilized in PMMW imaging are generally compared and analyzed, followed by a discussion on the operational principle of the mode of 2D planar scanning particularly. Furthermore, it is found that the traditional radiometer uncertainty equation, which is derived from a moving platform, does not hold under this 2D planar scanning mode due to the fact that there is no absolute connection between the scanning rates in horizontal direction and vertical direction. Consequently, an improved radiometer uncertainty equation is carried out in this paper, by means of taking the total time spent on scanning and imaging into consideration, with the purpose of solving the problem mentioned above. In addition, the related factors which affect the quality of radiometric images are further investigated under the improved radiometer uncertainty equation, and ultimately some original results are presented and analyzed to demonstrate the significance and validity of this new methodology.
Anomalous giant piezoresistance in AlAs 2D electron systems with antidot lattices.
Gunawan, O; Gokmen, T; Shkolnikov, Y P; De Poortere, E P; Shayegan, M
2008-01-25
An AlAs two-dimensional electron system patterned with an antidot lattice exhibits a giant piezoresistance effect at low temperatures, with a sign opposite to the piezoresistance observed in the unpatterned region. We suggest that the origin of this anomalous giant piezoresistance is the nonuniform strain in the antidot lattice and the exclusion of electrons occupying the two conduction-band valleys from different regions of the sample. This is analogous to the well-known giant magnetoresistance effect, with valley playing the role of spin and strain the role of magnetic field. PMID:18233015
Avalanches in 2D Dislocation Systems: Plastic Yielding Is Not Depinning
NASA Astrophysics Data System (ADS)
Ispánovity, Péter Dusán; Laurson, Lasse; Zaiser, Michael; Groma, István; Zapperi, Stefano; Alava, Mikko J.
2014-06-01
We study the properties of strain bursts (dislocation avalanches) occurring in two-dimensional discrete dislocation dynamics models under quasistatic stress-controlled loading. Contrary to previous suggestions, the avalanche statistics differ fundamentally from predictions obtained for the depinning of elastic manifolds in quenched random media. Instead, we find an exponent τ =1 of the power-law distribution of slip or released energy, with a cutoff that increases exponentially with the applied stress and diverges with system size at all stresses. These observations demonstrate that the avalanche dynamics of 2D dislocation systems is scale-free at every applied stress and, therefore, cannot be envisaged in terms of critical behavior associated with a depinning transition.
Robust H(∞) control for a class of 2-D discrete delayed systems.
Ye, Shuxia; Li, Jianzhen; Yao, Juan
2014-09-01
In this paper, we deal with the problem of robust H∞ control for a class of 2-D discrete uncertain systems with delayed perturbations described by the Roesser state-space model (RM). The problem to be addressed is the design of robust controllers via state feedback such that the stability of the resulting closed-loop system is guaranteed and a prescribed H∞ performance level is ensured for all delayed perturbations. By utilizing the Lyapunov method and some results, H∞ controllers are given. The results are delay-dependent and can be expressed in terms of linear matrix inequalities (LMIs). Finally, some numerical examples are given to illustrate the effectiveness of the proposed results. PMID:24411024
Engagement of neural circuits underlying 2D spatial navigation in a rodent virtual reality system
Aronov, Dmitriy; Tank, David W.
2015-01-01
SUMMARY Virtual reality (VR) enables precise control of an animal’s environment and otherwise impossible experimental manipulations. Neural activity in navigating rodents has been studied on virtual linear tracks. However, the spatial navigation system’s engagement in complete two-dimensional environments has not been shown. We describe a VR setup for rats, including control software and a large-scale electrophysiology system, which supports 2D navigation by allowing animals to rotate and walk in any direction. The entorhinal-hippocampal circuit, including place cells, grid cells, head direction cells and border cells, showed 2D activity patterns in VR similar to those in the real world. Hippocampal neurons exhibited various remapping responses to changes in the appearance or the shape of the virtual environment, including a novel form in which a VR-induced cue conflict caused remapping to lock to geometry rather than salient cues. These results suggest a general-purpose tool for novel types of experimental manipulations in navigating rats. PMID:25374363
Automatic angle measurement of a 2D object using optical correlator-neural networks hybrid system
NASA Astrophysics Data System (ADS)
Manivannan, N.; Neil, M. A. A.
2011-04-01
In this paper a novel method is proposed and demonstrated for automatic rotation angle measurement of a 2D object using a hybrid architecture, consisting of a 4f optical correlator with a binary phase only multiplexed matched filter and a single layer neural network. The hybrid set-up can be considered as a two-layer perceptron-like neural network; an optical correlator is the first layer and the standard single layer neural network is the second layer. The training scheme used to train the hybrid architecture is a combination of a Direct Binary Search algorithm, to train the optical correlator, and an Error Back Propagation algorithm, to train the neural network. The aim is to perform the major information processing by the optical correlator with a small additional processing by the neural network stage. This allows the system to be used for real-time applications as optics has the inherent ability to process information in a parallel manner at high speed. The neural network stage gives an extra dimension of freedom so that complicated tasks like automatic rotation angle measurement can be achieved. Results of both computer simulation and experimental set-up are presented for rotation angle measurement of an English alphabetic character as a 2D object. The experimental set-up consists of a real optical correlator using two spatial light modulators for both input and frequency plane representations and a PC based model of a single layer network.
Phase Diagram of Bilayer 2D Electron Systems at νT = 1
NASA Astrophysics Data System (ADS)
Champagne, Alexandre
2009-03-01
Bilayer 2D electron systems at total filling fraction νT = 1 and small interlayer spacing can support a strongly correlated phase which exhibits spontaneous interlayer phase coherence and may be described as an excitonic Bose condensate. We use electron interlayer tunnelling and transport to explore the phase diagram of bilayer 2D electron systems at νT = 1, and find that phase transitions between the excitonic νT = 1 phase and bilayer states which lack significant interlayer correlations can be induced in three different ways: by increasing the effective interlayer spacing, d/l, the temperature, T, or the charge imbalance, δν=ν1-ν2. First, for the balanced (δν = 0) system we find that the amplitude of the resonant tunneling in the coherent νT = 1 phase obeys an empirical power law scaling versus d/l at various T, and the layer separation where the tunneling disappears scales linearly with T. Our results [1] offer strong evidence that a finite temperature phase transition separates the balanced interlayer coherent phase from incoherent phases which lack strong interlayer correlations. Secondly, we observe [2] that close to the phase boundary the coherent νT = 1 phase can be absent at δν = 0, present at intermediate δν, and absent again at large δν, thus indicating an intricate phase competition between it and incoherent quasi-independent layer states. Lastly, at δν = 1/3 we report [2] the observation of a direct phase transition between the coherent νT = 1 bilayer integer quantum Hall phase and the pair of single layer fractional quantized Hall states at ν1 = 2/3 and ν2 = 1/3.[4pt] [1] A.R. Champagne, et al., Phys. Rev. Lett. 100, 096801 (2008).[0pt] [2] A.R. Champagne, et al, Phys. Rev. B 78, 205310 (2008)
Calibration of an Ultrasound Tomography System for Medical Imaging with 2D Contrast-Source Inversion
NASA Astrophysics Data System (ADS)
Faucher, Gabriel Paul
This dissertation describes two possible methods for the calibration of an ultrasound tomography system developed at University of Manitoba's Electromagnetic Imaging Laboratory for imaging with the contrast-source inversion algorithm. The calibration techniques are adapted from existing procedures employed for microwave tomography. A theoretical model of these calibration principles is developed in order to provide a rationale for the effectiveness of the proposed procedures. The applicability of such an imaging algorithm and calibration methods in the context of ultrasound are discussed. Also presented are 2D and 3D finite-difference time-domain update equations for the simulation of acoustic wave propagation in inhomogeneous media. Details regarding the application of an absorbing boundary-condition, point-source modelling and the treatment of penetrable objects are included in this document.
The stability of freely-propagating ion acoustic waves in 2D systems
NASA Astrophysics Data System (ADS)
Chapman, Thomas; Berger, Richard; Banks, Jeffrey; Brunner, Stephan
2014-10-01
The stability of a freely-propagating ion acoustic wave (IAW) is a basic science problem that is made difficult by the need to resolve electron kinetic effects over a timescale that greatly exceeds the IAW period during numerical simulation. Recent results examining IAW stability using a 1D+1V Vlasov-Poisson solver indicate that instability is a fundamental property of IAWs that occurs over most if not all of the parameter space of relevance to ICF experiments. We present here new results addressing the fundamental question of IAW stability across a broad range of plasma conditions in a 2D+2V system using LOKI, ranging from a regime of relatively weak to a regime of relatively strong ion kinetic effects. Work performed under the auspices of the U.S. DOE by LLNL (DE-AC52-07NA27344) and funded by the LDRD Program at LLNL (12-ERD-061).
Spin correlations and impurities in one-dimensional gapped spin systems
NASA Astrophysics Data System (ADS)
Xu, Guangyong
2000-05-01
Magnetic excitations and impurity effects in the quasi- one-dimensional spin systems Y2BaNiO5 and Cu(NO3)2 . 2.5D2O have been studied by neutron scattering. Both materials exhibit an energy gap between their ground state and first excited state. Unlike most crystalline and weakly disordered three dimensional magnets, no long-ranged magnetic order exists in these 1-D antiferromagnetic systems and new magnetic phenomena occur. With Ni2+ ions carrying spins S = 1, and coupled antiferromagnetically along the chain, Y2BaNiO 5 is one of the best experimental realizations of a Haldane spin chain. Using neutron scattering, we studied in detail low energy excitations in pure Y2BaNiO5 over the temperature range 0 < T ~ Δ/kB. In addition, effects of doping by chemical substitution in this spin liquid were also examined. Our results from Mg doped Y2BaNiO5 confirmed the theoretical prediction of chain end spin-1/2 degrees of freedom in spin-1 AFM chains. Doping with Ca into Y2BaNiO5 leads to novel excited states that fill the Haldane gap. Our data provide evidence of antiferromagnetic spin-polarization clouds around impurity sites and suggest an alternative interpretation of similar data in over-doped 2-D superconducting cuprates. Cu(NO3)2 . 2.5D2), is a strongly dimerized alternating chain compound. We have performed the first detailed mapping of the full single-particle spectrum of the material for 0.06 < kBT/J1, < 1.5. At low T there is a coherent, dispersive mode which is well-described by the Single Mode Approximation with exchange constants J 1 = 0.442(2) meV and J2 = 0.106(2) meV for the strong and weak nearest-neighbor couplings along the chain. With increasing temperature, the overall spectral weight decreases in the same way as for an ensemble of independent spin pairs. The relaxation rate is thermally activated, and wave-vector dependent.
Stress dynamics of a 2D dense granular system near shear jamming
NASA Astrophysics Data System (ADS)
Ren, Jie; Dijksman, Joshua; Behringer, Robert
2013-03-01
We study the dynamics of pressure and shear stress in a frictional 2D dense granular system using a novel apparatus that can provide fixed-volume shear without generating inhomogeneities. Under increasing shear strain, the system's pressure shows a strong increase with strain, characterized by a ``Reynolds coefficient,'' R =d2 P / dγ2 . R depends only on packing fraction ϕ, and shows a strong increase as ϕ approaches ϕJ from below. In the meantime, the system's shear stress shows a non-monotonic behavior with increasing strain. It first increases with strain as the system is in ``fragile'' states and builds up long force chains along the compression direction. After a certain amount of strain, force chains along the dilation direction starts to build up, and the system transfers into a ``shear-jammed'' state and the shear stress starts to decrease with strain. Under oscillatory shear, both pressure and shear stress show limit-cycle behavior and reach steady states after many cycles. However, the limit cycles of pressure and shear stress are very different: the pressure exhibits a hysteresis-free parabolic curve, while the shear stress exhibits a strongly hysteretic loop. This work is funded by NSF grants: DMR0906908, DMS0835571, NASA grant NNX10AU01G and ARO grant W911NF-11-1-0110.
Multichannel reconfigurable measurement system for hot plasma diagnostics based on GEM-2D detector
NASA Astrophysics Data System (ADS)
Wojenski, A. J.; Kasprowicz, G.; Pozniak, K. T.; Byszuk, A.; Chernyshova, M.; Czarski, T.; Jablonski, S.; Juszczyk, B.; Zienkiewicz, P.
2015-12-01
In the future magnetically confined fusion research reactors (e.g. ITER tokamak), precise determination of the level of the soft X-ray radiation of plasma with temperature above 30 keV (around 350 mln K) will be very important in plasma parameters optimization. This paper presents the first version of a designed spectrography measurement system. The system is already installed at JET tokamak. Based on the experience gained from the project, the new generation of hardware for spectrography measurements, was designed and also described in the paper. The GEM detector readout structure was changed to 2D in order to perform measurements of i.e. laser generated plasma. The hardware structure of the system was redesigned in order to provide large number of high speed input channels. Finally, this paper also covers the issue of new control software, necessary to set-up a complete system of certain complexity and perform data acquisition. The main goal of the project was to develop a new version of the system, which includes upgraded structure and data transmission infrastructure (i.e. handling large number of measurement channels, high sampling rate).
Spin dynamics under local gauge fields in chiral spin-orbit coupling systems
NASA Astrophysics Data System (ADS)
Tan, S. G.; Jalil, M. B. A.; Fujita, T.; Liu, X. J.
2011-02-01
We present a theoretical description of local spin dynamics in magnetic systems with a chiral spin texture and finite spin-orbit coupling (SOC). Spin precession about the relativistic effective magnetic field in a SOC system gives rise to a non-Abelian SU(2) gauge field reminiscent of the Yang-Mills field. In addition, the adiabatic relaxation of electron spin along the local spin yields an U(1) ⊗ U(1) topological gauge (Berry) field. We derive the corresponding equation of motion i.e. modified Landau-Lifshitz-Gilbert (LLG) equation, for the local spin under the influence of these effects. Focusing on the SU(2) gauge, we obtain the spin torque magnitude, and the amplitude and frequency of spin oscillations in this system. Our theoretical estimates indicate significant spin torque and oscillations in systems with large spin-orbit coupling, which may be utilized in technological applications such as current-induced magnetization-switching and tunable microwave oscillators.
Caracterisation pratique des systemes quantiques et memoires quantiques auto-correctrices 2D
NASA Astrophysics Data System (ADS)
Landon-Cardinal, Olivier
approche, dite de tomographie variationnelle, propose de reconstruire l'etat en restreignant l'espace de recherche a une classe variationnelle plutot qu'a l'immense espace des etats possibles. Un etat variationnel etant decrit par un petit nombre de parametres, un petit nombre d'experiences peut suffire a identifier les parametres variationnels de l'etat experimental. Nous montrons que c'est le cas pour deux classes variationnelles tres utilisees, les etats a produits matriciels (MPS) et l'ansatz pour intrication multi-echelle (MERA). Memoires quantiques auto-correctrices 2D. Une memoire quantique auto-correctrice est un systeme physique preservant de l'information quantique durant une duree de temps macroscopique. Il serait done l'equivalent quantique d'un disque dur ou d'une memoire flash equipant les ordinateurs actuels. Disposer d'un tel dispositif serait d'un grand interet pour l'informatique quantique. Une memoire quantique auto-correctrice est initialisee en preparant un etat fondamental, c'est-a-dire un etat stationnaire de plus basse energie. Afin de stocker de l'information quantique, il faut plusieurs etats fondamentaux distincts, chacun correspondant a une valeur differente de la memoire. Plus precisement, l'espace fondamental doit etre degenere. Dans cette these, on s'interesse a des systemes de particules disposees sur un reseau bidimensionnel (2D), telles les pieces sur un echiquier, qui sont plus faciles a realiser que les systemes 3D. Nous identifions deux criteres pour l'auto-correction: - La memoire quantique doit etre stable face aux perturbations provenant de l'environnement, par exemple l'application d'un champ magnetique externe. Ceci nous amene a considerer les systemes topologiques 2D dont les degres de liberte sont intrinsequement robustes aux perturbations locales de l'environnement. - La memoire quantique doit etre robuste face a un environnement thermique. Il faut s'assurer que les excitations thermiques n'amenent pas deux etats fondamentaux
Propagating fronts in 2D Cr(OH) 3 precipitate systems in gelled media
NASA Astrophysics Data System (ADS)
Sultan, Rabih; Panjarian, Shoghag
2001-09-01
Diffusion fronts propagate as two co-precipitate ions inter-diffuse in a gel medium. Liesegang bands of precipitate form periodically behind the diffusion front of an outer electrolyte. The precipitation of Cr(OH) 3 from NaOH diffusing into a Cr 3+ gel matrix is known to yield a single band that propagates in a one-dimensional (1D) tube - Cr(OH) 3 dissolves in excess OH - forming Cr(OH) 4-. We perform similar experiments on the Cr(OH) 3 system in two dimensions (2D), wherein we obtain a perfectly circular Cr(OH) 3 ring that grows larger and thicker as time advances. Using a specially designed Petri dish, ring propagation is monitored both in the absence and the presence of a constant electric field. The field is applied along a radial direction, and the front velocities with the field on are compared with the field-free case. When the field is applied against the direction of front propagation (“negative” field), wave saturation is obtained, characterized by a slight increase in the velocity of propagation with field strength, until it reaches a constant value as the field strength is further increased. In a positive field situation, the wave velocity increases with field strength and exhibits some other interesting features: (1) wave stopping indicated by a freeze in the ring position at a certain characteristic time; (2) annihilation of the ring formation above a critical value of the field strength. Electrical effects in 2D are also studied when electrodes with different potentials are planted at various locations in the electrolyte periphery. Interesting patterning structures including the distortion of the circular symmetry and the birth of multiple rings are reported.
Controlling the Dynamics of the Five-Mode Truncation System of the 2-d Navier-Stokes Equations
NASA Astrophysics Data System (ADS)
Smaoui, Nejib; Zribi, Mohamed
2015-11-01
The dynamics and the control problem of the two dimensional (2-d) Navier-Stokes (N-S) equations with spatially periodic and temporally steady forcing is addressed. At first, the Fourier Galerkin method is applied to the 2-d N-S equations to obtain a fifth order system of nonlinear ordinary differential equations (ODE) that approximates the behavior of these equations. Simulation studies indicate that the obtained ODE system captures the behavior of the 2-d N-S equations. Then, a control law is proposed to drive the states of the ODE system to a desired fixed point. Next, a second control law is developed to synchronize two reduced order ODE models of the 2-d N-S equations having the same Reynolds number and starting from different initial conditions. Finally, simulation results are undertaken to validate the theoretical developments. This research was supported and funded by the Research Sector, Kuwait University under Grant No. SM 05/15.
Comparison of Failure Modes in 2-D and 3-D Woven Carbon Phenolic Systems
NASA Technical Reports Server (NTRS)
Rossman, Grant A.; Stackpoole, Mairead; Feldman, Jay; Venkatapathy, Ethiraj; Braun, Robert D.
2013-01-01
NASA Ames Research Center is developing Woven Thermal Protection System (WTPS) materials as a new class of heatshields for entry vehicles (Stackpoole). Currently, there are few options for ablative entry heatshield materials, none of which is ideally suited to the planetary probe missions currently of interest to NASA. While carbon phenolic was successfully used for the missions Pioneer Venus and Galileo (to Jupiter), the heritage constituents are no longer available. An alternate carbon phenolic would need to be qualified for probe missions, which is most efficient at heat fluxes greater than those currently of interest. Additional TPS materials such as Avcoat and PICA are not sufficiently robust for the heat fluxes required. As a result, there is a large TPS gap between the materials efficient at very high conditions (carbon phenolic) and those that are effective at low-moderate conditions (all others). Development of 3D Woven TPS is intended to fill this gap, targeting mid-density weaves that could with withstand mid-range heat fluxes between 1100 W/sq cm and 8000 W/sq cm (Venkatapathy (2012). Preliminary experimental studies have been performed to show the feasibility of WTPS as a future mid-range TPS material. One study performed in the mARC Jet Facility at NASA Ames Research Center characterized the performance of a 3D Woven TPS sample and compared it to 2D carbon phenolic samples at ply angles of 0deg, 23.5deg, and 90deg. Each sample contained similar compositions of phenolic and carbon fiber volume fractions for experimental consistency. The goal of this study was to compare the performance of the TPS materials by evaluating resulting recession and failure modes. After exposing both samples to similar heat flux and pressure conditions, the 2D carbon phenolic laminate was shown to experience significant delamination between layers and further pocketing underneath separated layers. The 3D Woven TPS sample did not experience the delamination or pocketing
Kawasaki Dynamics on Bidimensional Spin Systems
NASA Astrophysics Data System (ADS)
Resende, Denilson C.; Cacüador, Felipe C.; Dantas, Sócrates O.
Under the influence of an external field many systems exhibit slow relaxations processes. In that sense, we study the Physics of this behavior/process in the early stages of its evolution on bidimensional Ising systems using Monte Carlo simulations at a broad range of temperature and spins up concentration. The Monte Carlo simulations were done up to second neighbors interactions shown a more stable dynamic regime than first neighbors interactions, when the systems energy is considered. The behavior of relative energy/spin and the relative perimeter (the line between spin up and spin down regions) are monitored against Monte Carlo steps. Also, our findings show that the stretching index (a2) exhibit values below the borderline (1) in a broad range of concentration below 50% and temperature from 0.5 ≤T ≤ 4.5 (in units of J/kB , where J is the ferromagnetic constant and kB is the Boltzmann constant).
Eliminating friction with friction: 2D Janssen effect in a friction-driven system.
Karim, M Yasinul; Corwin, Eric I
2014-05-01
The Janssen effect is a unique property of confined granular materials experiencing gravitational compaction in which the pressure at the bottom saturates with an increasing filling height due to frictional interactions with side walls. In this Letter, we replace gravitational compaction with frictional compaction. We study friction-compacted 2D granular materials confined within fixed boundaries on a horizontal conveyor belt. We find that even with high-friction side walls the Janssen effect completely vanishes. Our results demonstrate that gravity-compacted granular systems are inherently different from friction-compacted systems in at least one important way: vibrations induced by sliding friction with the driving surface relax away tangential forces on the walls. Remarkably, we find that the Janssen effect can be recovered by replacing the straight side walls with a sawtooth pattern. The mechanical force introduced by varying the sawtooth angle θ can be viewed as equivalent to a tunable friction force. By construction, this mechanical friction force cannot be relaxed away by vibrations in the system. PMID:24856724
Eliminating Friction with Friction: 2D Janssen Effect in a Friction-Driven System
NASA Astrophysics Data System (ADS)
Karim, M. Yasinul; Corwin, Eric I.
2014-05-01
The Janssen effect is a unique property of confined granular materials experiencing gravitational compaction in which the pressure at the bottom saturates with an increasing filling height due to frictional interactions with side walls. In this Letter, we replace gravitational compaction with frictional compaction. We study friction-compacted 2D granular materials confined within fixed boundaries on a horizontal conveyor belt. We find that even with high-friction side walls the Janssen effect completely vanishes. Our results demonstrate that gravity-compacted granular systems are inherently different from friction-compacted systems in at least one important way: vibrations induced by sliding friction with the driving surface relax away tangential forces on the walls. Remarkably, we find that the Janssen effect can be recovered by replacing the straight side walls with a sawtooth pattern. The mechanical force introduced by varying the sawtooth angle θ can be viewed as equivalent to a tunable friction force. By construction, this mechanical friction force cannot be relaxed away by vibrations in the system.
Information storage capacity of discrete spin systems
Yoshida, Beni
2013-11-15
Understanding the limits imposed on information storage capacity of physical systems is a problem of fundamental and practical importance which bridges physics and information science. There is a well-known upper bound on the amount of information that can be stored reliably in a given volume of discrete spin systems which are supported by gapped local Hamiltonians. However, all the previously known systems were far below this theoretical bound, and it remained open whether there exists a gapped spin system that saturates this bound. Here, we present a construction of spin systems which saturate this theoretical limit asymptotically by borrowing an idea from fractal properties arising in the Sierpinski triangle. Our construction provides not only the best classical error-correcting code which is physically realizable as the energy ground space of gapped frustration-free Hamiltonians, but also a new research avenue for correlated spin phases with fractal spin configurations. -- Highlights: •We propose a spin model with fractal ground states and study its coding properties. •We show that the model asymptotically saturates a theoretical limit on information storage capacity. •We discuss its relations to various theoretical physics problems.
Hönekopp, Johannes
2012-08-01
Prenatal testosterone (PT) effects have been proposed to increase systemizing (the drive to understand lawful input-output relationships), to decrease empathizing (the drive to understand others), and to cause autism via hypermasculinization of the brain. Digit ratio 2D:4D is a putative marker of PT effects in humans. An online study (n = 1896) into the relationship between the Reading the Mind in the Eyes Test (a widely used measure of empathizing) and self-measured 2D:4D in a nonclinical sample is reported. No evidence for a link between empathizing and 2D:4D in either females or males emerged. Further, three meta-analyses are presented that look into the relationships of 2D:4D with autism spectrum disorder (ASD), systemizing, and empathizing. 2D:4D was substantially lower (more masculine) in ASD-affected individuals than in normal controls (d = -0.58, P < 0.001). However, 2D:4D was found to be virtually unrelated to systemizing and empathizing in normal adults. The results support the idea that high PT is a risk factor for autism, but they challenge the view that PT substantially contributes to sex differences in systemizing and empathizing. Possibly, this pattern reflects an interaction effect, whereby PT drives ASD characteristic changes only in brains with a specific damage. PMID:22674640
Designer spin systems via inverse statistical mechanics
NASA Astrophysics Data System (ADS)
DiStasio, Robert A., Jr.; Marcotte, Étienne; Car, Roberto; Stillinger, Frank H.; Torquato, Salvatore
2013-10-01
In this work, we extend recent inverse statistical-mechanical methods developed for many-particle systems to the case of spin systems. For simplicity, we focus in this initial study on the two-state Ising model with radial spin-spin interactions of finite range (i.e., extending beyond nearest-neighbor sites) on the square lattice under periodic boundary conditions. Our interest herein is to find the optimal set of shortest-range pair interactions within this family of Hamiltonians, whose corresponding ground state is a targeted spin configuration such that the difference in energies between the energetically closest competitor and the target is maximized. For an exhaustive list of competitors, this optimization problem is solved exactly using linear programming. The possible outcomes for a given target configuration can be organized into the following three solution classes: unique (nondegenerate) ground state (class I), degenerate ground states (class II), and solutions not contained in the previous two classes (class III). We have chosen to study a general family of striped-phase spin configurations comprised of alternating parallel bands of up and down spins of varying thicknesses and a general family of rectangular block checkerboard spin configurations with variable block size, which is a generalization of the classic antiferromagnetic Ising model. Our findings demonstrate that the structurally anisotropic striped phases, in which the thicknesses of up- and down-spin bands are equal, are unique ground states for isotropic short-ranged interactions. By contrast, virtually all of the block checkerboard targets are either degenerate or fall within class III solutions. The degenerate class II spin configurations are identified up to a certain block size. We also consider other target spin configurations with different degrees of global symmetries and order. Our investigation reveals that the solution class to which a target belongs depends sensitively on the
A preliminary evaluation work on a 3D ultrasound imaging system for 2D array transducer
NASA Astrophysics Data System (ADS)
Zhong, Xiaoli; Li, Xu; Yang, Jiali; Li, Chunyu; Song, Junjie; Ding, Mingyue; Yuchi, Ming
2016-04-01
This paper presents a preliminary evaluation work on a pre-designed 3-D ultrasound imaging system. The system mainly consists of four parts, a 7.5MHz, 24×24 2-D array transducer, the transmit/receive circuit, power supply, data acquisition and real-time imaging module. The row-column addressing scheme is adopted for the transducer fabrication, which greatly reduces the number of active channels . The element area of the transducer is 4.6mm by 4.6mm. Four kinds of tests were carried out to evaluate the imaging performance, including the penetration depth range, axial and lateral resolution, positioning accuracy and 3-D imaging frame rate. Several strong reflection metal objects , fixed in a water tank, were selected for the purpose of imaging due to a low signal-to-noise ratio of the transducer. The distance between the transducer and the tested objects , the thickness of aluminum, and the seam width of the aluminum sheet were measured by a calibrated micrometer to evaluate the penetration depth, the axial and lateral resolution, respectively. The experiment al results showed that the imaging penetration depth range was from 1.0cm to 6.2cm, the axial and lateral resolution were 0.32mm and 1.37mm respectively, the imaging speed was up to 27 frames per second and the positioning accuracy was 9.2%.
Gerbaud, Guillaume; Hediger, Sabine; Bardet, Michel; Favennec, Laurent; Zenasni, Aziz; Beynet, Julien; Gourhant, Olivier; Jousseaume, Vincent
2009-11-14
In the research field of the sub-65 nm semiconductor industry, organosilicate SiOCH films with low dielectric constant (k < 2.4) need to be developed in order to improve the performance of integrated circuits [International Roadmap for Semiconductors (ITRS), San Jose, CA, 2004]. One way to produce SiOCH films of low dielectric constant is to introduce pores into the film. This is usually obtained in two steps. Firstly, co-deposition of a matrix precursor, with a sacrificial organic porogen, either by plasma enhanced chemical vapor deposition (PECVD) or spin-coating. Secondly, application of a specific thermal treatment to remove the porogen and create the porosity. This last step can be improved by adding to the thermal process a super-critical CO(2) treatment, an UV irradiation or an electronic bombardment (e-beam). In this study, the two deposition processes as well as the various treatments applied to eliminate the porogens were evaluated and compared using high-resolution solid-state NMR. For this purpose, hybrid (containing porogens) and porous films were extensively characterized on the basis of their (1)H, (13)C and (29)Si high-resolution NMR spectra. Information was obtained concerning the crosslinking of the Si skeleton. Spectral features could be correlated to the processes used. Isotropic chemical shift analyses and 2D correlation NMR experiments were used to show the existence and nature of the interactions between the matrix precursor and the organic porogen. PMID:19851550
Exosomes and the MICA-NKG2D system in cancer.
Clayton, Aled; Tabi, Zsuzsanna
2005-01-01
Exosomes are nanometer sized vesicles, secreted by a diverse range of cell types, whose biological functions remain ambiguous. Several groups have demonstrated the potential of manipulating exosomes for activating cellular immune responses. The possibility that exosomes may inhibit immunological responses, however, has not been widely addressed. We have investigated if exosomes produced by tumor cells can inhibit immunological functions, through modulating expression of the NKG2D receptor by effector cells. Incubating tumor exosomes with fresh peripheral blood leukocytes resulted in a marked reduction in the proportion of NKG2D-positive CD3+CD8+ Cells, and CD3- cells by 48 h. This effect was dose dependent and was shown with exosomes from different tumor cells including breast cancer and mesothelioma. Analysis of tumor exosome-phenotype revealed positive expression of several NKG2D ligands, and antibody blocking experiments revealed the importance of such ligands in driving the reduction in the proportion of NKG2D-positive effector cells. The functional importance of the decrease in NKG2D-positive cells was addressed in vitro cytotoxicity assays. For example a CD8+ T cell line pre-incubated with tumor exosomes had significant decreased capacity to kill peptide-pulsed T2 target cells. These data highlight a role for tumor exosomes bearing NKG2D ligands as a mechanism contributing to cancer immune evasion. PMID:15885603
NASA Astrophysics Data System (ADS)
Mo, Yike; Greenhalgh, Stewart A.; Robertsson, Johan O. A.; Karaman, Hakki
2015-05-01
Lateral velocity variations and low velocity near-surface layers can produce strong scattered and guided waves which interfere with reflections and lead to severe imaging problems in seismic exploration. In order to investigate these specific problems by laboratory seismic modelling, a simple 2D ultrasonic model facility has been recently assembled within the Wave Propagation Lab at ETH Zurich. The simulated geological structures are constructed from 2 mm thick metal and plastic sheets, cut and bonded together. The experiments entail the use of a piezoelectric source driven by a pulse amplifier at ultrasonic frequencies to generate Lamb waves in the plate, which are detected by piezoelectric receivers and recorded digitally on a National Instruments recording system, under LabVIEW software control. The 2D models employed were constructed in-house in full recognition of the similitude relations. The first heterogeneous model features a flat uniform low velocity near-surface layer and deeper dipping and flat interfaces separating different materials. The second model is comparable but also incorporates two rectangular shaped inserts, one of low velocity, the other of high velocity. The third model is identical to the second other than it has an irregular low velocity surface layer of variable thickness. Reflection as well as transmission experiments (crosshole & vertical seismic profiling) were performed on each model. The two dominant Lamb waves recorded are the fundamental symmetric mode (non-dispersive) and the fundamental antisymmetric (flexural) dispersive mode, the latter normally being absent when the source transducer is located on a model edge but dominant when it is on the flat planar surface of the plate. Experimental group and phase velocity dispersion curves were determined and plotted for both modes in a uniform aluminium plate. For the reflection seismic data, various processing techniques were applied, as far as pre-stack Kirchhoff migration. The
Experimental investigation on the high chip rate of 2D incoherent optical CDMA system
NASA Astrophysics Data System (ADS)
Su, Guorui; Wang, Rong; Pu, Tao; Fang, Tao; Zheng, Jilin; Zhu, Huatao; Wu, Weijiang
2015-08-01
An innovative approach to realise high chip rate in OCDMA transmission system is proposed and experimentally investigation, the high chip rate is achieved through a 2-D wavelength-hopping time-spreading en/decoder based on the supercontinuum light source. The source used in the experiment is generated by high nonlinear optical fiber (HNLF), Erbium-doped fiber amplifier (EDFA) which output power is 26 dBm, and distributed feed-back laser diode which works in the gain switch state. The span and the flatness of the light source are 20 nm and 3 dB, respectively, after equalization of wavelength selective switch (WSS). The wavelength-hopping time-spreading coder can be changed 20 nm in the wavelength and 400 ps in the time, is consist of WSS and delay lines. Therefore, the experimental results show that the chip rate can achieve 500 Gchip/s, in the case of 2.5 Gbit/s, while keeping a bit error rate below forward error correction limit after 40 km transmission.
NASA Astrophysics Data System (ADS)
Alhrishy, Mazen G.; Varnavas, Andreas; Guyot, Alexis; Carrell, Tom; King, Andrew; Penney, Graeme
2015-03-01
Fluoroscopy-guided endovascular interventions are being performing for more and more complex cases with longer screening times. However, X-ray is much better at visualizing interventional devices and dense structures compared to vasculature. To visualise vasculature, angiography screening is essential but requires the use of iodinated contrast medium (ICM) which is nephrotoxic. Acute kidney injury is the main life-threatening complication of ICM. Digital subtraction angiography (DSA) is also often a major contributor to overall patient radiation dose (81% reported). Furthermore, a DSA image is only valid for the current interventional view and not the new view once the C-arm is moved. In this paper, we propose the use of 2D-3D image registration between intraoperative images and the preoperative CT volume to facilitate DSA remapping using a standard fluoroscopy system. This allows repeated ICM-free DSA and has the potential to enable a reduction in ICM usage and radiation dose. Experiments were carried out using 9 clinical datasets. In total, 41 DSA images were remapped. For each dataset, the maximum and averaged remapping accuracy error were calculated and presented. Numerical results showed an overall averaged error of 2.50 mm, with 7 patients scoring averaged errors < 3 mm and 2 patients < 6 mm.
Systems chemistry: All in a spin
NASA Astrophysics Data System (ADS)
Clark, Lucy; Lightfoot, Philip
2016-05-01
A fundamental challenge in systems chemistry is to engineer the emergence of complex behaviour. The collective structures of metal cyanide chains have now been interpreted in the same manner as the myriad of magnetic phases displayed by frustrated spin systems, highlighting a symbiotic approach between systems chemistry and magnetism.
Order From disorder in Frustrated Spin Systems
NASA Astrophysics Data System (ADS)
Coleman, Piers
This talk will review the phemomenon of ''Order from disorder'': the mechanism by which fluctuations remove a degeneracy within a frustrated spin system. An important consequence of order-from-disorder, is the ability of frustrated Heisenberg spin systems to overcome the Mermin-Wagner theorem, developing new forms of discrete order, even when the spins themselves remain disordered with a finite correlation length. The most well-known example, is the two-dimensional frustrated J1 -J2 Heisenberg model, which undergoes a finite temperature Ising phase transition into a stripy or ''nematic'' state, even though the spins do not order until absolute zero. Nematic ordering of this kind is believed to occur in the iron-based superconductors, such as BaFe2 As2 . More recently, it has been possible to theoretically study the triangular-honeycomb versions of the J1 -J2 model, called a windmill model, in which order-from disorder drives the development of six-state clock order. Remarkably, in this case, order-from-disorder leads to an intermediate power-law spin phase, despite the underlying Heisenerg spins. This research was supported by DOE Basic Energy Sciences Grant DE-FG02-99ER45790.
An Exact SU(2) Symmetry and Persistent Spin Helix ina Spin-orbit Coupled System
Bernevig, B.A.; Orenstein, J.; Zhang, Shou-Cheng; /Stanford U., Phys. Dept.
2007-01-22
Spin-orbit coupled systems generally break the spin rotation symmetry. However, for a model with equal Rashba and Dresselhauss coupling constant (the ReD model), and for the [110] Dresselhauss model, a new type of SU(2) spin rotation symmetry is discovered. This symmetry is robust against spin-independent disorder and interactions, and is generated by operators whose wavevector depends on the coupling strength. It renders the spin lifetime infinite at this wavevector, giving rise to a Persistent Spin Helix (PSH). We obtain the spin fluctuation dynamics at, and away, from the symmetry point, and suggest experiments to observe the PSH.
An Exact SU(2) Symmetry and Persistent Spin Helix in a Spin-Orbit Coupled System
Bernevig, Andrei
2010-02-10
Spin-orbit coupled systems generally break the spin rotation symmetry. However, for a model with equal Rashba and Dresselhauss coupling constant (the ReD model), and for the [110] Dresselhauss model, a new type of SU(2) spin rotation symmetry is discovered. This symmetry is robust against spin-independent disorder and interactions, and is generated by operators whose wavevector depends on the coupling strength. It renders the spin lifetime infinite at this wavevector, giving rise to a Persistent Spin Helix (PSH). We obtain the spin fluctuation dynamics at, and away, from the symmetry point, and suggest experiments to observe the PSH.
Microelectromechanical systems integrating molecular spin crossover actuators
NASA Astrophysics Data System (ADS)
Manrique-Juarez, Maria D.; Rat, Sylvain; Mathieu, Fabrice; Saya, Daisuke; Séguy, Isabelle; Leïchlé, Thierry; Nicu, Liviu; Salmon, Lionel; Molnár, Gábor; Bousseksou, Azzedine
2016-08-01
Silicon MEMS cantilevers coated with a 200 nm thin layer of the molecular spin crossover complex [Fe(H2B(pz)2)2(phen)] (H2B(pz)2 = dihydrobis(pyrazolyl)borate and phen = 1,10-phenantroline) were actuated using an external magnetic field and their resonance frequency was tracked by means of integrated piezoresistive detection. The light-induced spin-state switching of the molecules from the ground low spin to the metastable high spin state at 10 K led to a well-reproducible shift of the cantilever's resonance frequency (Δfr = -0.52 Hz). Control experiments at different temperatures using coated as well as uncoated devices along with simple calculations support the assignment of this effect to the spin transition. This latter translates into changes in mechanical behavior of the cantilever due to the strong spin-state/lattice coupling. A guideline for the optimization of device parameters is proposed so as to efficiently harness molecular scale movements for large-scale mechanical work, thus paving the road for nanoelectromechanical systems (NEMS) actuators based on molecular materials.
A three-dimensional measuring system based on 2D laser displacement sensor
NASA Astrophysics Data System (ADS)
Jiang, Sulun; Fu, Yuegang; Zhu, Wangbin; Zhang, Yingwei; Wang, Weichen
2014-12-01
3D(Three-dimensional) measurement has found its applications in the fields of automation process, Reverse engineering(RE), machine vision, as well as medical diagnostic. There are some disadvantages in the present 3D measurement methods. In this paper, a 2D laser displacement sensor-based and fast-dimensional surface measurement method for small size objects was proposed after analyzing the existing three-dimensional measurement methods. This method uses the information collected by 2D laser displacement sensor and encoder in pan-tilt to three-dimensional reconstruct 3D model. And then discuss the restrictive relation between angular velocity of pan-tilt and parameters (measurement range, signal sample rate, precision, etc.) of 2D laser displacement sensor. The sources of error and methods of improving precision were analyzed. Theoretical analyses and experiments have proved the feasibility, high-precision and practical of this method.
Quantifying and Tuning Entanglement for Spin Systems
NASA Astrophysics Data System (ADS)
Xu, Qing; Kais, Sabre; Sameh, Ahmed
2009-03-01
The research carries out a benchmark exact calculation in the field of entanglement in a 19-site two-dimensional spin system. Of particular interest, we study one or more impurities embedded into such systems. We demonstrate that entanglement can be controlled and tuned by varying the ratio of the strength of the magnetic field to the exchange interaction h/J and by introducing impurities. We also discuss the relation of the amount of entanglement, between the impurity spins and the environment, and the decoherence time, which is a quantity measurable in experiments and of relevance in various proposals for traditional and quantum computer hardware.
Application of a Hybrid 3D-2D Laser Scanning System to the Characterization of Slate Slabs
López, Marcos; Martínez, Javier; Matías, José María; Vilán, José Antonio; Taboada, Javier
2010-01-01
Dimensional control based on 3D laser scanning techniques is widely used in practice. We describe the application of a hybrid 3D-2D laser scanning system to the characterization of slate slabs with structural defects that are difficult for the human eye to characterize objectively. Our study is based on automating the process using a 3D laser scanner and a 2D camera. Our results demonstrate that the application of this hybrid system optimally characterizes slate slabs in terms of the defects described by the Spanish UNE-EN 12326-1 standard. PMID:22219696
Determining ice water content from 2D crystal images in convective cloud systems
NASA Astrophysics Data System (ADS)
Leroy, Delphine; Coutris, Pierre; Fontaine, Emmanuel; Schwarzenboeck, Alfons; Strapp, J. Walter
2016-04-01
Cloud microphysical in-situ instrumentation measures bulk parameters like total water content (TWC) and/or derives particle size distributions (PSD) (utilizing optical spectrometers and optical array probes (OAP)). The goal of this work is to introduce a comprehensive methodology to compute TWC from OAP measurements, based on the dataset collected during recent HAIC (High Altitude Ice Crystals)/HIWC (High Ice Water Content) field campaigns. Indeed, the HAIC/HIWC field campaigns in Darwin (2014) and Cayenne (2015) provide a unique opportunity to explore the complex relationship between cloud particle mass and size in ice crystal environments. Numerous mesoscale convective systems (MCSs) were sampled with the French Falcon 20 research aircraft at different temperature levels from -10°C up to 50°C. The aircraft instrumentation included an IKP-2 (isokinetic probe) to get reliable measurements of TWC and the optical array probes 2D-S and PIP recording images over the entire ice crystal size range. Based on the known principle relating crystal mass and size with a power law (m=α•Dβ), Fontaine et al. (2014) performed extended 3D crystal simulations and thereby demonstrated that it is possible to estimate the value of the exponent β from OAP data, by analyzing the surface-size relationship for the 2D images as a function of time. Leroy et al. (2015) proposed an extended version of this method that produces estimates of β from the analysis of both the surface-size and perimeter-size relationships. Knowing the value of β, α then is deduced from the simultaneous IKP-2 TWC measurements for the entire HAIC/HIWC dataset. The statistical analysis of α and β values for the HAIC/HIWC dataset firstly shows that α is closely linked to β and that this link changes with temperature. From these trends, a generalized parameterization for α is proposed. Finally, the comparison with the initial IKP-2 measurements demonstrates that the method is able to predict TWC values
NASA Astrophysics Data System (ADS)
Chen, Hui; Chen, Albert; Jie Sun, Wei; Sun, Zhen Dong; Yeow, John TW
2016-01-01
This article presents the development and implementation of a robust nonlinear control scheme for a 2-D micromirror-based laser scanning microscope system. The presented control scheme, built around sliding mode control approach and augmented an adaptive algorithm, is proposed to improve the tracking accuracy in presence of cross-axis effect. The closed-loop controlled imaging system is developed through integrating a 2-D micromirror with sidewall electrodes (SW), a laser source, NI field-programmable gate array (FPGA) hardware, the optics, position sensing detector (PSD) and photo detector (PD). The experimental results demonstrated that the proposed scheme is able to achieve accurate tracking of a reference triangular signal. Compared with open-loop control, the scanning performance is significantly improved, and a better 2-D image is obtained using the micromirror with the proposed scheme.
Flight Guidance System Validation Using SPIN
NASA Technical Reports Server (NTRS)
Naydich, Dimitri; Nowakowski, John
1998-01-01
To verify the requirements for the mode control logic of a Flight Guidance System (FGS) we applied SPIN, a widely used software package that supports the formal verification of distributed systems. These requirements, collectively called the FGS specification, were developed at Rockwell Avionics & Communications and expressed in terms of the Consortium Requirements Engineering (CoRE) method. The properties to be verified are the invariants formulated in the FGS specification, along with the standard properties of consistency and completeness. The project had two stages. First, the FGS specification and the properties to be verified were reformulated in PROMELA, the input language of SPIN. This involved a semantics issue, as some constructs of the FGS specification do not have well-defined semantics in CoRE. Then we attempted to verify the requirements' properties using the automatic model checking facilities of SPIN. Due to the large size of the state space of the FGS specification an exhaustive state space analysis with SPIN turned out to be impossible. So we used the supertrace model checking procedure of SPIN that provides for a partial analysis of the state space. During this process, we found some subtle errors in the FGS specification.
NASA Astrophysics Data System (ADS)
Christopher, Jason; Vutukuru, Mounika; Bishop, David; Swan, Anna; Goldberg, Bennett
Straining 2D materials can dramatically change electrical, thermal and optical properties and can even cause unconventional behavior such as generating pseudo-magnetic fields. However attempts at probing these effects have been hindered by the difficulty involved with precisely straining these materials. Here we present micro-electromechanical systems (MEMS) as an ideal platform for straining 2D materials because they are readily compatible with existing electronics and their size makes them compatible with 2D materials. Additionally the MEMS platform does more than facilitate experimentation; by freeing us to think of strain as dynamical it makes a whole new class of devices practical for next generation technology. To demonstrate the power of this platform we have for the first time measured the strain response of the Raman and photoluminescence spectra of suspended MoS2, and measured the friction force between MoS2 and the MEMS structure. This talk will touch on the basics of designing MEMS structures for straining 2D materials, how to transfer 2D materials onto MEMS without break either, proof of concept experimental results, and next steps in developing the MEMS platform. This work is supported by NSF DMR Grant 1411008, and author J. Christopher thanks the NDSEG program for its support.
Spin dynamics under local gauge fields in chiral spin-orbit coupling systems
Tan, S.G.; Jalil, M.B.A.; Fujita, T.; Liu, X.J.
2011-02-15
Research Highlights: > We derive a modified LLG equation in magnetic systems with spin-orbit coupling (SOC). > Our results are applied to magnetic multilayers, and DMS and magnetic Rashba systems. > SOC mediated magnetization switching is predicted in rare earth metals (large SOC). > The magnetization trajectory and frequency can be modulated by applied voltage. > This facilitates potential application as tunable microwave oscillators. - Abstract: We present a theoretical description of local spin dynamics in magnetic systems with a chiral spin texture and finite spin-orbit coupling (SOC). Spin precession about the relativistic effective magnetic field in a SOC system gives rise to a non-Abelian SU(2) gauge field reminiscent of the Yang-Mills field. In addition, the adiabatic relaxation of electron spin along the local spin yields an U(1) x U(1) topological gauge (Berry) field. We derive the corresponding equation of motion i.e. modified Landau-Lifshitz-Gilbert (LLG) equation, for the local spin under the influence of these effects. Focusing on the SU(2) gauge, we obtain the spin torque magnitude, and the amplitude and frequency of spin oscillations in this system. Our theoretical estimates indicate significant spin torque and oscillations in systems with large spin-orbit coupling, which may be utilized in technological applications such as current-induced magnetization-switching and tunable microwave oscillators.
NASA Technical Reports Server (NTRS)
Shie, Chung-Lin; Tao, Wei-Kuo; Simpson, Joanne
2003-01-01
The 1999 Kwajalein Atoll field experiment (KWAJEX), one of several major TRMM (Tropical Rainfall Measuring Mission) field experiments, has successfully obtained a wealth of information and observation data on tropical convective systems over the western Central Pacific region. In this paper, clouds and convective systems that developed during three active periods (Aug 7-12, Aug 17-21, and Aug 29-Sep 13) around Kwajalein Atoll site are simulated using both 2D and 3D Goddard Cumulus Ensemble (GCE) models. Based on numerical results, the clouds and cloud systems are generally unorganized and short lived. These features are validated by radar observations that support the model results. Both the 2D and 3D simulated rainfall amounts and their stratiform contribution as well as the heat, water vapor, and moist static energy budgets are examined for the three convective episodes. Rainfall amounts are quantitatively similar between the two simulations, but the stratiform contribution is considerably larger in the 2D simulation. Regardless of dimension, fo all three cases, the large-scale forcing and net condensation are the two major physical processes that account for the evolution of the budgets with surface latent heat flux and net radiation solar and long-wave radiation)being secondary processes. Quantitative budget differences between 2D and 3D as well as between various episodes will be detailed.Morover, simulated radar signatures and Q1/Q2 fields from the three simulations are compared to each other and with radar and sounding observations.
Critical thickness of 2D to 3D transition in GexSi1-x/Si(001) system
NASA Astrophysics Data System (ADS)
Lozovoy, K. A.; Kokhanenko, A. P.; Voitsekhovskii, A. V.
2016-07-01
In this paper, Stranski-Krastanov growth of GexSi1-x epitaxial layers on the Si(001) surface is considered. Experimental investigations show that the moment of transition from 2D to 3D growth and the critical thickness of 2D layer at which this transition occurs play a key role during the synthesis of such materials. Among the most important parameters determining the peculiarities of the growth process and characteristics of emerging island ensembles are growth temperature and surface conditions (for example, the presence of surfactants). But existing theoretical models are not able to predict the values of the critical thickness in the whole range of growth temperatures and compositions x of solution for these systems. For the calculations of the critical thickness of transition from 2D to 3D growth, in this paper, a theoretical model based on general nucleation theory is proposed. This model is specified by taking into account dependencies of elastic modulus, lattices mismatch, and surface energy of the side facet on the composition x. As a result, dependencies of the critical thickness of Stranski-Krastanov transition on composition x and temperature are obtained. This allows one to determine conditions of transition from 2D to 3D growth mode in these systems. The simulated results explain experimentally observed results on temperature dependencies of the critical thickness for different germanium contents.
Magnetic spin reduction system for free spinning objects
NASA Technical Reports Server (NTRS)
Vontiesenhausen, G. F. (Inventor)
1986-01-01
A spinning Earth satellite is shown in which it is desired to reduce the rotation or spin to a level that the satellite may be secured or handled remotely from a spacecraft. This is accomplished by the spacecraft having a mast carrying an electrical current coil which encircles the satellite. The magnetic field of the coil is normal to the spin axis of the satellite which causes circular eddy current flow in the housing of the satellite. This generates magnetic force opposing the rotation. In another embodiment the magnetic field is generated by the use of an electromagnet on a remote manipulation arm.
Morisawa, Hiraku; Hirota, Mikako; Toda, Tosifusa
2006-01-01
Background In the post-genome era, most research scientists working in the field of proteomics are confronted with difficulties in management of large volumes of data, which they are required to keep in formats suitable for subsequent data mining. Therefore, a well-developed open source laboratory information management system (LIMS) should be available for their proteomics research studies. Results We developed an open source LIMS appropriately customized for 2-D gel electrophoresis-based proteomics workflow. The main features of its design are compactness, flexibility and connectivity to public databases. It supports the handling of data imported from mass spectrometry software and 2-D gel image analysis software. The LIMS is equipped with the same input interface for 2-D gel information as a clickable map on public 2DPAGE databases. The LIMS allows researchers to follow their own experimental procedures by reviewing the illustrations of 2-D gel maps and well layouts on the digestion plates and MS sample plates. Conclusion Our new open source LIMS is now available as a basic model for proteome informatics, and is accessible for further improvement. We hope that many research scientists working in the field of proteomics will evaluate our LIMS and suggest ways in which it can be improved. PMID:17018156
Thermoelectric response of spin polarization in Rashba spintronic systems
NASA Astrophysics Data System (ADS)
Xiao, Cong; Li, Dingping; Ma, Zhongshui
2016-06-01
Motivated by the recent discovery of a strongly spin-orbit-coupled two-dimensional (2D) electron gas near the surface of Rashba semiconductors BiTeX (X = Cl, Br, I), we calculate the thermoelectric responses of spin polarization in a 2D Rashba model. By self-consistently determining the energyand band-dependent transport time, we present an exact solution of the linearized Boltzmann equation for elastic scattering. Using this solution, we find a non-Edelstein electric-field-induced spin polarization that is linear in the Fermi energy E F when E F lies below the band crossing point. The spin polarization efficiency, which is the electric-field-induced spin polarization divided by the driven electric current, increases for smaller E F . We show that, as a function of E F , the temperature-gradient-induced spin polarization increases continuously to a saturation value when E F decreases below the band crossing point. As the temperature tends to zero, the temperature-gradient-induced spin polarization vanishes.
Karavitis, G.A.
1984-01-01
The SIMSYS2D two-dimensional water-quality simulation system is a large-scale digital modeling software system used to simulate flow and transport of solutes in freshwater and estuarine environments. Due to the size, processing requirements, and complexity of the system, there is a need to easily move the system and its associated files between computer sites when required. A series of job control language (JCL) procedures was written to allow transferability between IBM and IBM-compatible computers. (USGS)
Spin transport in disordered two-dimensional hopping systems with Rashba spin-orbit interaction
NASA Astrophysics Data System (ADS)
Beckmann, U.; Damker, T.; Böttger, H.
2005-05-01
The influence of Rashba spin-orbit interaction on the spin dynamics of a topologically disordered hopping system is studied in this paper. This is a significant generalization of a previous investigation, where an ordered (polaronic) hopping system has been considered instead. It is found that in the limit where the Rashba length is large compared to the typical hopping length, the spin dynamics of a disordered system can still be described by the expressions derived for an ordered system, under the provision that one takes into account the frequency dependence of the diffusion constant and the mobility (which are determined by charge transport and are independent of spin). With these results we are able to make explicit the influence of disorder on spin related quantities as, e.g., the spin lifetime in hopping systems.
Park, Kisam; Light, John C
2007-12-14
The spin-modification probability (SMP) method, which provides fundamental and detailed quantitative information on the nuclear spin selection rules, is discussed more systematically and generalized for reactive collision systems involving more than one configuration of reactant and product molecules, explicitly taking account of the conservation of the overall nuclear spin symmetry as well as the conservation of the total nuclear spin angular momentum, under the assumption of no nuclear hyperfine interaction. The values of SMP once calculated can be used for any system of identical nuclei of any spin as long as the system has the corresponding nuclear spin symmetry. The values of SMP calculated for simple systems can also be used for more complex systems containing several kinds of identical nuclei or various isotopomers. The generalized formulation of statistical scattering theory which can easily represent various rearrangement mechanisms is also presented. PMID:18081384
Cross-correlation spin noise spectroscopy of heterogeneous interacting spin systems
Roy, Dibyendu; Yang, Luyi; Crooker, Scott A.; Sinitsyn, Nikolai A.
2015-04-30
Interacting multi-component spin systems are ubiquitous in nature and in the laboratory. As such, investigations of inter-species spin interactions are of vital importance. Traditionally, they are studied by experimental methods that are necessarily perturbative: e.g., by intentionally polarizing or depolarizing one spin species while detecting the response of the other(s). Here, we describe and demonstrate an alternative approach based on multi-probe spin noise spectroscopy, which can reveal inter-species spin interactions - under conditions of strict thermal equilibrium - by detecting and cross-correlating the stochastic fluctuation signals exhibited by each of the constituent spin species. Specifically, we consider a two-component spin ensemble that interacts via exchange coupling, and we determine cross-correlations between their intrinsic spin fluctuations. The model is experimentally confirmed using “two-color” optical spin noise spectroscopy on a mixture of interacting Rb and Cs vapors. Noise correlations directly reveal the presence of inter-species spin exchange, without ever perturbing the system away from thermal equilibrium. These non-invasive and noise-based techniques should be generally applicable to any heterogeneous spin system in which the fluctuations of the constituent components are detectable.
Cross-correlation spin noise spectroscopy of heterogeneous interacting spin systems
NASA Astrophysics Data System (ADS)
Roy, Dibyendu; Yang, Luyi; Crooker, Scott A.; Sinitsyn, Nikolai A.
2015-04-01
Interacting multi-component spin systems are ubiquitous in nature and in the laboratory. As such, investigations of inter-species spin interactions are of vital importance. Traditionally, they are studied by experimental methods that are necessarily perturbative: e.g., by intentionally polarizing or depolarizing one spin species while detecting the response of the other(s). Here, we describe and demonstrate an alternative approach based on multi-probe spin noise spectroscopy, which can reveal inter-species spin interactions - under conditions of strict thermal equilibrium - by detecting and cross-correlating the stochastic fluctuation signals exhibited by each of the constituent spin species. Specifically, we consider a two-component spin ensemble that interacts via exchange coupling, and we determine cross-correlations between their intrinsic spin fluctuations. The model is experimentally confirmed using ``two-color'' optical spin noise spectroscopy on a mixture of interacting Rb and Cs vapors. Noise correlations directly reveal the presence of inter-species spin exchange, without ever perturbing the system away from thermal equilibrium. These non-invasive and noise-based techniques should be generally applicable to any heterogeneous spin system in which the fluctuations of the constituent components are detectable.
General Properties of Overlap Operators in Disordered Quantum Spin Systems
NASA Astrophysics Data System (ADS)
Itoi, C.
2016-04-01
We study short-range quantum spin systems with Gaussian disorder. We obtain quantum mechanical extensions of the Ghirlanda-Guerra identities. We discuss properties of overlap spin operators with these identities.
A new spin on electron liquids: Phenomena in systems with spin-orbit coupling
NASA Astrophysics Data System (ADS)
Bernevig, B. Andrei
Conventional microelectronic devices are based on the ability to store and control the flow of electronic charge. Spin-based electronics promises a radical alternative, offering the possibility of logic operations with much lower power consumption than equivalent charge-based logic operations. Our research suggests that spin transport is fundamentally different from the transport of charge. The generalized Ohm's law that governs the flow of spins indicates that the generation of spin current by an electric field can be reversible and non-dissipative. Spin-orbit coupling and spin currents appear in many other seemingly unrelated areas of physics. Spin currents are as fundamental in theoretical physics as charge currents. In strongly correlated systems such as spin-chains, one can write down the Hamiltonian as a spin-current - spin-current interaction. The research presented here shows that the fractionalized excitations of one-dimensional spin chains are gapless and carry spin current. We present the most interesting example of such a chain, the Haldane-Shastry spin chain, which is exactly solvable in terms of real-space wavefunctions. Spin-orbit coupling can be found in high-energy physics, hidden under a different name: non-trivial fibrations. Particles moving in a space which is non-trivially related to an (iso)spin space acquire a gauge connection (the condensed-matter equivalent of a Berry phase) which can be either abelian or non-abelian. In most cases, the consequences of such gauge connection are far-reaching. We present a problem where particles move on an 8-dimensional manifold and posses an isospin space with is a 7-sphere S 7. The non-trivial isospin space gives the Hamiltonian SO (8) landau-level structure, and the system exhibits a higher-dimensional Quantum Hall Effect.
NASA Astrophysics Data System (ADS)
Syah Putra, Rudy
2016-02-01
Agar matrix was artificially contaminated with caesium and subjected to rapid assessment of electrokinetic treatment on the basis of the 2D electrode configuration. The effect of caesium concentration on the process was investigated using different electrode configuration (i.e. rectangular, hexagonal and triangular). During treatment the in situ pH distribution, the current flow, and the potential distribution were monitored. At the end of the treatment, the caesium concentration distribution was measured. The results of these experiments showed that for caesium contamination, pH control is essential in order to create a suitable environment throughout the agar matrix to enable contaminant removal. It was found that the type of electrode configuration used to control the pH affected the rate of caesium accumulation. All of the electrode configurations tested was effective, but the highest caesium extraction was achieved when the hexagonal pattern was used to control the pH. After 72 h of treatment at 50 mA, the concentration of caesium decreased gradually from the second and first layer of agar matrix throughout the cell, suggesting that most of the caesium was concentrated on the cathode part.
NASA Astrophysics Data System (ADS)
Eichenlaub, Jesse B.
1995-03-01
Mounting a lenticular lens in front of a flat panel display is a well known, inexpensive, and easy way to create an autostereoscopic system. Such a lens produces half resolution 3D images because half the pixels on the LCD are seen by the left eye and half by the right eye. This may be acceptable for graphics, but it makes full resolution text, as displayed by common software, nearly unreadable. Very fine alignment tolerances normally preclude the possibility of removing and replacing the lens in order to switch between 2D and 3D applications. Lenticular lens based displays are therefore limited to use as dedicated 3D devices. DTI has devised a technique which removes this limitation, allowing switching between full resolution 2D and half resolution 3D imaging modes. A second element, in the form of a concave lenticular lens array whose shape is exactly the negative of the first lens, is mounted on a hinge so that it can be swung down over the first lens array. When so positioned the two lenses cancel optically, allowing the user to see full resolution 2D for text or numerical applications. The two lenses, having complementary shapes, naturally tend to nestle together and snap into perfect alignment when pressed together--thus obviating any need for user operated alignment mechanisms. This system represents an ideal solution for laptop and notebook computer applications. It was devised to meet the stringent requirements of a laptop computer manufacturer including very compact size, very low cost, little impact on existing manufacturing or assembly procedures, and compatibility with existing full resolution 2D text- oriented software as well as 3D graphics. Similar requirements apply to high and electronic calculators, several models of which now use LCDs for the display of graphics.
Quantization of integrable systems and a 2d/4d duality
NASA Astrophysics Data System (ADS)
Dorey, Nick; Lee, Sungjay; Hollowood, Timothy J.
2011-10-01
We present a new duality between the F-terms of supersymmetric field theories defined in two-and four-dimensions respectively. The duality relates mathcal{N} = 2 super-symmetric gauge theories in four dimensions, deformed by an Ω-background in one plane, to mathcal{N} = left( {2,2} right) gauged linear σ-models in two dimensions. On the four dimensional side, our main example is mathcal{N} = 2 SQCD with gauge group G = SU( L) and N F = 2 L fundamental flavours. Using ideas of Nekrasov and Shatashvili, we argue that the Coulomb branch of this theory provides a quantization of the classical Heisenberg SL(2) spin chain. Agreement with the standard quantization via the Algebraic Bethe Ansatz implies the existence of an isomorphism between the chiral ring of the 4 d theory and that of a certain two-dimensional theory. The latter can be understood as the worldvolume theory on a surface operator/vortex string probing the Higgs branch of the same 4 d theory. We check the proposed duality by explicit calculation at low orders in the instanton expansion. One striking consequence is that the Seiberg-Witten solution of the 4 d theory is captured by a one-loop computation in two dimensions. The duality also has interesting connections with the AGT conjecture, matrix models and topological string theory where it corresponds to a refined version of the geometric transition.
Spinach - A software library for simulation of spin dynamics in large spin systems
NASA Astrophysics Data System (ADS)
Hogben, H. J.; Krzystyniak, M.; Charnock, G. T. P.; Hore, P. J.; Kuprov, Ilya
2011-02-01
We introduce a software library incorporating our recent research into efficient simulation algorithms for large spin systems. Liouville space simulations (including symmetry, relaxation and chemical kinetics) of most liquid-state NMR experiments on 40+ spin systems can now be performed without effort on a desktop workstation. Much progress has also been made with improving the efficiency of ESR, solid state NMR and Spin Chemistry simulations. Spinach is available for download at http://spindynamics.org.
Spin and Polarization Waves in a System of Paramagnetic Particles with AN Intrinsic Dipole Moment
NASA Astrophysics Data System (ADS)
Trukhanova, M. I.
We explicate a derivation of a general system of quantum hydrodynamics (QHD) equations for the study of the non-equilibrium processes. Fundamental QHD equations for neutral paramagnetic particles with the own electric dipole moment (EDM) were derived from the many-particle Schrodinger equation. The fact that the influence of spin-spin, dipole-dipole and spin-orbital interaction between particles was taken into account. The problem of definition of spin-waves and polarization waves spectrum in 2D system for the molecules with intrinsic magnetic moments (IMM) and EDM were theoretically investigated and solved for the system of nitric oxide gas in the external electromagnetic fields. The polarization dynamics in system of neutral magnetic and polarized particles is shown to cause formation of a new type of waves as well as changes in the dispersion characteristics of already known waves. Moreover we found the contribution of spin-orbital interaction between gas particles to the elementary excitations and shown that spin-orbital interaction leads to the emergence of magnetization and polarization waves.
Spin Hall effect in two-dimensional systems within the relativistic phase shift model
NASA Astrophysics Data System (ADS)
Johansson, Annika; Herschbach, Christian; Fedorov, Dmitry V.; Henk, Jürgen; Mertig, Ingrid
2015-11-01
Recently, a relativistic phase shift model (RPSM) was introduced [D. V. Fedorov et al., Phys. Rev. B 88, 085116 (2013), 10.1103/PhysRevB.88.085116] to describe the skew-scattering mechanism of the spin Hall effect caused by impurities in bulk crystals. Here, we present its analog derived for two-dimensional (2D) systems. The proposed 2D-RPSM is applied to one-monolayer noble-metal films with various substitutional impurities and the obtained results are compared with those of corresponding first-principles calculations. We demonstrate that, in contrast to the three-dimensional RPSM, the considered model does not provide a sufficient qualitative description of the transport properties. Therefore, an ab initio treatment is necessary for the description of the spin Hall effect in two-dimensional crystals.
Cross-correlation spin noise spectroscopy of heterogeneous interacting spin systems
Roy, Dibyendu; Yang, Luyi; Crooker, Scott A.; Sinitsyn, Nikolai A.
2015-04-30
Interacting multi-component spin systems are ubiquitous in nature and in the laboratory. As such, investigations of inter-species spin interactions are of vital importance. Traditionally, they are studied by experimental methods that are necessarily perturbative: e.g., by intentionally polarizing or depolarizing one spin species while detecting the response of the other(s). Here, we describe and demonstrate an alternative approach based on multi-probe spin noise spectroscopy, which can reveal inter-species spin interactions - under conditions of strict thermal equilibrium - by detecting and cross-correlating the stochastic fluctuation signals exhibited by each of the constituent spin species. Specifically, we consider a two-component spinmore » ensemble that interacts via exchange coupling, and we determine cross-correlations between their intrinsic spin fluctuations. The model is experimentally confirmed using “two-color” optical spin noise spectroscopy on a mixture of interacting Rb and Cs vapors. Noise correlations directly reveal the presence of inter-species spin exchange, without ever perturbing the system away from thermal equilibrium. These non-invasive and noise-based techniques should be generally applicable to any heterogeneous spin system in which the fluctuations of the constituent components are detectable.« less
A convergent 2D finite-difference scheme for the Dirac–Poisson system and the simulation of graphene
Brinkman, D.; Heitzinger, C.; Markowich, P.A.
2014-01-15
We present a convergent finite-difference scheme of second order in both space and time for the 2D electromagnetic Dirac equation. We apply this method in the self-consistent Dirac–Poisson system to the simulation of graphene. The model is justified for low energies, where the particles have wave vectors sufficiently close to the Dirac points. In particular, we demonstrate that our method can be used to calculate solutions of the Dirac–Poisson system where potentials act as beam splitters or Veselago lenses.
Temperature and Pinning Effects on Driving a 2D Electron System on a Helium Film: A Numerical Study
NASA Astrophysics Data System (ADS)
Damasceno, Pablo F.; Dasilva, Cláudio José; Rino, José Pedro; Cândido, Ladir
2010-07-01
Using numerical simulations we investigated the dynamic response to an externally driven force of a classical two-dimensional (2D) electron system on a helium film at finite temperatures. A potential barrier located at the center of the system behaves as a pinning center that results in an insulator state below a threshold driving force. We have found that the current-voltage characteristic obeys the scaling relation I= f ξ , with ξ ranging from ˜(1.0-1.7) for different pinning strengths and temperatures. Our results may be used to understand the spread range of ξ in experiments with typical characteristic of plastic depinning.
A complexity classification of spin systems with an external field
Goldberg, Leslie Ann; Jerrum, Mark
2015-01-01
We study the computational complexity of approximating the partition function of a q-state spin system with an external field. There are just three possible levels of computational difficulty, depending on the interaction strengths between adjacent spins: (i) efficiently exactly computable, (ii) equivalent to the ferromagnetic Ising model, and (iii) equivalent to the antiferromagnetic Ising model. Thus, every nontrivial q-state spin system, irrespective of the number q of spins, is computationally equivalent to one of two fundamental two-state spin systems. PMID:26443859
Learning control system design based on 2-D theory - An application to parallel link manipulator
NASA Technical Reports Server (NTRS)
Geng, Z.; Carroll, R. L.; Lee, J. D.; Haynes, L. H.
1990-01-01
An approach to iterative learning control system design based on two-dimensional system theory is presented. A two-dimensional model for the iterative learning control system which reveals the connections between learning control systems and two-dimensional system theory is established. A learning control algorithm is proposed, and the convergence of learning using this algorithm is guaranteed by two-dimensional stability. The learning algorithm is applied successfully to the trajectory tracking control problem for a parallel link robot manipulator. The excellent performance of this learning algorithm is demonstrated by the computer simulation results.
Bases for Spin Systems and Qudits
NASA Astrophysics Data System (ADS)
Kibler, Maurice R.
2009-05-01
There is a growing interest these days for the field of quantum information and quantum computation (for which classical bits are replaced by qubits in dimension 2 and qudits in dimension d). This field is at the crossing of mathematics, informatics and quantum physics. In this work, bases of relevance for spin systems with cyclic symmetry as well as for quantum information and quantum computation are discussed from the theory of angular momentum and group-theoretical methods. This approach is connected to the use of generalized Pauli matrices (in dimension d) arising from a polar decomposition of the group SU2. Examples are given for d = 2, 3 and 4.
NASA Technical Reports Server (NTRS)
1987-01-01
The Earth Observing System (Eos) will provide an ideal forum in which the stronly synergistic characteristics of the lidar systems can be used in concert with the characteristics of a number of other sensors to better understand the Earth as a system. Progress in the development of more efficient and long-lasting laser systems will insure their availability in the Eos time frame. The necessary remote-sensing techniques are being developed to convert the Lidar Atmospheric Sounder and Altimeter (LASA) observations into the proper scientific parameters. Each of these activities reinforces the promise that LASA and GLRS will be a reality in the Eos era.
Kim, Young-Keun; Kim, Kyung-Soo
2014-10-15
Maritime transportation demands an accurate measurement system to track the motion of oscillating container boxes in real time. However, it is a challenge to design a sensor system that can provide both reliable and non-contact methods of 6-DOF motion measurements of a remote object for outdoor applications. In the paper, a sensor system based on two 2D laser scanners is proposed for detecting the relative 6-DOF motion of a crane load in real time. Even without implementing a camera, the proposed system can detect the motion of a remote object using four laser beam points. Because it is a laser-based sensor, the system is expected to be highly robust to sea weather conditions.
NASA Astrophysics Data System (ADS)
Kim, Young-Keun; Kim, Kyung-Soo
2014-10-01
Maritime transportation demands an accurate measurement system to track the motion of oscillating container boxes in real time. However, it is a challenge to design a sensor system that can provide both reliable and non-contact methods of 6-DOF motion measurements of a remote object for outdoor applications. In the paper, a sensor system based on two 2D laser scanners is proposed for detecting the relative 6-DOF motion of a crane load in real time. Even without implementing a camera, the proposed system can detect the motion of a remote object using four laser beam points. Because it is a laser-based sensor, the system is expected to be highly robust to sea weather conditions.
Dynamic Stabilization of a Quantum Many-Body Spin System
NASA Astrophysics Data System (ADS)
Hoang, T. M.; Gerving, C. S.; Land, B. J.; Anquez, M.; Hamley, C. D.; Chapman, M. S.
2013-08-01
We demonstrate dynamic stabilization of a strongly interacting quantum spin system realized in a spin-1 atomic Bose-Einstein condensate. The spinor Bose-Einstein condensate is initialized to an unstable fixed point of the spin-nematic phase space, where subsequent free evolution gives rise to squeezing and quantum spin mixing. To stabilize the system, periodic microwave pulses are applied that rotate the spin-nematic many-body fluctuations and limit their growth. The stability diagram for the range of pulse periods and phase shifts that stabilize the dynamics is measured and compares well with a stability analysis.
Dynamic stabilization of a quantum many-body spin system.
Hoang, T M; Gerving, C S; Land, B J; Anquez, M; Hamley, C D; Chapman, M S
2013-08-30
We demonstrate dynamic stabilization of a strongly interacting quantum spin system realized in a spin-1 atomic Bose-Einstein condensate. The spinor Bose-Einstein condensate is initialized to an unstable fixed point of the spin-nematic phase space, where subsequent free evolution gives rise to squeezing and quantum spin mixing. To stabilize the system, periodic microwave pulses are applied that rotate the spin-nematic many-body fluctuations and limit their growth. The stability diagram for the range of pulse periods and phase shifts that stabilize the dynamics is measured and compares well with a stability analysis. PMID:24033006
Semiclassical Landau quantization of spin-orbit coupled systems
NASA Astrophysics Data System (ADS)
Li, Tommy; Horovitz, Baruch; Sushkov, Oleg P.
2016-06-01
A semiclassical quantization condition is derived for Landau levels in general spin-orbit coupled systems. This generalizes the Onsager quantization condition via a matrix-valued phase which describes spin dynamics along the classical cyclotron trajectory. We discuss measurement of the matrix phase via magnetic oscillations and electron spin resonance, which may be used to probe the spin structure of the precessing wave function. We compare the resulting semiclassical spectrum with exact results which are obtained for a variety of spin-orbit interactions in two-dimensional systems.
Twin robotic x-ray system for 2D radiographic and 3D cone-beam CT imaging
NASA Astrophysics Data System (ADS)
Fieselmann, Andreas; Steinbrener, Jan; Jerebko, Anna K.; Voigt, Johannes M.; Scholz, Rosemarie; Ritschl, Ludwig; Mertelmeier, Thomas
2016-03-01
In this work, we provide an initial characterization of a novel twin robotic X-ray system. This system is equipped with two motor-driven telescopic arms carrying X-ray tube and flat-panel detector, respectively. 2D radiographs and fluoroscopic image sequences can be obtained from different viewing angles. Projection data for 3D cone-beam CT reconstruction can be acquired during simultaneous movement of the arms along dedicated scanning trajectories. We provide an initial evaluation of the 3D image quality based on phantom scans and clinical images. Furthermore, initial evaluation of patient dose is conducted. The results show that the system delivers high image quality for a range of medical applications. In particular, high spatial resolution enables adequate visualization of bone structures. This system allows 3D X-ray scanning of patients in standing and weight-bearing position. It could enable new 2D/3D imaging workflows in musculoskeletal imaging and improve diagnosis of musculoskeletal disorders.
Electric field controlled spin interference in a system with Rashba spin-orbit coupling
NASA Astrophysics Data System (ADS)
Ciftja, Orion
2016-05-01
There have been intense research efforts over the last years focused on understanding the Rashba spin-orbit coupling effect from the perspective of possible spintronics applications. An important component of this line of research is aimed at control and manipulation of electron's spin degrees of freedom in semiconductor quantum dot devices. A promising way to achieve this goal is to make use of the tunable Rashba effect that relies on the spin-orbit interaction in a two-dimensional electron system embedded in a host semiconducting material that lacks inversion-symmetry. This way, the Rashba spin-orbit coupling effect may potentially lead to fabrication of a new generation of spintronic devices where control of spin, thus magnetic properties, is achieved via an electric field and not a magnetic field. In this work we investigate theoretically the electron's spin interference and accumulation process in a Rashba spin-orbit coupled system consisting of a pair of two-dimensional semiconductor quantum dots connected to each other via two conducting semi-circular channels. The strength of the confinement energy on the quantum dots is tuned by gate potentials that allow "leakage" of electrons from one dot to another. While going through the conducting channels, the electrons are spin-orbit coupled to a microscopically generated electric field applied perpendicular to the two-dimensional system. We show that interference of spin wave functions of electrons travelling through the two channels gives rise to interference/conductance patterns that lead to the observation of the geometric Berry's phase. Achieving a predictable and measurable observation of Berry's phase allows one to control the spin dynamics of the electrons. It is demonstrated that this system allows use of a microscopically generated electric field to control Berry's phase, thus, enables one to tune the spin-dependent interference pattern and spintronic properties with no need for injection of spin
Implementation of a system to life test 2-D laser arrays
NASA Astrophysics Data System (ADS)
Faltus, Thomas H.; Bicket, Daniel J.
1992-02-01
Multi-emitter laser devices, stacked to form 2-dimensional arrays, have been shown to effectively pump Nd:YAG slabs in solid state laser systems. Using these arrays as substitutes for flashlamps provides the potential for increased reliability of laser systems. However, to quantify this reliability improvement, laser arrays must be life tested. To ensure that the life test data accurately describes the array lifetimes, the life test system must possess the following characteristics: adequate control of operating stresses, to ensure that the test results apply to true use-conditions; continuous monitoring and recording of array health, to capture unpredictable variations in array performance; in-situ parameter measurement, to measure array performance without inducing handling damage; and extensive safety interlocks, to protect personnel from laser hazards. This paper describes an array life test system possessing these characteristics. It describes the system hardware, operating and test software, and the methodology behind the system's use. We demonstrate the system's performance by life testing 2-dimensional laser arrays having previously documented front facet anomalies. Disadvantages as well as advantages of design decisions are discussed.
ERIC Educational Resources Information Center
Singh, Satya Pal
2014-01-01
This paper presents a brief review of Ising's work done in 1925 for one dimensional spin chain with periodic boundary condition. Ising observed that no phase transition occurred at finite temperature in one dimension. He erroneously generalized his views in higher dimensions but that was not true. In 1941 Kramer and Wannier obtained…
Küchemann, Stefan; Mahn, Carsten; Samwer, Konrad
2014-01-15
The investigation of short time dynamics using X-ray scattering techniques is commonly limited either by the read out frequency of the detector or by a low intensity. In this paper, we present a chopper system, which can increase the temporal resolution of 2D X-ray detectors by a factor of 13. This technique only applies to amorphous or polycrystalline samples due to their circular diffraction patterns. Using the chopper, we successfully increased the temporal resolution up to 5.1 ms during synchrotron experiments. For the construction, we provide a mathematical formalism, which, in principle, allows an even higher increase of the temporal resolution.
NASA Astrophysics Data System (ADS)
Autovino, Dario; Negm, Amro; Rallo, Giovanni; Provenzano, Giuseppe
2016-04-01
In Mediterranean countries characterized by limited water resources for agricultural and societal sectors, irrigation management plays a major role to improve water use efficiency at farm scale, mainly where irrigation systems are correctly designed to guarantee a suitable application efficiency and the uniform water distribution throughout the field. In the last two decades, physically-based agro-hydrological models have been developed to simulate mass and energy exchange processes in the soil-plant-atmosphere (SPA) system. Mechanistic models like HYDRUS 2D/3D (Šimunek et al., 2011) have been proposed to simulate all the components of water balance, including actual crop transpiration fluxes estimated according to a soil potential-dependent sink term. Even though the suitability of these models to simulate the temporal dynamics of soil and crop water status has been reported in the literature for different horticultural crops, a few researches have been considering arboreal crops where the higher gradients of root water uptake are the combination between the localized irrigation supply and the three dimensional root system distribution. The main objective of the paper was to assess the performance of HYDRUS-2D model to evaluate soil water contents and transpiration fluxes of an olive orchard irrigated with two different water distribution systems. Experiments were carried out in Castelvetrano (Sicily) during irrigation seasons 2011 and 2012, in a commercial farm specialized in the production of table olives (Olea europaea L., var. Nocellara del Belice), representing the typical variety of the surrounding area. During the first season, irrigation water was provided by a single lateral placed along the plant row with four emitters per plant (ordinary irrigation), whereas during the second season a grid of emitters laid on the soil was installed in order to irrigate the whole soil surface around the selected trees. The model performance was assessed based on the
An automated calibration system that combines fringe projection and 2D digital image correlation
NASA Astrophysics Data System (ADS)
Siegmann, Philip; Felipe-Sesé, Luis A.; Díaz Garrido, Francisco; Piñeiro-Ave, José
2015-09-01
An optical non-contact and full-field system that allows large displacement measurements in x-, y- and z-direction is presented. The system combines 2-dimentional digital image correlation (for in-plane measurements) and fringe projection (for out-of-plane displacements) and uses only one camera. The in- and out-of-plane displacements are obtained at the same instant allowing real-time measurements thanks to a color encoding filtering procedure. The out-of-plane measurement allows the correction of the in-plane measurements and the system has to be precisely aligned by following an established alignment procedure. Furthermore, a calibration has to be done to obtain a fringe parameter k for each pixel of the specimen surface image necessary to relate the shifted phase with the out-of-plane displacements. The presented system obtains different values of k for each pixel because of the divergent and non-normal incidence of the fringe beam onto the sample surface (non zero incidence angle). The calibration is performed automatically and only has to be done once for each configuration of the system. The system is portable and can be easily adapted to measure large displacements and wide areas (using small incidence angle) or smaller distances but with higher resolutions (when increasing the incidence angle).
Hysteretic behavior of spin-crossover noise driven system
NASA Astrophysics Data System (ADS)
Gudyma, Iurii; Maksymov, Artur; Dimian, Mihai
2016-04-01
The influence of white Gaussian noise on hysteretic behavior of spin-crossover system is analyzed in the framework of stochastic Langevin dynamics. Various stochastic simulations are performed and several important properties of spin-transition in spin-crossover system driven by noise are reproduced. The numerical results are tested against the stationary probability function and the associated dynamic potential obtained from Fokker-Planck equation corresponding to spin-crossover Langevin dynamics. The dependence of light-induced optical hysteresis width and non-hysteretic transition curve slope on the noise intensity is illustrated. The role of low-spin and high-spin phase stabilities in the hysteretic behavior of noise-driven spin-crossover system is discussed.
NASA Astrophysics Data System (ADS)
Sahoo, B. K.; Aoki, T.; Das, B. P.; Sakemi, Y.
2016-03-01
Employing the relativistic coupled-cluster method, comparative studies of the parity nonconserving electric dipole amplitudes for the 7 s 1/2 2S →6 d 5/2 2D transitions in 210Fr and 211Fr isotopes have been carried out. It is found that these transition amplitudes, sensitive only to the nuclear spin-dependent effects, are enhanced substantially owing to the very large contributions from the electron core-polarization effects in Fr. This translates to a relatively large and, in principle, measurable induced light shift, which would be a signature of nuclear spin-dependent parity nonconservation that is dominated by the nuclear anapole moment in a heavy atom like Fr. A plausible scheme to measure this quantity using the Cyclotron and Radioisotope Center (CYRIC) facility at Tohoku University has been outlined.
A robust omnifont open-vocabulary Arabic OCR system using pseudo-2D-HMM
NASA Astrophysics Data System (ADS)
Rashwan, Abdullah M.; Rashwan, Mohsen A.; Abdel-Hameed, Ahmed; Abdou, Sherif; Khalil, A. H.
2012-01-01
Recognizing old documents is highly desirable since the demand for quickly searching millions of archived documents has recently increased. Using Hidden Markov Models (HMMs) has been proven to be a good solution to tackle the main problems of recognizing typewritten Arabic characters. These attempts however achieved a remarkable success for omnifont OCR under very favorable conditions, they didn't achieve the same performance in practical conditions, i.e. noisy documents. In this paper we present an omnifont, large-vocabulary Arabic OCR system using Pseudo Two Dimensional Hidden Markov Model (P2DHMM), which is a generalization of the HMM. P2DHMM offers a more efficient way to model the Arabic characters, such model offer both minimal dependency on the font size/style (omnifont), and high level of robustness against noise. The evaluation results of this system are very promising compared to a baseline HMM system and best OCRs available in the market (Sakhr and NovoDynamics). The recognition accuracy of the P2DHMM classifier is measured against the classic HMM classifier, the average word accuracy rates for P2DHMM and HMM classifiers are 79% and 66% respectively. The overall system accuracy is measured against Sakhr and NovoDynamics OCR systems, the average word accuracy rates for P2DHMM, NovoDynamics, and Sakhr are 74%, 71%, and 61% respectively.
Single-snapshot 2D color measurement by plenoptic imaging system
NASA Astrophysics Data System (ADS)
Masuda, Kensuke; Yamanaka, Yuji; Maruyama, Go; Nagai, Sho; Hirai, Hideaki; Meng, Lingfei; Tosic, Ivana
2014-03-01
Plenoptic cameras enable capture of directional light ray information, thus allowing applications such as digital refocusing, depth estimation, or multiband imaging. One of the most common plenoptic camera architectures contains a microlens array at the conventional image plane and a sensor at the back focal plane of the microlens array. We leverage the multiband imaging (MBI) function of this camera and develop a single-snapshot, single-sensor high color fidelity camera. Our camera is based on a plenoptic system with XYZ filters inserted in the pupil plane of the main lens. To achieve high color measurement precision of this system, we perform an end-to-end optimization of the system model that includes light source information, object information, optical system information, plenoptic image processing and color estimation processing. Optimized system characteristics are exploited to build an XYZ plenoptic colorimetric camera prototype that achieves high color measurement precision. We describe an application of our colorimetric camera to color shading evaluation of display and show that it achieves color accuracy of ΔE<0.01.
A neuromorphic VLSI device for implementing 2-D selective attention systems.
Indiveri, G
2001-01-01
Selective attention is a mechanism used to sequentially select and process salient subregions of the input space, while suppressing inputs arriving from nonsalient regions. By processing small amounts of sensory information in a serial fashion, rather than attempting to process all the sensory data in parallel, this mechanism overcomes the problem of flooding limited processing capacity systems with sensory inputs. It is found in many biological systems and can be a useful engineering tool for developing artificial systems that need to process in real-time sensory data. In this paper we present a neuromorphic hardware model of a selective attention mechanism implemented on a very large scale integration (VLSI) chip, using analog circuits. The chip makes use of a spike-based representation for receiving input signals, transmitting output signals and for shifting the selection of the attended input stimulus over time. It can be interfaced to neuromorphic sensors and actuators, for implementing multichip selective attention systems. We describe the characteristics of the circuits used in the architecture and present experimental data measured from the system. PMID:18249973
SD-CAS: Spin Dynamics by Computer Algebra System.
Filip, Xenia; Filip, Claudiu
2010-11-01
A computer algebra tool for describing the Liouville-space quantum evolution of nuclear 1/2-spins is introduced and implemented within a computational framework named Spin Dynamics by Computer Algebra System (SD-CAS). A distinctive feature compared with numerical and previous computer algebra approaches to solving spin dynamics problems results from the fact that no matrix representation for spin operators is used in SD-CAS, which determines a full symbolic character to the performed computations. Spin correlations are stored in SD-CAS as four-entry nested lists of which size increases linearly with the number of spins into the system and are easily mapped into analytical expressions in terms of spin operator products. For the so defined SD-CAS spin correlations a set of specialized functions and procedures is introduced that are essential for implementing basic spin algebra operations, such as the spin operator products, commutators, and scalar products. They provide results in an abstract algebraic form: specific procedures to quantitatively evaluate such symbolic expressions with respect to the involved spin interaction parameters and experimental conditions are also discussed. Although the main focus in the present work is on laying the foundation for spin dynamics symbolic computation in NMR based on a non-matrix formalism, practical aspects are also considered throughout the theoretical development process. In particular, specific SD-CAS routines have been implemented using the YACAS computer algebra package (http://yacas.sourceforge.net), and their functionality was demonstrated on a few illustrative examples. PMID:20843716
Hexatic and mesoscopic phases in a 2D quantum coulomb system.
Clark, Bryan K; Casula, Michele; Ceperley, D M
2009-07-31
We study the Wigner crystal melting in a two-dimensional quantum system of distinguishable particles interacting via the 1/r Coulomb potential. We use quantum Monte Carlo methods to calculate its phase diagram, locate the Wigner crystal region, and analyze its instabilities towards the liquid phase. We discuss the role of quantum effects in the critical behavior of the system, and compare our numerical results with the classical theory of melting, and the microemulsion theory of frustrated Coulomb systems. We find a Pomeranchuk effect much larger then in solid helium. In addition, we find that the exponent for the algebraic decay of the hexatic phase differs significantly from the Kosterilitz-Thouless theory of melting. We search for the existence of mesoscopic phases and find evidence of metastable bubbles but no mesoscopic phase that is stable in equilibrium. PMID:19792514
The evaluation of an inexpensive, 2D, video based gait assessment system for clinical use.
Ugbolue, U Chris; Papi, Enrica; Kaliarntas, Konstantinos T; Kerr, Andrew; Earl, Leo; Pomeroy, Valerie M; Rowe, Philip J
2013-07-01
The purpose of this study was to investigate the clinical potential of an augmented-video-based-portable-system (AVPS). The AVPS included a walkway grid mat made of vinyl flooring, flat paper bull's eye markers, four photoswitches mounted on tripods, a light-indicator, a video camera, and a computer with ProTrainer System software. The AVPS output was compared to a "gold standard" 3D Vicon Motion Analysis System both statically and dynamically over a fixed range (-90° to +90°) using a two-segment-goniometric-rig marked with both bull's eye and retroreflective markers. At each segment angle position, three trials of data were captured. The reliability of the AVPS was also tested using three raters. Further twelve, young, healthy subjects participated in a concurrent validity study in which they performed six gait trials which were simultaneously recorded by both systems. Both motion analysis systems showed low levels of intra subject variability in all kinematic variables indicated by the size of the standard deviations across the six trials. There were no significant differences between the motion systems with respect to the kinematic variables (P>0.05). The results showed a high intra- and inter-rater reliability for both the kinematic and temporo-spatial parameters. With respect to gait events the lowest ICC value for the intra-rater reliability test was 0.993 for the kinematic variables, and ranged from 0.941 to 0.956 for the temporo-spatial variables and 0.731 to 0.954 for the tibia inclination angles. The validation data suggest the AVPS is capable of generating highly reliable and repeatable data when applied to normal subjects and could be used within the clinical setting. PMID:23465758
A plastic scintillator-based 2D thermal neutron mapping system for use in BNCT studies.
Ghal-Eh, N; Green, S
2016-06-01
In this study, a scintillator-based measurement instrument is proposed which is capable of measuring a two-dimensional map of thermal neutrons within a phantom based on the detection of 2.22MeV gamma rays generated via nth+H→D+γ reaction. The proposed instrument locates around a small rectangular water phantom (14cm×15cm×20cm) used in Birmingham BNCT facility. The whole system has been simulated using MCNPX 2.6. The results confirm that the thermal flux peaks somewhere between 2cm and 4cm distance from the system entrance which is in agreement with previous studies. PMID:26986813
Visualization of an entangled channel spin-1 system
Sirsi, Swarnamala; Adiga, Veena
2010-08-15
Covariance matrix formalism gives powerful entanglement criteria for continuous as well as finite dimensional systems. We use this formalism to study a mixed channel spin-1 system which is well known in nuclear reactions. A spin-j state can be visualized as being made up of 2j spinors which are represented by a constellation of 2j points on a Bloch sphere using Majorana construction. We extend this formalism to visualize an entangled mixed spin-1 system.
Topologically robust transport of entangled photons in a 2D photonic system.
Mittal, Sunil; Orre, Venkata Vikram; Hafezi, Mohammad
2016-07-11
We theoretically study the transport of time-bin entangled photon pairs in a two-dimensional topological photonic system of coupled ring resonators. This system implements the integer quantum Hall model using a synthetic gauge field and exhibits topologically robust edge states. We show that the transport through edge states preserves temporal correlations of entangled photons whereas bulk transport does not preserve these correlations and can lead to significant unwanted temporal bunching or anti-bunching of photons. We study the effect of disorder on the quantum transport properties; while the edge transport remains robust, bulk transport is very susceptible, and in the limit of strong disorder, bulk states become localized. We show that this localization is manifested as an enhanced bunching/anti-bunching of photons. This topologically robust transport of correlations through edge states could enable robust on-chip quantum communication channels and delay lines for information encoded in temporal correlations of photons. PMID:27410836
Tracer dispersion simulation in low wind speed conditions with a new 2D Langevin equation system
NASA Astrophysics Data System (ADS)
Anfossi, D.; Alessandrini, S.; Trini Castelli, S.; Ferrero, E.; Oettl, D.; Degrazia, G.
The simulation of atmospheric dispersion in low wind speed conditions (LW) is still recognised as a challenge for modellers. Recently, a new system of two coupled Langevin equations that explicitly accounts for meandering has been proposed. It is based on the study of turbulence and dispersion properties in LW. The new system was implemented in the Lagrangian stochastic particle models LAMBDA and GRAL. In this paper we present simulations with this new approach applying it to the tracer experiments carried out in LW by Idaho National Engineering Laboratory (INEL, USA) in 1974 and by the Graz University of Technology and CNR-Torino near Graz in 2003. To assess the improvement obtained with the present model with respect to previous models not taking into account the meandering effect, the simulations for the INEL experiments were also performed with the old version of LAMBDA. The results of the comparisons clearly indicate that the new approach improves the simulation results.
Interlayer tunneling studies of highly imbalanced bilayer 2D electron systems at νT= 1
NASA Astrophysics Data System (ADS)
Champagne, A. R.; Eisenstein, J. P.; Pfeiffer, L. N.; West, K. W.
2007-03-01
When the separation between two parallel 2-dimensional electron systems (2DES) becomes comparable to the average distance between electrons within a single layer, the system can support a quantum Hall state with total filling factor νT=1. This state can be described as a Bose condensate of excitons. Previous studies [1] have shown that close to the νT=1 phase boundary, a small imbalance in the number of electrons in each layer can strengthen the condensate. We report on interlayer tunneling measurements of the effect of large imbalances as a function of the interlayer spacing. We explore the possibility of competing order between the excitonic state and the (1/3, 2/3) fractional states in the individual layers. This work was supported by the NSF and the DOE. [1] I. B. Spielman, et al., Phys. Rev. B 70, 081303 (2004).
Study of the height and density distributions of the 2-D granular system under vertical vibration
NASA Astrophysics Data System (ADS)
Pak, Hyuk Kyu; Kim, Kipom; Jun, Yonggun
1998-03-01
Melecular dynamic simulations and experiments are used to investigate the pattern formation of the granular materials in a vertically vibrated rigid container. The height and density distributions of the peak of the patterns in two dimensional system are measured using the simulation. The height distribution agrees with the experimental observation. At the peak of height of the pattern the density is observed minimum. From the information of the vertical velocities of the particles, the momentum flux distributions are studied also.
A novel 2D wavelength-time chaos code in optical CDMA system
NASA Astrophysics Data System (ADS)
Zhang, Qi; Xin, Xiangjun; Wang, Yongjun; Zhang, Lijia; Yu, Chongxiu; Meng, Nan; Wang, Houtian
2012-11-01
Two-dimensional wavelength-time chaos code is proposed and constructed for a synchronous optical code division multiple access system. The access performance is compared between one-dimensional chaos code, WDM/chaos code and the proposed code. Comparison shows that two-dimensional wavelength-time chaos code possesses larger capacity, better spectral efficiency and bit-error ratio than WDM/chaos combinations and one-dimensional chaos code.
Tracking contrast agents using real-time 2D photoacoustic imaging system for cardiac applications
NASA Astrophysics Data System (ADS)
Olafsson, Ragnar; Montilla, Leonardo; Ingram, Pier; Witte, Russell S.
2009-02-01
Photoacoustic (PA) imaging is a rapidly developing imaging modality that can detect optical contrast agents with high sensitivity. While detectors in PA imaging have traditionally been single element ultrasound transducers, use of array systems is desirable because they potentially provide high frame rates to capture dynamic events, such as injection and distribution of contrast in clinical applications. We present preliminary data consisting of 40 second sequences of coregistered pulse-echo (PE) and PA images acquired simultaneously in real time using a clinical ultrasonic machine. Using a 7 MHz linear array, the scanner allowed simultaneous acquisition of inphase-quadrature (IQ) data on 64 elements at a rate limited by the illumination source (Q-switched laser at 20 Hz) with spatial resolution determined to be 0.6 mm (axial) and 0.4 mm (lateral). PA images had a signal-to-noise ratio of approximately 35 dB without averaging. The sequences captured the injection and distribution of an infrared-absorbing contrast agent into a cadaver rat heart. From these data, a perfusion time constant of 0.23 s-1 was estimated. After further refinement, the system will be tested in live animals. Ultimately, an integrated system in the clinic could facilitate inexpensive molecular screening for coronary artery disease.
Hierarchical spin-orbital polarization of a giant Rashba system
Bawden, Lewis; Riley, Jonathan M.; Kim, Choong H.; Sankar, Raman; Monkman, Eric J.; Shai, Daniel E.; Wei, Haofei I.; Lochocki, Edward B.; Wells, Justin W.; Meevasana, Worawat; Kim, Timur K.; Hoesch, Moritz; Ohtsubo, Yoshiyuki; Le Fèvre, Patrick; Fennie, Craig J.; Shen, Kyle M.; Chou, Fangcheng; King, Phil D. C.
2015-01-01
The Rashba effect is one of the most striking manifestations of spin-orbit coupling in solids and provides a cornerstone for the burgeoning field of semiconductor spintronics. It is typically assumed to manifest as a momentum-dependent splitting of a single initially spin-degenerate band into two branches with opposite spin polarization. Combining polarization-dependent and resonant angle-resolved photoemission measurements with density functional theory calculations, we show that the two “spin-split” branches of the model giant Rashba system BiTeI additionally develop disparate orbital textures, each of which is coupled to a distinct spin configuration. This necessitates a reinterpretation of spin splitting in Rashba-like systems and opens new possibilities for controlling spin polarization through the orbital sector. PMID:26601268
Spin systems and Political Districting Problem
NASA Astrophysics Data System (ADS)
Chou, Chung-I.; Li, Sai-Ping
2007-03-01
The aim of the Political Districting Problem is to partition a territory into electoral districts subject to some constraints such as contiguity, population equality, etc. In this paper, we apply statistical physics methods to Political Districting Problem. We will show how to transform the political problem to a spin system, and how to write down a q-state Potts model-like energy function in which the political constraints can be written as interactions between sites or external fields acting on the system. Districting into q voter districts is equivalent to finding the ground state of this q-state Potts model. Searching for the ground state becomes an optimization problem, where optimization algorithms such as the simulated annealing method and Genetic Algorithm can be employed here.
Scaling in the 2D SU(3) × SU(3) spin model as a test of a new coding method for SU(3) matrices
NASA Astrophysics Data System (ADS)
Bunk, B.; Sommer, R.
1985-02-01
We present a Monte Carlo measurement of the magnetic susceptibility in the SU(3) × SU(3) spin model in two dimensions. Asymptotic scaling is verified on a 20 × 20 lattice. This laboratory is then used to test a new method for coding SU(3) variables in one (60 bit)- word of computer memory. In this approach, real numbers are truncated to fit into a 5-bit representation.
NASA Astrophysics Data System (ADS)
Zhao, Yaqin; Zhong, Xin; Wu, Di; Zhang, Ye; Ren, Guanghui; Wu, Zhilu
2013-09-01
Optical code-division multiple access (OCDMA) systems usually allocate orthogonal or quasi-orthogonal codes to the active users. When transmitting through atmospheric scattering channel, the coding pulses are broadened and the orthogonality of the codes is worsened. In truly asynchronous case, namely both the chips and the bits are asynchronous among each active user, the pulse broadening affects the system performance a lot. In this paper, we evaluate the performance of a 2D asynchronous hard-limiting wireless OCDMA system through atmospheric scattering channel. The probability density function of multiple access interference in truly asynchronous case is given. The bit error rate decreases as the ratio of the chip period to the root mean square delay spread increases and the channel limits the bit rate to different levels when the chip period varies.
Application of Compressed Sensing to 2-D Ultrasonic Propagation Imaging System data
Mascarenas, David D.; Farrar, Charles R.; Chong, See Yenn; Lee, J.R.; Park, Gyu Hae; Flynn, Eric B.
2012-06-29
The Ultrasonic Propagation Imaging (UPI) System is a unique, non-contact, laser-based ultrasonic excitation and measurement system developed for structural health monitoring applications. The UPI system imparts laser-induced ultrasonic excitations at user-defined locations on a structure of interest. The response of these excitations is then measured by piezoelectric transducers. By using appropriate data reconstruction techniques, a time-evolving image of the response can be generated. A representative measurement of a plate might contain 800x800 spatial data measurement locations and each measurement location might be sampled at 500 instances in time. The result is a total of 640,000 measurement locations and 320,000,000 unique measurements. This is clearly a very large set of data to collect, store in memory and process. The value of these ultrasonic response images for structural health monitoring applications makes tackling these challenges worthwhile. Recently compressed sensing has presented itself as a candidate solution for directly collecting relevant information from sparse, high-dimensional measurements. The main idea behind compressed sensing is that by directly collecting a relatively small number of coefficients it is possible to reconstruct the original measurement. The coefficients are obtained from linear combinations of (what would have been the original direct) measurements. Often compressed sensing research is simulated by generating compressed coefficients from conventionally collected measurements. The simulation approach is necessary because the direct collection of compressed coefficients often requires compressed sensing analog front-ends that are currently not commercially available. The ability of the UPI system to make measurements at user-defined locations presents a unique capability on which compressed measurement techniques may be directly applied. The application of compressed sensing techniques on this data holds the potential to
The optical system design and application of micro 2D barcode
NASA Astrophysics Data System (ADS)
Zhu, Yi-jia; Li, Liang-liang; Qian, Cheng; Liang, Zhong-cheng
2010-11-01
We show an optical system of micro visual tag which is based on the principle of microscope and the property of QR Code. Unlike current optical tag, such as barcodes, must be read within a short rang and occupy valuable physical space on products, the new tags can be shrunk to several millimeters and captured from a distance of over 0.5 meters. We design the transmitter according to the parameters of camera lens. We also take the detection range and apertures into account, meanwhile conduct simulations and experiments. The result shows that: the tag can be captured from a long distance, and the amplified image is able to accurately be decoded.
Chaotically Spiking Canards in an Excitable System with 2D Inertial Fast Manifolds
NASA Astrophysics Data System (ADS)
Marino, Francesco; Marin, Francesco; Balle, Salvador; Piro, Oreste
2007-02-01
We introduce a new class of excitable systems with two-dimensional fast dynamics that includes inertia. A novel transition from excitability to relaxation oscillations is discovered where the usual Hopf bifurcation is followed by a cascade of period doubled and chaotic small excitable attractors and, as they grow, by a new type of canard explosion where a small chaotic background erratically but deterministically triggers excitable spikes. This scenario is also found in a model for a nonlinear Fabry-Perot cavity with one pendular mirror.
Time dependent inflow-outflow boundary conditions for 2D acoustic systems
NASA Technical Reports Server (NTRS)
Watson, Willie R.; Myers, Michael K.
1989-01-01
An analysis of the number and form of the required inflow-outflow boundary conditions for the full two-dimensional time-dependent nonlinear acoustic system in subsonic mean flow is performed. The explicit predictor-corrector method of MacCormack (1969) is used. The methodology is tested on both uniform and sheared mean flows with plane and nonplanar sources. Results show that the acoustic system requires three physical boundary conditions on the inflow and one on the outflow boundary. The most natural choice for the inflow boundary conditions is judged to be a specification of the vorticity, the normal acoustic impedance, and a pressure gradient-density gradient relationship normal to the boundary. Specification of the acoustic pressure at the outflow boundary along with these inflow boundary conditions is found to give consistent reliable results. A set of boundary conditions developed earlier, which were intended to be nonreflecting is tested using the current method and is shown to yield unstable results for nonplanar acoustic waves.
An active microwave imaging system for reconstruction of 2-D electrical property distributions.
Meaney, P M; Paulsen, K D; Hartov, A; Crane, R K
1995-10-01
The goal of this work is to develop a microwave-based imaging system for hyperthermia treatment monitoring and assessment. Toward this end, a four transmit channel and four receive channel hardware device and concomitant image reconstruction algorithm have been realized. The hardware is designed to measure electric fields (i.e., amplitude and phase) at various locations in a phantom tank with and without the presence of various heterogeneities using standard heterodyning principles. Particular attention has been paid to designing a receiver with better than 115 dB of linear dynamic range which is necessary for imaging biological tissue which often has very high conductivity, especially for tissues with high water content. A calibration procedure has been developed to compensate for signal loss due to three-dimensional radiation in the measured data, since the reconstruction process is only two-dimensional at the present time. Results are shown which demonstrate the stability and accuracy of the measurement system, the extent to which the forward computational model agrees with the measured field distribution when the electrical properties are known, and image reconstructions of electrically unknown targets of varying diameter. In the latter case, images of both the reactive and resistive component of the electrical property distribution have been recoverable. Quantitative information on object location, size, and electrical properties results when the target is approximately one-half wavelength in size. Images of smaller objects lack the same level of quantitative information, but remain qualitatively correct. PMID:8582719
Numerical and experimental studies of the elastic enhancement factor of 2D open systems
NASA Astrophysics Data System (ADS)
Sirko, Leszek; Białous, Małgorzata; Yunko, Vitalii; Bauch, Szymon; Ławniczak, Michał
We present the results of numerical and experimental studies of the elastic enhancement factor W for microwave rough and rectangular cavities simulating two-dimensional chaotic and partially chaotic quantum billiards in the presence of moderate absorption strength. We show that for the frequency range ν = 15 . 0 - 18 . 5 GHz, in which the coupling between antennas and the system is strong enough, the values of W for the microwave rough cavity lie below the predictions of random matrix theory and on average they are above the theoretical results of V. Sokolov and O. Zhirov, Phys. Rev. E, 91, 052917 (2015). We also show that the enhancement factor W of a microwave rectangular cavity coupled to the external channels via microwave antennas, simulating a partially chaotic quantum billiard, calculated by applying the Potter-Rosenzweig model with κ = 2 . 8 +/- 0 . 5 is close to the experimental one. Our numerical and experimental results suggest that the enhancement factor can be used as a measure of internal chaos which can be especially useful for systems with significant openness or absorption. This work was partially supported by the Ministry of Science and Higher Education Grants N N202 130239 and UMO-2013/09/D/ST2/03727.
Westphalen, Antonio C.; Noworolski, Susan M.; Harisinghani, Mukesh; Jhaveri, Kartik S.; Raman, Steve S.; Rosenkrantz, Andrew B.; Wang, Zhen J.; Zagoria, Ronald J.; Kurhanewicz, John
2016-01-01
OBJECTIVE The goal of this study was to compare the perceived quality of 3-T axial T2-weighted high-resolution 2D and high-resolution 3D fast spin-echo (FSE) endorectal MR images of the prostate. MATERIALS AND METHODS Six radiologists independently reviewed paired 3-T axial T2-weighted high-resolution 2D and 3D FSE endorectal MR images of the prostates of 85 men in two sessions. In the first session (n = 85), each reader selected his or her preferred images; in the second session (n = 28), they determined their confidence in tumor identification and compared the depiction of the prostatic anatomy, tumor conspicuity, and subjective intrinsic image quality of images. A meta-analysis using a random-effects model, logistic regression, and the paired Wilcoxon rank-sum test were used for statistical analyses. RESULTS Three readers preferred the 2D acquisition (67–89%), and the other three preferred the 3D images (70–80%). The option for one of the techniques was not associated with any of the predictor variables. The 2D FSE images were significantly sharper than 3D FSE (p < 0.001) and significantly more likely to exhibit other (nonmotion) artifacts (p = 0.002). No other statistically significant differences were found. CONCLUSION Our results suggest that there are strong individual preferences for the 2D or 3D FSE MR images, but there was a wide variability among radiologists. There were differences in image quality (image sharpness and presence of artifacts not related to motion) but not in the sequences’ ability to delineate the glandular anatomy and depict a cancerous tumor. PMID:26491891
Application of the digital watermarking technique in 2D barcode certificate anti-counterfeit systems
NASA Astrophysics Data System (ADS)
Chen, MuSheng; Lin, ShunDa
2011-06-01
At present, two dimensional barcode has been used in many fields. The safety of information in barcode is important, so this article brings up an effective two dimensional barcode encryption technology to assure it. Either two-dimensional barcode or digital watermarking technique is one of the most important parts and research focuses in anti-counterfeit fields. This paper designs and realizes a whole set of certificate administration system based on QRcode. On this platform the digital watermarking technique based on the spatial domain is used to encrypt the two dimensional barcode. The combination of two dimensional barcode and digital watermarking can improve the security and secrecy of personal information, and realize real anti-counterfeit certificates.
Location detection and tracking of moving targets by a 2D IR-UWB radar system.
Nguyen, Van-Han; Pyun, Jae-Young
2015-01-01
In indoor environments, the Global Positioning System (GPS) and long-range tracking radar systems are not optimal, because of signal propagation limitations in the indoor environment. In recent years, the use of ultra-wide band (UWB) technology has become a possible solution for object detection, localization and tracking in indoor environments, because of its high range resolution, compact size and low cost. This paper presents improved target detection and tracking techniques for moving objects with impulse-radio UWB (IR-UWB) radar in a short-range indoor area. This is achieved through signal-processing steps, such as clutter reduction, target detection, target localization and tracking. In this paper, we introduce a new combination consisting of our proposed signal-processing procedures. In the clutter-reduction step, a filtering method that uses a Kalman filter (KF) is proposed. Then, in the target detection step, a modification of the conventional CLEAN algorithm which is used to estimate the impulse response from observation region is applied for the advanced elimination of false alarms. Then, the output is fed into the target localization and tracking step, in which the target location and trajectory are determined and tracked by using unscented KF in two-dimensional coordinates. In each step, the proposed methods are compared to conventional methods to demonstrate the differences in performance. The experiments are carried out using actual IR-UWB radar under different scenarios. The results verify that the proposed methods can improve the probability and efficiency of target detection and tracking. PMID:25808773
Matrix Cracking in Four Different 2D SiC/SiC Composite Systems
NASA Technical Reports Server (NTRS)
Morscher, Gregory N.
2003-01-01
Silicon carbide fiber reinforced, silicon carbide matrix composites are some of the most advanced composite systems for high-temperature, high-stress applications in oxidizing environments. A basic area that needs to be understood for the purpose of material behavior modeling and optimization is the architectural, constituent, and mechanistic factors that contribute to non-linear stress-strain behavior. The mechanism that causes non-linear stress-strain in dense-matrix composites is the formation and propagation of bridged matrix cracks. In addition, the occurrence and propagation of matrix cracks controls the time-dependent strength-properties of these materials in oxidizing environments at elevated temperatures. A modal acoustic emission technique has been used to monitor and estimate the stress-dependent matrix cracking. Two different SiC matrix systems, chemical vapor infiltrated (CVI) and melt-infiltrated (MI), with two different SiC fiber reinforcement, Hi-Nicalon (trademark) and Sylramic (trademark) were compared. Even though the averages of the range where matrix cracking occurred for the composites varied by more than 0.1% in strain and almost 200 MPa in stress, the range or distribution for matrix cracking could be reduced to a narrow band of stress for CVI SiC and MI SiC composites if it were assumed that all matrix cracks emanate outside of the load-bearing fiber, interphase, CVI preform minicomposite. A simple relationship was determined to describe stress-dependent matrix cracking which can then be used to estimate the onset of large, bridged matrix cracks or for material behavior models.
Location Detection and Tracking of Moving Targets by a 2D IR-UWB Radar System
Nguyen, Van-Han; Pyun, Jae-Young
2015-01-01
In indoor environments, the Global Positioning System (GPS) and long-range tracking radar systems are not optimal, because of signal propagation limitations in the indoor environment. In recent years, the use of ultra-wide band (UWB) technology has become a possible solution for object detection, localization and tracking in indoor environments, because of its high range resolution, compact size and low cost. This paper presents improved target detection and tracking techniques for moving objects with impulse-radio UWB (IR-UWB) radar in a short-range indoor area. This is achieved through signal-processing steps, such as clutter reduction, target detection, target localization and tracking. In this paper, we introduce a new combination consisting of our proposed signal-processing procedures. In the clutter-reduction step, a filtering method that uses a Kalman filter (KF) is proposed. Then, in the target detection step, a modification of the conventional CLEAN algorithm which is used to estimate the impulse response from observation region is applied for the advanced elimination of false alarms. Then, the output is fed into the target localization and tracking step, in which the target location and trajectory are determined and tracked by using unscented KF in two-dimensional coordinates. In each step, the proposed methods are compared to conventional methods to demonstrate the differences in performance. The experiments are carried out using actual IR-UWB radar under different scenarios. The results verify that the proposed methods can improve the probability and efficiency of target detection and tracking. PMID:25808773
Nontrivial ferrimagnetism on the low-dimensional quantum spin systems with frustration
NASA Astrophysics Data System (ADS)
Shimokawa, Tokuro; Nakano, Hiroki; Sakai, Toru
2013-03-01
In low-dimensional quantum spin systems with frustration, nontrivial magnetisms often occur due to strong quantum fluctuation. Ferrimagnetism in non-frustrated systems is well-known to occur from the mechanism based on the Marshall-Lieb-Mattis theorem. This type of ferrimagnetism is called ``Lieb-Mattis (LM) type.'' Recently, the occurrence of nontrivial ferrimagnetism has been reported in some one-dimensional Heisenberg spin systems with frustration, in which the continuous change of spontaneous magnetization and the incommensurate modulation in local magnetization are observed. This type is called ``non-Lieb-Mattis (NLM) type.'' In this study, we tackle a problem whether the NLM ferrimagnetism occurs or not in higher dimensional systems. We investigate the S =1/2 Heisenberg models on the spatially anisotropic two-dimensional (2D) kagome lattice and on the quasi-one-dimensional (Q1D) kagome strip lattices by the numerical diagonalization and density matrix renormalization group methods. The Q1D models share the same structure in their inner part with the spatially anisotropic 2D kagome lattice; we examine two cases with respect to strip width. We will discuss the relationship between the ground-state properties of the Q1D lattices and those of the 2D lattice.
Association of autonomic nervous system and EEG scalp potential during playing 2D Grand Turismo 5.
Subhani, Ahmad Rauf; Likun, Xia; Saeed Malik, Aamir
2012-01-01
Cerebral activation and autonomic nervous system have importance in studies such as mental stress. The aim of this study is to analyze variations in EEG scalp potential which may influence autonomic activation of heart while playing video games. Ten healthy participants were recruited in this study. Electroencephalogram (EEG) and electrocardiogram (ECG) signals were measured simultaneously during playing video game and rest conditions. Sympathetic and parasympathetic innervations of heart were evaluated from heart rate variability (HRV), derived from the ECG. Scalp potential was measured by the EEG. The results showed a significant upsurge in the value theta Fz/alpha Pz (p<0.001) while playing game. The results also showed tachycardia while playing video game as compared to rest condition (p<0.005). Normalized low frequency power and ratio of low frequency/high frequency power were significantly increased while playing video game and normalized high frequency power sank during video games. Results showed synchronized activity of cerebellum and sympathetic and parasympathetic innervation of heart. PMID:23366661
2D position guidance with single-station optical scan-based system
NASA Astrophysics Data System (ADS)
Guo, Siyang; Ren, Yongjie; Huang, Zhe; Chen, Yang; Hong, Tianqi
2015-08-01
The workshop Measuring Position System (wMPS) based on intersection of optical planes is widely applied in large-scale metrology. However, in guidance areas concerning more about horizontal directions such as in the area of transporting with AGVs, the coordinate of z axis which represents the height of the vehicle is of no particular importance. Also, the installation and parameters calibration of wMPS is complex and time-consuming. In this paper, a new method with single transmitter measuring two dimensional coordinate to guide the moving object (except the vertical direction) is proposed and demonstrated. The three dimensional coordinate of receiver was calculated if its horizontal angle, vertical angle and the coordinate of vertical direction are given. In order to get the receiver's horizontal and vertical angle, a serious of mathematical formulas was derived from a model of single transmitter with two rotating laser planes. The coordinate of vertical direction was obtained by the laser tracker and mapped from laser tracker coordinates to transmitter coordinates. Concerning that the coordinate of the vertical direction remains almost the same if the object moves in the level ground, a series of vertical-direction coordinates of moving object was measured beforehand and the average value of coordinates was the approximate vertical-direction coordinates of every point. To verify this method, the points acquired by the transmitter were remeasured by the laser tracker. Finally, the coordinates were compared and the results were analyzed. The experiment results show that the method's measuring accuracy has reached 5mm.
Channel capacities of an exactly solvable spin-star system
NASA Astrophysics Data System (ADS)
Arshed, Nigum; Toor, A. H.; Lidar, Daniel A.
2010-06-01
We calculate the entanglement-assisted and -unassisted channel capacities of an exactly solvable spin star system, which models the quantum dephasing channel. The capacities for this non-Markovian model exhibit a strong dependence on the coupling strengths of the bath spins with the system, the bath temperature, and the number of bath spins. For equal couplings and bath frequencies, the channel becomes periodically noiseless.
Channel capacities of an exactly solvable spin-star system
Arshed, Nigum; Toor, A. H.; Lidar, Daniel A.
2010-06-15
We calculate the entanglement-assisted and -unassisted channel capacities of an exactly solvable spin star system, which models the quantum dephasing channel. The capacities for this non-Markovian model exhibit a strong dependence on the coupling strengths of the bath spins with the system, the bath temperature, and the number of bath spins. For equal couplings and bath frequencies, the channel becomes periodically noiseless.
A novel beat-noise-reducing en/decoding technology for a coherent 2-D OCDMA system.
Zheng, Jilin; Wang, Rong; Pu, Tao; Lu, Lin; Fang, Tao; Cheng, Yun; Chen, Xiangfei
2009-10-12
A novel fiber Bragg grating (FBG)-based en/decoder for a coherent two-dimensional (2-D) wavelength-time (WT) optical code-division multiple-access (OCDMA) system is proposed to suppress the beat noise (BN). The feasibility of en/decoding function and the effectiveness of BN suppression are demonstrated by the simulation comparison between the conventional and proposed scheme, which are also further validated by en/decoding experiments with two users at a data rate of 2.5, 5 and 10 Gb/s respectively. The further numerical performance analysis of the proposed en/decoding method reveals the BER improvement compared with the conventional system. PMID:20372663
NASA Astrophysics Data System (ADS)
Komura, Yukihiro; Okabe, Yutaka
2016-03-01
We present new versions of sample CUDA programs for the GPU computing of the Swendsen-Wang multi-cluster spin flip algorithm. In this update, we add the method of GPU-based cluster-labeling algorithm without the use of conventional iteration (Komura, 2015) to those programs. For high-precision calculations, we also add a random-number generator in the cuRAND library. Moreover, we fix several bugs and remove the extra usage of shared memory in the kernel functions.
Spontaneous Spin Textures in Multiorbital Mott Systems.
Kuneš, J; Geffroy, D
2016-06-24
Spin textures in k-space arising from spin-orbit coupling in noncentrosymmetric crystals find numerous applications in spintronics. We present a mechanism that leads to the appearance of k-space spin texture due to spontaneous symmetry breaking driven by electronic correlations. Using dynamical mean-field theory we show that doping a spin-triplet excitonic insulator provides a means of creating new thermodynamic phases with unique properties. The numerical results are interpreted using analytic calculations within a generalized double-exchange framework. PMID:27391736
Spontaneous Spin Textures in Multiorbital Mott Systems
NASA Astrophysics Data System (ADS)
Kuneš, J.; Geffroy, D.
2016-06-01
Spin textures in k -space arising from spin-orbit coupling in noncentrosymmetric crystals find numerous applications in spintronics. We present a mechanism that leads to the appearance of k -space spin texture due to spontaneous symmetry breaking driven by electronic correlations. Using dynamical mean-field theory we show that doping a spin-triplet excitonic insulator provides a means of creating new thermodynamic phases with unique properties. The numerical results are interpreted using analytic calculations within a generalized double-exchange framework.
Development of a spin polarized low energy electron diffraction system.
Pradeep, A V; Roy, Arnab; Kumar, P S Anil; Kirschner, J
2016-02-01
We have designed and constructed a spin polarized low energy electron diffraction system working in the reflected electron pulse counting mode. This system is capable of measuring asymmetries due to spin-orbit and exchange interactions. Photoemission from a strained GaAs/GaAsP super lattice is used as the source of spin polarized electrons. Spin-orbit asymmetry is evaluated for Ir(100) single crystal at various energies. Subsequently, exchange asymmetry has been evaluated on 40 monolayer Fe deposited on Ir(100). This instrument proves to be useful in understanding structure and magnetism at surfaces. PMID:26931865
Development of a spin polarized low energy electron diffraction system
NASA Astrophysics Data System (ADS)
Pradeep, A. V.; Roy, Arnab; Kumar, P. S. Anil; Kirschner, J.
2016-02-01
We have designed and constructed a spin polarized low energy electron diffraction system working in the reflected electron pulse counting mode. This system is capable of measuring asymmetries due to spin-orbit and exchange interactions. Photoemission from a strained GaAs/GaAsP super lattice is used as the source of spin polarized electrons. Spin-orbit asymmetry is evaluated for Ir(100) single crystal at various energies. Subsequently, exchange asymmetry has been evaluated on 40 monolayer Fe deposited on Ir(100). This instrument proves to be useful in understanding structure and magnetism at surfaces.
Perspectives for spintronics in 2D materials
NASA Astrophysics Data System (ADS)
Han, Wei
2016-03-01
The past decade has been especially creative for spintronics since the (re)discovery of various two dimensional (2D) materials. Due to the unusual physical characteristics, 2D materials have provided new platforms to probe the spin interaction with other degrees of freedom for electrons, as well as to be used for novel spintronics applications. This review briefly presents the most important recent and ongoing research for spintronics in 2D materials.
Superconducting quantum spin Hall systems with giant orbital g factors
NASA Astrophysics Data System (ADS)
Reinthaler, R. W.; Tkachov, G.; Hankiewicz, E. M.
2015-10-01
Topological aspects of superconductivity in quantum spin Hall systems (QSHSs) such as thin layers of three-dimensional topological insulators (TIs) or two-dimensional TIs are the focus of current research. Here, we describe a superconducting quantum spin Hall effect (quantum spin Hall system in proximity to an s -wave superconductor and in orbital in-plane magnetic fields), which is protected against elastic backscattering by combined time-reversal and particle-hole symmetry. This effect is characterized by spin-polarized edge states, which can be manipulated in weak magnetic fields due to a giant effective orbital g factor, allowing the generation of spin currents. The phenomenon provides a solution to the outstanding challenge of detecting the spin polarization of the edge states. Here we propose the detection of the edge polarization in a three-terminal junction using unusual transport properties of the superconducting quantum Hall effect: a nonmonotonic excess current and a zero-bias conductance peak splitting.
Spin squeezing in a quadrupolar nuclei NMR system.
Auccaise, R; Araujo-Ferreira, A G; Sarthour, R S; Oliveira, I S; Bonagamba, T J; Roditi, I
2015-01-30
We have produced and characterized spin-squeezed states at a temperature of 26 °C in a nuclear magnetic resonance quadrupolar system. The experiment was carried out on 133Cs nuclei of spin I=7/2 in a sample of lyotropic liquid crystal. The source of spin squeezing was identified as the interaction between the quadrupole moment of the nuclei and the electric field gradients present within the molecules. We use the spin angular momentum representation to describe formally the nonlinear operators that produce the spin squeezing on a Hilbert space of dimension 2I+1=8. The quantitative and qualitative characterization of this spin-squeezing phenomenon is expressed by a squeezing parameter and squeezing angle developed for the two-mode Bose-Einstein condensate system, as well as by the Wigner quasiprobability distribution function. The generality of the present experimental scheme points to potential applications in solid-state physics. PMID:25679893
Combining the switched-beam and beam-steering capabilities in a 2-D phased array antenna system
NASA Astrophysics Data System (ADS)
Tsai, Yi-Che; Chen, Yin-Bing; Hwang, Ruey-Bing
2016-01-01
This paper presents the development, fabrication, and measurement of a novel beam-forming system consisting of 16 subarray antennas, each containing four aperture-coupled patch antennas, and the application of this system in smart wireless communication systems. The beam patterns of each of the subarray antennas can be switched toward one of nine zones over a half space by adjusting the specific phase delay angles among the four antenna elements. Furthermore, when all subarrays are pointed at the same zone, slightly continuous beam steering in around 1° increments can be achieved by dynamically altering the progressive phase delay angle among the subarrays. Phase angle calibration was implemented by coupling each transmitter output and down converter into the in-phase/quadrature baseband to calculate the correction factor to the weight. In addition, to validate the proposed concepts and the fabricated 2-D phased array antenna system, this study measured the far-field radiation patterns of the aperture-coupled patch array integrated with feeding networks and a phase-calibration system to carefully verify its spatially switched-beam and beam-steering characteristics at a center frequency of 2.4 GHz which can cover the industrial, scientific, and medical band and some long-term evolution applications. In addition, measured results were compared with calculated results, and agreement between them was observed.
NMR relaxation in multipolar AX systems under spin locking conditions.
Kaikkonen, A; Kowalewski, J
1999-12-01
A relaxation matrix has been calculated for a multipolar AX spin system under the on-resonance spin-locking condition. Auto- and cross-correlation terms between dipolar, quadrupolar, and CSA interactions are considered. It is shown that the spin-lock leads to many relaxation pathways being blocked, resulting in a considerably simplified relaxation network. The presence of spectral densities at zero frequency, associated with locked nuclei, allows efficient relaxation also in the absence of fast molecular motions. PMID:10579956
NASA Astrophysics Data System (ADS)
Lotsch, Bettina V.
2015-07-01
Graphene's legacy has become an integral part of today's condensed matter science and has equipped a whole generation of scientists with an armory of concepts and techniques that open up new perspectives for the postgraphene area. In particular, the judicious combination of 2D building blocks into vertical heterostructures has recently been identified as a promising route to rationally engineer complex multilayer systems and artificial solids with intriguing properties. The present review highlights recent developments in the rapidly emerging field of 2D nanoarchitectonics from a materials chemistry perspective, with a focus on the types of heterostructures available, their assembly strategies, and their emerging properties. This overview is intended to bridge the gap between two major—yet largely disjunct—developments in 2D heterostructures, which are firmly rooted in solid-state chemistry or physics. Although the underlying types of heterostructures differ with respect to their dimensions, layer alignment, and interfacial quality, there is common ground, and future synergies between the various assembly strategies are to be expected.
Mixed spin-5/2 and spin-2 Ising ferrimagnetic system on the Bethe lattice
NASA Astrophysics Data System (ADS)
Masrour, R.; Jabar, A.; Benyoussef, A.; Hamedoun, M.
2015-11-01
The magnetic properties of spins-S and σ Ising model on the Bethe lattice have been investigated by using the Monte Carlo simulation. The thermal total magnetization and magnetization of spins S and σ with the different exchange interactions, different external magnetic field and different temperatures have been studied. The critical temperature and compensation temperature have been deduced. The magnetic hysteresis cycle of Ising ferrimagnetic system on the Bethe lattice has been deduced for different values of exchange interactions between the spins S and σ, for different values of crystal field and for different sizes. The magnetic coercive filed has been deduced.
Spin transport in helical biological systems
Díaz, Elena; Gutierrez, Rafael
2014-08-20
Motivated by the recent experimental demonstration of spin selective effects in monolayers of double-stranded DNA oligomers, our work presents a minimal model to describe electron transmission through helical fields. Our model highlight that the lack of inversion symmetry due to the chirality of the potential is a key factor which will lead to a high spin-polarization (SP). We also study the stability of the SP against fluctuations of the electronic structure induced by static disorder affecting the on-site energies. In the energy regions where the spin-filtering occurs, our results remain stable against moderate disorders although the SP is slightly reduced.
Selective coherence transfers in homonuclear dipolar coupled spin systems
Ramanathan, Chandrasekhar; Sinha, Suddhasattwa; Havel, Timothy F.; Cory, David G.; Baugh, Jonathan
2005-02-01
Controlling the dynamics of a dipolar coupled spin system is critical to the development of solid-state spin-based quantum information processors. Such control remains challenging, as every spin is coupled to a large number of surrounding spins. Here we demonstrate that in an ensemble of spin pairs it is possible to decouple the weaker interactions (weak coupling {omega}{sub D}{sup w}) between different pairs and extend the coherence lifetimes within the two-spin system from 19 {mu}s to 11.1 ms, a factor of 580. This is achieved without decoupling the stronger interaction (strong coupling {omega}{sub D}{sup S}) between the two spins within a pair. An amplitude modulated rf field is applied on resonance with the Larmor frequency of the spins, with amplitude {omega}{sub 1}, and frequency of the modulation matched to the strong coupling. The spin pairs appear isolated from each other in the regime where the rf power satisfies {omega}{sub D}{sup w}<<{omega}{sub 1}<<{omega}{sub D}{sup S}.
NASA Astrophysics Data System (ADS)
Mani, Ramesh; Kriisa, A.
2015-03-01
Negative diagonal magneto-conductivity/resistivity is a spectacular- and thought provoking- property of driven, far-from-equilibrium, low dimensional electronic systems. The physical response of this exotic electronic state is not yet fully understood since it is rarely encountered in experiment. The microwave-radiation-induced zero-resistance state in the high mobility GaAs/AlGaAs 2D electron system is believed to be an example where negative magneto-conductivity/resistivity is responsible for the observed phenomena. Here, we examine the magneto-transport characteristics of this negative conductivity/resistivity state in the microwave photo-excited two-dimensional electron system (2DES) through a numerical solution of the associated boundary value problem. The results suggest, surprisingly, that a bare negative diagonal conductivity/resistivity state in the 2DES under photo-excitation should yield a positive diagonal resistance with a concomitant sign reversal in the Hall voltage. Transport measurements are supported by the DOE, Office of Basic Energy Sciences, Material Sciences and Engineering Division under DE-SC0001762. Additional support by the ARO under W911NF-07-01-015.
NASA Technical Reports Server (NTRS)
Shih, T. I.-P.; Bailey, R. T.; Nguyen, H. L.; Roelke, R. J.
1990-01-01
An efficient computer program, called GRID2D/3D was developed to generate single and composite grid systems within geometrically complex two- and three-dimensional (2- and 3-D) spatial domains that can deform with time. GRID2D/3D generates single grid systems by using algebraic grid generation methods based on transfinite interpolation in which the distribution of grid points within the spatial domain is controlled by stretching functions. All single grid systems generated by GRID2D/3D can have grid lines that are continuous and differentiable everywhere up to the second-order. Also, grid lines can intersect boundaries of the spatial domain orthogonally. GRID2D/3D generates composite grid systems by patching together two or more single grid systems. The patching can be discontinuous or continuous. For continuous composite grid systems, the grid lines are continuous and differentiable everywhere up to the second-order except at interfaces where different single grid systems meet. At interfaces where different single grid systems meet, the grid lines are only differentiable up to the first-order. For 2-D spatial domains, the boundary curves are described by using either cubic or tension spline interpolation. For 3-D spatial domains, the boundary surfaces are described by using either linear Coon's interpolation, bi-hyperbolic spline interpolation, or a new technique referred to as 3-D bi-directional Hermite interpolation. Since grid systems generated by algebraic methods can have grid lines that overlap one another, GRID2D/3D contains a graphics package for evaluating the grid systems generated. With the graphics package, the user can generate grid systems in an interactive manner with the grid generation part of GRID2D/3D. GRID2D/3D is written in FORTRAN 77 and can be run on any IBM PC, XT, or AT compatible computer. In order to use GRID2D/3D on workstations or mainframe computers, some minor modifications must be made in the graphics part of the program; no
Giant magnetoresistance of edge current between fermion and spin topological systems
NASA Astrophysics Data System (ADS)
Slieptsov, Igor O.; Karnaukhov, Igor N.
2015-07-01
A spin-1/2 subsystem conjoined along a cut with a subsystem of spinless fermions in the state of topological insulator is studied on a honeycomb lattice. The model describes a junction between a 2D topological insulator and a 2D spin lattice with direction-dependent exchange interactions in topologically trivial and nontrivial phase states. The model Hamiltonian of the complex system is solved exactly by reduction to free Majorana fermions in a static ℤ2 gauge field. In contrast to junctions between topologically trivial phases, this junction is defined by chiral edge states and direct interaction between them for topologically nontrivial phases. As a result of the boundary interaction between chiral edge modes, the edge junction is defined by the Chern numbers of the subsystems: such gapless edge modes with the same (different) chirality switch on (off) an edge current between topological subsystems. The sign of the Chern number of spin subsystem is changed in an external magnetic field, thus the electric current strongly depends both on a direction and a value of an applied weak magnetic field. We provide a detailed analysis of the edge current and demonstrate how to switch on (off) the electric current in the magnetic field.
Transport, hysteresis and avalanches in artificial spin ice systems
Reichhardt, Charles; Reichhardt, Cynthia J; Libal, A
2010-01-01
We examine the hopping dynamics of an artificial spin ice system constructed from colloids on a kagome optical trap array where each trap has two possible states. By applying an external drive from an electric field which is analogous to a biasing applied magnetic field for real spin systems, we can create polarized states that obey the spin-ice rules of two spins in and one spin out at each vertex. We demonstrate that when we sweep the external drive and measure the fraction of the system that has been polarized, we can generate a hysteresis loop analogous to the hysteretic magnetization versus external magnetic field curves for real spin systems. The disorder in our system can be readily controlled by changing the barrier that must be overcome before a colloid can hop from one side of a trap to the other. For systems with no disorder, the effective spins all flip simultaneously as the biasing field is changed, while for strong disorder the hysteresis curves show a series of discontinuous jumps or avalanches similar to Barkhausen noise.
Zhang, Yuning; Lundberg, Pontus; Diether, Maren; Porsch, Christian; Janson, Caroline; Lynd, Nathaniel A.; Ducani, Cosimo; Malkoch, Michael; Malmström, Eva; Hawker, Craig J.; Nyström, Andreas M.
2015-01-01
Histamine functionalized block copolymers based on poly(allyl glycidyl ether)-b-poly(ethylene oxide) (PAGE-b-PEO) were prepared with different ratios of histamine and octyl or benzyl groups using UV-initiated thiol-ene click chemistry. At neutral pH, the histamine units are uncharged and hydrophobic, while in acidic environments, such as in the endosome, lysosomes, or extracellular sites of tumours, the histamine groups are positively charged and hydrophilic. pH responsible polymer drug delivery systems is a promising route to site specific delivery of drugs and offers the potential to avoid side effects of systemic treatment. Our detailed in vitro experiments of the efficacy of drug delivery and the intracellular localization characteristics of this library of NPs in 2D and 3D cultures of breast cancer revealed that the 50% histamine-modified polymer loaded with DOX exhibited rapid accumulation in the nucleus of free DOX within 2 h. Confocal studies showed enhanced mitochondrial localization and lysosomal escape when compared to controls. From these combined studies, it was shown that by accurately tuning the structure of the initial block copolymers, the resulting self-assembled NPs can be designed to exploit histamine as an endosomal escape trigger and the octyl/benzyl units give rise to a hydrophobic core resulting in highly efficacious drug delivery systems (DDS) with control over intracellular localization. Optimization and rational control of the intracellular localization of both DDS and the parent drug can give nanomedicines a substantial increase in efficacy and should be explored in future studies. PMID:26257912
Spin-controlled mechanics in nanoelectromechanical systems
NASA Astrophysics Data System (ADS)
Radić, D.
2015-03-01
We consider a dc-electronic tunneling transport through a carbon nanotube suspended between normal-metal source and arbitrarily spin-polarized drain lead in the presence of an external magnetic field. We show that magnetomotive coupling between electrical current through the nanotube and its mechanical vibrations may lead to an electromechanical instability and give an onset of self-excited mechanical vibrations depending on spin polarization of the drain lead and frequency of vibrations. The self-excitation mechanism is based on correlation between the occupancy of quantized Zeeman-split electronic states in the nanotube and the direction of velocity of its mechanical motion. It is an effective gating effect by the presence of electron in the spin state which, through the Coulomb blockade, permits tunneling of electron to the drain predominantly only during a particular phase of mechanical vibration thus coherently changing mechanical momentum and leading into instability if mechanical damping is overcome.
Seredyuk, Maksym; Piñeiro-López, Lucía; Muñoz, M Carmen; Martínez-Casado, Francisco J; Molnár, Gábor; Rodriguez-Velamazán, José Alberto; Bousseksou, Azzedine; Real, José Antonio
2015-08-01
Deprotonation of the ionogenic tetradentate ligand 6,6'-bis(1H-tetrazol-5-yl)-2,2'-bipyridine [H2bipy(ttr)2] in the presence of Fe(II) in solution has afforded an anionic mononuclear complex and a neutral two-dimensional coordination polymer formulated as, respectively, NEt3H{Fe[bipy(ttr)2][Hbipy(ttr)2]}·3MeOH (1) and {Fe[bipy(ttr)2]}n (2). The anions [Hbipy(ttr)2](-) and [bipy(ttr)2](2-) embrace the Fe(II) centers defining discrete molecular units 1 with the Fe(II) ion lying in a distorted bisdisphenoid dodecahedron, a rare example of octacoordination in the coordination environment of this cation. The magnetic behavior of 1 shows that the Fe(II) is high-spin, and its Mössbauer spectrum is characterized by a relatively large average quadrupole splitting, ΔEQ = 3.42 mm s(-1). Compound 2 defines a strongly distorted octahedral environment for Fe(II) in which one [bipy(ttr)2](-) anion coordinates the equatorial positions of the Fe(II) center, while the axial positions are occupied by peripheral N-tetrazole atoms of two adjacent {Fe[bipy(ttr)2]}(0) moieties thereby generating an infinite double-layer sheet. Compound 2 undergoes an almost complete spin crossover transition between the high-spin and low-spin states centered at about 221 K characterized by an average variation of enthalpy and entropy ΔH(av) = 8.27 kJ mol(-1), ΔS(av) = 37.5 J K(-1) mol(-1), obtained from calorimetric DSC measurements. Photomagnetic measurements of 2 at 10 K show an almost complete light-induced spin state trapping (LIESST) effect which denotes occurrence of antiferromagnetic coupling between the excited high-spin species and TLIESST = 52 K. The crystal structure of 2 has been investigated in detail at various temperatures and discussed. PMID:26172431
Energy efficient hybrid computing systems using spin devices
NASA Astrophysics Data System (ADS)
Sharad, Mrigank
Emerging spin-devices like magnetic tunnel junctions (MTJ's), spin-valves and domain wall magnets (DWM) have opened new avenues for spin-based logic design. This work explored potential computing applications which can exploit such devices for higher energy-efficiency and performance. The proposed applications involve hybrid design schemes, where charge-based devices supplement the spin-devices, to gain large benefits at the system level. As an example, lateral spin valves (LSV) involve switching of nanomagnets using spin-polarized current injection through a metallic channel such as Cu. Such spin-torque based devices possess several interesting properties that can be exploited for ultra-low power computation. Analog characteristic of spin current facilitate non-Boolean computation like majority evaluation that can be used to model a neuron. The magneto-metallic neurons can operate at ultra-low terminal voltage of ˜20mV, thereby resulting in small computation power. Moreover, since nano-magnets inherently act as memory elements, these devices can facilitate integration of logic and memory in interesting ways. The spin based neurons can be integrated with CMOS and other emerging devices leading to different classes of neuromorphic/non-Von-Neumann architectures. The spin-based designs involve `mixed-mode' processing and hence can provide very compact and ultra-low energy solutions for complex computation blocks, both digital as well as analog. Such low-power, hybrid designs can be suitable for various data processing applications like cognitive computing, associative memory, and currentmode on-chip global interconnects. Simulation results for these applications based on device-circuit co-simulation framework predict more than ˜100x improvement in computation energy as compared to state of the art CMOS design, for optimal spin-device parameters.
Quantum Simulation with 2D Arrays of Trapped Ions
NASA Astrophysics Data System (ADS)
Richerme, Philip
2016-05-01
The computational difficulty of solving fully quantum many-body spin problems is a significant obstacle to understanding the behavior of strongly correlated quantum matter. This work proposes the design and construction of a 2D quantum spin simulator to investigate the physics of frustrated materials, highly entangled states, mechanisms potentially underpinning high-temperature superconductivity, and other topics inaccessible to current 1D systems. The effective quantum spins will be encoded within the well-isolated electronic levels of trapped ions, confined in a two-dimensional planar geometry, and made to interact using phonon-mediated optical dipole forces. The system will be scalable to 100+ quantum particles, far beyond the realm of classical intractability, while maintaining individual-ion control, long quantum coherence times, and site-resolved projective spin measurements. Once constructed, the two-dimensional quantum simulator will implement a broad range of spin models on a variety of reconfigurable lattices and characterize their behavior through measurements of spin-spin correlations and entanglement. This versatile tool will serve as an important experimental resource for exploring difficult quantum many-body problems in a regime where classical methods fail.
A hybrid-systems approach to spin squeezing using a highly dissipative ancillary system
NASA Astrophysics Data System (ADS)
Dooley, Shane; Yukawa, Emi; Matsuzaki, Yuichiro; Knee, George C.; Munro, William J.; Nemoto, Kae
2016-05-01
Squeezed states of spin systems are an important entangled resource for quantum technologies, particularly quantum metrology and sensing. Here we consider the generation of spin squeezed states by interacting the spins with a dissipative ancillary system. We show that spin squeezing can be generated in this model by two different mechanisms: one-axis twisting (OAT) and driven collective relaxation (DCR). We can interpolate between the two mechanisms by simply adjusting the detuning between the dissipative ancillary system and the spin system. Interestingly, we find that for both mechanisms, ancillary system dissipation need not be considered an imperfection in our model, but plays a positive role in spin squeezing. To assess the feasibility of spin squeezing we consider two different implementations with superconducting circuits. We conclude that it is experimentally feasible to generate a squeezed state of hundreds of spins either by OAT or by DCR.
SPIN POLARIZED PHOTOELECTRON SPECTROSCOPY AS A PROBE OF MAGNETIC SYSTEMS.
JOHNSON, P.D.; GUNTHERODT, G.
2006-11-01
Spin-polarized photoelectron spectroscopy has developed into a versatile tool for the study of surface and thin film magnetism. In this chapter, we examine the methodology of the technique and its recent application to a number of different problems. We first examine the photoemission process itself followed by a detailed review of spin-polarization measurement techniques and the related experimental requirements. We review studies of spin polarized surface states, interface states and quantum well states followed by studies of the technologically important oxide systems including half-metallic transition metal oxides, ferromagnet/oxide interfaces and the antiferromagnetic cuprates that exhibit high Tc Superconductivity. We also discuss the application of high-resolution photoemission with spin resolving capabilities to the study of spin dependent self energy effects.
Large in-plane spin-dephasing anisotropy in a [0 0 1]-grown two-dimensional electron system
NASA Astrophysics Data System (ADS)
Korn, T.; Stich, D.; Schulz, R.; Schuh, D.; Wegscheider, W.; Schüller, C.
2008-03-01
A large anisotropy in the spin dephasing times for the different in-plane directions of [0 0 1] quantum wells has been predicted in calculations by Averkiev and Golub [Phys. Rev. B 60 (1999) 15582] for systems with both Rashba and Dresselhaus spin-orbit fields. Here, we present time-resolved Faraday rotation measurements performed in the Voigt geometry on a high-mobility 2D electron system grown on a [0 0 1] substrate. An out-of-plane spin polarization is created in the sample by a circularly polarized pump pulse. The magnetic field applied in the sample plane forces the spins to precess perpendicular to it. For a magnetic field applied along [1 1 0], the spins precess into the [1 1bar 0] direction, which is in the sample plane, for a magnetic field along [1 1bar 0], the spins precess into the [1 1 0] direction. The experimentally determined spin dephasing times for these two different cases differ by about 60%, demonstrating that the predicted anisotropy is present in our sample.
NASA Astrophysics Data System (ADS)
LeVoir, M. A.; Gulick, S. P.; Reece, R.; Barth, G. A.; Childs, J. R.; Everson, E. D.; Hart, P. E.; Johnson, K. M.; Lester, W. R.; Sliter, R. W.
2011-12-01
The Baranof Fan is a large marine sedimentary system in the eastern Gulf of Alaska, straddling the border between the U.S. and Canada. The volume of the Fan is estimated to be > 200,000 km3. Little is known about the depositional timing, the tectonic and morphologic processes influencing its development, or the role of channel aggradation and avulsion in its progression. Both tectonic and climatic transitions likely influenced the formation and evolution of the Fan, with events including the onset of northern hemisphere glaciation, the Mid-Pleistocene transition, the transport of the Yakutat Terrane along the southeast Alaskan margin, and the uplift of the Coast Mountains. 2D seismic reflection and multibeam bathymetry data were collected in the Gulf of Alaska in June 2011 aboard the R/V Marcus G. Langseth as a part of the U.S. Extended Continental Shelf (ECS) program assessing potential opportunities under the United Nations Law of the Sea Convention. The purpose of the 2011 survey was to determine sediment thickness, velocity structure, stratigraphic architecture, and crustal structure on of the Gulf of Alaska seafloor in support of U.S. continental shelf maritime zone definition. The surveyed geologic features include the Surveyor and Baranof sedimentary systems, which control active sediment distribution in the Gulf of Alaska. Preliminary analysis of these data show four distinct buried channels throughout the mid to distal Baranof Fan, ranging in width from 5 - 9 km, which may have evolved into modern surface channels (ranging in width from 2 - 7 km) visible in both the seismic data and multibeam bathymetry. The location and trajectory of these buried channels, however, appears distinct from the modern Horizon and Mukluk Channels; the buried channels may have avulsed into the modern channel systems, or could possibly be older and now abandoned branches instrumental in building the westward part of the Fan. All of the imaged channels appear to be depositional
Meijer, Marrigje F.; Velleman, Ton; Boerboom, Alexander L.; Bulstra, Sjoerd K.; Otten, Egbert; Stevens, Martin; Reininga, Inge H. F.
2016-01-01
Introduction The EOS stereoradiography system has shown to provide reliable varus/valgus (VV) measurements of the lower limb in 2D (VV2D) and 3D (VV3D) after total knee arthroplasty (TKA). Validity of these measurements has not been investigated yet, therefore the purpose of this study was to determine validity of EOS VV2D and VV3D. Methods EOS images were made of a lower limb phantom containing a knee prosthesis, while varying VV angle from 15° varus to 15° valgus and flexion angle from 0° to 20°, and changing rotation from 20° internal to 20° external rotation. Differences between the actual VV position of the lower limb phantom and its position as measured on EOS 2D and 3D images were investigated. Results Rotation, flexion or VV angle alone had no major impact on VV2D or VV3D. Combination of VV angle and rotation with full extension did not show major differences in VV2D measurements either. Combination of flexion and rotation with a neutral VV angle showed variation of up to 7.4° for VV2D; maximum variation for VV3D was only 1.5°. A combination of the three variables showed an even greater distortion of VV2D, while VV3D stayed relatively constant. Maximum measurement difference between preset VV angle and VV2D was 9.8°, while the difference with VV3D was only 1.9°. The largest differences between the preset VV angle and VV2D were found when installing the leg in extreme angles, for example 15° valgus, 20° flexion and 20° internal rotation. Conclusions After TKA, EOS VV3D were more valid than VV2D, indicating that 3D measurements compensate for malpositioning during acquisition. Caution is warranted when measuring VV angle on a conventional radiograph of a knee with a flexion contracture, varus or valgus angle and/or rotation of the knee joint during acquisition. PMID:26771177
NASA Astrophysics Data System (ADS)
Abidi, Hammadi; Zhang, Ping
2015-10-01
Given solenoidal vector u0 ∈H ˙ - 2 δ ∩H1 (R2), ρ0 - 1 ∈L2 (R2), and ρ0 ∈L∞ ∩W ˙ 1, r (R2) with a positive lower bound for δ ∈ (0, 1/2) and 2 < r < 2/1 - 2 δ, we prove that 2-D incompressible inhomogeneous Navier-Stokes system (1.1) has a unique global solution provided that the viscous coefficient μ (ρ0) is close enough to 1 in the L∞ norm compared to the size of δ and the norms of the initial data. With smoother initial data, we can prove the propagation of regularities for such solutions. Furthermore, for 1 < p < 4, if (ρ0 - 1, u0) belongs to the critical Besov spaces B˙p, 1 2/p (R2) × ( B˙p, 1 - 1 +2/p ∩L2 (R2)) and the B˙p, 1 2/p (R2) norm of ρ0 - 1 is sufficiently small compared to the exponential of ‖u0‖L2 2 +‖u0 ‖ B˙p, 1 - 1 +2/p, we prove the global well-posedness of (1.1) in the scaling invariant spaces. Finally for initial data in the almost critical Besov spaces, we prove the global well-posedness of (1.1) under the assumption that the L∞ norm of ρ0 - 1 is sufficiently small.
Spin Related Transport in Rashba 2DEG Systems
NASA Astrophysics Data System (ADS)
Nitta, Junsaku
Transport in mesoscopic conductors is determined not only by orbital motion of carriers but also by quantum interference effect. However, it is well known that the quantum interference such as weak localization is much modified in the presence of spin-orbit interaction (SOI), leading to weak anti-localization. We discuss the origin of the Rashba SOI and spin related mesoscopic transport in InGaAs based two dimensional electron gases (2DEG) affected by the Rashba SOI. It is experimentally shown that the strength of the Rashba SOI in InGaAs 2DEG systems can be controlled by the gate voltage.1 The spin dynamics in solid systems is commonly determined by the competition between Zeeman effect and SOI. The spin relaxation time and dephasing time are studied from weak anti-localization analysis as a function of the relative strength of the Zeeman energy (EZ) and the Rashba SOI energy (ESOI). The (EZ) was introduced by applying magnetic field parallel to the 2DEG plane. This in-pane magnetic field does not affect the orbital motion of electrons. The spin relaxation time increases with the Zeeman energy. The dephasing time associated with the spin-induced time reversal symmetry (TRS) breaking saturates when EZ becomes comparable to ESOI. Moreover, we show that the spin-induced TRS breaking mechanism is a universal function of the ratio EZ/ESOI within the experimental accuracy.2 Note from Publisher: This article contains the abstract only.
Solitons in wave propagation and spin systems
NASA Astrophysics Data System (ADS)
Loutsenko, Igor
1999-10-01
This thesis consists of three parts: In the first part, a solution of the restricted Hadamard problem is presented. The classical Hadamard problem consists in determining (up to equivalence) all the second order differential operators which satisfy Huygens' Principle in the narrow sense. Physically, such operators describe systems where the diffusion of waves is absent and where signals propagate with maximal velocity. Unlike the original principle of superposition of secondary waves, which holds for all wave propagation phenomena, Huygens' principle in the narrow sense of Hadamard applies only to a very restricted range of wave processes, with sharp signals. We present a new class of Huygens' operators on Minkowski space-time and establish a new link between Huygens' principle and the solitons of the Korteveg-de Vries equation. In the second part, a new class of exactly solvable models in statistical mechanics is presented. We study the connections between the soliton solutions of certain integrable nonlinear equations (hierarchies of equations) and the thermodynamic quantities of one-dimensional Ising models with different types of interactions between spins. The exact solvability of these models can be traced back to this connection. We consider a model linked to soliton solutions of the Korteveg de Vries and of the B-type Kadomtsev-Petiashvili hierarchies. A connection between these Ising chains and random matrix models is considered as well. In the third part, we study solitonic mechanisms of exciton superfluidity. We provide a theoretical explanation of recent experiments on the propagation of excitons in semiconductors. In these experiments, the excitonic transport under the action of a laser pulse has been studied. It turned out that under certain conditions this transport becomes anomalous and the excitons propagate through the crystal in a wave packet without diffusion. We propose a model for this phenomenon which relies on the presence of an exciton
Spin Relaxation in Kondo Lattice Systems with Anisotropic Kondo Interaction
NASA Astrophysics Data System (ADS)
Belov, S. I.; Kutuzov, A. S.
2016-04-01
We study the influence of the Kondo effect on the spin relaxation in systems with anisotropic Kondo interaction at temperatures both high and low as compared with the static magnetic field. In the absence of the Kondo effect, the electron spin resonance linewidth is not narrowed in the whole temperature range due to the high anisotropy of the Kondo interaction. The Kondo effect leads to the universal energy scale, which regulates the temperature and magnetic field dependence of different kinetic coefficients and results in a mutual cancelation of their singular parts in a collective spin mode.
Spin Pumping in Electrodynamically Coupled Magnon-Photon Systems.
Bai, Lihui; Harder, M; Chen, Y P; Fan, X; Xiao, J Q; Hu, C-M
2015-06-01
We use electrical detection, in combination with microwave transmission, to investigate both resonant and nonresonant magnon-photon coupling at room temperature. Spin pumping in a dynamically coupled magnon-photon system is found to be distinctly different from previous experiments. Characteristic coupling features such as modes anticrossing, linewidth evolution, peculiar line shape, and resonance broadening are systematically measured and consistently analyzed by a theoretical model set on the foundation of classical electrodynamic coupling. Our experimental and theoretical approach paves the way for pursuing microwave coherent manipulation of pure spin current via the combination of spin pumping and magnon-photon coupling. PMID:26196640
NASA Astrophysics Data System (ADS)
Fullam, Jennifer; Boye, Carol; Standaert, Theodorus; Gaudiello, John; Tomlinson, Derek; Xiao, Hong; Fang, Wei; Zhang, Xu; Wang, Fei; Ma, Long; Zhao, Yan; Jau, Jack
2011-03-01
In this paper, we tested a novel methodology of measuring critical dimension (CD) uniformity, or CDU, with electron beam (e-beam) hotspot inspection and measurement systems developed by Hermes Microvision, Inc. (HMI). The systems were used to take images of two-dimensional (2D) array patterns and measure CDU values in a custom designated fashion. Because this methodology combined imaging of scanning micro scope (SEM) and CD value averaging over a large array pattern of optical CD, or OCD, it can measure CDU of 2D arrays with high accuracy, high repeatability and high throughput.
NASA Astrophysics Data System (ADS)
Li, Zhifu; Hu, Yueming; Li, Di
2016-08-01
For a class of linear discrete-time uncertain systems, a feedback feed-forward iterative learning control (ILC) scheme is proposed, which is comprised of an iterative learning controller and two current iteration feedback controllers. The iterative learning controller is used to improve the performance along the iteration direction and the feedback controllers are used to improve the performance along the time direction. First of all, the uncertain feedback feed-forward ILC system is presented by an uncertain two-dimensional Roesser model system. Then, two robust control schemes are proposed. One can ensure that the feedback feed-forward ILC system is bounded-input bounded-output stable along time direction, and the other can ensure that the feedback feed-forward ILC system is asymptotically stable along time direction. Both schemes can guarantee the system is robust monotonically convergent along the iteration direction. Third, the robust convergent sufficient conditions are given, which contains a linear matrix inequality (LMI). Moreover, the LMI can be used to determine the gain matrix of the feedback feed-forward iterative learning controller. Finally, the simulation results are presented to demonstrate the effectiveness of the proposed schemes.
Classical models of the spin 1/2 system
NASA Astrophysics Data System (ADS)
Salazar-Lazaro, Carlos H.
We proposed a Quaternionic mechanical system motivated by the Foucault pendulum as a classical model for the dynamics of the spin ½ system. We showed that this mechanical system contains the dynamics of the spin state of the electron under a uniform magnetic field as it is given by the Schrodinger-Pauli-Equation (SPE). We closed with a characterization of the dynamics of this generalized classical system by showing that it is equivalent with the dynamics of the Schrodinger Pauli Equation as long as the solutions to the generalized classical system are roots of the Lagrangian, that is the condition
Slipko, Valeriy A.; Pershin, Yuriy V.
2011-10-15
In this paper we use a spin kinetic equation to study spin-polarization dynamics in one-dimensional (1D) wires and 2D channels. The spin kinetic equation is valid in both diffusive and ballistic spin transport regimes and therefore is more general than the usual spin drift-diffusion equations. In particular, we demonstrate that in infinite 1D wires with Rashba spin-orbit interaction the exponential spin-relaxation decay can be modulated by an oscillating function. In the case of spin relaxation in finite length 1D wires, it is shown that an initially homogeneous spin polarization spontaneously transforms into a persistent spin helix. We find that a propagating spin-polarization profile reflects from a system boundary and returns back to its initial position similarly to the reflectance of sound waves from an obstacle. The Green's function of the spin kinetic equation is derived for both finite and infinite 1D systems. Moreover, we demonstrate explicitly that the spin relaxation in specifically oriented 2D channels with Rashba and Dresselhaus spin-orbit interactions of equal strength occurs similarly to that in 1D wires of finite length. Finally, a simple transformation mapping 1D spin kinetic equation into the Klein-Gordon equation with an imaginary mass is found thus establishing an interesting connection between semiconductor spintronics and relativistic quantum mechanics.
This study is a part of an ongoing research project that aims at assessing the environmental benefits of DNAPL removal. The laboratory part of the research project is to examine the functional relationship between DNAPL architecture, mass removal and contaminant mass flux in 2-D ...
Sensitivity and System Response of Pin Power Peaking in VVER-1000 Fuel Assembly Using TSUNAMI-2D
NASA Astrophysics Data System (ADS)
Frybort, J.
2014-04-01
Pin power peaking in a VVER-1000 fuel assembly and its sensitivity and uncertainty was analyzed by TSUNAMI-2D code. Several types of fuel assemblies were considered. They differ in number and position of gadolinium fuel pins. The calculations were repeated for several fuel compositions obtained by fuel depletion calculation. The results are quantified sensitivity data, which can be used for enrichment profiling.
NASA Astrophysics Data System (ADS)
Takayama, Kei; Kamiya, Yukihiro; Fujii, Takeo; Suzuki, Yasuo
Spread Spectrum (SS) has been widely used for various wireless systems such as cellular systems, wireless local area network (LAN) and so on. Using multiple antennas at the receiver, two-dimensional (2D) RAKE is realized over the time- and the space-domain. However, it should be noted that the 2D-RAKE receiver must detect the bit timing prior to the RAKE combining. In case of deep fading, it is often difficult to detect it due to low signal-to-noise power ratio (SNR). To solve this problem, we propose a new blind 2D-RAKE receiver based on the constant modulus algorithm (CMA). Since it does not need a priori bit timing detection, it is possible to compensate frequency selective fading even in very low SNR environments. The proposed method is particularly suitable for the software defined radio (SDR) architecture. The performance of the proposed method is investigated through computer simulations.
Nuclear magnetometry studies of spin dynamics in quantum Hall systems
NASA Astrophysics Data System (ADS)
Fauzi, M. H.; Watanabe, S.; Hirayama, Y.
2014-12-01
We performed a nuclear magnetometry study on quantum Hall ferromagnet with a bilayer total filling factor of νtot=2 . We found not only a rapid nuclear relaxation but also a sudden change in the nuclear-spin polarization distribution after a one-second interaction with a canted antiferromagnetic phase. We discuss the possibility of observing cooperative phenomena coming from nuclear-spin ensemble triggered by hyperfine interaction in quantum Hall system.
Elastic anomalies and phonon damping in a metallic high spin-low spin system
NASA Astrophysics Data System (ADS)
Ihlemann, J.; Bärner, K.
1984-12-01
The elastic constants and the sound attenuation in single crystals of the metallic high spin (hs)-low spin (ls) system MnAs 1- xP x have been measured for temperaturres between 10 and 500 K. Elastic anomalies and damping maxima have been found for the second-order displacive (B8 1⇌B31) phase transition, the hs-ls transition and for the magnetic order-disorder transition. The phenomena near the hs-ls transition, in particular, are interpreted in terms of a condensation of a soft static phonon at the ls (hs) site in a hs (ls) matrix.
Real Spin in Pseudospin Quasiparticles of Bilayer Quantum Hall systems
NASA Astrophysics Data System (ADS)
Roostaei, Bahman; Fertig, H. A.; Mullen, Kieran
2005-03-01
Recent experiments have observed enhanced nuclear spin relaxation in double layer quantum Hall systems near the phase boundary between compressible and incompressible states(1). We investigate the electronic spin structure of such systems by calculating the groundstate close to ν= 1 using the Hartree-Fock approximation. This state is a quasiparticle lattice, and we examine the possibility of optimizing its energy by allowing the real spin to tilt away from the majority direction in the quasiparticle cores, analogous to what has been suggested in field theoretic studies of single quasiparticles(2). A broken symmetry of these states introduces low energy spin modes which may couple to the nuclear spins. We calculate both the spin and pseudospin textures for the system near the transition and discuss whether they can account for the observed relaxation rates.1) I.B. Spielman et al., cond-mat/0410092; N. Kumada et al., cond-mat/04104952) S. Ghosh and R. Rajaraman, Phys. Rev. B63, 035304 (2001); Z.F. Izawa and G. Tsitsishvili, cond- mat/0311406.Grants: NSF MRSEC DMR-0080054, NSF EPS-9720651 and NSF DMR- 0454699
NASA Astrophysics Data System (ADS)
Deshmukh, Ashish P.; Pacheco, Carlos; Hay, Michael B.; Myneni, Satish C. B.
2007-07-01
Carboxyl groups are abundant in natural organic molecules (NOM) and play a major role in their reactivity. The structural environments of carboxyl groups in IHSS soil and river humic samples were investigated using 2D NMR (heteronuclear and homonuclear correlation) spectroscopy. Based on the 1H- 13C heteronuclear multiple-bond correlation (HMBC) spectroscopy results, the carboxyl environments in NOM were categorized as Type I (unsubstituted and alkyl-substituted aliphatic/alicyclic), Type II (functionalized carbon substituted), Type IIIa, b (heteroatom and olefin substituted), and Type IVa, b (5-membered heterocyclic aromatic and 6-membered aromatic). The most intense signal in the HMBC spectra comes from the Type I carboxyl groups, including the 2JCH and 3JCH couplings of unsubstituted aliphatic and alicyclic acids, though this spectral region also includes the 3JCH couplings of Type II and III structures. Type II and III carboxyls have small but detectable 2JCH correlations in all NOM samples except for the Suwannee River humic acid. Signals from carboxyls bonded to 5-membered aromatic heterocyclic fragments (Type IVa) are observed in the soil HA and Suwannee River FA, while correlations to 6-membered aromatics (Type IVb) are only observed in Suwannee River HA. In general, aromatic carboxylic acids may be present at concentrations lower than previously imagined in these samples. Vibrational spectroscopy results for these NOM samples, described in an accompanying paper [Hay M. B. and Myneni S. C. B. (2007) Structural environments of carboxyl groups in natural organic molecules from terrestrial systems. Part 1: Infrared spectroscopy. Geochim. Cosmochim. Acta (in press)], suggest that Type II and Type III carboxylic acids with α substituents (e.g., -OH, -OR, or -CO 2H) constitute the majority of carboxyl structures in all humic substances examined. Furoic and salicylic acid structures (Type IV) are also feasible fragments, albeit as minor constituents. The
Ho, Cong Son Tan, Seng Ghee; Jalil, Mansoor B. A.
2014-05-14
The generation of spin current and spin polarization in a two-dimensional electron gas structure is studied in the presence of Dresselhaus and Rashba spin-orbit couplings (SOC), the strength of the latter being modulated in time by an ac gate voltage. By means of the non-Abelian gauge field approach, we established the relation between the Lorentz spin force and the spin current in the SOC system, and showed that the longitudinal component of the spin force induces a transverse spin current. For a constant (time-invariant) Rashba system, we recover the universal spin Hall conductivity of e/(8π) , derived previously via the Berry phase and semi-classical methods. In the case of a time-dependent SOC system, the spin current is sustained even under strong impurity scattering. We evaluated the ac spin current generated by a time-modulated Rashba SOC in the absence of any dc electric field. The magnitude of the spin current reaches a maximum when the modulation frequency matches the Larmor frequency of the electrons.
Ikeda, Tatsushi; Ito, Hironobu; Tanimura, Yoshitaka
2015-06-01
We explore and describe the roles of inter-molecular vibrations employing a Brownian oscillator (BO) model with linear-linear (LL) and square-linear (SL) system-bath interactions, which we use to analyze two-dimensional (2D) THz-Raman spectra obtained by means of molecular dynamics (MD) simulations. In addition to linear infrared absorption (1D IR), we calculated 2D Raman-THz-THz, THz-Raman-THz, and THz-THz-Raman signals for liquid formamide, water, and methanol using an equilibrium non-equilibrium hybrid MD simulation. The calculated 1D IR and 2D THz-Raman signals are compared with results obtained from the LL+SL BO model applied through use of hierarchal Fokker-Planck equations with non-perturbative and non-Markovian noise. We find that all of the qualitative features of the 2D profiles of the signals obtained from the MD simulations are reproduced with the LL+SL BO model, indicating that this model captures the essential features of the inter-molecular motion. We analyze the fitted 2D profiles in terms of anharmonicity, nonlinear polarizability, and dephasing time. The origins of the echo peaks of the librational motion and the elongated peaks parallel to the probe direction are elucidated using optical Liouville paths. PMID:26049441
Electron dynamics and valley relaxation in 2D semiconductors
NASA Astrophysics Data System (ADS)
Gundogdu, Kenan
2015-03-01
Single layer transition metal dichalcogenides are 2D semiconducting systems with unique electronic band structure. Two-valley energy bands along with strong spin-orbital coupling lead to valley dependent career spin polarization, which is the basis for recently proposed valleytronic applications. Since the durations of valley population provide the time window in which valley specific processes take place, it is an essential parameter for developing valleytronic devices. These systems also exhibit unusually strong many body affects, such as strong exciton and trion binding, due to reduced dielectric screening of Coulomb interactions. But there is not much known about the impact of strong many particle correlations on spin and valley polarization dynamics. Here we report direct measurements of ultrafast valley specific relaxation dynamics in single layer MoS2 and WS2. We found that excitonic many body interactions significantly contribute to the relaxation process. Biexciton formation reveals hole valley spin relaxation time. Our results also suggest initial fast intervalley electron scattering and electron spin relaxation leads to loss of electron valley polarization, which then facilitates hole valley relaxation via excitonic spin exchange interaction.
Large N matrices from a nonlocal spin system
NASA Astrophysics Data System (ADS)
Anninos, Dionysios; Hartnoll, Sean A.; Huijse, Liza; Martin, Victoria L.
2015-10-01
Large N matrices underpin the best understood models of emergent spacetime. We suggest that large N matrices can themselves be emergent from simple quantum mechanical spin models with finite dimensional Hilbert spaces. We exhibit the emergence of large N matrices in a nonlocal statistical physics model of order N2 Ising spins. The spin partition function is shown to admit a large N saddle described by a matrix integral, which we solve. The matrix saddle is dominant at high temperatures, metastable at intermediate temperatures and ceases to exist below a critical order one temperature. The matrix saddle is disordered in a sense we make precise and competes with ordered low energy states. We verify our analytic results by Monte Carlo simulation of the spin system.
Origin of Axial Spin and Orbital Rotation of the Solar System
NASA Astrophysics Data System (ADS)
Hofmeister, A.; Criss, R. E.
2011-12-01
We explain the nearly circular, co-planar orbits and mostly upright axial spins of the planets with a radical, new accretion model. These common and fundamental rotational characteristics record conditions of origin. The Figure below shows that current planetary spin (triangles) and orbital (circles) rotational energies (R.E.) of each planet nearly equal and linearly depend on its gravitational self-potential of formation (Ug). We derive a formula for dissipation of the Sun's spin via photons carrying off angular momentum (radiative braking): for constant luminosity, the primordal Sun (square) lies at the apex of the planetary trends. Total planetary R.E. (grey diamond) lies on the 1:1 line if Jupiter, lost 97% of its spin, like the Earth (open triangle, calculated for a 4 hr primordal day). Hence, the Sun and planets formed contemporaneously and accretion provided little heat. Data on satellite systems provides corroboration. Accretion converted Ug of the 3-dimensional pre-solar nebula to R.E., because (1) the negative sign of Ug forbids conversion exclusively to heat, (2) planetary nebulae are too rarified to produce heat until solid bodies are essentially formed, and (3) configurational energy and PV terms are small compared to Ug. We derive the conversion (-ΔUg~=ΔR.E) from ideal gas behavior, appropriate for low nebula density. From -ΔUg~=ΔR.E, the time-dependent virial theorem, conservation of angular momemtum, and measured masses and other characteristics, we derive a quantitative model which (1) deduces mechanisms, (2) quantifies the time-dependence in converting a 3-d cloud to the present 2-d Solar System, and (3) calculates the evolution of dust and gas densities. Rocky kernels assembled first and rapidly from pre-solar dust in a nebula with nearly uniform density via almost vertical collapse of dust, but not gas, to a disk, verified by stability criteria. Gas giants formed at great distance where rocky kernels out-competes the pull of the central, co
NASA Astrophysics Data System (ADS)
Morawetz, K.
2015-12-01
The coupled kinetic equation for density and spin Wigner functions is derived including spin-orbit coupling, electric and magnetic fields, and self-consistent Hartree mean fields suited for SU(2) transport. The interactions are assumed to be with scalar and magnetic impurities as well as scalar and spin-flip potentials among the particles. The spin-orbit interaction is used in a form suitable for solid state physics with Rashba or Dresselhaus coupling, graphene, extrinsic spin-orbit coupling, and effective nuclear matter coupling. The deficiencies of the two-fluid model are worked out consisting of the appearance of an effective in-medium spin precession. The stationary solution of all these systems shows a band splitting controlled by an effective medium-dependent Zeeman field. The self-consistent precession direction is discussed and a cancellation of linear spin-orbit coupling at zero temperature is reported. The precession of spin around this effective direction caused by spin-orbit coupling leads to anomalous charge and spin currents in an electric field. Anomalous Hall conductivity is shown to consist of the known results obtained from the Kubo formula or Berry phases and a symmetric part interpreted as an inverse Hall effect. Analogously the spin-Hall and inverse spin-Hall effects of spin currents are discussed which are present even without magnetic fields showing a spin accumulation triggered by currents. The analytical dynamical expressions for zero temperature are derived and discussed in dependence on the magnetic field and effective magnetizations. The anomalous Hall and spin-Hall effect changes sign at higher than a critical frequency dependent on the relaxation time.
Tschäppät, Viviane; Varesio, Emmanuel; Signor, Luca; Hopfgartner, Gérard
2005-09-01
2-D nanoscale LC combined with a triple quadrupole-linear ion trap mass spectrometer was applied to the analysis of a complex peptide mixture. A 2-D dual nanoscale LC-MS/MS system was compared to a conventional one. Peptides were separated with a strong cation exchange (SCX) microcolumn in the first dimension and two C18 nanocolumns were used as second dimension. MS experiments were performed using information-dependent data acquisition, where two precursor ions were selected from an enhanced MS (EMS) or an enhanced multicharged ion (EMC) as survey scan. The major benefit of EMC instead of EMS was a two-fold reduction of the data file and a 15% increase of characterized proteins. The advantage of the 2-D dual nanoscale LC-MS/MS system versus the conventional 2-D nanoscale LC-MS/MS system was reflected in the significant increase of peptides which were successfully identified within the same time frame. The first factor contributing to this increase was that the mass spectrometer was collecting twice the number of relevant MS/MS data. The second factor is the use of twice the number of SCX salt fractions in the first dimension, allowing a better sample fractionation, thereby reducing the number of peptides transferred to the second chromatographic dimension per salt fraction. PMID:16224964
Sample heating system for spin-polarized scanning electron microscopy.
Kohashi, Teruo; Motai, Kumi
2013-08-01
A sample-heating system for spin-polarized scanning electron microscopy (spin SEM) has been developed and used for microscopic magnetization analysis at temperatures up to 500°C. In this system, a compact ceramic heater and a preheating operation keep the ultra-high vacuum conditions while the sample is heated during spin SEM measurement. Moreover, the secondary-electron collector, which is arranged close to the sample, was modified so that it is not damaged at high temperatures. The system was used to heat a Co(1000) single-crystal sample from room temperature up to 500°C, and the magnetic-domain structures were observed. Changes of the domain structures were observed around 220 and 400°C, and these changes are considered to be due to phase transitions of this sample. PMID:23349241
Ko, Jae Hyung; Kim, Yang Hee; Jeong, Seong Hee; Lee, Song; Park, Si-Nae; Shim, In Kyong; Kim, Song Cheol
2015-08-07
Collagen, one of the most important components of the extracellular matrix (ECM), may play a role in the survival of pancreatic islet cells. In addition, chemical modifications that change the collagen charge profile to a net positive charge by esterification have been shown to increase the adhesion and proliferation of various cell types. The purpose of this study was to characterize and compare the effects of native collagen (NC) and esterified collagen (EC) on β cell function and survival. After isolation by the collagenase digestion technique, rat islets were cultured with NC and EC in 2 dimensional (2D) and 3 dimensional (3D) environments for a long-term duration in vitro. The cells were assessed for islet adhesion, morphology, viability, glucose-induced insulin secretion, and mRNA expression of glucose metabolism-related genes, and visualized by scanning electron microscopy (SEM). Islet cells attached tightly in the NC group, but islet cell viability was similar in both the NC and EC groups. Glucose-stimulated insulin secretion was higher in the EC group than in the NC group in both 2D and 3D culture. Furthermore, the mRNA expression levels of glucokinase in the EC group were higher than those in the NC group and were associated with glucose metabolism and insulin secretion. Finally, SEM observation confirmed that islets had more intact component cells on EC sponges than on NC sponges. These results indicate that modification of collagen may offer opportunities to improve function and viability of islet cells. - Highlights: • We changed the collagen charge profile to a net positive charge by esterification. • Islets cultured on esterified collagen improved survival in both 2D and 3D culture. • Islets cultured on esterified collagen enhanced glucose-stimulated insulin release. • High levels of glucokinase mRNA may be associated with increased insulin release.
Study of an Active Control System for a Spinning Body
NASA Technical Reports Server (NTRS)
Adams, J. J.
1961-01-01
The mission requirements for some satellites require that they spin continuously and at the same time maintain a precise direction of the spin axis. An analog-computer study has been made of an attitude control system which is suitable for such a satellite. The control system provides the necessary attitude control through the use of a spinning wheel, which will provide precession torques, commanded by an automatic closed-loop servomechanism system. The sensors used in the control loop are rate gyroscopes for damping of any wobble motion and a sun seeker for attitude control. The results of the study show that the controller can eliminate the wobble motion of the satellite resulting from a rectangular pulse moment disturbance and then return the spin axis to the reference space axis. The motion is damped to half amplitude in less than one cycle of the wobble motion. The controller can also reduce the motion resulting from a step change in product of inertia both by causing the new principal axis to be steadily alined with the spin vector and by reducing the cone angle generated by the reference body axis. These methods will reduce the motion whether the satellite is a disk, sphere, or rod configuration.
NASA Astrophysics Data System (ADS)
Filipović, Vilim; Romić, Davor; Romić, Marija; Matijević, Lana; Mallmann, Fábio J. K.; Robinson, David A.
2016-04-01
Growing vegetables commercially requires intensive management and involves high irrigation demands and input of agrochemicals. Plastic mulch application in combination with drip irrigation is a common agricultural management technique practiced due to variety of benefits to the crop, mostly vegetable biomass production. However, the use of these techniques can result in various impacts on water and nutrient distribution in underlying soil and consequently affect nutrient leaching towards groundwater resources. The aim of this work is to estimate the effect of plastic mulch cover in combination with drip irrigation on water and nitrate dynamics in soil using HYDRUS-2D model. The field site was located in Croatian costal karst area on a Gleysol (WRB). The experiment was designed according to the split-plot design in three repetitions and was divided into plots with plastic mulch cover (MULCH) and control plots with bare soil (CONT). Each of these plots received applications of three levels of nitrogen fertilizer: 70, 140, and 210 kg per ha. All plots were equipped with drip irrigation and cropped with bell pepper (Capsicum annuum L. cv. Bianca F1). Lysimeters were installed at 90 cm depth in all plots and were used for monitoring the water and nitrate outflow. HYDRUS-2D was used for modeling the water and nitrogen outflow in the MULCH and CONT plots, implementing the proper boundary conditions. HYDRUS-2D simulated results showed good fitting to the field site observed data in both cumulative water and nitrate outflow, with high level of agreement. Water flow simulations produced model efficiency of 0.84 for CONT and 0.56 for MULCH plots, while nitrate simulations showed model efficiency ranging from 0.67 to 0.83 and from 0.70 to 0.93, respectively. Additional simulations were performed with the absence of the lysimeter, revealing faster transport of nitrates below drip line in the CONT plots, mostly because of the increased surface area subjected to precipitation
NASA Astrophysics Data System (ADS)
Zhai, Cuili; Zhang, Ting
2016-09-01
In this article, we consider the global existence and uniqueness of the solution to the 2D incompressible non-resistive MHD system with non-equilibrium background magnetic field. Our result implies that a strong enough non-equilibrium background magnetic field will guarantee the stability of the nonlinear MHD system. Beside the classical energy method, the interpolation inequalities and the algebraic structure of the equations coming from the incompressibility of the fluid are crucial in our arguments.
Baby universes in 2d quantum gravity
NASA Astrophysics Data System (ADS)
Ambjørn, Jan; Jain, Sanjay; Thorleifsson, Gudmar
1993-06-01
We investigate the fractal structure of 2d quantum gravity, both for pure gravity and for gravity coupled to multiple gaussian fields and for gravity coupled to Ising spins. The roughness of the surfaces is described in terms of baby universes and using numerical simulations we measure their distribution which is related to the string susceptibility exponent γstring.
Understanding and controlling spin-systems using electron spin resonance techniques
NASA Astrophysics Data System (ADS)
Martens, Mathew
Single molecule magnets (SMMs) posses multi-level energy structures with properties that make them attractive candidates for implementation into quantum information technologies. However there are some major hurdles that need to be overcome if these systems are to be used as the fundamental components of an eventual quantum computer. One such hurdle is the relatively short coherence times these systems display which severely limits the amount of time quantum information can remain encoded within them. In this dissertation, recent experiments conducted with the intent of bringing this technology closer to realization are presented. The detailed knowledge of the spin Hamiltonian and mechanisms of decoherence in SMMs are absolutely essential if these systems are to be used in technologies. To that effect, experiments were done on a particularly promising SMM, the complex K6[VIV15AsIII 6O42(H2O)] · 8H2O, known as V15. High-field electron spin resonance (ESR) measurements were performed on this system at the National High Magnetic Field Laboratory. The resulting spectra allowed for detailed analysis of the V15 spin Hamiltonian which will be presented as well as the most precise values yet reported for the g-factors of this system. Additionally, the line widths of the ESR spectra are studied in depth and found to reveal that fluctuations within the spin-orbit interaction are a mechanism for decoherence in V15. A new model for decoherence is presented that describes very well both the temperature and field orientation dependences of the measured ESR line widths. Also essential is the ability to control spin-states of SMMs. Presented in this dissertation as well is the demonstration of the coherent manipulation of the multi-state spin system Mn2+ diluted in MgO by means of a two-tone pulse drive. Through the detuning between the excitation and readout radio frequency pulses it is possible to select the number of photons involved in a Rabi oscillation as well as increase
Spin-orbital dynamics in a system of polar molecules
NASA Astrophysics Data System (ADS)
Syzranov, Sergey; Wall, Michael; Gurarie, Victor; Rey, Ana Maria
2015-05-01
We consider the dynamics of a two-dimensional system of ultracold polar molecules weakly perturbed from a stationary state. We demonstrate that dipole-dipole interactions in such a system generate chiral excitations with a non-trivial Berry phase 2 π . These excitations, which we call chirons, resemble low-energy quasiparticles in bilayer graphene and emerge regardless of the quantum statistics and for arbitrary ratios of kinetic to interaction energies. Chirons manifest themselves in the dynamics of the spin density profile, spin currents, and spin coherences, even for molecules pinned in a deep optical lattice. We derive the kinetic equation that describes chiron dynamics and calculate the distributions of physical observables for experimentally realisable initial conditions. This work was supported by NIST: JILA-NSF-PFC-1125844, NSF-PIF-1211914, NSF-PHY11-25915, ARO, ARO-DARPA-OLE, AFOSR, AFOSR-MURI; NSF: DMR-1001240, PHY-1125844, and the Alexander von Humboldt Foundation.
Supersymmetric quantum spin chains and classical integrable systems
NASA Astrophysics Data System (ADS)
Tsuboi, Zengo; Zabrodin, Anton; Zotov, Andrei
2015-05-01
For integrable inhomogeneous supersymmetric spin chains (generalized graded magnets) constructed employing Y( gl( N| M))-invariant R-matrices in finite-dimensional representations we introduce the master T-operator which is a sort of generating function for the family of commuting quantum transfer matrices. Any eigenvalue of the master T-operator is the tau-function of the classical mKP hierarchy. It is a polynomial in the spectral parameter which is identified with the 0-th time of the hierarchy. This implies a remarkable relation between the quantum supersymmetric spin chains and classical many-body integrable systems of particles of the Ruijsenaars-Schneider type. As an outcome, we obtain a system of algebraic equations for the spectrum of the spin chain Hamiltonians.
NASA Astrophysics Data System (ADS)
Bouchiat, Marie-Anne; Bouchiat, Claude
2012-10-01
We have constructed the geometric phases emerging from the non-trivial topology of a space-dependent magnetic field B(r), interacting with the spin magnetic moment of a neutral particle. Our basic tool, adapted from a previous work on Berry’s phases, is the space-dependent unitary transformation {U}({\\mathbf {r}}), which leads to the identity, {U}({\\mathbf {r}})^{\\dag }\\, {\\mathbf {S}}\\,{\\bm \\cdot}\\, {\\mathbf {B}}({\\mathbf {r}}) \\, {U}({\\mathbf {r}}) = \\vert {\\mathbf {B}}({\\mathbf {r}}) \\vert \\, S_z, at each point r. In the ‘rotated’ Hamiltonian \\widehat{ H}, \\frac{ \\partial }{\\partial {\\mathbf {r}}} is replaced by the non-Abelian covariant derivative \\frac{ \\partial }{\\partial {\\mathbf {r}}}- \\frac{i}{\\hbar } {A}({\\mathbf {r}}) where {A}({\\mathbf {r}}) = i \\hbar \\, {U}^{\\dag }\\,{\\bm\\cdot}\\, \\frac{ \\partial }{\\partial {\\mathbf {r}}} {U} can be written as A1(r)Sx + A2(r)Sy + A3(r)Sz. The Abelian differentials Ak(r)·dr are given in terms of the Euler angles defining the orientation of B(r). The non-Abelian field {A}({\\mathbf {r}}) transforms as a Yang-Mills field; however, its vanishing ‘curvature’ reveals its purely geometric character. We have defined a perturbation scheme based upon the assumption that in \\widehat{ H} the longitudinal field A3(r) dominates the transverse field A1, 2(r) contributions, evaluated to second order. The geometry embedded in both the vector field A3(r) and the geometric magnetic field \\mathbf { B}_3 ({\\mathbf {r}}) = \\frac{ \\partial }{\\partial {\\mathbf {r}}}\\wedge {{\\mathbf {A}}}_3({\\mathbf {r}}) is described by their associated Aharonov-Bohm phase. As an illustration we study the physics of cold 171Yb atoms dressed by overlaying two circularly polarized stationary waves with orthogonal directions, which form a 2D square optical lattice. The frequency is tuned midway between the two hyperfine levels of the (6s6p)3P1 states to protect the optical B(r) field generated by the
Quantum revivals and magnetization tunneling in effective spin systems
NASA Astrophysics Data System (ADS)
Krizanac, M.; Altwein, D.; Vedmedenko, E. Y.; Wiesendanger, R.
2016-03-01
Quantum mechanical objects or nano-objects have been proposed as bits for information storage. While time-averaged properties of magnetic, quantum-mechanical particles have been extensively studied experimentally and theoretically, experimental investigations of the real time evolution of magnetization in the quantum regime were not possible until recent developments in pump-probe techniques. Here we investigate the quantum dynamics of effective spin systems by means of analytical and numerical treatments. Particular attention is paid to the quantum revival time and its relation to the magnetization tunneling. The quantum revival time has been initially defined as the recurrence time of a total wave-function. Here we show that the quantum revivals of wave-functions and expectation values in spin systems may be quite different which gives rise to a more sophisticated definition of the quantum revival within the realm of experimental research. Particularly, the revival times for integer spins coincide which is not the case for half-integer spins. Furthermore, the quantum revival is found to be shortest for integer ratios between the on-site anisotropy and an external magnetic field paving the way to novel methods of anisotropy measurements. We show that the quantum tunneling of magnetization at avoided level crossing is coherent to the quantum revival time of expectation values, leading to a connection between these two fundamental properties of quantum mechanical spins.
Longevity of duct tape in residential air distribution systems: 1-D, 2-D, and 3-D joints
Abushakra, Bass
2002-05-30
The aging tests conducted so far showed that duct tape tends to degrade in its performance as the joint it is applied to requires a geometrical description of a higher number of space dimensions (1-D, 2-D, 3-D). One-dimensional joints are the easiest to seal with duct tape, and thus the least to experience failure. Two-dimensional joints, such as the flexible duct core-to-collar joints tested in this study, are less likely to fail than three-dimensional collar-to-plenum joints, as the shrinkage could have a positive effect in tightening the joint. Three-dimensional joints are the toughest to seal and the most likely to experience failure. The 2-D flexible duct core-to-collar joints passed the six-month period of the aging test in terms of leakage, but with the exception of the foil-butyl tape, showed degradation in terms hardening, brittleness, partial peeling, shrinkage, wrinkling, delamination of the tape layers, flaking, cracking, bubbling, oozing and discoloration. The baking test results showed that the failure in the duct tape joints could be attributed to the type of combination of the duct tape and the material it is applied to, as the duct tape behaves differently with different substrates. Overall, the foil-butyl tape (Tape 4) had the best results, while the film tape (Tape 3) showed the most deterioration. The conventional duct tapes tested (Tape 1 and Tape 2) were between these two extremes, with Tape 2 performing better than Tape 1. Lastly, we found that plastic straps became discolored and brittle during the tests, and a couple of straps broke completely. Therefore, we recommend that clamping the duct-taped flexible core-to-collar joints should be done with metallic adjustable straps.
Correlation inequalities for quantum spin systems with quenched centered disorder
NASA Astrophysics Data System (ADS)
Contucci, Pierluigi; Lebowitz, Joel L.
2010-02-01
It is shown that random quantum spin systems with centered disorder satisfy correlation inequalities previously proved [P. Contucci and J. Lebowitz, Ann. Henri Poincare 8, 1461 (2007)] in the classical case. Consequences include monotone approach of pressure and ground state energy to the thermodynamic limit. Signs and bounds on the surface pressures for different boundary conditions are also derived for finite range potentials.
Classical and thermodynamic limits for generalised quantum spin systems
NASA Astrophysics Data System (ADS)
Duffield, N. G.
1990-01-01
We prove that the rescaled upper and lower symbols for arbitrary generalised quantum spin systems converge in the classical limit. For a large class of models this enables us to derive the asyptotics of quantum free energies in the classical and in the thermodynamic limit.
NASA Astrophysics Data System (ADS)
Tsuchimochi, Takashi
2015-10-01
Spin-flip approaches capture static correlation with the same computational scaling as the ordinary single reference methods. Here, we extend spin-flip configuration interaction singles (SFCIS) by projecting out intrinsic spin-contamination to make it spin-complete, rather than by explicitly complementing it with spin-coupled configurations. We give a general formalism of spin-projection for SFCIS, applicable to any spin states. The proposed method is viewed as a natural unification of SFCIS and spin-projected CIS to achieve a better qualitative accuracy at a low computational cost. While our wave function ansatz is more compact than previously proposed spin-complete SF approaches, it successfully offers more general static correlation beyond biradicals without sacrificing good quantum numbers. It is also shown that our method is invariant with respect to open-shell orbital rotations, due to the uniqueness of spin-projection. We will report benchmark calculations to demonstrate its qualitative performance on strongly correlated systems, including conical intersections that appear both in ground-excited and excited-excited degeneracies.
Tsuchimochi, Takashi
2015-10-14
Spin-flip approaches capture static correlation with the same computational scaling as the ordinary single reference methods. Here, we extend spin-flip configuration interaction singles (SFCIS) by projecting out intrinsic spin-contamination to make it spin-complete, rather than by explicitly complementing it with spin-coupled configurations. We give a general formalism of spin-projection for SFCIS, applicable to any spin states. The proposed method is viewed as a natural unification of SFCIS and spin-projected CIS to achieve a better qualitative accuracy at a low computational cost. While our wave function ansatz is more compact than previously proposed spin-complete SF approaches, it successfully offers more general static correlation beyond biradicals without sacrificing good quantum numbers. It is also shown that our method is invariant with respect to open-shell orbital rotations, due to the uniqueness of spin-projection. We will report benchmark calculations to demonstrate its qualitative performance on strongly correlated systems, including conical intersections that appear both in ground-excited and excited-excited degeneracies.
Ferromagnetic resonance dispersion relation of spin valve systems
NASA Astrophysics Data System (ADS)
Rodríguez-Suárez, R. L.; Rezende, S. M.; Azevedo, A.
2005-08-01
We derive the FMR dispersion relation of spin valve systems taking into account the competition that can appears between the direct exchange bias coupling and the indirect interlayer coupling. For uncoupled ferromagnetic (FM) layers, the system exhibits a dispersion relation corresponding to two independent systems: a single FM layer (free layer) and an exchange-coupled bilayer (reference/antiferromagnetic layers). In the interlayer coupled regime a unidirectional anisotropy is induced in the free layer and the FMR field is overall downshifted.
Observation of Anomolously Long-Lived Spin Echoes in a Dense Dipolar Spin System
NASA Astrophysics Data System (ADS)
Ramos, Rona; Dong, Yanqun; Li, Dale; Barrett, Sean
2006-03-01
Continuing the investigation of anomolously long-lived spin echoes found in multipulse ^29Si NMR experiments, similar proton NMR experiments were performed on adamantane (C10H16, a molecular solid that tumbles about its fcc lattice sites). In contrast to the dilute dipolar silicon samples from previous experiments [A.E. Dementyev, D. Li, K. MacLean, S.E. Barrett, Phys. Rev. B 68, 153302 (2003).], adamantane presents a densely populated, strongly coupled proton spin system in which to probe the basis of this puzzle. Despite these changes, this phenomenon, which defies conventional NMR theory, still remains. This talk will discuss the results of these experiments and its impact on our current understanding of this behavior.
Landau level spin diode in a GaAs two dimensional hole system
NASA Astrophysics Data System (ADS)
Klochan, O.; Hamilton, A. R.; das Gupta, K.; Sfigakis, F.; Beere, H. E.; Ritchie, D. A.
2015-03-01
We have fabricated and characterized a Landau level spin diode in a GaAs two-dimensional hole system. We used the spin diode to probe the hyperfine coupling between hole and nuclear spins and found no detectable net nuclear spin polarization, indicating that hole-nuclear spin flip-flop processes are suppressed by at least factor of 50 compared to GaAs electron systems.
Torque engineering in trilayer spin-hall system
NASA Astrophysics Data System (ADS)
Gupta, Gaurav; Jalil, Mansoor Bin Abdul; Liang, Gengchiau
2016-02-01
A trilayer system with perpendicularly magnetized metallic (FMM) free-layer, heavy metal (HM) with strong spin-hall effect and ferromagnetic insulating (FMI) substrate has been proposed to significantly enhance the torque acting on FMM. Its magnitude can be engineered by configuring the magnetization of the FMI. The analytical solution has been developed for four stable magnetization states (non-magnetic and magnetization along three Cartesian axes) of FMI to comprehensively appraise the anti-damping torque on FMM and the Gain factor. It is shown that the proposed system has much larger gain and torque compared to a bilayer system (or a trilayer system with non-magnetic substrate). The performance improvement may be extremely large for system with a thin HM. Device optimization is shown to be non-trivial and various constraints have been explained. These results would enable design of more efficient spin-orbit torque memories and logic with faster switching at yet lower current.
Spin Transport in Semiconductor heterostructures
Domnita Catalina Marinescu
2011-02-22
The focus of the research performed under this grant has been the investigation of spin transport in magnetic semiconductor heterostructures. The interest in these systems is motivated both by their intriguing physical properties, as the physical embodiment of a spin-polarized Fermi liquid, as well as by their potential applications as spintronics devices. In our work we have analyzed several different problems that affect the spin dynamics in single and bi-layer spin-polarized two-dimensional (2D) systems. The topics of interests ranged from the fundamental aspects of the electron-electron interactions, to collective spin and charge density excitations and spin transport in the presence of the spin-orbit coupling. The common denominator of these subjects is the impact at the macroscopic scale of the spin-dependent electron-electron interaction, which plays a much more subtle role than in unpolarized electron systems. Our calculations of several measurable parameters, such as the excitation frequencies of magneto-plasma modes, the spin mass, and the spin transresistivity, propose realistic theoretical estimates of the opposite-spin many-body effects, in particular opposite-spin correlations, that can be directly connected with experimental measurements.
NASA Astrophysics Data System (ADS)
Matthes, L.; Küfner, S.; Furthmüller, J.; Bechstedt, F.
2016-08-01
Ab initio relativistic band structure calculations are performed for the frequency-dependent spin Hall conductivity of three- (3D), two- (2D) and one-dimensional (1D) materials such as bulk semiconductors, atomically thin crystals, and their nanoribbons. Besides the influence of the dimensionality we also study differences between trivial and topological insulators (TIs). The frequency dependence of the conductivity is governed by the band-structure details, while its static value scales with the spin-orbit interaction in 3D but is quantized in units of e2/h for 2D TIs. 1D topological edge states influence the conductivity mainly for vanishing frequencies.
2005-07-01
Aniso2d is a two-dimensional seismic forward modeling code. The earth is parameterized by an X-Z plane in which the seismic properties Can have monoclinic with x-z plane symmetry. The program uses a user define time-domain wavelet to produce synthetic seismograms anrwhere within the two-dimensional media.
SPIN-TORQUE IN SYSTEMS WITH INHOMOGENEOUS MAGETIZATION
Zangwill, Andrew
2013-04-23
The work performed during the grant period focused on the phenomenon of spin-transfer torque. This is a quantum mechanical effect whereby the angular momentum of conduction electrons is transferred to the magnetization of ferromagnetic structures. Our work on this subject began with phenomenological drift-diffusion and Landau-Lifshitz-Gilbert equations to demonstrate unambiguously that unpolarized current flow from a nonmagnet into a ferromagnet can produce a precession-type instability of the magnetization. We then used Boltzmann calculations appropriate to spin-valve type magnetic heterostructures composed of a non-magnetic thin film sandwiched between two thin film layers with uniform magnetization. Perhaps our most important paper dealt with quantum and semi-classical calculations of spin-transfer torque in systems with domain walls and other inhomogeneous distributions of magnetization. The latter work caused us to suggest that the Landau-Lifshitz approach to magnetic damping provided a clearer picture of the physics than the more popular (but formally equivalent) Gilbert approach to damping. Finally, we returned to our Boltzmann calculations and made a serious effort to analyze experimental data on current-induced magnetization in switching in magnetic spin-valve structures. Our work was part of a world-wide effort to study and harness the transport of the electron's spin and was one of the first sustained theoretical efforts in this direction in the United States. The payoff is just now being seen. In November of 2012, the Everspin Corporation announced the release of the first commercial spin-torque magnetoresistive random access memory.
NASA Astrophysics Data System (ADS)
Huang, B.; Wu, Z. D.; Wu, J. L.; Wang, L. Q.
2012-11-01
A 2D THD model and a 3DTEHD model for large spindle supported thrust bearings were set up and used to analyze the lubrication performance of the Three Gorges test thrust beating withpins and double layer system developed by Alstom Power. The finite difference method was employed to solve the THD model, and the thermal-elasticdeformations in the pad and runner were obtained by the finite element software ANSYS11.0. The data transfer between the THD model and ANSYS11.0 was carried out automatically by an interface program.A detailed comparison between the experimental results and numerical predictions by the two different modelsset up in this paper was carried out. Poor agreement has been found between the theoretical results obtained by 2D THD model and experimental data, while 3D TEHD provides fairly good agreement, confirming the importance of thermal effects and thermal-elastic deformations in both pad and runner.
Formation of Misaligned Planetary Systems: Primordial Spin-Disk Misalignment
NASA Astrophysics Data System (ADS)
Lai, Dong
2015-12-01
Significant stellar obliquities have been observed in many exoplanetary systems containing hot Jupiters, including some coplanar multiplanet systems. It is traditionally assumed that planet migration in protoplanetary disks leads to aligned planetary orbital axis and stellar spin axis. This may not be the case because the diskitself may be misaligned with the protostar, for several reasons: (1) Since star formation takes place in a turbulent medium, the accreting gas assembled onto a protoplanetary disk may have a varying direction of angular momentum; (2) Magnetic star-disk interaction may produce a misalignment torque between the stellar spin and the disk; (3) Perturbation from a binary companion can change the orientation of the disk. We critically examine these mechanisms for generating primordial spin-disk misalignments. The importance of star-disk-binary interactions and the possibility of secular spin-orbit resonance in producing large stellar obliquities will be emphasized. The effects and uncertainties involving the dynamics of warped disks and star-disk magnetic interactions will be discussed. Possible observational constraints and tests on primordial misalignments will also be discussed, including the observed correlation between the stellar obliquity and effective temperature.
NASA Astrophysics Data System (ADS)
Bhat, Shwetha G.; Anil Kumar, P. S.
2016-05-01
Half-metal based spin injector devices for spin injection and detection application have proven to be efficient owing to their enhanced injection and detection efficiency. In this study, we extend the all-electrical spin injection and detection studies into different systems like Si and GaAs using half-metal Fe3O4 as a spin injector in the presence and absence of tunnel barrier MgO. Injection into GaAs is verified using conventional Fe/MgO/GaAs devices. Room temperature spin injection into both p-type and n-type Si is achieved and the spin injection could be observed down to 100K. Obtained spin relaxation time for these n-type and p-type Si at different temperatures agree well with the existing reports. Further, the temperature dependent spin injection and detection is also successfully achieved in Fe3O4/GaAs (n-type) Schottky devices, and a comparison study of the results with control experiment using Fe/MgO/GaAs (n-type) devices confirm the relaxation to be similar in the GaAs substrate, as expected. Hence, even Fe3O4 material can be effectively used as an efficient spin injector as well as detector, making it an attractive candidate for the room temperature spintronics device applications.
Nonequilibrium quantum dissipation in spin-fermion systems
NASA Astrophysics Data System (ADS)
Segal, Dvira; Reichman, David R.; Millis, Andrew J.
2007-11-01
Dissipative processes in nonequilibrium many-body systems are fundamentally different than their equilibrium counterparts. Such processes are of great importance for the understanding of relaxation in single-molecule devices. As a detailed case study, we investigate here a generic spin-fermion model, where a two-level system couples to two metallic leads with different chemical potentials. We present results for the spin relaxation rate in the nonadiabatic limit for an arbitrary coupling to the leads using both analytical and exact numerical methods. The nonequilibrium dynamics is reflected by an exponential relaxation at long times and via complex phase shifts, leading in some cases to an “antiorthogonality” effect. In the limit of strong system-lead coupling at zero temperature we demonstrate the onset of a Marcus-like Gaussian decay with voltage difference activation. This is analogous to the equilibrium spin-boson model, where at strong coupling and high temperatures, the spin excitation rate manifests temperature activated Gaussian behavior. We find that there is no simple linear relationship between the role of the temperature in the bosonic system and a voltage drop in a nonequilibrium electronic case. The two models also differ by the orthogonality-catastrophe factor existing in a fermionic system, which modifies the resulting line shapes. Implications for current characteristics are discussed. We demonstrate the violation of pairwise Coulomb gas behavior for strong coupling to the leads. The results presented in this paper form the basis of an exact, nonperturbative description of steady-state quantum dissipative systems.
Ahmed, M; Eller, S; Yukihara, E; Schnell, E; Ahmad, S; Akselrod, M; Hanson, O
2014-06-15
Purpose: To develop a precise 2D dose mapping technique based on the optically stimulated luminescence (OSL) from Al{sub 2}O{sub 3} films for medical applications. Methods: A 2D laser scanning reader was developed using fast F{sup +}-center (lifetime of <7 ns) and slow F-center (lifetime of 35 ms) OSL emission from newly developed Al{sub 2}O{sub 3} films (Landauer Inc.). An algorithm was developed to correct images for both material and system properties. Since greater contribution of the F??-center emission in the recorded signal increases the readout efficiency and robustness of image corrections, Al{sub 2}O{sub 3}:C,Mg film samples are being investigated in addition to Al{sub 2}O{sub 3}:C samples. Preliminary investigations include exposure of the films to a 6 MV photon beam at 10 cm depth in solid water phantom with an SSD of 100 cm, using a 10 cm × 10 cm flat field or a 4 cm × 4 cm field with a 60° wedge filter. Kodak EDR2 radiographic film and EBT2 Gafchromic film were also exposed for comparison. Results: The results indicate that the algorithm is able to correct images and calculate 2D dose. For the wedge field irradiation, the calculated dose at the center of the field was 0.9 Gy for Al{sub 2}O{sub 3}:C and 0.87 Gy for Al{sub 2}O{sub 3}:C,Mg, whereas, the delivered dose was 0.95 Gy. A good qualitative agreement of the dose profiles was obtained between the OSL films and EDR2 and EBT2 films. Laboratory tests using a beta source suggest that a large dynamic range (10{sup −2}−10{sup 2} Gy) can be achieved using this technique. Conclusion: A 2D dosimetry system and an in-house image correction algorithm were developed for 2D film dosimetry in medical applications. The system is in the preliminary stage of development, but the data demonstrates the feasibility of this approach. This work was supported by Landauer, Inc.
Greg Flach, Frank Smith
2011-12-31
Mesh2d is a Fortran90 program designed to generate two-dimensional structured grids of the form [x(i),y(i,j)] where [x,y] are grid coordinates identified by indices (i,j). The x(i) coordinates alone can be used to specify a one-dimensional grid. Because the x-coordinates vary only with the i index, a two-dimensional grid is composed in part of straight vertical lines. However, the nominally horizontal y(i,j0) coordinates along index i are permitted to undulate or otherwise vary. Mesh2d also assigns an integer material type to each grid cell, mtyp(i,j), in a user-specified manner. The complete grid is specified through three separate input files defining the x(i), y(i,j), and mtyp(i,j) variations.
2011-12-31
Mesh2d is a Fortran90 program designed to generate two-dimensional structured grids of the form [x(i),y(i,j)] where [x,y] are grid coordinates identified by indices (i,j). The x(i) coordinates alone can be used to specify a one-dimensional grid. Because the x-coordinates vary only with the i index, a two-dimensional grid is composed in part of straight vertical lines. However, the nominally horizontal y(i,j0) coordinates along index i are permitted to undulate or otherwise vary. Mesh2d also assignsmore » an integer material type to each grid cell, mtyp(i,j), in a user-specified manner. The complete grid is specified through three separate input files defining the x(i), y(i,j), and mtyp(i,j) variations.« less
Chang, Chih-Ju; Lin, Geng-Li; Tse, Alex; Chu, Hong-Yu; Tseng, Ching-Shiow
2015-01-01
C-Arm image-assisted surgical navigation system has been broadly applied to spinal surgery. However, accurate path planning on the C-Arm AP-view image is difficult. This research studies 2D-3D image registration methods to obtain the optimum transformation matrix between C-Arm and CT image frames. Through the transformation matrix, the surgical path planned on preoperative CT images can be transformed and displayed on the C-Arm images for surgical guidance. The positions of surgical instruments will also be displayed on both CT and C-Arm in the real time. Five similarity measure methods of 2D-3D image registration including Normalized Cross-Correlation, Gradient Correlation, Pattern Intensity, Gradient Difference Correlation, and Mutual Information combined with three optimization methods including Powell's method, Downhill simplex algorithm, and genetic algorithm are applied to evaluate their performance in converge range, efficiency, and accuracy. Experimental results show that the combination of Normalized Cross-Correlation measure method with Downhill simplex algorithm obtains maximum correlation and similarity in C-Arm and Digital Reconstructed Radiograph (DRR) images. Spine saw bones are used in the experiment to evaluate 2D-3D image registration accuracy. The average error in displacement is 0.22 mm. The success rate is approximately 90% and average registration time takes 16 seconds. PMID:27018859
New perspective on matter coupling in 2D quantum gravity
NASA Astrophysics Data System (ADS)
Ambjørn, J.; Anagnostopoulos, K. N.; Loll, R.
1999-11-01
We provide compelling evidence that a previously introduced model of nonperturbative 2D Lorentzian quantum gravity exhibits (two-dimensional) flat-space behavior when coupled to Ising spins. The evidence comes from both a high-temperature expansion and from Monte Carlo simulations of the combined gravity-matter system. This weak-coupling behavior lends further support to the conclusion that the Lorentzian model is a genuine alternative to Liouville quantum gravity in two dimensions, with a different and much ``smoother'' critical behavior.
Spin-Controlled Photoluminescence in Hybrid Nanoparticles Purple Membrane System
2016-01-01
Spin-dependent photoluminescence (PL) quenching of CdSe nanoparticles (NPs) has been explored in the hybrid system of CdSe NP purple membrane, wild-type bacteriorhodopsin (bR) thin film on a ferromagnetic (Ni-alloy) substrate. A significant change in the PL intensity from the CdSe NPs has been observed when spin-specific charge transfer occurs between the retinal and the magnetic substrate. This feature completely disappears in a bR apo membrane (wild-type bacteriorhodopsin in which the retinal protein covalent bond was cleaved), a bacteriorhodopsin mutant (D96N), and a bacteriorhodopsin bearing a locked retinal chromophore (isomerization of the crucial C13=C14 retinal double bond was prevented by inserting a ring spanning this bond). The extent of spin-dependent PL quenching of the CdSe NPs depends on the absorption of the retinal, embedded in wild-type bacteriorhodopsin. Our result suggests that spin-dependent charge transfer between the retinal and the substrate controls the PL intensity from the NPs. PMID:27018195
Scaling of decoherence for a system of uncoupled spin qubits
Jing, Jun; Hu, Xuedong
2015-01-01
Significant experimental progresses in recent years have generated continued interest in quantum computation. A practical quantum computer would employ thousands if not millions of coherent qubits, and maintaining coherence in such a large system would be imperative for its utility. As an attempt at understanding the quantum coherence of multiple qubits, here we study decoherence of a multi-spin-qubit state under the influence of hyperfine interaction, and clearly demonstrate that the state structure is crucial to the scaling behavior of n-spin decoherence. Specifically, we find that coherence times of a multi-spin state at most scale with the number of qubits n as , while some states with higher symmetries have scale-free coherence with respect to n. Statistically, convergence to these scaling behavior is generally determined by the size of the Hilbert space m, which is usually much larger than n (up to an exponential function of n), so that convergence rate is very fast as we increase the number of qubits. Our results can be extended to other decoherence mechanisms, including in the presence of dynamical decoupling, which allow meaningful discussions on the scalability of spin-based quantum coherent technology. PMID:26593876
Study of spin-polaron formation in 1D systems
Arredondo, Y.; Navarro, O.; Vallejo, E.
2014-05-15
We study numerically the formation of spin-polarons in low-dimensional systems. We consider a ferromagnetic Kondo lattice model with Hund coupling J{sub H} and localized spins interacting antiferromagnetically with coupling constant J. We investigate the ground state phase diagram as a function of the exchange couplings J{sub H} and J and as a function of the band filling, since it has been observed that doping either on the ferromagnetic or antiferromagnetic regime lead to formation of magnetic domains [1]. We explore the quasi-particle formation and phase separation using the density-matrix renormalization group method, which is a highly efficient method to investigate quasi-one-dimensional strongly correlated systems.
Inhomogeneous Fermi and quantum spin systems on lattices
NASA Astrophysics Data System (ADS)
Bru, J.-B.; de Siqueira Pedra, W.
2012-12-01
We study the thermodynamic properties of a certain type of space-inhomogeneous Fermi and quantum spin systems on lattices. We are particularly interested in the case where the space scale of the inhomogeneities stays macroscopic, but very small as compared to the side-length of the box containing fermions or spins. The present study is however not restricted to "macroscopic inhomogeneities" and also includes the (periodic) microscopic and mesoscopic cases. We prove that - as in the homogeneous case - the pressure is, up to a minus sign, the conservative value of a two-person zero-sum game, named here thermodynamic game. Because of the absence of space symmetries in such inhomogeneous systems, it is not clear from the beginning what kind of object equilibrium states should be in the thermodynamic limit. However, we give rigorous statements on correlations functions for large boxes.
Spin pumping in electrodynamically coupled magnon-photon systems
NASA Astrophysics Data System (ADS)
Bai, Lihui
The electronics industry is quickly approaching the limitation of Moore's Law due to Joule heating in high density-integrated devices. To achieve new higher-speed devices and reduce energy consumption, researchers are turning to spintronics where the intrinsic spin, rather than the charge of electrons, is used to carry information in devices. Advances in spintronics have led to the discovery of giant magnetoresistance (GMR), spin transfer torque etc. Another subject, cavity electrodynamics, promises a completely new quantum algorithm by studying the properties of a single electron interacting with photons inside of a cavity. By merging both spintronics and cavity electrodynamics, a new cutting edge field called Cavity Spintronics is forming, which draws on the advantages of both subjects to develop new spintronics devices utilizing light-matter interaction. In this work, we use electrical detection, in combination with microwave transmission, to investigate both resonant and nonresonant magnon-photon coupling in a microwave cavity at room temperature. Spin pumping in a dynamically coupled magnon-photon system is found to be distinctly different from previous experiments. Characteristic coupling features such as modes anticrossing, linewidth evolution, peculiar line shape, and resonance broadening are systematically measured and consistently analyzed by a theoretical model set on the foundation of classical electrodynamic coupling. Our experimental and theoretical approach paves the way for pursuing microwave coherent manipulation of pure spin current via the combination of spin pumping and magnon-photon coupling. Co-authored with M. Harder, C.-M. Hu from University of Manitoba, Y. P. Chen, J. Q. Xiao from University of Delaware, and X. Fan from Univeristy of Denver.
On Josephson effects in insulating spin systems
Schilling, Andreas Grundmann, Henrik
2012-09-15
We discuss an experiment in which two magnetic insulators that both show a field-induced magnetic ordering transition are weakly coupled to one another and are placed into an external magnetic field. If the respective magnetic states can be interpreted as phase-coherent Bose-Einstein condensates of magnetic bosonic quasiparticles, one expects the occurrence of Josephson effects. For two identical systems, the resulting d.c. Josephson effect formally represents a constant quasiparticle Josephson current across the weak link, which turns out to be unobservable in an experiment. For magnetic insulators with different critical fields, a spontaneous alternating quasiparticle current develops with a leading oscillation frequency {omega}{sub a.c.} that is determined by the difference between the critical fields. As a result of the coupling, additional sidebands appear in the energy spectrum of the coupled device that would be absent without phase coherence. We discuss the primary conditions for such an effect to take place and conclude that its detection can be feasible for a proper choice of compounds with suitable and realistic material parameters.
Technology Transfer Automated Retrieval System (TEKTRAN)
High-throughput phenotyping of root systems requires a combination of specialized techniques and adaptable plant growth, root imaging and software tools. A custom phenotyping platform was designed to capture images of whole root systems, and novel software tools were developed to process and analyz...
NASA Astrophysics Data System (ADS)
Sharapov, V. N.; Cherepanov, A. N.; Popov, V. N.; Bykova, V. G.
2012-11-01
A model describing two-dimensional (2D) dynamics of heat transfer in the fluid systems with a localized sink of a magmatic fluid into local fractured zones above the roof of crystallizing crustal intrusions is suggested. Numerical modeling of the migration of the phase boundaries in 2D intrusive chambers under retrograde boiling of magma with relatively high initial water content in the melt shows that, depending on the character of heat dissipation from a magmatic fluid into the host rock, two types of fluid magmatic systems can arise. (1) At high heat losses, the zoning of fluidogenic ore formation is determined by the changes in temperature of the rocks within the contact aureole of the intrusive bodies. These temperature variations are controlled by the migration of the phase boundaries in the cooling melt towards the center of the magmatic bodies from their contacts. (2) In the case of a localized sink of the magmatic fluid in different parts of the top of the intrusive chambers, a specific characteristic scenario of cooling of the magmatic bodies is probably implemented. In 2D systems with a heat transfer coefficient α k < 5 × 104 W/m2 K, an area with quasi-stationary phase boundaries develops close to the region of fluid drainage through the fractured zone in the intrusion. Therefore, as the phase boundaries contract to the sink zone of a fluid, specific thermal tubes arise, whose characteristics depend on the width of the fluid-conductive zone and the heat losses into the side rocks. (3) The time required for the intrusion to solidify varies depending on the particular position of the fluid conductor above the top of the magmatic body.
Dynamics of a resonantly driven two-spin system
Volkov, Yu. S. Sinitsyn, D. O.
2007-12-15
Dynamics of a coupled two-spin system in a static magnetic field are investigated. An analysis is presented of resonance transitions driven by a circularly polarized radio-frequency (RF) field orthogonal to the static field. When the RF field amplitude is modulated at a certain frequency depending on the field strength, the system exhibits parametric resonance behavior. The periodicity of transitions breaks down, and the Shannon entropy of the recurrence probability density for the system's states increases by more than an order of magnitude.
Dissipation Assisted Quantum Memory with Coupled Spin Systems
NASA Astrophysics Data System (ADS)
Jiang, Liang; Verstraete, Frank; Cirac, Ignacio; Lukin, Mikhail
2009-05-01
Dissipative dynamics often destroys quantum coherences. However, one can use dissipation to suppress decoherence. A well-known example is the so-called quantum Zeno effect, in which one can freeze the evolution using dissipative processes (e.g., frequently projecting the system to its initial state). Similarly, the undesired decoherence of quantum bits can also be suppressed using controlled dissipation. We propose and analyze the use of this generalization of quantum Zeno effect for protecting the quantum information encoded in the coupled spin systems. This new approach may potentially enhance the performance of quantum memories, in systems such as nitrogen-vacancy color-centers in diamond.
Gorshkov, Aleksei V
2012-09-30
The problem of stabilizing a solution of the 2D Navier-Stokes system defined in the exterior of a bounded domain with smooth boundary is investigated. For a given initial velocity field a control on the boundary of the domain must be constructed such that the solution stabilizes to a prescribed vortex solution or trivial solution at the rate of 1/t{sup k}. On the way, related questions are investigated, concerning the behaviour of the spectrum of an operator under a relatively compact perturbation and the existence of attracting invariant manifolds. Bibliography: 21 titles.
Magnetic interactions in strongly correlated systems: Spin and orbital contributions
Secchi, A.; Lichtenstein, A.I.; Katsnelson, M.I.
2015-09-15
We present a technique to map an electronic model with local interactions (a generalized multi-orbital Hubbard model) onto an effective model of interacting classical spins, by requiring that the thermodynamic potentials associated to spin rotations in the two systems are equivalent up to second order in the rotation angles, when the electronic system is in a symmetry-broken phase. This allows to determine the parameters of relativistic and non-relativistic magnetic interactions in the effective spin model in terms of equilibrium Green’s functions of the electronic model. The Hamiltonian of the electronic system includes, in addition to the non-relativistic part, relativistic single-particle terms such as the Zeeman coupling to an external magnetic field, spin–orbit coupling, and arbitrary magnetic anisotropies; the orbital degrees of freedom of the electrons are explicitly taken into account. We determine the complete relativistic exchange tensors, accounting for anisotropic exchange, Dzyaloshinskii–Moriya interactions, as well as additional non-diagonal symmetric terms (which may include dipole–dipole interaction). The expressions of all these magnetic interactions are determined in a unified framework, including previously disregarded features such as the vertices of two-particle Green’s functions and non-local self-energies. We do not assume any smallness in spin–orbit coupling, so our treatment is in this sense exact. Finally, we show how to distinguish and address separately the spin, orbital and spin–orbital contributions to magnetism, providing expressions that can be computed within a tight-binding Dynamical Mean Field Theory.
Out-of-plane librations of spinning tethered satellite systems
NASA Astrophysics Data System (ADS)
Ellis, Joshua R.; Hall, Christopher D.
2010-01-01
We analyze the out-of-plane librations of a tethered satellite system that is nominally rotating in the orbit plane. To isolate the librational dynamics, the system is modeled as two point masses connected by a rigid rod with the system mass center constrained to an unperturbed circular orbit. For small out-of-plane librations, the in-plane motion is unaffected by the out-of-plane librations and a solution for the in-plane motion is determined in terms of Jacobi elliptic functions. This solution is used in the linearized equation for the out-of-plane librations, resulting in a Hill's equation. Floquet theory is used to analyze the Hill's equation, and we show that the out-of-plane librations are unstable for certain ranges of in-plane spin rate. For relatively high in-plane spin rates, the out-of-plane librations are stable, and the Hill's equation can be approximated by a Mathieu's equation. Approximate solutions to the Mathieu's equation are determined, and we analyze the dominant characteristics of the out-of-plane librations for high in-plane spin rates. The results obtained from the analysis of the linearized equations of motion are compared to numerical simulations of the nonlinear equations of motion, as well as numerical simulations of a more realistic system model that accounts for tether flexibility. The instabilities discovered from the linear analysis are present in both the nonlinear system and the more realistic system model. The approximate solutions for the out-of-plane librations compare well to the nonlinear system for relatively high in-plane rotation rates, and also capture the significant qualitative behavior of the flexible system.
Feng, Yongqiang; Max, Ludo
2014-01-01
Purpose Studying normal or disordered motor control requires accurate motion tracking of the effectors (e.g., orofacial structures). The cost of electromagnetic, optoelectronic, and ultrasound systems is prohibitive for many laboratories, and limits clinical applications. For external movements (lips, jaw), video-based systems may be a viable alternative, provided that they offer high temporal resolution and sub-millimeter accuracy. Method We examined the accuracy and precision of 2D and 3D data recorded with a system that combines consumer-grade digital cameras capturing 60, 120, or 240 frames per second (fps), retro-reflective markers, commercially-available computer software (APAS, Ariel Dynamics), and a custom calibration device. Results Overall mean error (RMSE) across tests was 0.15 mm for static tracking and 0.26 mm for dynamic tracking, with corresponding precision (SD) values of 0.11 and 0.19 mm, respectively. The effect of frame rate varied across conditions, but, generally, accuracy was reduced at 240 fps. The effect of marker size (3 vs. 6 mm diameter) was negligible at all frame rates for both 2D and 3D data. Conclusion Motion tracking with consumer-grade digital cameras and the APAS software can achieve sub-millimeter accuracy at frame rates that are appropriate for kinematic analyses of lip/jaw movements for both research and clinical purposes. PMID:24686484
Feng, Yongqiang; Max, Ludo
2014-04-01
PURPOSE Studying normal or disordered motor control requires accurate motion tracking of the effectors (e.g., orofacial structures). The cost of electromagnetic, optoelectronic, and ultrasound systems is prohibitive for many laboratories and limits clinical applications. For external movements (lips, jaw), video-based systems may be a viable alternative, provided that they offer high temporal resolution and submillimeter accuracy. METHOD The authors examined the accuracy and precision of 2-D and 3-D data recorded with a system that combines consumer-grade digital cameras capturing 60, 120, or 240 frames per second (fps), retro-reflective markers, commercially available computer software (APAS, Ariel Dynamics), and a custom calibration device. RESULTS Overall root-mean-square error (RMSE) across tests was 0.15 mm for static tracking and 0.26 mm for dynamic tracking, with corresponding precision (SD) values of 0.11 and 0.19 mm, respectively. The effect of frame rate varied across conditions, but, generally, accuracy was reduced at 240 fps. The effect of marker size (3- vs. 6-mm diameter) was negligible at all frame rates for both 2-D and 3-D data. CONCLUSION Motion tracking with consumer-grade digital cameras and the APAS software can achieve submillimeter accuracy at frame rates that are appropriate for kinematic analyses of lip/jaw movements for both research and clinical purposes. PMID:24686484
Number-theoretic nature of communication in quantum spin systems.
Godsil, Chris; Kirkland, Stephen; Severini, Simone; Smith, Jamie
2012-08-01
The last decade has witnessed substantial interest in protocols for transferring information on networks of quantum mechanical objects. A variety of control methods and network topologies have been proposed, on the basis that transfer with perfect fidelity-i.e., deterministic and without information loss-is impossible through unmodulated spin chains with more than a few particles. Solving the original problem formulated by Bose [Phys. Rev. Lett. 91, 207901 (2003)], we determine the exact number of qubits in unmodulated chains (with an XY Hamiltonian) that permit transfer with a fidelity arbitrarily close to 1, a phenomenon called pretty good state transfer. We prove that this happens if and only if the number of nodes is n = p - 1, 2p - 1, where p is a prime, or n = 2(m) - 1. The result highlights the potential of quantum spin system dynamics for reinterpreting questions about the arithmetic structure of integers and, in this case, primality. PMID:23006153
3-D and quasi-2-D discrete element modeling of grain commingling in a bucket elevator boot system
Technology Transfer Automated Retrieval System (TEKTRAN)
Unwanted grain commingling impedes new quality-based grain handling systems and has proven to be an expensive and time consuming issue to study experimentally. Experimentally validated models may reduce the time and expense of studying grain commingling while providing additional insight into detail...
Fujii, K.; Yamamoto, T.; Imoto, N.; Koashi, M.
2014-12-04
We propose a scheme for distributed quantum computation with small local systems connected via noisy quantum channels. We show that the proposed scheme tolerates errors with probabilities ∼30% and ∼ 0.1% in quantum channels and local operations, respectively, both of which are improved substantially compared to the previous works.
Microwave-induced spin currents in ferromagnetic-insulator|normal-metal bilayer system
Agrawal, Milan; Serga, Alexander A.; Lauer, Viktor; Papaioannou, Evangelos Th.; Hillebrands, Burkard; Vasyuchka, Vitaliy I.
2014-09-01
A microwave technique is employed to simultaneously examine the spin pumping and the spin Seebeck effect processes in a YIG|Pt bilayer system. The experimental results show that for these two processes, the spin current flows in opposite directions. The temporal dynamics of the longitudinal spin Seebeck effect exhibits that the effect depends on the diffusion of bulk thermal-magnons in the thermal gradient in the ferromagnetic-insulator|normal-metal system.
NASA Astrophysics Data System (ADS)
Blachère, F.; Turpault, R.
2016-06-01
The objective of this work is to design explicit finite volumes schemes for specific systems of conservations laws with stiff source terms, which degenerate into diffusion equations. We propose a general framework to design an asymptotic preserving scheme, that is stable and consistent under a classical hyperbolic CFL condition in both hyperbolic and diffusive regime, for any two-dimensional unstructured mesh. Moreover, the scheme developed also preserves the set of admissible states, which is mandatory to keep physical solutions in stiff configurations. This construction is achieved by using a non-linear scheme as a target scheme for the diffusive equation, which gives the form of the global scheme for the complete system of conservation laws. Numerical results are provided to validate the scheme in both regimes.
Bonaccorso, Francesco; Colombo, Luigi; Yu, Guihua; Stoller, Meryl; Tozzini, Valentina; Ferrari, Andrea C; Ruoff, Rodney S; Pellegrini, Vittorio
2015-01-01
Graphene and related two-dimensional crystals and hybrid systems showcase several key properties that can address emerging energy needs, in particular for the ever growing market of portable and wearable energy conversion and storage devices. Graphene's flexibility, large surface area, and chemical stability, combined with its excellent electrical and thermal conductivity, make it promising as a catalyst in fuel and dye-sensitized solar cells. Chemically functionalized graphene can also improve storage and diffusion of ionic species and electric charge in batteries and supercapacitors. Two-dimensional crystals provide optoelectronic and photocatalytic properties complementing those of graphene, enabling the realization of ultrathin-film photovoltaic devices or systems for hydrogen production. Here, we review the use of graphene and related materials for energy conversion and storage, outlining the roadmap for future applications. PMID:25554791
Pair approximation method for spin-1 Heisenberg system
NASA Astrophysics Data System (ADS)
Mert, Murat; Kılıç, Ahmet; Mert, Gülistan
2016-03-01
Spin-1 Heisenberg system on simple cubic lattice is considered in the pair approximation method assuming that the second-nearest-neighbor exchange interaction parameter has a negative value. The system is described in presence of an external magnetic field. The effects of the negative single-ion anisotropy and the negative second-nearest-neighbor exchange interaction on magnetization, internal energy, heat capacity, entropy and free energy are investigated. There are diverse anomalies at low temperature. In the magnetization and other thermodynamic quantities, the first-order phase transitions from ferromagnetic state to antiferromagnetic state and from ferromagnetic state to paramagnetic state have been observed.
Rabi resonance in spin systems: Theory and experiment
NASA Astrophysics Data System (ADS)
Layton, Kelvin J.; Tahayori, Bahman; Mareels, Iven M. Y.; Farrell, Peter M.; Johnston, Leigh A.
2014-05-01
The response of a magnetic resonance spin system is predicted and experimentally verified for the particular case of a continuous wave amplitude modulated radiofrequency excitation. The experimental results demonstrate phenomena not previously observed in magnetic resonance systems, including a secondary resonance condition when the amplitude of the excitation equals the modulation frequency. This secondary resonance produces a relatively large steady state magnetisation with Fourier components at harmonics of the modulation frequency. Experiments are in excellent agreement with the theoretical prediction derived from the Bloch equations, which provides a sound theoretical framework for future developments in NMR spectroscopy and imaging.
Entanglement in a spin system with inverse square statistical interaction
NASA Astrophysics Data System (ADS)
Giuliano, D.; Sindona, A.; Falcone, G.; Plastina, F.; Amico, L.
2010-02-01
We investigate the entanglement content of the ground state of a system characterized by effective elementary degrees of freedom with fractional statistics. To this end, we explicitly construct the ground state for a chain of N spins with inverse square interaction (the Haldane-Shastry model) in the presence of an external uniform magnetic field. For such a system at zero temperature, we evaluate the entanglement in the ground state both at finite size and in the thermodynamic limit. We relate the behavior of the quantum correlations with the spinon condensation phenomenon occurring at the saturation field.
Staring 2-D hadamard transform spectral imager
Gentry, Stephen M.; Wehlburg, Christine M.; Wehlburg, Joseph C.; Smith, Mark W.; Smith, Jody L.
2006-02-07
A staring imaging system inputs a 2D spatial image containing multi-frequency spectral information. This image is encoded in one dimension of the image with a cyclic Hadamarid S-matrix. The resulting image is detecting with a spatial 2D detector; and a computer applies a Hadamard transform to recover the encoded image.
Khodabandeh, Zahra; Vojdani, Zahra; Talaei-Khozani, Tahereh; Jaberipour, Mansoureh; Hosseini, Ahmad; Bahmanpour, Soghra
2016-01-01
Background: Human Wharton’s jelly mesenchymal stem cells (HWJMSCs) express liver-specific markers such as albumin, alpha-fetoprotein, cytokeratin-19, cytokeratin-18, and glucose-6-phosphatase. Therefore, they can be considered as a good source for cell replacement therapy for liver diseases. This study aimed to evaluate the effects of various culture systems on the hepatocyte-specific gene expression pattern of naïve HWJMSCs. Methods: HWJMSCs were characterized as MSCs by detecting the surface CD markers and capability to differentiate toward osteoblast and adipocyte. HWJMSCs were cultured in 2D collagen films and 3D collagen scaffolds for 21 days and were compared to control cultures. Real time RT-PCR was used to evaluate the expression of liver-specific genes. Results: The HWJMSCs which were grown on non-coated culture plates expressed cytokeratin-18 and -19, alpha-fetoprotein, albumin, glucose-6-phosphatase, and claudin. The expression of the hepatic nuclear factor 4 (HNF4) was very low. The cells showed a significant increase in caludin expression when they cultured in 3D collagen scaffolds compared to the conventional monolayer culture and 2D collagen scaffold. Conclusion: Various culture systems did not influence on hepatocyte specific marker expression by HWJMSCs, except for claudin. The expression of claudin showed that 3D collagen scaffold provided the extracellular matrix for induction of the cells to interconnect with each other. PMID:26722142
NASA Astrophysics Data System (ADS)
Samaraweera, Rasanga; Liu, Han-Chun; Wegscheider, Werner; Mani, Ramesh
Recent advancements in the growth techniques of the GaAs/AlGaAs two dimensional electron system (2DES) routinely yield high quality heterostructures with enhanced physical and electrical properties, including devices with 2D electron mobilities well above 107 cm2/Vs. These improvements have opened new pathways to study interesting physical phenomena associated with the 2D electron system. Negative giant-magnetoresistance (GMR) is one such phenomenon which can observed in the high mobility 2DES. However, the negative GMR in the GaAs/AlGaAs 2DES is still not fully understood. In this contribution, we present an experimental study of the bell-shape negative GMR in high mobility GaAs/AlGaAs devices and quantitatively analyze the results utilizing the multi-conduction model. The multi-conduction model includes interesting physical characteristics such as negative diagonal conductivity, non-vanishing off-diagonal conductivity, etc. The aim of the study is to examine GMR over a wider experimental parameter space and determine whether the multi-conduction model serves to describe the experimental results.
Kasinathan, N.; Rajakumar, A.; Vaidyanathan, G.; Chetal, S.C.
1995-09-01
Post shutdown decay heat removal is an important safety requirement in any nuclear system. In order to improve the reliability of this function, Liquid metal (sodium) cooled fast breeder reactors (LMFBR) are equipped with redundant hot pool dipped immersion coolers connected to natural draught air cooled heat exchangers through intermediate sodium circuits. During decay heat removal, flow through the core, immersion cooler primary side and in the intermediate sodium circuits are also through natural convection. In order to establish the viability and validate computer codes used in making predictions, a 1:20 scale experimental model called RAMONA with water as coolant has been built and experimental simulation of decay heat removal situation has been performed at KfK Karlsruhe. Results of two such experiments have been compiled and published as benchmarks. This paper brings out the results of the numerical simulation of one of the benchmark case through a 1D/2D coupled code system, DHDYN-1D/THYC-2D and the salient features of the comparisons. Brief description of the formulations of the codes are also included.
Fitting of Diverging Thermoelectric Power in a Strongly Interacting 2D Electron System of Si-MOSFETs
NASA Astrophysics Data System (ADS)
Kim, Hyun-Tak
2013-03-01
The diverging-effective mass (DEM) in a metallic system is evidence of strong correlation between fermions in strongly correlated systems. The identification of the DEM still remains to be revealed The effective mass, m* =mo/(1-ρ4) where ρ is band filling helps clarify the diverging thermoelectric power, S, measured in inhomogeneous Si-MOSFET systems. As a carrier density ns decreases, S increases rapidly This is regarded as the metal-insulator transition (MIT) near nc ~ 79x10-1cm-2, where nc is about 0.02% to nSi ~ 3.4x10-14cm-2 in Si. This can be solved in assuming that ρ = nc/ns increases as ns decreases. nc is an excited(doped) carrier density in the semiconductor induced by gate and can be also regarded as a metallic carrier density, that is, nc ≡ nseminon = nmetal. ns is given as ntot ≡ ns = nc + nseminon where nseminon is a carrier density in a nonmetallic phase. The carrier density measured by Hall effect is the sum of carriers both induced by gate field and generated by MIT. Moreover, a larger metallic phase is not made due to a conducting path in the field-effect structure after a metallic phase is formed. Thus, increasing ns indicates increasing nnon; this corresponds to an over-doping to increase inhomogeneity. It's fitting is given from S = (απ3 kB2T/3e)(1/EF)= (α 8π3kB2T/3h2)(m*/e*nc) =So(1/ ρ) (1/(1-ρ4)) , where e* = ρ e, ρ = nc/ns, T =0.8K, m* =mo/(1-ρ4), α = 0.6, and So = (α 8π3kB2T/3h2)(mo/enc) ~12.36 are used. The data S are closely fitted by m*
Wang, Y Y; Kawasaki, M; Bruley, J; Gribelyuk, M; Domenicucci, A; Gaudiello, J
2004-11-01
A variable magnification electron holography, applicable for two-dimensional (2-D) potential mapping of semiconductor devices, employing a dual-lens imaging system is described. Imaging operation consists of a virtual image formed by the objective lens (OL) and a real image formed in a fixed imaging plane by the objective minilens. Wide variations in field of view (100-900 nm) and fringe spacing (0.7-6 nm) were obtained using a fixed biprism voltage by varying the total magnification of the dual OL system. The dual-lens system allows fringe width and spacing relative to the object to be varied roughly independently from the fringe contrast, resulting in enhanced resolution and sensitivity. The achievable fringe width and spacing cover the targets needed for devices in the semiconductor technology road map from the 350 to 45 nm node. Two-D potential maps for CMOS devices with 220 and 70 nm gate lengths were obtained. PMID:15450653
Single-Quantum Coherence Filter for Strongly Coupled Spin Systems for Localized 1H NMR Spectroscopy
NASA Astrophysics Data System (ADS)
Trabesinger, Andreas H.; Mueller, D. Christoph; Boesiger, Peter
2000-08-01
A pulse sequence for localized in vivo1H NMR spectroscopy is presented, which selectively filters single-quantum coherence built up by strongly coupled spin systems. Uncoupled and weakly coupled spin systems do not contribute to the signal output. Analytical calculations using a product operator description of the strongly coupled AB spin system as well as in vitro tests demonstrate that the proposed filter produces a signal output for a strongly coupled AB spin system, whereas the resonances of a weakly coupled AX spin system and of uncoupled spins are widely suppressed. As a potential application, the detection of the strongly coupled AA‧BB‧ spin system of taurine at 1.5 T is discussed.
NASA Astrophysics Data System (ADS)
Ayuel, K.; de Châtel, P. F.; Amani, Salah
2002-04-01
Charge, current and spin densities are calculated for a two-electron system, maintaining the explicit form of the wave functions, in terms of Slater determinants. The two-electron Russell-Saunders spin-orbit coupled eigenstates | L, S, J, MJ> are expressed as four-component spinors, and the operators of the above densities as 4×4 matrices. The contributions of various one-electron states to these densities are identified.
Kramers-degenerated NV+113C spin systems in diamond: analytical description
NASA Astrophysics Data System (ADS)
Nizovtsev, Alexander P.; Kilin, Sergei Y.; Pushkarchuk, Alexander L.; Kuten, Semen A.
2013-02-01
Spin systems consisted of single electronic spin S=1 of the NV center and nearby nuclear spins I=1/2 of 13C atoms disposed in diamond lattice near the center can be used as a small register of a quantum computer or as a sensor of a magnetic field. At odd number of nuclear spins eigenvalues of the spin systems at zero external magnetic field are at least twofold degenerated (Kramers degeneration) due to time reversal invariance of the spin Hamiltonian. This degeneracy is lifted only by external magnetic field regardless of the presence of any electric (crystal) field which can also lift the degeneracy thus hindering measurement of the magnetic field. Therefore, the Kramers-degenerated spin systems can be very perspective for measurement of a local magnetic field by the NV-based single-spin quantum magnetometer. Here, we are considering analytically the simplest Kramers-degenerated spin system NV+113C consisting of a single electron spin S=1 of the NV сenter coupled by hyperfine interaction with a single nuclear spin I=1/2 of 13C atom disposed in arbitrary site of diamond lattice. Simple approximate analytical expressions are obtained for eigenvalues and eigenstates of the spin system.
Chiral spin liquids in arrays of spin chains
NASA Astrophysics Data System (ADS)
Pereira, Rodrigo
The chiral spin liquid proposed by Kalmeyer and Laughlin is a spin analogue of the fractional quantum Hall effect: it has gapped bulk quasiparticles, charge-neutral chiral edge modes and topological order in the ground state. Recently there has been unambiguous numerical evidence that the chiral spin liquid can be stabilized as the ground state of extended Heisenberg models on the kagome lattice. I will talk about an analytical approach to investigate the emergence and the properties of the chiral spin liquid phase in spatially anisotropic 2D lattices. The approach is inspired by ``coupled-wire constructions'' of quantum Hall states: starting from a quasi-1D system, we build towards the 2D limit by coupling Heisenberg chains with three-spin interactions that drive the chiral spin order. Using a renormalization group analysis, we show that the chiral spin liquid is more easily stabilized in the kagome lattice than in the triangular lattice. Moreover, using the conformal field theory that describes single chains, we explicitly construct the operators that create bulk quasiparticles and those that account for the topological degeneracy on the torus. I will also discuss possible extensions of this approach to construct more exotic quantum spin liquids.
Phase transition in spin systems with various types of fluctuations.
Miyashita, Seiji
2010-01-01
Various types ordering processes in systems with large fluctuation are overviewed. Generally, the so-called order-disorder phase transition takes place in competition between the interaction causing the system be ordered and the entropy causing a random disturbance. Nature of the phase transition strongly depends on the type of fluctuation which is determined by the structure of the order parameter of the system. As to the critical property of phase transitions, the concept "universality of the critical phenomena" is well established. However, we still find variety of features of ordering processes. In this article, we study effects of various mechanisms which bring large fluctuation in the system, e.g., continuous symmetry of the spin in low dimensions, contradictions among interactions (frustration), randomness of the lattice, quantum fluctuations, and a long range interaction in off-lattice systems. PMID:20689226
Scaglione, S; Wendt, D; Miggino, S; Papadimitropoulos, A; Fato, M; Quarto, R; Martin, I
2008-08-01
In this study, we investigated the effect of the long-term (10 days) application of a defined and uniform level of fluid flow (uniform shear stress of 1.2 x 10(-3) N/m(2)) on human bone marrow stromal cells (BMSC) cultured on different substrates (i.e., uncoated glass or calcium phosphate coated glass, Osteologictrade mark) in a 2D parallel plate model. Both exposure to flow and culture on Osteologic significantly reduced the number of cell doublings. BMSC cultured under flow were more intensely stained for collagen type I and by von Kossa for mineralized matrix. BMSC exposed to flow displayed an increased osteogenic commitment (i.e., higher mRNA expression of cbfa-1 and osterix), although phenotype changes in response to flow (i.e., mRNA expression of osteopontin, osteocalcin and bone sialoprotein) were dependent on the substrate used. These findings highlight the importance of the combination of physical forces and culture substrate to determine the functional state of differentiating osteoblastic cells. The results obtained using a simple and controlled 2D model system may help to interpret the long-term effects of BMSC culture under perfusion within 3D porous scaffolds, where multiple experimental variables cannot be easily studied independently, and shear stresses cannot be precisely computed. PMID:17969030
Interfacial spin cluster effects in exchange bias systems
Carpenter, R. Vallejo-Fernandez, G.; O'Grady, K.
2014-05-07
In this work, the effect of exchange bias on the hysteresis loop of CoFe is observed. The evolution of the coercivities and the shift of the hysteresis loop during the annealing process has been measured for films deposited on NiCr and Cu seed layers. Through comparison of the as deposited and field annealed loops, it is clear that for an exchange biased material, the two coercivities are due to different reversal processes. This behaviour is attributed to spin clusters at the ferromagnet/antiferromagnet interface, which behave in a similar manner to a fine particle system.
Dynamical Spin Properties of Confined Fermi and Bose Systems in the Presence of Spin-Orbit Coupling
NASA Astrophysics Data System (ADS)
Ambrosetti, A.; Salasnich, L.; Silvestrelli, P. L.
2016-04-01
Due to the recent experimental progress, tunable spin-orbit (SO) interactions represent ideal candidates for the control of polarization and dynamical spin properties in both quantum wells and cold atomic systems. A detailed understanding of spin properties in SO-coupled systems is thus a compelling prerequisite for possible novel applications or improvements in the context of spintronics and quantum computers. Here, we analyze the case of equal Rashba and Dresselhaus couplings in both homogeneous and laterally confined two-dimensional systems. Starting from the single-particle picture and subsequently introducing two-body interactions we observe that periodic spin fluctuations can be induced and maintained in the system. Through an analytical derivation, we show that the two-body interaction does not involve decoherence effects in the bosonic dimer, and, in the repulsive homogeneous Fermi gas, it may be even exploited in combination with the SO coupling to induce and tune standing currents. By further studying the effects of a harmonic lateral confinement—a particularly interesting case for Bose condensates—we evidence the possible appearance of nontrivial spin textures, whereas the further application of a small Zeeman-type interaction can be exploited to fine-tune the system's polarizability.
Quantum mechanical NMR simulation algorithm for protein-size spin systems
NASA Astrophysics Data System (ADS)
Edwards, Luke J.; Savostyanov, D. V.; Welderufael, Z. T.; Lee, Donghan; Kuprov, Ilya
2014-06-01
Nuclear magnetic resonance spectroscopy is one of the few remaining areas of physical chemistry for which polynomially scaling quantum mechanical simulation methods have not so far been available. In this communication we adapt the restricted state space approximation to protein NMR spectroscopy and illustrate its performance by simulating common 2D and 3D liquid state NMR experiments (including accurate description of relaxation processes using Bloch-Redfield-Wangsness theory) on isotopically enriched human ubiquitin - a protein containing over a thousand nuclear spins forming an irregular polycyclic three-dimensional coupling lattice. The algorithm uses careful tailoring of the density operator space to only include nuclear spin states that are populated to a significant extent. The reduced state space is generated by analysing spin connectivity and decoherence properties: rapidly relaxing states as well as correlations between topologically remote spins are dropped from the basis set.
Spin-Spin Effects in Models of Binary Black Hole Systems
NASA Astrophysics Data System (ADS)
Hawley, Scott; Matzner, Richard; Thompson, Lindsey
2012-03-01
We have implemented a parallel multigrid solver, to solve the initial data problem for 3 + 1 General Relativity. This involves solution of elliptic equations derived from the Hamiltonian and the momentum constraints. We use the conformal transverse-traceless method of York and collaborators which consists of a conformal decomposition with a scalar that adjusts the metric, and a vector potential that adjusts the longitudinal components of the extrinsic curvature. The constraint equations are then solved for these quantities such that the complete solution fully satisfies the constraints. We apply this technique to compare with theoretical expectations for the spin-orientation- and separation-dependence in the case of spinning interacting (but not orbiting) black holes. We write out a formula for the effect of the spin-spin interaction which includes a result of Wald as well as additional effect due to the rotation of the mass quadrupole moment of a spinning black hole.
Deviations from Fermi-Liquid Behavior above Tc in 2D Short Coherence Length Superconductors
NASA Astrophysics Data System (ADS)
Trivedi, Nandini; Randeria, Mohit
1995-07-01
We show that there are qualitative differences between the temperature dependence of the spin and charge correlations in the normal state of the 2D attractive Hubbard model using quantum Monte Carlo simulations. The one-particle density of states shows a pseudogap above Tc with a depleted N0 with decreasing T. The susceptibility χs and the low frequency spin spectral weight track N0, which explains the spin-gap scaling: 1/T1T~χsT. However, collective excitations contribute to the charge channel, and the compressibility dn/dμ is T independent. This anomalous ``spin-charge separation'' is shown to exist even at intermediate \\|U\\| where the momentum distribution nk gives evidence for a degenerate Fermi system.
Cavity QED Based on Collective Magnetic Dipole Coupling: Spin Ensembles as Hybrid Two-Level Systems
NASA Astrophysics Data System (ADS)
Imamoǧlu, Atac
2009-02-01
We analyze the magnetic dipole coupling of an ensemble of spins to a superconducting microwave stripline structure, incorporating a Josephson junction based transmon qubit. We show that this system is described by an embedded Jaynes-Cummings model: in the strong coupling regime, collective spin-wave excitations of the ensemble of spins pick up the nonlinearity of the cavity mode, such that the two lowest eigenstates of the coupled spin wave-microwave cavity-Josephson junction system define a hybrid two-level system. The proposal described here enables new avenues for nonlinear optics using optical photons coupled to spin ensembles via Raman transitions. The possibility of strong coupling cavity QED with magnetic dipole transitions also opens up the possibility of extending quantum information processing protocols to spins in silicon or graphene, without the need for single-spin confinement.
Hybrid quantum systems with ultracold spins and optomechanics
NASA Astrophysics Data System (ADS)
Shaffer, Airlia; Patil, Yogesh Sharad; Cheung, Hil F. H.; Wang, Ke; Date, Aditya; Schwab, Keith; Meystre, Pierre; Vengalattore, Mukund
2016-05-01
Linear cavity optomechanics has enabled radiation pressure cooling and sensing of mechanical resonators at the quantum limits. However, exciting and unrealized avenues such as generating massive macroscopic nonclassical states, quantum signal transduction, and phonon-based manybody physics each require strong, nonlinear interactions. In our group, we are exploring three approaches to realizing strong optomechanical nonlinearities - i. using atomically thin graphene membranes, ii. coupling optomechanical systems with ultracold atomic spins, and iii. using microtoroidal optomechanical resonators strongly coupled to atoms trapped in their evanescent fields. We describe our progress in each of these efforts and discuss ongoing studies on various aspects of quantum enhanced metrology, nonequilibrium dynamics of open quantum systems and quantum transduction using these novel hybrid quantum systems. This work is supported by the DARPA QuASAR program through a Grant from the ARO.
On the control of spin-boson systems
Boscain, Ugo; Mason, Paolo; Panati, Gianluca; Sigalotti, Mario
2015-09-15
In this paper, we study the so-called spin-boson system, namely, a two-level system in interaction with a distinguished mode of a quantized bosonic field. We give a brief description of the controlled Rabi and Jaynes–Cummings models and we discuss their appearance in the mathematics and physics literature. We then study the controllability of the Rabi model when the control is an external field acting on the bosonic part. Applying geometric control techniques to the Galerkin approximation and using perturbation theory to guarantee non-resonance of the spectrum of the drift operator, we prove approximate controllability of the system, for almost every value of the interaction parameter.
Engineering ultralong spin coherence in two-dimensional hole systems at low temperatures
NASA Astrophysics Data System (ADS)
Korn, T.; Kugler, M.; Griesbeck, M.; Schulz, R.; Wagner, A.; Hirmer, M.; Gerl, C.; Schuh, D.; Wegscheider, W.; Schüller, C.
2010-04-01
For the realization of scalable solid-state quantum-bit systems, spins in semiconductor quantum dots (QDs) are promising candidates. A key requirement for quantum logic operations is a sufficiently long coherence time of the spin system. Recently, hole spins in III-V-based QDs were discussed as alternatives to electron spins, since the hole spin, in contrast to the electron spin, is not affected by contact hyperfine interaction with the nuclear spins. Here, we report a breakthrough in the spin coherence times of hole ensembles, confined in the so-called natural QDs, in narrow GaAs/AlGaAs quantum wells at temperatures below 500 mK. Consistently, time-resolved Faraday rotation and resonant spin amplification techniques deliver hole-spin coherence times, which approach in the low magnetic field limit values above 70 ns. The optical initialization of the hole spin polarization, as well as the interconnected electron and hole spin dynamics in our samples, are well reproduced using a rate equation model.
Memory of spin polarization in triplet-doublet systems
Imamura, T.; Onitsuka, O.; Obi, K.
1986-12-18
The interaction between triplet molecules and nitroxide radicals is studied in solution by the time-resolved ESR technique. Spin polarization induced in the radical reflects that of the triplet molecule which is an encounter partner. The spin-polarized ESR signals observed in nitroxide radicals are interpreted in terms of electron and/or spin exchange mechanisms.
NASA Astrophysics Data System (ADS)
Stone, Thomas E., Jr.
This study of network structure and phase transitions focuses on three systems with different dynamical rules: the Ising model with competing ferromagnetic and antiferromagnetic interactions on a 2D triangular lattice, the susceptible-infected-recovered (SIR) epidemic model on an adaptive small-world network, and the SIR model on the Saramaki-Kaski dynamic small-world network. In the Ising model with competing interactions, we employ a novel network construction using the individual spins as nodes and links occurring between two nodes if their spin-spin correlation function exceeds a set threshold. This construction yields the emergence of multiple networks of correlated fluctuations. In the spin-glass-like phase, we find spatially non-contiguous networks of correlated fluctuations, as had been previously predicted by chaotic renormalization-group trajectory arguments, but not confirmed. In the second part of this thesis we turn to a dynamical process, disease spreading, on an adaptive small-world network. The adaptive nature of the contact network means that the social connections can evolve in time, in response to the current states of the individual nodes, creating a feedback mechanism. Unlike previous work, we introduce a method by which this adaptive rewiring is included while maintaining the underlying community structure. This more realistic method can have significant effects on the final size of an outbreak. We also develop a mean-field theory to verify our simulation results in certain limits based on master equation considerations. The third part of this thesis treats a dynamic small-world network, in order to utilize its computational advantages to study the critical phenomena of the disease-free to epidemic phase transition. We solve the dynamical equations for the predicted critical point, and verify this point via finite size scaling arguments. The associated critical exponents are found in a similar manner, which show this model to be in a new
Localized spin excitations in an antiferromagnetic spin system with D-M interaction.
Evangeline Rebecca, T; Latha, M M
2016-06-01
The existence of localized spin excitations and spin deviations along the site in a one-dimensional antiferromagnet with Dzyaloshinski-Moriya (D-M) interaction has been studied using quasiclassical approximation. By introducing the Holstein-Primakoff bosonic representation of spin operators, the coherent state ansatz, and the time dependent variational principle, a discrete set of coupled nonlinear partial differential equations governing the dynamics is derived. Employing the multiple-scale method, one, two and three solitary wave solutions are constructed and depicted graphically. PMID:27368781
Phase states of a 2D easy-plane ferromagnet with strong inclined anisotropy
Fridman, Yu. A. Klevets, F. N.; Gorelikov, G. A.; Meleshko, A. G.
2012-12-15
We investigate the spin states of a 2D film exhibiting easy-axis anisotropy and a strong single-ion inclined anisotropy whose axis forms a certain angle with the normal to the film surface. Such a system may have an angular ferromagnetic phase, a spatially inhomogeneous state, and a quadrupole phase, whose realization depends substantially on the inclined anisotropy and the orientation of the wavevector in the film plane.
Realizing Fractional Chern Insulators in Dipolar Spin Systems
NASA Astrophysics Data System (ADS)
Yao, N. Y.; Gorshkov, A. V.; Laumann, C. R.; Läuchli, A. M.; Ye, J.; Lukin, M. D.
2013-05-01
Strongly correlated quantum systems can exhibit exotic behavior controlled by topology. We predict that the ν=1/2 fractional Chern insulator arises naturally in a two-dimensional array of driven, dipolar-interacting spins. As a specific implementation, we analyze how to prepare and detect synthetic gauge potentials for the rotational excitations of ultracold polar molecules trapped in a deep optical lattice. With the motion of the molecules pinned, under certain conditions, these rotational excitations form a fractional Chern insulating state. We present a detailed experimental blueprint for its realization and demonstrate that the implementation is consistent with near-term capabilities. Prospects for the realization of such phases in solid-state dipolar systems are discussed as are their possible applications.
Approximating the ground state of gapped quantum spin systems
Michalakis, Spyridon; Hamza, Eman; Nachtergaele, Bruno; Sims, Robert
2009-01-01
We consider quantum spin systems defined on finite sets V equipped with a metric. In typical examples, V is a large, but finite subset of Z{sup d}. For finite range Hamiltonians with uniformly bounded interaction terms and a unique, gapped ground state, we demonstrate a locality property of the corresponding ground state projector. In such systems, this ground state projector can be approximated by the product of observables with quantifiable supports. In fact, given any subset {chi} {contained_in} V the ground state projector can be approximated by the product of two projections, one supported on {chi} and one supported on {chi}{sup c}, and a bounded observable supported on a boundary region in such a way that as the boundary region increases, the approximation becomes better. Such an approximation was useful in proving an area law in one dimension, and this result corresponds to a multi-dimensional analogue.
Jin, J.-Y.; Ryu, Samuel; Faber, Kathleen; Mikkelsen, Tom; Chen Qing; Li Shidong; Movsas, Benjamin
2006-12-15
The purpose of this study was to evaluate the accuracy of a two-dimensional (2D) to three-dimensional (3D) image-fusion-guided target localization system and a mask based stereotactic system for fractionated stereotactic radiotherapy (FSRT) of cranial lesions. A commercial x-ray image guidance system originally developed for extracranial radiosurgery was used for FSRT of cranial lesions. The localization accuracy was quantitatively evaluated with an anthropomorphic head phantom implanted with eight small radiopaque markers (BBs) in different locations. The accuracy and its clinical reliability were also qualitatively evaluated for a total of 127 fractions in 12 patients with both kV x-ray images and MV portal films. The image-guided system was then used as a standard to evaluate the overall uncertainty and reproducibility of the head mask based stereotactic system in these patients. The phantom study demonstrated that the maximal random error of the image-guided target localization was {+-}0.6 mm in each direction in terms of the 95% confidence interval (CI). The systematic error varied with measurement methods. It was approximately 0.4 mm, mainly in the longitudinal direction, for the kV x-ray method. There was a 0.5 mm systematic difference, primarily in the lateral direction, between the kV x-ray and the MV portal methods. The patient study suggested that the accuracy of the image-guided system in patients was comparable to that in the phantom. The overall uncertainty of the mask system was {+-}4 mm, and the reproducibility was {+-}2.9 mm in terms of 95% CI. The study demonstrated that the image guidance system provides accurate and precise target positioning.
Gate-control of spin-motive force and spin-torque in Rashba SOC systems
NASA Astrophysics Data System (ADS)
Son Ho, Cong; Jalil, Mansoor B. A.; Ghee Tan, Seng
2015-12-01
The introduction of a strong Rashba spin-orbit coupling has been predicted to enhance the spin motive force (SMF) (see Kim et al 2012 Phys. Rev. Lett. 108 217202). In this work, we predict further enhancement of the SMF by time modulation of the Rashba coupling {α }{{R}}, which induces an additional electric field {E}dR={\\dot{α }}{{R}}{m}{{e}}/e{{\\hslash }}(\\hat{z}× m). When the modulation frequency is higher than the magnetization precessing frequency, the amplitude of this field is significantly larger than previously predicted results. Correspondingly, the spin torque on the magnetization is also effectively enhanced. We also suggest a biasing scheme to achieve rectification of SMF, i.e., by application of a square wave voltage at the resonant frequency. Finally, we numerically estimate the resulting spin torque field arising from a Gaussian pulse time modulation of {α }{{R}}.
Nontransverse factorizing fields and entanglement in finite spin systems
NASA Astrophysics Data System (ADS)
Cerezo, M.; Rossignoli, R.; Canosa, N.
2015-12-01
We determine the conditions for the existence of nontransverse factorizing magnetic fields in general spin arrays with anisotropic X Y Z couplings of arbitrary range. It is first shown that a uniform, maximally aligned, completely separable eigenstate can exist just for fields hs parallel to a principal plane and forming four straight lines in the field space, with the alignment direction different from that of hs and determined by the anisotropy. Such a state always becomes a nondegenerate ground state for sufficiently strong (yet finite) fields along these lines, in both ferromagnetic and antiferromagnetic-type systems. In antiferromagnetic chains, this field coexists with the nontransverse factorizing field hs' associated with a degenerate Néel-type separable ground state, which is shown to arise at a level crossing in a finite chain. It is also demonstrated for arbitrary spin that pairwise entanglement reaches full range in the vicinity of both hs and hs', vanishing at hs but approaching small yet finite side limits at hs', which are analytically determined. The behavior of the block entropy and entanglement spectrum in their vicinity is also analyzed.
Bipartite entanglement and entropic boundary law in lattice spin systems
Hamma, Alioscia; Ionicioiu, Radu; Zanardi, Paolo
2005-02-01
We investigate bipartite entanglement in spin-1/2 systems on a generic lattice. For states that are an equal superposition of elements of a group G of spin flips acting on the fully polarized state |0>{sup xn}, we find that the von Neumann entropy depends only on the boundary between the two subsystems A and B. These states are stabilized by the group G. A physical realization of such states is given by the ground state manifold of the Kitaev's model on a Riemann surface of genus g. For a square lattice, we find that the entropy of entanglement is bounded from above and below by functions linear in the perimeter of the subsystem A and is equal to the perimeter (up to an additive constant) when A is convex. The entropy of entanglement is shown to be related to the topological order of this model. Finally, we find that some of the ground states are absolutely entangled, i.e., no partition has zero entanglement. We also provide several examples for the square lattice.
NASA Astrophysics Data System (ADS)
Salikhov, R.; Abrudan, R.; Brüssing, F.; Gross, K.; Luo, C.; Westerholt, K.; Zabel, H.; Radu, F.; Garifullin, I. A.
2012-10-01
Using time-resolved x-ray resonant magnetic scattering we report on the precessional dynamics of spin valve systems with parallel (P) and antiparallel (AP) orientation of the ferromagnetic layers separated by a nonmagnetic spacer layers. Previously we observed in Co/Cu/Ni81Fe19(Py) spin valve systems an increase of the magnetic damping parameter in Py with changing magnetization direction of Py and Co layers from P to AP orientation [Salikhov , Appl. Phys. Lett.APPLAB0003-695110.1063/1.3633115 99, 092509 (2011)]. We attributed this finding to the configurational dependence of the spin pumping effect [Kim and Chappert, J. Magn. Magn. Mater.JMMMDC0304-885310.1016/j.jmmm.2004.09.036 286, 56 (2005)]. Here we extend our earlier findings by investigating the temperature dependence of the spin pumping effect and possible other causes for the configurational dependence of the damping parameter, such as domain wall induced coupling or magnetic dipole coupling. The main focus is on Co/Cu/Py trilayers and on Co2MnGe/V/Py trilayers with spin valve properties.
NASA Astrophysics Data System (ADS)
Dobler, J. T.; Braun, M.; Blume, N.; McGregor, D.; Zaccheo, T. S.; Pernini, T.; Botos, C.
2014-12-01
We will present the development of the Greenhouse gas Laser Imaging Tomography Experiment (GreenLITE). GreenLITE consists of two laser based transceivers and a number of retro-reflectors to measure differential transmission (DT) of a number of overlapping chords in a plane over the site being monitored. The transceivers use the Intensity Modulated Continuous Wave (IM-CW) approach, which is a technique that allows simultaneous transmission/reception of multiple fixed wavelength lasers and a lock-in, or matched filter, to measure amplitude and phase of the different wavelengths in the digital domain. The technique was developed by Exelis and has been evaluated using an airborne demonstrator for the past 10 years by NASA Langley Research Center. The method has demonstrated high accuracy and high precision measurements as compared to an in situ monitor tracable to WMO standards, agreeing to 0.65 ppm +/-1.7 ppm. The GreenLITE system is coupled to a cloud-based data storage and processing system that takes the measured chord data, along with auxiliary data to retrieve an average CO2 concentration per chord and which combines the chords to provide an estimate of the spatial distribution of CO2 concentration in the plane. A web-based interface allows users to view real-time CO2 concentrations and 2D concentration maps of the area being monitored. The 2D maps can be differenced as a function of time for an estimate of the flux across the plane measured by the system. The system is designed to operate autonomously from semi-remote locations with a very low maintenance cycle. Initial instrument tests, conducted in June, showed signal to noise in the measured ratio of >3000 for 10 s averages. Additional local field testing and a quantifiable field testing at the Zero Emissions Research and Technology (ZERT) site in Bozeman, MT are planned for this fall. We will present details on the instrument and software tools that have been developed, along with results from the local
Gargett, Maegan Rosenfeld, Anatoly; Oborn, Brad; Metcalfe, Peter
2015-02-15
Purpose: MRI-guided radiation therapy systems (MRIgRT) are being developed to improve online imaging during treatment delivery. At present, the operation of single point dosimeters and an ionization chamber array have been characterized in such systems. This work investigates a novel 2D diode array, named “magic plate,” for both single point calibration and 2D positional performance, the latter being a key element of modern radiotherapy techniques that will be delivered by these systems. Methods: GEANT4 Monte Carlo methods have been employed to study the dose response of a silicon diode array to 6 MV photon beams, in the presence of in-line and perpendicularly aligned uniform magnetic fields. The array consists of 121 silicon diodes (dimensions 1.5 × 1.5 × 0.38 mm{sup 3}) embedded in kapton substrate with 1 cm pitch, spanning a 10 × 10 cm{sup 2} area in total. A geometrically identical, water equivalent volume was simulated concurrently for comparison. The dose response of the silicon diode array was assessed for various photon beam field shapes and sizes, including an IMRT field, at 1 T. The dose response was further investigated at larger magnetic field strengths (1.5 and 3 T) for a 4 × 4 cm{sup 2} photon field size. Results: The magic plate diode array shows excellent correspondence (< ± 1%) to water dose in the in-line orientation, for all beam arrangements and magnetic field strengths investigated. The perpendicular orientation, however, exhibits a dose shift with respect to water at the high-dose-gradient beam edge of jaw-defined fields [maximum (4.3 ± 0.8)% over-response, maximum (1.8 ± 0.8)% under-response on opposing side for 1 T, uncertainty 1σ]. The trend is not evident in areas with in-field dose gradients typical of IMRT dose maps. Conclusions: A novel 121 pixel silicon diode array detector has been characterized by Monte Carlo simulation for its performance inside magnetic fields representative of current prototype and proposed MRI
Fractalization drives crystalline states in a frustrated spin system
Harrison, Neil; Sengupta, Pinaki; Batista, Cristian; Sebastian, Suchitra
2008-01-01
The fractalized Hofstadter butterfly energy spectrum predicted for magnetically confined fermions diffracted by a crystal lattice has remained beyond the reach of laboratory-accessible magnetic fields. We find the geometrically frustrated spin system SrCu{sub 2}(BO{sub 3}){sub 2} to provide a sterling demonstration of a system in which bosons confined by a magnetic and lattice potential mimic the behavior of fermions in the extreme quantum limit, giving rise to a sequence of plateaus at all magnetization m{sub z}/M{sub sat} = 1/q ratios 9 {>=} q {>=} 2 and p/q = 2/9 (m{sub sat} is the saturation magnetization) in magnetic fields up to 85 T and temperatures down to 29 mK, within the sequence of previously identified plateaus at 1/8, 1/4, and 1/3 of the saturated magnetization. We identify this hierarchy of plateaus as a consequence of confined bosons in SrCu{sub 2}(BO{sub 3}){sub 2} mimicking the high magnetic field fractalization predicted by the Hofstadter butterfly for fermionic systems. Such an experimental realization of the Hofstadter problem for interacting fermions has not been previously achieved in real materials, given the unachievably high magnetic flux densities or large lattice periods required. By a theoretical treatment that includes short-range repulsion in the Hofstadter treatment, stripe-like spin density-modulated phases are revealed in SrCu{sub 2}(BO{sub 3}){sub 2} as emergent from a fluidic fractal spectrum.
NASA Technical Reports Server (NTRS)
Bailey, R. T.; Shih, T. I.-P.; Nguyen, H. L.; Roelke, R. J.
1990-01-01
An efficient computer program, called GRID2D/3D, was developed to generate single and composite grid systems within geometrically complex two- and three-dimensional (2- and 3-D) spatial domains that can deform with time. GRID2D/3D generates single grid systems by using algebraic grid generation methods based on transfinite interpolation in which the distribution of grid points within the spatial domain is controlled by stretching functions. All single grid systems generated by GRID2D/3D can have grid lines that are continuous and differentiable everywhere up to the second-order. Also, grid lines can intersect boundaries of the spatial domain orthogonally. GRID2D/3D generates composite grid systems by patching together two or more single grid systems. The patching can be discontinuous or continuous. For continuous composite grid systems, the grid lines are continuous and differentiable everywhere up to the second-order except at interfaces where different single grid systems meet. At interfaces where different single grid systems meet, the grid lines are only differentiable up to the first-order. For 2-D spatial domains, the boundary curves are described by using either cubic or tension spline interpolation. For 3-D spatial domains, the boundary surfaces are described by using either linear Coon's interpolation, bi-hyperbolic spline interpolation, or a new technique referred to as 3-D bi-directional Hermite interpolation. Since grid systems generated by algebraic methods can have grid lines that overlap one another, GRID2D/3D contains a graphics package for evaluating the grid systems generated. With the graphics package, the user can generate grid systems in an interactive manner with the grid generation part of GRID2D/3D. GRID2D/3D is written in FORTRAN 77 and can be run on any IBM PC, XT, or AT compatible computer. In order to use GRID2D/3D on workstations or mainframe computers, some minor modifications must be made in the graphics part of the program; no
NASA Astrophysics Data System (ADS)
Morawetz, K.
2015-12-01
The spin and density response functions in the random phase approximation are derived by linearizing the kinetic equation including a magnetic field, the spin-orbit coupling, and mean fields with respect to an external electric field. Different polarization functions appear describing various precession motions showing Rabi satellites due to an effective Zeeman field. The latter turns out to consist of the mean-field magnetization, the magnetic field, and the spin-orbit vector. The collective modes for charged and neutral systems are derived and a threefold splitting of the spin waves dependent on the polarization and spin-orbit coupling is shown. The dielectric function including spin-orbit coupling, polarization, and magnetic fields is presented analytically for long wavelengths and in the static limit. The dynamical screening length as well as the long-wavelength dielectric function shows an instability in charge modes, which are interpreted as spin segregation and domain formation. The spin response describes a crossover from damped oscillatory behavior to exponentially damped behavior dependent on the polarization and collision frequency. The magnetic field causes ellipsoidal trajectories of the spin response to an external electric field and the spin-orbit coupling causes a rotation of the spin axes. The spin-dephasing times are extracted and discussed in dependence on the polarization, magnetic field, spin-orbit coupling, and single-particle relaxation times.
2D electronic materials for army applications
NASA Astrophysics Data System (ADS)
O'Regan, Terrance; Perconti, Philip
2015-05-01
The record electronic properties achieved in monolayer graphene and related 2D materials such as molybdenum disulfide and hexagonal boron nitride show promise for revolutionary high-speed and low-power electronic devices. Heterogeneous 2D-stacked materials may create enabling technology for future communication and computation applications to meet soldier requirements. For instance, transparent, flexible and even wearable systems may become feasible. With soldier and squad level electronic power demands increasing, the Army is committed to developing and harnessing graphene-like 2D materials for compact low size-weight-and-power-cost (SWAP-C) systems. This paper will review developments in 2D electronic materials at the Army Research Laboratory over the last five years and discuss directions for future army applications.
Quantum computational capability of a 2D valence bond solid phase
Miyake, Akimasa
2011-07-15
Highlights: > Our model is the 2D valence bond solid phase of a quantum antiferromagnet. > Universal quantum computation is processed by measurements of quantum correlations. > An intrinsic complexity of strongly-correlated quantum systems could be a resource. - Abstract: Quantum phases of naturally-occurring systems exhibit distinctive collective phenomena as manifestation of their many-body correlations, in contrast to our persistent technological challenge to engineer at will such strong correlations artificially. Here we show theoretically that quantum correlations exhibited in the 2D valence bond solid phase of a quantum antiferromagnet, modeled by Affleck, Kennedy, Lieb, and Tasaki (AKLT) as a precursor of spin liquids and topological orders, are sufficiently complex yet structured enough to simulate universal quantum computation when every single spin can be measured individually. This unveils that an intrinsic complexity of naturally-occurring 2D quantum systems-which has been a long-standing challenge for traditional computers-could be tamed as a computationally valuable resource, even if we are limited not to create newly entanglement during computation. Our constructive protocol leverages a novel way to herald the correlations suitable for deterministic quantum computation through a random sampling, and may be extensible to other ground states of various 2D valence bond phases beyond the AKLT state.
2D materials for nanophotonic devices
NASA Astrophysics Data System (ADS)
Xu, Renjing; Yang, Jiong; Zhang, Shuang; Pei, Jiajie; Lu, Yuerui
2015-12-01
Two-dimensional (2D) materials have become very important building blocks for electronic, photonic, and phononic devices. The 2D material family has four key members, including the metallic graphene, transition metal dichalcogenide (TMD) layered semiconductors, semiconducting black phosphorous, and the insulating h-BN. Owing to the strong quantum confinements and defect-free surfaces, these atomically thin layers have offered us perfect platforms to investigate the interactions among photons, electrons and phonons. The unique interactions in these 2D materials are very important for both scientific research and application engineering. In this talk, I would like to briefly summarize and highlight the key findings, opportunities and challenges in this field. Next, I will introduce/highlight our recent achievements. We demonstrated atomically thin micro-lens and gratings using 2D MoS2, which is the thinnest optical component around the world. These devices are based on our discovery that the elastic light-matter interactions in highindex 2D materials is very strong. Also, I would like to introduce a new two-dimensional material phosphorene. Phosphorene has strongly anisotropic optical response, which creates 1D excitons in a 2D system. The strong confinement in phosphorene also enables the ultra-high trion (charged exciton) binding energies, which have been successfully measured in our experiments. Finally, I will briefly talk about the potential applications of 2D materials in energy harvesting.
Inertial solvation in femtosecond 2D spectra
NASA Astrophysics Data System (ADS)
Hybl, John; Albrecht Ferro, Allison; Farrow, Darcie; Jonas, David
2001-03-01
We have used 2D Fourier transform spectroscopy to investigate polar solvation. 2D spectroscopy can reveal molecular lineshapes beneath ensemble averaged spectra and freeze molecular motions to give an undistorted picture of the microscopic dynamics of polar solvation. The transition from "inhomogeneous" to "homogeneous" 2D spectra is governed by both vibrational relaxation and solvent motion. Therefore, the time dependence of the 2D spectrum directly reflects the total response of the solvent-solute system. IR144, a cyanine dye with a dipole moment change upon electronic excitation, was used to probe inertial solvation in methanol and propylene carbonate. Since the static Stokes' shift of IR144 in each of these solvents is similar, differences in the 2D spectra result from solvation dynamics. Initial results indicate that the larger propylene carbonate responds more slowly than methanol, but appear to be inconsistent with rotational estimates of the inertial response. To disentangle intra-molecular vibrations from solvent motion, the 2D spectra of IR144 will be compared to the time-dependent 2D spectra of the structurally related nonpolar cyanine dye HDITCP.
Spin-up/spin-down of neutron star in Be-X-ray binary system GX 304-1
NASA Astrophysics Data System (ADS)
Postnov, K. A.; Mironov, A. I.; Lutovinov, A. A.; Shakura, N. I.; Kochetkova, A. Yu.; Tsygankov, S. S.
2015-01-01
We analyse spin-up/spin-down of the neutron star in Be-X-ray binary system GX 304-1 observed by Swift/X-ray telescope (XRT) and Fermi/gamma-ray burst monitor (GBM) instruments in the period of the source activity from 2010 April to 2013 January and discuss possible mechanisms of angular momentum transfer to/from the neutron star. We argue that the neutron star spin-down at quiescent states of the source with an X-ray luminosity of Lx ˜ 1034 erg s-1 between a series of Type I outbursts and spin-up during the outbursts can be explained by quasi-spherical settling accretion on to the neutron star. The outbursts occur near the neutron star periastron passages, where the density is enhanced due to the presence of an equatorial Be-disc tilted to the orbital plane. We also propose an explanation to the counterintuitive smaller spin-up rate observed at higher luminosity in a double-peak Type I outburst due to lower value of the specific angular momentum of matter captured from the quasi-spherical wind from the Be-star by the neutron star moving in an elliptical orbit with eccentricity e ≳ 0.5.
Propagation of quantum information through a spin system
Osborne, Tobias J.; Linden, Noah
2004-05-01
It has been recently suggested that the dynamics of a quantum spin system may provide a natural mechanism for transporting quantum information. We show that one-dimensional rings of qubits with fixed (time-independent) interactions, constant around the ring, allow high-fidelity communication of quantum states. We show that the problem of maximizing the fidelity of the quantum communication is related to a classical problem in Fourier wave analysis. By making use of this observation we find that if both communicating parties have access to limited numbers of qubits in the ring (a fraction that vanishes in the limit of large rings) it is possible to make the communication arbitrarily good.
Lifting mean field degeneracies in anisotropic spin systems
NASA Astrophysics Data System (ADS)
Sizyuk, Yuriy; Perkins, Natalia; Wolfle, Peter
We propose a method for calculating the fluctuation contribution to the free energy of anisotropic spin systems with generic bilinear superexchange magnetic Hamiltonian based on the Hubbard-Stratonovich transformation. We show that this contribution splits the set of mean field degenerate states with rotational symmetry, and chooses states with the order parameter directed along lattice symmetric directions as the true ground states. We consider the simple example of Heisenberg-compass model on cubic lattice to show that depending on the relative strength of the compass and Heisenberg interactions the spontaneous magnetization is pinned to either one of the cubic directions or one of the cubic body diagonals with a intermediate phase in between where the minima and maxima of the free energy interchange. DMR-1005932, DMR-1511768, and NSF PHY11-25915.
Dubousset, Jean; Charpak, Georges; Dorion, Irène; Skalli, Wafa; Lavaste, François; Deguise, Jacques; Kalifa, Gabriel; Ferey, Solène
2005-02-01
Close collaboration between multidisciplinary specialists (physicists, biomecanical engineers, medical radiologists and pediatric orthopedic surgeons) has led to the development of a new low-dose radiation device named EOS. EOS has three main advantages: The use of a gaseous X-ray detector, invented by Georges Charpak (Nobel Prizewinner 1992), the dose necessary to obtain a 2D image of the skeletal system has been reduced by 8 to 10 times, while that required to obtain a 3D reconstruction from CT slices has fallen by a factor of 800 to 1000. The accuracy of the 3D reconstruction obtained with EOS is as good as that obtained with CT. The patient is examined in the standing (or seated) position, and is scanned simultaneously from head to feet, both frontally and laterally. This is a major advantage over conventional CT which requires the patient to be placed horizontally. -The 3D reconstructions of each element of the osteo-articular system are as precise as those obtained by conventional CT. EOS is also rapid, taking only 15 to 30 minutes to image the entire spine. PMID:16114859
Numerical simulations of strongly correlated electron and spin systems
NASA Astrophysics Data System (ADS)
Changlani, Hitesh Jaiprakash
Developing analytical and numerical tools for strongly correlated systems is a central challenge for the condensed matter physics community. In the absence of exact solutions and controlled analytical approximations, numerical techniques have often contributed to our understanding of these systems. Exact Diagonalization (ED) requires the storage of at least two vectors the size of the Hilbert space under consideration (which grows exponentially with system size) which makes it affordable only for small systems. The Density Matrix Renormalization Group (DMRG) uses an intelligent Hilbert space truncation procedure to significantly reduce this cost, but in its present formulation is limited to quasi-1D systems. Quantum Monte Carlo (QMC) maps the Schrodinger equation to the diffusion equation (in imaginary time) and only samples the eigenvector over time, thereby avoiding the memory limitation. However, the stochasticity involved in the method gives rise to the "sign problem" characteristic of fermion and frustrated spin systems. The first part of this thesis is an effort to make progress in the development of a numerical technique which overcomes the above mentioned problems. We consider novel variational wavefunctions, christened "Correlator Product States" (CPS), that have a general functional form which hopes to capture essential correlations in the ground states of spin and fermion systems in any dimension. We also consider a recent proposal to modify projector (Green's Function) Quantum Monte Carlo to ameliorate the sign problem for realistic and model Hamiltonians (such as the Hubbard model). This exploration led to our own set of improvements, primarily a semistochastic formulation of projector Quantum Monte Carlo. Despite their limitations, existing numerical techniques can yield physical insights into a wide variety of problems. The second part of this thesis considers one such numerical technique - DMRG - and adapts it to study the Heisenberg antiferromagnet
Low-energy-state dynamics of entanglement for spin systems
Jafari, R.
2010-11-15
We develop the ideas of the quantum renormalization group and quantum information by exploring the low-energy-state dynamics of entanglement resources of a system close to its quantum critical point. We demonstrate that low-energy-state dynamical quantities of one-dimensional magnetic systems can show a quantum phase transition point and show scaling behavior in the vicinity of the transition point. To present our idea, we study the evolution of two spin entanglements in the one-dimensional Ising model in the transverse field. The system is initialized as the so-called thermal ground state of the pure Ising model. We investigate the evolution of the generation of entanglement with increasing magnetic field. We obtain that the derivative of the time at which the entanglement reaches its maximum with respect to the transverse field diverges at the critical point and its scaling behaviors versus the size of the system are the same as the static ground-state entanglement of the system.
NASA Astrophysics Data System (ADS)
Giner, Emmanuel; Angeli, Celestino
2016-03-01
The present work describes a new method to compute accurate spin densities for open shell systems. The proposed approach follows two steps: first, it provides molecular orbitals which correctly take into account the spin delocalization; second, a proper CI treatment allows to account for the spin polarization effect while keeping a restricted formalism and avoiding spin contamination. The main idea of the optimization procedure is based on the orbital relaxation of the various charge transfer determinants responsible for the spin delocalization. The algorithm is tested and compared to other existing methods on a series of organic and inorganic open shell systems. The results reported here show that the new approach (almost black-box) provides accurate spin densities at a reasonable computational cost making it suitable for a systematic study of open shell systems.
NASA Astrophysics Data System (ADS)
Feng, Tao; Wang, Jizhe; Tsui, Benjamin M. W.
2016-04-01
The camera of the conventional SPECT system requires a collimator to allow incoming photons from a specific range of incident angle to reach the detector. It is the major factor that determines the spatial resolution of the camera. Moreover, it also greatly reduces the number of detected photons and hence increases statistical fluctuations in the acquired image data. The goal of this paper is to propose a theory and design for a novel high resolution and high sensitivity SPECT system without conventional collimators. The key is to resolve the incident photons from all directional angles and detected by every detector bin. Special ‘attenuators’ were designed to ‘encode’ the incoming photons from different directions similar to coded aperture to form projection data for image reconstruction. Each encoded angular pattern of detected photons was recorded as one measurement. Different angular patterns were achieved by changing the configurations of the attenuators so that angular pattern of different measurements or measurement matrix (MM) is invertible, which guarantee a unique reconstructed image. In simulation, the attenuators were fitted on a virtual full-ring gamma camera, as an alternative to the collimators in conventional SPECT systems. To evaluate the performance of the new SPECT system, analytical simulated projection data in 2D scenario were generated from the XCAT phantom. Noisy simulation using 100 noise realizations suggests that the new attenuator design provides much improved image quality in terms of contrast-noise trade-offs (~30% improvement). The results suggest that the new design of using attenuators to replace collimator is feasible and could potentially improve sensitivity without sacrificing resolution in today’s SPECT systems.
Feng, Tao; Wang, Jizhe; Tsui, Benjamin M W
2016-04-01
The camera of the conventional SPECT system requires a collimator to allow incoming photons from a specific range of incident angle to reach the detector. It is the major factor that determines the spatial resolution of the camera. Moreover, it also greatly reduces the number of detected photons and hence increases statistical fluctuations in the acquired image data. The goal of this paper is to propose a theory and design for a novel high resolution and high sensitivity SPECT system without conventional collimators. The key is to resolve the incident photons from all directional angles and detected by every detector bin. Special 'attenuators' were designed to 'encode' the incoming photons from different directions similar to coded aperture to form projection data for image reconstruction. Each encoded angular pattern of detected photons was recorded as one measurement. Different angular patterns were achieved by changing the configurations of the attenuators so that angular pattern of different measurements or measurement matrix (MM) is invertible, which guarantee a unique reconstructed image. In simulation, the attenuators were fitted on a virtual full-ring gamma camera, as an alternative to the collimators in conventional SPECT systems. To evaluate the performance of the new SPECT system, analytical simulated projection data in 2D scenario were generated from the XCAT phantom. Noisy simulation using 100 noise realizations suggests that the new attenuator design provides much improved image quality in terms of contrast-noise trade-offs (~30% improvement). The results suggest that the new design of using attenuators to replace collimator is feasible and could potentially improve sensitivity without sacrificing resolution in today's SPECT systems. PMID:26976649
NASA Astrophysics Data System (ADS)
Wang, Jin; Ma, Jianyong; Zhou, Changhe
2014-11-01
A 3×3 high divergent 2D-grating with period of 3.842μm at wavelength of 850nm under normal incidence is designed and fabricated in this paper. This high divergent 2D-grating is designed by the vector theory. The Rigorous Coupled Wave Analysis (RCWA) in association with the simulated annealing (SA) is adopted to calculate and optimize this 2D-grating.The properties of this grating are also investigated by the RCWA. The diffraction angles are more than 10 degrees in the whole wavelength band, which are bigger than the traditional 2D-grating. In addition, the small period of grating increases the difficulties of fabrication. So we fabricate the 2D-gratings by direct laser writing (DLW) instead of traditional manufacturing method. Then the method of ICP etching is used to obtain the high divergent 2D-grating.
Counting spins with a new spin echo double resonance
Cull; Joers; Gullion; Norberg; Conradi
1998-08-01
In traditional spin echo double resonance (SEDOR), the echo amplitude M is decreased when the observed spins S are flipped by pi together with the pi refocusing pulse on the observed spins I; the dependence on tau is then determined. In the new version of SEDOR, the echo amplitude is measured as a function of the S spin flip angle theta at a constant pulse spacing tau. The analysis is simple and powerful for long tau, where the strong collision limit applies. There, the variation of M with theta can be fit, yielding the number n of spins S to which each spin I is coupled. Data from amorphous silicon with 1H and 2D show the described effect. A MAS version of the new method is used on multiply labeled alanine and urea, with results in good agreement with the predictions for n = 2, as expected. By Fourier transforming M with respect to the flip angle theta, a stick spectrum results; the largest numbered non-vanishing stick yields the number n of spins S coupled to each spin I. Simulations are presented for an n = 2 system. The present technique is compared to the multiple-quantum spin-counting method. Copyright 1998 Academic Press. PMID:9716478
NASA Astrophysics Data System (ADS)
De La Espriella, N.; Mercado, C. A.; Madera, J. C.
2016-03-01
The thermomagnetic properties of a Ising ferrimagnetic system on a bipartite square lattice of spins SiA = 2 and σjB = 5 / 2 with different single-ion anisotropies are analyzed by Monte Carlo simulations. We obtained the phase diagrams at finite temperature of the total magnetization (MT), the magnetization of sublattices (MA, MB), specific heat (C) and the total susceptibility (χT) per spin of the model. In the planes (D1 / | J1 | / kB T / | J1 |) and (D2 / | J1 | / kB T / | J1 |) the critical and compensation temperatures have been deduced. We found that single-ion anisotropy interactions play an important role for the existence of compensation temperatures. Compensation points may be present, for a specific range of crystal field of sublattice spins σjB = 5 / 2, even when the anisotropy field of sublattice spins SiA = 2 is zero. Mean field theory predicts a wide range of parameters where the system presents even several compensation temperatures, in most of these regions we found none.
NASA Astrophysics Data System (ADS)
Yang, K. F.; Liu, H. W.; Nagase, K.; Amakata, K.; Mishima, T. D.; Santos, M. B.; Hirayama, Y.
2011-12-01
We measure the spin polarization (P) of two-dimensional electron gases confined to an InSb quantum well using parallel and tilted magnetic fields. The nonlinear field dependence of P is prominent, leading to a direct deduction of the spin susceptibility (χs) over a wide range of P from 0.07 to 1. χs is found to increase nonlinearly with P and exceed χgm ∝ m*g* (where m* and g* are the effective mass and g factor) as commonly used in experiments. We show that χs and χgm obey a square law χs/χ0 = (χgm/χ0)2, where χ0 is the paramagnetic spin susceptibility.
All-Optical Helicity Dependent Spin Switching in a Many-Spin System
NASA Astrophysics Data System (ADS)
Latta, Tanner; Zhang, G. P.
All-optical helicity dependent magnetic switching (AOS) is achieved through using an ultrafast laser pulse to manipulate and switch the spin of an electron from one direction to another. This process happens in a short amount of femtoseconds after the laser pulse is introduced. All-optical helicity dependent magnetic switching (AOS) does not fall to the assistance of any external magnetic field. Linearly polarized light, as well as right and left circularly polarized light are used to manipulate the spin of the electrons. Ferrimagnetic, rather than ferromagnetic, materials are more suitable to create conditions in which AOS are viable due to the orientation of the spins within this material. In the following study we show and conclude that AOS is possible with the use of left and right circularly polarized laser pulses. All-optical helicity dependent magnetic switching has many applications in magnetic recording technology or magnetic memory devices. DE-FG02-06ER46304.
2002-01-31
This program solves the two-dimensional mechanical equilbrium configuration of a core restraint system, which is subjected to radial temperature and flux gradients, on a time increment basis. At each time increment, the code calculates the irradiation creep and swelling strains for each duct from user-specified creep and swelling correlations. Using the calculated thermal bowing, inelastic bowing and the duct dilation, the corresponding equilibrium forces, beam deflections, total beam displacements, and structural reactivity changes are calculated.
Pair interaction energy for a 12-electron 2D square Quantum Dot.
NASA Astrophysics Data System (ADS)
Nissenbaum, Daniel; Barbiellini, Bernardo; Bansil, Arun
2004-03-01
We have investigated a system of 12 electrons enclosed in a 2D square well representing a quantum dot. We employ a Jastrow-type wavefunction with Slater determinants and optimize the Jastrow parameter using the variational Monte Carlo method. We use the Metropolis algorithm to select a large distribution of configuration points and to perform a relatively noiseless calculation of the radial distribution function and to obtain insight into the contrast between the Fermi hole for the same-spin electrons and the Coulomb hole for the opposite-spin electrons. The calculated pair interaction energy provides a handle for constructing a model Hamiltonian useful for the study of spontaneous spin magnetization of the system. Work supported in part by the USDOE.
Measurement-induced phase transition in a quantum spin system
NASA Astrophysics Data System (ADS)
Dhar, Shrabanti; Dasgupta, Subinay
2016-05-01
Suppose a quantum system starts to evolve under a Hamiltonian from some initial state. When, for the first time, will an observable attain a preassigned value? To answer this question, one method often adopted is to make instantaneous measurements periodically and note down the serial number for which the desired result is obtained for the first time. We apply this protocol to an interacting spin system at zero temperature and show analytically that the response of this system shows a nonanalyticity as a function of the parameter of the Hamiltonian and the time interval of measurement. In contrast to quantum phase transitions, this type of phase transition is not a property of the ground state and arises from the Hamiltonian dynamics and quantum-mechanical nature of the measurement. The specific system studied is the transverse Ising chain, and the measurement performed is whether the total transverse magnetic moment (per site) is not equal to 1. The results for some other types of measurement are also discussed.
Brittle damage models in DYNA2D
Faux, D.R.
1997-09-01
DYNA2D is an explicit Lagrangian finite element code used to model dynamic events where stress wave interactions influence the overall response of the system. DYNA2D is often used to model penetration problems involving ductile-to-ductile impacts; however, with the advent of the use of ceramics in the armor-anti-armor community and the need to model damage to laser optics components, good brittle damage models are now needed in DYNA2D. This report will detail the implementation of four brittle damage models in DYNA2D, three scalar damage models and one tensor damage model. These new brittle damage models are then used to predict experimental results from three distinctly different glass damage problems.
Spin superconductivity and ac-Josephson effect in Graphene system under strong magnetic field
NASA Astrophysics Data System (ADS)
Liu, Haiwen; Jiang, Hua; Sun, Qing-Feng; Xie, X. C.; Collaborative Innovation Center of Quantum Matter, Beijing, China Collaboration
We study the spin superconductivity in Graphene system under strong magnetic field. From the microscopically Gor'kov method combined with the Aharonov-Casher effect, we derive the effective Landau-Ginzburg free energy and analyze the time evolution of order parameter, which is confirmed to be the off-diagonal long range order. Meanwhile, we compare the ground state of spin superconductivity to the canted-antiferromagnetic state, and demonstrate the equivalence between these two states. Moreover, we give out the pseudo-field flux quantization condition of spin supercurrent, and propose an experimental measurable ac-Josephson effect of spin superconductivity in this system.
Bamatraf, Saeed; Hussain, Muhammad; Aboalsamh, Hatim; Qazi, Emad-Ul-Haq; Malik, Amir Saeed; Amin, Hafeez Ullah; Mathkour, Hassan; Muhammad, Ghulam; Imran, Hafiz Muhammad
2016-01-01
We studied the impact of 2D and 3D educational contents on learning and memory recall using electroencephalography (EEG) brain signals. For this purpose, we adopted a classification approach that predicts true and false memories in case of both short term memory (STM) and long term memory (LTM) and helps to decide whether there is a difference between the impact of 2D and 3D educational contents. In this approach, EEG brain signals are converted into topomaps and then discriminative features are extracted from them and finally support vector machine (SVM) which is employed to predict brain states. For data collection, half of sixty-eight healthy individuals watched the learning material in 2D format whereas the rest watched the same material in 3D format. After learning task, memory recall tasks were performed after 30 minutes (STM) and two months (LTM), and EEG signals were recorded. In case of STM, 97.5% prediction accuracy was achieved for 3D and 96.6% for 2D and, in case of LTM, it was 100% for both 2D and 3D. The statistical analysis of the results suggested that for learning and memory recall both 2D and 3D materials do not have much difference in case of STM and LTM. PMID:26819593
2016-01-01
We studied the impact of 2D and 3D educational contents on learning and memory recall using electroencephalography (EEG) brain signals. For this purpose, we adopted a classification approach that predicts true and false memories in case of both short term memory (STM) and long term memory (LTM) and helps to decide whether there is a difference between the impact of 2D and 3D educational contents. In this approach, EEG brain signals are converted into topomaps and then discriminative features are extracted from them and finally support vector machine (SVM) which is employed to predict brain states. For data collection, half of sixty-eight healthy individuals watched the learning material in 2D format whereas the rest watched the same material in 3D format. After learning task, memory recall tasks were performed after 30 minutes (STM) and two months (LTM), and EEG signals were recorded. In case of STM, 97.5% prediction accuracy was achieved for 3D and 96.6% for 2D and, in case of LTM, it was 100% for both 2D and 3D. The statistical analysis of the results suggested that for learning and memory recall both 2D and 3D materials do not have much difference in case of STM and LTM. PMID:26819593
NASA Astrophysics Data System (ADS)
Chhipa, Mayur Kumar; Dusad, Lalit Kumar
2016-05-01
In this paper, the design & performance of two dimensional (2-D) photonic crystal structure based channel drop filter is investigated using quad shaped photonic crystal ring resonator. In this paper, Photonic Crystal (PhC) based on square lattice periodic arrays of Gallium Indium Phosphide (GaInP) rods in air structure have been investigated using Finite Difference Time Domain (FDTD) method and photonic band gap is being calculated using Plane Wave Expansion (PWE) method. The PhC designs have been optimized for telecommunication wavelength λ= 1571 nm by varying the rods lattice constant. The number of rods in Z and X directions is 21 and 20, with lattice constant 0.540 nm it illustrates that the arrangement of Gallium Indium Phosphide (GaInP) rods in the structure which gives the overall size of the device around 11.4 µm × 10.8 µm. The designed filter gives good dropping efficiency using 3.298, refractive index. The designed structure is useful for CWDM systems. This device may serve as a key component in photonic integrated circuits. The device is ultra compact with the overall size around 123 µm2.
Versatile microwave-driven trapped ion spin system for quantum information processing
Piltz, Christian; Sriarunothai, Theeraphot; Ivanov, Svetoslav S.; Wölk, Sabine; Wunderlich, Christof
2016-01-01
Using trapped atomic ions, we demonstrate a tailored and versatile effective spin system suitable for quantum simulations and universal quantum computation. By simply applying microwave pulses, selected spins can be decoupled from the remaining system and, thus, can serve as a quantum memory, while simultaneously, other coupled spins perform conditional quantum dynamics. Also, microwave pulses can change the sign of spin-spin couplings, as well as their effective strength, even during the course of a quantum algorithm. Taking advantage of the simultaneous long-range coupling between three spins, a coherent quantum Fourier transform—an essential building block for many quantum algorithms—is efficiently realized. This approach, which is based on microwave-driven trapped ions and is complementary to laser-based methods, opens a new route to overcoming technical and physical challenges in the quest for a quantum simulator and a quantum computer. PMID:27419233
Versatile microwave-driven trapped ion spin system for quantum information processing.
Piltz, Christian; Sriarunothai, Theeraphot; Ivanov, Svetoslav S; Wölk, Sabine; Wunderlich, Christof
2016-07-01
Using trapped atomic ions, we demonstrate a tailored and versatile effective spin system suitable for quantum simulations and universal quantum computation. By simply applying microwave pulses, selected spins can be decoupled from the remaining system and, thus, can serve as a quantum memory, while simultaneously, other coupled spins perform conditional quantum dynamics. Also, microwave pulses can change the sign of spin-spin couplings, as well as their effective strength, even during the course of a quantum algorithm. Taking advantage of the simultaneous long-range coupling between three spins, a coherent quantum Fourier transform-an essential building block for many quantum algorithms-is efficiently realized. This approach, which is based on microwave-driven trapped ions and is complementary to laser-based methods, opens a new route to overcoming technical and physical challenges in the quest for a quantum simulator and a quantum computer. PMID:27419233
Electrical detection of spin transport in Si two-dimensional electron gas systems.
Chang, Li-Te; Fischer, Inga Anita; Tang, Jianshi; Wang, Chiu-Yen; Yu, Guoqiang; Fan, Yabin; Murata, Koichi; Nie, Tianxiao; Oehme, Michael; Schulze, Jörg; Wang, Kang L
2016-09-01
Spin transport in a semiconductor-based two-dimensional electron gas (2DEG) system has been attractive in spintronics for more than ten years. The inherent advantages of high-mobility channel and enhanced spin-orbital interaction promise a long spin diffusion length and efficient spin manipulation, which are essential for the application of spintronics devices. However, the difficulty of making high-quality ferromagnetic (FM) contacts to the buried 2DEG channel in the heterostructure systems limits the potential developments in functional devices. In this paper, we experimentally demonstrate electrical detection of spin transport in a high-mobility 2DEG system using FM Mn-germanosilicide (Mn(Si0.7Ge0.3)x) end contacts, which is the first report of spin injection and detection in a 2DEG confined in a Si/SiGe modulation doped quantum well structure (MODQW). The extracted spin diffusion length and lifetime are l sf = 4.5 μm and [Formula: see text] at 1.9 K respectively. Our results provide a promising approach for spin injection into 2DEG system in the Si-based MODQW, which may lead to innovative spintronic applications such as spin-based transistor, logic, and memory devices. PMID:27479155
Quantum impurities develop fractional local moments in spin-orbit coupled systems
NASA Astrophysics Data System (ADS)
Agarwala, Adhip; Shenoy, Vijay B.
2016-06-01
Systems with spin-orbit coupling have the potential to realize exotic quantum states which are interesting both from fundamental and technological perspectives. We investigate the physics that arises when a correlated spin-1/2 quantum impurity hybridizes with a spin-orbit coupled Fermi system. The intriguing aspect uncovered is that, in contrast to unit local moments in conventional systems, the impurity here develops a fractional local moment of 2/3. The concomitant Kondo effect has a high Kondo temperature (TK). Our theory explains these features including the origins of the fractional local moment and provides a recipe to use spin-orbit coupling (λ ) to enhance the Kondo temperature (TK˜λ4 /3 ). Even as our finding of such rich phenomena in a simple looking many-body system is of interest in itself, we also point out opportunities for systems with tunable spin-orbit coupling (such as cold atoms) to explore this physics.
Hedgehogs in a three-dimensional anisotropic spin system
NASA Astrophysics Data System (ADS)
Jonsson, Thordur
1983-06-01
We study a continuum version of a classical anisotropic spin model in three dimensions with three component spins. We prove the existence of topological defects, called hedgehogs, which are analogous to the vortices in the two-dimensional xy-model and have a logarithmically divergent action. Bounds for the interaction energy of a hedgehog and an antihedgehog are derived.
Nuclear spin-spin coupling in a van der Waals-bonded system: xenon dimer.
Vaara, Juha; Hanni, Matti; Jokisaari, Jukka
2013-03-14
Nuclear spin-spin coupling over van der Waals bond has recently been observed via the frequency shift of solute protons in a solution containing optically hyperpolarized (129)Xe nuclei. We carry out a first-principles computational study of the prototypic van der Waals-bonded xenon dimer, where the spin-spin coupling between two magnetically non-equivalent isotopes, J((129)Xe - (131)Xe), is observable. We use relativistic theory at the four-component Dirac-Hartree-Fock and Dirac-density-functional theory levels using novel completeness-optimized Gaussian basis sets and choosing the functional based on a comparison with correlated ab initio methods at the nonrelativistic level. J-coupling curves are provided at different levels of theory as functions of the internuclear distance in the xenon dimer, demonstrating cross-coupling effects between relativity and electron correlation for this property. Calculations on small Xe clusters are used to estimate the importance of many-atom effects on J((129)Xe - (131)Xe). Possibilities of observing J((129)Xe - (131)Xe) in liquid xenon are critically examined, based on molecular dynamics simulation. A simplistic spherical model is set up for the xenon dimer confined in a cavity, such as in microporous materials. It is shown that the on the average shorter internuclear distance enforced by the confinement increases the magnitude of the coupling as compared to the bulk liquid case, rendering J((129)Xe - (131)Xe) in a cavity a feasible target for experimental investigation. PMID:23514495
Soliton excitations and stability in a square lattice model of ferromagnetic spin system
NASA Astrophysics Data System (ADS)
Latha, M. M.; Anitha, T.
2015-12-01
We investigate the nature of nonlinear spin excitations in a square lattice model of ferromagnetic (FM) spin system with bilinear and biquadratic interactions. Using the coherent state ansatz combined with the Holstein-Primakoff (HP) bosonic representation of spin operators, the dynamics is found to be governed by a discrete nonlinear equation which possesses soliton solution. The modulational instability aspects of the soliton excitations are analysed for small perturbations in wave vectors.
Measuring the spin of black holes in binary systems using gravitational waves.
Vitale, Salvatore; Lynch, Ryan; Veitch, John; Raymond, Vivien; Sturani, Riccardo
2014-06-27
Compact binary coalescences are the most promising sources of gravitational waves (GWs) for ground-based detectors. Binary systems containing one or two spinning black holes are particularly interesting due to spin-orbit (and eventual spin-spin) interactions and the opportunity of measuring spins directly through GW observations. In this Letter, we analyze simulated signals emitted by spinning binaries with several values of masses, spins, orientations, and signal-to-noise ratios, as detected by an advanced LIGO-Virgo network. We find that for moderate or high signal-to-noise ratio the spin magnitudes can be estimated with errors of a few percent (5%-30%) for neutron star-black hole (black hole-black hole) systems. Spins' tilt angle can be estimated with errors of 0.04 rad in the best cases, but typical values will be above 0.1 rad. Errors will be larger for signals barely above the threshold for detection. The difference in the azimuth angles of the spins, which may be used to check if spins are locked into resonant configurations, cannot be constrained. We observe that the best performances are obtained when the line of sight is perpendicular to the system's total angular momentum and that a sudden change of behavior occurs when a system is observed from angles such that the plane of the orbit can be seen both from above and below during the time the signal is in band. This study suggests that direct measurement of black hole spin by means of GWs can be as precise as what can be obtained from x-ray binaries. PMID:25014800
Tunable spin-orbit coupling via strong driving in ultracold-atom systems.
Jiménez-García, K; LeBlanc, L J; Williams, R A; Beeler, M C; Qu, C; Gong, M; Zhang, C; Spielman, I B
2015-03-27
Spin-orbit coupling is an essential ingredient in topological materials, conventional and quantum-gas-based alike. Engineered spin-orbit coupling in ultracold-atom systems-unique in their experimental control and measurement opportunities-provides a major opportunity to investigate and understand topological phenomena. Here we experimentally demonstrate and theoretically analyze a technique for controlling spin-orbit coupling in a two-component Bose-Einstein condensate using amplitude-modulated Raman coupling. PMID:25860752
Classical spin glass system in external field with taking into account relaxation effects
Gevorkyan, A. S. Abajyan, H. G.
2013-08-15
We study statistical properties of disordered spin systems under the influence of an external field with taking into account relaxation effects. For description of system the spatial 1D Heisenberg spin-glass Hamiltonian is used. In addition, we suppose that interactions occur between nearest-neighboring spins and they are random. Exact solutions which define angular configuration of the spin in nodes were obtained from the equations of stationary points of Hamiltonian and the corresponding conditions for the energy local minimum. On the basis of these recurrent solutions an effective parallel algorithm is developed for simulation of stabile spin-chains of an arbitrary length. It is shown that by way of an independent order of N{sup 2} numerical simulations (where N is number of spin in each chain) it is possible to generate ensemble of spin-chains, which is completely ergodic which is equivalent to full self-averaging of spin-chains' vector polarization. Distributions of different parameters (energy, average polarization by coordinates, and spin-spin interaction constant) of unperturbed system are calculated. In particular, analytically is proved and numerically is shown, that for the Heisenberg nearest-neighboring Hamiltonian model, the distribution of spin-spin interaction constants as opposed to widely used Gauss-Edwards-Anderson distribution satisfies Levy alpha-stable distribution law. This distribution is nonanalytic function and does not have variance. In the work we have in detail studied critical properties of an ensemble depending on value of external field parameters (from amplitude and frequency) and have shown that even at weak external fields the spin-glass systemis strongly frustrated. It is shown that frustrations have fractal behavior, they are selfsimilar and do not disappear at scale decreasing of area. By the numerical computation is shown that the average polarization of spin-glass on a different coordinates can have values which can lead to
Superfluids of Fermions in spin-orbit coupled systems and photons inside a cavity
NASA Astrophysics Data System (ADS)
Yu, Yi-Xiang
This dissertation introduces some new properties of both superfluid phases of fermions with spin-orbit coupling (SOC) and superradiant phases of photons in an optical cavity. The effects of SOC on the phase transition between normal and superfluid phase are revealed; an unconventional crossover driven by SOC from the Bardeen-Cooper-Schrieffer (BCS) state to the Bose-Einstein condensate (BEC) state is verified in three different systems; and two kinds of excitations, a Goldstone mode and a Higgs mode, are demonstrated to occur in a quantum optical system. We investigate the BCS superfluid state of two-component atomic Fermi gases in the presence of three kinds of SOCs. We find that SOC drives a class of BCS to BEC crossover that is different from the conventional one without SOC. Here, we extend the concepts of the coherence length and Cooper-pair size in the absence of SOC to Fermi systems with SOC. We study the dependence of chemical potential, coherence length, and Cooper-pair size on the SOC strength and the scattering length in three dimensions (3D) (or the two-body binding energy in two dimensions (2D)) for three attractively interacting Fermi gases with 3D Rashba, 3D Weyl, and 2D Rashba SOC respectively. By adding a population imbalance to a Fermi gas with Rashba-type SOC, we also map out the finite-temperature phase diagram. Due to a competition between SOC and population imbalance, the finite-temperature phase diagram reveals a large variety of new features, including the expanding of the superfluid state regime and the shrinking of both the phase separation and the normal regimes. We find that the tricritical point moves toward a regime of low temperature, high magnetic field, and high polarization as the SOC strength increases. Besides Fermi fluids, this dissertation also gives a new angle of view on the superradiant phase in the Dicke model. Here, we demonstrate that Goldstone and Higgs modes can be observed in an optical system with only a few atoms
Dilts, R.P.; Kalivas, P.W. )
1990-01-01
The enkephalin analog (2-D-penicillamine, 5-D-penicillamine)enkephalin was radioiodinated (125I-DPDPE) and shown to retain a pharmacological selectivity characteristic of the delta opioid receptor in in vitro binding studies. The distributions of 125I-DPDPE binding, using in vitro autoradiographic techniques, were similar to those previously reported for the delta opioid receptor. The nucleus accumbens, striatum, and medial prefrontal cortex contain dense gradients of 125I-DPDPE binding in regions known to receive dopaminergic afferents emanating from the mesencephalic tegmentum. Selective chemical lesions of the ventral tegmental area and substantia nigra were employed to deduce the location of the 125I-DPDPE binding within particular regions of the mesocorticolimbic dopamine system. Unilateral lesions of dopamine perikarya (A9 and A10) within the ventral tegmental area and substantia nigra produced by mesencephalic injection of 6-hydroxydopamine resulted in significant (20-30%) increases in 125I-DPDPE binding contralateral to the lesion within the striatum and nucleus accumbens. Lesions of the perikarya (dopaminergic and nondopaminergic) of the ventral tegmental area, induced by quinolinic acid injections, caused increases of less magnitude within these same nuclei. No significant alterations in 125I-DPDPE binding were observed within the mesencephalon as a result of either treatment. The specificity of the lesions was confirmed by immunocytochemistry for tyrosine hydroxylase. These results suggest that the enkephalins and opioid agonists acting through delta opioid receptors do not directly modulate dopaminergic afferents but do regulate postsynaptic targets of the mesocorticolimbic dopamine system.
Exact NMR simulation of protein-size spin systems using tensor train formalism
NASA Astrophysics Data System (ADS)
Savostyanov, D. V.; Dolgov, S. V.; Werner, J. M.; Kuprov, Ilya
2014-08-01
We introduce a new method, based on alternating optimization, for compact representation of spin Hamiltonians and solution of linear systems of algebraic equations in the tensor train format. We demonstrate the method's utility by simulating, without approximations, a N15 NMR spectrum of ubiquitin—a protein containing several hundred interacting nuclear spins. Existing simulation algorithms for the spin system and the NMR experiment in question either require significant approximations or scale exponentially with the spin system size. We compare the proposed method to the Spinach package that uses heuristic restricted state space techniques to achieve polynomial complexity scaling. When the spin system topology is close to a linear chain (e.g., for the backbone of a protein), the tensor train representation is more compact and can be computed faster than the sparse representation using restricted state spaces.
A nonmagnetic impurity in a 2D quantum critical antiferromagnet
NASA Astrophysics Data System (ADS)
Troyer, Matthias
2003-03-01
We compute the properties of a mobile hole and a static impurity injected into a two-dimensional antiferromagnet or superconductor in the vicinity of a magnetic quantum critical point. A static S=1/2 impurity doped into a quantum-disordered spin gap system induces a local moment with spin S=1/2 and a corresponding Curie-like impurity susceptibility, while the same impurity in a Néel ordered state only gives a finite impurity susceptibility. For the quantum critical system however an interesting field-theoretical prediction has been made that there the impurity spin susceptibility still has a Curie-like divergence, but with a universal effective spin that is neither an integer nor a half-odd integer [1]. In large-scale quantum Monte Carlo (QMC) simulations using the loop algorithm we calculate the impurity susceptibility and find that, unfortunately, this effect is not observable since the renormalization of the effective spin away from S=1/2 is minimal. Other predictions of the field theory, such as a new critical exponent η' describing the time-dependent impurity spin correlations can however be confirmed [2]. Next we compute the spectral function of a hole injected into a 2D antiferromagnet or superconductor in the vicinity of a magnetic quantum critical point [3]. We show that, near van Hove singularities, the problem maps onto that of a static vacancy. This allows the calculation of the spectral function in a QMC simulation without encountering the negative sign problem. We find a vanishing quasiparticle residue at the critical point, a new exponent η_h0.080.04 describing the frequency dependence of the spectral function G_h(ω)(ɛ_0-ω)-1+ηh and discuss possible relevance to photoemission spectra of cuprate superconductors near the antinodal points. ^1 S. Sachdev, C. Buragohain and M. Vojta, Science 286, 2479 (1999). ^2 M. Troyer, in Prog. Theor. Phys. Suppl. 145 (2002); M. Körner and M. Troyer, ibid. ^3 S. Sachdev, M. Troyer, and M. Vojta, Phys. Rev
Peak suppression in ESEEM spectra of multinuclear spin systems.
Stoll, Stefan; Calle, Carlos; Mitrikas, George; Schweiger, Arthur
2005-11-01
We have observed a disturbing suppression effect in three-pulse ESEEM and HYSCORE spectra of systems with more than one nucleus coupled to the electron spin. For such systems, the ESEEM signal contains internuclear combination peaks of varying intensity. At the same time, the peaks at the basic ESEEM frequencies are reduced in intensity, up to the point of complete cancellation. For both three-pulse ESEEM and HYSCORE, the amplitude of a peak of a given nucleus depends not only on its modulation depth parameter k and the tau-dependent blind-spot term b, but also on k and b of all other nuclei. Peaks of nuclei with shallow modulations can be strongly suppressed by nuclei with deep modulations. This cross-suppression effect explains the observation that HYSCORE (1)H peaks are often very weak or even undetectable in the presence of strong (14)N peaks. Due to this distortion of intensities, ESEEM spectra have to be analysed very carefully. We present a theoretical analysis of this effect based on the product rules, numerical computations, and illustrative experimental data on Cu(gly)(2). In experiments, the impact of this cross suppression can be alleviated by a proper choice of tau values, remote echo detection, and matched pulses. PMID:16112885
Optical neural network system for pose determination of spinning satellites
NASA Technical Reports Server (NTRS)
Lee, Andrew; Casasent, David
1990-01-01
An optical neural network architecture and algorithm based on a Hopfield optimization network are presented for multitarget tracking. This tracker utilizes a neuron for every possible target track, and a quadratic energy function of neural activities which is minimized using gradient descent neural evolution. The neural net tracker is demonstrated as part of a system for determining position and orientation (pose) of spinning satellites with respect to a robotic spacecraft. The input to the system is time sequence video from a single camera. Novelty detection and filtering are utilized to locate and segment novel regions from the input images. The neural net multitarget tracker determines the correspondences (or tracks) of the novel regions as a function of time, and hence the paths of object (satellite) parts. The path traced out by a given part or region is approximately elliptical in image space, and the position, shape and orientation of the ellipse are functions of the satellite geometry and its pose. Having a geometric model of the satellite, and the elliptical path of a part in image space, the three-dimensional pose of the satellite is determined. Digital simulation results using this algorithm are presented for various satellite poses and lighting conditions.
Spin dynamics in driven composite multiferroics
Wang, Zidong Grimson, Malcolm J.
2015-09-28
A spin dynamics approach has been used to study the behavior of the magnetic spins and the electric pseudo-spins in a 1-D composite multiferroic chain with a linear magneto-electric coupling at the interface. The response is investigated with either external magnetic or electric fields driving the system. The spin dynamics is based on the Landau-Lifshitz-Gilbert equation. A Gaussian white noise is later added into the dynamic process to include the thermal effects. The interface requires a closer inspection of the magneto-electric effects. Thus, we construct a 2-D ladder model to describe the behavior of the magnetic spins and the electric pseudo-spins with different magneto-electric couplings.
Spin dynamics in driven composite multiferroics
NASA Astrophysics Data System (ADS)
Wang, Zidong; Grimson, Malcolm J.
2015-09-01
A spin dynamics approach has been used to study the behavior of the magnetic spins and the electric pseudo-spins in a 1-D composite multiferroic chain with a linear magneto-electric coupling at the interface. The response is investigated with either external magnetic or electric fields driving the system. The spin dynamics is based on the Landau-Lifshitz-Gilbert equation. A Gaussian white noise is later added into the dynamic process to include the thermal effects. The interface requires a closer inspection of the magneto-electric effects. Thus, we construct a 2-D ladder model to describe the behavior of the magnetic spins and the electric pseudo-spins with different magneto-electric couplings.
2D superconductivity by ionic gating
NASA Astrophysics Data System (ADS)
Iwasa, Yoshi
2D superconductivity is attracting a renewed interest due to the discoveries of new highly crystalline 2D superconductors in the past decade. Superconductivity at the oxide interfaces triggered by LaAlO3/SrTiO3 has become one of the promising routes for creation of new 2D superconductors. Also, the MBE grown metallic monolayers including FeSe are also offering a new platform of 2D superconductors. In the last two years, there appear a variety of monolayer/bilayer superconductors fabricated by CVD or mechanical exfoliation. Among these, electric field induced superconductivity by electric double layer transistor (EDLT) is a unique platform of 2D superconductivity, because of its ability of high density charge accumulation, and also because of the versatility in terms of materials, stemming from oxides to organics and layered chalcogenides. In this presentation, the following issues of electric filed induced superconductivity will be addressed; (1) Tunable carrier density, (2) Weak pinning, (3) Absence of inversion symmetry. (1) Since the sheet carrier density is quasi-continuously tunable from 0 to the order of 1014 cm-2, one is able to establish an electronic phase diagram of superconductivity, which will be compared with that of bulk superconductors. (2) The thickness of superconductivity can be estimated as 2 - 10 nm, dependent on materials, and is much smaller than the in-plane coherence length. Such a thin but low resistance at normal state results in extremely weak pinning beyond the dirty Boson model in the amorphous metallic films. (3) Due to the electric filed, the inversion symmetry is inherently broken in EDLT. This feature appears in the enhancement of Pauli limit of the upper critical field for the in-plane magnetic fields. In transition metal dichalcogenide with a substantial spin-orbit interactions, we were able to confirm the stabilization of Cooper pair due to its spin-valley locking. This work has been supported by Grant-in-Aid for Specially
NASA Astrophysics Data System (ADS)
Bill, E.; Bominaar, E. L.; Ding, X.-Q.; Trautwein, A. X.; Winkler, H.; Mandon, D.; Weiss, R.; Gold, A.; Jayaraj, K.; Toney, G. E.
1990-07-01
Magnetic properties of frozen solutions of highly oxidized iron porphyrin complexes were investigated by EPR and Mössbauer spectroscopy. The Mössbauer spectra, recorded at low temperatures in various magnetic fields, were analyzed on the basis of spin Hamiltonian simulations. Spin coupling between ferryl iron (FeIV) and porphyrin cation radical was taken into account explicitly. Hyperfine and spin-coupling parameters are given for several complexes, together with zero-field parameters. One of the complexes exhibits weak spin coupling, it is the first model system exhibiting properties comparable to those of the oxoferryl cation radical enzyme Horse Radish Peroxidase I.
Exact spin dynamics of inhomogeneous 1-d systems at high temperature
NASA Astrophysics Data System (ADS)
Danieli, E. P.; Pastawski, H. M.; Levstein, P. R.
2002-07-01
The evaluation of spin excitation dynamics in finite 1-d systems of spins {1}/{2} with XY exchange interaction J acquired new interest because NMR experiments at high temperature ( kBT≫ J) confirmed the predicted spin wave behavior of mesoscopic echoes. In this work, we use the Jordan-Wigner transformation to obtain the exact dynamics of inhomogeneous chains and rings where the evolution is reduced to one-body dynamics. For higher dimensions, the spin excitations manifest many-body effects that can be interpreted as a simple dynamics of non-interacting fermions plus a decoherent process.
Dynamic neutron scattering on incoherent systems using efficient resonance spin flip techniques
Häussler, Wolfgang; Kredler, Lukas
2014-05-15
We have performed numerical ray-tracing Monte-Carlo-simulations of incoherent dynamic neutron scattering experiments. We intend to optimize the efficiency of incoherent measurements depending on the fraction of neutrons scattered without and with spin flip at the sample. In addition to conventional spin echo, we have numerically and experimentally studied oscillating intensity techniques. The results point out the advantages of these different spin echo variants and are an important prerequisite for neutron resonance spin echo instruments like RESEDA (FRM II, Munich), to choose the most efficient technique depending on the scattering vector range and the properties of the sample system under study.
Spin-dependent thermal and electrical transport in a spin-valve system
Wang, Zheng-Chuan; Su, Gang; Gao, Song
2001-06-01
Within the framework of Bu{close_quotes}ttiker{close_quote}s gauge invariant and charge conservation dc transport theory, the spin-dependent thermal and electrical transport in a ferromagnet-insulator-ferromagnet tunnel junction is investigated at finite bias voltage and finite temperature. It is observed that the relative orientations of magnetizations in the two ferromagnetic (FM) electrodes as well as temperature have remarkable effects on the differential conductance, thermopower, Peltier effect, and thermal conductivity. At low temperature the quantum resonant tunneling is predominant, leading to the deviation of classical transport theory, while the transport of electrons are crucially governed by thermal processes at high temperature. The so-called spin-valve phenomenon is clearly uncovered for both the differential conductance and the thermal conductivity at low temperature. The Wiedemann-Franz law is examined, and the inelastic tunneling spectroscopy is also discussed. Our findings are expected to be measured in the near future.
NASA Astrophysics Data System (ADS)
Burgreen, B.; Graham, S. A.; Meisling, K. E.
2013-12-01
The East Coast Basin of New Zealand is a petroliferous forearc basin that has eluded commercial development largely because of challenges related to its complex structural and tectonic history. Basin formation is associated with three tectonic phases: 1) a Cretaceous convergent margin phase, 2) a Late Cretaceous to Paleogene rifting to passive margin phase, and 3) a Neogene to present convergent margin phase. Beginning in Neogene time, the basin underwent multiple stages of structural deformation including low angle thrust faulting, listric normal faulting, and inversion. This complex basin history provides an ideal situation to test the influence of tectonics on petroleum system development. This study focuses on offshore Hawke Bay where a regional 2D seismic line has been interpreted, palinspastically reconstructed, and incorporated into a basin and petroleum system model. In the model, several paleo-heat flow scenarios are developed to represent the tectonic evolution of the basin. Higher heat flow is modeled during the rifting to passive margin phase, and a reduction in heat flow is modeled during the Neogene phase to account for cold slab subduction. Heat flow scenarios are calibrated to temperature, apatite-fission track data, and vitrinite-intertinite reflectance and fluorescence data from the Hawke Bay-1 and Opoutama-1 wells. The palinspastic reconstructions are integrated into the basin and petroleum system model to assess the impact of different styles of deformation. Faults play a key role in the burial history/rate of burial, fluid migration, and pressure compartmentalization. The relative timing of paleo-heat flow and structural events are tested in the model to understand how they enhance and/or negate effects on petroleum generation. For example, models with early Miocene low angle thrusts (i.e. structural thickening) contemporaneous with remnant high heat flow from the passive margin phase create a scenario for mid-Miocene petroleum generation
NASA Astrophysics Data System (ADS)
Biemmi, Enrica; Bein, Thomas; Stock, Norbert
2006-03-01
A new open-framework zinc terephthalate (H 2NEt 2) 2[Zn 3(BDC) 4]ṡ3DEF (BDC = 1,4-benzendicarboxylate, DEF=N,N-diethylformamide) was obtained under slightly acidic condition by reacting 1,4-benzendicarboxylic acid (H 2BDC) with ZnO in a DEF solution. The structure was obtained by single crystal X-ray diffraction and consists of trimetallic zinc building units, that are interconnected by eight BDC units each (crystal data: monoclinic, C2/c, a=3337.24(5), b=983.17(2), c=1819.67(2) pm, β=92.455(1, V=5965.0(2)×10 pm, Z=4, R=0.0395, wR=0.0843 for 4533 reflections I>2σ(I)). Six BDC ions together with the trimetallic zinc units form a two-dimensional (3,6)-net while the other two BDC unit pillar these layers. Thus a three-dimensional anionic framework with a 2D pore system is formed. The pore space is occupied by solvent molecules (DEF) and diethylammonium ions, produced by in situ hydrolysis of DEF. These are interconnected as well as connected to the framework by hydrogen-bonds. The TG investigation in combination with powder X-ray diffraction and vibrational-spectroscopy show a two-step loss of the pore filling molecules as well as one H 2BDC molecule leading to crystalline phases which are stable up to 250 and 400 °C, respectively. In addition, 13C MAS-NMR data of the title compound is presented.
Electrical detection of spin transport in Si two-dimensional electron gas systems
NASA Astrophysics Data System (ADS)
Chang, Li-Te; Fischer, Inga Anita; Tang, Jianshi; Wang, Chiu-Yen; Yu, Guoqiang; Fan, Yabin; Murata, Koichi; Nie, Tianxiao; Oehme, Michael; Schulze, Jörg; Wang, Kang L.
2016-09-01
Spin transport in a semiconductor-based two-dimensional electron gas (2DEG) system has been attractive in spintronics for more than ten years. The inherent advantages of high-mobility channel and enhanced spin–orbital interaction promise a long spin diffusion length and efficient spin manipulation, which are essential for the application of spintronics devices. However, the difficulty of making high-quality ferromagnetic (FM) contacts to the buried 2DEG channel in the heterostructure systems limits the potential developments in functional devices. In this paper, we experimentally demonstrate electrical detection of spin transport in a high-mobility 2DEG system using FM Mn-germanosilicide (Mn(Si0.7Ge0.3)x) end contacts, which is the first report of spin injection and detection in a 2DEG confined in a Si/SiGe modulation doped quantum well structure (MODQW). The extracted spin diffusion length and lifetime are l sf = 4.5 μm and {τ }{{s}}=16 {{ns}} at 1.9 K respectively. Our results provide a promising approach for spin injection into 2DEG system in the Si-based MODQW, which may lead to innovative spintronic applications such as spin-based transistor, logic, and memory devices.
NASA Astrophysics Data System (ADS)
Funayama, C.; Furukawa, T.; Sato, T.; Ichikawa, Y.; Ohtomo, Y.; Sakamoto, Y.; Kojima, S.; Suzuki, T.; Hirao, C.; Chikamori, M.; Hikota, E.; Tsuchiya, M.; Yoshimi, A.; Bidinosti, C. P.; Ino, T.; Ueno, H.; Matsuo, Y.; Fukuyama, T.; Asahi, K.
2015-11-01
We demonstrate spin-exchange optical pumping of 129Xe atoms with our newly made laser system. The new laser system was prepared to provide higher laser power required for the stable operation of spin maser oscillations in the 129Xe EDM experiment. We studied the optimum cell temperature and pumping laser power to improve the degree of 129Xe spin polarization. The best performance was achieved at the cell temperature of 100 ∘C with the presently available laser power of 1 W. The results show that a more intense laser is required for further improvement of the spin polarization at higher cell temperatures in our experiment.
EPR spin probe study of polymer associative systems.
Wasserman, A M; Yasina, L L; Motyakin, M V; Aliev, I I; Churochkina, N A; Rogovina, L Z; Lysenko, E A; Baranovsky, V Yu
2008-05-01
Molecular dynamics of polyacrylamide gels, polymeric micelles and hydrogel of polyacrylic acid and macrodiisocyanate was investigated by the ESR spectroscopy of spin probes. The local mobility in network junction of polyacrylamide gels is found to be essentially slower than that in the micelles created by the low molecular weight detergents and does not depend on the amount and length of hydrophobic groups (C9 or C12) in the polymer chain. The immersion of 10-30 mol.% of ionic monomers into the polymer chain (sodium acrylate) influences insufficiently on the local mobility of network junctions. In aqueous solutions, polystyrene-block-poly-(N-ethyl-4-vinylpyridinium bromide) block copolymers create polymeric micelles. The local mobility in the polystyrene core of the micelles is about twice as much as that in the solid polystyrene. Partially swellable polymer network in aqueous solutions was synthesized from polyacrylic acid and macrodiisocyanate. The local mobility in hydrophobic regions of the gel is substantially lower than that in the hydrophilic regions. It was concluded that the hydrophobic and hydrophilic regions and the local dynamics of them dictate practical application of the polymer associative systems. PMID:17988940
EPR spin probe study of polymer associative systems
NASA Astrophysics Data System (ADS)
Wasserman, A. M.; Yasina, L. L.; Motyakin, M. V.; Aliev, I. I.; Churochkina, N. A.; Rogovina, L. Z.; Lysenko, E. A.; Baranovsky, V. Yu.
2008-05-01
Molecular dynamics of polyacrilamide gels, polymeric micelles and hydrogel of polyacrylic acid and macrodiisocyanate was investigated by the ESR spectroscopy of spin probes. The local mobility in network junction of polyacrylamide gels is found to be essentially slower than that in the micelles created by the low molecular weight detergents and does not depend on the amount and length of hydrophobic groups (C9 or C12) in the polymer chain. The immersion of 10-30 mol.% of ionic monomers into the polymer chain (sodium acrylate) influences insufficiently on the local mobility of network junctions. In aqueous solutions, polystyrene-block-poly-( N-ethyl-4-vinylpyridinium bromide) block copolymers create polymeric micelles. The local mobility in the polystyrene core of the micelles is about twice as much as that in the solid polystyrene. Partially swellable polymer network in aqueous solutions was synthesized from polyacrylic acid and macrodiisocyanate. The local mobility in hydrophobic regions of the gel is substantially lower than that in the hydrophilic regions. It was concluded that the hydrophobic and hydrophilic regions and the local dynamics of them dictate practical application of the polymer associative systems.
Quantum rotor theory of systems of spin-2 bosons
NASA Astrophysics Data System (ADS)
Payrits, Matjaž; Barnett, Ryan
2016-08-01
We consider quantum phases of tightly confined spin-2 bosons in an external field under the presence of rotationally invariant interactions. Generalizing previous treatments, we show how this system can be mapped onto a quantum rotor model. Within the rotor framework, low-energy excitations about fragmented states, which cannot be accessed within standard Bogoliubov theory, can be obtained. In the spatially extended system in the thermodynamic limit there exists a mean field ground-state degeneracy between a family of nematic states for appropriate interaction parameters. It has been established that quantum fluctuations lift this degeneracy through the mechanism of order by disorder and select either a uniaxial or square-biaxial ground state. On the other hand, in the full quantum treatment of the analogous single-spatial-mode problem with finite-particle number, it is known that, due to symmetry-restoring fluctuations, there is a unique ground state across the entire nematic region of the phase diagram. Within the established rotor framework, we investigate the possible quantum phases under the presence of a quadratic Zeeman field, a problem which has previously received little attention. By investigating wave-function overlaps, we do not find any signatures of the order-by-disorder phenomenon which is present in the continuum case. Motivated by this, we consider an alternative external potential which breaks less symmetry than the quadratic Zeeman field. For this case, we do find the phenomenon of order by disorder in the fully quantum system. This is established within the rotor framework and with exact diagonalization.
Nuclear magnetic relaxation by the dipolar EMOR mechanism: Three-spin systems.
Chang, Zhiwei; Halle, Bertil
2016-07-21
In aqueous systems with immobilized macromolecules, including biological tissue, the longitudinal spin relaxation of water protons is primarily induced by exchange-mediated orientational randomization (EMOR) of intra- and intermolecular magnetic dipole-dipole couplings. Starting from the stochastic Liouville equation, we have developed a non-perturbative theory that can describe relaxation by the dipolar EMOR mechanism over the full range of exchange rates, dipole couplings, and Larmor frequencies. Here, we implement the general dipolar EMOR theory for a macromolecule-bound three-spin system, where one, two, or all three spins exchange with the bulk solution phase. In contrast to the previously studied two-spin system with a single dipole coupling, there are now three dipole couplings, so relaxation is affected by distinct correlations as well as by self-correlations. Moreover, relaxation can now couple the magnetizations with three-spin modes and, in the presence of a static dipole coupling, with two-spin modes. As a result of this complexity, three secondary dispersion steps with different physical origins can appear in the longitudinal relaxation dispersion profile, in addition to the primary dispersion step at the Larmor frequency matching the exchange rate. Furthermore, and in contrast to the two-spin system, longitudinal relaxation can be significantly affected by chemical shifts and by the odd-valued ("imaginary") part of the spectral density function. We anticipate that the detailed studies of two-spin and three-spin systems that have now been completed will provide the foundation for developing an approximate multi-spin dipolar EMOR theory sufficiently accurate and computationally efficient to allow quantitative molecular-level interpretation of frequency-dependent water-proton longitudinal relaxation data from biophysical model systems and soft biological tissue. PMID:27448879
Nuclear magnetic relaxation by the dipolar EMOR mechanism: Three-spin systems
NASA Astrophysics Data System (ADS)
Chang, Zhiwei; Halle, Bertil
2016-07-01
In aqueous systems with immobilized macromolecules, including biological tissue, the longitudinal spin relaxation of water protons is primarily induced by exchange-mediated orientational randomization (EMOR) of intra- and intermolecular magnetic dipole-dipole couplings. Starting from the stochastic Liouville equation, we have developed a non-perturbative theory that can describe relaxation by the dipolar EMOR mechanism over the full range of exchange rates, dipole couplings, and Larmor frequencies. Here, we implement the general dipolar EMOR theory for a macromolecule-bound three-spin system, where one, two, or all three spins exchange with the bulk solution phase. In contrast to the previously studied two-spin system with a single dipole coupling, there are now three dipole couplings, so relaxation is affected by distinct correlations as well as by self-correlations. Moreover, relaxation can now couple the magnetizations with three-spin modes and, in the presence of a static dipole coupling, with two-spin modes. As a result of this complexity, three secondary dispersion steps with different physical origins can appear in the longitudinal relaxation dispersion profile, in addition to the primary dispersion step at the Larmor frequency matching the exchange rate. Furthermore, and in contrast to the two-spin system, longitudinal relaxation can be significantly affected by chemical shifts and by the odd-valued ("imaginary") part of the spectral density function. We anticipate that the detailed studies of two-spin and three-spin systems that have now been completed will provide the foundation for developing an approximate multi-spin dipolar EMOR theory sufficiently accurate and computationally efficient to allow quantitative molecular-level interpretation of frequency-dependent water-proton longitudinal relaxation data from biophysical model systems and soft biological tissue.
NASA Astrophysics Data System (ADS)
Masrour, R.; Jabar, A.
2016-07-01
Mixed-spin-1 and spin-3/2 Ising model on the decorated triangular lattice is studied by the use of Monte Carlo simulation. Within this approach, the results for the ground-state of the antiferromagnetic and ferromagnetic of decorated triangular lattice are obtained. The reduced transition temperature of each sublattice are obtained. The reduced temperature of compensation is also obtained. The thermal total ratio of magnetic susceptibilities of sublattices is given. The effect of crystal field and exchange interactions on the magnetization of the system are detailed. The magnetic hysteresis cycles are found for different values of exchanges interactions between the same lattice and the two sublattices different, for different crystal filed and temperatures. In addition, very weak exchange interactions and for a higher temperatures and a higher crystal filed values the decorated triangular lattice has been exhibited the superparamagnetic behavior.
NASA Astrophysics Data System (ADS)
Alemany, Lawrence B.; Malloy, Thomas B.; Nunes, Megan M.; Zaibaq, Nicholas G.
2012-09-01
In a continuation of our initial investigation of the complex 13C and 19F spectra exhibited by two simple organofluorine compounds, additional organofluorine compounds expected to exhibit a wide range of spectral complexity were studied. Spectral simulations are critical for analyzing the more complex spin systems, in particular, A3B3X and A6B3X. Cross-correlated relaxation is commonly observed; examples of 13Csbnd 19F cross-correlated relaxation are shown with the signals for each nucleus exhibiting unequal relaxation rates. Higher order effects are particularly noticeable in the spectra of perfluoro-t-butyl alcohol because of a large 4JFF value in the (13CF3)(12CF3)212COH isotopomer. The many additional transitions in an A3B3X spin system compared to an ABX spin system result in much more complex 19F (A3 and B3) and 13C (X) spectra, even though only three types of nuclei are involved in each spin system. The corresponding protio compounds typically constitute a much simpler A3M3X spin system because the long-range nJHH coupling (n ⩾ 4) is much smaller than the corresponding long-range nJFF coupling. Spectra previously published for ethane-1-13C (A3B3X) and hexafluoroethane-1-13C (A3M3X) are notable exceptions and are discussed.
2D microwave imaging reflectometer electronics
Spear, A. G.; Domier, C. W. Hu, X.; Muscatello, C. M.; Ren, X.; Luhmann, N. C.; Tobias, B. J.
2014-11-15
A 2D microwave imaging reflectometer system has been developed to visualize electron density fluctuations on the DIII-D tokamak. Simultaneously illuminated at four probe frequencies, large aperture optics image reflections from four density-dependent cutoff surfaces in the plasma over an extended region of the DIII-D plasma. Localized density fluctuations in the vicinity of the plasma cutoff surfaces modulate the plasma reflections, yielding a 2D image of electron density fluctuations. Details are presented of the receiver down conversion electronics that generate the in-phase (I) and quadrature (Q) reflectometer signals from which 2D density fluctuation data are obtained. Also presented are details on the control system and backplane used to manage the electronics as well as an introduction to the computer based control program.
2D microwave imaging reflectometer electronics
NASA Astrophysics Data System (ADS)
Spear, A. G.; Domier, C. W.; Hu, X.; Muscatello, C. M.; Ren, X.; Tobias, B. J.; Luhmann, N. C.
2014-11-01
A 2D microwave imaging reflectometer system has been developed to visualize electron density fluctuations on the DIII-D tokamak. Simultaneously illuminated at four probe frequencies, large aperture optics image reflections from four density-dependent cutoff surfaces in the plasma over an extended region of the DIII-D plasma. Localized density fluctuations in the vicinity of the plasma cutoff surfaces modulate the plasma reflections, yielding a 2D image of electron density fluctuations. Details are presented of the receiver down conversion electronics that generate the in-phase (I) and quadrature (Q) reflectometer signals from which 2D density fluctuation data are obtained. Also presented are details on the control system and backplane used to manage the electronics as well as an introduction to the computer based control program.
2D microwave imaging reflectometer electronics.
Spear, A G; Domier, C W; Hu, X; Muscatello, C M; Ren, X; Tobias, B J; Luhmann, N C
2014-11-01
A 2D microwave imaging reflectometer system has been developed to visualize electron density fluctuations on the DIII-D tokamak. Simultaneously illuminated at four probe frequencies, large aperture optics image reflections from four density-dependent cutoff surfaces in the plasma over an extended region of the DIII-D plasma. Localized density fluctuations in the vicinity of the plasma cutoff surfaces modulate the plasma reflections, yielding a 2D image of electron density fluctuations. Details are presented of the receiver down conversion electronics that generate the in-phase (I) and quadrature (Q) reflectometer signals from which 2D density fluctuation data are obtained. Also presented are details on the control system and backplane used to manage the electronics as well as an introduction to the computer based control program. PMID:25430247
NASA Astrophysics Data System (ADS)
Owerre, S. A.; Paranjape, M. B.
2015-01-01
This article presents a review on the theoretical and the experimental developments on macroscopic quantum tunneling and quantum-classical phase transitions of the escape rate in large spin systems. A substantial amount of research work has been done in this area of research over the years, so this article does not cover all the research areas that have been studied, for instance the effect of dissipation is not discussed and can be found in other review articles. We present the basic ideas with simplified calculations so that it is readable to both specialists and nonspecialists in this area of research. A brief derivation of the path integral formulation of quantum mechanics in its original form using the orthonormal position and momentum basis is reviewed. For tunneling of a particle into the classically forbidden region, the imaginary time (Euclidean) formulation of path integral is useful, we review this formulation and apply it to the problem of tunneling in a double well potential. For spin systems such as single molecule magnets, the formulation of path integral requires the use of non-orthonormal spin coherent states in (2 s + 1) dimensional Hilbert space, the coordinate independent and the coordinate dependent form of the spin coherent state path integral are derived. These two (equivalent) forms of spin coherent state path integral are applied to the tunneling of single molecule magnets through a magnetic anisotropy barrier. Most experimental and numerical results are presented. The suppression of tunneling for half-odd integer spin (spin-parity effect) at zero magnetic field is derived using both forms of spin coherent state path integral, which shows that this result (spin-parity effect) is independent of the choice of coordinate. At nonzero magnetic field we present both the experimental and the theoretical results of the oscillation of tunneling splitting as a function of the applied magnetic field applied along the spin hard anisotropy axis
Novel effects of spin-orbit interaction in interacting electronic systems
NASA Astrophysics Data System (ADS)
Sun, Jianmin
Over the last several years there has been a remarkable growth in research activity in the physical properties of mesoscopic systems. Significant results, which were obtained by both theoretical and experimental studies, together with the enormous promise of nano-technology applications, contribute to this interest. In mesoscopic systems, there are 1023 or so electrons with strong Coulomb interaction. The length scale governing the electrons motion is small enough to cause quantization of the energy levels. In this work we study such quantum systems: quantum wires, quantum dots. During the last decade several experimental techniques have been developed for manufacturing both kinds of devices, which are currently an important tool for understanding low dimensions physics. The finite spin-orbit coupling is very natural, and, strictly speaking, unavoidable, in semiconducting quantum wires due to pronounced structural asymmetry inherent in the fabrication process. Thus the interplay between Coulomb interaction and spin-orbit coupling is important to investigate. The magnetic field also plays an important role which breaks the time-reversal symmetry of the Hamiltonian and splits the band of free electrons into two, corresponding to up-spin and down-spin electrons, reducing spin-rotational symmetry of the system from SU(2) to U(1). The dissertation takes account of the effect of the spin-orbit coupling interactions in the properties of mesoscopic systems. The manuscript is divided in four Chapters. In Chapter 1, the field theory in mesoscopic system is introduced. I present the relations between bosonic and fermionic operators in one dimension. These relations are used to bosonize spin 1/2 interaction fermion system. I show how to derive the RG equations around a fixed-point from the Operator Product Expansion (OPE). In Chapter 2, I present analysis of the interacting quantum wire problem in the presence of magnetic field and spin-orbital interaction. I show that an
2004-08-01
AnisWave2D is a 2D finite-difference code for a simulating seismic wave propagation in fully anisotropic materials. The code is implemented to run in parallel over multiple processors and is fully portable. A mesh refinement algorithm has been utilized to allow the grid-spacing to be tailored to the velocity model, avoiding the over-sampling of high-velocity materials that usually occurs in fixed-grid schemes.
Siddall, T.H.
1982-01-07
A theory is developed for nuclear magnetic resonance spectra of A/sub 2/B/sub 2/ systems with nuclei of higher spin. It is assumed that all nuclei have the same spin value. Otherwise no arbitrary limit is set on the spin. Although the development is made for NMR it also has application to the magnetic properties of clusters of transition-metal ions.
Tidal evolution of the spin-orbit angle in exoplanetary systems
Xue, Yuxin; Suto, Yasushi; Taruya, Atsushi; Hirano, Teruyuki; Fujii, Yuka; Masuda, Kento
2014-03-20
The angle between the stellar spin and the planetary orbit axes (the spin-orbit angle) is supposed to carry valuable information concerning the initial condition of planetary formation and subsequent migration history. Indeed, current observations of the Rossiter-McLaughlin effect have revealed a wide range of spin-orbit misalignments for transiting exoplanets. We examine in detail the tidal evolution of a simple system comprising a Sun-like star and a hot Jupiter adopting the equilibrium tide and the inertial wave dissipation effects simultaneously. We find that the combined tidal model works as a very efficient realignment mechanism; it predicts three distinct states of the spin-orbit angle (i.e., parallel, polar, and antiparallel orbits) for a while, but the latter two states eventually approach the parallel spin-orbit configuration. The intermediate spin-orbit angles as measured in recent observations are difficult to obtain. Therefore the current model cannot reproduce the observed broad distribution of the spin-orbit angles, at least in its simple form. This indicates that the observed diversity of the spin-orbit angles may emerge from more complicated interactions with outer planets and/or may be the consequence of the primordial misalignment between the protoplanetary disk and the stellar spin, which requires future detailed studies.
Vitkalov; Zheng; Mertes; Sarachik; Klapwijk
2000-09-01
Measurements in magnetic fields applied at small angles relative to the electron plane in silicon MOSFETs indicate a factor of 2 increase of the frequency of Shubnikov-de Haas oscillations at H>H(sat). This signals the onset of full spin polarization above H(sat), the parallel field above which the resistivity saturates to a constant value. For H
Ford, Gary A; Wood, Susan M; Daly, Ann K
2000-01-01
Aims Terodiline has concentration dependent QT prolonging effects and thus the potential for cardiotoxicity. Pharmacogenetic variation in terodiline metabolism could be responsible for cardiotoxicity. We sought to determine whether CYP2D6 (debrisoquine hydroxylase) or CYP2C19 (S-mephenytoin hydroxylase) status is a risk factor for terodiline cardiotoxicity. Methods Using the UK Yellow Card scheme to identify patients, blood samples were obtained from eight patients who survived ventricular tachycardia or torsades de pointes suspected to be due to terodiline, for determination of CYP2D6 and CYP2C19 genotypes. Genotype prevalence was compared with that in published general population groups. Results One patient was a CYP2D6 poor metaboliser (CYP2D6*4 homozygous) and a second was heterozygous for CYP2D6*4, a slightly lower frequency for these genotypes compared with the general population (P = 0.31). In the case of CYP2C19, one patient was a poor metaboliser and four were heterozygous for the variant CYP2C19*2 allele, compared with general population frequencies of 2% and 23%, respectively (P = 0.035). Conclusions These findings suggest that debrisoquine poor metaboliser status is not primarily responsible for terodiline cardiotoxicity. However, possession of the CYP2C19*2 allele appears to contribute to adverse cardiac reactions to terodiline. The present study demonstrates the feasibility of using spontaneous adverse drug reaction reporting schemes to determine the contribution of genotype for metabolizing enzymes to uncommon adverse drug reactions. PMID:10886124
NASA Astrophysics Data System (ADS)
Ishida, Toyohiko; Sugita, Ayumu
2016-07-01
We study nonequilibrium steady states (NESSs) in quantum spin-1/2 chains in contact with two heat baths at different temperatures. We consider the weak-coupling limit both for spin-spin coupling in the system and for system-bath coupling. This setting allows us to treat NESSs with a nonzero temperature gradient analytically. We develop a perturbation theory for this weak-coupling situation and show a simple condition for the existence of nonzero temperature gradient. This condition is independent of the integrability of the system.
Dynamics of entanglement in a two-dimensional spin system
Xu Qing; Sadiek, Gehad; Kais, Sabre
2011-06-15
We consider the time evolution of entanglement in a finite two-dimensional transverse Ising model. The model consists of a set of seven localized spin-(1/2) particles in a two-dimensional triangular lattice coupled through nearest-neighbor exchange interaction in the presence of an external time-dependent magnetic field. The magnetic field is applied in different function forms: step, exponential, hyperbolic, and periodic. We found that the time evolution of the entanglement shows an ergodic behavior under the effect of the time-dependent magnetic fields. Also, we found that while the step magnetic field causes great disturbance to the system, creating rapid oscillations, the system shows great controllability under the effects of the other magnetic fields where the entanglement profile follows closely the shape of the applied field even with the same frequency for periodic fields. This follow-up trend breaks down as the strength of the field, the transition constant for the exponential and hyperbolic forms, or the frequency for periodic field increase leading to rapid oscillations. We observed that the entanglement is very sensitive to the initial value of the applied periodic field: the smaller the initial value is, the less distorted the entanglement profile is. Furthermore, the effect of thermal fluctuations is very devastating to the entanglement, which decays very rapidly as the temperature increases. Interestingly, although a large value of the magnetic field strength may yield a small entanglement, the magnetic field strength was found to be more persistent against thermal fluctuations than the small field strengths.
Summary of design considerations for airplane spin-recovery parachute systems
NASA Technical Reports Server (NTRS)
Burk, S. M., Jr.
1972-01-01
A compilation of design considerations applicable to spin-recovery parachute systems for military airplanes has been made so that the information will be readily available to persons responsible for the design of such systems. This information was obtained from a study of available documents and from discussions with persons in both government and industry experienced in parachute technology, full-scale and model spin testing, and related systems.
Teki, Yoshio; Toichi, Tetuya; Nakajima, Satoru
2006-03-01
Syntheses, electronic structures in the ground state, unique photoexcited states, and spin alignment are reported for novel biradical 1, which was designed as an ideal model compound to investigate photoinduced spin alignment in the excited state. Electron spin resonance (ESR), time-resolved ESR (TRESR), and laser-excitation pulsed ESR experiments were carried out. The magnetic properties were examined with a SQUID magnetometer. In the electronic ground state, two radical moieties interact very weakly (almost no interaction) with each other through the closed-shell diphenylanthracene spin coupler. On photoirradiation, a novel lowest photoexcited state with the intermediate spin (S = 1) arising from four unpaired electrons with low-lying quintet (S = 2) photoexcited state was detected. The unique triplet state has an interesting electronic structure, the D value of which is reduced by antiferromagnetic spin alignment between two radical spins through the excited triplet spin coupler. The general theoretical predictions of the spin alignment and the reduction of the fine-structure splitting of the triplet bis(radical) systems are presented. The fine-structure splitting of the unique photoexcited triplet state of 1, as well as the existence of the low-lying quintet state, is interpreted well on the basis of theoretical predictions. Details of the spin alignment in the photoexcited states are discussed. PMID:16372362
NASA Astrophysics Data System (ADS)
Mananga, Eugene Stephane; Charpentier, Thibault
2015-04-01
In this paper we present a theoretical perturbative approach for describing the NMR spectrum of strongly dipolar-coupled spin systems under fast magic-angle spinning. Our treatment is based on two approaches: the Floquet approach and the Floquet-Magnus expansion. The Floquet approach is well known in the NMR community as a perturbative approach to get analytical approximations. Numerical procedures are based on step-by-step numerical integration of the corresponding differential equations. The Floquet-Magnus expansion is a perturbative approach of the Floquet theory. Furthermore, we address the " γ -encoding" effect using the Floquet-Magnus expansion approach. We show that the average over " γ " angle can be performed for any Hamiltonian with γ symmetry.
Measurement of 2D birefringence distribution
NASA Astrophysics Data System (ADS)
Noguchi, Masato; Ishikawa, Tsuyoshi; Ohno, Masahiro; Tachihara, Satoru
1992-10-01
A new measuring method of 2-D birefringence distribution has been developed. It has not been an easy job to get a birefringence distribution in an optical element with conventional ellipsometry because of its lack of scanning means. Finding an analogy between the rotating analyzer method in ellipsometry and the phase-shifting method in recently developed digital interferometry, we have applied the phase-shifting algorithm to ellipsometry, and have developed a new method that makes the measurement of 2-D birefringence distribution easy and possible. The system contains few moving parts, assuring reliability, and measures a large area of a sample at one time, making the measuring time very short.
Laser-induced polarization of a quantum spin system in the steady-state regime
NASA Astrophysics Data System (ADS)
Zvyagin, A. A.
2016-05-01
The effect of the circularly polarized laser field on quantum spin systems in the steady-state regime, in which relaxation plays the central role, has been studied. The dynamical mean-field-like theory predicts several general results for the behavior of the time-average magnetization caused by the laser field. The induced magnetization oscillates with the frequency of the laser field (while Rabi-like oscillations, which modulate the latter in the dynamical regime, are damped by the relaxation in the steady-state regime). At high frequencies, that magnetization is determined by the value to which the relaxation process is directed. At low frequencies the slope of that magnetization as a function of the frequency is determined by the strength of the laser field. The anisotropy determines the resonance behavior of the time-averaged magnetization in both the ferromagnetic and antiferromagnetic cases with nonzero magnetic anisotropy. Nonlinear effects (in the magnitude of the laser field) have been considered. The effect of the laser field on quantum spin systems is maximal in resonance, where the time-averaged magnetization, caused by the laser field, is changed essentially. Out of resonance the changes in the magnetization are relatively small. The resonance effect is caused by the nonzero magnetic anisotropy. The resonance frequency is small (proportional to the anisotropy value) for spin systems with ferromagnetic interactions and enhanced by exchange interactions in the spin systems with antiferromagnetic couplings. We show that it is worthwhile to study the laser-field-induced magnetization of quantum spin systems caused by the high-frequency laser field in the steady-state regime in "easy-axis" antiferromagnetic spin systems (e.g., in Ising-like antiferromagnetic spin-chain materials). The effects of the Dzyaloshinskii-Moriya interaction and the spin-frustration couplings (in the case of the zigzag spin chain) have been analyzed.
NASA Astrophysics Data System (ADS)
Randeria, Mohit; Banerjee, Sumilan; Rowland, James
2015-09-01
Most theoretical studies of chiral magnetism, and the resulting spin textures, have focused on 3D systems with broken bulk inversion symmetry, where skyrmions are stabilized by easy-axis anisotropy. In this talk I will describe our results on 2D and quasi-2D systems with broken surface inversion, where we find [1] that skyrmion crystals are much more stable than in 3D, especially for the case of easy-plane anisotropy. These results are of particular interest for thin films, surfaces, and oxide interfaces [2], where broken surface-inversion symmetry and Rashba spin-orbit coupling naturally lead to both the chiral Dzyaloshinskii-Moriya (DM) interaction and to easy-plane compass anisotropy. I will then turn to systems that break both bulk and surface inversion, resulting in two distinct DM terms arising from Dresselhaus and Rashba spin-orbit coupling. I will describe [3] the evolution of the skyrmion structure and of the phase diagram as a function of the ratio of Dresselhaus and Rashba terms, which can be tuned by varying film thickness and strain. [1] S. Banerjee, J. Rowland, O. Erten, and M. Randeria, PRX 4, 031045 (2014). [2] S. Banerjee, O. Erten, and M. Randeria, Nature Phys. 9, 626 (2013). [3] J. Rowland, S. Banerjee and M. Randeria, (unpublished).
NASA Astrophysics Data System (ADS)
Roostaei, B.; Bourassa, J.; Fertig, H.; Mullen, K.; Cote, R.
2006-03-01
Enhanced nuclear spin relaxation rates have been observed in recent experiments[1] on double layer quantum Hall systems near total filling factor νT=1. The effect is analogous to what happens in single layer systems, where a possible explanation lies in the development of a Skyrme crystal with low energy spin wave modes as the system is doped away from integer filling. Double layer systems are thought to support bimeron excitations, analogous to skyrmions but with layer indices playing the role of spin states. We demonstrate,within the Hartree-Fock approximation, that for low interlayer tunneling and large separations the bimerons reorganize into a vortex-antivortex lattice with an interwoven real spin texture. These states are most stable at large layer separation, where the introduction of the spin degree of freedom can relax an interlayer charge imbalance at the cores of the merons. The presence of the real spin texture produces a true spontaneously broken symmetry whose Goldstone modes can explain the enhancement of the nuclear spin relaxation. [1]I.B. Spielman et al., Phys. Rev. Lett. 94, 076803 (2005).
NASA Astrophysics Data System (ADS)
Park, Yeonju; Shin, Su Hyun; Lee, Sung Man; Kim, Sung Phil; Choi, Hyun Chul; Jung, Young Mee
2014-07-01
The effect of vinylene carbonate (VC) as solid electrolyte interface (SEI)-forming additive on the electrochemical performance of the LiCoO2 cathode was investigated by galvanostatic charge-discharge testing as well as Raman and 2D correlation spectroscopy. It was found that VC-containing electrolyte has a positive effect on capacity fading. An analysis of the 2D Raman correlation spectra suggested that even though the same SEI components (i.e., Co3O4 and Li2O) are produced on the cathode surface, the electrochemical reaction kinetics in the cathode/electrolyte interface differ according to the non-use or use of VC: in the latter case, formation of the SEI components is delayed.