Science.gov

Sample records for 2-dimensional difference gel

  1. Porcine salivary analysis by 2-dimensional gel electrophoresis in 3 models of acute stress: A pilot study

    PubMed Central

    Fuentes-Rubio, María; Cerón, José J.; de Torre, Carlos; Escribano, Damián; Gutiérrez, Ana M.; Tecles, Fernando

    2014-01-01

    The purpose of this research was to study changes in the salivary proteome of healthy pigs in stressful situations to identify any potential new salivary biomarker of stress. Three groups of animals were subjected to 3 stress models: snaring restraint followed by simulated sampling of vena cava blood; brief transport by road; and restriction of movement in a digestibility cage. Saliva was obtained from each animal before and 15 and 30 min after the induction of stress. The samples from the animals that showed the greatest increase in salivary cortisol concentration were pooled and run on 2-dimensional gels. Coomassie Brilliant Blue R-250 was used for spot detection and mass spectrometry for spot identification. Statistical analyses showed that 2 proteins had significant differences in expression before and after the induction of stress. These proteins were identified as odorant-binding protein and fragments of albumin. Further studies will be necessary to confirm the value of using these proteins as salivary biomarkers of stress in pigs. PMID:24688174

  2. Effect of bile salts stress on protein synthesis of Lactobacillus casei Zhang revealed by 2-dimensional gel electrophoresis.

    PubMed

    Wu, R; Sun, Z; Wu, J; Meng, H; Zhang, H

    2010-08-01

    Lactobacillus casei Zhang, isolated from koumiss in Inner Mongolia of China, is known from previous findings to be tolerant to bile salts. Bile salts secreted by mammals act as a natural antibacterial barrier and may serve as a component of innate immunity, as they have limited antagonistic effect against resident microflora. In this work, we compared the growth and protein expression patterns of L. casei Zhang with and without bile salts. Twenty-six proteins were found to be differentially expressed using 2-dimensional gel electrophoresis. Peptide mass fingerprinting was used to identify these proteins. Further verification by using real-time, quantitative reverse transcription-PCR and bioinformatics analysis showed that the implicated pathways are involved with a complex physiological response under bile salts stress, particularly including cell protection (DnaK and GroEL), modifications in cell membranes (NagA, GalU, and PyrD), and key components of central metabolism (PFK, PGM, CysK, LuxS, PepC, and EF-Tu). These results provide insight on the protein expression pattern of L. casei under bile salts stress and offer a new perspective for the molecular mechanisms involved in stress tolerance and adaptation of bacteria. PMID:20655455

  3. Psoriasin, one of several new proteins identified in nasal lavage fluid from allergic and non-allergic individuals using 2-dimensional gel electrophoresis and mass spectrometry

    PubMed Central

    Bryborn, Malin; Adner, Mikael; Cardell, Lars-Olaf

    2005-01-01

    Background Extravasation and luminal entry of plasma occurs continuously in the nose. This process is markedly facilitated in patients with symptomatic allergic rhinitis, resulting in an increased secretion of proteins. Identification of these proteins is an important step in the understanding of the pathological mechanisms in allergic diseases. DNA microarrays have recently made it possible to compare mRNA profiles of lavage fluids from healthy and diseased patients, whereas information on the protein level is still lacking. Methods Nasal lavage fluid was collected from 11 patients with symptomatic allergic rhinitis and 11 healthy volunteers. 2-dimensional gel electrophoresis was used to separate proteins in the lavage fluids. Protein spots were picked from the gels and identified using mass spectrometry and database search. Selected proteins were confirmed with western blot. Results 61 spots were identified, of which 21 were separate proteins. 6 of these proteins (psoriasin, galectin-3, alpha enolase, intersectin-2, Wnt-2B and hypothetical protein MGC33648) had not previously been described in nasal lavage fluids. The levels of psoriasin were markedly down-regulated in allergic individuals. Prolactin-inducible protein was also found to be down-regulated, whereas different fragments of albumin together with Ig gamma 2 chain c region, transthyretin and splice isoform 1 of Wnt-2B were up-regulated among the allergic patients. Conclusion The identification of proteins in nasal lavage fluid with 2-dimensional gelelectrophoresis in combination with mass spectrometry is a novel tool to profile protein expression in allergic rhinitis and it might prove useful in the hunt for new therapeutic targets or diagnostic markers for allergic diseases. Psoriasin is a potent chemotactic factor and its down-regulation during inflammation might be of importance for the outcome of the disease. PMID:16236163

  4. Comparative proteomics and difference gel electrophoresis.

    PubMed

    Minden, Jonathan

    2007-12-01

    The goal of comparative proteomics is to analyze proteome changes in response to development, disease, or environment. This is a two-step process in which proteins within cellular extracts are first fractionated to reduce sample complexity, and then the proteins are identified by mass spectrometry. Two-dimensional electrophoresis (2DE) is the long-time standard for protein separation, but it has suffered from poor reproducibility and limited sensitivity. Difference gel electrophoresis (DIGE), in which two protein samples are separately labeled with different fluorescent dyes and then co-electrophoresed on the same 2DE gel, was developed to overcome the reproducibility and sensitivity limitations. In this essay, I discuss the principles of comparative proteomics and the development of DIGE. PMID:18251249

  5. A comparative proteomic study of plasma in feline pancreatitis and pancreatic carcinoma using 2-dimensional gel electrophoresis to identify diagnostic biomarkers: A pilot study

    PubMed Central

    Meachem, Melissa D.; Snead, Elisabeth R.; Kidney, Beverly A.; Jackson, Marion L.; Dickinson, Ryan; Larson, Victoria; Simko, Elemir

    2015-01-01

    While pancreatitis is now recognized as a common ailment in cats, the diagnosis remains challenging due to discordant results and suboptimal sensitivity of ultrasound and specific feline pancreatic lipase (Spec fPL) assay. Pancreatitis also shares similar clinical features with pancreatic carcinoma, a rare but aggressive disease with a grave prognosis. The objective of this pilot study was to compare the plasma proteomes of normal healthy cats (n = 6), cats with pancreatitis (n = 6), and cats with pancreatic carcinoma (n = 6) in order to identify potential new biomarkers of feline pancreatic disease. After plasma protein separation by 2-dimensional gel electrophoresis, protein spots were detected by Coomassie Brilliant Blue G-250 staining and identified by mass spectrometry. Alpha-1-acid glycoprotein (AGP), apolipoprotein-A1 (Apo-A1), and apolipoprotein-A1 precursor (Pre Apo-A1) appeared to be differentially expressed, which suggests the presence of a systemic acute-phase response and alteration of lipid metabolism in cats with pancreatic disease. Future studies involving greater case numbers are needed in order to assess the utility of these proteins as potential biomarkers. More sensitive proteomic techniques may also be helpful in detecting significant but low-abundance proteins. PMID:26130850

  6. Sol–gel composite material characteristics caused by different dielectric constant sol–gel phases

    NASA Astrophysics Data System (ADS)

    Kimoto, Keisuke; Matsumoto, Makoto; Kaneko, Tsukasa; Kobayashi, Makiko

    2016-07-01

    Ultrasonic transducers prepared by a sol–gel composite method have been investigated in the field of nondestructive testing (NDT). Sol–gel composite materials could be ideal piezoelectric materials for ultrasonic transducer applications in the NDT field, and a new sol–gel composite with desirable characteristics has been developed. Three kinds of sol–gel composite materials composed of different dielectric constant sol–gel phases, Pb(Zr,Ti)O3 (PZT), Bi4Ti3O12 (BiT), and BaTiO3 (BT), and the same piezoelectric powder phase, PbTiO3 (PT), were fabricated and their properties were compared quantitatively. As a result, the PT/BT, sol–gel composite with the highest dielectric constant sol–gel phase showed the highest d 33 and signal strength. In addition, only PT/BT was successfully poled by room-temperature corona poling with reasonable signal strength.

  7. A New 2-Dimensional Millimeter Wave Radiation Imaging System Based on Finite Difference Regularization

    NASA Astrophysics Data System (ADS)

    Zhu, Lu; Liu, Yuanyuan; Chen, Suhua; Hu, Fei; Chen, Zhizhang (David)

    2015-04-01

    Synthetic aperture imaging radiometer (SAIR) has the potential to meet the spatial resolution requirement of passive millimeter remote sensing from space. A new two-dimensional (2-D) imaging radiometer at millimeter wave (MMW) band is described in this paper; it uses a one-dimensional (1-D) synthetic aperture digital radiometer (SADR) to obtain an image on one dimension and a rotary platform to provide a scan on the second dimension. Due to the ill-posed inverse problem of SADR, we proposed a new reconstruction algorithm based on Finite Difference (FD) regularization to improve brightness temperature images. Experimental results show that the proposed 2-D MMW radiometer can give the brightness temperature images of natural scenes and the FD regularization reconstruction algorithm is able to improve the quality of brightness temperature images.

  8. Identification and comparative proteomic study of quail and duck egg white protein using 2-dimensional gel electrophoresis and matrix-assisted laser desorption/ionization time-of-flight tandem mass spectrometry analysis

    PubMed Central

    Hu, Shan; Qiu, Ning; Liu, Yaping; Zhao, Hongyan; Gao, Dan; Song, Rui; Ma, Meihu

    2016-01-01

    A proteomic study of egg white proteins from 2 major poultry species, namely quail (Coturnix coturnix) and duck (Anas platyrhynchos), was performed with comparison to those of chicken (Gallus gallus) through 2-dimensional polyacrylamide gel electrophoresis (2-DE) analysis. By using matrix-assisted laser desorption/ionization time-of-flight tandem mass spectrometry (MALDI-TOF MS/MS), 29 protein spots representing 10 different kinds of proteins as well as 17 protein spots designating 9 proteins were successfully identified in quail and duck egg white, respectively. This report suggested a closer relationship between quail and chicken egg white proteome patterns, whereas the duck egg white protein distribution on the 2-DE map was more distinct. In duck egg white, some well-known major proteins, such as ovomucoid, clusterin, extracellular fatty acid-binding protein precursor (ex-FABP), and prostaglandin D2 synthase (PG D2 synthase), were not detected, while two major protein spots identified as “deleted in malignant brain tumors 1” protein (DMBT1) and vitellogenin-2 were found specific to duck in the corresponding range on the 2-DE gel map. These interspecies diversities may be associated with the egg white protein functions in cell defense or regulating/supporting the embryonic development to adapt to the inhabiting environment or reproduction demand during long-term evolution. The findings of this work will give insight into the advantages involved in the application on egg white proteins from various egg sources, which may present novel beneficial properties in the food industry or related to human health. PMID:26957635

  9. Identification and comparative proteomic study of quail and duck egg white protein using 2-dimensional gel electrophoresis and matrix-assisted laser desorption/ionization time-of-flight tandem mass spectrometry analysis.

    PubMed

    Hu, S; Qiu, N; Liu, Y; Zhao, H; Gao, D; Song, R; Ma, M

    2016-05-01

    A proteomic study of egg white proteins from 2 major poultry species, namely quail (Coturnix coturnix) and duck (Anas platyrhynchos), was performed with comparison to those of chicken (Gallus gallus) through 2-dimensional polyacrylamide gel electrophoresis (2-DE) analysis. By using matrix-assisted laser desorption/ionization time-of-flight tandem mass spectrometry (MALDI-TOF MS/MS), 29 protein spots representing 10 different kinds of proteins as well as 17 protein spots designating 9 proteins were successfully identified in quail and duck egg white, respectively. This report suggested a closer relationship between quail and chicken egg white proteome patterns, whereas the duck egg white protein distribution on the 2-DE map was more distinct. In duck egg white, some well-known major proteins, such as ovomucoid, clusterin, extracellular fatty acid-binding protein precursor (ex-FABP), and prostaglandin D2 synthase (PG D2 synthase), were not detected, while two major protein spots identified as "deleted in malignant brain tumors 1" protein (DMBT1) and vitellogenin-2 were found specific to duck in the corresponding range on the 2-DE gel map. These interspecies diversities may be associated with the egg white protein functions in cell defense or regulating/supporting the embryonic development to adapt to the inhabiting environment or reproduction demand during long-term evolution. The findings of this work will give insight into the advantages involved in the application on egg white proteins from various egg sources, which may present novel beneficial properties in the food industry or related to human health. PMID:26957635

  10. Are gel-derived glasses different from ordinary glasses?

    NASA Technical Reports Server (NTRS)

    Weinberg, M. C.

    1986-01-01

    A review is presented of some of the previously reported differences and similarities between comparable gel glasses (and gels) and ordinary glasses. In this regard, considerations are made with respect to such factors as structure, physical and thermal properties, and phase transformation behavior. A variety of silicate glass compositions are used for illustrative purposes. The discussion is roughly divided into two sections: low and high temperature behavior. At low temperatures one anticipates that differences between gel and conventional glasses will exist, but such dissimilarities are not expected to persist to high temperatures. However, experimental evidence is presented which indicates the perpetuation of such differences to very high temperatures. A partial resolution for this anomalous behavior is offered.

  11. Exposures of Sus scrofa to a TASER(®) conducted electrical weapon: no effects on 2-dimensional gel electrophoresis patterns of plasma proteins.

    PubMed

    Jauchem, James R; Cerna, Cesario Z; Lim, Tiffany Y; Seaman, Ronald L

    2014-12-01

    In an earlier study, we found significant changes in red-blood-cell, leukocyte, and platelet counts, and in red-blood-cell membrane proteins, following exposures of anesthetized pigs to a conducted electrical weapon. In the current study, we examined potential changes in plasma proteins [analyzed via two-dimensional gel electrophoresis (2-DGE)] following two 30 s exposures of anesthetized pigs (Sus scrofa) to a TASER (®) C2 conducted electrical weapon. Patterns of proteins, separated by 2-DGE, were consistent and reproducible between animals and between times of sampling. We determined that the blood plasma collection, handling, storage, and processing techniques we used are suitable for swine blood. There were no statistically significant changes in plasma proteins following the conducted-electrical-weapon exposures. Overall gel patterns of fibrinogen were similar to results of other studies of both pigs and humans (in control settings, not exposed to conducted electrical weapons). The lack of significant changes in plasma proteins may be added to the body of evidence regarding relative safety of TASER C2 device exposures. PMID:25319243

  12. Two-dimensional fluorescence difference gel electrophoresis for comparative proteomics profiling

    PubMed Central

    Tannu, Nilesh S; Hemby, Scott E

    2007-01-01

    Quantitative proteomics is the workhorse of the modern proteomics initiative. The gel-based and MuDPIT approaches have facilitated vital advances in the measurement of protein expression alterations in normal and disease phenotypic states. The methodological advance in two-dimensional gel electrophoresis (2DGE) has been the multiplexing fluorescent two-dimensional fluorescence difference gel electrophoresis (2D-DIGE). 2D-DIGE is based on direct labeling of lysine groups on proteins with cyanine CyDye DIGE Fluor minimal dyes before isoelectric focusing, enabling the labeling of 2–3 samples with different dyes and electrophoresis of all the samples on the same 2D gel. This capability minimizes spot pattern variability and the number of gels in an experiment while providing simple, accurate and reproducible spot matching. This protocol can be completed in 3–5 weeks depending on the sample size of the experiment and the level of expertise of the investigator. PMID:17487156

  13. Application of optical methods for dose evaluation in normoxic polyacrylamide gels irradiated at two different geometries

    NASA Astrophysics Data System (ADS)

    Adliene, D.; Jakstas, K.; Vaiciunaite, N.

    2014-03-01

    Normoxic gels are frequently used in clinical praxis for dose assessment or 3-D dose imaging in radiotherapy due to their relative simple manufacturing process under normal atmospheric conditions, spatial stability and well expressed modification feature of physical properties which is related to radiation induced polymerization of gels. In this work we have investigated radiation induced modification of the optical properties of home prepared normoxic polyacrylamide gels (nPAG) in relation to polymerization processes that occur in irradiated gels. Two irradiation geometries were used for irradiation of gel samples: broad beam irradiation geometry of teletherapy unit ROKUS-M with a 60Co source and point source irradiation geometry using 192Ir source of high dose rate afterloading brachytherapy unit MicroSelectron v2 which was inserted into gel via 6 Fr (2 mm thick) catheter. Verification of optical methods: UV-VIS spectrometry, spectrophotometry, Raman spectroscopy for dose assessment in irradiated gels has been performed. Aspects of their application for dose evaluation in gels irradiated using different geometries are discussed. Simple pixel-dose based photometry method also has been proposed and evaluated as a potential method for dose evaluation in catheter based interstitial high dose rate brachytherapy.

  14. In vitro liberation of indomethacin from chitosan gels containing microemulsion in different dissolution mediums.

    PubMed

    Starýchová, Lenka; Žabka, Marián; Špaglová, Miroslava; Čuchorová, Mária; Vitková, Mária; Čierna, Martina; Bartoníková, Kamila; Gardavská, Klára

    2014-12-01

    The objective of this research is to outline the liberation of indomethacin from different chitosan gels containing O/W microemulsion. The influence of surfactant, sodium lauryl sulfate, in two concentrations (0.5% and 0.75%, w/w) was determined in dissolution medium on the release of indomethacin, which was used as poor water-soluble model drug. Chitosan gels were prepared in four different concentrations of chitosan-1%, 1.5%, 2%, and 3% (w/w). Microemulsion enhanced the liberation of the indomethacin from chitosan gels into all dissolution mediums. Adding the surfactant into phosphate-buffered saline decreased the amount of liberated indomethacin from microemulsion, gel mixture, but increased the drug liberation from pure chitosan gels. It was detected that with the increased concentration of chitosan in the samples, the amount of indomethacin liberated (p < 0.05) also increased. A conclusion was drawn that the liberation of indomethacin from chitosan gels was influenced by increased pH of the samples. The high viscosity induced a higher release of indomethacin from 3% (w/w) chitosan hydrogel at pH 5.8 as compared with 3% (w/w) chitosan hydrogel at pH 3.8. The highest percentage of released indomethacin was determined when a mixture of microemulsion gel with higher chitosan content was used. PMID:25318853

  15. Mushroom tyrosinase inhibition activity of Aloe vera L. gel from different germplasms.

    PubMed

    Gupta, S Dutta; Masakapalli, S K

    2013-11-01

    In this study, lyophilized and methanolic extracts of aloe gel from different germplasms were evaluated for their potential to inhibit mushroom tyrosinase activity. The results showed potent inhibitory effect of Aloe vera gel extracts on L-dihydroxyphenylalanine (L-DOPA) oxidation catalyzed by tyrosinase in a dose-dependent manner. Significant differences in % inhibition of tyrosinase among the extraction methods and the germplasms were observed. The relative performance of the germplasms was evaluated with the help of posthoc multicomparison test. The methanolic extract was more effective than the lyophilized crude gel in all the germplasms. The inhibitory effect of the lyophilized gel and methanolic extract tested from five germplasms followed the order: RM > TN > S24 > OR > RJN. The germplasm RM showed the highest tyrosinase inhibition, and the maximum % inhibition noted was 26.04% and 41.18%, respectively for the lyophilized and methanolic extracts at 6 mg · mL(-1) concentration. Lineweaver-Burk plots of the different concentrations of L-DOPA in the absence and presence of lyophilized gel extract showed competitive inhibition of mushroom tyrosinase in all the germplasms. This study suggests that the germplasm RM could potentially be used for the isolation and identification of the effective tyrosinase inhibitory component, and ascertains the critical role of selecting the best source of germplasm for natural product isolation and characterization. PMID:24345502

  16. Separating DNA with different topologies by atomic force microscopy in comparison with gel electrophoresis.

    PubMed

    Jiang, Yong; Rabbi, Mahir; Mieczkowski, Piotr A; Marszalek, Piotr E

    2010-09-23

    Atomic force microscopy, which is normally used for DNA imaging to gain qualitative results, can also be used for quantitative DNA research, at a single-molecular level. Here, we evaluate the performance of AFM imaging specifically for quantifying supercoiled and relaxed plasmid DNA fractions within a mixture, and compare the results with the bulk material analysis method, gel electrophoresis. The advantages and shortcomings of both methods are discussed in detail. Gel electrophoresis is a quick and well-established quantification method. However, it requires a large amount of DNA, and needs to be carefully calibrated for even slightly different experimental conditions for accurate quantification. AFM imaging is accurate, in that single DNA molecules in different conformations can be seen and counted. When used carefully with necessary correction, both methods provide consistent results. Thus, AFM imaging can be used for DNA quantification, as an alternative to gel electrophoresis. PMID:20799746

  17. Application of denaturing gradient gel electrophoresis to detect DNA sequence differences encoding apolipoprotein E isoforms

    SciTech Connect

    Parker, S.; Angelico, M.C.; Laffel, L.; Krolewski, A.S. Harvard Medical School, Boston, MA )

    1993-04-01

    Apolipoprotein E (apoE) plays an important role in plasma lipid metabolism. Three common isoforms of this protein have been identified by the isoelectric focusing method. In this report the authors describe a new method for distinguishing these isoforms. Their method employs PCR amplification of the DNA sequence of exon 4 in the apoE gene followed by denaturing gradient gel electrophoresis (DGGE) to distinguish its different melting characteristics. Identification of the ApoE isoforms through DNA melting behavior rather than protein charge differences eliminates the problems associated with isoelectric focusing and facilitates screening for additional mutations at the apoE locus. 12 refs., 2 figs.

  18. In vitro evaluation of UV opacity potential of Aloe vera L. gel from different germplasms.

    PubMed

    Kumar, M Shyam; Datta, P K; Dutta Gupta, S

    2009-04-01

    In this study, lyophilized crude and methanolic extracts of aloe gel from different germplasms (S24, RM, TN, OR, and RJN) of Aloe vera L. were tested for their ultraviolet (UV) opacity potential. UV absorption profiles, sun protection factor (SPF), and percentage blocking of UVA and UVB were considered to test UV opacity potential. Both the extracts showed UV absorption and followed the same path in the wavelength range of 250-400 nm in all the germplasms. Methanolic extract showed a stronger absorptivity than the crude lyophilized extract. Among the tested germplasms, maximum UV opacity property with a SPF of 9.97% and 79.12% UVB blocking was obtained with RJN, whereas a poor response was evident in TN with a SPF of 1.37% and 28.5% UVB blocking at 4 mg/ml methanolic extract. To our knowledge the present work for the first time documents UV opacity properties of A. vera L. gel and opens up new vistas in Aloe gel characterization. PMID:19034609

  19. Selectivity differences between sol-gel coated and immobilized liquid film open-tubular columns for gas chromatography.

    PubMed

    Kiridena, Waruna; Poole, Colin F; Koziol, Wiadyslaw W

    2002-12-01

    The solvation parameter model is used to determine the system constants for two sol-gel coated open-tubular columns at five equally spaced temperatures in the range 60-140 degrees C. Differences in the system constants as a function of temperature are used to determine the affect of sol-gel structure on the selectivity of SolGel-l and SolGel-Wax columns compared with conventionally coated and immobilized poly(dimethylsiloxane) and poly(ethylene glycol) stationary phases. The sol-gel columns should be suitable for similar separations to those presently performed on conventional immobilized liquid film columns of the same type but selectivity differences for polar compounds, which depend on temperature, should be anticipated. PMID:12537368

  20. Human blood platelet membrane glycoproteins. Resolution in different polyacrylamide gel electrophoretic systems.

    PubMed

    Jenkins, C S; Ali-Briggs, E F; Zonneveld, G T; Sturk, A; Clemetson, K J

    1980-02-29

    The separation of the major platelet membrane glycoproteins of normal subjects and subjects with well defined platelet membrane glycoprotein abnormalities have been examined using four different polyacrylamide gel electrophoretic techniques (continuous and discontinuous). The mobilities of the resolved glycoprotein bands have been correlated with the glycoprotein nomenclature proposed for the conventional sodium dodecyl sulphate-phosphate buffer system. Since the glycoprotein distribution varies depending on the system used, the merits of each method should be considered before application to a specific problem. PMID:6768152

  1. Anisotropic 2-dimensional Robin Hood model

    NASA Astrophysics Data System (ADS)

    Buldyrev, Sergey; Cwilich, Gabriel; Zypman, Fredy

    2009-03-01

    We have considered the Robin Hood model introduced by Zaitsev[1] to discuss flux creep and depinning of interfaces in a two dimensional system. Although the model has been studied extensively analytically in 1-d [2], its scaling laws have been verified numerically only in that case. Recent work suggest that its properties might be important to understand surface friction[3], where its 2-dimensional properties are important. We show that in the 2-dimensional case scaling laws can be found provided one considers carefully the anisotropy of the model, and different ways of introducing that anisotropy lead to different exponents and scaling laws, in analogy with directed percolation, with which this model is closely related[4]. We show that breaking the rotational symmetry between the x and y axes does not change the scaling properties of the model, but the introduction of a preferential direction of accretion (``robbing'' in the language of the model) leads to new scaling exponents. [1] S.I.Zaitsev, Physica A189, 411 (1992) [2] M. Pacuzki, S. Maslov and P.Bak, Phys Rev. E53, 414 (1996) [3] S. Buldyrev, J. Ferrante and F. Zypman Phys. Rev E64, 066110 (2006) [4] G. Odor, Rev. Mod. Phys. 76, 663 (2004) .

  2. Two-dimensional difference gel electrophoresis (DIGE) analysis of sera from visceral leishmaniasis patients

    PubMed Central

    2011-01-01

    Introduction Visceral leishmaniasis is a parasitic infection caused by Lesihmania donovani complex and transmitted by the bite of the phlebotomine sand fly. It is an endemic disease in many developing countries with more than 90% of the cases occurring in Bangladesh, India, Nepal, Sudan, Ethiopia and Brazil. The disease is fatal if untreated. The disease is conventionally diagnosed by demonstrating the intracellular parasite in bone marrow or splenic aspirates. This study was carried out to discover differentially expressed proteins which could be potential biomarkers. Methods Sera from six visceral leishmaniasis patients and six healthy controls were depleted of high abundant proteins by immunodepletion. The depleted sera were compared by 2-D Difference in gel electrophoresis (DIGE). Differentially expressed proteins were identified the by tandem mass spectrometry. Three of the identified proteins were further validated by western blotting. Results This is the first report of serum proteomics study using quantitative Difference in gel electrophoresis (DIGE) in visceral leishmaniasis. We identified alpha-1-acidglycoprotein and C1 inhibitor as up regulated and transthyretin, retinol binding protein and apolipoprotein A-I as down regulated proteins in visceral leishmaniasis sera in comparison with healthy controls. Western blot validation of C1 inhibitor, transthyretin and apolipoprotein A-I in a larger cohort (n = 29) confirmed significant difference in the expression levels (p < 0.05). Conclusions In conclusion, DIGE based proteomic analysis showed that several proteins are differentially expressed in the sera of visceral leishmaniasis. The five proteins identified here have potential, either independently or in combination, as prognostic biomarkers. PMID:21906353

  3. Different additives to enhance the gelation of surimi gel with reduced sodium content.

    PubMed

    Cando, Deysi; Herranz, Beatriz; Borderías, A Javier; Moreno, Helena M

    2016-04-01

    This study tested the effect of adding tetra-sodium pyrophosphate, cystine and lysine as surimi gelation enhancers (Alaska Pollock) in order to reduce the sodium content of gels up to 0.3%. These gels were compared with others that contained 3% NaCl content (the amount typically used for surimi processing). To induce protein gelation, gels were first heated and then set at 5 °C/24 h. Once the physicochemical and rheological properties of the gels were determined, cystine and lysine were found to be the most effective additives improving the characteristics of low NaCl surimi gels. The action of these additives is mainly based on the induction of myofibrillar protein unfolding thus facilitating the formation of the types of bonds needed to establish an appropriate network. It was found that a setting period was needed for gel processing to maximize the effect of the additives. PMID:26593556

  4. Differential proteomic profiles from distinct Toxoplasma gondii strains revealed by 2D-difference gel electrophoresis.

    PubMed

    Zhou, Huaiyu; Zhao, Qunli; Das Singla, Lachhman; Min, Juan; He, Shenyi; Cong, Hua; Li, Ying; Su, Chunlei

    2013-04-01

    Toxoplasma gondii is an obligate intracellular protozoan that infects mammals and birds. Human infection during pregnancy may cause severe damage to the fetus. Reactivation of latent infection in immunocompromised patients can cause life-threatening encephalitis. T. gondii strains are highly diverse but only a few lineages (Type I, II and III) are widely spread. In mouse model, Type I strains are highly virulent, whereas Type II and III strains are intermediately or non virulent. It is not clear how much quantitative difference exists in proteomic profiles among these distinct T. gondii lineages. In the present study, the proteomic profiles of T. gondii tachyzoites from these lineages were investigated by two dimensional fluorescence difference gel electrophoresis (2D-DIGE) and mass spectrometry (MS) technologies. A total of 2321 protein spots were detected. Overall, the GT1 strain of Type I lineage and the strain PTG of Type II lineage have highly similar proteomic profiles and both are different from that of the CTG strain of Type III lineage. Eighty-four protein spots were differentially expressed by greater than 1.5-fold in relative abundance and 10 of them were identified to 7 T. gondii proteins in existing database. Investigation of the quantitative differences in proteomics among distinct T. gondii strains should facilitate our understanding of difference in biological processes and pathogenesis of distinct T. gondii genotypes, which will provide basic information to determine treatment regimen for different manifestation of toxoplasmosis. PMID:23340323

  5. Quantitative analysis of plasma membrane proteome using two-dimensional difference gel electrophoresis.

    PubMed

    Tang, Wenqiang

    2012-01-01

    The plasma membrane (PM) controls cell's exchange of both material and information with the outside environment, and PM-associated proteins play key roles in cellular regulation. Numerous cell surface receptors allow cells to perceive and respond to various signals from neighbor cells, pathogens, or the environment; large numbers of transporter and channel proteins control material uptake or release. Quantitative proteomic analysis of PM-associated proteins can identify key proteins involved in signal transduction and cellular regulation. Here, we describe a protocol for quantitative proteomic analysis of PM proteins using two-dimensional difference gel electrophoresis. The protocol has been successfully employed to identify new components of the brassinosteroid signaling pathway, and should also be applicable to the studies of other plant signal transduction pathways and regulatory mechanisms. PMID:22576086

  6. Comparative analyses of amplicon migration behavior in differing denaturing gradient gel electrophoresis (DGGE) systems

    NASA Astrophysics Data System (ADS)

    Thornhill, D. J.; Kemp, D. W.; Sampayo, E. M.; Schmidt, G. W.

    2010-03-01

    Denaturing gradient gel electrophoresis (DGGE) is commonly utilized to identify and quantify microbial diversity, but the conditions required for different electrophoretic systems to yield equivalent results and optimal resolution have not been assessed. Herein, the influence of different DGGE system configuration parameters on microbial diversity estimates was tested using Symbiodinium, a group of marine eukaryotic microbes that are important constituents of coral reef ecosystems. To accomplish this, bacterial clone libraries were constructed and sequenced from cultured isolates of Symbiodinium for the ribosomal DNA internal transcribed spacer 2 (ITS2) region. From these, 15 clones were subjected to PCR with a GC clamped primer set for DGGE analyses. Migration behaviors of the resulting amplicons were analyzed using a range of conditions, including variation in the composition of the denaturing gradient, electrophoresis time, and applied voltage. All tests were conducted in parallel on two commercial DGGE systems, a C.B.S. Scientific DGGE-2001, and the Bio-Rad DCode system. In this context, identical nucleotide fragments exhibited differing migration behaviors depending on the model of apparatus utilized, with fragments denaturing at a lower gradient concentration and applied voltage on the Bio-Rad DCode system than on the C.B.S. Scientific DGGE-2001 system. Although equivalent PCR-DGGE profiles could be achieved with both brands of DGGE system, the composition of the denaturing gradient and application of electrophoresis time × voltage must be appropriately optimized to achieve congruent results across platforms.

  7. SILICA GEL BEHAVIOR UNDER DIFFERENT EGS CHEMICAL AND THERMAL CONDITIONS: AN EXPERIMENTAL STUDY

    SciTech Connect

    Hunt, J D; Ezzedine, S M; Bourcier, W; Roberts, S

    2012-01-19

    Fractures and fracture networks are the principal pathways for migration of water and contaminants in groundwater systems, fluids in enhanced geothermal systems (EGS), oil and gas in petroleum reservoirs, carbon dioxide leakage from geological carbon sequestration, and radioactive and toxic industrial wastes from underground storage repositories. When dealing with EGS fracture networks, there are several major issues to consider, e.g., the minimization of hydraulic short circuits and losses of injected geothermal fluid to the surrounding formation, which in turn maximize heat extraction and economic production. Gel deployments to direct and control fluid flow have been extensively and successfully used in the oil industry for enhanced oil recovery. However, to the best of our knowledge, gels have not been applied to EGS to enhance heat extraction. In-situ gelling systems can either be organic or inorganic. Organic polymer gels are generally not thermostable to the typical temperatures of EGS systems. Inorganic gels, such as colloidal silica gels, however, may be ideal blocking agents for EGS systems if suitable gelation times can be achieved. In the current study, we explore colloidal silica gelation times and rheology as a function of SiO{sub 2} concentration, pH, salt concentration, and temperature, with preliminary results in the two-phase field above 100 C. Results at 25 C show that it may be possible to choose formulations that will gel in a reasonable and predictable amount of time at the temperatures of EGS systems.

  8. Transformations in Sol-Gel Synthesized Nanoscale Hydroxyapatite Calcined Under Different Temperatures and Time Conditions

    NASA Astrophysics Data System (ADS)

    Seema, Kapoor; Uma, Batra; Suchita, Kohli

    2012-08-01

    Nano-hydroxyapatite (HAP) has been synthesized using sol-gel technique. Calcium nitrate tetrahydrate and potassium dihydrogen phosphate were used as precursors for calcium and phosphorus, respectively. A detailed study on its transformation during calcination at two crucial temperatures has been undertaken. The synthesized nanopowder was calcined at 600 and 800 °C for different time periods. The results revealed that the obtained powders after calcining at 600 and 800 °C are composed of hydroxyapatite nanoparticles. The nano-HAP powders were characterized by x-ray diffraction (XRD), transmission electron microscopy (TEM), Fourier transform infrared spectroscopy, thermal gravimetric analysis (TGA), and BET surface area analyzer techniques. The results indicate that crystallite size as well as crystallinity of synthesized HAP nanopowders increase with increase in calcination temperature as well as calcination time, but the effect of temperature is more prominent as compared to that of calcination time. TEM micrograph revealed the presence of majority of HAP powder particles as agglomerates and a few as individual particles. It also revealed that HAP produced after sintering at 600 °C is 26-45 nm in size, which is well in agreement with the crystallite size calculated using XRD data. TGA study showed the thermal stability of the as-synthesized nano-HAP powder. The BET surface area decreased with increase in calcination temperature and time. The results clearly demonstrate the significant role of calcination parameters on the characteristics of nano-HAP powders.

  9. Difference gel electrophoresis identifies differentially expressed proteins in endoscopically collected pancreatic fluid.

    PubMed

    Paulo, Joao A; Lee, Linda S; Banks, Peter A; Steen, Hanno; Conwell, Darwin L

    2011-08-01

    Alterations in the pancreatic fluid proteome of individuals with chronic pancreatitis (CP) may offer insights into the development and progression of the disease. The endoscopic pancreatic function test (ePFT) can safely collect large volumes of pancreatic fluid that are potentially amenable to proteomic analyses using difference gel electrophoresis (DIGE) coupled with liquid chromatography-tandem mass spectrometry (LC-MS/MS). Pancreatic fluid was collected endoscopically using the ePFT method following secretin stimulation from three individuals with severe CP and three chronic abdominal pain (CAP) controls. The fluid was processed to minimize protein degradation and the protein profiles of each cohort, as determined by DIGE and LC-MS/MS, were compared. This DIGE-LC-MS/MS analysis reveals proteins that are differentially expressed in CP compared with CAP controls. Proteins with higher abundance in pancreatic fluid from CP individuals include: actin, desmoplankin, α-1-antitrypsin, SNC73, and serotransferrin. Those of relatively lower abundance include carboxypeptidase B, lipase, α-1-antichymotrypsin, α-2-macroglobulin, actin-related protein (Arp2/3) subunit 4, glyceraldehyde-3-phosphate dehydrogenase, and protein disulfide isomerase. Endoscopic collection (ePFT) in tandem with DIGE-LC-MS/MS is a suitable approach for pancreatic fluid proteome analysis; however, further optimization of our protocol, as outlined herein, may improve proteome coverage in future analyses. PMID:21792986

  10. Identification of diabetes- and obesity-associated proteomic changes in human spermatozoa by difference gel electrophoresis.

    PubMed

    Kriegel, Thomas M; Heidenreich, Falk; Kettner, Karina; Pursche, Theresia; Hoflack, Bernard; Grunewald, Sonja; Poenicke, Kerstin; Glander, Hans-Juergen; Paasch, Uwe

    2009-11-01

    Difference gel electrophoresis (DIGE) of fluorescently labelled human sperm proteins was used to identify diabetes- and obesity-associated changes of the sperm proteome. Semen samples from type 1 diabetics, non-diabetic obese individuals and a reference group of clinically healthy fertile donors were evaluated in a comparative study. The adaptation of a general protein extraction procedure to the solubilization of proteins from isolated progressively motile human spermatozoa resulted in the detection of approximately 2700 fluorescent protein spots in the DIGE images. Comparison of the patients' sperm proteomes with those of the reference group allowed the identification of 20 spots containing proteins that were present in the sperm lysates at significantly increased or decreased concentrations. In detail, eight of these spots were apparently related to type 1 diabetes while 12 spots were apparently related to obesity. Tryptic digestion of the spot proteins and mass spectrometric analysis of the corresponding peptides identified seven sperm proteins apparently associated with type 1 diabetes and nine sperm proteins apparently associated with obesity, three of which existing in multiple molecular forms. The established proteomic approach is expected to function as a non-invasive experimental tool in the diagnosis of male infertility and in monitoring any fertility-restoring therapy. PMID:20021714

  11. Evaluation of the Effects of Injection Velocity and Different Gel Concentrations on Nanoparticles in Hyperthermia Therapy

    PubMed Central

    Javidi, M; Heydari, M; Karimi, A; Haghpanahi, M; Navidbakhsh, M; Razmkon, A

    2014-01-01

    Background and objective: In magnetic fluid hyperthermia therapy, controlling temperature elevation and optimizing heat generation is an immense challenge in practice. The resultant heating configuration by magnetic fluid in the tumor is closely related to the dispersion of particles, frequency and intensity of magnetic field, and biological tissue properties. Methods: In this study, to solve heat transfer equation, we used COMSOL Multiphysics and to verify the model, an experimental setup has been used.  To show the accuracy of the model, simulations have been compared with experimental results. In the second part, by using experimental results of nanoparticles distribution inside Agarose gel according to various gel concentration, 0.5%, 1%, 2%, and 4%, as well as the injection velocity, 4 µL/min, 10 µL/min, 20 µL/min, and 40 µL/min, for 0.3 cc magnetite fluid, power dissipation inside gel has been calculated and used for temperature prediction inside of the gel. Results: The Outcomes demonstrated that by increasing the flow rate injection at determined concentrations, mean temperature drops. In addition, 2% concentration has a higher mean temperature than semi spherical nanoparticles distribution. Conclusion: The results may have implications for treatment of the tumor and any kind of cancer diseases. PMID:25599061

  12. Catalytic activity of acid and base with different concentration on sol-gel kinetics of silica by ultrasonic method.

    PubMed

    Das, R K; Das, M

    2015-09-01

    The effects of both acid (acetic acid) and base (ammonia) catalysts in varying on the sol-gel synthesis of SiO2 nanoparticles using tetra ethyl ortho silicate (TEOS) as a precursor was determined by ultrasonic method. The ultrasonic velocity was received by pulsar receiver. The ultrasonic velocity in the sol and the parameter ΔT (time difference between the original pulse and first back wall echo of the sol) was varied with time of gelation. The graphs of ln[ln1/ΔT] vs ln(t), indicate two region - nonlinear region and a linear region. The time corresponds to the point at which the non-linear region change to linear region is considered as gel time for the respective solutions. Gelation time is found to be dependent on the concentration and types of catalyst and is found from the graphs based on Avrami equation. The rate of condensation is found to be faster for base catalyst. The gelation process was also characterized by viscosity measurement. Normal sol-gel process was also carried out along with the ultrasonic one to compare the effectiveness of ultrasonic. The silica gel was calcined and the powdered sample was characterized with scanning electron microscopy, energy dispersive spectra, X-ray diffractogram, and FTIR spectroscopy. PMID:25600993

  13. Shelf-life and colour change kinetics of Aloe vera gel powder under accelerated storage in three different packaging materials.

    PubMed

    Ramachandra, C T; Rao, P Srinivasa

    2013-08-01

    Aloe vera gel powder was produced through dehumidified air drying of Aloe vere gel at optimized conditions of temperature, relative humidity and air velocity of 64 °C, 18% and 0.8 m.s(-1), respectively. The powder was packed in three different packaging materials viz., laminated aluminum foil (AF), biaxially oriented polypropylene (BOPP) and polypropylene (PP). The shelf-life of the powder was predicted on the basis of free flowness of product under accelerated storage condition (38 ± 1 °C, 90 ± 1% relative humidity) and was calculated to be 33.87, 42.58 and 51.05 days in BOPP, PP and AF, respectively. The storage stability of powder in terms of colour change was studied. The magnitude of colour change of Aloe vera gel powder during storage suggests that AF was better than BOPP and PP. The colour change of powder during storage followed first order reaction kinetics with a rate constant of 0.0444 per day for AF, 0.075 per day for BOPP and 0.0498 per day for PP. PMID:24425977

  14. Comparison of Different Protein Extraction Methods for Gel-Based Proteomic Analysis of Ganoderma spp.

    PubMed

    Al-Obaidi, Jameel R; Saidi, Noor Baity; Usuldin, Siti Rokhiyah Ahmad; Hussin, Siti Nahdatul Isnaini Said; Yusoff, Noornabeela Md; Idris, Abu Seman

    2016-04-01

    Ganoderma species are a group of fungi that have the ability to degrade lignin polymers and cause severe diseases such as stem and root rot and can infect economically important plants and perennial crops such as oil palm, especially in tropical countries such as Malaysia. Unfortunately, very little is known about the complex interplay between oil palm and Ganoderma in the pathogenesis of the diseases. Proteomic technologies are simple yet powerful tools in comparing protein profile and have been widely used to study plant-fungus interaction. A critical step to perform a good proteome research is to establish a method that gives the best quality and a wide coverage of total proteins. Despite the availability of various protein extraction protocols from pathogenic fungi in the literature, no single extraction method was found suitable for all types of pathogenic fungi. To develop an optimized protein extraction protocol for 2-DE gel analysis of Ganoderma spp., three previously reported protein extraction protocols were compared: trichloroacetic acid, sucrose and phenol/ammonium acetate in methanol. The third method was found to give the most reproducible gels and highest protein concentration. Using the later method, a total of 10 protein spots (5 from each species) were successfully identified. Hence, the results from this study propose phenol/ammonium acetate in methanol as the most effective protein extraction method for 2-DE proteomic studies of Ganoderma spp. PMID:27016942

  15. Gender differences in responses in Gammarus pulex exposed to BDE-47: A gel-free proteomic approach.

    PubMed

    Gismondi, E; Mazzucchelli, G; De Pauw, E; Joaquim-Justo, C; Thomé, J P

    2015-12-01

    Very few ecotoxicological studies have considered differences in toxic effects on male and female organisms. Here, we investigated protein expression differences in caeca of Gammarus pulex males and females under control conditions (unexposed) and after 96h exposure to BDE-47. Using gel-free proteomic analysis, we have identified 45 proteins, of which 25 were significantly differently expressed according to sex and/or BDE-47 exposure. These proteins were involved in several biological processes such as energy metabolism, chaperone proteins, or transcription/translation. In unexposed amphipods, 11 proteins were significantly over-expressed in females, and 6 proteins were over-expressed in males. Under BDE-47 stress, 7 proteins were differently impacted according to sex. For example, catalase was over-expressed in exposed females and under-expressed in exposed males, as compared to respective controls. Conversely, proteins involved in energy metabolism were up-regulated in males and down-regulated in females. Our proteomic study showed differences in responses of males and females to BDE-47 exposure, emphasizing that sex is a confounding factor in ecotoxicological assessment. However, due to the limited information existing in databases on Gammarids, it was difficult to define a BDE-47 mechanism of action. The gel-free proteomic seems to be a promising method to develop in future ecotoxicological studies and thus, to improve our understanding of the mechanism of action of xenobiotics. PMID:26256056

  16. Molecular structural differences between low methoxy pectins induced by pectin methyl esterase II: effects on texture, release and perception of aroma in gels of similar modulus of elasticity.

    PubMed

    Kim, Yang; Kim, Young-Suk; Yoo, Sang-Ho; Kim, Kwang-Ok

    2014-02-15

    Six low-methoxy pectins with different degrees of methylesterification and amidation, and molecular weights were used to prepare gels with similar moduli of elasticity by varying the concentrations of pectin and calcium phosphate. Five aroma compounds were added to the gels and their sensory textural properties, release and perception of aromas were investigated. Sensory firmness, springiness, adhesiveness, chewiness and cohesiveness differed according to the gel type, even though the moduli of elasticity were not significantly different (p<0.05). Release and perception of aromas also displayed significant difference according to the gel type (p<0.05). Low-methoxy amidated pectin exhibited the lowest release and perception for all the aroma compounds, while pectin-methylesterase-treated pectin gels exhibited relatively higher aroma release and perception. These results showed that the structural properties of pectins and gelling factors that increase the non-polar character of the gel matrices could decrease the release and perception of aromas in pectin gel systems. PMID:24128568

  17. Preparation of nickel oxide thin films at different annealing temperature by sol-gel spin coating method

    NASA Astrophysics Data System (ADS)

    Abdullah, M. A. R.; Mamat, M. H.; Ismail, A. S.; Malek, M. F.; Alrokayan, Salman A. H.; Khan, Haseeb A.; Rusop, M.

    2016-07-01

    Preparation of NiO thin films at different annealing temperature by sol-gel method was conducted to synthesize the quality of the surface thin films. The effects of annealing temperature on the surface topology were systematically investigated. Our studies confirmed that the surface roughness of the thin films was increased whenever annealing temperature was increase. NiO thin films morphology structure analysis was confirmed by field emission scanning electron microscope. Surface roughness of the thin films was investigated by atomic force microscopy.

  18. Microheterogeneous forms of radioiodinated bovine thyrotropin: discrimination of different receptor-active components by gel permeation chromatography

    SciTech Connect

    Stanton, P.G.; Hearn, M.T.

    1986-01-01

    The products of the radioiodination and subsequent receptor adsorption of bovine TSH (bTSH) radiolabeled by the lactoperoxidase method have been further investigated. After receptor adsorption, (125I)bTSH was resolved by gel permeation chromatography on Sephadex G-100 (superfine) under low ionic strength conditions into three peaks of radioactivity (tracers 2a, 2b, and 2c, respectively). Sodium dodecyl sulfate-polyacrylamide gel electrophoresis under nonreducing conditions demonstrated that each tracer component was radiolabeled on both the alpha- and beta-subunits. Analysis of the three tracers by TSH radioreceptor assay (under different radioreceptor assay conditions) showed that tracers 2b and 2c exhibited saturable rebinding to crude thyroid membranes containing functional TSH receptors. However, tracer 2c exhibited a maximum binding 2-fold greater than tracer 2b. This difference has been attributed to the abundance of an apparently low affinity binding component in tracer 2c. Rechromatography of tracers 2b and 2c on Sephadex G-100 (superfine) under high ionic strength conditions yielded tracer profiles that were coincident, demonstrating that the initial separation under low ionic strength conditions was not based on differences in molecular volume. The data indicate that radioiodination of highly purified bTSH yields multiple tracer components. Further, receptor adsorption, commonly used to purify freshly iodinated bTSH before radioreceptor assay, purifies at least two species of receptor-active (125I) bTSH.

  19. (1+2)-dimensional strongly nonlocal solitons

    SciTech Connect

    Ouyang Shigen; Guo Qi

    2007-11-15

    Approximate solutions of (1+2)-dimensional strongly nonlocal solitons (SNSs) are presented. It is shown that the power of a SNS in a nematic liquid crystal is in direct proportion to the second power of the degree of nonlocality, the power of a SNS in a nonlocal medium with a logarithmic nonlocal response is in inverse proportion to the second power of its beamwidth, and the power of a SNS in a nonlocal medium with an sth-power decay nonlocal response is in direct proportion to the (s+2)th power of the degree of nonlocality.

  20. Comparison of spectroscopic and lasing properties of different types of sol-gel glass matrices containing Rh-6G.

    PubMed

    Deshpande, Aparna V; Rane, Jayraj R; Jathar, Laxman V

    2009-11-01

    Rhodamine-6G (Rh-6G) is embedded in sol-gel glass samples which have been prepared by three different methods namely: 1) using HCl as catalyst and glycerol as Drying Control Chemical Additive (DCCA), 2) using HCl as catalyst at 60 degrees C and drying at room temperature and 3) using HCl as catalyst at 60 degrees C and heated at 600 degrees C for 3 h. Comparative studies of spectroscopic and lasing properties of the three types of Rh-6G containing samples were carried out with the lapse of time upto 8 months. Photostability of Rh-6G containing sol-gel samples is measured in terms of half life under Nitrogen laser pumping as number of pulses of N2 laser necessary to reduce the dye laser intensity to 50% of the original value and value is 7500 pulses at 1.67 Hz rate. The best performance of Rh-6G, as far as its spectroscopic and lasing properties are concerned was found in third type of host matrices using HCl as catalyst at 60 degrees C and heated at 600 degrees C for 3 h. PMID:19562470

  1. Modification of Different Zirconium Propoxide Precursors by Diethanolamine. Is There a Shelf Stability Issue for Sol-Gel Applications?

    PubMed Central

    Spijksma, Gerald I.; Blank, Dave H. A.; Bouwmeester, Henny J. M.; Kessler, Vadim G.

    2009-01-01

    Modification of different zirconium propoxide precursors with H2dea was investigated by characterization of the isolated modified species. Upon modification of zirconium n-propoxide and [Zr(OnPr)(OiPr)3(iPrOH)]2 with ½ a mol equivalent of H2dea the complexes [Zr2(OnPr)6(OCH2CH2)2NH]2 (1) and [Zr2(OnPr)2(OiPr)4(OCH2CH2)2NH]2 (2) were obtained. However, 1H-NMR studies of these tetranuclear compounds showed that these are not time-stable either in solution or solid form. The effect of this time instability on material properties is demonstrated by light scattering and TEM experiments. Modification of zirconium isopropoxide with either ½ or 1 equivalent mol of H2dea results in formation of the trinuclear complex, Zr{η3μ2-NH(C2H4O)2}3[Zr(OiPr)3]2(iPrOH)2 (3) countering a unique nona-coordinated central zirconium atom. This complex 3 is one of the first modified zirconium propoxide precursors shown to be stable in solution for long periods of time. The particle size and morphology of the products of sol-gel synthesis are strongly dependent on the time factor and eventual heat treatment of the precursor solution. Reproducible sol-gel synthesis requires the use of solution stable precursors. PMID:20087472

  2. Investigation of the chemical origin and evidential value of differences in the SERS spectra of blue gel inks.

    PubMed

    Ho, Yen Cheng; Lee, Wendy W Y; Bell, Steven E J

    2016-08-15

    Highly swellable polymer films doped with Ag nanoparticle aggregates (poly-SERS films) have been used to record very high signal : noise ratio, reproducible surface-enhanced (resonance) Raman (SER(R)S) spectra of in situ dried ink lines and their constituent dyes using both 633 and 785 nm excitation. These allowed the chemical origins of differences in the SERRS spectra of different inks to be determined. Initial investigation of pure samples of the 10 most common blue dyes showed that the dyes which had very similar chemical structures such as Patent Blue V and Patent Blue VF (which differ only by a single OH group) gave SERRS spectra in which the only indications that the dye structure had been changed were small differences in peak positions or relative intensities of the bands. SERRS studies of 13 gel pen inks were consistent with this observation. In some cases inks from different types of pens could be distinguished even though they were dominated by a single dye such as Victoria Blue B (Zebra Surari) or Victoria Blue BO (Pilot Acroball) because their predominant dye did not appear in other inks. Conversely, identical spectra were also recorded from different types of pens (Pilot G7, Zebra Z-grip) because they all had the same dominant Brilliant Blue G dye. Finally, some of the inks contained mixtures of dyes which could be separated by TLC and removed from the plate before being analysed with the same poly-SERS films. For example, the Pentel EnerGel ink pen was found to give TLC spots corresponding to Erioglaucine and Brilliant Blue G. Overall, this study has shown that the spectral differences between different inks which are based on chemically similar, but nonetheless distinct dyes, are extremely small, so very close matches between SERRS spectra are required for confident identification. Poly-SERS substrates can routinely provide the very stringent reproducibility and sensitivity levels required. This, coupled with the awareness of the reasons

  3. Synthesis of nanostructured sol gel ITO films at different temperatures and study of their absorption and photoluminescence properties

    NASA Astrophysics Data System (ADS)

    Kundu, Susmita; Biswas, Prasanta K.

    2008-10-01

    Nanostructured indium tin oxide (ITO) films were deposited on silica glass by sol-gel dipping method from salt derived PVA based aqueous precursor. The films were cured at 250 °C, 350 °C, 450 °C, 600 °C, 700 °C and 900 °C and characterized by XRD, SEM, AFM techniques to observe heating effect on nanostructured feature. Nanocluster sizes were determined by TEM study. Different crystal phases of ITO were existed in the temperature range 250-900 °C. Quantum confinement behavior of the nanoclusters was observed for their size being near Bohr radius. Absorption, band gap and photoluminescence behavior of the nanstructured ITO films supported excitonic transitions due to the formation of electron hole pair generated by interaction of electromagnetic radiation.

  4. Modification of different zirconium propoxide precursors by diethanolamine. Is there a shelf stability issue for sol-gel applications?

    PubMed

    Spijksma, Gerald I; Blank, Dave H A; Bouwmeester, Henny J M; Kessler, Vadim G

    2009-11-01

    Modification of different zirconium propoxide precursors with H(2)dea was investigated by characterization of the isolated modified species. Upon modification of zirconium n-propoxide and [Zr(O(n)Pr)(O(i)Pr)(3)((i)PrOH)](2) with (1/2) a mol equivalent of H(2)dea the complexes [Zr(2)(O(n)Pr)(6)(OCH(2)CH(2))(2)NH](2) (1) and [Zr(2)(O(n)Pr)(2)(O(i)Pr)(4)(OCH(2)CH(2))(2)NH](2) (2) were obtained. However, (1)H-NMR studies of these tetranuclear compounds showed that these are not time-stable either in solution or solid form. The effect of this time instability on material properties is demonstrated by light scattering and TEM experiments. Modification of zirconium isopropoxide with either (1/2) or 1 equivalent mol of H(2)dea results in formation of the trinuclear complex, Zr{eta(3)mu(2)-NH(C(2)H(4)O)(2)}(3)[Zr(O(i)Pr)(3)](2)(iPrOH)(2) (3) countering a unique nona-coordinated central zirconium atom. This complex 3 is one of the first modified zirconium propoxide precursors shown to be stable in solution for long periods of time. The particle size and morphology of the products of sol-gel synthesis are strongly dependent on the time factor and eventual heat treatment of the precursor solution. Reproducible sol-gel synthesis requires the use of solution stable precursors. PMID:20087472

  5. Tongue Pressure Modulation for Initial Gel Consistency in a Different Oral Strategy

    PubMed Central

    Yokoyama, Sumiko; Hori, Kazuhiro; Tamine, Ken-ichi; Fujiwara, Shigehiro; Inoue, Makoto; Maeda, Yoshinobu; Funami, Takahiro; Ishihara, Sayaka; Ono, Takahiro

    2014-01-01

    Background In the recent hyper-aged societies of developed countries, the market for soft diets for patients with dysphagia has been growing and numerous jelly-type foods have become available. However, interrelationships between the biomechanics of oral strategies and jelly texture remain unclear. The present study investigated the influence of the initial consistency of jelly on tongue motor kinetics in different oral strategies by measuring tongue pressure against the hard palate. Methods Jellies created as a mixture of deacylated gellan gum and psyllium seed gum with different initial consistencies (hard, medium or soft) were prepared as test foods. Tongue pressure production while ingesting 5 ml of jelly using different oral strategies (Squeezing or Mastication) was recorded in eight healthy volunteers using an ultra-thin sensor sheet system. Maximal magnitude, duration and total integrated values (tongue work) of tongue pressure for size reduction and swallowing in each strategy were compared among initial consistencies of jelly, and between Squeezing and Mastication. Results In Squeezing, the tongue performed more work for size reduction with increasing initial consistency of jelly by modulating both the magnitude and duration of tongue pressure over a wide area of hard palate, but tongue work for swallowing increased at the posterior-median and circumferential parts by modulating only the magnitude of tongue pressure. Conversely, in Mastication, the tongue performed more work for size reduction with increasing initial consistency of jelly by modulating both magnitude and duration of tongue pressure mainly at the posterior part of the hard palate, but tongue work as well as other tongue pressure parameters for swallowing showed no differences by type of jelly. Conclusions These results reveal fine modulations in tongue-palate contact according to the initial consistency of jelly and oral strategies. PMID:24643054

  6. Numerical Non-Equilibrium and Smoothing of Solutions in The Difference Method for Plane 2-Dimensional Adhesive Joints / Nierównowaga Numeryczna i Wygładzanie Rozwiazań w Metodzie Różnicowej Dla Dwuwymiarowych Połączeń Klejowych

    NASA Astrophysics Data System (ADS)

    Rapp, Piotr

    2016-03-01

    The subject of the paper is related to problems with numerical errors in the finite difference method used to solve equations of the theory of elasticity describing 2- dimensional adhesive joints in the plane stress state. Adhesive joints are described in terms of displacements by four elliptic partial differential equations of the second order with static and kinematic boundary conditions. If adhesive joint is constrained as a statically determinate body and is loaded by a self-equilibrated loading, the finite difference solution is sensitive to kinematic boundary conditions. Displacements computed at the constraints are not exactly zero. Thus, the solution features a numerical error as if the adhesive joint was not in equilibrium. Herein this phenomenon is called numerical non-equilibrium. The disturbances in displacements and stress distributions can be decreased or eliminated by a correction of loading acting on the adhesive joint or by smoothing of solutions based on Dirichlet boundary value problem.

  7. Electrochemical characterization for lithium vanadium phosphate with different calcination temperatures prepared by the sol–gel method

    SciTech Connect

    Liu, Yongchao; Wang, Shengping; Tao, Du; Dai, Yu; Yu, Jingxian

    2015-09-15

    Li{sub 3}V{sub 2}(PO{sub 4}){sub 3}/C (LVP/C) composite materials were synthesized via a sol–gel method with oxalic acid as the chelating agent and polyethylene glycol (PEG) as the supplementary carbon source. The oxalic acid and PEG serve as double carbon sources. This study focused on the effect of different calcination temperatures on the electrochemical properties of Li{sub 3}V{sub 2}(PO{sub 4}){sub 3}. The diffraction peaks for all of the samples are well indexed to monoclinic Li{sub 3}V{sub 2}(PO{sub 4}){sub 3} with a P2{sub 1}/n space group. The TGA data indicate that the residual carbon content of LVP/C-700 is the highest (i.e., 2.31 wt.%), and as the calcination temperature increased, the residual carbon content of the material gradually decreased. SEM and TEM analyses indicated that the LVP particles that were calcined at 700 °C exhibit a uniform particle size distribution and the carbon coating exhibited a complete and orderly moderate thickness. The LVP/C-700 material exhibits the best electrochemical performance in the voltage range of 3.0 to 4.3 V and 0.1 C where the initial discharge capacity can reach 128.98 mAh g{sup −} {sup 1}. Even after 200 cycles, the discharge capacity was 119.31 mAh g{sup −} {sup 1}, and the capacity retention rate was 92.49%. - Highlights: • Li{sub 3}V{sub 2}(PO{sub 4}){sub 3}/C composite materials have been synthesized via a sol–gel method with double carbon sources. • The different calcination temperatures affect the grain growth and crystallinity of the Li{sub 3}V{sub 2}(PO{sub 4}){sub 3}/C materials. • The LVP/C-700 material exhibites the largest lithium ion diffusivity and electronic conductivity.

  8. In vitro permeation studies of phenolics from horse chestnut seed gels prepared with different polyacrylic acid polymer derivatives.

    PubMed

    Zelbienė, Eglė; Draksiene, Gailute; Savickas, Arunas; Kopustinskiene, Dalia; Masteikova, Ruta; Bernatoniene, Jurga

    2015-06-01

    The aim of this study was to investigate the effects of polyacrylic acid polymers (Ultrez 10, Ultrez 20, Carbopol 980, and Carbopol 940) on the viscosity and the in vitro permeation of phenolic compounds from the gel prepared from natural horse chestnut seed extract. Experiments were performed in the presence and in the absence of peppermint oil (Mentha piperita). Our results showed that peppermint oil decreased the viscosity of the gels and permeation of phenolic compounds from all gel samples. Results show that the highest content of phenolic compounds (1.758 μg cm(-2)) permeated in vitro from gel based on Carbopol Ultrez 20 without peppermint oil added (p<0.05 vs. other tested polymers). PMID:26011934

  9. The use of time-resolved fluorescence in gel-based proteomics for improved biomarker discovery

    NASA Astrophysics Data System (ADS)

    Sandberg, AnnSofi; Buschmann, Volker; Kapusta, Peter; Erdmann, Rainer; Wheelock, Åsa M.

    2010-02-01

    This paper describes a new platform for quantitative intact proteomics, entitled Cumulative Time-resolved Emission 2-Dimensional Gel Electrophoresis (CuTEDGE). The CuTEDGE technology utilizes differences in fluorescent lifetimes to subtract the confounding background fluorescence during in-gel detection and quantification of proteins, resulting in a drastic improvement in both sensitivity and dynamic range compared to existing technology. The platform is primarily designed for image acquisition in 2-dimensional gel electrophoresis (2-DE), but is also applicable to 1-dimensional gel electrophoresis (1-DE), and proteins electroblotted to membranes. In a set of proof-of-principle measurements, we have evaluated the performance of the novel technology using the MicroTime 100 instrument (PicoQuant GmbH) in conjunction with the CyDye minimal labeling fluorochromes (GE Healthcare, Uppsala, Sweden) to perform differential gel electrophoresis (DIGE) analyses. The results indicate that the CuTEDGE technology provides an improvement in the dynamic range and sensitivity of detection of 3 orders of magnitude as compared to current state-of-the-art image acquisition instrumentation available for 2-DE (Typhoon 9410, GE Healthcare). Given the potential dynamic range of 7-8 orders of magnitude and sensitivities in the attomol range, the described invention represents a technological leap in detection of low abundance cellular proteins, which is desperately needed in the field of biomarker discovery.

  10. Production of HfO2 thin films using different methods: chemical bath deposition, SILAR and sol-gel process

    NASA Astrophysics Data System (ADS)

    Kariper, İ. A.

    2014-08-01

    Hafnium oxide thin films (HOTFs) were successfully deposited onto amorphous glasses using chemical bath deposition, successive ionic layer absorption and reaction (SILAR), and sol-gel methods. The same reactive precursors were used for all of the methods, and all of the films were annealed at 300°C in an oven (ambient conditions). After this step, the optical and structural properties of the films produced by using the three different methods were compared. The structures of the films were analyzed by X-ray diffraction (XRD). The optical properties are investigated using the ultraviolet-visible (UV-VIS) spectroscopic technique. The film thickness was measured via atomic force microscopy (AFM) in the tapping mode. The surface properties and elemental ratios of the films were investigated and measured by scanning electron microscopy and energy-dispersive X-ray spectroscopy (EDX). The lowest transmittance and the highest reflectance values were observed for the films produced using the SILAR method. In addition, the most intense characteristic XRD peak was observed in the diffraction pattern of the film produced using the SILAR method, and the greatest thickness and average grain size were calculated for the film produced using the SILAR method. The films produced using SILAR method contained fewer cracks than those produced using the other methods. In conclusion, the SILAR method was observed to be the best method for the production of HOTFs.

  11. Magnetic behaviour of sol-gel driven BiFeO3 thin films with different grain size distribution

    NASA Astrophysics Data System (ADS)

    Sharma, Shiwani; Saravanan, P.; Pandey, O. P.; Vinod, V. T. P.; Černík, Miroslav; Sharma, Puneet

    2016-03-01

    BiFeO3 (BFO) thin films with uniform thickness of ~200 nm were prepared by the sol-gel assisted spin coating method. Different grain size distributions in the as-grown BFO films were then induced by varying the annealing temperature between 525 and 600 °C. It is found that the grain size distribution become wider as the annealing temperature increases. All the films showed a well-saturated magnetization (M) versus magnetic field (H) hysteresis loops at 300 K. A strong dependence of M on the grain size distribution is observed. An optimal grain size distribution with average grain size ~90 nm is responsible for high M in the BFO films. The non-saturated M-H loops obtained at 10 K suggest the spin glass behaviour of BFO films. The zero field cooled (ZFC) and field cooled (FC) magnetization curves shows split at 300 K and a cusp at ~50 K in the ZFC curve, which further confirms the spin glass state of polycrystalline BFO thin films.

  12. Identification of cellular proteome using two-dimensional difference gel electrophoresis in ST cells infected with transmissible gastroenteritis coronavirus

    PubMed Central

    2013-01-01

    Background Transmissible gastroenteritis coronavirus (TGEV) is an enteropathogenic coronavirus that causes diarrhea in pigs, which is correlated with high morbidity and mortality in suckling piglets. Information remains limited about the comparative protein expression of host cells in response to TGEV infection. In this study, cellular protein response to TGEV infection in swine testes (ST) cells was analyzed, using the proteomic method of two-dimensional difference gel electrophoresis (2D DIGE) coupled with MALDI-TOF-TOF/MS identification. Results 33 differentially expressed protein spots, of which 23 were up-regulated and 10 were down-regulated were identified. All the protein spots were successfully identified. The identified proteins were involved in the regulation of essential processes such as cellular structure and integrity, RNA processing, protein biosynthesis and modification, vesicle transport, signal transduction, and the mitochondrial pathway. Western blot analysis was used to validate the changes of alpha tubulin, keratin 19, and prohibitin during TGEV infection. Conclusions To our knowledge, we have performed the first analysis of the proteomic changes in host cell during TGEV infection. 17 altered cellular proteins that differentially expressed in TGEV infection were identified. The present study provides protein-related information that should be useful for understanding the host cell response to TGEV infection and the underlying mechanism of TGEV replication and pathogenicity. PMID:23855489

  13. Generalized elastica on 2-dimensional de Sitter space S12

    NASA Astrophysics Data System (ADS)

    Huang, Rongpei; Yu, Junyan

    2016-02-01

    In this paper, the extremals of curvature energy actions on non-null regular curves in 2-dimensional de Sitter space are studied. We completely solve the Euler-Lagrange equation by quadratures. By using the Killing field, we construct three special coordinate systems and express the generalized elastica in 2-dimensional de Sitter space S12 by integral explicitly.

  14. Evaluation of a gel-immunization technique used with two different Immucox vaccine formulations in battery and floor-pen trials with broiler chickens.

    PubMed

    Danforth, H D; Lee, E H; Martin, A; Dekich, M

    1997-01-01

    The use of a gel-immunization technique with Immucox vaccination was compared and evaluated against other immunization methods in battery and floor-pen immunization trials. Gel immunization was found to be superior to immunization by gavage, by spray cabinet, or by the conventional delivery method of Immucox in a battery trial. Significantly enhanced protection as measured by weight gain, coupled with the establishment of a more uniform primary immunizing infection as evidenced by greater intestinal lesions and increased oocyst shedding, was seen in gel-immunized birds. In addition, cross-protective battery trials determined that the strain of Eimeria maxima found in the Immucox vaccine failed to elicit protection against a recent field isolate of E. maxima as measured by average weight gain and lesion scores. A reformulation of the Immucox vaccine that included the field isolate of E. maxima was required to elicit a protective immune response against challenge by the field strain. A floor-pen experiment demonstrated that gel immunization of 1-day-old roaster chickens resulted in performance parameters of average weight gain, average bird weight, and feed conversion that did not differ significantly from those recorded for medicated nonimmunized birds. PMID:9197391

  15. CONFORMANCE IMPROVEMENT USING GELS

    SciTech Connect

    Randall S. Seright

    2004-09-30

    This report describes work performed during the third and final year of the project, ''Conformance Improvement Using Gels.'' Corefloods revealed throughput dependencies of permeability reduction by polymers and gels that were much more prolonged during oil flow than water flow. This behavior was explained using simple mobility ratio arguments. A model was developed that quantitatively fits the results and predicts ''clean up'' times for oil productivity when production wells are returned to service after application of a polymer or gel treatment. X-ray computed microtomography studies of gels in strongly water-wet Berea sandstone and strongly oil-wet porous polyethylene suggested that oil penetration through gel-filled pores occurs by a gel-dehydration mechanism, rather than gel-ripping or gel-displacement mechanisms. In contrast, analysis of data from the University of Kansas suggests that the gel-ripping or displacement mechanisms are more important in more permeable, strongly water-wet sandpacks. These findings help to explain why aqueous gels can reduce permeability to water more than to oil under different conditions. Since cement is the most commonly used material for water shutoff, we considered when gels are preferred over cements. Our analysis and experimental results indicated that cement cannot be expected to completely fill (top to bottom) a vertical fracture of any width, except near the wellbore. For vertical fractures with apertures less than 4 mm, the cement slurry will simply not penetrate very far into the fracture. For vertical fractures with apertures greater than 4 mm, the slurry may penetrate a substantial distance into the bottom part of the fracture. However, except near the wellbore, the upper part of the fracture will remain open due to gravity segregation. We compared various approaches to plugging fractures using gels, including (1) varying polymer content, (2) varying placement (extrusion) rate, (3) using partially formed gels, (4

  16. Changes of the water-holding capacity and microstructure of panga and tilapia surimi gels using different stabilizers and processing methods.

    PubMed

    Filomena-Ambrosio, Annamaria; Quintanilla-Carvajal, María Ximena; Ana-Puig; Hernando, Isabel; Hernández-Carrión, María; Sotelo-Díaz, Indira

    2016-01-01

    Surimi gel is a food product traditionally manufactured from marine species; it has functional features including a specific texture and a high protein concentration. The objective of this study was to evaluate and compare the effect of the ultrasound extraction protein method and different stabilizers on the water-holding capacity (WHC), texture, and microstructure of surimi from panga and tilapia to potentially increase the value of these species. For this purpose, WHC was determined and texture profile analysis, scanning electron microscopy, and texture image analysis were carried out. The results showed that the ultrasound method and the sodium citrate can be used to obtain surimi gels from panga and tilapia with optimal textural properties such as the hardness and chewiness. Moreover, image analysis is recommended as a quantitative and non-invasive technique to evaluate the microstructure and texture image properties of surimis prepared using different processing methods and stabilizers. PMID:25631487

  17. Tuber borchii fruit body: 2-dimensional profile and protein identification.

    PubMed

    Pierleoni, Raffaella; Buffalini, Michele; Vallorani, Luciana; Guidi, Chiara; Zeppa, Sabrina; Sacconi, Cinzia; Pucci, Piero; Amoresano, Angela; Casbarra, Annarita; Stocchi, Vilberto

    2004-04-01

    The formation of the fruit body represents the final phase of the ectomycorrhizal fungus T. borchii life cycle. Very little is known concerning the molecular and biochemical processes involved in the fructification phase. 2-DE maps of unripe and ripe ascocarps revealed different protein expression levels and the comparison of the electropherograms led to the identification of specific proteins for each developmental phase. Associating micropreparative 2-DE to microchemical approaches, such as N-terminal sequencing and 2-D gel-electrophoresis mass-spectrometry, proteins playing pivotal roles in truffle physiology were identified. PMID:15081280

  18. Polyelectrolyte gels

    SciTech Connect

    Segalman, D.J.; Witkowski, W.R.

    1995-06-01

    Polyelectrolyte (PE) gels are swollen polymer/solvent networks that undergo a reversible volume collapse/expansion through various types of stimulation. Applications that could exploit this large deformation and solvent expulsion/absorption characteristics include robotic {open_quotes}fingers{close_quotes} and drug delivery systems. The goals of the research were to first explore the feasibility of using the PE gels as {open_quotes}smart materials{close_quotes} - materials whose response can be controlled by an external stimulus through a feedback mechanism. Then develop a predictive capability to simulate the dynamic behavior of these gels. This involved experimentally characterizing the response of well-characterized gels to an applied electric field and other stimuli to develop an understanding of the underlying mechanisms which cause the volume collapse. Lastly, the numerical analysis tool was used to simulate various potential engineering devices based on PE gels. This report discusses the pursuit of those goals through experimental and computational means.

  19. Influence of Different Sol-gel Spin Coating Speed on Memristive Behaviour of Pt/TiO2/ZnO/ITO Device

    NASA Astrophysics Data System (ADS)

    Kasim, S. M. M.; Shaari, N. A. A.; Bakar, R. A.; Aznilinda, Z.; Mohamad, Zulfakri; Herman, S. H.

    2015-11-01

    Composite titanium dioxide (TiO2) and zinc oxide (ZnO) thin films were deposited on indium tin oxide (ITO) substrates using sol-gel spin coating technique. The electrical and physical characterizations of three different sol-gel spin coating speed were investigated using two-probe current-voltage (I-V) measurement, field emission scanning electron microscopy (FESEM) and surface profiler (SP) respectively. The I-V measurement results showed the pinched hysteresis loop for every single of devices thus indicate that all the devices are memristive. ROFF/RON ratio which was defined from the hysteresis loop of device with higher spin speed was slightly higher compared to others.

  20. Application of DGT to high pH environments: uptake efficiency of radionuclides of different oxidation states onto Chelex binding gel.

    PubMed

    Stockdale, Anthony; Bryan, Nick D

    2013-05-01

    The DGT Chelex binding phase has not been tested for binding efficiency over the extreme high pH range (i.e., 10 to 13). Here, we examined the uptake efficiency of the gel-encapsulated Chelex cation exchange resin binding phase when in direct contact with solutions of radionuclides of different oxidation states over the circumneutral to high pH range (∼7 to 13). Results show that the Chelex binding gel is suitable for Eu(3+) for circumneutral pH, for UO2(2+) up to at least pH 10.7 and for NpO2(+) up to at least pH 11.7. Application may be appropriate at higher pH values but testing of complete solution deployment units will be required. This work provides the framework to use DGT as a tool for the study of high pH radionuclide systems. PMID:23507761

  1. Numerical studies of 2-dimensional flows

    NASA Technical Reports Server (NTRS)

    Moretti, G.

    1985-01-01

    A formulation of the lambda scheme for the analysis of two dimensional inviscid, compressible, unsteady transonic flows is presented. The scheme uses generalized Riemann variables to determine the appropriate two point, one sided finite difference approximation for each derivative in the unsteady Euler equations. These finite differences are applied at the predictor and corrector levels with shock updating at each level. The weaker oblique shocks are captured, but strong near normal shocks are fitted into the flow using the Rankine-Hugoniot relations. This code is demonstrated with a numerical example of a duct flow problem with developing normal and oblique shock waves. The technique is implemented in a code which has been made efficient by streamlining to a minimal number of operations and by eliminating branch statements. The scheme is shown to provide an accurate analysis of the flow, including formation, motions, and interactions of shocks; the results obtained on a relatively coarse mesh are comparable to those obtained by other methods on much finer meshes.

  2. A novel approach to pseudopodia proteomics: excimer laser etching, two-dimensional difference gel electrophoresis, and confocal imaging

    PubMed Central

    Mimae, Takahiro; Ito, Akihiko; Hagiyama, Man; Nakanishi, Jun; Hosokawa, Yoichiroh; Okada, Morihito; Murakami, Yoshinori; Kondo, Tadashi

    2014-01-01

    Pseudopodia are actin-rich ventral cellular protrusions shown to facilitate the migration and metastasis of tumor cells. Here, we present a novel approach to perform pseudopodia proteomics. Tumor cells growing on porous membranes extend pseudopodia into the membrane pores. In our method, cell bodies are removed by horizontal ablation at the basal cell surface with the excimer laser while pseudopodia are left in the membrane pores. For protein expression profiling, whole cell and pseudopodia proteins are extracted with a lysis buffer, labeled with highly sensitive fluorescent dyes, and separated by two-dimensional gel electrophoresis. Proteins with unique expression patterns in pseudopodia are identified by mass spectrometry. The effects of the identified proteins on pseudopodia formation are evaluated by measuring the pseudopodia length in cancer cells with genetically modified expression of target proteins using confocal imaging. This protocol allows global identification of pseudopodia proteins and evaluation of their functional significance in pseudopodia formation within one month. PMID:25309719

  3. Microscopic evolution of dielectric nanoparticles at different calcination temperatures synthesized via sol-gel auto-combustion

    SciTech Connect

    Adil, Muhammad Zaid, Hasnah Mohd Chuan, Lee Kean Latiff, Noor Rasyada Ahmad; Alta’ee, Ali F.

    2015-07-22

    Dielectric nano powder synthesis is carried by a simple and fast sol-gel auto-combustion method. The transformation of crystalline phases of as-synthesized nano powders is investigated through the detailed transmission electron microscopy (TEM), revealed the crystallographic alterations and morphological information even at lattice scale. From specific area electron diffraction (SAED) pattern, has specified the d-spacing and corresponding planes supported by the observed lattice fringes. The morphological characterization of nanoparticles is performed through field-emission scanning electron microscopy (FESEM), exhibiting the increment in particle size due to agglomeration with the increase in annealing temperature. Furthermore, EDX pattern has been used to verify the formation of nanoparticles by revealing the presence of required elements.

  4. Microstructural changes in NiFe2O4 ceramics prepared with powders derived from different fuels in sol-gel auto-combustion technique

    NASA Astrophysics Data System (ADS)

    Chauhan, Lalita; Bokolia, Renuka; Sreenivas, K.

    2016-05-01

    Structural properties of Nickel ferrite (NiFe2O4) ceramics prepared from powders derived from sol gel auto-combustion method using different fuels (citric acid, glycine and Dl-alanine) are compared. Changes in the structural properties at different sintering temperatures are investigated. X-ray diffraction (XRD) confirms the formation of single phase material with cubic structure. Ceramics prepared using the different powders obtained from different fuels show that that there are no significant changes in lattice parameters. However increasing sintering temperatures show significant improvement in density and grain size. The DL-alanine fuel is found to be the most effective fuel for producing NIFe2O4 powders by the sol-gel auto combustion method and yields highly crystalline powders in the as-burnt stage itself at a low temperature (80 °C). Subsequent use of the powders in ceramic manufacturing produces dense NiFe2O4 ceramics with a uniform microstructure and a large grain size.

  5. Separation of human thymocytes at different stages of maturation by centrifugation on a discontinuous gradient of colloidal silica gel.

    PubMed

    Goust, J M; Perry, L R

    1981-06-01

    Separation of human intrathymic cells on a discontinuous gradient of colloidal silica gel (Percoll) yielded four layers. The first (density 1.054 +/- 0.002 g/ml) contained stromal cells and a few thymocytes positive for terminal deoxynucleotidyl transferase (Tdt), most of which were bound to large Tdt-negative non-T cells. The second layer (1.069+/- 0.003 g/ml) contained large Tdt-negative thymocytes. The third and forth layers (1.075 +/-0.004 and 1.085 +/- 0.003 g/ml, respectively) contained smaller T cells, more than 95% of which were Tdt-positive. Functional studies revealed that cells from the first layer had a high level of spontaneous [3H]thymidine uptake but did not respond to lectins; the second layer responded to PHA, ConA, and allogeneic stimuli; and the third and fourth layers did not respond to lectin stimulation. Addition of cells from the first layer to the other layers at a 1 : 10 ratio significantly increased the mitogenic responses of the cells from the second layer, but not of those from the third or fourth layer. These results suggest that, as in mice and rats, low-density intrathymic thymocytes in humans represent more mature T cells, the percentage of which increases with age. PMID:6973841

  6. Investigation of different cell types and gel carriers for cell-based intervertebral disc therapy, in vitro and in vivo studies.

    PubMed

    Henriksson, H B; Hagman, M; Horn, M; Lindahl, A; Brisby, H

    2012-10-01

    Biological treatment options for the repair of intervertebral disc damage have been suggested for patients with chronic low back pain. The aim of this study was to investigate possible cell types and gel carriers for use in the regenerative treatment of degenerative intervertebral discs (IVD). In vitro: human mesenchymal cells (hMSCs), IVD cells (hDCs), and chondrocytes (hCs) were cultivated in three gel types: hyaluronan gel (Durolane®), hydrogel (Puramatrix®), and tissue-glue gel (TISSEEL®) in chondrogenic differentiation media for 9 days. Cell proliferation and proteoglycan accumulation were evaluated with microscopy and histology. In vivo: hMSCs or hCs and hyaluronan gel were co-injected into injured IVDs of six minipigs. Animals were sacrificed at 3 or 6 months. Transplanted cells were traced with anti-human antibodies. IVD appearance was visualized by MRI, immunohistochemistry, and histology. Hyaluronan gel induced the highest cell proliferation in vitro for all cell types. Xenotransplanted hMSCs and hCs survived in porcine IVDs for 6 months and produced collagen II in all six animals. Six months after transplantation of cell/gel, pronounced endplate changes indicating severe IVD degeneration were observed at MRI in 1/3 hC/gel, 1/3 hMSCs/gel and 1/3 gel only injected IVDs at MRI and 1/3 hMSC/gel, 3/3 hC/gel, 2/3 gel and 1/3 injured IVDs showed positive staining for bone mineralization. In 1 of 3 discs receiving hC/gel, in 1 of 3 receiving hMSCs/gel, and in 1 of 3 discs receiving gel alone. Injected IVDs on MRI results in 1 of 3 hMSC/gel, in 3 of 3 hC/gel, in 2 of 3 gel, and in 1 of 3 injured IVDs animals showed positive staining for bone mineralization. The investigated hyaluronan gel carrier is not suitable for use in cell therapy of injured/degenerated IVDs. The high cell proliferation observed in vitro in the hyaluronan could have been a negative factor in vivo, since most cell/gel transplanted IVDs showed degenerative changes at MRI and

  7. The ARM Best Estimate 2-dimensional Gridded Surface

    SciTech Connect

    Xie,Shaocheng; Qi, Tang

    2015-06-15

    The ARM Best Estimate 2-dimensional Gridded Surface (ARMBE2DGRID) data set merges together key surface measurements at the Southern Great Plains (SGP) sites and interpolates the data to a regular 2D grid to facilitate data application. Data from the original site locations can be found in the ARM Best Estimate Station-based Surface (ARMBESTNS) data set.

  8. Aerosol gels

    NASA Technical Reports Server (NTRS)

    Sorensen, Christopher M. (Inventor); Chakrabarti, Amitabha (Inventor); Dhaubhadel, Rajan (Inventor); Gerving, Corey (Inventor)

    2010-01-01

    An improved process for the production of ultralow density, high specific surface area gel products is provided which comprises providing, in an enclosed chamber, a mixture made up of small particles of material suspended in gas; the particles are then caused to aggregate in the chamber to form ramified fractal aggregate gels. The particles should have a radius (a) of up to about 50 nm and the aerosol should have a volume fraction (f.sub.v) of at least 10.sup.-4. In preferred practice, the mixture is created by a spark-induced explosion of a precursor material (e.g., a hydrocarbon) and oxygen within the chamber. New compositions of matter are disclosed having densities below 3.0 mg/cc.

  9. CONFORMANCE IMPROVEMENT USING GELS

    SciTech Connect

    Randall S. Seright

    2002-02-28

    This technical progress report describes work performed from June 20 through December 19, 2001, for the project, ''Conformance Improvement Using Gels''. Interest has increased in some new polymeric products that purport to substantially reduce permeability to water while causing minimum permeability reduction to oil. In view of this interest, we are currently studying BJ's Aqua Con. Results from six corefloods revealed that the Aqua Con gelant consistently reduced permeability to water more than that to oil. However, the magnitude of the disproportionate permeability reduction varied significantly for the various experiments. Thus, as with most materials tested to date, the issue of reproducibility and control of the disproportionate permeability remains to be resolved. Concern exists about the ability of gels to resist washout after placement in fractures. We examined whether a width constriction in the middle of a fracture would cause different gel washout behavior upstream versus downstream of the constriction. Tests were performed using a formed Cr(III)-acetate-HPAM gel in a 48-in.-long fracture with three sections of equal length, but with widths of 0.08-, 0.02-, and 0.08-in., respectively. The pressure gradients during gel extrusion (i.e., placement) were similar in the two 0.08-in.-wide fracture sections, even though they were separated by a 0.02-in.-wide fracture section. The constriction associated with the middle fracture section may have inhibited gel washout during the first pulse of brine injection after gel placement. However, during subsequent phases of brine injection, the constriction did not inhibit washout in the upstream fracture section any more than in the downstream section.

  10. Two highly stable and selective solid phase microextraction fibers coated with crown ether functionalized ionic liquids by different sol-gel reaction approaches.

    PubMed

    Shu, Jianjun; Xie, Pengfei; Lin, Danni; Chen, Rongfeng; Wang, Jiang; Zhang, Beibei; Liu, Mingming; Liu, Hanlan; Liu, Fan

    2014-01-01

    In this work, two novel crown ether functionalized ionic liquid (FIL)-based solid phase microextraction (SPME) fibers were prepared by sol-gel technology using the synthesized 1-(trimethoxysily)propyl 3-(6'-oxo-benzo-15-crown-5 hexyl) imidazolium bis(trifluoromethanesulphonyl)imide ([TMSP(Benzo15C5)HIM][N(SO2CF3)2]) and 1-allyl-3-(6'-oxo-benzo-15-crown-5 hexyl) imidazolium bis(trifluoromethanesulphonyl)imide ([A(Benzo15C5)HIM][N(SO2CF3)2]) as selective stationary phases. Owing to the introduction of trimethoxysilypropyl to the imidazole cation, the [TMSP(Benzo15C5)HIM][N(SO2CF3)2] could be chemically bonded to the formed sol-gel silica substrate through the hydrolysis and polycondensation reaction. Similarly, the [A(Benzo15C5)HIM][N(SO2CF3)2] was able to participate in the formation of the organic-inorganic copolymer coatings through the free radical crosslinking reaction. These two fibers were determined to have "bubble-like" surface characteristics analogous to a previously prepared [A(Benzo15C5)HIM][PF6]-based fiber. Their thermal stabilities were much higher than that of the [A(Benzo15C5)HIM][PF6]-based coating. They were capable of withstanding temperatures as high as 400°C without evident loss of the crown ether FILs. They also had strong solvent, acid and alkali resistance, good coating preparation reproducibility and high selectivity for medium polar to polar compounds. The high selectivity of these two fibers could be attributed to the strong ion-dipole, hydrogen bonding and π-π interactions provided by the synergetic effect of ILs and benzo-15-crown-5 functionalities. Moreover, the selectivity of these two fibers was rather different although the structures of these two crown ether FILs were very similar. This is maybe because the relative contents of the crown ether FILs chemically bonded to the organic-inorganic copolymer coatings were quite different when prepared by different sol-gel reaction approaches. PMID:24331051

  11. Universal method for synthesis of artificial gel antibodies by the imprinting approach combined with a unique electrophoresis technique for detection of minute structural differences of proteins, viruses and cells (bacteria). Ib. Gel antibodies against proteins (hemoglobins).

    PubMed

    Takátsy, Anikó; Végvári, Akos; Hjertén, Stellan; Kilár, Ferenc

    2007-07-01

    Using the molecular imprinting approach, we have shown that polyacrylamide-based artificial antibodies against human and bovine hemoglobin have a very high selectivity, as revealed by the free-zone electrophoresis in a revolving capillary. By the same technique we have previously synthesized gel antibodies not only against proteins but also against viruses and bacteria. The synthesis is thus universal, i.e., it has the great advantage of not requiring a modification - or only a slight one - for each particular antigen. The combination synthesis of artificial gel antibodies and electrophoretic analysis reveals small discrepancies in shape and chemical composition not only of proteins, as shown here and in paper Ia, but also of viruses and bacteria, to be illustrated in papers II and III in this series. Upon rehydration, the freeze-dried gel antibodies, selective for human hemoglobin, regain their selectivity. The gel antibodies can repeatedly be used following the removal of the antigen (protein in this study) from the complex gel antibody/antigen by an SDS washing or an enzymatic degradation. PMID:17476715

  12. Integration of 2-Dimensional Materials for Thermoelectric Power Generation

    NASA Astrophysics Data System (ADS)

    Alsaffar, Fadhel; Al Hussain, Abdulrahman; Amer, Moh. R.; Center of Exclence for Green Nanotechnologies Collaboration; Department of Electrical Engineering (UCLA) Collaboration

    Recent developments in nanomaterial research have significantly progressed the performance of thermoelectric devices. Theoretical investigations of the thermoelectic properties of 2-Dimentional monolayers demonstrate a high figure of merit (ZT) .. Here, we investigate the integration of these 2-Dimensional materials for power generation applications using solar heat. We show that using black phosphorus monolayer (phosphorene) as the p-type material, and Molybdenum disulfide (MoS2) monolayers as the n-type material, we get an effective figure of merit (ZT) at least (1.5) with a conversion efficiency of 13% at 280oC. Our results suggest that the integration of various 2-Dimensional materials is a promising approach for commercial thermoelectric power generation applications.

  13. Hydrometeor classification from a 2 dimensional video disdrometer

    NASA Astrophysics Data System (ADS)

    Grazioli, Jacopo; Tuia, Devis; Berne, Alexis

    2014-05-01

    Hydrometeor classification techniques aim at identifying the dominant hydrometeor type in a given observation volume or at a given time step, during precipitation. Such techniques are employed to interpret measurements from polarimetric weather radars, cloud lidars, and airborne particle imagers and their output is applied to risk assessment, air traffic control, and parametrization of numerical weather models. In the present work we develop a hydrometeor classification approach designed for data collected by a ground instrument: the 2 dimensional video disdrometer (2DVD). The 2DVD provides fall velocity and 2D views of each particle falling in its sampling area, by means of two orthogonally oriented line scanning cameras. We summarize this large amount of information over time steps of 60 seconds by characterizing the statistical behavior of a set of shape, size and velocity descriptors calculated for each falling hydrometeor. This summarized information is the input for the classification algorithm, that therefore provides the dominant hydrometeor type during a given time step of precipitation. 8 dominant hydrometeor classes have been identified by visual inspection of data collected in different climatologies (Switzerland, France and Canada), namely: small particles, dendrites, columns, graupel, rimed particles, aggregates, melting snow and rain. 400 representative time steps have been manually selected and classified in one of these classes in order to build a training set for the classification algorithm. The employed classifier is a support vector machine (SVM), a supervised linear classification method trained and evaluated on subsets of the 400 time steps. The algorithm achieves accurate performances, with overall accuracy higher than 90% in global terms and higher than 84% in median for each of the 8 hydrometeor classes available. This is confirmed by the Cohen's Kappa score (or HSS), that takes into account the prediction by chance and is higher than 0

  14. Materials Science and Device Physics of 2-Dimensional Semiconductors

    NASA Astrophysics Data System (ADS)

    Fang, Hui

    Materials and device innovations are the keys to future technology revolution. For MOSFET scaling in particular, semiconductors with ultra-thin thickness on insulator platform is currently of great interest, due to the potential of integrating excellent channel materials with the industrially mature Si processing. Meanwhile, ultra-thin thickness also induces strong quantum confinement which in turn affect most of the material properties of these 2-dimensional (2-D) semiconductors, providing unprecedented opportunities for emerging technologies. In this thesis, multiple novel 2-D material systems are explored. Chapter one introduces the present challenges faced by MOSFET scaling. Chapter two covers the integration of ultrathin III V membranes with Si. Free standing ultrathin III-V is studied to enable high performance III-V on Si MOSFETs with strain engineering and alloying. Chapter three studies the light absorption in 2-D membranes. Experimental results and theoretical analysis reveal that light absorption in the 2-D quantum membranes is quantized into a fundamental physical constant, where we call it the quantum unit of light absorption, irrelevant of most of the material dependent parameters. Chapter four starts to focus on another 2-D system, atomic thin layered chalcogenides. Single and few layered chalcogenides are first explored as channel materials, with focuses in engineering the contacts for high performance MOSFETs. Contact treatment by molecular doping methods reveals that many layered chalcogenides other than MoS2 exhibit good transport properties at single layer limit. Finally, Chapter five investigated 2-D van der Waals heterostructures built from different single layer chalcogenides. The investigation in a WSe2/MoS2 hetero-bilayer shows a large Stokes like shift between photoluminescence peak and lowest absorption peak, as well as strong photoluminescence intensity, consistent with spatially indirect transition in a type II band alignment in this

  15. Response surface methodology as an approach to determine optimal activities of lipase entrapped in sol-gel matrix using different vegetable oils.

    PubMed

    Pinheiro, Rubiane C; Soares, Cleide M F; de Castro, Heizir F; Moraes, Flavio F; Zanin, Gisella M

    2008-03-01

    The conditions for maximization of the enzymatic activity of lipase entrapped in sol-gel matrix were determined for different vegetable oils using an experimental design. The effects of pH, temperature, and biocatalyst loading on lipase activity were verified using a central composite experimental design leading to a set of 13 assays and the surface response analysis. For canola oil and entrapped lipase, statistical analyses showed significant effects for pH and temperature and also the interactions between pH and temperature and temperature and biocatalyst loading. For the olive oil and entrapped lipase, it was verified that the pH was the only variable statistically significant. This study demonstrated that response surface analysis is a methodology appropriate for the maximization of the percentage of hydrolysis, as a function of pH, temperature, and lipase loading. PMID:18373071

  16. In situ sol-gel composition of multicomponent hybrid precursors to luminescent novel unexpected microrod of Y 2SiO 5:Eu 3+ employing different silicate sources

    NASA Astrophysics Data System (ADS)

    Huang, Honghua; Yan, Bing

    2004-12-01

    Y 2SiO 5 doped with Eu 3+ were in situ synthesized by a hybrid precursor assembly sol-gel technology employing four different silicate sources, 3-aminopropyl-trimethoxysilane (APMS), 3-aminopropyl-triethoxysilane (APES), 3-aminopropyl-methyl-diethoxysilane (APMES) and tetraethoxysilane (TEOS), respectively. The SEM result shows that there exist some novel unexpected morphological microrod structures owing to using the crosslinking reagents other than TEOS as silicate source. The photoluminescent properties of Y 2SiO 5:Eu 3+ have been studied as a function of Eu 3+ doping concentration. A cross-relaxation process between identical Eu 3+ ions results in the quenching of the 5D 1 emission for high concentration sample.

  17. In situ sol-gel composition of multicomponent hybrid precursor to hexagon-like Zn 2SiO 4:Tb 3+ microcrystalline phosphors with different silicate sources

    NASA Astrophysics Data System (ADS)

    Huang, Honghua; Yan, Bing

    2006-02-01

    Zn 2SiO 4 doped with Tb 3+ were in situ synthesized by a modified sol-gel technology with the assembly hybrid precursor employed four different silicate sources, i.e. 3-aminopropyl-trimethoxysilane (APMS), 3-aminopropyl-triethoxysilane (APES), 3-aminopropyl-methyl-diethoxysilane (APMES) and tetraethoxysilane (TEOS), respectively. The SEM result shows that there exist some novel unexpected micromorphological structures of hexagon-like with the dimension of 0.5-1.0 μm. The photoluminescent properties of Zn 2SiO 4:Tb 3+ phosphors have been studied as a function of Tb 3+ doping concentration. Cross-relaxation process between identical Tb 3+ ions results in the quenching of the 5D 3 emission for high concentration sample.

  18. Colloidal thermoresponsive gel forming hybrids.

    PubMed

    Liu, Ruixue; Tirelli, Nicola; Cellesi, Francesco; Saunders, Brian R

    2010-09-15

    Colloidal hybrids comprise organic and inorganic components and are attracting considerable attention in the literature. Recently, we reported hybrid anisotropic microsheets that formed thermoresponsive gels in polymer solutions [Liu et al., Langmuir, 25, 490, 2009]. Here, we investigate the composition and properties of these hybrid colloids themselves in detail for the first time. Three different cationic PNIPAm (N-isopropylacrylamide) graft copolymers and two inorganic nanoparticle types (laponite and Ludox silica) were used to prepare a range of hybrids. Anisotropic microsheets only formed when laponite particles were added to the copolymer implying directed self-assembly. Aqueous dispersions of the microsheets spontaneously formed gels at room temperature and these gels were thermoresponsive. They represent a new class of gel forming colloid and are termed thermoresponsive gel forming hybrids. The compositions of the hybrids were determined from thermogravimetric analysis and those that gave gel forming behaviour identified. Variable-temperature rheology experiments showed that the elasticity of the gels increased linearly with temperature. The reversibility of the thermally-triggered changes in gel elasticity was investigated. The concentration dependence of the rheology data was well described by elastic percolation scaling theory and the data could be collapsed onto a master curve. The concentration exponent for the elastic modulus was 2.5. The strong attractive interactions that exist between the dispersed gel forming hybrids was demonstrated by the formation of stable thermoresponsive hybrid hydrogels through casting of hybrid dispersions. PMID:20561633

  19. Influence of different types and proportions of added edible seaweeds on characteristics of low-salt gel/emulsion meat systems.

    PubMed

    Cofrades, S; López-López, I; Solas, M T; Bravo, L; Jiménez-Colmenero, F

    2008-08-01

    The effects of three different types of edible seaweeds, Sea Spaghetti (Himanthalia elongata), Wakame (Undaria pinnatifida), and Nori (Porphyra umbilicalis) added at two concentrations (2.5% and 5% dry matter) on the physicochemical and morphological characteristics of gel/emulsion systems were evaluated. The addition of seaweeds improved (P<0.05) water- and fat-binding properties except in the case of Nori added at 2.5%. Hardness and chewiness of the cooked products with added seaweed were higher (P<0.05), and springiness and cohesiveness were lower (P<0.05) than in control samples. Colour changes in meat systems were affected by the type of seaweed. The morphology of sample differed depending on the type of seaweed added, and this is the result of differences in physical and chemical characteristic of the seaweed powder used. In general, products formulated with the brown seaweeds (Sea Spaghetti and Wakame) exhibited similar behaviour, different from that of products made with the red seaweed Nori. PMID:22063041

  20. Growth mechanisms of MgO nanocrystals via a sol-gel synthesis using different complexing agents

    PubMed Central

    2014-01-01

    In the preparation of nanostructured materials, it is important to optimize synthesis parameters in order to obtain the desired material. This work investigates the role of complexing agents, oxalic acid and tartaric acid, in the production of MgO nanocrystals. Results from simultaneous thermogravimetric analysis (STA) show that the two different synthesis routes yield precursors with different thermal profiles. It is found that the thermal profiles of the precursors can reveal the effects of crystal growth during thermal annealing. X-ray diffraction confirms that the final products are pure, single phase and of cubic shape. It is also found that complexing agents can affect the rate of crystal growth. The structures of the oxalic acid and tartaric acid as well as the complexation sites play very important roles in the formation of the nanocrystals. The complexing agents influence the rate of growth which affects the final crystallite size of the materials. Surprisingly, it is also found that oxalic acid and tartaric acid act as surfactants inhibiting crystal growth even at a high temperature of 950°C and a long annealing time of 36 h. The crystallite formation routes are proposed to be via linear and branched polymer networks due to the different structures of the complexing agents. PMID:24650322

  1. Structural and Electrical Properties of Sol-Gel-Derived Lead Titanate Nanofilms with Different Pb Contents for MIM Capacitors

    NASA Astrophysics Data System (ADS)

    Nurbaya, Z.; Wahid, M. H.; Rozana, M. D.; Alrokayan, S. A. H.; Khan, H. A.; Gan, W. C.; Majid, W. H. A.; Rusop, M.

    2015-12-01

    Metal-insulator-metal (MIM) capacitors based on lead titanate (PbTiO3) nanofilms were prepared using a novel method involving modified spin coating onto the bare electrodes of a coated glass. Different solutions were prepared by adding different concentrations of lead acetate (PbAc) powder to improve the electrical properties of the PbTiO3 films. The nanofilms were characterized in terms of their surface morphology, dielectric properties, and current-voltage characteristics. Physical and dielectric properties are related to the increased PbAc content in the films prepared within the range of 5-25 wt.%. The films with 10 wt.% PbAc provide acceptable dielectric permittivity, low loss factor, and improved capacitance density at frequencies lower than 100 kHz. Low leakage current densities and high resistivity behavior can be obtained at approximately 10-7 A cm2. Therefore, the resultant films are suitable for MIM capacitor applications and exhibit potential for memory storage applications.

  2. Molecular epidemiology of Legionella pneumophila environmental isolates representing nine different serogroups determined by automated ribotyping and pulsed-field gel electrophoresis.

    PubMed Central

    Boccia, S.; Stenico, A.; Amore, R.; Moroder, L.; Orsini, M.; Romano-Spica, V.; Ricciardi, G.

    2005-01-01

    The purposes of the study were (i) to describe the abundance and epidemiology of Legionellaceae in the man-made environment in a northern Italian area, (ii) to assess the concordance between pulsed-field gel electrophoresis (PFGE) and automated ribotyping (AR) techniques for genotyping L. pneumophila and (iii) to investigate the correlation between serogrouping and genotyping data. Water was sampled from reservoirs in 12 buildings across an area of 80-km radius. Despite the water temperature always being maintained above 55 degrees C, all of the buildings sampled were contaminated with Legionellaceae on at least one occasion and 63 L. pneumophila isolates representing nine different serogroups were collected. The two DNA methods revealed a high degree of genetic heterogeneity, even though identical L. pneumophila clones were recovered at different sites. The AR technique provided a fairly reliable approximation of PFGE results (73% concordance), however there was poor correlation between serogrouping and genotyping data as identical DNA fingerprints were shared by isolates of different serogroups. PMID:16274507

  3. Protein expression profile of celiac disease patient with aberrant T cell by two-dimensional difference gel electrophoresis.

    PubMed

    De Re, Valli; Simula, Maria Paola; Caggiari, Laura; Ortz, Nicoletta; Spina, Michele; Da Ponte, Alessandro; De Appolonia, Leandro; Dolcetti, Riccardo; Canzonieri, Vincenzo; Cannizzaro, Renato

    2007-08-01

    One complication of celiac disease (CD) is refractory CD. These patients frequently show aberrant intraepithelial T cell clones and an increasing risk of evolution into enteropathy-associated T cell lymphoma (EATL). There is debate in the literature whether these cases are actually a smoldering lymphoma from the outset. The mechanism inducing T cell proliferation and prognosis remains unknown. Recently, alemtuzumab has been proposed as a promising new approach to treat these patients. Only few single cases have been tested presently, nevertheless, in all of them a clinical improvement has been observed, while intraepithelial lymphocytes (IELs) effectively targeted by alemtuzumab are still a debated issue. Using 2D-DIGE, we found hyperexpressed proteins specifically associated with aberrant T cell in a patient with CD by comparing the protein expression with that of patients with CD and polyclonal T cell or with that of control subjects (patients with polyclonal T cell and no CD). Proteins with a higher expression in duodenal biopsy of the patient with aberrant T cell were identified as IgM, apolipoprotein C-III, and Charcot-Leyden crystal proteins. These preliminary data allow hypothesizing different clinical effects of alemtuzumab in patients with CD, since besides the probable effect of alemtuzumab on T cell, it could effect inflammatory-associated CD52(+) IgM(+)B cell and eosinophils cells, known to produce IgM and Charcot-Leyden crystal proteins, which we demonstrated to be altered in this patient. Results also emphasize the possible association of apolipoprotein with aberrant T cell proliferation. PMID:17785332

  4. Rheology of Active Gels

    NASA Astrophysics Data System (ADS)

    Chen, Daniel

    2015-03-01

    Active networks drive a diverse range of critical processes ranging from motility to division in living cells, yet a full picture of their rheological capabilities in non-cellular contexts is still emerging, e.g., How does the rheological response of a network capable of remodeling under internally-generated stresses differ from that of a passive biopolymer network? In order to address this and other basic questions, we have engineered an active gel composed of microtubules, bidirectional kinesin motors, and molecular depletant that self-organizes into a highly dynamic network of active bundles. The network continually remodels itself under ATP-tunable cycles of extension, buckling, fracturing, and self-healing. Using confocal rheometry we have simultaneously characterized the network's linear and non-linear rheological responses to shear deformation along with its dynamic morphology. We find several surprising and unique material properties for these active gels; most notably, rheological cloaking, the ability of the active gel to drive large-scale fluid mixing over several orders of flow magnitude while maintaining an invariant, solid-like rheological profile and spontaneous flow under confinement, the ability to exert micro-Newton forces to drive persistent directed motion of the rheometer tool. Taken together, these results and others to be discussed highlight the rich stress-structure-dynamics relationships in this class of biologically-derived active gels.

  5. Thermally induced modifications of the optic properties of lead zirconate titanate thin films obtained on different substrates by sol-gel synthesis

    SciTech Connect

    D'Elia, Stefano; Castriota, Marco; Scaramuzza, Nicola; Versace, Carlo; Cazzanelli, Enzo; Vena, Carlo; Strangi, Giuseppe; Bartolino, Roberto; Policicchio, Alfonso; Agostino, Raffaele Giuseppe

    2008-12-15

    Lead zirconium titanate PbZr{sub 0.53}Ti{sub 0.47}O{sub 3} (PZT) thin films have been obtained by sol-gel synthesis, deposited on different substrates [float glass, indium tin oxide (ITO)-coated float glass, and intrinsic silicon wafer], and later subjected to different thermal treatments. The morphologic and the structural properties of both PZT thin films and substrates have been investigated by scanning electron microscope and their composition was determined by energy dispersive x-ray (EDX) analysis. Moreover, variable angle spectroscopic ellipsometry provides relevant information on the electronic and optical properties of the samples. In particular, the optical constant dispersion of PZT deposited on ITO-coated float glasses shows a small absorption resonance in the near IR region, not observed in PZT films deposited on the other substrates, so that such absorption resonance can be explained by interfacial effects between ITO and PZT layers. This hypothesis is also supported by EDX measurements, showing an interdiffusion of lead and indium ions, across the PZT-ITO interface, that can generate a peculiar charge distribution in this region.

  6. Molecular Fingerprinting by PCR-Denaturing Gradient Gel Electrophoresis Reveals Differences in the Levels of Microbial Diversity for Musty-Earthy Tainted Corks ▿

    PubMed Central

    Prat, Chantal; Ruiz-Rueda, Olaya; Trias, Rosalia; Anticó, Enriqueta; Capone, Dimitra; Sefton, Mark; Bañeras, Lluís

    2009-01-01

    The microbial community structure of cork with marked musty-earthy aromas was analyzed using denaturing gradient gel electrophoresis of amplified ribosomal DNA. Cork stoppers and discs were used for DNA extraction and were analyzed by using selective primers for bacteria and fungi. Stoppers clearly differed from discs harboring a different fungal community. Moreover, musty-earthy samples of both types were shown to have a specific microbiota. The fungi Penicillium glabrum and Neurospora spp. were present in all samples and were assumed to make only a small contribution to off-odor development. In contrast, Penicillium islandicum and Penicillium variabile were found almost exclusively in 2,4,6-trichloroanisole (TCA) tainted discs. Conversely, Rhodotorula minuta and Rhodotorula sloofiae were most common in cork stoppers, where only small amounts of TCA were detected. Alpha- and gammaproteobacteria were the most commonly found bacteria in either control or tainted cork stoppers. Specific Pseudomonas and Actinobacteria were detected in stoppers with low amounts of TCA and 2-methoxy-3,5-dimethylpyrazine. These results are discussed in terms of biological degradation of taint compounds by specific microorganisms. Reliable and straightforward microbial identification methods based on a molecular approach provided useful data to determine and evaluate the risk of taint formation in cork. PMID:19201983

  7. Bouncing gel balls: Impact of soft gels onto rigid surface

    NASA Astrophysics Data System (ADS)

    Tanaka, Y.; Yamazaki, Y.; Okumura, K.

    2003-07-01

    After being thrown onto a solid substrate, very soft spherical gels bounce repeatedly. Separate rheological measurements suggest that these balls can be treated as nearly elastic. The Hertz contact deformation expected in the static (elastic) limit was observed only at very small impact velocities. For larger velocities, the gel ball deformed into flattened forms like a pancake. We measured the size of the gel balls at the maximal deformation and the contact time as a function of velocities for samples different in the original spherical radius and the Young modulus. The experimental results revealed a number of scaling relations. To interpret these relations, we developed scaling arguments to propose a physical picture.

  8. Two-dimensional electrophoresis of Arenicola marina extracellular hemoglobin: separation of chains with identical molecular mass but different isoelectric point.

    PubMed

    Slitine, F E; Toulmond, A

    1991-01-01

    1. On the basis of their molecular masses, four types of polypeptides (A, B, C, D) were obtained by SDS-PAGE of the extracellular hemoglobin of the polychaete annelid Arenicola marina. 2. On 2-dimensional polyacrylamide gel electrophoresis, the erythrocruorin dissociated into six different types of polypeptide chains; A1, A2, B1, B2, C and D. 3. A1 and B1 migrate in 2-dimensional electrophoresis at the same position as alpha and beta chains of human hemoglobin. PMID:1814687

  9. Detection and Identification of Lactobacillus Species in Crops of Broilers of Different Ages by Using PCR-Denaturing Gradient Gel Electrophoresis and Amplified Ribosomal DNA Restriction Analysis

    PubMed Central

    Guan, Le Luo; Hagen, Karen E.; Tannock, Gerald W.; Korver, Doug R.; Fasenko, Gaylene M.; Allison, Gwen E.

    2003-01-01

    The microflora of the crop was investigated throughout the broiler production period (0 to 42 days) using PCR combined with denaturing gradient gel electrophoresis (PCR-DGGE) and selective bacteriological culture of lactobacilli followed by amplified ribosomal DNA restriction analysis (ARDRA). The birds were raised under conditions similar to those used in commercial broiler production. Lactobacilli predominated and attained populations of 108 to 109 CFU per gram of crop contents. Many of the lactobacilli present in the crop (61.9% of isolates) belonged to species of the Lactobacillus acidophilus group and could not be differentiated by PCR-DGGE. A rapid and simple ARDRA method was developed to distinguish between the members of the L. acidophilus group. HaeIII-ARDRA was used for preliminary identification of isolates in the L. acidophilus group and to identify Lactobacillus reuteri and Lactobacillus salivarius. MseI-ARDRA generated unique patterns for all species of the L. acidophilus group, identifying Lactobacillus crispatus, Lactobacillus johnsonii, and Lactobacillus gallinarum among crop isolates. The results of our study provide comprehensive knowledge of the Lactobacillus microflora in the crops of birds of different ages using nucleic acid-based methods of detection and identification based on current taxonomic criteria. PMID:14602636

  10. A difference gel electrophoresis study on thylakoids isolated from poplar leaves reveals a negative impact of ozone exposure on membrane proteins.

    PubMed

    Bohler, Sacha; Sergeant, Kjell; Hoffmann, Lucien; Dizengremel, Pierre; Hausman, Jean-Francois; Renaut, Jenny; Jolivet, Yves

    2011-07-01

    Populus tremula L. x P. alba L. (Populus x canescens (Aiton) Smith), clone INRA 717-1-B4, saplings were subjected to 120 ppb ozone exposure for 28 days. Chloroplasts were isolated, and the membrane proteins, solubilized using the detergent 1,2-diheptanoyl-sn-glycero-3-phosphocholine (DHPC), were analyzed in a difference gel electrophoresis (DiGE) experiment comparing control versus ozone-exposed plants. Extrinsic photosystem (PS) proteins and adenosine triphosphatase (ATPase) subunits were detected to vary in abundance. The general trend was a decrease in abundance, except for ferredoxin-NADP(+) oxidoreductase (FNR), which increased after the first 7 days of exposure. The up-regulation of FNR would increase NAPDH production for reducing power and detoxification inside and outside of the chloroplast. Later on, FNR and a number of PS and ATPase subunits decrease in abundance. This could be the result of oxidative processes on chloroplast proteins but could also be a way to down-regulate photochemical reactions in response to an inhibition in Calvin cycle activity. PMID:21520910

  11. Finite temperature holographic duals of 2-dimensional BCFTs

    NASA Astrophysics Data System (ADS)

    Estes, J.

    2015-07-01

    We consider holographic duals of 2-dimensional conformal field theories in the presence of a boundary, interface, defect and/or junction, referred to collectively as BCFTs. In general, the presence of a boundary reduces the SO(2, 2) conformal symmetry to SO(2, 1) and the dual geometry is realized as a warped product of the form , where is not compact. In particular, it will contain points where the warp factor of the AdS 2 space diverges, leading to asymptotically AdS 3 regions. We show that the AdS 2 space-time may always be replaced with an AdS 2-"black-hole" space-time. We argue the resulting geometry describes the BCFT at finite temperature. To motivate this claim, we compute the entanglement entropy holographically for a segment centered around the defect or ending on the boundary and find agreement with a known universal formula.

  12. Comparative analysis of excretory-secretory antigens of Trichinella spiralis and Trichinella britovi muscle larvae by two-dimensional difference gel electrophoresis and immunoblotting

    PubMed Central

    2012-01-01

    Background Trichinellosis is a zoonotic disease in humans caused by Trichinella spp. The present study was undertaken to discover excretory-secretory (E-S) proteins from T. spiralis and T. britovi muscle larvae (ML) that hold promise for species-specific diagnostics. To that end, the purified E-S proteins were analyzed by fluorescent two-dimensional difference gel electrophoresis (2-D DIGE) coupled with protein identification by liquid chromatography-tandem mass spectrometry (LC-MS/MS). To search for immunoreactive proteins that are specifically recognized by host antibodies the E-S proteins were subjected to two-dimensional (2-DE) immunoblotting with antisera derived from pigs experimentally infected with T. spiralis or T. britovi. Results According to 2-D DIGE analysis, a total of twenty-two proteins including potentially immunogenic proteins and proteins produced only by one of the two Trichinella species were subjected to LC-MS/MS for protein identification. From these proteins seventeen could be identified, of which many were identified in multiple spots, suggesting that they have undergone post-translational modification, possibly involving glycosylation and/or proteolysis. These proteins included 5'-nucleotidase, serine-type protease/proteinase, and p43 glycoprotein (gp43) as well as 49 kDa E-S protein (p49). Our findings also suggest that some of the commonly identified proteins were post-translationally modified to different extents, which in certain cases seemed to result in species-specific modification. Both commonly and specifically recognized immunoreactive proteins were identified by 2-DE immunoblotting; shared antigens were identified as gp43 and different protease variants, whereas those specific to T. britovi included multiple isoforms of the 5'-nucleotidase. Conclusions Both 2-D DIGE and 2-DE immunoblotting approaches indicate that T. spiralis and T. britovi produce somewhat distinctive antigen profiles, which contain E-S antigens with potential

  13. Microstructure and optical dispersion characterization of nanocomposite sol-gel TiO2-SiO2 thin films with different compositions

    NASA Astrophysics Data System (ADS)

    Kermadi, S.; Agoudjil, N.; Sali, S.; Zougar, L.; Boumaour, M.; Broch, L.; En Naciri, A.; Placido, F.

    2015-06-01

    Nanocomposite TiO2-SiO2 thin films with different compositions (from 0 to 100 mol% TiO2) were deposited by sol-gel dip-coating method on silicon substrate. Crystal structure, chemical bonding configuration, composition and morphology evolutions with composition were followed by Raman scattering, Fourier transform infrared spectroscopy, energy-dispersive X-ray spectroscopy and scanning electron microscopy respectively. The refractive index and the extinction coefficient were derived in a broad band wavelength (250-900 nm) from spectroscopic ellipsometry data with high accuracy and correlated with composition and microstructure. Results showed an anatase structure for 100% TiO2 with a grain size in 6-10 nm range. Whereas, the inclusion of SiO2 enlarges the optical band gap and suppresses the grain growth up to 4 nm in size. High TiO2 dispersion in SiO2 matrix was observed for all mixed materials. The refractive index (at λ = 600 nm) increases linearly with composition from 1.48 (in 100% SiO2) to 2.22 (in 100% TiO2) leading to lower dense material, its dispersion being discussed in terms of the Wemple-DiDomenico single oscillator model. Hence, the optical parameters, such optical dispersion energies E0 and Ed, the average oscillators, strength S0 and wavelength λ0 and the ratio of the carrier concentration to the effective mass N/m∗ have been derived. The analysis revealed a strong dependence on composition and structure. The optical response was also investigated in term of complex optical conductivity (σ) and both volume and surface energy loss functions (VELF and SELF).

  14. Determining the Best Sensing Coverage for 2-Dimensional Acoustic Target Tracking

    PubMed Central

    Pashazadeh, Saeid; Sharifi, Mohsen

    2009-01-01

    Distributed acoustic target tracking is an important application area of wireless sensor networks. In this paper we use algebraic geometry to formally model 2-dimensional acoustic target tracking and then prove its best degree of required sensing coverage. We present the necessary conditions for three sensing coverage to accurately compute the spatio-temporal information of a target object. Simulations show that 3-coverage accurately locates a target object only in 53% of cases. Using 4-coverage, we present two different methods that yield correct answers in almost all cases and have time and memory usage complexity of Θ(1). Analytic 4-coverage tracking is our first proposed method that solves a simultaneous equation system using the sensing information of four sensor nodes. Redundant answer fusion is our second proposed method that solves at least two sets of simultaneous equations of target tracking using the sensing information of two different sets of three sensor nodes, and fusing the results using a new customized formal majority voter. We prove that 4-coverage guarantees accurate 2-dimensional acoustic target tracking under ideal conditions. PMID:22412319

  15. Calibration and conformational studies in radiation dosimetry using polymer gel dosimeters

    NASA Astrophysics Data System (ADS)

    Cardenas, Richard L.

    2001-11-01

    The polymer gel dosimeter made its debut in the early 90's and dosimetrists and medical physicists alike were excited about the prospect of using the gel dosimeter as an effective and useful three-dimensional modeling tool. Research in the early to mid-90's brought on better polymer mixtures with greater sensitivity and shelf life. Nearly a decade later, these gels are not being used in a clinical setting. The question is, why are they not being routinely used in the clinical setting for modeling and quality assurance of radiation instrumentation and computer generated treatment plans? There are three main reasons and we address these reasons directly in this investigation. First, every promising experiment performed on these gels were done in ideal conditions. The problem ideal experimentation is that the conditions in a clinical setting are unpredictable hence these idealized protocols could not be easily used in practice. Second, attempts to use the gels in clinical settings had mixed results. There was no real consistency with the results based on calibration curves generated by the gel manufacturer and even based on additional calibration studies performed by the medical physicists. Third, there were no consistent and effective calculation programs that were flexible, rigorous, and consistent to use. Due to these main problems, medical physicists have begun to dismiss the gel dosimeter and reverted to traditional 1-dimensional and 2-dimensional verification methods. What we developed in this study is a means to put the polymer gel dosimeter back into the forefront of dosimetry. First, we performed experiments under a clinical setting. Then, we investigated three different calibration methods, including our very own normalized calibration protocol to identify calibration problems and offer up a solution to this problem. Finally, we also generated a good data processing program that is flexible, rigorous, and consistent to use in any setting. In addition to

  16. A comparison of BOX-PCR and pulsed-field gel electrophoresis to determine genetic relatedness of enterococci from different environments

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Aims: The genetic relatedness of enterococci from poultry litter to enterococci from nearby surface water and groundwater in the Lower Fraser Valley regions of British Columbia, Canada was determined. Methods and Results: BOX-PCR and Pulsed-Field Gel Electrophoresis (PFGE) were used to subtype en...

  17. Fundamentals of gel dosimeters

    NASA Astrophysics Data System (ADS)

    McAuley, K. B.; Nasr, A. T.

    2013-06-01

    Fundamental chemical and physical phenomena that occur in Fricke gel dosimeters, polymer gel dosimeters, micelle gel dosimeters and genipin gel dosimeters are discussed. Fricke gel dosimeters are effective even though their radiation sensitivity depends on oxygen concentration. Oxygen contamination can cause severe problems in polymer gel dosimeters, even when THPC is used. Oxygen leakage must be prevented between manufacturing and irradiation of polymer gels, and internal calibration methods should be used so that contamination problems can be detected. Micelle gel dosimeters are promising due to their favourable diffusion properties. The introduction of micelles to gel dosimetry may open up new areas of dosimetry research wherein a range of water-insoluble radiochromic materials can be explored as reporter molecules.

  18. A Finger-Shaped Tactile Sensor for Fabric Surfaces Evaluation by 2-Dimensional Active Sliding Touch

    PubMed Central

    Hu, Haihua; Han, Yezhen; Song, Aiguo; Chen, Shanguang; Wang, Chunhui; Wang, Zheng

    2014-01-01

    Sliding tactile perception is a basic function for human beings to determine the mechanical properties of object surfaces and recognize materials. Imitating this process, this paper proposes a novel finger-shaped tactile sensor based on a thin piezoelectric polyvinylidene fluoride (PVDF) film for surface texture measurement. A parallelogram mechanism is designed to ensure that the sensor applies a constant contact force perpendicular to the object surface, and a 2-dimensional movable mechanical structure is utilized to generate the relative motion at a certain speed between the sensor and the object surface. By controlling the 2-dimensional motion of the finger-shaped sensor along the object surface, small height/depth variation of surface texture changes the output charge of PVDF film then surface texture can be measured. In this paper, the finger-shaped tactile sensor is used to evaluate and classify five different kinds of linen. Fast Fourier Transformation (FFT) is utilized to get original attribute data of surface in the frequency domain, and principal component analysis (PCA) is used to compress the attribute data and extract feature information. Finally, low dimensional features are classified by Support Vector Machine (SVM). The experimental results show that this finger-shaped tactile sensor is effective and high accurate for discriminating the five textures. PMID:24618775

  19. A finger-shaped tactile sensor for fabric surfaces evaluation by 2-dimensional active sliding touch.

    PubMed

    Hu, Haihua; Han, Yezhen; Song, Aiguo; Chen, Shanguang; Wang, Chunhui; Wang, Zheng

    2014-01-01

    Sliding tactile perception is a basic function for human beings to determine the mechanical properties of object surfaces and recognize materials. Imitating this process, this paper proposes a novel finger-shaped tactile sensor based on a thin piezoelectric polyvinylidene fluoride (PVDF) film for surface texture measurement. A parallelogram mechanism is designed to ensure that the sensor applies a constant contact force perpendicular to the object surface, and a 2-dimensional movable mechanical structure is utilized to generate the relative motion at a certain speed between the sensor and the object surface. By controlling the 2-dimensional motion of the finger-shaped sensor along the object surface, small height/depth variation of surface texture changes the output charge of PVDF film then surface texture can be measured. In this paper, the finger-shaped tactile sensor is used to evaluate and classify five different kinds of linen. Fast Fourier Transformation (FFT) is utilized to get original attribute data of surface in the frequency domain, and principal component analysis (PCA) is used to compress the attribute data and extract feature information. Finally, low dimensional features are classified by Support Vector Machine (SVM). The experimental results show that this finger-shaped tactile sensor is effective and high accurate for discriminating the five textures. PMID:24618775

  20. Preparation and characterization of lidocaine rice gel for oral application.

    PubMed

    Okonogi, Siriporn; Kaewpinta, Adchareeya; Yotsawimonwat, Songwut; Khongkhunthian, Sakornrat

    2015-12-01

    The objective of the present study was to prepare buccal anesthetic gels using rice as gelling agent. Rice grains of four rice varieties, Jasmine (JM), Saohai (SH), Homnil (HN), and Doisket (DS) were chemically modified. Buccal rice gels, containing lidocaine hydrochloride as local anesthetic drug were formulated using the respective modified rice varieties. The gels were evaluated for outer appearance, pH, color, gel strength, foaming property, adhesion, in vitro drug release and in vivo efficacy. It was found that the developed rice gels possessed good texture. Rice varieties showed influence on gel strength, color, turbidity, adhesive property, release property, and anesthetic efficacy. JM gel showed the lowest turbidity with light transmission of 86.76 ± 1.18% whereas SH gel showed the highest gel strength of 208.78 ± 10.42 g/cm(2). Lidocaine hydrochloride can cause a decrease in pH and adhesive property but an increase in turbidity of the gels. In vitro drug release profile within 60 min of lidocaine SH gel and lidocaine HN gel showed that lidocaine could be better released from SH gel. Evaluation of in vivo anesthetic efficacy in 100 normal volunteers indicates that both lidocaine rice gels have high efficacy but different levels. Lidocaine SH gel possesses faster onset of duration and longer duration of action than lidocaine HN gel. PMID:26781924

  1. Testosterone Nasal Gel

    MedlinePlus

    Testosterone nasal gel is used to treat symptoms of low testosterone in men who have hypogonadism (a condition in which the body does not produce enough natural testosterone). Testosterone nasal gel is used only for men ...

  2. Fundamentals of Polymer Gel Dosimeters

    NASA Astrophysics Data System (ADS)

    McAuley, Kim B.

    2006-12-01

    The recent literature on polymer gel dosimetry contains application papers and basic experimental studies involving polymethacrylic-acid-based and polyacrylamide-based gel dosimeters. The basic studies assess the relative merits of these two most commonly used dosimeters, and explore the effects of tetrakis hydroxymethyl phosphonium chloride (THPC) antioxidant on dosimeter performance. Polymer gel dosimeters that contain THPC or other oxygen scavengers are called normoxic dosimeters, because they can be prepared under normal atmospheric conditions, rather than in a glove box that excludes oxygen. In this review, an effort is made to explain some of the underlying chemical phenomena that affect dosimeter performance using THPC, and that lead to differences in behaviour between dosimeters made using the two types of monomer systems. Progress on the development of new more effective and less toxic dosimeters is also reported.

  3. Ionic liquid based multifunctional double network gel

    NASA Astrophysics Data System (ADS)

    Ahmed, Kumkum; Higashihara, Tomoya; Arafune, Hiroyuki; Kamijo, Toshio; Morinaga, Takashi; Sato, Takaya; Furukawa, Hidemitsu

    2015-04-01

    Gels are a promising class of soft and wet materials with diverse application in tissue engineering and bio-medical purpose. In order to accelerate the development of gels, it is required to synthesize multi-functional gels of high mechanical strength, ultra low surface friction and suitable elastic modulus with a variety of methods and new materials. Among many types of gel ionic gel made from ionic liquids (ILs) could be used for diverse applications in electrochemical devices and in the field of tribology. IL, a promising materials for lubrication, is a salt with a melting point lower than 100 °C. As a lubricant, ILs are characterized by an extremely low vapor pressure, high thermal stability and high ion conductivity. In this work a novel approach of making double network DN ionic gel using IL has been made utilizing photo polymerization process. A hydrophobic monomer Methyl methacrylate (MMA) has been used as a first network and a hydrophobic IL monomer, N,N-diethyl-N-(2-mthacryloylethyl)-N-methylammonium bistrifluoromethylsulfonyl)imide (DEMM-TFSI) has been used as a second network using photo initiator benzophenon and crosslinker triethylene glycol dimethacrylate (TEGDMA). The resulting DN ionic gel shows transparency, flexibility, high thermal stability, good mechanical toughness and low friction coefficient value which can be a potential candidate as a gel slider in different mechanical devices and can open a new area in the field of gel tribology.

  4. Reduction of gas and water permeabilities using gels

    SciTech Connect

    Seright, R.S.

    1995-05-01

    The authors investigated how different types of gels reduce permeability to water and gases in porous rock. Five types of gels were studied, including (1) a ``weak`` resorcinol-formaldehyde gel, (2) a ``strong`` resorcinol-formaldehyde gel, (3) a Cr(III)-xanthan gel, (4) a Cr(III)-acetate-HPAM gel, and (5) a colloidal-silica gel. For all gels, extensive coreflood experiments were performed to assess the permeability-reduction characteristics and the stability to repeated water-alternating-gas (WAG) cycles. Studies were performed at pressures up to 1,500 psi using either nitrogen or carbon dioxide as the compressed gas. They developed a coreflood apparatus with an inline high-pressure spectrophotometer that allowed tracer studies to be performed without depressurizing the core. They noted several analogies between the results reported here and those observed during a parallel study of the effects of gel on oil and water permeabilities.

  5. Sol-Gel Glasses

    NASA Technical Reports Server (NTRS)

    Mukherjee, S. P.

    1985-01-01

    Multicomponent homogeneous, ultrapure noncrystalline gels/gel derived glasses are promising batch materials for the containerless glass melting experiments in microgravity. Hence, ultrapure, homogeneous gel precursors could be used to: (1) investigate the effect of the container induced nucleation on the glass forming ability of marginally glass forming compositions; and (2) investigate the influence of gravity on the phase separation and coarsening behavior of gel derived glasses in the liquid-liquid immiscibility zone of the nonsilicate systems having a high density phase. The structure and crystallization behavior of gels in the SiO2-GeO2 as a function of gel chemistry and thermal treatment were investigated. As are the chemical principles involved in the distribution of a second network former in silica gel matrix being investigated. The procedures for synthesizing noncrystalline gels/gel-monoliths in the SiO2-GeO2, GeO2-PbO systems were developed. Preliminary investigations on the levitation and thermal treatment of germania silicate gel-monoliths in the Pressure Facility Acoustic Levitator were done.

  6. Bipolar and unipolar resistive switching behaviors of sol-gel-derived SrTiO3 thin films with different compliance currents

    NASA Astrophysics Data System (ADS)

    Tang, M. H.; Wang, Z. P.; Li, J. C.; Zeng, Z. Q.; Xu, X. L.; Wang, G. Y.; Zhang, L. B.; Xiao, Y. G.; Yang, S. B.; Jiang, B.; He, J.

    2011-07-01

    The SrTiO3 (STO) thin films on a Pt/Ti/SiO2/Si substrate were synthesized using a sol-gel method to form a metal-insulator-metal structure. This device shows the bipolar resistance switching (BRS) behavior for a compliance current Icc of less than 0.1 mA but exhibits soft breakdown at a higher level of compliance current. A transition from the BRS behavior to the stable unipolar resistive switching behavior (URS) was also observed. We found that the BRS behavior may be controlled by the structure interface while the URS behavior is likely bulk controlled. Our study indicates that the external compliance current is a key factor in resistance switching phenomenon of STO thin films.

  7. Two-dimensional gel electrophoresis data in support of leaf comparative proteomics of two citrus species differing in boron-tolerance.

    PubMed

    Sang, Wen; Huang, Zeng-Rong; Qi, Yi-Ping; Yang, Lin-Tong; Guo, Peng; Chen, Li-Song

    2015-09-01

    Here, we provide the data from a comparative proteomics approach used to investigate the response of boron (B)-tolerant 'Xuegan' (Citrus sinensis) and B-intolerant 'Sour pummelo' (Citrus grandis) leaves to B-toxicity. Using two-dimensional gel electrophoresis (2-DE) technique, we identified 50 and 45 protein species with a fold change of more than 1.5 and a P-value of less than 0.05 from B-toxic C. sinensis and C. grandis leaves. These B-toxicity-responsive protein species were mainly involved in carbohydrate and energy metabolism, antioxidation and detoxification, stress responses, coenzyme biosynthesis, protein and amino acid metabolism, signal transduction, cell transport, cytoskeleton, nucleotide metabolism, and cell cycle and DNA processing. A detailed analysis of this data may be obtained from Sang et al. (J. Proteomics 114 (2015))[1]. PMID:26217760

  8. Radiological properties of normoxic polymer gel dosimeters

    SciTech Connect

    Venning, A.J.; Nitschke, K.N.; Keall, P.J.; Baldock, C.

    2005-04-01

    The radiological properties of the normoxic polymer gel dosimeters MAGIC, MAGAS, and MAGAT [methacrylic and ascorbic acid in gelatin initiated by copper; methacrylic acid gelatine gel with ascorbic acid; and methacrylic acid gelatine and tetrakis (hydroxymethyl) phosphonium chloride, respectively] have been investigated. The radiological water equivalence was determined by comparing the polymer gel macroscopic photon and electron interaction cross sections over the energy range from 10 keV to 20 MeV and by Monte Carlo modeling of depth doses. Normoxic polymer gel dosimeters have a high gelatine and monomer concentration and therefore mass density (kg m{sup -3}) up to 3.8% higher than water. This results in differences between the cross-section ratios of the normoxic polymer gels and water of up to 3% for the attenuation, energy absorption, and collision stopping power coefficient ratios through the Compton dominant energy range. The mass cross-section ratios were within 2% of water except for the mass attenuation and energy absorption coefficients ratios, which showed differences with water of up to 6% for energies less than 100 keV. Monte Carlo modeling was undertaken for the polymer gel dosimeters to model the electron and photon transport resulting from a 6 MV photon beam. The absolute percentage differences between gel and water were within 1% and the relative percentage differences were within 3.5%. The results show that the MAGAT gel formulation is the most radiological water equivalent of the normoxic polymer gel dosimeters investigated due to its lower mass density measurement compared with MAGAS and MAGIC gels.

  9. CONFORMANCE IMPROVEMENT USING GELS

    SciTech Connect

    Randall S. Seright

    2003-09-01

    This report describes work performed during the second year of the project, ''Conformance Improvement Using Gels.'' The project has two objectives. The first objective is to identify gel compositions and conditions that substantially reduce flow through fractures that allow direct channeling between wells, while leaving secondary fractures open so that high fluid injection and production rates can be maintained. The second objective is to optimize treatments in fractured production wells, where the gel must reduce permeability to water much more than that to oil. Pore-level images from X-ray computed microtomography were re-examined for Berea sandstone and porous polyethylene. This analysis suggests that oil penetration through gel-filled pores occurs by a gel-dehydration mechanism, rather than a gel-ripping mechanism. This finding helps to explain why aqueous gels can reduce permeability to water more than to oil. We analyzed a Cr(III)-acetate-HPAM gel treatment in a production well in the Arbuckle formation. The availability of accurate pressure data before, during, and after the treatment was critical for the analysis. After the gel treatment, water productivity was fairly constant at about 20% of the pre-treatment value. However, oil productivity was stimulated by a factor of 18 immediately after the treatment. During the six months after the treatment, oil productivity gradually decreased to approach the pre-treatment value. To explain this behavior, we proposed that the fracture area open to oil flow was increased substantially by the gel treatment, followed by a gradual closing of the fractures during subsequent production. For a conventional Cr(III)-acetate-HPAM gel, the delay between gelant preparation and injection into a fracture impacts the placement, leakoff, and permeability reduction behavior. Formulations placed as partially formed gels showed relatively low pressure gradients during placement, and yet substantially reduced the flow capacity of

  10. Drop spreading and resorbtion on gel surfaces

    NASA Astrophysics Data System (ADS)

    Banaha, Mehdi; Daerr, Adrian; Limat, Laurent

    2008-03-01

    We have studied the dynamics of liquid drops on agar gels, using a visualisation method which captures the evolution of the free surface. A first remarquable observation is that drops of water deposited on the surface do not spread, although the gel consists of up to 99.7% water and as low as 0.3% agarose. Instead, the drop slowly de-wets and resorbs into the gel which swells locally. If the deposited drop contains surfactants, the dynamics is very different. A sharp circular swelling front develops and progressively invades the whole surface. We study the propagation of this front as a function of surfactant and agarose concentration, and compare its typical properties to similar fronts appearing during mass swarming events of bacterial colonies under the same conditions. The observations reveal the complex nature of gel surface physico-chemistry and its aging, and may be related to recent friction measurements at gel interfaces.

  11. Photoswitchable gel assembly based on molecular recognition.

    PubMed

    Yamaguchi, Hiroyasu; Kobayashi, Yuichiro; Kobayashi, Ryosuke; Takashima, Yoshinori; Hashidzume, Akihito; Harada, Akira

    2012-01-01

    The formation of effective and precise linkages in bottom-up or top-down processes is important for the development of self-assembled materials. Self-assembly through molecular recognition events is a powerful tool for producing functionalized materials. Photoresponsive molecular recognition systems can permit the creation of photoregulated self-assembled macroscopic objects. Here we demonstrate that macroscopic gel assembly can be highly regulated through photoisomerization of an azobenzene moiety that interacts differently with two host molecules. A photoregulated gel assembly system is developed using polyacrylamide-based hydrogels functionalized with azobenzene (guest) or cyclodextrin (host) moieties. Reversible adhesion and dissociation of the host gel from the guest gel may be controlled by photoirradiation. The differential affinities of α-cyclodextrin or β-cyclodextrin for the trans-azobenzene and cis-azobenzene are employed in the construction of a photoswitchable gel assembly system. PMID:22215078

  12. Photoswitchable gel assembly based on molecular recognition

    PubMed Central

    Yamaguchi, Hiroyasu; Kobayashi, Yuichiro; Kobayashi, Ryosuke; Takashima, Yoshinori; Hashidzume, Akihito; Harada, Akira

    2012-01-01

    The formation of effective and precise linkages in bottom-up or top-down processes is important for the development of self-assembled materials. Self-assembly through molecular recognition events is a powerful tool for producing functionalized materials. Photoresponsive molecular recognition systems can permit the creation of photoregulated self-assembled macroscopic objects. Here we demonstrate that macroscopic gel assembly can be highly regulated through photoisomerization of an azobenzene moiety that interacts differently with two host molecules. A photoregulated gel assembly system is developed using polyacrylamide-based hydrogels functionalized with azobenzene (guest) or cyclodextrin (host) moieties. Reversible adhesion and dissociation of the host gel from the guest gel may be controlled by photoirradiation. The differential affinities of α-cyclodextrin or β-cyclodextrin for the trans-azobenzene and cis-azobenzene are employed in the construction of a photoswitchable gel assembly system. PMID:22215078

  13. Chain Release Behavior of Gellan Gels

    NASA Astrophysics Data System (ADS)

    Hossain, Khandker S.; Nishinari, Katsuyoshi

    The chain release behavior from gellan gels was studied by immersing the gel into water and monitoring the mass loss as a function of time. Concentration of released gellan in the external solution was determined for gels of different sizes using phenol-sulfuric acid method. The chain release process became faster with increasing total surface area and volume. However the concentration of released chain normalized by surface area and volume suggests that the chain release itself is governed not only by the ionic effect and the amount of unassociated chains in gel but other factors such as osmotic pressure may play an important role on the chain release from the gels. The diffusion coefficient was estimated from the chain release process which is in the same order of magnitude reported for an isolated gellan chain by light scattering. Rheological measurements also suggest that the unassociated gellan chains are released out when immersed in pure water while unassociated chains are restricted to release out when immersed in salt solution due to the intrusion of cations which is responsible for further association of the unassociated gellan chains being in agreement with the previously published results. The elastic modulus of gels was increased by immersion of gels in water and in salt solutions, which can be attributed as the stiffening of network chains due to gel swelling and the conversion from free and unassociated chains into network chains, respectively, leading to an increase in elastic modulus with time.

  14. Coupled Langmuir oscillations in 2-dimensional quantum plasmas

    SciTech Connect

    Akbari-Moghanjoughi, M.

    2014-03-15

    In this work, we present a hydrodynamic model to study the coupled quantum electron plasma oscillations (QEPO) for two dimensional (2D) degenerate plasmas, which incorporates all the essential quantum ingredients such as the statistical degeneracy pressure, electron-exchange, and electron quantum diffraction effect. Effects of diverse physical aspects like the electronic band-dispersion effect, the electron exchange-correlations and the quantum Bohm-potential as well as other important plasma parameters such as the coupling parameter (plasma separation) and the plasma electron number-densities on the linear response of the coupled system are investigated. By studying three different 2D plasma coupling types, namely, graphene-graphene, graphene-metalfilm, and metalfilm-metalfilm coupling configurations, it is remarked that the collective quantum effects can influence the coupled modes quite differently, depending on the type of the plasma configuration. It is also found that the slow and fast QEPO frequency modes respond very differently to the change in plasma parameters. Current findings can help in understanding of the coupled density oscillations in multilayer graphene, graphene-based heterojunctions, or nanofabricated integrated circuits.

  15. Sol-gel low-temperature synthesis of stable anatase-type TiO2 nanoparticles under different conditions and its photocatalytic activity.

    PubMed

    Behnajady, Mohammad A; Eskandarloo, Hamed; Modirshahla, Nasser; Shokri, Mohammad

    2011-01-01

    In this work, TiO(2) nanoparticles in anatase phase was prepared by sol-gel low temperature method from titanium tetra-isopropoxide (TTIP) as titanium precursor in the presence of acetic acid (AcOH). The effects of synthesis parameters such as AcOH and water ratios, sol formation time, synthesis and calcination temperature on the photocatalytic activity of TiO(2) nanoparticles were evaluated. The resulting nanoparticles were characterized by X-ray diffraction, UV-Vis reflectance spectroscopy, transmission electron microscopy and Brunauer-Emmett-Teller techniques. Photocatalytic activity of anatase TiO(2) nanoparticles determined in the removal of C. I. Acid Red 27 (AR27) under UV light irradiation. Results indicate that with increasing AcOH/TTIP molar ratio from 1 to 10, sol formation time from 1 to 3 h and synthesis temperature from 0 to 25°C, increases crystallite size of synthesized nanoparticles. It was found that optimal conditions for low temperature preparation of anatase-type TiO(2) nanoparticles with high photocatalytic activity were as follows: TTIP:AcOH:water molar ratio 1:1:200, sol formation time 1 h, synthesis temperature 0°C and calcination temperature 450°C. PMID:21668867

  16. CONFORMANCE IMPROVEMENT USING GELS

    SciTech Connect

    Randall S. Seright

    2004-03-01

    This technical progress report describes work performed from September 1, 2003, through February 29, 2004, for the project, ''Conformance Improvement Using Gels.'' We examined the properties of several ''partially formed'' gels that were formulated with a combination of high and low molecular weight HPAM polymers. After placement in 4-mm-wide fractures, these gels required about 25 psi/ft for brine to breach the gel (the best performance to date in fractures this wide). After this breach, stabilized residual resistance factors decreased significantly with increased flow rate. Also, residual resistance factors were up to 9 times greater for water than for oil. Nevertheless, permeability reduction factors were substantial for both water and oil flow. Gel with 2.5% chopped fiberglass effectively plugged 4-mm-wide fractures if a 0.5-mm-wide constriction was present. The ability to screen-out at a constriction appears crucial for particulate incorporation to be useful in plugging fractures. In addition to fiberglass, we examined incorporation of polypropylene fibers into gels. Once dispersed in brine or gelant, the polypropylene fibers exhibited the least gravity segregation of any particulate that we have tested to date. In fractures with widths of at least 2 mm, 24-hr-old gels (0.5% high molecular weight HPAM) with 0.5% fiber did not exhibit progressive plugging during placement and showed extrusion pressure gradients similar to those of gels without the fiber. The presence of the fiber roughly doubled the gel's resistance to first breach by brine flow. The breaching pressure gradients were not as large as for gels made with high and low molecular weight polymers (mentioned above). However, their material requirements and costs (i.e., polymer and/or particulate concentrations) were substantially lower than for those gels. A partially formed gel made with 0.5% HPAM did not enter a 0.052-mm-wide fracture when applying a pressure gradient of 65 psi/ft. This result

  17. Modeling chemoresponsive polymer gels.

    PubMed

    Kuksenok, Olga; Deb, Debabrata; Dayal, Pratyush; Balazs, Anna C

    2014-01-01

    Stimuli-responsive gels are vital components in the next generation of smart devices, which can sense and dynamically respond to changes in the local environment and thereby exhibit more autonomous functionality. We describe recently developed computational methods for simulating the properties of such stimuli-responsive gels in the presence of optical, chemical, and thermal gradients. Using these models, we determine how to harness light to drive shape changes and directed motion in spirobenzopyran-containing gels. Focusing on oscillating gels undergoing the Belousov-Zhabotinksy reaction, we demonstrate that these materials can spontaneously form self-rotating assemblies, or pinwheels. Finally, we model temperature-sensitive gels that encompass chemically reactive filaments to optimize the performance of this system as a homeostatic device for regulating temperature. These studies could facilitate the development of soft robots that autonomously interconvert chemical and mechanical energy and thus perform vital functions without the continuous need of external power sources. PMID:24498954

  18. Virtual space and 2-dimensional effects in perspective displays

    NASA Technical Reports Server (NTRS)

    Mcgreevy, M. W.; Ratzlaff, C. R.; Ellis, S. R.

    1986-01-01

    When interpreting three dimensional spatial relationships presented on a two dimensional display surface, the viewer is required to mentally reconstruct the original information. This reconstruction is influenced by both the perspective geometry of the displayed image and the viewer's eye position relative to the display. In a study which manipulated these variables, subjects judged the azimuth direction of a target object relative to a reference object fixed in the center of a perspective display. The results support a previously developed model which predicted that the azimuth judgement error would be a sinusoidal function of stimulus azimuth. The amplitude of this function was correctly predicted to be systematically modulated by both the perspective geometry of the image and the viewer's eye position relative to the screen. Interaction of the two components of the model, the virtual space effect and the 3D-to-2D projection effect, predicted the relative amplitudes of the sinusoidal azimuth error functions for the various conditions of the experiment. Mean azimuth judgements in some directions differed by as much as 25 degrees as a result of different combinations of eye position and image geometry. The results illustrate the need to consider the effects of perspective geometry when designing spatial information instruments, and show the model to be a reliable predictor of average performance.

  19. Electronic thermal conductivity of 2-dimensional circular-pore metallic nanoporous materials

    NASA Astrophysics Data System (ADS)

    Huang, Cong-Liang; Lin, Zi-Zhen; Luo, Dan-Chen; Huang, Zun

    2016-09-01

    The electronic thermal conductivity (ETC) of 2-dimensional circular-pore metallic nanoporous material (MNM) was studied here for its possible applications in thermal cloaks. A simulation method based on the free-electron-gas model was applied here without considering the quantum effects. For the MNM with circular nanopores, there is an appropriate nanopore size for thermal conductivity tuning, while a linear relationship exists for this size between the ETC and the porosity. The appropriate nanopore diameter size will be about one times that of the electron mean free path. The ETC difference along different directions would be less than 10%, which is valuable when estimating possible errors, because the nanoscale-material direction could not be controlled during its application. Like nanoparticles, the ETC increases with increasing pore size (diameter for nanoparticles) while the porosity was fixed, until the pore size reaches about four times that of electron mean free path, at which point the ETC plateaus. The specular coefficient on the surface will significantly impact the ETC, especially for a high-porosity MNM. The ETC can be decreased by 30% with a tuning specular coefficient.

  20. From 2-dimensional cephalograms to 3-dimensional computed tomography scans.

    PubMed

    Halazonetis, Demetrios J

    2005-05-01

    Computed tomography is entering the orthodontic specialty as a mainstream diagnostic modality. Radiation exposure and cost have decreased significantly, and the diagnostic value is very high compared with traditional radiographic options. However, 3-dimensional data present new challenges and need a different approach from traditional viewing of static images to make the most of the available possibilities. Advances in computer hardware and software now enable interactive display of the data on personal computers, with the ability to selectively view soft or hard tissues from any angle. Transfer functions are used to apply transparency and color. Cephalometric measurements can be taken by digitizing points in 3-dimensional coordinates. Application of 3-dimensional data is expected to increase significantly soon and might eventually replace many conventional orthodontic records that are in use today. PMID:15877045

  1. Genetic Diversity of Clostridium sporogenes PA 3679 Isolates Obtained from Different Sources as Resolved by Pulsed-Field Gel Electrophoresis and High-Throughput Sequencing

    PubMed Central

    Wang, Yun; Butler, Robert R.; Reddy, N. Rukma; Skinner, Guy E.; Larkin, John W.

    2015-01-01

    Clostridium sporogenes PA 3679 is a nonpathogenic, nontoxic model organism for proteolytic Clostridium botulinum used in the validation of conventional thermal food processes due to its ability to produce highly heat-resistant endospores. Because of its public safety importance, the uncertain taxonomic classification and genetic diversity of PA 3679 are concerns. Therefore, isolates of C. sporogenes PA 3679 were obtained from various sources and characterized using pulsed-field gel electrophoresis (PFGE) and whole-genome sequencing. The phylogenetic relatedness and genetic variability were assessed based on 16S rRNA gene sequencing and whole-genome single nucleotide polymorphism (SNP) analysis. All C. sporogenes PA 3679 isolates were categorized into two clades (clade I containing ATCC 7955 NCA3679 isolates 1961-2, 1990, and 2007 and clade II containing PA 3679 isolates NFL, UW, FDA, and Campbell and ATCC 7955 NCA3679 isolate 1961-4). The 16S maximum likelihood (ML) tree clustered both clades within proteolytic C. botulinum strains, with clade I forming a distinct cluster with other C. sporogenes non-PA 3679 strains. SNP analysis revealed that clade I isolates were more similar to the genomic reference PA 3679 (NCTC8594) genome (GenBank accession number AGAH00000000.1) than clade II isolates were. The genomic reference C. sporogenes PA 3679 (NCTC8594) genome and clade I C. sporogenes isolates were genetically distinct from those obtained from other sources (University of Wisconsin, National Food Laboratory, U.S. Food and Drug Administration, and Campbell's Soup Company). Thermal destruction studies revealed that clade I isolates were more sensitive to high temperature than clade II isolates were. Considering the widespread use of C. sporogenes PA 3679 and its genetic information in numerous studies, the accurate identification and genetic characterization of C. sporogenes PA 3679 are of critical importance. PMID:26519392

  2. Genetic Diversity of Clostridium sporogenes PA 3679 Isolates Obtained from Different Sources as Resolved by Pulsed-Field Gel Electrophoresis and High-Throughput Sequencing.

    PubMed

    Schill, Kristin M; Wang, Yun; Butler, Robert R; Pombert, Jean-François; Reddy, N Rukma; Skinner, Guy E; Larkin, John W

    2016-01-01

    Clostridium sporogenes PA 3679 is a nonpathogenic, nontoxic model organism for proteolytic Clostridium botulinum used in the validation of conventional thermal food processes due to its ability to produce highly heat-resistant endospores. Because of its public safety importance, the uncertain taxonomic classification and genetic diversity of PA 3679 are concerns. Therefore, isolates of C. sporogenes PA 3679 were obtained from various sources and characterized using pulsed-field gel electrophoresis (PFGE) and whole-genome sequencing. The phylogenetic relatedness and genetic variability were assessed based on 16S rRNA gene sequencing and whole-genome single nucleotide polymorphism (SNP) analysis. All C. sporogenes PA 3679 isolates were categorized into two clades (clade I containing ATCC 7955 NCA3679 isolates 1961-2, 1990, and 2007 and clade II containing PA 3679 isolates NFL, UW, FDA, and Campbell and ATCC 7955 NCA3679 isolate 1961-4). The 16S maximum likelihood (ML) tree clustered both clades within proteolytic C. botulinum strains, with clade I forming a distinct cluster with other C. sporogenes non-PA 3679 strains. SNP analysis revealed that clade I isolates were more similar to the genomic reference PA 3679 (NCTC8594) genome (GenBank accession number AGAH00000000.1) than clade II isolates were. The genomic reference C. sporogenes PA 3679 (NCTC8594) genome and clade I C. sporogenes isolates were genetically distinct from those obtained from other sources (University of Wisconsin, National Food Laboratory, U.S. Food and Drug Administration, and Campbell's Soup Company). Thermal destruction studies revealed that clade I isolates were more sensitive to high temperature than clade II isolates were. Considering the widespread use of C. sporogenes PA 3679 and its genetic information in numerous studies, the accurate identification and genetic characterization of C. sporogenes PA 3679 are of critical importance. PMID:26519392

  3. 2-Dimensional HDO Maps of the Martian Atmosphere

    NASA Astrophysics Data System (ADS)

    Cabral, Y. M.; Novak, R. E.; Dunne, T.; Farrell, A.; Mumma, M. J.; Bonev, B.

    2004-11-01

    We present two-dimensional maps of HDO column densities for opposite seasons of the year. The data were collected on March 23, 2003 (Ls ˜ 155 degrees) and January 11, 2004 (Ls ˜ 333 degrees). We used CSHELL at the NASA Infrared Telescope Facility (0.5 arc-second slit, resolving power ˜ 40,000). The slit was positioned N-S on Mars and stepped E-W at one arc-second intervals across the planet. HDO spectral lines were detected near 3.67 μ m; a solar Fraunhofer line near 3.68 μ m was used to monitor the relative proportion between reflected sunlight and surface thermal emission. Values obtained at different slit positions were interpolated and projected onto a globe. Observations from 2003 were centered near 270 W; the map shows the Hellas basin clearly detected. The 2004 observations were centered near 190 W. These observations are part of a larger project to determine the D/H ratio by measuring abundances of HDO and H2O across the planet. This work was partially funded by grants from NASA's Planetary Astronomy Program (RTOP 344-32-51-96 to M. J. Mumma) and NSF RUI Program (AST-0205397 to R. E. Novak).

  4. Towards automatic calibration of 2-dimensional flood propagation models

    NASA Astrophysics Data System (ADS)

    Fabio, P.; Aronica, G. T.; Apel, H.

    2009-11-01

    Hydraulic models for flood propagation description are an essential tool in many fields, e.g. civil engineering, flood hazard and risk assessments, evaluation of flood control measures, etc. Nowadays there are many models of different complexity regarding the mathematical foundation and spatial dimensions available, and most of them are comparatively easy to operate due to sophisticated tools for model setup and control. However, the calibration of these models is still underdeveloped in contrast to other models like e.g. hydrological models or models used in ecosystem analysis. This has basically two reasons: first, the lack of relevant data against the models can be calibrated, because flood events are very rarely monitored due to the disturbances inflicted by them and the lack of appropriate measuring equipment in place. Secondly, especially the two-dimensional models are computationally very demanding and therefore the use of available sophisticated automatic calibration procedures is restricted in many cases. This study takes a well documented flood event in August 2002 at the Mulde River in Germany as an example and investigates the most appropriate calibration strategy for a full 2-D hyperbolic finite element model. The model independent optimiser PEST, that gives the possibility of automatic calibrations, is used. The application of the parallel version of the optimiser to the model and calibration data showed that a) it is possible to use automatic calibration in combination of 2-D hydraulic model, and b) equifinality of model parameterisation can also be caused by a too large number of degrees of freedom in the calibration data in contrast to a too simple model setup. In order to improve model calibration and reduce equifinality a method was developed to identify calibration data with likely errors that obstruct model calibration.

  5. Exploratory data analysis groupware for qualitative and quantitative electrophoretic gel analysis over the Internet-WebGel.

    PubMed

    Lemkin, P F; Myrick, J M; Lakshmanan, Y; Shue, M J; Patrick, J L; Hornbeck, P V; Thornwal, G C; Partin, A W

    1999-12-01

    Many scientists use quantitative measurements to compare the presence and amount, of various proteins and nucleotides among series of one- and two-dimensional (1-D and 2-D) electrophoretic gels. These gels are often scanned into digital image files. Gel spots are then quantified using stand-alone analysis software. However, as more research collaborations take place over the Internet, it has become useful to share intermediate quantitative data between researchers. This allows research group members to investigate their data and share their work in progress. We developed a World Wide Web group-accessible software system, WebGel, for interactively exploring qualitative and quantitative differences between electrophoretic gels. Such Internet databases are useful for publishing quantitative data and allow other researchers to explore the data with respect to their own research. Because intermediate results of one user may be shared with their collaborators using WebGel, this form of active data-sharing constitutes a groupware method for enhancing collaborative research. Quantitative and image gel data from a stand-alone gel image processing system are copied to a database accessible on the WebGel Web server. These data are then available for analysis by the WebGel database program residing on that server. Visualization is critical for better understanding of the data. WebGel helps organize labeled gel images into montages of corresponding spots as seen in these different gels. Various views of multiple gel images, including sets of spots, normalization spots, labeled spots, segmented gels, etc. may also be displayed. These displays are active and may be used for performing database operations directly on individual protein spots by simply clicking on them. Corresponding regions between sets of gels may be visually analyzed using Flicker-comparison (Electrophoresis 1997, 18, 122-140) as one of the WebGel methods for qualitative analysis. Quantitative exploratory data

  6. Role of surface defects on the formation of the 2-dimensional electron gas at polar interfaces

    NASA Astrophysics Data System (ADS)

    Artacho, Emilio; Aguado-Puente, Pablo

    2014-03-01

    The discovery of a 2-dimensional electron gas (2DEG) at the interface between two insulators, LaAlO3 and SrTiO3, has fuelled a great research activity on this and similar systems in the last years. The electronic reconstruction model, typically invoked to explain the formation of the 2DEG, while being intuitive and successful on predicting fundamental aspects of this phenomenon like the critical thickness of LaAlO3, fails to explain many other experimental observations. Oxygen vacancies, on the other hand, are known to dramatically affect the physical behaviour of this system, but their role at the atomic level is far from well understood. Here we perform ab initio simulations in order to assess whether the formation of oxygen vacancies at the surface of the polar material can account for various recent experimental results that defy the current theoretical understanding of these interfaces. We simulate SrTiO3/LaAlO3 slabs with various concentrations of surface oxygen vacancies and analyze the role of the defects on the formation of the metallic interface, their electrostatic coupling with the 2DEG and the interplay with the different instabilities of the materials involved. Financial support from Spanish MINECO under grant FIS2012-37549-C05-01. Computational resources provided by the Red Espñola de Supercomputación and DIPC.

  7. Optimizing Human Bile Preparation for Two-Dimensional Gel Electrophoresis

    PubMed Central

    Cheng, Hao-Tsai; Sung, Chang-Mu; Pai, Betty Chien-Jung; Liu, Nai-Jen; Chen, Carl PC

    2016-01-01

    Aims. Bile is an important body fluid which assists in the digestion of fat and excretion of endogenous and exogenous compounds. In the present study, an improved sample preparation for human bile was established. Methods and Material. The method involved acetone precipitation followed by protein extraction using commercially available 2D Clean-Up kit. The effectiveness was evaluated by 2-dimensional electrophoresis (2DE) profiling quality, including number of protein spots and spot distribution. Results. The total protein of bile fluid in benign biliary disorders was 0.797 ± 0.465 μg/μL. The sample preparation method using acetone precipitation first followed by 2D Clean-Up kit protein extraction resulted in better quality of 2DE gel images in terms of resolution as compared with other sample preparation methods. Using this protocol, we obtained approximately 558 protein spots on the gel images and with better protein spots presentation of haptoglobin, serum albumin, serotransferrin, and transthyretin. Conclusions. Protein samples of bile prepared using acetone precipitation followed by 2D Clean-Up kit exhibited high protein resolution and significant protein profile. This optimized protein preparation protocol can effectively concentrate bile proteins, remove abundant proteins and debris, and yield clear presentation of nonabundant proteins and its isoforms on 2-dimensional electrophoresis gel images. PMID:26966686

  8. Multiscale modeling of polyelectrolyte gels

    NASA Astrophysics Data System (ADS)

    Wallmersperger, Thomas; Wittel, Falk K.; Kröplin, Bernd H.

    2006-03-01

    Electrolyte polymer gels are a very attractive class of actuation materials with remarkable electronic and mechanical properties having a great similarity to biological contractile tissues. They consist of a polymer network with ionizable groups and a liquid phase with mobile ions. Absorption and delivery of solvent lead to a considerably large change of volume. Due to this capability, they can be used as actuators for technical applications, where large swelling and shrinkage is desired. In the present work chemically and electrically stimulated polymer gels in a solution bath are investigated. To describe the different complicated phenomena occurring in these gels adequately, the modeling can be conducted on different scales. Therefore, models based on the statistical theory and porous media theory, as well as a multi-field model and a discrete element formulation are derived. A refinement of the different theories from global macroscopic to microscopic are presented in this paper: The statistical theory is a macroscopic theory capable to describe the global swelling or bending e.g. of a gel film, while the general theory of porous media (TPM) is a macroscopic continuum theory which is based on the theory of mixtures extended by the concept of volume fractions. The TPM is a homogenized model, i.e. all geometrical and physical quantities can be seen as statistical averages of the real quantities. The presented chemo-electro-mechanical multi-field formulation is a mesoscopic theory. It is capable of giving the concentrations and the electric potential in the whole domain. Finally the (micromechanical) discrete element (DE) theory is employed. In this case, the continuum is represented by distributed particles with local interaction relations combined with balance equations for the chemical field. This method is predestined for problems involving large displacements, strains and discontinuities. The presented formulations are compared and conclusions on their

  9. Viscoelasticity of silica gels

    SciTech Connect

    Scherer, G.W.

    1995-12-01

    The response of silica gels to mechanical loads depends on the properties of the solid phase and the permeability of the network. Understanding this behavior is essential for modeling of stresses developed during drying or heating of gels. The permeability and the mechanical properties are readily determined from a simple beam-bending experiment, by measuring the load relaxation that occurs at constant deflection. Load decay results from movement of the liquid within the network; in addition, there may be viscoelastic relaxation of the network itself. Silica gel is viscoelastic in chemically aggressive media, but in inert liquids (such as ethanol or acetone) it is elastic. Experiments show that the viscoelastic relaxation time decreases as the concentration and pH of the water in the pore liquid increase. During drying, the permeability decreases and the viscosity increases, both exhibiting a power-law dependence on density of the gel network.

  10. Testosterone Nasal Gel

    MedlinePlus

    ... enough natural testosterone). Testosterone nasal gel is used only for men with low testosterone levels caused by ... is a controlled substance. Prescriptions may be refilled only a limited number of times; ask your pharmacist ...

  11. Microfluidics with Gel Emulsions

    NASA Astrophysics Data System (ADS)

    Priest, Craig; Surenjav, Enkhtuul; Herminghaus, Stephan; Seemann, Ralf

    2006-03-01

    Microfluidic processing is usually achieved using single phase liquids. Instead, we use monodisperse emulsions to compartment liquids within microchannel geometries. At low continuous phase volume fractions, droplets self-organize to form well-defined arrangements, analogous to foam. While it is well-known that confined geometries can induce rearrangement of foam compartments at the millimeter-scale, similar dynamics are also expected for gel emulsions. We have studied online generation, organization and manipulation of gel emulsions using a variety of microchannel geometries. ``Passive'' reorganization, based on fixed channel geometries, can be supplemented by ``active'' manipulation by incorporating a ferrofluid phase. A ferromagnetic phase facilitates reorganization of liquid compartments on demand using an electromagnetic trigger. Moreover, coalescence between adjacent compartments within a gel emulsion can be induced using electrical potential. Microfluidics using gel emulsions will be well-suited for combinatorial chemistry, DNA sequencing, drug screening and protein crystallizations.

  12. Statistical analysis on 1-dimensional and 2-dimensional thermal dissipation for nickel metal hydride battery system

    NASA Astrophysics Data System (ADS)

    Hashim, Mohammad Firdaus Abu; Ramakrishnan, Sivakumar; Mohamad, Ahmad Azmin

    2014-06-01

    Due to low environmental impact and rechargeable capability, the Nickel Metal Hydride battery has been considered to be one of the most promising candidate battery for electrical vehicle nowadays. The energy delivered by the Nickel Metal Hydride battery depends heavily on its discharge profile and generally it is intangible to tract the trend of the energydissipation that is stored in the battery for informative analysis. The thermal models were developed in 1-dimensional and 2-dimensional using Matlab and these models are capable of predicting the temperature distributions inside a cell. The simulated results were validated and verified with referred exact sources of experimental data using Minitab software. The result for 1-Dimensional showed that the correlations between experimental and predicted results for the time intervals 60 minutes, 90 minutes, and 114 minutes frompositive to negative electrode thermal dissipationdirection are34%, 83%, and 94% accordingly while for the 2-Dimensional the correlational results for the same above time intervals are44%, 93% and 95%. These correlationalresults between experimental and predicted clearly indicating the thermal behavior under natural convention can be well fitted after around 90 minutes durational time and 2-Dimensional model can predict the results more accurately compared to 1-Dimensional model. Based on the results obtained from simulations, it can be concluded that both 1-Dimensional and 2-Dimensional models can predict nearly similar thermal behavior under natural convention while 2-Dimensional model was used to predict thermal behavior under forced convention for better accuracy.

  13. Preparation of chitosan gel

    NASA Astrophysics Data System (ADS)

    Moussaoui, Y.; Mnasri, N.; Elaloui, E.; Ben Salem, R.; Lagerge, S.; de Menorval, L. C.

    2012-06-01

    Aerogel conditioning of the chitosan makes it possible to prepare porous solids of significant specific surface. The increase in the chitosan concentration or the degree of acetylation decreases the specific surface of the synthesized chitosan gel. Whereas drying with supercritical CO2 more effectively makes it possible to preserve the volume of the spheres of gel and to have a more significant specific surface in comparison with evaporative drying.

  14. Crystallization from Gels

    NASA Astrophysics Data System (ADS)

    Narayana Kalkura, S.; Natarajan, Subramanian

    Among the various crystallization techniques, crystallization in gels has found wide applications in the fields of biomineralization and macromolecular crystallization in addition to crystallizing materials having nonlinear optical, ferroelectric, ferromagnetic, and other properties. Furthermore, by using this method it is possible to grow single crystals with very high perfection that are difficult to grow by other techniques. The gel method of crystallization provides an ideal technique to study crystal deposition diseases, which could lead to better understanding of their etiology. This chapter focuses on crystallization in gels of compounds that are responsible for crystal deposition diseases. The introduction is followed by a description of the various gels used, the mechanism of gelling, and the fascinating phenomenon of Liesegang ring formation, along with various gel growth techniques. The importance and scope of study on crystal deposition diseases and the need for crystal growth experiments using gel media are stressed. The various crystal deposition diseases, viz. (1) urolithiasis, (2) gout or arthritis, (3) cholelithiasis and atherosclerosis, and (4) pancreatitis and details regarding the constituents of the crystal deposits responsible for the pathological mineralization are discussed. Brief accounts of the theories of the formation of urinary stones and gallstones and the role of trace elements in urinary stone formation are also given. The crystallization in gels of (1) the urinary stone constituents, viz. calcium oxalate, calcium phosphates, uric acid, cystine, etc., (2) the constituents of the gallstones, viz. cholesterol, calcium carbonate, etc., (3) the major constituent of the pancreatic calculi, viz., calcium carbonate, and (4) cholic acid, a steroidal hormone are presented. The effect of various organic and inorganic ions, trace elements, and extracts from cereals, herbs, and fruits on the crystallization of major urinary stone and gallstone

  15. Conformance Improvement Using Gels

    SciTech Connect

    Seright, Randall S.; Schrader, Richard; II Hagstrom, John; Wang, Ying; Al-Dahfeeri, Abdullah; Gary, Raven; Marin; Amaury; Lindquist, Brent

    2002-09-26

    This research project had two objectives. The first objective was to identify gel compositions and conditions that substantially reduce flow through fractures that allow direct channeling between wells, while leaving secondary fractures open so that high fluid injection and production rates can be maintained. The second objective was to optimize treatments in fractured production wells, where the gel must reduce permeability to water much more than that to oil.

  16. Gels and gel-derived glasses in the Na2O-B2O3-SiO2 system. [containerless melting in space

    NASA Technical Reports Server (NTRS)

    Mukherjee, S. P.

    1982-01-01

    The containerless melting of high-purity multicomponent homogeneous gels and gel-monoliths offers a unique approach to making ultrapure multicomponent optical glasses in the reduced gravity environment of space. Procedures for preparing and characterizing gels and gel-derived glasses in the Na2O-B2O3-SiO2 system are described. Preparation is based on the polymerization reactions of alkoxysilane with trimethyl borate or boric acid and a suitable sodium compound. The chemistry of the gelling process is discussed in terms of process parameters and the gel compositions. The physicochemical nature of gels prepared by three different procedures were found to be significantly different. IR absorption spectra indicate finite differences in the molecular structures of the different gels. The melting of the gel powders and the transformation of porous gel-monoliths to transparent 'glass' without melting are described.

  17. Gels and gel-derived glasses in the system Na2O-B2O3-SiO2

    NASA Technical Reports Server (NTRS)

    Mukherjee, S. P.

    1983-01-01

    The containerless melting of high-purity multicomponent homogeneous gels and gel monoliths offers a unique approach to making ultrapure multicomponent optical glasses in the reduced gravity environment of space. Procedures for preparing and characterizing gels and gel-derived glasses in the system Na2O-B2O3-SiO2 are described. Preparation is based on the polymerization reactions of alkoxysilane with trimethyl borate or boric acid and a suitable sodium compound. The chemistry of the gelling process is discussed in terms of process parameters and the gel compositions. The physicochemical nature of gels prepared by three different procedures was found to be significantly different. Infrared absorption spectra indicate finite differences in the molecular structures of the different gels. The melting of the gel powders and the transformation of porous gel monoliths to transparent 'glass' without melting are described.

  18. Polyacrylamide gel electrophoresis.

    PubMed

    Chrambach, A; Rodbard, D

    1971-04-30

    Polyacrylamide gel electrophoresis (PAGE) provides a versatile, gentle, high resolution method for fractionation and physical-chemical characterization of molecules on the basis of size, conformation, and net charge. The polymerization reaction can be rigorously controlled to provide uniform gels of reproducible, measurable pore size over a wide range. This makes it possible to obtain reproducible relative mobility (Rf) values as physical-chemical constants. Application and extension of Ogston's (random fiber) model for a gel allows for calculation of molecular volume, surface area, or radius, free mobility, and valence from RJ measurements at several gel concentrations, to calculate gel concentration for optimal resolution, and to predict behavior of macromolecules on gel gradients by computerized methods. Extension of classical moving boundary theory has been used to generate multiphasic buffer systems (providing selective stacking, unstacking, restacking, and preparative steady-state-stacking) with known operating characteristics for any pH at 0 degrees and 25 degrees C. A general strategy for isolation of macromolecules and for macromolecular mapping has been developed. Preparative scale PAGE is operational for milligram loads and feasible for gram quantities. PMID:4927678

  19. Formulation and evaluation of curcumin gel for topical application.

    PubMed

    Patel, Nikunjana A; Patel, Natvar J; Patel, Rakesh P

    2009-01-01

    The aim of the present investigation was to develop and study topical gel delivery of curcumin for its anti-inflammatory effects. Carbopol 934P (CRB) and hydroxypropylcellulose (HPC) were used for the preparation of gels. The penetration enhancing effect of menthol (0-12.5% w/w) on the percutaneous flux of curcumin through the excised rat epidermis from 2% w/w CRB and HPC gel system was investigated. All the prepared gel formulations were evaluated for various properties such as compatibility, drug content, viscosity, in vitro skin permeation, and anti-inflammatory effect. The drug and polymers compatibility was confirmed by Differential scanning calorimetry and infrared spectroscopy. The percutaneous flux and enhancement ratio of curcumin across rat epidermis was enhanced markedly by the addition of menthol to both types of gel formulations. Both types of developed topical gel formulations were free of skin irritation. In anti-inflammatory studies done by carrageenan induced rat paw oedema method in wistar albino rats, anti-inflammatory effect of CRB, HPC and standard gel formulations were significantly different from control group (P < 0.05) whereas this effect was not significantly different for CRB and HPC gels formulations to that of standard (diclofenac gel) formulation (P > 0.05). CRB gel showed better % inhibition of inflammation as compared to HPC gel. PMID:18821270

  20. Phase transfer of 1- and 2-dimensional Cd-based nanocrystals

    NASA Astrophysics Data System (ADS)

    Kodanek, Torben; Banbela, Hadeel M.; Naskar, Suraj; Adel, Patrick; Bigall, Nadja C.; Dorfs, Dirk

    2015-11-01

    In this work, luminescent CdSe@CdS dot-in-rod nanocrystals, CdSe@CdS/ZnS nanorods as well as CdSe-CdS core-crown nanoplatelets were transferred into aqueous phase via ligand exchange reactions. For this purpose, bifunctional thiol-based ligands were employed, namely mercaptoacetic acid (MAA), 3-mercaptopropionic acid (MPA), 11-mercaptoundecanoic acid (MUA) as well as 2-(dimethylamino)ethanthiol (DMAET). Systematic investigations by means of photoluminescence quantum yield measurements as well as photoluminescence decay measurements have shown that the luminescence properties of the transferred nanostructures are affected by hole traps (induced by the thiol ligands themselves) as well as by spatial insulation and passivation against the environment. The influence of the tips of the nanorods on the luminescence is, however, insignificant. Accordingly, different ligands yield optimum results for different nanoparticle samples, mainly depending on the inorganic passivation of the respective samples. In case of CdSe@CdS nanorods, the highest emission intensities have been obtained by using short-chain ligands for the transfer preserving more than 50% of the pristine quantum yield of the hydrophobic nanorods. As opposed to this, the best possible quantum efficiency for the CdSe@CdS/ZnS nanorods has been achieved via MUA. The gained knowledge could be applied to transfer for the first time 2-dimensional CdSe-CdS core-crown nanoplatelets into water while preserving significant photoluminescence (up to 12% quantum efficiency).In this work, luminescent CdSe@CdS dot-in-rod nanocrystals, CdSe@CdS/ZnS nanorods as well as CdSe-CdS core-crown nanoplatelets were transferred into aqueous phase via ligand exchange reactions. For this purpose, bifunctional thiol-based ligands were employed, namely mercaptoacetic acid (MAA), 3-mercaptopropionic acid (MPA), 11-mercaptoundecanoic acid (MUA) as well as 2-(dimethylamino)ethanthiol (DMAET). Systematic investigations by means of

  1. Reversible Gel-Sol Transition of a Photo-Responsive DNA Gel.

    PubMed

    Kandatsu, Daisuke; Cervantes-Salguero, Keitel; Kawamata, Ibuki; Hamada, Shogo; Nomura, Shin-Ichiro M; Fujimoto, Kenzo; Murata, Satoshi

    2016-06-16

    Stimuli-responsive DNA gels that can undergo a sol-gel transition in response to photo-irradiation provide a way to engineer functional gel material with fully designed DNA base sequences. We propose an X-shaped DNA motif that turns into a gel by hybridization of self-complementary sticky ends. By embedding a photo-crosslinking artificial base in the sticky-end sequence, repetitive gel-sol transitions are achieved through UV irradiation at different wavelengths. The concentration of the DNA motif necessary for gelation is as low as 40 μm after modification of the geometrical properties of the motif. The physical properties, such as swelling degree and diffusion coefficient, were assessed experimentally. PMID:27123549

  2. Effective Hydraulic Conductivity Scaling in a 2-Dimensional Geometrical Multifractal Model for Aquifer Heterogeneity

    NASA Astrophysics Data System (ADS)

    Gentry, R. W.; Perfect, E.; Sukop, M. C.

    2005-12-01

    Recent analyses of field data suggest that the spatial variation of hydraulic conductivity, K, within an aquifer may be multifractal. We investigated the implications of this finding for the scaling of effective hydraulic conductivity, , by performing numerical simulations of flow in 2-dimensional geometrical multifractal K fields. A theoretical framework for generating such fields is presented based on the parameters of the truncated binomial distribution, TBD. This leads to an approximate analytical expression showing that increases with increasing length scale as a power law, whose exponent, α, is determined by the TBD parameters. Five geometrical multifractal K fields were generated with different minimum length scales. Each domain was discretized using a block center grid consisting of 59,049 uniformly-spaced nodes. A unit cube aquifer was used for the numerical simulations. The boundary conditions were implemented with constant head (unit gradient) parallel planes, and corresponding zero flux planes on the normal axes. A finite difference simulation model based on MODFLOW 2000 was used, and "zone budget" was employed to calculate the flow balance. The discharge into and out of the unit cube was then used to calculate based on Darcy's law. The numerical simulations produced similar increases in with increasing length scale to those predicted by the analytical model. Nonlinear regression analyses yielded estimates of α from the numerical simulations that were within 10% of the analytical value for these fields. These simulations provide a theoretical explanation for effective hydraulic conductivity scaling in terms of multifractals. The advantage of such an approach is that the α-parameter, which controls the degree of scaling, is physically-based and can potentially be estimated from independent measurements.

  3. Gel pad application for automated breast sonography.

    PubMed

    Kim, Yun Ju; Kim, Sung Hun; Jeh, Su Kyung; Choi, Jae Jeong; Kang, Bong Joo; Song, Byung Joo

    2015-04-01

    The purpose of this study was to describe the technical aspects of gel pad application for automated breast sonography and to show its effects on pain relief, scan coverage, and image quality. Twenty patients underwent 2 sets of automated breast sonography with and without gel pad application and were then asked to provide feedback on the examination-related pain. Scan coverage and image quality were compared quantitatively and qualitatively. The degree of pain was significantly decreased after gel pad application (P < .0001). The scan coverage was expanded particularly at the mid-portion of the breast. Image quality was satisfactory without significant differences between the sets. Gel pad application for automated breast sonography is easy and provides significant pain relief. The scan coverage was expanded, while the image quality was maintained. PMID:25792588

  4. Evolution of gel structure during thermal processing of Na-geopolymer gels.

    PubMed

    Duxson, Peter; Lukey, Grant C; van Deventer, Jannie S J

    2006-10-10

    The present work examines how the gel structure and phase composition of Na-geopolymers derived from metakaolin with varied Si/Al ratio evolve with exposure to temperatures up to 1000 degrees C. Gels were thermally treated and characterized using quantitative XRD, DTA, and FTIR to elucidate the changes in gel structure, phase composition, and porosity at each stage of heating. It is found that the phase stability, defined by the amount and onset temperature of crystallization, is improved at higher Si/Al ratios. Two different mechanisms of densification have been isolated by FTIR, related to viscous flow and collapse of the highly distributed pore network in the gel. Gels with low Si/Al ratio only experience viscous flow that correlates with low thermal shrinkage. Gels at a higher Si/Al ratio, which have a homogeneous microstructure composed of a highly distributed porosity, undergo both densification processes corresponding to a large extent of thermal shrinkage during densification. This work elucidates the intimate relationship between gel microstructure, chemistry, and thermal evolution of Na-geopolymer gels. PMID:17014113

  5. Anion-switchable supramolecular gels for controlling pharmaceutical crystal growth

    NASA Astrophysics Data System (ADS)

    Foster, Jonathan A.; Piepenbrock, Marc-Oliver M.; Lloyd, Gareth O.; Clarke, Nigel; Howard, Judith A. K.; Steed, Jonathan W.

    2010-12-01

    We describe the use of low-molecular-weight supramolecular gels as media for the growth of molecular crystals. Growth of a range of crystals of organic compounds, including pharmaceuticals, was achieved in bis(urea) gels. Low-molecular-weight supramolecular gelators allow access to an unlimited range of solvent systems, in contrast to conventional aqueous gels such as gelatin and agarose. A detailed study of carbamazepine crystal growth in four different bis(urea) gelators, including a metallogelator, is reported. The crystallization of a range of other drug substances, namely sparfloxacin, piroxicam, theophylline, caffeine, ibuprofen, acetaminophen (paracetamol), sulindac and indomethacin, was also achieved in supramolecular gel media without co-crystal formation. In many cases, crystals can be conveniently recovered from the gels by using supramolecular anion-triggered gel dissolution; however, crystals of substances that themselves bind to anions are dissolved by them. Overall, supramolecular gel-phase crystallization offers an extremely versatile new tool in pharmaceutical polymorph screening.

  6. Cavitation of a Physically Associating Gel

    NASA Astrophysics Data System (ADS)

    Mishra, Satish; Kundu, Santanu

    Self-assembly of block copolymers in selective solvents form ordered structures such as micelles, vesicles, and physically crosslinked gels due to difference in their interaction with solvents. These gels have wide range of applications in tissue engineering, food science and biomedical field due to their tunable properties and responsiveness with changing environmental conditions. Pressurization of a defect inside a physically associating gel can lead to elastic instability (cavitation) leading to failure of the gel. The failure behavior involves dissociation of physical networks. A thermoreversible, physically associating gel with different volume fractions of a triblock copolymer, poly (methyl methacrylate)-poly (n-butyl acrylate)-poly (methyl methacrylate) [PMMA-PnBA-PMMA] in 2-ethyl 1-hexanol, a midblock selective solvent, is considered here. Mechanical properties were investigated using shear rheology and cavitation experiments. The experimental data is fitted with a constitutive model that captures the stiffening behavior followed by softening behavior of a physical gel. Finite element analysis has been performed on cavitation rheology geometry to capture the failure behavior and to calculate energy release rate during cavitation experiments.

  7. Analysis of Fusarium populations in a soybean field under different fertilization management by real-time quantitative PCR and denaturing gradient gel electrophoresis

    Technology Transfer Automated Retrieval System (TEKTRAN)

    The abundance and population structure of Fusarium spp. in field soils were assessed to determine the effect of different fertilization treatments on soil microbial community and potential role in disease management. The field was under soybean-wheat-corn rotation located in the black soil (Udic Mo...

  8. Fabrication, modeling and optimization of an ionic polymer gel actuator

    NASA Astrophysics Data System (ADS)

    Jo, Choonghee; Naguib, Hani E.; Kwon, Roy H.

    2011-04-01

    The modeling of the electro-active behavior of ionic polymer gel is studied and the optimum conditions that maximize the deflection of the gel are investigated. The bending deformation of polymer gel under an electric field is formulated by using chemo-electro-mechanical parameters. In the modeling, swelling and shrinking phenomena due to the differences in ion concentration at the boundary between the gel and solution are considered prior to the application of an electric field, and then bending actuation is applied. As the driving force of swelling, shrinking and bending deformation, differential osmotic pressure at the boundary of the gel and solution is considered. From this behavior, the strain or deflection of the gel is calculated. To find the optimum design parameter settings (electric voltage, thickness of gel, concentration of polyion in the gel, ion concentration in the solution, and degree of cross-linking in the gel) for bending deformation, a nonlinear constrained optimization model is formulated. In the optimization model, a bending deflection equation of the gel is used as an objective function, and a range of decision variables and their relationships are used as constraint equations. Also, actuation experiments are conducted using poly(2-acrylamido-2-methylpropane sulfonic acid) (PAMPS) gel and the optimum conditions predicted by the proposed model have been verified by the experiments.

  9. Dynamic light-scattering monitoring of a transient biopolymer gel

    NASA Astrophysics Data System (ADS)

    Kostko, A. F.; Chen, T.; Payne, G. F.; Anisimov, M. A.

    2003-05-01

    We performed dynamic light-scattering (DLS) monitoring and a rheological study to characterize the formation and destruction of a transient (limited lifetime) gel formed from the biopolymers chitosan and gelatin. Gel formation, initiated by the enzyme tyrosinase, is followed by spontaneous gel breakage. Our DLS results demonstrate that this material passes through five stages in which the gel forms, consolidates, “lives”, softens, and eventually breaks. We speculate that the existence of the transient gel is caused by a competition between two processes: a fast-rate chemical reaction leading to formation of a branched-copolymer network and a slow-rate diffusion-like rearrangement of the gelatin branches resulting in eventual gel breakage. Despite a dramatic difference in the characteristic times of the gel formation ( tg) and gel breakage ( tb)-the ratio tb/ tg is of the order 10 3-DLS has revealed an intrinsic monitoring-time symmetry in the formation and destruction of the gel provided that a proper physical choice of the reduced temporal scale is used. In this scale the slow-mode relaxation time for both sides of the process, gel formation and gel destruction, exhibits a power law in the spirit of percolation theory.

  10. Darboux transformations for (1+2)-dimensional Fokker-Planck equations with constant diffusion matrix

    SciTech Connect

    Schulze-Halberg, Axel

    2012-10-15

    We construct a Darboux transformation for (1+2)-dimensional Fokker-Planck equations with constant diffusion matrix. Our transformation is based on the two-dimensional supersymmetry formalism for the Schroedinger equation. The transformed Fokker-Planck equation and its solutions are obtained in explicit form.

  11. Swelling of Olympic Gels

    NASA Astrophysics Data System (ADS)

    Lang, M.; Fischer, J.; Werner, M.; Sommer, J.-U.

    2014-06-01

    The swelling equilibrium of Olympic gels, which are composed of entangled cyclic polymers, is studied by Monte Carlo simulations. In contrast to chemically cross-linked polymer networks, we observe that Olympic gels made of chains with a larger degree of polymerization, N, exhibit a smaller equilibrium swelling degree, Q∝N-0.28ϕ0-0.72, at the same polymer volume fraction ϕ0 at network preparation. This observation is explained by a desinterspersion (reorganization with release of nontrapped entanglements) process of overlapping nonconcatenated rings upon swelling.

  12. Treatment of osteochondral injuries with platelet gel

    PubMed Central

    Danieli, Marcus Vinicius; da Rosa Pereira, Hamilton; de Sá Carneiro, Carlos Augusto; Felisbino, Sérgio Luiz; Deffune, Elenice

    2014-01-01

    OBJECTIVES: Treatments for injured articular cartilage have not advanced to the point that efficient regeneration is possible. However, there has been an increase in the use of platelet-rich plasma for the treatment of several orthopedic disorders, including chondral injuries. Our hypothesis is that the treatment of chondral injuries with platelet gel results in higher-quality repair tissue after 180 days compared with chondral injuries not treated with gel. METHODS: A controlled experimental laboratory study was performed on 30 male rabbits to evaluate osteochondral injury repair after treatment with or without platelet gel. Osteochondral injuries were surgically induced in both knees of each rabbit at the medial femoral condyle. The left knee injury was filled with the platelet gel, and the right knee was not treated. Microscopic analysis of both knee samples was performed after 180 days using a histological grading scale. RESULTS: The only histological evaluation criterion that was not significantly different between treatments was metachromasia. The group that was treated with platelet gel exhibited superior results in all other criteria (cell morphology, surface regularity, chondral thickness and repair tissue integration) and in the total score. CONCLUSION: The repair tissue was histologically superior after 180 days in the study group treated with platelet gel compared with the group of untreated injuries. PMID:25518022

  13. Structural evolution of Colloidal Gels under Flow

    NASA Astrophysics Data System (ADS)

    Boromand, Arman; Maia, Joao; Jamali, Safa

    Colloidal suspensions are ubiquitous in different industrial applications ranging from cosmetic and food industries to soft robotics and aerospace. Owing to the fact that mechanical properties of colloidal gels are controlled by its microstructure and network topology, we trace the particles in the networks formed under different attraction potentials and try to find a universal behavior in yielding of colloidal gels. Many authors have implemented different simulation techniques such as molecular dynamics (MD) and Brownian dynamics (BD) to capture better picture during phase separation and yielding mechanism in colloidal system with short-ranged attractive force. However, BD neglects multi-body hydrodynamic interactions (HI) which are believed to be responsible for the second yielding of colloidal gels. We envision using dissipative particle dynamics (DPD) with modified depletion potential and hydrodynamic interactions, as a coarse-grain model, can provide a robust simulation package to address the gel formation process and yielding in short ranged-attractive colloidal systems. The behavior of colloidal gels with different attraction potentials under flow is examined and structural fingerprints of yielding in these systems will be discussed.

  14. Effect of different sol concentrations on the properties of nanocrystalline ZnO thin films grown on FTO substrates by sol-gel spin-coating

    NASA Astrophysics Data System (ADS)

    Kim, Ikhyun; Kim, Younggyu; Nam, Giwoong; Kim, Dongwan; Park, Minju; Kim, Haeun; Lee, Wookbin; Leem, Jae-Young; Kim, Jong Su; Kim, Jin Soo

    2014-08-01

    Nanocrystalline ZnO thin films grown on fluorine-doped tinoxide (FTO) substrates were fabricated using the spin-coating method. The structural and the optical properties of the ZnO thin films prepared using different sol concentrations were investigated by using field-emission scanning electron microscopy (FE-SEM), X-ray diffractometry (XRD), photoluminescence (PL) measurements, and ultraviolet-visible (UV-vis) spectrometry. The surface morphology of the ZnO thin films, as observed in the SEM images, exhibited a mountain-chain structure. XRD results indicated that the thin films were preferentially orientated along the direction of the c-axis and that the grain size of the ZnO thin films increased with increasing sol concentration. The PL spectra showed a strong ultraviolet emission peak at 3.22 eV and a broad orange emission peak at 2.0 eV. The intensities of deep-level emission (DLE) gradually increased with increasing sol concentration from 0.4 to 1.0 M. The transmittance spectra of the ZnO thin films showed that the ZnO thin films were transparent (~85%) in the visible region and exhibited sharp absorption edges at 375 nm. Thus, The Urbach energy of ZnO thin films decreased with increasing sol concentration.

  15. Bending a beam by a generalized ideal elastomeric gel

    PubMed Central

    Cai, Shengqiang

    2015-01-01

    A hybrid beam with a gel layer bonded on the top of an elastic non-swellable substrate has been commonly adopted to make various sensors and actuators. Usually, different models need to be developed for the hybrid beam when different gels are used in the system. In this article, based on the generalized ideal elastomeric gel model, we formulate a unified relationship between the swelling of hydrogels and the bending curvature of the elastic beam, which is independent of specific swelling mechanisms of gels. We further illustrate that the equations derived in the article can be used to validate the ideal elastomeric gel model and measure the elasticity of polymer networks of the gels. PMID:25792965

  16. 2% Lidocaine gel or plain lubricating gel: Which one should be used in male flexible cystoscopy?

    PubMed Central

    Akkoç, Ali; Kartalmış, Mahir; Aydın, Cemil; Topaktaş, Ramazan; Altın, Selçuk; Aykaç, Aykut

    2016-01-01

    Objective To investigate and compare the effects on pain of intraurethral 2% lidocaine gel and plain lubricating gel in male patients underwent flexible cystoscopy. Material and methods The data of 220 male patients who underwent flexible cystoscopy between March 2012 and August 2014 were retrospectively analized. The patients were divided into 2 groups according to using intraurethral gel types. Group I included 120 patients who were underwent flexible cystoscopy with 2% lidocaine gel and Group II was consisted from 100 patients who underwent flexible cystoscopy with plain lubricating gel. The groups were compared according to postprocedure data including pain score, procedure time and age of patients. Results The mean age of the patients in Group I was 50.02±11.87 years while that in Group II was 52.03±13.37 years (p=0.492). The mean procedure times were 6.02±0.787 and 6.28±0.689 minutes in Group I and Group II respectively (p=0.061). Pain perception scores were not statistically different between the groups (Group I: 3.10±0.980, Group II: 3.34±0.789, p=0.132). Conclusion Use of intraurethral 2% lidocaine gel has no advantage over plain lubricating gel in regard to pain control during flexible cystoscopy in men. PMID:27274894

  17. Effect of gel matrix confinement on the solvent dynamics in supramolecular gels.

    PubMed

    Kowalczuk, Joanna; Rachocki, Adam; Bielejewski, Michał; Tritt-Goc, Jadwiga

    2016-06-15

    Supramolecular gels formed by the sugar gelator of methyl-4,6-O-(p-nitrobenzylidene)-α-d-glucopyranoside (1) with 1,3-propanediol (PG) and 1-butanol (BU) were prepared with different gelator concentrations. The solvent dynamics within gels, characterized by the diffusion coefficient (D) and the spin-lattice relaxation time (T1), was the subject of NMR diffusometry and relaxometry studies. The diffusion was studied as a function of diffusion time and gelator concentrations. The relaxation time was measured as a function of Larmor frequency. The decrease of the diffusion coefficient was observed as a function of diffusion time for both gels and for all studied gelator concentrations. It is indicative of the confinement effect due to the geometrical restrictions of the gel matrix. The relaxation data for PG solvent confined in 1/PG gel revealed the low frequency dispersion (in kHz region) which is a fingerprint of a specific interaction experienced by PG solvents in the presence of the rigid structure of gelator 1 aggregates. The relaxation model, well known from the interpretation of liquid confined in nanopores as reorientations mediated by translational displacements (RMTD), was successfully applied to analyze the data of studied solvents confined in matrices of supramolecular gels. The microstructures of gel matrices were imaged by Polarized Microscopy. PMID:27003500

  18. Gel image segmentation based on discontinuity and region information

    NASA Astrophysics Data System (ADS)

    Wang, Weixing

    2005-10-01

    2-D electrophoresis gel images can be used for identifying and characterizing many forms of a particular protein encoded by a single gene. Conventional approaches to gel analysis require the three steps: (1) Spot detection on each gel; (2) Spot matching between gels; and (3) Spot quantification and comparison. Many researchers and developers attempt to automate all steps as much as possible, but errors in the detection and matching stages are common. In order to carry out gel image analysis, one first needs to accurately detect and measure the protein spots in a gel image. As other image analysis or computer vision areas, image segmentation is still a hard problem. This paper presents algorithms for automatically delineating gel spots. Two types of segmentation algorithms were implemented, the one is edge (discontinuity) based type, and the other is region based type. For the different classes of gel images, the two types of algorithms were tested; the advantages and disadvantages were discussed. Based on the testing and analysis results, authors suggested using a fusion of edge information and region information for gel image segmentation is a good complementary. The primary integration of the two types of image segmentation algorithms have been tested too, the result clearly show that the integrated algorithm can automatically delineate gel not only on a simple image and also on a complex image, and it is much better than that either only edge based algorithm or only region based algorithm.

  19. Gravitational Fields with 2-Dimensional Killing Leaves and the Gravitational Interaction of Light

    NASA Astrophysics Data System (ADS)

    Vilasi, Gaetano

    Gravitational fields invariant for a non Abelian Lie algebra generating a 2-dimensional distribution, are explicitly described. When the orthogonal distribution is integrable and the metric is not degenerate along the orbits, these solutions are parameterized either by solutions of a transcendental equation (the tortoise equation), or by solutions of Darboux equation. Metrics, corresponding to solutions of the tortoise equation, are characterized as those that admit a 3-dimensional Lie algebra of Killing fields with 2-dimensional leaves. It is shown that the remaining metrics represent nonlinear gravitational waves obeying to two nonlinearsuperposition laws. The energy and the polarization of this family of waves are explicitly evaluated; it is shown that they have spin-1 and their possible sources are also described. Old results by Tolman, Ehrenfest, Podolsky and Wheeler on the gravitational interaction of photons are naturally reinterpreted.

  20. Sol-gel processing of metal sulfides

    NASA Astrophysics Data System (ADS)

    Stanic, Vesha

    Metal sulfides were synthesised via a sol-gel process using various metal alkoxides and hydrogen sulfide in toluene. Colloidal gels were prepared from germanium ethoxide, germanium isopropoxide, zinc tert-butoxide and tungsten (VI) ethoxide, whereas colloidal powder was produced from tungsten (V) dichloride ethoxide. Special precautions were necessary to protect the reaction mixture from water contamination which produced metal oxides. Results indicated that the main source of water is the hydrogen sulfide gas. In addition, synthesis of metal sulfides from a mixture of metal oxide and sulfide was demonstrated by the example of monoclinic germanium disulfide. It was produced by reaction of the sol-gel product with sulfur. Heat treatment of the sol-gel product and sulfur yielded single phase GeSsb2. The sol-gel prepared materials and their heat treated products were characterized by various methods. A chemical kinetics study of the functional groups -OR, -SH and Ssp{2-} was carried out for the sol-gel processing of GeSsb2 from of hydrogen sulfide and two different alkoxides, germanium ethoxide and germanium isopropoxide. The study was performed for different concentrations of precursors at different molar ratios and temperatures. The results indicate that the proposed reaction mechanism was simplified under appropriate reaction conditions. Experimentally determined rate constants of thiolysis and condensations demonstrate that thiolysis is slow and that condensations are fast steps, regardless of the studied reaction conditions. A study of the temperature effect on the reaction rate constant shows that it increases with temperature in accord with both Arrhenius law and transition-state theory. Activation energies, Esba, and activation parameters DeltaSsp{ddagger}, DeltaHsp{ddagger} and DeltaGsp{ddagger}, were determined for thiolysis and condensation reactions. The potentiometric tiration method was used for quantitative determination of germanium sulfide and

  1. A simple gel electrophoresis method for separating polyhedral gold nanoparticles

    NASA Astrophysics Data System (ADS)

    Kim, Suhee; Lee, Hye Jin

    2015-07-01

    In this paper, a simple approach to separate differently shaped and sized polyhedral gold nanoparticles (NPs) within colloidal solutions via gel electrophoresis is described. Gel running parameters for separating efficiently gold NPs including gel composition, added surfactant types and applied voltage were investigated. The plasmonic properties and physical structure of the separated NPs extracted from the gel matrix were then investigated using transmission electron microscopy (TEM) and UV-vis spectrophotometry respectively. Data analysis revealed that gel electrophoresis conditions of a 1.5 % agarose gel with 0.1 % sodium dodecyl sulfate (SDS) surfactant under an applied voltage of 100 V resulted in the selective isolation of ~ 50 nm polyhedral shaped gold nanoparticles. Further efforts are underway to apply the method to purify biomolecule-conjugated polyhedral Au NPs that can be readily used for NP-enhanced biosensing platforms.

  2. Sol-gel synthesis and luminescence of unexpected microrod crystalline Ca 5La 5(SiO 4) 3(PO 4) 3O 2:Dy 3+ phosphors employing different silicate sources

    NASA Astrophysics Data System (ADS)

    Yan, Bing; Huang, Honghua

    2007-08-01

    Ca5La5(SiO4)3(PO4)3O2 doped with Dy3+ were synthesized by sol-gel technology with hybrid precursor employed four different silicate sources, 3-aminopropyl-trimethoxysilane (APMS), 3-aminopropyl-triethoxysilane (APES), 3-aminopropyl-methyl-diethoxysilane (APMES) and tetraethoxysilane (TEOS), respectively. The SEM diagraphs show that there exist some novel unexpected morphological structures of microrod owing to the crosslinking reagents than TEOS as silicate source for their amphipathy template effect. X-ray pictures confirm that Ca5La5(SiO4)3(PO4)3O2:Dy3+ compound is formed by a pure apatitic phase. The Dy3+ ions could emit white light in Ca5La5(SiO4)3(PO4)3O2 compound, and the ratio of Y/B is 1.1, when the Dy3+ doped concentration is 1.0 mol%.

  3. Mucosal effects of tenofovir 1% gel.

    PubMed

    Hladik, Florian; Burgener, Adam; Ballweber, Lamar; Gottardo, Raphael; Vojtech, Lucia; Fourati, Slim; Dai, James Y; Cameron, Mark J; Strobl, Johanna; Hughes, Sean M; Hoesley, Craig; Andrew, Philip; Johnson, Sherri; Piper, Jeanna; Friend, David R; Ball, T Blake; Cranston, Ross D; Mayer, Kenneth H; McElrath, M Juliana; McGowan, Ian

    2015-01-01

    Tenofovir gel is being evaluated for vaginal and rectal pre-exposure prophylaxis against HIV transmission. Because this is a new prevention strategy, we broadly assessed its effects on the mucosa. In MTN-007, a phase-1, randomized, double-blinded rectal microbicide trial, we used systems genomics/proteomics to determine the effect of tenofovir 1% gel, nonoxynol-9 2% gel, placebo gel or no treatment on rectal biopsies (15 subjects/arm). We also treated primary vaginal epithelial cells from four healthy women with tenofovir in vitro. After seven days of administration, tenofovir 1% gel had broad-ranging effects on the rectal mucosa, which were more pronounced than, but different from, those of the detergent nonoxynol-9. Tenofovir suppressed anti-inflammatory mediators, increased T cell densities, caused mitochondrial dysfunction, altered regulatory pathways of cell differentiation and survival, and stimulated epithelial cell proliferation. The breadth of mucosal changes induced by tenofovir indicates that its safety over longer-term topical use should be carefully monitored. PMID:25647729

  4. Mucosal effects of tenofovir 1% gel

    PubMed Central

    Hladik, Florian; Burgener, Adam; Ballweber, Lamar; Gottardo, Raphael; Vojtech, Lucia; Fourati, Slim; Dai, James Y; Cameron, Mark J; Strobl, Johanna; Hughes, Sean M; Hoesley, Craig; Andrew, Philip; Johnson, Sherri; Piper, Jeanna; Friend, David R; Ball, T Blake; Cranston, Ross D; Mayer, Kenneth H; McElrath, M Juliana; McGowan, Ian

    2015-01-01

    Tenofovir gel is being evaluated for vaginal and rectal pre-exposure prophylaxis against HIV transmission. Because this is a new prevention strategy, we broadly assessed its effects on the mucosa. In MTN-007, a phase-1, randomized, double-blinded rectal microbicide trial, we used systems genomics/proteomics to determine the effect of tenofovir 1% gel, nonoxynol-9 2% gel, placebo gel or no treatment on rectal biopsies (15 subjects/arm). We also treated primary vaginal epithelial cells from four healthy women with tenofovir in vitro. After seven days of administration, tenofovir 1% gel had broad-ranging effects on the rectal mucosa, which were more pronounced than, but different from, those of the detergent nonoxynol-9. Tenofovir suppressed anti-inflammatory mediators, increased T cell densities, caused mitochondrial dysfunction, altered regulatory pathways of cell differentiation and survival, and stimulated epithelial cell proliferation. The breadth of mucosal changes induced by tenofovir indicates that its safety over longer-term topical use should be carefully monitored. Clinical trial registration: NCT01232803. DOI: http://dx.doi.org/10.7554/eLife.04525.001 PMID:25647729

  5. Maintenance of Bacterial Cultures on Anhydrous Silica Gel

    ERIC Educational Resources Information Center

    Lennox, John E.

    1977-01-01

    Suspensions of 20 different cultures were grown on appropriate media, then pipetted into sterile anhydrous silica gel. Silica gel cultures after incubation and refrigerated storage were tested for viability. Results showed little mutation, low replication, low contamination, minimal expenses, and survival up to two years. (CS)

  6. Hybrid sol-gel optical materials

    DOEpatents

    Zeigler, J.M.

    1993-04-20

    Hybrid sol-gel materials comprise silicate sols cross-linked with linear polysilane, polygermane, or poly(silane-germane). The sol-gel materials are useful as optical identifiers in tagging and verification applications and, in a different aspect, as stable, visible light transparent non-linear optical materials. Methyl or phenyl silicones, polyaryl sulfides, polyaryl ethers, and rubbery polysilanes may be used in addition to the linear polysilane. The linear polymers cross-link with the sol to form a matrix having high optical transparency, resistance to thermooxidative aging, adherence to a variety of substrates, brittleness, and a resistance to cracking during thermal cycling.

  7. Hybrid sol-gel optical materials

    DOEpatents

    Zeigler, John M.

    1993-01-01

    Hybrid sol-gel materials comprise silicate sols cross-linked with linear polysilane, polygermane, or poly(silane-germane). The sol-gel materials are useful as optical identifiers in tagging and verification applications and, in a different aspect, as stable, visible light transparent non-linear optical materials. Methyl or phenyl silicones, polyaryl sulfides, polyaryl ethers, and rubbery polysilanes may be used in addition to the linear polysilane. The linear polymers cross-link with the sol to form a matrix having high optical transparency, resistance to thermooxidative aging, adherence to a variety of substrates, brittleness, and a resistance to cracking during thermal cycling.

  8. Hybrid sol-gel optical materials

    DOEpatents

    Zeigler, John M.

    1992-01-01

    Hybrid sol-gel materials comprise silicate sols cross-linked with linear polysilane, polygermane, or poly(silane-germane). The sol-gel materials are useful as optical identifiers in tagging and verification applications and, in a different aspect, as stable, visible light transparent non-linear optical materials. Methyl or phenyl silicones, polyaryl sulfides, polyaryl ethers, and rubbery polysilanes may be used in addition to the linear polysilane. The linear polymers cross-link with the sol to form a matrix having high optical transparency, resistance to thermooxidative aging, adherence to a variety of substrates, brittleness, and a resistance to cracking during thermal cycling.

  9. Fluid diversion and sweep improvement with chemical gels in oil recovery processes

    SciTech Connect

    Seright, F.S.; Martin, F.D.

    1991-04-01

    The objectives of this project are to identify the mechanisms by which gel treatments divert fluids in reservoirs and to establish where and how gel treatments are best applied. Several different types of gelants are being examined. This research is directed at gel applications in water injection wells, in production wells, and in high-pressure gas floods. The work will establish how the flow properties of gels and gelling agents are influenced by permeability, lithology, and wettability. Other goals include determining the proper placement of gelants, the stability of in-place gels, and the types of gels required for the various oil recovery processes and for different scales of reservoir heterogeneity. This report describes progress made during the first year of this three-year study the following tasks: gel screening studies; impact of gelation pH, rock permeability, and lithology on the performance of a monomer-based gel; preliminary study of the permeability reduction for CO{sub 2} and water using a resorcinol-formaldehyde gel; preliminary study of permeability reduction for oil and water using a resorcinol-formaldehyde gel; rheology of Cr(III)-xanthan gel and gelants in porous media; impact of diffusion, dispersion, and viscous fingering on gel placement in injection wells; examination of flow-profile changes for field applications of gel treatments in injection wells; and placement of gels in production wells. Papers have been indexed separately for inclusion on the data base.

  10. Gel Filtration Chromatography: A Laboratory Experiment.

    ERIC Educational Resources Information Center

    Hurlbut, Jeffrey A.; Schonbeck, Niels D.

    1984-01-01

    Describes a rapid, visual demonstration of protein separation by gel filtration chromatography. The procedure separates two highly colored proteins of different molecular weights on a Sephadex G-75 in 45 minutes. This time includes packing the column as well. Background information, reagents needed, procedures used, and results obtained are…

  11. Aging and nonlinear rheology of thermoreversible colloidal gels

    NASA Astrophysics Data System (ADS)

    Wagner, Norman; Gordon, Melissa; Kloxin, Christopher

    Colloidal dispersions are found in a wide variety of consumer products such as paint, food and pharmaceuticals. We investigate gel formation and aging in a thermoreverible gel consisting of octadecyl-coated silica nanoparticles suspended in n-tetradecane. In this system, the octadecyl brush can undergo a phase change allowing the attractions between particles to be tuned by temperature (1,2). By probing the system with steady shear and large amplitude oscillatory shear, we have studied the effect of thermal history and shear history on gel formation and gel mechanical properties during aging. Gels were formed by approaching a common temperature from above and below to determine a reference state from which creep tests were conducted. Creep ringing was observed as expected for the viscoelastic gel. The rheological aging is interpreted in terms of the gel microstructure formed with differing thermal and shear histories to determine how processing affects structure. Recently proposed scaling laws for the rheology and structure under flow are explored within the context of gel aging (3). Through rheological and microstructural measurements, we will further the understanding of gel formation and aging in this model system which may be applied to processing conditions in an industrial setting.

  12. Electrophoresis for genotyping: microtiter array diagonal gel electrophoresis on horizontal polyacrylamide gels, hydrolink, or agarose.

    PubMed

    Day, I N; Humphries, S E

    1994-11-01

    Electrophoresis of DNA has been performed traditionally in either an agarose or acrylamide gel matrix. Considerable effort has been directed to improved quality agaroses capable of high resolution, but for small fragments, such as those from polymerase chain reaction (PCR) and post-PCR digests, acrylamide still offers the highest resolution. Although agarose gels can easily be prepared in an open-faced format to gain the conveniences of horizontal electrophoresis, acrylamide does not polymerize in the presence of air and the usual configurations for gel preparation lead to electrophoresis in the vertical dimension. We describe here a very simple device and method to prepare and manipulate horizontal polyacrylamide gels (H-PAGE). In addition, the open-faced horizontal arrangement enables loading of arrays of wells. Since many procedures are undertaken in standard 96-well microtiter plates, we have also designed a device which preserves the exact configuration of the 8 x 12 array and enables electrophoresis in tracks following a 71.6 degrees diagonal between wells (MADGE, microtiter array diagonal gel electrophoresis), using either acrylamide or agarose. This eliminates almost all of the staff time taken in setup, loading, and recordkeeping and offers high resolution for genotyping pattern recognition. The nature and size of the gels allow direct stacking of gels in one tank, so that a tank used typically to analyze 30-60 samples can readily be used to analyze 1000-2000 samples. The gels would also enable robotic loading. Electrophoresis allows analysis of size and charge, parameters inaccessible to liquid-phase methods: thus, genotyping size patterns, variable length repeats, and haplotypes is possible, as well as adaptability to typing of point variations using protocols which create a difference detectable by electrophoresis. PMID:7864363

  13. Clarification Procedure for Gels

    NASA Technical Reports Server (NTRS)

    Barber, Patrick G.; Simpson, Norman R.

    1987-01-01

    Procedure developed to obtain transparent gels with consistencies suitable for crystal growth, by replacing sodium ions in silicate solution with potassium ions. Clarification process uses cation-exchange resin to replace sodium ions in stock solution with potassium ions, placed in 1M solution of soluble potassium salt. Slurry stirred for several hours to allow potassium ions to replace all other cations on resin. Supernatant solution decanted through filter, and beads rinsed with distilled water. Rinsing removes excess salt but leaves cation-exchange beads fully charged with potassium ions.

  14. Coupling of gelation and glass transition in a biphasic colloidal mixture--from gel-to-defective gel-toglass

    NASA Astrophysics Data System (ADS)

    Cheng, He; Jia, Di; Han, Charles

    The state transition from gel to glass is studied in a biphasic mixture of polystyrene core/poly (N-isopropylacrylamide) shell (CS) microgels and sulfonated polystyrene (PSS) particles. At 35 °C, the interaction between CS is due to short-range Van der Waals attraction while that between PSS is from long-range electrostatic repulsion. During variation of the relative ratio of the two species at a fixed apparent total volume fraction, the mixture exhibits a gel-to-defective gel-to-glass transition. When small amounts of PSS are introduced into the CS gel network, some of them are kinetically trapped, causing a change in its fractal structure, and act as defects to weaken the macroscopic gel strength. An increase of PSS content in the mixture promotes the switch from gel to defective gel, e . g . , the typical two-step yielding gel merges into one-step yielding. This phenomenon is an indication that inter-cluster bond breakage coincides with intra-cluster bond fracture. As the relative volume fraction of PSS exceeds a critical threshold, the gel network can no longer be formed; hence, the mixture exhibits characteristics of glass. A state diagram of the biphasic mixture is constructed, and the landscape of the different transitions will be described in future studies The financial support from the National Basic Research Program of China (973 Program, 2012CB821500) is gratefully acknowledged.

  15. [Biocompatibility analysis of hyaluronic acid sodium gels for medical application].

    PubMed

    Wang, Yaning; Yuan, Tun; Jia, Lifang; Zou, Wen; Liang, Jie

    2012-08-01

    Hyaluronan acid sodium gels are used in ophthalmic surgery, orthopedic treatment and cosmetic surgery. In 2009,there were 12 domestic manufacturers in China producing 33 kinds of products. 23 kinds of imported products were allowed by SFDA to sale in the meantime. Since manufacturers use different production processes, product performances are quite different. According to the GB/T 16886. 1-2001, we designed a pilot program to evaluate the sodium hyaluronate gel products comprehensively in this paper. The results showed that, except chromosome aberration test of gel A and subchronic systemic toxicity of gel C appeared positive, the remaining samples of the test results were negative. This article provides a reference to write standard of cross-linked hyaluronic sodium gel and the revision of standard YY0308-2004. PMID:23016423

  16. Simulations of electrophoretic collisions of DNA knots with gel obstacles

    NASA Astrophysics Data System (ADS)

    Weber, C.; DeLos Rios, P.; Dietler, G.; Stasiak, A.

    2006-04-01

    Gel electrophoresis can be used to separate nicked circular DNA molecules of equal length but forming different knot types. At low electric fields, complex knots drift faster than simpler knots. However, at high electric field the opposite is the case and simpler knots migrate faster than more complex knots. Using Monte Carlo simulations we investigate the reasons of this reversal of relative order of electrophoretic mobility of DNA molecules forming different knot types. We observe that at high electric fields the simulated knotted molecules tend to hang over the gel fibres and require passing over a substantial energy barrier to slip over the impeding gel fibre. At low electric field the interactions of drifting molecules with the gel fibres are weak and there are no significant energy barriers that oppose the detachment of knotted molecules from transverse gel fibres.

  17. Comparative Study of Early Cold-Regulated Proteins by Two-Dimensional Difference Gel Electrophoresis Reveals a Key Role for Phospholipase Dα1 in Mediating Cold Acclimation Signaling Pathway in Rice.

    PubMed

    Huo, Chenmin; Zhang, Baowen; Wang, Hui; Wang, Fawei; Liu, Meng; Gao, Yingjie; Zhang, Wenhua; Deng, Zhiping; Sun, Daye; Tang, Wenqiang

    2016-04-01

    To understand the early signaling steps that regulate cold responses in rice, two-dimensional difference gel electrophoresis (2-D DIGE)(1)was used to study early cold-regulated proteins in rice seedlings. Using mass spectrometry, 32 spots, which represent 26 unique proteins that showed an altered expression level within 5 min of cold treatment were identified. Among these proteins, Western blot analyses confirmed that the cellular phospholipase D α1 (OsPLDα1) protein level was increased as early as 1 min after cold treatment. Genetic studies showed that reducing the expression ofOsPLDα1makes rice plants more sensitive to chilling stress as well as cold acclimation increased freezing tolerance. Correspondingly, cold-regulated proteomic changes and the expression of the cold-responsive C repeat/dehydration-responsive element binding 1 (OsDREB1) family of transcription factors were inhibited in thepldα1mutant. We also found that the expression ofOsPLDα1is directly regulated by OsDREB1A. This transcriptional regulation ofOsPLDα1could provide positive feedback regulation of the cold signal transduction pathway in rice. OsPLDα1 hydrolyzes phosphatidylcholine to produce the signal molecule phosphatidic acid (PA). By lipid-overlay assay, we demonstrated that the rice cold signaling proteins, MAP kinase 6 (OsMPK6) and OsSIZ1, bind directly to PA. Taken together, our results suggest that OsPLDα1 plays a key role in transducing cold signaling in rice by producing PA and regulatingOsDREB1s' expression by OsMPK6, OsSIZ1, and possibly other PA-binding proteins. PMID:26747563

  18. Damage spreading in 2-dimensional isotropic and anisotropic Bak-Sneppen models

    NASA Astrophysics Data System (ADS)

    Bakar, B.; Tirnakli, U.

    2008-03-01

    We implement the damage spreading technique on 2-dimensional isotropic and anisotropic Bak-Sneppen models. Our extensive numerical simulations show that there exists a power-law sensitivity to the initial conditions at the statistically stationary state (self-organized critical state). Corresponding growth exponent α for the Hamming distance and the dynamical exponent z are calculated. These values allow us to observe a clear data collapse of the finite size scaling for both versions of the Bak-Sneppen model. Moreover, it is shown that the growth exponent of the distance in the isotropic and anisotropic Bak-Sneppen models is strongly affected by the choice of the transient time.

  19. Dynamical analysis and simulation of a 2-dimensional disease model with convex incidence

    NASA Astrophysics Data System (ADS)

    Yu, Pei; Zhang, Wenjing; Wahl, Lindi M.

    2016-08-01

    In this paper, a previously developed 2-dimensional disease model is studied, which can be used for both epidemiologic modeling and in-host disease modeling. The main attention of this paper is focused on various dynamical behaviors of the system, including Hopf and generalized Hopf bifurcations which yield bistability and tristability, Bogdanov-Takens bifurcation, and homoclinic bifurcation. It is shown that the Bogdanov-Takens bifurcation and homoclinic bifurcation provide a new mechanism for generating disease recurrence, that is, cycles of remission and relapse such as the viral blips observed in HIV infection.

  20. The biophysical properties of Basal lamina gels depend on the biochemical composition of the gel.

    PubMed

    Arends, Fabienna; Nowald, Constantin; Pflieger, Kerstin; Boettcher, Kathrin; Zahler, Stefan; Lieleg, Oliver

    2015-01-01

    The migration of cells within a three-dimensional extracellular matrix (ECM) depends sensitively on the biochemical and biophysical properties of the matrix. An example for a biological ECM is given by reconstituted basal lamina gels purified from the Engelbreth-Holm-Swarm sarcoma of mice. Here, we compare four different commercial variants of this ECM, which have all been purified according to the same protocol. Nevertheless, in those gels, we detect strong differences in the migration behavior of leukocyte cells as well as in the Brownian motion of nanoparticles. We show that these differences correlate with the mechanical properties and the microarchitecture of the gels which in turn arise from small variations in their biochemical composition. PMID:25689062

  1. The Biophysical Properties of Basal Lamina Gels Depend on the Biochemical Composition of the Gel

    PubMed Central

    Pflieger, Kerstin; Boettcher, Kathrin; Zahler, Stefan; Lieleg, Oliver

    2015-01-01

    The migration of cells within a three-dimensional extracellular matrix (ECM) depends sensitively on the biochemical and biophysical properties of the matrix. An example for a biological ECM is given by reconstituted basal lamina gels purified from the Engelbreth-Holm-Swarm sarcoma of mice. Here, we compare four different commercial variants of this ECM, which have all been purified according to the same protocol. Nevertheless, in those gels, we detect strong differences in the migration behavior of leukocyte cells as well as in the Brownian motion of nanoparticles. We show that these differences correlate with the mechanical properties and the microarchitecture of the gels which in turn arise from small variations in their biochemical composition. PMID:25689062

  2. High transparent shape memory gel

    NASA Astrophysics Data System (ADS)

    Gong, Jin; Arai, Masanori; Kabir, M. H.; Makino, Masato; Furukawa, Hidemitsu

    2014-03-01

    Gels are a new material having three-dimensional network structures of macromolecules. They possess excellent properties as swellability, high permeability and biocompatibility, and have been applied in various fields of daily life, food, medicine, architecture, and chemistry. In this study, we tried to prepare new multi-functional and high-strength gels by using Meso-Decoration (Meso-Deco), one new method of structure design at intermediate mesoscale. High-performance rigid-rod aromatic polymorphic crystals, and the functional groups of thermoreversible Diels-Alder reaction were introduced into soft gels as crosslinkable pendent chains. The functionalization and strengthening of gels can be realized by meso-decorating the gels' structure using high-performance polymorphic crystals and thermoreversible pendent chains. New gels with good mechanical properties, novel optical properties and thermal properties are expected to be developed.

  3. Foam and gel decontamination techniques

    SciTech Connect

    McGlynn, J.F.; Rankin, W.N.

    1989-01-01

    The Savannah River Site is investigating decontamination technology to improve current decontamination techniques, and thereby reduce radiation exposure to plant personnel, reduce uptake of radioactive material, and improve safety during decontamination and decommissioning activities. When decontamination chemicals are applied as foam and gels, the contact time and cleaning ability of the chemical increases. Foam and gel applicators apply foam or gel that adheres to the surface being decontaminated for periods ranging from fifteen minutes (foam) to infinite contact (gel). This equipment was started up in a cold environment. The desired foam and gel consistency was achieved, operators were trained in its proper maintenance and operation, and the foam and gel were applied to walls, ceilings, and hard to reach surfaces. 17 figs.

  4. Polyoxometalate-based Supramolecular Gel

    NASA Astrophysics Data System (ADS)

    He, Peilei; Xu, Biao; Liu, Huiling; He, Su; Saleem, Faisal; Wang, Xun

    2013-05-01

    Self-assemblyings of surfactant-encapsulated Wells-Dawson polyoxometalates (SEPs) nanobuilding blocks in butanone and esters yielded supramolecular gels showing thermo and photo responsive properties. The gels can be further polymerized if unsaturated esters were used and subsequently electrospinned into nanowires and non-woven mats. The as-prepared non-woven mats have a Young's modulus as high as 542.55 MPa. It is believed that this supramolecular gel is a good platform for polyoxometalates processing.

  5. Performance of 18 polymers in aluminum citrate colloidal dispersion gels

    SciTech Connect

    Smith, J.E.

    1995-11-01

    Colloidal dispersion gels are made up of low concentrations of polymer and aluminum citrate in water. These gels, which are mixed as a homogeneous solution at the surface, provide a valuable tool for in-depth blockage of high permeability regions of rock in heterogeneous reservoirs. Performance of colloidal dispersion gels depends strongly on the type and quality of polymer used. This paper provides an overview of the performance of 18 different polymers in colloidal dispersion gels. 14 of the polymers were partially hydrolyzed polyacrylamides or AMPS polymers in dry crystalline form with varying degrees of hydrolysis and molecular weight. The group also includes one cationic polyacrylamide, one carboxymethyl cellulose, one partially hydrolyzed polyacrylamide in emulsion form and one polysaccharide in dry form. Gels were mixed with the polymers at two polymer concentrations, three polymer:aluminum ratios and in different concentrations of potassium chloride. The gels were quantitatively tested at 1, 7, 14 and 28 days after crosslinking using the transition pressure test, which is a screen flow resistance test. Of the six polymer types tested, only the dry partially hydrolyzed polyacrylamides and AMPS polymers formed colloidal dispersion gels. Gel strength generally increased with increasing anionic charge and molecular weight; however, the manner in which the polymer is manufactured and the impurities present in the polymer also play roles which are more significant than originally expected.

  6. Yielding of colloidal gels under steady and oscillatory shear

    NASA Astrophysics Data System (ADS)

    Petekidis, George; Moghimi, Esmaeel; Koumakis, Nick; Forth Team

    2015-03-01

    The structural and rheological properties of intermediate volume fraction colloid polymer gels are examined during and after steady and oscillatory shear flow using rheometry, confocal microscopy, light scattering and Brownian Dynamics simulations. Our main objective is to rationalize the microscopic mechanisms through which one can tune the mechanical properties of such metastable colloidal gels by imposing different types of external shear and flow. Experimentally, the gels consist of model hard sphere particle dispersions of φ = 0.44 with the addition of non-adsorbing linear chains, while BD simulations are conducted for hard spheres with the superposition of an AO potential for depletion attractions. Structural analysis shows that variation of the applied shear rate produces strong changes in the structure of the gels both when under shear and during gel reformation at cessation. Larger rates are characterized by disperse particles and the total breakage of structures at rest, which after cessation evolve with time into strong solids with relatively homogeneous structures. However, smaller rates show large inhomogeneous structures under flow, which do not evolve after cessation and additionally exhibit reduced elasticity and as such are weaker solids. Furthermore oscillatory shear is far more efficient than steady shear creating gels with stronger differences in their elastic modulus. Thus by tuning the way a gel is sheared, one may vary the final strength and structure of the resulting gel. Work in collaboration with R. Besseling, W. C. K. Poon and J. F. Brady

  7. Electrically controlled polymeric gel actuators

    DOEpatents

    Adolf, Douglas B.; Shahinpoor, Mohsen; Segalman, Daniel J.; Witkowski, Walter R.

    1993-01-01

    Electrically controlled polymeric gel actuators or synthetic muscles capable of undergoing substantial expansion and contraction when subjected to changing pH environments, temperature, or solvent. The actuators employ compliant containers for the gels and their solvents. The gels employed may be cylindrical electromechanical gel fibers such as polyacrylamide fibers or a mixture of poly vinyl alcohol-polyacrylic acid arranged in a parallel aggregate and contained in an electrolytic solvent bath such as salt water. The invention includes smart, electrically activated devices exploiting this phenomenon. These devices are capable of being manipulated via active computer control as large displacement actuators for use in adaptive structure such as robots.

  8. Electrically controlled polymeric gel actuators

    DOEpatents

    Adolf, D.B.; Shahinpoor, M.; Segalman, D.J.; Witkowski, W.R.

    1993-10-05

    Electrically controlled polymeric gel actuators or synthetic muscles are described capable of undergoing substantial expansion and contraction when subjected to changing pH environments, temperature, or solvent. The actuators employ compliant containers for the gels and their solvents. The gels employed may be cylindrical electromechanical gel fibers such as polyacrylamide fibers or a mixture of poly vinyl alcohol-polyacrylic acid arranged in a parallel aggregate and contained in an electrolytic solvent bath such as salt water. The invention includes smart, electrically activated devices exploiting this phenomenon. These devices are capable of being manipulated via active computer control as large displacement actuators for use in adaptive structure such as robots. 11 figures.

  9. Gel polymer electrolytes for batteries

    DOEpatents

    Balsara, Nitash Pervez; Eitouni, Hany Basam; Gur, Ilan; Singh, Mohit; Hudson, William

    2014-11-18

    Nanostructured gel polymer electrolytes that have both high ionic conductivity and high mechanical strength are disclosed. The electrolytes have at least two domains--one domain contains an ionically-conductive gel polymer and the other domain contains a rigid polymer that provides structure for the electrolyte. The domains are formed by block copolymers. The first block provides a polymer matrix that may or may not be conductive on by itself, but that can soak up a liquid electrolyte, thereby making a gel. An exemplary nanostructured gel polymer electrolyte has an ionic conductivity of at least 1.times.10.sup.-4 S cm.sup.-1 at 25.degree. C.

  10. Aloe vera leaf gel: a review update.

    PubMed

    Reynolds, T; Dweck, A C

    1999-12-15

    Research since the 1986 review has largely upheld the therapeutic claims made in the earlier papers and indeed extended them into other areas. Treatment of inflammation is still the key effect for most types of healing but it is now realized that this is a complex process and that many of its constituent processes may be addressed in different ways by different gel components. A common theme running though much recent research is the immunomodulatory properties of the gel polysaccharides, especially the acetylated mannans from Aloe vera, which are now a proprietary substance covered by many patents. There have also been, however, persistent reports of active glycoprotein fractions from both Aloe vera and Aloe arborescens. There are also cautionary investigations warning of possible allergic effects on some patients. Reports also describe antidiabetic, anticancer and antibiotic activities, so we may expect to see a widening use of aloe gel. Several reputable suppliers produce a stabilized aloe gel for use as itself or in formulations and there may be moves towards isolating and eventually providing verified active ingredients in dosable quantities PMID:10624859

  11. Radiological properties of MAGIC normoxic polymer gel dosimetry

    NASA Astrophysics Data System (ADS)

    Aljamal, M.; Zakaria, A.; Shamsuddin, S.

    2013-04-01

    For a polymer gel dosimeter to be of use in radiation dosimetry, it should display water-equivalent radiological properties. In this study, the radiological properties of the MAGIC (Methacrylic and Ascorbic acid in Gelatin Initiated by Copper) normoxic polymer gels were investigated. The mass density (ρ) was determined based on Archimedes' principle. The weight fraction of elemental composition and the effective atomic number (Zeff) were calculated. The electron density was also measured with 90° scattering angle at room temperature. The linear attenuation coefficient (μ) of unirradiated gel, irradiated gel, and water were determined using Am-241 based on narrow beam geometry. Monte Carlo simulation was used to calculate the depth doses response of MAGIC gel and water for 6MV photon beam. The weight fractions of elements composition of MAGIC gel were close to that for water. The mass density was found to be 1027 ± 2 kg m-3, which is also very close to mass density of muscle tissue (1030 kg m-3) and 2.7% higher than that of water. The electron density (ρe) and atomic number (Zeff) were found to be 3.43 × 1029 e m-3 and 7.105, respectively. The electron density measured was 2.6% greater than that for water. The atomic number was very close to that for water. The prepared MAGIC gel was found to be water equivalent based on the study of element composition, mass density, electron density and atomic number. The linear attenuation coefficient of unirradiated gel was very close to that of water. The μ of irradiated gel was found to be linear with dose 2-40 Gy. The depth dose response for MAGIC gel from a 6 MV photon beam had a percentage dose difference to water of less than 1%. Therefore it satisfies the criteria to be a good polymer gel dosimeter for radiotherapy.

  12. Apparatus for the production of gel beads containing a biocatalyst

    DOEpatents

    Scott, Charles D.; Scott, Timothy C.; Davison, Brian H.

    1998-01-01

    An apparatus for the large-scale and continuous production of gel beads containing a biocatalyst. The apparatus is a columnar system based on the chemical cross-linking of hydrocolloidal gels that contain and immobilize a biocatalyst, the biocatalyst being a microorganism or an enzyme. Hydrocolloidal gels, such as alginate, carrageenan, and a mixture of bone gelatin and modified alginate, provide immobilization matrices that can be used to entrap and retain the biocatalyst while allowing effective contact with substrates and release of products. Such immobilized biocatalysts are generally formulated into small spheres or beads that have high concentrations of the biocatalyst within the gel matrix. The columnar system includes a gel dispersion nozzle submerged in a heated non-interacting liquid, typically an organic liquid, that is immiscible with water to allow efficient formation of spherical gel droplets, the non-interacting liquid having a specific gravity that is less than water so that the gel droplets will fall through the liquid by the force of gravity. The heated non-interacting liquid is in direct contact with a chilled upflowing non-interacting liquid that will provide sufficient residence time for the gel droplets as they fall through the liquid so that they will be cooled below the gelling temperature and form solid spheres. The upflowing non-interacting liquid is in direct contact with an upflowing temperature-controlled aqueous solution containing the necessary chemicals for cross-linking or fixing of the gel beads to add the necessary stability. The flow rates of the two liquid streams can be varied to control the proper residence time in each liquid section to accommodate the production of gel beads of differing settling velocities. A valve is provided for continuous removal of the stabilized gel beads from the bottom of the column.

  13. Apparatus for the production of gel beads containing a biocatalyst

    DOEpatents

    Scott, C.D.; Scott, T.C.; Davison, B.H.

    1998-03-19

    An apparatus is described for the large-scale and continuous production of gel beads containing a biocatalyst. The apparatus is a columnar system based on the chemical cross-linking of hydrocolloidal gels that contain and immobilize a biocatalyst, the biocatalyst being a microorganism or an enzyme. Hydrocolloidal gels, such as alginate, carrageenan, and a mixture of bone gelatin and modified alginate, provide immobilization matrices that can be used to entrap and retain the biocatalyst while allowing effective contact with substrates and release of products. Such immobilized biocatalysts are generally formulated into small spheres or beads that have high concentrations of the biocatalyst within the gel matrix. The columnar system includes a gel dispersion nozzle submerged in a heated non-interacting liquid, typically an organic liquid, that is immiscible with water to allow efficient formation of spherical gel droplets, the non-interacting liquid having a specific gravity that is less than water so that the gel droplets will fall through the liquid by the force of gravity. The heated non-interacting liquid is in direct contact with a chilled upflowing non-interacting liquid that will provide sufficient residence time for the gel droplets as they fall through the liquid so that they will be cooled below the gelling temperature and form solid spheres. The upflowing non-interacting liquid is in direct contact with an upflowing temperature-controlled aqueous solution containing the necessary chemicals for cross-linking or fixing of the gel beads to add the necessary stability. The flow rates of the two liquid streams can be varied to control the proper residence time in each liquid section to accommodate the production of gel beads of differing settling velocities. A valve is provided for continuous removal of the stabilized gel beads from the bottom of the column. 1 fig.

  14. Carcinogenesis studies with benzoyl peroxide (Panoxyl gel 5%)

    SciTech Connect

    Iversen, O.H.

    1986-04-01

    Several groups of hairless mice were given UV radiation with and without pretreatment with 7,12-dimethylbenz(a)anthracene (DMBA), 5% benzoyl peroxide in a gel (Panoxyl), and gel alone, in various combinations, with appropriate control groups included, in order to see whether benzoyl peroxide, which is known to enhance chemical skin carcinogenesis after a single, small dose of DMBA, also enhances UV carcinogenesis. The mice were observed for skin tumors, and all skin lesions were histologically investigated. The percentage of tumor-bearing animals with time is called the tumor rate, the total number of tumors occurring is called the tumor yield. Continual treatment with 5% benzoyl peroxide in gel twice a week, with or without a short pretreatment period of UV radiation resulted in only 2 skin carcinomas, which is remarkable, but not significant. Both Panoxyl and gel alone enhanced tumorigenicity significantly in animals pretreated with a single dose of 51.2 micrograms DMBA. There was no difference between the enhancement caused by Panoxyl and the gel as regards the tumor rate, but when measured as final tumor yield, Panoxyl was slightly more tumor-enhancing than gel alone. However, both Panoxyl and gel protected significantly against UV tumorigenesis (all tumors). There was no difference between the protective effect of the 2 types of treatment. Neither Panoxyl nor gel alone influenced significantly UV skin carcinogenesis (malignant tumors). It is concluded that under these experimental conditions both Panoxyl and gel alone tend to protect against the tumorigenicity and do not enhance the carcinogenicity of UV radiation in hairless mice, whereas both gel and Panoxyl enhance chemical carcinogenesis. The carcinogenic mechanisms may be different for UV and chemical carcinogenesis, respectively.

  15. Homogeneity of gels and gel-derived glasses

    NASA Technical Reports Server (NTRS)

    Mukherjee, S. P.

    1984-01-01

    The significance and implications of gel preparation procedures in controlling the homogeneity of multicomponent oxide gels are discussed. The role of physicochemical factors such as the structure and chemical reactivities of alkoxides, the formation of double-metal alkoxides, and the nature of solvent(s) are critically analyzed in the context of homogeneity of gels during gelation. Three procedures for preparing gels in the SiO2-B2O3-Na2O system are examined in the context of cation distribution. Light scattering results for glasses in the SiO2-B2O3-Na2O system prepared by both the gel technique and the conventional technique are examined.

  16. Time-dependent gel to gel transformation of a peptide based supramolecular gelator.

    PubMed

    Baral, Abhishek; Basak, Shibaji; Basu, Kingshuk; Dehsorkhi, Ashkan; Hamley, Ian W; Banerjee, Arindam

    2015-06-28

    A dipeptide with a long fatty acid chain at its N-terminus gives hydrogels in phosphate buffer in the pH range 7.0-8.5. The hydrogel with a gelator concentration of 0.45% (w/v) at pH 7.46 (physiological pH) provides a very good platform to study dynamic changes within a supramolecular framework as it exhibits remarkable change in its appearance with time. Interestingly, the first formed transparent hydrogel gradually transforms into a turbid gel within 2 days. These two forms of the hydrogel have been thoroughly investigated by using small angle X-ray scattering (SAXS), powder X-ray diffraction (PXRD), field emission scanning electron microscopic (FE-SEM) and high-resolution transmission electron microscopic (HR-TEM) imaging, FT-IR and rheometric analyses. The SAXS and low angle PXRD studies substantiate different packing arrangements for the gelator molecules for these two different gel states (the freshly prepared and the aged hydrogel). Moreover, rheological studies of these two gels reveal that the aged gel is stiffer than the freshly prepared gel. PMID:26016677

  17. A basic study of some normoxic polymer gel dosimeters.

    PubMed

    De Deene, Y; Hurley, C; Venning, A; Vergote, K; Mather, M; Healy, B J; Baldock, C

    2002-10-01

    Polymer gel dosimeters offer a wide range of potential applications in the three-dimensional verification of complex dose distribution such as in intensity-modulated radiotherapy (IMRT). Until now, however, polymer gel dosimeters have not been widely used in the clinic. One of the reasons is that they are difficult to manufacture. As the polymerization in polymer gels is inhibited by oxygen, all free oxygen has to be removed from the gels. For several years this was achieved by bubbling nitrogen through the gel solutions and by filling the phantoms in a glove box that is perfused with nitrogen. Recently another gel formulation was proposed in which oxygen is bound in a metallo-organic complex thus removing the problem of oxygen inhibition. The proposed gel consists of methacrylic acid, gelatin, ascorbic acid, hydroquinone and copper(II)sulphate and is given the acronym MAGIC gel dosimeter. These gels are fabricated under normal atmospheric conditions and are therefore called 'normoxic' gel dosimeters. In this study, a chemical analysis on the MAGIC gel was performed. The composition of the gel was varied and its radiation response was evaluated. The role of different chemicals and the reaction kinetics are discussed. It was found that ascorbic acid alone was able to bind the oxygen and can thus be used as an anti-oxidant in a polymer gel dosimeter. It was also found that the anti-oxidants N-acetyl-cysteine and tetrakis(hydroxymethyl)phosphonium were effective in scavenging the oxygen. However, the rate of oxygen scavenging is dependent on the anti-oxidant and its concentration with tetrakis(hydroxymethyl)phosphonium being the most reactive anti-oxidants. Potentiometric oxygen measurements in solution provide an easy way to get a first impression on the rate of oxygen scavenging. It is shown that cupper(II)sulphate operates as a catalyst in the oxidation of ascorbic acid. We, therefore, propose some new normoxic gel formulations that have a less complicated chemical

  18. Crystallization of Na2O-SiO2 gel and glass

    NASA Technical Reports Server (NTRS)

    Neilson, G. F.; Weinberg, M. C.

    1984-01-01

    The crystallization behavior of a 19 wt pct soda silica gel and gel-derived glass was compared to that of the ordinary glass of the same composition. Both bulk and ground glass samples were utilized. X-ray diffraction measurements were made to identify the crystalline phases and gauge the extent of crystallization. It was found that the gel crystallized in a distinctive manner, while the gel glass behavior was not qualitatively different from that of the ordinary glass.

  19. Method for preparing hydrous zirconium oxide gels and spherules

    DOEpatents

    Collins, Jack L.

    2003-08-05

    Methods for preparing hydrous zirconium oxide spherules, hydrous zirconium oxide gels such as gel slabs, films, capillary and electrophoresis gels, zirconium monohydrogen phosphate spherules, hydrous zirconium oxide spherules having suspendable particles homogeneously embedded within to form a composite sorbent, zirconium monohydrogen phosphate spherules having suspendable particles of at least one different sorbent homogeneously embedded within to form a composite sorbent having a desired crystallinity, zirconium oxide spherules having suspendable particles homogeneously embedded within to form a composite, hydrous zirconium oxide fiber materials, zirconium oxide fiber materials, hydrous zirconium oxide fiber materials having suspendable particles homogeneously embedded within to form a composite, zirconium oxide fiber materials having suspendable particles homogeneously embedded within to form a composite and spherules of barium zirconate. The hydrous zirconium oxide spherules and gel forms prepared by the gel-sphere, internal gelation process are useful as inorganic ion exchangers, catalysts, getters and ceramics.

  20. Origin of water loss from soy protein gels.

    PubMed

    Urbonaite, V; de Jongh, H H J; van der Linden, E; Pouvreau, L

    2014-07-30

    Water holding (WH) of soy protein gels was investigated to identify which length scales are most contributing to WH when centrifugal forces are applied. More specifically, it was attempted to differentiate between the contributions of submicron and supramicron length scales. MgSO4 and MgCl2 salt specificities on soy protein aggregation (submicron contribution) were used to create different gel morphologies (supramicron contribution). Obtained results showed that the micrometer length scale is the most important contribution to WH of gels under the applied deformation forces. WH of soy protein gels correlated negatively with Young's modulus and positively with recoverable energy. The occurrence of rupture events had only a limited impact on WH. The ease by which water may be removed from the gel, but not the total amount, seemed to be related to the initial building block size. These insights could be exploited in product development to predict and tune oral perception properties of (new) products. PMID:24972135

  1. The Applications of Shape Memory Gel as a Smart Material

    NASA Astrophysics Data System (ADS)

    Hasnat Kabir, M.; Gong, Jin; Watanabe, Yosuke; Makino, Masato; Furukawa, Hidemitsu

    The research to find a suitable future new material is a big challenge nowadays. The material for biocompatible or biodegradable is an important issue in human life. The environment friendly materials or in other words green materials are required for future applications. The gels are soft and wet material having several unique properties such as high water absorbent, extremely low friction, softness, shape memory, high ductility and so on. The gel consists with a large amount of solvent and a small amount of cross-linker. Due to the high water content, for instants, more than 90%, this material becomes as an environment friendly green material. The shape memory gel (SMG) is one kind of soft materials among them which bears some interesting characteristics. This gel, a smart material, can be used as lens, eyeball, artificial muscle or artificial blood vessel, smart button and so on. In this paper, we have briefly discussed the different applications of the shape memory gel.

  2. Comparison of dosimetry gels prepared by agar and bovine gelatine

    NASA Astrophysics Data System (ADS)

    Sağsöz, M. E.; Korkut, Ö.; Alemdar, N.; Aktaş, S.; Çalı, E. B.; Kantarcı, M.

    2016-04-01

    Gel dosimeters are unique materials capable of showing three dimensional (3D) dose distributions of therapeutic or diagnostic exposures. Fricke gel dosimeters can be considered as chemical dosimeters that rely on a radiation-induced chemical reaction. Dose distribution of Fricke solutions containing Fe+2 ions determines the transformation of acidic, oxygen saturated Fe+2 ions to Fe+3 ions by the ionizing radiation in aqueous solutions. In this study we produced two different types of gel dosimeters using agar and bovine gelatin with similar fabrication methods. We compared the magnetic resonance (MR) T1 imaging responses of these two gel dosimeters to acquire a dose dependency of MR intensities. In conclusion agar gel dosimeters found to be produced easily and more consistent.

  3. Plasmacytoma development in mice injected with silicone gels.

    PubMed

    Potter, M; Morrison, S

    1996-01-01

    Silicone gels derived from commercially obtained implants induce plasmacytomas in 60-70% of highly susceptible BALB/cAn.DBA/2-Idh1-Pep3 congenic mice. In contrast, dimethylpolysiloxane (DMPS) silicone oils with viscosities of 5, 1000 and 12,500 cs fail to elicit these tumors. 1000 cs vinylmethylpolysiloxane is also inactive. Silicone gels, in contrast to the oils, induce a highly inflammatory silicone granuloma. Silicone gels contain chemical components not found in the oils. The chemical component responsible for inducing the permissive environment for plasmacytoma formation has not yet been identified. Silicone gels are well tolerated for long periods of time in mice without adverse effects other than plasmacytoma formation. The response to different gel preparations varies; some are associated with relatively rapid formation of plasmacytomas resembling that seen with pristane, while in others the plasmacytoma formation is extended nearly over a two year period. PMID:8565584

  4. Antimicrobial Graft Copolymer Gels.

    PubMed

    Harvey, Amanda C; Madsen, Jeppe; Douglas, C W Ian; MacNeil, Sheila; Armes, Steven P

    2016-08-01

    In view of the growing worldwide rise in microbial resistance, there is considerable interest in designing new antimicrobial copolymers. The aim of the current study was to investigate the relationship between antimicrobial activity and copolymer composition/architecture to gain a better understanding of their mechanism of action. Specifically, the antibacterial activity of several copolymers based on 2-(methacryloyloxy)ethyl phosphorylcholine [MPC] and 2-hydroxypropyl methacrylate (HPMA) toward Staphylococcus aureus was examined. Both block and graft copolymers were synthesized using either atom transfer radical polymerization or reversible addition-fragmentation chain transfer polymerization and characterized via (1)H NMR, gel permeation chromatography, rheology, and surface tensiometry. Antimicrobial activity was assessed using a range of well-known assays, including direct contact, live/dead staining, and the release of lactate dehydrogenase (LDH), while transmission electron microscopy was used to study the morphology of the bacteria before and after the addition of various copolymers. As expected, PMPC homopolymer was biocompatible but possessed no discernible antimicrobial activity. PMPC-based graft copolymers comprising PHPMA side chains (i.e. PMPC-g-PHPMA) significantly reduced both bacterial growth and viability. In contrast, a PMPC-PHPMA diblock copolymer comprising a PMPC stabilizer block and a hydrophobic core-forming PHPMA block did not exhibit any antimicrobial activity, although it did form a biocompatible worm gel. Surface tensiometry studies and LDH release assays suggest that the PMPC-g-PHPMA graft copolymer exhibits surfactant-like activity. Thus, the observed antimicrobial activity is likely to be the result of the weakly hydrophobic PHPMA chains penetrating (and hence rupturing) the bacterial membrane. PMID:27409712

  5. Gel Electrophoresis of Gold-DNA Nano-Conjugates

    SciTech Connect

    Pellegrino, T.; Sperling, R.A.; Alivisatos, A.P.; Parak, W.J.

    2006-01-10

    Single stranded DNA of different lengths and different amounts was attached to colloidal phosphine stabilized Au nanoparticles. The resulting conjugates were investigated in detail by a gel electrophoresis study based on 1200 gels. We demonstrate how these experiments help to understand the binding of DNA to Au particles. In particular we compare specific attachment of DNA via gold-thiol bonds with nonspecific adsorption of DNA. The maximum number of DNA molecules that can be bound per particle was determined. We also compare several methods to used gel electrophoresis for investigating the effective diameter of DNA-Au conjugates, such as using a calibration curve of particles with known diameters and Ferguson plots.

  6. Crystallization of steroids in gels

    NASA Astrophysics Data System (ADS)

    Kalkura, S. Narayana; Devanarayanan, S.

    1991-03-01

    The crystal growth and characterization of certain steriods, viz., cholesterol, cholesteryl acetate, β-sitosterol, progesterone and testosterone, in a silica gel medium is discussed. The present study shows that the single test tube diffusion method can be used to grow crystals of steroids in a silica gel medium by the reduction of steroid solubility.

  7. Nanocrystal/sol-gel nanocomposites

    DOEpatents

    Petruska, Melissa A.; Klimov, Victor L.

    2012-06-12

    The present invention is directed to solid composites including colloidal nanocrystals within a sol-gel host or matrix and to processes of forming such solid composites. The present invention is further directed to alcohol soluble colloidal nanocrystals useful in formation of sol-gel based solid composites

  8. Nanocrystal/sol-gel nanocomposites

    DOEpatents

    Petruska, Melissa A.; Klimov, Victor L.

    2007-06-05

    The present invention is directed to solid composites including colloidal nanocrystals within a sol-gel host or matrix and to processes of forming such solid composites. The present invention is further directed to alcohol soluble colloidal nanocrystals useful in formation of sol-gel based solid composites.

  9. Phase change memory devices formed by using 2 dimensional layered Graphene-In2 Se3 van der Waals heterostructure

    NASA Astrophysics Data System (ADS)

    Choi, Min Sup; Yang, Chenxi; Ra, Chang Ho; Yoo, Won Jong

    Indium selenide (In2Se3) is one of the unique materials which have both a layered structure and phase change property. One of the advantages of using 2 dimensional (2D) materials is their potential to form van der Waals heterostructures which enable unique physical properties and novel quantum device functions, which cannot be achieved in 2D material alone. In this study, we fabricated vertically stacked graphene-In2Se3 heterostructured memory devices. The fabricated devices showed a rapid increase of current conduction, which is attributed to the phase transition of In2Se3. The TEM images demonstrated that In2Se3 transformed from polycrystalline to layered structure thanks to the effective thermal confinement effect between graphene and In2Se3, attributed to the low thermal conductivity of layered materials in vertical direction. In addition, the current conduction could be controlled effectively by applying different pulse voltages, showing stable retention and endurance characteristics. It is thought that the differently bonded states contribute to this control process. This study demonstrates the possibility of Graphene-In2Se3 van der Waals heterostructure as 2D based future memory electronics. This work was supported by the National Research Foundation of Korea(NRF) Grant funded by the Korea government(MEST) (No. 2013R1A2A2A01015516).

  10. Using Gel Electrophoresis To Illustrate Protein Diversity and Isoelectric Point.

    ERIC Educational Resources Information Center

    Browning, Mark; Vanable, Joseph

    2002-01-01

    Demonstrates the differences in protein structures by focusing on isoelectric point with an experiment that is observable under certain pH levels in gel electrophoresis. Explains the electrophoresis procedure and reports results of the experiments. (YDS)

  11. Growth of hydroxyapatite nanoparticles on silica gels.

    PubMed

    Rivera-Muñoz, E M; Huirache-Acuña, R; Velázquez, R; Alonso-Núñez, G; Eguía-Eguía, S

    2011-06-01

    Synthetic, hydroxyapatite nanoparticles were grown on the surface of silica gels. The synthesis of those nanoparticles was obtained by immersing silica gels in a simulated body fluid (SBF) at 37 degrees C. The SBF was replaced every week to keep constant the Ca and P ion concentration and subsequent growth of hydroxyapatite was evaluated after 1-6 weeks of total soaking time in SBF. Hydroxyapatite nanoparticles were observed by scanning electron microscopy (SEM) on the surface of silica gel samples and confirmed by energy dispersive X-ray spectroscopy (EDS), Fourier Transform Infra Red Spectroscopy (FTIR) and powder X-ray Diffractometry (XRD) analysis. These particles show a regular shape and uniform size every week, keeping within the nanoscale always. Both the size and morphology of hydroxyapatite nanoparticles obtained are the result of the use of different chemical additives in the synthesis of silica gels, since they affect the liquid-to-solid interface, and the growth could correspond to a diffusion limited aggregation (DLA) process. A more detailed analysis, with higher magnifications, showed that hydroxyapatite nanoparticles are not solid spheres, showing a branched texture and their size depends on the scale and resolution of the measure instrument. PMID:21770224

  12. RegStatGel: proteomic software for identifying differentially expressed proteins based on 2D gel images

    PubMed Central

    Li, Feng; Seillier-Moiseiwitsch, Françoise

    2011-01-01

    Image analysis of two-dimensional gel electrophoresis is a key step in proteomic workflow for identifying proteins that change under different experimental conditions. Since there are usually large amount of proteins and variations shown in the gel images, the use of software for analysis of 2D gel images is inevitable. We developed open-source software with graphical user interface for differential analysis of 2D gel images. The user-friendly software, RegStatGel, contains fully automated as well as interactive procedures. It was developed and has been tested under Matlab 7.01. Availability The database is available for free at http://www.mediafire.com/FengLi/2DGelsoftware PMID:21904427

  13. Sucrose release from polysaccharide gels.

    PubMed

    Nishinari, Katsuyoshi; Fang, Yapeng

    2016-05-18

    Sucrose release from polysaccharide gels has been studied extensively because it is expected to be useful in understanding flavour release from solid foods and to find a new processing method which produces more palatable and healthier foods. We provide an overview of the release of sucrose and other sugars from gels of agar and related polysaccharides. The addition of sucrose to agar solutions leads to the increase in transparency of the resulting gels and the decrease in syneresis, which is attributed to the decrease in mesh size in gels. The syneresis occurring in the quiescent condition and fluid release induced by compression is discussed. The relationship between the sugar release and the structural, rheological and thermal properties of gels is also discussed. Finally, the future research direction is proposed. PMID:26952168

  14. Determination of chemical concentration with a 2 dimensional CCD array in the Echelle grating spectrometer

    SciTech Connect

    Lewis, D.K.; Stevens, C.G.

    1994-11-15

    The Echelle grating spectrometer (EGS) uses a stepped Echelle grating, prisms and a folded light path to miniaturize an infrared spectrometer. Light enters the system through a slit and is spread out along Y by a prism. This light then strikes the grating and is diffracted out along X. This spreading results in a superposition of spectral orders since the grating has a high spectral range. These orders are then separated by again passing through a prism. The end result of a measurement is a 2 dimensional image which contains the folded spectrum of the region under investigation. The data lies in bands from top to bottom, for example, with wavenumber increments as small as 0.1 lying from left to right such that the right end of band N is the same as the left end of band N+1. This is the image which must be analyzed.

  15. Time-resolved spatial phase measurements with 2-dimensional spectral interferometry

    NASA Astrophysics Data System (ADS)

    Childress, Colby; Planchon, Thomas; Amir, Wafa; Squier, Jeff A.; Durfee, Charles G.

    2007-03-01

    We are using 2-dimensional spectral interferometry for sensitive measurements of spatial phase distortions. The reference pulse and the time-delayed probe pulse are coincident on an imaging spectrometer, yielding spectral and spatial phase information. This technique offers the potential of higher sensitivity than traditional spatial interferometry since there are many fringes of data for each spatial point. We illustrate this technique with measurements of the thermal lensing profile in a cryogenically cooled Ti:sapphire amplifier crystal that is pumped by tens of watts of power from four frequency-doubled Nd:YLF lasers running at 1 kHz. By adjusting the relative delay of the probe and reference pulses, we characterize the thermal transients during and after the pump pulses. We compare the measured transient thermal profiles with those calculated with a finite-element model.

  16. The structural identification of a methyl analog of methaqualone via 2-dimensional NMR techniques.

    PubMed

    Angelos, S A; Lankin, D C; Meyers, J A; Raney, J K

    1993-03-01

    A submission to the Drug Enforcement Administration North Central Laboratory of a substance believed to be a structural analog of methaqualone hydrochloride precipitated an interest in being able to obtain a rapid and positive identification of such compounds. Both mass spectrometry and proton NMR spectroscopy (1-dimensional) provided evidence to suggest that the structural analog possessed a second methyl group in the molecule, relative to methaqualone, and that the methyl group was attached to the existing methyl-substituted phenyl ring. By application of proton 2-dimensional (2-D) NMR techniques, specifically the homonuclear shift correlation spectroscopy (COSY) and 2-D NOE (NOESY), the precise location of the methyl group in this unknown methaqualone analog was established and shown to have the structure 2. PMID:8455002

  17. Responsive Gel-Gel Phase Transitions in Artificially Engineered Protein Hydrogels

    NASA Astrophysics Data System (ADS)

    Olsen, B. D.

    2012-02-01

    Artificially engineered protein hydrogels provide an attractive platform for biomedical materials due to their similarity to components of the native extracellular matrix. Engineering responsive transitions between shear-thinning and tough gel phases in these materials could potentially enable gels that are both shear-thinning and tough to be produced as novel injectable biomaterials. To engineer a gel with such transitions, a triblock copolymer with thermoresponsive polymer endblocks and an artificially engineered protein gel midblock is designed. Temperature is used to trigger a transition from a single network protein hydrogel phase to a double network phase with both protein and block copolymer networks present at different length scales. The thermodynamics of network formation and resulting structural changes are established using small-angle scattering, birefringence, and dynamic scanning calorimetry. The formation of the second network is shown to produce a large, nonlinear increase in the elastic modulus as well as enhancements in creep compliance and toughness. Although the gels show yielding behavior in both the single and double network regimes, a qualitative change in the deformation mechanism is observed due to the structural changes.

  18. Macroscopic observations of molecular recognition: discrimination of the substituted position on the naphthyl group by polyacrylamide gel modified with β-cyclodextrin.

    PubMed

    Zheng, Yongtai; Hashidzume, Akihito; Takashima, Yoshinori; Yamaguchi, Hiroyasu; Harada, Akira

    2011-11-15

    Macroscopic molecular recognition observations were realized using polyacrylamide-based gels modified with α-cyclodextrin (α-CD), β-cyclodextrin (β-CD), 1-naphthylmethyl (1Np), and 2-naphthylmethyl (2Np) moieties, which are denoted as αCD(x)-gel, βCD(x)-gel, 1Np(y)-gel, and 2Np(y)-gel, where x and y indicate the mol % of CD and Np moieties, respectively. The αCD(5)-gel did not adhere to either the 1Np(5)-gel or 2Np(5)-gel, whereas the βCD(5)-gel interacted with both to form alternating or checkered assemblies. Although the difference in the association constants of β-CD for the model polymers was small, the βCD(x)-gel successfully discriminated between 1Np(y)-gel and 2Np(y)-gel at the appropriate x and y. PMID:21978319

  19. 2-dimensional simulations of electrically asymmetric capacitively coupled RF-discharges

    NASA Astrophysics Data System (ADS)

    Mohr, Sebastian; Schulze, Julian; Schuengel, Edmund; Czarnetzki, Uwe

    2011-10-01

    Capactively coupled RF-discharges are widely used for surface treatment like the deposition of thin films. For industrial applications, the independent control of the ion flux to and the mean energy of the electrons impinging on the surfaces is desired. Experiments and 1D3v-PIC/MCC-simulations have shown that this independent control is possible by applying a fundamental frequency and its second harmonic to the powered electrode. This way, even in geometrically symmetric discharges, as they are often used in industrial reactors, a discharge asymmetry can be induced electrically, hence the name Electrical Asymmetry Effect (EAE). We performed 2D-simulations of electrically asymmetric discharges using HPEM by the group of Mark Kushner, a simulation tool suitable for simulating industrial reactors. First results are presented and compared to previously obtained experimental and simulation data. The comparison shows that for the first time, we succeeded in simulating electrically asymmetric discharges with a 2-dimensional simulation. Capactively coupled RF-discharges are widely used for surface treatment like the deposition of thin films. For industrial applications, the independent control of the ion flux to and the mean energy of the electrons impinging on the surfaces is desired. Experiments and 1D3v-PIC/MCC-simulations have shown that this independent control is possible by applying a fundamental frequency and its second harmonic to the powered electrode. This way, even in geometrically symmetric discharges, as they are often used in industrial reactors, a discharge asymmetry can be induced electrically, hence the name Electrical Asymmetry Effect (EAE). We performed 2D-simulations of electrically asymmetric discharges using HPEM by the group of Mark Kushner, a simulation tool suitable for simulating industrial reactors. First results are presented and compared to previously obtained experimental and simulation data. The comparison shows that for the first time, we

  20. Mechanical Failure in Colloidal Gels

    NASA Astrophysics Data System (ADS)

    Kodger, Thomas Edward

    When colloidal particles in a dispersion are made attractive, they aggregate into fractal clusters which grow to form a space-spanning network, or gel, even at low volume fractions. These gels are crucial to the rheological behavior of many personal care, food products and dispersion-based paints. The mechanical stability of these products relies on the stability of the colloidal gel network which acts as a scaffold to provide these products with desired mechanical properties and to prevent gravitational sedimentation of the dispersed components. Understanding the mechanical stability of such colloidal gels is thus of crucial importance to predict and control the properties of many soft solids. Once a colloidal gel forms, the heterogeneous structure bonded through weak physical interactions, is immediately subject to body forces, such as gravity, surface forces, such as adhesion to a container walls and shear forces; the interplay of these forces acting on the gel determines its stability. Even in the absence of external stresses, colloidal gels undergo internal rearrangements within the network that may cause the network structure to evolve gradually, in processes known as aging or coarsening or fail catastrophically, in a mechanical instability known as syneresis. Studying gel stability in the laboratory requires model colloidal system which may be tuned to eliminate these body or endogenous forces systematically. Using existing chemistry, I developed several systems to study delayed yielding by eliminating gravitational stresses through density matching and cyclic heating to induce attraction; and to study syneresis by eliminating adhesion to the container walls, altering the contact forces between colloids, and again, inducing gelation through heating. These results elucidate the varied yet concomitant mechanisms by which colloidal gels may locally or globally yield, but then reform due to the nature of the physical, or non-covalent, interactions which form

  1. 3D dosimetry fundamentals: gels and plastics

    NASA Astrophysics Data System (ADS)

    Lepage, M.; Jordan, K.

    2010-11-01

    Many different materials have been developed for 3D radiation dosimetry since the Fricke gel dosimeter was first proposed in 1984. This paper is intended as an entry point into these materials where we provide an overview of the basic principles for the most explored materials. References to appropriate sources are provided such that the reader interested in more details can quickly find relevant information.

  2. Polyoxometalate-based Supramolecular Gel

    PubMed Central

    He, Peilei; Xu, Biao; Liu, Huiling; He, Su; Saleem, Faisal; Wang, Xun

    2013-01-01

    Self-assemblyings of surfactant-encapsulated Wells-Dawson polyoxometalates (SEPs) nanobuilding blocks in butanone and esters yielded supramolecular gels showing thermo and photo responsive properties. The gels can be further polymerized if unsaturated esters were used and subsequently electrospinned into nanowires and non-woven mats. The as-prepared non-woven mats have a Young's modulus as high as 542.55 MPa. It is believed that this supramolecular gel is a good platform for polyoxometalates processing. PMID:23666013

  3. Adhesive, elastomeric gel impregnating composition

    DOEpatents

    Shaw, David Glenn; Pollard, John Randolph; Brooks, Robert Aubrey

    2002-01-01

    An improved capacitor roll with alternating film and foil layers is impregnated with an adhesive, elastomeric gel composition. The gel composition is a blend of a plasticizer, a polyol, a maleic anhydride that reacts with the polyol to form a polyester, and a catalyst for the reaction. The impregnant composition is introduced to the film and foil layers while still in a liquid form and then pressure is applied to aid with impregnation. The impregnant composition is cured to form the adhesive, elastomeric gel. Pressure is maintained during curing.

  4. A novel smart supramolecular organic gelator exhibiting dual-channel responsive sensing behaviours towards fluoride ion via gel-gel states.

    PubMed

    Mehdi, Hassan; Pang, Hongchang; Gong, Weitao; Dhinakaran, Manivannan Kalavathi; Wajahat, Ali; Kuang, Xiaojun; Ning, Guiling

    2016-07-01

    A novel smart supramolecular organic gelator G-16 containing anion and metal-coordination ability has been designed and synthesized. It shows excellent and robust gelation capability as a strong blue fluorescent supramolecular organic gel OG in DMF. Addition of Zn(2+) produced Zn(2+)-coordinated supramolecular metallogel OG-Zn. Organic gel OG and organometallic gel OG-Zn exhibited efficient and different sensing behaviors towards fluoride ion due to the variation in self-assembling nature. Supramolecular metallogel OG-Zn displayed specific selectivity for fluoride ion and formed OG-Zn-F with dramatic color change from blue to blue green in solution and gel to gel states. Furthermore after directly addition of fluoride into OG produced fluoride containing organic gel OG-F with drastically modulation in color from blue to greenish yellow fluorescence via strong aggregation-induced emission (AIE) property. A number of experiments were conducted such as FTIR, (1)H NMR, and UV/Vis spectroscopies, XRD, SEM and rheology. These results revealed that the driving forces involved in self-assembly of OG, OG-Zn, OG-Zn-F and OG-F were hydrogen bonding, metal coordination, π-π interactions, and van der Waal forces. In contrast to the most anion responsive gels, particularly fluoride ion responsive gels showed gel-sol state transition on stimulation by anions, the gel state of OG and OG-Zn did not show any gel-to-sol transition during the whole F(-) response process. PMID:27193611

  5. Tensile Properties of Poly (N-vinyl caprolactam) Gels

    NASA Technical Reports Server (NTRS)

    Morgret, Leslie D.; Hinkley, Jeffrey A.

    2004-01-01

    N-vinyl caprolactam was copolymerized with ethylene glycol dimethacrylate using a free-radical initiator in alcohol/water solution. The resulting gels were thermally-responsive in water, undergoing an approximate fivefold reversible volume shrinkage between room temperature and ca. 50 C. Tensile testing showed that the stress-strain behavior was qualitatively different in the collapsed state above the temperature-induced transition. At the higher temperature, gels were stiffer, more ductile, and showed greater time dependence. Implications for the design of gel actuators are briefly discussed.

  6. Influence of colloidal silicon dioxide on gel strength, robustness, and adhesive properties of diclofenac gel formulation for topical application.

    PubMed

    Lu, Zheng; Fassihi, Reza

    2015-06-01

    The objective of this study is to identify the extent of stiffness, adhesiveness, and thixotropic character of a three-dimensional gel network of a 1% diclofenac sodium topical gel formulation in the presence and absence of colloidal silicon dioxide (CSD) and assess its ease of application and adhesiveness using both objective and subjective analysis. The 1% diclofenac gel was mixed with different amounts of CSD (e.g., 0.5, 1, 2, 3, and 5% w/w) and allowed to equilibrate prior to testing. The texture analyzer in combination with a cone-cap assembly was used to objectively investigate the changes in spreadability and adhesiveness of the gel system before and after addition of CSD. Results indicate that an increase in pliability and adhesiveness at levels ≥2 to ≤5% w/w of CSD dispersed in the gel ensues. For subjective analysis, gels with (2% w/w) CSD and in the absence of CSD were uniformly applied to a 20-cm(2) (5 cm × 4 cm) surface area on the forearms of healthy volunteers and vehicle preferences by the volunteers regarding ease of application, durability on the skin, compliance, and feelings concerning its textural properties were assessed. It appears that changes in the gel formulation with the addition of CSD enhance gel viscosity and bonding to the skin. Results further show that changes in physical and rheological characteristics of gel containing 2% w/w CSD did not significantly change subject preferences for the gel preparations. These findings may help formulators to have additional options to develop more robust and cost-effective formulations. PMID:25501873

  7. Gel Electrophoresis of Gold-DNA Nanoconjugates

    DOE PAGESBeta

    Pellegrino, T.; Sperling, R. A.; Alivisatos, A. P.; Parak, W. J.

    2007-01-01

    Gold-DNA conjugates were investigated in detail by a comprehensive gel electrophoresis study based on 1200 gels. A controlled number of single-stranded DNA of different length was attached specifically via thiol-Au bonds to phosphine-stabilized colloidal gold nanoparticles. Alternatively, the surface of the gold particles was saturated with single stranded DNA of different length either specifically via thiol-Au bonds or by nonspecific adsorption. From the experimentally determined electrophoretic mobilities, estimates for the effective diameters of the gold-DNA conjugates were derived by applying two different data treatment approaches. The first method is based on making a calibration curve for the relation between effectivemore » diameters and mobilities with gold nanoparticles of known diameter. The second method is based on Ferguson analysis which uses gold nanoparticles of known diameter as reference database. Our study shows that effective diameters derived from gel electrophoresis measurements are affected with a high error bar as the determined values strongly depend on the method of evaluation, though relative changes in size upon binding of molecules can be detected with high precision. Furthermore, in this study, the specific attachment of DNA via gold-thiol bonds to Au nanoparticles is compared to nonspecific adsorption of DNA. Also, the maximum number of DNA molecules that can be bound per particle was determined.« less

  8. Fluid Diversion and Sweep Improvement with Chemical Gels in Oil Recovery Processes

    SciTech Connect

    Seright, R.S.; Martin, F.D.

    1991-11-01

    This report describes progress made during the second year of the three-year project, Fluid diversion and Sweep Improvement with Chemical Gels in Oil Recovery Processes.'' The objectives of this project are to identify the mechanisms by which gel treatments divert fluids in reservoirs and to establish where and how gel treatments are best applied. Several different types of gelants are being examined. This research is directed at gel applications in water injection wells, in production wells, and in high-pressure gasfloods. The work examines how the flow properties of gels and gelling agents are influenced by permeability, lithology, and wettability. Other goals include determining the proper placement of gelants, the stability of in-place gels, and the types of gels required for the various oil recovery processes and for different scales of reservoir heterogeneity. 93 refs., 39 figs., 43 tabs.

  9. Topical diclofenac/hyaluronic acid gel in the treatment of solar keratoses.

    PubMed

    McEwan, L E; Smith, J G

    1997-11-01

    A randomized double-blind controlled trial of 130 patients was performed to study the efficacy and tolerability of topical 3% diclofenac in 2.5% hyaluronic acid (HA) gel (active) versus gel containing 2.5% HA alone (control) in the treatment of solar keratoses. Patients were asked to apply trial gel to the target lesion twice a day and also sunscreen once a day for 24 weeks. The complete response rates were 29% for the active gel and 17% for the control gel. The difference was not statistically significant (P = 0.14). A high percentage of patients in both groups experienced a partial response to treatment (38% active, 45% control) but there was no significant difference in the spectrum of response between the two treatments (P = 0.18). Local adverse reactions occurred significantly more frequently in patients using the active gel (29% compared to 5% using control gel, P = 0.0002). PMID:9431711

  10. Mechanical properties of layered poly (ethylene glycol) gels.

    PubMed

    Skornia, S L; Bledsoe, J G; Kelso, B; Kuntz Willitz, R

    2007-01-01

    Poly(ethylene glycol) (PEG) hydrogels have become a popular material for biomedical applications because of their versatility in use and design. As these gels are readily crosslinked under UV, microfabrication techniques have been investigated to manufacture complex three dimensional structures to better mimic the in vivo environment. This work investigated whether a layering technique to fabricate gels offered sufficient strength between the layers to perform similarly in mechanical testing to unlayered gels. Two mechanical tests were performed: tensile tests and peel tests. The tensile tests, which examined sample gels whose test sections were crosslinked for different durations, demonstrated no statistical differences in elastic modulus between sample and control gels. As expected, a statistical increase in the elastic modulus was found with increased PEG concentration. Comparison of the yield stress between samples and controls illustrated differences with total crosslinking duration, which may be due to the decreased molecular weight of the chains with decreased crosslinking time. In peel tests, no statistical differences of maximum peel force were found between samples and controls. However, an increase in the maximum peel force was found with increasing concentration of PEG. Overall, this study demonstrates that the layering process described for the PEG gels has minimal impact on the tested mechanical properties of the system. As mechanical properties are critical to the design of tissue engineered devices, these results demonstrate that this fabrication method may be appropriate for further study as a scaffold for complex cellular systems. PMID:20799187

  11. Dynamics of a DNA Gel

    NASA Astrophysics Data System (ADS)

    Adhikari, Ramesh; Bhattacharya, Aniket; Dogariu, Aristide

    We study in silico the properties of a gel consisting of DNA strands (modeled as semi-flexible chains) and linkers of varying flexibility, length, and topology. These linkers are envisioned and modeled as active components with additional attributes so as to mimic properties of a synthetic DNA gel containing motor proteins. We use Brownian dynamics to directly obtain frequency dependent complex shear moduli of the gel. We further carry out force spectroscopy on these computer generated gels and study the relaxation properties as a function of the important parameters of the model, e.g., densities and relative ratios of the DNAs and the linkers, the average life time of a link, etc. Our studies are relevant for designing synthetic bio-materials for both materials and medical applications.

  12. Calibration of laser tomography as a new optical diagnostic tool applied to dosimetric polymer gels

    NASA Astrophysics Data System (ADS)

    Alwan, R.; Guermeur, F.; Bailly, Y.; Simonin, L.; Svoboda, J.; Makovicka, L.; Martin, E.

    2008-03-01

    Numerous medical applications, as radiotherapy for example, require accurate and reproducible three-dimensional dose measurements with high spatial resolution. A solution of great interest and which has been exploited for many years is the use of dosimetric gels based on different physico-chemical principles, as Fricke's gels or polymer gels. Fricke's gels take advantage of the oxidation of ferrous ions in ferric while polymer gels are the result of the synthesis of polyacrylamide hydrogel from monomer and cross-linking agent. Fricke's gels have particular limitations not encountered with polymer gel dosimeters: the time delay between irradiation and measurement must be reduced in order to limit the diffusion of ferric ions which may remove the spatial dose information. That's why, during the past decade, many compositions of polymer gels have been studied (PAG, MAGIC, …), elaborated and even commercialized (BANG gels). However the gel composition remains of great interest regarding its physical properties. In this work, the authors propose a new optical diagnostic tool more flexible and less expensive in comparison with existing techniques like magnetic resonance imaging (MRI) and Optical-CT. This technique is based on light scattering behaviour occurring in an irradiated polymer gel (note that light scattering in Fricke's gels is very feeble, the latter being essentially absorbant).

  13. Creating coordination-based cavities in a multiresponsive supramolecular gel.

    PubMed

    Wei, Shi-Chao; Pan, Mei; Fan, Yuan-Zhong; Liu, Haoliang; Zhang, Jianyong; Su, Cheng-Yong

    2015-05-11

    Creating cavities in varying levels, from molecular containers to macroscopic materials of porosity, have long been motivated for biomimetic or practical applications. Herein, we report an assembly approach to multiresponsive supramolecular gels by integrating photochromic metal-organic cages as predefined building units into the supramolecular gel skeleton, providing a new approach to create cavities in gels. Formation of discrete O-Pd2 L4 cages is driven by coordination between Pd(2+) and a photochromic dithienylethene bispyridine ligand (O-PyFDTE). In the presence of suitable solvents (DMSO or MeCN/DMSO), the O-Pd2 L4 cage molecules aggregate to form nanoparticles, which are further interconnected through supramolecular interactions to form a three-dimensional (3D) gel matrix to trap a large amount of solvent molecules. Light-induced phase and structural transformations readily occur owing to the reversible photochromic open-ring/closed-ring isomeric conversion of the cage units upon UV/visible light radiation. Furthermore, such Pd2 L4 cage-based gels show multiple reversible gel-solution transitions when thermal-, photo-, or mechanical stimuli are applied. Such supramolecular gels consisting of porous molecules may be developed as a new type of porous materials with different features from porous solids. PMID:25876958

  14. Mechanism of Concentration Dependence of Water Diffusivity in Polyacrylate Gels

    NASA Astrophysics Data System (ADS)

    Mani, Sriramvignesh; Khabaz, Fardin; Khare, Rajesh

    Membrane based separation processes offer an energy efficient alternative to traditional distillation based separation processes. In this work, we focus on the molecular mechanisms underlying the process of separation of dilute ethanol-water mixture using polyacrylate gels as pervaporation membranes. The diffusivities of the components in swollen gels exhibit concentration dependence. We have used molecular dynamics (MD) simulations to study the correlation between the dynamics of solvent (water and ethanol) molecules, polymer dynamics and solvent structure in the swollen gel systems as a function of solvent concentration. Three different polyacrylate gels were studied: (1) poly n-butyl acrylate (PBA), (2) copolymer of butyl acrylate and 2-hydroxyethyl acrylate P(BA50-HEA50), and (3) poly 2-hydroxyethyl acrylate (PHEA). Simulation results show that solvent concentration has a significant effect on local structure of the solvent molecules and chain dynamics; these factors (local structure and chain dynamics), in turn, affect the diffusivity of these molecules. At low concentration, solvent molecules are well dispersed in the gel matrix and form hydrogen bonds with the polymer. Solvent mobility is correlated with polymer mobility in this configuration and consequently water and ethanol molecules exhibit slower dynamics, this effect is especially significant in PHEA gel. At high solvent concentration, water molecules form large clusters in the system accompanied by enhancement in mobility of both the gel network and the solvent molecules.

  15. Development of mucoadhesive sprayable gellan gum fluid gels.

    PubMed

    Mahdi, Mohammed H; Conway, Barbara R; Smith, Alan M

    2015-07-01

    The nasal mucosa provides a potentially good route for local and systemic drug delivery. However, the protective feature of the nasal cavity make intranasal delivery challenging. The application of mucoadhesive polymers in nasal drug delivery systems enhances the retention of the dosage form in the nasal cavity. Several groups have investigated using low acyl gellan as a drug delivery vehicle but only limited research however, has been performed on high acyl gellan for this purpose, despite its properties being more conducive to mucoadhesion. High acyl gellan produces highly elastic gels below 60°C which make it difficult to spray using a mechanical spray device. Therefore, in this study we have tried to address this problem by making fluid gels by introducing a shear force during gelation of the gellan polymer. These fluid gel systems contain gelled micro-particles suspended in a solution of un-gelled polymer. These systems can therefore behave as pourable viscoelastic fluids. In this study we have investigated the rheological behavior and mucoadhesion of fluid gels of two different types of gellan (high and low acyl) and fluid gels prepared from blends of high and low acyl gellan at a 50:50 ratio. The results demonstrated that by preparing fluid gels of high acyl gellan, the rheological properties were sufficient to spray through a standard nasal spray device. Moreover fluid gels also significantly enhance both high acyl and low acyl gellan mucoadhesion properties. PMID:25863119

  16. TOPICAL REVIEW: Polymer gel dosimetry

    NASA Astrophysics Data System (ADS)

    Baldock, C.; De Deene, Y.; Doran, S.; Ibbott, G.; Jirasek, A.; Lepage, M.; McAuley, K. B.; Oldham, M.; Schreiner, L. J.

    2010-03-01

    Polymer gel dosimeters are fabricated from radiation sensitive chemicals which, upon irradiation, polymerize as a function of the absorbed radiation dose. These gel dosimeters, with the capacity to uniquely record the radiation dose distribution in three-dimensions (3D), have specific advantages when compared to one-dimensional dosimeters, such as ion chambers, and two-dimensional dosimeters, such as film. These advantages are particularly significant in dosimetry situations where steep dose gradients exist such as in intensity-modulated radiation therapy (IMRT) and stereotactic radiosurgery. Polymer gel dosimeters also have specific advantages for brachytherapy dosimetry. Potential dosimetry applications include those for low-energy x-rays, high-linear energy transfer (LET) and proton therapy, radionuclide and boron capture neutron therapy dosimetries. These 3D dosimeters are radiologically soft-tissue equivalent with properties that may be modified depending on the application. The 3D radiation dose distribution in polymer gel dosimeters may be imaged using magnetic resonance imaging (MRI), optical-computerized tomography (optical-CT), x-ray CT or ultrasound. The fundamental science underpinning polymer gel dosimetry is reviewed along with the various evaluation techniques. Clinical dosimetry applications of polymer gel dosimetry are also presented.

  17. Topical Review: Polymer gel dosimetry

    PubMed Central

    Baldock, C; De Deene, Y; Doran, S; Ibbott, G; Jirasek, A; Lepage, M; McAuley, K B; Oldham, M; Schreiner, L J

    2010-01-01

    Polymer gel dosimeters are fabricated from radiation sensitive chemicals which, upon irradiation, polymerize as a function of the absorbed radiation dose. These gel dosimeters, with the capacity to uniquely record the radiation dose distribution in three-dimensions (3D), have specific advantages when compared to one-dimensional dosimeters, such as ion chambers, and two-dimensional dosimeters, such as film. These advantages are particularly significant in dosimetry situations where steep dose gradients exist such as in intensity-modulated radiation therapy (IMRT) and stereotactic radiosurgery. Polymer gel dosimeters also have specific advantages for brachytherapy dosimetry. Potential dosimetry applications include those for low-energy x-rays, high-linear energy transfer (LET) and proton therapy, radionuclide and boron capture neutron therapy dosimetries. These 3D dosimeters are radiologically soft-tissue equivalent with properties that may be modified depending on the application. The 3D radiation dose distribution in polymer gel dosimeters may be imaged using magnetic resonance imaging (MRI), optical-computerized tomography (optical-CT), x-ray CT or ultrasound. The fundamental science underpinning polymer gel dosimetry is reviewed along with the various evaluation techniques. Clinical dosimetry applications of polymer gel dosimetry are also presented. PMID:20150687

  18. The formation and structure of Olympic gels

    NASA Astrophysics Data System (ADS)

    Fischer, J.; Lang, M.; Sommer, J.-U.

    2015-12-01

    Different methods for creating Olympic gels are analyzed using computer simulations. First ideal reference samples are obtained from freely interpenetrating semi-dilute solutions and melts of cyclic polymers. The distribution of pairwise concatenations per cyclic molecule is given by a Poisson-distribution and can be used to describe the elastic structure of the gels. Several batches of linear chains decorated with different selectively binding groups at their ends are mixed in the "DNA Origami" technique and network formation is realized. While the formation of cyclic molecules follows mean field predictions below overlap of the precursor molecules, an enhanced ring formation above overlap is found that is not explained by mean field arguments. The "progressive construction" method allows to create Olympic gels with a single reaction step from a concentrated mixture of large compressed rings with a low weight fraction of short chains that are below overlap concentration. This method, however, is limited by the difficulty to obtain a sufficiently high degree of polymerization of the large rings.

  19. Bucky gel actuators optimization towards haptic applications

    NASA Astrophysics Data System (ADS)

    Bubak, Grzegorz; Ansaldo, Alberto; Ceseracciu, Luca; Hata, Kenji; Ricci, Davide

    2014-03-01

    An ideal plastic actuator for haptic applications should generate a relatively large displacement (minimum 0.2-0.6 mm, force (~50 mN/cm2) and a fast actuation response to the applied voltage. Although many different types of flexible, plastic actuators based on electroactive polymers (EAP) are currently under investigation, the ionic EAPs are the only ones that can be operated at low voltage. This property makes them suitable for applications that require inherently safe actuators. Among the ionic EAPs, bucky gel based actuators are very promising. Bucky gel is a physical gel made by grounding imidazolium ionic liquids with carbon nanotubes, which can then be incorporated in a polymeric composite matrix to prepare the active electrode layers of linear and bending actuators. Anyhow, many conflicting factors have to be balanced to obtain required performance. In order to produce high force a large stiffness is preferable but this limits the displacement. Moreover, the bigger the active electrode the larger the force. However the thicker an actuator is, the slower the charging process becomes (it is diffusion limited). In order to increase the charging speed a thin electrolyte would be desirable, but this increases the probability of pinholes and device failure. In this paper we will present how different approaches in electrolyte and electrode preparation influence actuator performance and properties taking particularly into account the device ionic conductivity (which influences the charging speed) and the electrode surface resistance (which influences both the recruitment of the whole actuator length and its speed).

  20. Novel sol-gel bioactive fibers.

    PubMed

    Oréfice, R L; Hench, L L; Clark, A E; Brennan, A B

    2001-06-15

    Bioactive fibers were produced using a sol-gel method. The rheological properties of two different sol compositions prepared from a mixture of TEOS, phosphorous alkoxide and calcium nitrate, or calcium chloride in a water-ethanol solution, are reported. The sols were extruded through a spinneret to produce continuous 10 microm-diameter fibers. Discontinuous fibers and fibrous mats were prepared by air-spraying the multicomponent sols. The sol-gel fibers were converted to the bioactive fibers by three different thermal treatments at either 600 degrees, 700 degrees, or 900 degrees C for 3 h. SEM, BET, EDX, and FTIR were used to characterize the morphology and structure of the fibers. The BET measured surface area of the fibers sintered at 900 degrees C was 0 m(2)/gm compared to a value of 200 m(2)/gm for a typical sol-gel-derived particle of similar composition. Both the continuous and discontinuous fibers exhibited in vitro bioactivity in a simulated body fluid. PMID:11288073

  1. Comparison effect of azithromycin gel 2% with clindamycin gel 1% in patients with acne

    PubMed Central

    Mokhtari, Fatemeh; Faghihi, Gita; Basiri, Akram; Farhadi, Sadaf; Nilforoushzadeh, Mohammadali; Behfar, Shadi

    2016-01-01

    Background: Acne vulgaris is the most common skin disease. Local and systemic antimicrobial drugs are used for its treatment. But increasing resistance of Propionibacterium acnes to antibiotics has been reported. Materials and Methods: In a double-blind clinical trial, 40 patients with mild to moderate acne vulgaris were recruited. one side of the face was treated with Clindamycin Gel 1% and the other side with Azithromycin Topical Gel 2% BID for 8 weeks and then they were assessed. Results: Average age was 21. 8 ± 7 years. 82.5% of them were female. Average number of papules, pustules and comedones was similarly reduced in both groups and, no significant difference was observed between the two groups (P > 0.05, repeated measurs ANOVA). The mean indexes of ASI and TLC also significantly decreased during treatment in both groups, no significant difference was observed between the two groups. (P > 0.05, repeated measurs ANOVA). Also, impact of both drugs on papules and pustules was 2-3 times greater than the effect on comedones. Average satisfaction score was not significant between the two groups (P = 0.6, repeated measurs ANOVA). finally, frequency distribution of complications was not significant between the two groups (P > 0.05, Fisher Exact test). Conclusion: Azithromycin gel has medical impact at least similar to Clindamycin Gel in treatment of mild to moderate acne vulgaris, and it may be consider as suitable drug for resistant acne to conventional topical therapy. PMID:27169103

  2. Alternative imaging modalities for polymer gel dosimetry

    NASA Astrophysics Data System (ADS)

    Jirasek, Andrew

    2010-11-01

    This review summarizes recent work in the area of imaging polymer gel dosimeters using x-ray CT imaging, ultrasound, and radiation-induced changes in gel mechanical properties. In addition, recent work in the area of Raman tomographic imaging of canine bone, in conjunction with past efforts in Raman imaging of polymer gel dosimeters, raises new possibilities for new polymer gel imaging techniques.

  3. Nonlinear Exact Solutions of the 2-Dimensional Rotational Euler Equations for the Incompressible Fluid

    NASA Astrophysics Data System (ADS)

    An, Hong-Li; Yang, Jin-Jing; Yuen, Man-Wai

    2015-05-01

    In this paper, the Clarkson-Kruskal direct approach is employed to investigate the exact solutions of the 2-dimensional rotational Euler equations for the incompressible fluid. The application of the method leads to a system of completely solvable ordinary differential equations. Several special cases are discussed and novel nonlinear exact solutions with respect to variables x and y are obtained. It is of interest to notice that the pressure p is obtained by the second kind of curvilinear integral and the coefficients of the nonlinear solutions are solitary wave type functions like tanh(kt/2) and sech (kt/2) due to the rotational parameter k ≠ 0. Such phenomenon never appear in the classical Euler equations wherein the Coriolis force arising from the gravity and Earth's rotation is ignored. Finally, illustrative numerical figures are attached to show the behaviors that the exact solutions may exhibit. Supported by the National Natural Science Foundation of China under Grant No. 11301269, Jiangsu Provincial Natural Science Foundation of China under Grant No. BK20130665, the Fundamental Research Funds KJ2013036 for the Central Universities, Student Research Training under Grant No. 1423A02 of Nanjing Agricultural University, and the Research Grant RG21/2013-2014R from the Hong Kong Institute of Education

  4. A 2-dimensional fully analytical model for design of high voltage junction barrier Schottky (JBS) diodes

    NASA Astrophysics Data System (ADS)

    Radhakrishnan, Rahul; Zhao, Jian H.

    2011-09-01

    A physics-based closed form analytical model for the reverse leakage current of a high voltage junction barrier Schottky (JBS) diode is developed and shown to agree with experimental results. Maximum electric field "seen" by the Schottky contact is calculated from first principles by a 2-dimensional method as a function of JBS diode design parameters and confirmed by numerical simulations. Considering thermionic emission under image force barrier lowering and quantum mechanical tunneling, electric field at the Schottky contact is then related to reverse current. In combination with previously reported forward current and resistance models, this gives a complete I- V relationship for the JBS diode. A layout of interdigitated stripes of P-N and Schottky contacts at the anode is compared theoretically with a honeycomb layout and the 2-D model is extended to the 3-D honeycomb structure. Although simulation and experimental results from 4H-Silicon Carbide (SiC) diodes are used to validate it, the model itself is applicable to all JBS diodes.

  5. A 2-dimensional MHD code & survey of the ``buckling'' phenomenon in cylindrical magnetic flux compression experiments

    NASA Astrophysics Data System (ADS)

    Xiao, Bo; Wang, Ganghua; Gu, Zhuowei; Computational Physics Team

    2015-11-01

    We made a 2-dimensional magneto-hydrodynamics Lagrangian code. The code handles two kinds of magnetic configuration, a (x-y) plane with z-direction magnetic field Bz and a (r-z) plane with θ-direction magnetic field Bθ. The solving of the MHD equations is split into a pure dynamical step (i.e., ideal MHD) and a diffusion step. In the diffusion step, the Joule heat is calculated with a numerical scheme based on an specific form of the Joule heat production equation, ∂eJ/∂t = ∇ . (η/μ0 º × (∇ × º)) -∂/∂t (1/2μ0 B2) , where the term ∂/∂t (1/2μ0 B2) is the magnetic field energy variation caused solely by diffusion. This scheme insures the equality of the total Joule heat produced and the total electromagnetic energy lost in the system. Material elastoplasticity is considered in the code. An external circuit is coupled to the magneto-hydrodynamics and a detonation module is also added to enhance the code's ability for simulating magnetically-driven compression experiments. As a first application, the code was utilized to simulate a cylindrical magnetic flux compression experiment. The origin of the ``buckling'' phenomenon observed in the experiment is explored.

  6. Data assimilation technique of 2-dimensional vertical temperature transport model (Case study: Tropical Pacific Ocean)

    NASA Astrophysics Data System (ADS)

    Nurfitri, Suliskania; Putri, Mutiara Rachmat

    2015-09-01

    Data assimilation technique was applied into 2-dimensional vertical temperature transport model to improve temperature results especially at thermocline layer that have large change toward depth. The simple case experiment only applies on baroclinic condition in Tropical Pacific Ocean (2°N and 137°E - 140°W). Model simulation was running for 2 years from January 1st 2011 to December 31st 2012 from surface to 500 m depth and verified to observation data from TAO (Tropical Atmosphere Ocean) at 3 locations, 147°E, 165°E, and 170°W. Data assimilation procedure which applied at 3 locations (156°E, 180°W, and 155°W) using Cressman analysis technique can reduce model's RMSE (Root Mean Square Error) toward depth until 55,7% and toward time until 64,5%. The largest error of model was found at 200 m depth, while the smallest found at the surface and 500 m depth.

  7. Ionic conductivity study on electron beam irradiated polyacrylonitrile—polyethylene oxide gel

    NASA Astrophysics Data System (ADS)

    Ma, Yi-Zhun; Pang, Li-Long; Zhu, Ya-Bin; Wang, Zhi-Guang; Shen, Tie-Long

    2011-07-01

    Different mass percent polyacrylonitrile (PAN)—polyethylene oxide (PEO) gels were prepared and irradiated by an electron beam (EB) with energy of 1.0 MeV to the dose ranging from 13 kGy to 260 kGy. The gels were analysed by using Fourier transform infrared spectrum, gel fraction and ionic conductivity (IC) measurement. The results show that the gel is crosslinked by EB irradiation, the crosslinking degree rises with the increasing EB irradiation dose (ID) and the mass percents of both PAN and PEO contribute a lot to the crosslinking; in addition, EB irradiation can promote the IC of PAN—PEO gels. There exists an optimum irradiation dose, at which the IC can increase dramatically. The IC changes of the PAN—PEO gels along with ID are divided into three regions: IC rapidly increasing region, IC decreasing region and IC balanced region. The cause of the change can be ascribed to two aspects, gel capturing electron degree and crosslinking degree. By comparing the IC—ID curves of different mass percents of PAN and PEO in gel, we found that PAN plays a more important role for gel IC promotion than PEO, since addition of PAN in gel causes the IC—ID curve sharper, while addition of PEO in gel causes the curve milder.

  8. Rheological behavior of Slide Ring Gels.

    NASA Astrophysics Data System (ADS)

    Sharma, Vivek; Park, Jong Seung; Park, Jung O.; Srinivasarao, Mohan

    2006-03-01

    Slide ring gels were synthesized by chemically crosslinking, sparsely populated α-cyclodextrin (α-CD) present on the polyrotaxanes consisting of α-CD and polyethylene glycol (PEG). [1] Unlike physically or chemically crosslinked gels, slide ring gels are topological gels where crosslinks can slide along the chain. [2] We investigate the rheological behavior of these gels swollen in water and compare their viscoelastic properties to those of physical and chemical gels. We also study the equilibrium swelling behavior of these gels. [1] Okumura and Ito, Adv. Mater. 2001, 13, 485 [2] C. Zhao et al, J. Phys. Cond. Mat. 2005, 17, S2841

  9. Tb(3+)-containing supramolecular hydrogels: luminescence properties and reversible sol-gel transitions induced by external stimuli.

    PubMed

    Ma, Xinxian; Yu, Dawei; Tang, Ning; Wu, Jincai

    2014-07-14

    A dual-responsive green-light-emitting supramolecular metal hydrogel (G-gel) was prepared by the reaction of a simple hydrazide-functionalized benzimidazole ligand (L) with Tb(NO3)3. The green luminescence of gelator L is enhanced in the G-gel due to the coordination effect between L and Tb(3+). In addition, the G-gel shows different luminescence when in a semisolid state (gel) and in a solid state (xerogel). Remarkable reversible sol-gel transitions induced by temperature or pH were observed for this G-gel. PMID:24871688

  10. Thixotropic gel for vadose zone remediation

    DOEpatents

    Riha, Brian D.

    2012-07-03

    A thixotropic gel suitable for use in subsurface bioremediation is provided along with a process of using the gel. The thixotropic gel provides a non-migrating injectable substrate that can provide below ground barrier properties. In addition, the gel components provide for a favorable environment in which certain contaminants are preferentially sequestered in the gel and subsequently remediated by either indigenous or introduced microorganisms.

  11. Thixotropic gel for vadose zone remediation

    DOEpatents

    Rhia, Brian D.

    2011-03-01

    A thixotropic gel suitable for use in subsurface bioremediation is provided along with a process of using the gel. The thixotropic gel provides a non-migrating injectable substrate that can provide below ground barrier properties. In addition, the gel components provide for a favorable environment in which certain contaminants are preferentially sequestered in the gel and subsequently remediated by either indigenous or introduced microorganisms.

  12. Thixotropic gel for vadose zone remediation

    DOEpatents

    Riha, Brian D.; Looney, Brian B.

    2015-10-27

    A thixotropic gel suitable for use in subsurface bioremediation is provided along with a process of using the gel. The thixotropic gel provides a non-migrating injectable substrate that can provide below ground barrier properties. In addition, the gel components provide for a favorable environment in which certain contaminants are preferentially sequestered in the gel and subsequently remediated by either indigenous or introduced microorganisms.

  13. Purification of DNA Oligos by denaturing polyacrylamide gel electrophoresis (PAGE).

    PubMed

    Lopez-Gomollon, Sara; Nicolas, Francisco Esteban

    2013-01-01

    After chemical synthesis, the oligonucleotide preparation contains the desired full-length oligonucleotide but also all of the DNA molecules that were aborted during each cycle in the synthesis, and the by-products generated during the chemical reactions. The purification of oligonucleotides is a critical step for demanding applications where the exact length or sequence of the oligonucleotide is important, or for oligonucleotides longer than 50 bases. There are several methods of increasing oligonucleotide purity, the choice of which will depend on modifications of the oligonucleotides and their intended use. Polyacrylamide gel purification (PAGE purification) is the method of choice when the highest percentage of full-length oligonucleotide is desired. This chapter describes a protocol for oligonucleotide purification using denaturing polyacrylamide gel electrophoresis, and includes oligonucleotide preparation, polyacrylamide gel electrophoresis, and purification from the gel slice by two different methods: by diffusion or by electroelution. This chapter also includes recommendations as well as protocol advice. PMID:24011037

  14. Optical detection of parasitic protozoa in sol-gel matrices

    NASA Astrophysics Data System (ADS)

    Livage, Jacques; Barreau, J. Y.; Da Costa, J. M.; Desportes, I.

    1994-10-01

    Whole cell parasitic protozoa have been entrapped within sol-gel porous silica matrices. Stationary phase promastigote cells of Leishmania donovani infantum are mixed with a silica sol before gelation occurs. They remain trapped within the growing oxide network and their cellular organization appears to be well preserved. Moreover protozoa retain their antigenic properties in the porous gel. They are still able to detect parasite specific antibodies in serum samples from infected patients via an enzyme linked immunosorbent assay (ELISA). Antigen- antibody associations occurring in the gel are optically detected via the reactions of a peroxidase conjugate with ortho-phenylenediamine leading to the formation of a yellow coloration. A clear-cut difference in optical density is measured between positive and negative sera. Such an entrapment of antigenic species into porous sol-gel matrices avoids the main problems due to non specific binding and could be advantageously used in diagnostic kits.

  15. Effect of gravity and diffusion interface proximity on the morphology of collagen gels.

    PubMed

    Roedersheimer, M T; Bateman, T A; Simske, S J

    1997-11-01

    Collagen solutions (0.25% w/v) were polymerized in microgravity (STS-77, 10 days) along with simultaneous ground controls. Assembly conditions were achieved by the passage of buffer ions across a dialysis membrane into a reaction chamber containing the dissolved collagen. The gels were analyzed macroscopically and microscopically to assess the influence of gravity and the oriented diffusion of buffer ions on the resulting product. Double-blind rankings based on visual observation of the gels established that all of the flight gels (n = 8) were more uniform in appearance than all of the ground gels (n = 6). Photography using side illumination of the gels revealed the more granular appearance of the ground gels relative to the highly uniform appearance of the flight gels. Scanning electron microscopy established this difference at the microscopic level. Proximity to the dialysis interface and the presence or absence of gravity were both found to control the porosity and uniformity of the matrix. PMID:9358322

  16. The effect of curdlan on the rheological properties of restructured ribbonfish (Trichiurus spp.) meat gel.

    PubMed

    Wu, Chunhua; Yuan, Chunhong; Chen, Shiguo; Liu, Donghong; Ye, Xingqian; Hu, Yaqin

    2015-07-15

    The influence of curdlan at different levels, as well as the method of addition, on the viscoelastic characteristics of ribbonfish meat gel was investigated. From a small amplitude oscillatory shear analysis (SAOA), a variety of viscoelastic parameters were established and identified to measure the intensity of the interactions between curdlan and protein in the fish meat gel network structure. The results of water holding capacity, texture, sensory property and microstructure analyses were strongly in agreement with the rheology data, suggesting that SAOA might be an appropriate method for the industrial assessment of the quality of fish meat gel. Additionally, the recombination mechanism of the complex system formed by the fish protein and curdlan was also clarified. Compared with the irreversible curdlan gel samples, the addition of reversible curdlan gel to the fish meat gel formed a much denser cross-linked interpenetrating structure, which led to a more stable and ordered three-dimensional gel complex. PMID:25722158

  17. Water equivalence of NIPAM based polymer gel dosimeters with enhanced sensitivity for x-ray CT

    NASA Astrophysics Data System (ADS)

    Gorjiara, Tina; Hill, Robin; Bosi, Stephen; Kuncic, Zdenka; Baldock, Clive

    2013-10-01

    Two new formulations of N-isopropylacrylamide (NIPAM) based three dimensional (3D) gel dosimeters have recently been developed with improved sensitivity to x-ray CT readout, one without any co-solvent and the other one with isopropanol co-solvent. The water equivalence of the NIPAM gel dosimeters was investigated using different methods to calculate their radiological properties including: density, electron density, number of electrons per grams, effective atomic number, photon interaction probabilities, mass attenuation and energy absorption coefficients, electron collisional, radiative and total mass stopping powers and electron mass scattering power. Monte Carlo modelling was also used to compare the dose response of these gel dosimeters with water for kilovoltage and megavoltage x-ray beams and for megavoltage electron beams. We found that the density and electron density of the co-solvent free gel dosimeter are more water equivalent with less than a 2.6% difference compared to a 5.7% difference for the isopropanol gel dosimeter. Both the co-solvent free and isopropanol solvent gel dosimeters have lower effective atomic numbers than water, differing by 2.2% and 6.5%, respectively. As a result, their photoelectric absorption interaction probabilities are up to 6% and 19% different from water, respectively. Compton scattering and pair production interaction probabilities of NIPAM gel with isopropanol differ by up to 10% from water while for the co-solvent free gel, the differences are 3%. Mass attenuation and energy absorption coefficients of the co-solvent free gel dosimeter and the isopropanol gel dosimeter are up to 7% and 19% lower than water, respectively. Collisional and total mass stopping powers of both gel dosimeters differ by less than 2% from those of water. The dose response of the co-solvent free gel dosimeter is water equivalent (with <1% discrepancy) for dosimetry of x-rays with energies <100 keV while the discrepancy increases (up to 5%) for the

  18. Fibrillar peptide gels in biotechnology and biomedicine

    PubMed Central

    Jung, Jangwook P.; Gasiorowski, Joshua Z.; Collier, Joel H.

    2012-01-01

    Peptides, peptidomimetics, and peptide derivatives that self-assemble into fibrillar gels have received increasing interest as synthetic extracellular matrices for applications in 3D cell culture and regenerative medicine. Recently, several of these fibrillizing molecules have been functionalized with bioactive components such as cell-binding ligands, degradable sequences, drug-eluting compounds, and chemical modifications for cross-linking, producing gels that can reliably display multiple factors simultaneously. This capacity for incorporating precise levels of many different biological and chemical factors is advantageous given the natural complexity of cell-matrix interactions that many current biomaterial strategies seek to mimic. In this review, recent efforts in the area of fibril-forming peptide materials are described, and advantages of biomaterials containing multiple modular elements are outlined. In addition, a few hurdles and open questions surrounding fibrillar peptide gels are discussed, including issues of the materials’ structural heterogeneity, challenges in fully characterizing the diversity of their self-assembled structures, and incomplete knowledge of how the materials are processed in vivo. PMID:20091870

  19. Formation and properties of gels based on lipo-plexes.

    PubMed

    Pucci, Carlotta; Tardani, Franco; La Mesa, Camillo

    2014-06-12

    Aqueous systems containing sodium taurodeoxycholate and, eventually, soybean lecithin were investigated. Depending on the relative amounts of two such species, molecular, micellar, vesicular, liquid crystalline, and solid phases were formed. In the presence of bovine serum albumin, micellar and vesicular systems form lipo-plexes. The latter self-organize into gels, depending on composition and thermal treatments. According to scanning electron microscopy, vesicle-based gels obtained from lipo-plexes form sponge-like entities, whereas micelle-based ones self-arrange in fibrous organizations. Gels are characterized by a significant viscoelasticity in a wide temperature and frequency range. Rheological data were interpreted by assuming strict relations between the system response and the self-organization of the lipo-plexes into gels. It was inferred that differences in the gel properties depend on the different self-assembly modes of the aggregates formed by the mentioned lipo-plexes. Use of the above systems in biomedical applications, mostly in the preparation of matrices requiring the use of smart and biocompatible gels, is suggested. PMID:24836923

  20. Gel placement in fractured systems

    SciTech Connect

    Seright, R.S.

    1995-11-01

    This paper examines several factors that can have an important effect on gel placement in fractured systems, including gelant viscosity, degree of gelation, and gravity. For an effective gel treatment, the conductivity of the fracture must be reduced and a viable flow path must remain open between the wellbore and mobile oil in the reservoir. During placement, the gelant that``leaks off`` from the fracture into the rock plays an important role in determining how well a gel treatment will reduce channeling. For a given volume of gelant injected the distance of gelant leakoff is greater for a viscous gelant than for a low-viscosity gelant. In one method to minimize gelant leakoff, sufficient gelation is designed to occur before the gelant leaves the wellbore. The authors investigated this approach in numerous experiments with both fractured and unfractured cores. They studied Cr(III)/acetate/hydrolyzed polyacrylamide (HPAM), resorcinol/formaldehyde, Cr(III)/xanthan, aluminum/citrate/HPAM, and other gelants and gels with various delay times between gelant preparation and injection. Their results suggest both hope and caution concerning the injection of gels into fractured systems.

  1. 2-Dimensional Strain Analysis of Regional Change in Right Ventricular Function after Treadmill Exercise

    PubMed Central

    Yoon, Se-Jung; Park, Sujung; Chung, Wook-Jin

    2016-01-01

    Background Function of right ventricle (RV) influences on symptoms and prognosis in various diseases. However the regional RV function analyzed with 2-dimensional (2D) strain echocardiography before and just after treadmill test has not been evaluated. The aim of this study was to show the change of regional RV function just after treadmill exercise with strain analysis. Methods A total of thirty eight patients who visited hospital for hypertension, chest pain or dyspnea between January 2007 and December 2010 were retrospectively analyzed (men, 47.4%; mean age, 54.9 ± 7.2 years). Treadmill exercise test and pre and post echocardiography were performed. 2D strain echocardiography was analyzed off line in RV free wall and septum. Results Mean exercise duration was 737 ± 132 sec. Tissue velocity in lateral tricuspid annulus is significantly increased in post exercise (initial, 10.5 ± 2.4 cm/sec vs. post exercise, 12.2 ± 1.8 cm/sec, p = 0.006). Systolic strain of RV free wall apex and mid portion were significantly changed in post exercise stage (free wall apex, -18.2 ± 7.6% vs. -22.3 ± 5.8%, p = 0.010; free wall mid, -14.1 ± 6.7% vs. -22.6 ± 6.8%, p = 0.022). Conclusion 2D strain imaging provides a precise tool to quantify regional RV function and reveals a characteristic regional pattern of RV after treadmill exercise. PMID:27081442

  2. High-efficient nano-carrier gel systems for testosterone propionate skin delivery.

    PubMed

    Meng, Shu; Chen, Zaixing; Yang, Liqun; Zhang, Xiaowei; Guo, Jing; Li, Miao; Li, Jianxin

    2015-01-01

    The purpose of the current investigation was to evaluate the skin delivery potential of the different nano-carrier gels including liposomal gel, ethosomal gel and microemulsion gel bearing testosterone propionate (TP) as a testosterone deficient therapy. The prepared nano-particles were characterized for their shape, particle size distribution and zeta potential. In vitro skin permeation and in vivo transdermal delivery of nano-carrier gels were studied with the Franz diffusion cells and confocal laser scanning microscopy (CLSM). The results showed that all of nano-particles were almost spherical with low polydispersity and nano-metric size range from 40 to 200 nm. TP ethosomal gel also provided an enhanced transdermal flux of 7.64 ± 1.4 μg/cm(2)/h and a decreased lag time of 0.69 h across rat skin as compared with the other two formulations. The skin penetration efficiency of TP nano-carrier gels also revealed that TP ethosomal gel would enhanced penetration of rhodamine red (RR)-loaded formulation to the deeper layers of the skin (268 µm) than the liposomal gel (192 µm) and microemulsion gel (228 µm). This study demonstrated TP ethosomal gel is a promising nano-carrier for delivering TP through the skin. PMID:24799076

  3. A comparative in vitro study of the digestibility of heat- and high pressure-induced gels prepared from industrial milk whey proteins

    NASA Astrophysics Data System (ADS)

    He, Jin-Song; Mu, Tai-Hua; Wang, Juan

    2013-06-01

    We undertook this study to compare the digestibility of heat- and high pressure-induced gels produced from whey protein isolate (WPI). To simulate in vivo gastrointestinal digestion of WPI gels, a pepsin-trypsin digestion system was used. The in vitro protein digestibility of WPI gels induced by high pressure (400 MPa and 30 min; P-gel) and those induced by heat (80°C and 30 min; H-gel) was compared using a protein concentration of 0.14 g mL-1. The in vitro protein digestibility of P-gels was significantly greater than that of H-gels (p<0.05). The size-exclusion chromatography profiles of the hydrolysates showed that the P-gel generated more and smaller peptides than natural WPI and H-gels. Furthermore, Sodium dodecyl sulfate-polyacrylamide gel electrophoresis analysis showed some soluble disulfide-mediated aggregation in the P-gel, while there was more insoluble aggregation in the H-gel than the P-gel. The P-gel was more sensitive to proteinase than the H-gel, which was related to the content of S-S bonds, and this in turn could be attributed to the differences in the gelation mechanism between the H-gel and P-gel.

  4. Diagnostics of Titan's stratospheric dynamics using Cassini/CIRS data and the 2-dimensional IPSL circulation model

    NASA Astrophysics Data System (ADS)

    Crespin, A.; Lebonnois, S.; Vinatier, S.; Bézard, B.; Coustenis, A.; Teanby, N. A.; Achterberg, R. K.; Rannou, P.; Hourdin, F.

    2008-10-01

    in equatorial regions. The difference in observed vertical gradients of C 2H 2 and HCN may be an indicator of the relative strength of circulation and chemical loss of HCN. The negative vertical gradient of ethylene in the low stratosphere at 15° S, cannot be modeled with simple 1-dimensional models, where a strong photochemical sink in the middle stratosphere would be necessary. It is explained here by dynamical advection from the winter pole towards the equator in the low stratosphere and by the fact that ethylene does not condense. Near the winter pole (80° N), some compounds (C 4H 2, C 3H 4) exhibit an (interior) minimum in the observed abundance vertical profiles, whereas 2D-CM profiles are well mixed all along the atmospheric column. This minimum can be a diagnostic of the strength of the meridional circulation, and of the spatial extension of the winter polar vortex where strong descending motions are present. In the summer hemisphere, observed stratospheric abundances are uniform in latitude, whereas the model maintains a residual enrichment over the summer pole from the spring cell due to a secondary meridional overturning between 1 and 50 mbar, at latitudes south of 40-50° S. The strength, as well as spatial and temporal extensions of this structure are a difficulty, that may be linked to possible misrepresentation of horizontally mixing processes, due to the restricted 2-dimensional nature of the model. This restriction should also be kept in mind as a possible source of other discrepancies.

  5. Copolymers For Capillary Gel Electrophoresis

    DOEpatents

    Liu, Changsheng; Li, Qingbo

    2005-08-09

    This invention relates to an electrophoresis separation medium having a gel matrix of at least one random, linear copolymer comprising a primary comonomer and at least one secondary comonomer, wherein the comonomers are randomly distributed along the copolymer chain. The primary comonomer is an acrylamide or an acrylamide derivative that provides the primary physical, chemical, and sieving properties of the gel matrix. The at least one secondary comonomer imparts an inherent physical, chemical, or sieving property to the copolymer chain. The primary and secondary comonomers are present in a ratio sufficient to induce desired properties that optimize electrophoresis performance. The invention also relates to a method of separating a mixture of biological molecules using this gel matrix, a method of preparing the novel electrophoresis separation medium, and a capillary tube filled with the electrophoresis separation medium.

  6. Sol-gel derived sorbents

    DOEpatents

    Sigman, Michael E.; Dindal, Amy B.

    2003-11-11

    Described is a method for producing copolymerized sol-gel derived sorbent particles for the production of copolymerized sol-gel derived sorbent material. The method for producing copolymerized sol-gel derived sorbent particles comprises adding a basic solution to an aqueous metal alkoxide mixture for a pH.ltoreq.8 to hydrolyze the metal alkoxides. Then, allowing the mixture to react at room temperature for a precalculated period of time for the mixture to undergo an increased in viscosity to obtain a desired pore size and surface area. The copolymerized mixture is then added to an immiscible, nonpolar solvent that has been heated to a sufficient temperature wherein the copolymerized mixture forms a solid upon the addition. The solid is recovered from the mixture, and is ready for use in an active sampling trap or activated for use in a passive sampling trap.

  7. Development of an integrated approach for evaluation of 2-D gel image analysis: Impact of multiple proteins in single spots on comparative proteomics in conventional 2-D gel/MALDI workflow

    Technology Transfer Automated Retrieval System (TEKTRAN)

    With 2-D gel mapping, it is often observed that essentially identical proteins migrate to different positions in the gel, while some seemingly well-resolved protein spots consist of multiple proteins. These observations can undermine the validity of gel-based comparative proteomic studies. Through...

  8. Statistical physics of polymer gels

    NASA Astrophysics Data System (ADS)

    Panyukov, Sergei; Rabin, Yitzhak

    1996-05-01

    This work presents a comprehensive analysis of the statistical mechanics of randomly cross-linked polymer gels, starting from a microscopic model of a network made of instantaneously cross-linked Gaussian chains with excluded volume, and ending with the derivation of explicit expressions for the thermodynamic functions and for the density correlation functions which can be tested by experiments. Using replica field theory we calculate the mean field density in replica space and show that this solution contains statistical information about the behavior of individual chains in the network. The average monomer positions change affinely with macroscopic deformation and fluctuations about these positions are limited to length scales of the order of the mesh size. We prove that a given gel has a unique state of microscopic equilibrium which depends on the temperature, the solvent, the average monomer density and the imposed deformation. This state is characterized by the set of the average positions of all the monomers or, equivalently, by a unique inhomogeneous monomer density profile. Gels are thus the only known example of equilibrium solids with no long-range order. We calculate the RPA density correlation functions that describe the statistical properties of small deviations from the average density, due to both static spatial heterogeneities (which characterize the inhomogeneous equilibrium state) and thermal fluctuations (about this equilibrium). We explain how the deformation-induced anisotropy of the inhomogeneous equilibrium density profile is revealed by small angle neutron scattering and light scattering experiments, through the observation of the butterfly effect. We show that all the statistical information about the structure of polymer networks is contained in two parameters whose values are determined by the conditions of synthesis: the density of cross-links and the heterogeneity parameter. We find that the structure of instantaneously cross

  9. "JCE" Classroom Activity Connections: NaCl or CaCl[subscript 2], Smart Polymer Gel Tells More

    ERIC Educational Resources Information Center

    Chen, Yueh-Huey; Lin, Jia-Ying; Wang, Yu-Chen; Yaung, Jing-Fun

    2010-01-01

    This classroom activity connection demonstrates the differences between the effects of NaCl (a salt of monovalent metal ions) and CaCl[subscript 2] (a salt of polyvalent metal ions) on swollen superabsorbent polymer gels. Being ionic compounds, NaCl and CaCl[subscript 2] both collapse the swollen polymer gels. The gel contracted by NaCl reswells…

  10. Sol-gel Technology and Advanced Electrochemical Energy Storage Materials

    NASA Technical Reports Server (NTRS)

    Chu, Chung-tse; Zheng, Haixing

    1996-01-01

    Advanced materials play an important role in the development of electrochemical energy devices such as batteries, fuel cells, and electrochemical capacitors. The sol-gel process is a versatile solution for use in the fabrication of ceramic materials with tailored stoichiometry, microstructure, and properties. This processing technique is particularly useful in producing porous materials with high surface area and low density, two of the most desirable characteristics for electrode materials. In addition,the porous surface of gels can be modified chemically to create tailored surface properties, and inorganic/organic micro-composites can be prepared for improved material performance device fabrication. Applications of several sol-gel derived electrode materials in different energy storage devices are illustrated in this paper. V2O5 gels are shown to be a promising cathode material for solid state lithium batteries. Carbon aerogels, amorphous RuO2 gels and sol-gel derived hafnium compounds have been studied as electrode materials for high energy density and high power density electrochemical capacitors.

  11. Pupil dilation using drops vs gel: a comparative study

    PubMed Central

    Moisseiev, E; Loberman, D; Zunz, E; Kesler, A; Loewenstein, A; Mandelblum, J

    2015-01-01

    Purpose To compare the efficacy in pupil dilation and degree of discomfort between topical instillation of mydriatic drops and gel. Methods The study included 60 patients with no previous ocular history of trauma and surgery. One eye was dilated with two drops (tropicamide 0.5% and phenylephrine 10%), and the other with one drop of gel (tropicamide 0.5%+phenylephrine 5%). Pupil size was measured by a Colvard pupillometer at baseline and 5, 15, 30, and 45 min following instillation. Pain upon instillation was measured by visual analog scale (VAS). Results There was no difference in pupil size at baseline. Use of the gel achieved greater mydriasis than drops (P=0.01), and was also associated with lower pain scores (P=0.003). In diabetic patients, pupil size was smaller at baseline and following instillation of drops and gel. Use of the gel achieved an even greater degree of pupil dilation in this subset of patients than drops (P=0.019). Conclusions Gel formulation achieved significantly greater pupil dilation than drops, despite a lower concentration of phenylephrine, and was also associated with significantly lower patient discomfort. This study is the first report of improved mydriatic efficacy in diabetic patients. PMID:25857606

  12. Non-equilibrium tuning of attractive colloidal gels

    NASA Astrophysics Data System (ADS)

    Boromand, Arman; Maia, Joao

    2015-11-01

    In colloidal gel systems, the presence of multiple interactions in multiple length scales such as Van der Waals, depletion attractions, and electrostatic repulsions makes these systems challenging from both experimental and simulation aspects. Recently, there has been growing interest to tune and manipulate the structural and dynamics properties of those systems without adjusting interparticle interactions, just by taking them out of equilibrium. In this work, we used Core-Modified Dissipative Particle Dynamics (CM-DPD) with a modified depletion potential, as a coarse-grain model to address the gel formation process in short ranged-attractive colloidal suspensions for a range of volume fractions and attraction strengths. It is suggested that at high volume fractions and near the glass transition, there is a transformation from non-bonded glass to bonded-glass for which that the effect of topological frustration (caging) will be alleviated by the presence of attractive potentials (bonding) i.e. melting during cooling. In the first part of the presentation, we discuss our similar findings for semi-dilute volume fraction of attractive bimodal colloidal gels at equilibrium, which can be explained through local densification of attractive colloidal gels. In the second part, structural and dynamics properties of arrested gels will be studied under shear and after cessation of shear to study how the different flow profiles and history will alter final morphology of the gel systems.

  13. The Influence of Microgravity on Silica Sol-Gel Formation

    NASA Technical Reports Server (NTRS)

    Sibille, L.; Smith, D. D.; Cronise, R.; Hunt, A. J.; Wolfe, D. B.; Snow, L. A.; Oldenberg, S.; Halas, N.; Rose, M. Franklin (Technical Monitor)

    2000-01-01

    We discuss space-flight experiments involving the growth of silica particles and gels. The effect of microgravity on the growth of silica particles via the sol-gel route is profound. In four different recipes spanning a large range of the parameter space that typically produces silica nanoparticles in unit-gravity, low-density gel structures were instead formed in microgravity. The particles that did form were generally smaller and more polydisperse than those grown on the ground. These observations suggest that microgravity reduces the particle growth rate, allowing unincorporated species to form aggregates and ultimately gel. Hence microgravity favors the formation of more rarefied structures, providing a bias towards diffusion-limited cluster-cluster aggregation. These results further suggest that in unit gravity, fluid flows and sedimentation can significantly perturb sol-gel substructures prior to gelation and these deleterious perturbations may be "frozen" into the resulting microstructure. Hence, sol-gel pores may be expected to be smaller, more uniform, and less rough when formed in microgravity.

  14. Cyclodextrin-polyhydrazine degradable gels for hydrophobic drug delivery.

    PubMed

    Jalalvandi, Esmat; Cabral, Jaydee; Hanton, Lyall R; Moratti, Stephen C

    2016-12-01

    An injectable and biocompatible hydrogel system was designed for hydrophobic drug delivery. This hydrogel consisted of degradable polymers with cyclodextrin (CD) moieties. CD groups were used to increase the solubility of a hydrophobic molecule (nicardipine) in an aqueous solution through the formation of the inclusion complex. Two sets of gels were prepared by mixing oxidized dextran (DA) and CD functionalized polyhydrazine (PH) at physiological conditions and different level of crosslinking via hydrazone bonds. Cytotoxicity studies on the gels and their components confirmed the biocompatibility of these materials. Gel-30 with higher crosslinking density showed a two week degradation period whereas this period was 10days for gel-10, with lower crosslinking density, to complete degradation. The results from swelling tests and rheological measurements were also found to be dependent on crosslinking density of the hydrogels. Release profile of the hydrogel displayed a sustained release of nicardipin up to 6days for gel-30 and a 4day release with initial burst release for gel-10. PMID:27612699

  15. Mechanical Properties of Electroactive Polymer Gels and Their Behavior in DC Electric Fields

    NASA Astrophysics Data System (ADS)

    Yao, Li; Krause, Sonja

    2000-03-01

    We have reported the bending deformation of swollen crosslinked partially sulfonated triblock copolymer poly(styrene-b-ethylene-co-butylene-b-styrene) (S-SEBS) hydrogels in DC electric fields in previous APS meetings(Bull. Am. Phys. Soc., 43 (1), 598, 1998 and 44 (1), 757, 1999). However, very little force was generated from the bending of the S-SEBS gel due to the low modulus of this highly elastic material. For the present study, partially sulfonated crosslinked polystyrene gels (XL-S-PS) were prepared. The gel bending behavior of XL-S-PS gels was studied in four different sulfonated solutions with varied cations including Na^+, Cs^+, (CH_3)_4NH^+ and (Bu)_4NH^+. Comparison of gel bending of S-SEBS and XL-S-PS gels indicated qualitative similarities and quantitative differences. The bending motion of the XL-S-PS gels in electric fields was slower than that of the S-SEBS gels but more force was generated in the XL-S-PS gel system. Nanoparticles were used as fillers in some of the XL-S-PS gels to modify their mechanical properties which will be discussed in the presentation.

  16. Pulsed field gel electrophoresis for dairy propionibacteria.

    PubMed

    Chuat, Victoria; de Freitas, Rosangela; Dalmasso, Marion

    2015-01-01

    Pulsed field gel electrophoresis (PFGE) is a technique using alternating electric fields to migrate high molecular weight DNA fragments with a high resolution. This method consists of the digestion of bacterial chromosomal DNA with rare-cutting restriction enzymes and in applying an alternating electrical current between spatially distinct pairs of electrodes. DNA molecules migrate at different speeds according to the size of the fragments. Among other things, this technique is considered as the "gold standard" for genotyping, genetic fingerprinting, epidemiological studies, genome size estimation, and studying radiation-induced DNA damage and repair. This chapter describes a PFGE method that can be used to differentiate dairy propionibacteria. PMID:25862063

  17. A sol-gel-integrated protein array system for affinity analysis of aptamer-target protein interaction.

    PubMed

    Ahn, Ji-Young; Kim, Eunkyung; Kang, Jeehye; Kim, Soyoun

    2011-06-01

    A sol-gel microarray system was developed for a protein interaction assay with high activity. Comparing to 2-dimensional microarray surfaces, sol-gel can offer a more dynamic and broad range for proteins. In the present study, this sol-gel-integrated protein array was used in binding affinity analysis for aptamers. Six RNA aptamers and their target protein, yeast TBP (TATA-binding protein), were used to evaluate this method. A TBP-containing sol-gel mixture was spotted using a dispensing workstation under high-humidity conditions and each Cy-3-labeled aptamer was incubated. The dissociation constants (K(d)) were calculated by plotting the fluorescent intensity of the bound aptamers as a function of the TBP concentrations. The K(d) value of the control aptamer was found to be 8 nM, which agrees well with the values obtained using the conventional method, electric mobility shift assay. The sol-gel-based binding affinity measurements fit well with conventional binding affinity measurements, suggesting their possible use as an alternative to the conventional method. In addition, aptamer affinity measurements by the sol-gel-integrated protein chip make it possible to develop a simple high-throughput affinity method for screening high-affinity aptamers. PMID:21749295

  18. Nonlinear elasticity of alginate gels

    NASA Astrophysics Data System (ADS)

    Hashemnejad, Seyed Meysam; Kundu, Santanu

    Alginate is a naturally occurring anionic polysaccharide extracted from brown algae. Because of biocompatibility, low toxicity, and simple gelation process, alginate gels are used in biomedical and food applications. Here, we report the rheological behavior of ionically crosslinked alginate gels, which are obtained by in situ gelation of alginates with calcium salts, in between two parallel plates of a rheometer. Strain stiffening behavior was captured using large amplitude oscillatory shear (LAOS) experiments. In addition, negative normal stress was observed for these gels, which has not been reported earlier for any polysaccharide networks. The magnitude of negative normal stress increases with applied strain and can exceed that of the shear stress at large strain. Rheological results fitted with a constitutive model that considers both stretching and bending of chains indicate that nonlinearity is likely related to the stretching of the chains between the crosslink junctions. The results provide an improved understanding of the deformation mechanism of ionically crosslinked alginate gel and the results will be important in developing synthetic extracellular matrix (ECM) from these materials.

  19. Does nitrogen gas bubbled through a low density polymer gel dosimeter solution affect the polymerization process?

    PubMed Central

    Shahbazi-Gahrouei, Daryoush; Gholami, Mehrdad; Pourfallah, Tayyeb Allahverdi; Keshtkar, Mohammad

    2015-01-01

    Background: On account of the lower electron density in the lung tissue, the dose distribution in the lung cannot be verified with the existing polymer gel dosimeters. Thus, the aims of this study are to make a low density polymer gel dosimeter and investigate the effect of nitrogen gas bubbles on the R2 responses and its homogeneity. Materials and Methods: Two different types of low density polymer gel dosimeters were prepared according to a composition proposed by De Deene, with some modifications. In the first type, no nitrogen gas was perfused through the gel solution and water. In the second type, to expel the dissolved oxygen, nitrogen gas was perfused through the water and gel solution. The post-irradiation times in the gels were 24 and 5 hours, respectively, with and without perfusion of nitrogen gas through the water and gel solution. Results: In the first type of gel, there was a linear correlation between the doses and R2 responses from 0 to 12 Gy. The fabricated gel had a higher dynamic range than the other low density polymer gel dosimeter; but its background R2 response was higher. In the second type, no difference in R2 response was seen in the dose ranges from 0 to 18 Gy. Both gels had a mass density between 0.35 and 0.45 g.cm-3 and CT values of about -650 to -750 Hounsfield units. Conclusion: It appeared that reactions between gelatin-free radicals and monomers, due to an increase in the gel temperature during rotation in the household mixer, led to a higher R2-background response. In the second type of gel, it seemed that the collapse of the nitrogen bubbles was the main factor that affected the R2-responses. PMID:26015914

  20. Selective formation of organo, organo-aqueous, and hydro gel-like materials from partially hydrolysed poly(vinyl acetate)s based on different boron-containing crosslinkers.

    PubMed

    Angelova, L V; Leskes, M; Berrie, B H; Weiss, R G

    2015-07-01

    Viscoelastic, gel-like, polymeric dispersions (HVPDs) can be prepared by crosslinking polyols with borax or boric acid in water under alkaline conditions. Rheologically similar HVPDs have been prepared in organic liquids containing no water or hydroxylic groups through crosslinking partially or fully hydrolysed poly(vinyl acetate)s with trimethyl borate, boric acid, or borax. The organo-HVPDs are water-sensitive and rheoreversible on exposure to water. They were characterised rheologically and by solution and solid-state (11)B NMR spectroscopy. Spectroscopic analyses show the presence of mono- and di-diol crosslinks, as well as non-crosslinked boron species in HVPDs prepared with trimethyl borate or boric acid. The number of crosslinks in organo-HVPDs prepared with borax increased over the course of several days. Results from solution and solid-state (11)B NMR spectroscopy are comparable; no solid-like component was detectable. We demonstrate that hydro, organo, or organo-aqueous HVPDs can be obtained from partially hydrolysed poly(vinyl acetate)s by 'tuning' the structure of the boron-based crosslinker. PMID:26027551

  1. In vitro apatite formation and drug loading/release of porous TiO2 microspheres prepared by sol-gel processing with different SiO2 nanoparticle contents.

    PubMed

    Kawashita, Masakazu; Tanaka, Yui; Ueno, Shoji; Liu, Gengci; Li, Zhixia; Miyazaki, Toshiki

    2015-05-01

    Bioactive titania (TiO2) microparticles can be used as drug-releasing cement fillers for the chemotherapeutic treatment of metastatic bone tumors. Porous anatase-type TiO2 microspheres around 15 μm in diameter were obtained through a sol-gel process involving a water-in-oil emulsion with 30:70 SiO2/H2O weight ratio and subsequent NaOH solution treatment. The water phase consisted of methanol, titanium tetraisopropoxide, diethanolamine, SiO2 nanoparticles, and H2O, while the oil phase consisted of kerosene, Span 80, and Span 60. The resulting microspheres had a high specific surface area of 111.7 m(2)·g(-1). Apatite with a network-like surface structure formed on the surface of the microspheres within 8 days in simulated body fluid. The good apatite-forming ability of the microspheres is attributed to their porous structure and the negative zeta potential of TiO2. The release of rhodamine B, a model for a hydrophilic drug, was rapid for the first 6 h of soaking, but diffusion-controlled thereafter. The burst release in the first 6h is problematic for clinical applications; nonetheless, the present results highlight the potential of porous TiO2 microspheres as drug-releasing cement fillers able to form apatite. PMID:25746276

  2. Gene expression in the pulp of ripening bananas. Two-dimensional sodium dodecyl sulfate-polyacrylamide gel electrophoresis of in vitro translation products and cDNA cloning of 25 different ripening-related mRNAs.

    PubMed

    Medina-Suárez, R; Manning, K; Fletcher, J; Aked, J; Bird, C R; Seymour, G B

    1997-10-01

    mRNA was extracted from the pulp and peel of preclimacteric (d 0) bananas (Musa AAA group, cv Grand Nain) and those exposed to ethylene gas for 24 h and stored in air alone for a further 1 (d 2) and 4 d (d 5). Two-dimensional sodium dodecyl sulfate-polyacrylamide gel electrophoresis of in vitro translation products from the pulp and peel of these fruits revealed significant up-regulation of numerous transcripts during ripening. The majority of the changes were initiated by d 2, with the level of these messages increasing during the remainder of the ripening period. Pulp tissue from d 2 was used for the construction of a cDNA library. This library was differentially screened for ripening-related clones using cDNA from d-0 and d-2 pulp by a novel microtiter plate method. In the primary screen 250 up- and down-regulated clones were isolated. Of these, 59 differentially expressed clones were obtained from the secondary screen. All of these cDNAs were partially sequenced and grouped into families after database searches. Twenty-five nonredundant groups of pulp clones were identified. These encoded enzymes were involved in ethylene biosynthesis, respiration, starch metabolism, cell wall degradation, and several other key metabolic events. We describe the analysis of these clones and their possible involvement in ripening. PMID:9342865

  3. Combining high-throughput MALDI-TOF mass spectrometry and isoelectric focusing gel electrophoresis for virtual 2D gel-based proteomics.

    PubMed

    Lohnes, Karen; Quebbemann, Neil R; Liu, Kate; Kobzeff, Fred; Loo, Joseph A; Ogorzalek Loo, Rachel R

    2016-07-15

    The virtual two-dimensional gel electrophoresis/mass spectrometry (virtual 2D gel/MS) technology combines the premier, high-resolution capabilities of 2D gel electrophoresis with the sensitivity and high mass accuracy of mass spectrometry (MS). Intact proteins separated by isoelectric focusing (IEF) gel electrophoresis are imaged from immobilized pH gradient (IPG) polyacrylamide gels (the first dimension of classic 2D-PAGE) by matrix-assisted laser desorption/ionization (MALDI) MS. Obtaining accurate intact masses from sub-picomole-level proteins embedded in 2D-PAGE gels or in IPG strips is desirable to elucidate how the protein of one spot identified as protein 'A' on a 2D gel differs from the protein of another spot identified as the same protein, whenever tryptic peptide maps fail to resolve the issue. This task, however, has been extremely challenging. Virtual 2D gel/MS provides access to these intact masses. Modifications to our matrix deposition procedure improve the reliability with which IPG gels can be prepared; the new procedure is described. Development of this MALDI MS imaging (MSI) method for high-throughput MS with integrated 'top-down' MS to elucidate protein isoforms from complex biological samples is described and it is demonstrated that a 4-cm IPG gel segment can now be imaged in approximately 5min. Gel-wide chemical and enzymatic methods with further interrogation by MALDI MS/MS provide identifications, sequence-related information, and post-translational/transcriptional modification information. The MSI-based virtual 2D gel/MS platform may potentially link the benefits of 'top-down' and 'bottom-up' proteomics. PMID:26826592

  4. Comparative studies for ciprofloxacin hydrochloride pre-formed gels and thermally triggered (in situ) gels: in vitro and in vivo appraisal using a bacterial keratitis model in rabbits.

    PubMed

    Abdelkader, Hamdy; Mansour, Heba F

    2015-06-01

    This article reports on comparative in vitro characterization and in vivo evaluation of pre-formed cellulose-based gels, methylcellulose (MC) and carboxymethylcellulose sodium (CMC) and in situ gel-forming Pluronic F127 (PL) for ocular delivery of ciprofloxacin hydrochloride (Cipro) by using a bacterial keratitis model and histological corneal examination. Drug-polymer interactions were studied employing thermal analysis. Further, different concentrations (1-3% w/w or 10-30% w/w) of gels depending on the nature of the polymer used were prepared, characterized for clarity, pH, rheology and in vitro release. Selected gel formulations were evaluated for ocular delivery to Staphylococcus aureus-infected rabbit corneas; and ocular toxicity through histological examination of the cornea. The results demonstrated no Cipro-polymers physicochemical interactions and pseudoplastic flow for all gels used at 35 °C. Both polymer concentrations and drug solubility in the gels are dominantly the rate-determining factors for in vitro drug release. The corneal healing rate for all gel-based formulations was significantly faster (p < 0.05) than that for Cipro solution-treated rabbits. PL-based gel induced significant swelling/edema of the corneal stroma, compared with MC- and CMC-based gels. In conclusion, cellulose-based polymers have superior ocular tolerability/dramatically less irritant; and superior efficacy with more convenient administration compared with PL and Cipro solution, respectively. PMID:24392945

  5. Coupling of gelation and glass transition in a biphasic colloidal mixture-from gel-to-defective gel-to-glass.

    PubMed

    Jia, Di; Hollingsworth, Javoris V; Zhou, Zhi; Cheng, He; Han, Charles C

    2015-12-01

    The state transition from gel to glass is studied in a biphasic mixture of polystyrene core/poly(N-isopropylacrylamide) shell (CS) microgels and sulfonated polystyrene (PSS) particles. At 35 °C, the interaction between CS microgels is due to short-range van der Waals attraction, while that between PSS particles is from long-range electrostatic repulsion. During the variation of the relative ratio of the two species at a fixed apparent total volume fraction, the mixture exhibits a gel-to-defective gel-to-glass transition. When small amounts of PSS are introduced into the CS gel network, some of them are kinetically trapped, causing a change in its fractal structure, and act as defects to weaken the macroscopic gel strength. An increase of the PSS content in the mixture promotes the switch from the gel to the defective gel, e.g., the typical two-step yielding gel merges into one-step yielding. This phenomenon is an indication that inter-cluster bond breakage coincides with intra-cluster bond fracture. As the relative volume fraction of PSS exceeds a critical threshold, the gel network can no longer be formed; hence, the mixture exhibits characteristics of glass. A state diagram of the biphasic mixture is constructed, and the landscapes of the different transitions will be described in future studies. PMID:26394164

  6. Calculating Percent Gel For Process Control

    NASA Technical Reports Server (NTRS)

    Webster, Charles Neal; Scott, Robert O.

    1988-01-01

    Reaction state of thermosetting resin tracked to assure desired properties. Rate of gel determined as function of temperature by measuring time to gel of part of graphite fabric impregnated with Hexcel R120 (or equivalent) phenolic resin.

  7. An investigation of cutting mechanics in 2 dimensional ultrasonic vibration assisted milling toward chip thickness and chip formation

    NASA Astrophysics Data System (ADS)

    Rasidi, I. I.; Rafai, N. H.; Rahim, E. A.; Kamaruddin, S. A.; Ding, H.; Cheng, K.

    2015-12-01

    The purpose of this paper is to investigate the effects of 2 dimensional Ultrasonic Vibration Assisted Milling (UVAM) cutting mechanics, considering tool path trajectory and the effect on the chip thickness. The theoretical modelling of cutting mechanics is focused by considering the trajectory of the tool locus into the workpiece during the machining. The studies found the major advantages of VAM are come from the intermittent tool tip interaction phenomena between cutting tool and workpiece. The reduction of thinning chip thickness formations can be identifying advantages from vibration assisted milling in 2 dimensional. The finding will be discussing the comparison between conventional machining the potential of the advantages toward the chip thickness and chip formation in conclusion.

  8. Computational technique and performance of Transient Inundation Model for Rivers--2 Dimensional (TRIM2RD) : a depth-averaged two-dimensional flow model

    USGS Publications Warehouse

    Fulford, Janice M.

    2003-01-01

    A numerical computer model, Transient Inundation Model for Rivers -- 2 Dimensional (TrimR2D), that solves the two-dimensional depth-averaged flow equations is documented and discussed. The model uses a semi-implicit, semi-Lagrangian finite-difference method. It is a variant of the Trim model and has been used successfully in estuarine environments such as San Francisco Bay. The abilities of the model are documented for three scenarios: uniform depth flows, laboratory dam-break flows, and large-scale riverine flows. The model can start computations from a ?dry? bed and converge to accurate solutions. Inflows are expressed as source terms, which limits the use of the model to sufficiently long reaches where the flow reaches equilibrium with the channel. The data sets used by the investigation demonstrate that the model accurately propagates flood waves through long river reaches and simulates dam breaks with abrupt water-surface changes.

  9. Rheology of κ/ι-hybrid carrageenan from Mastocarpus stellatus: Critical parameters for the gel formation.

    PubMed

    Torres, M D; Chenlo, F; Moreira, R

    2016-05-01

    The sol-gel diagrams of kappa/iota-hybrid carrageenan (KI) extracted from Mastocarpus stellatus powders with two different average particle sizes of the seaweed powders (117.0 μm and 77.5 μm) prior to the biopolymer extraction, are reported for the first time, together with rheological properties of obtained KI gels. Extraction yields for KI isolated from algae and average molecular weight of KI, determined by gel permeation chromatography, decreased with increasing the particle size of the powder. Rheological results indicated that tested samples exhibited stable and weak gel properties, except those prepared at 1.5% KI in 1.0 mol/L NaCl where stronger gels were found. Aqueous KI extracts with larger molecular weight led to stronger gels and also formed gels at lower biopolymer concentration in NaCl above 0.15 mol/L. All gels reached stability after 20 min of maturation. The data sets showed a strong temperature dependency. Gel setting temperatures significantly depended on the KI and NaCl content, whereas gel melting temperatures (68.0 ± 0.7 °C) were independent of both salt concentrations. PMID:26827757

  10. Appropriateness of hydroxyethylcellulose gel as a placebo control in vaginal microbicide trials: A comparison of the two control arms of HPTN 035

    PubMed Central

    Richardson, Barbra A.; Kelly, Cliff; Ramjee, Gita; Fleming, Thomas; Makanani, Bonus; Roberts, Sarah; Musara, Petina; Mkandawire, Nkhafwire; Moench, Thomas; Coletti, Anne; Soto-Torres, Lydia; Karim, Salim Abdool

    2013-01-01

    Objective To compare the two control arms of HPTN 035 (a hydroxyethylcellulose (HEC) gel control arm and a no gel control arm) to assess behavioral effects associated with gel use and direct causal effects of the HEC gel on STIs, pregnancy, and genital safety. Design Randomized trial with one blinded (HEC gel) and one open label (no gel) control arms. Methods HIV-uninfected, sexually active women were randomized into the HEC gel arm (n=771) and into the no gel arm (n=772) in five countries. Participants in the HEC gel arm were instructed to insert the study gel intravaginally <1 hour before each vaginal sex act. Data on sexual behavior, adherence, safety, pregnancy, and STIs were collected quarterly for 12 to 30 months of follow-up. Results During follow-up, mean reported condom use in the past week was significantly higher in the no gel arm (81% versus 70%, p<0.001). There were no significant differences, after adjusting for this differential condom use, between the two arms in rates of genital safety events, pregnancy outcomes, or STIs, including HIV-1. Conclusions In this large randomized trial, we found no significant differences between the no gel and HEC gel arms in rates of genital safety events, pregnancy outcomes, or STIs. These results aid interpretation of the results of previous vaginal microbicide trials that used the HEC gel as a control. The HEC gel is suitable as a control for ongoing and future vaginal microbicide studies. PMID:23334506

  11. Thermodynamics and ideal glass transition on the surface of a monatomic system modeled as quasi "2-dimensional" recursive lattices

    NASA Astrophysics Data System (ADS)

    Huang, Ran

    Two quasi 2-dimensional recursive lattices formed by planar elements have been designed to investigate the surface thermodynamics of monatomic Ising glass system with the aim to study the metastability of supercooled liquids and the ideal glass transition. Both lattices are constructed as hybrids of a Husimi lattice representing the bulk and lower dimensional recursive trees representing the surface. The coordination number, i.e. the number of neighbor sites surrounding one site, is designed to be 3 on the surface and 4 inside the bulk to mimic the 2D regular square lattice case. The recursive properties of recursive lattices were adopted to obtain exact thermodynamic calculations without approximation. The model has a strong anti-ferromagnetic interaction to give rise to an ordered phase identified as a crystal, and a metastable solution is also found to represent the amorphous phase. Interactions between particles farther away than the nearest neighbor distance are taken into consideration. The calculations were done with C/C++ programs. A recursive calculation technique was employed to approach an exact description of the system with the ratio of partial partition functions (PPF) on each site of the lattice. Thermal properties including free energy, energy density and entropy of the ideal crystal and supercooled liquid state of the model on the surface are calculated by the PPF. By analyzing the free energies and entropies of the crystal and supercooled liquid state, we are able to identify the melting transition and the second order ideal glass transition on the surface. The effects of different energy terms that produce competitions between crystallization and glass transition are studied. The results show that due to the coordination number change, the transition temperature on the surface decreases significantly compared to the transition temperature of the bulk system obtained in our previous research. Our theoretical calculation agrees with experiments and

  12. Characteristics of platelet gels combined with silk

    PubMed Central

    Pallotta, Isabella; Kluge, Jonathan A.; Moreau, Jodie; Calabrese, Rossella

    2014-01-01

    Platelet gel, a fibrin network containing activated platelets, is widely used in regenerative medicine due the capacity of platelet-derived growth factors to accelerate and direct healing processes. However, limitations to this approach include poor mechanical properties, relatively rapid degradation, and the lack of control of release of growth factors at the site of injection. These issues compromise the ability of platelet gels for sustained function in regenerative medicine. In the present study, a combination of platelet gels with silk fibroin gel was studied to address the above limitations. Mixing sonicated silk gels with platelet gels extended the release of growth factors without inhibiting gel forming ability. The released growth factors were biologically active and their delivery was modified further by manipulation of the charge of the silk protein. Moreover, the silk gel augmented both the rheological properties and compressive stiffness of the platelet gel, tuned by the silk concentration and/or silk/platelet gel ratio. Silk-platelet gel injections in nude rats supported enhanced cell infiltration and blood vessel formation representing a step towards new platelet gel formulations with enhanced therapeutic impact. PMID:24480538

  13. Spring-loaded polymeric gel actuators

    DOEpatents

    Shahinpoor, M.

    1995-02-14

    Spring-loaded electrically controllable polymeric gel actuators are disclosed. The polymeric gels can be polyvinyl alcohol, polyacrylic acid, or polyacrylamide, and are contained in an electrolytic solvent bath such as water plus acetone. The action of the gel is mechanically biased, allowing the expansive and contractile forces to be optimized for specific applications. 5 figs.

  14. A clarified gel for crystal growth

    NASA Technical Reports Server (NTRS)

    Barber, P. G.; Simpson, N. R.

    1985-01-01

    A procedure for preparing clarified sodium silicate gels suitable for crystal growth is described. In the method described here, the silicate stock is clarified by pretreating it with cation exchange resins before preparing the gels. Also, a modified recipe is proposed for preparing gels to achieve improved transparency.

  15. Characteristics of platelet gels combined with silk.

    PubMed

    Pallotta, Isabella; Kluge, Jonathan A; Moreau, Jodie; Calabrese, Rossella; Kaplan, David L; Balduini, Alessandra

    2014-04-01

    Platelet gel, a fibrin network containing activated platelets, is widely used in regenerative medicine due the capacity of platelet-derived growth factors to accelerate and direct healing processes. However, limitations to this approach include poor mechanical properties, relatively rapid degradation, and the lack of control of release of growth factors at the site of injection. These issues compromise the ability of platelet gels for sustained function in regenerative medicine. In the present study, a combination of platelet gels with silk fibroin gel was studied to address the above limitations. Mixing sonicated silk gels with platelet gels extended the release of growth factors without inhibiting gel-forming ability. The released growth factors were biologically active and their delivery was modified further by manipulation of the charge of the silk protein. Moreover, the silk gel augmented both the rheological properties and compressive stiffness of the platelet gel, tuned by the silk concentration and/or silk/platelet gel ratio. Silk-platelet gel injections in nude rats supported enhanced cell infiltration and blood vessel formation representing a step towards new platelet gel formulations with enhanced therapeutic impact. PMID:24480538

  16. Spring-loaded polymeric gel actuators

    DOEpatents

    Shahinpoor, Mohsen

    1995-01-01

    Spring-loaded electrically controllable polymeric gel actuators are disclosed. The polymeric gels can be polyvinyl alcohol, polyacrylic acid, or polyacrylamide, and are contained in an electrolytic solvent bath such as water plus acetone. The action of the gel is mechanically biased, allowing the expansive and contractile forces to be optimized for specific applications.

  17. Characterization of aluminum/RP-1 gel propellant properties

    NASA Technical Reports Server (NTRS)

    Rapp, Douglas C.; Zurawski, Robert L.

    1988-01-01

    Research efforts are being conducted by the NASA Lewis Research Center to formulate and characterize the properties of Al/RP-1 and RP-1 gelled propellants for rocket propulsion systems. Twenty four different compositions of gelled fuels were formulated with 5 and 16 micron, atomized aluminum powder in RP-1. The total solids concentration in the propellant varied from 5 to 60 wt percent. Tests were conducted to evaluate the stability and rheological characteristics of the fuels. Physical separation of the solids occurred in fuels with less than 50 wt percent solids concentration. The rheological characteristics of the Al/RP-1 fuels varied with solids concentration. Both thixotropic and rheopectic gel behavior were observed. The unmetallized RP-1 gels, which were formulated by a different technique than the Al/RP-1 gels, were highly viscoelastic. A history of research efforts which were conducted to formulate and characterize the properties of metallized propellants for various applications is also given.

  18. Miscible viscous fingering involving production of gel by chemical reactions

    NASA Astrophysics Data System (ADS)

    Nagatsu, Yuichiro; Hoshino, Kenichi

    2015-11-01

    We have experimentally investigated miscible viscous fingering with chemical reactions producing gel. Here, two systems were employed. In one system, sodium polyacrylate (SPA) solution and aluminum ion (Al3 +) solution were used as the more and less viscous liquids, respectively. In another system, SPA solution and ferric ion (Fe3 +) solution were used as the more and less viscous liquids, respectively. In the case of Al3 +, displacement efficiency was smaller than that in the non-reactive case, whereas in the case of Fe3 +, the displacement efficiency was larger. We consider that the difference in change of the patterns in the two systems will be caused by the difference in the properties of the gels. Therefore, we have measured the rheological properties of the gels by means of a rheometer. We discuss relationship between the VF patterns and the rheological measurement.

  19. Structural Evolution of Silica Gel and Silsesquioxane Using Thermal Curing.

    PubMed

    Hu, Nan; Rao, YuanQiao; Sun, Shengtong; Hou, Lei; Wu, Peiyi; Fan, Shaojuan; Ye, Bangjiao

    2016-08-01

    The curing of coatings of two types of siloxane containing materials, silica gel and silsesquioxane, at a modest temperature (<280℃) was studied with in situ heating Fourier transform infrared spectroscopy (FT-IR) in combination with perturbation correlation moving window (PCMW) and two-dimensional correlation spectroscopy (2D-COS) analyses. The result revealed detailed structural evolution of these two different gels. When the silica gel was heated, (Si-O)6 rings appeared from the random Si-O-Si network formed after sol gel reaction, followed by condensation of silanol groups. Upon further heating, the existing (Si-O)4 rings were broken down and converted into (Si-O)6 structures, and finally isolated silanols appeared. The transition from (Si-O)4 rings to (Si-O)6 rings was observed by IR and further confirmed with positron annihilation lifetime spectroscopy (PALS). In comparison, during the curing of hybrid silsesquioxane, the condensation of silanols happens immediately upon heating without the rearrangement of Si-O-Si network. Afterwards, the fraction of (Si-O)6 ring structure increased. (Si-O)4 structures exhibited higher stability in hybrid silsesquioxanes. In addition, the amount of silanols in silsesquioxane continued to reduce without the generation of isolated silanol in the end. The different curing behavior of silsesquioxanes from silica gel originates from the organic groups in silsesquioxanes, which lowers the cross-linking density and reduces the rigidity of siloxane network. PMID:27340213

  20. Fibrin gel as alternative scaffold for respiratory tissue engineering.

    PubMed

    Cornelissen, Christian G; Dietrich, Maren; Krüger, Stefan; Spillner, Jan; Schmitz-Rode, Thomas; Jockenhoevel, Stefan

    2012-03-01

    Fibrin gel has proven a valuable scaffold for tissue engineering. Complex geometries can be produced by injection molding; it offers effective cell seeding and can be produced autologous. In order to evaluate its suitability for respiratory tissue engineering, we examined proliferation, functionality, and differentiation of respiratory epithelial cells on fibrin gel in comparison to culture on collagen-coated, microporous membranes. Respiratory epithelial cells formed a confluent layer by day 4, and proliferation showed no significant difference with respect to surface. Measurement of the transepithelial electrical resistance reflected the development of a confluent epithelial cell layer and the subsequent initiation of adequate ion-transfer processes. Appearance of ciliae could be detected at similar time points, and ciliary beating could be observed for cells on both surfaces. Histology and immunohistochemistry of cells grown on fibrin gel revealed the onset of adequate differentiation. As no significant differences in respiratory epithelial cells' proliferation, function, and differentiation could be observed between cells grown on fibrin gel compared to cells on a collagen-coated, microporous surface, we concluded that fibrin gel might prove a suitable scaffold for respiratory tissue engineering and merits further investigation to overcome the limitations associated with scaffolds currently in use. PMID:22009317

  1. MAGIC polymer gel for dosimetric verification in boron neutron capture therapy.

    PubMed

    Uusi-Simola, Jouni; Heikkinen, Sami; Kotiluoto, Petri; Serén, Tom; Seppälä, Tiina; Auterinen, Iiro; Savolainen, Sauli

    2007-01-01

    Radiation sensitive polymer gels are among the most promising three-dimensional dose verification tools developed to date. Polymer gel dosimeter known by the acronym MAGIC has been tested for evaluation of its use in boron neutron capture (BNCT) dosimetry. We irradiated a large (diameter 10 cm, length 20 cm) cylindrical gel phantom in the epithermal neutron beam of the Finnish BNCT facility at the FiR 1 nuclear reactor. Neutron irradiation was simulated with a Monte Carlo radiation transport code MCNP. Gel samples from the same production batch were also irradiated with 6 MV photons from a medical linear accelerator to compare dose response in the two different types of beams. Irradiated gel phantoms were imaged using MRI to determine their relaxation rate R2 maps. The measured and normalized dose distribution in the epithermal neutron beam was compared to the dose distribution calculated by computer simulation. The results support the feasibility MAGIC gel in BNCT dosimetry. PMID:17592463

  2. Platelet gel for healing cutaneous chronic wounds.

    PubMed

    Crovetti, Giovanni; Martinelli, Giovanna; Issi, Marwan; Barone, Marilde; Guizzardi, Marco; Campanati, Barbara; Moroni, Marco; Carabelli, Angelo

    2004-04-01

    Wound healing is a specific host immune response for restoration of tissue integrity. Experimental studies demonstrated an alteration of growth factors activity due to their reduced synthesis, increased degradation and inactivation. In wound healing platelets play an essential role since they are rich of alpha-granules growth factors (platelet derived growth factor--PDGF; transforming growth factor-beta--TGF-beta; vascular endothelial growth factor--VEGF). Topical use of platelet gel (PG), hemocomponent obtained from mix of activated platelets and cryoprecipitate, gives the exogenous and in situ adding of growth factors (GF). The hemocomponents are of autologous or homologous origin. We performed a technique based on: multicomponent apheretic procedure to obtain plasma rich platelet and cryoprecipitate; manual processing in an open system, in sterile environment, for gel activation. Every step of the gel synthesis was checked by a quality control programme. The therapeutic protocol consists of the once-weekly application of PG. Progressive reduction of the wound size, granulation tissue forming, wound bed detersion, regression and absence of infective processes were considered for evaluating clinical response to hemotherapy. 24 patients were enrolled. They had single or multiple cutaneous ulcers with different ethiopathogenesis. Only 3 patients could perform autologous withdrawal; in the others homologous hemocomponent were used, always considering suitability and traceability criteria for transfusional use of blood. Complete response was observed in 9 patients, 2 were subjected to cutaneous graft, 4 stopped treatment, 9 had partial response and are still receiving the treatment. In each case granulation tissue forming increased following to the first PG applications, while complete re-epithelization was obtained later. Pain was reduced in every treated patient. Topical haemotherapy with PG may be considered as an adjuvant treatment of a multidisciplinary process

  3. Triazolyl-Based Molecular Gels as Ligands for Autocatalytic 'Click' Reactions.

    PubMed

    Araújo, Marco; Díaz-Oltra, Santiago; Escuder, Beatriu

    2016-06-13

    The catalytic performance of triazolyl-based molecular gels was investigated in the Huisgen 1,3-dipolar cycloaddition of alkynes and azides. Low-molecular-weight gelators derived from l-valine were synthesized and functionalized with a triazole fragment. The resultant compounds formed gels either with or without copper, in a variety of solvents of different polarity. The gelators coordinated Cu(I) and exhibited a high catalytic activity in the gel phase for the model reaction between phenylacetylene and benzylazide. Additionally, the gels were able to participate in autocatalytic synthesis and the influence of small structural changes on their performance was observed. PMID:27168408

  4. The Swelling of Olympic Gels

    NASA Astrophysics Data System (ADS)

    Lang, Michael; Fischer, Jakob; Werner, Marco; Sommer, Jens-Uwe

    2014-03-01

    The swelling equilibrium of Olympic gels is studied by Monte Carlo Simulations. We observe that gels consisting of flexible cyclic molecules of a higher degree of polymerization N show a smaller equilibrium swelling degree Q ~N - 0 . 28φ0- 0 . 72 for the same monomer volume fraction φ0 at network preparation. This observation is explained by a disinterpenetration process of overlapping non-concatenated polymers upon swelling. In the limit of a sufficiently large number of concatenations per cyclic molecule we expect that the equilibrium degree of swelling becomes proportional to φ0- 1 / 2 independent of N. Our results challenge current textbook models for the equilibrium degree of swelling of entangled polymer networks. Now at: Bio Systems Analysis Group, Jena Centre for Bioinformatics (JCB) and Department for Mathematics and Computer Sciences, Friedrich Schiller University of Jena, 07743 Jena, Germany.

  5. Supercoiling transformation of chemical gels.

    PubMed

    Asai, Makoto; Katashima, Takuya; Sakai, Takamasa; Shibayama, Mitsuhiro

    2015-09-28

    The swelling/deswelling behavior of chemical gels has been an unsolved problem disputed over for a long time. The Obukhov-Rubinstein-Colby model depicts the influence that swelling/deswelling has on elasticity, but its physical picture is too complicated to be sufficiently validated by experiment. In this study, we use molecular dynamics simulation to verify the validity of the molecular picture of network strands predicted by the Obukhov-Rubinstein-Colby model. We conclude that the physical picture of the Obukhov-Rubinstein-Colby model is reasonable, and furthermore the simulation can reveal the details of conformational changes in network strands during the supercoiling transformation. Our findings not only reveal the validity, but also give a better understanding of the dynamics of the swelling/deswelling behavior of chemical gels. PMID:26279149

  6. Nanocrystal/sol-gel nanocomposites

    DOEpatents

    Klimov, Victor L.; Petruska, Melissa A.

    2010-05-25

    The present invention is directed to a process for preparing a solid composite having colloidal nanocrystals dispersed within a sol-gel matrix, the process including admixing colloidal nanocrystals with an amphiphilic polymer including hydrophilic groups selected from the group consisting of --COOH, --OH, --SO.sub.3H, --NH.sub.2, and --PO.sub.3H.sub.2 within a solvent to form an alcohol-soluble colloidal nanocrystal-polymer complex, admixing the alcohol-soluble colloidal nanocrystal-polymer complex and a sol-gel precursor material, and, forming the solid composite from the admixture. The present invention is also directed to the resultant solid composites and to the alcohol-soluble colloidal nanocrystal-polymer complexes.

  7. The Use of Topical Lidocaine Gel During Intermaxillary Fixation Procedure.

    PubMed

    Jeong, Yeon Jin; Kim, Ho Jun; Kwon, Ho; Shim, Hyung-Sup; Seo, Bommie Florence; Jung, Sung-No

    2016-07-01

    This study aimed to validate the usefulness of lidocaine gel during intermaxillary fixation using arch bars in patients with mandible fracture by comparing 2 patient groups: one group using lidocaine gel in intermaxillary fixation and the other group undergoing traditional local infiltration.Subjects were patients with mandible fracture undergoing intermaxillary fixation using arch bars from March 2003 to February 2007. Twenty-three patients were anesthetized in the upper and lower gingiva by 2% local lidocaine solution injection; another 23 underwent topical anesthesia with 2% lidocaine hydrochloride gel applied to the upper and lower gingiva. The convenience of fixation was measured in terms of operation time and degree of pain according to the visual analog scale; arch bar loosening rate was assessed postoperatively.The mean operation times were 63 and 47 minutes in the groups undergoing local infiltration and using topical lidocaine gel, respectively. For pain degree according to the visual analog scale, the mean scores were 6.4 and 3.2 in the groups using local infiltration and topical lidocaine gel, respectively. When the arch bar loosening rate was measured postoperatively, the 2 groups differed significantly, with a rate of 26% in the group using local infiltration and 13% in the group using topical lidocaine gel.Application of topical lidocaine gel during intermaxillary fixation using arch bars in patients with mandible fracture relieves pain and offers convenience in performing the procedure. It can be a useful alternative method for patients who are sensitive to pain or have needle phobia. PMID:27391518

  8. Slow Release of Plant Volatiles Using Sol-Gel Dispensers.

    PubMed

    Bian, L; Sun, X L; Cai, X M; Chen, Z M

    2014-12-01

    The black citrus aphid, also known as the tea aphid, (Toxoptera aurantii Boyer) attacks economically important crops, including tea (Camellia sinensis (L.) O. Kuntze). In the current study, silica sol-gel formulations were screened to find one that could carry and release C. sinensis plant volatiles to lure black citrus aphids in a greenhouse. The common plant volatile trans-2-hexen-1-al was used as a model molecule to screen for suitable sol-gel formulations. A zNose (Electronic Sensor Technology, Newbury Park, CA) transportable gas chromatograph was used to continuously monitor the volatile emissions. A sol-gel formulation containing tetramethyl orthosilicate and methyltrimethoxysilane in an 8:2 (vol:vol) ratio was selected to develop a slow-release dispenser. The half-life of trans-2-hexen-1-al in the sol-gel dispenser increased slightly with the volume of this compound in the dispenser. Ten different volatiles were tested in the sol-gel dispenser. Alcohols of 6-10 carbons had the longest half-lives (3.01-3.77 d), while esters of 6-12 carbons had the shortest (1.53-2.28 d). Release of these volatiles from the dispensers could not be detected by the zNose after 16 d (cis-3-hexenyl acetate) to 26 d (3,7-dimethylocta-1,6-dien-3-ol). In greenhouse experiments, trans-2-hexen-1-al and cis-3-hexen-1-ol released from the sol-gel dispensers attracted aphids for ≍17 d, and release of these volatiles could not be detected by the zNose after ≍24 d. The sol-gel dispensers performed adequately for the slow release of plant volatiles to trap aphids in the greenhouse. PMID:26470065

  9. Sol-gel encapsulation for controlled drug release and biosensing

    NASA Astrophysics Data System (ADS)

    Fang, Jonathan

    The main focus of this dissertation is to investigate the use of sol-gel encapsulation of biomolecules for controlled drug release and biosensing. Controlled drug release has advantages over conventional therapies in that it maintains a constant, therapeutic drug level in the body for prolonged periods of time. The anti-hypertensive drug Captopril was encapsulated in sol-gel materials of various forms, such as silica xerogels and nanoparticles. The primary objective was to show that sol-gel silica materials are promising drug carriers for controlled release by releasing Captopril at a release rate that is within a therapeutic range. We were able to demonstrate desired release for over a week from Captopril-doped silica xerogels and overall release from Captopril-doped silica nanoparticles. As an aside, the antibiotic Vancomycin was also encapsulated in these porous silica nanoparticles and desired release was obtained for several days in-vitro. The second part of the dissertation focuses on immobilizing antibodies and proteins in sol-gel to detect various analytes, such as hormones and amino acids. Sol-gel competitive immunoassays on antibody-doped silica xerogels were used for hormone detection. Calibration for insulin and C-peptide in standard solutions was obtained in the nM range. In addition, NASA-Ames is also interested in developing a reagentless biosensor using bacterial periplasmic binding proteins (bPBPs) to detect specific biomarkers, such as amino acids and phosphate. These bPBPs were doubly labeled with two different fluorophores and encapsulated in silica xerogels. Ligand-binding experiments were performed on the bPBPs in solution and in sol-gel. Ligand-binding was monitored by fluorescence resonance energy transfer (FRET) between the two fluorophores on the bPBP. Titration data show that one bPBP has retained its ligand-binding properties in sol-gel.

  10. Fluid diversion and sweep improvement with chemical gels in oil recovery processes. Final report

    SciTech Connect

    Seright, R.S.; Martin, F.D.

    1992-09-01

    The objectives of this project were to identify the mechanisms by which gel treatments divert fluids in reservoirs and to establish where and how gel treatments are best applied. Several different types of gelants were examined, including polymer-based gelants, a monomer-based gelant, and a colloidal-silica gelant. This research was directed at gel applications in water injection wells, in production wells, and in high-pressure gas floods. The work examined how the flow properties of gels and gelling agents are influenced by permeability, lithology, and wettability. Other goals included determining the proper placement of gelants, the stability of in-place gels, and the types of gels required for the various oil recovery processes and for different scales of reservoir heterogeneity. During this three-year project, a number of theoretical analyses were performed to determine where gel treatments are expected to work best and where they are not expected to be effective. The most important, predictions from these analyses are presented. Undoubtedly, some of these predictions will be controversial. However, they do provide a starting point in establishing guidelines for the selection of field candidates for gel treatments. A logical next step is to seek field data that either confirm or contradict these predictions. The experimental work focused on four types of gels: (1) resorcinol-formaldehyde, (2) colloidal silica, (3) Cr{sup 3+}(chloride)-xanthan, and (4) Cr{sup 3+}(acetate)-polyacrylamide. All experiments were performed at 41{degrees}C.

  11. Detecting coral bleaching using high-resolution satellite data analysis and 2-dimensional thermal model simulation in the Ishigaki fringing reef, Japan

    NASA Astrophysics Data System (ADS)

    Dadhich, A. P.; Nadaoka, K.; Yamamoto, T.; Kayanne, H.

    2012-06-01

    In 2007, high-temperature-induced mass coral mortality was observed in a well-developed fringing reef area on the southeastern coast of Ishigaki Island, Japan. To analyze the response of the corals to thermal stress, the coral cover was examined using Quickbird data, taken across the reef flat just before and after the bleaching event and performing a reef scale horizontal 2-dimensional thermal model simulation. The Quickbird data consisted of multispectral (MSS) imagery, which had a spatial resolution of 2.4 m, and panchromatic (PAN)-fused multispectral imagery, which had a 0.6-m spatial resolution. The observed changes in coral cover implied that the delineation of partially bleached coral was more precise with PAN + MSS. The classification accuracy achieved using PAN + MSS (93%) was superior to that obtained using MSS (88%). The in situ water temperature observations and 2-dimensional thermal model simulation results indicated that the water temperature fluctuated greatly in the inner reef area in late July 2007. Different thermal stress indices, including daily average temperature, daily maximum excess temperature, and daily accumulated temperature, were examined to define a suitable index that represented the severity of the thermal stress on coral cover. The results suggested that the daily accumulated temperature that occurred during the maximum sea surface temperature period of the bleaching season provided the best predictor of bleaching. The changes in water temperature, bathymetry, and coral patch size affected the severity of bleaching; therefore, the spatial dependence of these variables was examined using Moran's I and Lagrange multiplier tests. An investigation of the effect of coral patch sizes on coral bleaching indicated that large coral patches were less affected than the small patches, which were more likely to suffer bleaching and coral mortality.

  12. Selective gel system for permeability profile control

    SciTech Connect

    Shu, P.

    1990-02-27

    This patent describes a process for closing pores in a more permeable zone of a formation. It comprises: placing into an aqueous solution a first composition sufficient to form ex-situ a size selective, shear thinning first gel which comprises a xanthan biopolymer, and a transitional metal ion; placing into the aqueous solution a second composition sufficient to form thermally a second in-situ gel which is substantially more resistant to formation conditions than the first gel. The composition comprises an aldehyde, and a phenolic compound; allowing the aqueous solution sufficient time to form the ex-situ gel; and injecting the aqueous solution containing the gel into the permeable zone where it reheals, is heated by the formation and thereafter forms a solid gel substantially more resistant to formation conditions than the first gel.

  13. Protein and mRNA characterization in human colorectal carcinoma cell lines with different metastatic potentials.

    PubMed

    Liang, Li; Qu, Lijuan; Ding, Yanqing

    2007-09-01

    Metastasis, the important characteristic of malignant tumors, is closely associated with a series of changes in the expressions of genes and proteins. In this study, we compared mRNA and protein expressions in a pair of human colorectal carcinoma cell lines named SW620 and SW480 with different metastatic potentials by suppression subtractive hybridization and 2-dimensional gel electrophoresis combined with the matrix-assisted laser desorption/ionization time-of-flight mass spectrometer. After suppression subtractive hybridization and differential screening, 24 differentially expressed gene fragments were obtained, including 9 known genes and 15 novel genes. Nine known genes, such as Cytochrome C, Oxidase II and III, Serum amyloid A, Mitotic Control Protein dis3, Eukaryotic Translation Initiation Factor 4A, function in the process of growth and differentiation, transcription, apoptosis, signal transduction. Six novel genes were found to locate in chromosome 5. Northern blot further confirmed the results. For protein analysis, 16 significantly different protein spots were detected using 2-dimensional gel electrophoresis and peptide mass fingerprinting analysis. The results were confirmed by Western blot. The peptide mass fingerprintings of spots were then compared with the NCBI and SWISS PROT database. The differentially expressed proteins included Galectin-1, Annexin A1, Casein kinase 2, Cytochrome c oxidase subunit VIb, S-100D calcium-binding protein, which may be involved in cell differentiation and proliferation, signal transduction, cell adhesion and migration, and tumor evasion of immune responses. An analysis of these genes and proteins reiterated much of our understanding of the metastatic process and also offered some identified targets without previously characterized functions, especially the novel metastasis associated genes, to be further investigated. Moreover, the results of the phenotypic function-related expression mapping analysis at the mRNA and

  14. Studies on Phase Separation in a-PMMA/PEG Gels

    NASA Astrophysics Data System (ADS)

    Wang, Xiaoliang

    2005-03-01

    Stereo-irregular atactic poly(methyl methacrylate) (a-PMMA) is known incapable of forming gels in common solvents, irrespective of the solvent quality. However, we recently found a rigid opaque thermal-reversible a-PMMA gel in the solvent of the polyethyl glycol oligomer (PEG) (the PEG molecule mass differ from 400 to 4000 were used). FT-IR, dynamic mechanical temperature analysis and Solid state NMR measurements were used to study the gel properties and gelation mechanism. The in situ IR studies in a-PMMA/PEG gel suggested that some a-PMMA segments were in the aggregated state in solution, which became a node in the solution. With decreasing temperature, the fraction of aggregated a-PMMA in solution increases, resulting in the formation of physical network finally. Spin diffusion was used to determine the size (ξ) of domains in the gels. We found that, a-PMMA/PEG4000 was miscible (ξ ˜ 9nm), while a-PMMA/PEG1000 was micro phase separated (ξ ˜ 57nm) and a-PMMA/PEG400 was macro phase separated (ξ > 300nm). The a-PMMA self-aggregation was attributed to the depletion interaction that becomes important in the case of middle-sized solvents.

  15. Method for preparing hydrous iron oxide gels and spherules

    DOEpatents

    Collins, Jack L.; Lauf, Robert J.; Anderson, Kimberly K.

    2003-07-29

    The present invention is directed to methods for preparing hydrous iron oxide spherules, hydrous iron oxide gels such as gel slabs, films, capillary and electrophoresis gels, iron monohydrogen phosphate spherules, hydrous iron oxide spherules having suspendable particles homogeneously embedded within to form composite sorbents and catalysts, iron monohydrogen phosphate spherules having suspendable particles of at least one different sorbent homogeneously embedded within to form a composite sorbent, iron oxide spherules having suspendable particles homogeneously embedded within to form a composite of hydrous iron oxide fiber materials, iron oxide fiber materials, hydrous iron oxide fiber materials having suspendable particles homogeneously embedded within to form a composite, iron oxide fiber materials having suspendable particles homogeneously embedded within to form a composite, dielectric spherules of barium, strontium, and lead ferrites and mixtures thereof, and composite catalytic spherules of barium or strontium ferrite embedded with oxides of Mg, Zn, Pb, Ce and mixtures thereof. These variations of hydrous iron oxide spherules and gel forms prepared by the gel-sphere, internal gelation process offer more useful forms of inorganic ion exchangers, catalysts, getters, dielectrics, and ceramics.

  16. The Optimal Configuration of Gel Sheet Governed by its Concentration

    NASA Astrophysics Data System (ADS)

    Zhai, Xiaobo; Zhang, Shengli; Zhang, Lei; Zhao, Shumin

    2012-07-01

    We investigate the configuration of gel sheets with centrosymmetric distribution of monomer concentration in this paper. The configuration energy of these gel sheets consists of the in-plane stretching energy and bending energy. The equilibrium shape equations are derived by variation principle. This provides a way to control the shape of gel sheets by the initial concentration and thickness. From the equilibrium shape equations, we know that the Gaussian curvature on boundary (K|C) of equilibrium shape is determined by the Poisson ratio hat {ν }. K|C is negative when hat {ν }>0 but positive when hat {ν }<0. Specially, we derive two dome-like solutions from the equilibrium shape equations to compare with the experimental data. In these dome-like sheets, on the boundary part the Gaussian curvature is K < 0, which is different from the center part (K > 0). Furthermore, we deduce that the initial gel distribution of cylinder sheets is proportional to 1/r and find that N-isopropylacrylamide cylinder sheets cannot be formed without additional edges. Our theoretical results agree well with the experimental data [Klein et al., Science 315, 1116 (2007)]. On the other hand, we predict a special type of gel sheets as minimal surface. Their residual stresses are constant and same along radial and circumference directions. For axisymmetric sheets, we give a criterion about the sign of Gaussian curvature K when thickness h is infinite small.

  17. Protein/Arabinoxylans Gels: Effect of mass ratio on the rheological, microstructural and diffusional characteristics

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Arabinoxylan (AX) gels entrapping standard model proteins at different mass ratios were formed. The distribution of protein through the network was investigated by confocal laser scanning microscopy (CLSM). In mixed gels, protein aggregates forming clusters were detected at protein/polysaccharide ra...

  18. Stick-slip instability for viscous fingering in a gel

    NASA Astrophysics Data System (ADS)

    Puff, N.; Debrégeas, G.; di Meglio, J.-M.; Higgins, D.; Bonn, D.; Wagner, C.

    2002-05-01

    The growth dynamics of an air finger injected in a visco-elastic gel (a PVA/borax aqueous solution) is studied in a linear Hele-Shaw cell. Besides the standard Saffman-Taylor instability, we observe—with increasing finger velocities—the existence of two new regimes: (a) a stick-slip regime for which the finger tip velocity oscillates between 2 different values, producing local pinching of the finger at regular intervals; (b) a "tadpole" regime where a fracture-type propagation is observed. A scaling argument is proposed to interpret the dependence of the stick-slip frequency with the measured rheological properties of the gel.

  19. Permeability and structure of resorcinol-formaldehyde gels

    SciTech Connect

    Scherer, G.W.; Alviso, C.; Pekala, R.; Gross, J.

    1996-12-31

    The permeability (D) of resorcinol-formaldehyde (RF) gels was measured using a beam-bending technique. For gels made at various solids contents and with different catalyst contents, the permeabilities ranged over a factor of {approximately} 50; the pore radii inferred from D varied from {approximately}3 to 30 nm. Pore radii obtained on RF aerogels using nitrogen desorption were severely affected by compression of the aerogel by capillary forces (resulting from the surface tension of liquid nitrogen). After correction for that effect, the desorption data were found to be in very good agreement with the pore sizes calculated from D.

  20. Block copolymer ion gels for gas separation

    NASA Astrophysics Data System (ADS)

    Gu, Yuanyan; Lodge, Timothy

    2012-02-01

    Carbon dioxide removal from light gases (eg. N2, CH4, and H2) is a very important technology for industrial applications such as natural gas sweetening, CO2 capture from coal-fire power plant exhausts and hydrogen production. Current CO2 separation method uses amine-absorption, which is energy-intensive and requires frequent maintenance. Membrane separation is a cost-effective solution to this problem, especially in small-scale applications. Ionic liquids have recently received increasing interest in this area because of their selective solubility for CO2 and non-volatility. However, ionic liquid itself lacks the persistent structure and mechanical integrity to withstand the high pressure for gas separation. Here, we report the development and gas separation performances of physically crosslinked ion gels based on self-assembly of ABA-triblock copolymers in ionic liquids. Three different types of polymers was used to achieve gelation in ionic liquids. Specifically, a triblock copolymer ion gel with a polymerized ionic liquid mid-block shows performances higher than the upper bound of well-known ``Robeson Plot'' for CO2/N2.

  1. Polymer gel dosimeter based on itaconic acid.

    PubMed

    Mattea, Facundo; Chacón, David; Vedelago, José; Valente, Mauro; Strumia, Miriam C

    2015-11-01

    A new polymeric dosimeter based on itaconic acid and N, N'-methylenebisacrylamide was studied. The preparation method, compositions of monomer and crosslinking agent and the presence of oxygen in the dosimetric system were analyzed. The resulting materials were irradiated with an X-ray tube at 158cGy/min, 226cGymin and 298cGy/min with doses up to 1000Gy. The dosimeters presented a linear response in the dose range 75-1000Gy, sensitivities of 0.037 1/Gyat 298cGy/min and an increase in the sensitivity with lower dose rates. One of the most relevant outcomes in this study was obtaining different monomer to crosslinker inclusion in the formed gel for the dosimeters where oxygen was purged during the preparation method. This effect has not been reported in other typical dosimeters and could be attributed to the large differences in the reactivity among these species. PMID:26275817

  2. Luminescence properties of Cr-doped silica sol gel glasses

    NASA Astrophysics Data System (ADS)

    Strek, Wieslaw; Lukowiak, Edward; Deren, Przemyslaw J.; Maruszewski, K.; Trabjerg, Ib; Koepke, Czeslaw; Malashkevich, G. E.; Gaishun, Vladimir E.

    1997-11-01

    The emission of Cr-doped silica glass obtained by the sol- gel method is characterized by an orange broad band with a maximum at 610 nm. Its nature is examined by the absorption, excited state absorption, emission, excitation and lifetime measurements over a wide range of temperature and for different concentration of Cr ions. Our measurement show that in spite of fact that the absorption properties of Cr- doped silica sol-gel glass are predominantly associated with Cr4+ centers, the observed in visible range emission can be assigned neither to Cr3+ nor to Cr4+ ions. The discussion of the nature of observed emission was carried out for all possible valencies of the Cr ions. In conclusion is suggested that it may be ascribed to the transitions on the monovalent Cr1+ ion. The reducing agents occurring during the sol-gel process and leading to lowering the Cr valency are discussed.

  3. Effect of sugars and polyols on water in agarose gels.

    PubMed

    Nishinari, K; Watase, M; Williams, P A; Phillips, G O

    1991-01-01

    Effects of ribose, glucose, sucrose, ethylene glycol, glycerin, propylene glycol, and sorbitol on water in concentrated agarose gels were studied by differential scanning calorimetry at low temperatures. Changes in the phase transition temperatures of 40% agarose gels, induced by the addition of these chemical reagents, are discussed, together with rheological and thermal data for the same systems at ambient and higher temperatures. Both sugars and polyols are believed to reduce the amount of freezable water and to promote plasticization and molecular mobility of agarose chains in gels, thus shifting the glass transition temperatures to lower temperatures. However, the effects of decreasing freezable water, and the direct effect on the junction zones, produced by sugars seem to be different from the effects produced by polyols. PMID:1746332

  4. Swelling-induced and controlled curving in layered gel beams.

    PubMed

    Lucantonio, A; Nardinocchi, P; Pezzulla, M

    2014-11-01

    We describe swelling-driven curving in originally straight and non-homogeneous beams. We present and verify a structural model of swollen beams, based on a new point of view adopted to describe swelling-induced deformation processes in bilayered gel beams, that is based on the split of the swelling-induced deformation of the beam at equilibrium into two components, both depending on the elastic properties of the gel. The method allows us to: (i) determine beam stretching and curving, once assigned the characteristics of the solvent bath and of the non-homogeneous beam, and (ii) estimate the characteristics of non-homogeneous flat gel beams in such a way as to obtain, under free-swelling conditions, three-dimensional shapes. The study was pursued by means of analytical, semi-analytical and numerical tools; excellent agreement of the outcomes of the different techniques was found, thus confirming the strength of the method. PMID:25383031

  5. Swelling-induced and controlled curving in layered gel beams

    PubMed Central

    Lucantonio, A.; Nardinocchi, P.; Pezzulla, M.

    2014-01-01

    We describe swelling-driven curving in originally straight and non-homogeneous beams. We present and verify a structural model of swollen beams, based on a new point of view adopted to describe swelling-induced deformation processes in bilayered gel beams, that is based on the split of the swelling-induced deformation of the beam at equilibrium into two components, both depending on the elastic properties of the gel. The method allows us to: (i) determine beam stretching and curving, once assigned the characteristics of the solvent bath and of the non-homogeneous beam, and (ii) estimate the characteristics of non-homogeneous flat gel beams in such a way as to obtain, under free-swelling conditions, three-dimensional shapes. The study was pursued by means of analytical, semi-analytical and numerical tools; excellent agreement of the outcomes of the different techniques was found, thus confirming the strength of the method. PMID:25383031

  6. Cost-effective gel documentation using a web-cam.

    PubMed

    Goldmann, T; Zyzik, A; Loeschke, S; Lindsay, W; Vollmer, E

    2001-12-01

    In search for a cost effective gel documentation system applicable for different fields of molecular biology, we analyzed the capabilities of a cheap CCD-camera originally designed to capture images for transmission through the internet (web-cam) with regard to gel documentation. The camera was connected to a personal computer by universal serial bus (USB) and used for the documentation of DNA separated on agarose gels and stained by ethidium-bromide using the software provided with the camera. The web-cam provided digital images of sufficient quality for routine documentation and combined the low set-up costs of a Polaroid system with the low running costs of video capture systems, hence is ideal as a start-up system and as augmentation to existing equipment. PMID:11714515

  7. Comparison of topical 5% nicotinamid gel versus 2% clindamycin gel in the treatment of the mild-moderate acne vulgaris: A double-blinded randomized clinical trial

    PubMed Central

    Shahmoradi, Zabiolah; Iraji, Farib; Siadat, Amir Hossein; Ghorbaini, Azamosadat

    2013-01-01

    Background: Acne vulgaris is considered one of the most common disorders for which patients seek dermatologic care. In the current study, we evaluated efficacy of the 5% nicotinamide gel versus 2% clindamycin gel in the treatment of the mild-moderate acne vulgaris. Materials and Methods: This was a randomized, controlled clinical trial that was performed in 2009-2010. Sixty female patients with mild or moderate acne vulgaris were recurited to be treated either with 5% nicotinamide or 2% clindamycin gel for 8 weeks. Acne severity index (ASI) was used to evaluate response to treatment and SPSS software was used to analyze the data. Results: The mean of ASI at the baseline was 16.85 ± 8.5 and 18.2 ± 12.27 in nicotinamide gel and clindamycin gel, respectively (P > 0.05). The mean of ASI was significantly decreased compared with baseline ASI during the time in both groups (P < 0.0001). However, there was not a significant difference regarding reduction of ASI between the nicotinamide and clindamycin gel (P = 0.583). Conclusion: Five percent nicotinamide gel is as effective as 2% clindamycin gel for treatment of mild to moderate acne vulgaris. No side effect was observed during the treatment. PMID:23914212

  8. Stoichiometric hydroxyapatite obtained by precipitation and sol gel processes

    NASA Astrophysics Data System (ADS)

    Vazquez, C. G.; Barba, C. P.; Munguia, N.

    2005-06-01

    Three methods for obtaining hydroxiapatite (HA) are described. HA is a very interesting ceramic because of its many medical applications. The first two precipitation methods start from calcium and phosphorous compounds, whereas the third method is a sol-gel process that uses alcoxides. The products were characterized and compared. The observed differences are important for practical applications.

  9. Rheological and textural properties of pulse starch gels

    Technology Transfer Automated Retrieval System (TEKTRAN)

    The properties of starch gels from black beans, chickpeas, lentils and navy beans were investigated. Differences were shown between starch sources, and effect of starch concentration was studied. Navy bean starch had the highest peak and final viscosities in pasting tests, while black bean starch h...

  10. A Conductive Gel for the Plotting of Equipotential Lines

    ERIC Educational Resources Information Center

    Elizalde-Torres, J.; González-Cardel, M.; Vega-Murguía, E. J.; Castillo-González, I.; Rodríguez-Nava, M.

    2015-01-01

    This paper presents the development of a conductive gel that can be used to measure the electrical potential differences on its surface, and has enough consistency to plot equipotential lines. It has a gelation time of less than 10 min, and is suitable for implementing learning experiences in a physics teaching laboratory in a 90 min session. To…

  11. Pulsed-field gel electrophoresis typing of Staphylococcus aureus isolates

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Pulsed-field gel electrophoresis (PFGE) is the most applied and effective genetic typing method for epidemiological studies and investigation of foodborne outbreaks caused by different pathogens, including Staphylococcus aureus. The technique relies on analysis of large DNA fragments generated by th...

  12. Passivated gel electrophoresis of charged nanospheres by light-scattering video tracking.

    PubMed

    Zhu, Xiaoming; Mason, Thomas G

    2014-08-15

    Gel electrophoresis (gel-EP) has been used for decades to separate charged biopolymers, such as DNA, RNA, and proteins, yet propagation of other charged colloidal objects, such as nanoparticles, during gel-EP has been studied comparatively little. Simply introducing anionic nanoparticles, such as sulfate-stabilized polystyrene nanospheres, in standard large-pore agarose gels commonly used for biomolecules does not automatically ensure propagation or size-separation because attractive interactions can exist between the gel and the nanoparticles. Whereas altering the surfaces of the nanoparticles is a possible solution, here, by contrast, we show that treating a common type I-A low-electroendoosmosis agarose gel with a passivation agent, such as poly-(ethyleneglycol), enables charged nanoparticles to propagate through large-pore passivated gels in a highly reproducible manner. Moreover, by taking advantage of the significant optical scattering from the nanoparticles, which is not easily measurable for biopolymers, relative to scattering from the gel, we perform real-time, light-scattering, video-tracking gel-EP. Continuous optical measurements of the propagation of bands of uniformly sized nanospheres in passivated gels provides the propagation distance, L, and velocity, v, as a function of time for different sphere radii, electric field strengths, gel concentrations, and passivation agent concentrations. The steady-state particle velocities vary linearly with applied electric field strength, E, for small E, but these velocities become non-linear for larger E, suggesting that strongly driven nanoparticles can become elastically trapped in the smaller pores of the gel, which act like blind holes, in a manner that thermal fluctuations cannot overcome. Based on this assumption, we introduce a simple model that fits the measured v(E) in both linear and non-linear regimes over a relevant range of applied voltages. PMID:24910054

  13. Electromyography analysis of natural mastication behavior using varying mouthful quantities of two types of gels.

    PubMed

    Kohyama, Kaoru; Gao, Zhihong; Ishihara, Sayaka; Funami, Takahiro; Nishinari, Katsuyoshi

    2016-07-01

    The objectives of this study were to examine the effects of mouthful quantities and mechanical properties of gels on natural mastication behaviors using electromyography (EMG). Two types of hydrocolloid gels (A and K) with similar fracture loads but different moduli and fracture strains were served to eleven normal women in 3-, 6-, 12-, and 24-g masses in a randomized order. EMG activities from both masseter muscles were recorded during natural mastication. Because of the similar fracture loads, the numbers of chews, total muscle activities, and entire oral processing times were similar for similar masses of both gel types. Prior to the first swallow, the more elastic K gel with a higher fracture strain required higher muscle activities than the brittle A gel, which had higher modulus. Majority of subjects had preferred sides of chewing, but all subjects with or without preferred sides used both masseters during the consumption of gels. Similar effects of masses and types of gels were observed in EMG activities of both sides of masseters. Contributions of the dominant side of chewing were diminished with increasing masses of gels, and the mass dependency on ratio of the dominant side was more pronounced with K gel. More repetitions of smaller masses required greater muscle activities and longer periods for the consumption of 24-g gel portions. Reduction in the masses with an increased number of repetitions necessitated slower eating and more mastication to consume the gel portions. These observations suggest that chewing using both sides is more effective and unconsciously reduces mastication times during the consumption of gels. PMID:27102709

  14. Polyelectrolyte gels as bending actuators: modeling and numerical simulation

    NASA Astrophysics Data System (ADS)

    Wallmersperger, Thomas; Keller, Karsten; Attaran, Abdolhamid

    2013-04-01

    Polyelectrolyte gels are ionic electroactivematerials. They have the ability to react as both, sensors and actuators. As actuators they can be used e.g. as artificial muscles or drug delivery control; as sensors they may be used for measuring e.g. pressure, pH or other ion concentrations in the solution. In this research both, anionic and cationic polyelectrolyte gels placed in aqueous solution with mobile anions and cations are investigated. Due to external stimuli the polyelectrolyte gels can swell or shrink enormously by the uptake or delivery of solvent. In the present research a coupled multi-field problem within a continuum mechanics framework is proposed. The modeling approach introduces a set of equations governing multiple fields of the problem, including the chemical field of the ionic species, the electrical field and the mechanical field. The numerical simulation is performed by using the Finite Element Method. Within the study some test cases will be carried out to validate our model. In the works by Gülch et al., the application of combined anionic-cationic gels as grippers was shown. In the present research for an applied electric field, the change of the concentrations and the electric potential in the complete polymer is simulated by the given formulation. These changes lead to variations in the osmotic pressure resulting in a bending of different polyelectrolyte gels. In the present research it is shown that our model is capable of describing the bending behavior of anionic or cationic gels towards the different electrodes (cathode or anode).

  15. Dynamic and static fluctuations in polymer gels studied by neutron spin-echo

    NASA Astrophysics Data System (ADS)

    Kanaya, T.; Takahashi, N.; Nishida, K.; Seto, H.; Nagao, M.; Takeba, Y.

    2006-11-01

    We report neutron spin-echo measurements on three types of poly(vinyl alcohol) (PVA) gels. The first is PVA gel in a mixture of dimethyl sulfoxide (DMSO) and water with volume ratio 60/40, the second is PVA gel in an aqueous borax solution and the third is chemically cross-linked PVA gel. The observed normalized intermediate scattering functions I( Q, t)/ I( Q,0) were very different among them. The I( Q, t)/ I( Q,0) of the first and third gels showed a non-decaying component in addition to a decaying component, but the second one did not have the non-decaying one. This clearly indicates that the fluctuations in the first and third PVA gels consist of static and dynamic fluctuations whereas the second PVA gel does include only the dynamic fluctuations. The dynamic and static fluctuations of the PVA gels were analyzed in terms of a restricted motion in the gel network and the Zimm motion, respectively.

  16. Type I collagen gel protects murine fibrosarcoma L929 cells from TNFα-induced cell death

    SciTech Connect

    Wang, Hong-Ju; He, Wen-Qi; Chen, Ling; Liu, Wei-Wei; Xu, Qian; Xia, Ming-Yu; Hayashi, Toshihiko; Fujisaki, Hitomi; Hattori, Shunji; Tashiro, Shin-ichi; Onodera, Satoshi; Ikejima, Takashi

    2015-02-20

    Murine fibrosarcoma L929 cells have been used to test efficacy of proinflammatory cytokine TNFα. In the present study, we reported on protective effect of type I collagen gel used as L929 cell culture. L929 cell grew and proliferated well on collagen gel. However, the L929 cells exhibited cobblestone-like morphology which was much different from the spread fusiform shape when cultured on conventional cell dishes as well as the cells tended to aggregate. On conventional cell culture dishes, the cells treated with TNFα became round in shape and eventually died in a necroptotic manner. The cells cultured on collagen gel, however, were completely unaffected. TNFα treatment was reported to induce autophagy in L929 cells on the plastic dish, and therefore we investigated the effect of collagen gel on induction of autophagy. The results indicated that autophagy induced by TNFα treatment was much reduced when the cells were cultured on collagen gel. In conclusion, type I collagen gel protected L929 cell from TNFα-induced cell death. - Highlights: • Collagen gel culture changed the morphology of L929 cells. • L929 cell cultured on collagen gel were resistant to TNFα-induced cell death. • Collagen gel culture inhibited TNFα-induced autophagy in L929 cells.

  17. Automatic and quantitative measurement of collagen gel contraction using model-guided segmentation

    NASA Astrophysics Data System (ADS)

    Chen, Hsin-Chen; Yang, Tai-Hua; Thoreson, Andrew R.; Zhao, Chunfeng; Amadio, Peter C.; Sun, Yung-Nien; Su, Fong-Chin; An, Kai-Nan

    2013-08-01

    Quantitative measurement of collagen gel contraction plays a critical role in the field of tissue engineering because it provides spatial-temporal assessment (e.g., changes of gel area and diameter during the contraction process) reflecting the cell behavior and tissue material properties. So far the assessment of collagen gels relies on manual segmentation, which is time-consuming and suffers from serious intra- and inter-observer variability. In this study, we propose an automatic method combining various image processing techniques to resolve these problems. The proposed method first detects the maximal feasible contraction range of circular references (e.g., culture dish) and avoids the interference of irrelevant objects in the given image. Then, a three-step color conversion strategy is applied to normalize and enhance the contrast between the gel and background. We subsequently introduce a deformable circular model which utilizes regional intensity contrast and circular shape constraint to locate the gel boundary. An adaptive weighting scheme was employed to coordinate the model behavior, so that the proposed system can overcome variations of gel boundary appearances at different contraction stages. Two measurements of collagen gels (i.e., area and diameter) can readily be obtained based on the segmentation results. Experimental results, including 120 gel images for accuracy validation, showed high agreement between the proposed method and manual segmentation with an average dice similarity coefficient larger than 0.95. The results also demonstrated obvious improvement in gel contours obtained by the proposed method over two popular, generic segmentation methods.

  18. Nanostructure of native pectin sugar acid gels visualized by atomic force microscopy.

    PubMed

    Fishman, Marshall L; Cooke, Peter H; Coffin, David R

    2004-01-01

    Height and phase shift images of high methoxyl sugar acid gels (HMSAG) of pectin were obtained by atomic force microscopy in the tapping mode. Images revealed that pores in these gels were fluid and flattened out when measured as a function of time. These images revealed for the first time the structure of adsorbed sugar on pectin in the hydrated native gels and how the pectin framework is organized within these gels. Segmentation of images revealed that the underlying pectin framework contained combinations of rods, segmented rods, and kinked rods connected end to end and laterally. The open network of strands was similar to pectin aggregates from 5 mM NaCl solution imaged earlier by electron microscopy (Fishman et al., Arch. Biochem. Biophys. 1992, 294, 253). Area measurements revealed that the ratio of bound sugar to pectin was in excess of 100 to 1 (w/w). Furthermore, images indicated relatively small differences in the organization of native commercial citrus pectin, orange albedo pectin, and lime albedo pectin gels at optimal pH as determined in this study. The findings are consistent with earlier gel strength measurements of these gels. In addition, values of gel strength were consistent with values of molar mass and viscosity of the constituent pectins in that they increased in the same order. Finally, we demonstrated the advantage of simultaneous visualization of height and phase shift images for observing and quantitating the nanostructure of relatively soft gels which are fully hydrated with a buffer. PMID:15002992

  19. Experimental and theoretical investigation of time-setting polymer gels in porous media. [Xanthan/Chromium gel

    SciTech Connect

    Hubbard, S.; Roberts, L.J.; Sorbie, K.S. )

    1988-11-01

    This paper comprises studies of the kinetics of the xanthan/chromium gel system. The central objective of this work is to perform well-characterized core flow experiments with a simple gelling system that may then be mathematically simulated to obtain a detailed knowledge of the processes that are occurring. Gamma-labeled /sup 51/Cr is used so that in-situ chromium profiles may be observed during gel emplacement. These are required to distinguish between different kinetic/transport models because effluent profiles alone are insufficient for this purpose. A generalized multicomponent transport equation including terms describing the crosslinking reaction is used to simulate the experiments.

  20. Metal-silica sol-gel materials

    NASA Technical Reports Server (NTRS)

    Stiegman, Albert E. (Inventor)

    2002-01-01

    The present invention relates to a single phase metal-silica sol-gel glass formed by the co-condensation of a transition metal with silicon atoms where the metal atoms are uniformly distributed within the sol-gel glass as individual metal centers. Any transition metal may be used in the sol-gel glasses. The present invention also relates to sensor materials where the sensor material is formed using the single phase metal-silica sol-gel glasses. The sensor materials may be in the form of a thin film or may be attached to an optical fiber. The present invention also relates to a method of sensing chemicals using the chemical sensors by monitoring the chromatic change of the metal-silica sol-gel glass when the chemical binds to the sensor. The present invention also relates to oxidation catalysts where a metal-silica sol-gel glass catalyzes the reaction. The present invention also relates to a method of performing oxidation reactions using the metal-silica sol-gel glasses. The present invention also relates to organopolymer metal-silica sol-gel composites where the pores of the metal-silica sol-gel glasses are filled with an organic polymer polymerized by the sol-gel glass.

  1. GRAV2D: an interactive 2-1/2 dimensional gravity modeling program (user's guide and documentation for Rev. 1)

    SciTech Connect

    Nutter, C.

    1980-11-01

    GRAV2D is an interactive computer program used for modeling 2-1/2 dimensional gravity data. A forward algorithm is used to give the theoretical attraction of gravity intensity at a station due to a perturbing body given by the initial model. The resultant model can then be adjusted for a better fit by a combination of manual adjustment, one-dimensional automatic search, and Marquardt inversion. GRAV2D has an interactive data management system for data manipulation and display built around subroutines to do a forward problem, a one-dimensional direct search and an inversion. This is a user's guide and documentation for GRAV2D.

  2. Influence of Whitening Gel Application Protocol on Dental Color Change

    PubMed Central

    Caneppele, Taciana Marco Ferraz; Torres, Carlos Rocha Gomes; Huhtala, Maria Filomena Rocha Lima; Bresciani, Eduardo

    2015-01-01

    Objectives. To evaluate the influence of different whitening protocols on the efficacy of 35% hydrogen peroxide (HP) tooth whitening and gel pH and concentration. Material and Methods. Eighty-four enamel/dentin discs from bovine incisors were used. The baseline color was measured with a spectrophotometer. Two sessions of in-office whitening with 35% HP were performed under different protocols: G1: 3 applications of HP (10 min each) per session; G2: 1 application of 30 min per session; G3: 1 application of 40 min per session, with no gel replenishment within session for groups 2 and 3. HP titration and pH evaluation at baseline, after 10, 30, and 40 min were also performed. The final color was measured 24 h after the 1st and 2nd whitening sessions. Data were submitted to Repeated Measures ANOVA and Tukey's test. Results. For color evaluation, no differences were observed among groups after two sessions. HP titration showed no drop on concentration after 10, 30, or 40 min. The pH was 5.54 at baseline and 5.41 after 40 min. Conclusion. Replenishment or extended application time of in-office whitening gel does not affect gel pH and concentration, a fact that supports the similar effectiveness of whitening observed among the tested protocols. PMID:25866839

  3. Gel Dosimetry Analysis of Gold Nanoparticle Application in Kilovoltage Radiation Therapy

    NASA Astrophysics Data System (ADS)

    Marques, T.; Schwarcke, M.; Garrido, C.; Zucolot, V.; Baffa, O.; Nicolucci, P.

    2010-11-01

    In this work gold nanoparticles (AuNP) were embedded in MAGIC-f gel and irradiated in a 250 kV x-ray clinical beam. The signal of non-irradiated gel samples containing AuNPs showed maximum difference of 0.5% related to gel without nanoparticles. Different AuNPs concentrations were studied: 0.10 mM, 0.05 mM and 0.02 mM, presenting dose enhancements of 106%, 90% and 77% respectively. Monte Carlo spectrometry was performed to quantify theoretical changes in photon energy spectrums due to AuNPs presence. Concordance between simulated dose enhancements and gel dosimetry measurements was better than 97% to all concentrations studied. This study evidences that polymer gel dosimetry as a suitable tool to perform dosimetric investigations of nanoparticle applications in Radiation Therapy.

  4. Automated apparatus for producing gradient gels

    DOEpatents

    Anderson, Norman L.

    1986-01-01

    Apparatus for producing a gradient gel which serves as a standard medium for a two-dimensional analysis of proteins, the gel having a density gradient along its height formed by a variation in gel composition, with the apparatus including first and second pumping means each including a plurality of pumps on a common shaft and driven by a stepping motor capable of providing small incremental changes in pump outputs for the gel ingredients, the motors being controlled, by digital signals from a digital computer, a hollow form or cassette for receiving the gel composition, means for transferring the gel composition including a filler tube extending near the bottom of the cassette, adjustable horizontal and vertical arms for automatically removing and relocating the filler tube in the next cassette, and a digital computer programmed to automatically control the stepping motors, arm movements, and associated sensing operations involving the filling operation.

  5. Automated apparatus for producing gradient gels

    DOEpatents

    Anderson, N.L.

    1983-11-10

    Apparatus for producing a gradient gel which serves as a standard medium for a two-dimensional analysis of proteins, the gel having a density gradient along its height formed by a variation in gel composition, with the apparatus including first and second pumping means each including a plurality of pumps on a common shaft and driven by a stepping motor capable of providing small incremental changes in pump outputs for the gel ingredients, the motors being controlled, by digital signals from a digital computer, a hollow form or cassette for receiving the gel composition, means for transferring the gel composition including a filler tube extending near the bottom of the cassette, adjustable horizontal and vertical arms for automatically removing and relocating the filler tube in the next cassette, and a digital computer programmed to automatically control the stepping motors, arm movements, and associated sensing operations involving the filling operation.

  6. Selective gel system for permeability profile control

    SciTech Connect

    Shu, P.

    1990-10-16

    This patent describes a selective gel for closing pores in a more permeable zone of a formation. It comprises: an aqueous solution of a first composition sufficient to form ex-situ a size selective, shear thinning first gel which comprises a xanthan biopolymer, and a transitional metal ion; and an aqueous solution of a second composition sufficient to form thermally a second in-situ gel that which comprises and aldehyde, and a phenolic compound which solutions are combined and allowed to form a shearable, rehealable ex-situ gel which can be injected into the permeable zone where it reheals when heated by the formation and thereafter forms a solid gel substantially more resistant to formation conditions than the first gel.

  7. GEM printer: 3D gel printer for free shaping of functional gel engineering materials

    NASA Astrophysics Data System (ADS)

    Furukawa, Hidemitsu; Muroi, Hisato; Yamamoto, Kouki; Serizawa, Ryo; Gong, Jin

    2013-04-01

    In the past decade, several high-strength gels have been developed. These gels are expected to use as a kind of new engineering materials in the fields of industry and medical as substitutes to polyester fibers, which are materials of artificial blood vessels. The gels have both low surface friction and well permeability due to a large amount of water absorbed in the gels, which are superiority of the gels compering to the polyester fibers. It is, however, difficult for gels to be forked structure or cavity structure by using cutting or mold. Consequently, it is necessary to develop the additive manufacturing device to synthesize and mode freely gels at the same time. Here we try to develop an optical 3D gel printer that enables gels to be shaped precisely and freely. For the free forming of high-strength gels, the 1st gels are ground to particles and mixed with 2nd pregel solution, and the mixed solution is gelled by the irradiation of UV laser beam through an optical fiber. The use of the optical fiber makes one-point UV irradiation possible. Since the optical fiber is controlled by 3D-CAD, the precise and free molding in XYZ directions is easily realized. We successfully synthesized tough gels using the gel printer.

  8. Characteristics of polyacrylamide gel with THPC and Turnbull Blue gel dosimeters evaluated using optical tomography

    NASA Astrophysics Data System (ADS)

    Pilařová (Vávrů), Kateřina; Kozubíková, Petra; Šolc, Jaroslav; Spěváček, Václav

    2014-11-01

    The purpose of this study was to compare characteristics of radiochromic gel - Turnbull Blue gel (TB gel) with polymer gel - polyacrylamide gel and tetrakis hydroxymethyl phosphonium chloride (PAGAT) using optical tomography. Both types of gels were examined in terms of dose sensitivity, dose response linearity and background value of spectrophotometric absorbance. The calibration curve was obtained for 60Co irradiation performed on Gammacell 220 at predefined gamma dose levels between 0 and 140 Gy for TBG and 0-15 Gy for PAGAT. To measure relative dose distributions from stereotactic irradiation, dosimeters were irradiated on Leksell Gamma Knife Perfexion. The cylindrical glass housings filled with gel were attached to the stereotactic frame. They were exposed with single shot and 16 mm collimator by 65 Gy to a 50% prescription isodose for TB gel and 4 Gy to a 50% prescription isodose for PAGAT. Evaluations of dosimeters were performed on an UV-vis Spectrophotometer Helios β and an optical cone beam homemade tomography scanner with a 16-bit astronomy CCD camera with a set of color filters. The advantages and potential disadvantages for both types of gel dosimeters were summarized. Dose distribution in central slice and measured profiles of 16 mm shot shows excellent correspondence with treatment planning system Leksell GammaPlan® for both PAGAT and Turnbull Blue gels. Gel dosimeters are suitable for steep dose gradient verification. An optical tomography evaluation method is successful. Dose response characteristics of TB gel and PAGAT gel are presented.

  9. A mucoadhesive in situ gel delivery system for paclitaxel.

    PubMed

    Jauhari, Saurabh; Dash, Alekha K

    2006-01-01

    MUC1 gene encodes a transmembrane mucin glycoprotein that is overexpressed in human breast cancer and colon cancer. The objective of this study was to develop an in situ gel delivery system containing paclitaxel (PTX) and mucoadhesives for sustained and targeted delivery of anticancer drugs. The delivery system consisted of chitosan and glyceryl monooleate (GMO) in 0.33M citric acid containing PTX. The in vitro release of PTX from the gel was performed in presence and absence of Tween 80 at drug loads of 0.18%, 0.30%, and 0.54% (wt/wt), in Sorensen's phosphate buffer (pH 7.4) at 37 degrees C. Different mucin-producing cell lines (Calu-3>Caco-2) were selected for PTX transport studies. Transport of PTX from solution and gel delivery system was performed in side by side diffusion chambers from apical to basal (A-B) and basal to apical (B-A) directions. In vitro release studies revealed that within 4 hours, only 7.61% +/- 0.19%, 12.0% +/- 0.98%, 31.7% +/- 0.40% of PTX were released from 0.18%, 0.30%, and 0.54% drug-loaded gel formulation, respectively, in absence of Tween 80. However, in presence of surfactant (0.05% wt/vol) in the dissolution medium, percentages of PTX released were 28.1% +/- 4.35%, 44.2% +/- 6.35%, and 97.1% +/- 1.22%, respectively. Paclitaxel has shown a polarized transport in all the cell monolayers with B-A transport 2 to 4 times higher than in the A-B direction. The highest mucin-producing cell line (Calu-3) has shown the lowest percentage of PTX transport from gels as compared with Caco-2 cells. Transport of PTX from mucoadhesive gels was shown to be influenced by the mucin-producing capability of cell. PMID:16796370

  10. Accretions of dark matter and dark energy onto (n+2)-dimensional Schwarzschild black hole and Morris-Thorne wormhole

    NASA Astrophysics Data System (ADS)

    Debnath, Ujjal

    2015-12-01

    In this work, we have studied accretion of the dark matter and dark energy onto of (n+2)-dimensional Schwarzschild black hole and Morris-Thorne wormhole. The mass and the rate of change of mass for (n+2)-dimensional Schwarzschild black hole and Morris-Thorne wormhole have been found. We have assumed some candidates of dark energy like holographic dark energy, new agegraphic dark energy, quintessence, tachyon, DBI-essence, etc. The black hole mass and the wormhole mass have been calculated in term of redshift when dark matter and above types of dark energies accrete onto them separately. We have shown that the black hole mass increases and wormhole mass decreases for holographic dark energy, new agegraphic dark energy, quintessence, tachyon accretion and the slope of increasing/decreasing of mass sensitively depends on the dimension. But for DBI-essence accretion, the black hole mass first increases and then decreases and the wormhole mass first decreases and then increases and the slope of increasing/decreasing of mass not sensitively depends on the dimension.

  11. Differentiation of acute renal failure and chronic renal failure by 2-dimensional analysis of urinary dipeptidase versus serum creatinine.

    PubMed

    Lee, S H; Kang, B Y; We, J S; Park, S K; Park, H S

    1999-03-01

    The differential diagnosis of acute renal failure (ARF) and chronic renal failure (CRF) may be possible by measuring urinary dipeptidase (Udpase) activity and serum creatinine (Scr) concentration. When the mass test of 246 individuals was examined on a 2-dimensional plot of Udpase (y-axis) versus Scr (x-axis) with the data obtained from healthy volunteers (n = 189), ARF (n = 19) and CRF (n = 38) patients, the characteristic distribution of each group was obvious. It is summarized by the mean values of healthy volunteers (1.44 +/- 0.39 mg/dL, 1.19 (0.59 mU/mL), ARF (6.04 +/- 5.04 mg/dL, 0.12 +/- 0.08 mU/mL), and CRF patients (8.72 +/- 2.93 mg/dL, 0.81 +/- 0.44 mU/mL). The healthy volunteers are distributed along the y-axis and the ARF patients the x-axis, thus separating the two groups 90 degrees apart. The CRF patients are scattered away from both x-, and y-axis. This 2-dimensional approach is thought to be very useful for the differential diagnosis of ARF suggesting Udpase as a new member of the marker enzymes of renal disease. PMID:10088177

  12. Microfluidics of soft granular gels

    NASA Astrophysics Data System (ADS)

    Nixon, Ryan; Bhattacharjee, Tapomoy; Sawyer, W. Gregory; Angelini, Thomas E.

    Microfluidic methods for encapsulating cells and particles typically involve drop making with two immiscible fluids. The main materials constraint in this approach is surface tension, creating inherent instability between the two fluids. We can eliminate this instability by using miscible inner and outer phases. This is achieved by using granular micro gels which are chemically miscible but physically do not mix. These microgels are yield stress materials, so they flow as solid plugs far from shear gradients, and fluidize where gradients are generated - near an injection nozzle for example. We have found that tuning the yield stress of the material by varying polymer concentration, device performance can be controlled. The solid like behavior of the gel allows us to produces infinitely stable jets that maintain their integrity and configuration over long distances and times. These properties can be combined and manipulated to produce discrete particulate bunches of an inner phase, flowing inside of an outer phase, well enough even to print a Morse code message suspended within flow chambers about a millimeter in diameter moving at millimeters a second.

  13. Self-Pumping Active Gel

    NASA Astrophysics Data System (ADS)

    Wu, Kun-Ta; Hishamunda, Jean Bernard; Fraden, Seth; Dogic, Zvonimir

    Isotropic active gels are the network which is consist of cross-linked building blocks and the structure of which changes randomly and isotropically with time. Dogic et. al. show that pairs of anti-parallel microtubules form extensile bundles, which merge, extend, and buckle. In an unconfined system, the dynamics of these bundles causes spontaneous turbulent-like flow driven by motion of microscopic molecular motors. We found that confining these active gels in a millimeter sized toroids causes a transition into a new dynamical state characterized by circulation currents persisting for hours until ATP is depleted. We show how toroid dimensions impact the properties of self-organized circular currents, how directions of circulation can be designed by engineering ratchet-shaped boundaries, and how circulations of connected toroids can be either synchronized or antisynchronized. Furthermore, we demonstrate that the flow rate in the circulation is independent of curvature and length of flow path. The flow rate persists for centimeters without decay, disregarding conventional pipe flow resistance. Such findings pave the path to self-pumping pipe transport and performing physical work with biological system.

  14. [Electron microscopy study of artificial vitreous gel].

    PubMed

    Ehgartner, E M; Schmut, O; Hofmann, H

    1986-04-01

    Artificial gels prepared from Cu2+-ions and hyaluronic acid were studied in the electron microscope and compared with the native vitreous body. Additionally, the authors attempted to produce transparent gels from the native constituents of the vitreous body, namely collagen and hyaluronic acid. Mixing of solutions of these constituents formed no gels but white precipitates. The ultrastructure of these precipitates was also studied in the electron microscope. PMID:3723971

  15. Gel time of calcium acrylate grouting material.

    PubMed

    Han, Tong-Chun

    2004-08-01

    Calcium acrylate is a polymerized grout, and can polymerize in an aqueous solution. The polymerization reaction utilizes ammonium persulfate as a catalyst and sodium thiosulfate as the activator. Based on the theory of reaction kinetics, this study on the relation between gel time and concentration of activator and catalyst showed that gel time of calcium acrylate is inversely proportional to activator and catalyst concentration. A formula of gel time is proposed, and an example is provided to verify the proposed formula. PMID:15236477

  16. N-isopropylacrylamide gel dosimeter to evaluate clinical photon beam characteristics.

    PubMed

    Chiu, Chung-Yu; Tsang, Yuk-Wah; Hsieh, Bor-Tsung

    2014-08-01

    The introduction of beam intensity control concept in current radiotherapy techniques has increased treatment planning complexity. Thus, small-field dose measurement has become increasingly vital. Polymer gel dosimetry method is widely studied. It is the only dose measurement tool that provides 3D dose distribution. This study aims to use an N-isopropylacrylamide (NIPAM) gel dosimeter to conduct beam performance measurements of percentage depth dose (PDD), beam flatness, and symmetry for photon beams with field sizes of 3×3 and 4×4 cm(2). Computed tomography scans were used to readout the gel dosimeters. In the PDD measurement, the NIPAM gel dosimeter and Gafchromic™ EBT3 radiochromic film displayed high consistency in the region deeper than the build-up region. The gel dosimeter dose profile had 3% lower flatness and symmetry measurement at 5 cm depth for different fields compared with that of the Gafchromic™ EBT3 film. During gamma evaluation under 3%/3 mm dose difference/distance-to-agreement standard, the pass rates of the polymer gel dosimeter to the TPS and EBT3 film were both higher than 96%. Given that the gel is tissue equivalent, it did not exhibit the energy dependence problems of radiochromic films. Therefore, the practical use of NIPAM polymer gel dosimeters is enhanced in clinical dose verification. PMID:24836904

  17. Conducting Polymer Electrodes for Gel Electrophoresis

    PubMed Central

    Bengtsson, Katarina; Nilsson, Sara; Robinson, Nathaniel D.

    2014-01-01

    In nearly all cases, electrophoresis in gels is driven via the electrolysis of water at the electrodes, where the process consumes water and produces electrochemical by-products. We have previously demonstrated that π-conjugated polymers such as poly(3,4-ethylenedioxythiophene) (PEDOT) can be placed between traditional metal electrodes and an electrolyte to mitigate electrolysis in liquid (capillary electroosmosis/electrophoresis) systems. In this report, we extend our previous result to gel electrophoresis, and show that electrodes containing PEDOT can be used with a commercial polyacrylamide gel electrophoresis system with minimal impact to the resulting gel image or the ionic transport measured during a separation. PMID:24586761

  18. Functional behavior of isotropic magnetorheological gels

    NASA Astrophysics Data System (ADS)

    Venkateswara Rao, P.; Maniprakash, S.; Srinivasan, S. M.; Srinivasa, A. R.

    2010-08-01

    Magnetorheological (MR) gels are a new class of soft polymers whose properties can be controlled using a magnetic field. The functional effectiveness of these gels depends on their magnetic controllability. In this paper, an experimental investigation on the functional behavior of a particular type of magnetorheological gels under dynamic and static shear conditions in the presence of a magnetic field is studied. MR gels are prepared with micron sized polarizable carbonyl iron particles interspersed in a polymer matrix gel. The compliance of this magnetic gel can be varied under the influence of an external magnetic field. Since dynamical mechanical analysis tests are difficult to conduct in the presence of large deformations of the order of 50% and strong magnetic fields, a free decay test apparatus is designed and fabricated for obtaining the magnetic field dependent shearing response under dynamic conditions at room temperature. It is observed that a significant change in the elastic modulus occurs in the gels under a magnetic field in the range of 0.1-0.4 T. However, no significant change in the damping ratio is observed under various magnitudes of magnetic field. It is shown that the increase in shear modulus of this kind of magnetic composite gel could be as high as 59% of the zero field value for a gel prepared with 50% by weight of carbonyl iron particles.

  19. Tissue simulating gel for medical research

    NASA Technical Reports Server (NTRS)

    Companion, John A. (Inventor)

    1991-01-01

    A tissue simulating gel and a method for preparing the tissue simulating gel are disclosed. The tissue simulating gel is prepared by a process using water, gelatin, ethylene glycol, and a cross-linking agent. In order to closely approximate the characteristics of the type of tissue being simulated, other material has been added to change the electrical, sound conducting, and wave scattering properties of the tissue simulating gel. The result of the entire process is a formulation that will not melt at the elevated temperatures involved in hyperthermia medical research. Furthermore, the tissue simulating gel will not support mold or bacterial growth, is of a sufficient mechanical strength to maintain a desired shape without a supporting shell, and is non-hardening and non-drying. Substances have been injected into the tissue simulating gel prior to the setting-up thereof just as they could be injected into actual tissue, and the tissue simulating gel is translucent so as to permit visual inspection of its interior. A polyurethane spray often used for coating circuit boards can be applied to the surface of the tissue simulating gel to give a texture similar to human skin, making the tissue simulating gel easier to handle and contributing to its longevity.

  20. Structure of chitosan gels mineralized by sorption

    NASA Astrophysics Data System (ADS)

    Modrzejewska, Z.; Skwarczyńska, A.; Douglas, T. E. L.; Biniaś, D.; Maniukiewicz, W.; Sielski, J.

    2015-10-01

    The paper presents the structural studies of mineralized chitosan hydrogels. Hydrogels produced by using sodium beta-glycerophosphate (Na-β-GP) as a neutralizing agent. Mineralization was performed method "post loading", which consisted in sorption to the gels structure Ca ions. In order to obtain - in the structure of gels - compounds similar to the hydroxyapatites present naturally in bone tissue, gels after sorption were modified in: pH 7 buffer and sodium hydrogen phosphate. In order to determine the structural properties of the gels, the following methods were used: infrared spectroscopy with Fourier transformation, FTIR, X-ray diffractometry, XRD, scanning electron microscopy, SEM.

  1. [Characterization of the dentin by a 2-dimensional ultrasonic velocity profile].

    PubMed

    Löst, C; John, C; Irion, K M; Nüssle, W

    1994-01-01

    The velocity of sound is material-specific and therefore offers the opportunity for indirect physical characterization of materials. Preliminary ultrasound velocity profiles gained from ground tooth sections suggested that in the dentin core of the tooth areas of different sound velocity and thus different physical properties can be differentiated. As a base for this type of non-destructive characterization of materials an optimized and automated measurement system is presented, and its possibilities are critically discussed with regard to hardness tests. Normally, the LSV in the dentin core was found to be decreasing from the coronal to the apical regions, as well as from the outer to the inner parts near the pulp. PMID:8108687

  2. Dose rate dependency of micelle leucodye 3D gel dosimeters

    NASA Astrophysics Data System (ADS)

    Vandecasteele, J.; Ghysel, S.; De Deene, Y.

    2010-11-01

    Recently a novel 3D radiochromic gel dosimeter was introduced which uses micelles to dissolve a leucodye in a gelatin matrix. Experimental results show that this 3D micelle gel dosimeter was found to be dose rate dependent. A maximum difference in optical dose sensitivity of 70% was found for dose rates between 50 cGy min-1 and 400 cGy min-1. A novel composition of 3D radiochromic dosimeter is proposed composed of gelatin, sodium dodecyl sulphate, chloroform, trichloroacetic acid and leucomalachite green. The novel gel dosimeter formulation exhibits comparable radio-physical properties in respect to the composition previously proposed. Nevertheless, the novel formulation was found to be still dose rate dependent. A maximum difference of 33% was found for dose rates between 50 cGy min-1 and 400 cGy min-1. On the basis of these experimental results it is concluded that the leucodye micelle gel dosimeter is still unsatisfactory for clinical radiation therapy dose verifications. Some insights in the physico-chemical mechanisms were obtained and are discussed.

  3. Stacking gels: A method for maximising output for pulsed-field gel electrophoresis.

    PubMed

    Heng, See Kah; Heng, Chua Kek; Puthucheary, S D

    2009-01-01

    Pulsed field gel electrophoresis (PFGE), the gold standard of molecular typing methods, has a major disadvantage of an unusually long electrophoretic time. From the original protocol of 6 days, it was modified to 3 days and subsequently to a single day. We describe the procedure of stacking five to six gels one on top of another in order to increase and maximize the output in a shorter time without compromising the resolution and reproducibility. All the variables that affect pulsed field gels during electrophoresis were taken into consideration. We firstly optimized the parameters to be used and secondly determined whether stacking of five to six gels had any effect on the molecular separation during electrophoresis in comparison with a single gel run. DNA preparation, restriction, electrophoresis, staining and gel documentation was carried out based on previously published methods. Gels were analysed using BioNumerics and dice coefficient and unweighted pair group methods were used to generate dendrograms based on 1.5% tolerance values. Identical band profiles and band resolution-separation were seen in the PFGE patterns with single gel and multiple stacking gels. Cluster analysis further strengthened the fact that results from stacking gels were reproducible and comparable with a single gel run. This method of stacking gels saves time and maximizes the output at the same time. The run time for a single gel was about 28 hours, but with six stacked gels the run time was 54 hours compared with 28 x 6 = 168 hours if they were run separately as single gels thus saving time of 67.86%. Beside the big factor of saving time, stacking gels save resources (electricity, reagents, water, chemicals and working time) by increasing the sample throughput in a shorter time without compromising on quality of data. But optimization of working parameters is vital depending on the PFGE system used. PMID:19384038

  4. Thickness sensing of hMSCs on collagen gel directs stem cell fate

    SciTech Connect

    Leong, Wen Shing; Tay, Chor Yong; Yu, Haiyang; Li, Ang; Wu, Shu Cheng; Duc, Duong-Hong; Lim, Chwee Teck; Tan, Lay Poh

    2010-10-15

    Research highlights: {yields} hMSCs appeared to sense thin collagen gel (130 {mu}m) with higher effective modulus as compared to thick gel (1440 {mu}m). {yields} Control of collagen gel thickness can modulate cellular behavior, even stem cell fate (neuronal vs. Quiescent). {yields} Distinct cellular behavior of hMSCs on thin and thick collagen gel suggests long range interaction of hMSCs with collagen gel. -- Abstract: Mechanically compliant substrate provides crucial biomechanical cues for multipotent stem cells to regulate cellular fates such as differentiation, proliferation and maintenance of their phenotype. Effective modulus of which cells sense is not only determined by intrinsic mechanical properties of the substrate, but also the thickness of substrate. From our study, it was found that interference from underlying rigid support at hundreds of microns away could induce significant cellular response. Human mesenchymal stem cells (hMSCs) were cultured on compliant biological gel, collagen type I, of different thickness but identical ECM composition and local stiffness. The cells sensed the thin gel (130 {mu}m) as having a higher effective modulus than the thick gel (1440 {mu}m) and this was reflected in their changes in morphology, actin fibers structure, proliferation and tissue specific gene expression. Commitment into neuronal lineage was observed on the thin gel only. Conversely, the thick gel (1440 {mu}m) was found to act like a substrate with lower effective modulus that inhibited actin fiber polymerization. Stem cells on the thick substrate did not express tissue specific genes and remained at their quiescent state. This study highlighted the need to consider not only the local modulus but also the thickness of biopolymer gel coating during modulation of cellular responses.

  5. Apparatus and method for the production of gel beads containing a biocatalyst

    DOEpatents

    Scott, C.D.; Scott, T.C.; Davison, B.H.

    1998-01-27

    An apparatus and method are disclosed for the large-scale and continuous production of gel beads containing a biocatalyst. The apparatus is a columnar system based on the chemical cross-linking of hydrocolloidal gels that contain and immobilize a biocatalyst, the biocatalyst being a microorganism or an enzyme. Hydrocolloidal gels, such as alginate, carrageenan, and a mixture of bone gelatin and modified alginate, provide immobilization matrices that can be used to entrap and retain the biocatalyst while allowing effective contact with substrates and release of products. Such immobilized biocatalysts are generally formulated into small spheres or beads that have high concentrations of the biocatalyst within the gel matrix. The columnar system includes a gel dispersion nozzle submerged in a heated non-interacting liquid, typically an organic liquid, that is immiscible with water to allow efficient formation of spherical gel droplets, the non-interacting liquid having a specific gravity that is less than water so that the gel droplets will fall through the liquid by the force of gravity. The heated non-interacting liquid is in direct contact with a chilled upflowing non-interacting liquid that will provide sufficient residence time for the gel droplets as they fall through the liquid so that they will be cooled below the gelling temperature and form solid spheres. The upflowing non-interacting liquid is in direct contact with an upflowing temperature-controlled aqueous solution containing the necessary chemicals for cross-linking or fixing of the gel beads to add the necessary stability. The flow rates of the two liquid streams can be varied to control the proper residence time in each liquid section to accommodate the production of gel beads of differing settling velocities. A valve is provided for continuous removal of the stabilized gel beads from the bottom of the column. 1 fig.

  6. Apparatus and method for the production of gel beads containing a biocatalyst

    DOEpatents

    Scott, Charles D.; Scott, Timothy C.; Davison, Brian H.

    1998-01-01

    An apparatus and method for the large-scale and continuous production of gel beads containing a biocatalyst. The apparatus is a columnar system based on the chemical cross-linking of hydrocolloidal gels that contain and immobilize a biocatalyst, the biocatalyst being a microorganism or an enzyme. Hydrocolloidal gels, such as alginate, carrageenan, and a mixture of bone gelatin and modified alginate, provide immobilization matrices that can be used to entrap and retain the biocatalyst while allowing effective contact with substrates and release of products. Such immobilized biocatalysts are generally formulated into small spheres or beads that have high concentrations of the biocatalyst within the gel matrix. The columnar system includes a gel dispersion nozzle submerged in a heated non-interacting liquid, typically an organic liquid, that is immiscible with water to allow efficient formation of spherical gel droplets, the non-interacting liquid having a specific gravity that is less than water so that the gel droplets will fall through the liquid by the force of gravity. The heated non-interacting liquid is in direct contact with a chilled upflowing non-interacting liquid that will provide sufficient residence time for the gel droplets as they fall through the liquid so that they will be cooled below the gelling temperature and form solid spheres. The upflowing non-interacting liquid is in direct contact with an upflowing temperature-controlled aqueous solution containing the necessary chemicals for cross-linking or fixing of the gel beads to add the necessary stability. The flow rates of the two liquid streams can be varied to control the proper residence time in each liquid section to accommodate the production of gel beads of differing settling velocities. A valve is provided for continuous removal of the stabilized gel beads from the bottom of the column.

  7. Numerical solution of potential flow about arbitrary 2-dimensional multiple bodies

    NASA Technical Reports Server (NTRS)

    Thompson, J. F.; Thames, F. C.

    1982-01-01

    A procedure for the finite-difference numerical solution of the lifting potential flow about any number of arbitrarily shaped bodies is given. The solution is based on a technique of automatic numerical generation of a curvilinear coordinate system having coordinate lines coincident with the contours of all bodies in the field, regardless of their shapes and number. The effects of all numerical parameters involved are analyzed and appropriate values are recommended. Comparisons with analytic solutions for single Karman-Trefftz airfoils and a circular cylinder pair show excellent agreement. The technique of application of the boundary-fitted coordinate systems to the numerical solution of partial differential equations is illustrated.

  8. The electrophoresis of transferrins in urea/polyacrylamide gels.

    PubMed Central

    Evans, R W; Williams, J

    1980-01-01

    The denaturation of transferrin by urea has been studied by (a) electrophoresis in polyacrylamide gels incorporating a urea gradient, (b) measurements of the loss of iron-binding capacity and (c) u.v. difference spectrometry. In human serum transferrin and hen ovotransferrin the N-terminal and C-terminal domains of the iron-free protein were found to denature at different urea concentrations. Images Fig. 1. Fig. 2. Fig. 3. Fig. 4. Fig. 7. PMID:7213345

  9. Terpolymer smart gels: synthesis and characterizations

    NASA Astrophysics Data System (ADS)

    Bag, Dibyendu S.; Alam, Sarfaraz; Mathur, G. N.

    2004-10-01

    Two smart terpolymer gels, MS-1 and MS-2, were synthesized such that the same gel can respond to more than one external environmental condition, such as pH, temperature, solvent composition, electric field. So two terpolymers gels of vinyl monomers such as sodium acrylate, acrylamide and N-isopropyl acrylamide were synthesized by using ammonium persulfate (APS) as an initiator, N,N,N',N'-tetramethyl ethylene diamine (TMEDA) as an accelerator and methylene bisacrylamide as a cross-linker. These terpolymers were characterized by elemental and Fourier transform infrared analysis. The swelling behavior of these terpolymer smart gels was evaluated by changing the pH, temperature and solvent composition. The variation of the swelling behavior with time was evaluated in an aqueous medium at room temperature. The time taken for maximum swelling (tm) was about 20 min for the gel MS-2. However the tm value for the gel MS-1 is higher than that of MS-2. The swelling behavior remains almost unchanged over a temperature range of 22-50 °C for both the gels. The discontinuous volume transitions were observed at pH 7.6 and 8.2 for the two gels, MS-1 and MS-2, respectively. The gel MS-1 suddenly shrinks below and swells above pH 7.6. Correspondingly, the pH is 8.2 for the case of MS-2. Volume transitions in an acetone-water mixture were also observed for these gels. The swelling behaviors of these two smart gels are almost parallel above the 40% acetone concentration.

  10. Effect of gel structure of matrix orientation in pulsed alternating electric fields

    SciTech Connect

    Stellwagen, N.C.; Stellwagen, J.

    1993-12-31

    Four polymeric gels with different structures, LE agarose, HEEO agarose, beta-carrageenan, and polyacrylamide, were studied by transient electric birefringence to determine the importance of various structural features on the orientation of the gels in pulsed alternating electric fields. The birefrigence relaxation times observed for agarose gels in low voltage electric fields suggest that long fibers and/or domains, ranging up to tens of microns in size, are oriented by the electric field. The sign of the birefringence reverses when the direction of the electric field is reversed, suggesting that the oriented domains change their direction of orientation from parallel to perpendicular (or vice versa) when the polarity of the electric field is reversed. These anamalous orientation effects are observed with both types of agarose gels, but not with beta-carrageenan or polyacrylamide gels, suggesting that the alternating D,L galactose residues in the agarose backbone are responsible for the anomalies.

  11. Formulation and evaluation of secnidazole or doxycycline dento-oral gels.

    PubMed

    Gad, Heba A; el-Nabarawi, Mohamed A; Abd el-Hady, Seham S

    2008-12-01

    Local delivery of antibiotics has been shown to be effective in reducing periodontopathic microorganisms. The purpose of this study is to formulate gels containing secnidazole or doxycycline hydrochloride that could be used in the treatment of periodontitis by direct periodontal intrapocket administration. Different mucoadhesive polymers were used as cellulose derivatives, carbopol and eudragit. The prepared gels were evaluated for their in vitro drug release, rheological behavior, and mucoadhesive force. Increasing the concentration of each polymer increased the viscosity, mucoadhesion, and the time required for 30 and 50% release of the original mass of each drug. Gels with appropriate balance of the above-examined parameters were selected for microbiological evaluation. Microbiological studies on selected gels showed faster release of the two drugs (expressed as inhibition zones) than the commercial products of chlorhexidine gel (Eluge and miconazole nitrate emulgel (Miconaz). PMID:18785044

  12. Preliminary study of MAGAT polymer gel dosimetry for boron-neutron capture therapy

    NASA Astrophysics Data System (ADS)

    Hayashi, Shin-ichiro; Sakurai, Yoshinori; Uchida, Ryohei; Suzuki, Minoru; Usui, Shuji; Tominaga, Takahiro

    2015-01-01

    MAGAT gel dosimeter with boron is irradiated in Heavy Water Neutron Irradiation Facility (HWNIF) of Kyoto University Research Reactor (KUR). The cylindrical gel phantoms are exposed to neutron beams of three different energy spectra (thermal neutron rich, epithermal and fast neutron rich and the mixed modes) in air. Preliminary results corresponding to depth-dose responses are obtained as the transverse relaxation rate (R2=1/T2) from magnetic resonance imaging data. As the results MAGAT gel dosimeter has the higher sensitivity on thermal neutron than on epi-thermal and fast neutron, and the gel with boron showed an enhancement and a change in the depth-R2 response explicitly. From these results, it is suggested that MAGAT gel dosimeter can be an effective tool in BNCT dosimetry.

  13. Mining images in biomedical publications: Detection and analysis of gel diagrams

    PubMed Central

    2014-01-01

    Authors of biomedical publications use gel images to report experimental results such as protein-protein interactions or protein expressions under different conditions. Gel images offer a concise way to communicate such findings, not all of which need to be explicitly discussed in the article text. This fact together with the abundance of gel images and their shared common patterns makes them prime candidates for automated image mining and parsing. We introduce an approach for the detection of gel images, and present a workflow to analyze them. We are able to detect gel segments and panels at high accuracy, and present preliminary results for the identification of gene names in these images. While we cannot provide a complete solution at this point, we present evidence that this kind of image mining is feasible. PMID:24568573

  14. Convergence dynamics of 2-dimensional isotropic and anisotropic Bak Sneppen models

    NASA Astrophysics Data System (ADS)

    Bakar, Burhan; Tirnakli, Ugur

    2008-09-01

    The conventional Hamming distance measurement captures only short-time dynamics of the displacement between uncorrelated random configurations. The minimum difference technique introduced by Tirnakli and Lyra [U. Tirnakli, M.L. Lyra. Int. J. Mod. Phys. C 14 (2003) 805] is used to study short-time and long-time dynamics of the two distinct random configurations of isotropic and anisotropic Bak-Sneppen models on a square lattice. Similar to a 1-dimensional case, the time evolution of the displacement is intermittent. The scaling behavior of the jump activity rate and waiting time distribution reveal the absence of typical spatial-temporal scales in the mechanism of displacement jumps used to quantify convergence dynamics.

  15. A 2-dimensional optical architecture for solving Hamiltonian path problem based on micro ring resonators

    NASA Astrophysics Data System (ADS)

    Shakeri, Nadim; Jalili, Saeed; Ahmadi, Vahid; Rasoulzadeh Zali, Aref; Goliaei, Sama

    2015-01-01

    The problem of finding the Hamiltonian path in a graph, or deciding whether a graph has a Hamiltonian path or not, is an NP-complete problem. No exact solution has been found yet, to solve this problem using polynomial amount of time and space. In this paper, we propose a two dimensional (2-D) optical architecture based on optical electronic devices such as micro ring resonators, optical circulators and MEMS based mirror (MEMS-M) to solve the Hamiltonian Path Problem, for undirected graphs in linear time. It uses a heuristic algorithm and employs n+1 different wavelengths of a light ray, to check whether a Hamiltonian path exists or not on a graph with n vertices. Then if a Hamiltonian path exists, it reports the path. The device complexity of the proposed architecture is O(n2).

  16. Threat object identification performance for LADAR imagery: comparison of 2-dimensional versus 3-dimensional imagery

    NASA Astrophysics Data System (ADS)

    Chaudhuri, Matthew A.; Driggers, Ronald G.; Redman, Brian; Krapels, Keith A.

    2006-05-01

    This research was conducted to determine the change in human observer range performance when LADAR imagery is presented in stereo 3D vice 2D. It compares the ability of observers to correctly identify twelve common threatening and non-threatening single-handed objects (e.g. a pistol versus a cell phone). Images were collected with the Army Research Lab/Office of Naval Research (ARL/ONR) Short Wave Infrared (SWIR) Imaging LADAR. A perception experiment, utilizing both military and civilian observers, presented subjects with images of varying angular resolutions. The results of this experiment were used to create identification performance curves for the 2D and 3D imagery, which show probability of identification as a function of range. Analysis of the results indicates that there is no evidence of a statistically significant difference in performance between 2D and 3D imagery.

  17. Viscoelastic Properties of Vitreous Gel

    NASA Astrophysics Data System (ADS)

    Pirouz Kavehpour, H.; Sharif-Kashani, Pooria

    2010-11-01

    We studied the rheological properties of porcine vitreous humor using a stressed-control shear rheometer. All experiments were performed in a closed environment at body temperature to mimic in-vivo conditions. We modeled the creep deformation using a two-element retardation spectrum model. By associating each element of the model to an individual biopolymeric system in the vitreous gel, a separate response to the applied stress was obtained from each component. The short time scale was associated with the collagen structure, while the longer time scale was related to the microfibrilis and hyaluronan network. We were able to distinguish the role of each main component from the overall rheological properties. Knowledge of this correlation enables us to relate the physical properties of vitreous to its pathology, as well as optimize surgical procedures such as vitrectomy.

  18. Gel transitions in colloidal suspensions

    NASA Astrophysics Data System (ADS)

    Bergenholtz, J.; Fuchs, M.

    1999-12-01

    The idealized mode-coupling theory (MCT) is applied to colloidal systems interacting via short-range attractive interactions of Yukawa form. At low temperatures, MCT predicts a slowing down of the local dynamics and ergodicity-breaking transitions. The non-ergodicity transitions share many features with the colloidal gel transition, and are proposed to be the source of gelation in colloidal systems. Previous calculations of the phase diagram are complemented with additional data for shorter ranges of the attractive interaction, showing that the path of the non-ergodicity transition line is then unimpeded by the gas-liquid critical curve at low temperatures. Particular attention is given to the critical non-ergodicity parameters; this is motivated by recent experimental measurements. An asymptotic model is developed, valid for dilute systems of spheres interacting via strong short-range attractions, and is shown to capture all aspects of the low-temperature MCT non-ergodicity transitions.

  19. Radiation hardening in sol-gel derived Er{sup 3+}-doped silica glasses

    SciTech Connect

    Hari Babu, B. E-mail: matthieu.lancry@u-psud.fr; León Pichel, Mónica; Ollier, Nadège; El Hamzaoui, Hicham; Bigot, Laurent; Savelii, Inna; Bouazaoui, Mohamed; Poumellec, Bertrand; Lancry, Matthieu E-mail: matthieu.lancry@u-psud.fr; Ibarra, Angel

    2015-09-28

    The aim of the present paper is to report the effect of radiation on the Er{sup 3+}-doped sol-gel silica glasses. A possible application of these sol-gel glasses could be their use in harsh radiation environments. The sol-gel glasses are fabricated by densification of erbium salt-soaked nanoporous silica xerogels through polymeric sol-gel technique. The radiation-induced attenuation of Er{sup 3+}-doped sol-gel silica is found to increase with erbium content. Electron paramagnetic resonance studies reveal the presence of E′{sub δ} point defects. This happens in the sol-gel aluminum-silica glass after an exposure to γ-rays (kGy) and in sol-gel silica glass after an exposure to electrons (MGy). The concentration levels of these point defects are much lower in γ-ray irradiated sol-gel silica glasses. When the samples are co-doped with Al, the exposure to γ-ray radiation causes a possible reduction of the erbium valence from Er{sup 3+} to Er{sup 2+} ions. This process occurs in association with the formation of aluminum oxygen hole centers and different intrinsic point defects.

  20. Electrospun ion gel nanofibers for flexible triboelectric nanogenerator: electrochemical effect on output power

    NASA Astrophysics Data System (ADS)

    Ye, Byeong Uk; Kim, Byoung-Joon; Ryu, Jungho; Lee, Joo Yul; Baik, Jeong Min; Hong, Kihyon

    2015-10-01

    A simple fabrication route for ion gel nanofibers in a triboelectric nanogenerator was demonstrated. Using an electrospinning technique, we could fabricate a large-area ion gel nanofiber mat. The triboelectric nanogenerator was demonstrated by employing an ion gel nanofiber and the device exhibited an output power of 0.37 mW and good stability under continuous operation.A simple fabrication route for ion gel nanofibers in a triboelectric nanogenerator was demonstrated. Using an electrospinning technique, we could fabricate a large-area ion gel nanofiber mat. The triboelectric nanogenerator was demonstrated by employing an ion gel nanofiber and the device exhibited an output power of 0.37 mW and good stability under continuous operation. Electronic supplementary information (ESI) available: I. Experimental section. II. FTIR and XRD spectra of ion gel nanofiber. III. Output voltage of TENG with various polymer nanofibers. IV. Output voltage of TENG under different connection types. V. Output voltage of TENG with 20 wt% ion gel nanofibers. See DOI: 10.1039/c5nr02602d

  1. Water Holding as Determinant for the Elastically Stored Energy in Protein-Based Gels.

    PubMed

    Pouvreau, Laurice; van Wijlen, Emke; Klok, Jan; Urbonaite, Vaida; Munialo, Claire D; de Jongh, Harmen H J

    2016-04-01

    To evaluate the importance of the water holding capacity for the elastically stored energy of protein gels, a range of gels were created from proteins from different origin (plant: pea and soy proteins, and animal: whey, blood plasma, egg white proteins, and ovalbumin) varying in network morphology set by the protein concentration, pH, ionic strength, or the presence of specific ions. The results showed that the observed positive and linear relation between water holding (WH) and elastically stored energy (RE) is generic for globular protein gels studied. The slopes of this relation are comparable for all globular protein gels (except for soy protein gels) whereas the intercept is close to 0 for most of the systems except for ovalbumin and egg white gels. The slope and intercept obtained allows one to predict the impact of tuning WH, by gel morphology or network stiffness, on the mechanical deformation of the protein-based gel. Addition of charged polysaccharides to a protein system leads to a deviation from the linear relation between WH and RE and this deviation coincides with a change in phase behavior. PMID:26894687

  2. Development of a biodegradable iron oxide nanoparticle gel for tumor bed therapy

    NASA Astrophysics Data System (ADS)

    Cunkelman, B. P.; Chen, E. Y.; Petryk, A. A.; Tate, J. A.; Thappa, S. G.; Collier, R. J.; Hoopes, P. J.

    2013-02-01

    Treatments of the post-operative surgical bed have proven appealing as the majority of cancer recurrence following tumor resection occurs at the tumor margin. A novel, biodegradable pullulan-based gel infused with magnetic iron oxide nanoparticles (IONP) is presented here for surgical bed administration followed by hyperthermia therapy via alternating magnetic field (AMF) activation. Pullulan is a water soluble, film-forming starch polymer that degrades at the postoperative wound site to deliver the IONP payload, targeting the remaining cancer cells. Different gel formulations containing various % wt of pullulan were tested for IONP elution. Elution levels and amount of gel degradation were measured by immersing the gel in de-ionized water for one hour then measuring particle concentrations in the supernatant and the mass of the remaining gel formulation. The most promising gel formulations will be tested in a murine model of surgical bed resection to assess in vivo gel dissolution, IONP cell uptake kinetics via histology and TEM analysis, and heating capability of the gel with AMF exposure.

  3. Mechanical and microstructural properties of two-step acid-base catalyzed silica gels

    SciTech Connect

    Meyers, D.E.; Kirkbir, F.; Murata, H.; Chaudhuri, S.R.; Sarkar, A.

    1994-12-31

    The mechanical and microstructural properties of two-step acid-base catalyzed silica gels were examined as functions of aging time, catalyst concentration, and hydrolysis time. Cylindrical gels were prepared using Si(OC{sub 2}H{sub 5}){sub 4}, C{sub 2}H{sub 5}OH, and H{sub 2}O, with HCl followed by NH{sub 3} as catalysts. Mechanical properties were obtained from three-point bend tests, and the microstructures of dried gels were analyzed using nitrogen adsorption/desorption techniques. Gel strength initially increased with aging time at 70 C, then leveled off after about one week. When the sol was hydrolyzed for less than two hours, there were significant differences in the properties of gels catalyzed with relative molar amounts of 0.0001 and 0.0002 HCl. However, as the hydrolysis time was increased, the gels all had similar properties, independent of the amount of HCl. The amount of NH{sub 3} influenced gelation time and to a lesser extent, the strength, but had no observable effect on pore size. The two-step catalysis procedure produced gels with strength and pore size combinations intermediate to those of either single acid or base-catalyzed gels.

  4. Acceptance and intake of gel and liquid sucrose compositions by the Argentine ant (Hymenoptera: Formicidae).

    PubMed

    Silverman, J; Roulston, T H

    2001-04-01

    Liquids and gels are common delivery forms used in commercial ant baits, but the relative effectiveness of each is unknown. We compared the feeding responses of the Argentine ant, Linepithema humile (Mayr), to liquid and gel compositions of sucrose. In choice assays, more workers were counted on gel than liquid; however, substantially more liquid was consumed. Because workers could stand on the gel, more workers could feed simultaneously on the gel. The feeding bouts of individual workers, however, were much less efficient at extracting sucrose in gel form. Workers fed eightfold longer on the gel, yet removed fivefold less sucrose than workers feeding on liquid. This potential bias should be considered during attraction and palatability studies that use physically different bait compositions. When the toxicant fipronil was added to the compositions, a greater proportion of the colony died after workers had fed on liquid than gel baits. This finding suggests that liquid formulations may provide more effective control of Argentine ants due to the greater speed and abundance in which it is ingested. PMID:11332847

  5. Bacteria immobilised in Gels: Improved methodologies for antifouling and biocontrol applications.

    PubMed

    Holmström, C; Steinberg, P; Christov, V; Christie, G; Kjelleberg, S

    2000-01-01

    A range of bacteria, including the marine bacterium Pseudoalteromonas tunicata which produces antifouling compounds, and Escherichia coli were used to investigate methods for immobilising bacteria in gels. Different types of matrices were screened using the survival of barnacle nauplii as a bioassay. A Dupont® polyvinylalcohol (PVOH) 10% gel was found to be the optimal matrix. This non-toxic gel remained stable in seawater while allowing for an outflux of active biological compounds from the bacterial cells. The presence of active bacterial cells in the matrix was tested by CTC-staining, green fluorescent protein (GFP) expressing bacteria and a barnacle larvae bioassay. The Dupont® PVOH 10% gels containing P. tunicata cells were inhibitory against larvae for a period of up to 2 weeks. In further studies using gels containing immobilised bacteria, the E. coli strain C600 was employed based on its cell size, stress resistance and the fact that a plasmid for the expression of GFP could be transferred and maintained in the cells. Immobilised E. Coli cells maintained their viability in the Dupont® PVOH 10% gels for as long as 2 months, and the life-span of these "biologically active"; gels was increased to more than 2 months by the incorporation of small beads into the gels. The results indicate that bacteria can be immobilised in coatings for periods of time consistent with the needs of some antifouling and antibacterial applications. PMID:22115296

  6. Preferential flow in heterogeneous, forest-reclaimed lignitic mine soil. III. 1- and 2-dimensional modelling

    NASA Astrophysics Data System (ADS)

    Buczko, U.; Gerke, H. H.; Hangen, E.; Hüttl, R. F.

    2003-04-01

    Water balances of forest sites are often estimated using 1-dimensional numerical models and tensiometer data from different depths. The magnitude of groundwater recharge calculated in such a way in most cases cannot be verified experimentally. In heterogeneous soils, water flows are spatially highly variable. The objective of this contribution is to compare the flow and deep percolation within a reclaimed mine soil which was calculated with a 1D numerical model, with seepage water collected, spatially-resolved, in-situ. Further, it is aimed at improving the methodology for calculating water balances and element budgets on heterogeneous mine soils, using 2D models with spatial variability. At the study site “Bärenbrück” near Cottbus, a lignitic mine soil afforested in 1982 with Pinus nigra, the components of the water balance were simulated with a 1D numerical model (SOIL/COUP) for a period from May 1995 to September 2001, using meteorological data and measured water tensions in soil depths 15, 60, and 100 cm. At the same site, soil water percolates were extracted continually in-situ at a soil depth of 110 cm from June 2000 until September 2001 within the framework of a cell-lysimeter study. 2D simulations were performed with the numerical model HYDRUS-2D, using evapotranspiration data obtained with the 1D-model. In the balance period between 4/96 and 3/99, the simulated deep percolation ranges between 30.4 and 35.2 mm per year, whereas during the dryer years 6/1999 5/2000 and 6/2000 5/2001 it amounts to 6.6 mm and 1.5 mm, respectively. The average deep percolation based on the in-situ suction plate data during the same period was 11 mm for the period 6/1999 5/2000 and 24.3 mm for 6/2000 5/2001, although spatially highly variable. Consequently, for the period 6/2000 5/2001, groundwater recharge based on measured in-situ data is by one order of magnitude higher than those simulated with the 1D model. The 2D numerical simulations are used to explain this

  7. A Simple Vertical Slab Gel Electrophoresis Apparatus.

    ERIC Educational Resources Information Center

    Carter, J. B.; And Others

    1983-01-01

    Describes an inexpensive, easily constructed, and safe vertical slab gel kit used routinely for sodium dodecyl sulphate-polyacrylamide gel electrophoresis research and student experiments. Five kits are run from a single transformer. Because toxic solutions are used, students are given plastic gloves and closely supervised during laboratory…

  8. Sol-gel kinetics by NMR

    SciTech Connect

    Assink, R.A.; Kay, B.D.

    1991-01-01

    The chemical synthesis of advanced ceramic and glass materials by the sol-gel process has become an area of increasing activity in the field of material science. The sol-gel process provides a means to prepare homogeneous, high purity materials with tailored chemical and physical properties. This paper surveyed the nuclear magnetic resonance (NMR) studies of silicon-based sol-gel kinetics. A review of the various models which have been used to analyze the chemical kinetics of various sol-gel systems was presented. The utility of NMR spectroscopy was demonstrated in investigating the influence that various reaction conditions have on the reaction pathways by which sol-gel derived materials are synthesized. By observing in a direct fashion the chemical pathway of the sol-gel, it is often possible to relate the final properties of the material to the formulation and reaction conditions of the sol-gel. The study of reaction kinetics by NMR is expected to play an increasingly important role in understanding sol-gel processing and material properties. 15 refs. (DP)

  9. A Short-Duration Gel Diffusion Experiment.

    ERIC Educational Resources Information Center

    Mulcahy, D. E.

    1980-01-01

    Described is a gel diffusion experiment that permits the completion of duplicate diffusion runs within a three-hour laboratory session. Information included for the short-duration gel diffusion experiment is the diffusion cell, the experiment, data treatment, and the expected results of the experiment. (Author/DS)

  10. 21 CFR 866.4900 - Support gel.

    Code of Federal Regulations, 2010 CFR

    2010-04-01

    ... 21 Food and Drugs 8 2010-04-01 2010-04-01 false Support gel. 866.4900 Section 866.4900 Food and Drugs FOOD AND DRUG ADMINISTRATION, DEPARTMENT OF HEALTH AND HUMAN SERVICES (CONTINUED) MEDICAL DEVICES IMMUNOLOGY AND MICROBIOLOGY DEVICES Immunology Laboratory Equipment and Reagents § 866.4900 Support gel....

  11. 21 CFR 866.4900 - Support gel.

    Code of Federal Regulations, 2012 CFR

    2012-04-01

    ... 21 Food and Drugs 8 2012-04-01 2012-04-01 false Support gel. 866.4900 Section 866.4900 Food and Drugs FOOD AND DRUG ADMINISTRATION, DEPARTMENT OF HEALTH AND HUMAN SERVICES (CONTINUED) MEDICAL DEVICES IMMUNOLOGY AND MICROBIOLOGY DEVICES Immunology Laboratory Equipment and Reagents § 866.4900 Support gel....

  12. 21 CFR 866.4900 - Support gel.

    Code of Federal Regulations, 2013 CFR

    2013-04-01

    ... 21 Food and Drugs 8 2013-04-01 2013-04-01 false Support gel. 866.4900 Section 866.4900 Food and Drugs FOOD AND DRUG ADMINISTRATION, DEPARTMENT OF HEALTH AND HUMAN SERVICES (CONTINUED) MEDICAL DEVICES IMMUNOLOGY AND MICROBIOLOGY DEVICES Immunology Laboratory Equipment and Reagents § 866.4900 Support gel....

  13. 21 CFR 866.4900 - Support gel.

    Code of Federal Regulations, 2014 CFR

    2014-04-01

    ... 21 Food and Drugs 8 2014-04-01 2014-04-01 false Support gel. 866.4900 Section 866.4900 Food and Drugs FOOD AND DRUG ADMINISTRATION, DEPARTMENT OF HEALTH AND HUMAN SERVICES (CONTINUED) MEDICAL DEVICES IMMUNOLOGY AND MICROBIOLOGY DEVICES Immunology Laboratory Equipment and Reagents § 866.4900 Support gel....

  14. 21 CFR 866.4900 - Support gel.

    Code of Federal Regulations, 2011 CFR

    2011-04-01

    ... 21 Food and Drugs 8 2011-04-01 2011-04-01 false Support gel. 866.4900 Section 866.4900 Food and Drugs FOOD AND DRUG ADMINISTRATION, DEPARTMENT OF HEALTH AND HUMAN SERVICES (CONTINUED) MEDICAL DEVICES IMMUNOLOGY AND MICROBIOLOGY DEVICES Immunology Laboratory Equipment and Reagents § 866.4900 Support gel....

  15. Fluorescence detection for gel and capillary electrophoresis

    SciTech Connect

    Hogan, B.

    1992-07-21

    First, an indirect fluorescence detection system for the separation of proteins via gel electrophoresis. Quantities as low as 50 nanograms of bovine serum albumin and soybean trypsin inhibitor are separated and detected visually without the need for staining of the analytes. This is very similar to levels of protein commonly separated with gel electrophoresis.

  16. 2-dimensional GaSe: Single crystal growth and optical properties

    NASA Astrophysics Data System (ADS)

    Nguyen, Thanh-Huong; Nguyen, Anh Phuong; Duong, Anh Tuan; Nguyen, Van Quang; Song, Jae Yong; Park, Hyun-Min; Cho, Sunglae

    Like other semiconductor materials in III - VI compounds group (GaTe, In2Se3), Gallium Selenide (GaSe) is a layered chalcogenide semiconductor crystal with several outstanding properties. In most of the research, GaSe crystal was grown by Bridgman method which used a complex system to control difference temperature zones and the movement of ampoule. In our research, GaSe single crystal was grown from the high purity Ga and Se by temperature gradient method. This method is a simple growth technique producing high quality GaSe single crystal. The grown crystal can be cleaved in layer by layer without difficulty, confirmed the layered structure of GaSe. Meanwhile, the X-ray diffraction (XRD) result indicates the crystalline perfection of the grown single crystal as a hexagonal structure. The compositional and optical properties of sample have also been investigated by Electron probe micro-analyzer and UV-visible spectroscopy techniques, respectively. The absorption spectra analysis revealed the energy band gap of 1.98 eV, which is comparable to the reference value of 2.03 eV. We will discuss on layer thickness dependent optical properties of GaSe.

  17. Polymer gel dosimetry applied to beta particles, electrons and 300 kV X-rays

    NASA Astrophysics Data System (ADS)

    Amin, Md. Nurul

    Polymer gels were used with magnetic resonance imaging (MRI) to measure three-dimensional absorbed dose distributions for beta particles, electron and x-rays beams that are used in radiotherapy. The manufacturing processes and calibration procedures for two dosimeters (hypoxic PAG and normoxic MAGIC gels) were investigated. The response of both gels was energy independent over a range of electron and photon energies commonly used for radiotherapy. However, dose response of both gels was dependent on the temperature at the time of MR scanning, while MAGIC was also dependent on the temperature at the time of irradiation, which had not been previously reported. Results suggest that MAGIC gel is superior to PAG, since it is easier to manufacture and unaffected by oxygen diffusion through wall materials. The potential usefulness of both types of gel in different areas of radiotherapy was studied, including vascular brachytherapy. Results were compared with doses measured using radio- chromic film, confirming that dose distributions for vascular brachytherapy sources with a high dose gradient can be measured using PAG. However, because of the disadvantages of the gel manufacturing process and the need for access to a high-resolution scanner, it was concluded that radio-chromic film would be the method of choice for routine quality assurance in brachytherapy. PAG and MAGIC gels were also used for dosimetry across the junction of 6MV photon and 12MeV electron fields that are often used in radiotherapy. Different photon field configurations were studied, and dose profiles were measured. For each configuration either significant "hot" or "cold spots" were measured, with good agreement between the MAGIC and PAG and radio- chromic film. This work has confirmed the usefulness of gel dosimetry in radiotherapy in general, and in beta and electron dosimetry in particular. In addition, these studies have quantified the advantages of normoxic gels over the hypoxic PAG.

  18. The viscoelastic effect in bending bucky-gel actuators

    NASA Astrophysics Data System (ADS)

    Kruusamäe, Karl; Mukai, Ken; Sugino, Takushi; Asaka, Kinji

    2014-03-01

    Electromechanically active polymers (EAP) are considered a good actuator candidate for a variety of reasons, e.g. they are soft, easy to miniaturize and operate without audible noise. The main structural component in EAPs is, as the name states, a type of deformable polymer. As polymers are known to exhibit a distinct mechanical response, the nature of polymer materials should never be neglected when characterizing and modeling the performance of EAP actuators. Bucky-gel actuators are a subtype of EAPs where ion-containing polymer membrane acts as an electronically insulating separator between two electrodes of carbon nanotubes and ionic liquid. In many occasions, the electrodes also contain polymer for the purpose of binding it together. Therefore, mechanically speaking, bucky-gel actuators are composite structures with layers of different mechanical nature. The viscoelastic response and the shape change property are perhaps the most characteristic effects in polymers. These effects are known to have high dependence on factors such as the type of polymer, the concentration of additives and the structural ratio of different layers. At the same time, most reports about optimization of EAP actuators describe the alteration of electromechanical performance dependent on the same factors. In this paper, the performance of bucky-gel actuators is measured as a function between the output force and bending deflection. It is observed that effective stiffness of these actuators depends on the input voltage. This finding is also supported by dynamic mechanical analysis which demonstrates that the viscoelastic response of bucky-gel laminate depends on both frequency and temperature. Moreover, the dynamic mechanical analysis reveals that in the range of standard operation temperatures, tested samples were in their glass transition region, which made it possible to alter their shape by using mechanical fixing. The mechanical fixity above 90% was obtained when high

  19. A new 2-dimensional method for constructing visualized treatment objectives for distraction osteogenesis of the short mandible.

    PubMed

    van Beek, H

    2010-01-01

    Open bite development during distraction of the mandible is common and partly due to inaccurate planning of the treatment. Conflicting guidelines exist in the literature. A method for Visualized Treatment Objective (VTO) construction is presented as an aid for determining the correct orientation of monodirectional and multidirectional distractors. Distraction on the left and on the right side of the mandible takes place in a parallel manner in order to maintain intercondylar width. It follows that in the absence of marked asymmetry, the amount of mandibular body distraction, the amount of ramus distraction and (should it apply), the amount of closure of the gonial angle, can be derived from a simple 2-dimensional plan. After presurgical orthodontic treatment, a cephalogram is taken and a VTO is constructed, that aims at a good occlusion with the enhanced mandible in centric relation, with little or no change of the original position of the rami. PMID:19837600

  20. Impact of mode partition noise in free-running gain-switched Fabry-Perot laser for 2-dimensional OCDMA.

    PubMed

    Wang, Xu; Chan, Kam

    2004-07-26

    Free-running gain-switched Fabry-Perot laser diode is an appropriate incoherent broadband optical source for incoherent 2-dimensional optical code division multiple access. However, the mode partition noise (MPN) in the laser seriously degrades performance. We derived a bit error rate (BER) expression in the presence of MPN using the power spectra of the laser. The theory agreed with the experimental results. There was a power penalty and BER floor due to the MPN in the laser. Therefore, this scheme should be operated with a sufficiently large number of modes. At least 9 modes should be used for error-free transmission at 1 Gbit/s for the laser we investigated in this work. PMID:19483858

  1. Water flow in poly(N-isopropylacrylamide) gels

    NASA Astrophysics Data System (ADS)

    Suzuki, Atsushi; Yoshikawa, Muneyuki

    2006-11-01

    Friction between a polymer network of poly(N-isopropylacrylamide) gels and solvent water was investigated. The gel was mechanically constrained in a glass capillary at gelation, and hydrostatic pressure was directly applied to the cross section of the cylinder. The temperature dependence of the flow velocity was extensively measured in the vicinity of the transition temperature for gels with different lengths, l0, at gelation. As the temperature increased, the friction slightly decreased at the transition point and increased rapidly in the collapsed phase. Although the flow velocity depended on l0, the friction in the vicinity of the transition point was well scaled by l0 based on the Hagen-Poiseuille equation for the flux of water flow in a capillary. The results suggested that the assumption that the gel is a bundle of microcapillaries was applicable to the water flow through the hydrogel, which was largely deformed not only by the pressure applied to the solvent but also by the shrinking force caused by the temperature increment. Macroscopic deformation did not affect the friction between the three-dimensional polymer network and water.

  2. Stimuli-responsive gels as reaction vessels and reusable catalysts.

    PubMed

    Díaz Díaz, David; Kühbeck, Dennis; Koopmans, Rudy J

    2011-01-01

    As part of a continuing scientific challenge, a substantial effort during the past few decades has been devoted towards altering the selectivity of chemical transformations by arranging the potential reactants in a number of organized and confining media. Such systems, having features significantly different from those of isotropic solutions, include, for example, micelles, microemulsions, molecular aggregates, liquid crystals, and zeolites. Among these materials, stimuli-response gels constitute another important class of nanostructured and dynamic systems with high active surface areas and remarkable diffusion properties. Within this group, polymer gels have been traditionally used to obtain catalytic and reactive soft materials. Moreover, gels made of low-molecular-weight compounds represent a major novelty in this area as potential soft-vessels to carry out chemical reactions with control on product selectivity. In addition, the possibility of integrating switchable catalytic functions in both organo- and hydrogels shall accelerate the development of robust platforms for the 'bottom-up' tailor-fabrication of more sophisticated functional materials. The present critical review reports on the most important results published during the last decade regarding the use of 'smart' gels that has displayed promising properties as selective soft-nanoreactors and/or heterogeneous recyclable catalysts (152 references). PMID:20877874

  3. Transparent poly(vinyl acetate)-silica gels by a sol-gel process

    NASA Astrophysics Data System (ADS)

    Wojcik, Anna B.; Klein, Lisa C.

    1993-12-01

    Rod shaped silica-poly(vinyl acetate) (PVAc) gels have been prepared by a sol gel process. In situ polymerization of tetraethoxysilane (TEOS) was accomplished in the presence of low molecular weight PVAc by dissolving various amounts of PVAc in a mixture of TEOS, ethanol, water and hydrochloric acid (HCl). Gelation of this mixture was carried out between room temperature and slightly above. Silica-PVAc rods recovered from cylindrical molds were homogeneous and transparent. Gels with weight percents of PVAc ranging from 2% to 50% were prepared. Silica-PVAc gels have higher flexure strengths, less brittle character and improved water durability in comparison with pure sol- gel silica.

  4. Thermotropic nanostructured "gel in gel" systems for improved oil recovery and water shutoff

    NASA Astrophysics Data System (ADS)

    Altunina, L. K.; Kuvshinov, V. A.; Stasyeva, L. A.

    2015-10-01

    Thermotropic nanostructured system with two gel-forming components has been created based on inorganic hydroxypolymer and organic polymer with a lower critical solution temperature of "aluminum salt-cellulose ether-carbamide-water", forming at heating a bound-dispersed nano-sized "gel in gel" structure. The studies on the kinetics of gelation and rheological properties of solutions and gels in this system have shown that the gels have a higher viscosity and elasticity and thereby are promising for creating deflecting screens in oil reservoirs, redistribution of filtration flows, improved oil recovery and for water shutoff.

  5. Improving immobilized biocatalysts by gel phase polymerization

    SciTech Connect

    Kuu, W.Y.; Polack, J.A.

    1983-08-01

    A new method is presented for the treatment of gel-type supports, used for immobilizing microbial cells and enzymes, to obtain high mechanical strength. It is particularly useful for ethanol fermentation over gel beads containing immobilized viable cells, where the beads can be ruptured by gas production and the growth of cells within the gels. This method consists of treating agar or carrageenan gel with polyacrylamide to form a rigid support which retains the high catalytic activity characteristic of the untreated biocatalysts. The size and shape of the biocatalyst is unaffected by this treatment. The method involves the diffusion of acrylamide, N,N'-methylenebisacrylamide and BETA-dimethylaminopropionitrile (or N,N,N',N'-tetramethylethylenediamine) into the preformed biocatalyst beads followed by the addition of an initiator to cause polymerization within the beads. Treated gels have been used for the continuous fermentation of glucose to ethanol in a packed column for over two months.

  6. Generation of inkjet drop of particulate gel

    NASA Astrophysics Data System (ADS)

    Yoo, Hansol; Kim, Chongyoup

    2015-08-01

    The generation of inkjet drops of colloidal gels is studied experimentally. Particle suspensions are prepared by dispersing spherical polystyrene particles of 620 nm in the 1:1 mixture of deionized water and ethylene glycol. The gels are prepared by adding polyethylene oxide to the suspensions by inducing the depletion interaction between particles. It is demonstrated that inkjet drops can be generated by using the colloidal gels. It is found that the ligament extended from the inkjet nozzle is stabilized so that the drop can be generated without satellite droplets behind the main drop and the velocity of the gel drop is faster than that of the polymer solution at the same concentration. The gel drop generation characteristics are found to be sensitive to input voltage.

  7. Effect of Cardiac Resynchronization Therapy on Left Atrial Size and Function as Expressed by Speckle Tracking 2-Dimensional Strain.

    PubMed

    Valzania, Cinzia; Gadler, Fredrik; Boriani, Giuseppe; Rapezzi, Claudio; Eriksson, Maria J

    2016-07-15

    Changes in left atrial (LA) strain in patients treated with cardiac resynchronization therapy (CRT) remain not entirely explored. We prospectively evaluated long-term changes in LA size and function and their relation with left ventricular (LV) reverse remodeling and noninvasive hemodynamic variables in patients treated with CRT by 2-dimensional speckle tracking echocardiography. Thirty patients (62 ± 11 years, 63% men) underwent 2-dimensional speckle tracking echocardiography before implant and after 12 months. LA area, global and regional LA strains, LV ejection fraction (LVEF) and longitudinal strain, mitral regurgitation (MR), and diastolic variables were evaluated. At 12 months, CRT responders (60%) exhibited an increase in LA strain (11.4 ± 6.5% vs 16.5 ± 7.9%, p <0.001) and a reduction in LA area (p = 0.002), which were associated with an improvement in MR, E/E' ratio, LVEF, and LV longitudinal strain. In nonresponders, a worsening in LA strain (11.4 ± 6.8% vs 8.7 ± 4.6%, p = 0.017) and LA area (p = 0.002) occurred in parallel with an increase in E/E', whereas LVEF and LV longitudinal strain were unchanged. In conclusion, over long-term follow-up, LA size and strain improved in CRT responders, while worsening in nonresponders. Changes in LV function, filling pressures, and MR seem to be related to LA reverse remodeling, giving a feedback loop. PMID:27241837

  8. Analysis by enzyme-linked immunosorbent assay and 2-dimensional electrophoresis of haptoglobin in the high-density lipoprotein fraction in cows.

    PubMed

    Kanno, H; Katoh, N

    2001-01-01

    Haptoglobin (Hp) is a hemoglobin (Hb)-binding acute-phase protein. Besides its relevance in inflammation, Hp is involved in the regulation of lipid metabolism. In cattle, in addition to the lipoprotein-deficient fraction, Hp is distributed in high-density lipoprotein (HDL) and very high-density lipoprotein (VHDL) fractions. The purpose of this study was to determine Hp concentrations in the lipoprotein fractions using an enzyme-linked immunosorbent assay (ELISA) based on the affinity with Hb, and also to detect structural differences of HDL Hp from that in the lipoprotein-deficient fraction using 2-dimensional electrophoresis. When purified Hp was used as the antigen for the ELISA, the detection limit was 7.4 ng/ml and linearity was obtained from 14.8 to 475 ng/ml. The correlation coefficient between the ELISA and single radial immunodiffusion was 0.884. The ELISA was shown to be applicable to evaluate Hp concentrations in the lipoprotein fractions. Hp concentrations in the lipoprotein fractions were in the range of 0.94 to 8.77 microg of Hp/ml (n = 4), and concentration ratios were 0.2 to 0.3% of whole serum Hp. Of the lipoprotein fractions, Hp was most abundant in HDL, moderate in VHDL and faint in chylomicrons, the very low-density lipoprotein fraction and low-density lipoprotein fraction. By 2-dimensional electrophoresis, alpha- and beta-chains of serum Hp were each separated into 5 spots, and their isoelectric point (pI) values were from 5.05 to 6.28 in the alpha-chain and from 5.92 to 6.95 in the beta-chain. The pI values of HDL Hp were indistinguishable from those of serum Hp. These results indicate that the ELISA based on the affinity with Hb is useful for evaluating Hp concentrations in lipoprotein fractions, and also suggest that HDL Hp is structurally similar to that in the lipoprotein-deficient fraction. PMID:11217066

  9. Protein/Arabinoxylans Gels: Effect of Mass Ratio on the Rheological, Microstructural and Diffusional Characteristics

    PubMed Central

    Berlanga-Reyes, Claudia M.; Carvajal-Millan, Elizabeth; Hicks, Kevin B.; Yadav, Madhav P.; Rascón-Chu, Agustín; Lizardi-Mendoza, Jaime; Toledo-Guillén, Alma R.; Islas-Rubio, Alma R.

    2014-01-01

    Wheat bran arabinoxylan (WBAX) gels entrapping standard model proteins at different mass ratios were formed. The entrapment of protein affected the gel elasticity and viscosity values, which decreased from 177 to 138 Pa. The presence of protein did not modify the covalent cross-links content of the gel. The distribution of protein through the network was investigated by confocal laser scanning microscopy. In mixed gels, protein aggregates forming clusters were detected at protein/polysaccharide ratios higher than 0.25. These clusters were not homogeneously distributed, suggesting that WBAX and protein are located in two different phases. The apparent diffusion coefficient (Dm) of proteins during release from mixed gels was investigated for mass ratios of 0.06 and 0.12. For insulin, Dm increased significantly from 2.64 × 10−7 to 3.20 × 10−7 cm2/s as the mass ratio augmented from 0.06 to 0.12. No significant difference was found for Dm values of ovalbumin and bovine serum albumin released from the mixed gels. The results indicate that homogeneous protein/WBAX gels can be formed at low mass ratios, allowing the estimation of Dm by using an analytical solution of the second Fick’s law. PMID:25338049

  10. Protein/arabinoxylans gels: effect of mass ratio on the rheological, microstructural and diffusional characteristics.

    PubMed

    Berlanga-Reyes, Claudia M; Carvajal-Millan, Elizabeth; Hicks, Kevin B; Yadav, Madhav P; Rascón-Chu, Agustín; Lizardi-Mendoza, Jaime; Toledo-Guillén, Alma R; Islas-Rubio, Alma R

    2014-01-01

    Wheat bran arabinoxylan (WBAX) gels entrapping standard model proteins at different mass ratios were formed. The entrapment of protein affected the gel elasticity and viscosity values, which decreased from 177 to 138 Pa. The presence of protein did not modify the covalent cross-links content of the gel. The distribution of protein through the network was investigated by confocal laser scanning microscopy. In mixed gels, protein aggregates forming clusters were detected at protein/polysaccharide ratios higher than 0.25. These clusters were not homogeneously distributed, suggesting that WBAX and protein are located in two different phases. The apparent diffusion coefficient (Dm) of proteins during release from mixed gels was investigated for mass ratios of 0.06 and 0.12. For insulin, Dm increased significantly from 2.64 × 10-7 to 3.20 × 10-7 cm2/s as the mass ratio augmented from 0.06 to 0.12. No significant difference was found for Dm values of ovalbumin and bovine serum albumin released from the mixed gels. The results indicate that homogeneous protein/WBAX gels can be formed at low mass ratios, allowing the estimation of Dm by using an analytical solution of the second Fick's law. PMID:25338049

  11. Viscoelasticity measurement of gel formed at the liquid-liquid reactive interfaces

    NASA Astrophysics Data System (ADS)

    Ujiie, Tomohiro

    2012-11-01

    We have experimentally studied a reacting liquid flow with gel formation by using viscous fingering (VF) as a flow field. Here, two systems were employed. In one system, sodium polyacrylate (SPA) solution and ferric ion solution were used as the more and less viscous liquids, respectively. In another system, xthantan gum (XG) solution and the ferric ion solution were used as the more and less viscous liquids, respectively. We showed that influence of gel formation on VF were qualitatively different in these two systems. We consider that the difference in the two systems will be caused by the difference in the properties of the gels. Therefore, we have measured the rheological properties of the gels by means of a rheometer. In the present study, viscoelasticity measurement was performed by two methods. One is the method which uses Double Wall Ring sensor (TA instrument) and another is the method using parallel plate. In both viscoelasticity measurements, the behavior of the formed gel was qualitatively consistent. We have found that the gel in the SPA system shows viscoelastic fluid like behavior. Moreover, we have found that the gel in the XG system shows solid like behavior.

  12. Elliptical tiling method to generate a 2-dimensional set of templates for gravitational wave search

    NASA Astrophysics Data System (ADS)

    Arnaud, Nicolas; Barsuglia, Matteo; Bizouard, Marie-Anne; Brisson, Violette; Cavalier, Fabien; Davier, Michel; Hello, Patrice; Kreckelbergh, Stephane; Porter, Edward K.

    2003-05-01

    Searching for a signal depending on unknown parameters in a noisy background with matched filtering techniques always requires an analysis of the data with several templates in parallel in order to ensure a proper match between the filter and the real waveform. The key feature of such an implementation is the design of the filter bank which must be small to limit the computational cost while keeping the detection efficiency as high as possible. This paper presents a geometrical method that allows one to cover the corresponding physical parameter space by a set of ellipses, each of them being associated with a given template. After the description of the main characteristics of the algorithm, the method is applied in the field of gravitational wave (GW) data analysis, for the search of damped sine signals. Such waveforms are expected to be produced during the deexcitation phase of black holes—the so-called “ringdown” signals—and are also encountered in some numerically computed supernova signals. First, the number of templates N computed by the method is similar to its analytical estimation, despite the overlaps between neighbor templates and the border effects. Moreover, N is small enough to test for the first time the performances of the set of templates for different choices of the minimal match MM, the parameter used to define the maximal allowed loss of signal-to-noise ratio (SNR) due to the mismatch between real signals and templates. The main result of this analysis is that the fraction of SNR recovered is on average much higher than MM, which dramatically decreases the mean percentage of false dismissals. Indeed, it goes well below its estimated value of 1-MM3 used as input of the algorithm. Thus, as this feature should be common to any tiling algorithm, it seems possible to reduce the constraint on the value of MM—and indeed the number of templates and the computing power—without losing as many events as expected on

  13. Incorporation of cooling-induced crystallization into a 2-dimensional axisymmetric conduit heat flow model

    NASA Astrophysics Data System (ADS)

    Heptinstall, David; Bouvet de Maisonneuve, Caroline; Neuberg, Jurgen; Taisne, Benoit; Collinson, Amy

    2016-04-01

    Heat flow models can bring new insights into the thermal and rheological evolution of volcanic 3 systems. We shall investigate the thermal processes and timescales in a crystallizing, static 4 magma column, with a heat flow model of Soufriere Hills Volcano (SHV), Montserrat. The latent heat of crystallization is initially computed with MELTS, as a function of pressure and temperature for an andesitic melt (SHV groundmass starting composition). Three fractional crystallization simulations are performed; two with initial pressures of 34MPa (runs 1 & 2) and one of 25MPa (run 3). Decompression rate was varied between 0.1MPa/° C (runs 1 & 3) and 0.2MPa/° C (run 2). Natural and experimental matrix glass compositions are accurately reproduced by all MELTS runs. The cumulative latent heat released for runs 1, 2 and 3 differs by less than 9% (8.69E5 J/kg*K, 9.32E5 J/kg*K, and 9.49E5 J/kg*K respectively). The 2D axisymmetric conductive cooling simulations consider a 30m-diameter conduit that extends from the surface to a depth of 1500m (34MPa). The temporal evolution of temperature is closely tracked at depths of 10m, 750m and 1400m in the centre of the conduit, at the conduit walls, and 20m from the walls into the host rock. Following initial cooling by 7-15oC at 10m depth inside the conduit, the magma temperature rebounds through latent heat release by 32-35oC over 85-123 days to a maximum temperature of 1002-1005oC. At 10m depth, it takes 4.1-9.2 years for the magma column to cool by 108-131oC and crystallize to 75wt%, at which point it cannot be easily remobilized. It takes 11-31.5 years to reach the same crystallinity at 750-1400m depth. We find a wide range in cooling timescales, particularly at depths of 750m or greater, attributed to the initial run pressure and the dominant latent heat producing crystallizing phase, Albite-rich Plagioclase Feldspar. Run 1 is shown to cool fastest and run 3 cool the slowest, with surface emissivity having the strongest cooling

  14. Dewatering fine coal slurries by gel extraction

    SciTech Connect

    Gehrke, S.H.; Lyu, Lii-Hurng.

    1990-01-01

    A new technology called gel extraction has been evaluated to determine its economic viability in dewatering the fine and ultrafine coal slurries generated upon separation of sulfur and ash from clean coal during the physical coal cleaning process. Water must be removed from such slurries prior to transportation and combustion but the dewatering costs are substantial, especially for the fine particles below 28 mesh (0.6 mm). Gel extraction is a potential breakthrough in slurry dewatering technology. The goal of this project was to acquire the qualitative and quantitative data needed to estimate the potential of gel extraction for dewatering coal slurries. The specific objectives were to determine the maximum extents of dewatering (minimum surface moisture in the coal product), the clarity of the water removed (minimum solids content), the speed of the dewatering cycles, the service lifetime of the gels, and the factors which influence all of these. With the results obtained, an economic analysis of Ohio coal cleaning plant dewatering technologies was carried out. The polymer gel at the heart of this project, poly (N-isopropylacrylamide) (PNIPA), can swell several times its shrunken weight at 32[degrees]C by absorbing water at 25[degrees]C. In gel extraction, a shrunken NIPA gel is contacted with a slurry at ambient temperature or cooler; the gel swells by absorbing water from the slurry. The gel is then removed from the dewatered slurry and warmed above its critical temperature of 33[degrees]C, which returns it to the shrunken state by releasing the absorbed water. The facts that the gel is reusable and the process is simple and driven by low-grade energy (warm temperatures), and not inherently limited by particle size, made the process an attractive possible alternative to centrifugation, screening, filtration, etc. for slurry dewatering.

  15. Effect Terthiophenes Units on the Microstructure and Birefringence of SiO2 Gels Prepared via Sol-Gels Processing

    SciTech Connect

    Kancono; Senin, H. B.

    2007-05-09

    Materials ceramics products based on SiO2 gels have been produced via sol-gels processing in present of 1% NH4F/H2O as catalyst. Alkoxysilane from tetraethoxysilane (TEOS) are chose as a matrices or template sources, than the product's of syntheses precursor: 2,5-bis(trimethoxysilyl)terthiophene (BTS3T) used as a motif organic compound: That product formed matrices as silicate backbone of terthiophene-briged silsesquioxane net-work; [O1.5Si-(C4H2S)n-SiO1.5]n. The structure silsesquioxane terthiophene-briged formed have layer distance of 4.6and 8.6 angstroms. So, that terthiophenes units in their structure give an effect on the characteristic pattern as an ordered micro lamellar structure. Electron microscopy analyses in matrices -Si-O-Si- there spheres formed by diameter about 10 {mu}m which are rich in silicon. The effect of terthiophenes unites on SiO2 gels formed shown that birefringence phenomenas are strong in presence of higher quantity oligothiophenes units, and will decrease with increase quantity of alkoxysilane, with anisotropic values differences decrease every 1.125 x 10-3 per mole SiO2, whereas the optical transparency of SiO2 gels formed are increase.

  16. Moisture Transport in Silica Gel Particle Beds: I. Theoretical Study

    SciTech Connect

    Pesaran, A. A.; Mills, A. F.

    1986-08-01

    Diffusion mechanisms of moisture within silica gel particles are investigated. It is found that for microporous silica gel surface diffusion is the dominant mechanism of moisture transport, while for macroporous silica gel both Knudsen and surface diffusion are important.

  17. Detection of DNA sequence polymorphisms in human genomic DNA by using denaturing gradient gel blots

    SciTech Connect

    Gray, M.R. )

    1992-02-01

    Denaturing gradient gel electrophoresis can detect sequence differences outside restriction-enzyme recognition sites. DNA sequence polymorphisms can be detected as restriction-fragment melting polymorphisms (RFMPs) in genomic DNA by using blots made from denaturing gradient gels. In contrast to the use of Southern blots to find sequence differences, denaturing gradient gel blots can detect differences almost anywhere, not just at 4-6-bp restriction-enzyme recognition sites. Human genomic DNA was digested with one of several randomly selected 4-bp recognition-site restriction enzymes, electrophoresed in denaturing gradient gels, and transferred to nylon membranes. The blots were hydridized with radioactive probes prepared from the factor VIII, type II collagen, insulin receptor, [beta][sub 2]-adrenergic receptor, and 21-hydroxylase genes; in unrelated individuals, several RFM's were found in fragments from every locus tested. No restriction map or sequence information was used to detect RFMP's.

  18. Preparation and use of 131I magic gel as a dosimeter for targeted radionuclide therapy.

    PubMed

    Courbon, Frédéric; Love, Peter; Chittenden, Sarah; Flux, Glen; Ravel, Patrice; Cook, Gary

    2006-10-01

    Clinical interest in targeted radiotherapy is increasing, but accurate dosimetry studies are difficult to achieve. The aim of this study was to investigate the preparation and use of a "normoxic" polymer gel (with a tissue-equivalent density), known as MAGIC gel, and magnetic resonance imaging (MRI) for nonsealed source dosimetry. MAGIC gel samples were mixed with deionized water (MAGIC95) or a solution of 131I (131I-MAGIC95). By measuring the radioinduced variations of R2 values (relaxivity) of irradiated gels, we analyzed the response of MAGIC95 and MAGIC samples to external photon beam or 131I irradiation (131I-MAGIC95). MRI showed that a homogeneous dose distribution from 131I can be achieved if the MAGIC gel, at a temperature of approximately 35 degrees C, is mixed in 131I solution and the resulting mixture shaken gently for 30 minutes. It is important that the vials are completely filled, as residual air reduces polymerization and causes spontaneous polymerization stripes. Responses of MAGIC95 or MAGIC gels to external photon beam irradiation are similar. The variations of R2 values for 131I-MAGIC95 gel depend on the absorbed dose and not on the duration of the irradiation being reproducible from one batch of gel to another. MAGIC gel responses to 131I or external beam irradiation (EBI) are different. Our preliminary results suggest that radiolabeled "normoxic" polymer can be easily and safely produced. Radiolabeled MAGIC gel may, therefore, be suitable for the creation of phantoms dedicated to nonsealed source dosimetry. PMID:17105417

  19. Contact mechanics studies of polymer gels with the quartz crystal microbalance

    NASA Astrophysics Data System (ADS)

    Nunalee, Frank Nelson

    This thesis examines the surfaces of polymer gels using a novel technique that combines the contact mechanics approach of Johnson, Kendall, and Roberts (JKR) with the quartz crystal microbalance (QCM). Polymer gels are well-suited for a variety of applications, but their surface compositions often depend on their environmental surroundings due to the activity of the gel solvent. The JKR technique is sensitive to bulk mechanical properties and surface adhesive forces, while the QCM is sensitive to surface mechanical properties. In this thesis, the combined JKR-QCM technique is used to study the surfaces of polymer gels. In a typical JKR-QCM experiment, a hemispherical gel is brought into and out of contact with the QCM surface at a controlled velocity, and the resulting load, displacement, contact area, and complex resonant frequency of the QCM are measured. It is shown that the changes in complex resonant frequency of the QCM in such an experiment are related to the material's surface mechanical properties, which include its high frequency viscosity. Existing QCM theory is not intended to account for a changing interfacial contact area, which is a common feature in JKR experiments. Equations are presented to account for variable coverage of the QCM by considering the radial sensitivity profile across the quartz crystal. QCM theory is also modified for experiments involving a growing contact area between a viscoelastic material and the crystal surface when submerged in a liquid. JKR-QCM studies of a model polymer gel, composed of a physically crosslinked triblock copolymer swollen by mineral oil, reveal a concentrated oil layer at the gel's surface that is transferred to the quartz crystal after loading and subsequent detachment of the gel. The same features are noted for the model gel submerged in water. A different model gel, composed of a chemically crosslinked polymer swollen by water, reveals evidence of a surface water layer when brought into contact with a

  20. Solvent-Dependent Properties and Higher-Order Structures of Aryl Alcohol + Surfactant Molecular Gels.

    PubMed

    Katsube, Shotaro; Kinoshita, Masaru; Amano, Kenshi; Sato, Takaaki; Katsumoto, Yukiteru; Umecky, Tatsuya; Takamuku, Toshiyuki; Kaji, Toshihiko; Hiramoto, Masahiro; Tsurunaga, Yoko; Nishiyama, Katsura

    2016-05-01

    Molecular organogels, comprising small organic gelators in solvents, can be applied for dispersal of optical devices, such as emitters. Phenolic compounds and the surfactant bis(2-ethylhexyl) sulfosuccinate (AOT) are known examples of self-assembly organogels. However, conventional phenol + AOT gels in aromatic and acyclic alkane solvents are optically turbid, which is an obstacle for use as host materials in optical devices. In this study, a variety of aryl alcohol-AOT-solvent sets have been investigated systematically, and the correlation between the molecular architecture and optical transparency of the gels was considered. Accordingly, p-chlorophenol + AOT gels in cyclic alkane solvents were shown to form optically transparent gels. In contrast, aromatic and acyclic alkane solvents gave rise to turbid or opaque gels, even when utilizing the same gelators. AFM, NMR, SAXS, and FTIR were employed to determine the organogel structures. Consequently, we found that the gel transparency strongly depends on the size of the fibrous network of the gel, the structure of which is attributed to higher-order aggregates of the gelators. The average contour length and diameter of the fibrous network, lav and dav, respectively, were determined from AFM images. The transparent gels were shown to have lav = 4-9 μm and dav ≤ 0.3 μm, whereas the turbid gels had lav = 15 μm and dav = 0.4-0.6 μm. Such differences in the size of the fibrous network significantly affected the mechanical response of the gels, as shown by stress-strain measurements. PMID:27064848

  1. Effect of natural gel product on bovine dentin erosion in vitro

    PubMed Central

    SALES-PERES, André de Carvalho; MARSICANO, Juliane Avansini; GARCIA, Rudan Paraíso; FORIM, Moacir Rossi; da SILVA, Maria Fatima das Graças Fernandes; SALES-PERES, Sílvia Helena de Carvalho

    2013-01-01

    Objective To evaluate the efficacy of Neem (Azadirachta indica) experimental gel for the prevention of erosive wear on bovine dentin, in vitro. Material and Methods One hundred dentin blocks were allocated into 5 experimental groups (20 samples each): C (control group, without gel); CG (control group, only base gel); F (fluoride gel, 1.23% NaF; pH 4.1, Dentsply; Brazil); N (Neem gel, 10% neem extract; pH 4.1, manipulation); NF (Neem+fluoride gel, 10% Neem extract and 1.23% NaF; pH 4.1, manipulation). The blocks were stored in artificial saliva for 24 hours. After this, they were submitted to six alternating re- and demineralization cycles. The blocks were analyzed for wear (profilometry). The results were submitted to statistical analysis by ANOVA and Tukey tests (P<0.05). Results The mean wear (±SD, µm) was shown as follows in groups: C (13.09±0.99), CG (10.60±1.99), F (10.90±1.44), N (12.68±1.13) and NF (10.84±1.65). All gels showed some preventive action when compared with control group. However, significant differences were found only between Neem+fluoride gel and fluoride gel. Conclusion A single application of a neem-containing fluoride gel reduced dentin erosion, thus it is a possible alternative in reducing dental wear. Further research should investigate the action mechanism and the synergism between them. PMID:24473728

  2. Molecular simulation of the swelling of polyelectrolyte gels by monovalent and divalent counterions.

    PubMed

    Yin, De-Wei; Horkay, Ferenc; Douglas, Jack F; de Pablo, Juan J

    2008-10-21

    Permanently crosslinked polyelectrolyte gels are known to undergo discontinuous first-order volume phase transitions, the onset of which may be caused by a number of factors. In this study we examine the volumetric properties of such polyelectrolyte gels in relation to the progressive substitution of monovalent counterions by divalent counterions as the gels are equilibrated in solvents of different dielectric qualities. We compare the results of coarse-grained molecular dynamics simulations of polyelectrolyte gels with previous experimental measurements by others on polyacrylate gels. The simulations show that under equilibrium conditions there is an approximate cancellation between the electrostatic contribution and the counterion excluded-volume contribution to the osmotic pressure in the gel-solvent system; these two contributions to the osmotic pressure have, respectively, energetic and entropic origins. The finding of such a cancellation between the two contributions to the osmotic pressure of the gel-solvent system is consistent with experimental observations that the swelling behavior of polyelectrolyte gels can be described by equations of state for neutral gels. Based on these results, we show and explain that a modified form of the Flory-Huggins model for nonionic polymer solutions, which accounts for neither electrostatic effects nor counterion excluded-volume effects, fits both experimental and simulated data for polyelectrolyte gels. The Flory-Huggins interaction parameters obtained from regression to the simulation data are characteristic of ideal polymer solutions, whereas the experimentally obtained interaction parameters, particularly that associated with the third virial coefficient, exhibit a significant departure from ideality, leading us to conclude that further enhancements to the simulation model, such as the inclusion of excess salt, the allowance for size asymmetric electrolytes, or the use of a distance-dependent solvent dielectricity

  3. Ionic and viscoelastic mechanisms of a bucky-gel actuator

    NASA Astrophysics Data System (ADS)

    Kruusamäe, Karl; Sugino, Takushi; Asaka, Kinji

    2015-07-01

    Ionic electromechanically active polymers (IEAPs) are considered attractive candidates for soft, miniature, and lightweight actuators. The bucky-gel actuator is a carbonaceous subtype of IEAP that due to its structure (i.e. two highly porous electrodes sandwiching a thin ion-permeable electrolyte layer) and composition (i.e. being composed of soft porous polymer, carbon nanotubes, and ionic liquid) is very similar to an electric double-layer capacitor. In response to the voltage applied between the electrodes of a bucky-gel actuator, the laminar structure bends. The time domain behavior exhibits, however, a phenomenon called the back-relaxation, i.e., after some time the direction of bending is reversed even though voltage remains constant. In spite of the working mechanism of IEAP actuators being generally attributed to the transport of ions within the soft multilayer system, the specific details remain unclear. A so-called two-carrier model proposes that the bending and subsequent back-relaxation are caused by the relocation of two ionic species having different mobilities as they enter and exit the electrode layers. By adopting the two-carrier model for bucky-gel actuators, we see very good agreement between the mathematical representation and the experimental data of the electromechanical behavior. Furthermore, since the bucky-gel actuator is viscoelastic, we propose to use the time domain response of a blocking force as the key parameter related to the inner ionic mechanism. We also introduce a method to estimate the viscoelastic creep compliance function from the time domain responses for curvature and blocking force. This analysis includes four types of bucky-gel actuators of varying composition and structure.

  4. Mayenite Synthesized Using the Citrate Sol-Gel Method

    SciTech Connect

    Ude, Sabina N; Rawn, Claudia J; Meisner, Roberta A; Kirkham, Melanie J; Jones, Gregory L.; Payzant, E Andrew

    2014-01-01

    A citrate sol-gel method has been used to synthesize mayenite (Ca12Al14O33). X-ray powder diffraction data show that the samples synthesized using the citrate sol-gel method contained CaAl2O4 and CaCO3 along with mayenite when fired ex-situ in air at 800 C but were single phase when fired at 900 C and above. Using high temperature x-ray diffraction, data collected in-situ in air at temperatures of 600 C and below showed only amorphous content; however, data collected at higher temperatures indicated the first phase to crystallize is CaCO3. High temperature x-ray diffraction data collected in 4% H2/96% N2 does not show the presence of CaCO3, and Ca12Al14O33 starts to form around 850 C. In comparison, x-ray powder diffraction data collected ex-situ on samples synthesized using traditional solid-state synthesis shows that single phase was not reached until samples were fired at 1350 C. DTA/TGA data collected either in a nitrogen environment or air on samples synthesized using the citrate gel method suggest the complete decomposition of metastable phases and the formation of mayenite at 900 C, although the phase evolution is very different depending on the environment. Brunauer-Emmett-Teller (BET) measurements showed a slightly higher surface area of 7.4 0.1 m2/g in the citrate gel synthesized samples compared to solid-state synthesized sample with a surface area of 1.61 0.02 m2/g. SEM images show a larger particle size for samples synthesized using the solid-state method compared to those synthesized using the citrate gel method.

  5. Pleural tissue repair with cord blood platelet gel

    PubMed Central

    Rosso, Lorenzo; Parazzi, Valentina; Damarco, Francesco; Righi, Ilaria; Santambrogio, Luigi; Rebulla, Paolo; Gatti, Stefano; Ferrero, Stefano; Nosotti, Mario; Lazzari, Lorenza

    2014-01-01

    Background Prolonged air leak is the major cause of morbidity after pulmonary resection. In this study we used in vitro and in vivo experiments to investigate an innovative approach based on the use of human umbilical cord blood platelet gel. Materials and methods In vitro, a scratch assay was performed to test the tissue repair capability mediated by cord blood platelet gel compared to the standard culture conditions using human primary mesothelial cells. In vivo, an iatrogenic injury was made to the left lung of 54 Wistar rats. Cord blood platelet gel was placed on the injured area only in treated animals and at different times histological changes and the presence of pleural adhesions were evaluated. In addition, changes in the pattern of soluble inflammatory factors were investigated using a multiplex proteome array. Results In vitro, mesothelial cell damage was repaired in a shorter time by cord blood platelet gel than in the control condition (24 versus 35 hours, respectively). In vivo, formation of new mesothelial tissue and complete tissue recovery were observed at 45±1 and 75±1 hours in treated animals and at 130±2.5 and 160±6 hours in controls, respectively. Pleural adhesions were evident in 43% of treated animals compared to 17% of controls. No complications were observed. Interestingly, some crucial soluble factors involved in inflammation were significantly reduced in treated animals. Discussion Cord blood platelet gel accelerates the repair of pleural damage and stimulates the development of pleural adhesions. Both properties could be particularly useful in the management of prolonged air leak, and to reduce inflammation. PMID:23736928

  6. : comparison between magnetron sputtering and sol-gel synthesis

    NASA Astrophysics Data System (ADS)

    Cosentino, S.; Knebel, S.; Mirabella, S.; Gibilisco, S.; Simone, F.; Bracht, H.; Wilde, G.; Terrasi, A.

    2014-07-01

    SiGeO films have been produced by a sol-gel derived approach and by magnetron sputtering deposition. Post-thermal annealing of SiGeO films in forming gas or nitrogen atmosphere between 600 and 900 °C ensured the phase separation of the SiGeO films and synthesis and growth of Ge nanoclusters (NCs) embedded in SiO2. Rutherford backscattering spectrometry analysis evidenced a similar Ge concentration (~12 %), but a different Ge out-diffusion after annealing between the two types of techniques with the formation of a pure SiO2 surface layer (~30 nm thick) in sol-gel samples. The thermal evolution of Ge NCs has been followed by transmission electron microscopy and Raman analysis. In both samples, Ge NCs form with similar size increase (from ~3 up to ~7 nm) and with a concomitant amorphous to crystalline transition in the 600-800 °C temperature range. Despite a similar Ge concentration, a significant lower NCs density is observed in sol-gel samples attributed to an incomplete precipitation of Ge, which probably remains still dispersed in the matrix. The optical absorption of Ge NCs has been measured by spectrophotometry analyses. Ge NCs produced by the sol-gel method evidence an optical band gap of around 2 eV, larger than that of NCs produced by sputtering (~1.5 eV). These data are presented and discussed also considering the promising implications of a low-cost sol-gel based technique towards the fabrication of light harvesting devices based on Ge nanostructures.

  7. Macroscopic and microscopic observations of needle insertion into gels.

    PubMed

    van Veen, Youri R J; Jahya, Alex; Misra, Sarthak

    2012-06-01

    Needle insertion into soft tissue is one of the most common medical interventions. This study provides macroscopic and microscopic observations of needle-gel interactions. A gelatin mixture is used as a soft-tissue simulant. For the macroscopic studies, system parameters, such as insertion velocity, needle diameter, gel elasticity, needle tip shape (including bevel angle) and insertion motion profile, are varied, while the maximum insertion force and maximum needle deflection are recorded. The needle tip and gel interactions are observed using confocal microscopic images. Observations indicate that increasing the insertion velocity and needle diameter results in larger insertion forces and smaller needle deflections. Varying the needle bevel angle from 8 degrees to 82 degrees results in the insertion force increasing monotonically, while the needle deflection does not. These variations are due to the coupling between gel rupture and tip compression interactions, which are observed during microscopic studies. Increasing the gel elasticity results in larger insertion forces and needle deflections. Varying the tip shapes demonstrates that bevel-tipped needles produce the largest deflection, but insertion force does not vary among the tested tip shapes. Insertion with different motion profiles are performed. Results show that adding I Hz rotational motion during linear insertion decreases the needle deflection. Increasing the rotational motion from I Hz to 5 Hz decreases the insertion force, while the needle deflection remains the same. A high-velocity (250 mm/s and 300 mm/s) tapping during insertion yields no significant decrease in needle deflection and a slight increase in insertion force. PMID:22783760

  8. Ultrasonic Imaging of the Electroacoustic Effect in Macromolecular Gels

    PubMed Central

    Wen, Han; Balaban, Robert S.

    2010-01-01

    The electroacoustic effect occurs in electrolytes and colloidal suspensions. It describes the phenomenon in which a voltage applied to the sample produces an acoustic signal or vice versa. The basic mechanism is that charged particles in the sample have various mobilities due to different masses and viscosities. Under an external voltage they respond differently to the electrical force. This results in an overall acoustic vibration. The electroacoustic effect has been the basis for many measurement tools of solutions and other materials. In this note a method to image macromolecular gel samples using the electroacoustic effect at ultrasound frequencies is presented. Radio-frequency electrical excitation produces ultrasonic signal due to spatial changes in the electroacoustic sonic amplitude of the sample, which is used to construct an image similar to ultrasonography. This method is demonstrated in agar gel and eggwhite protein phantoms. The image contrast mechanism is also discussed. PMID:10197349

  9. Rheological measurements in titania gels synthesized from reverse micelles

    NASA Astrophysics Data System (ADS)

    Romano, S. D.; Kurlat, D. H.

    2000-06-01

    TiO 2 sol and gel systems have been synthesized by hydrolysis of titanium butoxide in microemulsions W/O. Different systems compositions were prepared at constant Wo=[H 2O]/[AOT] and changing R=[H 2O]/[Ti(BuO) 4]. Experimental measurements show a progressive increase of the viscosity with time, characteristic of a sol-gel transition. The rheology of the transition was studied by following the behavior of viscoelastic parameters ( G', G″ and η*) as a function of time at different frequencies. The possibility to apply standard percolation theory was discussed. The application of two alternative growth models — either `fractal growth model' or `nearly linear growth model' — has been analysed.

  10. Monte Carlo verification of polymer gel dosimetry applied to radionuclide therapy: a phantom study

    NASA Astrophysics Data System (ADS)

    Gear, J. I.; Charles-Edwards, E.; Partridge, M.; Flux, G. D.

    2011-11-01

    This study evaluates the dosimetric performance of the polymer gel dosimeter 'Methacrylic and Ascorbic acid in Gelatin, initiated by Copper' and its suitability for quality assurance and analysis of I-131-targeted radionuclide therapy dosimetry. Four batches of gel were manufactured in-house and sets of calibration vials and phantoms were created containing different concentrations of I-131-doped gel. Multiple dose measurements were made up to 700 h post preparation and compared to equivalent Monte Carlo simulations. In addition to uniformly filled phantoms the cross-dose distribution from a hot insert to a surrounding phantom was measured. In this example comparisons were made with both Monte Carlo and a clinical scintigraphic dosimetry method. Dose-response curves generated from the calibration data followed a sigmoid function. The gels appeared to be stable over many weeks of internal irradiation with a delay in gel response observed at 29 h post preparation. This was attributed to chemical inhibitors and slow reaction rates of long-chain radical species. For this reason, phantom measurements were only made after 190 h of irradiation. For uniformly filled phantoms of I-131 the accuracy of dose measurements agreed to within 10% when compared to Monte Carlo simulations. A radial cross-dose distribution measured using the gel dosimeter compared well to that calculated with Monte Carlo. Small inhomogeneities were observed in the dosimeter attributed to non-uniform mixing of monomer during preparation. However, they were not detrimental to this study where the quantitative accuracy and spatial resolution of polymer gel dosimetry were far superior to that calculated using scintigraphy. The difference between Monte Carlo and gel measurements was of the order of a few cGy, whilst with the scintigraphic method differences of up to 8 Gy were observed. A manipulation technique is also presented which allows 3D scintigraphic dosimetry measurements to be compared to polymer

  11. Protein Beverage vs. Protein Gel on Appetite Control and Subsequent Food Intake in Healthy Adults

    PubMed Central

    Zhang, Sha; Leidy, Heather J.; Vardhanabhuti, Bongkosh

    2015-01-01

    The objective of this study was to compare the effects of food form and physicochemical properties of protein snacks on appetite and subsequent food intake in healthy adults. Twelve healthy subjects received a standardized breakfast and then 2.5 h post-breakfast consumed the following snacks, in randomized order: 0 kcal water (CON) or 96 kcal whey protein snacks as beverages with a pH of either 3.0 (Bev-3.0) or 7.0 (Bev-7.0) or gels as acid (Gel-Acid) or heated (Gel-Heated). In-vitro study showed that Bev-3.0 was more resistant to digestion than Bev-7.0, while Gel-Acid and Gel-Heated had similar digestion pattern. Appetite questionnaires were completed every 20 min until an ad libitum lunch was provided. Post-snack hunger, desire to eat, and prospective food consumption were lower following the beverages and gels vs. CON (all, p < 0.05), and post-snack fullness was greater following the snacks (except for the Bev-3.0) vs. CON (all, p < 0.05). Gel-Heated treatment led to lower prospective food consumption vs. Bev-3.0; however, no other differences were detected. Although all snacks reduced energy intake vs. CON, no differences were observed among treatments. This study suggested that whey protein in either liquid or solid form improves appetite, but the physicochemical property of protein has a minimal effect. PMID:26506378

  12. Protein Beverage vs. Protein Gel on Appetite Control and Subsequent Food Intake in Healthy Adults.

    PubMed

    Zhang, Sha; Leidy, Heather J; Vardhanabhuti, Bongkosh

    2015-10-01

    The objective of this study was to compare the effects of food form and physicochemical properties of protein snacks on appetite and subsequent food intake in healthy adults. Twelve healthy subjects received a standardized breakfast and then 2.5 h post-breakfast consumed the following snacks, in randomized order: 0 kcal water (CON) or 96 kcal whey protein snacks as beverages with a pH of either 3.0 (Bev-3.0) or 7.0 (Bev-7.0) or gels as acid (Gel-Acid) or heated (Gel-Heated). In-vitro study showed that Bev-3.0 was more resistant to digestion than Bev-7.0, while Gel-Acid and Gel-Heated had similar digestion pattern. Appetite questionnaires were completed every 20 min until an ad libitum lunch was provided. Post-snack hunger, desire to eat, and prospective food consumption were lower following the beverages and gels vs. CON (all, p < 0.05), and post-snack fullness was greater following the snacks (except for the Bev-3.0) vs. CON (all, p < 0.05). Gel-Heated treatment led to lower prospective food consumption vs. Bev-3.0; however, no other differences were detected. Although all snacks reduced energy intake vs. CON, no differences were observed among treatments. This study suggested that whey protein in either liquid or solid form improves appetite, but the physicochemical property of protein has a minimal effect. PMID:26506378

  13. SEM studies of the structure of the gels prepared from untreated and radiation modified potato starch

    NASA Astrophysics Data System (ADS)

    Cieśla, Krystyna; Sartowska, Bożena; Królak, Edward

    2015-01-01

    Potato starch was irradiated with a 60Co gamma rays using doses of 5, 10, 20 and 30 kGy. Gels containing ca. 9.1% of starch were prepared by heating the starch suspensions in the heating chamber stabilized at 100 °C. Four procedures were applied for preparation of the samples in regard to SEM studies and the ability to observe the radiation effect by SEM was assessed for each method. Differences were observed between the SEM images recorded for the non-irradiated samples prepared using all the methods, and those irradiated. Images of the non-irradiated gels indicate generally a honey-comb structure, while smooth areas but with oriented fractures has appeared after irradiation. Modification of gel structure corresponds to the applied dose. The results were related to the process of gel formation (as observed by means of the hot stage microscope) to decrease in swelling power of the irradiated starch and to decreased viscosity of the resulting gels. It can be concluded that the differences in structural properties of gels shown by SEM result probably due to the better homogenization of the gels formed after radiation induced degradation.

  14. Salivary retention after application of fluoride gel using toothbrush or tray: a crossover trial.

    PubMed

    Ribeiro, Cecilia Claudia Costa; Lula, Estevam Carlos de Oliveira; Azevedo, Izabelle Maria Cabral de; Maia, Mariana de Figueiredo Lopes E; Lopes, Fernanda Ferreira

    2012-01-01

    Currently, there are no studies in the literature evaluating salivary fluoride retention after small amounts of fluoride gel are applied to children's teeth. Therefore, the objective of the present study was to compare salivary retention after gel application using a toothbrush or by traditional application with trays. In this crossover study, children with active caries (n = 10) were randomized into one of the following treatment groups: a) application of fluoride gel using a tray (control), or b) application of fluoride gel with a toothbrush (treatment). After a 7-day washout period, the treatments were inverted. Unstimulated saliva samples were collected at baseline and 0.5, 5, 15, 30, 60 and 120 minutes after acidulated phosphate fluoride (APF) gel application in order to analyze fluoride retention in saliva. The area under the curve (AUC) was also calculated. There were no differences in fluoride retention after application of small amounts of APF with a toothbrush compared to traditional gel application using trays at all time points studied, and no differences in AUC were observed (Student t-test, p > 0.05). These results suggest that application of fluoride gel in children using a toothbrush can be utilized as an option rather than traditional trays, since the same salivary retention of fluoride is obtained using a lower dose. PMID:23184162

  15. Regular and irregular deswelling of polyacrylate and hyaluronate gels induced by oppositely charged surfactants.

    PubMed

    Nilsson, Peter; Hansson, Per

    2008-09-15

    The deswelling kinetics of macroscopic polyacrylate (PA) gels in solutions of dodecyltrimethylammonium bromide (C(12)TAB) and cetyltrimethylammonium bromide (C(16)TAB), with and without added sodium bromide, as well as hyaluronate (HA) gels in solutions of cetylpyridinium chloride (CPC) are investigated. Additional data are also provided by small-angle X-ray scattering and microgel experiments. The purpose is to study the deswelling behavior of (1) regularly deswelling gels, for which the deswelling is successfully described using a core/shell model earlier employed for microgels, and (2) irregularly deswelling gels, where the gel turns into a balloon-like structure with a dense outer layer surrounding a liquid-filled core. For regularly deswelling gels, the deswelling of PA/C(12)TAB is found to be controlled by diffusion through both stagnant layer and collapsed surface phase, while for PA/C(16)TAB it is found to be controlled mainly by the latter. The difference in deswelling rate between the two is found to correspond to the difference in surfactant diffusion coefficient in the surface phase. Factors found to promote irregular deswelling, described as balloon formation, are rapid surfactant binding, high bromide and surfactant concentration, longer surfactant chain length, and macroscopic gel size. Scattering data indicating a cubic structure for HA/CPC complexes are reported. PMID:18565536

  16. Improving immobilized biocatalysts by gel phase polymerization

    SciTech Connect

    Kuu, W.Y.; Polack, J.A.

    1983-08-01

    A new method is presented for the treatment of gel-type supports, used for immobilizing microbial cells and enzymes, to obtain high mechanical strength. It is particularly useful for ethanol fermentation over gel beads containing immobilized viable cells, where the beads can be ruptured by gas production and the growth of cells within the gels. This method consists of treating agar or carrageenan gel with polyacrylamide to form a rigid support which retains the high catalytic activity characteristic of the untreated biocatalysts. The size and shape of the biocatalyst is unaffected by this treatment. The method involves the diffusion of acrylamide, N,N'-methylenebisacrylamide and ..beta..-dimethylaminopropionitrile (or N,N,N',N'-tetramethylethylenediamine) into the preformed biocatalyst beads followed by the addition of an initiator to cause polymerization within the beads. Treated gels have been used for the continuous fermentation of glucose to ethanol in a packed column for over two months. During this operation, the gel beads maintained their rigidity, and the maximum productivity was as high as 50 gh/sup -1/ L/sup -1/ gel. There was no appreciable decay of cell activity.

  17. Sol-Gel Manufactured Energetic Materials

    DOEpatents

    Simpson, Randall L.; Lee, Ronald S.; Tillotson, Thomas M.; Hrubesh, Lawrence W.; Swansiger, Rosalind W.; Fox, Glenn A.

    2005-05-17

    Sol-gel chemistry is used for the preparation of energetic materials (explosives, propellants and pyrotechnics) with improved homogeneity, and/or which can be cast to near-net shape, and/or made into precision molding powders. The sol-gel method is a synthetic chemical process where reactive monomers are mixed into a solution, polymerization occurs leading to a highly cross-linked three dimensional solid network resulting in a gel. The energetic materials can be incorporated during the formation of the solution or during the gel stage of the process. The composition, pore, and primary particle sizes, gel time, surface areas, and density may be tailored and controlled by the solution chemistry. The gel is then dried using supercritical extraction to produce a highly porous low density aerogel or by controlled slow evaporation to produce a xerogel. Applying stress during the extraction phase can result in high density materials. Thus, the sol-gel method can be used for precision detonator explosive manufacturing as well as producing precision explosives, propellants, and pyrotechnics, along with high power composite energetic materials.

  18. Sol-gel manufactured energetic materials

    DOEpatents

    Simpson, Randall L.; Lee, Ronald S.; Tillotson, Thomas M.; Hrubesh, Lawrence W.; Swansiger, Rosalind W.; Fox, Glenn A.

    2003-12-23

    Sol-gel chemistry is used for the preparation of energetic materials (explosives, propellants and pyrotechnics) with improved homogeneity, and/or which can be cast to near-net shape, and/or made into precision molding powders. The sol-gel method is a synthetic chemical process where reactive monomers are mixed into a solution, polymerization occurs leading to a highly cross-linked three dimensional solid network resulting in a gel. The energetic materials can be incorporated during the formation of the solution or during the gel stage of the process. The composition, pore, and primary particle sizes, gel time, surface areas, and density may be tailored and controlled by the solution chemistry. The gel is then dried using supercritical extraction to produce a highly porous low density aerogel or by controlled slow evaporation to produce a xerogel. Applying stress during the extraction phase can result in high density materials. Thus, the sol-gel method can be used for precision detonator explosive manufacturing as well as producing precision explosives, propellants, and pyrotechnics, along with high power composite energetic materials.

  19. Electroacoustics of Particles Dispersed in Polymer Gel

    SciTech Connect

    Bhosale, Prasad S.; Chun, Jaehun; Berg, John C.

    2011-06-27

    This study examines the acoustic electrophoresis of particles dispersed in polymer hydrogels, with the particle size either less than or greater than the gel mesh size. When the particles are smaller than the gel mesh size, their acoustic vibration is resisted by only the background water medium, and the measured dynamic electrophoretic mobility, μd (obtained in terms of colloid vibration current, CVI), is the same as in water. For the case of particles larger than the gel mesh size, μd is decreased due to trapping, and the net decrease depends on the viscoelastic properties of the gel. The gel mesh size was varied by varying its crosslink density, the latter being characterized as the storage modulus, G’. The dependence of mobility on G’, for systems of a given particle size, and on particle size, for gels of a given G’, are investigated. The measured mobility remains constant as G’ is increased (i.e., mesh size is decreased) up to a value of approximately 300 Pa, beyond which it decreases. In the second set of measurements, the trapped particle size was increased in a gel medium of constant mesh size, with G’ approximately 100 Pa. In this case, the measured μd is found to be effectively constant over the particle size range studied (14-120 nm), i.e., it is independent of the degree of trapping as expressed by the ratio of the particle size to the mesh size.

  20. Fluid diversion and sweep improvement with chemical gels in oil recovery processes. [Four types of gels: resorcinol-formaldehyde; colloidal silica; Cr sup 3+ (chloride)-xanthan; and Cr sup 3+ (acetate)-polyacrylamide

    SciTech Connect

    Seright, R.S.; Martin, F.D.

    1992-09-01

    The objectives of this project were to identify the mechanisms by which gel treatments divert fluids in reservoirs and to establish where and how gel treatments are best applied. Several different types of gelants were examined, including polymer-based gelants, a monomer-based gelant, and a colloidal-silica gelant. This research was directed at gel applications in water injection wells, in production wells, and in high-pressure gas floods. The work examined how the flow properties of gels and gelling agents are influenced by permeability, lithology, and wettability. Other goals included determining the proper placement of gelants, the stability of in-place gels, and the types of gels required for the various oil recovery processes and for different scales of reservoir heterogeneity. During this three-year project, a number of theoretical analyses were performed to determine where gel treatments are expected to work best and where they are not expected to be effective. The most important, predictions from these analyses are presented. Undoubtedly, some of these predictions will be controversial. However, they do provide a starting point in establishing guidelines for the selection of field candidates for gel treatments. A logical next step is to seek field data that either confirm or contradict these predictions. The experimental work focused on four types of gels: (1) resorcinol-formaldehyde, (2) colloidal silica, (3) Cr{sup 3+}(chloride)-xanthan, and (4) Cr{sup 3+}(acetate)-polyacrylamide. All experiments were performed at 41{degrees}C.

  1. Neutron spin-echo studies on dynamic and static fluctuations in two types of poly(vinyl alcohol) gels

    NASA Astrophysics Data System (ADS)

    Kanaya, T.; Takahashi, N.; Nishida, K.; Seto, H.; Nagao, M.; Takeda, T.

    2005-01-01

    We report neutron spin-echo measurements on two types of poly(vinyl alcohol) (PVA) gels. The first is PVA gel in a mixture of dimethyl sulfoxide (DMSO) and water with volume ratio 60/40 , and the second is PVA gel in an aqueous borax solution. The observed normalized intermediate scattering functions I(Q,t)/I(Q,0) are very different between them. The former I(Q,t)/I(Q,0) shows a nondecaying component in addition to a fast decay, but the latter does not have the nondecaying one. This clearly indicates that the fluctuations in the former PVA gel consist of static and dynamic fluctuations whereas the latter PVA gel does include only the dynamic fluctuations. The dynamic fluctuations of the former and latter gels have been analyzed in terms of a restricted motion in the network and Zimm motion, respectively, and the origins of these motions will be discussed.

  2. Neutron spin-echo studies on dynamic and static fluctuations in two types of poly(vinyl alcohol) gels

    SciTech Connect

    Kanaya, T.; Takahashi, N.; Nishida, K.; Seto, H.; Nagao, M.; Takeda, T.

    2005-01-01

    We report neutron spin-echo measurements on two types of poly(vinyl alcohol) (PVA) gels. The first is PVA gel in a mixture of dimethyl sulfoxide (DMSO) and water with volume ratio 60/40, and the second is PVA gel in an aqueous borax solution. The observed normalized intermediate scattering functions I(Q,t)/I(Q,0) are very different between them. The former I(Q,t)/I(Q,0) shows a nondecaying component in addition to a fast decay, but the latter does not have the nondecaying one. This clearly indicates that the fluctuations in the former PVA gel consist of static and dynamic fluctuations whereas the latter PVA gel does include only the dynamic fluctuations. The dynamic fluctuations of the former and latter gels have been analyzed in terms of a restricted motion in the network and Zimm motion, respectively, and the origins of these motions will be discussed.

  3. Fluorographic detection of tritiated glycopeptides and oligosaccharides separated on polyacrylamide gels: analysis of glycans from Dictyostelium discoideum glycoproteins

    SciTech Connect

    Prem Das, O.; Henderson, E.J.

    1986-11-01

    Previous workers have shown that oligosaccharides and glycopeptides can be separated by electrophoresis in buffers containing borate ions. However, normal fluorography of tritium-labeled structures cannot be performed because the glycans are soluble and can diffuse during equilibration with scintillants. This problem has been circumvented by equilibration of the gel with 2,5-diphenyloxazole (PPO) prior to electrophoresis. The presence of PPO in the gel during electrophoresis does not alter mobility of the glycopeptides and oligosaccharides. After electrophoresis, the gel is simply dried and fluorography performed. This allows sensitive and precise comparisons of labeled samples in parallel lanes of a slab gel and, since mobilities are highly reproducible, between different gels. The procedure is preparative in that after fluorography the gel bands can be quantitatively eluted for further study, without any apparent modification by the procedure. In this report, the procedure is illustrated by fractionation of both neutral and anionic glycopeptides produced by the cellular slime mold Dictyostelium discoideum.

  4. Capability of NIPAM polymer gel in recording dose from the interaction of (10)B and thermal neutron in BNCT.

    PubMed

    Khajeali, Azim; Reza Farajollahi, Ali; Kasesaz, Yaser; Khodadadi, Roghayeh; Khalili, Assef; Naseri, Alireza

    2015-11-01

    The capability of N-isopropylacrylamide (NIPAM) polymer gel to record the dose resulting from boron neutron capture reaction in BNCT was determined. In this regard, three compositions of the gel with different concentrations of (10)B were prepared and exposed to gamma radiation and thermal neutrons. Unlike irradiation with gamma rays, the boron-loaded gels irradiated by neutron exhibited sensitivity enhancement compared with the gels without (10)B. It was also found that the neutron sensitivity of the gel increased by the increase of concentration of (10)B. It can be concluded that NIPAM gel might be suitable for the measurement of the absorbed dose enhancement due to (10)B and thermal neutron reaction in BNCT. PMID:26356043

  5. Evaluation of radiochromic gel dosimetry and polymer gel dosimetry in a clinical dose verification

    NASA Astrophysics Data System (ADS)

    Vandecasteele, Jan; De Deene, Yves

    2013-09-01

    A quantitative comparison of two full three-dimensional (3D) gel dosimetry techniques was assessed in a clinical setting: radiochromic gel dosimetry with an in-house developed optical laser CT scanner and polymer gel dosimetry with magnetic resonance imaging (MRI). To benchmark both gel dosimeters, they were exposed to a 6 MV photon beam and the depth dose was compared against a diamond detector measurement that served as golden standard. Both gel dosimeters were found accurate within 4% accuracy. In the 3D dose matrix of the radiochromic gel, hotspot dose deviations up to 8% were observed which are attributed to the fabrication procedure. The polymer gel readout was shown to be sensitive to B0 field and B1 field non-uniformities as well as temperature variations during scanning. The performance of the two gel dosimeters was also evaluated for a brain tumour IMRT treatment. Both gel measured dose distributions were compared against treatment planning system predicted dose maps which were validated independently with ion chamber measurements and portal dosimetry. In the radiochromic gel measurement, two sources of deviations could be identified. Firstly, the dose in a cluster of voxels near the edge of the phantom deviated from the planned dose. Secondly, the presence of dose hotspots in the order of 10% related to inhomogeneities in the gel limit the clinical acceptance of this dosimetry technique. Based on the results of the micelle gel dosimeter prototype presented here, chemical optimization will be subject of future work. Polymer gel dosimetry is capable of measuring the absolute dose in the whole 3D volume within 5% accuracy. A temperature stabilization technique is incorporated to increase the accuracy during short measurements, however keeping the temperature stable during long measurement times in both calibration phantoms and the volumetric phantom is more challenging. The sensitivity of MRI readout to minimal temperature fluctuations is demonstrated which

  6. Normoxic polymer gels: are they magic?

    NASA Astrophysics Data System (ADS)

    Amin, M. N.; Bonnett, D. E.; Horsfield, M. A.

    2004-01-01

    In the last few years there has been considerable interest in the use of polymer gels to measure complex dose distributions in radiotherapy. Despite considerable advantages they are still not widely used in clinical situations. This is due primarily to the difficulty in manufacture, particularly the need to exclude oxygen both from the gel and the manufacturing process, the limited number of suitable phantom materials and the need for easy access to an MRI facility. The purpose of this paper is to report on an investigation of the basic properties of MAGIC gels namely: linearity of response, effects of temperature and stability.

  7. Phantom for moving organ dosimetry with gel

    NASA Astrophysics Data System (ADS)

    Ravindran, Paul; Mahata, Anurupa; Suman Babu, Ebenezer

    2009-05-01

    The displacements caused by the cardiac and respiratory motions cause smearing of the dose distribution that defeats the purpose of high precision radiotherapy. A phontom that holds a gel cylinder and radiochromic film, was designed and developed to simulate the respiratory motion in the superior and inferior directions. The effect of lung movement on dose distribution was studied by exposing gel as well as a radiochromic film using the phantom. The results obtained with Gel was comparable to those obtained with the radiochromic films.

  8. Contribution of stratified extracellular polymeric substances to the gel-like and fractal structures of activated sludge.

    PubMed

    Yuan, D Q; Wang, Y L; Feng, J

    2014-06-01

    The gel-like and fractal structures of activated sludge (AS) before and after extracellular polymeric substances (EPS) extraction as well as different EPS fractions were investigated. The contributions of individual components in different EPS fractions to the gel-like behavior of sludge samples by enzyme treatment were examined as well. The centrifugation and ultrasound method was employed to stratify the EPS into slime, loosely and tightly bound EPS (LB- and TB-EPS). It was observed that all samples behaved as weak gels with weak-link. TB-EPS and AS after LB-EPS extraction showed the strongest elasticity in higher concentrations and highest mass fractal dimension, which may indicate the key role of TB-EPS in the gel-like and fractal structures of the sludge. Effects of protease or amylase on the gel-like property of sludge samples differed in the presence of different EPS fractions. PMID:24651018

  9. Rheology of sheared gels based on low acyl-gellan gum.

    PubMed

    García, M Carmen; Alfaro, M Carmen; Muñoz, José

    2016-06-01

    Sheared gels containing 0.2 wt% low-acyl gellan gum were prepared by different processing protocols using Na(+) or Ca(2+) as gel-promoting ions. Rheology and confocal laser scanning microscopy were used to gain information on the sample structure. Confocal laser scanning microscopy revealed the formation of a heterogeneous microstructure consisting of a dispersion of gel-like clusters. Small amplitude oscillatory shear stress results indicated that their viscoelastic properties had a predominant elastic component. Flow curves exhibited very high viscosities at low shear stress, an apparent yield stress and very shear thinning behaviour, supporting their applications as a stabilizer. PMID:26251462

  10. Functional Nanofibers and Colloidal Gels: Key Elements to Enhance Functionality

    NASA Astrophysics Data System (ADS)

    Vogel, Nancy Amanda

    material so that prolonged release can be readily achieved from highly water soluble nanofibers. The final research theme focuses on gaining a fundamental understanding of a new class of materials, nanodiamond, so that a desired microstructure can be achieved via functionalization or manipulating processing parameters. In particular, we utilize both steady and dynamic rheology techniques to systematically investigate systems of nanodiamonds dispersed in model nonpolar (mineral oil) and polar (glycerol) media. In both cases, selfsupporting colloidal gels form at relatively low nanodiamond content; however, the gel behavior is highly dependent on the type of media used. Nanodiamonds dispersed in mineral oil exhibit characteristic colloidal gel behavior, with a rheological response that is independent of both frequency and time. However, nanodiamonds dispersed in glycerol exhibit a time dependent response, with the strength of the colloidal gels increasing several orders of magnitude. We attribute these rheological differences to changes in solvent complexity, where new particle-solvent and particle-particle interactions have the potential to delay optimal gel formation. In addition to colloidal gel formation, we use large oscillatory strains to probe the effect of processing parameters on microstructure disruption and recovery. The results indicate that the formation and rearrangement of the nanodiamond microstructures are concentration dependent for both media types; however, the recovery after breakdown is different for each system. Recovery of the nanodiamond/mineral oil gels is incomplete, with the strength of the recovered gel being significantly reduced. In contrast, the original strength of the nanodiamond/glycerol gels is recoverable as the system restructures with time. The practical implications of these results are significant as it suggest that shear history and solvent polarity play a dominant role in nanodiamond processing.

  11. High-Yield Separation of Metallic and Semiconducting Single-Wall Carbon Nanotubes by Agarose Gel Electrophoresis

    NASA Astrophysics Data System (ADS)

    Tanaka, Takeshi; Jin, Hehua; Miyata, Yasumitsu; Kataura, Hiromichi

    2008-11-01

    We have developed a novel separation method of metallic and semiconducting single-wall carbon nanotubes (SWCNTs) using agarose gel electrophoresis. When the SWCNTs were isolated with sodium dodecyl sulfate (SDS) and embedded in agarose gel, only the metallic SWCNTs separated from the starting gel by an electric field. After 20 min, almost all SWCNTs applied to gel electrophoresis were separated into two fractions, containing ˜95% semiconducting and ˜70% metallic nanotubes. The difference in the response to the electric field between metallic and semiconducting SWCNTs can be explained by the higher affinity of semiconducting SWCNTs to agarose than to SDS.

  12. The Application of Pulsed Field Gel Electrophoresis in Clinical Studies

    PubMed Central

    Parizad, Eskandar Gholami; Valizadeh, Azar

    2016-01-01

    Pulsed-field gel electrophoresis is a method applied in separating large segments of deoxyribonucleotide using an alternating and cross field. In a uniform magnetic field, components larger than 50kb pass a route through the gel and since the movement of DNA (Deoxyribonucleic acid) molecules are in a Zigzag form, separation of DNAs as bands carried out better via gel. PFGE in microbiology is a standard method which is used for typing of bacteria. It is also a very useful tool in epidemiological studies and gene mapping in microbes and mammalian cell, also motivated development of large-insert cloning system such as bacterial and yeast artifical chromosomes. In this method, close and similar species in terms of genetic patterns show alike profiles regarding DNA separation, and those ones which don’t have similarity or are less similar, reveal different separation profiles. So this feature can be used to determine the common species as the prevalence agent of a disease. PFGE can be utilized for monitoring and evaluating different micro-organisms in clinical samples and existing ones in soil and water. This method can also be a reliable and standard method in vaccine preparation. In recent decades, PFGE is highly regarded as a powerful tool in control, prevention and monitoring diseases in different populations. PMID:26894068

  13. Formulation development and evaluation of innovative two-polymer (SR-2P) bioadhesive vaginal gel.

    PubMed

    Podaralla, Satheesh; Alt, Carsten; Shankar, Gita N

    2014-08-01

    The main objective of this investigation was to study the feasibility of developing a vaginal bioadhesive microbicide using a SRI's proprietary two-polymer gel platform (SR-2P). Several formulations were prepared with different combinations of temperature-sensitive polymer (Pluronic® F-127) and mucoadhesive polymer (Noveon® AA-1), producing gels of different characteristics. Prototype polymeric gels were evaluated for pH, osmolality, buffering capacity, and viscosity under simulated vaginal semen dilutions, and bioadhesivity using ex vivo mini pig vaginal tissues and texture analyzer. The pH of the polymeric gel formulations ranged from 5.1 to 6.4; the osmolality varied from 13 to 173 mOsm. Absolute viscosity ranged from 513 to 3,780 cPs, and was significantly reduced (1.5- to 3-fold) upon incubation with simulated vaginal and semen fluid mixture. Among the tested gels (indicated in the middle row as a molar ratio of a mixture of Noveon vs. Pluronic), only SR-2P retained gel structure upon dilution with simulated fluids and mild simulated coital stress. The pH of the SR-2P gel was maintained at about 4.6 in simulated vaginal fluid and also showed high peak force of adhesion in mini pig vaginal tissue. Furthermore, SR-2P gel caused no or only minimal irritation in a mouse vaginal irritation model. The results of this preliminary study demonstrated the potential application of SR-2P gel as a vaginal microbicide vehicle for delivery of anti-HIV agents. PMID:24781671

  14. Cell response to silica gels with varying mechanical properties

    NASA Astrophysics Data System (ADS)

    Lefebvre, Molly Ann

    Sol-gel encapsulation has a variety of applications in biotechnology and medicine: creating biosensors, biocatalysts, and bioartificial organs. However, encapsulated cell viability is a major challenge. Consequently, interactions between cells and their 3D microenvironment were studied through rheological, metabolic activity, and extraction studies to aid in the development of new gel protocols. The cells were encapsulated in variations of three silica sol-gels with varying stiffness. It was hypothesized that the cell viability and the amount of extracted cells would depend on gel stiffness. For two gels, there was no apparent correlation between the gel stiffness and the cell viability and extracted cell quantity. These gels did strongly depend on the varying gel ingredient, polyethylene glycol. The third gel appeared to follow the hypothesized correlation, but it was not statistically significant. Finally, one gel had a significantly longer period of cell viability and higher quantity of extracted cells than the other gels.

  15. Influence of gel dimensions on resolution and sample throughput on two-dimensional gels.

    PubMed

    Lee, KiBeom; Pi, KyungBae; Lee, Hong-Gu

    2008-04-01

    To achieve high throughput and economical format of 2-D PAGE, comparison between gel size and resolution was conducted on human breast carcinoma cell line (MCF-7/AZ) proteins. SDS gel length showed a weaker influence of separation length on resolution in the second dimension, and there was little benefit of separation distances greater than 15 to 19 cm. IPG strip separation distances were very important with dramatic increase in resolution of longer gels compared with smaller gels, and maximal resolution was obtained using 18- and 24-cm IPG strips. Loading optimal amount of proteins on 2-D gels can also increase the number of detected spots. Therefore, taken together, compromise 2-D gels are crucial for higher capacity and higher throughput. PMID:18457572

  16. Manual control of catalytic reactions: Reactions by an apoenzyme gel and a cofactor gel

    PubMed Central

    Kobayashi, Yuichiro; Takashima, Yoshinori; Hashidzume, Akihito; Yamaguchi, Hiroyasu; Harada, Akira

    2015-01-01

    Enzymes play a vital role in catalysing almost all chemical reactions that occur in biological systems. Some enzymes must form complexes with non-protein molecules called cofactors to express catalytic activities. Although the control of catalytic reactions via apoenzyme–cofactor complexes has attracted significant attention, the reports have been limited to the microscale. Here, we report a system to express catalytic activity by adhesion of an apoenzyme gel and a cofactor gel. The apoenzyme and cofactor gels act as catalysts when they form a gel assembly, but they lose catalytic ability upon manual dissociation. We successfully construct a system with switchable catalytic activity via adhesion and separation of the apoenzyme gel with the cofactor gel. We expect that this methodology can be applied to regulate the functional activities of enzymes that bear cofactors in their active sites, such as the oxygen transport of haemoglobin or myoglobin and the electron transport of cytochromes. PMID:26537172

  17. Manual control of catalytic reactions: Reactions by an apoenzyme gel and a cofactor gel

    NASA Astrophysics Data System (ADS)

    Kobayashi, Yuichiro; Takashima, Yoshinori; Hashidzume, Akihito; Yamaguchi, Hiroyasu; Harada, Akira

    2015-11-01

    Enzymes play a vital role in catalysing almost all chemical reactions that occur in biological systems. Some enzymes must form complexes with non-protein molecules called cofactors to express catalytic activities. Although the control of catalytic reactions via apoenzyme-cofactor complexes has attracted significant attention, the reports have been limited to the microscale. Here, we report a system to express catalytic activity by adhesion of an apoenzyme gel and a cofactor gel. The apoenzyme and cofactor gels act as catalysts when they form a gel assembly, but they lose catalytic ability upon manual dissociation. We successfully construct a system with switchable catalytic activity via adhesion and separation of the apoenzyme gel with the cofactor gel. We expect that this methodology can be applied to regulate the functional activities of enzymes that bear cofactors in their active sites, such as the oxygen transport of haemoglobin or myoglobin and the electron transport of cytochromes.

  18. Current scenario of biomedical aspect of metal-based nanoparticles on gel dosimetry.

    PubMed

    Titus, Deena; Samuel, E James Jebaseelan; Mohana Roopan, Selvaraj

    2016-06-01

    In past decades, the possibility of using high atomic number nanoparticle has gained interest in gel dosimetry to enhance the dose deposited in the tumor while using low radiation as well as for better imaging purposes. Sparing of healthy tissues and targeting the tumor part have become much more captivating with the help of these systems. The gel dosimetry is a the three-dimensional dosimeter for extracting the dose, which can be used along with the nanoparticles like gold, platinum, and silver, for better therapeutic efficiency for modern radiotherapy techniques. These nanoparticles of different size prepared either by chemical route or green synthesis and incorporated into the gel system respond in a different manner. Having wide applications in therapeutic field, this study reviews the use of gel dosimeters in the therapeutic procedures and also with the aid of nanoparticles so as to achieve dose enhancement. The biological activity of the various nanoparticles has been discussed. PMID:27100529

  19. Effects of gel properties produced by chemical reactions on viscous fingering

    NASA Astrophysics Data System (ADS)

    Ujiie, Tomohiro; Nagatsu, Yuichiro; Ban, Mitsumasa; Iwata, Shuichi; Kato, Yoshihito; Tada, Yutaka

    2011-11-01

    We have experimentally investigated viscous fingering with chemical reaction producing gel. Here, two systems were employed. In one system, sodium polyacrylate (SPA) solution and ferric ion solution were used as the more and less viscous liquids, respectively. In another system, xthantan gum (XG) solution and the ferric ion solution were used as the more and less viscous liquids, respectively. For high concentration of ferric ion, viscous fingering pattern was changed into spiral pattern in the former system, whereas into fracture pattern in the latter system. We consider that the difference in the change of the patterns in the two systems will be caused by the difference in the properties of the gels. Therefore, we have measured the rheological properties of the gels by means of a rheometer. We have found that the gel in the former case is more elastic. Furthermore, we have discussed the relationship between the measured rheological properties and the observed spiral or fracturing patterns.

  20. Effect of temperature and pH on contraceptive gel viscosity.

    PubMed

    Owen, Derek H; Peters, Jennifer J; Lavine, Michael L; Katz, David F

    2003-01-01

    The rheological properties of four commercially available spermicidal gels (two polyacrylic acid derivatives and two carboxymethylcellulose based) and their dilutions with a vaginal fluid simulant (pH 4.2) and a semen simulant (pH 7.7) were measured at 25 degrees C and 37 degrees C over a biologically relevant range of shear rates. All four gels were shear thinning with temperature-dependent rheological properties. The two types of gels responded differently to dilution. The rheological properties of the polyacrylic acid derivative gels were strongly dependent on the type of diluent used. Their viscosities after dilution with the semen simulant were 100 times greater than after comparable dilutions with the vaginal fluid simulant, this effect being due primarily to the higher pH. The cellulose gels did not exhibit such an effect. These results suggest that the polyacrylic acid and cellulose gels interact differently with the vaginal environment in vivo. Such differences could lead to differences in the extent and durability of epithelial coating. PMID:12521660

  1. Variations in microbicide gel acceptability among young women in the USA and Puerto Rico.

    PubMed

    Giguere, Rebecca; Carballo-Diéguez, Alex; Ventuneac, Ana; Mabragaña, Marina; Dolezal, Curtis; Chen, Beatrice A; Kahn, Jessica A; Zimet, Gregory D; McGowan, Ian

    2012-01-01

    In a multi-site study of vaginal microbicide acceptability conducted with sexually active young women, quantitative assessments revealed significant differences in acceptability by site. Participants in Puerto Rico rated the gel more favourably than mainland US participants in terms of liking the gel and likelihood of future use. To explain these differences, we examined responses to qualitative behavioural assessments. Young women in mainland USA associated gel leakage with uncomfortable sensations experienced during menstruation, while young women in Puerto Rico had positive associations of gel use with douching. These negative or positive associations affected assessments of the gel's physical qualities. In addition, young women's perceptions of primary partners' support for microbicide use influenced sexual satisfaction with the gel and, ultimately, product acceptability. Finally, geographic HIV-risk context contributed to heightened HIV-risk perception, which influenced likelihood of future microbicide use, even for women in stated monogamous relationships. Future microbicide acceptability studies should take into account potential differences in acceptability by site such as HIV-risk perception based on local HIV prevalence, popularity of vaginal hygiene products in a specific area and male attitudes in different cultures concerning women's use of HIV protection strategies. PMID:22084840

  2. Sol-gel antireflective coating on plastics

    DOEpatents

    Ashley, C.S.; Reed, S.T.

    1988-01-26

    An antireflection film made from reliquified sol-gel hydrolyzation, condensation polymeric reaction product of a silicon, alkoxides and/or metal alkoxides, or mixtures thereof. The film is particularly useful for coating plastics.

  3. Magnetic Hyperthermia in ferrofluid-gel composites

    NASA Astrophysics Data System (ADS)

    Nemala, Humeshkar; Wadehra, Anshu; Dixit, Ambesh; Regmi, Rajesh; Vaishnava, Prem; Lawes, Gavin; Naik, Ratna

    2012-02-01

    Magnetic hyperthermia is the generation of heat by an external magnetic field using superparamagnetic nanoparticles. However, there are still questions concerning magnetic hyperthermia in tissue; in particular the confinement of the nanoparticles at mesoscopic scales. We used Agarose and Alginate gels as models for human tissue and embedded magnetic nanoparticles in them. We report the synthesis and characterization of dextran coated iron oxide (Fe3O4) nanoparticles. Characterization of these nanoparticles was done using X-ray diffraction, transmission electron microscopy, magnetometry, and hyperthermia measurements. Temperature dependent susceptibility measurements reveal a sharp anomaly in the ferrofluid sample at the freezing temperature. This is conspicuously absent in the ferrofluid-gel composites. Heat generation studies on these superparamagnetic gel-composites revealed a larger heat production in the ferrofluids(˜4W/g) as compared to the gels(˜1W/g), which we attribute to a reduction in Brownian relaxation for the nanoparticles embedded in Agarose and Alginate.

  4. Turbidimetric studies of Limulus coagulin gel formation.

    PubMed Central

    Moody, T P; Donovan, M A; Laue, T M

    1996-01-01

    The turbidity during trypsin-induced coagulin gel formation was studied over a range of wavelengths. The range of wavelengths used (686-326 nm) also made it possible to investigate the dependence of turbidity on wavelength (the wavelength exponent). Using the results from that work, and structural information on coagulin and the coagulin gel from other studies, a model gel-forming system was designed that consists of species for which the turbidity can be calculated relatively simply. These species include small particles (small in all dimensions relative to the wavelength of incident light); long rods and long random coils (particles that are large in just one dimension relative to the wavelength of incident light); and reflective regions (aggregated material that is large in more than one dimension relative to the wavelength of incident light). The turbidimetric characteristics of the real coagulin gel-forming system are compared with those of the model system. PMID:8889175

  5. Elastocapillary Deformations and Fracture of Soft Gels

    NASA Astrophysics Data System (ADS)

    Daniels, Karen; Grzelka, Marion; Bostwick, Joshua

    When a droplet is placed on the surface of a soft gel, the surface deforms by an amount proportional to the elastocapillary length calculated from the ratio of surface tension and elastic modulus. For sufficiently large deformations, the gel can fracture due to the forces generated under the liquid-gel contact line. We observe that a starburst of channel fractures forms at the surface of the gel, driven by fluid propagating away from the central droplet. To understand the initiation of these cracks, we model the substrate as an incompressible, linear-elastic solid and quantify the elastic response. This provides quantitative agreement with experimental measurements of the number of fracture arms as a function of material properties and geometric parameters. In addition, we find that the initiation process is thermally-activated, with delay time that decreases as a function of the elastocapillary length.

  6. Sol-gel antireflective coating on plastics

    DOEpatents

    Ashley, Carol S.; Reed, Scott T.

    1990-01-01

    An antireflection film made from a reliquified sol-gel hydrolyzation, condensation polymeric reaction product of a silicon, alkoxides and/or metal alkoxides, or mixtures thereof. The film is particularly useful for coating plastics.

  7. Procedure to prepare transparent silica gels

    NASA Technical Reports Server (NTRS)

    Barber, Patrick G. (Inventor); Simpson, Norman R. (Inventor)

    1987-01-01

    This invention relates to the production of silica gels and in particular to a process for the preparation of silica gels which can be used as a crystal growth medium that simulates the convectionless environment of space to produce structurally perfect crystals. Modern utilizations of substances in electronics, such as radio transmitters and high frequency microphones, often require single crystals with controlled purity and structural perfection. The near convectionless environment of silica gel suppresses nucleation, thereby reducing the competitive nature of crystal growth. This competition limits the size and perfection of the crystal; and it is obviously desirable to suppress nucleation until, ideally, only one crystal grows in a predetermined location. A silica gel is not a completely convectionless environment like outer space, but is the closest known environment to that of outer space that can be created on Earth.

  8. Sol-gel deposited electrochromic coatings

    SciTech Connect

    Ozer, N.; Lampert, C.M.

    1995-06-01

    Electrochromic devices have increasing application in display devices, switchable mirrors and smart windows. A variety of vacuum deposition technologies have been used to make electrochromic devices. The sol- gel process offers an alternative approach to the synthesis of optical quality and low cost electrochromic device layers. This study summarizes the developments in sol-gel deposited electrochromic films. The sol-gel process involves the formation of oxide networks upon hydrolysis-condensation of alkoxide precursors. In this study we cover the sol-gel deposited oxides of WO[sub 3], V[sub 2]O[sub 5], TiO[sub 2], Nb[sub 2]O[sub 5], and NiO[sub x].

  9. K-Basin gel formation studies

    SciTech Connect

    Beck, M.A.

    1998-07-23

    A key part of the proposed waste treatment for K Basin sludge is the elimination of reactive uranium metal by dissolution in nitric acid (Fkirnent, 1998). It has been found (Delegard, 1998a) that upon nitric acid dissolution of the sludge, a gel sometimes forms. Gels are known to sometimes impair solid/liquid separation and/or material transfer. The purpose of the work reported here is to determine the cause(s) of the gel formation and to determine operating parameters for the sludge dissolution that avoid formation of gel. This work and related work were planned in (Fkunent, 1998), (Jewett, 1998) and (Beck, 1998a). This report describes the results of the tests in (Beck, 1998a) with non-radioactive surrogates.

  10. Advanced gel propulsion controls for kill vehicles

    NASA Astrophysics Data System (ADS)

    Yasuhara, W. K.; Olson, A.; Finato, S.

    1993-06-01

    A gel propulsion control concept for tactical applications is reviewed, and the status of the individual component technologies currently under development at the Aerojet Propulsion Division is discussed. It is concluded that a gel propellant Divert and Attitude Control Subsystem (DACS) provides a safe, insensitive munitions compliant alternative to current liquid Theater Missile Defense (TMD) DACS approaches. The gel kill vehicle (KV) control system packages a total impulse typical of a tactical weapon interceptor for the ground- or sea-based TMD systems. High density packaging makes it possible to increase firepower and to eliminate long-term high pressure gas storage associated with bipropellant systems. The integrated control subsystem technologies encompass solid propellant gas generators, insulated composite overwrapped propellant tanks, lightweight endoatmospheric thrusters, and insensitive munition gel propellants, which meet the requirements of a deployable, operationally safe KV.

  11. Sample collection system for gel electrophoresis

    SciTech Connect

    Olivares, Jose A.; Stark, Peter C.; Dunbar, John M.; Hill, Karen K.; Kuske, Cheryl R.; Roybal, Gustavo

    2004-09-21

    An automatic sample collection system for use with an electrophoretic slab gel system is presented. The collection system can be used with a slab gel have one or more lanes. A detector is used to detect particle bands on the slab gel within a detection zone. Such detectors may use a laser to excite fluorescently labeled particles. The fluorescent light emitted from the excited particles is transmitted to low-level light detection electronics. Upon the detection of a particle of interest within the detection zone, a syringe pump is activated, sending a stream of buffer solution across the lane of the slab gel. The buffer solution collects the sample of interest and carries it through a collection port into a sample collection vial.

  12. Optical computed tomography of radiochromic gels for accurate three-dimensional dosimetry

    NASA Astrophysics Data System (ADS)

    Babic, Steven

    In this thesis, three-dimensional (3-D) radiochromic Ferrous Xylenol-orange (FX) and Leuco Crystal Violet (LCV) micelles gels were imaged by laser and cone-beam (Vista(TM)) optical computed tomography (CT) scanners. The objective was to develop optical CT of radiochromic gels for accurate 3-D dosimetry of intensity-modulated radiation therapy (IMRT) and small field techniques used in modern radiotherapy. First, the cause of a threshold dose response in FX gel dosimeters when scanned with a yellow light source was determined. This effect stems from a spectral sensitivity to multiple chemical complexes that are at different dose levels between ferric ions and xylenol-orange. To negate the threshold dose, an initial concentration of ferric ions is needed in order to shift the chemical equilibrium so that additional dose results in a linear production of a coloured complex that preferentially absorbs at longer wavelengths. Second, a low diffusion leuco-based radiochromic gel consisting of Triton X-100 micelles was developed. The diffusion coefficient of the LCV micelle gel was found to be minimal (0.036 + 0.001 mm2 hr-1 ). Although a dosimetric characterization revealed a reduced sensitivity to radiation, this was offset by a lower auto-oxidation rate and base optical density, higher melting point and no spectral sensitivity. Third, the Radiological Physics Centre (RPC) head-and-neck IMRT protocol was extended to 3-D dose verification using laser and cone-beam (Vista(TM)) optical CT scans of FX gels. Both optical systems yielded comparable measured dose distributions in high-dose regions and low gradients. The FX gel dosimetry results were crossed checked against independent thermoluminescent dosimeter and GAFChromicRTM EBT film measurements made by the RPC. It was shown that optical CT scanned FX gels can be used for accurate IMRT dose verification in 3-D. Finally, corrections for FX gel diffusion and scattered stray light in the Vista(TM) scanner were developed to

  13. Rheological Characterization of Ethanolamine Gel Propellants

    NASA Astrophysics Data System (ADS)

    V. S Jyoti, Botchu; Baek, Seung Wook

    2016-07-01

    Ethanolamine is considered to be an environmentally friendly propellant system because it has low toxicity and is noncarcinogenic in nature. In this article, efforts are made to formulate and prepare ethanolamine gel systems, using pure agarose and hybrids of paired gelling agents (agarose + polyvinylpyrrolidine (PVP), agarose + SiO2, and PVP + SiO2), that exhibit a measurable yield stress, thixotropic behavior under shear rate ranges of 1-1,000 s-1 and a viscoelastic nature. To achieve these goals, multiple rheological experiments (including flow and dynamic studies) are performed. In this article, results are presented from experiments measuring the apparent viscosity, yield stress, thixotropy, dynamic strain, frequency sweep, and tan δ behaviors, as well as the effects of the test temperature, in the gel systems. The results show that the formulated ethanolamine gels are thixotropic in nature with yield stress between 30 and 60 Pa. The apparent viscosity of the gel decreases as the test temperature increases, and the apparent activation energy is the lowest for the ethanolamine-(PVP + SiO2) gel system. The dynamic rheology study shows that the type of gellant, choice of hybrid gelling materials and their concentration, applied frequencies, and strain all vitally affect the viscoelastic properties of the ethanolamine gel systems. In the frequency sweep experiment, the ethanolamine gels to which agarose, agarose + PVP, and agarose + SiO2 were added behave like linear frequency-dependent viscoelastic liquids, whereas the ethanolamine gel to which PVP + SiO2 was added behaves like a nearly frequency-independent viscoelastic solid. The variation in the tan δ of these gelled propellants as a function of frequency is also discussed.

  14. Annular gel reactor for chemical pattern formation

    DOEpatents

    Nosticzius, Zoltan; Horsthemke, Werner; McCormick, William D.; Swinney, Harry L.; Tam, Wing Y.

    1990-01-01

    The present invention is directed to an annular gel reactor suitable for the production and observation of spatiotemporal patterns created during a chemical reaction. The apparatus comprises a vessel having at least a first and second chamber separated one from the other by an annular polymer gel layer (or other fine porous medium) which is inert to the materials to be reacted but capable of allowing diffusion of the chemicals into it.

  15. Sol-Gels for Optical Sensors

    NASA Astrophysics Data System (ADS)

    Podbielska, Halina; Ulatowska-Jarża, Agnieszka; Müller, Gerhard; Eichler, Hans J.

    Sol-gel process allows for formation of glassy and ceramics materials in temperatures much lower than offered by conventional melting techniques. The first paper on sol-gels was published over 150 years ago by Ebelmen, however, the rapid development of this technology and applications occurred in the last few years. There is a broad range of possible applications of solgel derived materials, what marked this technology as one of the most promising fields of contemporary material sciences

  16. Comparative evaluation of turmeric gel with 2% chlorhexidine gluconate gel for treatment of plaque induced gingivitis: A randomized controlled clinical trial

    PubMed Central

    Kandwal, Abhishek; Mamgain, Ravindra Kumar; Mamgain, Pratibha

    2015-01-01

    Introduction: Ayurveda is regarded as most ancient traditional system of medicine originated in India having its root back in the Vedas. Medicinal herbs have been long employed to improve the oral health by means of frequently used therapeutic procedures Kavala (gargling) and Gandusha (holding of medicated liquids in the mouth). Gingivitis is most common ailment that results in bleeding gums and halitosis. Aim: To evaluate the efficacy of turmeric gel as an anti-plaque and anti-gingivitis agent compared to chlorhexidine gel. Materials and Methods: Sixty patients with plaque-induced gingivitis were divided into two groups, Group A was given turmeric gel and Group B was given chlorhexidine gel for 21 days in vaccupress trays. Plaque and gingival index were taken at baseline, 14 days and 21 days. Subjective and objective criteria were evaluated at 14 and 21 days. Results: On comparison of Group A and Group B, statistically insignificant difference was observed at 14 and 21 days. Reduction in plaque index at 0 and 21 days was 60.81% and 60.21% for turmeric and chlorhexidine group, respectively. Reduction in the gingival index at 0 and 21 days was 71.79% and 71.20% for turmeric and chlorhexidine group, respectively. Conclusion: Both groups reported a comparable reduction in plaque and gingival index. Turmeric gel reported better acceptance due to pleasant odor and no staining of teeth in comparison to chlorhexidine gel that reported a bitter taste and staining of teeth. PMID:27011714

  17. Spectral and AFM characterization of trimethylammoniophenylporphyrin and concanavalin A associate in solution and monolithic SiO 2 gels obtained by the sol-gel method

    NASA Astrophysics Data System (ADS)

    Polska, Katarzyna; Radzki, Stanisław

    2008-06-01

    The associate between water-soluble cationic tetrakis[4-(trimethylammonio)phenyl] porphyrin (H2TTMePP) and concanavalin A (Con A) has been studied in the tris-buffer solution by absorption and emission electron spectroscopy. The porphyrin and porphyrin concanavalin associate has been incorporated into the monolithic pure silica gels obtained by polycondensation of tetraethoxysilane. The optically transparent dried gels were studied using absorption and fluorescence spectroscopic techniques and also by the tapping mode of atomic force microscopy (AFM). Complex formation between porphyrin and concanavalin takes place in both solution and gel. In these media porphyrin and its lectin associate exhibit luminescence emission in the vis-ir range when excited with visible light. Upon binding to concanavalin A the increase in porphyrin fluorescence intensity and the red-shift in the absorption and emission maxima have been observed. AFM visualisation of porphyrin and the porphyrin-concanavalin conjugate shows significant differences between nanostructures of the pure porphyrin and complex doped gels. It has been found that the ''smooth'' surfaces of silica gels prepared by the sol-gel technique are an excellent medium for the AFM visualisation of biomolecules.

  18. Diacerein niosomal gel for topical delivery: development, in vitro and in vivo assessment.

    PubMed

    El-Say, Khalid M; Abd-Allah, Fathy I; Lila, Ahmed E; Hassan, Abd El-Saboor A; Kassem, Alaa Eldin A

    2016-01-01

    The purpose of this study was to load diacerein (DCR) in niosomes by applying response surface methodology and incorporate these niosomes in gel base for topical delivery. Box-Behnken design was used to investigate the effect of charge-inducing agent (X1), surfactant HLB (X2) and sonication time (X3) on the vesicle size (Y1), entrapment efficiency (Y2) and cumulative drug released (Y3). DCR niosomal formulations were prepared by thin film hydration method. The optimized formula was incorporated in different gel bases. DCR niosomal gels were evaluated for homogeneity, rheological behavior; in vitro release and pharmacodynamic activity by carrageenan-induced hind paw edema method in the rat compared with DCR commercial gel. The results revealed that the mean vesicle sizes of the prepared niosomes ranged from 7.33 to 23.72 µm and the entrapment efficiency ranged from 9.52% to 58.43% with controlled release pattern over 8 h. DCR niosomal gels exhibited pseudoplastic flow with thixotropic behavior. The pharmacodynamic activity of DCR niosomal gel in 3% HPMC showed significant, 37.66%, maximum inhibition of edema size in comparison with 20.83% for the commercial gel (p < 0.05). These results recommended the incorporation of DCR niosomes in 3% HPMC for topical application as a potent anti-inflammatory drug for the treatment of osteoarthritis. PMID:25853339

  19. Novel gels and their dispersions--oral drug delivery systems for ciclosporin.

    PubMed

    Murdan, Sudaxshina; Andrýsek, Tomas; Son, Delphine

    2005-08-26

    Amphiphilogels (gels that consist solely of surfactants) and gel-based emulsion (GEM) formulations (solutions that gel upon incorporation of small amounts of water) were investigated as oral delivery vehicles for ciclosporin A, in in vivo experiments in Beagle dogs. Both systems represent essentially self-dispersing non-lipidic drug delivery systems based on amphiphilic surfactants. Three different amphiphilogels (hydrophobic, hydrophilic and hydrophilic gel containing ethanol), the aqueous dispersions of the latter two amphiphilogels and of two GEM formulations were tested to determine the influence of (i) gel hydrophilicity/hydrophobicity, (ii) presence of ethanol, (iii) pre-dispersion of gels into aqueous medium prior to oral administration and (iv) size of dispersions, on drug absorption. It was found that all the formulations tested, except for the hydrophilic amphiphilogel and its aqueous dispersion, were bioequivalent to Neoral, the commercially available preparation. High drug absorption from the bioequivalent formulations was thought to be due to the fact that following oral administration, ciclosporin remained in a soluble form, hence was available for absorption, despite relatively large droplet sizes of the formulations. The hydrophilic gel and its dispersion allowed less drug absorption; this was assigned to the fact that, when the hydrophilic amphiphilogel contacted an aqueous medium, there were no lipophilic domains in which the drug could remain soluble. It is possible that some drug precipitated out and was unavailable for absorption. PMID:16009515

  20. Comparison of non-electrophoresis grade with electrophoresis grade BIS in NIPAM polymer gel preparation

    PubMed Central

    Khodadadi, Roghayeh; Khajeali, Azim; Farajollahi, Ali Reza; Hajalioghli, Parisa; Raeisi, Noorallah

    2015-01-01

    Introduction:The main objective of this study was to investigate the possibility of replacing electrophoresis cross-linker with non-electrophoresis N, N′-methylenebisacrylamide (BIS) in N-isopropyl acrylamide (NIPAM) polymer gel and its possible effect on dose response. Methods: NIPAM polymer gel was prepared from non-electrophoresis grade BIS and the relaxation rate (R2) was measured by MR imaging after exposing the gel to gamma radiation from Co-60 source. To compare the response of this gel with the one that contains electrophoresis grade BIS, two sets of NIPAM gel were prepared using electrophoresis and non-electrophoresis BIS and irradiated to different gamma doses. Results: It was found that the dose–response of NIPAM gel made from the non-electrophoresis grade BIS is coincident with that of electrophoresis grade BIS. Conclusion:Taken all, it can be concluded that the non-electrophoresis grade BIS not only is a suitable alternative for the electrophoresis grade BIS but also reduces the cost of gel due to its lower price. PMID:26457250

  1. Gelatin methacrylate (GelMA) mediated electrochemical DNA biosensor for DNA hybridization.

    PubMed

    Topkaya, Seda Nur

    2015-02-15

    In this study, an electrochemical biosensor system for the detection of DNA hybridization by using gelatin methacrylate (GelMA) modified electrodes was developed. Electrochemical behavior of GelMA modified Pencil Graphite Electrode (PGE) that serve as a functional platform was investigated by using Cyclic Voltammetry (CV) and Electrochemical Impedance Spectroscopy (EIS) and compared with those of the bare PGE. Hybridization was achieved in solution phase and guanine oxidation signal changes were evaluated. The decrease in the guanine oxidation peak currents at around +1.0 V was used as an indicator for the DNA hybridization. Also, more interestingly GelMA intrinsic oxidation peaks at around +0.7 V changed substantially by immobilization of different oligonucleotides such as probe, hybrid and control sequences to the electrode surface. It is the first study of using GelMA as a part of an electrochemical biosensor system. The results are very promising in terms of using GelMA as a new DNA hybridization indicator. Additionally, GelMA modified electrodes could be useful for detecting ultra low quantity of oligonucleotides by providing mechanical support to the bio-recognition layer. The detection limit of this method is at present 10(-12)mol. Signal suppressions were increased from 50% to 93% for hybrid with using GelMA when it was compared to bare electrode which facilitates the hybridization detection. PMID:25286352

  2. Retrogradation of Waxy Rice Starch Gel in the Vicinity of the Glass Transition Temperature

    PubMed Central

    Charoenrein, Sanguansri; Udomrati, Sunsanee

    2013-01-01

    The retrogradation rate of waxy rice starch gel was investigated during storage at temperatures in the vicinity of the glass transition temperature of a maximally concentrated system (Tg′), as it was hypothesized that such temperatures might cause different effects on retrogradation. The Tg′ value of fully gelatinized waxy rice starch gel with 50% water content and the enthalpy of melting retrograded amylopectin in the gels were investigated using differential scanning calorimetry. Starch gels were frozen to −30°C and stored at 4, 0, −3, −5, and −8°C for 5 days. The results indicated that the Tg′ value of gelatinized starch gel annealed at −7°C for 15 min was −3.5°C. Waxy rice starch gels retrograded significantly when stored at 4°C with a decrease in the enthalpy of melting retrograded starch in samples stored for 5 days at −3, −5, and −8°C, respectively, perhaps due to the more rigid glass matrix and less molecular mobility facilitating starch chain recrystallization at temperatures below Tg′. This suggests that retardation of retrogradation of waxy rice starch gel can be achieved at temperature below Tg′. PMID:26904602

  3. Preparation and in vitro evaluation of Nystatin micro emulsion based gel.

    PubMed

    Maqsood, Iram; Masood, Muhammad Irfan; Bashir, Sajid; Nawaz, Hafiz Muhammad Awais; Anjum, Aftab Ahmad; Shahzadi, Iram; Ahmad, Mahmood; Imran Masood, Imran Masood

    2015-09-01

    Nystatin is a polyene antimycotic obtained from Streptomyces noursei used in the treatment of topical and transdermal fungal infection. Nystatin is nearly insoluble in water (<0.1) and it is amphoteric in nature. The aim of the present study was to design and develop Nystatin micro emulsion based gel for efficient delivery of drug to the skin by water titration method. The Pseudoternary phase diagrams 1:2, 1:1 and 2:1 were constructed by water titration method. Micro emulsion based gel was prepared by using oleic acid, Tween 20, propylene glycol as an oil phase, surfactant and cosurfactant respectively. Cabopol 940 was used as a gelling agent. In vitro evaluation of micro emulsion based gel was done for pH, Viscosity, spreadability and droplet size. Micro emulsion based gel showed greater antifungal activity against Candida albicansas compared to control formulations. In vitro drug release studies were conducted for micro emulsion based gel and control formulation using Franz diffusion cell. Drug penetration through synthetic skin followed Zero order model as the values for R2 higher in case of zero order equation. The optimized micro emulsion based gel was found to be stable and showed no physical changes when exposed to different temperatures for a period of 4 week. The results indicated that the micro emulsion based gel system studied would be a promising tool for enhancing the percutaneous delivery of Nystatin. PMID:26408879

  4. Quantification and macroscopic modeling of the nonlinear viscoelastic behavior of strained gels with varying fibrin concentrations.

    PubMed

    Benkherourou, M; Guméry, P Y; Tranqui, L; Tracqui, P

    2000-11-01

    The mechanical properties of fibrin gels under uniaxial strains have been analyzed for low fibrin concentrations using a free-floating gel device. We were able to quantify the viscous and elastic moduli of gels with fibrin concentration ranging from 0.5 to 3 mg/ml, reporting significant differences of biogels moduli and dynamical response according to fibrin concentration. Furthermore, considering sequences of successively imposed step strains has revealed the strain-hardening properties of fibrin gels for strain amplitude below 5%. This nonlinear viscoelastic behavior of the gels has been precisely analyzed through numerical simulations of the overall gel response to the strain steps sequences. Phenomenological power laws relating the instantaneous and relaxed elasticity moduli to fibrin concentration have been validated, with concentration exponent in the order of 1.2 and 1.0, respectively. This continuous description of strain-dependent mechanical moduli was then used to simulate the biogel behavior when continuously time-varying strains are applied. We discuss how this experimental setup and associated macroscopic modeling of fibrin gels enable a further quantification of cell traction forces and mechanotransduction processes induced by biogel compaction or stretching. PMID:11077740

  5. Low molecular weight heparin gels, based on nanoparticles, for topical delivery.

    PubMed

    Loira-Pastoriza, C; Sapin-Minet, A; Diab, R; Grossiord, J L; Maincent, P

    2012-04-15

    A commercial suspension of nanoparticles (Eudragit RS 30D) was used to manufacture a gel for topical application. Gels were prepared by mixing a polycationic polymer (Eudragit(®) RS 30D) and a low molecular weight heparin (LMWH), an antithrombotic agent. Gels formed spontaneously at a ratio of 1:1 as a result of electrostatic interactions between the polyanionic drug and the polycationic polymer. Different types of heparin were used: Bemiparin, Enoxaparin (Lovenox), Nadroparin (Fraxiparin) and Tinzaparin (Innohep). Several LMWH concentrations were tested. Rheological measurements were performed to investigate the gel behavior. Gel formation was confirmed by dynamic rheological measurements as the elastic modulus (G') was higher than the viscous one (G″). The amount of heparin incorporated into the gel matrix was determined. A maximum of incorporation (100%) was reached using a heparin solution of 600 IU/mL. The release kinetics of LMWH from the gel were also studied. Regardless of the LMWH used in the formulation, a biphasic release profile was observed. Accordingly, a burst effect was observed. Afterwards, the release rate became steady. The penetration of the LMWH through the dermal barrier was also investigated. PMID:22310458

  6. Optical and NMR dose response of N-isopropylacrylamide normoxic polymer gel for radiation therapy dosimetry

    PubMed Central

    Mesbahi, Asghar; Jafarzadeh, Vahid; Gharehaghaji, Nahideh

    2012-01-01

    Background Application of less toxic normoxic polymer gel of N-isopropyl acrylamide (NIPAM) for radiation therapy has been studied in recent years. Aim In the current study the optical and NMR properties of NIPAM were studied for radiation therapy dosimetry application. Materials and methods NIPAM normoxic polymer gel was prepared and irradiated by 9 MV photon beam of a medical linac. The optical absorbance was measured using a conventional laboratory spectrophotometer in different wavelengths ranging from 390 to 860 nm. R2 measurements of NIPAM gels were performed using a 1.5 T scanner and R2–dose curve was obtained. Results Our results showed R2 dose sensitivity of 0.193 ± 0.01 s−1 Gy−1 for NIPAM gel. Both R2 and optical absorbance showed a linear relationship with dose from 1.5 to 11 Gy for NIPAM gel dosimeter. Moreover, absorbance–dose response varied considerably with light wavelength and highest sensitivity was seen for the blue part of the spectrum. Conclusion Our results showed that both optical and NMR approaches have acceptable sensitivity and accuracy for dose determination with NIPAM gel. However, for optical reading of the gel, utilization of an optimum optical wavelength is recommended. PMID:24377016

  7. Synthesis, properties, and biomedical applications of gelatin methacryloyl (GelMA) hydrogels.

    PubMed

    Yue, Kan; Trujillo-de Santiago, Grissel; Alvarez, Mario Moisés; Tamayol, Ali; Annabi, Nasim; Khademhosseini, Ali

    2015-12-01

    Gelatin methacryloyl (GelMA) hydrogels have been widely used for various biomedical applications due to their suitable biological properties and tunable physical characteristics. GelMA hydrogels closely resemble some essential properties of native extracellular matrix (ECM) due to the presence of cell-attaching and matrix metalloproteinase responsive peptide motifs, which allow cells to proliferate and spread in GelMA-based scaffolds. GelMA is also versatile from a processing perspective. It crosslinks when exposed to light irradiation to form hydrogels with tunable mechanical properties. It can also be microfabricated using different methodologies including micromolding, photomasking, bioprinting, self-assembly, and microfluidic techniques to generate constructs with controlled architectures. Hybrid hydrogel systems can also be formed by mixing GelMA with nanoparticles such as carbon nanotubes and graphene oxide, and other polymers to form networks with desired combined properties and characteristics for specific biological applications. Recent research has demonstrated the proficiency of GelMA-based hydrogels in a wide range of tissue engineering applications including engineering of bone, cartilage, cardiac, and vascular tissues, among others. Other applications of GelMA hydrogels, besides tissue engineering, include fundamental cell research, cell signaling, drug and gene delivery, and bio-sensing. PMID:26414409

  8. Evaluation of Skin Permeation and Analgesic Activity Effects of Carbopol Lornoxicam Topical Gels Containing Penetration Enhancer

    PubMed Central

    Al-Suwayeh, Saleh A.; Taha, Ehab I.; Al-Qahtani, Fahad M.; Ahmed, Mahrous O.; Badran, Mohamed M.

    2014-01-01

    The current study was designed to develop a topical gel formulation for improved skin penetration of lornoxicam (LOR) for enhancement of its analgesic activity. Moreover, the effect of different penetration enhancers on LOR was studied. The LOR gel formulations were prepared by using hydroxylpropyl methylcellulose (HPMC) and carbopol. The carbopol gels in presence of propylene glycol (PG) and ethanol were developed. The formulated gels were characterized for pH, viscosity, and LOR release using Franz diffusion cells. Also, in vitro skin permeation of LOR was conducted. The effect of hydroxypropyl β-cyclodextrin (HP β-CD), beta-cyclodextrin (β-CD), Tween 80, and oleic acid on LOR permeation was evaluated. The optimized LOR gel formulation (LORF8) showed the highest flux (14.31 μg/cm2/h) with ER of 18.34 when compared to LORF3. Incorporation of PG and HP β-CD in gel formulation (LORF8) enhanced the permeation of LOR significantly. It was observed that LORF3 and LORF8 show similar analgesic activity compared to marketed LOR injection (Xefo). This work shows that LOR can be formulated into carbopol gel in presence of PG and HP β-CD and may be promising in enhancing permeation. PMID:25045724

  9. In situ formation of a gel microbead for indirect laser micromanipulation of microorganisms

    NASA Astrophysics Data System (ADS)

    Ichikawa, Akihiko; Arai, Fumihito; Yoshikawa, Keiichi; Uchida, Tomoyuki; Fukuda, Toshio

    2005-11-01

    We propose the in situ formation of gel microbeads made of a thermoreversible hydrogel for indirect laser micromanipulation of microorganisms. Irradiation, using a 1064nm laser, of an aqueous solution mixed with poly-(N-isopropylacrylamide) through a high magnification lens resulted in the formation of a gel microbead at the laser focus due to heating. The gel microbead is trapped by the laser, and is used for indirect laser micromanipulation of microorganisms. However, the laser power used to form the bead is generally too strong to perform manipulation in a stable manner. In this letter we show a method to reduce the laser power to form a gel microbead using the poly-(N-isopropylacrylamide) aqueous solution by the addition of additives. The gelation temperature and the laser absorption rate of the solution in the presence of several different additives were investigated. We selected YPD (yeast extract, peptone, dextrose) broth as an additive and measured the relationship between the laser power, irradiation time, and diameter of the gel microbead. We succeeded in reducing the laser power for gel microbead formation, and in using the laser-trapped gel microbead for the manipulation of a yeast cell and DNA.

  10. Carrier-number fluctuations in the 2-dimensional electron gas at the LaAlO{sub 3}/SrTiO{sub 3} interface

    SciTech Connect

    Barone, C. Romeo, F.; Pagano, S.; Di Gennaro, E.; Miletto Granozio, F.; Scotti di Uccio, U.; Pallecchi, I.; Marrè, D.

    2013-12-02

    The voltage-spectral density S{sub V} (f) of the 2-dimensional electron gas formed at the interface of LaAlO{sub 3}/SrTiO{sub 3} has been thoroughly investigated. The low-frequency component has a clear 1/f behavior with a quadratic bias current dependence, attributed to resistance fluctuations. However, its temperature dependence is inconsistent with the classical Hooge model, based on carrier-mobility fluctuations. The experimental results are, instead, explained in terms of carrier-number fluctuations, due to an excitation-trapping mechanism of the 2-dimensional electron gas.

  11. Carrier-number fluctuations in the 2-dimensional electron gas at the LaAlO3/SrTiO3 interface

    NASA Astrophysics Data System (ADS)

    Barone, C.; Romeo, F.; Pagano, S.; Di Gennaro, E.; Miletto Granozio, F.; Pallecchi, I.; Marrè, D.; Scotti di Uccio, U.

    2013-12-01

    The voltage-spectral density SV (f) of the 2-dimensional electron gas formed at the interface of LaAlO3/SrTiO3 has been thoroughly investigated. The low-frequency component has a clear 1/f behavior with a quadratic bias current dependence, attributed to resistance fluctuations. However, its temperature dependence is inconsistent with the classical Hooge model, based on carrier-mobility fluctuations. The experimental results are, instead, explained in terms of carrier-number fluctuations, due to an excitation-trapping mechanism of the 2-dimensional electron gas.

  12. Aggregative properties of Rhodamine dyes in polyacrylamide hydrophilic gel media

    NASA Astrophysics Data System (ADS)

    Zakerhamidi, M. S.; Moghadam, M.; Karimi, A.

    2013-02-01

    The visible absorption spectra of two Rhodamine dyes (R6G and RB) in aqueous solutions, and in the polyacrylamide hydrogel matrix with different composition were studied at room temperature. The spectral properties of the dye-loaded hydrogel were also investigated. The transport and the solute-solute interactions of the ionic dyes in aqueous solutions across the hydrophilic gels were calculated. The monomer-dimer equilibrium of these ionic dyes in water and in different composition of hydrogel environment with different soaking time has been investigated by means of UV-Vis spectroscopy. The natures of the interacting pairs in these dyes were discussed using the Kasha exciton theory.

  13. Optimal Charging Profiles with Minimal Intercalation-Induced Stresses for Lithium-Ion Batteries Using Reformulated Pseudo 2-Dimensional Models

    SciTech Connect

    Suthar, B; Northrop, PWC; Braatz, RD; Subramanian, VR

    2014-07-30

    This paper illustrates the application of dynamic optimization in obtaining the optimal current profile for charging a lithium-ion battery by restricting the intercalation-induced stresses to a pre-determined limit estimated using a pseudo 2-dimensional (P2D). model. This paper focuses on the problem of maximizing the charge stored in a given time while restricting capacity fade due to intercalation-induced stresses. Conventional charging profiles for lithium-ion batteries (e.g., constant current followed by constant voltage or CC-CV) are not derived by considering capacity fade mechanisms, which are not only inefficient in terms of life-time usage of the batteries but are also slower by not taking into account the changing dynamics of the system. (C) The Author(s) 2014. Published by ECS. This is an open access article distributed under the terms of the Creative Commons Attribution Non-Commercial No Derivatives 4.0 License (CC BY-NC-ND, http://creativecommons.org/licenses/by-nc-nd/4.0/), which permits non-commercial reuse, distribution, and reproduction in any medium, provided the original work is not changed in any way and is properly cited. For permission for commercial reuse, please email: oa@electrochem.org. All rights reserved.

  14. Basic investigations on LCV micelle gel

    NASA Astrophysics Data System (ADS)

    Ebenezer, S. B.; Rafic, M. K.; Ravindran, P. B.

    2013-06-01

    The aim of this study was to investigate the feasibility of using Leuco Crystal Violet (LCV) based micelle gel dosimeter as a quality assurance tool in radiotherapy applications. Basic properties such as absorption coefficient and diffusion of LCV gel phantom over time were evaluated. The gel formulation consisted of 25 mM Trichloroacetic acid, 1mM LCV, 4 mM Triton X-100, 4% gelatin by mass and distilled water. The advantages of using this gel are its tissue equivalence, easy and less preparation time, lower diffusion rate and it can be read with an optical scanner. We were able to reproduce some of the results of Babic et al. The peak absorption was found to be at 600 nm and hence a matrix of yellow LEDs was used as light source. The profiles obtained from projection images confirmed the diffusion of LCV gel after 6 hours of irradiation. Hence the LCV gel phantom should be read before 6 hours post irradiation to get accurate dose information as suggested previously.

  15. Actuator device utilizing a conductive polymer gel

    DOEpatents

    Chinn, Douglas A.; Irvin, David J.

    2004-02-03

    A valve actuator based on a conductive polymer gel is disclosed. A nonconductive housing is provided having two separate chambers separated by a porous frit. The conductive polymer is held in one chamber and an electrolyte solution, used as a source of charged ions, is held in the second chamber. The ends of the housing a sealed with a flexible elastomer. The polymer gel is further provide with electrodes with which to apply an electrical potential across the gel in order to initiate an oxidation reaction which in turn drives anions across the porous frit and into the polymer gel, swelling the volume of the gel and simultaneously contracting the volume of the electrolyte solution. Because the two end chambers are sealed the flexible elastomer expands or contracts with the chamber volume change. By manipulating the potential across the gel the motion of the elastomer can be controlled to act as a "gate" to open or close a fluid channel and thereby control flow through that channel.

  16. Assessment of Anti HSV-1 Activity of Aloe Vera Gel Extract: an In Vitro Study

    PubMed Central

    Rezazadeh, Fahimeh; Moshaverinia, Maryam; Motamedifar, Mohammad; Alyaseri, Montazer

    2016-01-01

    Statement of the Problem Herpes simplex virus (HSV) infection is one of the most common and debilitating oral diseases; yet, there is no standard topical treatment to control it. The extract of Aloe vera leaves has been previously reported to have anti-inflammatory, antibacterial, and also antiviral effects. There is no data on anti-Herpes simplex virus type 1 (HSV-1) activity of Aloe vera gel. Purpose This study aimed to evaluate the anti-HSV-1 activity of Aloe vera gel in Vero cell line. Materials and Method In this study, gel extraction and cytotoxicity of various increasing concentrations of Aloe vera gel (0.2, 0.5, 1, 2, and 5%) was evaluated in Dulbecco’s Modified Eagle Medium (DMEM) containing 2% fetal bovine serum (FBS). Having been washed with phosphate buffered saline, 50 plaque-forming units (PFU) of HSV-1 was added to each well. After 1 hour of incubation at 37°C, cell monolayers in 24 well plates were exposed to different increasing concentrations of Aloe vera gel. The anti-HSV-1 activity of Aloe vera gel in different concentrations was assessed by plaque reduction assays. Data were analyzed by using One-way ANOVA. Results The cytotoxicity assay showed that Aloe vera in prearranged concentrations was cell-compatible. The inhibitory effect of various concentrations of Aloe vera was observed one hour after the Vero cell was infected with HSV-1. However, there was no significant difference between two serial concentrations (p> 0.05). One-way ANOVA also revealed no significant difference between the groups. The findings indicated a dose-dependent antiviral effect of Aloe vera. Conclusion The findings showed significant inhibitory effect of 0.2-5% Aloe vera gel on HSV-1 growth in Vero cell line. Therefore, this gel could be a useful topical treatment for oral HSV-1 infections without any significant toxicity. PMID:26966709

  17. Radiological characterization and water equivalency of genipin gel for x-ray and electron beam dosimetry

    NASA Astrophysics Data System (ADS)

    Gorjiara, Tina; Hill, Robin; Kuncic, Zdenka; Bosi, Stephen; Davies, Justin B.; Baldock, Clive

    2011-08-01

    The genipin radiochromic gel offers enormous potential as a three-dimensional dosimeter in advanced radiotherapy techniques. We have used several methods (including Monte Carlo simulation), to investigate the water equivalency of genipin gel by characterizing its radiological properties, including mass and electron densities, photon interaction cross sections, mass energy absorption coefficient, effective atomic number, collisional, radiative and total mass stopping powers and electron mass scattering power. Depth doses were also calculated for clinical kilovoltage and megavoltage x-ray beams as well as megavoltage electron beams. The mass density, electron density and effective atomic number of genipin were found to differ from water by less than 2%. For energies below 150 keV, photoelectric absorption cross sections are more than 3% higher than water due to the strong dependence on atomic number. Compton scattering and pair production interaction cross sections for genipin gel differ from water by less than 1%. The mass energy absorption coefficient is approximately 3% higher than water for energies <60 keV due to the dominance of photoelectric absorption in this energy range. The electron mass stopping power and mass scattering power differ from water by approximately 0.3%. X-ray depth dose curves for genipin gel agree to within 1% with those for water. Our results demonstrate that genipin gel can be considered water equivalent for kilovoltage and megavoltage x-ray beam dosimetry. For megavoltage electron beam dosimetry, however, our results suggest that a correction factor may be needed to convert measured dose in genipin gel to that of water, since differences in some radiological properties of up to 3% compared to water are observed. Our results indicate that genipin gel exhibits greater water equivalency than polymer gels and PRESAGE formulations.

  18. Influence of hydrogen peroxide bleaching gels on color, opacity, and fluorescence of composite resins.

    PubMed

    Torres, C R G; Ribeiro, C F; Bresciani, E; Borges, A B

    2012-01-01

    The aim of the present study was to evaluate the effect of 20% and 35% hydrogen peroxide bleaching gels on the color, opacity, and fluorescence of composite resins. Seven composite resin brands were tested and 30 specimens, 3-mm in diameter and 2-mm thick, of each material were fabricated, for a total of 210 specimens. The specimens of each tested material were divided into three subgroups (n=10) according to the bleaching therapy tested: 20% hydrogen peroxide gel, 35% hydroxide peroxide gel, and the control group. The baseline color, opacity, and fluorescence were assessed by spectrophotometry. Four 30-minute bleaching gel applications, two hours in total, were performed. The control group did not receive bleaching treatment and was stored in deionized water. Final assessments were performed, and data were analyzed by two-way analysis of variance and Tukey tests (p<0.05). Color changes were significant for different tested bleaching therapies (p<0.0001), with the greatest color change observed for 35% hydrogen peroxide gel. No difference in opacity was detected for all analyzed parameters. Fluorescence changes were influenced by composite resin brand (p<0.0001) and bleaching therapy (p=0.0016) used. No significant differences in fluorescence between different bleaching gel concentrations were detected by Tukey test. The greatest fluorescence alteration was detected on the brand Z350. It was concluded that 35% hydrogen peroxide bleaching gel generated the greatest color change among all evaluated materials. No statistical opacity changes were detected for all tested variables, and significant fluorescence changes were dependent on the material and bleaching therapy, regardless of the gel concentration. PMID:22433032

  19. The Gel Electrophoresis Markup Language (GelML) from the Proteomics Standards Initiative

    PubMed Central

    Gibson, Frank; Hoogland, Christine; Martinez-Bartolomé, Salvador; Medina-Aunon, J. Alberto; Albar, Juan Pablo; Babnigg, Gyorgy; Wipat, Anil; Hermjakob, Henning; Almeida, Jonas S; Stanislaus, Romesh; Paton, Norman W; Jones, Andrew R

    2011-01-01

    The Human Proteome Organisation’s Proteomics Standards Initiative (HUPO-PSI) has developed the GelML data exchange format for representing gel electrophoresis experiments performed in proteomics investigations. The format closely follows the reporting guidelines for gel electrophoresis, which are part of the Minimum Information About a Proteomics Experiment (MIAPE) set of modules. GelML supports the capture of metadata (such as experimental protocols) and data (such as gel images) resulting from gel electrophoresis so that laboratories can be compliant with the MIAPE Gel Electrophoresis guidelines, while allowing such data sets to be exchanged or downloaded from public repositories. The format is sufficiently flexible to capture data from a broad range of experimental processes, and complements other PSI formats for mass spectrometry data and the results of protein and peptide identifications to capture entire gel-based proteome workflows. GelML has resulted from the open standardisation process of PSI consisting of both public consultation and anonymous review of the specifications. PMID:20677327

  20. Cluster structure and dynamics in gels and glasses

    NASA Astrophysics Data System (ADS)

    Pastore, R.; de Candia, A.; Fierro, A.; Pica Ciamarra, M.; Coniglio, A.

    2016-07-01

    The dynamical arrest of gels is the consequence of a well defined structural phase transition, leading to the formation of a spanning cluster of bonded particles. The glass transition, instead, is not accompanied by any clear structural signature. Nevertheless, both transitions are characterized by the emergence of dynamical heterogeneities. Reviewing recent results from numerical simulations, we discuss the behavior of dynamical heterogeneities in different systems and show that a clear connection with the structure exists in the case of gels. The emerging picture may also be relevant for the more elusive case of glasses. We show, as an example, that the relaxation process of a simple glass-forming model can be related to a reverse percolation transition and discuss further perspective in this direction.