Science.gov

Sample records for 2-d unstructured mesh

  1. The 2D and 3D hypersonic flows with unstructured meshes

    NASA Technical Reports Server (NTRS)

    Thareja, Rajiv

    1993-01-01

    Viewgraphs on 2D and 3D hypersonic flows with unstructured meshes are presented. Topics covered include: mesh generation, mesh refinement, shock-shock interaction, velocity contours, mesh movement, vehicle bottom surface, and adapted meshes.

  2. MAST solution of irrotational flow problems in 2D domains with strongly unstructured triangular meshes

    NASA Astrophysics Data System (ADS)

    Tucciarelli, T.

    2012-12-01

    A new methodology for the solution of irrotational 2D flow problems in domains with strongly unstructured meshes is presented. A fractional time step procedure is applied to the original governing equations, solving consecutively a convective prediction system and a diffusive corrective system. The non linear components of the problem are concentrated in the prediction step, while the correction step leads to the solution of a linear system, of the order of the number of computational cells. A MArching in Space and Time (MAST) approach is applied for the solution of the convective prediction step. The major advantages of the model, as well as its ability to maintain the solution monotonicity even in strongly irregular meshes, are briefly described. The algorithm is applied to the solution of diffusive shallow water equations in a simple domain.

  3. MAST-2D diffusive model for flood prediction on domains with triangular Delaunay unstructured meshes

    NASA Astrophysics Data System (ADS)

    Aricò, C.; Sinagra, M.; Begnudelli, L.; Tucciarelli, T.

    2011-11-01

    A new methodology for the solution of the 2D diffusive shallow water equations over Delaunay unstructured triangular meshes is presented. Before developing the new algorithm, the following question is addressed: it is worth developing and using a simplified shallow water model, when well established algorithms for the solution of the complete one do exist? The governing Partial Differential Equations are discretized using a procedure similar to the linear conforming Finite Element Galerkin scheme, with a different flux formulation and a special flux treatment that requires Delaunay triangulation but entire solution monotonicity. A simple mesh adjustment is suggested, that attains the Delaunay condition for all the triangle sides without changing the original nodes location and also maintains the internal boundaries. The original governing system is solved applying a fractional time step procedure, that solves consecutively a convective prediction system and a diffusive correction system. The non linear components of the problem are concentrated in the prediction step, while the correction step leads to the solution of a linear system of the order of the number of computational cells. A semi-analytical procedure is applied for the solution of the prediction step. The discretized formulation of the governing equations allows to handle also wetting and drying processes without any additional specific treatment. Local energy dissipations, mainly the effect of vertical walls and hydraulic jumps, can be easily included in the model. Several numerical experiments have been carried out in order to test (1) the stability of the proposed model with regard to the size of the Courant number and to the mesh irregularity, (2) its computational performance, (3) the convergence order by means of mesh refinement. The model results are also compared with the results obtained by a fully dynamic model. Finally, the application to a real field case with a Venturi channel is presented.

  4. Parallel Finite Element Electron-Photon Transport Analysis on 2-D Unstructured Mesh

    SciTech Connect

    Drumm, C.R.

    1999-01-01

    A computer code has been developed to solve the linear Boltzmann transport equation on an unstructured mesh of triangles, from a Pro/E model. An arbitriwy arrangement of distinct material regions is allowed. Energy dependence is handled by solving over an arbitrary number of discrete energy groups. Angular de- pendence is treated by Legendre-polynomial expansion of the particle cross sections and a discrete ordinates treatment of the particle fluence. The resulting linear system is solved in parallel with a preconditioned conjugate-gradients method. The solution method is unique, in that the space-angle dependence is solved si- multaneously, eliminating the need for the usual inner iterations. Electron cross sections are obtained from a Goudsrnit-Saunderson modifed version of the CEPXS code. A one-dimensional version of the code has also been develop@ for testing and development purposes.

  5. An Implicit 2-D Shallow Water Flow Model on Unstructured Quadtree Rectangular Mesh

    DTIC Science & Technology

    2011-01-01

    Hanson, H.; Wamsley, T., and Zundel, A. K., 2006. Two-dimensional depth-averaged circulation model CMS- M2D : Version 3.0, Report 2: Sediment...Militello, A.; Reed, C.W.; Zundel, A.K. and Kraus, N.C., 2004. Two-dimensional depth-averaged circulation model M2D : Version 2.0, Report 1, Technical

  6. Standard and goal-oriented adaptive mesh refinement applied to radiation transport on 2D unstructured triangular meshes

    SciTech Connect

    Wang Yaqi; Ragusa, Jean C.

    2011-02-01

    Standard and goal-oriented adaptive mesh refinement (AMR) techniques are presented for the linear Boltzmann transport equation. A posteriori error estimates are employed to drive the AMR process and are based on angular-moment information rather than on directional information, leading to direction-independent adapted meshes. An error estimate based on a two-mesh approach and a jump-based error indicator are compared for various test problems. In addition to the standard AMR approach, where the global error in the solution is diminished, a goal-oriented AMR procedure is devised and aims at reducing the error in user-specified quantities of interest. The quantities of interest are functionals of the solution and may include, for instance, point-wise flux values or average reaction rates in a subdomain. A high-order (up to order 4) Discontinuous Galerkin technique with standard upwinding is employed for the spatial discretization; the discrete ordinates method is used to treat the angular variable.

  7. Unstructured mesh generation and adaptivity

    NASA Technical Reports Server (NTRS)

    Mavriplis, D. J.

    1995-01-01

    An overview of current unstructured mesh generation and adaptivity techniques is given. Basic building blocks taken from the field of computational geometry are first described. Various practical mesh generation techniques based on these algorithms are then constructed and illustrated with examples. Issues of adaptive meshing and stretched mesh generation for anisotropic problems are treated in subsequent sections. The presentation is organized in an education manner, for readers familiar with computational fluid dynamics, wishing to learn more about current unstructured mesh techniques.

  8. MHD simulations on an unstructured mesh

    SciTech Connect

    Strauss, H.R.; Park, W.; Belova, E.; Fu, G.Y.; Longcope, D.W.; Sugiyama, L.E.

    1998-12-31

    Two reasons for using an unstructured computational mesh are adaptivity, and alignment with arbitrarily shaped boundaries. Two codes which use finite element discretization on an unstructured mesh are described. FEM3D solves 2D and 3D RMHD using an adaptive grid. MH3D++, which incorporates methods of FEM3D into the MH3D generalized MHD code, can be used with shaped boundaries, which might be 3D.

  9. Multigrid techniques for unstructured meshes

    NASA Technical Reports Server (NTRS)

    Mavriplis, D. J.

    1995-01-01

    An overview of current multigrid techniques for unstructured meshes is given. The basic principles of the multigrid approach are first outlined. Application of these principles to unstructured mesh problems is then described, illustrating various different approaches, and giving examples of practical applications. Advanced multigrid topics, such as the use of algebraic multigrid methods, and the combination of multigrid techniques with adaptive meshing strategies are dealt with in subsequent sections. These represent current areas of research, and the unresolved issues are discussed. The presentation is organized in an educational manner, for readers familiar with computational fluid dynamics, wishing to learn more about current unstructured mesh techniques.

  10. An admissibility and asymptotic-preserving scheme for systems of conservation laws with source term on 2D unstructured meshes

    NASA Astrophysics Data System (ADS)

    Blachère, F.; Turpault, R.

    2016-06-01

    The objective of this work is to design explicit finite volumes schemes for specific systems of conservations laws with stiff source terms, which degenerate into diffusion equations. We propose a general framework to design an asymptotic preserving scheme, that is stable and consistent under a classical hyperbolic CFL condition in both hyperbolic and diffusive regime, for any two-dimensional unstructured mesh. Moreover, the scheme developed also preserves the set of admissible states, which is mandatory to keep physical solutions in stiff configurations. This construction is achieved by using a non-linear scheme as a target scheme for the diffusive equation, which gives the form of the global scheme for the complete system of conservation laws. Numerical results are provided to validate the scheme in both regimes.

  11. Toward An Unstructured Mesh Database

    NASA Astrophysics Data System (ADS)

    Rezaei Mahdiraji, Alireza; Baumann, Peter Peter

    2014-05-01

    Unstructured meshes are used in several application domains such as earth sciences (e.g., seismology), medicine, oceanography, cli- mate modeling, GIS as approximate representations of physical objects. Meshes subdivide a domain into smaller geometric elements (called cells) which are glued together by incidence relationships. The subdivision of a domain allows computational manipulation of complicated physical structures. For instance, seismologists model earthquakes using elastic wave propagation solvers on hexahedral meshes. The hexahedral con- tains several hundred millions of grid points and millions of hexahedral cells. Each vertex node in the hexahedrals stores a multitude of data fields. To run simulation on such meshes, one needs to iterate over all the cells, iterate over incident cells to a given cell, retrieve coordinates of cells, assign data values to cells, etc. Although meshes are used in many application domains, to the best of our knowledge there is no database vendor that support unstructured mesh features. Currently, the main tool for querying and manipulating unstructured meshes are mesh libraries, e.g., CGAL and GRAL. Mesh li- braries are dedicated libraries which includes mesh algorithms and can be run on mesh representations. The libraries do not scale with dataset size, do not have declarative query language, and need deep C++ knowledge for query implementations. Furthermore, due to high coupling between the implementations and input file structure, the implementations are less reusable and costly to maintain. A dedicated mesh database offers the following advantages: 1) declarative querying, 2) ease of maintenance, 3) hiding mesh storage structure from applications, and 4) transparent query optimization. To design a mesh database, the first challenge is to define a suitable generic data model for unstructured meshes. We proposed ImG-Complexes data model as a generic topological mesh data model which extends incidence graph model to multi

  12. Reduced order modelling of an unstructured mesh air pollution model and application in 2D/3D urban street canyons

    NASA Astrophysics Data System (ADS)

    Fang, F.; Zhang, T.; Pavlidis, D.; Pain, C. C.; Buchan, A. G.; Navon, I. M.

    2014-10-01

    A novel reduced order model (ROM) based on proper orthogonal decomposition (POD) has been developed for a finite-element (FE) adaptive mesh air pollution model. A quadratic expansion of the non-linear terms is employed to ensure the method remained efficient. This is the first time such an approach has been applied to air pollution LES turbulent simulation through three dimensional landscapes. The novelty of this work also includes POD's application within a FE-LES turbulence model that uses adaptive resolution. The accuracy of the reduced order model is assessed and validated for a range of 2D and 3D urban street canyon flow problems. By comparing the POD solutions against the fine detail solutions obtained from the full FE model it is shown that the accuracy is maintained, where fine details of the air flows are captured, whilst the computational requirements are reduced. In the examples presented below the size of the reduced order models is reduced by factors up to 2400 in comparison to the full FE model while the CPU time is reduced by up to 98% of that required by the full model.

  13. 2D Mesh Manipulation

    DTIC Science & Technology

    2011-11-01

    PLATE A two-dimensional flat plate mesh was created using the Gridgen software package (Ref. 13). This mesh (shown in Fig. 10) closely resembled a...desired tolerance of the projection onto the surface. The geometry file on which the geometry surface is based can be easily generated using Gridgen ...by exporting a curve (or number of curves) under the INPUT/OUTPUT commands in the Gridgen interface (Ref. 13). Initially, the floating boundary

  14. 2-D magnetotelluric modeling using finite element method incorporating unstructured quadrilateral elements

    NASA Astrophysics Data System (ADS)

    Sarakorn, Weerachai

    2017-04-01

    In this research, the finite element (FE) method incorporating quadrilateral elements for solving 2-D MT modeling was presented. The finite element software was developed, employing a paving algorithm to generate the unstructured quadrilateral mesh. The accuracy, efficiency, reliability, and flexibility of our FE forward modeling are presented, compared and discussed. The numerical results indicate that our FE codes using an unstructured quadrilateral mesh provide good accuracy when the local mesh refinement is applied around sites and in the area of interest, with superior results when compared to other FE methods. The reliability of the developed codes was also confirmed when comparing both analytical solutions and COMMEMI2D model. Furthermore, our developed FE codes incorporating an unstructured quadrilateral mesh showed useful and powerful features such as handling irregular and complex subregions and providing local refinement of the mesh for a 2-D domain as closely as unstructured triangular mesh but it requires less number of elements in a mesh.

  15. Unstructured mesh algorithms for aerodynamic calculations

    NASA Technical Reports Server (NTRS)

    Mavriplis, D. J.

    1992-01-01

    The use of unstructured mesh techniques for solving complex aerodynamic flows is discussed. The principle advantages of unstructured mesh strategies, as they relate to complex geometries, adaptive meshing capabilities, and parallel processing are emphasized. The various aspects required for the efficient and accurate solution of aerodynamic flows are addressed. These include mesh generation, mesh adaptivity, solution algorithms, convergence acceleration, and turbulence modeling. Computations of viscous turbulent two-dimensional flows and inviscid three-dimensional flows about complex configurations are demonstrated. Remaining obstacles and directions for future research are also outlined.

  16. Unstructured Polyhedral Mesh Thermal Radiation Diffusion

    SciTech Connect

    Palmer, T.S.; Zika, M.R.; Madsen, N.K.

    2000-07-27

    Unstructured mesh particle transport and diffusion methods are gaining wider acceptance as mesh generation, scientific visualization and linear solvers improve. This paper describes an algorithm that is currently being used in the KULL code at Lawrence Livermore National Laboratory to solve the radiative transfer equations. The algorithm employs a point-centered diffusion discretization on arbitrary polyhedral meshes in 3D. We present the results of a few test problems to illustrate the capabilities of the radiation diffusion module.

  17. Conformal refinement of unstructured quadrilateral meshes

    SciTech Connect

    Garmella, Rao

    2009-01-01

    We present a multilevel adaptive refinement technique for unstructured quadrilateral meshes in which the mesh is kept conformal at all times. This means that the refined mesh, like the original, is formed of only quadrilateral elements that intersect strictly along edges or at vertices, i.e., vertices of one quadrilateral element do not lie in an edge of another quadrilateral. Elements are refined using templates based on 1:3 refinement of edges. We demonstrate that by careful design of the refinement and coarsening strategy, we can maintain high quality elements in the refined mesh. We demonstrate the method on a number of examples with dynamically changing refinement regions.

  18. Unstructured mesh methods for CFD

    NASA Technical Reports Server (NTRS)

    Peraire, J.; Morgan, K.; Peiro, J.

    1990-01-01

    Mesh generation methods for Computational Fluid Dynamics (CFD) are outlined. Geometric modeling is discussed. An advancing front method is described. Flow past a two engine Falcon aeroplane is studied. An algorithm and associated data structure called the alternating digital tree, which efficiently solves the geometric searching problem is described. The computation of an initial approximation to the steady state solution of a given poblem is described. Mesh generation for transient flows is described.

  19. An all-regime Lagrange-Projection like scheme for 2D homogeneous models for two-phase flows on unstructured meshes

    NASA Astrophysics Data System (ADS)

    Chalons, Christophe; Girardin, Mathieu; Kokh, Samuel

    2017-04-01

    We propose an all regime Lagrange-Projection like numerical scheme for 2D homogeneous models for two-phase flows. By all regime, we mean that the numerical scheme is able to compute accurate approximate solutions with an under-resolved discretization, i.e. a mesh size and time step much bigger than the Mach number M of the mixture. The key idea is to decouple acoustic, transport and phase transition phenomenon using a Lagrange-Projection decomposition in order to treat implicitly (fast) acoustic and phase transition phenomenon and explicitly the (slow) transport phenomena. Then, extending a strategy developed in the case of the usual gas dynamics equations, we alter the numerical flux in the acoustic approximation to obtain a uniform truncation error in terms of M. This modified scheme is conservative and endowed with good stability properties with respect to the positivity of the density and preserving the mass fraction within the interval (0 , 1). Numerical evidences are proposed and show the ability of the scheme to deal with cases where the flow regime may vary from low to high Mach values.

  20. On Convergence Acceleration Techniques for Unstructured Meshes

    NASA Technical Reports Server (NTRS)

    Mavriplis, Dimitri J.

    1998-01-01

    A discussion of convergence acceleration techniques as they relate to computational fluid dynamics problems on unstructured meshes is given. Rather than providing a detailed description of particular methods, the various different building blocks of current solution techniques are discussed and examples of solution strategies using one or several of these ideas are given. Issues relating to unstructured grid CFD problems are given additional consideration, including suitability of algorithms to current hardware trends, memory and cpu tradeoffs, treatment of non-linearities, and the development of efficient strategies for handling anisotropy-induced stiffness. The outlook for future potential improvements is also discussed.

  1. Multislope MUSCL method for general unstructured meshes

    NASA Astrophysics Data System (ADS)

    Le Touze, C.; Murrone, A.; Guillard, H.

    2015-03-01

    The multislope concept has been recently introduced in the literature to deal with MUSCL reconstructions on triangular and tetrahedral unstructured meshes in the finite volume cell-centered context. Dedicated scalar slopes are used to compute the interpolations on each face of a given element, in opposition to the monoslope methods in which a unique limited gradient is used. The multislope approach reveals less expensive and potentially more accurate than the classical gradient techniques. Besides, it may also help the robustness when dealing with hyperbolic systems involving complex solutions, with large discontinuities and high density ratios. However some important limitations on the mesh topology still have to be overcome with the initial multislope formalism. In this paper, a generalized multislope MUSCL method is introduced for cell-centered finite volume discretizations. The method is freed from constraints on the mesh topology, thereby operating on completely general unstructured meshes. Moreover optimal second-order accuracy is reached at the faces centroids. The scheme can be written with nonnegative coefficients, which makes it L∞-stable. Special attention has also been paid to equip the reconstruction procedure with well-adapted dedicated limiters, potentially CFL-dependent. Numerical tests are provided to prove the ability of the method to deal with completely general meshes, while exhibiting second-order accuracy.

  2. Constrained and joint inversion on unstructured meshes

    NASA Astrophysics Data System (ADS)

    Doetsch, J.; Jordi, C.; Rieckh, V.; Guenther, T.; Schmelzbach, C.

    2015-12-01

    Unstructured meshes allow for inclusion of arbitrary surface topography, complex acquisition geometry and undulating geological interfaces in the inversion of geophysical data. This flexibility opens new opportunities for coupling different geophysical and hydrological data sets in constrained and joint inversions. For example, incorporating geological interfaces that have been derived from high-resolution geophysical data (e.g., ground penetrating radar) can add geological constraints to inversions of electrical resistivity data. These constraints can be critical for a hydrogeological interpretation of the inversion results. For time-lapse inversions of geophysical data, constraints can be derived from hydrological point measurements in boreholes, but it is difficult to include these hard constraints in the inversion of electrical resistivity monitoring data. Especially mesh density and the regularization footprint around the hydrological point measurements are important for an improved inversion compared to the unconstrained case. With the help of synthetic and field examples, we analyze how regularization and coupling operators should be chosen for time-lapse inversions constrained by point measurements and for joint inversions of geophysical data in order to take full advantage of the flexibility of unstructured meshes. For the case of constraining to point measurements, it is important to choose a regularization operator that extends beyond the neighboring cells and the uncertainty in the point measurements needs to be accounted for. For joint inversion, the choice of the regularization depends on the expected subsurface heterogeneity and the cell size of the parameter mesh.

  3. The Tera Multithreaded Architecture and Unstructured Meshes

    NASA Technical Reports Server (NTRS)

    Bokhari, Shahid H.; Mavriplis, Dimitri J.

    1998-01-01

    The Tera Multithreaded Architecture (MTA) is a new parallel supercomputer currently being installed at San Diego Supercomputing Center (SDSC). This machine has an architecture quite different from contemporary parallel machines. The computational processor is a custom design and the machine uses hardware to support very fine grained multithreading. The main memory is shared, hardware randomized and flat. These features make the machine highly suited to the execution of unstructured mesh problems, which are difficult to parallelize on other architectures. We report the results of a study carried out during July-August 1998 to evaluate the execution of EUL3D, a code that solves the Euler equations on an unstructured mesh, on the 2 processor Tera MTA at SDSC. Our investigation shows that parallelization of an unstructured code is extremely easy on the Tera. We were able to get an existing parallel code (designed for a shared memory machine), running on the Tera by changing only the compiler directives. Furthermore, a serial version of this code was compiled to run in parallel on the Tera by judicious use of directives to invoke the "full/empty" tag bits of the machine to obtain synchronization. This version achieves 212 and 406 Mflop/s on one and two processors respectively, and requires no attention to partitioning or placement of data issues that would be of paramount importance in other parallel architectures.

  4. Hypersonic Flow Computations on Unstructured Meshes

    NASA Technical Reports Server (NTRS)

    Bibb, K. L.; Riley, C. J.; Peraire, J.

    1997-01-01

    A method for computing inviscid hypersonic flow over complex configurations using unstructured meshes is presented. The unstructured grid solver uses an edge{based finite{volume formulation. Fluxes are computed using a flux vector splitting scheme that is capable of representing constant enthalpy solutions. Second{order accuracy in smooth flow regions is obtained by linearly reconstructing the solution, and stability near discontinuities is maintained by locally forcing the scheme to reduce to first-order accuracy. The implementation of the algorithm to parallel computers is described. Computations using the proposed method are presented for a sphere-cone configuration at Mach numbers of 5.25 and 10.6, and a complex hypersonic re-entry vehicle at Mach numbers of 4.5 and 9.8. Results are compared to experimental data and computations made with established structured grid methods. The use of the solver as a screening tool for rapid aerodynamic assessment of proposed vehicles is described.

  5. Robust and efficient overset grid assembly for partitioned unstructured meshes

    NASA Astrophysics Data System (ADS)

    Roget, Beatrice; Sitaraman, Jayanarayanan

    2014-03-01

    This paper presents a method to perform efficient and automated Overset Grid Assembly (OGA) on a system of overlapping unstructured meshes in a parallel computing environment where all meshes are partitioned into multiple mesh-blocks and processed on multiple cores. The main task of the overset grid assembler is to identify, in parallel, among all points in the overlapping mesh system, at which points the flow solution should be computed (field points), interpolated (receptor points), or ignored (hole points). Point containment search or donor search, an algorithm to efficiently determine the cell that contains a given point, is the core procedure necessary for accomplishing this task. Donor search is particularly challenging for partitioned unstructured meshes because of the complex irregular boundaries that are often created during partitioning.

  6. Soundproof simulations of stratospheric gravity waves on unstructured meshes

    NASA Astrophysics Data System (ADS)

    Smolarkiewicz, P.; Szmelter, J.

    2012-04-01

    An edge-based unstructured-mesh semi-implicit model is presented that integrates nonhydrostatic soundproof equations, inclusive of anelastic and pseudo-incompressible systems of partial differential equations. The model numerics employ nonoscillatory forward-in-time MPDATA methods [Smolarkiewicz, 2006, Int. J. Numer. Meth. Fl., 50, 1123-1144] using finite-volume spatial discretization and unstructured meshes with arbitrarily shaped cells. Implicit treatment of gravity waves benefits both accuracy and stability of the model. The unstructured-mesh solutions are compared to equivalent structured-grid results for intricate, multiscale internal-wave phenomenon of a non-Boussinesq amplification and breaking of deep stratospheric gravity waves. The departures of the anelastic and pseudo-incompressible results are quantified in reference to a recent asymptotic theory [Achatz et al., 2010, J. Fluid Mech., 663, 120-147].

  7. Multigrid solution of internal flows using unstructured solution adaptive meshes

    NASA Technical Reports Server (NTRS)

    Smith, Wayne A.; Blake, Kenneth R.

    1992-01-01

    This is the final report of the NASA Lewis SBIR Phase 2 Contract Number NAS3-25785, Multigrid Solution of Internal Flows Using Unstructured Solution Adaptive Meshes. The objective of this project, as described in the Statement of Work, is to develop and deliver to NASA a general three-dimensional Navier-Stokes code using unstructured solution-adaptive meshes for accuracy and multigrid techniques for convergence acceleration. The code will primarily be applied, but not necessarily limited, to high speed internal flows in turbomachinery.

  8. AN ALGORITHM FOR PARALLEL SN SWEEPS ON UNSTRUCTURED MESHES

    SciTech Connect

    S. D. PAUTZ

    2000-12-01

    We develop a new algorithm for performing parallel S{sub n} sweeps on unstructured meshes. The algorithm uses a low-complexity list ordering heuristic to determine a sweep ordering on any partitioned mesh. For typical problems and with ''normal'' mesh partitionings we have observed nearly linear speedups on up to 126 processors. This is an important and desirable result, since although analyses of structured meshes indicate that parallel sweeps will not scale with normal partitioning approaches, we do not observe any severe asymptotic degradation in the parallel efficiency with modest ({le}100) levels of parallelism. This work is a fundamental step in the development of parallel S{sub n} methods.

  9. TVD differencing on three-dimensional unstructured meshes with monotonicity-preserving correction of mesh skewness

    NASA Astrophysics Data System (ADS)

    Denner, Fabian; van Wachem, Berend G. M.

    2015-10-01

    Total variation diminishing (TVD) schemes are a widely applied group of monotonicity-preserving advection differencing schemes for partial differential equations in numerical heat transfer and computational fluid dynamics. These schemes are typically designed for one-dimensional problems or multidimensional problems on structured equidistant quadrilateral meshes. Practical applications, however, often involve complex geometries that cannot be represented by Cartesian meshes and, therefore, necessitate the application of unstructured meshes, which require a more sophisticated discretisation to account for their additional topological complexity. In principle, TVD schemes are applicable to unstructured meshes, however, not all the data required for TVD differencing is readily available on unstructured meshes, and the solution suffers from considerable numerical diffusion as a result of mesh skewness. In this article we analyse TVD differencing on unstructured three-dimensional meshes, focusing on the non-linearity of TVD differencing and the extrapolation of the virtual upwind node. Furthermore, we propose a novel monotonicity-preserving correction method for TVD schemes that significantly reduces numerical diffusion caused by mesh skewness. The presented numerical experiments demonstrate the importance of accounting for the non-linearity introduced by TVD differencing and of imposing carefully chosen limits on the extrapolated virtual upwind node, as well as the efficacy of the proposed method to correct mesh skewness.

  10. Unstructured Adaptive Meshes: Bad for Your Memory?

    NASA Technical Reports Server (NTRS)

    Biswas, Rupak; Feng, Hui-Yu; VanderWijngaart, Rob

    2003-01-01

    This viewgraph presentation explores the need for a NASA Advanced Supercomputing (NAS) parallel benchmark for problems with irregular dynamical memory access. This benchmark is important and necessary because: 1) Problems with localized error source benefit from adaptive nonuniform meshes; 2) Certain machines perform poorly on such problems; 3) Parallel implementation may provide further performance improvement but is difficult. Some examples of problems which use irregular dynamical memory access include: 1) Heat transfer problem; 2) Heat source term; 3) Spectral element method; 4) Base functions; 5) Elemental discrete equations; 6) Global discrete equations. Nonconforming Mesh and Mortar Element Method are covered in greater detail in this presentation.

  11. Unstructured mesh quality assessment and upwind Euler solution algorithm validation

    NASA Astrophysics Data System (ADS)

    Woodard, Paul R.; Batina, John T.; Yang, Henry T. Y.

    1994-05-01

    Quality assessment procedures are described for two and three dimensional unstructured meshes. The procedures include measurement of minimum angles, element aspect ratios, stretching, and element skewness. Meshes about the ONERA M6 wing and the Boeing 747 transport configuration are generated using an advancing front method grid generation package of programs. Solutions of the Euler equations for these meshes are obtained at low angle of attack, transonic conditions. Results for these cases, obtained as part of a validation study, investigate accuracy of an implicit upwind Euler solution algorithm.

  12. Zonal multigrid solution of compressible flow problems on unstructured and adaptive meshes

    NASA Technical Reports Server (NTRS)

    Mavriplis, Dimitri J.

    1989-01-01

    The simultaneous use of adaptive meshing techniques with a multigrid strategy for solving the 2-D Euler equations in the context of unstructured meshes is studied. To obtain optimal efficiency, methods capable of computing locally improved solutions without recourse to global recalculations are pursued. A method for locally refining an existing unstructured mesh, without regenerating a new global mesh is employed, and the domain is automatically partitioned into refined and unrefined regions. Two multigrid strategies are developed. In the first, time-stepping is performed on a global fine mesh covering the entire domain, and convergence acceleration is achieved through the use of zonal coarse grid accelerator meshes, which lie under the adaptively refined regions of the global fine mesh. Both schemes are shown to produce similar convergence rates to each other, and also with respect to a previously developed global multigrid algorithm, which performs time-stepping throughout the entire domain, on each mesh level. However, the present schemes exhibit higher computational efficiency due to the smaller number of operations on each level.

  13. Reaction rates for reaction-diffusion kinetics on unstructured meshes

    NASA Astrophysics Data System (ADS)

    Hellander, Stefan; Petzold, Linda

    2017-02-01

    The reaction-diffusion master equation is a stochastic model often utilized in the study of biochemical reaction networks in living cells. It is applied when the spatial distribution of molecules is important to the dynamics of the system. A viable approach to resolve the complex geometry of cells accurately is to discretize space with an unstructured mesh. Diffusion is modeled as discrete jumps between nodes on the mesh, and the diffusion jump rates can be obtained through a discretization of the diffusion equation on the mesh. Reactions can occur when molecules occupy the same voxel. In this paper, we develop a method for computing accurate reaction rates between molecules occupying the same voxel in an unstructured mesh. For large voxels, these rates are known to be well approximated by the reaction rates derived by Collins and Kimball, but as the mesh is refined, no analytical expression for the rates exists. We reduce the problem of computing accurate reaction rates to a pure preprocessing step, depending only on the mesh and not on the model parameters, and we devise an efficient numerical scheme to estimate them to high accuracy. We show in several numerical examples that as we refine the mesh, the results obtained with the reaction-diffusion master equation approach those of a more fine-grained Smoluchowski particle-tracking model.

  14. Parallel performance optimizations on unstructured mesh-based simulations

    DOE PAGES

    Sarje, Abhinav; Song, Sukhyun; Jacobsen, Douglas; ...

    2015-06-01

    This paper addresses two key parallelization challenges the unstructured mesh-based ocean modeling code, MPAS-Ocean, which uses a mesh based on Voronoi tessellations: (1) load imbalance across processes, and (2) unstructured data access patterns, that inhibit intra- and inter-node performance. Our work analyzes the load imbalance due to naive partitioning of the mesh, and develops methods to generate mesh partitioning with better load balance and reduced communication. Furthermore, we present methods that minimize both inter- and intranode data movement and maximize data reuse. Our techniques include predictive ordering of data elements for higher cache efficiency, as well as communication reduction approaches.more » We present detailed performance data when running on thousands of cores using the Cray XC30 supercomputer and show that our optimization strategies can exceed the original performance by over 2×. Additionally, many of these solutions can be broadly applied to a wide variety of unstructured grid-based computations.« less

  15. A 3-D upwind Euler solver for unstructured meshes

    NASA Technical Reports Server (NTRS)

    Barth, Timothy J.

    1991-01-01

    A three-dimensional finite-volume upwind Euler solver is developed for unstructured meshes. The finite-volume scheme solves for solution variables at vertices of the mesh and satisfies the integral conservation law on nonoverlapping polyhedral control volumes surrounding vertices of the mesh. The schene achieves improved solution accuracy by assuming a piecewise linear variation of the solution in each control volume. This improved spatial accuracy hinges heavily upon the calculation of the solution gradient in each control volume given pointwise values of the solution at vertices of the mesh. Several algorithms are discussed for obtaining these gradients. Details concerning implementation procedures and data structures are discussed. Sample calculations for inviscid Euler flow about isolated aircraft wings at subsonic and transonic speeds are compared with established Euler solvers as well as experiment.

  16. Adaptive Mesh Refinement Algorithms for Parallel Unstructured Finite Element Codes

    SciTech Connect

    Parsons, I D; Solberg, J M

    2006-02-03

    This project produced algorithms for and software implementations of adaptive mesh refinement (AMR) methods for solving practical solid and thermal mechanics problems on multiprocessor parallel computers using unstructured finite element meshes. The overall goal is to provide computational solutions that are accurate to some prescribed tolerance, and adaptivity is the correct path toward this goal. These new tools will enable analysts to conduct more reliable simulations at reduced cost, both in terms of analyst and computer time. Previous academic research in the field of adaptive mesh refinement has produced a voluminous literature focused on error estimators and demonstration problems; relatively little progress has been made on producing efficient implementations suitable for large-scale problem solving on state-of-the-art computer systems. Research issues that were considered include: effective error estimators for nonlinear structural mechanics; local meshing at irregular geometric boundaries; and constructing efficient software for parallel computing environments.

  17. Out-of-Core Streamline Visualization on Large Unstructured Meshes

    NASA Technical Reports Server (NTRS)

    Ueng, Shyh-Kuang; Sikorski, K.; Ma, Kwan-Liu

    1997-01-01

    It's advantageous for computational scientists to have the capability to perform interactive visualization on their desktop workstations. For data on large unstructured meshes, this capability is not generally available. In particular, particle tracing on unstructured grids can result in a high percentage of non-contiguous memory accesses and therefore may perform very poorly with virtual memory paging schemes. The alternative of visualizing a lower resolution of the data degrades the original high-resolution calculations. This paper presents an out-of-core approach for interactive streamline construction on large unstructured tetrahedral meshes containing millions of elements. The out-of-core algorithm uses an octree to partition and restructure the raw data into subsets stored into disk files for fast data retrieval. A memory management policy tailored to the streamline calculations is used such that during the streamline construction only a very small amount of data are brought into the main memory on demand. By carefully scheduling computation and data fetching, the overhead of reading data from the disk is significantly reduced and good memory performance results. This out-of-core algorithm makes possible interactive streamline visualization of large unstructured-grid data sets on a single mid-range workstation with relatively low main-memory capacity: 5-20 megabytes. Our test results also show that this approach is much more efficient than relying on virtual memory and operating system's paging algorithms.

  18. Reactor physics verification of the MCNP6 unstructured mesh capability

    SciTech Connect

    Burke, T. P.; Kiedrowski, B. C.; Martz, R. L.; Martin, W. R.

    2013-07-01

    The Monte Carlo software package MCNP6 has the ability to transport particles on unstructured meshes generated from the Computed-Aided Engineering software Abaqus. Verification is performed using benchmarks with features relevant to reactor physics - Big Ten and the C5G7 computational benchmark. Various meshing strategies are tested and results are compared to reference solutions. Computational performance results are also given. The conclusions show MCNP6 is capable of producing accurate calculations for reactor physics geometries and the computational requirements for small lattice benchmarks are reasonable on modern computing platforms. (authors)

  19. Parallel deterministic transport sweeps of structured and unstructured meshes with overloaded mesh decompositions

    SciTech Connect

    Pautz, Shawn D.; Bailey, Teresa S.

    2016-11-29

    Here, the efficiency of discrete ordinates transport sweeps depends on the scheduling algorithm, the domain decomposition, the problem to be solved, and the computational platform. Sweep scheduling algorithms may be categorized by their approach to several issues. In this paper we examine the strategy of domain overloading for mesh partitioning as one of the components of such algorithms. In particular, we extend the domain overloading strategy, previously defined and analyzed for structured meshes, to the general case of unstructured meshes. We also present computational results for both the structured and unstructured domain overloading cases. We find that an appropriate amount of domain overloading can greatly improve the efficiency of parallel sweeps for both structured and unstructured partitionings of the test problems examined on up to 105 processor cores.

  20. Parallel deterministic transport sweeps of structured and unstructured meshes with overloaded mesh decompositions

    DOE PAGES

    Pautz, Shawn D.; Bailey, Teresa S.

    2016-11-29

    Here, the efficiency of discrete ordinates transport sweeps depends on the scheduling algorithm, the domain decomposition, the problem to be solved, and the computational platform. Sweep scheduling algorithms may be categorized by their approach to several issues. In this paper we examine the strategy of domain overloading for mesh partitioning as one of the components of such algorithms. In particular, we extend the domain overloading strategy, previously defined and analyzed for structured meshes, to the general case of unstructured meshes. We also present computational results for both the structured and unstructured domain overloading cases. We find that an appropriate amountmore » of domain overloading can greatly improve the efficiency of parallel sweeps for both structured and unstructured partitionings of the test problems examined on up to 105 processor cores.« less

  1. Robust and efficient overset grid assembly for partitioned unstructured meshes

    SciTech Connect

    Roget, Beatrice Sitaraman, Jayanarayanan

    2014-03-01

    This paper presents a method to perform efficient and automated Overset Grid Assembly (OGA) on a system of overlapping unstructured meshes in a parallel computing environment where all meshes are partitioned into multiple mesh-blocks and processed on multiple cores. The main task of the overset grid assembler is to identify, in parallel, among all points in the overlapping mesh system, at which points the flow solution should be computed (field points), interpolated (receptor points), or ignored (hole points). Point containment search or donor search, an algorithm to efficiently determine the cell that contains a given point, is the core procedure necessary for accomplishing this task. Donor search is particularly challenging for partitioned unstructured meshes because of the complex irregular boundaries that are often created during partitioning. Another challenge arises because of the large variation in the type of mesh-block overlap and the resulting large load imbalance on multiple processors. Desirable traits for the grid assembly method are efficiency (requiring only a small fraction of the solver time), robustness (correct identification of all point types), and full automation (no user input required other than the mesh system). Additionally, the method should be scalable, which is an important challenge due to the inherent load imbalance. This paper describes a fully-automated grid assembly method, which can use two different donor search algorithms. One is based on the use of auxiliary grids and Exact Inverse Maps (EIM), and the other is based on the use of Alternating Digital Trees (ADT). The EIM method is demonstrated to be more efficient than the ADT method, while retaining robustness. An adaptive load re-balance algorithm is also designed and implemented, which considerably improves the scalability of the method.

  2. LES on unstructured deforming meshes: Towards reciprocating IC engines

    NASA Technical Reports Server (NTRS)

    Haworth, D. C.; Jansen, K.

    1996-01-01

    A variable explicit/implicit characteristics-based advection scheme that is second-order accurate in space and time has been developed recently for unstructured deforming meshes (O'Rourke & Sahota 1996a). To explore the suitability of this methodology for Large-Eddy Simulation (LES), three subgrid-scale turbulence models have been implemented in the CHAD CFD code (O'Rourke & Sahota 1996b): a constant-coefficient Smagorinsky model, a dynamic Smagorinsky model for flows having one or more directions of statistical homogeneity, and a Lagrangian dynamic Smagorinsky model for flows having no spatial or temporal homogeneity (Meneveau et al. 1996). Computations have been made for three canonical flows, progressing towards the intended application of in-cylinder flow in a reciprocating engine. Grid sizes were selected to be comparable to the coarsest meshes used in earlier spectral LES studies. Quantitative results are reported for decaying homogeneous isotropic turbulence, and for a planar channel flow. Computations are compared to experimental measurements, to Direct-Numerical Simulation (DNS) data, and to Rapid-Distortion Theory (RDT) where appropriate. Generally satisfactory evolution of first and second moments is found on these coarse meshes; deviations are attributed to insufficient mesh resolution. Issues include mesh resolution and computational requirements for a specified level of accuracy, analytic characterization of the filtering implied by the numerical method, wall treatment, and inflow boundary conditions. To resolve these issues, finer-mesh simulations and computations of a simplified axisymmetric reciprocating piston-cylinder assembly are in progress.

  3. 2D nearly orthogonal mesh generation

    NASA Astrophysics Data System (ADS)

    Zhang, Yaoxin; Jia, Yafei; Wang, Sam S. Y.

    2004-11-01

    The Ryskin and Leal (RL) system is the most widely used mesh generation system for the orthogonal mapping. However, when this system is used in domains with complex geometry, particularly in those with sharp corners and strong curvatures, serious distortion or overlapping of mesh lines may occur and an acceptable solution may not be possible. In the present study, two methods are proposed to generate nearly orthogonal meshes with the smoothness control. In the first method, the original RL system is modified by introducing smoothness control functions, which are formulated through the blending of the conformal mapping and the orthogonal mapping; while in the second method, the RL system is modified by introducing the contribution factors. A hybrid system of both methods is also developed. The proposed methods are illustrated by several test examples. Applications of these methods in a natural river channel are demonstrated. It is shown that the modified RL systems are capable of producing meshes with an adequate balance between the orthogonality and the smoothness for complex computational domains without mesh distortions and overlapping.

  4. PLUM: Parallel Load Balancing for Adaptive Unstructured Meshes

    NASA Technical Reports Server (NTRS)

    Oliker, Leonid; Biswas, Rupak; Saini, Subhash (Technical Monitor)

    1998-01-01

    Mesh adaption is a powerful tool for efficient unstructured-grid computations but causes load imbalance among processors on a parallel machine. We present a novel method called PLUM to dynamically balance the processor workloads with a global view. This paper presents the implementation and integration of all major components within our dynamic load balancing strategy for adaptive grid calculations. Mesh adaption, repartitioning, processor assignment, and remapping are critical components of the framework that must be accomplished rapidly and efficiently so as not to cause a significant overhead to the numerical simulation. A data redistribution model is also presented that predicts the remapping cost on the SP2. This model is required to determine whether the gain from a balanced workload distribution offsets the cost of data movement. Results presented in this paper demonstrate that PLUM is an effective dynamic load balancing strategy which remains viable on a large number of processors.

  5. Recent Improvements in Aerodynamic Design Optimization on Unstructured Meshes

    NASA Technical Reports Server (NTRS)

    Nielsen, Eric J.; Anderson, W. Kyle

    2000-01-01

    Recent improvements in an unstructured-grid method for large-scale aerodynamic design are presented. Previous work had shown such computations to be prohibitively long in a sequential processing environment. Also, robust adjoint solutions and mesh movement procedures were difficult to realize, particularly for viscous flows. To overcome these limiting factors, a set of design codes based on a discrete adjoint method is extended to a multiprocessor environment using a shared memory approach. A nearly linear speedup is demonstrated, and the consistency of the linearizations is shown to remain valid. The full linearization of the residual is used to precondition the adjoint system, and a significantly improved convergence rate is obtained. A new mesh movement algorithm is implemented and several advantages over an existing technique are presented. Several design cases are shown for turbulent flows in two and three dimensions.

  6. 3D unstructured-mesh radiation transport codes

    SciTech Connect

    Morel, J.

    1997-12-31

    Three unstructured-mesh radiation transport codes are currently being developed at Los Alamos National Laboratory. The first code is ATTILA, which uses an unstructured tetrahedral mesh in conjunction with standard Sn (discrete-ordinates) angular discretization, standard multigroup energy discretization, and linear-discontinuous spatial differencing. ATTILA solves the standard first-order form of the transport equation using source iteration in conjunction with diffusion-synthetic acceleration of the within-group source iterations. DANTE is designed to run primarily on workstations. The second code is DANTE, which uses a hybrid finite-element mesh consisting of arbitrary combinations of hexahedra, wedges, pyramids, and tetrahedra. DANTE solves several second-order self-adjoint forms of the transport equation including the even-parity equation, the odd-parity equation, and a new equation called the self-adjoint angular flux equation. DANTE also offers three angular discretization options: $S{_}n$ (discrete-ordinates), $P{_}n$ (spherical harmonics), and $SP{_}n$ (simplified spherical harmonics). DANTE is designed to run primarily on massively parallel message-passing machines, such as the ASCI-Blue machines at LANL and LLNL. The third code is PERICLES, which uses the same hybrid finite-element mesh as DANTE, but solves the standard first-order form of the transport equation rather than a second-order self-adjoint form. DANTE uses a standard $S{_}n$ discretization in angle in conjunction with trilinear-discontinuous spatial differencing, and diffusion-synthetic acceleration of the within-group source iterations. PERICLES was initially designed to run on workstations, but a version for massively parallel message-passing machines will be built. The three codes will be described in detail and computational results will be presented.

  7. Dynamic Rupture Modeling in Three Dimensions on Unstructured Meshes Using a Discontinuous Galerkin Method

    NASA Astrophysics Data System (ADS)

    Pelties, C.; Käser, M.

    2010-12-01

    We will present recent developments concerning the extensions of the ADER-DG method to solve three dimensional dynamic rupture problems on unstructured tetrahedral meshes. The simulation of earthquake rupture dynamics and seismic wave propagation using a discontinuous Galerkin (DG) method in 2D was recently presented by J. de la Puente et al. (2009). A considerable feature of this study regarding spontaneous rupture problems was the combination of the DG scheme and a time integration method using Arbitrarily high-order DERivatives (ADER) to provide high accuracy in space and time with the discretization on unstructured meshes. In the resulting discrete velocity-stress formulation of the elastic wave equations variables are naturally discontinuous at the interfaces between elements. The so-called Riemann problem can then be solved to obtain well defined values of the variables at the discontinuity itself. This is in particular valid for the fault at which a certain friction law has to be evaluated. Hence, the fault’s geometry is honored by the computational mesh. This way, complex fault planes can be modeled adequately with small elements while fast mesh coarsening is possible with increasing distance from the fault. Due to the strict locality of the scheme using only direct neighbor communication, excellent parallel behavior can be observed. A further advantage of the scheme is that it avoids spurious high-frequency contributions in the slip rate spectra and therefore does not require artificial Kelvin-Voigt damping or filtering of synthetic seismograms. In order to test the accuracy of the ADER-DG method the Southern California Earthquake Center (SCEC) benchmark for spontaneous rupture simulations was employed. Reference: J. de la Puente, J.-P. Ampuero, and M. Käser (2009), Dynamic rupture modeling on unstructured meshes using a discontinuous Galerkin method, JOURNAL OF GEOPHYSICAL RESEARCH, VOL. 114, B10302, doi:10.1029/2008JB006271

  8. Multigrid Strategies for Viscous Flow Solvers on Anisotropic Unstructured Meshes

    NASA Technical Reports Server (NTRS)

    Movriplis, Dimitri J.

    1998-01-01

    Unstructured multigrid techniques for relieving the stiffness associated with high-Reynolds number viscous flow simulations on extremely stretched grids are investigated. One approach consists of employing a semi-coarsening or directional-coarsening technique, based on the directions of strong coupling within the mesh, in order to construct more optimal coarse grid levels. An alternate approach is developed which employs directional implicit smoothing with regular fully coarsened multigrid levels. The directional implicit smoothing is obtained by constructing implicit lines in the unstructured mesh based on the directions of strong coupling. Both approaches yield large increases in convergence rates over the traditional explicit full-coarsening multigrid algorithm. However, maximum benefits are achieved by combining the two approaches in a coupled manner into a single algorithm. An order of magnitude increase in convergence rate over the traditional explicit full-coarsening algorithm is demonstrated, and convergence rates for high-Reynolds number viscous flows which are independent of the grid aspect ratio are obtained. Further acceleration is provided by incorporating low-Mach-number preconditioning techniques, and a Newton-GMRES strategy which employs the multigrid scheme as a preconditioner. The compounding effects of these various techniques on speed of convergence is documented through several example test cases.

  9. Generating unstructured nuclear reactor core meshes in parallel

    DOE PAGES

    Jain, Rajeev; Tautges, Timothy J.

    2014-10-24

    Recent advances in supercomputers and parallel solver techniques have enabled users to run large simulations problems using millions of processors. Techniques for multiphysics nuclear reactor core simulations are under active development in several countries. Most of these techniques require large unstructured meshes that can be hard to generate in a standalone desktop computers because of high memory requirements, limited processing power, and other complexities. We have previously reported on a hierarchical lattice-based approach for generating reactor core meshes. Here, we describe efforts to exploit coarse-grained parallelism during reactor assembly and reactor core mesh generation processes. We highlight several reactor coremore » examples including a very high temperature reactor, a full-core model of the Korean MONJU reactor, a ¼ pressurized water reactor core, the fast reactor Experimental Breeder Reactor-II core with a XX09 assembly, and an advanced breeder test reactor core. The times required to generate large mesh models, along with speedups obtained from running these problems in parallel, are reported. A graphical user interface to the tools described here has also been developed.« less

  10. Numerical simulation of immiscible viscous fingering using adaptive unstructured meshes

    NASA Astrophysics Data System (ADS)

    Adam, A.; Salinas, P.; Percival, J. R.; Pavlidis, D.; Pain, C.; Muggeridge, A. H.; Jackson, M.

    2015-12-01

    Displacement of one fluid by another in porous media occurs in various settings including hydrocarbon recovery, CO2 storage and water purification. When the invading fluid is of lower viscosity than the resident fluid, the displacement front is subject to a Saffman-Taylor instability and is unstable to transverse perturbations. These instabilities can grow, leading to fingering of the invading fluid. Numerical simulation of viscous fingering is challenging. The physics is controlled by a complex interplay of viscous and diffusive forces and it is necessary to ensure physical diffusion dominates numerical diffusion to obtain converged solutions. This typically requires the use of high mesh resolution and high order numerical methods. This is computationally expensive. We demonstrate here the use of a novel control volume - finite element (CVFE) method along with dynamic unstructured mesh adaptivity to simulate viscous fingering with higher accuracy and lower computational cost than conventional methods. Our CVFE method employs a discontinuous representation for both pressure and velocity, allowing the use of smaller control volumes (CVs). This yields higher resolution of the saturation field which is represented CV-wise. Moreover, dynamic mesh adaptivity allows high mesh resolution to be employed where it is required to resolve the fingers and lower resolution elsewhere. We use our results to re-examine the existing criteria that have been proposed to govern the onset of instability.Mesh adaptivity requires the mapping of data from one mesh to another. Conventional methods such as consistent interpolation do not readily generalise to discontinuous fields and are non-conservative. We further contribute a general framework for interpolation of CV fields by Galerkin projection. The method is conservative, higher order and yields improved results, particularly with higher order or discontinuous elements where existing approaches are often excessively diffusive.

  11. Unstructured Mesh Methods for the Simulation of Hypersonic Flows

    NASA Technical Reports Server (NTRS)

    Peraire, Jaime; Bibb, K. L. (Technical Monitor)

    2001-01-01

    This report describes the research work undertaken at the Massachusetts Institute of Technology. The aim of this research is to identify effective algorithms and methodologies for the efficient and routine solution of hypersonic viscous flows about re-entry vehicles. For over ten years we have received support from NASA to develop unstructured mesh methods for Computational Fluid Dynamics. As a result of this effort a methodology based on the use, of unstructured adapted meshes of tetrahedra and finite volume flow solvers has been developed. A number of gridding algorithms flow solvers, and adaptive strategies have been proposed. The most successful algorithms developed from the basis of the unstructured mesh system FELISA. The FELISA system has been extensively for the analysis of transonic and hypersonic flows about complete vehicle configurations. The system is highly automatic and allows for the routine aerodynamic analysis of complex configurations starting from CAD data. The code has been parallelized and utilizes efficient solution algorithms. For hypersonic flows, a version of the, code which incorporates real gas effects, has been produced. One of the latest developments before the start of this grant was to extend the system to include viscous effects. This required the development of viscous generators, capable of generating the anisotropic grids required to represent boundary layers, and viscous flow solvers. In figures I and 2, we show some sample hypersonic viscous computations using the developed viscous generators and solvers. Although these initial results were encouraging, it became apparent that in order to develop a fully functional capability for viscous flows, several advances in gridding, solution accuracy, robustness and efficiency were required. As part of this research we have developed: 1) automatic meshing techniques and the corresponding computer codes have been delivered to NASA and implemented into the GridEx system, 2) a finite

  12. A hybrid Boundary Element Unstructured Transmission-line (BEUT) method for accurate 2D electromagnetic simulation

    NASA Astrophysics Data System (ADS)

    Simmons, Daniel; Cools, Kristof; Sewell, Phillip

    2016-11-01

    Time domain electromagnetic simulation tools have the ability to model transient, wide-band applications, and non-linear problems. The Boundary Element Method (BEM) and the Transmission Line Modeling (TLM) method are both well established numerical techniques for simulating time-varying electromagnetic fields. The former surface based method can accurately describe outwardly radiating fields from piecewise uniform objects and efficiently deals with large domains filled with homogeneous media. The latter volume based method can describe inhomogeneous and non-linear media and has been proven to be unconditionally stable. Furthermore, the Unstructured TLM (UTLM) enables modelling of geometrically complex objects by using triangular meshes which removes staircasing and unnecessary extensions of the simulation domain. The hybridization of BEM and UTLM which is described in this paper is named the Boundary Element Unstructured Transmission-line (BEUT) method. It incorporates the advantages of both methods. The theory and derivation of the 2D BEUT method is described in this paper, along with any relevant implementation details. The method is corroborated by studying its correctness and efficiency compared to the traditional UTLM method when applied to complex problems such as the transmission through a system of Luneburg lenses and the modelling of antenna radomes for use in wireless communications.

  13. Multiphase flow modelling of volcanic ash particle settling in water using adaptive unstructured meshes

    NASA Astrophysics Data System (ADS)

    Jacobs, C. T.; Collins, G. S.; Piggott, M. D.; Kramer, S. C.; Wilson, C. R. G.

    2013-02-01

    Small-scale experiments of volcanic ash particle settling in water have demonstrated that ash particles can either settle slowly and individually, or rapidly and collectively as a gravitationally unstable ash-laden plume. This has important implications for the emplacement of tephra deposits on the seabed. Numerical modelling has the potential to extend the results of laboratory experiments to larger scales and explore the conditions under which plumes may form and persist, but many existing models are computationally restricted by the fixed mesh approaches that they employ. In contrast, this paper presents a new multiphase flow model that uses an adaptive unstructured mesh approach. As a simulation progresses, the mesh is optimized to focus numerical resolution in areas important to the dynamics and decrease it where it is not needed, thereby potentially reducing computational requirements. Model verification is performed using the method of manufactured solutions, which shows the correct solution convergence rates. Model validation and application considers 2-D simulations of plume formation in a water tank which replicate published laboratory experiments. The numerically predicted settling velocities for both individual particles and plumes, as well as instability behaviour, agree well with experimental data and observations. Plume settling is clearly hindered by the presence of a salinity gradient, and its influence must therefore be taken into account when considering particles in bodies of saline water. Furthermore, individual particles settle in the laminar flow regime while plume settling is shown (by plume Reynolds numbers greater than unity) to be in the turbulent flow regime, which has a significant impact on entrainment and settling rates. Mesh adaptivity maintains solution accuracy while providing a substantial reduction in computational requirements when compared to the same simulation performed using a fixed mesh, highlighting the benefits of an

  14. Euler Flow Computations on Non-Matching Unstructured Meshes

    NASA Technical Reports Server (NTRS)

    Gumaste, Udayan

    1999-01-01

    Advanced fluid solvers to predict aerodynamic performance-coupled treatment of multiple fields are described. The interaction between the fluid and structural components in the bladed regions of the engine is investigated with respect to known blade failures caused by either flutter or forced vibrations. Methods are developed to describe aeroelastic phenomena for internal flows in turbomachinery by accounting for the increased geometric complexity, mutual interaction between adjacent structural components and presence of thermal and geometric loading. The computer code developed solves the full three dimensional aeroelastic problem of-stage. The results obtained show that flow computations can be performed on non-matching finite-volume unstructured meshes with second order spatial accuracy.

  15. 3D unstructured mesh discontinuous finite element hydro

    SciTech Connect

    Prasad, M.K.; Kershaw, D.S.; Shaw, M.J.

    1995-07-01

    The authors present detailed features of the ICF3D hydrodynamics code used for inertial fusion simulations. This code is intended to be a state-of-the-art upgrade of the well-known fluid code, LASNEX. ICF3D employs discontinuous finite elements on a discrete unstructured mesh consisting of a variety of 3D polyhedra including tetrahedra, prisms, and hexahedra. The authors discussed details of how the ROE-averaged second-order convection was applied on the discrete elements, and how the C++ coding interface has helped to simplify implementing the many physics and numerics modules within the code package. The author emphasized the virtues of object-oriented design in large scale projects such as ICF3D.

  16. Gradient Calculation Methods on Arbitrary Polyhedral Unstructured Meshes for Cell-Centered CFD Solvers

    NASA Technical Reports Server (NTRS)

    Sozer, Emre; Brehm, Christoph; Kiris, Cetin C.

    2014-01-01

    A survey of gradient reconstruction methods for cell-centered data on unstructured meshes is conducted within the scope of accuracy assessment. Formal order of accuracy, as well as error magnitudes for each of the studied methods, are evaluated on a complex mesh of various cell types through consecutive local scaling of an analytical test function. The tests highlighted several gradient operator choices that can consistently achieve 1st order accuracy regardless of cell type and shape. The tests further offered error comparisons for given cell types, leading to the observation that the "ideal" gradient operator choice is not universal. Practical implications of the results are explored via CFD solutions of a 2D inviscid standing vortex, portraying the discretization error properties. A relatively naive, yet largely unexplored, approach of local curvilinear stencil transformation exhibited surprisingly favorable properties

  17. Euler and Navier-Stokes Computations for Two-Dimensional Geometries Using Unstructured Meshes

    DTIC Science & Technology

    1990-01-01

    by the simultaneous use of adaptive meshing and an unstructured multigrid technique . A method for generating highly stretched triangulations in regions...are enhanced by the simultanious use of adaptive meshing and an unstruc- tured multigrid technique . A method for generating highly stretched triangula...unstructured mesh solver for steady-state two-dimensional inviscid and viscous flows is described. The efficiency and accuracy of the method are enhanced

  18. An efficient approach to unstructured mesh hydrodynamics on the cell broadband engine

    SciTech Connect

    Ferenbaugh, Charles R

    2010-01-01

    Unstructured mesh physics for the Cell Broadband Engine (CBE) has received little or no attention to date, largely because the CBE architecture poses particular challenges for unstructured mesh algorithms. The most common SPU memory management strategies cannot be applied to the irregular memory access patterns of unstructured meshes, and the SPU vector instruction set does not support the indirect addressing needed by connectivity arrays. This paper presents an approach to unstructured mesh physics that addresses these challenges, by creating a new mesh data structure and reorganizing code to give efficient CBE performance. The approach is demonstrated on the FLAG production hydrodynamics code using standard test problems, and results show an average speedup of more than 5x over the original code.

  19. An efficient approach to unstructured mesh hydrodynamics on the cell broadband engine (u)

    SciTech Connect

    Ferenbaugh, Charles R

    2010-12-14

    Unstructured mesh physics for the Cell Broadband Engine (CBE) has received little or no attention to date, largely because the CBE architecture poses particular challenges for unstructured mesh algorithms. SPU memory management strategies such as data preloading cannot be applied to the irregular memory storage patterns of unstructured meshes; and the SPU vector instruction set does not support the indirect addressing needed by connectivity arrays. This paper presents an approach to unstructured mesh physics that addresses these challenges, by creating a new mesh data structure and reorganizing code to give efficient CBE performance. The approach is demonstrated on the FLAG production hydrodynamics code using standard test problems, and results show an average speedup of more than 5x over the original code.

  20. Euler and Navier-Stokes computations for two-dimensional geometries using unstructured meshes

    NASA Technical Reports Server (NTRS)

    Mavriplis, D. J.

    1990-01-01

    A general purpose unstructured mesh solver for steady-state two-dimensional inviscid and viscous flows is described. The efficiency and accuracy of the method are enhanced by the simultaneous use of adaptive meshing and an unstructured multigrid technique. A method for generating highly stretched triangulations in regions of viscous flow is outlined, and a procedure for implementing an algebraic turbulence model on unstructured meshes is described. Results are shown for external and internal inviscid flows and for turbulent viscous flow over a multi-element airfoil configuration.

  1. An unstructured-mesh atmospheric model for nonhydrostatic dynamics: Towards optimal mesh resolution

    NASA Astrophysics Data System (ADS)

    Szmelter, Joanna; Zhang, Zhao; Smolarkiewicz, Piotr K.

    2015-08-01

    The paper advances the limited-area anelastic model (Smolarkiewicz et al. (2013) [45]) for investigation of nonhydrostatic dynamics in mesoscale atmospheric flows. New developments include the extension to a tetrahedral-based median-dual option for unstructured meshes and a static mesh adaptivity technique using an error indicator based on inherent properties of the Multidimensional Positive Definite Advection Transport Algorithm (MPDATA). The model employs semi-implicit nonoscillatory forward-in-time integrators for soundproof PDEs, built on MPDATA and a robust non-symmetric Krylov-subspace elliptic solver. Finite-volume spatial discretisation adopts an edge-based data structure. Simulations of stratified orographic flows and the associated gravity-wave phenomena in media with uniform and variable dispersive properties verify the advancement and demonstrate the potential of heterogeneous anisotropic discretisation with large variation in spatial resolution for study of complex stratified flows that can be computationally unattainable with regular grids.

  2. Achieving high sustained performance in an unstructured mesh CFD application

    SciTech Connect

    Keyes, D E; Anderson, W K; Gropp, W D; Kaushik, D K; Smith, B F

    1999-12-10

    This paper highlights a three-year project by an interdisciplinary team on a legacy F77 computational fluid dynamics code, with the aim of demonstrating that implicit unstructured grid simulations can execute at rates not far from those of explicit structured grid codes, provided attention is paid to data motion complexity and the reuse of data positioned at the levels of the memory hierarchy closest to the processor, in addition to traditional operation count complexity. The demonstration code is from NASA and the enabling parallel hardware and (freely available) software toolkit are from DOE, but the resulting methodology should be broadly applicable, and the hardware limitations exposed should allow programmers and vendors of parallel platforms to focus with greater encouragement on sparse codes with indirect addressing. This snapshot of ongoing work shows a performance of 15 microseconds per degree of freedom to steady-state convergence of Euler flow on a mesh with 2.8 million vertices using 3072 dual-processor nodes of ASCI Red, corresponding to a sustained floating-point rate of 0.227 Tflop/s.

  3. Numerical study of Taylor bubbles with adaptive unstructured meshes

    NASA Astrophysics Data System (ADS)

    Xie, Zhihua; Pavlidis, Dimitrios; Percival, James; Pain, Chris; Matar, Omar; Hasan, Abbas; Azzopardi, Barry

    2014-11-01

    The Taylor bubble is a single long bubble which nearly fills the entire cross section of a liquid-filled circular tube. This type of bubble flow regime often occurs in gas-liquid slug flows in many industrial applications, including oil-and-gas production, chemical and nuclear reactors, and heat exchangers. The objective of this study is to investigate the fluid dynamics of Taylor bubbles rising in a vertical pipe filled with oils of extremely high viscosity (mimicking the ``heavy oils'' found in the oil-and-gas industry). A modelling and simulation framework is presented here which can modify and adapt anisotropic unstructured meshes to better represent the underlying physics of bubble rise and reduce the computational effort without sacrificing accuracy. The numerical framework consists of a mixed control-volume and finite-element formulation, a ``volume of fluid''-type method for the interface capturing based on a compressive control volume advection method, and a force-balanced algorithm for the surface tension implementation. Numerical examples of some benchmark tests and the dynamics of Taylor bubbles are presented to show the capability of this method. EPSRC Programme Grant, MEMPHIS, EP/K0039761/1.

  4. On essentially non-oscillatory schemes on unstructured meshes: Analysis and implementation

    NASA Technical Reports Server (NTRS)

    Abgrall, R.

    1992-01-01

    A few years ago, the class of Essentially Non-Oscillatory Schemes for the numerical simulation of hyperbolic equations and systems was constructed. Since then, some extensions have been made to multidimensional simulations of compressible flows, mainly in the context of very regular structured meshes. In this paper, we first recall and improve the results of an earlier paper about non-oscillatory reconstruction on unstructured meshes, emphasizing the effective calculation of the reconstruction. Then we describe a class of numerical schemes on unstructured meshes and give some applications for its third order version. This demonstrates that a higher order of accuracy is indeed obtained, even on very irregular meshes.

  5. Development and Verification of Unstructured Adaptive Mesh Technique with Edge Compatibility

    NASA Astrophysics Data System (ADS)

    Ito, Kei; Kunugi, Tomoaki; Ohshima, Hiroyuki

    In the design study of the large-sized sodium-cooled fast reactor (JSFR), one key issue is suppression of gas entrainment (GE) phenomena at a gas-liquid interface. Therefore, the authors have been developed a high-precision CFD algorithm to evaluate the GE phenomena accurately. The CFD algorithm has been developed on unstructured meshes to establish an accurate modeling of JSFR system. For two-phase interfacial flow simulations, a high-precision volume-of-fluid algorithm is employed. It was confirmed that the developed CFD algorithm could reproduce the GE phenomena in a simple GE experiment. Recently, the authors have been developed an important technique for the simulation of the GE phenomena in JSFR. That is an unstructured adaptive mesh technique which can apply fine cells dynamically to the region where the GE occurs in JSFR. In this paper, as a part of the development, a two-dimensional unstructured adaptive mesh technique is discussed. In the two-dimensional adaptive mesh technique, each cell is refined isotropically to reduce distortions of the mesh. In addition, connection cells are formed to eliminate the edge incompatibility between refined and non-refined cells. The two-dimensional unstructured adaptive mesh technique is verified by solving well-known lid-driven cavity flow problem. As a result, the two-dimensional unstructured adaptive mesh technique succeeds in providing a high-precision solution, even though poor-quality distorted initial mesh is employed. In addition, the simulation error on the two-dimensional unstructured adaptive mesh is much less than the error on the structured mesh with a larger number of cells.

  6. Simulation of all-scale atmospheric dynamics on unstructured meshes

    NASA Astrophysics Data System (ADS)

    Smolarkiewicz, Piotr K.; Szmelter, Joanna; Xiao, Feng

    2016-10-01

    The advance of massively parallel computing in the nineteen nineties and beyond encouraged finer grid intervals in numerical weather-prediction models. This has improved resolution of weather systems and enhanced the accuracy of forecasts, while setting the trend for development of unified all-scale atmospheric models. This paper first outlines the historical background to a wide range of numerical methods advanced in the process. Next, the trend is illustrated with a technical review of a versatile nonoscillatory forward-in-time finite-volume (NFTFV) approach, proven effective in simulations of atmospheric flows from small-scale dynamics to global circulations and climate. The outlined approach exploits the synergy of two specific ingredients: the MPDATA methods for the simulation of fluid flows based on the sign-preserving properties of upstream differencing; and the flexible finite-volume median-dual unstructured-mesh discretisation of the spatial differential operators comprising PDEs of atmospheric dynamics. The paper consolidates the concepts leading to a family of generalised nonhydrostatic NFTFV flow solvers that include soundproof PDEs of incompressible Boussinesq, anelastic and pseudo-incompressible systems, common in large-eddy simulation of small- and meso-scale dynamics, as well as all-scale compressible Euler equations. Such a framework naturally extends predictive skills of large-eddy simulation to the global atmosphere, providing a bottom-up alternative to the reverse approach pursued in the weather-prediction models. Theoretical considerations are substantiated by calculations attesting to the versatility and efficacy of the NFTFV approach. Some prospective developments are also discussed.

  7. MESH2D GRID GENERATOR DESIGN AND USE

    SciTech Connect

    Flach, G.; Smith, F.

    2012-01-20

    Mesh2d is a Fortran90 program designed to generate two-dimensional structured grids of the form [x(i),y(i,j)] where [x,y] are grid coordinates identified by indices (i,j). The x(i) coordinates alone can be used to specify a one-dimensional grid. Because the x-coordinates vary only with the i index, a two-dimensional grid is composed in part of straight vertical lines. However, the nominally horizontal y(i,j{sub 0}) coordinates along index i are permitted to undulate or otherwise vary. Mesh2d also assigns an integer material type to each grid cell, mtyp(i,j), in a user-specified manner. The complete grid is specified through three separate input files defining the x(i), y(i,j), and mtyp(i,j) variations. The overall mesh is constructed from grid zones that are typically then subdivided into a collection of smaller grid cells. The grid zones usually correspond to distinct materials or larger-scale geometric shapes. The structured grid zones are identified through uppercase indices (I,J). Subdivision of zonal regions into grid cells can be done uniformly, or nonuniformly using either a polynomial or geometric skewing algorithm. Grid cells may be concentrated backward, forward, or toward both ends. Figure 1 illustrates the above concepts in the context of a simple four zone grid.

  8. An Interpreted Language and System for the Visualization of Unstructured Meshes

    NASA Technical Reports Server (NTRS)

    Moran, Patrick J.; Gerald-Yamasaki, Michael (Technical Monitor)

    1998-01-01

    We present an interpreted language and system supporting the visualization of unstructured meshes and the manipulation of shapes defined in terms of mesh subsets. The language features primitives inspired by geometric modeling, mathematical morphology and algebraic topology. The adaptation of the topology ideas to an interpreted environment, along with support for programming constructs such, as user function definition, provide a flexible system for analyzing a mesh and for calculating with shapes defined in terms of the mesh. We present results demonstrating some of the capabilities of the language, based on an implementation called the Shape Calculator, for tetrahedral meshes in R^3.

  9. Verification of Unstructured Mesh Capabilities in MCNP6 for Reactor Physics Problems

    SciTech Connect

    Burke, Timothy P.; Martz, Roger L.; Kiedrowski, Brian C.; Martin, William R.

    2012-08-22

    New unstructured mesh capabilities in MCNP6 (developmental version during summer 2012) show potential for conducting multi-physics analyses by coupling MCNP to a finite element solver such as Abaqus/CAE[2]. Before these new capabilities can be utilized, the ability of MCNP to accurately estimate eigenvalues and pin powers using an unstructured mesh must first be verified. Previous work to verify the unstructured mesh capabilities in MCNP was accomplished using the Godiva sphere [1], and this work attempts to build on that. To accomplish this, a criticality benchmark and a fuel assembly benchmark were used for calculations in MCNP using both the Constructive Solid Geometry (CSG) native to MCNP and the unstructured mesh geometry generated using Abaqus/CAE. The Big Ten criticality benchmark [3] was modeled due to its geometry being similar to that of a reactor fuel pin. The C5G7 3-D Mixed Oxide (MOX) Fuel Assembly Benchmark [4] was modeled to test the unstructured mesh capabilities on a reactor-type problem.

  10. A Robust and Scalable Software Library for Parallel Adaptive Refinement on Unstructured Meshes

    NASA Technical Reports Server (NTRS)

    Lou, John Z.; Norton, Charles D.; Cwik, Thomas A.

    1999-01-01

    The design and implementation of Pyramid, a software library for performing parallel adaptive mesh refinement (PAMR) on unstructured meshes, is described. This software library can be easily used in a variety of unstructured parallel computational applications, including parallel finite element, parallel finite volume, and parallel visualization applications using triangular or tetrahedral meshes. The library contains a suite of well-designed and efficiently implemented modules that perform operations in a typical PAMR process. Among these are mesh quality control during successive parallel adaptive refinement (typically guided by a local-error estimator), parallel load-balancing, and parallel mesh partitioning using the ParMeTiS partitioner. The Pyramid library is implemented in Fortran 90 with an interface to the Message-Passing Interface (MPI) library, supporting code efficiency, modularity, and portability. An EM waveguide filter application, adaptively refined using the Pyramid library, is illustrated.

  11. A nonhydrostatic unstructured-mesh soundproof model for simulation of internal gravity waves

    NASA Astrophysics Data System (ADS)

    Smolarkiewicz, Piotr; Szmelter, Joanna

    2011-12-01

    A semi-implicit edge-based unstructured-mesh model is developed that integrates nonhydrostatic soundproof equations, inclusive of anelastic and pseudo-incompressible systems of partial differential equations. The model builds on nonoscillatory forward-in-time MPDATA approach using finite-volume discretization and unstructured meshes with arbitrarily shaped cells. Implicit treatment of gravity waves benefits both accuracy and stability of the model. The unstructured-mesh solutions are compared to equivalent structured-grid results for intricate, multiscale internal-wave phenomenon of a non-Boussinesq amplification and breaking of deep stratospheric gravity waves. The departures of the anelastic and pseudoincompressible results are quantified in reference to a recent asymptotic theory [Achatz et al. 2010, J. Fluid Mech., 663, 120-147)].

  12. Large-Scale Parallel Unstructured Mesh Computations for 3D High-Lift Analysis

    NASA Technical Reports Server (NTRS)

    Mavriplis, D. J.; Pirzadeh, S.

    1999-01-01

    A complete "geometry to drag-polar" analysis capability for three-dimensional high-lift configurations is described. The approach is based on the use of unstructured meshes in order to enable rapid turnaround for complicated geometries which arise in high-lift con gurations. Special attention is devoted to creating a capability for enabling analyses on highly resolved grids. Unstructured meshes of several million vertices are initially generated on a work-station, and subsequently refined on a supercomputer. The flow is solved on these refined meshes on large parallel computers using an unstructured agglomeration multigrid algorithm. Good prediction of lift and drag throughout the range of incidences is demonstrated on a transport take-off configuration using up to 24.7 million grid points. The feasibility of using this approach in a production environment on existing parallel machines is demonstrated, as well as the scalability of the solver on machines using up to 1450 processors.

  13. Large-scale Parallel Unstructured Mesh Computations for 3D High-lift Analysis

    NASA Technical Reports Server (NTRS)

    Mavriplis, Dimitri J.; Pirzadeh, S.

    1999-01-01

    A complete "geometry to drag-polar" analysis capability for the three-dimensional high-lift configurations is described. The approach is based on the use of unstructured meshes in order to enable rapid turnaround for complicated geometries that arise in high-lift configurations. Special attention is devoted to creating a capability for enabling analyses on highly resolved grids. Unstructured meshes of several million vertices are initially generated on a work-station, and subsequently refined on a supercomputer. The flow is solved on these refined meshes on large parallel computers using an unstructured agglomeration multigrid algorithm. Good prediction of lift and drag throughout the range of incidences is demonstrated on a transport take-off configuration using up to 24.7 million grid points. The feasibility of using this approach in a production environment on existing parallel machines is demonstrated, as well as the scalability of the solver on machines using up to 1450 processors.

  14. Large-Scale Parallel Unstructured Mesh Computations for 3D High-Lift Analysis

    NASA Technical Reports Server (NTRS)

    Mavriplis, D. J.; Pirzadeh, S.

    1999-01-01

    A complete "geometry to drag-polar" analysis capability for three-dimensional high-lift configurations is described. The approach is based on the use of unstructured meshes in order to enable rapid turnaround for complicated geometries which arise in high-lift configurations. Special attention is devoted to creating a capability for enabling analyses on highly resolved grids. Unstructured meshes of several million vertices are initially generated on a work-station, and subsequently refined on a supercomputer. The flow is solved on these refined meshes on large parallel computers using an unstructured agglomeration multigrid algorithm. Good prediction of lift and drag throughout the range of incidences is demonstrated on a transport take-off configuration using up to 24.7 million grid points. The feasibility of using this approach in a production environment on existing parallel machines is demonstrated, as well as the scalability of the solver on machines using up to 1450 processors.

  15. Adaptive unstructured meshing for thermal stress analysis of built-up structures

    NASA Technical Reports Server (NTRS)

    Dechaumphai, Pramote

    1992-01-01

    An adaptive unstructured meshing technique for mechanical and thermal stress analysis of built-up structures has been developed. A triangular membrane finite element and a new plate bending element are evaluated on a panel with a circular cutout and a frame stiffened panel. The adaptive unstructured meshing technique, without a priori knowledge of the solution to the problem, generates clustered elements only where needed. An improved solution accuracy is obtained at a reduced problem size and analysis computational time as compared to the results produced by the standard finite element procedure.

  16. Kull ALE: I. Unstructured Mesh Advection, Interface Capturing, and Multiphase 2T RHD with Material Interfaces

    SciTech Connect

    Anninos, P

    2002-02-11

    Several advection algorithms are presented within the remap framework for unstructured mesh ALE codes. The methods discussed include a generic advection scheme based on a finite volume approach, and three groups of algorithms for the treatment of material boundary interfaces. The interface capturing algorithms belong to the Volume of Fluid (VoF) class of methods to approximate material interfaces from the local fractional volume of fluid distribution in arbitrary unstructured polyhedral meshes appropriate for the Kull code. Also presented are several schemes for extending single material radiation diffusion solvers to account for multi-material interfaces.

  17. Unstructured mesh generation and landcover-based resistance for hydrodynamic modeling of urban flooding

    NASA Astrophysics Data System (ADS)

    Schubert, Jochen E.; Sanders, Brett F.; Smith, Martin J.; Wright, Nigel G.

    2008-12-01

    Urban flood inundation modeling with a hydrodynamic flow solver is addressed in this paper, focusing on strategies to effectively integrate geospatial data for unstructured mesh generation, building representation and flow resistance parameterization. Data considered include Light Detection and Ranging (LiDAR) terrain height surveys, aerial imagery and vector datasets such as building footprint polygons. First, a unstructured mesh-generation technique we term the building-hole method (BH) is developed whereby building footprint data define interior domain boundaries or mesh holes. A wall boundary condition depicts the impact of buildings on flood hydrodynamics. BH provides an alternative to the more commonly used method of raising terrain heights where buildings coincide with the mesh. We term this the building-block method (BB). Application of BH and BB to a flooding site in Glasgow, Scotland identifies a number of tradeoffs to consider at resolutions ranging from 1 to 5 m. At fine resolution, BH is shown to be similarly accurate but execute faster than BB. And at coarse resolution, BH is shown to preserve the geometry of buildings and maintain better accuracy than BB, but requires a longer run time. Meshes that ignore buildings completely ( no-building method or NB) also support surprisingly good flood inundation predictions at coarse resolution compared to BH and BB. NB also supports faster execution times than BH at coarse resolution because the latter uses localized refinements that mandate a greater number of computational cells. However, with mesh refinement, NB converges to a different (and presumably less-accurate) solution compared to BH and BB. Using the same test conditions, Hunter et al. [Hunter NM, Bates PD, Neelz S, Pender G, Villanueva I, Wright NG, Liang D, et al. Benchmarking 2D hydraulic models for urban flood simulations. ICE J Water Manage 2008;161(1):13-30] compared the performance of dynamic-wave and diffusive-wave models and reported that

  18. Unstructured and adaptive mesh generation for high Reynolds number viscous flows

    NASA Technical Reports Server (NTRS)

    Mavriplis, Dimitri J.

    1991-01-01

    A method for generating and adaptively refining a highly stretched unstructured mesh suitable for the computation of high-Reynolds-number viscous flows about arbitrary two-dimensional geometries was developed. The method is based on the Delaunay triangulation of a predetermined set of points and employs a local mapping in order to achieve the high stretching rates required in the boundary-layer and wake regions. The initial mesh-point distribution is determined in a geometry-adaptive manner which clusters points in regions of high curvature and sharp corners. Adaptive mesh refinement is achieved by adding new points in regions of large flow gradients, and locally retriangulating; thus, obviating the need for global mesh regeneration. Initial and adapted meshes about complex multi-element airfoil geometries are shown and compressible flow solutions are computed on these meshes.

  19. A User's Guide to AMR1D: An Instructional Adaptive Mesh Refinement Code for Unstructured Grids

    NASA Technical Reports Server (NTRS)

    deFainchtein, Rosalinda

    1996-01-01

    This report documents the code AMR1D, which is currently posted on the World Wide Web (http://sdcd.gsfc.nasa.gov/ESS/exchange/contrib/de-fainchtein/adaptive _mesh_refinement.html). AMR1D is a one-dimensional finite element fluid-dynamics solver, capable of adaptive mesh refinement (AMR). It was written as an instructional tool for AMR on unstructured mesh codes. It is meant to illustrate the minimum requirements for AMR on more than one dimension. For that purpose, it uses the same type of data structure that would be necessary on a two-dimensional AMR code (loosely following the algorithm described by Lohner).

  20. Numerical experiments on unstructured PIC stability.

    SciTech Connect

    Day, David Minot

    2011-04-01

    Particle-In-Cell (PIC) is a method for plasmas simulation. Particles are pushed with Verlet time integration. Fields are modeled using finite differences on a tensor product mesh (cells). The Unstructured PIC methods studied here use instead finite element discretizations on unstructured (simplicial) meshes. PIC is constrained by stability limits (upper bounds) on mesh and time step sizes. Numerical evidence (2D) and analysis will be presented showing that similar bounds constrain unstructured PIC.

  1. Topographic accuracy assessment of bare earth lidar-derived unstructured meshes

    NASA Astrophysics Data System (ADS)

    Bilskie, Matthew V.; Hagen, Scott C.

    2013-02-01

    This study is focused on the integration of bare earth lidar (Light Detection and Ranging) data into unstructured (triangular) finite element meshes and the implications on simulating storm surge inundation using a shallow water equations model. A methodology is developed to compute root mean square error (RMSE) and the 95th percentile of vertical elevation errors using four different interpolation methods (linear, inverse distance weighted, natural neighbor, and cell averaging) to resample bare earth lidar and lidar-derived digital elevation models (DEMs) onto unstructured meshes at different resolutions. The results are consolidated into a table of optimal interpolation methods that minimize the vertical elevation error of an unstructured mesh for a given mesh node density. The cell area averaging method performed most accurate when DEM grid cells within 0.25 times the ratio of local element size and DEM cell size were averaged. The methodology is applied to simulate inundation extent and maximum water levels in southern Mississippi due to Hurricane Katrina, which illustrates that local changes in topography such as adjusting element size and interpolation method drastically alter simulated storm surge locally and non-locally. The methods and results presented have utility and implications to any modeling application that uses bare earth lidar.

  2. Revisiting the Least-squares Procedure for Gradient Reconstruction on Unstructured Meshes

    NASA Technical Reports Server (NTRS)

    Mavriplis, Dimitri J.; Thomas, James L. (Technical Monitor)

    2003-01-01

    The accuracy of the least-squares technique for gradient reconstruction on unstructured meshes is examined. While least-squares techniques produce accurate results on arbitrary isotropic unstructured meshes, serious difficulties exist for highly stretched meshes in the presence of surface curvature. In these situations, gradients are typically under-estimated by up to an order of magnitude. For vertex-based discretizations on triangular and quadrilateral meshes, and cell-centered discretizations on quadrilateral meshes, accuracy can be recovered using an inverse distance weighting in the least-squares construction. For cell-centered discretizations on triangles, both the unweighted and weighted least-squares constructions fail to provide suitable gradient estimates for highly stretched curved meshes. Good overall flow solution accuracy can be retained in spite of poor gradient estimates, due to the presence of flow alignment in exactly the same regions where the poor gradient accuracy is observed. However, the use of entropy fixes has the potential for generating large but subtle discretization errors.

  3. Forward and adjoint simulations of seismic wave propagation on fully unstructured hexahedral meshes

    NASA Astrophysics Data System (ADS)

    Peter, Daniel; Komatitsch, Dimitri; Luo, Yang; Martin, Roland; Le Goff, Nicolas; Casarotti, Emanuele; Le Loher, Pieyre; Magnoni, Federica; Liu, Qinya; Blitz, Céline; Nissen-Meyer, Tarje; Basini, Piero; Tromp, Jeroen

    2011-08-01

    We present forward and adjoint spectral-element simulations of coupled acoustic and (an)elastic seismic wave propagation on fully unstructured hexahedral meshes. Simulations benefit from recent advances in hexahedral meshing, load balancing and software optimization. Meshing may be accomplished using a mesh generation tool kit such as CUBIT, and load balancing is facilitated by graph partitioning based on the SCOTCH library. Coupling between fluid and solid regions is incorporated in a straightforward fashion using domain decomposition. Topography, bathymetry and Moho undulations may be readily included in the mesh, and physical dispersion and attenuation associated with anelasticity are accounted for using a series of standard linear solids. Finite-frequency Fréchet derivatives are calculated using adjoint methods in both fluid and solid domains. The software is benchmarked for a layercake model. We present various examples of fully unstructured meshes, snapshots of wavefields and finite-frequency kernels generated by Version 2.0 'Sesame' of our widely used open source spectral-element package SPECFEM3D.

  4. Rotor Airloads Prediction Using Unstructured Meshes and Loose CFD/CSD Coupling

    NASA Technical Reports Server (NTRS)

    Biedron, Robert T.; Lee-Rausch, Elizabeth M.

    2008-01-01

    The FUN3D unsteady Reynolds-averaged Navier-Stokes solver for unstructured grids has been modified to allow prediction of trimmed rotorcraft airloads. The trim of the rotorcraft and the aeroelastic deformation of the rotor blades are accounted for via loose coupling with the CAMRAD II rotorcraft computational structural dynamics code. The set of codes is used to analyze the HART-II Baseline, Minimum Noise and Minimum Vibration test conditions. The loose coupling approach is found to be stable and convergent for the cases considered. Comparison of the resulting airloads and structural deformations with experimentally measured data is presented. The effect of grid resolution and temporal accuracy is examined. Rotorcraft airloads prediction presents a very substantial challenge for Computational Fluid Dynamics (CFD). Not only must the unsteady nature of the flow be accurately modeled, but since most rotorcraft blades are not structurally stiff, an accurate simulation must account for the blade structural dynamics. In addition, trim of the rotorcraft to desired thrust and moment targets depends on both aerodynamic loads and structural deformation, and vice versa. Further, interaction of the fuselage with the rotor flow field can be important, so that relative motion between the blades and the fuselage must be accommodated. Thus a complete simulation requires coupled aerodynamics, structures and trim, with the ability to model geometrically complex configurations. NASA has recently initiated a Subsonic Rotary Wing (SRW) Project under the overall Fundamental Aeronautics Program. Within the context of SRW are efforts aimed at furthering the state of the art of high-fidelity rotorcraft flow simulations, using both structured and unstructured meshes. Structured-mesh solvers have an advantage in computation speed, but even though remarkably complex configurations may be accommodated using the overset grid approach, generation of complex structured-mesh systems can require

  5. PLUM: Parallel Load Balancing for Unstructured Adaptive Meshes. Degree awarded by Colorado Univ.

    NASA Technical Reports Server (NTRS)

    Oliker, Leonid

    1998-01-01

    Dynamic mesh adaption on unstructured grids is a powerful tool for computing large-scale problems that require grid modifications to efficiently resolve solution features. By locally refining and coarsening the mesh to capture physical phenomena of interest, such procedures make standard computational methods more cost effective. Unfortunately, an efficient parallel implementation of these adaptive methods is rather difficult to achieve, primarily due to the load imbalance created by the dynamically-changing nonuniform grid. This requires significant communication at runtime, leading to idle processors and adversely affecting the total execution time. Nonetheless, it is generally thought that unstructured adaptive- grid techniques will constitute a significant fraction of future high-performance supercomputing. Various dynamic load balancing methods have been reported to date; however, most of them either lack a global view of loads across processors or do not apply their techniques to realistic large-scale applications.

  6. Unstructured 3D Delaunay mesh generation applied to planes, trains and automobiles

    NASA Technical Reports Server (NTRS)

    Blake, Kenneth R.; Spragle, Gregory S.

    1993-01-01

    Technical issues associated with domain-tessellation production, including initial boundary node triangulation and volume mesh refinement, are presented for the 'TGrid' 3D Delaunay unstructured grid generation program. The approach employed is noted to be capable of preserving predefined triangular surface facets in the final tessellation. The capabilities of the approach are demonstrated by generating grids about an entire fighter aircraft configuration, a train, and a wind tunnel model of an automobile.

  7. A Reactor Pressure Vessel Dosimetry Calculation Using ATTILA, An Unstructured Tetrahedral Mesh Discrete-Ordinates Code

    SciTech Connect

    Wareing, T.A.; Parsons, D.K.; Pautz, S.

    1997-12-31

    Recently, a new state-of-the-art discrete-ordinates code, ATTILA, was developed. ATTILA provides the capabilities to solve geometrically complex 3-D transport problems by using an unstructured tetrahedral mesh. In this paper we describe the application of ATTILA to a 3-D reactor pressure vessel dosimetry problem. We provide numerical results from ATTILA and the Monte Carlo code, MCNP. The results demonstrate the effectiveness and efficiency of ATTILA for such calculations.

  8. On Essentially Non-Oscillatory Schemes on Unstructured Meshes: Analysis and Implementation

    DTIC Science & Technology

    1992-12-01

    is to use a Lagrange type interpolation with an adapted stencil: when a discontinuity is detected, the procedure looks for the region around this...be introduced for unstructured meshes. We first recall how to interpolate data in an essentially non-oscillatory Lagrange fashion, and then how this...is used to reconstruct 1D data. Essentially non-oscillatory interpolation . This relies on two well known properties of divided differences. Let {yo

  9. TRIM: A finite-volume MHD algorithm for an unstructured adaptive mesh

    SciTech Connect

    Schnack, D.D.; Lottati, I.; Mikic, Z.

    1995-07-01

    The authors describe TRIM, a MHD code which uses finite volume discretization of the MHD equations on an unstructured adaptive grid of triangles in the poloidal plane. They apply it to problems related to modeling tokamak toroidal plasmas. The toroidal direction is treated by a pseudospectral method. Care was taken to center variables appropriately on the mesh and to construct a self adjoint diffusion operator for cell centered variables.

  10. A Parallel Unstructured-Mesh Methodology for Device-Scale Combustion Calculations

    SciTech Connect

    O'Rourke, P.J.; Sahota, M.S.; Zhang, S.

    1998-12-03

    At Los Alamos we are developing a parallel, unstructured-mesh, finite-volume CFD methodology for the simulation of chemically reactive flows in complex geometries. The methodology is embodied in the CHAD (Computational Hydrodynamics for Advanced Design) code. In this report we give an overview of the CHAD numerical methodology and present parallel scaling results for calculations of flows in a four-valve diesel engine.

  11. Multiphase Advection and Radiation Diffusion with Material Interfaces on Unstructured Meshes

    SciTech Connect

    Anninos, P

    2002-10-03

    A collection of numerical methods are presented for the advection or remapping of material properties on unstructured and staggered polyhedral meshes in arbitrary Lagrange-Eulerian calculations. The methods include several new procedures to track and capture sharp interface boundaries, and to partition radiation energy into multi-material thermal states. The latter is useful for extending and applying consistently single material radiation diffusion solvers to multi-material problems.

  12. Refining 3D Earth models by unifying geological and geophysical information on unstructured meshes

    NASA Astrophysics Data System (ADS)

    Lelièvre, P. G.; Carter-McAuslan, A.; Tycholiz, C.; Farquharson, C. G.; Hurich, C. A.

    2012-04-01

    Earth models used for mineral exploration or other subsurface investigations should be consistent with all available geological and geophysical information. Geophysical inversion provides the means to integrate geological information, geophysical survey data, and physical property measurements taken on rock samples. Incorporation of geological information into inversions is always an iterative process. One begins with the geologists' best guess about the Earth (i.e. the geological model) and the models recovered from geophysical inversion may indicate that the geological model should be changed slightly prior to the next iteration of the procedure. In this way, geological and geophysical data can be combined through inversion and we can move towards the creation of a common Earth model consistent with all the available data. As more information is incorporated, the inherent non-uniqueness of the inverse problem is reduced, yielding a higher potential to resolve deeper features that are less well-constrained by the geophysical data alone. Geological ore deposit models are commonly created during delineation drilling. The accuracy of these models is crucial when used to determine if a deposit is economic. 3D geological Earth models typically comprise wireframe surfaces that represent the geological contacts between different rock units. The contacts may be known at points from down-hole intersections and surface mapping, and can be interpolated between boreholes and extrapolated outwards. Contacts may also be interpreted from seismic traces. Wireframe surfaces, comprising tessellated triangular facets, are sufficiently flexible to allow the representation of arbitrarily complicated geological structures. These surfaces can be honoured exactly within fully unstructured 3D volumetric tetrahedral meshes. In contrast, geophysical forward modelling and inversion algorithms typically work with rectilinear meshes when parameterizing the subsurface because this simplifies

  13. Scalable direct Vlasov solver with discontinuous Galerkin method on unstructured mesh.

    SciTech Connect

    Xu, J.; Ostroumov, P. N.; Mustapha, B.; Nolen, J.

    2010-12-01

    This paper presents the development of parallel direct Vlasov solvers with discontinuous Galerkin (DG) method for beam and plasma simulations in four dimensions. Both physical and velocity spaces are in two dimesions (2P2V) with unstructured mesh. Contrary to the standard particle-in-cell (PIC) approach for kinetic space plasma simulations, i.e., solving Vlasov-Maxwell equations, direct method has been used in this paper. There are several benefits to solving a Vlasov equation directly, such as avoiding noise associated with a finite number of particles and the capability to capture fine structure in the plasma. The most challanging part of a direct Vlasov solver comes from higher dimensions, as the computational cost increases as N{sup 2d}, where d is the dimension of the physical space. Recently, due to the fast development of supercomputers, the possibility has become more realistic. Many efforts have been made to solve Vlasov equations in low dimensions before; now more interest has focused on higher dimensions. Different numerical methods have been tried so far, such as the finite difference method, Fourier Spectral method, finite volume method, and spectral element method. This paper is based on our previous efforts to use the DG method. The DG method has been proven to be very successful in solving Maxwell equations, and this paper is our first effort in applying the DG method to Vlasov equations. DG has shown several advantages, such as local mass matrix, strong stability, and easy parallelization. These are particularly suitable for Vlasov equations. Domain decomposition in high dimensions has been used for parallelization; these include a highly scalable parallel two-dimensional Poisson solver. Benchmark results have been shown and simulation results will be reported.

  14. Adaptive Meshing Techniques for Viscous Flow Calculations on Mixed Element Unstructured Meshes

    NASA Technical Reports Server (NTRS)

    Mavriplis, D. J.

    1997-01-01

    An adaptive refinement strategy based on hierarchical element subdivision is formulated and implemented for meshes containing arbitrary mixtures of tetrahendra, hexahendra, prisms and pyramids. Special attention is given to keeping memory overheads as low as possible. This procedure is coupled with an algebraic multigrid flow solver which operates on mixed-element meshes. Inviscid flows as well as viscous flows are computed an adaptively refined tetrahedral, hexahedral, and hybrid meshes. The efficiency of the method is demonstrated by generating an adapted hexahedral mesh containing 3 million vertices on a relatively inexpensive workstation.

  15. Earth As An Unstructured Mesh and Its Recovery from Seismic Waveform Data

    NASA Astrophysics Data System (ADS)

    De Hoop, M. V.

    2015-12-01

    We consider multi-scale representations of Earth's interior from thepoint of view of their possible recovery from multi- andhigh-frequency seismic waveform data. These representations areintrinsically connected to (geologic, tectonic) structures, that is,geometric parametrizations of Earth's interior. Indeed, we address theconstruction and recovery of such parametrizations using localiterative methods with appropriately designed data misfits andguaranteed convergence. The geometric parametrizations containinterior boundaries (defining, for example, faults, salt bodies,tectonic blocks, slabs) which can, in principle, be obtained fromsuccessive segmentation. We make use of unstructured meshes. For the adaptation and recovery of an unstructured mesh we introducean energy functional which is derived from the Hausdorff distance. Viaan augmented Lagrangian method, we incorporate the mentioned datamisfit. The recovery is constrained by shape optimization of theinterior boundaries, and is reminiscent of Hausdorff warping. We useelastic deformation via finite elements as a regularization whilefollowing a two-step procedure. The first step is an update determinedby the energy functional; in the second step, we modify the outcome ofthe first step where necessary to ensure that the new mesh isregular. This modification entails an array of techniques includingtopology correction involving interior boundary contacting andbreakup, edge warping and edge removal. We implement this as afeed-back mechanism from volume to interior boundary meshesoptimization. We invoke and apply a criterion of mesh quality controlfor coarsening, and for dynamical local multi-scale refinement. Wepresent a novel (fluid-solid) numerical framework based on theDiscontinuous Galerkin method.

  16. Split-Cell, Linear Characteristic Transport Method for Unstructured Tetrahedral Meshes

    SciTech Connect

    Mathews, Kirk A.; Miller, Rodney L.; Brennan, Charles R.

    2000-10-15

    The linear characteristic (LC) method is extended to unstructured meshes of tetrahedral cells in three-dimensional Cartesian coordinates. For each ordinate in a discrete ordinates sweep, each cell is split into subcells along a line parallel to the ordinate. Direct affine transformations among appropriate oblique Cartesian coordinate systems for the faces and interior of each cell and subcell are used to simplify the characteristic transport through each subcell. This approach is straightforward and eliminates computationally expensive trigonometric functions. An efficient and well-conditioned technique for evaluating the required integral moments of exponential functions is presented. Various test problems are used to demonstrate (a) the approach to cubic convergence as the mesh is refined, (b) insensitivity to the details of irregular meshes, and (c) numerical robustness. These tests also show that meshes should represent volumes of regions with curved as well as planar boundaries exactly and that cells should have optical thicknesses throughout the mesh that are more or less equal. A hybrid Monte Carlo/discrete ordinates method, together with MCNP, is used to distinguish between error introduced by the angular and the spatial quadratures. We conclude that the LC method should be a practical and reliable scheme for these meshes, presuming that the cells are not optically too thick.

  17. Fluidity: a fully-unstructured adaptive mesh computational framework for geodynamics

    NASA Astrophysics Data System (ADS)

    Kramer, S. C.; Davies, D.; Wilson, C. R.

    2010-12-01

    Fluidity is a finite element, finite volume fluid dynamics model developed by the Applied Modelling and Computation Group at Imperial College London. Several features of the model make it attractive for use in geodynamics. A core finite element library enables the rapid implementation and investigation of new numerical schemes. For example, the function spaces used for each variable can be changed allowing properties of the discretisation, such as stability, conservation and balance, to be easily varied and investigated. Furthermore, unstructured, simplex meshes allow the underlying resolution to vary rapidly across the computational domain. Combined with dynamic mesh adaptivity, where the mesh is periodically optimised to the current conditions, this allows significant savings in computational cost over traditional chessboard-like structured mesh simulations [1]. In this study we extend Fluidity (using the Portable, Extensible Toolkit for Scientific Computation [PETSc, 2]) to Stokes flow problems relevant to geodynamics. However, due to the assumptions inherent in all models, it is necessary to properly verify and validate the code before applying it to any large-scale problems. In recent years this has been made easier by the publication of a series of ‘community benchmarks’ for geodynamic modelling. We discuss the use of several of these to help validate Fluidity [e.g. 3, 4]. The experimental results of Vatteville et al. [5] are then used to validate Fluidity against laboratory measurements. This test case is also used to highlight the computational advantages of using adaptive, unstructured meshes - significantly reducing the number of nodes and total CPU time required to match a fixed mesh simulation. References: 1. C. C. Pain et al. Comput. Meth. Appl. M, 190:3771-3796, 2001. doi:10.1016/S0045-7825(00)00294-2. 2. B. Satish et al. http://www.mcs.anl.gov/petsc/petsc-2/, 2001. 3. Blankenbach et al. Geophys. J. Int., 98:23-28, 1989. 4. Busse et al. Geophys

  18. An unstructured mesh arbitrary Lagrangian-Eulerian unsteady incompressible flow solver and its application to insect flight aerodynamics

    NASA Astrophysics Data System (ADS)

    Su, Xiaohui; Cao, Yuanwei; Zhao, Yong

    2016-06-01

    In this paper, an unstructured mesh Arbitrary Lagrangian-Eulerian (ALE) incompressible flow solver is developed to investigate the aerodynamics of insect hovering flight. The proposed finite-volume ALE Navier-Stokes solver is based on the artificial compressibility method (ACM) with a high-resolution method of characteristics-based scheme on unstructured grids. The present ALE model is validated and assessed through flow passing over an oscillating cylinder. Good agreements with experimental results and other numerical solutions are obtained, which demonstrates the accuracy and the capability of the present model. The lift generation mechanisms of 2D wing in hovering motion, including wake capture, delayed stall, rapid pitch, as well as clap and fling are then studied and illustrated using the current ALE model. Moreover, the optimized angular amplitude in symmetry model, 45°, is firstly reported in details using averaged lift and the energy power method. Besides, the lift generation of complete cyclic clap and fling motion, which is simulated by few researchers using the ALE method due to large deformation, is studied and clarified for the first time. The present ALE model is found to be a useful tool to investigate lift force generation mechanism for insect wing flight.

  19. A finite-volume Euler solver for computing rotary-wing aerodynamics on unstructured meshes

    NASA Technical Reports Server (NTRS)

    Strawn, Roger C.; Barth, Timothy J.

    1992-01-01

    An unstructured-grid solver for the unsteady Euler equations has been developed for predicting the aerodynamics of helicopter rotor blades. This flow solver is a finite-volume scheme that computes flow quantities at the vertices of the mesh. Special treatments are used for the flux differencing and boundary conditions in order to compute rotary-wing flowfields, and these are detailed in the paper. The unstructured-grid solver permits adaptive grid refinement in order to improve the resolution of flow features such as shocks, rotor wakes and acoustic waves. These capabilities are demonstrated in the paper. Example calculations are presented for two hovering rotors. In both cases, adaptive-grid refinement is used to resolve high gradients near the rotor surface and also to capture the vortical regions in the rotor wake. The computed results show good agreement with experimental results for surface airloads and wake geometry.

  20. Terrain-driven unstructured mesh development through semi-automatic vertical feature extraction

    NASA Astrophysics Data System (ADS)

    Bilskie, Matthew V.; Coggin, David; Hagen, Scott C.; Medeiros, Stephen C.

    2015-12-01

    A semi-automated vertical feature terrain extraction algorithm is described and applied to a two-dimensional, depth-integrated, shallow water equation inundation model. The extracted features describe what are commonly sub-mesh scale elevation details (ridge and valleys), which may be ignored in standard practice because adequate mesh resolution cannot be afforded. The extraction algorithm is semi-automated, requires minimal human intervention, and is reproducible. A lidar-derived digital elevation model (DEM) of coastal Mississippi and Alabama serves as the source data for the vertical feature extraction. Unstructured mesh nodes and element edges are aligned to the vertical features and an interpolation algorithm aimed at minimizing topographic elevation error assigns elevations to mesh nodes via the DEM. The end result is a mesh that accurately represents the bare earth surface as derived from lidar with element resolution in the floodplain ranging from 15 m to 200 m. To examine the influence of the inclusion of vertical features on overland flooding, two additional meshes were developed, one without crest elevations of the features and another with vertical features withheld. All three meshes were incorporated into a SWAN+ADCIRC model simulation of Hurricane Katrina. Each of the three models resulted in similar validation statistics when compared to observed time-series water levels at gages and post-storm collected high water marks. Simulated water level peaks yielded an R2 of 0.97 and upper and lower 95% confidence interval of ∼ ± 0.60 m. From the validation at the gages and HWM locations, it was not clear which of the three model experiments performed best in terms of accuracy. Examination of inundation extent among the three model results were compared to debris lines derived from NOAA post-event aerial imagery, and the mesh including vertical features showed higher accuracy. The comparison of model results to debris lines demonstrates that additional

  1. High order parametrized maximum-principle-preserving and positivity-preserving WENO schemes on unstructured meshes

    NASA Astrophysics Data System (ADS)

    Christlieb, Andrew J.; Liu, Yuan; Tang, Qi; Xu, Zhengfu

    2015-01-01

    In this paper, we generalize the maximum-principle-preserving (MPP) flux limiting technique developed by Xu (2013) [20] to a class of high order finite volume weighted essentially non-oscillatory (WENO) schemes for scalar conservation laws and the compressible Euler system on unstructured meshes in one and two dimensions. The key idea of this parameterized limiting technique is to limit the high order numerical flux with a first order flux which preserves the MPP or positivity-preserving (PP) property. The main purpose of this paper is to investigate the flux limiting approach with high order finite volume method on unstructured meshes which are often needed for solving some important problems on irregular domains. Truncation error analysis based on one-dimensional nonuniform meshes is presented to justify that the proposed MPP schemes can maintain third order accuracy in space and time. We also demonstrate through smooth test problems that the proposed third order MPP/PP WENO schemes coupled with a third order Runge-Kutta (RK) method attain the desired order of accuracy. Several test problems containing strong shocks and complex domain geometries are also presented to assess the performance of the schemes.

  2. Discretization of the Joule heating term for plasma discharge fluid models in unstructured meshes

    SciTech Connect

    Deconinck, T.; Mahadevan, S.; Raja, L.L.

    2009-07-01

    The fluid (continuum) approach is commonly used for simulation of plasma phenomena in electrical discharges at moderate to high pressures (>10's mTorr). The description comprises governing equations for charged and neutral species transport and energy equations for electrons and the heavy species, coupled to equations for the electromagnetic fields. The coupling of energy from the electrostatic field to the plasma species is modeled by the Joule heating term which appears in the electron and heavy species (ion) energy equations. Proper numerical discretization of this term is necessary for accurate description of discharge energetics; however, discretization of this term poses a special problem in the case of unstructured meshes owing to the arbitrary orientation of the faces enclosing each cell. We propose a method for the numerical discretization of the Joule heating term using a cell-centered finite volume approach on unstructured meshes with closed convex cells. The Joule heating term is computed by evaluating both the electric field and the species flux at the cell center. The dot product of these two vector quantities is computed to obtain the Joule heating source term. We compare two methods to evaluate the species flux at the cell center. One is based on reconstructing the fluxes at the cell centers from the fluxes at the face centers. The other recomputes the flux at the cell center using the common drift-diffusion approximation. The reconstructed flux scheme is the most stable method and yields reasonably accurate results on coarse meshes.

  3. An unstructured-mesh finite-volume MPDATA for compressible atmospheric dynamics

    NASA Astrophysics Data System (ADS)

    Kühnlein, Christian; Smolarkiewicz, Piotr K.

    2017-04-01

    An advancement of the unstructured-mesh finite-volume MPDATA (Multidimensional Positive Definite Advection Transport Algorithm) is presented that formulates the error-compensative pseudo-velocity of the scheme to rely only on face-normal advective fluxes to the dual cells, in contrast to the full vector employed in previous implementations. This is essentially achieved by expressing the temporal truncation error underlying the pseudo-velocity in a form consistent with the flux-divergence of the governing conservation law. The development is especially important for integrating fluid dynamics equations on non-rectilinear meshes whenever face-normal advective mass fluxes are employed for transport compatible with mass continuity-the latter being essential for flux-form schemes. In particular, the proposed formulation enables large-time-step semi-implicit finite-volume integration of the compressible Euler equations using MPDATA on arbitrary hybrid computational meshes. Furthermore, it facilitates multiple error-compensative iterations of the finite-volume MPDATA and improved overall accuracy. The advancement combines straightforwardly with earlier developments, such as the nonoscillatory option, the infinite-gauge variant, and moving curvilinear meshes. A comprehensive description of the scheme is provided for a hybrid horizontally-unstructured vertically-structured computational mesh for efficient global atmospheric flow modelling. The proposed finite-volume MPDATA is verified using selected 3D global atmospheric benchmark simulations, representative of hydrostatic and non-hydrostatic flow regimes. Besides the added capabilities, the scheme retains fully the efficacy of established finite-volume MPDATA formulations.

  4. Development of an Unstructured Mesh Code for Flows About Complete Vehicles

    NASA Technical Reports Server (NTRS)

    Peraire, Jaime; Gupta, K. K. (Technical Monitor)

    2001-01-01

    This report describes the research work undertaken at the Massachusetts Institute of Technology, under NASA Research Grant NAG4-157. The aim of this research is to identify effective algorithms and methodologies for the efficient and routine solution of flow simulations about complete vehicle configurations. For over ten years we have received support from NASA to develop unstructured mesh methods for Computational Fluid Dynamics. As a result of this effort a methodology based on the use of unstructured adapted meshes of tetrahedra and finite volume flow solvers has been developed. A number of gridding algorithms, flow solvers, and adaptive strategies have been proposed. The most successful algorithms developed from the basis of the unstructured mesh system FELISA. The FELISA system has been extensively for the analysis of transonic and hypersonic flows about complete vehicle configurations. The system is highly automatic and allows for the routine aerodynamic analysis of complex configurations starting from CAD data. The code has been parallelized and utilizes efficient solution algorithms. For hypersonic flows, a version of the code which incorporates real gas effects, has been produced. The FELISA system is also a component of the STARS aeroservoelastic system developed at NASA Dryden. One of the latest developments before the start of this grant was to extend the system to include viscous effects. This required the development of viscous generators, capable of generating the anisotropic grids required to represent boundary layers, and viscous flow solvers. We show some sample hypersonic viscous computations using the developed viscous generators and solvers. Although this initial results were encouraging it became apparent that in order to develop a fully functional capability for viscous flows, several advances in solution accuracy, robustness and efficiency were required. In this grant we set out to investigate some novel methodologies that could lead to the

  5. Second order finite volume scheme for Maxwell's equations with discontinuous electromagnetic properties on unstructured meshes

    NASA Astrophysics Data System (ADS)

    Ismagilov, Timur Z.

    2015-02-01

    This paper presents a second order finite volume scheme for numerical solution of Maxwell's equations with discontinuous dielectric permittivity and magnetic permeability on unstructured meshes. The scheme is based on Godunov scheme and employs approaches of Van Leer and Lax-Wendroff to increase the order of approximation. To keep the second order of approximation near dielectric permittivity and magnetic permeability discontinuities a novel technique for gradient calculation and limitation is applied near discontinuities. Results of test computations for problems with linear and curvilinear discontinuities confirm second order of approximation. The scheme was applied to modelling propagation of electromagnetic waves inside photonic crystal waveguides with a bend.

  6. A Fast Upwind Solver for the Euler Equations on Three-Dimensional Unstructured Meshes

    NASA Technical Reports Server (NTRS)

    Frink, Neal T.; Pirzadeh, Shahyar

    2004-01-01

    An upwind scheme is presented for solving the three-dimensional Euler equations on unstructured tetrahedral meshes. Spatial discretization is accomplished by a cell-centered finite-volume formulation using flux-difference splitting. Higher-order differences are formed by a novel cell reconstruction process which results in computational times per cell comparable to those of structured codes. The approach yields highly resolved solutions in regions of smooth flow while avoiding oscillations across shocks without explicit limiting. Solutions are advanced in time by a 3-stage Runge-Kutta time-stepping scheme with convergence accelerated to steady state by local time stepping and implicit residual smoothing. Solutions are presented for a range of configurations in the transonic speed regime to demonstrate code accuracy, speed, and robustness. The results include an assessment of grid sensitivity and convergence acceleration by mesh sequencing.

  7. Parallel performance investigations of an unstructured mesh Navier-Stokes solver

    NASA Technical Reports Server (NTRS)

    Mavriplis, Dimitri J.

    2000-01-01

    A Reynolds-averaged Navier-Stokes solver based on unstructured mesh techniques for analysis of high-lift configurations is described. The method makes use of an agglomeration multigrid solver for convergence acceleration. Implicit line-smoothing is employed to relieve the stiffness associated with highly stretched meshes. A GMRES technique is also implemented to speed convergence at the expense of additional memory usage. The solver is cache efficient and fully vectorizable, and is parallelized using a two-level hybrid MPI-OpenMP implementation suitable for shared and/or distributed memory architectures, as well as clusters of shared memory machines. Convergence and scalability results are illustrated for various high-lift cases.

  8. Implementation of Implicit Adaptive Mesh Refinement in an Unstructured Finite-Volume Flow Solver

    NASA Technical Reports Server (NTRS)

    Schwing, Alan M.; Nompelis, Ioannis; Candler, Graham V.

    2013-01-01

    This paper explores the implementation of adaptive mesh refinement in an unstructured, finite-volume solver. Unsteady and steady problems are considered. The effect on the recovery of high-order numerics is explored and the results are favorable. Important to this work is the ability to provide a path for efficient, implicit time advancement. A method using a simple refinement sensor based on undivided differences is discussed and applied to a practical problem: a shock-shock interaction on a hypersonic, inviscid double-wedge. Cases are compared to uniform grids without the use of adapted meshes in order to assess error and computational expense. Discussion of difficulties, advances, and future work prepare this method for additional research. The potential for this method in more complicated flows is described.

  9. Framework for a Robust General Purpose Navier-Stokes Solver on Unstructured Meshes

    NASA Astrophysics Data System (ADS)

    Xiao, Cheng-Nian; Denner, Fabian; van Wachem, Berend G. M.

    2016-11-01

    A numerical framework for a pressure-based all-speeds flow solver operating on unstructured meshes, which is robust for a broad range of flow configurations, is proposed. The distinct features of our framework are the full coupling of the momentum and continuity equations as well as the use of an energy equation in conservation form to relate the thermal quantities with the flow field. In order to overcome the well-documented instability occurring while coupling the thermal energy to the remaining flow variables, a multistage iteration cycle has been devised which exhibits excellent convergence behavior without requiring any numerical relaxation parameters. Different spatial schemes for accurate shock resolution as well as complex thermodynamic gas models are also seamlessly incorporated into the framework. The solver is directly applicable to stationary and transient flows in all Mach number regimes (sub-, trans-, supersonic), exhibits strong robustness and accurately predicts flow and thermal variables at all speeds across shocks of different strengths. We present a wide range of results for both steady and transient compressible flows with vastly different Mach numbers and thermodynamic conditions in complex geometries represented by different types of unstructured meshes. The authors are grateful for the financial support provided by Shell.

  10. Numerical study of three-dimensional liquid jet breakup with adaptive unstructured meshes

    NASA Astrophysics Data System (ADS)

    Xie, Zhihua; Pavlidis, Dimitrios; Salinas, Pablo; Pain, Christopher; Matar, Omar

    2016-11-01

    Liquid jet breakup is an important fundamental multiphase flow, often found in many industrial engineering applications. The breakup process is very complex, involving jets, liquid films, ligaments, and small droplets, featuring tremendous complexity in interfacial topology and a large range of spatial scales. The objective of this study is to investigate the fluid dynamics of three-dimensional liquid jet breakup problems, such as liquid jet primary breakup and gas-sheared liquid jet breakup. An adaptive unstructured mesh modelling framework is employed here, which can modify and adapt unstructured meshes to optimally represent the underlying physics of multiphase problems and reduce computational effort without sacrificing accuracy. The numerical framework consists of a mixed control volume and finite element formulation, a 'volume of fluid' type method for the interface capturing based on a compressive control volume advection method and second-order finite element methods, and a force-balanced algorithm for the surface tension implementation. Numerical examples of some benchmark tests and the dynamics of liquid jet breakup with and without ambient gas are presented to demonstrate the capability of this method.

  11. 3D unstructured mesh ALE hydrodynamics with the upwind discontinuous galerkin method

    SciTech Connect

    Kershaw, D S; Milovich, J L; Prasad, M K; Shaw, M J; Shestakov, A I

    1999-05-07

    The authors describe a numerical scheme to solve 3D Arbitrary Lagrangian-Eulerian (ALE) hydrodynamics on an unstructured mesh using a discontinuous Galerkin method (DGM) and an explicit Runge-Kutta time discretization. Upwinding is achieved through Roe's linearized Riemann solver with the Harten-Hyman entropy fix. For stabilization, a 3D quadratic programming generalization of van Leer's 1D minmod slope limiter is used along with a Lapidus type artificial viscosity. This DGM scheme has been tested on a variety of hydrodynamic test problems and appears to be robust making it the basis for the integrated 3D inertial confinement fusion modeling code (ICF3D). For efficient code development, they use C++ object oriented programming to easily separate the complexities of an unstructured mesh from the basic physics modules. ICF3D is fully parallelized using domain decomposition and the MPI message passing library. It is fully portable. It runs on uniprocessor workstations and massively parallel platforms with distributed and shared memory.

  12. A parallel code base on discontinuous Galerkin method on three dimensional unstructured meshes for MHD equations

    NASA Astrophysics Data System (ADS)

    Li, Xujing; Zheng, Weiying

    2016-10-01

    A new parallel code based on discontinuous Galerkin (DG) method for hyperbolic conservation laws on three dimensional unstructured meshes is developed recently. This code can be used for simulations of MHD equations, which are very important in magnetic confined plasma research. The main challenges in MHD simulations in fusion include the complex geometry of the configurations, such as plasma in tokamaks, the possibly discontinuous solutions and large scale computing. Our new developed code is based on three dimensional unstructured meshes, i.e. tetrahedron. This makes the code flexible to arbitrary geometries. Second order polynomials are used on each element and HWENO type limiter are applied. The accuracy tests show that our scheme reaches the desired three order accuracy and the nonlinear shock test demonstrate that our code can capture the sharp shock transitions. Moreover, One of the advantages of DG compared with the classical finite element methods is that the matrices solved are localized on each element, making it easy for parallelization. Several simulations including the kink instabilities in toroidal geometry will be present here. Chinese National Magnetic Confinement Fusion Science Program 2015GB110003.

  13. A constrained transport scheme for MHD on unstructured static and moving meshes

    NASA Astrophysics Data System (ADS)

    Mocz, Philip; Vogelsberger, Mark; Hernquist, Lars

    2014-07-01

    Magnetic fields play an important role in many astrophysical systems and a detailed understanding of their impact on the gas dynamics requires robust numerical simulations. Here we present a new method to evolve the ideal magnetohydrodynamic (MHD) equations on unstructured static and moving meshes that preserves the magnetic field divergence-free constraint to machine precision. The method overcomes the major problems of using a cleaning scheme on the magnetic fields instead, which is non-conservative, not fully Galilean invariant, does not eliminate divergence errors completely, and may produce incorrect jumps across shocks. Our new method is a generalization of the constrained transport (CT) algorithm used to enforce the ∇ · B = 0 condition on fixed Cartesian grids. Preserving ∇ · B = 0 at the discretized level is necessary to maintain the orthogonality between the Lorentz force and B. The possibility of performing CT on a moving mesh provides several advantages over static mesh methods due to the quasi-Lagrangian nature of the former (i.e. the mesh generating points move with the flow), such as making the simulation automatically adaptive and significantly reducing advection errors. Our method preserves magnetic fields and fluid quantities in pure advection exactly.

  14. A Polar Discrete Ordinate Radiation Transport Method for 2D ALE Meshes in HYDRA

    NASA Astrophysics Data System (ADS)

    Chang, Britton; Marinak, Marty; Weber, Chris; Peterson, Luc

    2016-10-01

    The Polar Discrete Ordinate Radiation Transport Method in HYDRA has been extended to handle general 2D r-z meshes. Previously the method was only for orthogonal 2D meshes. The new method can be employed with the ALE methodology for managing mesh motion that is used to simulate Rayleigh-Taylor and Richtmyer-Meshkov instabilities on NIF capsule implosions. The results of an examination of this kind will be compared to those obtained by the corresponding diffusion method. This work was performed under the auspices of the Lawrence Livermore National Security, LLC, (LLNS) under Contract No. DE-AC52-07NA27344.

  15. Parallel CFD Algorithms for Aerodynamical Flow Solvers on Unstructured Meshes. Parts 1 and 2

    NASA Technical Reports Server (NTRS)

    Barth, Timothy J.; Kwak, Dochan (Technical Monitor)

    1995-01-01

    The Advisory Group for Aerospace Research and Development (AGARD) has requested my participation in the lecture series entitled Parallel Computing in Computational Fluid Dynamics to be held at the von Karman Institute in Brussels, Belgium on May 15-19, 1995. In addition, a request has been made from the US Coordinator for AGARD at the Pentagon for NASA Ames to hold a repetition of the lecture series on October 16-20, 1995. I have been asked to be a local coordinator for the Ames event. All AGARD lecture series events have attendance limited to NATO allied countries. A brief of the lecture series is provided in the attached enclosure. Specifically, I have been asked to give two lectures of approximately 75 minutes each on the subject of parallel solution techniques for the fluid flow equations on unstructured meshes. The title of my lectures is "Parallel CFD Algorithms for Aerodynamical Flow Solvers on Unstructured Meshes" (Parts I-II). The contents of these lectures will be largely review in nature and will draw upon previously published work in this area. Topics of my lectures will include: (1) Mesh partitioning algorithms. Recursive techniques based on coordinate bisection, Cuthill-McKee level structures, and spectral bisection. (2) Newton's method for large scale CFD problems. Size and complexity estimates for Newton's method, modifications for insuring global convergence. (3) Techniques for constructing the Jacobian matrix. Analytic and numerical techniques for Jacobian matrix-vector products, constructing the transposed matrix, extensions to optimization and homotopy theories. (4) Iterative solution algorithms. Practical experience with GIVIRES and BICG-STAB matrix solvers. (5) Parallel matrix preconditioning. Incomplete Lower-Upper (ILU) factorization, domain-decomposed ILU, approximate Schur complement strategies.

  16. 3D-2D Deformable Image Registration Using Feature-Based Nonuniform Meshes

    PubMed Central

    Guo, Xiaohu; Cai, Yiqi; Yang, Yin; Wang, Jing; Jia, Xun

    2016-01-01

    By using prior information of planning CT images and feature-based nonuniform meshes, this paper demonstrates that volumetric images can be efficiently registered with a very small portion of 2D projection images of a Cone-Beam Computed Tomography (CBCT) scan. After a density field is computed based on the extracted feature edges from planning CT images, nonuniform tetrahedral meshes will be automatically generated to better characterize the image features according to the density field; that is, finer meshes are generated for features. The displacement vector fields (DVFs) are specified at the mesh vertices to drive the deformation of original CT images. Digitally reconstructed radiographs (DRRs) of the deformed anatomy are generated and compared with corresponding 2D projections. DVFs are optimized to minimize the objective function including differences between DRRs and projections and the regularity. To further accelerate the above 3D-2D registration, a procedure to obtain good initial deformations by deforming the volume surface to match 2D body boundary on projections has been developed. This complete method is evaluated quantitatively by using several digital phantoms and data from head and neck cancer patients. The feature-based nonuniform meshing method leads to better results than either uniform orthogonal grid or uniform tetrahedral meshes. PMID:27019849

  17. 3D-2D Deformable Image Registration Using Feature-Based Nonuniform Meshes.

    PubMed

    Zhong, Zichun; Guo, Xiaohu; Cai, Yiqi; Yang, Yin; Wang, Jing; Jia, Xun; Mao, Weihua

    2016-01-01

    By using prior information of planning CT images and feature-based nonuniform meshes, this paper demonstrates that volumetric images can be efficiently registered with a very small portion of 2D projection images of a Cone-Beam Computed Tomography (CBCT) scan. After a density field is computed based on the extracted feature edges from planning CT images, nonuniform tetrahedral meshes will be automatically generated to better characterize the image features according to the density field; that is, finer meshes are generated for features. The displacement vector fields (DVFs) are specified at the mesh vertices to drive the deformation of original CT images. Digitally reconstructed radiographs (DRRs) of the deformed anatomy are generated and compared with corresponding 2D projections. DVFs are optimized to minimize the objective function including differences between DRRs and projections and the regularity. To further accelerate the above 3D-2D registration, a procedure to obtain good initial deformations by deforming the volume surface to match 2D body boundary on projections has been developed. This complete method is evaluated quantitatively by using several digital phantoms and data from head and neck cancer patients. The feature-based nonuniform meshing method leads to better results than either uniform orthogonal grid or uniform tetrahedral meshes.

  18. Failure of Anisotropic Unstructured Mesh Adaption Based on Multidimensional Residual Minimization

    NASA Technical Reports Server (NTRS)

    Wood, William A.; Kleb, William L.

    2003-01-01

    An automated anisotropic unstructured mesh adaptation strategy is proposed, implemented, and assessed for the discretization of viscous flows. The adaption criteria is based upon the minimization of the residual fluctuations of a multidimensional upwind viscous flow solver. For scalar advection, this adaption strategy has been shown to use fewer grid points than gradient based adaption, naturally aligning mesh edges with discontinuities and characteristic lines. The adaption utilizes a compact stencil and is local in scope, with four fundamental operations: point insertion, point deletion, edge swapping, and nodal displacement. Evaluation of the solution-adaptive strategy is performed for a two-dimensional blunt body laminar wind tunnel case at Mach 10. The results demonstrate that the strategy suffers from a lack of robustness, particularly with regard to alignment of the bow shock in the vicinity of the stagnation streamline. In general, constraining the adaption to such a degree as to maintain robustness results in negligible improvement to the solution. Because the present method fails to consistently or significantly improve the flow solution, it is rejected in favor of simple uniform mesh refinement.

  19. A three dimensional multigrid Reynolds-averaged Navier-Stokes solver for unstructured meshes

    NASA Technical Reports Server (NTRS)

    Mavriplis, D. J.

    1994-01-01

    A three-dimensional unstructured mesh Reynolds averaged Navier-Stokes solver is described. Turbulence is simulated using a single field-equation model. Computational overheads are minimized through the use of a single edge-based data-structure, and efficient multigrid solution technique, and the use of multi-tasking on shared memory multi-processors. The accuracy and efficiency of the code are evaluated by computing two-dimensional flows in three dimensions and comparing with results from a previously validated two-dimensional code which employs the same solution algorithm. The feasibility of computing three-dimensional flows on grids of several million points in less than two hours of wall clock time is demonstrated.

  20. A high resolution finite volume method for efficient parallel simulation of casting processes on unstructured meshes

    SciTech Connect

    Kothe, D.B.; Turner, J.A.; Mosso, S.J.; Ferrell, R.C.

    1997-03-01

    We discuss selected aspects of a new parallel three-dimensional (3-D) computational tool for the unstructured mesh simulation of Los Alamos National Laboratory (LANL) casting processes. This tool, known as {bold Telluride}, draws upon on robust, high resolution finite volume solutions of metal alloy mass, momentum, and enthalpy conservation equations to model the filling, cooling, and solidification of LANL castings. We briefly describe the current {bold Telluride} physical models and solution methods, then detail our parallelization strategy as implemented with Fortran 90 (F90). This strategy has yielded straightforward and efficient parallelization on distributed and shared memory architectures, aided in large part by new parallel libraries {bold JTpack9O} for Krylov-subspace iterative solution methods and {bold PGSLib} for efficient gather/scatter operations. We illustrate our methodology and current capabilities with source code examples and parallel efficiency results for a LANL casting simulation.

  1. Multigrid approaches to non-linear diffusion problems on unstructured meshes

    NASA Technical Reports Server (NTRS)

    Mavriplis, Dimitri J.; Bushnell, Dennis M. (Technical Monitor)

    2001-01-01

    The efficiency of three multigrid methods for solving highly non-linear diffusion problems on two-dimensional unstructured meshes is examined. The three multigrid methods differ mainly in the manner in which the nonlinearities of the governing equations are handled. These comprise a non-linear full approximation storage (FAS) multigrid method which is used to solve the non-linear equations directly, a linear multigrid method which is used to solve the linear system arising from a Newton linearization of the non-linear system, and a hybrid scheme which is based on a non-linear FAS multigrid scheme, but employs a linear solver on each level as a smoother. Results indicate that all methods are equally effective at converging the non-linear residual in a given number of grid sweeps, but that the linear solver is more efficient in cpu time due to the lower cost of linear versus non-linear grid sweeps.

  2. Multigrid solution of compressible turbulent flow on unstructured meshes using a two-equation model

    NASA Technical Reports Server (NTRS)

    Mavriplis, D. J.; Matinelli, L.

    1994-01-01

    The steady state solution of the system of equations consisting of the full Navier-Stokes equations and two turbulence equations has been obtained using a multigrid strategy of unstructured meshes. The flow equations and turbulence equations are solved in a loosely coupled manner. The flow equations are advanced in time using a multistage Runge-Kutta time-stepping scheme with a stability-bound local time step, while turbulence equations are advanced in a point-implicit scheme with a time step which guarantees stability and positivity. Low-Reynolds-number modifications to the original two-equation model are incorporated in a manner which results in well-behaved equations for arbitrarily small wall distances. A variety of aerodynamic flows are solved, initializing all quantities with uniform freestream values. Rapid and uniform convergence rates for the flow and turbulence equations are observed.

  3. Higher Order Time Integration Schemes for the Unsteady Navier-Stokes Equations on Unstructured Meshes

    NASA Technical Reports Server (NTRS)

    Jothiprasad, Giridhar; Mavriplis, Dimitri J.; Caughey, David A.

    2002-01-01

    The rapid increase in available computational power over the last decade has enabled higher resolution flow simulations and more widespread use of unstructured grid methods for complex geometries. While much of this effort has been focused on steady-state calculations in the aerodynamics community, the need to accurately predict off-design conditions, which may involve substantial amounts of flow separation, points to the need to efficiently simulate unsteady flow fields. Accurate unsteady flow simulations can easily require several orders of magnitude more computational effort than a corresponding steady-state simulation. For this reason, techniques for improving the efficiency of unsteady flow simulations are required in order to make such calculations feasible in the foreseeable future. The purpose of this work is to investigate possible reductions in computer time due to the choice of an efficient time-integration scheme from a series of schemes differing in the order of time-accuracy, and by the use of more efficient techniques to solve the nonlinear equations which arise while using implicit time-integration schemes. This investigation is carried out in the context of a two-dimensional unstructured mesh laminar Navier-Stokes solver.

  4. Implicit flux-split Euler schemes for unsteady aerodynamic analysis involving unstructured dynamic meshes

    NASA Technical Reports Server (NTRS)

    Batina, John T.

    1990-01-01

    Improved algorithm for the solution of the time-dependent Euler equations are presented for unsteady aerodynamic analysis involving unstructured dynamic meshes. The improvements were developed recently to the spatial and temporal discretizations used by unstructured grid flow solvers. The spatial discretization involves a flux-split approach which is naturally dissipative and captures shock waves sharply with at most one grid point within the shock structure. The temporal discretization involves an implicit time-integration scheme using a Gauss-Seidel relaxation procedure which is computationally efficient for either steady or unsteady flow problems. For example, very large time steps may be used for rapid convergence to steady state, and the step size for unsteady cases may be selected for temporal accuracy rather than for numerical stability. Steady and unsteady flow results are presented for the NACA 0012 airfoil to demonstrate applications of the new Euler solvers. The unsteady results were obtained for the airfoil pitching harmonically about the quarter chord. The resulting instantaneous pressure distributions and lift and moment coefficients during a cycle of motion compare well with experimental data. A description of the Euler solvers is presented along with results and comparisons which assess the capability.

  5. GPU accelerated cell-based adaptive mesh refinement on unstructured quadrilateral grid

    NASA Astrophysics Data System (ADS)

    Luo, Xisheng; Wang, Luying; Ran, Wei; Qin, Fenghua

    2016-10-01

    A GPU accelerated inviscid flow solver is developed on an unstructured quadrilateral grid in the present work. For the first time, the cell-based adaptive mesh refinement (AMR) is fully implemented on GPU for the unstructured quadrilateral grid, which greatly reduces the frequency of data exchange between GPU and CPU. Specifically, the AMR is processed with atomic operations to parallelize list operations, and null memory recycling is realized to improve the efficiency of memory utilization. It is found that results obtained by GPUs agree very well with the exact or experimental results in literature. An acceleration ratio of 4 is obtained between the parallel code running on the old GPU GT9800 and the serial code running on E3-1230 V2. With the optimization of configuring a larger L1 cache and adopting Shared Memory based atomic operations on the newer GPU C2050, an acceleration ratio of 20 is achieved. The parallelized cell-based AMR processes have achieved 2x speedup on GT9800 and 18x on Tesla C2050, which demonstrates that parallel running of the cell-based AMR method on GPU is feasible and efficient. Our results also indicate that the new development of GPU architecture benefits the fluid dynamics computing significantly.

  6. Implications of mountain shading on calculating energy for snowmelt using unstructured triangular meshes

    NASA Astrophysics Data System (ADS)

    Marsh, C.; Pomeroy, J. W.; Spiteri, R.

    2012-12-01

    In many parts of the world, the snowmelt energy balance is dominated by net solar shortwave radiation. This is the case in the Canadian Rocky Mountains, where clear skies dominate the winter and spring. In mountainous regions, irradiance at the snow surface is not only affected by solar angles, atmospheric transmittance, and the slope and aspect of immediate topography, but also by horizon-shadows, i.e., shadows from surrounding terrain. Many hydrological models do not consider such horizon-shadows and the accumulation of errors in estimating solar irradiance by neglecting horizon-shadows may lead to significant errors in calculating the timing and rate of snowmelt due to the seasonal storage of internal energy in the snowpack. An unstructured triangular-mesh-based horizon-shading model is compared to standard self-shading algorithms in the Marmot Creek Research Basin (MCRB), Alberta, Canada. A systematic basin-wide over-prediction (basin mean expressed as phase change mass (assumed constant albedo of 0.8): 14 mm, maximum: 200 mm) in net shortwave radiation is observed when only self-shading is considered. The horizon-shadow model is run at a point scale at three sites throughout the MCRB to investigate the effects of topographic scale on the model results. In addition, the model results are compared to measurements of mountain shadows via orthorectified timelapse digital photographs and measured surface irradiance. The horizon-model irradiance data are used to drive a point-scale energy balance model, SNOBAL, via The Cold Regions Hydrological Model, an HRU-based hydrologic model. Melt timing is shown to differ by up to four days by neglecting horizon-shadows. It is further hypothesized that the errors might be much larger in basins with more rugged topography. Finally, a consideration of the intersection of unstructured-mesh and HRU landscape representations is discussed.

  7. Quality assessment of two- and three-dimensional unstructured meshes and validation of an upwind Euler flow solver

    NASA Technical Reports Server (NTRS)

    Woodard, Paul R.; Batina, John T.; Yang, Henry T. Y.

    1992-01-01

    Quality assessment procedures are described for two-dimensional unstructured meshes. The procedures include measurement of minimum angles, element aspect ratios, stretching, and element skewness. Meshes about the ONERA M6 wing and the Boeing 747 transport configuration are generated using an advancing front method grid generation package of programs. Solutions of Euler's equations for these meshes are obtained at low angle-of-attack, transonic conditions. Results for these cases, obtained as part of a validation study demonstrate accuracy of an implicit upwind Euler solution algorithm.

  8. Quality assessment of two- and three-dimensional unstructured meshes and validation of an upwind Euler flow solver

    NASA Technical Reports Server (NTRS)

    Woodard, Paul R.; Yang, Henry T. Y.; Batina, John T.

    1992-01-01

    Quality assessment procedures are described for two-dimensional and three-dimensional unstructured meshes. The procedures include measurement of minimum angles, element aspect ratios, stretching, and element skewness. Meshes about the ONERA M6 wing and the Boeing 747 transport configuration are generated using an advancing front method grid generation package of programs. Solutions of Euler's equations for these meshes are obtained at low angle-of-attack, transonic conditions. Results for these cases, obtained as part of a validation study demonstrate the accuracy of an implicit upwind Euler solution algorithm.

  9. Discretization and Preconditioning Algorithms for the Euler and Navier-Stokes Equations on Unstructured Meshes

    NASA Technical Reports Server (NTRS)

    Barth, Timothy J.; Kutler, Paul (Technical Monitor)

    1998-01-01

    Several stabilized demoralization procedures for conservation law equations on triangulated domains will be considered. Specifically, numerical schemes based on upwind finite volume, fluctuation splitting, Galerkin least-squares, and space discontinuous Galerkin demoralization will be considered in detail. A standard energy analysis for several of these methods will be given via entropy symmetrization. Next, we will present some relatively new theoretical results concerning congruence relationships for left or right symmetrized equations. These results suggest new variants of existing FV, DG, GLS, and FS methods which are computationally more efficient while retaining the pleasant theoretical properties achieved by entropy symmetrization. In addition, the task of Jacobean linearization of these schemes for use in Newton's method is greatly simplified owing to exploitation of exact symmetries which exist in the system. The FV, FS and DG schemes also permit discrete maximum principle analysis and enforcement which greatly adds to the robustness of the methods. Discrete maximum principle theory will be presented for general finite volume approximations on unstructured meshes. Next, we consider embedding these nonlinear space discretizations into exact and inexact Newton solvers which are preconditioned using a nonoverlapping (Schur complement) domain decomposition technique. Elements of nonoverlapping domain decomposition for elliptic problems will be reviewed followed by the present extension to hyperbolic and elliptic-hyperbolic problems. Other issues of practical relevance such the meshing of geometries, code implementation, turbulence modeling, global convergence, etc, will. be addressed as needed.

  10. A 2D well-balanced shallow flow model for unstructured grids with novel slope source term treatment

    NASA Astrophysics Data System (ADS)

    Hou, Jingming; Liang, Qiuhua; Simons, Franz; Hinkelmann, Reinhard

    2013-02-01

    Within the framework of the Godunov-type cell-centered finite volume (CCFV) scheme, this paper proposes a 2D well-balanced shallow water model for unstructured grids. In this model, the face-based van Albada limiting scheme is employed in conjunction with a directional correction to reconstruct second order spatial values at the midpoint of the considered face. The Harten, Lax and van Leer approximate Riemann solver with the Contact wave restored (HLLC) is applied to compute the fluxes of mass and momentum, while the splitting implicit method is utilized to solve the friction source terms. The novel aspects of the model include the new limited directional correction with which the new local extrema caused by the unlimited correction are prevented efficiently, the simplified non-negative water depth reconstruction used to get rid of numerical instabilities and in turn to preserve mass conservation at wet-dry interfaces and the novel slope source term treatment which suits complex unstructured grids well by transforming the slope source of a cell into fluxes at its faces. This model is able to preserve the C-property and mass conservation, to achieve good convergence to steady state, to capture discontinuous flows and to handle complex flows involving wetting and drying over uneven beds on unstructured grids with poor connectivity in an accurate, efficient and robust way. These capabilities are verified against analytical solutions, numerical results of alternative models and experimental and field data.

  11. Recent Development in the CESE Method for the Solution of the Navier-Stokes Equations Using Unstructured Triangular or Tetrahedral Meshes With High Aspect Ratio

    NASA Technical Reports Server (NTRS)

    Chang, Sin-Chung; Chang, Chau-Lyan; Yen, Joseph C.

    2013-01-01

    In the multidimensional CESE development, triangles and tetrahedra turn out to be the most natural building blocks for 2D and 3D spatial meshes. As such the CESE method is compatible with the simplest unstructured meshes and thus can be easily applied to solve problems with complex geometries. However, because the method uses space-time staggered stencils, solution decoupling may become a real nuisance in applications involving unstructured meshes. In this paper we will describe a simple and general remedy which, according to numerical experiments, has removed any possibility of solution decoupling. Moreover, in a real-world viscous flow simulation near a solid wall, one often encounters a case where a boundary with high curvature or sharp corner is surrounded by triangular/tetrahedral meshes of extremely high aspect ratio (up to 106). For such an extreme case, the spatial projection of a space-time compounded conservation element constructed using the original CESE design may become highly concave and thus its centroid (referred to as a spatial solution point) may lie far outside of the spatial projection. It could even be embedded beyond a solid wall boundary and causes serious numerical difficulties. In this paper we will also present a new procedure for constructing conservation elements and solution elements which effectively overcomes the difficulties associated with the original design. Another difficulty issue which was addressed more recently is the wellknown fact that accuracy of gradient computations involving triangular/tetrahedral grids deteriorates rapidly as the aspect ratio of grid cells increases. The root cause of this difficulty was clearly identified and several remedies to overcome it were found through a rigorous mathematical analysis. However, because of the length of the current paper and the complexity of mathematics involved, this new work will be presented in another paper.

  12. Ordering Unstructured Meshes for Sparse Matrix Computations on Leading Parallel Systems

    NASA Technical Reports Server (NTRS)

    Oliker, Leonid; Li, Xiaoye; Heber, Gerd; Biswas, Rupak

    2000-01-01

    The ability of computers to solve hitherto intractable problems and simulate complex processes using mathematical models makes them an indispensable part of modern science and engineering. Computer simulations of large-scale realistic applications usually require solving a set of non-linear partial differential equations (PDES) over a finite region. For example, one thrust area in the DOE Grand Challenge projects is to design future accelerators such as the SpaHation Neutron Source (SNS). Our colleagues at SLAC need to model complex RFQ cavities with large aspect ratios. Unstructured grids are currently used to resolve the small features in a large computational domain; dynamic mesh adaptation will be added in the future for additional efficiency. The PDEs for electromagnetics are discretized by the FEM method, which leads to a generalized eigenvalue problem Kx = AMx, where K and M are the stiffness and mass matrices, and are very sparse. In a typical cavity model, the number of degrees of freedom is about one million. For such large eigenproblems, direct solution techniques quickly reach the memory limits. Instead, the most widely-used methods are Krylov subspace methods, such as Lanczos or Jacobi-Davidson. In all the Krylov-based algorithms, sparse matrix-vector multiplication (SPMV) must be performed repeatedly. Therefore, the efficiency of SPMV usually determines the eigensolver speed. SPMV is also one of the most heavily used kernels in large-scale numerical simulations.

  13. Semi-implicit anisotropic cosmic ray transport on an unstructured moving mesh

    NASA Astrophysics Data System (ADS)

    Pakmor, Rüdiger; Pfrommer, Christoph; Simpson, Christine M.; Kannan, Rahul; Springel, Volker

    2016-11-01

    In the interstellar medium of galaxies and the intracluster gas of galaxy clusters, the charged particles making up cosmic rays are moving almost exclusively along (but not across) magnetic field lines. The resulting anisotropic transport of cosmic rays in the form of diffusion or streaming not only affects the gas dynamics but also rearranges the magnetic fields themselves. The coupled dynamics of magnetic fields and cosmic rays can thus impact the formation and evolution of galaxies and the thermal evolution of galaxy clusters in critical ways. Numerically studying these effects requires solvers for anisotropic diffusion that are accurate, efficient, and robust, requirements that have proved difficult to be satisfied in practice. Here, we present an anisotropic diffusion solver on an unstructured moving mesh that is conservative, does not violate the entropy condition, allows for semi-implicit time integration with individual timesteps, and only requires solving a single linear system of equations per timestep. We apply our new scheme to a large number of test problems and show that it works as well or better than previous implementations. Finally, we demonstrate for a numerically demanding simulation of the formation of an isolated disc galaxy that our local time-stepping scheme reproduces the results obtained with global time-stepping at a fraction of the computational cost.

  14. Unstructured-mesh modeling of the Congo river-to-sea continuum

    NASA Astrophysics Data System (ADS)

    Bars, Yoann Le; Vallaeys, Valentin; Deleersnijder, Éric; Hanert, Emmanuel; Carrere, Loren; Channelière, Claire

    2016-04-01

    With the second largest outflow in the world and one of the widest hydrological basins, the Congo River is of a major importance both locally and globally. However, relatively few studies have been conducted on its hydrology, as compared to other great rivers such as the Amazon, Nile, Yangtze, or Mississippi. The goal of this study is therefore to help fill this gap and provide the first high-resolution simulation of the Congo river-estuary-coastal sea continuum. To this end, we are using a discontinuous-Galerkin finite element marine model that solves the two-dimensional depth-averaged shallow water equations on an unstructured mesh. To ensure a smooth transition from river to coastal sea, we have considered a model that encompasses both hydrological and coastal ocean processes. An important difficulty in setting up this model was to find data to parameterize and validate it, as it is a rather remote and understudied area. Therefore, an important effort in this study has been to establish a methodology to take advantage of all the data sources available including nautical charts that had to be digitalized. The model surface elevation has then been validated with respect to an altimetric database. Model results suggest the existence of gyres in the vicinity of the river mouth that have never been documented before. The effect of those gyres on the Congo River dynamics has been further investigated by simulating the transport of Lagrangian particles and computing the water age.

  15. A third-order compact gas-kinetic scheme on unstructured meshes for compressible Navier-Stokes solutions

    NASA Astrophysics Data System (ADS)

    Pan, Liang; Xu, Kun

    2016-08-01

    In this paper, for the first time a third-order compact gas-kinetic scheme is proposed on unstructured meshes for the compressible viscous flow computations. The possibility to design such a third-order compact scheme is due to the high-order gas evolution model, where a time-dependent gas distribution function at cell interface not only provides the fluxes across a cell interface, but also presents a time accurate solution for flow variables at cell interface. As a result, both cell averaged and cell interface flow variables can be used for the initial data reconstruction at the beginning of next time step. A weighted least-square procedure has been used for the initial reconstruction. Therefore, a compact third-order gas-kinetic scheme with the involvement of neighboring cells only can be developed on unstructured meshes. In comparison with other conventional high-order schemes, the current method avoids the Gaussian point integration for numerical fluxes along a cell interface and the multi-stage Runge-Kutta method for temporal accuracy. The third-order compact scheme is numerically stable under CFL condition CFL ≈ 0.5. Due to its multidimensional gas-kinetic formulation and the coupling of inviscid and viscous terms, even with unstructured meshes, the boundary layer solution and vortex structure can be accurately captured by the current scheme. At the same time, the compact scheme can capture strong shocks as well.

  16. High resolution finite volume parallel simulations of mould filling and binary alloy solidification on unstructured 3-D meshes

    SciTech Connect

    Reddy, A.V.; Kothe, D.B.; Lam, K.L.

    1997-06-01

    The Los Alamos National Laboratory (LANL) is currently developing a new casting simulation tool (known as Telluride) that employs robust, high-resolution finite volume algorithms for incompressible fluid flow, volume tracking of interfaces, and solidification physics on three-dimensional (3-D) unstructured meshes. Their finite volume algorithms are based on colocated cell-centered schemes that are formally second order in time and space. The flow algorithm is a 3-D extension of recent work on projection method solutions of the Navier-Stokes (NS) equations. Their volume tracking algorithm can accurately track topologically complex interfaces by approximating the interface geometry as piecewise planar. Coupled to their fluid flow algorithm is a comprehensive binary alloy solidification model that incorporates macroscopic descriptions of heat transfer, solute redistribution, and melt convection as well as a microscopic description of segregation. The finite volume algorithms, which are efficient, parallel, and robust, can yield high-fidelity solutions on a variety of meshes, ranging from those that are structured orthogonal to fully unstructured (finite element). The authors discuss key computer science issues that have enabled them to efficiently parallelize their unstructured mesh algorithms on both distributed and shared memory computing platforms. These include their functionally object-oriented use of Fortran 90 and new parallel libraries for gather/scatter functions (PGSLib) and solutions of linear systems of equations (JTpack90). Examples of their current capabilities are illustrated with simulations of mold filling and solidification of complex 3-D components currently being poured in LANL foundries.

  17. Multiphase flow modelling of explosive volcanic eruptions using adaptive unstructured meshes

    NASA Astrophysics Data System (ADS)

    Jacobs, Christian T.; Collins, Gareth S.; Piggott, Matthew D.; Kramer, Stephan C.

    2014-05-01

    Explosive volcanic eruptions generate highly energetic plumes of hot gas and ash particles that produce diagnostic deposits and pose an extreme environmental hazard. The formation, dispersion and collapse of these volcanic plumes are complex multiscale processes that are extremely challenging to simulate numerically. Accurate description of particle and droplet aggregation, movement and settling requires a model capable of capturing the dynamics on a range of scales (from cm to km) and a model that can correctly describe the important multiphase interactions that take place. However, even the most advanced models of eruption dynamics to date are restricted by the fixed mesh-based approaches that they employ. The research presented herein describes the development of a compressible multiphase flow model within Fluidity, a combined finite element / control volume computational fluid dynamics (CFD) code, for the study of explosive volcanic eruptions. Fluidity adopts a state-of-the-art adaptive unstructured mesh-based approach to discretise the domain and focus numerical resolution only in areas important to the dynamics, while decreasing resolution where it is not needed as a simulation progresses. This allows the accurate but economical representation of the flow dynamics throughout time, and potentially allows large multi-scale problems to become tractable in complex 3D domains. The multiphase flow model is verified with the method of manufactured solutions, and validated by simulating published gas-solid shock tube experiments and comparing the numerical results against pressure gauge data. The application of the model considers an idealised 7 km by 7 km domain in which the violent eruption of hot gas and volcanic ash high into the atmosphere is simulated. Although the simulations do not correspond to a particular eruption case study, the key flow features observed in a typical explosive eruption event are successfully captured. These include a shock wave resulting

  18. A numerical study of 2D detonation waves with adaptive finite volume methods on unstructured grids

    NASA Astrophysics Data System (ADS)

    Hu, Guanghui

    2017-02-01

    In this paper, a framework of adaptive finite volume solutions for the reactive Euler equations on unstructured grids is proposed. The main ingredients of the algorithm include a second order total variation diminishing Runge-Kutta method for temporal discretization, and the finite volume method with piecewise linear solution reconstruction of the conservative variables for the spatial discretization in which the least square method is employed for the reconstruction, and weighted essentially nonoscillatory strategy is used to restrain the potential numerical oscillation. To resolve the high demanding on the computational resources due to the stiffness of the system caused by the reaction term and the shock structure in the solutions, the h-adaptive method is introduced. OpenMP parallelization of the algorithm is also adopted to further improve the efficiency of the implementation. Several one and two dimensional benchmark tests on the ZND model are studied in detail, and numerical results successfully show the effectiveness of the proposed method.

  19. An implementation of a chemical and thermal nonequilibrium flow solver on unstructured meshes and application to blunt bodies

    NASA Technical Reports Server (NTRS)

    Prabhu, Ramadas K.

    1994-01-01

    This paper presents a nonequilibrium flow solver, implementation of the algorithm on unstructured meshes, and application to hypersonic flow past blunt bodies. Air is modeled as a mixture of five chemical species, namely O2, N2, O, NO, and N, having two temperatures namely translational and vibrational. The solution algorithm is a cell centered, point implicit upwind scheme that employs Roe's flux difference splitting technique. Implementation of this algorithm on unstructured meshes is described. The computer code is applied to solve Mach 15 flow with and without a Type IV shock interference on a cylindrical body of 2.5mm radius representing a cowl lip. Adaptively generated meshes are employed, and the meshes are refined several times until the solution exhibits detailed flow features and surface pressure and heat flux distributions. Effects of a catalytic wall on surface heat flux distribution are studied. For the Mach 15 Type IV shock interference flow, present results showed a peak heat flux of 544 MW/m2 for a fully catalytic wall and 431 MW/m(exp 2) for a noncatalytic wall. Some of the results are compared with available computational data.

  20. Numerical Modelling of Volcanic Ash Settling in Water Using Adaptive Unstructured Meshes

    NASA Astrophysics Data System (ADS)

    Jacobs, C. T.; Collins, G. S.; Piggott, M. D.; Kramer, S. C.; Wilson, C. R.

    2011-12-01

    At the bottom of the world's oceans lies layer after layer of ash deposited from past volcanic eruptions. Correct interpretation of these layers can provide important constraints on the duration and frequency of volcanism, but requires a full understanding of the complex multi-phase settling and deposition process. Analogue experiments of tephra settling through a tank of water demonstrate that small ash particles can either settle individually, or collectively as a gravitationally unstable ash-laden plume. These plumes are generated when the concentration of particles exceeds a certain threshold such that the density of the tephra-water mixture is sufficiently large relative to the underlying particle-free water for a gravitational Rayleigh-Taylor instability to develop. These ash-laden plumes are observed to descend as a vertical density current at a velocity much greater than that of single particles, which has important implications for the emplacement of tephra deposits on the seabed. To extend the results of laboratory experiments to large scales and explore the conditions under which vertical density currents may form and persist, we have developed a multi-phase extension to Fluidity, a combined finite element / control volume CFD code that uses adaptive unstructured meshes. As a model validation, we present two- and three-dimensional simulations of tephra plume formation in a water tank that replicate laboratory experiments (Carey, 1997, doi:10.1130/0091-7613(1997)025<0839:IOCSOT>2.3.CO;2). An inflow boundary condition at the top of the domain allows particles to flux in at a constant rate of 0.472 gm-2s-1, forming a near-surface layer of tephra particles, which initially settle individually at the predicted Stokes velocity of 1.7 mms-1. As more tephra enters the water and the particle concentration increases, the layer eventually becomes unstable and plumes begin to form, descending with velocities more than ten times greater than those of individual

  1. EM modelling of arbitrary shaped anisotropic dielectric objects using an efficient 3D leapfrog scheme on unstructured meshes

    NASA Astrophysics Data System (ADS)

    Gansen, A.; Hachemi, M. El; Belouettar, S.; Hassan, O.; Morgan, K.

    2016-09-01

    The standard Yee algorithm is widely used in computational electromagnetics because of its simplicity and divergence free nature. A generalization of the classical Yee scheme to 3D unstructured meshes is adopted, based on the use of a Delaunay primal mesh and its high quality Voronoi dual. This allows the problem of accuracy losses, which are normally associated with the use of the standard Yee scheme and a staircased representation of curved material interfaces, to be circumvented. The 3D dual mesh leapfrog-scheme which is presented has the ability to model both electric and magnetic anisotropic lossy materials. This approach enables the modelling of problems, of current practical interest, involving structured composites and metamaterials.

  2. Adaptive unstructured triangular mesh generation and flow solvers for the Navier-Stokes equations at high Reynolds number

    NASA Technical Reports Server (NTRS)

    Ashford, Gregory A.; Powell, Kenneth G.

    1995-01-01

    A method for generating high quality unstructured triangular grids for high Reynolds number Navier-Stokes calculations about complex geometries is described. Careful attention is paid in the mesh generation process to resolving efficiently the disparate length scales which arise in these flows. First the surface mesh is constructed in a way which ensures that the geometry is faithfully represented. The volume mesh generation then proceeds in two phases thus allowing the viscous and inviscid regions of the flow to be meshed optimally. A solution-adaptive remeshing procedure which allows the mesh to adapt itself to flow features is also described. The procedure for tracking wakes and refinement criteria appropriate for shock detection are described. Although at present it has only been implemented in two dimensions, the grid generation process has been designed with the extension to three dimensions in mind. An implicit, higher-order, upwind method is also presented for computing compressible turbulent flows on these meshes. Two recently developed one-equation turbulence models have been implemented to simulate the effects of the fluid turbulence. Results for flow about a RAE 2822 airfoil and a Douglas three-element airfoil are presented which clearly show the improved resolution obtainable.

  3. High-Order Discontinuous Galerkin Level Set Method for Interface Tracking and Re-Distancing on Unstructured Meshes

    NASA Astrophysics Data System (ADS)

    Greene, Patrick; Nourgaliev, Robert; Schofield, Sam

    2015-11-01

    A new sharp high-order interface tracking method for multi-material flow problems on unstructured meshes is presented. The method combines the marker-tracking algorithm with a discontinuous Galerkin (DG) level set method to implicitly track interfaces. DG projection is used to provide a mapping from the Lagrangian marker field to the Eulerian level set field. For the level set re-distancing, we developed a novel marching method that takes advantage of the unique features of the DG representation of the level set. The method efficiently marches outward from the zero level set with values in the new cells being computed solely from cell neighbors. Results are presented for a number of different interface geometries including ones with sharp corners and multiple hierarchical level sets. The method can robustly handle the level set discontinuities without explicit utilization of solution limiters. Results show that the expected high order (3rd and higher) of convergence for the DG representation of the level set is obtained for smooth solutions on unstructured meshes. High-order re-distancing on irregular meshes is a must for applications were the interfacial curvature is important for underlying physics, such as surface tension, wetting and detonation shock dynamics. This work was performed under the auspices of the U.S. Department of Energy by Lawrence Livermore National Laboratory under Contract DE-AC52-07NA27344. Information management release number LLNL-ABS-675636.

  4. Seamless atmospheric modeling across the hydrostatic-nonhydrostatic scales - preliminary results using an unstructured-Voronoi mesh for weather prediction.

    NASA Astrophysics Data System (ADS)

    Skamarock, W. C.

    2015-12-01

    One of the major problems in atmospheric model applications is the representation of deep convection within the models; explicit simulation of deep convection on fine meshes performs much better than sub-grid parameterized deep convection on coarse meshes. Unfortunately, the high cost of explicit convective simulation has meant it has only been used to down-scale global simulations in weather prediction and regional climate applications, typically using traditional one-way interactive nesting technology. We have been performing real-time weather forecast tests using a global non-hydrostatic atmospheric model (the Model for Prediction Across Scales, MPAS) that employs a variable-resolution unstructured Voronoi horizontal mesh (nominally hexagons) to span hydrostatic to nonhydrostatic scales. The smoothly varying Voronoi mesh eliminates many downscaling problems encountered using traditional one- or two-way grid nesting. Our test weather forecasts cover two periods - the 2015 Spring Forecast Experiment conducted at the NOAA Storm Prediction Center during the month of May in which we used a 50-3 km mesh, and the PECAN field program examining nocturnal convection over the US during the months of June and July in which we used a 15-3 km mesh. An important aspect of this modeling system is that the model physics be scale-aware, particularly the deep convection parameterization. These MPAS simulations employ the Grell-Freitas scale-aware convection scheme. Our test forecasts show that the scheme produces a gradual transition in the deep convection, from the deep unstable convection being handled entirely by the convection scheme on the coarse mesh regions (dx > 15 km), to the deep convection being almost entirely explicit on the 3 km NA region of the meshes. We will present results illustrating the performance of critical aspects of the MPAS model in these tests.

  5. A computational study of the effect of unstructured mesh quality on solution efficiency

    SciTech Connect

    Batdorf, M.; Freitag, L.A.; Ollivier-Gooch, C.

    1997-09-01

    It is well known that mesh quality affects both efficiency and accuracy of CFD solutions. Meshes with distorted elements make solutions both more difficult to compute and less accurate. We review a recently proposed technique for improving mesh quality as measured by element angle (dihedral angle in three dimensions) using a combination of optimization-based smoothing techniques and local reconnection schemes. Typical results that quantify mesh improvement for a number of application meshes are presented. We then examine effects of mesh quality as measured by the maximum angle in the mesh on the convergence rates of two commonly used CFD solution techniques. Numerical experiments are performed that quantify the cost and benefit of using mesh optimization schemes for incompressible flow over a cylinder and weakly compressible flow over a cylinder.

  6. Third order maximum-principle-satisfying direct discontinuous Galerkin methods for time dependent convection diffusion equations on unstructured triangular meshes

    SciTech Connect

    Chen, Zheng; Huang, Hongying; Yan, Jue

    2015-12-21

    We develop 3rd order maximum-principle-satisfying direct discontinuous Galerkin methods [8], [9], [19] and [21] for convection diffusion equations on unstructured triangular mesh. We carefully calculate the normal derivative numerical flux across element edges and prove that, with proper choice of parameter pair (β01) in the numerical flux formula, the quadratic polynomial solution satisfies strict maximum principle. The polynomial solution is bounded within the given range and third order accuracy is maintained. There is no geometric restriction on the meshes and obtuse triangles are allowed in the partition. As a result, a sequence of numerical examples are carried out to demonstrate the accuracy and capability of the maximum-principle-satisfying limiter.

  7. Third order maximum-principle-satisfying direct discontinuous Galerkin methods for time dependent convection diffusion equations on unstructured triangular meshes

    DOE PAGES

    Chen, Zheng; Huang, Hongying; Yan, Jue

    2015-12-21

    We develop 3rd order maximum-principle-satisfying direct discontinuous Galerkin methods [8], [9], [19] and [21] for convection diffusion equations on unstructured triangular mesh. We carefully calculate the normal derivative numerical flux across element edges and prove that, with proper choice of parameter pair (β0,β1) in the numerical flux formula, the quadratic polynomial solution satisfies strict maximum principle. The polynomial solution is bounded within the given range and third order accuracy is maintained. There is no geometric restriction on the meshes and obtuse triangles are allowed in the partition. As a result, a sequence of numerical examples are carried out to demonstratemore » the accuracy and capability of the maximum-principle-satisfying limiter.« less

  8. Three-dimensional dynamic rupture simulation with a high-order discontinuous Galerkin method on unstructured tetrahedral meshes

    NASA Astrophysics Data System (ADS)

    Pelties, Christian; de la Puente, Josep; Ampuero, Jean-Paul; Brietzke, Gilbert B.; Käser, Martin

    2012-02-01

    Accurate and efficient numerical methods to simulate dynamic earthquake rupture and wave propagation in complex media and complex fault geometries are needed to address fundamental questions in earthquake dynamics, to integrate seismic and geodetic data into emerging approaches for dynamic source inversion, and to generate realistic physics-based earthquake scenarios for hazard assessment. Modeling of spontaneous earthquake rupture and seismic wave propagation by a high-order discontinuous Galerkin (DG) method combined with an arbitrarily high-order derivatives (ADER) time integration method was introduced in two dimensions by de la Puente et al. (2009). The ADER-DG method enables high accuracy in space and time and discretization by unstructured meshes. Here we extend this method to three-dimensional dynamic rupture problems. The high geometrical flexibility provided by the usage of tetrahedral elements and the lack of spurious mesh reflections in the ADER-DG method allows the refinement of the mesh close to the fault to model the rupture dynamics adequately while concentrating computational resources only where needed. Moreover, ADER-DG does not generate spurious high-frequency perturbations on the fault and hence does not require artificial Kelvin-Voigt damping. We verify our three-dimensional implementation by comparing results of the SCEC TPV3 test problem with two well-established numerical methods, finite differences, and spectral boundary integral. Furthermore, a convergence study is presented to demonstrate the systematic consistency of the method. To illustrate the capabilities of the high-order accurate ADER-DG scheme on unstructured meshes, we simulate an earthquake scenario, inspired by the 1992 Landers earthquake, that includes curved faults, fault branches, and surface topography.

  9. Extreme Wave Simulation due to Typhoon Bolaven based on locally Enhanced Fine-Mesh Unstructured Grid Model

    NASA Astrophysics Data System (ADS)

    Kim, Kyeong Ok; Choi, Byung Ho; Jung, Kyung Tae

    2016-04-01

    The performance of an integrally coupled wave-tide-surge model using the unstructured mesh system has been tested for the typhoon Bolaven which is regarded as the most powerful storm to strike the Korean Peninsula in nearly a decade with wind gusts measured up to 50 m/s, causing serious damages with 19 victims. Use of the unstructured mesh in coastal sea regions of marginal scale allows all energy from deep to shallow waters to be seamlessly followed; the physics of wave-circulation interactions can be then correctly resolved. The model covers the whole Yellow and East China Seas with locally refined meshes near the regions of Gageo Island (offshore southwestern corner of the Korean Peninsula) and south of Jeju Island (Gangjeong and Seogwipo ports). The wind and pressure fields during the passage of typhoon Bolaven are generated by the blending method. Generally the numerical atmospheric model cannot satisfactorily reproduce the strength of typhoons due to dynamic and resolution restrictions. In this study we could achieve an improved conservation of the typhoon strength by blending the Holland typhoon model result by the empirical formula onto the ambient meteorological fields of NCEP dataset. The model results are compared with the observations and the model performance is then evaluated. The computed wave spectrums for one and two dimensions are compared with the observation in Ieodo station. Results show that the wind wave significantly enhances the current intensity and surge elevation, addressing that to incorporate the wave-current interaction effect in the wave-tide-surge coupled model is important for the accurate prediction of current and sea surface elevation as well as extreme waves in shallow coastal sea regions. The resulting modeling system can be used for hindcasting and forecasting the wave-tide-surges in marine environments with complex coastlines, shallow water depth and fine sediment.

  10. Computation of UH-60A Airloads Using CFD/CSD Coupling on Unstructured Meshes

    NASA Technical Reports Server (NTRS)

    Biedron, Robert T.; Lee-Rausch, Elizabeth M.

    2011-01-01

    An unsteady Reynolds-averaged Navier-Stokes solver for unstructured grids is used to compute the rotor airloads on the UH-60A helicopter at high-speed and high thrust conditions. The flow solver is coupled to a rotorcraft comprehensive code in order to account for trim and aeroelastic deflections. Simulations are performed both with and without the fuselage, and the effects of grid resolution, temporal resolution and turbulence model are examined. Computed airloads are compared to flight data.

  11. A Parallel Implementation of Multilevel Recursive Spectral Bisection for Application to Adaptive Unstructured Meshes. Chapter 1

    NASA Technical Reports Server (NTRS)

    Barnard, Stephen T.; Simon, Horst; Lasinski, T. A. (Technical Monitor)

    1994-01-01

    The design of a parallel implementation of multilevel recursive spectral bisection is described. The goal is to implement a code that is fast enough to enable dynamic repartitioning of adaptive meshes.

  12. Parallelized 3D CSEM modeling using edge-based finite element with total field formulation and unstructured mesh

    NASA Astrophysics Data System (ADS)

    Cai, Hongzhu; Hu, Xiangyun; Li, Jianhui; Endo, Masashi; Xiong, Bin

    2017-02-01

    We solve the 3D controlled-source electromagnetic (CSEM) problem using the edge-based finite element method. The modeling domain is discretized using unstructured tetrahedral mesh. We adopt the total field formulation for the quasi-static variant of Maxwell's equation and the computation cost to calculate the primary field can be saved. We adopt a new boundary condition which approximate the total field on the boundary by the primary field corresponding to the layered earth approximation of the complicated conductivity model. The primary field on the modeling boundary is calculated using fast Hankel transform. By using this new type of boundary condition, the computation cost can be reduced significantly and the modeling accuracy can be improved. We consider that the conductivity can be anisotropic. We solve the finite element system of equations using a parallelized multifrontal solver which works efficiently for multiple source and large scale electromagnetic modeling.

  13. An implicit block LU-SGS finite-volume lattice-Boltzmann scheme for steady flows on arbitrary unstructured meshes

    NASA Astrophysics Data System (ADS)

    Li, Weidong; Luo, Li-Shi

    2016-12-01

    This work proposes a fully implicit lattice Boltzmann (LB) scheme based on finite-volume (FV) discretization on arbitrary unstructured meshes. The linear system derived from the finite-volume lattice Boltzmann equation (LBE) is solved by the block lower-upper (BLU) symmetric-Gauss-Seidel (SGS) algorithm. The proposed implicit FV-LB scheme is efficient and robust, and has a low-storage requirement. The effectiveness and efficiency of the proposed implicit FV-LB scheme are validated and verified by the simulations of three test cases in two dimensions: (a) the laminar Blasius flow over a flat plate with Re =105; (b) the steady viscous flow past a circular cylinder with Re = 10, 20, and 40; and (c) the inviscid flow past a circular cylinder. The proposed implicit FV-LB scheme is shown to be not only effective and efficient for simulations of steady viscous flows, but also robust and efficient for simulations of inviscid flows in particular.

  14. Aerodynamic Design Optimization on Unstructured Meshes Using the Navier-Stokes Equations

    NASA Technical Reports Server (NTRS)

    Nielsen, Eric J.; Anderson, W. Kyle

    1998-01-01

    A discrete adjoint method is developed and demonstrated for aerodynamic design optimization on unstructured grids. The governing equations are the three-dimensional Reynolds-averaged Navier-Stokes equations coupled with a one-equation turbulence model. A discussion of the numerical implementation of the flow and adjoint equations is presented. Both compressible and incompressible solvers are differentiated and the accuracy of the sensitivity derivatives is verified by comparing with gradients obtained using finite differences. Several simplifying approximations to the complete linearization of the residual are also presented, and the resulting accuracy of the derivatives is examined. Demonstration optimizations for both compressible and incompressible flows are given.

  15. Parallelization of Unsteady Adaptive Mesh Refinement for Unstructured Navier-Stokes Solvers

    NASA Technical Reports Server (NTRS)

    Schwing, Alan M.; Nompelis, Ioannis; Candler, Graham V.

    2014-01-01

    This paper explores the implementation of the MPI parallelization in a Navier-Stokes solver using adaptive mesh re nement. Viscous and inviscid test problems are considered for the purpose of benchmarking, as are implicit and explicit time advancement methods. The main test problem for comparison includes e ects from boundary layers and other viscous features and requires a large number of grid points for accurate computation. Ex- perimental validation against double cone experiments in hypersonic ow are shown. The adaptive mesh re nement shows promise for a staple test problem in the hypersonic com- munity. Extension to more advanced techniques for more complicated ows is described.

  16. A high order characteristic discontinuous Galerkin scheme for advection on unstructured meshes

    NASA Astrophysics Data System (ADS)

    Lee, D.; Lowrie, R.; Petersen, M.; Ringler, T.; Hecht, M.

    2016-11-01

    A new characteristic discontinuous Galerkin (CDG) advection scheme is presented. In contrast to standard discontinuous Galerkin schemes, the test functions themselves follow characteristics in order to ensure conservation and the edges of each element are also traced backwards along characteristics in order to create a swept region, which is integrated in order to determine the mass flux across the edge. Both the accuracy and performance of the scheme are greatly improved by the use of large Courant-Friedrichs-Lewy numbers for a shear flow test case and the scheme is shown to scale sublinearly with the number of tracers being advected, outperforming a standard flux corrected transport scheme for 10 or more tracers with a linear basis. Moreover the CDG scheme may be run to arbitrarily high order spatial accuracy and on unstructured grids, and is shown to give the correct order of error convergence for piecewise linear and quadratic bases on regular quadrilateral and hexahedral planar grids. Using a modal Taylor series basis, the scheme may be made monotone while preserving conservation with the use of a standard slope limiter, although this reduces the formal accuracy of the scheme to first order. The second order scheme is roughly as accurate as the incremental remap scheme with nonlocal gradient reconstruction at half the horizontal resolution. The scheme is being developed for implementation within the Model for Prediction Across Scales (MPAS) Ocean model, an unstructured grid finite volume ocean model.

  17. Multidimensional Riemann problem with self-similar internal structure. Part II - Application to hyperbolic conservation laws on unstructured meshes

    NASA Astrophysics Data System (ADS)

    Balsara, Dinshaw S.; Dumbser, Michael

    2015-04-01

    Multidimensional Riemann solvers that have internal sub-structure in the strongly-interacting state have been formulated recently (D.S. Balsara (2012, 2014) [5,16]). Any multidimensional Riemann solver operates at the grid vertices and takes as its input all the states from its surrounding elements. It yields as its output an approximation of the strongly interacting state, as well as the numerical fluxes. The multidimensional Riemann problem produces a self-similar strongly-interacting state which is the result of several one-dimensional Riemann problems interacting with each other. To compute this strongly interacting state and its higher order moments we propose the use of a Galerkin-type formulation to compute the strongly interacting state and its higher order moments in terms of similarity variables. The use of substructure in the Riemann problem reduces numerical dissipation and, therefore, allows a better preservation of flow structures, like contact and shear waves. In this second part of a series of papers we describe how this technique is extended to unstructured triangular meshes. All necessary details for a practical computer code implementation are discussed. In particular, we explicitly present all the issues related to computational geometry. Because these Riemann solvers are Multidimensional and have Self-similar strongly-Interacting states that are obtained by Consistency with the conservation law, we call them MuSIC Riemann solvers. (A video introduction to multidimensional Riemann solvers is available on http://www.elsevier.com/xml/linking-roles/text/html". The MuSIC framework is sufficiently general to handle general nonlinear systems of hyperbolic conservation laws in multiple space dimensions. It can also accommodate all self-similar one-dimensional Riemann solvers and subsequently produces a multidimensional version of the same. In this paper we focus on unstructured triangular meshes. As examples of different systems of conservation laws we

  18. 2D nearly orthogonal mesh generation with controls on distortion functions

    Technology Transfer Automated Retrieval System (TEKTRAN)

    A method to control the distortion function of the Ryskin and Leal (RL) orthogonal mesh generation system is presented. The proposed method considers the effects from not only the local orthogonal condition but also the local smoothness condition (the geometry and the mesh size) on the distortion fu...

  19. Lagrangian ADER-WENO finite volume schemes on unstructured triangular meshes based on genuinely multidimensional HLL Riemann solvers

    NASA Astrophysics Data System (ADS)

    Boscheri, Walter; Balsara, Dinshaw S.; Dumbser, Michael

    2014-06-01

    In this paper we use the genuinely multidimensional HLL Riemann solvers recently developed by Balsara et al. in [13] to construct a new class of computationally efficient high order Lagrangian ADER-WENO one-step ALE finite volume schemes on unstructured triangular meshes. A nonlinear WENO reconstruction operator allows the algorithm to achieve high order of accuracy in space, while high order of accuracy in time is obtained by the use of an ADER time-stepping technique based on a local space-time Galerkin predictor. The multidimensional HLL and HLLC Riemann solvers operate at each vertex of the grid, considering the entire Voronoi neighborhood of each node and allow for larger time steps than conventional one-dimensional Riemann solvers. The results produced by the multidimensional Riemann solver are then used twice in our one-step ALE algorithm: first, as a node solver that assigns a unique velocity vector to each vertex, in order to preserve the continuity of the computational mesh; second, as a building block for genuinely multidimensional numerical flux evaluation that allows the scheme to run with larger time steps compared to conventional finite volume schemes that use classical one-dimensional Riemann solvers in normal direction. The space-time flux integral computation is carried out at the boundaries of each triangular space-time control volume using the Simpson quadrature rule in space and Gauss-Legendre quadrature in time. A rezoning step may be necessary in order to overcome element overlapping or crossing-over. Since our one-step ALE finite volume scheme is based directly on a space-time conservation formulation of the governing PDE system, the remapping stage is not needed, making our algorithm a so-called direct ALE method.

  20. An upwind multigrid method for solving viscous flows on unstructured triangular meshes. M.S. Thesis

    NASA Technical Reports Server (NTRS)

    Bonhaus, Daryl Lawrence

    1993-01-01

    A multigrid algorithm is combined with an upwind scheme for solving the two dimensional Reynolds averaged Navier-Stokes equations on triangular meshes resulting in an efficient, accurate code for solving complex flows around multiple bodies. The relaxation scheme uses a backward-Euler time difference and relaxes the resulting linear system using a red-black procedure. Roe's flux-splitting scheme is used to discretize convective and pressure terms, while a central difference is used for the diffusive terms. The multigrid scheme is demonstrated for several flows around single and multi-element airfoils, including inviscid, laminar, and turbulent flows. The results show an appreciable speed up of the scheme for inviscid and laminar flows, and dramatic increases in efficiency for turbulent cases, especially those on increasingly refined grids.

  1. Application of the grid-characteristic method on unstructured tetrahedral meshes to the solution of direct problems in seismic exploration of fractured layers

    NASA Astrophysics Data System (ADS)

    Biryukov, V. A.; Muratov, M. V.; Petrov, I. B.; Sannikov, A. V.; Favorskaya, A. V.

    2015-10-01

    Seismic responses from fractured geological layers are mathematically simulated by applying the grid-characteristic method on unstructured tetrahedral meshes with the use of high-performance computer systems. The method is intended for computing complicated spatial dynamical processes in complex heterogeneous media and is characterized by exact formulation of contact conditions. As a result, it can be applied to the simulation of seismic exploration problems, including in regions with a large number of inhomogeneities, examples of which are fractured structures. The use of unstructured tetrahedral meshes makes it possible to specify geological cracks of various shapes and spatial orientations. As a result, problems are solved in a formulation maximally close to an actual situation. A cluster of computers is used to improve the accuracy of the computation by optimizing its duration.

  2. Well-balanced high-order centered schemes on unstructured meshes for shallow water equations with fixed and mobile bed

    NASA Astrophysics Data System (ADS)

    Canestrelli, Alberto; Dumbser, Michael; Siviglia, Annunziato; Toro, Eleuterio F.

    2010-03-01

    In this paper, we study the numerical approximation of the two-dimensional morphodynamic model governed by the shallow water equations and bed-load transport following a coupled solution strategy. The resulting system of governing equations contains non-conservative products and it is solved simultaneously within each time step. The numerical solution is obtained using a new high-order accurate centered scheme of the finite volume type on unstructured meshes, which is an extension of the one-dimensional PRICE-C scheme recently proposed in Canestrelli et al. (2009) [5]. The resulting first-order accurate centered method is then extended to high order of accuracy in space via a high order WENO reconstruction technique and in time via a local continuous space-time Galerkin predictor method. The scheme is applied to the shallow water equations and the well-balanced properties of the method are investigated. Finally, we apply the new scheme to different test cases with both fixed and movable bed. An attractive future of the proposed method is that it is particularly suitable for engineering applications since it allows practitioners to adopt the most suitable sediment transport formula which better fits the field data.

  3. An eigenvector-based linear reconstruction scheme for the shallow-water equations on two-dimensional unstructured meshes

    NASA Astrophysics Data System (ADS)

    Soares Frazão, Sandra; Guinot, Vincent

    2007-01-01

    This paper presents a new approach to MUSCL reconstruction for solving the shallow-water equations on two-dimensional unstructured meshes. The approach takes advantage of the particular structure of the shallow-water equations. Indeed, their hyperbolic nature allows the flow variables to be expressed as a linear combination of the eigenvectors of the system. The particularity of the shallow-water equations is that the coefficients of this combination only depend upon the water depth. Reconstructing only the water depth with second-order accuracy and using only a first-order reconstruction for the flow velocity proves to be as accurate as the classical MUSCL approach. The method also appears to be more robust in cases with very strong depth gradients such as the propagation of a wave on a dry bed. Since only one reconstruction is needed (against three reconstructions in the MUSCL approach) the EVR method is shown to be 1.4-5 times as fast as the classical MUSCL scheme, depending on the computational application.

  4. A fully-implicit finite-volume method for multi-fluid reactive and collisional magnetized plasmas on unstructured meshes

    NASA Astrophysics Data System (ADS)

    Alvarez Laguna, A.; Lani, A.; Deconinck, H.; Mansour, N. N.; Poedts, S.

    2016-08-01

    We present a Finite Volume scheme for solving Maxwell's equations coupled to magnetized multi-fluid plasma equations for reactive and collisional partially ionized flows on unstructured meshes. The inclusion of the displacement current allows for studying electromagnetic wave propagation in a plasma as well as charge separation effects beyond the standard magnetohydrodynamics (MHD) description, however, it leads to a very stiff system with characteristic velocities ranging from the speed of sound of the fluids up to the speed of light. In order to control the fulfillment of the elliptical constraints of the Maxwell's equations, we use the hyperbolic divergence cleaning method. In this paper, we extend the latter method applying the CIR scheme with scaled numerical diffusion in order to balance those terms with the Maxwell flux vectors. For the fluids, we generalize the AUSM+-up to multiple fluids of different species within the plasma. The fully implicit second-order method is first verified on the Hartmann flow (including comparison with its analytical solution), two ideal MHD cases with strong shocks, namely, Orszag-Tang and the MHD rotor, then validated on a much more challenging case, representing a two-fluid magnetic reconnection under solar chromospheric conditions. For the latter case, a comparison with pioneering results available in literature is provided.

  5. 2D nearly orthogonal mesh generation with controls on distortion function

    NASA Astrophysics Data System (ADS)

    Zhang, Yaoxin; Jia, Yafei; Wang, Sam S. Y.

    2006-11-01

    A method to control the distortion function of the Ryskin and Leal (RL) orthogonal mesh generation system is presented. The proposed method considers the effects from not only the local orthogonal condition but also the local smoothness condition (the geometry and the mesh size) on the distortion function. The distortion function is determined by both the scale factors and the averaged scale factors of the constant mesh lines. Two adjustable parameters are used to control the local balance of the orthogonality and the smoothness. The proposed method is successfully applied to several benchmark examples and the natural river channels with complex geometries.

  6. A hybrid pressure-density-based Mach uniform algorithm for 2D Euler equations on unstructured grids by using multi-moment finite volume method

    NASA Astrophysics Data System (ADS)

    Xie, Bin; Deng, Xi; Sun, Ziyao; Xiao, Feng

    2017-04-01

    We propose a novel Mach-uniform numerical model for 2D Euler equations on unstructured grids by using multi-moment finite volume method. The model integrates two key components newly developed to solve compressible flows on unstructured grids with improved accuracy and robustness. A new variant of AUSM scheme, so-called AUSM+-pcp (AUSM+ with pressure-correction projection), has been devised including a pressure-correction projection to the AUSM+ flux splitting, which maintains the exact numerical conservativeness and works well for all Mach numbers. A novel 3th-order, non-oscillatory and less-dissipative reconstruction has been proposed by introducing a multi-dimensional limiting and a BVD (boundary variation diminishing) treatment to the VPM (volume integrated average (VIA) and point value (PV) based multi-moment) reconstruction. The resulting reconstruction scheme, the limited VPM-BVD formulation, is able to resolve both smooth and non-smooth solutions with high fidelity. Benchmark tests have been used to verify the present model. The numerical results substantiate the present model as an accurate and robust unstructured-grid formulation for flows of all Mach numbers.

  7. Discretization and Preconditioning Algorithms for the Euler and Navier-Stokes Equations on Unstructured Meshes

    NASA Technical Reports Server (NTRS)

    Barth, Timothy; Chancellor, Marisa K. (Technical Monitor)

    1997-01-01

    Several stabilized discretization procedures for conservation law equations on triangulated domains will be considered. Specifically, numerical schemes based on upwind finite volume, fluctuation splitting, Galerkin least-squares, and space discontinuous Galerkin discretization will be considered in detail. A standard energy analysis for several of these methods will be given via entropy symmetrization. Next, we will present some relatively new theoretical results concerning congruence relationships for left or right symmetrized equations. These results suggest new variants of existing FV, DG, GLS and FS methods which are computationally more efficient while retaining the pleasant theoretical properties achieved by entropy symmetrization. In addition, the task of Jacobian linearization of these schemes for use in Newton's method is greatly simplified owing to exploitation of exact symmetries which exist in the system. These variants have been implemented in the "ELF" library for which example calculations will be shown. The FV, FS and DG schemes also permit discrete maximum principle analysis and enforcement which greatly adds to the robustness of the methods. Some prevalent limiting strategies will be reviewed. Next, we consider embedding these nonlinear space discretizations into exact and inexact Newton solvers which are preconditioned using a nonoverlapping (Schur complement) domain decomposition technique. Elements of nonoverlapping domain decomposition for elliptic problems will be reviewed followed by the present extension to hyperbolic and elliptic-hyperbolic problems. Other issues of practical relevance such the meshing of geometries, code implementation, turbulence modeling, global convergence, etc. will be addressed as needed.

  8. Generalized Framework and Algorithms for Illustrative Visualization of Time-Varying Data on Unstructured Meshes

    SciTech Connect

    Alexander S. Rattner; Donna Post Guillen; Alark Joshi

    2012-12-01

    Photo- and physically-realistic techniques are often insufficient for visualization of simulation results, especially for 3D and time-varying datasets. Substantial research efforts have been dedicated to the development of non-photorealistic and illustration-inspired visualization techniques for compact and intuitive presentation of such complex datasets. While these efforts have yielded valuable visualization results, a great deal of work has been reproduced in studies as individual research groups often develop purpose-built platforms. Additionally, interoperability between illustrative visualization software is limited due to specialized processing and rendering architectures employed in different studies. In this investigation, a generalized framework for illustrative visualization is proposed, and implemented in marmotViz, a ParaView plugin, enabling its use on variety of computing platforms with various data file formats and mesh geometries. Detailed descriptions of the region-of-interest identification and feature-tracking algorithms incorporated into this tool are provided. Additionally, implementations of multiple illustrative effect algorithms are presented to demonstrate the use and flexibility of this framework. By providing a framework and useful underlying functionality, the marmotViz tool can act as a springboard for future research in the field of illustrative visualization.

  9. Framework and algorithms for illustrative visualizations of time-varying flows on unstructured meshes

    DOE PAGES

    Rattner, Alexander S.; Guillen, Donna Post; Joshi, Alark; ...

    2016-03-17

    Photo- and physically realistic techniques are often insufficient for visualization of fluid flow simulations, especially for 3D and time-varying studies. Substantial research effort has been dedicated to the development of non-photorealistic and illustration-inspired visualization techniques for compact and intuitive presentation of such complex datasets. However, a great deal of work has been reproduced in this field, as many research groups have developed specialized visualization software. Additionally, interoperability between illustrative visualization software is limited due to diverse processing and rendering architectures employed in different studies. In this investigation, a framework for illustrative visualization is proposed, and implemented in MarmotViz, a ParaViewmore » plug-in, enabling its use on a variety of computing platforms with various data file formats and mesh geometries. Region-of-interest identification and feature-tracking algorithms incorporated into this tool are described. Implementations of multiple illustrative effect algorithms are also presented to demonstrate the use and flexibility of this framework. Here, by providing an integrated framework for illustrative visualization of CFD data, MarmotViz can serve as a valuable asset for the interpretation of simulations of ever-growing scale.« less

  10. Framework and algorithms for illustrative visualizations of time-varying flows on unstructured meshes

    SciTech Connect

    Rattner, Alexander S.; Guillen, Donna Post; Joshi, Alark; Garimella, Srinivas

    2016-03-17

    Photo- and physically realistic techniques are often insufficient for visualization of fluid flow simulations, especially for 3D and time-varying studies. Substantial research effort has been dedicated to the development of non-photorealistic and illustration-inspired visualization techniques for compact and intuitive presentation of such complex datasets. However, a great deal of work has been reproduced in this field, as many research groups have developed specialized visualization software. Additionally, interoperability between illustrative visualization software is limited due to diverse processing and rendering architectures employed in different studies. In this investigation, a framework for illustrative visualization is proposed, and implemented in MarmotViz, a ParaView plug-in, enabling its use on a variety of computing platforms with various data file formats and mesh geometries. Region-of-interest identification and feature-tracking algorithms incorporated into this tool are described. Implementations of multiple illustrative effect algorithms are also presented to demonstrate the use and flexibility of this framework. Here, by providing an integrated framework for illustrative visualization of CFD data, MarmotViz can serve as a valuable asset for the interpretation of simulations of ever-growing scale.

  11. High Order Approximations for Compressible Fluid Dynamics on Unstructured and Cartesian Meshes

    NASA Technical Reports Server (NTRS)

    Barth, Timothy (Editor); Deconinck, Herman (Editor)

    1999-01-01

    The development of high-order accurate numerical discretization techniques for irregular domains and meshes is often cited as one of the remaining challenges facing the field of computational fluid dynamics. In structural mechanics, the advantages of high-order finite element approximation are widely recognized. This is especially true when high-order element approximation is combined with element refinement (h-p refinement). In computational fluid dynamics, high-order discretization methods are infrequently used in the computation of compressible fluid flow. The hyperbolic nature of the governing equations and the presence of solution discontinuities makes high-order accuracy difficult to achieve. Consequently, second-order accurate methods are still predominately used in industrial applications even though evidence suggests that high-order methods may offer a way to significantly improve the resolution and accuracy for these calculations. To address this important topic, a special course was jointly organized by the Applied Vehicle Technology Panel of NATO's Research and Technology Organization (RTO), the von Karman Institute for Fluid Dynamics, and the Numerical Aerospace Simulation Division at the NASA Ames Research Center. The NATO RTO sponsored course entitled "Higher Order Discretization Methods in Computational Fluid Dynamics" was held September 14-18, 1998 at the von Karman Institute for Fluid Dynamics in Belgium and September 21-25, 1998 at the NASA Ames Research Center in the United States. During this special course, lecturers from Europe and the United States gave a series of comprehensive lectures on advanced topics related to the high-order numerical discretization of partial differential equations with primary emphasis given to computational fluid dynamics (CFD). Additional consideration was given to topics in computational physics such as the high-order discretization of the Hamilton-Jacobi, Helmholtz, and elasticity equations. This volume consists

  12. Using Multi-threading for the Automatic Load Balancing of 2D Adaptive Finite Element Meshes

    NASA Technical Reports Server (NTRS)

    Heber, Gerd; Biswas, Rupak; Thulasiraman, Parimala; Gao, Guang R.; Saini, Subhash (Technical Monitor)

    1998-01-01

    In this paper, we present a multi-threaded approach for the automatic load balancing of adaptive finite element (FE) meshes The platform of our choice is the EARTH multi-threaded system which offers sufficient capabilities to tackle this problem. We implement the adaption phase of FE applications oil triangular meshes and exploit the EARTH token mechanism to automatically balance the resulting irregular and highly nonuniform workload. We discuss the results of our experiments oil EARTH-SP2, on implementation of EARTH on the IBM SP2 with different load balancing strategies that are built into the runtime system.

  13. Application of conservative residual distribution schemes to the solution of the shallow water equations on unstructured meshes

    NASA Astrophysics Data System (ADS)

    Ricchiuto, M.; Abgrall, R.; Deconinck, H.

    2007-03-01

    We consider the numerical solution of the shallow water equations on unstructured grids. We focus on flows over wet areas. The extension to the case of dry bed will be reported elsewhere. The shallow water equations fall into the category of systems of conservation laws which can be symmetrized thanks to the existence of a mathematical entropy coinciding, in this case, with the total energy. Our aim is to show the application of a particular class of conservative residual distribution (RD) schemes to the discretization of the shallow water equations and to analyze their discrete accuracy and stability properties. We give a review of conservative RD schemes showing relations between different approaches previously published, and recall L∞ stability and accuracy criteria characterizing the schemes. In particular, the accuracy of the RD method in presence of source terms is analyzed, and conditions to construct rth order discretizations on irregular triangular grids are proved. It is shown that the RD approach gives a natural way of obtaining high order discretizations which, moreover, preserves exactly the steady lake at rest solution independently on mesh topology, nature of the variation of the bottom and polynomial order of interpolation used for the unknowns. We also consider more general analytical solutions which are less investigated from the numerical view point. On irregular grids, linearity preserving RD schemes yield a truly second order approximation. We also sketch a strategy to achieve discretizations which preserve exactly some of these solutions. Numerical results on steady and time-dependent problems involving smooth and non-smooth variations of the bottom topology show very promising features of the approach.

  14. Three-dimensional modeling of a thermal dendrite using the phase field method with automatic anisotropic and unstructured adaptive finite element meshing

    NASA Astrophysics Data System (ADS)

    Sarkis, C.; Silva, L.; Gandin, Ch-A.; Plapp, M.

    2016-03-01

    Dendritic growth is computed with automatic adaptation of an anisotropic and unstructured finite element mesh. The energy conservation equation is formulated for solid and liquid phases considering an interface balance that includes the Gibbs-Thomson effect. An equation for a diffuse interface is also developed by considering a phase field function with constant negative value in the liquid and constant positive value in the solid. Unknowns are the phase field function and a dimensionless temperature, as proposed by [1]. Linear finite element interpolation is used for both variables, and discretization stabilization techniques ensure convergence towards a correct non-oscillating solution. In order to perform quantitative computations of dendritic growth on a large domain, two additional numerical ingredients are necessary: automatic anisotropic unstructured adaptive meshing [2,[3] and parallel implementations [4], both made available with the numerical platform used (CimLib) based on C++ developments. Mesh adaptation is found to greatly reduce the number of degrees of freedom. Results of phase field simulations for dendritic solidification of a pure material in two and three dimensions are shown and compared with reference work [1]. Discussion on algorithm details and the CPU time will be outlined.

  15. A simple robust and accurate a posteriori sub-cell finite volume limiter for the discontinuous Galerkin method on unstructured meshes

    NASA Astrophysics Data System (ADS)

    Dumbser, Michael; Loubère, Raphaël

    2016-08-01

    In this paper we propose a simple, robust and accurate nonlinear a posteriori stabilization of the Discontinuous Galerkin (DG) finite element method for the solution of nonlinear hyperbolic PDE systems on unstructured triangular and tetrahedral meshes in two and three space dimensions. This novel a posteriori limiter, which has been recently proposed for the simple Cartesian grid case in [62], is able to resolve discontinuities at a sub-grid scale and is substantially extended here to general unstructured simplex meshes in 2D and 3D. It can be summarized as follows: At the beginning of each time step, an approximation of the local minimum and maximum of the discrete solution is computed for each cell, taking into account also the vertex neighbors of an element. Then, an unlimited discontinuous Galerkin scheme of approximation degree N is run for one time step to produce a so-called candidate solution. Subsequently, an a posteriori detection step checks the unlimited candidate solution at time t n + 1 for positivity, absence of floating point errors and whether the discrete solution has remained within or at least very close to the bounds given by the local minimum and maximum computed in the first step. Elements that do not satisfy all the previously mentioned detection criteria are flagged as troubled cells. For these troubled cells, the candidate solution is discarded as inappropriate and consequently needs to be recomputed. Within these troubled cells the old discrete solution at the previous time tn is scattered onto small sub-cells (Ns = 2 N + 1 sub-cells per element edge), in order to obtain a set of sub-cell averages at time tn. Then, a more robust second order TVD finite volume scheme is applied to update the sub-cell averages within the troubled DG cells from time tn to time t n + 1. The new sub-grid data at time t n + 1 are finally gathered back into a valid cell-centered DG polynomial of degree N by using a classical conservative and higher order

  16. Discontinuous diffusion synthetic acceleration for S{sub n} transport on 2D arbitrary polygonal meshes

    SciTech Connect

    Turcksin, Bruno Ragusa, Jean C.

    2014-10-01

    In this paper, a Diffusion Synthetic Acceleration (DSA) technique applied to the S{sub n} radiation transport equation is developed using Piece-Wise Linear Discontinuous (PWLD) finite elements on arbitrary polygonal grids. The discretization of the DSA equations employs an Interior Penalty technique, as is classically done for the stabilization of the diffusion equation using discontinuous finite element approximations. The penalty method yields a system of linear equations that is Symmetric Positive Definite (SPD). Thus, solution techniques such as Preconditioned Conjugate Gradient (PCG) can be effectively employed. Algebraic MultiGrid (AMG) and Symmetric Gauss–Seidel (SGS) are employed as conjugate gradient preconditioners for the DSA system. AMG is shown to be significantly more efficient than SGS. Fourier analyses are carried out and we show that this discontinuous finite element DSA scheme is always stable and effective at reducing the spectral radius for iterative transport solves, even for grids with high-aspect ratio cells. Numerical results are presented for different grid types: quadrilateral, hexagonal, and polygonal grids as well as grids with local mesh adaptivity.

  17. Discontinuous diffusion synthetic acceleration for Sn transport on 2D arbitrary polygonal meshes

    NASA Astrophysics Data System (ADS)

    Turcksin, Bruno; Ragusa, Jean C.

    2014-10-01

    In this paper, a Diffusion Synthetic Acceleration (DSA) technique applied to the Sn radiation transport equation is developed using Piece-Wise Linear Discontinuous (PWLD) finite elements on arbitrary polygonal grids. The discretization of the DSA equations employs an Interior Penalty technique, as is classically done for the stabilization of the diffusion equation using discontinuous finite element approximations. The penalty method yields a system of linear equations that is Symmetric Positive Definite (SPD). Thus, solution techniques such as Preconditioned Conjugate Gradient (PCG) can be effectively employed. Algebraic MultiGrid (AMG) and Symmetric Gauss-Seidel (SGS) are employed as conjugate gradient preconditioners for the DSA system. AMG is shown to be significantly more efficient than SGS. Fourier analyses are carried out and we show that this discontinuous finite element DSA scheme is always stable and effective at reducing the spectral radius for iterative transport solves, even for grids with high-aspect ratio cells. Numerical results are presented for different grid types: quadrilateral, hexagonal, and polygonal grids as well as grids with local mesh adaptivity.

  18. Improved Simulation of Subsurface Flow in Heterogeneous Reservoirs Using a Fully Discontinuous Control-Volume-Finite-Element Method, Implicit Timestepping and Dynamic Unstructured Mesh Optimization

    NASA Astrophysics Data System (ADS)

    Salinas, P.; Jackson, M.; Pavlidis, D.; Pain, C.; Adam, A.; Xie, Z.; Percival, J. R.

    2015-12-01

    We present a new, high-order, control-volume-finite-element (CVFE) method with discontinuous representation for pressure and velocity to simulate multiphase flow in heterogeneous porous media. Time is discretized using an adaptive, fully implicit method. Heterogeneous geologic features are represented as volumes bounded by surfaces. Within these volumes, termed geologic domains, the material properties are constant. A given model typically contains numerous such geologic domains. Our approach conserves mass and does not require the use of CVs that span domain boundaries. Computational efficiency is increased by use of dynamic mesh optimization, in which an unstructured mesh adapts in space and time to key solution fields, such as pressure, velocity or saturation, whilst preserving the geometry of the geologic domains. Up-, cross- or down-scaling of material properties during mesh optimization is not required, as the properties are uniform within each geologic domain. We demonstrate that the approach, amongst other features, accurately preserves sharp saturation changes associated with high aspect ratio geologic domains such as fractures and mudstones, allowing efficient simulation of flow in highly heterogeneous models. Moreover, accurate solutions are obtained at significantly lower computational cost than an equivalent fine, fixed mesh and conventional CVFE methods. The use of implicit time integration allows the method to efficiently converge using highly anisotropic meshes without having to reduce the time-step. The work is significant for two key reasons. First, it resolves a long-standing problem associated with the use of classical CVFE methods to model flow in highly heterogeneous porous media, in which CVs span boundaries between domains of contrasting material properties. Second, it reduces computational cost/increases solution accuracy through the use of dynamic mesh optimization and time-stepping with large Courant number.

  19. Parallel unstructured grid generation

    NASA Technical Reports Server (NTRS)

    Loehner, Rainald; Camberos, Jose; Merriam, Marshal

    1991-01-01

    A parallel unstructured grid generation algorithm is presented and implemented on the Hypercube. Different processor hierarchies are discussed, and the appropraite hierarchies for mesh generation and mesh smoothing are selected. A domain-splitting algorithm for unstructured grids which tries to minimize the surface-to-volume ratio of each subdomain is described. This splitting algorithm is employed both for grid generation and grid smoothing. Results obtained on the Hypercube demonstrate the effectiveness of the algorithms developed.

  20. Applying State-of-the-art, Unstructured mesh Models on Estuary Management in the Danish Wadden Sea

    NASA Astrophysics Data System (ADS)

    Bundgaard, K.; Lumborg, U.; Vested, H. J.; Edelvang, K.

    2006-12-01

    projects in the area will be used to show the general behavior of hydrodynamics and fine-grained sediment in the area. This will be demonstrated using measurements, aerial photos and model results. Based on this, a newly developed unstructured flexible mesh model of the area will be demonstrated. It will be shown that the model can depict the physics of the hydrodynamics and the fine-grained sediment, and that a good calibration can be established with regard to the hydrodynamics and suspended sediment. The demonstration will also include the models' capabilities as tools for estuary management. It will be shown how the calibrated model can be used for optimizing dredging procedures and determining their effect on long term sedimentation. A newly developed sediment transport model describing mixtures of cohesive and non-cohesive sediments will be demonstrated. The advantage of this type of model is that it is able to calculate both cohesive and non- cohesive sediment transport simultaneously. This allows a description of effects such as sorting, armoring and changing of erodibility. The model uses a multifraction approach, which allows fractions to be treated differently. This means that the model is capable of calculating the advection dominated transport of fine- grained sediments at the same time as the bed load dominated transport of sand. This makes it a very powerful tool for calculating sediment transport in estuaries with very varying sediment types for example estuaries with mudflats and sandy tidal channels.

  1. A staggered space-time discontinuous Galerkin method for the three-dimensional incompressible Navier-Stokes equations on unstructured tetrahedral meshes

    NASA Astrophysics Data System (ADS)

    Tavelli, Maurizio; Dumbser, Michael

    2016-08-01

    In this paper we propose a novel arbitrary high order accurate semi-implicit space-time discontinuous Galerkin method for the solution of the three-dimensional incompressible Navier-Stokes equations on staggered unstructured curved tetrahedral meshes. As is typical for space-time DG schemes, the discrete solution is represented in terms of space-time basis functions. This allows to achieve very high order of accuracy also in time, which is not easy to obtain for the incompressible Navier-Stokes equations. Similarly to staggered finite difference schemes, in our approach the discrete pressure is defined on the primary tetrahedral grid, while the discrete velocity is defined on a face-based staggered dual grid. While staggered meshes are state of the art in classical finite difference schemes for the incompressible Navier-Stokes equations, their use in high order DG schemes is still quite rare. A very simple and efficient Picard iteration is used in order to derive a space-time pressure correction algorithm that achieves also high order of accuracy in time and that avoids the direct solution of global nonlinear systems. Formal substitution of the discrete momentum equation on the dual grid into the discrete continuity equation on the primary grid yields a very sparse five-point block system for the scalar pressure, which is conveniently solved with a matrix-free GMRES algorithm. From numerical experiments we find that the linear system seems to be reasonably well conditioned, since all simulations shown in this paper could be run without the use of any preconditioner, even up to very high polynomial degrees. For a piecewise constant polynomial approximation in time and if pressure boundary conditions are specified at least in one point, the resulting system is, in addition, symmetric and positive definite. This allows us to use even faster iterative solvers, like the conjugate gradient method. The flexibility and accuracy of high order space-time DG methods on curved

  2. Time-Accurate Local Time Stepping and High-Order Time CESE Methods for Multi-Dimensional Flows Using Unstructured Meshes

    NASA Technical Reports Server (NTRS)

    Chang, Chau-Lyan; Venkatachari, Balaji Shankar; Cheng, Gary

    2013-01-01

    With the wide availability of affordable multiple-core parallel supercomputers, next generation numerical simulations of flow physics are being focused on unsteady computations for problems involving multiple time scales and multiple physics. These simulations require higher solution accuracy than most algorithms and computational fluid dynamics codes currently available. This paper focuses on the developmental effort for high-fidelity multi-dimensional, unstructured-mesh flow solvers using the space-time conservation element, solution element (CESE) framework. Two approaches have been investigated in this research in order to provide high-accuracy, cross-cutting numerical simulations for a variety of flow regimes: 1) time-accurate local time stepping and 2) highorder CESE method. The first approach utilizes consistent numerical formulations in the space-time flux integration to preserve temporal conservation across the cells with different marching time steps. Such approach relieves the stringent time step constraint associated with the smallest time step in the computational domain while preserving temporal accuracy for all the cells. For flows involving multiple scales, both numerical accuracy and efficiency can be significantly enhanced. The second approach extends the current CESE solver to higher-order accuracy. Unlike other existing explicit high-order methods for unstructured meshes, the CESE framework maintains a CFL condition of one for arbitrarily high-order formulations while retaining the same compact stencil as its second-order counterpart. For large-scale unsteady computations, this feature substantially enhances numerical efficiency. Numerical formulations and validations using benchmark problems are discussed in this paper along with realistic examples.

  3. A 3D agglomeration multigrid solver for the Reynolds-averaged Navier-Stokes equations on unstructured meshes

    NASA Technical Reports Server (NTRS)

    Marvriplis, D. J.; Venkatakrishnan, V.

    1995-01-01

    An agglomeration multigrid strategy is developed and implemented for the solution of three-dimensional steady viscous flows. The method enables convergence acceleration with minimal additional memory overheads, and is completely automated, in that it can deal with grids of arbitrary construction. The multigrid technique is validated by comparing the delivered convergence rates with those obtained by a previously developed overset-mesh multigrid approach, and by demonstrating grid independent convergence rates for aerodynamic problems on very large grids. Prospects for further increases in multigrid efficiency for high-Reynolds number viscous flows on highly stretched meshes are discussed.

  4. A cell-local finite difference discretization of the low-order quasidiffusion equations for neutral particle transport on unstructured quadrilateral meshes

    SciTech Connect

    Wieselquist, William A.; Anistratov, Dmitriy Y.; Morel, Jim E.

    2014-09-15

    We present a quasidiffusion (QD) method for solving neutral particle transport problems in Cartesian XY geometry on unstructured quadrilateral meshes, including local refinement capability. Neutral particle transport problems are central to many applications including nuclear reactor design, radiation safety, astrophysics, medical imaging, radiotherapy, nuclear fuel transport/storage, shielding design, and oil well-logging. The primary development is a new discretization of the low-order QD (LOQD) equations based on cell-local finite differences. The accuracy of the LOQD equations depends on proper calculation of special non-linear QD (Eddington) factors from a transport solution. In order to completely define the new QD method, a proper discretization of the transport problem is also presented. The transport equation is discretized by a conservative method of short characteristics with a novel linear approximation of the scattering source term and monotonic, parabolic representation of the angular flux on incoming faces. Analytic and numerical tests are used to test the accuracy and spatial convergence of the non-linear method. All tests exhibit O(h{sup 2}) convergence of the scalar flux on orthogonal, random, and multi-level meshes.

  5. Application of unstructured grid methods to steady and unsteady aerodynamic problems

    NASA Technical Reports Server (NTRS)

    Batina, John T.

    1989-01-01

    The purpose is to describe the development of unstructured grid methods which have several advantages when compared to methods which make use of structured grids. Unstructured grids, for example, easily allow the treatment of complex geometries, allow for general mesh movement for realistic motions and structural deformations of complete aircraft configurations which is important for aeroelastic analysis, and enable adaptive mesh refinement to more accurately resolve the physics of the flow. Steady Euler calculations for a supersonic fighter configuration to demonstrate the complex geometry capability; unsteady Euler calculations for the supersonic fighter undergoing harmonic oscillations in a complete-vehicle bending mode to demonstrate the general mesh movement capability; and vortex-dominated conical-flow calculations for highly-swept delta wings to demonstrate the adaptive mesh refinement capability are discussed. The basic solution algorithm is a multi-stage Runge-Kutta time-stepping scheme with a finite-volume spatial discretization based on an unstructured grid of triangles in 2D or tetrahedra in 3D. The moving mesh capability is a general procedure which models each edge of each triangle (2D) or tetrahedra (3D) with a spring. The resulting static equilibrium equations which result from a summation of forces are then used to move the mesh to allow it to continuously conform to the instantaneous position or shape of the aircraft. The adaptive mesh refinement procedure enriches the unstructured mesh locally to more accurately resolve the vortical flow features. These capabilities are described in detail along with representative results which demonstrate several advantages of unstructured grid methods. The applicability of the unstructured grid methodology to steady and unsteady aerodynamic problems and directions for future work are discussed.

  6. Prospects and expectations for unstructured methods

    NASA Technical Reports Server (NTRS)

    Baker, Timothy J.

    1995-01-01

    The last decade has witnessed a vigorous and sustained research effort on unstructured methods for computational fluid dynamics. Unstructured mesh generators and flow solvers have evolved to the point where they are now in use for design purposes throughout the aerospace industry. In this paper we survey the various mesh types, structured as well as unstructured, and examine their relative strengths and weaknesses. We argue that unstructured methodology does offer the best prospect for the next generation of computational fluid dynamics algorithms.

  7. Users manual for AUTOMESH-2D: A program of automatic mesh generation for two-dimensional scattering analysis by the finite element method

    NASA Technical Reports Server (NTRS)

    Hua, Chongyu; Volakis, John L.

    1990-01-01

    AUTOMESH-2D is a computer program specifically designed as a preprocessor for the scattering analysis of two dimensional bodies by the finite element method. This program was developed due to a need for reproducing the effort required to define and check the geometry data, element topology, and material properties. There are six modules in the program: (1) Parameter Specification; (2) Data Input; (3) Node Generation; (4) Element Generation; (5) Mesh Smoothing; and (5) Data File Generation.

  8. Pollutant transport by shallow water equations on unstructured meshes: Hyperbolization of the model and numerical solution via a novel flux splitting scheme

    NASA Astrophysics Data System (ADS)

    Vanzo, Davide; Siviglia, Annunziato; Toro, Eleuterio F.

    2016-09-01

    The purpose of this paper is twofold. First, using the Cattaneo's relaxation approach, we reformulate the system of governing equations for the pollutant transport by shallow water flows over non-flat topography and anisotropic diffusion as hyperbolic balance laws with stiff source terms. The proposed relaxation system circumvents the infinite wave speed paradox which is inherent in standard advection-diffusion models. This turns out to give a larger stability range for the choice of the time step. Second, following a flux splitting approach, we derive a novel numerical method to discretise the resulting problem. In particular, we propose a new flux splitting and study the associated two systems of differential equations, called the ;hydrodynamic; and the ;relaxed diffusive; system, respectively. For the presented splitting we analyse the resulting two systems of differential equations and propose two discretisation schemes of the Godunov-type. These schemes are simple to implement, robust, accurate and fast when compared with existing methods. The resulting method is implemented on unstructured meshes and is systematically assessed for accuracy, robustness and efficiency on a carefully selected suite of test problems including non-flat topography and wetting and drying problems. Formal second order accuracy is assessed through convergence rates studies.

  9. A hierarchical preconditioner for the electric field integral equation on unstructured meshes based on primal and dual Haar bases

    NASA Astrophysics Data System (ADS)

    Adrian, S. B.; Andriulli, F. P.; Eibert, T. F.

    2017-02-01

    A new hierarchical basis preconditioner for the electric field integral equation (EFIE) operator is introduced. In contrast to existing hierarchical basis preconditioners, it works on arbitrary meshes and preconditions both the vector and the scalar potential within the EFIE operator. This is obtained by taking into account that the vector and the scalar potential discretized with loop-star basis functions are related to the hypersingular and the single layer operator (i.e., the well known integral operators from acoustics). For the single layer operator discretized with piecewise constant functions, a hierarchical preconditioner can easily be constructed. Thus the strategy we propose in this work for preconditioning the EFIE is the transformation of the scalar and the vector potential into operators equivalent to the single layer operator and to its inverse. More specifically, when the scalar potential is discretized with star functions as source and testing functions, the resulting matrix is a single layer operator discretized with piecewise constant functions and multiplied left and right with two additional graph Laplacian matrices. By inverting these graph Laplacian matrices, the discretized single layer operator is obtained, which can be preconditioned with the hierarchical basis. Dually, when the vector potential is discretized with loop functions, the resulting matrix can be interpreted as a hypersingular operator discretized with piecewise linear functions. By leveraging on a scalar Calderón identity, we can interpret this operator as spectrally equivalent to the inverse single layer operator. Then we use a linear-in-complexity, closed-form inverse of the dual hierarchical basis to precondition the hypersingular operator. The numerical results show the effectiveness of the proposed preconditioner and the practical impact of theoretical developments in real case scenarios.

  10. Unstructured meshing and parameter estimation for urban dam-break flood modeling: building treatments and implications for accuracy and efficiency

    NASA Astrophysics Data System (ADS)

    Schubert, J. E.; Sanders, B. F.

    2011-12-01

    Urban landscapes are at the forefront of current research efforts in the field of flood inundation modeling for two major reasons. First, urban areas hold relatively large economic and social importance and as such it is imperative to avoid or minimize future damages. Secondly, urban flooding is becoming more frequent as a consequence of continued development of impervious surfaces, population growth in cities, climate change magnifying rainfall intensity, sea level rise threatening coastal communities, and decaying flood defense infrastructure. In reality urban landscapes are particularly challenging to model because they include a multitude of geometrically complex features. Advances in remote sensing technologies and geographical information systems (GIS) have promulgated fine resolution data layers that offer a site characterization suitable for urban inundation modeling including a description of preferential flow paths, drainage networks and surface dependent resistances to overland flow. Recent research has focused on two-dimensional modeling of overland flow including within-curb flows and over-curb flows across developed parcels. Studies have focused on mesh design and parameterization, and sub-grid models that promise improved performance relative to accuracy and/or computational efficiency. This presentation addresses how fine-resolution data, available in Los Angeles County, are used to parameterize, initialize and execute flood inundation models for the 1963 Baldwin Hills dam break. Several commonly used model parameterization strategies including building-resistance, building-block and building hole are compared with a novel sub-grid strategy based on building-porosity. Performance of the models is assessed based on the accuracy of depth and velocity predictions, execution time, and the time and expertise required for model set-up. The objective of this study is to assess field-scale applicability, and to obtain a better understanding of advantages

  11. A Well-Balanced Central-Upwind Scheme for the 2D Shallow Water Equations on Triangular Meshes

    NASA Technical Reports Server (NTRS)

    Bryson, Steve; Levy, Doron

    2004-01-01

    We are interested in approximating solutions of the two-dimensional shallow water equations with a bottom topography on triangular meshes. We show that there is a certain flexibility in choosing the numerical fluxes in the design of semi-discrete Godunov-type central schemes. We take advantage of this fact to generate a new second-order, central-upwind method for the two-dimensional shallow water equations that is well-balanced. We demonstrate the accuracy of our method as well as its balance properties in a variety of examples.

  12. Meshing Preprocessor for the Mesoscopic 3D Finite Element Simulation of 2D and Interlock Fabric Deformation

    NASA Astrophysics Data System (ADS)

    Wendling, A.; Daniel, J. L.; Hivet, G.; Vidal-Sallé, E.; Boisse, P.

    2015-12-01

    Numerical simulation is a powerful tool to predict the mechanical behavior and the feasibility of composite parts. Among the available numerical approaches, as far as woven reinforced composites are concerned, 3D finite element simulation at the mesoscopic scale leads to a good compromise between realism and complexity. At this scale, the fibrous reinforcement is modeled by an interlacement of yarns assumed to be homogeneous that have to be accurately represented. Among the numerous issues induced by these simulations, the first one consists in providing a representative meshed geometrical model of the unit cell at the mesoscopic scale. The second one consists in enabling a fast data input in the finite element software (contacts definition, boundary conditions, elements reorientation, etc.) so as to obtain results within reasonable time. Based on parameterized 3D CAD modeling tool of unit-cells of dry fabrics already developed, this paper presents an efficient strategy which permits an automated meshing of the models with 3D hexahedral elements and to accelerate of several orders of magnitude the simulation data input. Finally, the overall modeling strategy is illustrated by examples of finite element simulation of the mechanical behavior of fabrics.

  13. Electrochemical incineration of indigo. A comparative study between 2D (plate) and 3D (mesh) BDD anodes fitted into a filter-press reactor.

    PubMed

    Nava, José L; Sirés, Ignasi; Brillas, Enric

    2014-01-01

    This paper compares the performance of 2D (plate) and 3D (mesh) boron-doped diamond (BDD) electrodes, fitted into a filter-press reactor, during the electrochemical incineration of indigo textile dye as a model organic compound in chloride medium. The electrolyses were carried out in the FM01-LC reactor at mean fluid velocities between 0.9 ≤ u ≤ 10.4 and 1.2 ≤ u ≤ 13.9 cm s(-1) for the 2D BDD and the 3D BDD electrodes, respectively, at current densities of 5.63 and 15 mA cm(-2). The oxidation of the organic matter was promoted, on the one hand, via the physisorbed hydroxyl radicals (BDD(·OH)) formed from water oxidation at the BDD surface and, on the other hand, via active chlorine formed from the oxidation of chloride ions on BDD. The performance of 2D BDD and 3D BDD electrodes in terms of current efficiency, energy consumption, and charge passage during the treatments is discussed.

  14. A new Control Volume Finite Element Method with Discontinuous Pressure Representation for Multi-phase Flow with Implicit Adaptive time Integration and Dynamic Unstructured mesh Optimization

    NASA Astrophysics Data System (ADS)

    Salinas, Pablo; Pavlidis, Dimitrios; Percival, James; Adam, Alexander; Xie, Zhihua; Pain, Christopher; Jackson, Matthew

    2015-11-01

    We present a new, high-order, control-volume-finite-element (CVFE) method with discontinuous representation for pressure and velocity to simulate multiphase flow in heterogeneous porous media. Time is discretized using an adaptive, fully implicit method. Heterogeneous geologic features are represented as volumes bounded by surfaces. Our approach conserves mass and does not require the use of CVs that span domain boundaries. Computational efficiency is increased by use of dynamic mesh optimization. We demonstrate that the approach, amongst other features, accurately preserves sharp saturation changes associated with high aspect ratio geologic domains, allowing efficient simulation of flow in highly heterogeneous models. Moreover, accurate solutions are obtained at lower cost than an equivalent fine, fixed mesh and conventional CVFE methods. The use of implicit time integration allows the method to efficiently converge using highly anisotropic meshes without having to reduce the time-step. The work is significant for two key reasons. First, it resolves a long-standing problem associated with the use of classical CVFE methods. Second, it reduces computational cost/increases solution accuracy through the use of dynamic mesh optimization and time-stepping with large Courant number. Funding for Dr P. Salinas from ExxonMobil is gratefully acknowledged.

  15. The UGRID Reader - A ParaView Plugin for the Visualization of Unstructured Climate Model Data in NetCDF Format

    NASA Astrophysics Data System (ADS)

    Brisc, Felicia; Vater, Stefan; Behrens, Joern

    2016-04-01

    We present the UGRID Reader, a visualization software component that implements the UGRID Conventions into Paraview. It currently supports the reading and visualization of 2D unstructured triangular, quadrilateral and mixed triangle/quadrilateral meshes, while the data can be defined per cell or per vertex. The Climate and Forecast Metadata Conventions (CF Conventions) have been set for many years as the standard framework for climate data written in NetCDF format. While they allow storing unstructured data simply as data defined at a series of points, they do not currently address the topology of the underlying unstructured mesh. However, it is often necessary to have additional mesh topology information, i.e. is it a one dimensional network, a 2D triangular mesh or a flexible mixed triangle/quadrilateral mesh, a 2D mesh with vertical layers, or a fully unstructured 3D mesh. The UGRID Conventions proposed by the UGRID Interoperability group are attempting to fill in this void by extending the CF Conventions with topology specifications. As the UGRID Conventions are increasingly popular with an important subset of the CF community, they warrant the development of a customized tool for the visualization and exploration of UGRID-conforming data. The implementation of the UGRID Reader has been designed corresponding to the ParaView plugin architecture. This approach allowed us to tap into the powerful reading and rendering capabilities of ParaView, while the reader is easy to install. We aim at parallelism to be able to process large data sets. Furthermore, our current application of the reader is the visualization of higher order simulation output which demands for a special representation of the data within a cell.

  16. Hybrid Mesh for Nasal Airflow Studies

    PubMed Central

    Zubair, Mohammed; Abdullah, Mohammed Zulkifly; Ahmad, Kamarul Arifin

    2013-01-01

    The accuracy of the numerical result is closely related to mesh density as well as its distribution. Mesh plays a very significant role in the outcome of numerical simulation. Many nasal airflow studies have employed unstructured mesh and more recently hybrid mesh scheme has been utilized considering the complexity of anatomical architecture. The objective of this study is to compare the results of hybrid mesh with unstructured mesh and study its effect on the flow parameters inside the nasal cavity. A three-dimensional nasal cavity model is reconstructed based on computed tomographic images of a healthy Malaysian adult nose. Navier-Stokes equation for steady airflow is solved numerically to examine inspiratory nasal flow. The pressure drop obtained using the unstructured computational grid is about 22.6 Pa for a flow rate of 20 L/min, whereas the hybrid mesh resulted in 17.8 Pa for the same flow rate. The maximum velocity obtained at the nasal valve using unstructured grid is 4.18 m/s and that with hybrid mesh is around 4.76 m/s. Hybrid mesh reported lower grid convergence index (GCI) than the unstructured mesh. Significant differences between unstructured mesh and hybrid mesh are determined highlighting the usefulness of hybrid mesh for nasal airflow studies. PMID:23983811

  17. ELRIS2D: A MATLAB Package for the 2D Inversion of DC Resistivity/IP Data

    NASA Astrophysics Data System (ADS)

    Akca, Irfan

    2016-04-01

    ELRIS2D is an open source code written in MATLAB for the two-dimensional inversion of direct current resistivity (DCR) and time domain induced polarization (IP) data. The user interface of the program is designed for functionality and ease of use. All available settings of the program can be reached from the main window. The subsurface is discre-tized using a hybrid mesh generated by the combination of structured and unstructured meshes, which reduces the computational cost of the whole inversion procedure. The inversion routine is based on the smoothness constrained least squares method. In order to verify the program, responses of two test models and field data sets were inverted. The models inverted from the synthetic data sets are consistent with the original test models in both DC resistivity and IP cases. A field data set acquired in an archaeological site is also used for the verification of outcomes of the program in comparison with the excavation results.

  18. RICH: Numerical simulation of compressible hydrodynamics on a moving Voronoi mesh

    NASA Astrophysics Data System (ADS)

    Yalinewich, Almog; Steinberg, Elad; Sari, Re'em

    2014-10-01

    RICH (Racah Institute Computational Hydrodynamics) is a 2D hydrodynamic code based on Godunov's method. The code, largely based on AREPO, acts on an unstructured moving mesh. It differs from AREPO in the interpolation and time advancement scheme as well as a novel parallelization scheme based on Voronoi tessellation. Though not universally true, in many cases a moving mesh gives better results than a static mesh: where matter moves one way and a sound wave is traveling in the other way (such that relative to the grid the wave is not moving), a static mesh gives better results than a moving mesh. RICH is designed in an object oriented, user friendly way that facilitates incorporation of new algorithms and physical processes.

  19. Preconditioning Operators on Unstructured Grids

    NASA Technical Reports Server (NTRS)

    Nepomnyaschikh, S. V.

    1996-01-01

    We consider systems of mesh equations that approximate elliptic boundary value problems on arbitrary (unstructured) quasi-uniform triangulations and propose a method for constructing optimal preconditioning operators. The method is based upon two approaches: (1) the fictitious space method, i.e., the reduction of the original problem to a problem in an auxiliary (fictitious) space, and (2) the multilevel decomposition method, i.e., the construction of preconditioners by decomposing functions on hierarchical meshes. The convergence rate of the corresponding iterative process with the preconditioner obtained is independent of the mesh step. The preconditioner has an optimal computational cost: the number of arithmetic operations required for its implementation is proportional to the number of unknowns in the problem. The construction of the preconditioning operators for three dimensional problems can be done in the same way.

  20. A Parallel Computational Fluid Dynamics Unstructured Grid Generator

    DTIC Science & Technology

    1993-12-01

    Vol 11. 953-961. Philadelphia: SIAM, 1993. Holey, J. Andrew and Oscar H. Ibarra . "Triangulation, Veronoi Diagram, and Convex Hull in k-Space on Mesh...rIdhner, Rainald, Jose Camberos, and Marshall Merriam. "Parallel Unstructured Grid Generation," in Unstructured Scientific Computation on Scalable

  1. toolkit computational mesh conceptual model.

    SciTech Connect

    Baur, David G.; Edwards, Harold Carter; Cochran, William K.; Williams, Alan B.; Sjaardema, Gregory D.

    2010-03-01

    The Sierra Toolkit computational mesh is a software library intended to support massively parallel multi-physics computations on dynamically changing unstructured meshes. This domain of intended use is inherently complex due to distributed memory parallelism, parallel scalability, heterogeneity of physics, heterogeneous discretization of an unstructured mesh, and runtime adaptation of the mesh. Management of this inherent complexity begins with a conceptual analysis and modeling of this domain of intended use; i.e., development of a domain model. The Sierra Toolkit computational mesh software library is designed and implemented based upon this domain model. Software developers using, maintaining, or extending the Sierra Toolkit computational mesh library must be familiar with the concepts/domain model presented in this report.

  2. Unstructured CFD and Noise Prediction Methods for Propulsion Airframe Aeroacoustics

    NASA Technical Reports Server (NTRS)

    Pao, S. Paul; Abdol-Hamid, Khaled S.; Campbell, Richard L.; Hunter, Craig A.; Massey, Steven J.; Elmiligui, Alaa A.

    2006-01-01

    Using unstructured mesh CFD methods for Propulsion Airframe Aeroacoustics (PAA) analysis has the distinct advantage of precise and fast computational mesh generation for complex propulsion and airframe integration arrangements that include engine inlet, exhaust nozzles, pylon, wing, flaps, and flap deployment mechanical parts. However, accurate solution values of shear layer velocity, temperature and turbulence are extremely important for evaluating the usually small noise differentials of potential applications to commercial transport aircraft propulsion integration. This paper describes a set of calibration computations for an isolated separate flow bypass ratio five engine nozzle model and the same nozzle system with a pylon. These configurations have measured data along with prior CFD solutions and noise predictions using a proven structured mesh method, which can be used for comparison to the unstructured mesh solutions obtained in this investigation. This numerical investigation utilized the TetrUSS system that includes a Navier-Stokes solver, the associated unstructured mesh generation tools, post-processing utilities, plus some recently added enhancements to the system. New features necessary for this study include the addition of two equation turbulence models to the USM3D code, an h-refinement utility to enhance mesh density in the shear mixing region, and a flow adaptive mesh redistribution method. In addition, a computational procedure was developed to optimize both solution accuracy and mesh economy. Noise predictions were completed using an unstructured mesh version of the JeT3D code.

  3. Parallel performance of a preconditioned CG solver for unstructured finite element applications

    SciTech Connect

    Shadid, J.N.; Hutchinson, S.A.; Moffat, H.K.

    1994-12-31

    A parallel unstructured finite element (FE) implementation designed for message passing MIMD machines is described. This implementation employs automated problem partitioning algorithms for load balancing unstructured grids, a distributed sparse matrix representation of the global finite element equations and a parallel conjugate gradient (CG) solver. In this paper a number of issues related to the efficient implementation of parallel unstructured mesh applications are presented. These include the differences between structured and unstructured mesh parallel applications, major communication kernels for unstructured CG solvers, automatic mesh partitioning algorithms, and the influence of mesh partitioning metrics on parallel performance. Initial results are presented for example finite element (FE) heat transfer analysis applications on a 1024 processor nCUBE 2 hypercube. Results indicate over 95% scaled efficiencies are obtained for some large problems despite the required unstructured data communication.

  4. Performance Portability for Unstructured Mesh Physics

    SciTech Connect

    Keasler, J A

    2012-03-23

    ASC legacy software must be ported to emerging hardware architectures. This paper notes that many programming models used by DOE applications are similar, and suggests that constructing a common terminology across these models could reveal a performance portable programming model. The paper then highlights how the LULESH mini-app is used to explore new programming models with outside solution providers. Finally, we suggest better tools to identify parallelism in software, and give suggestions for enhancing the co-design process with vendors.

  5. Pre- and postprocessing techniques for determining goodness of computational meshes

    NASA Technical Reports Server (NTRS)

    Oden, J. Tinsley; Westermann, T.; Bass, J. M.

    1993-01-01

    Research in error estimation, mesh conditioning, and solution enhancement for finite element, finite difference, and finite volume methods has been incorporated into AUDITOR, a modern, user-friendly code, which operates on 2D and 3D unstructured neutral files to improve the accuracy and reliability of computational results. Residual error estimation capabilities provide local and global estimates of solution error in the energy norm. Higher order results for derived quantities may be extracted from initial solutions. Within the X-MOTIF graphical user interface, extensive visualization capabilities support critical evaluation of results in linear elasticity, steady state heat transfer, and both compressible and incompressible fluid dynamics.

  6. Implicit schemes and parallel computing in unstructured grid CFD

    NASA Technical Reports Server (NTRS)

    Venkatakrishnam, V.

    1995-01-01

    The development of implicit schemes for obtaining steady state solutions to the Euler and Navier-Stokes equations on unstructured grids is outlined. Applications are presented that compare the convergence characteristics of various implicit methods. Next, the development of explicit and implicit schemes to compute unsteady flows on unstructured grids is discussed. Next, the issues involved in parallelizing finite volume schemes on unstructured meshes in an MIMD (multiple instruction/multiple data stream) fashion are outlined. Techniques for partitioning unstructured grids among processors and for extracting parallelism in explicit and implicit solvers are discussed. Finally, some dynamic load balancing ideas, which are useful in adaptive transient computations, are presented.

  7. Curved mesh generation and mesh refinement using Lagrangian solid mechanics

    SciTech Connect

    Persson, P.-O.; Peraire, J.

    2008-12-31

    We propose a method for generating well-shaped curved unstructured meshes using a nonlinear elasticity analogy. The geometry of the domain to be meshed is represented as an elastic solid. The undeformed geometry is the initial mesh of linear triangular or tetrahedral elements. The external loading results from prescribing a boundary displacement to be that of the curved geometry, and the final configuration is determined by solving for the equilibrium configuration. The deformations are represented using piecewise polynomials within each element of the original mesh. When the mesh is sufficiently fine to resolve the solid deformation, this method guarantees non-intersecting elements even for highly distorted or anisotropic initial meshes. We describe the method and the solution procedures, and we show a number of examples of two and three dimensional simplex meshes with curved boundaries. We also demonstrate how to use the technique for local refinement of non-curved meshes in the presence of curved boundaries.

  8. ELLIPT2D: A Flexible Finite Element Code Written Python

    SciTech Connect

    Pletzer, A.; Mollis, J.C.

    2001-03-22

    The use of the Python scripting language for scientific applications and in particular to solve partial differential equations is explored. It is shown that Python's rich data structure and object-oriented features can be exploited to write programs that are not only significantly more concise than their counter parts written in Fortran, C or C++, but are also numerically efficient. To illustrate this, a two-dimensional finite element code (ELLIPT2D) has been written. ELLIPT2D provides a flexible and easy-to-use framework for solving a large class of second-order elliptic problems. The program allows for structured or unstructured meshes. All functions defining the elliptic operator are user supplied and so are the boundary conditions, which can be of Dirichlet, Neumann or Robbins type. ELLIPT2D makes extensive use of dictionaries (hash tables) as a way to represent sparse matrices.Other key features of the Python language that have been widely used include: operator over loading, error handling, array slicing, and the Tkinter module for building graphical use interfaces. As an example of the utility of ELLIPT2D, a nonlinear solution of the Grad-Shafranov equation is computed using a Newton iterative scheme. A second application focuses on a solution of the toroidal Laplace equation coupled to a magnetohydrodynamic stability code, a problem arising in the context of magnetic fusion research.

  9. BatTri: A two-dimensional bathymetry-based unstructured triangular grid generator for finite element circulation modeling

    NASA Astrophysics Data System (ADS)

    Bilgili, Ata; Smith, Keston W.; Lynch, Daniel R.

    2006-06-01

    A brief summary of Delaunay unstructured triangular grid refinement algorithms, including the recent "off-centers" method, is provided and mesh generation requirements that are imperative to meet the criteria of the circulation modeling community are defined. A Matlab public-domain two-dimensional (2-D) mesh generation package (BatTri) based on these requirements is then presented and its efficiency shown through examples. BatTri consists of a graphical mesh editing interface and several bathymetry-based refinement algorithms, complemented by a set of diagnostic utilities to check and improve grid quality. The final output mesh node locations, node depths and element incidence list are obtained starting from only a basic set of bathymetric data. This simple but efficient setup allows fast interactive mesh customization and provides circulation modelers with problem-specific flexibility while satisfying the usual requirements on mesh size and element quality. A test of the "off-centers" method performed on 100 domains with randomly generated coastline and bathymetry shows an overall 25% reduction in the number of elements with only slight decrease in element quality. More importantly, this shows that BatTri is easily upgradeable to meet the future demands by the addition of new grid generation algorithms and Delaunay refinement schemes as they are made available.

  10. Unstructured surface grid generation

    NASA Technical Reports Server (NTRS)

    Samareh-Abolhassani, Jamshid

    1993-01-01

    Viewgraphs on unstructured surface grid generation are presented. Topics covered include: requirements for curves, surfaces, solids, and text; surface approximation; triangulation; advancing; projection; mapping; and parametric curves.

  11. Domain decomposition multigrid for unstructured grids

    SciTech Connect

    Shapira, Yair

    1997-01-01

    A two-level preconditioning method for the solution of elliptic boundary value problems using finite element schemes on possibly unstructured meshes is introduced. It is based on a domain decomposition and a Galerkin scheme for the coarse level vertex unknowns. For both the implementation and the analysis, it is not required that the curves of discontinuity in the coefficients of the PDE match the interfaces between subdomains. Generalizations to nonmatching or overlapping grids are made.

  12. Finite Element Results Visualization for Unstructured Grids

    SciTech Connect

    Speck, Douglas E.; Dovey, Donald J.

    1996-07-15

    GRIZ is a general-purpose post-processing application supporting interactive visualization of finite element analysis results on unstructured grids. In addition to basic pseudocolor renderings of state variables over the mesh surface, GRIZ provides modern visualization techniques such as isocontours and isosurfaces, cutting planes, vector field display, and particle traces. GRIZ accepts both command-line and mouse-driven input, and is portable to virtually any UNIX platform which provides Motif and OpenGl libraries.

  13. Unstructured discontinuous Galerkin for seismic inversion.

    SciTech Connect

    van Bloemen Waanders, Bart Gustaaf; Ober, Curtis Curry; Collis, Samuel Scott

    2010-04-01

    This abstract explores the potential advantages of discontinuous Galerkin (DG) methods for the time-domain inversion of media parameters within the earth's interior. In particular, DG methods enable local polynomial refinement to better capture localized geological features within an area of interest while also allowing the use of unstructured meshes that can accurately capture discontinuous material interfaces. This abstract describes our initial findings when using DG methods combined with Runge-Kutta time integration and adjoint-based optimization algorithms for full-waveform inversion. Our initial results suggest that DG methods allow great flexibility in matching the media characteristics (faults, ocean bottom and salt structures) while also providing higher fidelity representations in target regions. Time-domain inversion using discontinuous Galerkin on unstructured meshes and with local polynomial refinement is shown to better capture localized geological features and accurately capture discontinuous-material interfaces. These approaches provide the ability to surgically refine representations in order to improve predicted models for specific geological features. Our future work will entail automated extensions to directly incorporate local refinement and adaptive unstructured meshes within the inversion process.

  14. An efficient implicit unstructured finite volume solver for generalised Newtonian fluids

    NASA Astrophysics Data System (ADS)

    Jalali, Alireza; Sharbatdar, Mahkame; Ollivier-Gooch, Carl

    2016-03-01

    An implicit finite volume solver is developed for the steady-state solution of generalised Newtonian fluids on unstructured meshes in 2D. The pseudo-compressibility technique is employed to couple the continuity and momentum equations by transforming the governing equations into a hyperbolic system. A second-order accurate spatial discretisation is provided by performing a least-squares gradient reconstruction within each control volume of unstructured meshes. A central flux function is used for the convective terms and a solution jump term is added to the averaged component for the viscous terms. Global implicit time-stepping using successive evolution-relaxation is utilised to accelerate the convergence to steady-state solutions. The performance of our flow solver is examined for power-law and Carreau-Yasuda non-Newtonian fluids in different geometries. The effects of model parameters and Reynolds number are studied on the convergence rate and flow features. Our results verify second-order accuracy of the discretisation and also fast and efficient convergence to the steady-state solution for a wide range of flow variables.

  15. 2D-3D hybrid stabilized finite element method for tsunami runup simulations

    NASA Astrophysics Data System (ADS)

    Takase, S.; Moriguchi, S.; Terada, K.; Kato, J.; Kyoya, T.; Kashiyama, K.; Kotani, T.

    2016-09-01

    This paper presents a two-dimensional (2D)-three-dimensional (3D) hybrid stabilized finite element method that enables us to predict a propagation process of tsunami generated in a hypocentral region, which ranges from offshore propagation to runup to urban areas, with high accuracy and relatively low computational costs. To be more specific, the 2D shallow water equation is employed to simulate the propagation of offshore waves, while the 3D Navier-Stokes equation is employed for the runup in urban areas. The stabilized finite element method is utilized for numerical simulations for both of the 2D and 3D domains that are independently discretized with unstructured meshes. The multi-point constraint and transmission methods are applied to satisfy the continuity of flow velocities and pressures at the interface between the resulting 2D and 3D meshes, since neither their spatial dimensions nor node arrangements are consistent. Numerical examples are presented to demonstrate the performance of the proposed hybrid method to simulate tsunami behavior, including offshore propagation and runup to urban areas, with substantially lower computation costs in comparison with full 3D computations.

  16. Parallel unstructured AMR and gigabit networking for Beowulf-class clusters

    NASA Technical Reports Server (NTRS)

    Norton, C. D.; Cwik, T. A.

    2001-01-01

    The impact of gigabit networking with Myrinet 2000 hardware and MPICH-GM software on a 2-way SMP Beowulf-class cluster for parallel unstructured adaptive mesh refinement using the PYRAMID library is described.

  17. Floating shock fitting via Lagrangian adaptive meshes

    NASA Technical Reports Server (NTRS)

    Vanrosendale, John

    1995-01-01

    In recent work we have formulated a new approach to compressible flow simulation, combining the advantages of shock-fitting and shock-capturing. Using a cell-centered on Roe scheme discretization on unstructured meshes, we warp the mesh while marching to steady state, so that mesh edges align with shocks and other discontinuities. This new algorithm, the Shock-fitting Lagrangian Adaptive Method (SLAM), is, in effect, a reliable shock-capturing algorithm which yields shock-fitted accuracy at convergence.

  18. Three-dimensional unstructured grid generation via incremental insertion and local optimization

    NASA Technical Reports Server (NTRS)

    Barth, Timothy J.; Wiltberger, N. Lyn; Gandhi, Amar S.

    1992-01-01

    Algorithms for the generation of 3D unstructured surface and volume grids are discussed. These algorithms are based on incremental insertion and local optimization. The present algorithms are very general and permit local grid optimization based on various measures of grid quality. This is very important; unlike the 2D Delaunay triangulation, the 3D Delaunay triangulation appears not to have a lexicographic characterization of angularity. (The Delaunay triangulation is known to minimize that maximum containment sphere, but unfortunately this is not true lexicographically). Consequently, Delaunay triangulations in three-space can result in poorly shaped tetrahedral elements. Using the present algorithms, 3D meshes can be constructed which optimize a certain angle measure, albeit locally. We also discuss the combinatorial aspects of the algorithm as well as implementational details.

  19. Unstructured Adaptive (UA) NAS Parallel Benchmark. Version 1.0

    NASA Technical Reports Server (NTRS)

    Feng, Huiyu; VanderWijngaart, Rob; Biswas, Rupak; Mavriplis, Catherine

    2004-01-01

    We present a complete specification of a new benchmark for measuring the performance of modern computer systems when solving scientific problems featuring irregular, dynamic memory accesses. It complements the existing NAS Parallel Benchmark suite. The benchmark involves the solution of a stylized heat transfer problem in a cubic domain, discretized on an adaptively refined, unstructured mesh.

  20. 6th International Meshing Roundtable '97

    SciTech Connect

    White, D.

    1997-09-01

    The goal of the 6th International Meshing Roundtable is to bring together researchers and developers from industry, academia, and government labs in a stimulating, open environment for the exchange of technical information related to the meshing process. In the pas~ the Roundtable has enjoyed significant participation born each of these groups from a wide variety of countries. The Roundtable will consist of technical presentations from contributed papers and abstracts, two invited speakers, and two invited panels of experts discussing topics related to the development and use of automatic mesh generation tools. In addition, this year we will feature a "Bring Your Best Mesh" competition and poster session to encourage discussion and participation from a wide variety of mesh generation tool users. The schedule and evening social events are designed to provide numerous opportunities for informal dialog. A proceedings will be published by Sandia National Laboratories and distributed at the Roundtable. In addition, papers of exceptionally high quaIity will be submitted to a special issue of the International Journal of Computational Geometry and Applications. Papers and one page abstracts were sought that present original results on the meshing process. Potential topics include but are got limited to: Unstructured triangular and tetrahedral mesh generation Unstructured quadrilateral and hexahedral mesh generation Automated blocking and structured mesh generation Mixed element meshing Surface mesh generation Geometry decomposition and clean-up techniques Geometry modification techniques related to meshing Adaptive mesh refinement and mesh quality control Mesh visualization Special purpose meshing algorithms for particular applications Theoretical or novel ideas with practical potential Technical presentations from industrial researchers.

  1. Algebraic mesh quality metrics

    SciTech Connect

    KNUPP,PATRICK

    2000-04-24

    Quality metrics for structured and unstructured mesh generation are placed within an algebraic framework to form a mathematical theory of mesh quality metrics. The theory, based on the Jacobian and related matrices, provides a means of constructing, classifying, and evaluating mesh quality metrics. The Jacobian matrix is factored into geometrically meaningful parts. A nodally-invariant Jacobian matrix can be defined for simplicial elements using a weight matrix derived from the Jacobian matrix of an ideal reference element. Scale and orientation-invariant algebraic mesh quality metrics are defined. the singular value decomposition is used to study relationships between metrics. Equivalence of the element condition number and mean ratio metrics is proved. Condition number is shown to measure the distance of an element to the set of degenerate elements. Algebraic measures for skew, length ratio, shape, volume, and orientation are defined abstractly, with specific examples given. Combined metrics for shape and volume, shape-volume-orientation are algebraically defined and examples of such metrics are given. Algebraic mesh quality metrics are extended to non-simplical elements. A series of numerical tests verify the theoretical properties of the metrics defined.

  2. The Unstructured Clinical Interview

    ERIC Educational Resources Information Center

    Jones, Karyn Dayle

    2010-01-01

    In mental health, family, and community counseling settings, master's-level counselors engage in unstructured clinical interviewing to develop diagnoses based on the "Diagnostic and Statistical Manual of Mental Disorders" (4th ed., text rev.; "DSM-IV-TR"; American Psychiatric Association, 2000). Although counselors receive education about…

  3. Mapping unstructured grid computations to massively parallel computers. Ph.D. Thesis - Rensselaer Polytechnic Inst., Feb. 1992

    NASA Technical Reports Server (NTRS)

    Hammond, Steven Warren

    1992-01-01

    Investigated here is this mapping problem: assign the tasks of a parallel program to the processors of a parallel computer such that the execution time is minimized. First, a taxonomy of objective functions and heuristics used to solve the mapping problem is presented. Next, we develop a highly parallel heuristic mapping algorithm, called Cyclic Pairwise Exchange (CPE), and discuss its place in the taxonomy. CPE uses local pairwise exchanges of processor assignments to iteratively improve an initial mapping. A variety of initial mapping schemes are tested and recursive spectral bipartitioning (RSB) followed by CPE is shown to result in the best mappings. For the test cases studied here, problems arising in computational fluid dynamics and structural mechanics on unstructured triangular and tetrahedral meshes, RSB and CPE outperform methods based on simulated annealing. Much less time is required to do the mapping and the results obtained are better. Compared with random and naive mappings, RSB and CPE reduce the communication time two fold for the test problems used. Finally, we use CPE in two applications on a CM-2. The first application is a data parallel mesh-vertex upwind finite volume scheme for solving the Euler equations on 2-D triangular unstructured meshes. CPE is used to map grid points to processors. The performance of this code is compared with a similar code on a Cray-YMP and an Intel iPSC/860. The second application is parallel sparse matrix-vector multiplication used in the iterative solution of large sparse linear systems of equations. We map rows of the matrix to processors and use an inner-product based matrix-vector multiplication. We demonstrate that this method is an order of magnitude faster than methods based on scan operations for our test cases.

  4. Load Balancing Unstructured Adaptive Grids for CFD Problems

    NASA Technical Reports Server (NTRS)

    Biswas, Rupak; Oliker, Leonid

    1996-01-01

    Mesh adaption is a powerful tool for efficient unstructured-grid computations but causes load imbalance among processors on a parallel machine. A dynamic load balancing method is presented that balances the workload across all processors with a global view. After each parallel tetrahedral mesh adaption, the method first determines if the new mesh is sufficiently unbalanced to warrant a repartitioning. If so, the adapted mesh is repartitioned, with new partitions assigned to processors so that the redistribution cost is minimized. The new partitions are accepted only if the remapping cost is compensated by the improved load balance. Results indicate that this strategy is effective for large-scale scientific computations on distributed-memory multiprocessors.

  5. GRIZ. Finite Element Results Visualization for Unstructured Grids

    SciTech Connect

    Dovey, D.; Spelce, T.E.; Christon, M.A.

    1996-03-01

    GRIZ is a general-purpose post-processing application supporting interactive visualization of finite element analysis results on unstructured grids. In addition to basic pseudocolor renderings of state variables over the mesh surface, GRIZ provides modern visualization techniques such as isocontours and isosurfaces, cutting planes, vector field display, and particle traces. GRIZ accepts both command-line and mouse-driven input, and is portable to virtually any UNIX platform which provides Motif and OpenGl libraries.

  6. Segmentation of Unstructured Datasets

    NASA Technical Reports Server (NTRS)

    Bhat, Smitha

    1996-01-01

    Datasets generated by computer simulations and experiments in Computational Fluid Dynamics tend to be extremely large and complex. It is difficult to visualize these datasets using standard techniques like Volume Rendering and Ray Casting. Object Segmentation provides a technique to extract and quantify regions of interest within these massive datasets. This thesis explores basic algorithms to extract coherent amorphous regions from two-dimensional and three-dimensional scalar unstructured grids. The techniques are applied to datasets from Computational Fluid Dynamics and from Finite Element Analysis.

  7. Mesh Generation via Local Bisection Refinement of Triangulated Grids

    DTIC Science & Technology

    2015-06-01

    UNCLASSIFIED Mesh Generation via Local Bisection Refinement of Triangulated Grids Jason R. Looker Joint and Operations Analysis Division Defence...Science and Technology Organisation DSTO–TR–3095 ABSTRACT This report provides a comprehensive implementation of an unstructured mesh generation method...relatively simple to implement, has the capacity to quickly generate a refined mesh with triangles that rapidly change size over a short distance, and does

  8. Diffusive mesh relaxation in ALE finite element numerical simulations

    SciTech Connect

    Dube, E.I.

    1996-06-01

    The theory for a diffusive mesh relaxation algorithm is developed for use in three-dimensional Arbitary Lagrange/Eulerian (ALE) finite element simulation techniques. This mesh relaxer is derived by a variational principle for an unstructured 3D grid using finite elements, and incorporates hourglass controls in the numerical implementation. The diffusive coefficients are based on the geometric properties of the existing mesh, and are chosen so as to allow for a smooth grid that retains the general shape of the original mesh. The diffusive mesh relaxation algorithm is then applied to an ALE code system, and results from several test cases are discussed.

  9. DynEarthSol3D: An Efficient and Flexible Unstructured Finite Element Method to Study Long-Term Tectonic Deformation

    NASA Astrophysics Data System (ADS)

    Tan, E.; Choi, E.; Lavier, L. L.; Calo, V. M.

    2013-12-01

    Many tectonic problems treat the lithosphere as a compressible elastic material, which can also flow viscously or break in a brittle fashion depending on the stress level applied and the temperature conditions. We present a flexible methodology to address the resulting complex material response, which imposes severe challenges on the discretization and rheological models used. This robust, adaptive, multidimensional, finite element method solves the momentum balance and the heat equation in Lagrangian form with unstructured simplicial mesh (triangles in 2D and tetrahedra in 3D). The mesh locking problem is avoided by using averaged volumetric strain rate to update the stress. The solver uses contingent mesh adaptivity in places where shear strain is focused (localization) during remeshing. A simple scheme of mesh coarsening is employed to prevent tiny elements during remeshing. Lagrangian markers are used to track multiple compositions of rocks. The code is parallelized via OpenMP with graph coloring. We detail the solver and verify it in a number of benchmark problems against analytic and numerical solutions from the literature.

  10. Computational Aerothermodynamic Simulation Issues on Unstructured Grids

    NASA Technical Reports Server (NTRS)

    Gnoffo, Peter A.; White, Jeffery A.

    2004-01-01

    The synthesis of physical models for gas chemistry and turbulence from the structured grid codes LAURA and VULCAN into the unstructured grid code FUN3D is described. A directionally Symmetric, Total Variation Diminishing (STVD) algorithm and an entropy fix (eigenvalue limiter) keyed to local cell Reynolds number are introduced to improve solution quality for hypersonic aeroheating applications. A simple grid-adaptation procedure is incorporated within the flow solver. Simulations of flow over an ellipsoid (perfect gas, inviscid), Shuttle Orbiter (viscous, chemical nonequilibrium) and comparisons to the structured grid solvers LAURA (cylinder, Shuttle Orbiter) and VULCAN (flat plate) are presented to show current capabilities. The quality of heating in 3D stagnation regions is very sensitive to algorithm options in general, high aspect ratio tetrahedral elements complicate the simulation of high Reynolds number, viscous flow as compared to locally structured meshes aligned with the flow.

  11. Parallel Adaptive Mesh Refinement

    SciTech Connect

    Diachin, L; Hornung, R; Plassmann, P; WIssink, A

    2005-03-04

    As large-scale, parallel computers have become more widely available and numerical models and algorithms have advanced, the range of physical phenomena that can be simulated has expanded dramatically. Many important science and engineering problems exhibit solutions with localized behavior where highly-detailed salient features or large gradients appear in certain regions which are separated by much larger regions where the solution is smooth. Examples include chemically-reacting flows with radiative heat transfer, high Reynolds number flows interacting with solid objects, and combustion problems where the flame front is essentially a two-dimensional sheet occupying a small part of a three-dimensional domain. Modeling such problems numerically requires approximating the governing partial differential equations on a discrete domain, or grid. Grid spacing is an important factor in determining the accuracy and cost of a computation. A fine grid may be needed to resolve key local features while a much coarser grid may suffice elsewhere. Employing a fine grid everywhere may be inefficient at best and, at worst, may make an adequately resolved simulation impractical. Moreover, the location and resolution of fine grid required for an accurate solution is a dynamic property of a problem's transient features and may not be known a priori. Adaptive mesh refinement (AMR) is a technique that can be used with both structured and unstructured meshes to adjust local grid spacing dynamically to capture solution features with an appropriate degree of resolution. Thus, computational resources can be focused where and when they are needed most to efficiently achieve an accurate solution without incurring the cost of a globally-fine grid. Figure 1.1 shows two example computations using AMR; on the left is a structured mesh calculation of a impulsively-sheared contact surface and on the right is the fuselage and volume discretization of an RAH-66 Comanche helicopter [35]. Note the

  12. Cache-oblivious mesh layouts

    SciTech Connect

    Yoon, Sung-Eui; Lindstrom, Peter; Pascucci, Valerio; Manocha, Dinesh

    2005-07-01

    We present a novel method for computing cache-oblivious layouts of large meshes that improve the performance of interactive visualization and geometric processing algorithms. Given that the mesh is accessed in a reasonably coherent manner, we assume no particular data access patterns or cache parameters of the memory hierarchy involved in the computation. Furthermore, our formulation extends directly to computing layouts of multi-resolution and bounding volume hierarchies of large meshes. We develop a simple and practical cache-oblivious metric for estimating cache misses. Computing a coherent mesh layout is reduced to a combinatorial optimization problem. We designed and implemented an out-of-core multilevel minimization algorithm and tested its performance on unstructured meshes composed of tens to hundreds of millions of triangles. Our layouts can significantly reduce the number of cache misses. We have observed 2-20 times speedups in view-dependent rendering, collision detection, and isocontour extraction without any modification of the algorithms or runtime applications.

  13. Development of an unstructured solution adaptive method for the quasi-three-dimensional Euler and Navier-Stokes equations

    NASA Technical Reports Server (NTRS)

    Jiang, Yi-Tsann; Usab, William J., Jr.

    1993-01-01

    A general solution adaptive scheme based on a remeshing technique is developed for solving the two-dimensional and quasi-three-dimensional Euler and Favre-averaged Navier-Stokes equations. The numerical scheme is formulated on an unstructured triangular mesh utilizing an edge-based pointer system which defines the edge connectivity of the mesh structure. Jameson's four-stage hybrid Runge-Kutta scheme is used to march the solution in time. The convergence rate is enhanced through the use of local time stepping and implicit residual averaging. As the solution evolves, the mesh is regenerated adaptively using flow field information. Mesh adaptation parameters are evaluated such that an estimated local numerical error is equally distributed over the whole domain. For inviscid flows, the present approach generates a complete unstructured triangular mesh using the advancing front method. For turbulent flows, the approach combines a local highly stretched structured triangular mesh in the boundary layer region with an unstructured mesh in the remaining regions to efficiently resolve the important flow features. One-equation and two-equation turbulence models are incorporated into the present unstructured approach. Results are presented for a wide range of flow problems including two-dimensional multi-element airfoils, two-dimensional cascades, and quasi-three-dimensional cascades. This approach is shown to gain flow resolution in the refined regions while achieving a great reduction in the computational effort and storage requirements since solution points are not wasted in regions where they are not required.

  14. Development of an unstructured solution adaptive method for the quasi-three-dimensional Euler and Navier-Stokes equations

    NASA Technical Reports Server (NTRS)

    Jiang, Yi-Tsann

    1993-01-01

    A general solution adaptive scheme-based on a remeshing technique is developed for solving the two-dimensional and quasi-three-dimensional Euler and Favre-averaged Navier-Stokes equations. The numerical scheme is formulated on an unstructured triangular mesh utilizing an edge-based pointer system which defines the edge connectivity of the mesh structure. Jameson's four-stage hybrid Runge-Kutta scheme is used to march the solution in time. The convergence rate is enhanced through the use of local time stepping and implicit residual averaging. As the solution evolves, the mesh is regenerated adaptively using flow field information. Mesh adaptation parameters are evaluated such that an estimated local numerical error is equally distributed over the whole domain. For inviscid flows, the present approach generates a complete unstructured triangular mesh using the advancing front method. For turbulent flows, the approach combines a local highly stretched structured triangular mesh in the boundary layer region with an unstructured mesh in the remaining regions to efficiently resolve the important flow features. One-equation and two-equation turbulence models are incorporated into the present unstructured approach. Results are presented for a wide range of flow problems including two-dimensional multi-element airfoils, two-dimensional cascades, and quasi-three-dimensional cascades. This approach is shown to gain flow resolution in the refined regions while achieving a great reduction in the computational effort and storage requirements since solution points are not wasted in regions where they are not required.

  15. Three-dimensional unstructured grid refinement and optimization using edge-swapping

    NASA Technical Reports Server (NTRS)

    Gandhi, Amar; Barth, Timothy

    1993-01-01

    This paper presents a three-dimensional (3-D) 'edge-swapping method based on local transformations. This method extends Lawson's edge-swapping algorithm into 3-D. The 3-D edge-swapping algorithm is employed for the purpose of refining and optimizing unstructured meshes according to arbitrary mesh-quality measures. Several criteria including Delaunay triangulations are examined. Extensions from two to three dimensions of several known properties of Delaunay triangulations are also discussed.

  16. Parallel 3D Mortar Element Method for Adaptive Nonconforming Meshes

    NASA Technical Reports Server (NTRS)

    Feng, Huiyu; Mavriplis, Catherine; VanderWijngaart, Rob; Biswas, Rupak

    2004-01-01

    High order methods are frequently used in computational simulation for their high accuracy. An efficient way to avoid unnecessary computation in smooth regions of the solution is to use adaptive meshes which employ fine grids only in areas where they are needed. Nonconforming spectral elements allow the grid to be flexibly adjusted to satisfy the computational accuracy requirements. The method is suitable for computational simulations of unsteady problems with very disparate length scales or unsteady moving features, such as heat transfer, fluid dynamics or flame combustion. In this work, we select the Mark Element Method (MEM) to handle the non-conforming interfaces between elements. A new technique is introduced to efficiently implement MEM in 3-D nonconforming meshes. By introducing an "intermediate mortar", the proposed method decomposes the projection between 3-D elements and mortars into two steps. In each step, projection matrices derived in 2-D are used. The two-step method avoids explicitly forming/deriving large projection matrices for 3-D meshes, and also helps to simplify the implementation. This new technique can be used for both h- and p-type adaptation. This method is applied to an unsteady 3-D moving heat source problem. With our new MEM implementation, mesh adaptation is able to efficiently refine the grid near the heat source and coarsen the grid once the heat source passes. The savings in computational work resulting from the dynamic mesh adaptation is demonstrated by the reduction of the the number of elements used and CPU time spent. MEM and mesh adaptation, respectively, bring irregularity and dynamics to the computer memory access pattern. Hence, they provide a good way to gauge the performance of computer systems when running scientific applications whose memory access patterns are irregular and unpredictable. We select a 3-D moving heat source problem as the Unstructured Adaptive (UA) grid benchmark, a new component of the NAS Parallel

  17. Generates 2D Input for DYNA NIKE & TOPAZ

    SciTech Connect

    Hallquist, J. O.; Sanford, Larry

    1996-07-15

    MAZE is an interactive program that serves as an input and two-dimensional mesh generator for DYNA2D, NIKE2D, TOPAZ2D, and CHEMICAL TOPAZ2D. MAZE also generates a basic template for ISLAND input. MAZE has been applied to the generation of input data to study the response of two-dimensional solids and structures undergoing finite deformations under a wide variety of large deformation transient dynamic and static problems and heat transfer analyses.

  18. MAZE96. Generates 2D Input for DYNA NIKE & TOPAZ

    SciTech Connect

    Sanford, L.; Hallquist, J.O.

    1992-02-24

    MAZE is an interactive program that serves as an input and two-dimensional mesh generator for DYNA2D, NIKE2D, TOPAZ2D, and CHEMICAL TOPAZ2D. MAZE also generates a basic template for ISLAND input. MAZE has been applied to the generation of input data to study the response of two-dimensional solids and structures undergoing finite deformations under a wide variety of large deformation transient dynamic and static problems and heat transfer analyses.

  19. Coarsening Strategies for Unstructured Multigrid Techniques With Application to Anisotropic Problems.

    DTIC Science & Technology

    1995-05-01

    Over the years, multigrid has been demonstrated as an efficient technique for solving inviscid flow problems. However, for viscous flows, convergence...capture the boundary layer near the body. Usual techniques for generating a sequence of grids that produce proper convergence rates on isotropic...formulation on unstructured stretched triangular meshes. A coarsening strategy is proposed and results are discussed. (AN)

  20. Advanced 3D electromagnetic and particle-in-cell modeling on structured/unstructured hybrid grids

    SciTech Connect

    Seidel, D.B.; Pasik, M.F.; Kiefer, M.L.; Riley, D.J.; Turner, C.D.

    1998-01-01

    New techniques have been recently developed that allow unstructured, free meshes to be embedded into standard 3-dimensional, rectilinear, finite-difference time-domain grids. The resulting hybrid-grid modeling capability allows the higher resolution and fidelity of modeling afforded by free meshes to be combined with the simplicity and efficiency of rectilinear techniques. Integration of these new methods into the full-featured, general-purpose QUICKSILVER electromagnetic, Particle-In-Cell (PIC) code provides new modeling capability for a wide variety of electromagnetic and plasma physics problems. To completely exploit the integration of this technology into QUICKSILVER for applications requiring the self-consistent treatment of charged particles, this project has extended existing PIC methods for operation on these hybrid unstructured/rectilinear meshes. Several technical issues had to be addressed in order to accomplish this goal, including the location of particles on the unstructured mesh, adequate conservation of charge, and the proper handling of particles in the transition region between structured and unstructured portions of the hybrid grid.

  1. A Space-Time Conservation Element and Solution Element Method for Solving the Two- and Three-Dimensional Unsteady Euler Equations Using Quadrilateral and Hexahedral Meshes

    NASA Technical Reports Server (NTRS)

    Zhang, Zeng-Chan; Yu, S. T. John; Chang, Sin-Chung; Jorgenson, Philip (Technical Monitor)

    2001-01-01

    In this paper, we report a version of the Space-Time Conservation Element and Solution Element (CE/SE) Method in which the 2D and 3D unsteady Euler equations are simulated using structured or unstructured quadrilateral and hexahedral meshes, respectively. In the present method, mesh values of flow variables and their spatial derivatives are treated as independent unknowns to be solved for. At each mesh point, the value of a flow variable is obtained by imposing a flux conservation condition. On the other hand, the spatial derivatives are evaluated using a finite-difference/weighted-average procedure. Note that the present extension retains many key advantages of the original CE/SE method which uses triangular and tetrahedral meshes, respectively, for its 2D and 3D applications. These advantages include efficient parallel computing ease of implementing non-reflecting boundary conditions, high-fidelity resolution of shocks and waves, and a genuinely multidimensional formulation without using a dimensional-splitting approach. In particular, because Riemann solvers, the cornerstones of the Godunov-type upwind schemes, are not needed to capture shocks, the computational logic of the present method is considerably simpler. To demonstrate the capability of the present method, numerical results are presented for several benchmark problems including oblique shock reflection, supersonic flow over a wedge, and a 3D detonation flow.

  2. MARE2DEM: a 2-D inversion code for controlled-source electromagnetic and magnetotelluric data

    NASA Astrophysics Data System (ADS)

    Key, Kerry

    2016-10-01

    This work presents MARE2DEM, a freely available code for 2-D anisotropic inversion of magnetotelluric (MT) data and frequency-domain controlled-source electromagnetic (CSEM) data from onshore and offshore surveys. MARE2DEM parametrizes the inverse model using a grid of arbitrarily shaped polygons, where unstructured triangular or quadrilateral grids are typically used due to their ease of construction. Unstructured grids provide significantly more geometric flexibility and parameter efficiency than the structured rectangular grids commonly used by most other inversion codes. Transmitter and receiver components located on topographic slopes can be tilted parallel to the boundary so that the simulated electromagnetic fields accurately reproduce the real survey geometry. The forward solution is implemented with a goal-oriented adaptive finite-element method that automatically generates and refines unstructured triangular element grids that conform to the inversion parameter grid, ensuring accurate responses as the model conductivity changes. This dual-grid approach is significantly more efficient than the conventional use of a single grid for both the forward and inverse meshes since the more detailed finite-element meshes required for accurate responses do not increase the memory requirements of the inverse problem. Forward solutions are computed in parallel with a highly efficient scaling by partitioning the data into smaller independent modeling tasks consisting of subsets of the input frequencies, transmitters and receivers. Non-linear inversion is carried out with a new Occam inversion approach that requires fewer forward calls. Dense matrix operations are optimized for memory and parallel scalability using the ScaLAPACK parallel library. Free parameters can be bounded using a new non-linear transformation that leaves the transformed parameters nearly the same as the original parameters within the bounds, thereby reducing non-linear smoothing effects. Data

  3. 2D Inversion of DCR and Time Domain IP data: an example from ore exploration

    NASA Astrophysics Data System (ADS)

    Adrian, J.; Tezkan, B.

    2015-12-01

    Ore deposits often appear as disseminated sulfidic materials. Exploring these deposits with the Direct Current Resistivity (DCR) method alone is challenging because the resistivity signatures caused by disseminated material is often hard to detect. The Time-domain Induced Polarization (TDIP) method, on the other hand, is qualified to detect areas with disseminated sulfidic ores due to large electrode polarization effects which result in large chargeability anomalies. By employing both methods we gain information about both, the resistivity and the chargeability distribution of the subsurface.On the poster we present the current state of the development of a 2D smoothness constraint inversion algorithm for DCR and TDIP data. The implemented forward algorithm uses a Finite Element approach with an unstructured mesh. The model parameters resistivity and chargeability are connected by either a simple conductivity pertubation approach or a complex conductivity approach.As a case study, the 2D inversion results of DCR/TDIP and RMT data obtained during a survey on a sulfidic copper ore deposit in Turkey are presented. The presence of an ore deposit is indicated by areas with low resistivity and significantly high chargeability in the inversion models.This work is part of the BMBF/TUEBITAK funded project ``Two-dimensional joint interpretation of Radiomagnetotellurics (RMT), Direct Current Resistivity (DCR) and Induced Polarization (IP) data: an example from ore exploration''.

  4. Multigrid solution strategies for adaptive meshing problems

    NASA Technical Reports Server (NTRS)

    Mavriplis, Dimitri J.

    1995-01-01

    This paper discusses the issues which arise when combining multigrid strategies with adaptive meshing techniques for solving steady-state problems on unstructured meshes. A basic strategy is described, and demonstrated by solving several inviscid and viscous flow cases. Potential inefficiencies in this basic strategy are exposed, and various alternate approaches are discussed, some of which are demonstrated with an example. Although each particular approach exhibits certain advantages, all methods have particular drawbacks, and the formulation of a completely optimal strategy is considered to be an open problem.

  5. 2D Seismic Imaging of Elastic Parameters by Frequency Domain Full Waveform Inversion

    NASA Astrophysics Data System (ADS)

    Brossier, R.; Virieux, J.; Operto, S.

    2008-12-01

    Thanks to recent advances in parallel computing, full waveform inversion is today a tractable seismic imaging method to reconstruct physical parameters of the earth interior at different scales ranging from the near- surface to the deep crust. We present a massively parallel 2D frequency-domain full-waveform algorithm for imaging visco-elastic media from multi-component seismic data. The forward problem (i.e. the resolution of the frequency-domain 2D PSV elastodynamics equations) is based on low-order Discontinuous Galerkin (DG) method (P0 and/or P1 interpolations). Thanks to triangular unstructured meshes, the DG method allows accurate modeling of both body waves and surface waves in case of complex topography for a discretization of 10 to 15 cells per shear wavelength. The frequency-domain DG system is solved efficiently for multiple sources with the parallel direct solver MUMPS. The local inversion procedure (i.e. minimization of residuals between observed and computed data) is based on the adjoint-state method which allows to efficiently compute the gradient of the objective function. Applying the inversion hierarchically from the low frequencies to the higher ones defines a multiresolution imaging strategy which helps convergence towards the global minimum. In place of expensive Newton algorithm, the combined use of the diagonal terms of the approximate Hessian matrix and optimization algorithms based on quasi-Newton methods (Conjugate Gradient, LBFGS, ...) allows to improve the convergence of the iterative inversion. The distribution of forward problem solutions over processors driven by a mesh partitioning performed by METIS allows to apply most of the inversion in parallel. We shall present the main features of the parallel modeling/inversion algorithm, assess its scalability and illustrate its performances with realistic synthetic case studies.

  6. The upwind control volume scheme for unstructured triangular grids

    NASA Technical Reports Server (NTRS)

    Giles, Michael; Anderson, W. Kyle; Roberts, Thomas W.

    1989-01-01

    A new algorithm for the numerical solution of the Euler equations is presented. This algorithm is particularly suited to the use of unstructured triangular meshes, allowing geometric flexibility. Solutions are second-order accurate in the steady state. Implementation of the algorithm requires minimal grid connectivity information, resulting in modest storage requirements, and should enhance the implementation of the scheme on massively parallel computers. A novel form of upwind differencing is developed, and is shown to yield sharp resolution of shocks. Two new artificial viscosity models are introduced that enhance the performance of the new scheme. Numerical results for transonic airfoil flows are presented, which demonstrate the performance of the algorithm.

  7. Choosing corners of rectangles for mapped meshing

    SciTech Connect

    Mitchell, S.A.

    1996-12-16

    Consider mapping a regular i x j quadrilateral mesh of a rectangle onto a surface. The quality of the mapped mesh of the surface depends heavily on which vertices of the surface correspond to corners of the rectangle. The authors problem is, given an n-sided surface, chose as corners four vertices such that the surface resembles a rectangle with corners at those vertices. Note that n could be quite large, and the length and width of the rectangle, i and j, are not prespecified. In general, there is either a goal number or a prescribed number of mesh edges for each bounding curve of the surface. The goals affect the quality of the mesh, and the prescribed edges may make finding a feasible set of corners difficult. The algorithm need only work for surfaces that are roughly rectangular, particular those without large reflex angles, as otherwise an unstructured meshing algorithm is used instead. The authors report on the theory and implementation of algorithms for this problem. They also given an overview of a solution to a related problem called interval assignment: given a complex of surfaces sharing curves, globally assign the number of mesh edges or intervals for each curve such that it is possible to mesh each surface according to its prescribed quadrilateral meshing algorithm, and assigned and user-prescribed boundary mesh edges and corners. They also note a practical, constructive technique that relies on interval assignment that can generate a quadrilateral mesh of a complex of surfaces such that a compatible hexahedral mesh of the enclosed volume exists.

  8. Composite mesh generator for CFD problems

    NASA Astrophysics Data System (ADS)

    Kalinin, E. I.; Mazo, A. B.; Isaev, S. A.

    2016-11-01

    In present paper a brief introduction of HybMesh grid generator which uses composite approach is given. The process of complicated area meshing using HybMesh generator consists of sequential building structured prototype grids in relatively simple geometry, mapping them to a non-regular domains and superposing to assemble resulting grid. Transitional areas between two superposed low level grids are filled with triangular cells. Currently only 2D algorithms of such approach are implemented; 3D grids can only be restored as a result of extrusion or revolution of 2D objects.

  9. 2-d Finite Element Code Postprocessor

    SciTech Connect

    Sanford, L. A.; Hallquist, J. O.

    1996-07-15

    ORION is an interactive program that serves as a postprocessor for the analysis programs NIKE2D, DYNA2D, TOPAZ2D, and CHEMICAL TOPAZ2D. ORION reads binary plot files generated by the two-dimensional finite element codes currently used by the Methods Development Group at LLNL. Contour and color fringe plots of a large number of quantities may be displayed on meshes consisting of triangular and quadrilateral elements. ORION can compute strain measures, interface pressures along slide lines, reaction forces along constrained boundaries, and momentum. ORION has been applied to study the response of two-dimensional solids and structures undergoing finite deformations under a wide variety of large deformation transient dynamic and static problems and heat transfer analyses.

  10. Unstructured Adaptive Grid Computations on an Array of SMPs

    NASA Technical Reports Server (NTRS)

    Biswas, Rupak; Pramanick, Ira; Sohn, Andrew; Simon, Horst D.

    1996-01-01

    Dynamic load balancing is necessary for parallel adaptive methods to solve unsteady CFD problems on unstructured grids. We have presented such a dynamic load balancing framework called JOVE, in this paper. Results on a four-POWERnode POWER CHALLENGEarray demonstrated that load balancing gives significant performance improvements over no load balancing for such adaptive computations. The parallel speedup of JOVE, implemented using MPI on the POWER CHALLENCEarray, was significant, being as high as 31 for 32 processors. An implementation of JOVE that exploits 'an array of SMPS' architecture was also studied; this hybrid JOVE outperformed flat JOVE by up to 28% on the meshes and adaption models tested. With large, realistic meshes and actual flow-solver and adaption phases incorporated into JOVE, hybrid JOVE can be expected to yield significant advantage over flat JOVE, especially as the number of processors is increased, thus demonstrating the scalability of an array of SMPs architecture.

  11. A three-dimensional structured/unstructured hybrid Navier-Stokes method for turbine blade rows

    NASA Astrophysics Data System (ADS)

    Tsung, F.-L.; Loellbach, J.; Kwon, O.; Hah, C.

    1994-12-01

    A three-dimensional viscous structured/unstructured hybrid scheme has been developed for numerical computation of high Reynolds number turbomachinery flows. The procedure allows an efficient structured solver to be employed in the densely clustered, high aspect-ratio grid around the viscous regions near solid surfaces, while employing an unstructured solver elsewhere in the flow domain to add flexibility in mesh generation. Test results for an inviscid flow over an external transonic wing and a Navier-Stokes flow for an internal annular cascade are presented.

  12. Generation of three-dimensional unstructured grids by the advancing-front method

    NASA Technical Reports Server (NTRS)

    Lohner, Rainald; Parikh, Paresh

    1988-01-01

    The generation of three-dimensional unstructured grids using the advancing-front technique is described. While this generation technique has been shown to be effective for the generation of unstructured grids in two dimensions, its extension to three-dimensional regions required the development of surface definition software and sophisticated data structures to avoid excessive CPU-time overheads for the search operations involved. After obtaining an initial triangulation of the surfaces, tetrahedrons are generated by successively deleting faces from the generation front. Details of the mesh generation algorithm are given, together with examples and timings.

  13. MOAB : a mesh-oriented database.

    SciTech Connect

    Tautges, Timothy James; Ernst, Corey; Stimpson, Clint; Meyers, Ray J.; Merkley, Karl

    2004-04-01

    A finite element mesh is used to decompose a continuous domain into a discretized representation. The finite element method solves PDEs on this mesh by modeling complex functions as a set of simple basis functions with coefficients at mesh vertices and prescribed continuity between elements. The mesh is one of the fundamental types of data linking the various tools in the FEA process (mesh generation, analysis, visualization, etc.). Thus, the representation of mesh data and operations on those data play a very important role in FEA-based simulations. MOAB is a component for representing and evaluating mesh data. MOAB can store structured and unstructured mesh, consisting of elements in the finite element 'zoo'. The functional interface to MOAB is simple yet powerful, allowing the representation of many types of metadata commonly found on the mesh. MOAB is optimized for efficiency in space and time, based on access to mesh in chunks rather than through individual entities, while also versatile enough to support individual entity access. The MOAB data model consists of a mesh interface instance, mesh entities (vertices and elements), sets, and tags. Entities are addressed through handles rather than pointers, to allow the underlying representation of an entity to change without changing the handle to that entity. Sets are arbitrary groupings of mesh entities and other sets. Sets also support parent/child relationships as a relation distinct from sets containing other sets. The directed-graph provided by set parent/child relationships is useful for modeling topological relations from a geometric model or other metadata. Tags are named data which can be assigned to the mesh as a whole, individual entities, or sets. Tags are a mechanism for attaching data to individual entities and sets are a mechanism for describing relations between entities; the combination of these two mechanisms is a powerful yet simple interface for representing metadata or application

  14. Hybrid Surface Mesh Adaptation for Climate Modeling

    SciTech Connect

    Ahmed Khamayseh; Valmor de Almeida; Glen Hansen

    2008-10-01

    Solution-driven mesh adaptation is becoming quite popular for spatial error control in the numerical simulation of complex computational physics applications, such as climate modeling. Typically, spatial adaptation is achieved by element subdivision (h adaptation) with a primary goal of resolving the local length scales of interest. A second, less-popular method of spatial adaptivity is called “mesh motion” (r adaptation); the smooth repositioning of mesh node points aimed at resizing existing elements to capture the local length scales. This paper proposes an adaptation method based on a combination of both element subdivision and node point repositioning (rh adaptation). By combining these two methods using the notion of a mobility function, the proposed approach seeks to increase the flexibility and extensibility of mesh motion algorithms while providing a somewhat smoother transition between refined regions than is produced by element subdivision alone. Further, in an attempt to support the requirements of a very general class of climate simulation applications, the proposed method is designed to accommodate unstructured, polygonal mesh topologies in addition to the most popular mesh types.

  15. An unstructured grid, three-dimensional model based on the shallow water equations

    USGS Publications Warehouse

    Casulli, V.; Walters, R.A.

    2000-01-01

    A semi-implicit finite difference model based on the three-dimensional shallow water equations is modified to use unstructured grids. There are obvious advantages in using unstructured grids in problems with a complicated geometry. In this development, the concept of unstructured orthogonal grids is introduced and applied to this model. The governing differential equations are discretized by means of a semi-implicit algorithm that is robust, stable and very efficient. The resulting model is relatively simple, conserves mass, can fit complicated boundaries and yet is sufficiently flexible to permit local mesh refinements in areas of interest. Moreover, the simulation of the flooding and drying is included in a natural and straightforward manner. These features are illustrated by a test case for studies of convergence rates and by examples of flooding on a river plain and flow in a shallow estuary. Copyright ?? 2000 John Wiley & Sons, Ltd.

  16. An unstructured grid, three-dimensional model based on the shallow water equations

    NASA Astrophysics Data System (ADS)

    Casulli, Vincenzo; Walters, Roy A.

    2000-02-01

    A semi-implicit finite difference model based on the three-dimensional shallow water equations is modified to use unstructured grids. There are obvious advantages in using unstructured grids in problems with a complicated geometry. In this development, the concept of unstructured orthogonal grids is introduced and applied to this model. The governing differential equations are discretized by means of a semi-implicit algorithm that is robust, stable and very efficient. The resulting model is relatively simple, conserves mass, can fit complicated boundaries and yet is sufficiently flexible to permit local mesh refinements in areas of interest. Moreover, the simulation of the flooding and drying is included in a natural and straightforward manner. These features are illustrated by a test case for studies of convergence rates and by examples of flooding on a river plain and flow in a shallow estuary. Copyright

  17. Tetrahedral and Hexahedral Mesh Adaptation for CFD Problems

    NASA Technical Reports Server (NTRS)

    Biswas, Rupak; Strawn, Roger C.; Chancellor, Marisa K. (Technical Monitor)

    1997-01-01

    This paper presents two unstructured mesh adaptation schemes for problems in computational fluid dynamics. The procedures allow localized grid refinement and coarsening to efficiently capture aerodynamic flow features of interest. The first procedure is for purely tetrahedral grids; unfortunately, repeated anisotropic adaptation may significantly deteriorate the quality of the mesh. Hexahedral elements, on the other hand, can be subdivided anisotropically without mesh quality problems. Furthermore, hexahedral meshes yield more accurate solutions than their tetrahedral counterparts for the same number of edges. Both the tetrahedral and hexahedral mesh adaptation procedures use edge-based data structures that facilitate efficient subdivision by allowing individual edges to be marked for refinement or coarsening. However, for hexahedral adaptation, pyramids, prisms, and tetrahedra are used as buffer elements between refined and unrefined regions to eliminate hanging vertices. Computational results indicate that the hexahedral adaptation procedure is a viable alternative to adaptive tetrahedral schemes.

  18. Coarsening strategies for unstructured multigrid techniques with application to anisotropic problems

    NASA Technical Reports Server (NTRS)

    Morano, E.; Mavriplis, D. J.; Venkatakrishnan, V.

    1995-01-01

    Over the years, multigrid has been demonstrated as an efficient technique for solving inviscid flow problems. However, for viscous flows, convergence rates often degrade. This is generally due to the required use of stretched meshes (i.e., the aspect-ratio AR = delta y/delta x is much less than 1) in order to capture the boundary layer near the body. Usual techniques for generating a sequence of grids that produce proper convergence rates on isotopic meshes are not adequate for stretched meshes. This work focuses on the solution of Laplace's equation, discretized through a Galerkin finite-element formulation on unstructured stretched triangular meshes. A coarsening strategy is proposed and results are discussed.

  19. Coarsening Strategies for Unstructured Multigrid Techniques with Application to Anisotropic Problems

    NASA Technical Reports Server (NTRS)

    Morano, E.; Mavriplis, D. J.; Venkatakrishnan, V.

    1996-01-01

    Over the years, multigrid has been demonstrated as an efficient technique for solving inviscid flow problems. However, for viscous flows, convergence rates often degrade. This is generally due to the required use of stretched meshes (i.e. the aspect-ratio AR = (delta)y/(delta)x much less than 1) in order to capture the boundary layer near the body. Usual techniques for generating a sequence of grids that produce proper convergence rates on isotropic meshes are not adequate for stretched meshes. This work focuses on the solution of Laplace's equation, discretized through a Galerkin finite-element formulation on unstructured stretched triangular meshes. A coarsening strategy is proposed and results are discussed.

  20. Parallel Implementation of an Adaptive Scheme for 3D Unstructured Grids on the SP2

    NASA Technical Reports Server (NTRS)

    Oliker, Leonid; Biswas, Rupak; Strawn, Roger C.

    1996-01-01

    Dynamic mesh adaption on unstructured grids is a powerful tool for computing unsteady flows that require local grid modifications to efficiently resolve solution features. For this work, we consider an edge-based adaption scheme that has shown good single-processor performance on the C90. We report on our experience parallelizing this code for the SP2. Results show a 47.OX speedup on 64 processors when 10% of the mesh is randomly refined. Performance deteriorates to 7.7X when the same number of edges are refined in a highly-localized region. This is because almost all mesh adaption is confined to a single processor. However, this problem can be remedied by repartitioning the mesh immediately after targeting edges for refinement but before the actual adaption takes place. With this change, the speedup improves dramatically to 43.6X.

  1. Parallel implementation of an adaptive scheme for 3D unstructured grids on the SP2

    NASA Technical Reports Server (NTRS)

    Strawn, Roger C.; Oliker, Leonid; Biswas, Rupak

    1996-01-01

    Dynamic mesh adaption on unstructured grids is a powerful tool for computing unsteady flows that require local grid modifications to efficiently resolve solution features. For this work, we consider an edge-based adaption scheme that has shown good single-processor performance on the C90. We report on our experience parallelizing this code for the SP2. Results show a 47.0X speedup on 64 processors when 10 percent of the mesh is randomly refined. Performance deteriorates to 7.7X when the same number of edges are refined in a highly-localized region. This is because almost all the mesh adaption is confined to a single processor. However, this problem can be remedied by repartitioning the mesh immediately after targeting edges for refinement but before the actual adaption takes place. With this change, the speedup improves dramatically to 43.6X.

  2. Spherical geodesic mesh generation

    SciTech Connect

    Fung, Jimmy; Kenamond, Mark Andrew; Burton, Donald E.; Shashkov, Mikhail Jurievich

    2015-02-27

    In ALE simulations with moving meshes, mesh topology has a direct influence on feature representation and code robustness. In three-dimensional simulations, modeling spherical volumes and features is particularly challenging for a hydrodynamics code. Calculations on traditional spherical meshes (such as spin meshes) often lead to errors and symmetry breaking. Although the underlying differencing scheme may be modified to rectify this, the differencing scheme may not be accessible. This work documents the use of spherical geodesic meshes to mitigate solution-mesh coupling. These meshes are generated notionally by connecting geodesic surface meshes to produce triangular-prismatic volume meshes. This mesh topology is fundamentally different from traditional mesh topologies and displays superior qualities such as topological symmetry. This work describes the geodesic mesh topology as well as motivating demonstrations with the FLAG hydrocode.

  3. Investigation of advancing front method for generating unstructured grid

    NASA Astrophysics Data System (ADS)

    Thomas, A. M.; Tiwari, S. N.

    1992-06-01

    The advancing front technique is used to generate an unstructured grid about simple aerodynamic geometries. Unstructured grids are generated using VGRID2D and VGRID3D software. Specific problems considered are a NACA 0012 airfoil, a bi-plane consisting of two NACA 0012 airfoil, a four element airfoil in its landing configuration, and an ONERA M6 wing. Inviscid time dependent solutions are computed on these geometries using USM3D and the results are compared with standard test results obtained by other investigators. A grid convergence study is conducted for the NACA 0012 airfoil and compared with a structured grid. A structured grid is generated using GRIDGEN software and inviscid solutions computed using CFL3D flow solver. The results obtained by unstructured grid for NACA 0012 airfoil showed an asymmetric distribution of flow quantities, and a fine distribution of grid was required to remove this asymmetry. On the other hand, the structured grid predicted a very symmetric distribution, but when the total number of points were compared to obtain the same results it was seen that structured grid required more grid points.

  4. Investigation of advancing front method for generating unstructured grid

    NASA Technical Reports Server (NTRS)

    Thomas, A. M.; Tiwari, S. N.

    1992-01-01

    The advancing front technique is used to generate an unstructured grid about simple aerodynamic geometries. Unstructured grids are generated using VGRID2D and VGRID3D software. Specific problems considered are a NACA 0012 airfoil, a bi-plane consisting of two NACA 0012 airfoil, a four element airfoil in its landing configuration, and an ONERA M6 wing. Inviscid time dependent solutions are computed on these geometries using USM3D and the results are compared with standard test results obtained by other investigators. A grid convergence study is conducted for the NACA 0012 airfoil and compared with a structured grid. A structured grid is generated using GRIDGEN software and inviscid solutions computed using CFL3D flow solver. The results obtained by unstructured grid for NACA 0012 airfoil showed an asymmetric distribution of flow quantities, and a fine distribution of grid was required to remove this asymmetry. On the other hand, the structured grid predicted a very symmetric distribution, but when the total number of points were compared to obtain the same results it was seen that structured grid required more grid points.

  5. Implementation of a parallel unstructured Euler solver on the CM-5

    NASA Technical Reports Server (NTRS)

    Morano, Eric; Mavriplis, D. J.

    1995-01-01

    An efficient unstructured 3D Euler solver is parallelized on a Thinking Machine Corporation Connection Machine 5, distributed memory computer with vectoring capability. In this paper, the single instruction multiple data (SIMD) strategy is employed through the use of the CM Fortran language and the CMSSL scientific library. The performance of the CMSSL mesh partitioner is evaluated and the overall efficiency of the parallel flow solver is discussed.

  6. The benefits of unstructured grids for wave modelling in semi-enclosed domains

    NASA Astrophysics Data System (ADS)

    Pallares Lopez, Elena; Lopez, Jaime; Espino, Manuel; Sanchez-Arcilla, Agustin

    2016-04-01

    Traditionally wave modelling has used a sequence of nested meshes to obtain high resolution wave fields near the coast. This supposes an uncertain error due to internal boundary conditions and physics at multiple scales. Both may distort the wave energy balance and for winds blowing from land there is the additional difficulty of wave trains travelling towards the offshore being hindered by the intermediate domain boundaries. Unstructured grids avoid multiple meshes and thus the problem of internal boundary conditions but may result in inconsistent fluxes of wave energy among cells, depending on mesh size and shape. This may distort the wave energy balance. Here we analyse high resolution wave simulations for a full meteorological year where high resolution meteorological models were available in a domain off the Catalan coast. This coastal case presents sharp gradients in bathymetry and orography and therefore correspondingly sharp variations in the wind and wave fields. We have carried out simulations with SWAN using a traditional nested sequence and a regional unstructured grid with varying resolution depending on a) distance to the coast line and b) gradients in bottom topography (as a proxy of associated gradients in wind and wave fields). Also a local unstructured grid covering the Catalan coast and nested to a regular system is included in the comparison. We are interpreting the results depending on the directional sector for the wind field since that determines fetch length, suitability of generation and dissipation terms in the wave model and compatibility with mesh size and shape. The obtained simulations are being compared to wave observations from buoys near the coast and remote sensing data all over the Western Mediterranean Sea. Additionally some test have been carried out in order to analyse the computational time required for each alternative, showing an important reduction when working with the regional unstructured grid.

  7. A matrix dependent/algebraic multigrid approach for extruded meshes with applications to ice sheet modeling

    SciTech Connect

    Tuminaro, Raymond S.; Perego, Mauro; Tezaur, Irina Kalashnikova; Salinger, Andrew G.; Price, Stephen

    2016-10-06

    A multigrid method is proposed that combines ideas from matrix dependent multigrid for structured grids and algebraic multigrid for unstructured grids. It targets problems where a three-dimensional mesh can be viewed as an extrusion of a two-dimensional, unstructured mesh in a third dimension. Our motivation comes from the modeling of thin structures via finite elements and, more specifically, the modeling of ice sheets. Extruded meshes are relatively common for thin structures and often give rise to anisotropic problems when the thin direction mesh spacing is much smaller than the broad direction mesh spacing. Within our approach, the first few multigrid hierarchy levels are obtained by applying matrix dependent multigrid to semicoarsen in a structured thin direction fashion. After sufficient structured coarsening, the resulting mesh contains only a single layer corresponding to a two-dimensional, unstructured mesh. Algebraic multigrid can then be employed in a standard manner to create further coarse levels, as the anisotropic phenomena is no longer present in the single layer problem. The overall approach remains fully algebraic, with the minor exception that some additional information is needed to determine the extruded direction. Furthermore, this facilitates integration of the solver with a variety of different extruded mesh applications.

  8. A matrix dependent/algebraic multigrid approach for extruded meshes with applications to ice sheet modeling

    DOE PAGES

    Tuminaro, Raymond S.; Perego, Mauro; Tezaur, Irina Kalashnikova; ...

    2016-10-06

    A multigrid method is proposed that combines ideas from matrix dependent multigrid for structured grids and algebraic multigrid for unstructured grids. It targets problems where a three-dimensional mesh can be viewed as an extrusion of a two-dimensional, unstructured mesh in a third dimension. Our motivation comes from the modeling of thin structures via finite elements and, more specifically, the modeling of ice sheets. Extruded meshes are relatively common for thin structures and often give rise to anisotropic problems when the thin direction mesh spacing is much smaller than the broad direction mesh spacing. Within our approach, the first few multigridmore » hierarchy levels are obtained by applying matrix dependent multigrid to semicoarsen in a structured thin direction fashion. After sufficient structured coarsening, the resulting mesh contains only a single layer corresponding to a two-dimensional, unstructured mesh. Algebraic multigrid can then be employed in a standard manner to create further coarse levels, as the anisotropic phenomena is no longer present in the single layer problem. The overall approach remains fully algebraic, with the minor exception that some additional information is needed to determine the extruded direction. Furthermore, this facilitates integration of the solver with a variety of different extruded mesh applications.« less

  9. Semi-structured meshes for axial turbomachinery blades

    NASA Astrophysics Data System (ADS)

    Sbardella, L.; Sayma, A. I.; Imregun, M.

    2000-03-01

    This paper describes the development and application of a novel mesh generator for the flow analysis of turbomachinery blades. The proposed method uses a combination of structured and unstructured meshes, the former in the radial direction and the latter in the axial and tangential directions, in order to exploit the fact that blade-like structures are not strongly three-dimensional since the radial variation is usually small. The proposed semi-structured mesh formulation was found to have a number of advantages over its structured counterparts. There is a significant improvement in the smoothness of the grid spacing and also in capturing particular aspects of the blade passage geometry. It was also found that the leading- and trailing-edge regions could be discretized without generating superfluous points in the far field, and that further refinements of the mesh to capture wake and shock effects were relatively easy to implement. The capability of the method is demonstrated in the case of a transonic fan blade for which the steady state flow is predicted using both structured and semi-structured meshes. A totally unstructured mesh is also generated for the same geometry to illustrate the disadvantages of using such an approach for turbomachinery blades. Copyright

  10. Big ray-tracing and eikonal solver on unstructured grids: Application to the computation of a multivalued traveltime field in the Marmousi model

    SciTech Connect

    Abgrall, R.; Benamou, J.D.

    1999-01-01

    This paper presents a numerical computation of the multivalued traveltime field generated by a point-source experiment in the Marmousi model. Two methods are combined to achieve this goal: a method called big ray tracing, used to compute multivalued traveltime fields, and an eikonal solver, designed to work on unstructured meshes. Big ray tracing is based on a combination of ray tracing and local solutions of the eikonal equation. Classical ray tracing first discretizes the phase space and defines local zones that possibly overlap where the traveltime field is multivalued. Then an eikonal solver computes traveltimes in these zones called big rays. It acts as an exact interpolation process between rays associated with different branches of the traveltime field. The geometry of big rays may be complicated and is better discretized using unstructured meshes. An eikonal solver designed to work on unstructured meshes is used.

  11. Floating shock fitting via Lagrangian adaptive meshes

    NASA Technical Reports Server (NTRS)

    Vanrosendale, John

    1994-01-01

    In recent works we have formulated a new approach to compressible flow simulation, combining the advantages of shock-fitting and shock-capturing. Using a cell-centered Roe scheme discretization on unstructured meshes, we warp the mesh while marching to steady state, so that mesh edges align with shocks and other discontinuities. This new algorithm, the Shock-fitting Lagrangian Adaptive Method (SLAM) is, in effect, a reliable shock-capturing algorithm which yields shock-fitted accuracy at convergence. Shock-capturing algorithms like this, which warp the mesh to yield shock-fitted accuracy, are new and relatively untried. However, their potential is clear. In the context of sonic booms, accurate calculation of near-field sonic boom signatures is critical to the design of the High Speed Civil Transport (HSCT). SLAM should allow computation of accurate N-wave pressure signatures on comparatively coarse meshes, significantly enhancing our ability to design low-boom configurations for high-speed aircraft.

  12. Analysis automation with paving: A new quadrilateral meshing technique

    SciTech Connect

    Blacker, T.D. ); Stephenson, M.B.; Canann, S. )

    1990-01-01

    This paper describes the impact of paving, a new automatic mesh generation algorithm, on the analysis portion of the design process. Paving generates an all-quadrilateral mesh in arbitrary 2D geometries. The paving technique significantly impacts the analysis process by drastically reducing the time and expertise requirements of traditional mesh generation. Paving produces a high quality mesh based on geometric boundary definitions and user specified element sizing constraints. In this paper we describe the paving algorithm, discuss varying aspects of the impact of the technique on design automation, and elaborate on current research into 3D all-hexahedral mesh generation. 11 refs., 10 figs.

  13. Application of an unstructured grid flow solver to planes, trains and automobiles

    NASA Technical Reports Server (NTRS)

    Spragle, Gregory S.; Smith, Wayne A.; Yadlin, Yoram

    1993-01-01

    Rampant, an unstructured flow solver developed at Fluent Inc., is used to compute three-dimensional, viscous, turbulent, compressible flow fields within complex solution domains. Rampant is an explicit, finite-volume flow solver capable of computing flow fields using either triangular (2d) or tetrahedral (3d) unstructured grids. Local time stepping, implicit residual smoothing, and multigrid techniques are used to accelerate the convergence of the explicit scheme. The paper describes the Rampant flow solver and presents flow field solutions about a plane, train, and automobile.

  14. Vertical 2D Heterostructures

    NASA Astrophysics Data System (ADS)

    Lotsch, Bettina V.

    2015-07-01

    Graphene's legacy has become an integral part of today's condensed matter science and has equipped a whole generation of scientists with an armory of concepts and techniques that open up new perspectives for the postgraphene area. In particular, the judicious combination of 2D building blocks into vertical heterostructures has recently been identified as a promising route to rationally engineer complex multilayer systems and artificial solids with intriguing properties. The present review highlights recent developments in the rapidly emerging field of 2D nanoarchitectonics from a materials chemistry perspective, with a focus on the types of heterostructures available, their assembly strategies, and their emerging properties. This overview is intended to bridge the gap between two major—yet largely disjunct—developments in 2D heterostructures, which are firmly rooted in solid-state chemistry or physics. Although the underlying types of heterostructures differ with respect to their dimensions, layer alignment, and interfacial quality, there is common ground, and future synergies between the various assembly strategies are to be expected.

  15. Unstructured Grid Generation Techniques and Software

    NASA Technical Reports Server (NTRS)

    Posenau, Mary-Anne K. (Editor)

    1993-01-01

    The Workshop on Unstructured Grid Generation Techniques and Software was conducted for NASA to assess its unstructured grid activities, improve the coordination among NASA centers, and promote technology transfer to industry. The proceedings represent contributions from Ames, Langley, and Lewis Research Centers, and the Johnson and Marshall Space Flight Centers. This report is a compilation of the presentations made at the workshop.

  16. VGRIDSG: An unstructured surface grid generation program

    NASA Technical Reports Server (NTRS)

    Bockelie, Michael J.

    1993-01-01

    This report contains an overview of the VGRIDSG unstructured surface grid generation program. The VGRIDSG program was created from the VGRID3D unstructured grid generation program developed by Vigyan, Inc. The purpose of this report is to document the changes from the original VGRID3D program and to describe the capabilities of the new program.

  17. MeshVoro: A three-dimensional Voronoi mesh building tool for the TOUGH family of codes

    NASA Astrophysics Data System (ADS)

    Freeman, C. M.; Boyle, K. L.; Reagan, M.; Johnson, J.; Rycroft, C.; Moridis, G. J.

    2014-09-01

    Few tools exist for creating and visualizing complex three-dimensional simulation meshes, and these have limitations that restrict their application to particular geometries and circumstances. Mesh generation needs to trend toward ever more general applications. To that end, we have developed MeshVoro, a tool that is based on the Voro++ (Chris H. Rycroft, 2009. Chaos 19, 041111) library and is capable of generating complex three-dimensional Voronoi tessellation-based (unstructured) meshes for the solution of problems of flow and transport in subsurface geologic media that are addressed by the TOUGH (Pruess, K., Oldenburg C., Moridis G., 1999. Report LBNL-43134, 582. Lawrence Berkeley National Laboratory, Berkeley, CA) family of codes. MeshVoro, which includes built-in data visualization routines, is a particularly useful tool because it extends the applicability of the TOUGH family of codes by enabling the scientifically robust and relatively easy discretization of systems with challenging 3D geometries. We describe several applications of MeshVoro. We illustrate the ability of the tool to straightforwardly transform a complex geological grid into a simulation mesh that conforms to the specifications of the TOUGH family of codes. We demonstrate how MeshVoro can describe complex system geometries with a relatively small number of grid blocks, and we construct meshes for geometries that would have been practically intractable with a standard Cartesian grid approach. We also discuss the limitations and appropriate applications of this new technology.

  18. MeshVoro: A Three-Dimensional Voronoi Mesh Building Tool for the TOUGH Family of Codes

    SciTech Connect

    Freeman, C. M.; Boyle, K. L.; Reagan, M.; Johnson, J.; Rycroft, C.; Moridis, G. J.

    2013-09-30

    Few tools exist for creating and visualizing complex three-dimensional simulation meshes, and these have limitations that restrict their application to particular geometries and circumstances. Mesh generation needs to trend toward ever more general applications. To that end, we have developed MeshVoro, a tool that is based on the Voro (Rycroft 2009) library and is capable of generating complex threedimensional Voronoi tessellation-based (unstructured) meshes for the solution of problems of flow and transport in subsurface geologic media that are addressed by the TOUGH (Pruess et al. 1999) family of codes. MeshVoro, which includes built-in data visualization routines, is a particularly useful tool because it extends the applicability of the TOUGH family of codes by enabling the scientifically robust and relatively easy discretization of systems with challenging 3D geometries. We describe several applications of MeshVoro. We illustrate the ability of the tool to straightforwardly transform a complex geological grid into a simulation mesh that conforms to the specifications of the TOUGH family of codes. We demonstrate how MeshVoro can describe complex system geometries with a relatively small number of grid blocks, and we construct meshes for geometries that would have been practically intractable with a standard Cartesian grid approach. We also discuss the limitations and appropriate applications of this new technology.

  19. Static & Dynamic Response of 2D Solids

    SciTech Connect

    Lin, Jerry

    1996-07-15

    NIKE2D is an implicit finite-element code for analyzing the finite deformation, static and dynamic response of two-dimensional, axisymmetric, plane strain, and plane stress solids. The code is fully vectorized and available on several computing platforms. A number of material models are incorporated to simulate a wide range of material behavior including elasto-placicity, anisotropy, creep, thermal effects, and rate dependence. Slideline algorithms model gaps and sliding along material interfaces, including interface friction, penetration and single surface contact. Interactive-graphics and rezoning is included for analyses with large mesh distortions. In addition to quasi-Newton and arc-length procedures, adaptive algorithms can be defined to solve the implicit equations using the solution language ISLAND. Each of these capabilities and more make NIKE2D a robust analysis tool.

  20. A Solution Adaptive Technique Using Tetrahedral Unstructured Grids

    NASA Technical Reports Server (NTRS)

    Pirzadeh, Shahyar Z.

    2000-01-01

    An adaptive unstructured grid refinement technique has been developed and successfully applied to several three dimensional inviscid flow test cases. The method is based on a combination of surface mesh subdivision and local remeshing of the volume grid Simple functions of flow quantities are employed to detect dominant features of the flowfield The method is designed for modular coupling with various error/feature analyzers and flow solvers. Several steady-state, inviscid flow test cases are presented to demonstrate the applicability of the method for solving practical three-dimensional problems. In all cases, accurate solutions featuring complex, nonlinear flow phenomena such as shock waves and vortices have been generated automatically and efficiently.

  1. Multigrid and multilevel domain decomposition for unstructured grids

    SciTech Connect

    Chan, T.; Smith, B.

    1994-12-31

    Multigrid has proven itself to be a very versatile method for the iterative solution of linear and nonlinear systems of equations arising from the discretization of PDES. In some applications, however, no natural multilevel structure of grids is available, and these must be generated as part of the solution procedure. In this presentation the authors will consider the problem of generating a multigrid algorithm when only a fine, unstructured grid is given. Their techniques generate a sequence of coarser grids by first forming an approximate maximal independent set of the vertices and then applying a Cavendish type algorithm to form the coarser triangulation. Numerical tests indicate that convergence using this approach can be as fast as standard multigrid on a structured mesh, at least in two dimensions.

  2. Realistic and efficient 2D crack simulation

    NASA Astrophysics Data System (ADS)

    Yadegar, Jacob; Liu, Xiaoqing; Singh, Abhishek

    2010-04-01

    Although numerical algorithms for 2D crack simulation have been studied in Modeling and Simulation (M&S) and computer graphics for decades, realism and computational efficiency are still major challenges. In this paper, we introduce a high-fidelity, scalable, adaptive and efficient/runtime 2D crack/fracture simulation system by applying the mathematically elegant Peano-Cesaro triangular meshing/remeshing technique to model the generation of shards/fragments. The recursive fractal sweep associated with the Peano-Cesaro triangulation provides efficient local multi-resolution refinement to any level-of-detail. The generated binary decomposition tree also provides efficient neighbor retrieval mechanism used for mesh element splitting and merging with minimal memory requirements essential for realistic 2D fragment formation. Upon load impact/contact/penetration, a number of factors including impact angle, impact energy, and material properties are all taken into account to produce the criteria of crack initialization, propagation, and termination leading to realistic fractal-like rubble/fragments formation. The aforementioned parameters are used as variables of probabilistic models of cracks/shards formation, making the proposed solution highly adaptive by allowing machine learning mechanisms learn the optimal values for the variables/parameters based on prior benchmark data generated by off-line physics based simulation solutions that produce accurate fractures/shards though at highly non-real time paste. Crack/fracture simulation has been conducted on various load impacts with different initial locations at various impulse scales. The simulation results demonstrate that the proposed system has the capability to realistically and efficiently simulate 2D crack phenomena (such as window shattering and shards generation) with diverse potentials in military and civil M&S applications such as training and mission planning.

  3. Mesh generation and computational modeling techniques for bioimpedance measurements: an example using the VHP data

    NASA Astrophysics Data System (ADS)

    Danilov, A. A.; Salamatova, V. Yu; Vassilevski, Yu V.

    2012-12-01

    Here, a workflow for high-resolution efficient numerical modeling of bioimpedance measurements is suggested that includes 3D image segmentation, adaptive mesh generation, finite-element discretization, and the analysis of simulation results. Using the adaptive unstructured tetrahedral meshes enables to decrease significantly a number of mesh elements while keeping model accuracy. The numerical results illustrate current, potential, and sensitivity field distributions for a conventional Kubicek-like scheme of bioimpedance measurements using segmented geometric model of human torso based on Visible Human Project data. The whole body VHP man computational mesh is constructed that contains 574 thousand vertices and 3.3 million tetrahedrons.

  4. Parallel mesh support for particle-in-cell methods in magnetic fusion simulations

    NASA Astrophysics Data System (ADS)

    Yoon, Eisung; Shephard, Mark S.; Seol, E. Seegyoung; Kalyanaraman, Kaushik; Ibanez, Daniel

    2016-10-01

    As supercomputing power continues to increase Particle-In-Cell (PIC) methods are being widely adopted for transport simulations of magnetic fusion devices. Current implementations place a copy of the entire continuum mesh and its fields used in the PIC calculations on every node. This is in general not a scalable solution as computational power continues to grow faster than node level memory. To address this scalability issue, while still maintaining sufficient mesh per node to control costly inter-node communication, a new unstructured mesh distribution methods and associated mesh based PIC calculation procedure is being developed building on the parallel unstructured mesh infrastructure (PUMI). Key components to be outlined in the presentation include (i) the mesh distribution strategy, (ii) how the particles are tracked during a push cycle taking advantage of the unstructured mesh adjacency structures and searches based on that structure, and (iii) how the field solve steps and particle migration are controlled. Performance comparisons to the current approach will also be presented.

  5. Multigrid solution of the Navier-Stokes equations on triangular meshes

    NASA Technical Reports Server (NTRS)

    Mavriplis, Dimitri J.; Jameson, Antony; Martinelli, Luigi

    1989-01-01

    A Navier-Stokes algorithm for use on unstructured triangular meshes is presented. Spatial discretization of the governing equations is achieved using a finite element Galerkin approximation, which can be shown to be equivalent to a finite volume approximation for regular equilateral triangular meshes. Integration steady-state is performed using a multistage time-stepping scheme, and convergence is accelerated by means of implicit residual smoothing and an unstructured multigrid algorithm. Directional scaling of the artificial dissipation and the implicit residual smoothing operator is achieved for unstructured meshes by considering local mesh stretching vectors at each point. The accuracy of the scheme for highly stretched triangular meshes is validated by comparing computed flat-plate laminar boundary layer results with the well known similarity solution, and by comparing laminar airfoil results with those obtained from various well-established structured quadrilateral-mesh codes. The convergence efficiency of the present method is also shown to be competitive with those demonstrated by structured quadrilateral-mesh algorithms.

  6. 2-D Finite Element Cable and Box IEMP Analysis

    SciTech Connect

    Scivner, G.J.; Turner, C.D.

    1998-12-17

    A 2-D finite element code has been developed for the solution of arbitrary geometry cable SGEMP and box IEMP problems. The quasi- static electric field equations with radiation- induced charge deposition and radiation-induced conductivity y are numerically solved on a triangular mesh. Multiple regions of different dielectric materials and multiple conductors are permitted.

  7. 2D semiconductor optoelectronics

    NASA Astrophysics Data System (ADS)

    Novoselov, Kostya

    The advent of graphene and related 2D materials has recently led to a new technology: heterostructures based on these atomically thin crystals. The paradigm proved itself extremely versatile and led to rapid demonstration of tunnelling diodes with negative differential resistance, tunnelling transistors, photovoltaic devices, etc. By taking the complexity and functionality of such van der Waals heterostructures to the next level we introduce quantum wells engineered with one atomic plane precision. Light emission from such quantum wells, quantum dots and polaritonic effects will be discussed.

  8. Best Practices for Unstructured Grid Shock Fitting

    NASA Technical Reports Server (NTRS)

    McCloud, Peter L.

    2017-01-01

    Unstructured grid solvers have well-known issues predicting surface heat fluxes when strong shocks are present. Various efforts have been made to address the underlying numerical issues that cause the erroneous predictions. The present work addresses some of the shortcomings of unstructured grid solvers, not by addressing the numerics, but by applying structured grid best practices to unstructured grids. A methodology for robust shock detection and shock fitting is outlined and applied to production relevant cases. Results achieved by using the Loci-CHEM Computational Fluid Dynamics solver are provided.

  9. An assessment of the adaptive unstructured tetrahedral grid, Euler Flow Solver Code FELISA

    NASA Technical Reports Server (NTRS)

    Djomehri, M. Jahed; Erickson, Larry L.

    1994-01-01

    A three-dimensional solution-adaptive Euler flow solver for unstructured tetrahedral meshes is assessed, and the accuracy and efficiency of the method for predicting sonic boom pressure signatures about simple generic models are demonstrated. Comparison of computational and wind tunnel data and enhancement of numerical solutions by means of grid adaptivity are discussed. The mesh generation is based on the advancing front technique. The FELISA code consists of two solvers, the Taylor-Galerkin and the Runge-Kutta-Galerkin schemes, both of which are spacially discretized by the usual Galerkin weighted residual finite-element methods but with different explicit time-marching schemes to steady state. The solution-adaptive grid procedure is based on either remeshing or mesh refinement techniques. An alternative geometry adaptive procedure is also incorporated.

  10. A Framework for Parallel Unstructured Grid Generation for Complex Aerodynamic Simulations

    NASA Technical Reports Server (NTRS)

    Zagaris, George; Pirzadeh, Shahyar Z.; Chrisochoides, Nikos

    2009-01-01

    A framework for parallel unstructured grid generation targeting both shared memory multi-processors and distributed memory architectures is presented. The two fundamental building-blocks of the framework consist of: (1) the Advancing-Partition (AP) method used for domain decomposition and (2) the Advancing Front (AF) method used for mesh generation. Starting from the surface mesh of the computational domain, the AP method is applied recursively to generate a set of sub-domains. Next, the sub-domains are meshed in parallel using the AF method. The recursive nature of domain decomposition naturally maps to a divide-and-conquer algorithm which exhibits inherent parallelism. For the parallel implementation, the Master/Worker pattern is employed to dynamically balance the varying workloads of each task on the set of available CPUs. Performance results by this approach are presented and discussed in detail as well as future work and improvements.

  11. Hydraulic Modeling of Alluvial Fans along the Truckee Canal using the 2-Dimensional Model SRH2D

    NASA Astrophysics Data System (ADS)

    Wright, J.; Kallio, R.; Sankovich, V.

    2013-12-01

    Alluvial fans are gently sloping, fan-shaped landforms created by sediment deposition at the ends of mountain valleys. Their gentle slopes and scenic vistas are attractive to developers. Unfortunately, alluvial fans are highly flood-prone, and the flow paths of flood events are highly variable, thereby placing human developments at risk. Many studies have been performed on alluvial fans in the arid west because of the uncertainty of their flow paths and flood extents. Most of these studies have been focused on flood elevations and mitigation. This study is not focused on the flood elevations. Rather, it is focused on the attenuation effects of alluvial fans on floods entering and potentially failing a Reclamation canal. The Truckee Canal diverts water from the Truckee River to Lahontan Reservoir. The drainage areas along the canal are alluvial fans with complex distributary channel networks . Ideally, in nature, the sediment grain-size distribution along the alluvial fan flow paths would provide enough infiltration and subsurface storage to attenuate floods entering the canal and reduce risk to low levels. Human development, however, can prevent the natural losses from occurring due to concentrated flows within the alluvial fan. While the concentrated flows might mitigate flood risk inside the fan, they do not lower the flood risk of the canal. A 2-dimensional hydraulic model, SRH-2D, was coupled to a 1-dimensional rainfall-runoff model to estimate the flood attenuation effects of the alluvial fan network surrounding an 11 mile stretch of the Truckee Canal near Fernley, Nevada. Floods having annual exceedance probabilities ranging from 1/10 to 1/100 were computed and analyzed. SRH-2D uses a zonal approach for modeling river systems, allowing areas to be divided into separate zones based on physical parameters such as surface roughness and infiltration. One of the major features of SRH-2D is the adoption of an unstructured hybrid mixed element mesh, which is based

  12. Cosmos++: Relativistic Magnetohydrodynamics on Unstructured Grids with Local Adaptive Refinement

    SciTech Connect

    Anninos, P; Fragile, P C; Salmonson, J D

    2005-05-06

    A new code and methodology are introduced for solving the fully general relativistic magnetohydrodynamic (GRMHD) equations using time-explicit, finite-volume discretization. The code has options for solving the GRMHD equations using traditional artificial-viscosity (AV) or non-oscillatory central difference (NOCD) methods, or a new extended AV (eAV) scheme using artificial-viscosity together with a dual energy-flux-conserving formulation. The dual energy approach allows for accurate modeling of highly relativistic flows at boost factors well beyond what has been achieved to date by standard artificial viscosity methods. it provides the benefit of Godunov methods in capturing high Lorentz boosted flows but without complicated Riemann solvers, and the advantages of traditional artificial viscosity methods in their speed and flexibility. Additionally, the GRMHD equations are solved on an unstructured grid that supports local adaptive mesh refinement using a fully threated oct-tree (in three dimensions) network to traverse the grid hierarchy across levels and immediate neighbors. A number of tests are presented to demonstrate robustness of the numerical algorithms and adaptive mesh framework over a wide spectrum of problems, boosts, and astrophysical applications, including relativistic shock tubes, shock collisions, magnetosonic shocks, Alfven wave propagation, blast waves, magnetized Bondi flow, and the magneto-rotational instability in Kerr black hole spacetimes.

  13. A hierarchical structure for automatic meshing and adaptive FEM analysis

    NASA Technical Reports Server (NTRS)

    Kela, Ajay; Saxena, Mukul; Perucchio, Renato

    1987-01-01

    A new algorithm for generating automatically, from solid models of mechanical parts, finite element meshes that are organized as spatially addressable quaternary trees (for 2-D work) or octal trees (for 3-D work) is discussed. Because such meshes are inherently hierarchical as well as spatially addressable, they permit efficient substructuring techniques to be used for both global analysis and incremental remeshing and reanalysis. The global and incremental techniques are summarized and some results from an experimental closed loop 2-D system in which meshing, analysis, error evaluation, and remeshing and reanalysis are done automatically and adaptively are presented. The implementation of 3-D work is briefly discussed.

  14. Computing Normal Shock-Isotropic Turbulence Interaction With Tetrahedral Meshes and the Space-Time CESE Method

    NASA Astrophysics Data System (ADS)

    Venkatachari, Balaji Shankar; Chang, Chau-Lyan

    2016-11-01

    The focus of this study is scale-resolving simulations of the canonical normal shock- isotropic turbulence interaction using unstructured tetrahedral meshes and the space-time conservation element solution element (CESE) method. Despite decades of development in unstructured mesh methods and its potential benefits of ease of mesh generation around complex geometries and mesh adaptation, direct numerical or large-eddy simulations of turbulent flows are predominantly carried out using structured hexahedral meshes. This is due to the lack of consistent multi-dimensional numerical formulations in conventional schemes for unstructured meshes that can resolve multiple physical scales and flow discontinuities simultaneously. The CESE method - due to its Riemann-solver-free shock capturing capabilities, non-dissipative baseline schemes, and flux conservation in time as well as space - has the potential to accurately simulate turbulent flows using tetrahedral meshes. As part of the study, various regimes of the shock-turbulence interaction (wrinkled and broken shock regimes) will be investigated along with a study on how adaptive refinement of tetrahedral meshes benefits this problem. The research funding for this paper has been provided by Revolutionary Computational Aerosciences (RCA) subproject under the NASA Transformative Aeronautics Concepts Program (TACP).

  15. Automatic finite-element mesh generation using artificial neural networks. Part 1: Prediction of mesh density

    SciTech Connect

    Chedid, R.; Najjar, N.

    1996-09-01

    One of the inconveniences associated with the existing finite-element packages is the need for an educated user to develop a correct mesh at the preprocessing level. Procedures which start with a coarse mesh and attempt serious refinements, as is the case in most adaptive finite-element packages, are time consuming and costly. Hence, it is very important to develop a tool that can provide a mesh that either leads immediately to an acceptable solution, or would require fewer correcting steps to achieve better results. In this paper, the authors present a technique for automatic mesh generation based on artificial neural networks (ANN). The essence of this technique is to predict the mesh density distribution of a given model, and then supply this information to a Kohonen neural network which provides the final mesh. Prediction of mesh density is accomplished by a simple feedforward neural network which has the ability to learn the relationship between mesh density and model geometric features. It will be shown that ANN are able to recognize delicate areas where a sharp variation of the magnetic field is expected. Examples of 2-D models are provided to illustrate the usefulness of the proposed technique.

  16. NIKE2D96. Static & Dynamic Response of 2D Solids

    SciTech Connect

    Raboin, P.; Engelmann, B.; Halquist, J.O.

    1992-01-24

    NIKE2D is an implicit finite-element code for analyzing the finite deformation, static and dynamic response of two-dimensional, axisymmetric, plane strain, and plane stress solids. The code is fully vectorized and available on several computing platforms. A number of material models are incorporated to simulate a wide range of material behavior including elasto-placicity, anisotropy, creep, thermal effects, and rate dependence. Slideline algorithms model gaps and sliding along material interfaces, including interface friction, penetration and single surface contact. Interactive-graphics and rezoning is included for analyses with large mesh distortions. In addition to quasi-Newton and arc-length procedures, adaptive algorithms can be defined to solve the implicit equations using the solution language ISLAND. Each of these capabilities and more make NIKE2D a robust analysis tool.

  17. Domain Decomposition By the Advancing-Partition Method for Parallel Unstructured Grid Generation

    NASA Technical Reports Server (NTRS)

    Pirzadeh, Shahyar Z.; Zagaris, George

    2009-01-01

    A new method of domain decomposition has been developed for generating unstructured grids in subdomains either sequentially or using multiple computers in parallel. Domain decomposition is a crucial and challenging step for parallel grid generation. Prior methods are generally based on auxiliary, complex, and computationally intensive operations for defining partition interfaces and usually produce grids of lower quality than those generated in single domains. The new technique, referred to as "Advancing Partition," is based on the Advancing-Front method, which partitions a domain as part of the volume mesh generation in a consistent and "natural" way. The benefits of this approach are: 1) the process of domain decomposition is highly automated, 2) partitioning of domain does not compromise the quality of the generated grids, and 3) the computational overhead for domain decomposition is minimal. The new method has been implemented in NASA's unstructured grid generation code VGRID.

  18. Discrete Adjoint-Based Design Optimization of Unsteady Turbulent Flows on Dynamic Unstructured Grids

    NASA Technical Reports Server (NTRS)

    Nielsen, Eric J.; Diskin, Boris; Yamaleev, Nail K.

    2009-01-01

    An adjoint-based methodology for design optimization of unsteady turbulent flows on dynamic unstructured grids is described. The implementation relies on an existing unsteady three-dimensional unstructured grid solver capable of dynamic mesh simulations and discrete adjoint capabilities previously developed for steady flows. The discrete equations for the primal and adjoint systems are presented for the backward-difference family of time-integration schemes on both static and dynamic grids. The consistency of sensitivity derivatives is established via comparisons with complex-variable computations. The current work is believed to be the first verified implementation of an adjoint-based optimization methodology for the true time-dependent formulation of the Navier-Stokes equations in a practical computational code. Large-scale shape optimizations are demonstrated for turbulent flows over a tiltrotor geometry and a simulated aeroelastic motion of a fighter jet.

  19. Unstructured Grid Generation for Complex 3D High-Lift Configurations

    NASA Technical Reports Server (NTRS)

    Pirzadeh, Shahyar Z.

    1999-01-01

    The application of an unstructured grid methodology on a three-dimensional high-lift configuration is presented. The focus of this paper is on the grid generation aspect of an integrated effort for the development of an unstructured-grid computational fluid dynamics (CFD) capability at the NASA Langley Research Center. The meshing approach is based on tetrahedral grids generated by the advancing-front and the advancing-layers procedures. The capability of the method for solving high-lift problems is demonstrated on an aircraft model referred to as the energy efficient transport configuration. The grid generation issues, including the pros and cons of the present approach, are discussed in relation to the high-lift problems. Limited viscous flow results are presented to demonstrate the viability of the generated grids. A corresponding Navier-Stokes solution capability, along with further computations on the present grid, is presented in a companion SAE paper.

  20. Laminar and turbulent flow computations of Type 4 shock-shock interference aerothermal loads using unstructured grids

    NASA Technical Reports Server (NTRS)

    Vemaganti, Gururaja R.

    1994-01-01

    This report presents computations for the Type 4 shock-shock interference flow under laminar and turbulent conditions using unstructured grids. Mesh adaptation was accomplished by remeshing, refinement, and mesh movement. Two two-equation turbulence models were used to analyze turbulent flows. The mean flow governing equations and the turbulence governing equations are solved in a coupled manner. The solution algorithm and the details pertaining to its implementation on unstructured grids are described. Computations were performed at two different freestream Reynolds numbers at a freestream Mach number of 11. Effects of the variation in the impinging shock location are studied. The comparison of the results in terms of wall heat flux and wall pressure distributions is presented.

  1. Benchmarking an Unstructured-Grid Model for Tsunami Current Modeling

    NASA Astrophysics Data System (ADS)

    Zhang, Yinglong J.; Priest, George; Allan, Jonathan; Stimely, Laura

    2016-12-01

    We present model results derived from a tsunami current benchmarking workshop held by the NTHMP (National Tsunami Hazard Mitigation Program) in February 2015. Modeling was undertaken using our own 3D unstructured-grid model that has been previously certified by the NTHMP for tsunami inundation. Results for two benchmark tests are described here, including: (1) vortex structure in the wake of a submerged shoal and (2) impact of tsunami waves on Hilo Harbor in the 2011 Tohoku event. The modeled current velocities are compared with available lab and field data. We demonstrate that the model is able to accurately capture the velocity field in the two benchmark tests; in particular, the 3D model gives a much more accurate wake structure than the 2D model for the first test, with the root-mean-square error and mean bias no more than 2 cm s-1 and 8 mm s-1, respectively, for the modeled velocity.

  2. Mixed-hybrid and vertex-discontinuous-Galerkin finite element modeling of multiphase compositional flow on 3D unstructured grids

    NASA Astrophysics Data System (ADS)

    Moortgat, Joachim; Firoozabadi, Abbas

    2016-06-01

    Problems of interest in hydrogeology and hydrocarbon resources involve complex heterogeneous geological formations. Such domains are most accurately represented in reservoir simulations by unstructured computational grids. Finite element methods accurately describe flow on unstructured meshes with complex geometries, and their flexible formulation allows implementation on different grid types. In this work, we consider for the first time the challenging problem of fully compositional three-phase flow in 3D unstructured grids, discretized by any combination of tetrahedra, prisms, and hexahedra. We employ a mass conserving mixed hybrid finite element (MHFE) method to solve for the pressure and flux fields. The transport equations are approximated with a higher-order vertex-based discontinuous Galerkin (DG) discretization. We show that this approach outperforms a face-based implementation of the same polynomial order. These methods are well suited for heterogeneous and fractured reservoirs, because they provide globally continuous pressure and flux fields, while allowing for sharp discontinuities in compositions and saturations. The higher-order accuracy improves the modeling of strongly non-linear flow, such as gravitational and viscous fingering. We review the literature on unstructured reservoir simulation models, and present many examples that consider gravity depletion, water flooding, and gas injection in oil saturated reservoirs. We study convergence rates, mesh sensitivity, and demonstrate the wide applicability of our chosen finite element methods for challenging multiphase flow problems in geometrically complex subsurface media.

  3. TRHD: Three-temperature radiation-hydrodynamics code with an implicit non-equilibrium radiation transport using a cell-centered monotonic finite volume scheme on unstructured-grids

    NASA Astrophysics Data System (ADS)

    Sijoy, C. D.; Chaturvedi, S.

    2015-05-01

    Three-temperature (3T), unstructured-mesh, non-equilibrium radiation hydrodynamics (RHD) code have been developed for the simulation of intense thermal radiation or high-power laser driven radiative shock hydrodynamics in two-dimensional (2D) axis-symmetric geometries. The governing hydrodynamics equations are solved using a compatible unstructured Lagrangian method based on a control volume differencing (CVD) scheme. A second-order predictor-corrector (PC) integration scheme is used for the temporal discretization of the hydrodynamics equations. For the radiation energy transport, frequency averaged gray model is used in which the flux-limited diffusion (FLD) approximation is used to recover the free-streaming limit of the radiation propagation in optically thin regions. The proposed RHD model allows to have different temperatures for the electrons and ions. In addition to this, the electron and thermal radiation temperatures are assumed to be in non-equilibrium. Therefore, the thermal relaxation between the electrons and ions and the coupling between the radiation and matter energies are required to be computed self-consistently. For this, the coupled flux limited electron heat conduction and the non-equilibrium radiation diffusion equations are solved simultaneously by using an implicit, axis-symmetric, cell-centered, monotonic, nonlinear finite volume (NLFV) scheme. In this paper, we have described the details of the 2D, 3T, non-equilibrium RHD code developed along with a suite of validation test problems to demonstrate the accuracy and performance of the algorithms. We have also conducted a performance analysis with different linearity preserving interpolation schemes that are used for the evaluation of the nodal values in the NLFV scheme. Finally, in order to demonstrate full capability of the code implementation, we have presented the simulation of laser driven thin Aluminum (Al) foil acceleration. The simulation results are found to be in good agreement

  4. Model-Based Nonrigid Motion Analysis Using Natural Feature Adaptive Mesh

    SciTech Connect

    Zhang, Y.; Goldgof, D.B.; Sarkar, S.; Tsap, L.V.

    2000-04-25

    The success of nonrigid motion analysis using physical finite element model is dependent on the mesh that characterizes the object's geometric structure. We suggest a deformable mesh adapted to the natural features of images. The adaptive mesh requires much fewer number of nodes than the fixed mesh which was used in our previous work. We demonstrate the higher efficiency of the adaptive mesh in the context of estimating burn scar elasticity relative to normal skin elasticity using the observed 2D image sequence. Our results show that the scar assessment method based on the physical model using natural feature adaptive mesh can be applied to images which do not have artificial markers.

  5. Using adaptive sampling and triangular meshes for the processing and inversion of potential field data

    NASA Astrophysics Data System (ADS)

    Foks, Nathan Leon

    The interpretation of geophysical data plays an important role in the analysis of potential field data in resource exploration industries. Two categories of interpretation techniques are discussed in this thesis; boundary detection and geophysical inversion. Fault or boundary detection is a method to interpret the locations of subsurface boundaries from measured data, while inversion is a computationally intensive method that provides 3D information about subsurface structure. My research focuses on these two aspects of interpretation techniques. First, I develop a method to aid in the interpretation of faults and boundaries from magnetic data. These processes are traditionally carried out using raster grid and image processing techniques. Instead, I use unstructured meshes of triangular facets that can extract inferred boundaries using mesh edges. Next, to address the computational issues of geophysical inversion, I develop an approach to reduce the number of data in a data set. The approach selects the data points according to a user specified proxy for its signal content. The approach is performed in the data domain and requires no modification to existing inversion codes. This technique adds to the existing suite of compressive inversion algorithms. Finally, I develop an algorithm to invert gravity data for an interfacing surface using an unstructured mesh of triangular facets. A pertinent property of unstructured meshes is their flexibility at representing oblique, or arbitrarily oriented structures. This flexibility makes unstructured meshes an ideal candidate for geometry based interface inversions. The approaches I have developed provide a suite of algorithms geared towards large-scale interpretation of potential field data, by using an unstructured representation of both the data and model parameters.

  6. The finite cell method for polygonal meshes: poly-FCM

    NASA Astrophysics Data System (ADS)

    Duczek, Sascha; Gabbert, Ulrich

    2016-10-01

    In the current article, we extend the two-dimensional version of the finite cell method (FCM), which has so far only been used for structured quadrilateral meshes, to unstructured polygonal discretizations. Therefore, the adaptive quadtree-based numerical integration technique is reformulated and the notion of generalized barycentric coordinates is introduced. We show that the resulting polygonal (poly-)FCM approach retains the optimal rates of convergence if and only if the geometry of the structure is adequately resolved. The main advantage of the proposed method is that it inherits the ability of polygonal finite elements for local mesh refinement and for the construction of transition elements (e.g. conforming quadtree meshes without hanging nodes). These properties along with the performance of the poly-FCM are illustrated by means of several benchmark problems for both static and dynamic cases.

  7. ORION96. 2-d Finite Element Code Postprocessor

    SciTech Connect

    Sanford, L.A.; Hallquist, J.O.

    1992-02-02

    ORION is an interactive program that serves as a postprocessor for the analysis programs NIKE2D, DYNA2D, TOPAZ2D, and CHEMICAL TOPAZ2D. ORION reads binary plot files generated by the two-dimensional finite element codes currently used by the Methods Development Group at LLNL. Contour and color fringe plots of a large number of quantities may be displayed on meshes consisting of triangular and quadrilateral elements. ORION can compute strain measures, interface pressures along slide lines, reaction forces along constrained boundaries, and momentum. ORION has been applied to study the response of two-dimensional solids and structures undergoing finite deformations under a wide variety of large deformation transient dynamic and static problems and heat transfer analyses.

  8. Unstructured Peer-to-Peer Network Architectures

    NASA Astrophysics Data System (ADS)

    Jin, Xing; Chan, S.-H. Gary

    With the rapid growth of the Internet, peer-to-peer P2P networks have been widely studied and deployed. According to CacheLogic Research, P2P traffic has dominated the Internet traffic in 2006, by accounting for over 72% Internet traffic. In this chapter, we focus on unstructured P2P networks, one key type of P2P networks. We first present several unstructured P2P networks for the file sharing application, and then investigate some advanced issues in the network design. We also study two other important applications, i.e., media streaming and voice over Internet Protocol (VoIP). Finally, we discuss unstructured P2P networks over wireless networks.

  9. E-2D Advanced Hawkeye Aircraft (E-2D AHE)

    DTIC Science & Technology

    2015-12-01

    Selected Acquisition Report (SAR) RCS: DD-A&T(Q&A)823-364 E-2D Advanced Hawkeye Aircraft (E-2D AHE) As of FY 2017 President’s Budget Defense...Office Estimate RDT&E - Research, Development, Test, and Evaluation SAR - Selected Acquisition Report SCP - Service Cost Position TBD - To Be Determined

  10. Unstructured grids on SIMD torus machines

    NASA Technical Reports Server (NTRS)

    Bjorstad, Petter E.; Schreiber, Robert

    1994-01-01

    Unstructured grids lead to unstructured communication on distributed memory parallel computers, a problem that has been considered difficult. Here, we consider adaptive, offline communication routing for a SIMD processor grid. Our approach is empirical. We use large data sets drawn from supercomputing applications instead of an analytic model of communication load. The chief contribution of this paper is an experimental demonstration of the effectiveness of certain routing heuristics. Our routing algorithm is adaptive, nonminimal, and is generally designed to exploit locality. We have a parallel implementation of the router, and we report on its performance.

  11. A peeling mesh.

    PubMed

    Bohmer, R D; Byrne, P D; Maddern, G J

    2002-07-01

    A number of different materials are available for incisional hernia repair. Benefits of the various types are controversial and are partly dependent on the anatomical placement of the mesh. Composite mesh has been introduced to provide tissue ingrowth for strength and a non-adherent side to protect the bowel, these layers being laminated together. This report is on the separation of layers in an infected mesh and adherence of the expanded polytetrafluoroethylene layer to the small bowel.

  12. A High-Order Method Using Unstructured Grids for the Aeroacoustic Analysis of Realistic Aircraft Configurations

    NASA Technical Reports Server (NTRS)

    Atkins, Harold L.; Lockard, David P.

    1999-01-01

    A method for the prediction of acoustic scatter from complex geometries is presented. The discontinuous Galerkin method provides a framework for the development of a high-order method using unstructured grids. The method's compact form contributes to its accuracy and efficiency, and makes the method well suited for distributed memory parallel computing platforms. Mesh refinement studies are presented to validate the expected convergence properties of the method, and to establish the absolute levels of a error one can expect at a given level of resolution. For a two-dimensional shear layer instability wave and for three-dimensional wave propagation, the method is demonstrated to be insensitive to mesh smoothness. Simulations of scatter from a two-dimensional slat configuration and a three-dimensional blended-wing-body demonstrate the capability of the method to efficiently treat realistic geometries.

  13. Three-dimensional unstructured grid Euler method applied to turbine blades

    NASA Technical Reports Server (NTRS)

    Kwon, Oh J.; Hah, Chunill

    1993-01-01

    Flow through a turbine annular cascade is calculated using a three-dimensional Euler method based on unstructured tetrahedral meshes. The equations are integrated in time using an explicit Runge-Kutta time-stepping scheme. The inviscid flux terms are discretized using a cell-centered finite-volume formulation with upwind flux-difference splitting. The tetrahedral meshes around the turbine blade are generated using an advancing-front technique with forced geometric periodicity between the blades. Good agreement is obtained between the present calculation and the experiment for both surface pressure distribution and flow behavior in the passage between the blades, demonstrating the capability of the present methodology for turbomachinery flow applications.

  14. Domain decomposition by the advancing-partition method for parallel unstructured grid generation

    NASA Technical Reports Server (NTRS)

    Pirzadeh, Shahyar Z. (Inventor); Banihashemi, legal representative, Soheila (Inventor)

    2012-01-01

    In a method for domain decomposition for generating unstructured grids, a surface mesh is generated for a spatial domain. A location of a partition plane dividing the domain into two sections is determined. Triangular faces on the surface mesh that intersect the partition plane are identified. A partition grid of tetrahedral cells, dividing the domain into two sub-domains, is generated using a marching process in which a front comprises only faces of new cells which intersect the partition plane. The partition grid is generated until no active faces remain on the front. Triangular faces on each side of the partition plane are collected into two separate subsets. Each subset of triangular faces is renumbered locally and a local/global mapping is created for each sub-domain. A volume grid is generated for each sub-domain. The partition grid and volume grids are then merged using the local-global mapping.

  15. More About the Tetrahedral Unstructured Software System

    NASA Technical Reports Server (NTRS)

    Abdol-Hamid, Khaled S.; Frink, Neal T.; Hunter, Craig A.; Parikh, Paresh C.; Pizadeh, Shalyar Z.; Samareh, Jamshid A.; Bhat, Maharaj K.; Pandya, Mohagna J.; Grismer, Matthew J.

    2006-01-01

    TetrUSS is a comprehensive suite of computational fluid dynamics (CFD) programs that won the Software of the Year award in 1996 and has found increasing use in government, academia, and industry for solving realistic flow problems (especially in aerodynamics and aeroelastics of aircraft having complex shapes). TetrUSS includes not only programs for solving basic equations of flow but also programs that afford capabilities for efficient generation and utilization of computational grids and for graphical representation of computed flows (see figure). The 2004 version of the Tetrahedral Unstructured Software System (TetrUSS), which is one of two software systems reported in "NASA s 2004 Software of the Year," NASA Tech Briefs, Vol. 28, No. 10 (October 2004), page 18, has been improved greatly since 1996. These improvements include (1) capabilities to simulate viscous flow by solving the Navier-Stokes equations on unstructured grids, (2) portability to personal computers from diverse manufacturers, (3) advanced models of turbulence, (4) a parallel-processing version of one of the unstructured-grid Navier-Stokes-equation-solving programs, and (5) advanced programs for generating unstructured grids.

  16. Generation of unstructured grids and Euler solutions for complex geometries

    NASA Technical Reports Server (NTRS)

    Loehner, Rainald; Parikh, Paresh; Salas, Manuel D.

    1989-01-01

    Algorithms are described for the generation and adaptation of unstructured grids in two and three dimensions, as well as Euler solvers for unstructured grids. The main purpose is to demonstrate how unstructured grids may be employed advantageously for the economic simulation of both geometrically as well as physically complex flow fields.

  17. Multi-Block Enhancement for Lagrangian Dendritic Mesh setup in Altair5

    SciTech Connect

    Douglass, Rodney W

    2010-12-15

    Initial mesh setup for an ASC mUlti-physics code at LANL is done using Altair5. Altair5 assumes that the final mesh is composed of logical structured mesh blocks linked together at mesh boundaries to form, ultimately, an unstructured mesh. Within these blocks, meshes may have dendrites, that is, local regions where two zones share common edges (in two-dimensions, or faces in three-dimensions) with a single zone. In many cases, contiguous subsets of the initial set of blocks may have the same material assigned to them, but without smoothing the mesh would form a computationally challenging initial mesh. Some of these blocks may also have zones with nodes on domain boundaries. This paper reports on the implementation of multiblock smoothing in Altair5, which allows for dendrites and for moving boundary nodes. Dendritic nodes are constrained to be located at the average of their neighbor nodes while boundary nodes are constrained to move along the boundary geometry. Two fundamentally different smoothing methods were implemented. First, a variational principle is presented that balances zonal size and distortion via a user selected weighting with constraints imposed using penalty methods for dendritic nodes and Lagrange multipliers for boundary nodes. Second, the Laplace-Beltrami smoother is presented. This is a general elliptic smoother which can easily be modified to give Laplacian and Winslow-Crowley mesh smoothing. Results are shown for several test meshes of interest.

  18. Parallel Processing of Adaptive Meshes with Load Balancing

    NASA Technical Reports Server (NTRS)

    Das, Sajal K.; Harvey, Daniel J.; Biswas, Rupak; Biegel, Bryan (Technical Monitor)

    2001-01-01

    Many scientific applications involve grids that lack a uniform underlying structure. These applications are often also dynamic in nature in that the grid structure significantly changes between successive phases of execution. In parallel computing environments, mesh adaptation of unstructured grids through selective refinement/coarsening has proven to be an effective approach. However, achieving load balance while minimizing interprocessor communication and redistribution costs is a difficult problem. Traditional dynamic load balancers are mostly inadequate because they lack a global view of system loads across processors. In this paper, we propose a novel and general-purpose load balancer that utilizes symmetric broadcast networks (SBN) as the underlying communication topology, and compare its performance with a successful global load balancing environment, called PLUM, specifically created to handle adaptive unstructured applications. Our experimental results on an IBM SP2 demonstrate that the SBN-based load balancer achieves lower redistribution costs than that under PLUM by overlapping processing and data migration.

  19. An Adaptive Mesh Algorithm: Mapping the Mesh Variables

    SciTech Connect

    Scannapieco, Anthony J.

    2016-07-25

    Both thermodynamic and kinematic variables must be mapped. The kinematic variables are defined on a separate kinematic mesh; it is the duel mesh to the thermodynamic mesh. The map of the kinematic variables is done by calculating the contributions of kinematic variables on the old thermodynamic mesh, mapping the kinematic variable contributions onto the new thermodynamic mesh and then synthesizing the mapped kinematic variables on the new kinematic mesh. In this document the map of the thermodynamic variables will be described.

  20. Parallelization of an Object-Oriented Unstructured Aeroacoustics Solver

    NASA Technical Reports Server (NTRS)

    Baggag, Abdelkader; Atkins, Harold; Oezturan, Can; Keyes, David

    1999-01-01

    A computational aeroacoustics code based on the discontinuous Galerkin method is ported to several parallel platforms using MPI. The discontinuous Galerkin method is a compact high-order method that retains its accuracy and robustness on non-smooth unstructured meshes. In its semi-discrete form, the discontinuous Galerkin method can be combined with explicit time marching methods making it well suited to time accurate computations. The compact nature of the discontinuous Galerkin method also makes it well suited for distributed memory parallel platforms. The original serial code was written using an object-oriented approach and was previously optimized for cache-based machines. The port to parallel platforms was achieved simply by treating partition boundaries as a type of boundary condition. Code modifications were minimal because boundary conditions were abstractions in the original program. Scalability results are presented for the SCI Origin, IBM SP2, and clusters of SGI and Sun workstations. Slightly superlinear speedup is achieved on a fixed-size problem on the Origin, due to cache effects.

  1. New multigrid approach for three-dimensional unstructured, adaptive grids

    NASA Technical Reports Server (NTRS)

    Parthasarathy, Vijayan; Kallinderis, Y.

    1994-01-01

    A new multigrid method with adaptive unstructured grids is presented. The three-dimensional Euler equations are solved on tetrahedral grids that are adaptively refined or coarsened locally. The multigrid method is employed to propagate the fine grid corrections more rapidly by redistributing the changes-in-time of the solution from the fine grid to the coarser grids to accelerate convergence. A new approach is employed that uses the parent cells of the fine grid cells in an adapted mesh to generate successively coaser levels of multigrid. This obviates the need for the generation of a sequence of independent, nonoverlapping grids as well as the relatively complicated operations that need to be performed to interpolate the solution and the residuals between the independent grids. The solver is an explicit, vertex-based, finite volume scheme that employs edge-based data structures and operations. Spatial discretization is of central-differencing type combined with a special upwind-like smoothing operators. Application cases include adaptive solutions obtained with multigrid acceleration for supersonic and subsonic flow over a bump in a channel, as well as transonic flow around the ONERA M6 wing. Two levels of multigrid resulted in reduction in the number of iterations by a factor of 5.

  2. New multigrid approach for three-dimensional unstructured, adaptive grids

    NASA Astrophysics Data System (ADS)

    Parthasarathy, Vijayan; Kallinderis, Y.

    1994-05-01

    A new multigrid method with adaptive unstructured grids is presented. The three-dimensional Euler equations are solved on tetrahedral grids that are adaptively refined or coarsened locally. The multigrid method is employed to propagate the fine grid corrections more rapidly by redistributing the changes-in-time of the solution from the fine grid to the coarser grids to accelerate convergence. A new approach is employed that uses the parent cells of the fine grid cells in an adapted mesh to generate successively coarser levels of multigrid. This obviates the need for the generation of a sequence of independent, nonoverlapping grids as well as the relatively complicated operations that need to be performed to interpolate the solution and the residuals between the independent grids. The solver is an explicit, vertex-based, finite volume scheme that employs edge-based data structures and operations. Spatial discretization is of central-differencing type combined with special upwind-like smoothing operators. Application cases include adaptive solutions obtained with multigrid acceleration for supersonic and subsonic flow over a bump in a channel, as well as transonic flow around the ONERA M6 wing. Two levels of multigrid resulted in reduction in the number of iterations by a factor of 5.

  3. New multigrid approach for three-dimensional unstructured, adaptive grids

    NASA Astrophysics Data System (ADS)

    Parthasarathy, Vijayan; Kallinderis, Y.

    1994-05-01

    A new multigrid method with adaptive unstructured grids is presented. The three-dimensional Euler equations are solved on tetrahedral grids that are adaptively refined or coarsened locally. The multigrid method is employed to propagate the fine grid corrections more rapidly by redistributing the changes-in-time of the solution from the fine grid to the coarser grids to accelerate convergence. A new approach is employed that uses the parent cells of the fine grid cells in an adapted mesh to generate successively coaser levels of multigrid. This obviates the need for the generation of a sequence of independent, nonoverlapping grids as well as the relatively complicated operations that need to be performed to interpolate the solution and the residuals between the independent grids. The solver is an explicit, vertex-based, finite volume scheme that employs edge-based data structures and operations. Spatial discretization is of central-differencing type combined with a special upwind-like smoothing operators. Application cases include adaptive solutions obtained with multigrid acceleration for supersonic and subsonic flow over a bump in a channel, as well as transonic flow around the ONERA M6 wing. Two levels of multigrid resulted in reduction in the number of iterations by a factor of 5.

  4. A multigrid method for steady Euler equations on unstructured adaptive grids

    NASA Technical Reports Server (NTRS)

    Riemslagh, Kris; Dick, Erik

    1993-01-01

    A flux-difference splitting type algorithm is formulated for the steady Euler equations on unstructured grids. The polynomial flux-difference splitting technique is used. A vertex-centered finite volume method is employed on a triangular mesh. The multigrid method is in defect-correction form. A relaxation procedure with a first order accurate inner iteration and a second-order correction performed only on the finest grid, is used. A multi-stage Jacobi relaxation method is employed as a smoother. Since the grid is unstructured a Jacobi type is chosen. The multi-staging is necessary to provide sufficient smoothing properties. The domain is discretized using a Delaunay triangular mesh generator. Three grids with more or less uniform distribution of nodes but with different resolution are generated by successive refinement of the coarsest grid. Nodes of coarser grids appear in the finer grids. The multigrid method is started on these grids. As soon as the residual drops below a threshold value, an adaptive refinement is started. The solution on the adaptively refined grid is accelerated by a multigrid procedure. The coarser multigrid grids are generated by successive coarsening through point removement. The adaption cycle is repeated a few times. Results are given for the transonic flow over a NACA-0012 airfoil.

  5. Multi-Resolution Unstructured Grid-Generation for Geophysical Applications on the Sphere

    NASA Technical Reports Server (NTRS)

    Engwirda, Darren

    2015-01-01

    An algorithm for the generation of non-uniform unstructured grids on ellipsoidal geometries is described. This technique is designed to generate high quality triangular and polygonal meshes appropriate for general circulation modelling on the sphere, including applications to atmospheric and ocean simulation, and numerical weather predication. Using a recently developed Frontal-Delaunay-refinement technique, a method for the construction of high-quality unstructured ellipsoidal Delaunay triangulations is introduced. A dual polygonal grid, derived from the associated Voronoi diagram, is also optionally generated as a by-product. Compared to existing techniques, it is shown that the Frontal-Delaunay approach typically produces grids with near-optimal element quality and smooth grading characteristics, while imposing relatively low computational expense. Initial results are presented for a selection of uniform and non-uniform ellipsoidal grids appropriate for large-scale geophysical applications. The use of user-defined mesh-sizing functions to generate smoothly graded, non-uniform grids is discussed.

  6. Three-dimensional unstructured method for flows past bodies in 6-DOF relative motion

    NASA Technical Reports Server (NTRS)

    Singh, K. P.; Baysal, Oktay

    1995-01-01

    A three dimensional, unstructured-mesh methodology was developed to simulate unsteady flows past bodies in relative motion, where the trajectory was determined from the instantaneous aerodynamics. The method coupled the equations of fluid flow and those of rigid-body dynamics, and captured the time-dependent interference between stationary and moving boundaries. The unsteady, compressible Euler equations were solved on dynamic, unstructured meshes by an explicit, finite-volume, upwind method. The grid adaptation was performed within a window placed around the moving body. The Euler equations of dynamics were solved by a Runge-Kutta integration scheme. The flow solver and the adaptation scheme were validated by simulating the transonic, unsteady flow around a wing undergoing a forced, periodic pitching motion, then comparing the results with the experimental data. To validate the trajectory code, the six-degrees-of-freedom (DOF) motion of a store separating from a wing was computed using the experimentally determined force and moment fields, then comparing with an independently generated trajectory. Finally, the overall methodology was demonstrated by simulating the unsteady flowfield and the trajectory of a store dropped from a wing. The methodology, its computational cost notwithstanding, has proven to be accurate, automated, easy for dynamic gridding, and relatively efficient for the required man-hours.

  7. Balanced Central Schemes for the Shallow Water Equations on Unstructured Grids

    NASA Technical Reports Server (NTRS)

    Bryson, Steve; Levy, Doron

    2004-01-01

    We present a two-dimensional, well-balanced, central-upwind scheme for approximating solutions of the shallow water equations in the presence of a stationary bottom topography on triangular meshes. Our starting point is the recent central scheme of Kurganov and Petrova (KP) for approximating solutions of conservation laws on triangular meshes. In order to extend this scheme from systems of conservation laws to systems of balance laws one has to find an appropriate discretization of the source terms. We first show that for general triangulations there is no discretization of the source terms that corresponds to a well-balanced form of the KP scheme. We then derive a new variant of a central scheme that can be balanced on triangular meshes. We note in passing that it is straightforward to extend the KP scheme to general unstructured conformal meshes. This extension allows us to recover our previous well-balanced scheme on Cartesian grids. We conclude with several simulations, verifying the second-order accuracy of our scheme as well as its well-balanced properties.

  8. Large-scale flooding analysis in the suburbs of Tokyo Metropolis caused by levee breach of the Tone River using a 2D hydrodynamic model.

    PubMed

    Hai, Pham T; Magome, J; Yorozuya, A; Inomata, H; Fukami, K; Takeuchi, K

    2010-01-01

    In order to assess the effects of climate change on flood disasters in urban areas, we applied a two dimensional finite element hydrodynamic model (2D-FEM) to simulate flood processes for the case analysis of levee breach caused by Kathleen Typhoon on 16 September 1947 in Kurihashi reach of Tone River, upstream of Tokyo area. The purpose is to use the model to simulate flood inundation processes under the present topography and land-use conditions with impending extreme flood scenarios due to climate change for mega-urban areas like Tokyo. Simulation used 100 m resolution topographic data (in PWRI), which was derived from original LiDAR (Light Detection and Ranging) data, and levee breach hydrographic data in 1947. In this paper, we will describe the application of the model with calibration approach and techniques when applying for such fine spatial resolution in urban environments. The fine unstructured triangular FEM mesh of the model appeared to be the most capable of introducing of constructions like roads/levees in simulations. Model results can be used to generate flood mapping, subsequently uploaded to Google Earth interface, making the modeling and presentation process much comprehensible to the general public.

  9. Prolene mesh mentoplasty.

    PubMed

    Ilhan, A Emre; Kayabasoglu, Gurkan; Kazikdas, K Cagdas; Goksel, Abdulkadir

    2011-04-01

    Augmentation mentoplasty is a cosmetic surgical procedure to correct chin retrusion or microgenia which usually requires placement of an alloplastic material over the pogonion, and which results in increased chin projection and a more aesthetically balanced facial profile. Polypropylene mesh is easy to purchase, widely available in a general hospital and most commonly used by general surgeons. In this series of 192 patients, we wanted to demonstrate our simple mentoplasty technique using prolene mesh that can easily be combined with a rhinoplasty procedure, with possible causes of infection and the rationale for using prolene mesh in such procedures.

  10. Optimized testing of meshes

    NASA Technical Reports Server (NTRS)

    Malek, Miroslaw; Ozden, Banu

    1990-01-01

    Efficient testing techniques for two-dimensional mesh interconnection networks are presented. The tests cover faults in the arbitration logic of the switches; this includes an examination of fault detection in the data paths, routing, and control circuitry, including the conflict resolution capabilities of mesh interconnection networks using topological test methods. The proposed methods are not implementation specific and can be applied to any design with a mesh topology. The topology and behavior of the network are described and definitions are presented. The fault model is defined and parallel testing methods for the entire network are given.

  11. Robust, multidimensional mesh motion based on Monge-Kantorovich equidistribution

    SciTech Connect

    Chacon De La Rosa, Luis; Delzanno, Gian Luca; Finn, John M.

    2011-01-01

    Mesh-motion (r-refinement) grid adaptivity schemes are attractive due to their potential to minimize the numerical error for a prescribed number of degrees of freedom. However, a key roadblock to a widespread deployment of this class of techniques has been the formulation of robust, reliable mesh-motion governing principles, which (1) guarantee a solution in multiple dimensions (2D and 3D), (2) avoid grid tangling (or folding of the mesh, whereby edges of a grid cell cross somewhere in the domain), and (3) can be solved effectively and efficiently. In this study, we formulate such a mesh-motion governing principle, based on volume equidistribution via Monge-Kantorovich optimization (MK). In earlier publications [1] and [2], the advantages of this approach with regard to these points have been demonstrated for the time-independent case. In this study, we demonstrate that Monge-Kantorovich equidistribution can in fact be used effectively in a time-stepping context, and delivers an elegant solution to the otherwise pervasive problem of grid tangling in mesh-motion approaches, without resorting to ad hoc time-dependent terms (as in moving-mesh PDEs, or MMPDEs [3] and [4]). We explore two distinct r-refinement implementations of MK: the direct method, where the current mesh relates to an initial, unchanging mesh, and the sequential method, where the current mesh is related to the previous one in time. We demonstrate that the direct approach is superior with regard to mesh distortion and robustness. The properties of the approach are illustrated with a hyperbolic PDE, the advection of a passive scalar, in 2D and 3D. Velocity flow fields with and without flow shear are considered. Three-dimensional grid, time-step, and nonlinear tolerance convergence studies are presented which demonstrate the optimality of the approach.

  12. Parallel tetrahedral mesh adaptation with dynamic load balancing

    SciTech Connect

    Oliker, Leonid; Biswas, Rupak; Gabow, Harold N.

    2000-06-28

    The ability to dynamically adapt an unstructured grid is a powerful tool for efficiently solving computational problems with evolving physical features. In this paper, we report on our experience parallelizing an edge-based adaptation scheme, called 3D-TAG, using message passing. Results show excellent speedup when a realistic helicopter rotor mesh is randomly refined. However, performance deteriorates when the mesh is refined using a solution-based error indicator since mesh adaptation for practical problems occurs in a localized region, creating a severe load imbalance. To address this problem, we have developed PLUM, a global dynamic load balancing framework for adaptive numerical computations. Even though PLUM primarily balances processor workloads for the solution phase, it reduces the load imbalance problem within mesh adaptation by repartitioning the mesh after targeting edges for refinement but before the actual subdivision. This dramatically improves the performance of parallel 3D-TAG since refinement occurs in a more load balanced fashion. We also present optimal and heuristic algorithms that, when applied to the default mapping of a parallel repartitioner, significantly reduce the data redistribution overhead. Finally, portability is examined by comparing performance on three state-of-the-art parallel machines.

  13. Parallel Tetrahedral Mesh Adaptation with Dynamic Load Balancing

    NASA Technical Reports Server (NTRS)

    Oliker, Leonid; Biswas, Rupak; Gabow, Harold N.

    1999-01-01

    The ability to dynamically adapt an unstructured grid is a powerful tool for efficiently solving computational problems with evolving physical features. In this paper, we report on our experience parallelizing an edge-based adaptation scheme, called 3D_TAG. using message passing. Results show excellent speedup when a realistic helicopter rotor mesh is randomly refined. However. performance deteriorates when the mesh is refined using a solution-based error indicator since mesh adaptation for practical problems occurs in a localized region., creating a severe load imbalance. To address this problem, we have developed PLUM, a global dynamic load balancing framework for adaptive numerical computations. Even though PLUM primarily balances processor workloads for the solution phase, it reduces the load imbalance problem within mesh adaptation by repartitioning the mesh after targeting edges for refinement but before the actual subdivision. This dramatically improves the performance of parallel 3D_TAG since refinement occurs in a more load balanced fashion. We also present optimal and heuristic algorithms that, when applied to the default mapping of a parallel repartitioner, significantly reduce the data redistribution overhead. Finally, portability is examined by comparing performance on three state-of-the-art parallel machines.

  14. A structure-exploiting numbering algorithm for finite elements on extruded meshes, and its performance evaluation in Firedrake

    NASA Astrophysics Data System (ADS)

    Bercea, Gheorghe-Teodor; McRae, Andrew T. T.; Ham, David A.; Mitchell, Lawrence; Rathgeber, Florian; Nardi, Luigi; Luporini, Fabio; Kelly, Paul H. J.

    2016-10-01

    We present a generic algorithm for numbering and then efficiently iterating over the data values attached to an extruded mesh. An extruded mesh is formed by replicating an existing mesh, assumed to be unstructured, to form layers of prismatic cells. Applications of extruded meshes include, but are not limited to, the representation of three-dimensional high aspect ratio domains employed by geophysical finite element simulations. These meshes are structured in the extruded direction. The algorithm presented here exploits this structure to avoid the performance penalty traditionally associated with unstructured meshes. We evaluate the implementation of this algorithm in the Firedrake finite element system on a range of low compute intensity operations which constitute worst cases for data layout performance exploration. The experiments show that having structure along the extruded direction enables the cost of the indirect data accesses to be amortized after 10-20 layers as long as the underlying mesh is well ordered. We characterize the resulting spatial and temporal reuse in a representative set of both continuous-Galerkin and discontinuous-Galerkin discretizations. On meshes with realistic numbers of layers the performance achieved is between 70 and 90 % of a theoretical hardware-specific limit.

  15. GPU accelerated spectral finite elements on all-hex meshes

    NASA Astrophysics Data System (ADS)

    Remacle, J.-F.; Gandham, R.; Warburton, T.

    2016-11-01

    This paper presents a spectral element finite element scheme that efficiently solves elliptic problems on unstructured hexahedral meshes. The discrete equations are solved using a matrix-free preconditioned conjugate gradient algorithm. An additive Schwartz two-scale preconditioner is employed that allows h-independence convergence. An extensible multi-threading programming API is used as a common kernel language that allows runtime selection of different computing devices (GPU and CPU) and different threading interfaces (CUDA, OpenCL and OpenMP). Performance tests demonstrate that problems with over 50 million degrees of freedom can be solved in a few seconds on an off-the-shelf GPU.

  16. FRANC2D: A two-dimensional crack propagation simulator. Version 2.7: User's guide

    NASA Technical Reports Server (NTRS)

    Wawrzynek, Paul; Ingraffea, Anthony

    1994-01-01

    FRANC 2D (FRacture ANalysis Code, 2 Dimensions) is a menu driven, interactive finite element computer code that performs fracture mechanics analyses of 2-D structures. The code has an automatic mesh generator for triangular and quadrilateral elements. FRANC2D calculates the stress intensity factor using linear elastic fracture mechanics and evaluates crack extension using several methods that may be selected by the user. The code features a mesh refinement and adaptive mesh generation capability that is automatically developed according to the predicted crack extension direction and length. The code also has unique features that permit the analysis of layered structure with load transfer through simulated mechanical fasteners or bonded joints. The code was written for UNIX workstations with X-windows graphics and may be executed on the following computers: DEC DecStation 3000 and 5000 series, IBM RS/6000 series, Hewlitt-Packard 9000/700 series, SUN Sparc stations, and most Silicon Graphics models.

  17. Towards Verification of Unstructured-Grid Solvers

    NASA Technical Reports Server (NTRS)

    Thomas, James L.; Diskin, Boris; Rumsey, Christopher L.

    2008-01-01

    New methodology for verification of computational methods using unstructured grids is presented. The discretization order properties are studied in computational windows, easily constructed within a collection of grids or a single grid. The windows can be adjusted to isolate the interior discretization, the boundary discretization, or singularities. A major component of the methodology is the downscaling test, introduced previously for studying the convergence rates of truncation and discretization errors of finite-volume discretization schemes on general unstructured grids. Demonstrations of the method are shown, including a comparative accuracy assessment of commonly-used schemes on general mixed grids and the identification of local accuracy deterioration at intersections of tangency and inflow/outflow boundaries. Recommendations for the use of the methodology in large-scale computational simulations are given.

  18. Numerical approach for unstructured quantum key distribution

    PubMed Central

    Coles, Patrick J.; Metodiev, Eric M.; Lütkenhaus, Norbert

    2016-01-01

    Quantum key distribution (QKD) allows for communication with security guaranteed by quantum theory. The main theoretical problem in QKD is to calculate the secret key rate for a given protocol. Analytical formulas are known for protocols with symmetries, since symmetry simplifies the analysis. However, experimental imperfections break symmetries, hence the effect of imperfections on key rates is difficult to estimate. Furthermore, it is an interesting question whether (intentionally) asymmetric protocols could outperform symmetric ones. Here we develop a robust numerical approach for calculating the key rate for arbitrary discrete-variable QKD protocols. Ultimately this will allow researchers to study ‘unstructured' protocols, that is, those that lack symmetry. Our approach relies on transforming the key rate calculation to the dual optimization problem, which markedly reduces the number of parameters and hence the calculation time. We illustrate our method by investigating some unstructured protocols for which the key rate was previously unknown. PMID:27198739

  19. Mesh implants: An overview of crucial mesh parameters

    PubMed Central

    Zhu, Lei-Ming; Schuster, Philipp; Klinge, Uwe

    2015-01-01

    Hernia repair is one of the most frequently performed surgical interventions that use mesh implants. This article evaluates crucial mesh parameters to facilitate selection of the most appropriate mesh implant, considering raw materials, mesh composition, structure parameters and mechanical parameters. A literature review was performed using the PubMed database. The most important mesh parameters in the selection of a mesh implant are the raw material, structural parameters and mechanical parameters, which should match the physiological conditions. The structural parameters, especially the porosity, are the most important predictors of the biocompatibility performance of synthetic meshes. Meshes with large pores exhibit less inflammatory infiltrate, connective tissue and scar bridging, which allows increased soft tissue ingrowth. The raw material and combination of raw materials of the used mesh, including potential coatings and textile design, strongly impact the inflammatory reaction to the mesh. Synthetic meshes made from innovative polymers combined with surface coating have been demonstrated to exhibit advantageous behavior in specialized fields. Monofilament, large-pore synthetic meshes exhibit advantages. The value of mesh classification based on mesh weight seems to be overestimated. Mechanical properties of meshes, such as anisotropy/isotropy, elasticity and tensile strength, are crucial parameters for predicting mesh performance after implantation. PMID:26523210

  20. Final Report for LDRD Project on Rapid Problem Setup for Mesh-Based Simulation (Rapsodi)

    SciTech Connect

    Brown, D L; Henshaw, W; Petersson, N A; Fast, P; Chand, K

    2003-02-07

    Under LLNL Exploratory Research LDRD funding, the Rapsodi project developed rapid setup technology for computational physics and engineering problems that require computational representations of complex geometry. Many simulation projects at LLNL involve the solution of partial differential equations in complex 3-D geometries. A significant bottleneck in carrying out these simulations arises in converting some specification of a geometry, such as a computer-aided design (CAD) drawing to a computationally appropriate 3-D mesh that can be used for simulation and analysis. Even using state-of-the-art mesh generation software, this problem setup step typically has required weeks or months, which is often much longer than required to carry out the computational simulation itself. The Rapsodi project built computational tools and designed algorithms that help to significantly reduce this setup time to less than a day for many realistic problems. The project targeted rapid setup technology for computational physics and engineering problems that use mixed-element unstructured meshes, overset meshes or Cartesian-embedded boundary (EB) meshes to represent complex geometry. It also built tools that aid in constructing computational representations of geometry for problems that do not require a mesh. While completely automatic mesh generation is extremely difficult, the amount of manual labor required can be significantly reduced. By developing novel, automated, component-based mesh construction procedures and automated CAD geometry repair and cleanup tools, Rapsodi has significantly reduced the amount of hand crafting required to generate geometry and meshes for scientific simulation codes.

  1. A perspective on unstructured grid flow solvers

    NASA Technical Reports Server (NTRS)

    Venkatakrishnan, V.

    1995-01-01

    This survey paper assesses the status of compressible Euler and Navier-Stokes solvers on unstructured grids. Different spatial and temporal discretization options for steady and unsteady flows are discussed. The integration of these components into an overall framework to solve practical problems is addressed. Issues such as grid adaptation, higher order methods, hybrid discretizations and parallel computing are briefly discussed. Finally, some outstanding issues and future research directions are presented.

  2. Urogynecologic Surgical Mesh Implants

    MedlinePlus

    ... urogynecologic repair. Absorbable mesh will degrade and lose strength over time. It is not intended to provide long-term reinforcement to the repair site. As the material degrades, new tissue growth is intended to provide ...

  3. Hernia Surgical Mesh Implants

    MedlinePlus

    ... repaired hernia. Absorbable mesh will degrade and lose strength over time. It is not intended to provide long-term reinforcement to the repair site. As the material degrades, new tissue growth is intended to provide ...

  4. Optoelectronics with 2D semiconductors

    NASA Astrophysics Data System (ADS)

    Mueller, Thomas

    2015-03-01

    Two-dimensional (2D) atomic crystals, such as graphene and layered transition-metal dichalcogenides, are currently receiving a lot of attention for applications in electronics and optoelectronics. In this talk, I will review our research activities on electrically driven light emission, photovoltaic energy conversion and photodetection in 2D semiconductors. In particular, WSe2 monolayer p-n junctions formed by electrostatic doping using a pair of split gate electrodes, type-II heterojunctions based on MoS2/WSe2 and MoS2/phosphorene van der Waals stacks, 2D multi-junction solar cells, and 3D/2D semiconductor interfaces will be presented. Upon optical illumination, conversion of light into electrical energy occurs in these devices. If an electrical current is driven, efficient electroluminescence is obtained. I will present measurements of the electrical characteristics, the optical properties, and the gate voltage dependence of the device response. In the second part of my talk, I will discuss photoconductivity studies of MoS2 field-effect transistors. We identify photovoltaic and photoconductive effects, which both show strong photoconductive gain. A model will be presented that reproduces our experimental findings, such as the dependence on optical power and gate voltage. We envision that the efficient photon conversion and light emission, combined with the advantages of 2D semiconductors, such as flexibility, high mechanical stability and low costs of production, could lead to new optoelectronic technologies.

  5. Computing Flows Using Chimera and Unstructured Grids

    NASA Technical Reports Server (NTRS)

    Liou, Meng-Sing; Zheng, Yao

    2006-01-01

    DRAGONFLOW is a computer program that solves the Navier-Stokes equations of flows in complexly shaped three-dimensional regions discretized by use of a direct replacement of arbitrary grid overlapping by nonstructured (DRAGON) grid. A DRAGON grid (see figure) is a combination of a chimera grid (a composite of structured subgrids) and a collection of unstructured subgrids. DRAGONFLOW incorporates modified versions of two prior Navier-Stokes-equation-solving programs: OVERFLOW, which is designed to solve on chimera grids; and USM3D, which is used to solve on unstructured grids. A master module controls the invocation of individual modules in the libraries. At each time step of a simulated flow, DRAGONFLOW is invoked on the chimera portion of the DRAGON grid in alternation with USM3D, which is invoked on the unstructured subgrids of the DRAGON grid. The USM3D and OVERFLOW modules then immediately exchange their solutions and other data. As a result, USM3D and OVERFLOW are coupled seamlessly.

  6. Wireless Mesh Networks

    NASA Astrophysics Data System (ADS)

    Ishmael, Johnathan; Race, Nicholas

    Wireless Mesh Networks have emerged as an important technology in building next-generation networks. They are seen to have a range of benefits over traditional wired and wireless networks including low deployment costs, high scalability and resiliency to faults. Moreover, Wireless Mesh Networks (WMNs) are often described as being autonomic with self-* (healing and configuration) properties and their popularity has grown both as a research platform and as a commercially exploitable technology.

  7. Modeling wind waves from deep to shallow waters in Lake Michigan using unstructured SWAN

    NASA Astrophysics Data System (ADS)

    Mao, Miaohua; van der Westhuysen, André J.; Xia, Meng; Schwab, David J.; Chawla, Arun

    2016-06-01

    Accurate wind-wave simulations are vital for evaluating the impact of waves on coastal dynamics, especially when wave observations are sparse. It has been demonstrated that structured-grid models have the ability to capture the wave dynamics of large-scale offshore domains, and the recent emergence of unstructured meshes provides an opportunity to better simulate shallow-water waves by resolving the complex geometry along islands and coastlines. For this study, wind waves in Lake Michigan were simulated using the unstructured-grid version of Simulating Waves Nearshore (un-SWAN) model with various types of wind forcing, and the model was calibrated using in situ wave observations. Sensitivity experiments were conducted to investigate the key factors that impact wave growth and dissipation processes. In particular, we considered (1) three wind field sources, (2) three formulations for wind input and whitecapping, (3) alternative formulations and coefficients for depth-induced breaking, and (4) various mesh types. We find that un-SWAN driven by Global Environmental Multiscale (GEM) wind data reproduces significant wave heights reasonably well using previously proposed formulations for wind input, recalibrated whitecapping parameters, and alternative formulations for depth-induced breaking. The results indicate that using GEM wind field data as input captures large waves in the midlake most accurately, while using the Natural Neighbor Method wind field reproduces shallow-water waves more accurately. Wind input affects the simulated wave evolution across the whole lake, whereas whitecapping primarily affects wave dynamics in deep water. In shallow water, the process of depth-induced breaking is dominant and highly dependent upon breaker indices and mesh types.

  8. Highly crystalline 2D superconductors

    NASA Astrophysics Data System (ADS)

    Saito, Yu; Nojima, Tsutomu; Iwasa, Yoshihiro

    2016-12-01

    Recent advances in materials fabrication have enabled the manufacturing of ordered 2D electron systems, such as heterogeneous interfaces, atomic layers grown by molecular beam epitaxy, exfoliated thin flakes and field-effect devices. These 2D electron systems are highly crystalline, and some of them, despite their single-layer thickness, exhibit a sheet resistance more than an order of magnitude lower than that of conventional amorphous or granular thin films. In this Review, we explore recent developments in the field of highly crystalline 2D superconductors and highlight the unprecedented physical properties of these systems. In particular, we explore the quantum metallic state (or possible metallic ground state), the quantum Griffiths phase observed in out-of-plane magnetic fields and the superconducting state maintained in anomalously large in-plane magnetic fields. These phenomena are examined in the context of weakened disorder and/or broken spatial inversion symmetry. We conclude with a discussion of how these unconventional properties make highly crystalline 2D systems promising platforms for the exploration of new quantum physics and high-temperature superconductors.

  9. Extensions of 2D gravity

    SciTech Connect

    Sevrin, A.

    1993-06-01

    After reviewing some aspects of gravity in two dimensions, I show that non-trivial embeddings of sl(2) in a semi-simple (super) Lie algebra give rise to a very large class of extensions of 2D gravity. The induced action is constructed as a gauged WZW model and an exact expression for the effective action is given.

  10. The Space-Time Conservative Schemes for Large-Scale, Time-Accurate Flow Simulations with Tetrahedral Meshes

    NASA Technical Reports Server (NTRS)

    Venkatachari, Balaji Shankar; Streett, Craig L.; Chang, Chau-Lyan; Friedlander, David J.; Wang, Xiao-Yen; Chang, Sin-Chung

    2016-01-01

    Despite decades of development of unstructured mesh methods, high-fidelity time-accurate simulations are still predominantly carried out on structured, or unstructured hexahedral meshes by using high-order finite-difference, weighted essentially non-oscillatory (WENO), or hybrid schemes formed by their combinations. In this work, the space-time conservation element solution element (CESE) method is used to simulate several flow problems including supersonic jet/shock interaction and its impact on launch vehicle acoustics, and direct numerical simulations of turbulent flows using tetrahedral meshes. This paper provides a status report for the continuing development of the space-time conservation element solution element (CESE) numerical and software framework under the Revolutionary Computational Aerosciences (RCA) project. Solution accuracy and large-scale parallel performance of the numerical framework is assessed with the goal of providing a viable paradigm for future high-fidelity flow physics simulations.

  11. Recent Enhancements To The FUN3D Flow Solver For Moving-Mesh Applications

    NASA Technical Reports Server (NTRS)

    Biedron, Robert T,; Thomas, James L.

    2009-01-01

    An unsteady Reynolds-averaged Navier-Stokes solver for unstructured grids has been extended to handle general mesh movement involving rigid, deforming, and overset meshes. Mesh deformation is achieved through analogy to elastic media by solving the linear elasticity equations. A general method for specifying the motion of moving bodies within the mesh has been implemented that allows for inherited motion through parent-child relationships, enabling simulations involving multiple moving bodies. Several example calculations are shown to illustrate the range of potential applications. For problems in which an isolated body is rotating with a fixed rate, a noninertial reference-frame formulation is available. An example calculation for a tilt-wing rotor is used to demonstrate that the time-dependent moving grid and noninertial formulations produce the same results in the limit of zero time-step size.

  12. Global Load Balancing with Parallel Mesh Adaption on Distributed-Memory Systems

    NASA Technical Reports Server (NTRS)

    Biswas, Rupak; Oliker, Leonid; Sohn, Andrew

    1996-01-01

    Dynamic mesh adaption on unstructured grids is a powerful tool for efficiently computing unsteady problems to resolve solution features of interest. Unfortunately, this causes load imbalance among processors on a parallel machine. This paper describes the parallel implementation of a tetrahedral mesh adaption scheme and a new global load balancing method. A heuristic remapping algorithm is presented that assigns partitions to processors such that the redistribution cost is minimized. Results indicate that the parallel performance of the mesh adaption code depends on the nature of the adaption region and show a 35.5X speedup on 64 processors of an SP2 when 35% of the mesh is randomly adapted. For large-scale scientific computations, our load balancing strategy gives almost a sixfold reduction in solver execution times over non-balanced loads. Furthermore, our heuristic remapper yields processor assignments that are less than 3% off the optimal solutions but requires only 1% of the computational time.

  13. Global Load Balancing with Parallel Mesh Adaption on Distributed-Memory Systems

    NASA Technical Reports Server (NTRS)

    Biswas, Rupak; Oliker, Leonid; Sohn, Andrew

    1996-01-01

    Dynamic mesh adaptation on unstructured grids is a powerful tool for efficiently computing unsteady problems to resolve solution features of interest. Unfortunately, this causes load inbalances among processors on a parallel machine. This paper described the parallel implementation of a tetrahedral mesh adaption scheme and a new global load balancing method. A heuristic remapping algorithm is presented that assigns partitions to processors such that the redistribution coast is minimized. Results indicate that the parallel performance of the mesh adaption code depends on the nature of the adaption region and show a 35.5X speedup on 64 processors of an SP2 when 35 percent of the mesh is randomly adapted. For large scale scientific computations, our load balancing strategy gives an almost sixfold reduction in solver execution times over non-balanced loads. Furthermore, our heuristic remappier yields processor assignments that are less than 3 percent of the optimal solutions, but requires only 1 percent of the computational time.

  14. Best Practices for Unstructured Grid Shock-Fitting

    NASA Technical Reports Server (NTRS)

    McCoud, Peter L.

    2017-01-01

    Unstructured grid solvers have well-known issues predicting surface heat fluxes when strong shocks are present. Various efforts have been made to address the underlying numerical issues that cause the erroneous predictions. The present work addresses some of the shortcomings of unstructured grid solvers, not by addressing the numerics, but by applying structured grid best practices to unstructured grids. A methodology for robust shock detection and shock-fitting is outlined and applied to production-relevant cases. Results

  15. A Method for Flow Simulation About Complex Geometries Using Both Structured and Unstructured Grids

    NASA Technical Reports Server (NTRS)

    Debonis, James R.

    1994-01-01

    A computational fluid dynamics code which utilizes both structured and unstructured grids was developed. The objective of this study was to develop and demonstrate the ability of such a code to achieve solutions about complex geometries in two dimensions. An unstructured grid generator and flow solver were incorporated into the PARC2D structured flow solver. This new unstructured grid generator capability allows for easier generation and manipulation of complex grids. Several examples of the grid generation capabilities are provided. The coupling of different grid topologies and the manipulation of individual grids is shown. Also, grids for realistic geometries, a NACA 0012 airfoil and a wing/nacelle installation, were created. The flow over a NACA 0012 airfoil was used as a test case for the flow solver. Eight separate cases were run. They were both the inviscid and viscous solutions for two freestream Mach numbers and airfoil angle of attacks of 0 to 3.86 degrees. The Mach numbers chosen were for a subsonic case, Mach 0.6, and a case where supersonic regions and a shock wave exists, Mach 0.8. These test case conditions were selected to match experimentally obtained data for code comparison. The results show that the code accurately predicts the flow field for all cases.

  16. Multidimensional discretization of conservation laws for unstructured polyhedral grids

    SciTech Connect

    Burton, D.E.

    1994-08-22

    To the extent possible, a discretized system should satisfy the same conservation laws as the physical system. The author considers the conservation properties of a staggered-grid Lagrange formulation of the hydrodynamics equations (SGH) which is an extension of a ID scheme due to von Neumann and Richtmyer (VNR). The term staggered refers to spatial centering in which position, velocity, and kinetic energy are centered at nodes, while density, pressure, and internal energy are at cell centers. Traditional SGH formulations consider mass, volume, and momentum conservation, but tend to ignore conservation of total energy, conservation of angular momentum, and requirements for thermodynamic reversibility. The author shows that, once the mass and momentum discretizations have been specified, discretization for other quantities are dictated by the conservation laws and cannot be independently defined. The spatial discretization method employs a finite volume procedure that replaces differential operators with surface integrals. The method is appropriate for multidimensional formulations (1D, 2D, 3D) on unstructured grids formed from polygonal (2D) or polyhedral (3D) cells. Conservation equations can then be expressed in conservation form in which conserved currents are exchanged between control volumes. In addition to the surface integrals, the conservation equations include source terms derived from physical sources or geometrical considerations. In Cartesian geometry, mass and momentum are conserved identically. Discussion of volume conservation will be temporarily deferred. The author shows that the momentum equation leads to a form-preserving definition for kinetic energy and to an exactly conservative evolution equation for internal energy. Similarly, the author derives a form-preserving definition and corresponding conservation equation for a zone-centered angular momentum.

  17. A unified multigrid solver for the Navier-Stokes equations on mixed element meshes

    NASA Technical Reports Server (NTRS)

    Mavriplis, D. J.; Venkatakrishnan, V.

    1995-01-01

    A unified multigrid solution technique is presented for solving the Euler and Reynolds-averaged Navier-Stokes equations on unstructured meshes using mixed elements consisting of triangles and quadrilaterals in two dimensions, and of hexahedra, pyramids, prisms, and tetrahedra in three dimensions. While the use of mixed elements is by no means a novel idea, the contribution of the paper lies in the formulation of a complete solution technique which can handle structured grids, block structured grids, and unstructured grids of tetrahedra or mixed elements without any modification. This is achieved by discretizing the full Navier-Stokes equations on tetrahedral elements, and the thin layer version of these equations on other types of elements, while using a single edge-based data-structure to construct the discretization over all element types. An agglomeration multigrid algorithm, which naturally handles meshes of any types of elements, is employed to accelerate convergence. An automatic algorithm which reduces the complexity of a given triangular or tetrahedral mesh by merging candidate triangular or tetrahedral elements into quadrilateral or prismatic elements is also described. The gains in computational efficiency afforded by the use of non-simplicial meshes over fully tetrahedral meshes are demonstrated through several examples.

  18. Visualization of semantic indexing similarity over MeSH.

    PubMed

    Du, Haixia; Yoo, Terry S

    2007-10-11

    We present an interactive visualization system for the evaluation of indexing results of the MEDLINE data-base over the Medical Subject Headings (MeSH) structure in a graphical radial-tree layout. It displays indexing similarity measurements with 2D color coding and a 3D height field permitting the evaluation of the automatic Medical Text Indexer (MTI), compared with human indexers.

  19. 3D Feature Extraction for Unstructured Grids

    NASA Technical Reports Server (NTRS)

    Silver, Deborah

    1996-01-01

    Visualization techniques provide tools that help scientists identify observed phenomena in scientific simulation. To be useful, these tools must allow the user to extract regions, classify and visualize them, abstract them for simplified representations, and track their evolution. Object Segmentation provides a technique to extract and quantify regions of interest within these massive datasets. This article explores basic algorithms to extract coherent amorphous regions from two-dimensional and three-dimensional scalar unstructured grids. The techniques are applied to datasets from Computational Fluid Dynamics and those from Finite Element Analysis.

  20. Autonomous robots for hazardous and unstructured environments

    SciTech Connect

    Hamel, W.R.; Babcock, S.M.; Hall, M.G.; Jorgenson, C.C.; Killough, S.M.; Weisbin, C.R.

    1986-01-01

    This paper reports continuing research in the areas of navigation and manipulation in unstructured environments, which is being carried out at the Center for Engineering Systems Advanced Research (CESAR) at the Oak Ridge National Laboratory (ORNL). The HERMIES-II mobile robot, a low-cost prototype of a series that will include many of the major features required for remote operations in hazardous environments, is discussed. Progress toward development of a high-performance research manipulator is presented, and application of an advanced parallel computer to mobile robot problems, which is under way, is discussed.

  1. Documentation for MeshKit - Reactor Geometry (&mesh) Generator

    SciTech Connect

    Jain, Rajeev; Mahadevan, Vijay

    2015-09-30

    This report gives documentation for using MeshKit’s Reactor Geometry (and mesh) Generator (RGG) GUI and also briefly documents other algorithms and tools available in MeshKit. RGG is a program designed to aid in modeling and meshing of complex/large hexagonal and rectilinear reactor cores. RGG uses Argonne’s SIGMA interfaces, Qt and VTK to produce an intuitive user interface. By integrating a 3D view of the reactor with the meshing tools and combining them into one user interface, RGG streamlines the task of preparing a simulation mesh and enables real-time feedback that reduces accidental scripting mistakes that could waste hours of meshing. RGG interfaces with MeshKit tools to consolidate the meshing process, meaning that going from model to mesh is as easy as a button click. This report is designed to explain RGG v 2.0 interface and provide users with the knowledge and skills to pilot RGG successfully. Brief documentation of MeshKit source code, tools and other algorithms available are also presented for developers to extend and add new algorithms to MeshKit. RGG tools work in serial and parallel and have been used to model complex reactor core models consisting of conical pins, load pads, several thousands of axially varying material properties of instrumentation pins and other interstices meshes.

  2. Cosmology on a Mesh

    NASA Astrophysics Data System (ADS)

    Gill, Stuart P. D.; Knebe, Alexander; Gibson, Brad K.; Flynn, Chris; Ibata, Rodrigo A.; Lewis, Geraint F.

    2003-04-01

    An adaptive multi grid approach to simulating the formation of structure from collisionless dark matter is described. MLAPM (Multi-Level Adaptive Particle Mesh) is one of the most efficient serial codes available on the cosmological "market" today. As part of Swinburne University's role in the development of the Square Kilometer Array, we are implementing hydrodynamics, feedback, and radiative transfer within the MLAPM adaptive mesh, in order to simulate baryonic processes relevant to the interstellar and intergalactic media at high redshift. We will outline our progress to date in applying the existing MLAPM to a study of the decay of satellite galaxies within massive host potentials.

  3. High Order Methods for Compressible Viscous Flow on Unstructured Meshes: New Discretization Techniques and Algorithms

    DTIC Science & Technology

    2014-02-01

    thermal conductivity coefficient. For a Newtonian fluid , the stress tensor is defined as τ = µ ( ∇v + (∇v)T − 2 3 (∇ · v) Id ) . (11) The variation of the...Methods, Computational Fluid Dynamics (CFD) 16. SECURITY CLASSIFICATION OF: 17. LIMITATION OF ABSTRACT SAR 18, NUMBER OF PAGES 25 19a...for a transonic test case . . . . . . . . . . . . . . . . . . . . . . . 12 2 Runtime comparison of the hybridized and non -hybridized DG method for a

  4. Discretization and Preconditioning Algorithms for the Euler and Navier-Stokes Equations on Unstructured Meshes

    NASA Technical Reports Server (NTRS)

    Bart, Timothy J.; Kutler, Paul (Technical Monitor)

    1998-01-01

    Chapter 1 briefly reviews several related topics associated with the symmetrization of systems of conservation laws and quasi-conservation laws: (1) Basic Entropy Symmetrization Theory; (2) Symmetrization and eigenvector scaling; (3) Symmetrization of the compressible Navier-Stokes equations; and (4) Symmetrization of the quasi-conservative form of the magnetohydrodynamic (MHD) equations. Chapter 2 describes one of the best known tools employed in the study of differential equations, the maximum principle: any function f(x) which satisfies the inequality f(double prime)>0 on the interval [a,b] attains its maximum value at one of the endpoints on the interval. Chapter three examines the upwind finite volume schemes for scalar and system conservation laws. The basic tasks in the upwind finite volume approach have already been presented: reconstruction, flux evaluation, and evolution. By far, the most difficult task in this process is the reconstruction step.

  5. Higher Order Time Integration Schemes for the Unsteady Navier-Stokes Equations on Unstructured Meshes

    NASA Technical Reports Server (NTRS)

    Jothiprasad, Giridhar; Mavriplis, Dimitri J.; Caughey, David A.; Bushnell, Dennis M. (Technical Monitor)

    2002-01-01

    The efficiency gains obtained using higher-order implicit Runge-Kutta schemes as compared with the second-order accurate backward difference schemes for the unsteady Navier-Stokes equations are investigated. Three different algorithms for solving the nonlinear system of equations arising at each timestep are presented. The first algorithm (NMG) is a pseudo-time-stepping scheme which employs a non-linear full approximation storage (FAS) agglomeration multigrid method to accelerate convergence. The other two algorithms are based on Inexact Newton's methods. The linear system arising at each Newton step is solved using iterative/Krylov techniques and left preconditioning is used to accelerate convergence of the linear solvers. One of the methods (LMG) uses Richardson's iterative scheme for solving the linear system at each Newton step while the other (PGMRES) uses the Generalized Minimal Residual method. Results demonstrating the relative superiority of these Newton's methods based schemes are presented. Efficiency gains as high as 10 are obtained by combining the higher-order time integration schemes with the more efficient nonlinear solvers.

  6. Numerical Solution of Multi-Dimensional Hyperbolic Conservation Laws on Unstructured Meshes

    NASA Technical Reports Server (NTRS)

    Barth, Timothy J.; Kwak, Dochan (Technical Monitor)

    1995-01-01

    The lecture material will discuss the application of one-dimensional approximate Riemann solutions and high order accurate data reconstruction as building blocks for solving multi-dimensional hyperbolic equations. This building block procedure is well-documented in the nationally available literature. The relevant stability and convergence theory using positive operator analysis will also be presented. All participants in the minisymposium will be asked to solve one or more generic test problems so that a critical comparison of accuracy can be made among differing approaches.

  7. An Assessment of Linear Versus Non-linear Multigrid Methods for Unstructured Mesh Solvers

    DTIC Science & Technology

    2001-05-01

    problems is investigated. The first case consists of a transient radiation-diffusion problem for which an exact linearization is available, while the...to the Jacobian of a second-order accurate discretization. When an exact linearization is employed, the linear and non-linear multigrid methods

  8. Numerical Examination of Flux Correction for Solving the Navier-Stokes Equations on Unstructured Meshes

    DTIC Science & Technology

    2014-08-29

    then defined for each node p not on a moving surface: 0 ≤ αp,nsnc ≤ 1 (2.8a) Sp,nsnc = ∣∣∣rP − rp,nsconnect(nc)∣∣∣ (2.8b) SpF = ∣∣∣rp − rpfarfield...moving surface ns is defined for each point p as: ψp,ns = ∑nconnect nc=1 α p,ns nc S p,ns nc SpF + ∑nconnect nc=1 α p,ns nc S p,ns nc ns = 1

  9. A Unifying High-Order Method for the Navier-Stokes Equations on Hybrid Unstructured Meshes

    DTIC Science & Technology

    2013-04-01

    required for many aerodynamic problems with both complex physics and geometry , such as helicopter blade vortex interactions, flow over high lift devices...among these methods is the use of one of the Riemann solvers [33,32,30,19,22] to compute unique fluxes at element interfaces to incorporate “upwinding...element with curvilinear geometry in section 4. Section 5 presents the computational results for several benchmark problems, including accuracy

  10. A 3D Unstructured Mesh Euler Solver Based on the Fourth-Order CESE Method

    DTIC Science & Technology

    2013-06-01

    conservation in space and time without using a one-dimensional Riemann solver, (ii) genuinely multi-dimensional treatment without dimensional splitting (iii...of the original second-order CESE method, including: (i) flux conservation in space and time without using a one-dimensional Riemann solver, (ii...treated in a unified manner. The geometry for a three-dimensional CESE method is more difficult to visualize than the one- and two-dimensional methods

  11. Radiation Coupling with the FUN3D Unstructured-Grid CFD Code

    NASA Technical Reports Server (NTRS)

    Wood, William A.

    2012-01-01

    The HARA radiation code is fully-coupled to the FUN3D unstructured-grid CFD code for the purpose of simulating high-energy hypersonic flows. The radiation energy source terms and surface heat transfer, under the tangent slab approximation, are included within the fluid dynamic ow solver. The Fire II flight test, at the Mach-31 1643-second trajectory point, is used as a demonstration case. Comparisons are made with an existing structured-grid capability, the LAURA/HARA coupling. The radiative surface heat transfer rates from the present approach match the benchmark values within 6%. Although radiation coupling is the focus of the present work, convective surface heat transfer rates are also reported, and are seen to vary depending upon the choice of mesh connectivity and FUN3D ux reconstruction algorithm. On a tetrahedral-element mesh the convective heating matches the benchmark at the stagnation point, but under-predicts by 15% on the Fire II shoulder. Conversely, on a mixed-element mesh the convective heating over-predicts at the stagnation point by 20%, but matches the benchmark away from the stagnation region.

  12. Modeling Three-Phase Compositional Flow on Complex 3D Unstructured Grids with Higher-Order Finite Element Methods

    NASA Astrophysics Data System (ADS)

    Moortgat, J.; Firoozabadi, A.

    2013-12-01

    Most problems of interest in hydrogeology and subsurface energy resources involve complex heterogeneous geological formations. Such domains are most naturally represented in numerical reservoir simulations by unstructured computational grids. Finite element methods are a natural choice to describe fluid flow on unstructured meshes, because the governing equations can be readily discretized for any grid-element geometry. In this work, we consider the challenging problem of fully compositional three-phase flow in 3D unstructured grids, discretized by tetrahedra, prisms, or hexahedra, and compare to simulations on 3D structured grids. We employ a combination of mixed hybrid finite element methods to solve for the pressure and flux fields in a fractional flow formulation, and higher-order discontinuous Galerkin methods for the mass transport equations. These methods are well suited to simulate flow in heterogeneous and fractured reservoirs, because they provide a globally continuous pressure and flux field, while allowing for sharp discontinuities in the phase properties, such as compositions and saturations. The increased accuracy from using higher-order methods improves the modeling of highly non-linear flow, such as gravitational and viscous fingering. We present several numerical examples to study convergence rates and the (lack of) sensitivity to gridding/mesh orientation, and mesh quality. These examples consider gravity depletion, water and gas injection in oil saturated subsurface reservoirs with species exchange between up to three fluid phases. The examples demonstrate the wide applicability of our chosen finite element methods in the study of challenging multiphase flow problems in porous, geometrically complex, subsurface media.

  13. Preliminary large-eddy simulations of flow around a NACA 4412 airfoil using unstructured grids

    NASA Technical Reports Server (NTRS)

    Jansen, Kenneth

    1995-01-01

    Large-eddy simulation (LES) has matured to the point where application to complex flows is desirable. The extension to higher Reynolds numbers leads to an impractical number of grid points with existing structured-grid methods. Furthermore, most real world flows are rather difficult to represent geometrically with structured grids. Unstructured-grid methods offer a release from both of these constraints. However, just as it took many years for structured-grid methods to be well understood and reliable tools for LES, unstructured-grid methods must be carefully studied before we can expect them to attain their full potential. In the past two years, important building blocks have been put into place making possible a careful study of LES on unstructured grids. The first building block was an efficient mesh generator which allowed the placement of points according to smooth variation of physical length scales. This variation of length scales is in all three directions independently, which allows a large reduction in points when compared to structured-grid methods, which can only vary length scales in one direction at a time. The second building block was the development of a dynamic model appropriate for unstructured grids. The principle obstacle was the development of an unstructured-grid filtering operator. In the past year, some of the new filters developed by Jansen have been implemented into a highly parallelized finite element code based on the Galerkin/least-squares finite element method. We have chosen the NACA 4412 airfoil at maximum lift as the first simulation for a variety of reasons. First, it is a problem of significant interest since it would be the first LES of an aircraft component. Second, this flow has been the subject of three experimental studies. The third reason for considering this flow is the variety of flow features which provide an important test of the dynamic model. Only the dynamic model can be expected to perform satisfactorily in this

  14. Robust, multidimensional mesh motion based on Monge-Kantorovich equidistribution

    SciTech Connect

    Delzanno, G L; Finn, J M

    2009-01-01

    Mesh-motion (r-refinement) grid adaptivity schemes are attractive due to their potential to minimize the numerical error for a prescribed number of degrees of freedom. However, a key roadblock to a widespread deployment of the technique has been the formulation of robust, reliable mesh motion governing principles, which (1) guarantee a solution in multiple dimensions (2D and 3D), (2) avoid grid tangling (or folding of the mesh, whereby edges of a grid cell cross somewhere in the domain), and (3) can be solved effectively and efficiently. In this study, we formulate such a mesh-motion governing principle, based on volume equidistribution via Monge-Kantorovich optimization (MK). In earlier publications [1, 2], the advantages of this approach in regards to these points have been demonstrated for the time-independent case. In this study, demonstrate that Monge-Kantorovich equidistribution can in fact be used effectively in a time stepping context, and delivers an elegant solution to the otherwise pervasive problem of grid tangling in mesh motion approaches, without resorting to ad-hoc time-dependent terms (as in moving-mesh PDEs, or MMPDEs [3, 4]). We explore two distinct r-refinement implementations of MK: direct, where the current mesh relates to an initial, unchanging mesh, and sequential, where the current mesh is related to the previous one in time. We demonstrate that the direct approach is superior in regards to mesh distortion and robustness. The properties of the approach are illustrated with a paradigmatic hyperbolic PDE, the advection of a passive scalar. Imposed velocity flow fields or varying vorticity levels and flow shears are considered.

  15. Predicting structured metadata from unstructured metadata

    PubMed Central

    Posch, Lisa; Panahiazar, Maryam; Dumontier, Michel; Gevaert, Olivier

    2016-01-01

    Enormous amounts of biomedical data have been and are being produced by investigators all over the world. However, one crucial and limiting factor in data reuse is accurate, structured and complete description of the data or data about the data—defined as metadata. We propose a framework to predict structured metadata terms from unstructured metadata for improving quality and quantity of metadata, using the Gene Expression Omnibus (GEO) microarray database. Our framework consists of classifiers trained using term frequency-inverse document frequency (TF-IDF) features and a second approach based on topics modeled using a Latent Dirichlet Allocation model (LDA) to reduce the dimensionality of the unstructured data. Our results on the GEO database show that structured metadata terms can be the most accurately predicted using the TF-IDF approach followed by LDA both outperforming the majority vote baseline. While some accuracy is lost by the dimensionality reduction of LDA, the difference is small for elements with few possible values, and there is a large improvement over the majority classifier baseline. Overall this is a promising approach for metadata prediction that is likely to be applicable to other datasets and has implications for researchers interested in biomedical metadata curation and metadata prediction. Database URL: http://www.yeastgenome.org/

  16. Towards Verification of Unstructured-Grid Solvers

    NASA Technical Reports Server (NTRS)

    Thomas, James L.; Diskin, Boris; Rumsey, Christopher L.

    2008-01-01

    New methodology for verification of finite-volume computational methods using unstructured grids is presented. The discretization order properties are studied in computational windows, easily constructed within a collection of grids or a single grid. Tests are performed within each window and address a combination of problem-, solution-, and discretization/grid-related features affecting discretization error convergence. The windows can be adjusted to isolate particular elements of the computational scheme, such as the interior discretization, the boundary discretization, or singularities. Studies can use traditional grid-refinement computations within a fixed window or downscaling, a recently-introduced technique in which computations are made within windows contracting toward a focal point of interest. Grids within the windows are constrained to be consistently refined, allowing a meaningful assessment of asymptotic error convergence on unstructured grids. Demonstrations of the method are shown, including a comparative accuracy assessment of commonly-used schemes on general mixed grids and the identification of local accuracy deterioration at boundary intersections. Recommendations to enable attainment of design-order discretization errors for large-scale computational simulations are given.

  17. Multiple Ising models coupled to 2-d gravity: a CSD analysis

    NASA Astrophysics Data System (ADS)

    Bowick, Mark; Falcioni, Marco; Harris, Geoffrey; Marinari, Enzo

    1994-04-01

    We simulate single and multiple Ising models coupled to 2-d gravity and we measure critical slowing down (CSD) with the standard methods. We find that the Swendsen-Wang and Wolff cluster algorithms do not eliminate CSD. We interpret the result as an effect of the mesh dynamics.

  18. Advanced numerical methods in mesh generation and mesh adaptation

    SciTech Connect

    Lipnikov, Konstantine; Danilov, A; Vassilevski, Y; Agonzal, A

    2010-01-01

    Numerical solution of partial differential equations requires appropriate meshes, efficient solvers and robust and reliable error estimates. Generation of high-quality meshes for complex engineering models is a non-trivial task. This task is made more difficult when the mesh has to be adapted to a problem solution. This article is focused on a synergistic approach to the mesh generation and mesh adaptation, where best properties of various mesh generation methods are combined to build efficiently simplicial meshes. First, the advancing front technique (AFT) is combined with the incremental Delaunay triangulation (DT) to build an initial mesh. Second, the metric-based mesh adaptation (MBA) method is employed to improve quality of the generated mesh and/or to adapt it to a problem solution. We demonstrate with numerical experiments that combination of all three methods is required for robust meshing of complex engineering models. The key to successful mesh generation is the high-quality of the triangles in the initial front. We use a black-box technique to improve surface meshes exported from an unattainable CAD system. The initial surface mesh is refined into a shape-regular triangulation which approximates the boundary with the same accuracy as the CAD mesh. The DT method adds robustness to the AFT. The resulting mesh is topologically correct but may contain a few slivers. The MBA uses seven local operations to modify the mesh topology. It improves significantly the mesh quality. The MBA method is also used to adapt the mesh to a problem solution to minimize computational resources required for solving the problem. The MBA has a solid theoretical background. In the first two experiments, we consider the convection-diffusion and elasticity problems. We demonstrate the optimal reduction rate of the discretization error on a sequence of adaptive strongly anisotropic meshes. The key element of the MBA method is construction of a tensor metric from hierarchical edge

  19. Children's Active Learning through Unstructured Play in Malaysia

    ERIC Educational Resources Information Center

    Fatai O., Ismail Abdul; Faqih, Asrul; Bustan, Wafa K.

    2014-01-01

    Play is generally identified as a basic tool for effective learning and development in children. This study explores the ways in which amorphous or unstructured play contributes to children's overall development at the pre-primary level, helping to develop cognitive, social, and motor skills. The findings indicate that through unstructured play,…

  20. PARTI primitives for unstructured and block structured problems

    NASA Technical Reports Server (NTRS)

    Sussman, Alan; Saltz, Joel; Das, Raja; Gupta, S.; Mavriplis, Dimitri; Ponnusamy, Ravi; Crowley, Kay

    1992-01-01

    Described here is a set of primitives (PARTI) developed to efficiently execute unstructured and block structured problems on distributed memory parallel machines. We present experimental data from a 3-D unstructured Euler solver run on the Intel Touchstone Delta to demonstrate the usefulness of our methods.

  1. SALE2D. General Transient Fluid Flow Algorithm

    SciTech Connect

    Amsden, A.A.; Ruppel, H.M.; Hirt, C.W.

    1981-06-01

    SALE2D calculates two-dimensional fluid flows at all speeds, from the incompressible limit to highly supersonic. An implicit treatment of the pressure calculation similar to that in the Implicit Continuous-fluid Eulerian (ICE) technique provides this flow speed flexibility. In addition, the computing mesh may move with the fluid in a typical Lagrangian fashion, be held fixed in an Eulerian manner, or move in some arbitrarily specified way to provide a continuous rezoning capability. This latitude results from use of an Arbitrary Lagrangian-Eulerian (ALE) treatment of the mesh. The partial differential equations solved are the Navier-Stokes equations and the mass and internal energy equations. The fluid pressure is determined from an equation of state and supplemented with an artificial viscous pressure for the computation of shock waves. The computing mesh consists of a two-dimensional network of quadrilateral cells for either cylindrical or Cartesian coordinates, and a variety of user-selectable boundary conditions are provided in the program.

  2. Tetrahedral-Mesh Simulation of Turbulent Flows with the Space-Time Conservative Schemes

    NASA Technical Reports Server (NTRS)

    Chang, Chau-Lyan; Venkatachari, Balaji; Cheng, Gary C.

    2015-01-01

    Direct numerical simulations of turbulent flows are predominantly carried out using structured, hexahedral meshes despite decades of development in unstructured mesh methods. Tetrahedral meshes offer ease of mesh generation around complex geometries and the potential of an orientation free grid that would provide un-biased small-scale dissipation and more accurate intermediate scale solutions. However, due to the lack of consistent multi-dimensional numerical formulations in conventional schemes for triangular and tetrahedral meshes at the cell interfaces, numerical issues exist when flow discontinuities or stagnation regions are present. The space-time conservative conservation element solution element (CESE) method - due to its Riemann-solver-free shock capturing capabilities, non-dissipative baseline schemes, and flux conservation in time as well as space - has the potential to more accurately simulate turbulent flows using unstructured tetrahedral meshes. To pave the way towards accurate simulation of shock/turbulent boundary-layer interaction, a series of wave and shock interaction benchmark problems that increase in complexity, are computed in this paper with triangular/tetrahedral meshes. Preliminary computations for the normal shock/turbulence interactions are carried out with a relatively coarse mesh, by direct numerical simulations standards, in order to assess other effects such as boundary conditions and the necessity of a buffer domain. The results indicate that qualitative agreement with previous studies can be obtained for flows where, strong shocks co-exist along with unsteady waves that display a broad range of scales, with a relatively compact computational domain and less stringent requirements for grid clustering near the shock. With the space-time conservation properties, stable solutions without any spurious wave reflections can be obtained without a need for buffer domains near the outflow/farfield boundaries. Computational results for the

  3. Aerodynamic Shape Sensitivity Analysis and Design Optimization of Complex Configurations Using Unstructured Grids

    NASA Technical Reports Server (NTRS)

    Taylor, Arthur C., III; Newman, James C., III; Barnwell, Richard W.

    1997-01-01

    A three-dimensional unstructured grid approach to aerodynamic shape sensitivity analysis and design optimization has been developed and is extended to model geometrically complex configurations. The advantage of unstructured grids (when compared with a structured-grid approach) is their inherent ability to discretize irregularly shaped domains with greater efficiency and less effort. Hence, this approach is ideally suited for geometrically complex configurations of practical interest. In this work the nonlinear Euler equations are solved using an upwind, cell-centered, finite-volume scheme. The discrete, linearized systems which result from this scheme are solved iteratively by a preconditioned conjugate-gradient-like algorithm known as GMRES for the two-dimensional geometry and a Gauss-Seidel algorithm for the three-dimensional; similar procedures are used to solve the accompanying linear aerodynamic sensitivity equations in incremental iterative form. As shown, this particular form of the sensitivity equation makes large-scale gradient-based aerodynamic optimization possible by taking advantage of memory efficient methods to construct exact Jacobian matrix-vector products. Simple parameterization techniques are utilized for demonstrative purposes. Once the surface has been deformed, the unstructured grid is adapted by considering the mesh as a system of interconnected springs. Grid sensitivities are obtained by differentiating the surface parameterization and the grid adaptation algorithms with ADIFOR (which is an advanced automatic-differentiation software tool). To demonstrate the ability of this procedure to analyze and design complex configurations of practical interest, the sensitivity analysis and shape optimization has been performed for a two-dimensional high-lift multielement airfoil and for a three-dimensional Boeing 747-200 aircraft.

  4. Structured background grids for generation of unstructured grids by advancing front method

    NASA Technical Reports Server (NTRS)

    Pirzadeh, Shahyar

    1991-01-01

    A new method of background grid construction is introduced for generation of unstructured tetrahedral grids using the advancing-front technique. Unlike the conventional triangular/tetrahedral background grids which are difficult to construct and usually inadequate in performance, the new method exploits the simplicity of uniform Cartesian meshes and provides grids of better quality. The approach is analogous to solving a steady-state heat conduction problem with discrete heat sources. The spacing parameters of grid points are distributed over the nodes of a Cartesian background grid by interpolating from a few prescribed sources and solving a Poisson equation. To increase the control over the grid point distribution, a directional clustering approach is used. The new method is convenient to use and provides better grid quality and flexibility. Sample results are presented to demonstrate the power of the method.

  5. Design of Unstructured Adaptive (UA) NAS Parallel Benchmark Featuring Irregular, Dynamic Memory Accesses

    NASA Technical Reports Server (NTRS)

    Feng, Hui-Yu; VanderWijngaart, Rob; Biswas, Rupak; Biegel, Bryan (Technical Monitor)

    2001-01-01

    We describe the design of a new method for the measurement of the performance of modern computer systems when solving scientific problems featuring irregular, dynamic memory accesses. The method involves the solution of a stylized heat transfer problem on an unstructured, adaptive grid. A Spectral Element Method (SEM) with an adaptive, nonconforming mesh is selected to discretize the transport equation. The relatively high order of the SEM lowers the fraction of wall clock time spent on inter-processor communication, which eases the load balancing task and allows us to concentrate on the memory accesses. The benchmark is designed to be three-dimensional. Parallelization and load balance issues of a reference implementation will be described in detail in future reports.

  6. Subsonic Analysis of 0.04-Scale F-16XL Models Using an Unstructured Euler Code

    NASA Technical Reports Server (NTRS)

    Lessard, Wendy B.

    1996-01-01

    The subsonic flow field about an F-16XL airplane model configuration was investigated with an inviscid unstructured grid technique. The computed surface pressures were compared to wind-tunnel test results at Mach 0.148 for a range of angles of attack from 0 deg to 20 deg. To evaluate the effect of grid dependency on the solution, a grid study was performed in which fine, medium, and coarse grid meshes were generated. The off-surface vortical flow field was locally adapted and showed improved correlation to the wind-tunnel data when compared to the nonadapted flow field. Computational results are also compared to experimental five-hole pressure probe data. A detailed analysis of the off-body computed pressure contours, velocity vectors, and particle traces are presented and discussed.

  7. Surgical mesh for ventral incisional hernia repairs: Understanding mesh design

    PubMed Central

    Rastegarpour, Ali; Cheung, Michael; Vardhan, Madhurima; Ibrahim, Mohamed M; Butler, Charles E; Levinson, Howard

    2016-01-01

    Surgical mesh has become an indispensable tool in hernia repair to improve outcomes and reduce costs; however, efforts are constantly being undertaken in mesh development to overcome postoperative complications. Common complications include infection, pain, adhesions, mesh extrusion and hernia recurrence. Reducing the complications of mesh implantation is of utmost importance given that hernias occur in hundreds of thousands of patients per year in the United States. In the present review, the authors present the different types of hernia meshes, discuss the key properties of mesh design, and demonstrate how each design element affects performance and complications. The present article will provide a basis for surgeons to understand which mesh to choose for patient care and why, and will explain the important technological aspects that will continue to evolve over the ensuing years. PMID:27054138

  8. Mesh-driven vector field clustering and visualization: an image-based approach.

    PubMed

    Peng, Zhenmin; Grundy, Edward; Laramee, Robert S; Chen, Guoning; Croft, Nick

    2012-02-01

    Vector field visualization techniques have evolved very rapidly over the last two decades, however, visualizing vector fields on complex boundary surfaces from computational flow dynamics (CFD) still remains a challenging task. In part, this is due to the large, unstructured, adaptive resolution characteristics of the meshes used in the modeling and simulation process. Out of the wide variety of existing flow field visualization techniques, vector field clustering algorithms offer the advantage of capturing a detailed picture of important areas of the domain while presenting a simplified view of areas of less importance. This paper presents a novel, robust, automatic vector field clustering algorithm that produces intuitive and insightful images of vector fields on large, unstructured, adaptive resolution boundary meshes from CFD. Our bottom-up, hierarchical approach is the first to combine the properties of the underlying vector field and mesh into a unified error-driven representation. The motivation behind the approach is the fact that CFD engineers may increase the resolution of model meshes according to importance. The algorithm has several advantages. Clusters are generated automatically, no surface parameterization is required, and large meshes are processed efficiently. The most suggestive and important information contained in the meshes and vector fields is preserved while less important areas are simplified in the visualization. Users can interactively control the level of detail by adjusting a range of clustering distance measure parameters. We describe two data structures to accelerate the clustering process. We also introduce novel visualizations of clusters inspired by statistical methods. We apply our method to a series of synthetic and complex, real-world CFD meshes to demonstrate the clustering algorithm results.

  9. The LLNL High Accuracy Volume Renderer for Unstructured Data: Capabilities, Current Limits, and Potential for ASCI/VIEWS Deployment

    SciTech Connect

    Williams, P L; Max, N L

    2001-06-04

    This report describes a volume rendering system for unstructured data, especially finite element data, that creates images with very high accuracy. The system will currently handle meshes whose cells are either linear or quadratic tetrahedra, or meshes with mixed cell types: tetrahedra, bricks, prisms, and pyramids. The cells may have nonplanar facets. Whenever possible, exact mathematical solutions for the radiance integrals and for interpolation are used. Accurate semitransparent shaded isosurfaces may be embedded in the volume rendering. For very small cells, subpixel accumulation by splatting is used to avoid sampling error. A new exact and efficient visibility ordering algorithm is described. The most accurate images are generated in software, however, more efficient algorithms utilizing graphics hardware may also be selected. The report describes the parallelization of the system for a distributed-shared memory multiprocessor machine, and concludes by discussing the system's limits, desirable future work, and ways to extend the system so as to be compatible with projected ASCI/VIEWS architectures.

  10. A multi-moment constrained finite volume method on arbitrary unstructured grids for incompressible flows

    NASA Astrophysics Data System (ADS)

    Xie, Bin; Xiao, Feng

    2016-12-01

    We proposed a multi-moment constrained finite volume method which can simulate incompressible flows of high Reynolds number in complex geometries. Following the underlying idea of the volume-average/point-value multi-moment (VPM) method (Xie et al. (2014) [71]), this formulation is developed on arbitrary unstructured hybrid grids by employing the point values (PV) at both cell vertex and barycenter as the prognostic variables. The cell center value is updated via an evolution equation derived from a constraint condition of finite volume form, which ensures the rigorous numerical conservativeness. Novel numerical formulations based on the local PVs over compact stencil are proposed to enhance the accuracy, robustness and efficiency of computations on unstructured meshes of hybrid and arbitrary elements. Numerical experiments demonstrate that the present numerical model has nearly 3-order convergence rate with numerical errors much smaller than the VPM method. The numerical dissipation has been significantly suppressed, which facilitates numerical simulations of high Reynolds number flows in complex geometries.

  11. A compressible high-order unstructured spectral difference code for stratified convection in rotating spherical shells

    NASA Astrophysics Data System (ADS)

    Wang, Junfeng; Liang, Chunlei; Miesch, Mark S.

    2015-06-01

    We present a novel and powerful Compressible High-ORder Unstructured Spectral-difference (CHORUS) code for simulating thermal convection and related fluid dynamics in the interiors of stars and planets. The computational geometries are treated as rotating spherical shells filled with stratified gas. The hydrodynamic equations are discretized by a robust and efficient high-order Spectral Difference Method (SDM) on unstructured meshes. The computational stencil of the spectral difference method is compact and advantageous for parallel processing. CHORUS demonstrates excellent parallel performance for all test cases reported in this paper, scaling up to 12 000 cores on the Yellowstone High-Performance Computing cluster at NCAR. The code is verified by defining two benchmark cases for global convection in Jupiter and the Sun. CHORUS results are compared with results from the ASH code and good agreement is found. The CHORUS code creates new opportunities for simulating such varied phenomena as multi-scale solar convection, core convection, and convection in rapidly-rotating, oblate stars.

  12. A matrix free implicit scheme for solution of resistive magneto-hydrodynamics equations on unstructured grids

    NASA Astrophysics Data System (ADS)

    Sitaraman, H.; Raja, L. L.

    2013-10-01

    The resistive magneto-hydrodynamics (MHD) governing equations represent eight conservation equations for the evolution of density, momentum, energy and induced magnetic fields in an electrically conducting fluid, typically a plasma. A matrix free implicit method is developed to solve the conservation equations within the framework of an unstructured grid finite volume formulation. The analytic form of the convective flux Jacobian is derived on a general unstructured mesh and used in a Lower-Upper Symmetric Gauss Seidel (LU-SGS) technique developed as part of the implicit scheme. A grid coloring technique is also developed to create data parallelism in the algorithm. The computational efficiency of the matrix free method is compared with two common approaches: a global matrix solve technique that uses the GMRES (Generalized minimum residual) algorithm and an explicit method. The matrix-free method is observed to be overall computationally faster than the global matrix solve method and demonstrates excellent parallel scaling on multiple cores. The computational effort and memory requirements for the matrix free approach is comparable to the explicit approach which in turn is much lower than the global solve implicit approach. Both the matrix free and global solve implicit techniques exhibit superior steady state convergence compared to the explicit method.

  13. Efficient Parallelization of a Dynamic Unstructured Application on the Tera MTA

    NASA Technical Reports Server (NTRS)

    Oliker, Leonid; Biswas, Rupak

    1999-01-01

    The success of parallel computing in solving real-life computationally-intensive problems relies on their efficient mapping and execution on large-scale multiprocessor architectures. Many important applications are both unstructured and dynamic in nature, making their efficient parallel implementation a daunting task. This paper presents the parallelization of a dynamic unstructured mesh adaptation algorithm using three popular programming paradigms on three leading supercomputers. We examine an MPI message-passing implementation on the Cray T3E and the SGI Origin2OOO, a shared-memory implementation using cache coherent nonuniform memory access (CC-NUMA) of the Origin2OOO, and a multi-threaded version on the newly-released Tera Multi-threaded Architecture (MTA). We compare several critical factors of this parallel code development, including runtime, scalability, programmability, and memory overhead. Our overall results demonstrate that multi-threaded systems offer tremendous potential for quickly and efficiently solving some of the most challenging real-life problems on parallel computers.

  14. Accuracy of an unstructured-grid upwind-Euler algorithm for the ONERA M6 wing

    NASA Technical Reports Server (NTRS)

    Batina, John T.

    1991-01-01

    Improved algorithms for the solution of the three-dimensional, time-dependent Euler equations are presented for aerodynamic analysis involving unstructured dynamic meshes. The improvements have been developed recently to the spatial and temporal discretizations used by unstructured-grid flow solvers. The spatial discretization involves a flux-split approach that is naturally dissipative and captures shock waves sharply with at most one grid point within the shock structure. The temporal discretization involves either an explicit time-integration scheme using a multistage Runge-Kutta procedure or an implicit time-integration scheme using a Gauss-Seidel relaxation procedure, which is computationally efficient for either steady or unsteady flow problems. With the implicit Gauss-Seidel procedure, very large time steps may be used for rapid convergence to steady state, and the step size for unsteady cases may be selected for temporal accuracy rather than for numerical stability. Steady flow results are presented for both the NACA 0012 airfoil and the Office National d'Etudes et de Recherches Aerospatiales M6 wing to demonstrate applications of the new Euler solvers. The paper presents a description of the Euler solvers along with results and comparisons that assess the capability.

  15. Extraction of information from unstructured text

    SciTech Connect

    Irwin, N.H.; DeLand, S.M.; Crowder, S.V.

    1995-11-01

    Extracting information from unstructured text has become an emphasis in recent years due to the large amount of text now electronically available. This status report describes the findings and work done by the end of the first year of a two-year LDRD. Requirements of the approach included that it model the information in a domain independent way. This means that it would differ from current systems by not relying on previously built domain knowledge and that it would do more than keyword identification. Three areas that are discussed and expected to contribute to a solution include (1) identifying key entities through document level profiling and preprocessing, (2) identifying relationships between entities through sentence level syntax, and (3) combining the first two with semantic knowledge about the terms.

  16. Parallel algorithms for dynamically partitioning unstructured grids

    SciTech Connect

    Diniz, P.; Plimpton, S.; Hendrickson, B.; Leland, R.

    1994-10-01

    Grid partitioning is the method of choice for decomposing a wide variety of computational problems into naturally parallel pieces. In problems where computational load on the grid or the grid itself changes as the simulation progresses, the ability to repartition dynamically and in parallel is attractive for achieving higher performance. We describe three algorithms suitable for parallel dynamic load-balancing which attempt to partition unstructured grids so that computational load is balanced and communication is minimized. The execution time of algorithms and the quality of the partitions they generate are compared to results from serial partitioners for two large grids. The integration of the algorithms into a parallel particle simulation is also briefly discussed.

  17. Subplane-based Control Rod Decusping Techniques for the 2D/1D Method in MPACT

    SciTech Connect

    Graham, Aaron M; Collins, Benjamin S; Downar, Thomas

    2017-01-01

    The MPACT transport code is being jointly developed by Oak Ridge National Laboratory and the University of Michigan to serve as the primary neutron transport code for the Virtual Environment for Reactor Applications Core Simulator. MPACT uses the 2D/1D method to solve the transport equation by decomposing the reactor model into a stack of 2D planes. A fine mesh flux distribution is calculated in each 2D plane using the Method of Characteristics (MOC), then the planes are coupled axially through a 1D NEM-P$_3$ calculation. This iterative calculation is then accelerated using the Coarse Mesh Finite Difference method. One problem that arises frequently when using the 2D/1D method is that of control rod cusping. This occurs when the tip of a control rod falls between the boundaries of an MOC plane, requiring that the rodded and unrodded regions be axially homogenized for the 2D MOC calculations. Performing a volume homogenization does not properly preserve the reaction rates, causing an error known as cusping. The most straightforward way of resolving this problem is by refining the axial mesh, but this can significantly increase the computational expense of the calculation. The other way of resolving the partially inserted rod is through the use of a decusping method. This paper presents new decusping methods implemented in MPACT that can dynamically correct the rod cusping behavior for a variety of problems.

  18. 2D quasiperiodic plasmonic crystals

    PubMed Central

    Bauer, Christina; Kobiela, Georg; Giessen, Harald

    2012-01-01

    Nanophotonic structures with irregular symmetry, such as quasiperiodic plasmonic crystals, have gained an increasing amount of attention, in particular as potential candidates to enhance the absorption of solar cells in an angular insensitive fashion. To examine the photonic bandstructure of such systems that determines their optical properties, it is necessary to measure and model normal and oblique light interaction with plasmonic crystals. We determine the different propagation vectors and consider the interaction of all possible waveguide modes and particle plasmons in a 2D metallic photonic quasicrystal, in conjunction with the dispersion relations of a slab waveguide. Using a Fano model, we calculate the optical properties for normal and inclined light incidence. Comparing measurements of a quasiperiodic lattice to the modelled spectra for angle of incidence variation in both azimuthal and polar direction of the sample gives excellent agreement and confirms the predictive power of our model. PMID:23209871

  19. Valleytronics in 2D materials

    NASA Astrophysics Data System (ADS)

    Schaibley, John R.; Yu, Hongyi; Clark, Genevieve; Rivera, Pasqual; Ross, Jason S.; Seyler, Kyle L.; Yao, Wang; Xu, Xiaodong

    2016-11-01

    Semiconductor technology is currently based on the manipulation of electronic charge; however, electrons have additional degrees of freedom, such as spin and valley, that can be used to encode and process information. Over the past several decades, there has been significant progress in manipulating electron spin for semiconductor spintronic devices, motivated by potential spin-based information processing and storage applications. However, experimental progress towards manipulating the valley degree of freedom for potential valleytronic devices has been limited until very recently. We review the latest advances in valleytronics, which have largely been enabled by the isolation of 2D materials (such as graphene and semiconducting transition metal dichalcogenides) that host an easily accessible electronic valley degree of freedom, allowing for dynamic control.

  20. Unparticle example in 2D.

    PubMed

    Georgi, Howard; Kats, Yevgeny

    2008-09-26

    We discuss what can be learned about unparticle physics by studying simple quantum field theories in one space and one time dimension. We argue that the exactly soluble 2D theory of a massless fermion coupled to a massive vector boson, the Sommerfield model, is an interesting analog of a Banks-Zaks model, approaching a free theory at high energies and a scale-invariant theory with nontrivial anomalous dimensions at low energies. We construct a toy standard model coupling to the fermions in the Sommerfield model and study how the transition from unparticle behavior at low energies to free particle behavior at high energies manifests itself in interactions with the toy standard model particles.

  1. SUPERIMPOSED MESH PLOTTING IN MCNP

    SciTech Connect

    J. HENDRICKS

    2001-02-01

    The capability to plot superimposed meshes has been added to MCNP{trademark}. MCNP4C featured a superimposed mesh weight window generator which enabled users to set up geometries without having to subdivide geometric cells for variance reduction. The variance reduction was performed with weight windows on a rectangular or cylindrical mesh superimposed over the physical geometry. Experience with the new capability was favorable but also indicated that a number of enhancements would be very beneficial, particularly a means of visualizing the mesh and its values. The mathematics for plotting the mesh and its values is described here along with a description of other upgrades.

  2. Particle-mesh techniques

    NASA Technical Reports Server (NTRS)

    Macneice, Peter

    1995-01-01

    This is an introduction to numerical Particle-Mesh techniques, which are commonly used to model plasmas, gravitational N-body systems, and both compressible and incompressible fluids. The theory behind this approach is presented, and its practical implementation, both for serial and parallel machines, is discussed. This document is based on a four-hour lecture course presented by the author at the NASA Summer School for High Performance Computational Physics, held at Goddard Space Flight Center.

  3. Delaunay Refinement Mesh Generation

    DTIC Science & Technology

    1997-05-18

    GRANT NUMBER 5c. PROGRAM ELEMENT NUMBER 6. AUTHOR(S) 5d. PROJECT NUMBER 5e. TASK NUMBER 5f. WORK UNIT NUMBER 7. PERFORMING ORGANIZATION NAME(S...146 6.2 Related Work in Robust Computational Geometry . . . . . . . . . . . . . . . . . . . . . . . 148 6.3...during my seven years at Carnegie Mellon. Most of this work was carried out at the 61c Café in Pittsburgh. v vi Chapter 1 Introduction Meshes composed

  4. Recognition and characterization of unstructured environmental sounds

    NASA Astrophysics Data System (ADS)

    Chu, Selina

    2011-12-01

    Environmental sounds are what we hear everyday, or more generally sounds that surround us ambient or background audio. Humans utilize both vision and hearing to respond to their surroundings, a capability still quite limited in machine processing. The first step toward achieving multimodal input applications is the ability to process unstructured audio and recognize audio scenes (or environments). Such ability would have applications in content analysis and mining of multimedia data or improving robustness in context aware applications through multi-modality, such as in assistive robotics, surveillances, or mobile device-based services. The goal of this thesis is on the characterization of unstructured environmental sounds for understanding and predicting the context surrounding of an agent or device. Most research on audio recognition has focused primarily on speech and music. Less attention has been paid to the challenges and opportunities for using audio to characterize unstructured audio. My research focuses on investigating challenging issues in characterizing unstructured environmental audio and to develop novel algorithms for modeling the variations of the environment. The first step in building a recognition system for unstructured auditory environment was to investigate on techniques and audio features for working with such audio data. We begin by performing a study that explore suitable features and the feasibility of designing an automatic environment recognition system using audio information. In my initial investigation to explore the feasibility of designing an automatic environment recognition system using audio information, I have found that traditional recognition and feature extraction for audio were not suitable for environmental sound, as they lack any type of structures, unlike those of speech and music which contain formantic and harmonic structures, thus dispelling the notion that traditional speech and music recognition techniques can simply

  5. Regridding Scientific Mesh Data Using Arbitrary Cell Neighborhood Information

    NASA Astrophysics Data System (ADS)

    Rezaei Mahdiraji, Alireza; Baumann, Peter

    2015-04-01

    A spacial case of the regrid operator uses information of neighboring cells of a cell of interest to perform interpolation on scientific meshes. Example use-cases are smoothing skewed data fields, computing value of the first derivative in oceanographic applications, etc. Using neighbors' information is proved to improve the accuracy of the computations for a cell of interest. The regrid works in two steps: mapping step which assigns to each cell of a mesh a set of its neighboring cells and interpolation step which estimates the data on each cell by combining the data from its neighbors. The common method to specify a cell neighborhood is the stencil string which is originally defined only for structured meshes, e.g., five-point stencil. The stencil was later generalized to express neighborhood on unstructured meshes. A stencil w.r.t. an unstructured mesh consists of a sequence of digits representing the dimensions of neighboring cells of a cell. For instance, the stencil 010 w.r.t. a mesh means any calculation for a vertex needs to have access to all the adjacent vertices (i.e., vertices sharing an edge with the vertex of interest). The stencil uses hard coded dimensions and thus contains no topological abstraction. Moreover, it is not obvious whether the result is the union of elements visited in each intermediate layer (hull) or the elements only in the last layer (halo). In addition, it is not possible to filter intermediate cells using predicates. Finally, existing mesh libraries (e.g., GrAL and GridFields) which accommodate the stencil concept do not provide a generic implementation, i.e., a specific Python or C++ APIs needs to be implemented for each stencil. We propose a neighborhood expression which uses the topological relationships (i.e., boundary, co-boundary, and adjacencies) to express arbitrary cell neighborhood. The expression contains any number of the topological relationships w.r.t. to a mesh and a cell as initial context of the neighborhood

  6. Quantum coherence selective 2D Raman–2D electronic spectroscopy

    PubMed Central

    Spencer, Austin P.; Hutson, William O.; Harel, Elad

    2017-01-01

    Electronic and vibrational correlations report on the dynamics and structure of molecular species, yet revealing these correlations experimentally has proved extremely challenging. Here, we demonstrate a method that probes correlations between states within the vibrational and electronic manifold with quantum coherence selectivity. Specifically, we measure a fully coherent four-dimensional spectrum which simultaneously encodes vibrational–vibrational, electronic–vibrational and electronic–electronic interactions. By combining near-impulsive resonant and non-resonant excitation, the desired fifth-order signal of a complex organic molecule in solution is measured free of unwanted lower-order contamination. A critical feature of this method is electronic and vibrational frequency resolution, enabling isolation and assignment of individual quantum coherence pathways. The vibronic structure of the system is then revealed within an otherwise broad and featureless 2D electronic spectrum. This method is suited for studying elusive quantum effects in which electronic transitions strongly couple to phonons and vibrations, such as energy transfer in photosynthetic pigment–protein complexes. PMID:28281541

  7. Quantum coherence selective 2D Raman-2D electronic spectroscopy

    NASA Astrophysics Data System (ADS)

    Spencer, Austin P.; Hutson, William O.; Harel, Elad

    2017-03-01

    Electronic and vibrational correlations report on the dynamics and structure of molecular species, yet revealing these correlations experimentally has proved extremely challenging. Here, we demonstrate a method that probes correlations between states within the vibrational and electronic manifold with quantum coherence selectivity. Specifically, we measure a fully coherent four-dimensional spectrum which simultaneously encodes vibrational-vibrational, electronic-vibrational and electronic-electronic interactions. By combining near-impulsive resonant and non-resonant excitation, the desired fifth-order signal of a complex organic molecule in solution is measured free of unwanted lower-order contamination. A critical feature of this method is electronic and vibrational frequency resolution, enabling isolation and assignment of individual quantum coherence pathways. The vibronic structure of the system is then revealed within an otherwise broad and featureless 2D electronic spectrum. This method is suited for studying elusive quantum effects in which electronic transitions strongly couple to phonons and vibrations, such as energy transfer in photosynthetic pigment-protein complexes.

  8. Quantum coherence selective 2D Raman-2D electronic spectroscopy.

    PubMed

    Spencer, Austin P; Hutson, William O; Harel, Elad

    2017-03-10

    Electronic and vibrational correlations report on the dynamics and structure of molecular species, yet revealing these correlations experimentally has proved extremely challenging. Here, we demonstrate a method that probes correlations between states within the vibrational and electronic manifold with quantum coherence selectivity. Specifically, we measure a fully coherent four-dimensional spectrum which simultaneously encodes vibrational-vibrational, electronic-vibrational and electronic-electronic interactions. By combining near-impulsive resonant and non-resonant excitation, the desired fifth-order signal of a complex organic molecule in solution is measured free of unwanted lower-order contamination. A critical feature of this method is electronic and vibrational frequency resolution, enabling isolation and assignment of individual quantum coherence pathways. The vibronic structure of the system is then revealed within an otherwise broad and featureless 2D electronic spectrum. This method is suited for studying elusive quantum effects in which electronic transitions strongly couple to phonons and vibrations, such as energy transfer in photosynthetic pigment-protein complexes.

  9. Tool-assisted mesh generation based on a tissue-growth model.

    PubMed

    Smirnov, A V

    2003-07-01

    An heuristic mesh generation technique is proposed that is based on the model of forced particle motion, an edgewise cell-splitting algorithm and a moving tool concept. The method differs from conventional mesh generators in that it uses outward growth of the mesh, in contrast to the inward growth used in traditional meshing techniques. The method does not require prior meshing and patching of two-dimensional (2D) boundary surfaces. Instead, it uses a pre-defined skeleton of one-dimensional segments, or an arbitrary tool motion in three-dimensional (3D) space. In this respect, the technique can be considered as a 3D extension of a 2D drawing tool and can find applications in virtual reality systems. The method also guarantees the smoothness of the outer boundary of the mesh at each step of mesh generation, which is not the case with traditional propagating-front methods. The approach is based on the model of tissue growth and is suitable for meshing complex networks of bifurcating branches commonly found in biological structures: blood vessels, lungs, neural networks, plants etc. The generated meshes were used in solving unsteady flow and particle transport problems in lungs.

  10. Mesh Algorithms for PDE with Sieve I: Mesh Distribution

    DOE PAGES

    Knepley, Matthew G.; Karpeev, Dmitry A.

    2009-01-01

    We have developed a new programming framework, called Sieve, to support parallel numerical partial differential equation(s) (PDE) algorithms operating over distributed meshes. We have also developed a reference implementation of Sieve in C++ as a library of generic algorithms operating on distributed containers conforming to the Sieve interface. Sieve makes instances of the incidence relation, or arrows, the conceptual first-class objects represented in the containers. Further, generic algorithms acting on this arrow container are systematically used to provide natural geometric operations on the topology and also, through duality, on the data. Finally, coverings and duality are used to encode notmore » only individual meshes, but all types of hierarchies underlying PDE data structures, including multigrid and mesh partitions. In order to demonstrate the usefulness of the framework, we show how the mesh partition data can be represented and manipulated using the same fundamental mechanisms used to represent meshes. We present the complete description of an algorithm to encode a mesh partition and then distribute a mesh, which is independent of the mesh dimension, element shape, or embedding. Moreover, data associated with the mesh can be similarly distributed with exactly the same algorithm. The use of a high level of abstraction within the Sieve leads to several benefits in terms of code reuse, simplicity, and extensibility. We discuss these benefits and compare our approach to other existing mesh libraries.« less

  11. Stability analysis of unstructured finite volume methods for linear shallow water flows using pseudospectra and singular value decomposition

    NASA Astrophysics Data System (ADS)

    Beljadid, Abdelaziz; Mohammadian, Abdolmajid; Qiblawey, Hazim

    2016-10-01

    The discretization of the shallow water system on unstructured grids can lead to spurious modes which usually can affect accuracy and/or cause stability problems. This paper introduces a new approach for stability analysis of unstructured linear finite volume schemes for linear shallow water equations with the Coriolis Effect using spectra, pseudospectra, and singular value decomposition. The discrete operator of the scheme is the principal parameter used in the analysis. It is shown that unstructured grids have a large influence on operator normality. In some cases the eigenvectors of the operator can be far from orthogonal, which leads to amplification of solutions and/or stability problems. Large amplifications of the solution can be observed, even for discrete operators which respect the condition of asymptotic stability, and in some cases even for Lax-Richtmyer stable methods. The pseudospectra are shown to be efficient for the verification of stability of finite volume methods for linear shallow water equations. In some cases, the singular value decomposition is employed for further analysis in order to provide more information about the existence of unstable modes. The results of the analysis can be helpful in choosing the type of mesh, the appropriate placements of the variables of the system on the grid, and the suitable discretization method which is stable for a wide range of modes.

  12. A structured multi-block solution-adaptive mesh algorithm with mesh quality assessment

    NASA Technical Reports Server (NTRS)

    Ingram, Clint L.; Laflin, Kelly R.; Mcrae, D. Scott

    1995-01-01

    The dynamic solution adaptive grid algorithm, DSAGA3D, is extended to automatically adapt 2-D structured multi-block grids, including adaption of the block boundaries. The extension is general, requiring only input data concerning block structure, connectivity, and boundary conditions. Imbedded grid singular points are permitted, but must be prevented from moving in space. Solutions for workshop cases 1 and 2 are obtained on multi-block grids and illustrate both increased resolution of and alignment with the solution. A mesh quality assessment criteria is proposed to determine how well a given mesh resolves and aligns with the solution obtained upon it. The criteria is used to evaluate the grid quality for solutions of workshop case 6 obtained on both static and dynamically adapted grids. The results indicate that this criteria shows promise as a means of evaluating resolution.

  13. Content-Adaptive Finite Element Mesh Generation of 3-D Complex MR Volumes for Bioelectromagnetic Problems.

    PubMed

    Lee, W; Kim, T-S; Cho, M; Lee, S

    2005-01-01

    In studying bioelectromagnetic problems, finite element method offers several advantages over other conventional methods such as boundary element method. It allows truly volumetric analysis and incorporation of material properties such as anisotropy. Mesh generation is the first requirement in the finite element analysis and there are many different approaches in mesh generation. However conventional approaches offered by commercial packages and various algorithms do not generate content-adaptive meshes, resulting in numerous elements in the smaller volume regions, thereby increasing computational load and demand. In this work, we present an improved content-adaptive mesh generation scheme that is efficient and fast along with options to change the contents of meshes. For demonstration, mesh models of the head from a volume MRI are presented in 2-D and 3-D.

  14. A General-Purpose Finite-Volume Advection Scheme for Continuous and Discontinuous Fields on Unstructured Grids

    NASA Astrophysics Data System (ADS)

    Dendy, E. D.; Padial-Collins, N. T.; VanderHeyden, W. B.

    2002-08-01

    We present a new general-purpose advection scheme for unstructured meshes based on the use of a variation of the interface-tracking flux formulation recently put forward by O. Ubbink and R. I. Issa ( J. Comput. Phys.153, 26 (1999)), in combination with an extended version of the flux-limited advection scheme of J. Thuburn ( J. Comput. Phys.123, 74 (1996)), for continuous fields. Thus, along with a high-order mode for continuous fields, the new scheme presented here includes optional integrated interface-tracking modes for discontinuous fields. In all modes, the method is conservative, monotonic, and compatible. It is also highly shape preserving. The scheme works on unstructured meshes composed of any kind of connectivity element, including triangular and quadrilateral elements in two dimensions and tetrahedral and hexahedral elements in three dimensions. The scheme is finite-volume based and is applicable to control-volume finite-element and edge-based node-centered computations. An explicit-implicit extension to the continuous-field scheme is provided only to allow for computations in which the local Courant number exceeds unity. The transition from the explicit mode to the implicit mode is performed locally and in a continuous fashion, providing a smooth hybrid explicit-implicit calculation. Results for a variety of test problems utilizing the continuous and discontinuous advection schemes are presented.

  15. Binary mesh partitioning for cache-efficient visualization.

    PubMed

    Tchiboukdjian, Marc; Danjean, Vincent; Raffin, Bruno

    2010-01-01

    One important bottleneck when visualizing large data sets is the data transfer between processor and memory. Cache-aware (CA) and cache-oblivious (CO) algorithms take into consideration the memory hierarchy to design cache efficient algorithms. CO approaches have the advantage to adapt to unknown and varying memory hierarchies. Recent CA and CO algorithms developed for 3D mesh layouts significantly improve performance of previous approaches, but they lack of theoretical performance guarantees. We present in this paper a {\\schmi O}(N\\log N) algorithm to compute a CO layout for unstructured but well shaped meshes. We prove that a coherent traversal of a N-size mesh in dimension d induces less than N/B+{\\schmi O}(N/M;{1/d}) cache-misses where B and M are the block size and the cache size, respectively. Experiments show that our layout computation is faster and significantly less memory consuming than the best known CO algorithm. Performance is comparable to this algorithm for classical visualization algorithm access patterns, or better when the BSP tree produced while computing the layout is used as an acceleration data structure adjusted to the layout. We also show that cache oblivious approaches lead to significant performance increases on recent GPU architectures.

  16. Unstructured Cartesian refinement with sharp interface immersed boundary method for 3D unsteady incompressible flows

    NASA Astrophysics Data System (ADS)

    Angelidis, Dionysios; Chawdhary, Saurabh; Sotiropoulos, Fotis

    2016-11-01

    A novel numerical method is developed for solving the 3D, unsteady, incompressible Navier-Stokes equations on locally refined fully unstructured Cartesian grids in domains with arbitrarily complex immersed boundaries. Owing to the utilization of the fractional step method on an unstructured Cartesian hybrid staggered/non-staggered grid layout, flux mismatch and pressure discontinuity issues are avoided and the divergence free constraint is inherently satisfied to machine zero. Auxiliary/hanging nodes are used to facilitate the discretization of the governing equations. The second-order accuracy of the solver is ensured by using multi-dimension Lagrange interpolation operators and appropriate differencing schemes at the interface of regions with different levels of refinement. The sharp interface immersed boundary method is augmented with local near-boundary refinement to handle arbitrarily complex boundaries. The discrete momentum equation is solved with the matrix free Newton-Krylov method and the Krylov-subspace method is employed to solve the Poisson equation. The second-order accuracy of the proposed method on unstructured Cartesian grids is demonstrated by solving the Poisson equation with a known analytical solution. A number of three-dimensional laminar flow simulations of increasing complexity illustrate the ability of the method to handle flows across a range of Reynolds numbers and flow regimes. Laminar steady and unsteady flows past a sphere and the oblique vortex shedding from a circular cylinder mounted between two end walls demonstrate the accuracy, the efficiency and the smooth transition of scales and coherent structures across refinement levels. Large-eddy simulation (LES) past a miniature wind turbine rotor, parameterized using the actuator line approach, indicates the ability of the fully unstructured solver to simulate complex turbulent flows. Finally, a geometry resolving LES of turbulent flow past a complete hydrokinetic turbine illustrates

  17. A priori mesh quality metrics for three-dimensional hybrid grids

    SciTech Connect

    Kallinderis, Y. Fotia, S.

    2015-01-01

    Use of general hybrid grids to attain complex-geometry field simulations poses a challenge on estimation of their quality. Apart from the typical problems of non-uniformity and non-orthogonality, the change in element topology is an extra issue to address. The present work derives and evaluates an a priori mesh quality indicator for structured, unstructured, as well as hybrid grids consisting of hexahedra, prisms, tetrahedra, and pyramids. Emphasis is placed on deriving a direct relation between the quality measure and mesh distortion. The work is based on use of the Finite Volume discretization for evaluation of first order spatial derivatives. The analytic form of the truncation error is derived and applied to elementary types of mesh distortion including typical hybrid grid interfaces. The corresponding analytic expressions provide relations between the truncation error and the degree of stretching, skewness, shearing, torsion, expansion, as well as the type of grid interface.

  18. Iterative Mesh Transformation for 3D Segmentation of Livers with Cancers in CT Images

    PubMed Central

    Lu, Difei; Wu, Yin; Harris, Gordon; Cai, Wenli

    2015-01-01

    Segmentation of diseased liver remains a challenging task in clinical applications due to the high inter-patient variability in liver shapes, sizes and pathologies caused by cancers or other liver diseases. In this paper, we present a multi-resolution mesh segmentation algorithm for 3D segmentation of livers, called iterative mesh transformation that deforms the mesh of a region-of-interest (ROI) in a progressive manner by iterations between mesh transformation and contour optimization. Mesh transformation deforms the 3D mesh based on the deformation transfer model that searches the optimal mesh based on the affine transformation subjected to a set of constraints of targeting vertices. Besides, contour optimization searches the optimal transversal contours of the ROI by applying the dynamic-programming algorithm to the intersection polylines of the 3D mesh on 2D transversal image planes. The initial constraint set for mesh transformation can be defined by a very small number of targeting vertices, namely landmarks, and progressively updated by adding the targeting vertices selected from the optimal transversal contours calculated in contour optimization. This iterative 3D mesh transformation constrained by 2D optimal transversal contours provides an efficient solution to a progressive approximation of the mesh of the targeting ROI. Based on this iterative mesh transformation algorithm, we developed a semi-automated scheme for segmentation of diseased livers with cancers using as little as five user-identified landmarks. The evaluation study demonstrates that this semiautomated liver segmentation scheme can achieve accurate and reliable segmentation results with significant reduction of interaction time and efforts when dealing with diseased liver cases. PMID:25728595

  19. Iterative mesh transformation for 3D segmentation of livers with cancers in CT images.

    PubMed

    Lu, Difei; Wu, Yin; Harris, Gordon; Cai, Wenli

    2015-07-01

    Segmentation of diseased liver remains a challenging task in clinical applications due to the high inter-patient variability in liver shapes, sizes and pathologies caused by cancers or other liver diseases. In this paper, we present a multi-resolution mesh segmentation algorithm for 3D segmentation of livers, called iterative mesh transformation that deforms the mesh of a region-of-interest (ROI) in a progressive manner by iterations between mesh transformation and contour optimization. Mesh transformation deforms the 3D mesh based on the deformation transfer model that searches the optimal mesh based on the affine transformation subjected to a set of constraints of targeting vertices. Besides, contour optimization searches the optimal transversal contours of the ROI by applying the dynamic-programming algorithm to the intersection polylines of the 3D mesh on 2D transversal image planes. The initial constraint set for mesh transformation can be defined by a very small number of targeting vertices, namely landmarks, and progressively updated by adding the targeting vertices selected from the optimal transversal contours calculated in contour optimization. This iterative 3D mesh transformation constrained by 2D optimal transversal contours provides an efficient solution to a progressive approximation of the mesh of the targeting ROI. Based on this iterative mesh transformation algorithm, we developed a semi-automated scheme for segmentation of diseased livers with cancers using as little as five user-identified landmarks. The evaluation study demonstrates that this semi-automated liver segmentation scheme can achieve accurate and reliable segmentation results with significant reduction of interaction time and efforts when dealing with diseased liver cases.

  20. AHF: Array-based Half-Facet Data Structure for Mixed-Dimensional and Non-manifold Meshes

    DTIC Science & Technology

    2013-10-13

    applications include coupled multiphysics simulations and multi-component systems, which may pose diverse re- quirements within each code as well as...is non- oriented . In our setting, a mesh is a simplicial complex representing discretely a geometric or topological object . We say a mesh is 1-D, 2-D...The DCEL uses edges as the core object . The edge within each face is called a directed edge or half-edge. In an oriented manifold surface mesh, suppose

  1. An assessment of unstructured grid technology for timely CFD analysis

    NASA Technical Reports Server (NTRS)

    Kinard, Tom A.; Schabowski, Deanne M.

    1995-01-01

    An assessment of two unstructured methods is presented in this paper. A tetrahedral unstructured method USM3D, developed at NASA Langley Research Center is compared to a Cartesian unstructured method, SPLITFLOW, developed at Lockheed Fort Worth Company. USM3D is an upwind finite volume solver that accepts grids generated primarily from the Vgrid grid generator. SPLITFLOW combines an unstructured grid generator with an implicit flow solver in one package. Both methods are exercised on three test cases, a wing, and a wing body, and a fully expanded nozzle. The results for the first two runs are included here and compared to the structured grid method TEAM and to available test data. On each test case, the set up procedure are described, including any difficulties that were encountered. Detailed descriptions of the solvers are not included in this paper.

  2. Warehousing Structured and Unstructured Data for Data Mining.

    ERIC Educational Resources Information Center

    Miller, L. L.; Honavar, Vasant; Barta, Tom

    1997-01-01

    Describes an extensible object-oriented view system that supports the integration of both structured and unstructured data sources in either the multidatabase or data warehouse environment. Discusses related work and data mining issues. (AEF)

  3. Unstructured Grid Adaptation: Status, Potential Impacts, and Recommended Investments Toward CFD Vision 2030

    NASA Technical Reports Server (NTRS)

    Park, Michael A.; Krakos, Joshua A.; Michal, Todd; Loseille, Adrien; Alonso, Juan J.

    2016-01-01

    Unstructured grid adaptation is a powerful tool to control discretization error for Computational Fluid Dynamics (CFD). It has enabled key increases in the accuracy, automation, and capacity of some fluid simulation applications. Slotnick et al. provides a number of case studies in the CFD Vision 2030 Study: A Path to Revolutionary Computational Aerosciences to illustrate the current state of CFD capability and capacity. The authors forecast the potential impact of emerging High Performance Computing (HPC) environments forecast in the year 2030 and identify that mesh generation and adaptivity continue to be significant bottlenecks in the CFD work flow. These bottlenecks may persist because very little government investment has been targeted in these areas. To motivate investment, the impacts of improved grid adaptation technologies are identified. The CFD Vision 2030 Study roadmap and anticipated capabilities in complementary disciplines are quoted to provide context for the progress made in grid adaptation in the past fifteen years, current status, and a forecast for the next fifteen years with recommended investments. These investments are specific to mesh adaptation and impact other aspects of the CFD process. Finally, a strategy is identified to diffuse grid adaptation technology into production CFD work flows.

  4. A multi-moment finite volume method for incompressible Navier-Stokes equations on unstructured grids: Volume-average/point-value formulation

    NASA Astrophysics Data System (ADS)

    Xie, Bin; , Satoshi, Ii; Ikebata, Akio; Xiao, Feng

    2014-11-01

    A robust and accurate finite volume method (FVM) is proposed for incompressible viscous fluid dynamics on triangular and tetrahedral unstructured grids. Differently from conventional FVM where the volume integrated average (VIA) value is the only computational variable, the present formulation treats both VIA and the point value (PV) as the computational variables which are updated separately at each time step. The VIA is computed from a finite volume scheme of flux form, and is thus numerically conservative. The PV is updated from the differential form of the governing equation that does not have to be conservative but can be solved in a very efficient way. Including PV as the additional variable enables us to make higher-order reconstructions over compact mesh stencil to improve the accuracy, and moreover, the resulting numerical model is more robust for unstructured grids. We present the numerical formulations in both two and three dimensions on triangular and tetrahedral mesh elements. Numerical results of several benchmark tests are also presented to verify the proposed numerical method as an accurate and robust solver for incompressible flows on unstructured grids.

  5. Towards an "All Speed" Unstructured Upwind Scheme

    NASA Technical Reports Server (NTRS)

    Loh, Ching Y.; Jorgenson, Philip C.E.

    2009-01-01

    In the authors previous studies [1], a time-accurate, upwind finite volume method (ETAU scheme) for computing compressible flows on unstructured grids was proposed. The scheme is second order accurate in space and time and yields high resolution in the presence of discontinuities. The scheme features a multidimensional limiter and multidimensional numerical dissipation. These help to stabilize the numerical process and to overcome the annoying pathological behaviors of upwind schemes. In the present paper, it will be further shown that such multidimensional treatments also lead to a nearly all-speed or Mach number insensitive upwind scheme. For flows at very high Mach number, e.g., 10, local numerical instabilities or the pathological behaviors are suppressed, while for flows at very low Mach number, e.g., 0.02, computation can be directly carried out without invoking preconditioning. For flows in different Mach number regimes, i.e., low, medium, and high Mach numbers, one only needs to adjust one or two parameters in the scheme. Several examples with low and high Mach numbers are demonstrated in this paper. Thus, the ETAU scheme is applicable to a broad spectrum of flow regimes ranging from high supersonic to low subsonic, appropriate for both CFD (computational fluid dynamics) and CAA (computational aeroacoustics).

  6. An Adaptive Mesh Algorithm: Mesh Structure and Generation

    SciTech Connect

    Scannapieco, Anthony J.

    2016-06-21

    The purpose of Adaptive Mesh Refinement is to minimize spatial errors over the computational space not to minimize the number of computational elements. The additional result of the technique is that it may reduce the number of computational elements needed to retain a given level of spatial accuracy. Adaptive mesh refinement is a computational technique used to dynamically select, over a region of space, a set of computational elements designed to minimize spatial error in the computational model of a physical process. The fundamental idea is to increase the mesh resolution in regions where the physical variables are represented by a broad spectrum of modes in k-space, hence increasing the effective global spectral coverage of those physical variables. In addition, the selection of the spatially distributed elements is done dynamically by cyclically adjusting the mesh to follow the spectral evolution of the system. Over the years three types of AMR schemes have evolved; block, patch and locally refined AMR. In block and patch AMR logical blocks of various grid sizes are overlaid to span the physical space of interest, whereas in locally refined AMR no logical blocks are employed but locally nested mesh levels are used to span the physical space. The distinction between block and patch AMR is that in block AMR the original blocks refine and coarsen entirely in time, whereas in patch AMR the patches change location and zone size with time. The type of AMR described herein is a locally refi ned AMR. In the algorithm described, at any point in physical space only one zone exists at whatever level of mesh that is appropriate for that physical location. The dynamic creation of a locally refi ned computational mesh is made practical by a judicious selection of mesh rules. With these rules the mesh is evolved via a mesh potential designed to concentrate the nest mesh in regions where the physics is modally dense, and coarsen zones in regions where the physics is modally

  7. A Numerical Study of Mesh Adaptivity in Multiphase Flows with Non-Newtonian Fluids

    NASA Astrophysics Data System (ADS)

    Percival, James; Pavlidis, Dimitrios; Xie, Zhihua; Alberini, Federico; Simmons, Mark; Pain, Christopher; Matar, Omar

    2014-11-01

    We present an investigation into the computational efficiency benefits of dynamic mesh adaptivity in the numerical simulation of transient multiphase fluid flow problems involving Non-Newtonian fluids. Such fluids appear in a range of industrial applications, from printing inks to toothpastes and introduce new challenges for mesh adaptivity due to the additional ``memory'' of viscoelastic fluids. Nevertheless, the multiscale nature of these flows implies huge potential benefits for a successful implementation. The study is performed using the open source package Fluidity, which couples an unstructured mesh control volume finite element solver for the multiphase Navier-Stokes equations to a dynamic anisotropic mesh adaptivity algorithm, based on estimated solution interpolation error criteria, and conservative mesh-to-mesh interpolation routine. The code is applied to problems involving rheologies ranging from simple Newtonian to shear-thinning to viscoelastic materials and verified against experimental data for various industrial and microfluidic flows. This work was undertaken as part of the EPSRC MEMPHIS programme grant EP/K003976/1.

  8. RICH: OPEN-SOURCE HYDRODYNAMIC SIMULATION ON A MOVING VORONOI MESH

    SciTech Connect

    Yalinewich, Almog; Steinberg, Elad; Sari, Re’em

    2015-02-01

    We present here RICH, a state-of-the-art two-dimensional hydrodynamic code based on Godunov’s method, on an unstructured moving mesh (the acronym stands for Racah Institute Computational Hydrodynamics). This code is largely based on the code AREPO. It differs from AREPO in the interpolation and time-advancement schemeS as well as a novel parallelization scheme based on Voronoi tessellation. Using our code, we study the pros and cons of a moving mesh (in comparison to a static mesh). We also compare its accuracy to other codes. Specifically, we show that our implementation of external sources and time-advancement scheme is more accurate and robust than is AREPO when the mesh is allowed to move. We performed a parameter study of the cell rounding mechanism (Lloyd iterations) and its effects. We find that in most cases a moving mesh gives better results than a static mesh, but it is not universally true. In the case where matter moves in one way and a sound wave is traveling in the other way (such that relative to the grid the wave is not moving) a static mesh gives better results than a moving mesh. We perform an analytic analysis for finite difference schemes that reveals that a Lagrangian simulation is better than a Eulerian simulation in the case of a highly supersonic flow. Moreover, we show that Voronoi-based moving mesh schemes suffer from an error, which is resolution independent, due to inconsistencies between the flux calculation and the change in the area of a cell. Our code is publicly available as open source and designed in an object-oriented, user-friendly way that facilitates incorporation of new algorithms and physical processes.

  9. RICH: Open-source Hydrodynamic Simulation on a Moving Voronoi Mesh

    NASA Astrophysics Data System (ADS)

    Yalinewich, Almog; Steinberg, Elad; Sari, Re'em

    2015-02-01

    We present here RICH, a state-of-the-art two-dimensional hydrodynamic code based on Godunov’s method, on an unstructured moving mesh (the acronym stands for Racah Institute Computational Hydrodynamics). This code is largely based on the code AREPO. It differs from AREPO in the interpolation and time-advancement schemeS as well as a novel parallelization scheme based on Voronoi tessellation. Using our code, we study the pros and cons of a moving mesh (in comparison to a static mesh). We also compare its accuracy to other codes. Specifically, we show that our implementation of external sources and time-advancement scheme is more accurate and robust than is AREPO when the mesh is allowed to move. We performed a parameter study of the cell rounding mechanism (Lloyd iterations) and its effects. We find that in most cases a moving mesh gives better results than a static mesh, but it is not universally true. In the case where matter moves in one way and a sound wave is traveling in the other way (such that relative to the grid the wave is not moving) a static mesh gives better results than a moving mesh. We perform an analytic analysis for finite difference schemes that reveals that a Lagrangian simulation is better than a Eulerian simulation in the case of a highly supersonic flow. Moreover, we show that Voronoi-based moving mesh schemes suffer from an error, which is resolution independent, due to inconsistencies between the flux calculation and the change in the area of a cell. Our code is publicly available as open source and designed in an object-oriented, user-friendly way that facilitates incorporation of new algorithms and physical processes.

  10. Cube Kohonen self-organizing map (CKSOM) model with new equations in organizing unstructured data.

    PubMed

    Lim, Seng Poh; Haron, Habibollah

    2013-09-01

    Surface reconstruction by using 3-D data is used to represent the surface of an object and perform important tasks. The type of data used is important and can be described as either structured or unstructured. For unstructured data, there is no connectivity information between data points. As a result, incorrect shapes will be obtained during the imaging process. Therefore, the data should be reorganized by finding the correct topology so that the correct shape can be obtained. Previous studies have shown that the Kohonen self-organizing map (KSOM) could be used to solve data organizing problems. However, 2-D Kohonen maps are limited because they are unable to cover the whole surface of closed 3-D surface data. Furthermore, the neurons inside the 3-D KSOM structure should be removed in order to create a correct wireframe model. This is because only the outside neurons are used to represent the surface of an object. The aim of this paper is to use KSOM to organize unstructured data for closed surfaces. KSOM isused in this paper by testing its ability to organize medical image data because KSOM is mostly used in constructing engineering field data. Enhancements are added to the model by introducing class number and the index vector, and new equations are created. Various grid sizes and maximum iterations are tested in the experiments. Based on the results, the number of redundancies is found to be directly proportional to the grid size. When we increase the maximum iterations, the surface of the image becomes smoother. An area formula is used and manual calculations are performed to validate the results. This model is implemented and images are created using Dev C++ and GNUPlot.

  11. NKG2D ligands as therapeutic targets

    PubMed Central

    Spear, Paul; Wu, Ming-Ru; Sentman, Marie-Louise; Sentman, Charles L.

    2013-01-01

    The Natural Killer Group 2D (NKG2D) receptor plays an important role in protecting the host from infections and cancer. By recognizing ligands induced on infected or tumor cells, NKG2D modulates lymphocyte activation and promotes immunity to eliminate ligand-expressing cells. Because these ligands are not widely expressed on healthy adult tissue, NKG2D ligands may present a useful target for immunotherapeutic approaches in cancer. Novel therapies targeting NKG2D ligands for the treatment of cancer have shown preclinical success and are poised to enter into clinical trials. In this review, the NKG2D receptor and its ligands are discussed in the context of cancer, infection, and autoimmunity. In addition, therapies targeting NKG2D ligands in cancer are also reviewed. PMID:23833565

  12. Dynamic Load Balancing for Adaptive Meshes using Symmetric Broadcast Networks

    NASA Technical Reports Server (NTRS)

    Das, Sajal K.; Harvey, Daniel J.; Biswas, Rupak; Saini, Subhash (Technical Monitor)

    1998-01-01

    Many scientific applications involve grids that lack a uniform underlying structure. These applications are often dynamic in the sense that the grid structure significantly changes between successive phases of execution. In parallel computing environments, mesh adaptation of grids through selective refinement/coarsening has proven to be an effective approach. However, achieving load balance while minimizing inter-processor communication and redistribution costs is a difficult problem. Traditional dynamic load balancers are mostly inadequate because they lack a global view across processors. In this paper, we compare a novel load balancer that utilizes symmetric broadcast networks (SBN) to a successful global load balancing environment (PLUM) created to handle adaptive unstructured applications. Our experimental results on the IBM SP2 demonstrate that performance of the proposed SBN load balancer is comparable to results achieved under PLUM.

  13. Host response to synthetic mesh in women with mesh complications

    PubMed Central

    Nolfi, Alexis L.; Brown, Bryan N.; Liang, Rui; Palcsey, Stacy L.; Bonidie, Michael J.; Abramowitch, Steven D.; Moalli, Pamela A.

    2016-01-01

    BACKGROUND Despite good anatomic and functional outcomes, urogynecologic polypropylene meshes that are used to treat pelvic organ prolapse and stress urinary incontinence are associated with significant complications, most commonly mesh exposure and pain. Few studies have been performed that specifically focus on the host response to urogynecologic meshes. The macrophage has long been known to be the key cell type that mediates the foreign body response. Conceptually, macrophages that respond to a foreign body can be dichotomized broadly into M1 proinflammatory and M2 proremodeling subtypes. A prolonged M1 response is thought to result in chronic inflammation and the formation of foreign body giant cells with potential for ongoing tissue damage and destruction. Although a limited M2 predominant response is favorable for tissue integration and ingrowth, excessive M2 activity can lead to accelerated fibrillar matrix deposition and result in fibrosis and encapsulation of the mesh. OBJECTIVE The purpose of this study was to define and compare the macrophage response in patients who undergo mesh excision surgery for the indication of pain vs a mesh exposure. STUDY DESIGN Patients who were scheduled to undergo a surgical excision of mesh for pain or exposure at Magee-Womens Hospital were offered enrollment. Twenty-seven mesh-vagina complexes that were removed for the primary complaint of a mesh exposure (n = 15) vs pain in the absence of an exposure (n = 12) were compared with 30 full-thickness vaginal biopsy specimens from women who underwent benign gynecologic surgery without mesh. Macrophage M1 proinflammatory vs M2 proremodeling phenotypes were examined via immunofluorescent labeling for cell surface markers CD86 (M1) vs CD206 (M2) and M1 vs M2 cytokines via enzyme-linked immunosorbent assay. The amount of matrix metalloproteinase-2 (MMP-2) and matrix metalloproteinase-9 (MMP-9) proteolytic enzymes were quantified by zymography and substrate degradation assays, as an

  14. Grid generation for general 2-D regions using hyperbolic equations

    NASA Technical Reports Server (NTRS)

    Cordova, Jeffrey Q.; Barth, Timothy J.

    1988-01-01

    A method for applying a hyperbolic grid generation scheme to the construction of meshes in general 2-D regions has been developed. This approach, which follows the theory developed by Steger and Chaussee (1980) and the algorithm outlined by Kinsey and Barth (1984), is based on improving local grid control. This is accomplished by adding an angle control source term to the equations and using a new algorithm for computing the volume source term. These modifications lead to superior methods for fixing the 'local' problems of hyperbolic grid generation, namely, propagation of initial discontinuities and formation of grid shocks (crossing grid lines). More importantly, a method for solving the global problem of constraining the grid with more than one boundary (internal grid generation) has been developed. These algorithms have been implemented in an interactive grid generation program and the results for several geometries are presented and discussed.

  15. Closing Developments in Aerodynamic Simulation with Disjoint Patched Meshes.

    DTIC Science & Technology

    1986-11-28

    transfinite interpolation 5 - makes use of a parameterized general cubic polynomial for the coordinate curves. Regularity of the mesh is obtained by...process of attempting to apply the generalized transfinite interpolation technique in a variety of 2-D problems, it became evident the method was too...latter operation is in the spirit, if not the detailed implementation, of a two step generalized transfinite interpolation. Another secondary

  16. Verification & Validation of High-Order Short-Characteristics-Based Deterministic Transport Methodology on Unstructured Grids

    SciTech Connect

    Azmy, Yousry; Wang, Yaqi

    2013-12-20

    The research team has developed a practical, high-order, discrete-ordinates, short characteristics neutron transport code for three-dimensional configurations represented on unstructured tetrahedral grids that can be used for realistic reactor physics applications at both the assembly and core levels. This project will perform a comprehensive verification and validation of this new computational tool against both a continuous-energy Monte Carlo simulation (e.g. MCNP) and experimentally measured data, an essential prerequisite for its deployment in reactor core modeling. Verification is divided into three phases. The team will first conduct spatial mesh and expansion order refinement studies to monitor convergence of the numerical solution to reference solutions. This is quantified by convergence rates that are based on integral error norms computed from the cell-by-cell difference between the code’s numerical solution and its reference counterpart. The latter is either analytic or very fine- mesh numerical solutions from independent computational tools. For the second phase, the team will create a suite of code-independent benchmark configurations to enable testing the theoretical order of accuracy of any particular discretization of the discrete ordinates approximation of the transport equation. For each tested case (i.e. mesh and spatial approximation order), researchers will execute the code and compare the resulting numerical solution to the exact solution on a per cell basis to determine the distribution of the numerical error. The final activity comprises a comparison to continuous-energy Monte Carlo solutions for zero-power critical configuration measurements at Idaho National Laboratory’s Advanced Test Reactor (ATR). Results of this comparison will allow the investigators to distinguish between modeling errors and the above-listed discretization errors introduced by the deterministic method, and to separate the sources of uncertainty.

  17. Risk Factors for Mesh Exposure after Transvaginal Mesh Surgery

    PubMed Central

    Niu, Ke; Lu, Yong-Xian; Shen, Wen-Jie; Zhang, Ying-Hui; Wang, Wen-Ying

    2016-01-01

    Background: Mesh exposure after surgery continues to be a clinical challenge for urogynecological surgeons. The purpose of this study was to explore the risk factors for polypropylene (PP) mesh exposure after transvaginal mesh (TVM) surgery. Methods: This study included 195 patients with advanced pelvic organ prolapse (POP), who underwent TVM from January 2004 to December 2012 at the First Affiliated Hospital of Chinese PLA General Hospital. Clinical data were evaluated including patient's demography, TVM type, concomitant procedures, operation time, blood loss, postoperative morbidity, and mesh exposure. Mesh exposure was identified through postoperative vaginal examination. Statistical analysis was performed to identify risk factors for mesh exposure. Results: Two-hundred and nine transvaginal PP meshes were placed, including 194 in the anterior wall and 15 in the posterior wall. Concomitant tension-free vaginal tape was performed in 61 cases. The mean follow-up time was 35.1 ± 23.6 months. PP mesh exposure was identified in 32 cases (16.4%), with 31 in the anterior wall and 1 in the posterior wall. Significant difference was found in operating time and concomitant procedures between exposed and nonexposed groups (F = 7.443, P = 0.007; F = 4.307, P = 0.039, respectively). Binary logistic regression revealed that the number of concomitant procedures and operation time were risk factors for mesh exposure (P = 0.001, P = 0.043). Conclusion: Concomitant procedures and increased operating time increase the risk for postoperative mesh exposure in patients undergoing TVM surgery for POP. PMID:27453227

  18. Invisible metallic mesh

    PubMed Central

    Ye, Dexin; Lu, Ling; Joannopoulos, John D.; Soljačić, Marin; Ran, Lixin

    2016-01-01

    A solid material possessing identical electromagnetic properties as air has yet to be found in nature. Such a medium of arbitrary shape would neither reflect nor refract light at any angle of incidence in free space. Here, we introduce nonscattering corrugated metallic wires to construct such a medium. This was accomplished by aligning the dark-state frequencies in multiple scattering channels of a single wire. Analytical solutions, full-wave simulations, and microwave measurement results on 3D printed samples show omnidirectional invisibility in any configuration. This invisible metallic mesh can improve mechanical stability, electrical conduction, and heat dissipation of a system, without disturbing the electromagnetic design. Our approach is simple, robust, and scalable to higher frequencies. PMID:26884208

  19. A moving mesh unstaggered constrained transport scheme for magnetohydrodynamics

    NASA Astrophysics Data System (ADS)

    Mocz, Philip; Pakmor, Rüdiger; Springel, Volker; Vogelsberger, Mark; Marinacci, Federico; Hernquist, Lars

    2016-11-01

    We present a constrained transport (CT) algorithm for solving the 3D ideal magnetohydrodynamic (MHD) equations on a moving mesh, which maintains the divergence-free condition on the magnetic field to machine-precision. Our CT scheme uses an unstructured representation of the magnetic vector potential, making the numerical method simple and computationally efficient. The scheme is implemented in the moving mesh code AREPO. We demonstrate the performance of the approach with simulations of driven MHD turbulence, a magnetized disc galaxy, and a cosmological volume with primordial magnetic field. We compare the outcomes of these experiments to those obtained with a previously implemented Powell divergence-cleaning scheme. While CT and the Powell technique yield similar results in idealized test problems, some differences are seen in situations more representative of astrophysical flows. In the turbulence simulations, the Powell cleaning scheme artificially grows the mean magnetic field, while CT maintains this conserved quantity of ideal MHD. In the disc simulation, CT gives slower magnetic field growth rate and saturates to equipartition between the turbulent kinetic energy and magnetic energy, whereas Powell cleaning produces a dynamically dominant magnetic field. Such difference has been observed in adaptive-mesh refinement codes with CT and smoothed-particle hydrodynamics codes with divergence-cleaning. In the cosmological simulation, both approaches give similar magnetic amplification, but Powell exhibits more cell-level noise. CT methods in general are more accurate than divergence-cleaning techniques, and, when coupled to a moving mesh can exploit the advantages of automatic spatial/temporal adaptivity and reduced advection errors, allowing for improved astrophysical MHD simulations.

  20. Quadrilateral finite element mesh coarsening

    SciTech Connect

    Staten, Matthew L; Dewey, Mark W; Benzley, Steven E

    2012-10-16

    Techniques for coarsening a quadrilateral mesh are described. These techniques include identifying a coarsening region within the quadrilateral mesh to be coarsened. Quadrilateral elements along a path through the coarsening region are removed. Node pairs along opposite sides of the path are identified. The node pairs along the path are then merged to collapse the path.

  1. Improvement of the 2D/1D Method in MPACT Using the Sub-Plane Scheme

    SciTech Connect

    Graham, Aaron M; Collins, Benjamin S; Downar, Thomas

    2017-01-01

    Oak Ridge National Laboratory and the University of Michigan are jointly developing the MPACTcode to be the primary neutron transport code for the Virtual Environment for Reactor Applications (VERA). To solve the transport equation, MPACT uses the 2D/1D method, which decomposes the problem into a stack of 2D planes that are then coupled with a 1D axial calculation. MPACT uses the Method of Characteristics for the 2D transport calculations and P3 for the 1D axial calculations, then accelerates the solution using the 3D Coarse mesh Finite Dierence (CMFD) method. Increasing the number of 2D MOC planes will increase the accuracy of the alculation, but will increase the computational burden of the calculations and can cause slow convergence or instability. To prevent these problems while maintaining accuracy, the sub-plane scheme has been implemented in MPACT. This method sub-divides the MOC planes into sub-planes, refining the 1D P3 and 3D CMFD calculations without increasing the number of 2D MOC planes. To test the sub-plane scheme, three of the VERA Progression Problems were selected: Problem 3, a single assembly problem; Problem 4, a 3x3 assembly problem with control rods and pyrex burnable poisons; and Problem 5, a quarter core problem. These three problems demonstrated that the sub-plane scheme can accurately produce intra-plane axial flux profiles that preserve the accuracy of the fine mesh solution. The eigenvalue dierences are negligibly small, and dierences in 3D power distributions are less than 0.1% for realistic axial meshes. Furthermore, the convergence behavior with the sub-plane scheme compares favorably with the conventional 2D/1D method, and the computational expense is decreased for all calculations due to the reduction in expensive MOC calculations.

  2. Generalized mesh-based Monte Carlo for wide-field illumination and detection via mesh retessellation

    PubMed Central

    Yao, Ruoyang; Intes, Xavier; Fang, Qianqian

    2015-01-01

    Monte Carlo methods are commonly used as the gold standard in modeling photon transport through turbid media. With the rapid development of structured light applications, an accurate and efficient method capable of simulating arbitrary illumination patterns and complex detection schemes over large surface area is in great need. Here we report a generalized mesh-based Monte Carlo algorithm to support a variety of wide-field illumination methods, including spatial-frequency-domain imaging (SFDI) patterns and arbitrary 2-D patterns. The extended algorithm can also model wide-field detectors such as a free-space CCD camera. The significantly enhanced flexibility of source and detector modeling is achieved via a fast mesh retessellation process that combines the target domain and the source/detector space in a single tetrahedral mesh. Both simulations of complex domains and comparisons with phantom measurements are included to demonstrate the flexibility, efficiency and accuracy of the extended algorithm. Our updated open-source software is provided at http://mcx.space/mmc. PMID:26819826

  3. INTERACTIONS BETWEEN TOPOGRAPHY AND ROUGHNESS IN A 2D RASTER-BASED HYDRAULIC MODEL

    NASA Astrophysics Data System (ADS)

    Casas, M.; Yu, D.; Lane, S. N.; Benito-Ferrandez, G.

    2009-12-01

    Analysis of river flow using hydraulic modelling and its implications in derived environmental applications are inextricably connected with the way in which the river boundary shape is represented. This relationship is scale-dependent upon the modelling resolution which in turn determines the importance of a subscale performance of the model and the way subscale (surface and flow) processes are parameterised. This work aims to explore scaling effects associated with the parameterisation of topography and roughness (i.e. surface at different scales) and possible interactions between its components (mesh resolution, topographic content of the DEM and roughness parameterisation) within a 2D raster-based diffusion-wave model. A distributed roughness variable which is scale dependent on the mesh resolution and the surface roughness of the DEM is incorporated to the hydraulic model. The roughness parameterisation is carried out on the basis of a LiDAR-derived vegetation height model and applied in a raster based 2D diffusion wave model. Topographic models with different topographic contents and a constant mesh resolution are generated using LiDAR data and different vertical thresholds. Five DEMs are generated with different topographic contents (±Δz), (DEM±5cm, DEM±10cm, DEM±25cm, DEM±50cm) and four mesh resolutions (1, 2, 4 and 8m) are assessed. A sensitivity analysis on the model results to mesh resolution due to interpolation and resampling procedures of topographic data is performed. Interactions between topographic and roughness parameterisation are related to model results and finally, geostatistical methods are used to document scaling effects in hydraulic modelling results and model performance. This method explicitly recognises the three-way interaction between the discretised mesh resolution and the topographic content in the DEM with the roughness parameterisation. The work shows how the subscale behaviour of the 2D hydraulic model is not well

  4. Which mesh for hernia repair?

    PubMed Central

    Brown, CN; Finch, JG

    2010-01-01

    INTRODUCTION The concept of using a mesh to repair hernias was introduced over 50 years ago. Mesh repair is now standard in most countries and widely accepted as superior to primary suture repair. As a result, there has been a rapid growth in the variety of meshes available and choosing the appropriate one can be difficult. This article outlines the general properties of meshes and factors to be considered when selecting one. MATERIALS AND METHODS We performed a search of the medical literature from 1950 to 1 May 2009, as indexed by Medline, using the PubMed search engine (). To capture all potentially relevant articles with the highest degree of sensitivity, the search terms were intentionally broad. We used the following terms: ‘mesh, pore size, strength, recurrence, complications, lightweight, properties’. We also hand-searched the bibliographies of relevant articles and product literature to identify additional pertinent reports. RESULTS AND CONCLUSIONS The most important properties of meshes were found to be the type of filament, tensile strength and porosity. These determine the weight of the mesh and its biocompatibility. The tensile strength required is much less than originally presumed and light-weight meshes are thought to be superior due to their increased flexibility and reduction in discomfort. Large pores are also associated with a reduced risk of infection and shrinkage. For meshes placed in the peritoneal cavity, consideration should also be given to the risk of adhesion formation. A variety of composite meshes have been promoted to address this, but none appears superior to the others. Finally, biomaterials such as acellular dermis have a place for use in infected fields but have yet to prove their worth in routine hernia repair. PMID:20501011

  5. Immersed interface interpolation schemes for particle-mesh methods

    NASA Astrophysics Data System (ADS)

    Marichal, Yves; Chatelain, Philippe; Winckelmans, Grégoire

    2016-12-01

    The sharp and high-order treatment of arbitrary boundaries immersed in the computational domain remains a challenge to particle methods. While several techniques have been proposed to modify numerical stencils, e.g. Finite Difference ones, near the walls, the particle-mesh interpolation component of particle methods also has to be modified. This operation, mapping fields from the grid to the particles and vice-versa, has to be performed several times per computational step in the framework of particle-mesh methods. The present paper proposes an extension of classical particle-mesh interpolation approaches by computing high-order ghost fields based on the information about the solution behavior at the wall. This approach is further shown to be especially interesting when combined with a dimension-splitting Immersed Interface method to correct the spatial differential operators. Indeed, the associated corrections are computed at the intersection between the interface and the grid lines, making the necessary information for the ghost construction readily available. The mesh-to-particles and particles-to-mesh interpolation schemes are validated individually in convergence studies and, finally, both are applied to the advection-diffusion of a passive tracer past 2D objects.

  6. Algorithms for the automatic generation of 2-D structured multi-block grids

    NASA Technical Reports Server (NTRS)

    Schoenfeld, Thilo; Weinerfelt, Per; Jenssen, Carl B.

    1995-01-01

    Two different approaches to the fully automatic generation of structured multi-block grids in two dimensions are presented. The work aims to simplify the user interactivity necessary for the definition of a multiple block grid topology. The first approach is based on an advancing front method commonly used for the generation of unstructured grids. The original algorithm has been modified toward the generation of large quadrilateral elements. The second method is based on the divide-and-conquer paradigm with the global domain recursively partitioned into sub-domains. For either method each of the resulting blocks is then meshed using transfinite interpolation and elliptic smoothing. The applicability of these methods to practical problems is demonstrated for typical geometries of fluid dynamics.

  7. Quantitative 2D liquid-state NMR.

    PubMed

    Giraudeau, Patrick

    2014-06-01

    Two-dimensional (2D) liquid-state NMR has a very high potential to simultaneously determine the absolute concentration of small molecules in complex mixtures, thanks to its capacity to separate overlapping resonances. However, it suffers from two main drawbacks that probably explain its relatively late development. First, the 2D NMR signal is strongly molecule-dependent and site-dependent; second, the long duration of 2D NMR experiments prevents its general use for high-throughput quantitative applications and affects its quantitative performance. Fortunately, the last 10 years has witnessed an increasing number of contributions where quantitative approaches based on 2D NMR were developed and applied to solve real analytical issues. This review aims at presenting these recent efforts to reach a high trueness and precision in quantitative measurements by 2D NMR. After highlighting the interest of 2D NMR for quantitative analysis, the different strategies to determine the absolute concentrations from 2D NMR spectra are described and illustrated by recent applications. The last part of the manuscript concerns the recent development of fast quantitative 2D NMR approaches, aiming at reducing the experiment duration while preserving - or even increasing - the analytical performance. We hope that this comprehensive review will help readers to apprehend the current landscape of quantitative 2D NMR, as well as the perspectives that may arise from it.

  8. An offline unstructured biogeochemical model (UBM) for complex estuarine and coastal environments

    SciTech Connect

    Kim, Tae Yun; Khangaonkar, Tarang

    2012-05-01

    Due to increased pollutant loads and water use from coastal development and population growth, occurrences of low-dissolved oxygen and "hypoxic zones" have increased. Reports of fish kills and water quality impairment are also becoming more frequent in many coastal waters. Water quality managers and regulatory agencies rely on numerical modeling tools to quantify the relative contributions of anthropogenic and "natural" pollutant loads (nutrients and biochemical oxygen demand) on dissolved oxygen levels and use the results for remedial activities and source control. The ability to conduct seasonlong simulations with sufficient nearshore resolution is therefore a key requirement. Mesh flexibility and the ability to increase site specific resolution without disturbing the larger domain setup and calibration are critical. The objective of this effort was to develop a robust biogeochemical model suitable for simulation of water quality dynamics including dissolved oxygen in complex coastal environments with multiple tidal channels, tidal flats, and density-driven circulation using unstructured-grid formulation. This paper presents an offline unstructured biogeochemical model that uses the Finite Volume Coastal Ocean Model (FVCOM) discretization of the study domain and the corresponding hydrodynamic solution to drive biogeochemical kinetics based on a water quality model CE-QUAL-ICM. In this paper, the linkage between selected hydrodynamic and water quality models is subjected to several scalar transport and biogeochemical module tests (plume transport and dilution, BOD/DO sag, and phytoplankton/nutrients reaction), and results are compared to their analytical solutions as part of model validation. A preliminary application of the biogeochemical model with a year-long simulation of Hood Canal basin in Puget Sound, USA, is presented as an example and a test of the tool in a real estuary setting. The model reproduced the dynamics and seasonal variations in the

  9. Finite-volume modelling of geophysical electromagnetic data on unstructured grids using potentials

    NASA Astrophysics Data System (ADS)

    Jahandari, H.; Farquharson, C. G.

    2015-09-01

    The solution of the geophysical electromagnetic (EM) modelling problem on unstructured tetrahedral-Voronoï grids using EM potentials is investigated. Unstructured grids enable accurate representation of geological structures and interfaces and allow local refinements that can be beneficial in the mesh, for example, at the observation points and at the source. The time-harmonic Helmholtz equation in terms of EM potentials together with the equation of conservation of charge are discretized on staggered tetrahedral-Voronoï grids using a finite-volume method and solved in a total-field approach. The solutions are the total-field quantities of vector and scalar potentials along the edges and at the nodes of the tetrahedral elements, respectively. Two benchmark models with electric and magnetic sources are employed for verification. Also, to illustrate the versatility of the scheme, data for a model of the Ovoid ore body at Voisey's Bay, Labrador, Canada, are synthesized and compared with real helicopter-borne data. The finite-volume results show good agreement with those from the literature and with the real data. The Coulomb gauge is used for ensuring the uniqueness of the potentials in order to study the galvanic and inductive components of the solutions. The results indicate an agreement between the relative importance of these two components and the anticipated coupling of the source with the conductivity model. The solution of the gauged and ungauged schemes using iterative and direct solvers is studied and compared with the solution of a direct EM-field scheme. The results demonstrate that the potential-based schemes can be solved by iterative solvers unlike the corresponding EM-field scheme. An accuracy study is also conducted which showed the higher accuracy of the solutions from the potential method compared to those from the direct EM-field method.

  10. An investigation of parallel implicit solution algorithms for incompressible flows on unstructured topologies

    NASA Astrophysics Data System (ADS)

    Hyams, Daniel Gaiennie

    The primary objective of this study is to develop an efficient, scalable, parallel incompressible flow solver capable of performing viscous, high Reynolds number flow simulations for complex geometries using multielement unstructured grids. The present parallel unstructured viscous flow solver is based on domain decomposition for concurrent solution within subdomains assigned to multiple processors. The solution algorithm employs iterative solution of the implicit approximation, and its software implementation uses MPI message passing for interprocessor communication. Key parallelization issues addressed in this work are (1) definition of the iteration hierarchy, (2) treatment of connectivity between subdomain interfaces, and (3) methods for coupling of subdomains. A heuristic, semiempirical performance estimate is developed and evaluated. With this performance estimate, scalability characteristics of the solution algorithm may be calculated for a particular architecture and/or predicted for a given problem a priori. Validation and verification of the solution procedure are carried out on several small steady and unsteady model problems with excellent agreement to experimental, theoretical, and numerical results. The present parallel flow solver is demonstrated for large-scale meshes with viscous sublayer resolution (y+ ˜ 1) and approximately 106 points or more. Complex geometry 3D applications include (1) a full-scale ship hull, (2) a SUBOFF model hull with stern appendages, (3) a fully-configured high-lift transport, and (4) a maneuvering tiltrotor aircraft. The first three computations are shown to agree well with available experimental data. The maneuvering tiltrotor aircraft simulation is a demonstration of capability for the parallel solution algorithm in the context of an extremely complex geometry and unsteady flowfield.

  11. Aerodynamic shape optimization via discrete adjoint formulation using Euler equations on unstructured grids

    NASA Astrophysics Data System (ADS)

    Nath, Bijoyendra

    A methodology for aerodynamic shape optimization on two-dimensional unstructured grids using Euler equations is presented. The sensitivity derivatives are obtained using the discrete adjoint formulation. The Euler equations are solved using a fully implicit, upwind, cell-vertex, median-dual finite volume scheme. Roe's upwind flux-difference-splitting scheme is used to determine the inviscid fluxes. To enable discontinuities to be captured without oscillations, limiters are used at the reconstruction stage. The derivation of the accurate discretization of the flux Jacobians due to the conserved variables and the entire mesh required for the costate equation is developed and its efficient accumulation algorithm on an edge-based loop is implemented and documented. Exact linearization of Roe's approximate Riemann solver is incorporated into the aerodynamic analysis as well as the sensitivity analysis. Higher-order discretization is achieved by including all distance-one and -two terms due to the reconstruction and the limiter, although the limiter is not linearized. Two-dimensional body conforming grid movement strategy and grid sensitivity are obtained by considering the grid to be a system of interconnected springs. Arbitrary airfoil geometries are obtained using an algorithm for generalized von Mises airfoils with finite trailing edges. An incremental iterative formulation is used to solve the large sparse linear systems of equations obtained from the sensitivity analysis. The discrete linear systems obtained from the equations governing the flow and those from the sensitivity analysis are solved iteratively using the preconditioned GMRES (Generalized Minimum Residual) algorithm. For the optimization process, a constrained nonlinear programming package which uses a sequential quadratic programming algorithm is used. This study presents the process of analytically obtaining the exact discrete sensitivity derivatives and computationally cost-effective algorithms to

  12. 21 CFR 878.3300 - Surgical mesh.

    Code of Federal Regulations, 2010 CFR

    2010-04-01

    ... GENERAL AND PLASTIC SURGERY DEVICES Prosthetic Devices § 878.3300 Surgical mesh. (a) Identification... acetabular and cement restrictor mesh used during orthopedic surgery. (b) Classification. Class II....

  13. 21 CFR 878.3300 - Surgical mesh.

    Code of Federal Regulations, 2013 CFR

    2013-04-01

    ... GENERAL AND PLASTIC SURGERY DEVICES Prosthetic Devices § 878.3300 Surgical mesh. (a) Identification... acetabular and cement restrictor mesh used during orthopedic surgery. (b) Classification. Class II....

  14. 21 CFR 878.3300 - Surgical mesh.

    Code of Federal Regulations, 2012 CFR

    2012-04-01

    ... GENERAL AND PLASTIC SURGERY DEVICES Prosthetic Devices § 878.3300 Surgical mesh. (a) Identification... acetabular and cement restrictor mesh used during orthopedic surgery. (b) Classification. Class II....

  15. Streaming Compression of Hexahedral Meshes

    SciTech Connect

    Isenburg, M; Courbet, C

    2010-02-03

    We describe a method for streaming compression of hexahedral meshes. Given an interleaved stream of vertices and hexahedral our coder incrementally compresses the mesh in the presented order. Our coder is extremely memory efficient when the input stream documents when vertices are referenced for the last time (i.e. when it contains topological finalization tags). Our coder then continuously releases and reuses data structures that no longer contribute to compressing the remainder of the stream. This means in practice that our coder has only a small fraction of the whole mesh in memory at any time. We can therefore compress very large meshes - even meshes that do not file in memory. Compared to traditional, non-streaming approaches that load the entire mesh and globally reorder it during compression, our algorithm trades a less compact compressed representation for significant gains in speed, memory, and I/O efficiency. For example, on the 456k hexahedra 'blade' mesh, our coder is twice as fast and uses 88 times less memory (only 3.1 MB) with the compressed file increasing about 3% in size. We also present the first scheme for predictive compression of properties associated with hexahedral cells.

  16. Meshfree natural vibration analysis of 2D structures

    NASA Astrophysics Data System (ADS)

    Kosta, Tomislav; Tsukanov, Igor

    2014-02-01

    Determination of resonance frequencies and vibration modes of mechanical structures is one of the most important tasks in the product design procedure. The main goal of this paper is to describe a pioneering application of the solution structure method (SSM) to 2D structural natural vibration analysis problems and investigate the numerical properties of the method. SSM is a meshfree method which enables construction of the solutions to the engineering problems that satisfy exactly all prescribed boundary conditions. This method is capable of using spatial meshes that do not conform to the shape of a geometric model. Instead of using the grid nodes to enforce boundary conditions, it employs distance fields to the geometric boundaries and combines them with the basis functions and prescribed boundary conditions at run time. This defines unprecedented geometric flexibility of the SSM as well as the complete automation of the solution procedure. In the paper we will explain the key points of the SSM as well as investigate the accuracy and convergence of the proposed approach by comparing our results with the ones obtained using analytical methods or traditional finite element analysis. Despite in this paper we are dealing with 2D in-plane vibrations, the proposed approach has a straightforward generalization to model vibrations of 3D structures.

  17. 2D Radiative Transfer in Magnetically Confined Structures

    NASA Astrophysics Data System (ADS)

    Heinzel, P.; Anzer, U.

    2003-01-01

    Magnetically confined structures in the solar atmosphere exhibit a large complexity in their shapes and physical conditions. As an example, we show the case of so-called magnetic dips in prominences which are in magnetohydrostatic equilibria. For such models we solve 2D non-LTE multilevel problem for hydrogen with PRD in Lyman resonance lines. The iterative technique used is based on the MALI approach with simple diagonal ALO and SC formal solver. To compute the hydrogen ionization balance, the preconditioned MALI equations are linearized with respect to atomic level populations and electron density and solved iteratively using the Newton-Raphson scheme. Two additional problems are addressed: (i) an adequate iteration method for cases when the column-mass scale is used in one of the two dimensions but varies along the other dimension (which has a geometrical scaling); and (ii) a possibility of using AMR (Adaptive Mesh Refinement) algorithms to account for steep 2D gradients of selected variables (temperature, density, etc.).

  18. Whole-annulus aeroelasticity analysis of a 17-bladerow WRF compressor using an unstructured Navier Stokes solver

    NASA Astrophysics Data System (ADS)

    Wu, X.; Vahdati, M.; Sayma, A.; Imregun, M.

    2005-03-01

    This paper describes a large-scale aeroelasticity computation for an aero-engine core compressor. The computational domain includes all 17 bladerows, resulting in a mesh with over 68 million points. The Favre-averaged Navier Stokes equations are used to represent the flow in a non-linear time-accurate fashion on unstructured meshes of mixed elements. The structural model of the first two rotor bladerows is based on a standard finite element representation. The fluid mesh is moved at each time step according to the structural motion so that changes in blade aerodynamic damping and flow unsteadiness can be accommodated automatically. An efficient domain decomposition technique, where special care was taken to balance the memory requirement across processors, was developed as part of the work. The calculation was conducted in parallel mode on 128 CPUs of an SGI Origin 3000. Ten vibration cycles were obtained using over 2.2 CPU years, though the elapsed time was a week only. Steady-state flow measurements and predictions were found to be in good agreement. A comparison of the averaged unsteady flow and the steady-state flow revealed some discrepancies. It was concluded that, in due course, the methodology would be adopted by industry to perform routine numerical simulations of the unsteady flow through entire compressor assemblies with vibrating blades not only to minimise engine and rig tests but also to improve performance predictions.

  19. Nanowire mesh solar fuels generator

    DOEpatents

    Yang, Peidong; Chan, Candace; Sun, Jianwei; Liu, Bin

    2016-05-24

    This disclosure provides systems, methods, and apparatus related to a nanowire mesh solar fuels generator. In one aspect, a nanowire mesh solar fuels generator includes (1) a photoanode configured to perform water oxidation and (2) a photocathode configured to perform water reduction. The photocathode is in electrical contact with the photoanode. The photoanode may include a high surface area network of photoanode nanowires. The photocathode may include a high surface area network of photocathode nanowires. In some embodiments, the nanowire mesh solar fuels generator may include an ion conductive polymer infiltrating the photoanode and the photocathode in the region where the photocathode is in electrical contact with the photoanode.

  20. Annotated Bibliography of EDGE2D Use

    SciTech Connect

    J.D. Strachan and G. Corrigan

    2005-06-24

    This annotated bibliography is intended to help EDGE2D users, and particularly new users, find existing published literature that has used EDGE2D. Our idea is that a person can find existing studies which may relate to his intended use, as well as gain ideas about other possible applications by scanning the attached tables.

  1. Staring 2-D hadamard transform spectral imager

    DOEpatents

    Gentry, Stephen M.; Wehlburg, Christine M.; Wehlburg, Joseph C.; Smith, Mark W.; Smith, Jody L.

    2006-02-07

    A staring imaging system inputs a 2D spatial image containing multi-frequency spectral information. This image is encoded in one dimension of the image with a cyclic Hadamarid S-matrix. The resulting image is detecting with a spatial 2D detector; and a computer applies a Hadamard transform to recover the encoded image.

  2. 2.5D complex resistivity modeling and inversion using unstructured grids

    NASA Astrophysics Data System (ADS)

    Xu, Kaijun; Sun, Jie

    2016-04-01

    The characteristic of complex resistivity on rock and ore has been recognized by people for a long time. Generally we have used the Cole-Cole Model(CCM) to describe complex resistivity. It has been proved that the electrical anomaly of geologic body can be quantitative estimated by CCM parameters such as direct resistivity(ρ0), chargeability(m), time constant(τ) and frequency dependence(c). Thus it is very important to obtain the complex parameters of geologic body. It is difficult to approximate complex structures and terrain using traditional rectangular grid. In order to enhance the numerical accuracy and rationality of modeling and inversion, we use an adaptive finite-element algorithm for forward modeling of the frequency-domain 2.5D complex resistivity and implement the conjugate gradient algorithm in the inversion of 2.5D complex resistivity. An adaptive finite element method is applied for solving the 2.5D complex resistivity forward modeling of horizontal electric dipole source. First of all, the CCM is introduced into the Maxwell's equations to calculate the complex resistivity electromagnetic fields. Next, the pseudo delta function is used to distribute electric dipole source. Then the electromagnetic fields can be expressed in terms of the primary fields caused by layered structure and the secondary fields caused by inhomogeneities anomalous conductivity. At last, we calculated the electromagnetic fields response of complex geoelectric structures such as anticline, syncline, fault. The modeling results show that adaptive finite-element methods can automatically improve mesh generation and simulate complex geoelectric models using unstructured grids. The 2.5D complex resistivity invertion is implemented based the conjugate gradient algorithm.The conjugate gradient algorithm doesn't need to compute the sensitivity matrix but directly computes the sensitivity matrix or its transpose multiplying vector. In addition, the inversion target zones are

  3. Robust, multidimensional mesh-motion based on Monge-Kantorovich equidistribution

    NASA Astrophysics Data System (ADS)

    Chacón, L.; Delzanno, G. L.; Finn, J. M.

    2011-01-01

    Mesh-motion (r-refinement) grid adaptivity schemes are attractive due to their potential to minimize the numerical error for a prescribed number of degrees of freedom. However, a key roadblock to a widespread deployment of this class of techniques has been the formulation of robust, reliable mesh-motion governing principles, which (1) guarantee a solution in multiple dimensions (2D and 3D), (2) avoid grid tangling (or folding of the mesh, whereby edges of a grid cell cross somewhere in the domain), and (3) can be solved effectively and efficiently. In this study, we formulate such a mesh-motion governing principle, based on volume equidistribution via Monge-Kantorovich optimization (MK). In earlier publications [1,2], the advantages of this approach with regard to these points have been demonstrated for the time-independent case. In this study, we demonstrate that Monge-Kantorovich equidistribution can in fact be used effectively in a time-stepping context, and delivers an elegant solution to the otherwise pervasive problem of grid tangling in mesh-motion approaches, without resorting to ad hoc time-dependent terms (as in moving-mesh PDEs, or MMPDEs [3,4]). We explore two distinct r-refinement implementations of MK: the direct method, where the current mesh relates to an initial, unchanging mesh, and the sequential method, where the current mesh is related to the previous one in time. We demonstrate that the direct approach is superior with regard to mesh distortion and robustness. The properties of the approach are illustrated with a hyperbolic PDE, the advection of a passive scalar, in 2D and 3D. Velocity flow fields with and without flow shear are considered. Three-dimensional grid, time-step, and nonlinear tolerance convergence studies are presented which demonstrate the optimality of the approach.

  4. Effects of Mesh Irregularities on Accuracy of Finite-Volume Discretization Schemes

    NASA Technical Reports Server (NTRS)

    Diskin, Boris; Thomas, James L.

    2012-01-01

    The effects of mesh irregularities on accuracy of unstructured node-centered finite-volume discretizations are considered. The focus is on an edge-based approach that uses unweighted least-squares gradient reconstruction with a quadratic fit. For inviscid fluxes, the discretization is nominally third order accurate on general triangular meshes. For viscous fluxes, the scheme is an average-least-squares formulation that is nominally second order accurate and contrasted with a common Green-Gauss discretization scheme. Gradient errors, truncation errors, and discretization errors are separately studied according to a previously introduced comprehensive methodology. The methodology considers three classes of grids: isotropic grids in a rectangular geometry, anisotropic grids typical of adapted grids, and anisotropic grids over a curved surface typical of advancing layer grids. The meshes within the classes range from regular to extremely irregular including meshes with random perturbation of nodes. Recommendations are made concerning the discretization schemes that are expected to be least sensitive to mesh irregularities in applications to turbulent flows in complex geometries.

  5. Exploring Hypersonic, Unstructured-Grid Issues through Structured Grids

    NASA Technical Reports Server (NTRS)

    Mazaheri, Ali R.; Kleb, Bill

    2007-01-01

    Pure-tetrahedral unstructured grids have been shown to produce asymmetric heat transfer rates for symmetric problems. Meanwhile, two-dimensional structured grids produce symmetric solutions and as documented here, introducing a spanwise degree of freedom to these structured grids also yields symmetric solutions. The effects of grid skewness and other perturbations of structured-grids are investigated to uncover possible mechanisms behind the unstructured-grid solution asymmetries. By using controlled experiments around a known, good solution, the effects of particular grid pathologies are uncovered. These structured-grid experiments reveal that similar solution degradation occurs as for unstructured grids, especially for heat transfer rates. Non-smooth grids within the boundary layer is also shown to produce large local errors in heat flux but do not affect surface pressures.

  6. Wind-US Unstructured Flow Solutions for a Transonic Diffuser

    NASA Technical Reports Server (NTRS)

    Mohler, Stanley R., Jr.

    2005-01-01

    The Wind-US Computational Fluid Dynamics flow solver computed flow solutions for a transonic diffusing duct. The calculations used an unstructured (hexahedral) grid. The Spalart-Allmaras turbulence model was used. Static pressures along the upper and lower wall agreed well with experiment, as did velocity profiles. The effect of the smoothing input parameters on convergence and solution accuracy was investigated. The meaning and proper use of these parameters are discussed for the benefit of Wind-US users. Finally, the unstructured solver is compared to the structured solver in terms of run times and solution accuracy.

  7. Extending the MODPATH Algorithm to Rectangular Unstructured Grids.

    PubMed

    Pollock, David W

    2016-01-01

    The recent release of MODFLOW-USG, which allows model grids to have irregular, unstructured connections, requires a modification of the particle-tracking algorithm used by MODPATH. This paper describes a modification of the semi-analytical particle-tracking algorithm used by MODPATH that allows it to be extended to rectangular-based unstructured grids by dividing grid cells with multi-cell face connections into sub-cells. The new method will be incorporated in the next version of MODPATH which is currently under development.

  8. Extending the MODPATH algorithm to rectangular unstructured grids

    USGS Publications Warehouse

    Pollock, David W.

    2016-01-01

    The recent release of MODFLOW-USG, which allows model grids to have irregular, unstructured connections, requires a modification of the particle-tracking algorithm used by MODPATH. This paper describes a modification of the semi-analytical particle-tracking algorithm used by MODPATH that allows it to be extended to rectangular-based unstructured grids by dividing grid cells with multi-cell face connections into sub-cells. The new method will be incorporated in the next version of MODPATH which is currently under development.

  9. Visualization of transient finite element analyses on large unstructured grids

    SciTech Connect

    Dovey, D.

    1995-03-22

    Three-dimensional transient finite element analysis is performed on unstructured grids. A trend toward running larger analysis problems, combined with a desire for interactive animation of analysis results, demands efficient visualization techniques. This paper discusses a set of data structures and algorithms for visualizing transient analysis results on unstructured grids and introduces some modifications in order to better support large grids. In particular, an element grouping approach is used to reduce the amount of memory needed for external surface determination and to speed up ``point in element`` tests. The techniques described lend themselves to visualization of analyses carried out in parallel on a massively parallel computer (MPC).

  10. Gradient scaling for nonuniform meshes

    SciTech Connect

    Margolin, L.G.; Ruppel, H.M.; Demuth, R.B.

    1985-01-01

    This paper is concerned with the effect of nonuniform meshes on the accuracy of finite-difference calculations of fluid flow. In particular, when a simple shock propagates through a nonuniform mesh, one may fail to model the jump conditions across the shock even when the equations are differenced in manifestly conservative fashion. We develop an approximate dispersion analysis of the numerical equations and identify the source of the mesh dependency with the form of the artificial viscosity. We then derive an algebraic correction to the numerical equations - a scaling factor for the pressure gradient - to essentially eliminate the mesh dependency. We present several calculations to illustrate our theory. We conclude with an alternate interpretation of our results. 14 refs., 5 figs.

  11. Mersiline mesh in premaxillary augmentation.

    PubMed

    Foda, Hossam M T

    2005-01-01

    Premaxillary retrusion may distort the aesthetic appearance of the columella, lip, and nasal tip. This defect is characteristically seen in, but not limited to, patients with cleft lip nasal deformity. This study investigated 60 patients presenting with premaxillary deficiencies in which Mersiline mesh was used to augment the premaxilla. All the cases had surgery using the external rhinoplasty technique. Two methods of augmentation with Mersiline mesh were used: the Mersiline roll technique, for the cases with central symmetric deficiencies, and the Mersiline packing technique, for the cases with asymmetric deficiencies. Premaxillary augmentation with Mersiline mesh proved to be simple technically, easy to perform, and not associated with any complications. Periodic follow-up evaluation for a mean period of 32 months (range, 12-98 months) showed that an adequate degree of premaxillary augmentation was maintained with no clinically detectable resorption of the mesh implant.

  12. Parallel Adaptive Mesh Refinement Library

    NASA Technical Reports Server (NTRS)

    Mac-Neice, Peter; Olson, Kevin

    2005-01-01

    Parallel Adaptive Mesh Refinement Library (PARAMESH) is a package of Fortran 90 subroutines designed to provide a computer programmer with an easy route to extension of (1) a previously written serial code that uses a logically Cartesian structured mesh into (2) a parallel code with adaptive mesh refinement (AMR). Alternatively, in its simplest use, and with minimal effort, PARAMESH can operate as a domain-decomposition tool for users who want to parallelize their serial codes but who do not wish to utilize adaptivity. The package builds a hierarchy of sub-grids to cover the computational domain of a given application program, with spatial resolution varying to satisfy the demands of the application. The sub-grid blocks form the nodes of a tree data structure (a quad-tree in two or an oct-tree in three dimensions). Each grid block has a logically Cartesian mesh. The package supports one-, two- and three-dimensional models.

  13. Method and system for mesh network embedded devices

    NASA Technical Reports Server (NTRS)

    Wang, Ray (Inventor)

    2009-01-01

    A method and system for managing mesh network devices. A mesh network device with integrated features creates an N-way mesh network with a full mesh network topology or a partial mesh network topology.

  14. Finite Volume schemes on unstructured grids for non-local models: Application to the simulation of heat transport in plasmas

    SciTech Connect

    Goudon, Thierry; Parisot, Martin

    2012-10-15

    In the so-called Spitzer-Haerm regime, equations of plasma physics reduce to a nonlinear parabolic equation for the electronic temperature. Coming back to the derivation of this limiting equation through hydrodynamic regime arguments, one is led to construct a hierarchy of models where the heat fluxes are defined through a non-local relation which can be reinterpreted as well by introducing coupled diffusion equations. We address the question of designing numerical methods to simulate these equations. The basic requirement for the scheme is to be asymptotically consistent with the Spitzer-Haerm regime. Furthermore, the constraints of physically realistic simulations make the use of unstructured meshes unavoidable. We develop a Finite Volume scheme, based on Vertex-Based discretization, which reaches these objectives. We discuss on numerical grounds the efficiency of the method, and the ability of the generalized models in capturing relevant phenomena missed by the asymptotic problem.

  15. High Energy Boundary Conditions for a Cartesian Mesh Euler Solver

    NASA Technical Reports Server (NTRS)

    Pandya, Shishir; Murman, Scott; Aftosmis, Michael

    2003-01-01

    Inlets and exhaust nozzles are common place in the world of flight. Yet, many aerodynamic simulation packages do not provide a method of modelling such high energy boundaries in the flow field. For the purposes of aerodynamic simulation, inlets and exhausts are often fared over and it is assumed that the flow differences resulting from this assumption are minimal. While this is an adequate assumption for the prediction of lift, the lack of a plume behind the aircraft creates an evacuated base region thus effecting both drag and pitching moment values. In addition, the flow in the base region is often mis-predicted resulting in incorrect base drag. In order to accurately predict these quantities, a method for specifying inlet and exhaust conditions needs to be available in aerodynamic simulation packages. A method for a first approximation of a plume without accounting for chemical reactions is added to the Cartesian mesh based aerodynamic simulation package CART3D. The method consists of 3 steps. In the first step, a components approach where each triangle is assigned a component number is used. Here, a method for marking the inlet or exhaust plane triangles as separate components is discussed. In step two, the flow solver is modified to accept a reference state for the components marked inlet or exhaust. In the third step, the flow solver uses these separated components and the reference state to compute the correct flow condition at that triangle. The present method is implemented in the CART3D package which consists of a set of tools for generating a Cartesian volume mesh from a set of component triangulations. The Euler equations are solved on the resulting unstructured Cartesian mesh. The present methods is implemented in this package and its usefulness is demonstrated with two validation cases. A generic missile body is also presented to show the usefulness of the method on a real world geometry.

  16. Gear Mesh Loss-of-Lubrication Experiments and Analytical Simulation

    NASA Technical Reports Server (NTRS)

    Handschuh, Robert F.; Polly, Joseph; Morales, Wilfredo

    2011-01-01

    An experimental program to determine the loss-of-lubrication (LOL) characteristics of spur gears in an aerospace simulation test facility has been completed. Tests were conducted using two different emergency lubricant types: (1) an oil mist system (two different misted lubricants) and (2) a grease injection system (two different grease types). Tests were conducted using a NASA Glenn test facility normally used for conducting contact fatigue. Tests were run at rotational speeds up to 10000 rpm using two different gear designs and two different gear materials. For the tests conducted using an air-oil misting system, a minimum lubricant injection rate was determined to permit the gear mesh to operate without failure for at least 1 hr. The tests allowed an elevated steady state temperature to be established. A basic 2-D heat transfer simulation has been developed to investigate temperatures of a simulated gear as a function of frictional behavior. The friction (heat generation source) between the meshing surfaces is related to the position in the meshing cycle, the load applied, and the amount of lubricant in the contact. Experimental conditions will be compared to those from the 2-D simulation.

  17. User Manual for the PROTEUS Mesh Tools

    SciTech Connect

    Smith, Micheal A.; Shemon, Emily R.

    2015-06-01

    This report describes the various mesh tools that are provided with the PROTEUS code giving both descriptions of the input and output. In many cases the examples are provided with a regression test of the mesh tools. The most important mesh tools for any user to consider using are the MT_MeshToMesh.x and the MT_RadialLattice.x codes. The former allows the conversion between most mesh types handled by PROTEUS while the second allows the merging of multiple (assembly) meshes into a radial structured grid. Note that the mesh generation process is recursive in nature and that each input specific for a given mesh tool (such as .axial or .merge) can be used as “mesh” input for any of the mesh tools discussed in this manual.

  18. Unsupervised Ontology Generation from Unstructured Text. CRESST Report 827

    ERIC Educational Resources Information Center

    Mousavi, Hamid; Kerr, Deirdre; Iseli, Markus R.

    2013-01-01

    Ontologies are a vital component of most knowledge acquisition systems, and recently there has been a huge demand for generating ontologies automatically since manual or supervised techniques are not scalable. In this paper, we introduce "OntoMiner", a rule-based, iterative method to extract and populate ontologies from unstructured or…

  19. Perspective-Taking in Structured and Unstructured Online Discussions

    ERIC Educational Resources Information Center

    Chadwick, Scott; Ralston, Ekaterina

    2010-01-01

    This study analyzes the extent to which students using web-based discussion boards show an increase in perspective-taking in structured and unstructured discussions. Messages from fifty-six students enrolled in one of two courses were content analyzed using Jarvela and Hakkinen's (2003) expansion of Selman's (1980) perspective-taking coding…

  20. Matrix models of 2d gravity

    SciTech Connect

    Ginsparg, P.

    1991-01-01

    These are introductory lectures for a general audience that give an overview of the subject of matrix models and their application to random surfaces, 2d gravity, and string theory. They are intentionally 1.5 years out of date.

  1. Matrix models of 2d gravity

    SciTech Connect

    Ginsparg, P.

    1991-12-31

    These are introductory lectures for a general audience that give an overview of the subject of matrix models and their application to random surfaces, 2d gravity, and string theory. They are intentionally 1.5 years out of date.

  2. Brittle damage models in DYNA2D

    SciTech Connect

    Faux, D.R.

    1997-09-01

    DYNA2D is an explicit Lagrangian finite element code used to model dynamic events where stress wave interactions influence the overall response of the system. DYNA2D is often used to model penetration problems involving ductile-to-ductile impacts; however, with the advent of the use of ceramics in the armor-anti-armor community and the need to model damage to laser optics components, good brittle damage models are now needed in DYNA2D. This report will detail the implementation of four brittle damage models in DYNA2D, three scalar damage models and one tensor damage model. These new brittle damage models are then used to predict experimental results from three distinctly different glass damage problems.

  3. 2D/3D switchable displays

    NASA Astrophysics Data System (ADS)

    Dekker, T.; de Zwart, S. T.; Willemsen, O. H.; Hiddink, M. G. H.; IJzerman, W. L.

    2006-02-01

    A prerequisite for a wide market acceptance of 3D displays is the ability to switch between 3D and full resolution 2D. In this paper we present a robust and cost effective concept for an auto-stereoscopic switchable 2D/3D display. The display is based on an LCD panel, equipped with switchable LC-filled lenticular lenses. We will discuss 3D image quality, with the focus on display uniformity. We show that slanting the lenticulars in combination with a good lens design can minimize non-uniformities in our 20" 2D/3D monitors. Furthermore, we introduce fractional viewing systems as a very robust concept to further improve uniformity in the case slanting the lenticulars and optimizing the lens design are not sufficient. We will discuss measurements and numerical simulations of the key optical characteristics of this display. Finally, we discuss 2D image quality, the switching characteristics and the residual lens effect.

  4. Chemical Approaches to 2D Materials.

    PubMed

    Samorì, Paolo; Palermo, Vincenzo; Feng, Xinliang

    2016-08-01

    Chemistry plays an ever-increasing role in the production, functionalization, processing and applications of graphene and other 2D materials. This special issue highlights a selection of enlightening chemical approaches to 2D materials, which nicely reflect the breadth of the field and convey the excitement of the individuals involved in it, who are trying to translate graphene and related materials from the laboratory into a real, high-impact technology.

  5. Single port laparoscopic mesh rectopexy

    PubMed Central

    2016-01-01

    Introduction Traditionally, laparoscopic mesh rectopexy is performed with four ports, in an attempt to improve cosmetic results. Following laparoscopic mesh rectopexy there is a new operative technique called single-port laparoscopic mesh rectopexy. Aim To evaluate the single-port laparoscopic mesh rectopexy technique in control of rectal prolapse and the cosmesis and body image issues of this technique. Material and methods The study was conducted in El Fayoum University Hospital between July 2013 and November 2014 in elective surgery for symptomatic rectal prolapse with single-port laparoscopic mesh rectopexy on 10 patients. Results The study included 10 patients: 3 (30%) males and 7 (70%) females. Their ages ranged between 19 years and 60 years (mean: 40.3 ±6 years), and they all underwent laparoscopic mesh rectopexy. There were no conversions to open technique, nor injuries to the rectum or bowel, and there were no mortalities. Mean operative time was 120 min (range: 90–150 min), and mean hospital stay was 2 days (range: 1–3 days). Preoperatively, incontinence was seen in 5 (50%) patients and constipation in 4 (40%). Postoperatively, improvement in these symptoms was seen in 3 (60%) patients for incontinence and in 3 (75%) for constipation. Follow-up was done for 6 months and no recurrence was found with better cosmetic appearance for all patients. Conclusions Single-port laparoscopic mesh rectopexy is a safe procedure with good results as regards operative time, improvement in bowel function, morbidity, cost, and recurrence, and with better cosmetic appearance. PMID:27350840

  6. Real-time 4D ERT monitoring of river water intrusion into a former nuclear disposal site using a transient warping-mesh water table boundary (Invited)

    NASA Astrophysics Data System (ADS)

    Johnson, T.; Hammond, G. E.; Versteeg, R. J.; Zachara, J. M.

    2013-12-01

    The Hanford 300 Area, located adjacent to the Columbia River in south-central Washington, USA, is the site of former research and uranium fuel rod fabrication facilities. Waste disposal practices at site included discharging between 33 and 59 metric tons of uranium over a 40 year period into shallow infiltration galleries, resulting in persistent uranium contamination within the vadose and saturated zones. Uranium transport from the vadose zone to the saturated zone is intimately linked with water table fluctuations and river water intrusion driven by upstream dam operations. As river stage increases, the water table rises into the vadose zone and mobilizes contaminated pore water. At the same time, river water moves inland into the aquifer, and river water chemistry facilitates further mobilization by enabling uranium desorption from contaminated sediments. As river stage decreases, flow moves toward the river, ultimately discharging contaminated water at the river bed. River water specific conductance at the 300 Area varies around 0.018 S/m whereas groundwater specific conductance varies around 0.043 S/m. This contrast provides the opportunity to monitor groundwater/river water interaction by imaging changes in bulk conductivity within the saturated zone using time-lapse electrical resistivity tomography. Previous efforts have demonstrated this capability, but have also shown that disconnecting regularization constraints at the water table is critical for obtaining meaningful time-lapse images. Because the water table moves with time, the regularization constraints must also be transient to accommodate the water table boundary. This was previously accomplished with 2D time-lapse ERT imaging by using a finely discretized computational mesh within the water table interval, enabling a relatively smooth water table to be defined without modifying the mesh. However, in 3D this approach requires a computational mesh with an untenable number of elements. In order to

  7. A Parallel Ghosting Algorithm for The Flexible Distributed Mesh Database

    DOE PAGES

    Mubarak, Misbah; Seol, Seegyoung; Lu, Qiukai; ...

    2013-01-01

    Critical to the scalability of parallel adaptive simulations are parallel control functions including load balancing, reduced inter-process communication and optimal data decomposition. In distributed meshes, many mesh-based applications frequently access neighborhood information for computational purposes which must be transmitted efficiently to avoid parallel performance degradation when the neighbors are on different processors. This article presents a parallel algorithm of creating and deleting data copies, referred to as ghost copies, which localize neighborhood data for computation purposes while minimizing inter-process communication. The key characteristics of the algorithm are: (1) It can create ghost copies of any permissible topological order inmore » a 1D, 2D or 3D mesh based on selected adjacencies. (2) It exploits neighborhood communication patterns during the ghost creation process thus eliminating all-to-all communication. (3) For applications that need neighbors of neighbors, the algorithm can create n number of ghost layers up to a point where the whole partitioned mesh can be ghosted. Strong and weak scaling results are presented for the IBM BG/P and Cray XE6 architectures up to a core count of 32,768 processors. The algorithm also leads to scalable results when used in a parallel super-convergent patch recovery error estimator, an application that frequently accesses neighborhood data to carry out computation.« less

  8. A Mechanistic Study of Wetting Superhydrophobic Porous 3D Meshes.

    PubMed

    Yohe, Stefan T; Freedman, Jonathan D; Falde, Eric J; Colson, Yolonda L; Grinstaff, Mark W

    2013-08-07

    Superhydrophobic, porous, 3D materials composed of poly( ε -caprolactone) (PCL) and the hydrophobic polymer dopant poly(glycerol monostearate- co- ε -caprolactone) (PGC-C18) are fabricated using the electrospinning technique. These 3D materials are distinct from 2D superhydrophobic surfaces, with maintenance of air at the surface as well as within the bulk of the material. These superhydrophobic materials float in water, and when held underwater and pressed, an air bubble is released and will rise to the surface. By changing the PGC-C18 doping concentration in the meshes and/or the fiber size from the micro- to nanoscale, the long-term stability of the entrapped air layer is controlled. The rate of water infiltration into the meshes, and the resulting displacement of the entrapped air, is quantitatively measured using X-ray computed tomography. The properties of the meshes are further probed using surfactants and solvents of different surface tensions. Finally, the application of hydraulic pressure is used to quantify the breakthrough pressure to wet the meshes. The tools for fabrication and analysis of these superhydrophobic materials as well as the ability to control the robustness of the entrapped air layer are highly desirable for a number of existing and emerging applications.

  9. A grid generation and flow solution method for the Euler equations on unstructured grids

    SciTech Connect

    Anderson, W.K. )

    1994-01-01

    A grid generation and flow solution algorithm for the Euler equations on unstructured grids is presented. The grid generation scheme utilizes Delaunay triangulation and self-generates the field points for the mesh based on cell aspect ratios and allows for clustering near solid surfaces. The flow solution method is an implicit algorithm in which the linear set or equations arising at each time step is solved using a Gauss Seidel procedure which is completely vectorizable. In addition, a study is conducted to examine the number of subiterations required for good convergence of the overall algorithm. Grid generation results are shown in two dimensions for a NACA 0012 airfoil as well as two-element configuration. Flow solution results are shown for two-dimensional flow over the NACA 0012 airfoil and for a two-element configuration in which the solution has been obtained through an adaptation procedure and compared to an exact solution. Preliminary three-dimensional results are also shown in which subsonic flow over a business jet is computed. 31 refs. 30 figs.

  10. River salinity on a mega-delta, an unstructured grid model approach.

    NASA Astrophysics Data System (ADS)

    Bricheno, Lucy; Saiful Islam, Akm; Wolf, Judith

    2014-05-01

    With an average freshwater discharge of around 40,000 m3/s the BGM (Brahmaputra Ganges and Meghna) river system has the third largest discharge worldwide. The BGM river delta is a low-lying fertile area covering over 100,000 km2 mainly in India and Bangladesh. Approximately two-thirds of the Bangladesh people work in agriculture and these local livelihoods depend on freshwater sources directly linked to river salinity. The finite volume coastal ocean model (FVCOM) has been applied to the BGM delta in order to simulate river salinity under present and future climate conditions. Forced by a combination of regional climate model predictions, and a basin-wide river catchment model, the 3D baroclinic delta model can determine river salinity under the current climate, and make predictions for future wet and dry years. The river salinity demonstrates a strong seasonal and tidal cycle, making it important for the model to be able to capture a wide range of timescales. The unstructured mesh approach used in FVCOM is required to properly represent the delta's structure; a complex network of interconnected river channels. The model extends 250 km inland in order to capture the full extent of the tidal influence and grid resolutions of 10s of metres are required to represent narrow inland river channels. The use of FVCOM to simulate flows so far inland is a novel challenge, which also requires knowledge of the shape and cross-section of the river channels.

  11. A point implicit unstructured grid solver for the Euler and Navier-Stokes equations

    NASA Technical Reports Server (NTRS)

    Thareja, Rajiv R.; Stewart, James R.; Hassan, Obey; Morgan, Ken; Peraire, Jaime

    1988-01-01

    An upwind finite element technique that uses cell centered quantities and implicit and/or explicit time marching has been developed for computing hypersonic laminar viscous flows using adaptive unstructured triangular grids. A structured grid of quadrilaterals is laid out near the body surface. For inviscid flows the method is stable at Courant numbers of over 100,000. A first order basic scheme and a higher order flux corrected transport (FCT) scheme have been implemented. This technique has been applied to the problem of predicting type III and IV shock wave interactions on a cylinder, with a view of simulating the pressure and heating rate augmentation caused by an impinging shock on the leading edge of a cowl lip of an engine inlet. The predictions of wall pressure and heating rates compare very well with experimental data. The flow features are very distinctly captured with a sequence of adaptively generated grids. The adaptive mesh generator and the upwind Navier-Stokes solver are combined in a set of programs called LARCNESS, an acronym for Langley Adaptive Remeshing Code and Navier-Stokes Solver.

  12. Evaluation and optimization of multi-lateral wells using MODFLOW unstructured grids

    NASA Astrophysics Data System (ADS)

    Lux, Marcell; Szanyi, János; Tóth, Tivadar M.

    2016-01-01

    Multi-lateral wells have been increasingly used in recent years by different industries including oil- and gas industry along with coal bed methane- and water production. The common purpose of these wells is to achieve a higher production rate per well. More and more sophisticated well patterns and geometries can be implemented in practice which calls for improved modelling techniques. Complicated well geometries and small lateral diameters require high resolution models in the vicinity of the wells. With structured finite difference grids this can only be achieved by unnecessary refinements even far away from the wellbores. However the model may still suffer from orientation problems if laterals do not coincide with the rows or columns of the rectangular mesh. In the present work, we applied unstructured grids to model multi-lateral wells and compared the results to structured models. We used the MODFLOW-USG code, which simulates groundwater flow using a generalized control volume finite-difference approach, allowing grids other than orthogonal structured grids to be applied. This offers a solution for orientation and resolution problems. The second part of the paper aims to optimize multi-lateral well geometry by evaluating the effect of length, angle and number of laterals.

  13. Grid generation and flow solution method for Euler equations on unstructured grids

    NASA Technical Reports Server (NTRS)

    Anderson, W. Kyle

    1992-01-01

    A grid generation and flow solution algorithm for the Euler equations on unstructured grids is presented. The grid generation scheme, which uses Delaunay triangulation, generates the field points for the mesh based on cell aspect ratios and allows clustering of grid points near solid surfaces. The flow solution method is an implicit algorithm in which the linear set of equations arising at each time step is solved using a Gauss-Seidel procedure that is completely vectorizable. Also, a study is conducted to examine the number of subiterations required for good convergence of the overall algorithm. Grid generation results are shown in two dimensions for an NACA 0012 airfoil as well as a two element configuration. Flow solution results are shown for a two dimensional flow over the NACA 0012 airfoil and for a two element configuration in which the solution was obtained through an adaptation procedure and compared with an exact solution. Preliminary three dimensional results also are shown in which the subsonic flow over a business jet is computed.

  14. Agglomeration multigrid methods with implicit Runge-Kutta smoothers applied to aerodynamic simulations on unstructured grids

    NASA Astrophysics Data System (ADS)

    Langer, Stefan

    2014-11-01

    For unstructured finite volume methods an agglomeration multigrid with an implicit multistage Runge-Kutta method as a smoother is developed for solving the compressible Reynolds averaged Navier-Stokes (RANS) equations. The implicit Runge-Kutta method is interpreted as a preconditioned explicit Runge-Kutta method. The construction of the preconditioner is based on an approximate derivative. The linear systems are solved approximately with a symmetric Gauss-Seidel method. To significantly improve this solution method grid anisotropy is treated within the Gauss-Seidel iteration in such a way that the strong couplings in the linear system are resolved by tridiagonal systems constructed along these directions of strong coupling. The agglomeration strategy is adapted to this procedure by taking into account exactly these anisotropies in such a way that a directional coarsening is applied along these directions of strong coupling. Turbulence effects are included by a Spalart-Allmaras model, and the additional transport-type equation is approximately solved in a loosely coupled manner with the same method. For two-dimensional and three-dimensional numerical examples and a variety of differently generated meshes we show the wide range of applicability of the solution method. Finally, we exploit the GMRES method to determine approximate spectral information of the linearized RANS equations. This approximate spectral information is used to discuss and compare characteristics of multistage Runge-Kutta methods.

  15. New laser driver for physics modeling codes using unstructured 3d grids

    SciTech Connect

    Kaiser, T; Milovich, J L; Prasad, M K; Shestakov, A I

    1999-02-01

    We present a status report on the current state of development, testing and application of a new scheme for laser beam evolution and power deposition on three-dimensional unstructured grids. The scheme is being encapsulated in a C++ library for convenient porting to existing modeling codes. We have added a new ray propagator that is second order in time, allowing rays to refract within computational zones as well as at zone interfaces. In a globally constant free-electron density gradient on a randomized hexahedral mesh,the new integrator produces ray trajectories that agree with analytic results to within machine roundoff. A new method for computing the inverse-bremmstrahlung energy deposition rate that captures its highly non-uniform spatial dependence within a zone has also been added. This allows accurate trajectories without the necessity of sub-stepping in time. Other enhancements (not discussed) include multiple user-configurable beams, computation of the electron oscillation velocity in the laser electric field and energy-deposition accounting. Results of laser-driven simulations are presented in a companion paper.

  16. A mesh adaptivity scheme on the Landau-de Gennes functional minimization case in 3D, and its driving efficiency

    NASA Astrophysics Data System (ADS)

    Bajc, Iztok; Hecht, Frédéric; Žumer, Slobodan

    2016-09-01

    This paper presents a 3D mesh adaptivity strategy on unstructured tetrahedral meshes by a posteriori error estimates based on metrics derived from the Hessian of a solution. The study is made on the case of a nonlinear finite element minimization scheme for the Landau-de Gennes free energy functional of nematic liquid crystals. Newton's iteration for tensor fields is employed with steepest descent method possibly stepping in. Aspects relating the driving of mesh adaptivity within the nonlinear scheme are considered. The algorithmic performance is found to depend on at least two factors: when to trigger each single mesh adaptation, and the precision of the correlated remeshing. Each factor is represented by a parameter, with its values possibly varying for every new mesh adaptation. We empirically show that the time of the overall algorithm convergence can vary considerably when different sequences of parameters are used, thus posing a question about optimality. The extensive testings and debugging done within this work on the simulation of systems of nematic colloids substantially contributed to the upgrade of an open source finite element-oriented programming language to its 3D meshing possibilities, as also to an outer 3D remeshing module.

  17. E-2D Advanced Hawkeye: primary flight display

    NASA Astrophysics Data System (ADS)

    Paolillo, Paul W.; Saxena, Ragini; Garruba, Jonathan; Tripathi, Sanjay; Blanchard, Randy

    2006-05-01

    This paper is a response to the challenge of providing a large area avionics display for the E-2D AHE aircraft. The resulting display design provides a pilot with high-resolution visual information content covering an image area of almost three square feet (Active Area of Samsung display = 33.792cm x 27.0336 cm = 13.304" x 10.643" = 141.596 square inches = 0.983 sq. ft x 3 = 2.95 sq. ft). The avionics display application, design and performance being described is the Primary Flight Display for the E-2D Advanced Hawkeye aircraft. This cockpit display has a screen diagonal size of 17 inches. Three displays, with minimum bezel width, just fit within the available instrument panel area. The significant design constraints of supporting an upgrade installation have been addressed. These constraints include a display image size that is larger than the mounting opening in the instrument panel. This, therefore, requires that the Electromagnetic Interference (EMI) window, LCD panel and backlight all fit within the limited available bezel depth. High brightness and a wide dimming range are supported with a dual mode Cold Cathode Fluorescent Tube (CCFT) and LED backlight. Packaging constraints dictated the use of multiple U shaped fluorescent lamps in a direct view backlight design for a maximum display brightness of 300 foot-Lamberts. The low intensity backlight levels are provided by remote LEDs coupled through a fiber optic mesh. This architecture generates luminous uniformity within a minimum backlight depth. Cross-cockpit viewing is supported with ultra-wide field-of-view performance including contrast and the color stability of an advanced LCD cell design supports. Display system design tradeoffs directed a priority to high optical efficiency for minimum power and weight.

  18. Parallel Adaptive Mesh Refinement for High-Order Finite-Volume Schemes in Computational Fluid Dynamics

    NASA Astrophysics Data System (ADS)

    Schwing, Alan Michael

    For computational fluid dynamics, the governing equations are solved on a discretized domain of nodes, faces, and cells. The quality of the grid or mesh can be a driving source for error in the results. While refinement studies can help guide the creation of a mesh, grid quality is largely determined by user expertise and understanding of the flow physics. Adaptive mesh refinement is a technique for enriching the mesh during a simulation based on metrics for error, impact on important parameters, or location of important flow features. This can offload from the user some of the difficult and ambiguous decisions necessary when discretizing the domain. This work explores the implementation of adaptive mesh refinement in an implicit, unstructured, finite-volume solver. Consideration is made for applying modern computational techniques in the presence of hanging nodes and refined cells. The approach is developed to be independent of the flow solver in order to provide a path for augmenting existing codes. It is designed to be applicable for unsteady simulations and refinement and coarsening of the grid does not impact the conservatism of the underlying numerics. The effect on high-order numerical fluxes of fourth- and sixth-order are explored. Provided the criteria for refinement is appropriately selected, solutions obtained using adapted meshes have no additional error when compared to results obtained on traditional, unadapted meshes. In order to leverage large-scale computational resources common today, the methods are parallelized using MPI. Parallel performance is considered for several test problems in order to assess scalability of both adapted and unadapted grids. Dynamic repartitioning of the mesh during refinement is crucial for load balancing an evolving grid. Development of the methods outlined here depend on a dual-memory approach that is described in detail. Validation of the solver developed here against a number of motivating problems shows favorable

  19. Omental Lipid-Coated Mesh

    DTIC Science & Technology

    2011-06-16

    infection. If benefit is proven, this method will be a cost- effective way to prepare biologic and possibly synthetic meshes for use in hernia repair...omental coating is encouraging. 10. ::’UD./CI.I I CI’IIVI::’ Omentum, Mesh , Hernia 𔃺. ::.CI.Utill , I.LA::’::’II"II.A IIUN UI": I-­ a -.-I’I-c­...-u...abdominal wall hernia repair. If cheap and effective promotion of neovascularization could be initiated, we might be able to improve upon current

  20. Orthotropic Piezoelectricity in 2D Nanocellulose

    NASA Astrophysics Data System (ADS)

    García, Y.; Ruiz-Blanco, Yasser B.; Marrero-Ponce, Yovani; Sotomayor-Torres, C. M.

    2016-10-01

    The control of electromechanical responses within bonding regions is essential to face frontier challenges in nanotechnologies, such as molecular electronics and biotechnology. Here, we present Iβ-nanocellulose as a potentially new orthotropic 2D piezoelectric crystal. The predicted in-layer piezoelectricity is originated on a sui-generis hydrogen bonds pattern. Upon this fact and by using a combination of ab-initio and ad-hoc models, we introduce a description of electrical profiles along chemical bonds. Such developments lead to obtain a rationale for modelling the extended piezoelectric effect originated within bond scales. The order of magnitude estimated for the 2D Iβ-nanocellulose piezoelectric response, ~pm V‑1, ranks this material at the level of currently used piezoelectric energy generators and new artificial 2D designs. Such finding would be crucial for developing alternative materials to drive emerging nanotechnologies.