Science.gov

Sample records for 2-dimensional electron gas

  1. Role of surface defects on the formation of the 2-dimensional electron gas at polar interfaces

    NASA Astrophysics Data System (ADS)

    Artacho, Emilio; Aguado-Puente, Pablo

    2014-03-01

    The discovery of a 2-dimensional electron gas (2DEG) at the interface between two insulators, LaAlO3 and SrTiO3, has fuelled a great research activity on this and similar systems in the last years. The electronic reconstruction model, typically invoked to explain the formation of the 2DEG, while being intuitive and successful on predicting fundamental aspects of this phenomenon like the critical thickness of LaAlO3, fails to explain many other experimental observations. Oxygen vacancies, on the other hand, are known to dramatically affect the physical behaviour of this system, but their role at the atomic level is far from well understood. Here we perform ab initio simulations in order to assess whether the formation of oxygen vacancies at the surface of the polar material can account for various recent experimental results that defy the current theoretical understanding of these interfaces. We simulate SrTiO3/LaAlO3 slabs with various concentrations of surface oxygen vacancies and analyze the role of the defects on the formation of the metallic interface, their electrostatic coupling with the 2DEG and the interplay with the different instabilities of the materials involved. Financial support from Spanish MINECO under grant FIS2012-37549-C05-01. Computational resources provided by the Red Espñola de Supercomputación and DIPC.

  2. Carrier-number fluctuations in the 2-dimensional electron gas at the LaAlO{sub 3}/SrTiO{sub 3} interface

    SciTech Connect

    Barone, C. Romeo, F.; Pagano, S.; Di Gennaro, E.; Miletto Granozio, F.; Scotti di Uccio, U.; Pallecchi, I.; Marrè, D.

    2013-12-02

    The voltage-spectral density S{sub V} (f) of the 2-dimensional electron gas formed at the interface of LaAlO{sub 3}/SrTiO{sub 3} has been thoroughly investigated. The low-frequency component has a clear 1/f behavior with a quadratic bias current dependence, attributed to resistance fluctuations. However, its temperature dependence is inconsistent with the classical Hooge model, based on carrier-mobility fluctuations. The experimental results are, instead, explained in terms of carrier-number fluctuations, due to an excitation-trapping mechanism of the 2-dimensional electron gas.

  3. Carrier-number fluctuations in the 2-dimensional electron gas at the LaAlO3/SrTiO3 interface

    NASA Astrophysics Data System (ADS)

    Barone, C.; Romeo, F.; Pagano, S.; Di Gennaro, E.; Miletto Granozio, F.; Pallecchi, I.; Marrè, D.; Scotti di Uccio, U.

    2013-12-01

    The voltage-spectral density SV (f) of the 2-dimensional electron gas formed at the interface of LaAlO3/SrTiO3 has been thoroughly investigated. The low-frequency component has a clear 1/f behavior with a quadratic bias current dependence, attributed to resistance fluctuations. However, its temperature dependence is inconsistent with the classical Hooge model, based on carrier-mobility fluctuations. The experimental results are, instead, explained in terms of carrier-number fluctuations, due to an excitation-trapping mechanism of the 2-dimensional electron gas.

  4. Origin of fine oscillations in the photoluminescence spectrum of 2-dimensional electron gas formed in AlGaN/GaN high electron mobility transistor structures

    SciTech Connect

    Jana, Dipankar Porwal, S.; Oak, S. M.; Sharma, T. K.; Jain, Anubha

    2015-10-28

    An unambiguous identification of the fine oscillations observed in the low temperature photoluminescence (PL) spectra of AlGaN/GaN based high electron mobility transistor (HEMT) structures is carried out. In literature, such oscillations have been erroneously identified as the sub-levels of 2-dimensional electron gas (2DEG) formed at AlGaN/GaN heterointerface. Here, the origin of these oscillations is probed by performing the angle dependent PL and reflectivity measurements under identical conditions. Contrary to the reports available in literature, we find that the fine oscillations are not related to 2DEG sub-levels. The optical characteristics of these oscillations are mainly governed by an interference phenomenon. In particular, peculiar temperature dependent redshift and excitation intensity dependent blueshift, which have been interpreted as the characteristics of 2DEG sub-levels in HEMT structures by other researchers, are understood by invoking the wavelength and temperature dependence of the refractive index of GaN within the framework of interference phenomenon. The results of other researchers are also consistently explained by considering the fine oscillatory features as the interference oscillations.

  5. Impedance-based interpretations in 2-dimensional electron gas conduction formed in the LaAlO3/SrxCa1-xTiO3/SrTiO3 system

    NASA Astrophysics Data System (ADS)

    Park, Chan-Rok; Moon, Seon Young; Park, Da-Hee; Kim, Shin-Ik; Kim, Seong-Keun; Kang, Chong-Yun; Baek, Seung-Hyub; Choi, Jung-Hae; Kim, Jin-Sang; Choi, Eunsoo; Hwang, Jin-Ha

    2016-06-01

    Frequency-dependent impedance spectroscopy was applied to the 2-dimensioanl conduction transport in the LaAlO3/SrxCa1-xTiO3/SrTiO3 system. The 2-dimensional conduction modifies the electrical/dielectric responses of the LaAlO3/SrxCa1-xTiO3/SrTiO3 depending on the magnitude of the interfacial 2-dimensional resistance. The high conduction of the 2-dimensional electron gas (2DEG) layer can be described using a metallic resistor in series with two parallel RC circuits. However, the high resistance of the 2-dimensional layer drives the composite system from a finite low resistor in parallel with the surrounding dielectrics composed of LaAlO3 and SrTiO3 materials to a dielectric capacitor. This change in the resistance of the 2-dimensional layers modifies the overall impedance enabled by the presence of the interfacial layer due to SrxCa1-xTiO3, which alters the charge transport of the 2-dimensional layer from metallic to semiconducting conduction. A noticeable change is observed in the capacitance Bode plots, indicating highly amplified dielectric constants compared with the pristine SrTiO3 substrates and SrxCa1-xTiO3 with a greater Ca content.

  6. Electronic thermal conductivity of 2-dimensional circular-pore metallic nanoporous materials

    NASA Astrophysics Data System (ADS)

    Huang, Cong-Liang; Lin, Zi-Zhen; Luo, Dan-Chen; Huang, Zun

    2016-09-01

    The electronic thermal conductivity (ETC) of 2-dimensional circular-pore metallic nanoporous material (MNM) was studied here for its possible applications in thermal cloaks. A simulation method based on the free-electron-gas model was applied here without considering the quantum effects. For the MNM with circular nanopores, there is an appropriate nanopore size for thermal conductivity tuning, while a linear relationship exists for this size between the ETC and the porosity. The appropriate nanopore diameter size will be about one times that of the electron mean free path. The ETC difference along different directions would be less than 10%, which is valuable when estimating possible errors, because the nanoscale-material direction could not be controlled during its application. Like nanoparticles, the ETC increases with increasing pore size (diameter for nanoparticles) while the porosity was fixed, until the pore size reaches about four times that of electron mean free path, at which point the ETC plateaus. The specular coefficient on the surface will significantly impact the ETC, especially for a high-porosity MNM. The ETC can be decreased by 30% with a tuning specular coefficient.

  7. Observation by resonant angle-resolved photoemission of a critical thickness for 2-dimensional electron gas formation in SrTiO{sub 3} embedded in GdTiO{sub 3}

    SciTech Connect

    Nemšák, S.; Conti, G.; Palsson, G. K.; Conlon, C.; Fadley, C. S.; Cho, S.; Rault, J. E.; Avila, J.; Asensio, M.-C.; Jackson, C. A.; Moetakef, P.; Janotti, A.; Bjaalie, L.; Himmetoglu, B.; Van de Walle, C. G.; Stemmer, S.; Balents, L.; Schneider, C. M.

    2015-12-07

    For certain conditions of layer thickness, the interface between GdTiO{sub 3} (GTO) and SrTiO{sub 3} (STO) in multilayer samples has been found to form a two-dimensional electron gas (2DEG) with very interesting properties including high mobilities and ferromagnetism. We have here studied two trilayer samples of the form [2 nm GTO/1.0 or 1.5 unit cells STO/10 nm GTO] as grown on (001) (LaAlO{sub 3}){sub 0.3}(Sr{sub 2}AlTaO{sub 6}){sub 0.7}, with the STO layer thicknesses being at what has been suggested is the critical thickness for 2DEG formation. We have studied these with Ti-resonant angle-resolved and angle-integrated photoemission and find that the spectral feature in the spectra associated with the 2DEG is present in the 1.5 unit cell sample, but not in the 1.0 unit cell sample. We also observe through core-level spectra additional states in Ti and Sr, with the strength of a low-binding-energy state for Sr being associated with the appearance of the 2DEG, and we suggest it to have an origin in final-state core-hole screening.

  8. Uniform quantized electron gas.

    PubMed

    Høye, Johan S; Lomba, Enrique

    2016-10-19

    In this work we study the correlation energy of the quantized electron gas of uniform density at temperature T  =  0. To do so we utilize methods from classical statistical mechanics. The basis for this is the Feynman path integral for the partition function of quantized systems. With this representation the quantum mechanical problem can be interpreted as, and is equivalent to, a classical polymer problem in four dimensions where the fourth dimension is imaginary time. Thus methods, results, and properties obtained in the statistical mechanics of classical fluids can be utilized. From this viewpoint we recover the well known RPA (random phase approximation). Then to improve it we modify the RPA by requiring the corresponding correlation function to be such that electrons with equal spins can not be on the same position. Numerical evaluations are compared with well known results of a standard parameterization of Monte Carlo correlation energies. PMID:27546166

  9. Comprehensive 2-Dimensional Gas Chromatography coupled to a Time-of-Flight Mass Spectrometer for broad-spectrum organic analysis on Mars

    NASA Astrophysics Data System (ADS)

    Scherer, S.; Block, B.; Waite, J. H.; Sacks, R.; McGuigan, M.; Libardoni, M.; Stevens, P. T.; Hasselbrink, E. F.; Hunt, P.

    An analytical chemistry suite for in-situ broad-spectrum analysis of organic compounds on the Martian surface will be presented. The purpose is to identify nature and abundance of organic components in solid sample material. The instrument uses pyrolysis extraction followed by a comprehensive 2-dimensional gas chromatograph (2DGC) coupled to a Time-of-Flight mass spectrometer (TOFMS). The 2DGC consists of a serial arrangement of two columns connected by a thermal modulator. The first column with a non-stationary phase separates components based primarily on their volatility, whereas the second column with a polar stationary phase separates the sample material based on the polarity. The thermal modulator is a resistively heated and liquid cooled wall coated capillary tube made out of stainless steel. The TOFMS uses electron impact ionization with orthogonal ion acceleration, a reflectron and a multi-channel plate detector. We will present the instrument design for the laboratory prototype, focusing on a discussion of the critical instrument components. We will show experimental results of Martian analogous Earth soil samples. These samples yield a chromatographic peak capacity of more than 1000 peaks. These are displayed as highly structured chromatograms. Qualitative identification of sample constituents can be derived from homologous series standards. These results are further verified via the TOFMS system. By coupling the 2DGC to a TOFMS, quantitative and mass spectrometric information is available for each data point in the chromatogram. This design will allow us to remotely analyze Martian soil samples to determine the presence, nature and abundance of organic materials.

  10. Flexible Transparent Electronic Gas Sensors.

    PubMed

    Wang, Ting; Guo, Yunlong; Wan, Pengbo; Zhang, Han; Chen, Xiaodong; Sun, Xiaoming

    2016-07-01

    Flexible and transparent electronic gas sensors capable of real-time, sensitive, and selective analysis at room-temperature, have gained immense popularity in recent years for their potential to be integrated into various smart wearable electronics and display devices. Here, recent advances in flexible transparent sensors constructed from semiconducting oxides, carbon materials, conducting polymers, and their nanocomposites are presented. The sensing material selection, sensor device construction, and sensing mechanism of flexible transparent sensors are discussed in detail. The critical challenges and future development associated with flexible and transparent electronic gas sensors are presented. Smart wearable gas sensors are believed to have great potential in environmental monitoring and noninvasive health monitoring based on disease biomarkers in exhaled gas. PMID:27276698

  11. Measurements of organic molecular markers in California using comprehensive 2-Dimensional Gas Chromatograph High-Resolution Time-of-Flight Mass Spectrometry (GCxGC-HRTOF-MS)

    NASA Astrophysics Data System (ADS)

    Chan, A. W.; Isaacman, G. A.; Worton, D. R.; Kreisberg, N. M.; Schilling, K. A.; Craven, J. S.; Metcalf, A. R.; Hersey, S. P.; Rubitschun, C. L.; Lin, Y. H.; Offenberg, J. H.; Surratt, J. D.; Seinfeld, J.; Hering, S. V.; Goldstein, A. H.

    2011-12-01

    Understanding the sources and transformation processes of organic aerosol requires detailed speciation of organic compounds. Molecular markers specific to individual sources help determine the contribution of each source to organic aerosol emissions. In previous work using one-dimensional gas-chromatograph mass spectrometry (GC/MS), less than 10-20% of the organic fraction has been identified, with a large contribution of unresolved complex mixture (UCM). Two-dimensional gas-chromatograph is a novel technique which provides excellent resolution to separate compounds buried in this complex mixture. In addition to a volatility-based chromatographic separation, compounds are further separated on a second column based on their polarities. Here we report measurements of more than 200 resolved compounds observed on filters collected during CalNex 2010 in Bakersfield and Pasadena, and during a large biomass burning event in the Los Angeles area (Station Fire). High volume filter samples are thermally desorbed in a Gerstel Thermal Desorption System (TDS2) and preconcentrated on a cooled inlet (CIS). The compounds are then analyzed by comprehensive 2-dimensional GC using a Zoex modulator, followed by high-resolution mass spectrometry (Tofwerks). Compound identification is carried out by comparison of retention times with known standards, mass spectral library match, and identification of molecular fragments by exact mass. A wide range of compounds are observed: n-alkanes, polyaromatic hydrocarbons, and oxygenated compounds such as acids, esters and ketones. While levoglucosan was observed in organic aerosol produced during the Station Fire, many other compounds revealed by two-dimensional GC (such as resin acids, lignin pyrolysis products) show elevated signals, suggesting that other molecular markers can provide additional information about aerosol formation processes during biomass burning events.

  12. Recent research directions in Fribourg: nuclear dynamics in resonances revealed by 2-dimensional EEL spectra, electron collisions with ionic liquids and electronic excitation of pyrimidine

    NASA Astrophysics Data System (ADS)

    Allan, Michael; Regeta, Khrystyna; Gorfinkiel, Jimena D.; Mašín, Zdeněk; Grimme, Stefan; Bannwarth, Christoph

    2016-05-01

    The article briefly reviews three subjects recently investigated in Fribourg: (i) electron collisions with surfaces of ionic liquids, (ii) two-dimensional (2D) electron energy loss spectra and (iii) resonances in absolute cross sections for electronic excitation of unsaturated compounds. Electron energy loss spectra of four ionic liquids revealed a number of excited states, including triplet states. A solution of a dye in an ionic liquid showed an energy-loss band of the solute, but not in all ionic liquids. 2D spectra reveal state-to-state information (given resonance to given final state) and are shown to be an interesting means to gain insight into dynamics of nuclear motion in resonances. Absolute cross sections for pyrimidine are reported as a function of scattering angle and as a function of electron energy. They reveal resonant structure which was reproduced very nicely by R-matrix calculations. The calculation provided an assignment of the resonances which reveals common patterns in compounds containing double bonds.

  13. Electron spectrometer for gas-phase spectroscopy

    SciTech Connect

    Bozek, J.D.; Schlachter, A.S.

    1997-04-01

    An electron spectrometer for high-resolution spectroscopy of gaseous samples using synchrotron radiation has been designed and constructed. The spectrometer consists of a gas cell, cylindrical electrostatic lens, spherical-sector electron energy analyzer, position-sensitive detector and associated power supplies, electronics and vacuum pumps. Details of the spectrometer design are presented together with some representative spectra.

  14. An Electronically Timed Gas Viscometer.

    ERIC Educational Resources Information Center

    Bramwell, Fitzgerald B.; Bramwell, Fitzgerald

    1982-01-01

    Describes modification of a gas viscometer to produce a low cost instrument with high precision and safe design. Three tungsten electrodes are mounted in the viscometer using graded glass seals and a ball trap is inserted between mercury reservoir and all external stopcocks. Also describes modifications in experimental procedures. (Author/JN)

  15. Nuclei embedded in an electron gas

    SciTech Connect

    Buervenich, Thomas J.; Mishustin, Igor N.; Greiner, Walter

    2007-09-15

    The properties of nuclei embedded in an electron gas are studied within the relativistic mean-field approach. These studies are relevant for nuclear properties in astrophysical environments such as neutron-star crusts and supernova explosions. The electron gas is treated as a constant background in the Wigner-Seitz cell approximation. We investigate the stability of nuclei with respect to {alpha} and {beta} decay. Furthermore, the influence of the electronic background on spontaneous fission of heavy and superheavy nuclei is analyzed. We find that the presence of the electrons leads to stabilizing effects for both {alpha} decay and spontaneous fission at high electron densities. Furthermore, the screening effect shifts the proton dripline to more proton-rich nuclei, and the stability line with respect to {beta}-decay is shifted to more neutron-rich nuclei. Implications for the creation and survival of very heavy nuclear systems are discussed.

  16. Electron energy deposition in carbon monoxide gas

    NASA Technical Reports Server (NTRS)

    Liu, Weihong; Victor, G. A.

    1994-01-01

    A comprehensive set of electron impact cross sections for carbon monoxide molecules is presented on the basis of the most recent experimental measurements and theoretical calculations. The processes by which energetic electrons lose energy in CO gas are analyzed with these input cross sections. The efficiencies are computed of vibrational and electronic excitation, dissociation, ionization, and heating for CO gas with fractional ionization ranging from 0% to 10%. The calculated mean energy per ion pair for neutral CO gas is 32.3 eV, which is in excellent agreement with the experimental value of 32.2 eV. It increases to 35.6 eV at a fractional ionization of 1%, typical of supernovae ejecta.

  17. Collisional electron spectroscopy method for gas analysis

    NASA Astrophysics Data System (ADS)

    Stefanova, M. S.; Pramatarov, P. M.; Kudryavtsev, A. A.; Peyeva, R. A.; Patrikov, T. B.

    2016-05-01

    Recently developed collisional electron spectroscopy (CES) method, based on identification of gas impurities by registration of groups of nonlocal fast electrons released by Penning ionization of the impurity particles by helium metastable atoms, is verified experimentally. Detection and identification of atoms and molecules of gas impurities in helium at pressures of 14 - 90 Torr with small admixtures of Ar, Kr, CO2, and N2 are carried out. The nonlocal negative glow plasma of short dc microdischarge is used as most suitable medium. Records of the energy spectra of penning electrons are performed by means of an additional electrode - sensor, located at the boundary of the discharge volume. Maxima appear in the electron energy spectra at the characteristic energies corresponding to Penning ionization of the impurity particles by helium metastable atoms.

  18. Electron gas grid semiconductor radiation detectors

    DOEpatents

    Lee, Edwin Y.; James, Ralph B.

    2002-01-01

    An electron gas grid semiconductor radiation detector (EGGSRAD) useful for gamma-ray and x-ray spectrometers and imaging systems is described. The radiation detector employs doping of the semiconductor and variation of the semiconductor detector material to form a two-dimensional electron gas, and to allow transistor action within the detector. This radiation detector provides superior energy resolution and radiation detection sensitivity over the conventional semiconductor radiation detector and the "electron-only" semiconductor radiation detectors which utilize a grid electrode near the anode. In a first embodiment, the EGGSRAD incorporates delta-doped layers adjacent the anode which produce an internal free electron grid well to which an external grid electrode can be attached. In a second embodiment, a quantum well is formed between two of the delta-doped layers, and the quantum well forms the internal free electron gas grid to which an external grid electrode can be attached. Two other embodiments which are similar to the first and second embodiment involve a graded bandgap formed by changing the composition of the semiconductor material near the first and last of the delta-doped layers to increase or decrease the conduction band energy adjacent to the delta-doped layers.

  19. Electronic Desorption of gas from metals

    SciTech Connect

    Molvik, A W; Kollmus, H; Mahner, E; Covo, M K; Bender, M; Bieniosek, F M; Kramer, A; Kwan, J; Prost, L; Seidl, P A; Westenskow, G

    2006-11-02

    During heavy ion operation in several particle accelerators world-wide, dynamic pressure rises of orders of magnitude were triggered by lost beam ions that bombarded the vacuum chamber walls. This ion-induced molecular desorption, observed at CERN, GSI, and BNL, can seriously limit the ion beam lifetime and intensity of the accelerator. From dedicated test stand experiments we have discovered that heavy-ion induced gas desorption scales with the electronic energy loss (dE{sub e}/dx) of the ions slowing down in matter; but it varies only little with the ion impact angle, unlike electronic sputtering.

  20. Gas breakdown and secondary electron yields

    NASA Astrophysics Data System (ADS)

    Marić, Dragana; Savić, Marija; Sivoš, Jelena; Škoro, Nikola; Radmilović-Radjenović, Marija; Malović, Gordana; Petrović, Zoran Lj.

    2014-06-01

    In this paper we present a systematic study of the gas breakdown potentials. An analysis of the key elementary processes in low-current low-pressure discharges is given, with an aim to illustrate how such discharges are used to determine swarm parameters and how such data may be applied to modeling discharges. Breakdown data obtained in simple parallel-plate geometry are presented for a number of atomic and molecular gases. Ionization coefficients, secondary electron yields and their influence on breakdown are analyzed, with special attention devoted to non-hydrodynamic conditions near cathode.

  1. Characterization of Gas Amplification in Varied Gas Mixtures for Stacked Gas Electron Multiplier and Micromegas Detectors

    NASA Astrophysics Data System (ADS)

    Ehlers, Raymond

    2015-04-01

    Micropattern Gas Detectors (MPGDs) represent a promising group of gas amplification technologies. Utilizing large electric fields over geometries on the order of tens of micrometers, these elements can achieve large gas amplification while minimizing field distortions by minimizing the number of ions escaping from the amplification stage. Such properties are extremely useful for readout in gaseous detectors such as Time Projection Chambers. Two types of MPGDs are of particular interest, Gas Electron Multipliers (GEMs) and Micro-mesh Gaseous Structure (Micromegas) detectors. These elements may be stacked, which allows for the utilization of the best properties of both, further improving the amplification performance. We report here on the characterization of 2 GEMs stacked on top of a Micromegas. In particular, I will present the dependence of gas amplification on Micromegas voltage in various gas mixtures, as well as an investigation into stability of the elements against sparking.

  2. Theory of the classical electron gas

    NASA Technical Reports Server (NTRS)

    Guernsey, R. L.

    1978-01-01

    In a previous paper Cohen and Murphy (1969) used the Meeron resummation (1958) of the Mayer diagrams (1950) to calculate the pair correlation for the classical electron gas in thermal equilibrium. They found that successive terms in the expression for the pair correlation were more and more singular for small interparticle spacing, actually dominating the Debye-Hueckel result for sufficiently small distances. This led to apparent divergence in the higher order contributions to the internal energy. The present paper shows that the apparent anomalies in the Cohen-Murphy results can be removed without further resummation by a more careful treatment of the region of small interparticle spacing. It is shown that there is really no anomalous behavior at short range in any order and all integrals in the expression for the internal energy converge.

  3. Heat diffusion in the disordered electron gas

    NASA Astrophysics Data System (ADS)

    Schwiete, G.; Finkel'stein, A. M.

    2016-03-01

    We study the thermal conductivity of the disordered two-dimensional electron gas. To this end, we analyze the heat density-heat density correlation function concentrating on the scattering processes induced by the Coulomb interaction in the subtemperature energy range. These scattering processes are at the origin of logarithmic corrections violating the Wiedemann-Franz law. Special care is devoted to the definition of the heat density in the presence of the long-range Coulomb interaction. To clarify the structure of the correlation function, we present details of a perturbative calculation. While the conservation of energy strongly constrains the general form of the heat density-heat density correlation function, the balance of various terms turns out to be rather different from that for the correlation functions of other conserved quantities such as the density-density or spin density-spin density correlation function.

  4. The use of 2-dimensional gas chromatography to investigate the effect of rumen-protected conjugated linoleic acid, breed, and lactation stage on the fatty acid profile of sheep milk.

    PubMed

    Pellattiero, E; Cecchinato, A; Tagliapietra, F; Schiavon, S; Bittante, G

    2015-04-01

    In this study, 2-dimensional gas chromatography (GC × GC) was used to obtain a detailed fatty acid (FA) profile of sheep milk and to evaluate the effects of a rumen-protected conjugated linoleic acid (rpCLA) supply, breed, days in milk (DIM), sampling period, and number of lambs suckling on the FA profile. Twenty-four ewes, from 3 autochthonous breeds of the Veneto Alps (Brogna, Foza, and Lamon), were housed in 6 pens (2 pens/breed), according to DIM (38 ± 23 d) and body weight (61 ± 13 kg). The ewes and their offspring of 3 pens (1 pen/breed) were fed ad libitum a total mixed ration (control), and the other animals received the same diet supplemented with 12 g/d per ewe, plus 4 g/d for each lamb older than 30 d, of an rpCLA mixture. The study lasted 63 d. Two composite milk samples for each ewe were prepared during the first and second months of the trial. The pooled milk samples were analyzed in duplicate for FA profile by 2-dimensional gas chromatography, which allowed us to obtain a detailed FA profile of sheep milk, with 170 different FA detected, including many that were present in small concentrations. The milk relative proportions of individual FA, groups of FA, or FA indices were analyzed by PROC MIXED of SAS (SAS Institute Inc., Cary, NC), considering diet, breed, DIM, and sampling period as sources of variation. The random effect of animal was used to test diet, breed, and DIM, whereas the effects of period were tested on the residual. Breed had a small influence on milk FA profile, mainly on branched- and odd-chain FA. Within breed, animal repeatability for the relative proportions of milk FA was notable for almost all monounsaturated FA and for saturated FA with 14 to 19 carbon atoms, except C16:0, and less so for polyunsaturated FA. The inclusion of rpCLA (CLA cis-9,trans-11 and CLA trans-10,cis-12) increased the presence of the same CLA isomers in the milk as well as that of CLA trans-9,trans-11, and decreased the proportions of de novo

  5. Stopping power of an electron gas with anisotropic temperature

    NASA Astrophysics Data System (ADS)

    Khelemelia, O. V.; Kholodov, R. I.

    2016-04-01

    A general theory of motion of a heavy charged particle in the electron gas with an anisotropic velocity distribution is developed within the quantum-field method. The analytical expressions for the dielectric susceptibility and the stopping power of the electron gas differs in no way from well-known classic formulas in the approximation of large and small velocities. Stopping power of the electron gas with anisotropic temperature in the framework of the quantum-field method is numerically calculated for an arbitrary angle between directions of the motion of the projectile particle and the electron beam. The results of the numerical calculations are compared with the dielectric model approach.

  6. Gas Electron Multiplier (GEM) Chamber Characteristics Test

    SciTech Connect

    Yu, Jaehoon; White, Andy; Park, Seongtae; Hahn, Changhie; Baldeloma, Edwin; Tran, Nam; McIntire, Austin; Soha, Aria; /Fermilab

    2011-01-11

    Gas Electron Multipliers (GEMs) have been used in many HEP experiments as tracking detectors. They are sensitive to X-rays which allows use beyond that of HEP. The UTA High Energy group has been working on using GEMs as the sensitive gap detector in a DHCAL for the ILC. The physics goals at the ILC put a stringent requirement on detector performance. Especially the precision required for jet mass and positions demands an unprecedented jet energy resolution to hadronic calorimeters. A solution to meet this requirement is using the Particle Flow Algorithm (PFA). In order for PFA to work well, high calorimeter granularity is necessary. Previous studies based on GEANT simulations using GEM DHCAL gave confidence on the performance of GEM in the sensitive gap in a sampling calorimeter and its use as a DHCAL in PFA. The UTA HEP team has built several GEM prototype chambers, including the current 30cm x 30cm chamber integrated with the SLAC-developed 64 channel kPiX analog readout chip. This chamber has been tested on the bench using radioactive sources and cosmic ray muons. In order to have fuller understanding of various chamber characteristics, the experiments plan to expose 1-3 GEM chambers of dimension 35cm x 35cm x 5cm with 1cm x 1cm pad granularity with 64 channel 2-D simultaneous readout using the kPiX chip. In this experiment the experiments pan to measure MiP signal height, chamber absolute efficiencies, chamber gain versus high voltage across the GEM gap, the uniformity of the chamber across the 8cm x 8cm area, cross talk and its distance dependence to the triggered pad, chamber rate capabilities, and the maximum pad occupancy rate.

  7. Electrothermal gas generator: Development and qualification of the control electronics

    NASA Astrophysics Data System (ADS)

    Matthaeus, G.; Schmitz, H. D.

    1986-07-01

    The development and qualification of an electronic control circuitry for an electrothermal or catalytic hydrazine gas generator system is described. The circuitry, named manual override, controls the gas pressure in a tank using a pressure transducer and the gas generator to keep the pressure constant within narrow tolerances. The present pressure can be varied by ground command, enabling a variable thrust of the gas fed cold gas thrusters. The automatic loop can be switched off and the tank pressure be controlled by ground command. Two manual overrides SN01 and SN02 were qualified.

  8. Electrothermal energy conversion using electron gas volumetric change inside semiconductors

    NASA Astrophysics Data System (ADS)

    Yazawa, K.; Shakouri, A.

    2016-07-01

    We propose and analyze an electrothermal energy converter using volumetric changes in non-equilibrium electron gas inside semiconductors. The geometric concentration of electron gas under an electric field increases the effective pressure of the electrons, and then a barrier filters out cold electrons, acting like a valve. Nano- and micro-scale features enable hot electrons to arrive at the contact in a short enough time to avoid thermalization with the lattice. Key length and time scales, preliminary device geometry, and anticipated efficiency are estimated for electronic analogs of Otto and Brayton power generators and Joule-Thomson micro refrigerators on a chip. The power generators convert the energy of incident photons from the heat source to electrical current, and the refrigerator can reduce the temperature of electrons in a semiconductor device. The analytic calculations show that a large energy conversion efficiency or coefficient of performance may be possible.

  9. Scaling in electron scattering from a relativistic Fermi gas

    SciTech Connect

    W. M. Alberico; A. Molinari; T. William Donnelly; E. L. Kronenberg; Wally Van Orden

    1988-10-01

    Within the context of the relativistic Fermi gas model, the concept of ''y scaling'' for inclusive electron scattering from nuclei is investigated. Specific kinematic shifts of the single-nucleon response in the nuclear medium can be incorporated with this model. Suggested generalizations beyond the strict Fermi gas model, including treatments of separated longitudinal and transverse responses, are also explored.

  10. Advances in electron kinetics and theory of gas discharges

    SciTech Connect

    Kolobov, Vladimir I.

    2013-10-15

    Electrons, like people, are fertile and infertile: high-energy electrons are fertile and able to reproduce.”—Lev TsendinModern physics of gas discharges increasingly uses physical kinetics for analysis of non-equilibrium plasmas. The description of underlying physics at the kinetic level appears to be important for plasma applications in modern technologies. In this paper, we attempt to grasp the legacy of Professor Lev Tsendin, who advocated the use of the kinetic approach for understanding fundamental problems of gas discharges. We outline the fundamentals of electron kinetics in low-temperature plasmas, describe elements of the modern kinetic theory of gas discharges, and show examples of the theoretical approach to gas discharge problems used by Lev Tsendin. Important connections between electron kinetics in gas discharges and semiconductors are also discussed. Using several examples, we illustrate how Tsendin's ideas and methods are currently being developed for the implementation of next generation computational tools for adaptive kinetic-fluid simulations of gas discharges used in modern technologies.

  11. RKKY interaction for the spin-polarized electron gas

    NASA Astrophysics Data System (ADS)

    Valizadeh, Mohammad M.; Satpathy, Sashi

    2015-11-01

    We extend the original work of Ruderman, Kittel, Kasuya and Yosida (RKKY) on the interaction between two magnetic moments embedded in an electron gas to the case where the electron gas is spin-polarized. The broken symmetry of a host material introduces the Dzyaloshinsky-Moriya (DM) vector and tensor interaction terms, in addition to the standard RKKY term, so that the net interaction energy has the form ℋ = JS1 ṡS2 + D ṡS1 ×S2 + S1 ṡΓ ↔ṡS2. We find that for the spin-polarized electron gas, a nonzero tensor interaction Γ ↔ is present in addition to the scalar RKKY interaction J, while D is zero due to the presence of inversion symmetry. Explicit expressions for these are derived for the electron gas both in 2D and 3D and we show that the net magnetic interaction can be expressed as a sum of Heisenberg and Ising like terms. The RKKY interaction exhibits a beating pattern, caused by the presence of the two Fermi momenta kF↑ and kF↓, while the R-3 distance dependence of the original RKKY result for the 3D electron gas is retained. This model serves as a simple example of the magnetic interaction in systems with broken symmetry, which goes beyond the RKKY interaction.

  12. Proton cooling in ultracold low-density electron gas

    NASA Astrophysics Data System (ADS)

    Bobrov, A. A.; Bronin, S. Y.; Manykin, E. A.; Zelener, B. B.; Zelener, B. V.; Khikhlukha, D. R.

    2015-11-01

    A sole proton energy loss processes in an electron gas and the dependence of these processes on temperature and magnetic field are studied using molecular dynamics techniques in present work. It appears that for electron temperatures less than 100 K many body collisions affect the proton energy loss and these collisions must be taken into account. The influence of a strong magnetic field on the relaxation processes is also considered in this work. Calculations were performed for electron densities 10 cm-3, magnetic field 1-3 Tesla, electron temperatures 10-50 K, initial proton energies 100-10000 K.

  13. New "wet type" electron beam flue gas treatment pilot plant

    NASA Astrophysics Data System (ADS)

    Tan, Erdal; Ünal, Suat; Doğan, Alişan; Letournel, Eric; Pellizzari, Fabien

    2016-02-01

    We describe a new pilot plant for flue gas cleaning by a high energy electron beam. The special feature of this pilot plant is a uniquely designed reactor called VGS® (VIVIRAD Gas Scrubber, patent pending), that allows oxidation/reduction treating flue gas in a single step. The VGS® process combines a scrubber and an advanced oxidation/reduction process with the objective of optimizing efficiency and treatment costs of flue gas purification by electron accelerators. Promising treatment efficiency was achieved for SOx and NOx removal in early tests (99.2% and 80.9% respectively). The effects of various operational parameters on treatment performance and by-product content were investigated during this study.

  14. Characterisation of an electronic radon gas personal dosemeter.

    PubMed

    Gründel, M; Postendörfer, J

    2003-01-01

    The monitoring of radon exposure at workplaces is of great importance. Up to now passive measurement systems have been used for the registration of radon gas. Recently an electronic radon gas personal dosemeter came onto the market as an active measurement system for the registration of radon exposure (DOSEman; Sarad GmbH, Dresden, Germany). In this personal monitor, the radon gas diffuses through a membrane into a measurement chamber. A silicon detector system records spectroscopically the alpha decays of the radon gas and of the short-lived progeny 218Po and 214Po gathered onto the detector by an electrical field. In this work the calibration was tested and a proficiency test of this equipment was made. The diffusion behaviour of the radon gas into the measurement chamber, susceptibility to thoron, efficiency, influence of humidity, accuracy and the detection limit were checked. PMID:14756187

  15. Energy degradation of fast electrons in hydrogen gas

    NASA Technical Reports Server (NTRS)

    Xu, Yueming; Mccray, Richard

    1991-01-01

    An equation is derived for calculating the energy distribution of fast electrons in a partially ionized gas and a method is provided to solve for the electron degradation spectrum and the energy deposition in different forms (ionization, excitation, or heating). As an example, the energy degradation of fast electrons in a gas of pure hydrogen is calculated, considering excitations to the lowest 10 atomic levels. The Bethe approximation and the continuous slowing-down approximation are discussed and it is concluded that these approximations are accurate to the order of 20 percent for electrons with initial energy of greater than about keV. The method and results can be used to determine heating, excitations, and ionizations by high-energy photoelectrons or cosmic-ray particles in various astrophysical circumstances, such as the interstellar medium, supernova envelopes, and QSO emission-line clouds.

  16. Pulsed electron beam propagation in argon and nitrogen gas mixture

    SciTech Connect

    Kholodnaya, G. E.; Sazonov, R. V.; Ponomarev, D. V.; Remnev, G. E.; Zhirkov, I. S.

    2015-10-15

    The paper presents the results of current measurements for the electron beam, propagating inside a drift tube filled in with a gas mixture (Ar and N{sub 2}). The experiments were performed using the TEA-500 pulsed electron accelerator. The main characteristics of electron beam were as follows: 60 ns pulse duration, up to 200 J energy, and 5 cm diameter. The electron beam propagated inside the drift tube assembled of three sections. Gas pressures inside the drift tube were 760 ± 3, 300 ± 3, and 50 ± 1 Torr. The studies were performed in argon, nitrogen, and their mixtures of 33%, 50%, and 66% volume concentrations, respectively.

  17. Electron gas induced in SrTiO3

    NASA Astrophysics Data System (ADS)

    Fu, Han; Reich, K. V.; Shklovskii, B. I.

    2016-03-01

    This mini-review is dedicated to the 85th birthday of Prof. L.V. Keldysh, from whom we have learned so much. In this paper, we study the potential and electron density depth profiles in surface accumulation layers in crystals with a large and nonlinear dielectric response such as SrTiO3 (STO) in the cases of planar, spherical, and cylindrical geometries. The electron gas can be created by applying an induction D 0 to the STO surface. We describe the lattice dielectric response of STO using the Landau-Ginzburg free energy expansion and employ the Thomas-Fermi (TF) approximation for the electron gas. For the planar geometry, we arrive at the electron density profile n( x) ∝ ( x + d)-12/7, where d ∝ D 0 -12/7 . We extend our results to overlapping electron gases in GTO/STO/GTO heterojunctions and electron gases created by spill-out from NSTO (heavily n-type doped STO) layers into STO. Generalization of our approach to a spherical donor cluster creating a big TF atom with electrons in STO brings us to the problem of supercharged nuclei. It is known that for an atom with a nuclear charge Ze where Z > 170, electrons collapse onto the nucleus, resulting in a net charge Zn < Z. Here, instead of relativistic physics, the collapse is caused by the nonlinear dielectric response. Electrons collapse into the charged spherical donor cluster with radius R when its total charge number Z exceeds the critical value Z c ≈ R/ a, where a is the lattice constant. The net charge e Z n grows with Z until Z exceeds Z* ≈ ( R/ a)9/7. After this point, the charge number of the compact core Z n remains ≈ Z*, with the rest Z* electrons forming a sparse TF atom with it. We extend our studies of collapse to the case of long cylindrical clusters as well.

  18. Analysis of catalytic gas products using electron energy-loss spectroscopy and residual gas analysis for operando transmission electron microscopy.

    PubMed

    Miller, Benjamin K; Crozier, Peter A

    2014-06-01

    Operando transmission electron microscopy (TEM) of catalytic reactions requires that the gas composition inside the TEM be known during the in situ reaction. Two techniques for measuring gas composition inside the environmental TEM are described and compared here. First, electron energy-loss spectroscopy, both in the low-loss and core-loss regions of the spectrum was utilized. The data were quantified using a linear combination of reference spectra from individual gasses to fit a mixture spectrum. Mass spectrometry using a residual gas analyzer was also used to quantify the gas inside the environmental cell. Both electron energy-loss spectroscopy and residual gas analysis were applied simultaneously to a known 50/50 mixture of CO and CO2, so the results from the two techniques could be compared and evaluated. An operando TEM experiment was performed using a Ru catalyst supported on silica spheres and loaded into the TEM on a specially developed porous pellet TEM sample. Both techniques were used to monitor the conversion of CO to CO2 over the catalyst, while simultaneous atomic resolution imaging of the catalyst was performed. PMID:24815065

  19. Uniform electron gas at warm, dense matter conditions

    NASA Astrophysics Data System (ADS)

    Dutta, Sandipan; Dufty, James

    2013-06-01

    A simple, practical model for computing the equilibrium thermodynamics and structure of the uniform electron gas (jellium) by classical strong-coupling methods is proposed. Conditions addressed are those of interest for recent studies of warm dense matter: solid densities and temperatures from zero to plasma states. An effective pair potential and coupling constant are introduced, incorporating the ideal gas, low density, and weak-coupling quantum limits. The resulting parameter-free, analytic model is illustrated by the calculation of the pair correlation function via strong-coupling classical liquid state theory. The results compare favorably with the first finite-temperature restricted path integral Monte Carlo simulations reported recently.

  20. Path integral Monte Carlo and the electron gas

    NASA Astrophysics Data System (ADS)

    Brown, Ethan W.

    Path integral Monte Carlo is a proven method for accurately simulating quantum mechanical systems at finite-temperature. By stochastically sampling Feynman's path integral representation of the quantum many-body density matrix, path integral Monte Carlo includes non-perturbative effects like thermal fluctuations and particle correlations in a natural way. Over the past 30 years, path integral Monte Carlo has been successfully employed to study the low density electron gas, high-pressure hydrogen, and superfluid helium. For systems where the role of Fermi statistics is important, however, traditional path integral Monte Carlo simulations have an exponentially decreasing efficiency with decreased temperature and increased system size. In this thesis, we work towards improving this efficiency, both through approximate and exact methods, as specifically applied to the homogeneous electron gas. We begin with a brief overview of the current state of atomic simulations at finite-temperature before we delve into a pedagogical review of the path integral Monte Carlo method. We then spend some time discussing the one major issue preventing exact simulation of Fermi systems, the sign problem. Afterwards, we introduce a way to circumvent the sign problem in PIMC simulations through a fixed-node constraint. We then apply this method to the homogeneous electron gas at a large swatch of densities and temperatures in order to map out the warm-dense matter regime. The electron gas can be a representative model for a host of real systems, from simple medals to stellar interiors. However, its most common use is as input into density functional theory. To this end, we aim to build an accurate representation of the electron gas from the ground state to the classical limit and examine its use in finite-temperature density functional formulations. The latter half of this thesis focuses on possible routes beyond the fixed-node approximation. As a first step, we utilize the variational

  1. Dissociative attachment reactions of electrons with gas phase superacids

    SciTech Connect

    Liu, X.

    1992-01-01

    Using the flowing afterglow Langmuir probe (FALP) technique, dissociative attachment coefficients [beta] for reactions of electrons with gas phase superacids HCo(PF[sub 3])[sub 4], HRh(PF[sub 3])[sub 4] and carbonyl hydride complexes HMn(CO)[sub 5], HRe(CO)[sub 5] have been determined under thermal conditions over the approximate temperature range 300[approximately]550 K. The superacids react relatively slowly (<1/20 of [beta][sub max]) with free electrons in a thermal plasma, and the values of [beta] obtained this far do not show a correlation between acidity and [beta]. The pioneer researchers in this field had speculated that any superacid would be a rapid attacher of electrons; it was found that this speculation is not true in general. The product distribution of electron attachment reaction to HCo(PF[sub 3])[sub 4] was found to be independent of temperature even though the [beta][HCo(PF[sub 3])[sub 4

  2. Quantum Oscillations in an Interfacial 2D Electron Gas.

    SciTech Connect

    Zhang, Bingop; Lu, Ping; Liu, Henan; Lin, Jiao; Ye, Zhenyu; Jaime, Marcelo; Balakirev, Fedor F.; Yuan, Huiqiu; Wu, Huizhen; Pan, Wei; Zhang, Yong

    2016-01-01

    Recently, it has been predicted that topological crystalline insulators (TCIs) may exist in SnTe and Pb1-xSnxTe thin films [1]. To date, most studies on TCIs were carried out either in bulk crystals or thin films, and no research activity has been explored in heterostructures. We present here the results on electronic transport properties of the 2D electron gas (2DEG) realized at the interfaces of PbTe/ CdTe (111) heterostructures. Evidence of topological state in this interfacial 2DEG was observed.

  3. Neutron microdosimetric response of a gas electron multiplier.

    PubMed

    Dubeau, J; Waker, A J

    2008-01-01

    A new high-sensitivity tissue equivalent proportional counter (TEPC) on the basis of the gas electron multiplier (GEM) detector used in high-energy physics experiments has been designed, constructed and tested in a variety of neutron fields. The GEM-TEPC makes use of a lithographically produced strip readout system to achieve the equivalent of a large number of miniature TEPC detector elements. This new device could be used as the basis of an electronic personal dosemeter for gamma and neutron mixed radiation fields. PMID:17951607

  4. Heavy-ion induced electronic desorption of gas from metals

    SciTech Connect

    Molvik, A W; Kollmus, H; Mahner, E; Covo, M K; Bellachioma, M C; Bender, M; Bieniosek, F M; Hedlund, E; Kramer, A; Kwan, J; Malyshev, O B; Prost, L; Seidl, P A; Westenskow, G; Westerberg, L

    2006-12-19

    During heavy ion operation in several particle accelerators world-wide, dynamic pressure rises of orders of magnitude were triggered by lost beam ions that bombarded the vacuum chamber walls. This ion-induced molecular desorption, observed at CERN, GSI, and BNL, can seriously limit the ion beam lifetime and intensity of the accelerator. From dedicated test stand experiments we have discovered that heavy-ion induced gas desorption scales with the electronic energy loss (dE{sub e}/d/dx) of the ions slowing down in matter; but it varies only little with the ion impact angle, unlike electronic sputtering.

  5. The effective density of randomly moving electrons and related characteristics of materials with degenerate electron gas

    SciTech Connect

    Palenskis, V.

    2014-04-15

    Interpretation of the conductivity of metals, of superconductors in the normal state and of semiconductors with highly degenerate electron gas remains a significant issue if consideration is based on the classical statistics. This study is addressed to the characterization of the effective density of randomly moving electrons and to the evaluation of carrier diffusion coefficient, mobility, and other parameters by generalization of the widely published experimental results. The generalized expressions have been derived for various kinetic parameters attributed to the non-degenerate and degenerate electron gas, by analyzing a random motion of the single type carriers in homogeneous materials. The values of the most important kinetic parameters for different metals are also systematized and discussed. It has been proved that Einstein's relation between the diffusion coefficient and the drift mobility of electrons is held for any level of degeneracy if the effective density of randomly moving carriers is properly taken into account.

  6. The gas electron multiplier (GEM): Operating principles and applications

    NASA Astrophysics Data System (ADS)

    Sauli, Fabio

    2016-01-01

    Introduced by the author in 1997, The Gas Electron Multiplier (GEM) constitutes a powerful addition to the family of fast radiation detectors; originally developed for particle physics experiments, the device and has spawned a large number of developments and applications; a web search yields more than 400 articles on the subject. This note is an attempt to summarize the status of the design, developments and applications of the new detector.

  7. Turbulence generated by a gas of electron acoustic solitons

    SciTech Connect

    Dubouloz, N.; Pottelette, R.; Malingre, M.; Treumann, R.A.

    1993-10-01

    The authors consider a gas of electron acoustic solitons propagating in a magnetized plasma, such as the auroral region. They show that such modes can exist, and propagate, and that the velocities and amplitudes of such waves, consistent with measured plasma density and temperature, are capable of explaining the high frequency part of the broadband electrostatic noise observed by the Viking satellite, which is in a spectral region forbidden to linear electrostatic waves.

  8. Design and function of an electron mobility spectrometer with a thick gas electron multiplier

    NASA Astrophysics Data System (ADS)

    Orchard, Gloria M.; Puddu, Silvia; Waker, Anthony J.

    2016-04-01

    The design and function of an electron mobility spectrometer (EMS) including a thick gas electron multiplier (THGEM) is presented. The THGEM was designed to easily be incorporated in an existing EMS to investigate the ability to detect tritium in air using a micropattern gas detector. The THGEM and a collection plate (anode) were installed and the appropriate circuitry was designed and connected to supply the required voltages to the THGEM-EMS. An alpha source (241Am) was used to generate electron-ion pairs within the gas-filled sensitive volume of the EMS. The electrons were used to investigate the THGEM-EMS response as a function of applied voltage to the THGEM and anode. The relative gas-gain and system resolution of the THGEM-EMS were measured at various applied voltage settings. It was observed a potential difference across the THGEM of +420 V and potential difference across the induction region of +150 V for this EMS setup resulted in the minimum voltage requirements to operate with a stable gain and system resolution. Furthermore, as expected, the gain is strongly affected not only by the potential difference across the THGEM, but also by the applied voltage to the anode and resulting potential difference between the THGEM and anode.

  9. Electronic excitations of slow ions in a free electron gas metal: evidence for charge exchange effects.

    PubMed

    Primetzhofer, D; Rund, S; Roth, D; Goebl, D; Bauer, P

    2011-10-14

    Electronic energy loss of light ions transmitted through nanometer films of Al has been studied at very low ion velocities. For hydrogen, the electronic stopping power S is found to be perfectly proportional to velocity, as expected for a free electron gas. For He, the same is anticipated, but S shows a transition between two distinct regimes, in both of which S is velocity proportional-however, with remarkably different slopes. This finding can be explained as a consequence of charge exchange in close encounters between He and Al atoms, which represents an additional energy loss channel. PMID:22107378

  10. Hartree-Fock electronic structure calculations for free atoms and immersed atoms in an electron gas

    NASA Astrophysics Data System (ADS)

    Walsh, Kenneth Charles

    Electronic structure calculations for free and immersed atoms are performed in the context of unrestricted Hartree-Fock Theory. Spherical symmetry is broken, lifting degeneracies in electronic configurations involving the magnetic quantum number mℓ. Basis sets, produced from density functional theory, are then explored for completeness. Comparison to spectroscopic data is done by a configurational interaction of the appropriate L and S symmetry. Finally, a perturbation technique by Lowdin is used to couple the bound atomic states to a neutral, uniform background electronic gas (jellium).

  11. Dissociative Attachment Reactions of Electrons with Gas Phase Superacids

    NASA Astrophysics Data System (ADS)

    Liu, Xifan

    Using the flowing afterglow Langmuir probe (FALP) technique, dissociative attachment coefficients beta for reactions of electrons with gas phase superacids HCo(PF_3)_4, HRh(PF _3)_4 and carbonyl hydride complexes HMn(CO)_5, HRe(CO) _5 have been determined under thermal conditions over the approximate temperature range 300~ 550 K. The superacids react relatively slowly (< 1/20 of beta_{rm max}) with free electrons in a thermal plasma, and the values of beta obtained this far do not show a correlation between acidity and beta. The pioneer researchers in this field had speculated that any superacid would be a rapid attacher of electrons; we found that this speculation is not true in general. The product distribution of electron attachment reaction to HCo(PF_3)_4 was found to be independent of temperature even though the beta (HCo(PF_3)_4 ) increases with temperature. This leads us to propose that the electron attachment process occurs well before the excited complex dissociates. In addition, the activation energy of HCo(PF_3)_4 for electron attachment has been derived from the Arrhenius plots. The carbonyl hydride complexes, HMn(CO) _5 and HRe(CO)_5, react relatively rapidly (>1/4 of beta_{rm max}) with free electrons in thermal plasma. This indicates that these reactions cannot be significantly endothermic. Observation of rapid attachment for these non-superacids shows that the Mn-CO and Re-CO bonds are weaker than the Mn-H and Re-H bonds, respectively. Comparisons between the carbonyl and trifluorophosphine cases implies that fast electron capture is related more to the CO ligand than to the transition -metal species.

  12. Gas lasers pumped by runaway electrons preionized diffuse discharge

    NASA Astrophysics Data System (ADS)

    Panchenko, Alexei N.; Lomaev, Mikhail I.; Panchenko, Nikolai A.; Tarasenko, Victor F.; Suslov, Alexei I.

    2015-05-01

    It was shown that run-away electron preionized volume (diffuse) discharge (REP DD) can be used as an excitation source of gas mixtures at elevated pressures and can produce laser emission. We report experimental and simulated results of application of the REP DD for excitation of different active gas mixtures. Kinetic model of the REP DD in mixtures of nitrogen with SF6 is developed allowing predicting the radiation parameters of nitrogen laser at 337.1 nm. Peculiarities of the REP DD development in different gas mixtures are studied, as well. It was shown that the REP DD allows obtaining efficient lasing stimulated radiation in the IR, visible and UV spectral ranges. New operation mode of nitrogen laser is demonstrated under REP DD excitation. Laser action on N2, HF, and DF molecules was obtained with the efficiency close to the limiting value. Promising prospects of REP DD employment for exciting a series of gas lasers was demonstrated. It was established that the REP DD is most efficient for pumping lasers with the mixtures comprising electro-negative gases.

  13. Electron-beam synthesis of fuel in the gas phase

    NASA Astrophysics Data System (ADS)

    Ponomarev, A. V.; Holodkova, E. M.; Ershov, B. G.

    2012-09-01

    Electron-beam synthesis of liquid fuel from gaseous alkanes was upgraded for formation of conventional and alternative fuel from biomass or pyrolysis oil. Bio-feedstock conversion algorithm includes two consecutive stages: (1) initial macromolecules' transformation to low-molecular-weight intermediates; (2) transformation of these intermediates to stable fuel in gaseous alkanes' atmosphere. Radicals originated from alkanes participate in alkylation/hydrogenation of biomass intermediates. Chemical fixation of gaseous alkanes is amplified in the presence of biomass derivatives due to suppression of gas regeneration reactions, higher molar mass of reagents and lower volatility of radiolytic intermediates.

  14. Momentum distribution function of the electron gas at metallic densities

    NASA Astrophysics Data System (ADS)

    Takada, Yasutami; Yasuhara, H.

    1991-10-01

    The momentum distribution function n(k) of the electron gas is calculated in the effective-potential-expansion method at metallic densities. The recently established self-consistency relation between n(k) and the correlation energy [Y. Takada and T. Kita, J. Phys. Soc. Jpn. 60, 25 (1991)] is employed to check the accuracy of our results. This check shows that the effective-potential-expansion method provides probably the exact and at least more accurate results of n(k) than all the other methods that have given n(k) thus far.

  15. Auger electron nanoscale mapping and x-ray photoelectron spectroscopy combined with gas cluster ion beam sputtering to study an organic bulk heterojunction

    SciTech Connect

    Heon Kim, Seong; Heo, Sung; Ihn, Soo-Ghang; Yun, Sungyoung; Hwan Park, Jong; Chung, Yeonji; Lee, Eunha; Park, Gyeongsu; Yun, Dong-Jin

    2014-06-16

    The lateral and vertical distributions of organic p/n bulk heterojunctions for an organic solar cell device are, respectively, investigated using nanometer-scale Auger electron mapping and using X-ray photoelectron spectroscopy (XPS) with Ar gas cluster ion beam (GCIB) sputtering. The concentration of sulfur, present only in the p-type material, is traced to verify the distribution of p-type (donor) and n-type (acceptor) materials in the blended structure. In the vertical direction, a considerable change in atomic sulfur concentration is observed using XPS depth profiling with Ar GCIB sputtering. In addition, Auger electron mapping of sulfur reveals the lateral 2-dimensional distribution of p- and n-type materials. The combination of Auger electron mapping with Ar GCIB sputtering should thereby allow the construction of 3-dimensional distributions of p- and n-type materials in organic photovoltaic cells.

  16. Microplume model of spatial-yield spectra. [applying to electron gas degradation in molecular nitrogen gas

    NASA Technical Reports Server (NTRS)

    Green, A. E. S.; Singhal, R. P.

    1979-01-01

    An analytic representation for the spatial (radial and longitudinal) yield spectra is developed in terms of a model containing three simple 'microplumes'. The model is applied to electron energy degradation in molecular nitrogen gas for 0.1 to 5 keV incident electrons. From the nature of the cross section input to this model it is expected that the scaled spatial yield spectra for other gases will be quite similar. The model indicates that each excitation, ionization, etc. plume should have its individual spatial and energy dependence. Extensions and aeronomical and radiological applications of the model are discussed.

  17. High Mobility Two-Dimensional Electron Gas in Black Phosphorus

    NASA Astrophysics Data System (ADS)

    Li, Likai; Ye, Guojun; Tran, Vy; Chen, Guorui; Wang, Huichao; Wang, Jian; Watanabe, Kenji; Taniguchi, Takashi; Yang, Li; Chen, Xianhui; Zhang, Yuanbo

    2015-03-01

    Black phosphorus has recently emerged as a new member in the family of two-dimensional (2D) atomic crystals. It is a semiconductor with a tunable bandgap and high carrier mobility - material properties that are important for potential opto-electronic and high-speed device applications. In this work, we achieve a record-high carrier mobility in black phosphorus by placing it on hexagonal boron nitride (h-BN) substrate. The exceptional mobility of the 2D electron gas created at the interface allows us to observe quantum oscillations for the first time in this material. The temperature and magnetic field dependence of the oscillations yields crucial information about the black phosphorus 2DEG, such as cyclotron mass of the charge carriers and their lifetime. Our results pave the way to future research on quantum transport in black phosphorus.

  18. Distribution of a nonstationary electron beam in a dense gas

    SciTech Connect

    Sklyarov, Y.M.; Shelepin, L.A.; Syts'ko, Y.L.

    1986-11-01

    The problem of the temporal and spatial dependences of the parameters of the action of a modulated fast-electron beam on a dense gas is posed on the basis of the transport equation. The problem is simplified by making it nondimensional and by transforming to the Fokker-Planck approximation. A Green's function formalism is developed for this problem and is used to express the solution of the general nonstationary problem in the form of a convolution of a nonstationary boundary flow with a stationary Green's function. The use of the derived equation is illustrated using as an example the solution of a problem with the simplest stationary Green's function corresponding to the ''straight-ahead'' approximation. This approximation is used to consider a general relativistic case with model scattering cross sections. The methods and results of a numerical computer solution of the nonstationary problem of electron retardation in the upper layer of the atmosphere are surveyed.

  19. (1+2)-dimensional strongly nonlocal solitons

    SciTech Connect

    Ouyang Shigen; Guo Qi

    2007-11-15

    Approximate solutions of (1+2)-dimensional strongly nonlocal solitons (SNSs) are presented. It is shown that the power of a SNS in a nematic liquid crystal is in direct proportion to the second power of the degree of nonlocality, the power of a SNS in a nonlocal medium with a logarithmic nonlocal response is in inverse proportion to the second power of its beamwidth, and the power of a SNS in a nonlocal medium with an sth-power decay nonlocal response is in direct proportion to the (s+2)th power of the degree of nonlocality.

  20. High-Temperature Gas Sensor Array (Electronic Nose) Demonstrated

    NASA Technical Reports Server (NTRS)

    Hunter, Gary W.

    2002-01-01

    The ability to measure emissions from aeronautic engines and in commercial applications such as automotive emission control and chemical process monitoring is a necessary first step if one is going to actively control those emissions. One single sensor will not give all the information necessary to determine the chemical composition of a high-temperature, harsh environment. Rather, an array of gas sensor arrays--in effect, a high-temperature electronic "nose"--is necessary to characterize the chemical constituents of a diverse, high-temperature environment, such as an emissions stream. The signals produced by this nose could be analyzed to determine the constituents of the emission stream. Although commercial electronic noses for near-room temperature applications exist, they often depend significantly on lower temperature materials or only one sensor type. A separate development effort necessary for a high-temperature electronic nose is being undertaken by the NASA Glenn Research Center, Case Western Reserve University, Ohio State University, and Makel Engineering, Inc. The sensors are specially designed for hightemperature environments. A first-generation high-temperature electronic nose has been demonstrated on a modified automotive engine. This nose sensor array was composed of sensors designed for hightemperature environments fabricated using microelectromechanical-systems- (MEMS-) based technology. The array included a tin-oxide-based sensor doped for nitrogen oxide (NOx) sensitivity, a SiC-based hydrocarbon (CxHy) sensor, and an oxygen sensor (O2). These sensors operate on different principles--resistor, diode, and electrochemical cell, respectively--and each sensor has very different responses to the individual gases in the environment. A picture showing the sensor head for the array is shown in the photograph on the left and the sensors installed in the engine are shown in the photograph on the right. Electronics are interfaced with the sensors for

  1. Quantum holographic encoding in a two-dimensional electron gas

    SciTech Connect

    Moon, Christopher

    2010-05-26

    The advent of bottom-up atomic manipulation heralded a new horizon for attainable information density, as it allowed a bit of information to be represented by a single atom. The discrete spacing between atoms in condensed matter has thus set a rigid limit on the maximum possible information density. While modern technologies are still far from this scale, all theoretical downscaling of devices terminates at this spatial limit. Here, however, we break this barrier with electronic quantum encoding scaled to subatomic densities. We use atomic manipulation to first construct open nanostructures - 'molecular holograms' - which in turn concentrate information into a medium free of lattice constraints: the quantum states of a two-dimensional degenerate Fermi gas of electrons. The information embedded in the holograms is transcoded at even smaller length scales into an atomically uniform area of a copper surface, where it is densely projected into both two spatial degrees of freedom and a third holographic dimension mapped to energy. In analogy to optical volume holography, this requires precise amplitude and phase engineering of electron wavefunctions to assemble pages of information volumetrically. This data is read out by mapping the energy-resolved electron density of states with a scanning tunnelling microscope. As the projection and readout are both extremely near-field, and because we use native quantum states rather than an external beam, we are not limited by lensing or collimation and can create electronically projected objects with features as small as {approx}0.3 nm. These techniques reach unprecedented densities exceeding 20 bits/nm{sup 2} and place tens of bits into a single fermionic state.

  2. Anisotropic 2-dimensional Robin Hood model

    NASA Astrophysics Data System (ADS)

    Buldyrev, Sergey; Cwilich, Gabriel; Zypman, Fredy

    2009-03-01

    We have considered the Robin Hood model introduced by Zaitsev[1] to discuss flux creep and depinning of interfaces in a two dimensional system. Although the model has been studied extensively analytically in 1-d [2], its scaling laws have been verified numerically only in that case. Recent work suggest that its properties might be important to understand surface friction[3], where its 2-dimensional properties are important. We show that in the 2-dimensional case scaling laws can be found provided one considers carefully the anisotropy of the model, and different ways of introducing that anisotropy lead to different exponents and scaling laws, in analogy with directed percolation, with which this model is closely related[4]. We show that breaking the rotational symmetry between the x and y axes does not change the scaling properties of the model, but the introduction of a preferential direction of accretion (``robbing'' in the language of the model) leads to new scaling exponents. [1] S.I.Zaitsev, Physica A189, 411 (1992) [2] M. Pacuzki, S. Maslov and P.Bak, Phys Rev. E53, 414 (1996) [3] S. Buldyrev, J. Ferrante and F. Zypman Phys. Rev E64, 066110 (2006) [4] G. Odor, Rev. Mod. Phys. 76, 663 (2004) .

  3. Simulations of Electron Density Perturbations in a Gas Discharge

    NASA Astrophysics Data System (ADS)

    Caplinger, James; Sotnikov, Vladimir; Main, Daniel

    2015-11-01

    Beginning with the idealized case of the Pierce diode, a series of particle-in-cell (PIC) simulations are conducted in order to characterize density perturbations in a laboratory gas discharge. This work is conducted to support future experimental investigations into electromagnetic scattering off of electron density perturbations excited by plasma flows. As a first step, 2D PIC simulations were conducted for the Pierce diode case, which is a simple model that exploits instabilities of a monochromatic electron beam between two grounded electrodes. These results were compared to the standard analytical solution. Departing from this idealized case we will include in the simulations electron-neutral collisions, particle creation from ionization, as well as an electric field generated by biased electrodes. A parameter study of electric field strength and collision frequency will be performed for values approaching the Pierce diode as well as extending to cases of expected laboratory parameters. If we can extract physical density spectra from simulations with parameters approaching experimental values, it may be possible to analyze electromagnetic scattering characteristics.

  4. Dose Imaging Detectors for Radiotherapy Based on Gas Electron Multipliers

    PubMed Central

    Klyachko, A.V.; Friesel, D.L.; Kline, C.; Liechty, J.; Nichiporov, D.F.; Solberg, K.A.

    2010-01-01

    New techniques in charged particle therapy and widespread use of modern dynamic beam delivery systems demand new beam monitoring devices as well as accurate 2D dosimetry systems to verify the delivered dose distribution. We are developing dose imaging detectors based on gas electron multipliers (GEM) with the goal of improving dose measurement linearity, position and timing resolution, and to ultimately allow pre-treatment verification of dose distributions and dose delivery monitoring employing scanning beam technology. A prototype 10×10 cm2 double-GEM detector has been tested in the 205 MeV proton beam using electronic and optical readout modes. Preliminary results with electronic cross-strip readout demonstrate fast response and single-pixel (4 mm) position resolution. In optical readout mode, the line spread function of the detector was found to have σ=0.7 mm. In both readout modes, the detector response was linear up to dose rates of 50 Gy/min, with adequate representation of the Bragg peak in depth-dose profile measurements. PMID:21528010

  5. Towards transcorrelated FCIQMC for the uniform electron gas

    NASA Astrophysics Data System (ADS)

    Mohr, Jennifer A.-F.; Shepherd, James; Alavi, Ali

    2013-03-01

    The full configuration interaction quantum Monte Carlo (FCIQMC) method1 has been shown to provide exact results for the solution of the N-particle Schrödinger equation of the uniform electron gas (UEG) within a finite basis set2. However, due to the difficulty of representing the electron-electron cusp, a large number of basis functions is needed to describe the exact wavefunction of this model system. In order to make larger UEG systems accessible for FCIQMC calculations, we aim to improve the convergence of the ground-state eigenvector of the Hamiltonian with respect to the size of the basis set. For this purpose, we use a transcorrelated ansatz that was first suggested by Boys and Handy3 in 1969. Within this method, the problematic behaviour of the wavefunction near the cusp is incorporated into the Hamiltonian by a similarity transformation. With our poster, we will present encountered obstacles as well as our ideas and aspirations for this new project. 1 G. H. Booth, A. J. W. Thom, and A. Alavi, J. Chem. Phys. 131, 054106 (2009) 2 J. J. Shepherd, G. H Booth, A. Grüneis, and A. Alavi, Phys. Rev. B 85, 081103(R) (2012) 3 S. F. Boys, and N. C. Handy, Proc. R. Soc. Lond. A 310, 43-61(1969)

  6. A ballistic two-dimensional-electron-gas Andreev interferometer

    SciTech Connect

    Amado, M. Fornieri, A.; Sorba, L.; Giazotto, F.; Biasiol, G.

    2014-06-16

    We report the realization and investigation of a ballistic Andreev interferometer based on an InAs two dimensional electron gas coupled to a superconducting Nb loop. We observe strong magnetic modulations in the voltage drop across the device due to quasiparticle interference within the weak-link. The interferometer exhibits flux noise down to ∼80 μΦ{sub 0}/√(Hz) and a robust behavior in temperature with voltage oscillations surviving up to ∼7 K. Besides this remarkable performance, the device represents a crucial first step for the realization of a fully-tunable ballistic superconducting magnetometer and embodies a potential advanced platform for the investigation of Majorana bound states, non-local entanglement of Cooper pairs, as well as the manipulation and control of spin triplet correlations.

  7. Compressibility sum rule for the two-dimensional electron gas.

    PubMed

    Das, M P; Golden, K I; Green, F

    2001-07-01

    The authors establish formulas for the isothermal compressibility and long-wavelength static density-density response function of a weakly correlated two-dimensional electron gas in the 1

  8. Energy fluctuations of a finite free-electron Fermi gas.

    PubMed

    Pekola, Jukka P; Muratore-Ginanneschi, Paolo; Kupiainen, Antti; Galperin, Yuri M

    2016-08-01

    We discuss the energy distribution of free-electron Fermi-gas, a problem with a textbook solution of Gaussian energy fluctuations in the limit of a large system. We find that for a small system, characterized solely by its heat capacity C, the distribution can be solved analytically, and it is both skewed and it vanishes at low energies, exhibiting a sharp drop to zero at the energy corresponding to the filled Fermi sea. The results are relevant from the experimental point of view, since the predicted non-Gaussian effects become pronounced when C/k_{B}≲10^{3} (k_{B} is the Boltzmann constant), a regime that can be easily achieved for instance in mesoscopic metallic conductors at sub-kelvin temperatures. PMID:27627262

  9. Development of Resistive Electrode Gas Electron Multiplier (RE-GEM)

    NASA Technical Reports Server (NTRS)

    Yoshikawa, A.; Tamagawa, T.; Iwahashi, T.; Asami, F.; Takeuchi, Y.; Hayato, A.; Hamagaki, H.; Gunji, T.; Akimoto, R.; Nukariya, A.; Hayashi, S.; Ueno, K.; Ochi, A.; Oliveria, R.

    2012-01-01

    We successfully produced Resistive-Electrode Gas Electron Multiplier (RE-GEM) which has resistive electrodes instead of the metal ones which are employed for the standard GEM foils. RE-GEM has a resistive electrode of 25 micron-thick and an insulator layer of 100 micron-thick. The hole structure of RE-GEM is a single conical with the wider and narrower hole diameters of 80 micron and 60 micron, respectively. A hole pitch of RE-GEM is 140 micron. We obtained the maximum gain of about 600 and the typical energy resolution of about 20% (FWHM) at an applied voltage between the resistive electrodes of 620 V, using a collimated 8 keV X-rays from a generator in a gas mixture of 70% Ar and 30% CO2 by volume at the atmospheric pressure. We measured the effective gain as a function of the electric field of the drift region and obtained the maximum gain at an drift field of 0.5 kV/cm.

  10. Dissociative electron attachment to the gas-phase nucleobase hypoxanthine

    SciTech Connect

    Dawley, M. Michele; Tanzer, Katrin; Denifl, Stephan E-mail: Sylwia.Ptasinska.1@nd.edu; Carmichael, Ian; Ptasińska, Sylwia E-mail: Sylwia.Ptasinska.1@nd.edu

    2015-06-07

    We present high-resolution measurements of the dissociative electron attachment (DEA) to isolated gas-phase hypoxanthine (C{sub 5}H{sub 4}N{sub 4}O, Hyp), a tRNA purine base. The anion mass spectra and individual ion efficiency curves from Hyp were measured as a function of electron energy below 9 eV. The mass spectra at 1 and 6 eV exhibit the highest anion yields, indicating possible common precursor ions that decay into the detectable anionic fragments. The (Hyp − H) anion (C{sub 5}H{sub 3}N{sub 4}O{sup −}) exhibits a sharp resonant peak at 1 eV, which we tentatively assign to a dipole-bound state of the keto-N1H,N9H tautomer in which dehydrogenation occurs at either the N1 or N9 position based upon our quantum chemical computations (B3LYP/6-311+G(d,p) and U(MP2-aug-cc-pVDZ+)) and prior studies with adenine. This closed-shell dehydrogenated anion is the dominant fragment formed upon electron attachment, as with other nucleobases. Seven other anions were also observed including (Hyp − NH){sup −}, C{sub 4}H{sub 3}N{sub 4}{sup −}/C{sub 4}HN{sub 3}O{sup −}, C{sub 4}H{sub 2}N{sub 3}{sup −}, C{sub 3}NO{sup −}/HC(HCN)CN{sup −}, OCN{sup −}, CN{sup −}, and O{sup −}. Most of these anions exhibit broad but weak resonances between 4 and 8 eV similar to many analogous anions from adenine. The DEA to Hyp involves significant fragmentation, which is relevant to understanding radiation damage of biomolecules.

  11. Localization of the Two-dimensional Electron Gas in LaAlO3/SrTiO3 Heterostructures

    NASA Astrophysics Data System (ADS)

    Hernandez, Tomas; Wung Bark, Chung; Eom, Chang-Beom; Rzchowski, Mark S.

    2012-02-01

    We use low temperature magnetotransport measurements to compare the quasi 2-dimensional electron gas (2DEG) at the LaAlO3/SrTiO3 interface in heterostructures grown on (LaAlO3)0.3-(Sr2AlTaO3)0.7 (LSAT) substrates to the 2DEG at the LaAlO3/single crystal SrTiO3 interface. All heterostructures were grown by pulsed laser deposition with in-situ reflection high-energy electron diffraction. For the samples on LSAT, we find that increasing the carrier concentration by growing at lower oxygen partial pressures changes the conductivity mechanism, from strongly localized transport at low carrier concentrations to metallic conductivity with indications of weak localization at higher concentrations. We interpret this as an increasing occupation of Ti 3d bands of layers near the interface, changing the spatial extent of the conduction region and its susceptibility to localization by disorder and point defects at the interface. On the other hand, the 2DEG of similarly grown LaAlO3 on single crystal SrTiO3 shows metallic behavior and low temperature measurements display Kohler scaling of the out-of-plane magnetoresistance, consistent with classical orbital transport.

  12. Resonant spin Hall effect in two dimensional electron gas

    NASA Astrophysics Data System (ADS)

    Shen, Shun-Qing

    2005-03-01

    Remarkable phenomena have been observed in 2DEG over last two decades, most notably, the discovery of integer and fractional quantum Hall effect. The study of spin transport provides a good opportunity to explore spin physics in two-dimensional electron gas (2DEG) with spin-orbit coupling and other interaction. It is already known that the spin-orbit coupling leads to a zero-field spin splitting, and competes with the Zeeman spin splitting if the system is subjected to a magnetic field perpendicular to the plane of 2DEG. The result can be detected as beating of the Shubnikov-de Haas oscillation. Very recently the speaker and his collaborators studied transport properties of a two-dimensional electron system with Rashba spin-orbit coupling in a perpendicular magnetic field. The spin-orbit coupling competes with the Zeeman splitting to generate additional degeneracies between different Landau levels at certain magnetic fields. It is predicted theoretically that this degeneracy, if occurring at the Fermi level, gives rise to a resonant spin Hall conductance, whose height is divergent as 1/T and whose weight is divergent as -lnT at low temperatures. The charge Hall conductance changes by 2e^2/h instead of e^2/h as the magnetic field changes through the resonant point. The speaker will address the resonance condition, symmetries in the spin-orbit coupling, the singularity of magnetic susceptibility, nonlinear electric field effect, the edge effect and the disorder effect due to impurities. This work was supported by the Research Grants Council of Hong Kong under Grant No.: HKU 7088/01P. *S. Q. Shen, M. Ma, X. C. Xie, and F. C. Zhang, Phys. Rev. Lett. 92, 256603 (2004) *S. Q. Shen, Y. J. Bao, M. Ma, X. C. Xie, and F. C. Zhang, cond-mat/0410169

  13. Dimmable Electronic Ballast for a Gas Discharge Lamp

    NASA Technical Reports Server (NTRS)

    Raducanu, Marius; Hennings, Brian D.

    2013-01-01

    Titanium dioxide (TiO2) is the most efficient photocatalyst for organic oxidative degradation. TiO2 is effective not only in aqueous solution, but also in nonaqueous solvents and in the gas phase. It is photostable, biologically and chemically inert, and non-toxic. Low-energy UV light (approximately 375 nm, UV-A) can be used to photoactivate TiO2. TiO2 photocatalysis has been used to mineralize most types of organic compounds. Also, TiO2 photocatalysis has been effectively used in sterilization. This effectiveness has been demonstrated by its aggressive destruction of microorganisms, and aggressive oxidation effects of toxins. It also has been used for the oxidation of carbon monoxide to carbon dioxide, and ammonia to nitrogen. Despite having many attractive features, advanced photocatalytic oxidation processes have not been effectively used for air cleaning. One of the limitations of the traditional photocatalytic systems is the ballast that powers (lights) the bulbs. Almost all commercial off-the-shelf (COTS) ballasts are not dimmable and do not contain safety features. COTS ballasts light the UV lamp as bright as the bulb can be lit, and this results in shorter bulb lifetime and maximal power consumption. COTS magnetic ballasts are bulky, heavy, and inefficient. Several iterations of dimmable electronic ballasts have been developed. Some manifestations have safety features such as broken-bulb or over-temperature warnings, replace-bulb alert, logbulb operational hours, etc. Several electronic ballast boards capable of independently lighting and controlling (dimming) four fluorescent (UV light) bulbs were designed, fabricated, and tested. Because of the variation in the market bulb parameters, the ballast boards were designed with a very broad range output. The ballast boards can measure and control the current (power) for each channel.

  14. Gas breakdown in electron cyclotron resonance ion sources

    NASA Astrophysics Data System (ADS)

    Skalyga, V. A.; Zorin, V. G.; Izotov, I. V.; Sidorov, A. V.; Lamy, T.; Sortais, P.; Thuillier, T.

    2006-03-01

    The realization of the beta-beam project (http://beta-beam.web.cern.ch/beta-beam/) assumes the formation of a pulsed ion beam of helium and neon radioactive isotopes. A pulsed electron cyclotron resonance (ECR) source of multicharged ions has been proposed to produce such a beam [P. Sortais et al., Rev. Sci. Instrum. 75, 1610 (2004)]. The rising of plasma density up to a stationary level must be fast enough to actualize this approach. This condition is mandatory to avoid particle losses in the transmission line. In the presented work, the rising time of the plasma density in an ECR ion source from a background level up to 98% of a stationary level is calculated. A zero-dimensional model of plasma formation in a mirror trap [V. Semenov et al., Rev. Sci. Instrum. 73, 635 (2002)] is used, able to make calculation for a wide range of microwave frequencies. Plasma confinement regime can either be classic (Pastoukhov [Rev. Plasma Phys. 13, 203 (1987)]) or gas dynamic, depending on the plasma parameters. The calculations are in good agreement with the experimental results obtained at the SMIS'37 setup. Numerical calculations also show that particle losses can be significantly reduced by pumping effect; thanks to microwave frequency increase above 40GHz.

  15. Measurement Of Gas Electron Multiplier (GEM) Detector Characteristics

    NASA Astrophysics Data System (ADS)

    Park, Seongtae; Baldelomar, Edwin; Park, Kwangjune; Sosebee, Mark; White, Andy; Yu, Jaehoon

    2011-06-01

    The High Energy Physics group of the University of Texas at Arlington has been developing gas electron multiplier detectors to use them as sensitive gap detectors in digital hadron calorimeters for the International Linear Collider, a future high energy particle accelerator. For this purpose, we constructed numerous GEM detectors that employ double GEM layers. In this study, two kinds of prototype GEM detectors were tested; one with 28×28 cm2 active area double GEM structure with a 3 mm drift gap, a 1 mm transfer gap and a 1 mm induction gap and the other with two 3×3 cm2 GEM foils in the amplifier stage with a 5 mm drift gap, a 2 mm transfer gap and a 1 mm induction gap. The detectors' characteristics from exposure to high-energy charged particles and other radiations were measured using cosmic rays and 55Fe radioactive source. From the 55Fe tests, we observed two well separated characteristic X-ray emission peaks and confirmed the detectors' functionality. We also measured chamber gains to be over 6000 at a high voltage of 395 V across each GEM electrode. The responses to cosmic rays show the spectra that fit well to Landau distributions as expected from minimum ionizing particles.

  16. Measurement Of Gas Electron Multiplier (GEM) Detector Characteristics

    SciTech Connect

    Park, Seongtae; Baldelomar, Edwin; Sosebee, Mark; White, Andy; Yu, Jaehoon; Park, Kwangjune

    2011-06-01

    The High Energy Physics group of the University of Texas at Arlington has been developing gas electron multiplier detectors to use them as sensitive gap detectors in digital hadron calorimeters for the International Linear Collider, a future high energy particle accelerator. For this purpose, we constructed numerous GEM detectors that employ double GEM layers. In this study, two kinds of prototype GEM detectors were tested; one with 28x28 cm{sup 2} active area double GEM structure with a 3 mm drift gap, a 1 mm transfer gap and a 1 mm induction gap and the other with two 3x3 cm{sup 2} GEM foils in the amplifier stage with a 5 mm drift gap, a 2 mm transfer gap and a 1 mm induction gap. The detectors' characteristics from exposure to high-energy charged particles and other radiations were measured using cosmic rays and {sup 55}Fe radioactive source. From the {sup 55}Fe tests, we observed two well separated characteristic X-ray emission peaks and confirmed the detectors' functionality. We also measured chamber gains to be over 6000 at a high voltage of 395 V across each GEM electrode. The responses to cosmic rays show the spectra that fit well to Landau distributions as expected from minimum ionizing particles.

  17. Gas-phase electronic spectrum of the indole radical cation

    NASA Astrophysics Data System (ADS)

    Chalyavi, N.; Catani, K. J.; Sanelli, J. A.; Dryza, V.; Bieske, E. J.

    2015-08-01

    The visible and near-UV electronic spectrum of the indole radical cation is measured in the gas phase by photodissociation of indole+-Ar and indole+-He complexes in a tandem mass spectrometer. A series of resolved vibronic transitions extending from 610 to 460 nm are assigned to the D2 ← D0 band system, while weak transitions between 390 and 360 nm are assigned to the D3 ← D0 system, and a stronger, broad, unresolved absorption between 350 and 300 nm is attributed to the D4 ← D0 system. Time-dependent density functional theory calculations are used to assign vibronic structure of the D2 ← D0 band system, and show that the main active vibrational modes correspond to in-plane ring deformations. The strongest D2 ← D0 vibronic transitions of indole+-He do not correspond with any catalogued diffuse interstellar bands, even considering band displacements of up to 50 cm-1possibly caused by the attached He atom.

  18. The Instability of Terahertz Plasma Waves in Two Dimensional Gated and Ungated Quantum Electron Gas

    NASA Astrophysics Data System (ADS)

    Zhang, Liping

    2016-04-01

    The instability of terahertz (THz) plasma waves in two-dimensional (2D) quantum electron gas in a nanometer field effect transistor (FET) with asymmetrical boundary conditions has been investigated. We analyze THz plasma waves of two parts of the 2D quantum electron gas: gated and ungated regions. The results show that the radiation frequency and the increment (radiation power) in 2D ungated quantum electron gas are much higher than that in 2D gated quantum electron gas. The quantum effects always enhance the radiation power and enlarge the region of instability in both cases. This allows us to conclude that 2D quantum electron gas in the transistor channel is important for the emission and detection process and both gated and ungated parts take part in that process. supported by National Natural Science Foundation of China (No. 10975114)

  19. Infrared light emission from nano hot electron gas created in atomic point contacts

    NASA Astrophysics Data System (ADS)

    Malinowski, T.; Klein, H. R.; Iazykov, M.; Dumas, Ph.

    2016-06-01

    Gold atomic point contacts are prototype systems to evidence ballistic electron transport. The typical dimension of the nanojunction being smaller than the electron-phonon interaction length, even at room temperature, electrons transfer their excess energy to the lattice only far from the contact. At the contact however, favored by huge current densities, electron-electron interactions result in a nano hot electron gas acting as a source of photons. Using a home built Mechanically Controlled Break Junction, it is reported here, for the first time, that this nano hot electron gas also radiates in the infrared range (0.2 eV to 1.2 eV). Moreover, following the description introduced by Tomchuk et al. (Sov. Phys.-Solid State, 8 (1966) 2510), we show that this radiation is compatible with a black-body–like spectrum emitted from an electron gas at temperatures of several thousands of kelvins.

  20. Electron temperature and density measurement of tungsten inert gas arcs with Ar-He shielding gas mixture

    NASA Astrophysics Data System (ADS)

    Kühn-Kauffeldt, M.; Marques, J.-L.; Forster, G.; Schein, J.

    2013-10-01

    The diagnostics of atmospheric welding plasma is a well-established technology. In most cases the measurements are limited to processes using pure shielding gas. However in many applications shielding gas is a mixture of various components including metal vapor in gas metal arc welding (GMAW). Shielding gas mixtures are intentionally used for tungsten inert gas (TIG) welding in order to improve the welding performance. For example adding Helium to Argon shielding gas allows the weld geometry and porosity to be influenced. Yet thermal plasmas produced with gas mixtures or metal vapor still require further experimental investigation. In this work coherent Thomson scattering is used to measure electron temperature and density in these plasmas, since this technique allows independent measurements of electron and ion temperature. Here thermal plasmas generated by a TIG process with 50% Argon and 50% Helium shielding gas mixture have been investigated. Electron temperature and density measured by coherent Thomson scattering have been compared to the results of spectroscopic measurements of the plasma density using Stark broadening of the 696.5 nm Argon spectral line. Further investigations of MIG processes using Thomson scattering technique are planned.

  1. Simulation of electron beam formation and transport in a gas-filled electron-optical system with a plasma emitter

    NASA Astrophysics Data System (ADS)

    Grishkov, A. A.; Kornilov, S. Yu.; Rempe, N. G.; Shidlovskiy, S. V.; Shklyaev, V. A.

    2016-07-01

    The results of computer simulations of the electron-optical system of an electron gun with a plasma emitter are presented. The simulations are performed using the KOBRA3-INP, XOOPIC, and ANSYS codes. The results describe the electron beam formation and transport. The electron trajectories are analyzed. The mechanisms of gas influence on the energy inhomogeneity of the beam and its current in the regions of beam primary formation, acceleration, and transport are described. Recommendations for optimizing the electron-optical system with a plasma emitter are presented.

  2. Photoionization of the outer electrons in noble gas endohedral atoms

    SciTech Connect

    Amusia, M. Ya. Baltenkov, A. S.; Chernysheva, L. V.

    2008-08-15

    We suggest a prominent modification of the outer shell photoionization cross section in noble gas (NG) endohedral atoms NG-C{sub n} under the action of the electron shell of fullerene C{sub n}. This shell leads to two important effects: a strong enhancement of the cross section due to fullerene shell polarization under the action of the incoming electromagnetic wave and to prominent oscillation of this cross section due to the reflection of a photoelectron from the NG by the fullerene shell. Both factors lead to powerful maxima in the outer shell ionization cross sections of NG-C{sub n}, which we call giant endohedral resonances. The oscillator strength reaches a very large value in the atomic scale, 25. We consider atoms of all noble gases except He. The polarization of the fullerene shell is expressed in terms of the total photoabsorption cross section of the fullerene. The photoelectron reflection is taken into account in the framework of the so-called bubble potential, which is a spherical {delta}-type potential. It is assumed in the derivations that the NG is centrally located in the fullerene. It is also assumed, in accordance with the existing experimental data, that the fullerene radius R{sub C} is much larger than the atomic radius r{sub A} and the thickness {delta}{sub C} of the fullerene shell. As was demonstrated recently, these assumptions allow us to represent the NG-C{sub n} photoionization cross section as a product of the NG cross section and two well-defined calculated factors.

  3. Ultrafast electronic relaxation of excited state vitamin B 12 in the gas phase

    NASA Astrophysics Data System (ADS)

    Shafizadeh, Niloufar; Poisson, Lionel; Soep, Benoıˆt

    2008-06-01

    The time evolution of electronically excited vitamin B 12 (cyanocobalamin) has been observed for the first time in the gas phase. It reveals an ultrafast decay to a state corresponding to metal excitation. This decay is interpreted as resulting from a ring to metal electron transfer. This opens the observation of the excited state of other complex biomimetic systems in the gas phase, the key to the characterisation of their complex evolution through excited electronic states.

  4. Electronic conductance of a two-dimensional electron gas in the presence of periodic potentials

    NASA Astrophysics Data System (ADS)

    Takagaki, Y.; Ferry, D. K.

    1992-04-01

    We utilize mode-matching and transfer-matrix methods to study the transport properties of an electron through two-dimensionally modulated periodic potentials. The model structures treated here are finite-size one- and two-dimensional arrays of quantum boxes (lateral surface superlattice) and antidots. The structure is divided into a chain of uniform waveguide sections in the direction of current flow, and mode matching is imposed across the boundaries. The transfer-matrix technique is utilized to obtain the transmission probability for the composite superlattice structures. Energy dependences of the two-terminal conductance are presented in terms of the transition from one-dimensional to two-dimensional transport. Increasing the number of quantum boxes in the lateral surface superlattice shows that Lorentzian-shaped transmission resonances in a single quantum box are brought together to form a Bloch band structure. Complete reflections over broad energy ranges, due to the formation of minigaps, and a strong resonant behavior due to discrete states in minibands are observed in the energy dependence of the conductance. For the antidot lattice, the formation of the Bloch band structure is found to arise as a drop in the conductance. If attractive scattering centers are embedded in a two-dimensional electron gas, transmission resonances due to quasibound states are observed.

  5. Gas Desorption and Electron Emission from 1 MeV Potassium Iion Bombardment of Stainless Steel

    SciTech Connect

    Molvik, A; Covo, M K; Bieniosek, F; Prost, L; Seidl, P; Baca, D; Coorey, A; Sakumi, A

    2004-03-25

    Gas desorption and electron emission coefficients were measured for 1 MeV potassium ions incident on stainless steel at grazing angles (between 80 and 88 degrees from normal incidence) using a new gas-electron source diagnostic (GESD). Issues addressed in design and commissioning of the GESD include effects from backscattering of ions at the surface, space-charge limited emission current, and reproducibility of desorption measurements. We find that electron emission coefficients {gamma}{sub e} scale as 1/cos({theta}) up to angles of 86 degrees, where {gamma}{sub e} = 90. Nearer grazing incidence, {gamma}{sub e} is reduced below the 1/cos({theta}) scaling by nuclear scattering of ions through large angles, reaching {gamma}{sub e} = 135 at 88 degrees. Electrons were emitted with a measured temperature of {approx}30 eV. Gas desorption coefficients {gamma}{sub 0} were much larger, of order {gamma}{sub 0} = 10{sub 4}. They also varied with angle, but much more slowly than 1/cos({theta}). From this we conclude that the desorption was not entirely from adsorbed layers of gas on the surface. Two mitigation techniques were investigated: rough surfaces reduced electron emission by a factor of ten and gas desorption by a factor of two; a mild bake to {approx}220 degrees had no effect on electron emission, but decreased gas desorption by 15% near grazing incidence. We propose that gas desorption is due to electronic sputtering.

  6. Gas Desorption and Electron Emission from 1 MeV Potassium Ion Bombardment of Stainless Steel

    SciTech Connect

    Molvik, A W; Covo, M K; Bieniosek, F M; Prost, L; Seidl, P A; Baca, D; Coorey, A; Sakumi, A

    2004-07-19

    Gas desorption and electron emission coefficients were measured for 1 MeV potassium ions incident on stainless steel at grazing angles (between 80 and 88 from normal incidence) using a new gas-electron source diagnostic (GESD). Issues addressed in design and commissioning of the GESD include effects from backscattering of ions at the surface, space-charge limited emission current, and reproducibility of desorption measurements. We find that electron emission coefficients {gamma}{sub e} scale as 1/cos({theta}) up to angles of 86, where {gamma}{sub e} = 90. Nearer grazing incidence, {gamma}{sub e} is reduced below the 1/cos({theta}) scaling by nuclear scattering of ions through large angles, reaching {gamma}{sub e} = 135 at 88. Electrons were emitted with a measured temperature of {approx}30 eV. Gas desorption coefficients {gamma}{sub sigma} were much larger, of order {gamma}{sub sigma} = 104. They also varied with angle, but much more slowly than 1/cos({theta}). From this we conclude that the desorption was not entirely from adsorbed layers of gas on the surface. Two mitigation techniques were investigated: rough surfaces reduced electron emission by a factor of ten and gas desorption by a factor of two; a mild bake to 230 had no effect on electron emission, but decreased gas desorption by 15% near grazing incidence. We propose that gas desorption is due to electronic sputtering.

  7. Solar wind heating beyond 1 AU. [interplanetary atomic hydrogen gas effect on protons and electrons

    NASA Technical Reports Server (NTRS)

    Holzer, T. E.; Leer, E.

    1973-01-01

    The effect of an interplanetary atomic hydrogen gas on solar wind proton, electron and alpha-particle temperatures beyond 1 AU is considered. It is shown that the proton temperature (and probably also the alpha-particle temperature) reaches a minimum between 2 AU and 4 AU, depending on values chosen for solar wind and interstellar gas parameters. Heating of the electron gas depends primarily on the thermal coupling of the protons and electrons. For strong coupling, the electron temperature reaches a minimum between 4 AU and 8 AU, but for weak coupling (Coulomb collisions only), the electron temperature continues to decrease throughout the inner solar system. A spacecraft travelling to Jupiter should be able to observe the heating effect of the solar wind-interplanetary hydrogen interaction, and from such observations it may be possible of infer some properties of the interstellar neutral gas.

  8. Experiments to validate self-consistent beam-gas-electron code

    NASA Astrophysics Data System (ADS)

    Molvik, A. W.; Sharp, W. M.; Kireeff Covo, M.; Cohen, R. H.; Friedman, A.; Lund, S. M.; Vay, J.-L.; Coleman, J. E.; Bieniosek, F. M.; Furman, M. A.; Roy, P. K.; Seidl, P. A.

    2007-11-01

    The WARP-POSINST model tracks beam ions and secondary particles (ions, electrons, gas molecules) in a self-consistent manner with techniques developed for heavy-ion fusion and e-cloud studies in high-intensity accelerators. We have developed simple experiments to exercise the code. Heavy-ion beams striking a surface cause gas desorption and electron emission, both of which can limit beam performance. Subsequent beam ions can ionize the gas, producing additional electrons. Two parallel plates, on either side of the beam and orthogonal to the end wall, are biased as a dipole: one grounded and the other biased to ± 10 kV. The electron current to a positive plate jumps to the electron emission value; then ramps slowly due to ionization of desorbed gas. This is a rigorous test of the particle dynamics of the model and constrains the secondary particle production coefficients.

  9. Generalized elastica on 2-dimensional de Sitter space S12

    NASA Astrophysics Data System (ADS)

    Huang, Rongpei; Yu, Junyan

    2016-02-01

    In this paper, the extremals of curvature energy actions on non-null regular curves in 2-dimensional de Sitter space are studied. We completely solve the Euler-Lagrange equation by quadratures. By using the Killing field, we construct three special coordinate systems and express the generalized elastica in 2-dimensional de Sitter space S12 by integral explicitly.

  10. Study of the propagation of ultra-intense laser-produced fast electrons in gas jets

    NASA Astrophysics Data System (ADS)

    Batani, D.; Manclossi, M.; Piazza, D.; Baton, S. D.; Benuzzi-Mounaix, A.; Koenig, M.; Popescu, H.; Amiranoff, F.; Rabec Le Gloahec, M.; Rousseaux, C.; Borghesi, M.; Cecchetti, C.

    2006-06-01

    We present the results of some recent experiments performed at the LULI laboratory using the 100 TW laser facility concerning the study of the propagation of fast electrons in gas targets. Novel diagnostics have been implemented including chirped shadowgraphy and proton radiography. Proton radiography images did show the presence of very strong fields in the gas probably produced by charge separation. In turn, these imply a slowing down of the fast electron cloud as it penetrates in the gas, and a strong inhibition of propagation. Indeed chirped shadowgraphy images show a strong reduction of the electron cloud velocity from the initial value close to a fraction of c.

  11. An incompressible state of a photo-excited electron gas

    PubMed Central

    Chepelianskii, Alexei D.; Watanabe, Masamitsu; Nasyedkin, Kostyantyn; Kono, Kimitoshi; Konstantinov, Denis

    2015-01-01

    Two-dimensional electrons in a magnetic field can form new states of matter characterized by topological properties and strong electronic correlations as displayed in the integer and fractional quantum Hall states. In these states, the electron liquid displays several spectacular characteristics, which manifest themselves in transport experiments with the quantization of the Hall resistance and a vanishing longitudinal conductivity or in thermodynamic equilibrium when the electron fluid becomes incompressible. Several experiments have reported that dissipationless transport can be achieved even at weak, non-quantizing magnetic fields when the electrons absorb photons at specific energies related to their cyclotron frequency. Here we perform compressibility measurements on electrons on liquid helium demonstrating the formation of an incompressible electronic state under these resonant excitation conditions. This new state provides a striking example of irradiation-induced self-organization in a quantum system. PMID:26007282

  12. Coulomb collisions in the Boltzmann equation for electrons in low-temperature gas discharge plasmas

    NASA Astrophysics Data System (ADS)

    Hagelaar, G. J. M.

    2016-02-01

    This paper investigates the effects of electron-electron and electron-ion Coulomb collisions on the electron distribution function and transport coefficients obtained from the Boltzmann equation for simple dc gas discharge conditions. Expressions are provided for the full Coulomb collision terms acting on both the isotropic and anisotropic parts of the electron distribution function, which are then incorporated in the freeware Boltzmann equation solver BOLSIG+. Different Coulomb collision effects are demonstrated and discussed on the basis of BOLSIG+  results for argon gas. It is shown that the anisotropic part of the electron-electron collision term, neglected in previous work, can in certain cases have a large effect on the electron mobility and is essential when describing the transition towards the Coulomb-collision dominated regime characterized by Spitzer transport coefficients. Finally, a brief overview is presented of the discharge conditions for which different Coulomb collision effects occur in different gases.

  13. Quasi-One-Dimensional Electron Gas Bound to a Helium-Coated Nanotube

    NASA Astrophysics Data System (ADS)

    Liebrecht, Michael; Del Maestro, Adrian; Cole, Milton W.

    2016-05-01

    A much-studied system is the quasi-2D electron gas in image-potential bound states at the surface of helium and hydrogen. In this paper, we report on an analogous quasi-1D system: electrons bound by image-like polarization forces to the surface of a helium-coated carbon nanotube. The potential is computed from an electron-helium pseudopotential, plus a dynamic image term evaluated from a semi-classical model of the nanotube's response function. Predictions are made for the bound states and potential many-body properties of this novel electron gas for a specific choice of tube radius and film thickness.

  14. Hot-Electron Gallium Nitride Two Dimensional Electron Gas Nano-bolometers For Advanced THz Spectroscopy

    NASA Astrophysics Data System (ADS)

    Ramaswamy, Rahul

    Two-dimensional electron gas (2DEG) in semiconductor heterostructures was identified as a promising medium for hot-electron bolometers (HEB) in the early 90s. Up until now all research based on 2DEG HEBs is done using high mobility AlGaAs/GaAs heterostructures. These systems have demonstrated very good performance, but only in the sub terahertz (THz) range. However, above ˜0.5 THz the performance of AlGaAs/GaAs detectors drastically deteriorates. It is currently understood, that detectors fabricated from standard AlGaAs/GaAs heterostructures do not allow for reasonable coupling to THz radiation while maintaining high conversion efficiency. In this work we have developed 2DEG HEBs based on disordered Gallium Nitride (GaN) semiconductor, that operate at frequencies beyond 1THz at room temperature. We observe strong free carrier absorption at THz frequencies in our disordered 2DEG film due to Drude absorption. We show the design and fabrication procedures of novel micro-bolometers having ultra-low heat capacities. In this work the mechanism of 2DEG response to THz radiation is clearly identified as bolometric effect through our direct detection measurements. With optimal doping and detector geometry, impedances of 10--100 O have been achieved, which allow integration of these devices with standard THz antennas. We also demonstrate performance of the antennas used in this work in effectively coupling THz radiation to the micro-bolometers through polarization dependence and far field measurements. Finally heterodyne mixing due to hot electrons in the 2DEG micro-bolometer has been performed at sub terahertz frequencies and a mixing bandwidth greater than 3GHz has been achieved. This indicates that the characteristic cooling time in our detectors is fast, less than 50ps. Due to the ultra-low heat capacity; these detectors can be used in a heterodyne system with a quantum cascade laser (QCL) as a local oscillator (LO) which typically provides output powers in the micro

  15. Stimulation of high-frequency breakdown of gas in Uragan-3M torsatron by runaway electrons

    NASA Astrophysics Data System (ADS)

    Tarasov, I. K.; Tarasov, M. I.; Sitnikov, D. A.; Pashnev, V. K.; Lytova, M. A.

    2016-01-01

    In experiments on confinement and heating of plasma in the Uragan-3M torsatron, the method of high-frequency breakdown of the working gas is used. In these experiments, in conditions of a relatively stable magnetic field, the rf power supplied to the setup chamber has a frequency close to the ion-cyclotron frequency. Such a method of gas breakdown is not always sufficiently reliable. In our experiments, preliminary ionization of the working gas by the run-away electron beam is used for stabilizing the breakdown. This work contains the results of experiments on enhancement of the runaway electron beam and on the interaction of the runaway electron beam in the Uragan-3M torsatron with the HF electromagnetic pump field. This enables us to formulate a number of recommendations for using spontaneously formed beams of accelerated particles for stimulating the rf breakdown. Our results confirm the possibility of gas breakdown by runaway electrons.

  16. Device for the removal of sulfur dioxide from exhaust gas by pulsed energization of free electrons

    SciTech Connect

    Mizuno, A.; Clements, J.S.; Davis, R.H.

    1984-01-01

    The performance of a new device using pulsed streamer corona for the removal of sulfur dioxide from humid air has been evaluated. The pulsed streamer corona produced free electrons which enhance gas-phase chemical reactions, and convert SO/sub 2/ to sulfuric acid mist. The SO/sub 2/ removal efficiency was compared with that of the electron-beam flue-gas treatment process. The comparison demonstrates the advantage of the novel device.

  17. Rearrangements in 2-Dimensional Foam Simulations

    NASA Astrophysics Data System (ADS)

    Schiemann, Dylan; Tewari, Shubha; Liu, Andrea; Knobler, Charles; Durian, Douglas; Dennin, Michael; Langer, Stephen

    1998-03-01

    Foam is a collection of densely-packed polydisperse gas bubbles in liquid. Upon shear, the total interaction energy between bubbles fluctuates: it builds up and then is released via intermittent rearrangements of the bubbles. There is presently no effective experimental method for measuring these energy releases. However, it is possible to observe the relaxation of sheared foam through the analysis of topological rearrangements, or neighbor-switching events (T1 events) footnote A.D. Gopal and D.J. Durian, Phys. Rev. Lett. 75 2610 (1995) footnote M. Dennin and C.M. Knobler, Phys. Rev. Lett. 78 2485 (1997) We have used a simple two-dimensional model of foam proposed by Durian footnote D.J. Durian, Phys. Rev. Lett. 75 4780 (1995) to study rearrangements under steady-state shear flow. The aim is to study the connection between T1 events, which are typically measured experimentally, and the distribution of energy releases, which is typically measured from simulations. We find that T1 events tend to correspond to the largest energy releases. We present results as a function of strain rate and area fraction of bubbles.

  18. Photoinduced amplification of phonons localized in a two-dimensional electron gas

    SciTech Connect

    Epshtein, E.M.

    1995-09-01

    This paper discusses how phonons localized within a two-dimensional electron gas are affected by the presence a strong electromagnetic wave whose electric field vector lies in the plane of the two-dimensional electron gas. A dispersion relation for the phonons is derived under the assumption and the electromagnetic wave affects the phonon subsystem only via the two-dimensional electron gas. When the energy of an electromagnetic wave quantum is large compared to the electron energies, new regimes of electron-phonon interaction become possible (which are forbidden by conservation laws in the absence of the wave), including regimes in which the {open_quotes}attenuation{close_quotes} of the phonons is negative (photoinduced gain). 7 refs.

  19. Operation of gas electron multiplier (GEM) with propane gas at low pressure and comparison with tissue-equivalent gas mixtures

    NASA Astrophysics Data System (ADS)

    De Nardo, L.; Farahmand, M.

    2016-05-01

    A Tissue-Equivalent Proportional Counter (TEPC), based on a single GEM foil of standard geometry, has been tested with pure propane gas at low pressure, in order to simulate a tissue site of about 1 μm equivalent size. In this work, the performance of GEM with propane gas at a pressure of 21 and 28 kPa will be presented. The effective gas gain was measured in various conditions using a 244Cm alpha source. The dependence of effective gain on the electric field strength along the GEM channel and in the drift and induction region was investigated. A maximum effective gain of about 5×103 has been reached. Results obtained in pure propane gas are compared with gas gain measurements in gas mixtures commonly employed in microdosimetry, that is propane and methane based Tissue-Equivalent gas mixtures.

  20. Properties of a finite fully spin-polarized free homogeneous one-dimensional electron gas

    SciTech Connect

    Ciftja, Orion

    2015-01-15

    The homogeneous electron gas model has been quite successful to predict the bulk properties of systems of electrons at various densities. In many occasions, a simplified free homogeneous electron gas model represents a powerful first approximation to a real system. Despite our considerable knowledge on the bulk properties of a homogeneous electron gas, advances in nanoscience and nanotechnology call for a greater effort to understand the opposite limit of small finite systems of electrons with size-dependent properties. In this work, we provide a detailed description of the properties of a finite fully spin-polarized (spinless) free homogeneous one-dimensional electron gas, the simplest of the free homogeneous electron gases. We derive exact analytical results for various quantities such as the one-particle density function, two-particle density function, one-particle density matrix, pair correlation function and energy of finite systems with an arbitrary number of electrons. The results obtained provide a detailed view on how various quantities corresponding to a finite system approach their bulk (thermodynamic limit) value.

  1. Simultaneous resonant enhanced multiphoton ionization and electron avalanche ionization in gas mixtures

    SciTech Connect

    Shneider, Mikhail N.; Zhang Zhili; Miles, Richard B.

    2008-07-15

    Resonant enhanced multiphoton ionization (REMPI) and electron avalanche ionization (EAI) are measured simultaneously in Ar:Xe mixtures at different partial pressures of mixture components. A simple theory for combined REMPI+EAI in gas mixture is developed. It is shown that the REMPI electrons seed the avalanche process, and thus the avalanche process amplifies the REMPI signal. Possible applications are discussed.

  2. Dissociative electron attachment to gas-phase 5-bromouracil

    NASA Astrophysics Data System (ADS)

    Abdoul-Carime, H.; Huels, M. A.; Brüning, F.; Illenberger, E.; Sanche, L.

    2000-08-01

    We report measurements of dissociative electron attachment (DEA) to gaseous 5-bromouracil (BrU) for incident electron energies between 0 and 16 eV. Low energy electron impact on BrU leads not only to the formation of a long lived parent anion BrU-, but also various anion fragments resulting from endo- and exo-cyclic bond ruptures, such as Br-, uracil-yl anions, i.e., (U-yl)-, OCN-, and a 68 amu anion tentatively attributed to H2C3NO-. The incident electron energy dependent signatures of either the Br- and (U-yl)- yields (at 0, 1.4, and 6 eV), or the OCN- and H2C3NO- yields (at 1.6 and 5.0 eV) suggests competing DEA channels for anion fragment formation. The production cross sections, at 0 eV incident electron energy, for BrU-, Br-, and (U-yl)- are estimated to be about 6×10-15, 6×10-14, and 1.0×10-15 cm2, respectively.

  3. Numerical study of the generation of runaway electrons in a gas diode with a hot channel

    SciTech Connect

    Lisenkov, V. V.; Shklyaev, V. A.

    2015-11-15

    A new method for increasing the efficiency of runaway electron beam generation in atmospheric pressure gas media has been suggested and theoretically proved. The method consists of creating a hot region (e.g., a spark channel or a laser plume) with a decreased numerical density of gas molecules (N) near the cathode. In this method, the ratio E/N (E—electric field strength) is increased by decreasing N instead of increasing E, as has been done in the past. The numerical model that is used allows the simultaneous calculation of the formation of a subnanosecond gas discharge and the generation of runaway electrons in gas media. The calculations have demonstrated the possibility of obtaining current pulses of runaway electrons with amplitudes of hundred of amperes and durations of more than 100 ps. The influence of the hot channel geometry on the parameters of the generated beam has been investigated.

  4. Spin coherence of the two-dimensional electron gas in a GaAs quantum well

    SciTech Connect

    Larionov, A. V.

    2015-01-15

    The coherent spin dynamics of the quasi-two-dimensional electron gas in a GaAs quantum well is experimentally investigated using the time-resolved spin Kerr effect in an optical cryostat with a split coil inducing magnetic fields of up to 6 T at a temperature of about 2 K. The electron spin dephasing times and degree of anisotropy of the spin relaxation of electrons are measured in zero magnetic field at different electron densities. The dependence of the spin-orbit splitting on the electron-gas density is established. In the integral quantum-Hall-effect mode, the unsteady behavior of the spin dephasing time of 2D electrons of the lower Landau spin sublevel near the odd occupation factor ν = 3 is found. The experimentally observed unsteady behavior of the spin dephasing time can be explained in terms of new-type cyclotron modes that occur in a liquid spin texture.

  5. The topological features of the intracule density of the uniform electron gas

    NASA Astrophysics Data System (ADS)

    Fradera, X.; Sarasola, C.; Ugalde, J. M.; Boyd, R. J.

    1999-05-01

    The Laplacian of the self-consistent-field radial intracule density of the uniform electron gas has been analyzed. It reaches its absolute maximum at the electron-electron coalescence point with a value of 0.3 ρ2, where ρ is the electron charge density. Then, it decreases as the interlectronic distance increases and has an attenuated oscillatory decay at larger distances. Further examination of this function yields an onion-like representation of the spatial structure of the uniform electron gas from the viewpoint of an arbitrary reference electron. Our calculations demonstrate that the radius of the first layer is 13.069 rs and the remaining layers obey a simple relationship with respect to the layer number with a separation of 6.065 rs between adjacent layers.

  6. Fabrication and test of digital output interface devices for gas turbine electronic controls

    NASA Technical Reports Server (NTRS)

    Newirth, D. M.; Koenig, E. W.

    1978-01-01

    A program was conducted to develop an innovative digital output interface device, a digital effector with optical feedback of the fuel metering valve position, for future electronic controls for gas turbine engines. A digital effector (on-off solenoids driven directly by on-off signals from a digital electronic controller) with optical position feedback was fabricated, coupled with the fuel metering valve, and tested under simulated engine operating conditions. The testing indicated that a digital effector with optical position feedback is a suitable candidate, with proper development for future digital electronic gas turbine controls. The testing also identified several problem areas which would have to be overcome in a final production configuration.

  7. RAPID COMMUNICATION: Electron transport coefficients in SF6 and xenon gas mixtures

    NASA Astrophysics Data System (ADS)

    Xiao, D. M.; Zhu, L. L.; Li, X. G.

    2000-12-01

    The electron swarm growth processes in SF6-Xe gas mixtures have been studied by a pulsed Townsend method over the range 32.24≤E/N≤564.2 Td (1 Td = 10-21 Vm2), where E is the electric field and N is the gas density of the mixture. The variation patterns as a function of the density-reduced electric field of the effective ionization coefficient bar α, electron drift velocity Ve and longitudinal diffusion coefficient DL in SF6-Xe gas mixtures have been given. The dielectric strength of SF6-Xe gas mixtures has also been determined, which varies linearly with SF6 concentration in the gas mixtures.

  8. Peoples Gas System turns to electronic data management

    SciTech Connect

    Sievers, R.T.

    1997-02-01

    Peoples Gas System, Inc. (PGS) is the largest natural gas distributor in Florida with 12 divisions that service most of the state`s major metropolitan areas. The company is a consolidation of various gas utilities with maps and records dating back to the early 1900s. As a result, these records are in various paper formats, map scales and condition. Distribution maps are drawn on large format medium: linen cloth, mylar or vellum. These maps are routinely copied and reduced to a size that is suitable for field use. Service records have been recorded on numerous types of paper that are stored in different file cabinets according to the card size. As these records are researched on a daily basis, the condition of the permanent records steadily deteriorate and are commonly misfiled. A major concern is the loss of records due to a natural disaster. Hurricanes, which are a constant threat in Florida, could physically affect many of PGS`s division offices. The distribution maps have been archived on microfilm on a continuing basis, but other irreplaceable records have not. Disaster recovery of the maps from the archives would be very time consuming and expensive.

  9. Gas-Phase Structures of Ketene and Acetic Acid from Acetic Anhydride Using Very-High-Temperature Gas Electron Diffraction.

    PubMed

    Atkinson, Sandra J; Noble-Eddy, Robert; Masters, Sarah L

    2016-03-31

    The gas-phase molecular structure of ketene has been determined using samples generated by the pyrolysis of acetic anhydride (giving acetic acid and ketene), using one permutation of the very-high-temperature (VHT) inlet nozzle system designed and constructed for the gas electron diffraction (GED) apparatus based at the University of Canterbury. The gas-phase structures of acetic anhydride, acetic acid, and ketene are presented and compared to previous electron diffraction and microwave spectroscopy data to show improvements in data extraction and manipulation with current methods. Acetic anhydride was modeled with two conformers, rather than a complex dynamic model as in the previous study, to allow for inclusion of multiple pyrolysis products. The redetermined gas-phase structure of acetic anhydride (obtained using the structure analysis restrained by ab initio calculations for electron diffraction method) was compared to that from the original study, providing an improvement on the description of the low vibrational torsions compared to the dynamic model. Parameters for ketene and acetic acid (both generated by the pyrolysis of acetic anhydride) were also refined with higher accuracy than previously reported in GED studies, with structural parameter comparisons being made to prior experimental and theoretical studies. PMID:26916368

  10. Electron Density Measurements in UV-Preionized XeCl and CO2 Laser Gas Mixtures

    NASA Astrophysics Data System (ADS)

    Takagi, Shigeyuki; Sato, Saburo; Goto, Tatsumi

    1989-11-01

    A Langmuir probe technique has been used to measure electron densities and temperatures in UV-preionized XeCl excimer and CO2 laser gas mixtures in a laser tube. For this experiment, only pin electrodes (preionization sparks) were operated with no discharge between the main electrodes. The measured electron densities were about 108 cm-3 in both the excimer and CO2 laser gases, compared with 1010 cm-3 in pure He gas. The electron density was found to increase due to the proximity of the main electrodes. The coefficients of absorption for excimer and CO2 laser gas were obtained from the characteristics of the electron densities vs the distance from the UV source. Based on the absorption coefficient for XeCl, 0.9 cm-1 atm-1, we propose pin-electrode arrangements for spatially uniform preionization.

  11. Electron and phonon properties and gas storage in carbon honeycombs

    NASA Astrophysics Data System (ADS)

    Gao, Yan; Chen, Yuanping; Zhong, Chengyong; Zhang, Zhongwei; Xie, Yuee; Zhang, Shengbai

    2016-06-01

    A new kind of three-dimensional carbon allotrope, termed carbon honeycomb (CHC), has recently been synthesized [PRL 116, 055501 (2016)]. Based on the experimental results, a family of graphene networks has been constructed, and their electronic and phonon properties are studied by various theoretical approaches. All networks are porous metals with two types of electron transport channels along the honeycomb axis and they are isolated from each other: one type of channel originates from the orbital interactions of the carbon zigzag chains and is topologically protected, while the other type of channel is from the straight lines of the carbon atoms that link the zigzag chains and is topologically trivial. The velocity of the electrons can reach ~106 m s-1. Phonon transport in these allotropes is strongly anisotropic, and the thermal conductivities can be very low when compared with graphite by at least a factor of 15. Our calculations further indicate that these porous carbon networks possess high storage capacity for gaseous atoms and molecules in agreement with the experiments.A new kind of three-dimensional carbon allotrope, termed carbon honeycomb (CHC), has recently been synthesized [PRL 116, 055501 (2016)]. Based on the experimental results, a family of graphene networks has been constructed, and their electronic and phonon properties are studied by various theoretical approaches. All networks are porous metals with two types of electron transport channels along the honeycomb axis and they are isolated from each other: one type of channel originates from the orbital interactions of the carbon zigzag chains and is topologically protected, while the other type of channel is from the straight lines of the carbon atoms that link the zigzag chains and is topologically trivial. The velocity of the electrons can reach ~106 m s-1. Phonon transport in these allotropes is strongly anisotropic, and the thermal conductivities can be very low when compared with graphite by

  12. Electron proportional gas counter for linear and elliptical Moessbauer polarimetry

    SciTech Connect

    Tancziko, F.; Sajti, Sz.; Deak, L.; Merkel, D. G.; Endro''czi, G.; Nagy, D. L.; Bottyan, L.; Olszewski, W.; Szymanski, K.

    2010-02-15

    Design, characterization, and selected applications of a novel electron detector dedicated to conventional perpendicular- and low-angle-incidence conversion electron Moessbauer spectroscopy are presented. The setup is suitable for varying the incident angle and external magnetic fields on Moessbauer source and absorber. Test experiments were performed on {alpha}-{sup 57}Fe films using a conventional single-line {sup 57}Co(Rh) and magnetically split, {sup 57}Co({alpha}-Fe) Moessbauer sources. The integral ''blackness effect'' in conversion-electron Moessbauer spectra of {sup 57}Fe isotope-enriched absorbers is demonstrated and shown to be pronounced at shallow angles of incidence. In order to determine the alignment and sign of the hyperfine field in an isotope-enriched absorber, the blackness effect is accounted for in a semiempirical way by using single-line source/absorber experimental relative intensities determined independently. This method works with high accuracy for linear polarimetry; however it is only a rough approximation in the case of nearly circular polarimetry.

  13. Electron and phonon properties and gas storage in carbon honeycombs.

    PubMed

    Gao, Yan; Chen, Yuanping; Zhong, Chengyong; Zhang, Zhongwei; Xie, Yuee; Zhang, Shengbai

    2016-07-14

    A new kind of three-dimensional carbon allotrope, termed carbon honeycomb (CHC), has recently been synthesized [PRL 116, 055501 (2016)]. Based on the experimental results, a family of graphene networks has been constructed, and their electronic and phonon properties are studied by various theoretical approaches. All networks are porous metals with two types of electron transport channels along the honeycomb axis and they are isolated from each other: one type of channel originates from the orbital interactions of the carbon zigzag chains and is topologically protected, while the other type of channel is from the straight lines of the carbon atoms that link the zigzag chains and is topologically trivial. The velocity of the electrons can reach ∼10(6) m s(-1). Phonon transport in these allotropes is strongly anisotropic, and the thermal conductivities can be very low when compared with graphite by at least a factor of 15. Our calculations further indicate that these porous carbon networks possess high storage capacity for gaseous atoms and molecules in agreement with the experiments. PMID:27315245

  14. Dissociative electron attachment and charging of SF6 adsorbed on rare-gas films

    NASA Astrophysics Data System (ADS)

    Weik, Fritz; Illenberger, Eugen

    1998-10-01

    Electron stimulated desorption (ESD) of fragment ions in the energy range between 0 and 18 eV from SF6 adsorbed on rare-gas films (Kr, Xe) is reported. The ESD results are compared with previous experiments on dissociative electron attachment (DA) to gas-phase SF6. At energies characteristic for the respective rare-gas substrate strong resonant enhancements in the ESD yield of F- are observed. This enhancement is explained by the appearance of an "electron-exciton complex" in the rare-gas film (the analogue to the anionic Feshbach resonances in single atoms) which couples to the first dipole allowed excitation of the SF6 molecule. After electron and energy transfer, the highly excited SF6*- ion dissociates at the surface resulting in the desorption of F- fragments. At low electron energies (in the range from 0 to 0.6 eV) charging of the rare-gas film covered with SF6 is observed. From these experiments a charging cross section of 2.1(±1.8)×10-15 cm2 is derived.

  15. Electrons Mediate the Gas-Phase Oxidation of Formic Acid with Ozone.

    PubMed

    van der Linde, Christian; Tang, Wai-Kit; Siu, Chi-Kit; Beyer, Martin K

    2016-08-26

    Gas-phase reactions of CO3 (.-) with formic acid are studied using Fourier transform ion cyclotron resonance (FT-ICR) mass spectrometry. Signal loss indicates the release of a free electron, with the formation of neutral reaction products. This is corroborated by adding traces of SF6 to the reaction gas, which scavenges 38 % of the electrons. Quantum chemical calculations of the reaction potential energy surface provide a reaction path for the formation of neutral carbon dioxide and water as the thermochemically favored products. From the literature, it is known that free electrons in the troposphere attach to O2 , which in turn transfer the electron to O3 . O3 (.-) reacts with CO2 to form CO3 (.-) . The reaction reported here formally closes the catalytic cycle for the oxidation of formic acid with ozone, catalyzed by free electrons. PMID:27400953

  16. Electron density and temperature of gas-temperature-dependent cryoplasma jet

    SciTech Connect

    Noma, Yuri; Hyuk Choi, Jai; Muneoka, Hitoshi; Terashima, Kazuo

    2011-03-01

    A microsize cryoplasma jet was developed and analyzed at plasma gas temperatures ranging from room temperature down to 5 K. Experimental results obtained from optical emission spectroscopy and current-voltage measurements indicate that the average electron density and electron temperature of the cryoplasma jet depend on the gas temperature. In particular, the electron temperature in the cryoplasma starts to decrease rapidly near 60 K from about 13 eV at 60 K to 2 eV at 5 K, while the electron density increases from about 10{sup 9} to approximately 10{sup 12} cm{sup -3} from room temperature to 5 K. This phenomenon induces an increase in the Coulomb interaction between electrons, which can be explained by the virial equation of state.

  17. Controlling the electron energy distribution function of electron beam generated plasmas with molecular gas concentration: II. Numerical modeling

    NASA Astrophysics Data System (ADS)

    Petrov, G. M.; Boris, D. R.; Petrova, Tz B.; Lock, E. H.; Fernsler, R. F.; Walton, S. G.

    2013-12-01

    In this work, the second in a series of two, a spatially averaged model of an electron beam generated Ar-N2 plasma is developed to identify the processes behind the measured influence of trace amounts of N2 on the development of the electron energy distribution function. The model is based on the numerical solution of the electron Boltzmann equation self-consistently coupled to a set of rate balance equations for electrons, argon and nitrogen species. Like the experiments, the calculations cover only the low-energy portion (<50 eV) of the electron energy distribution, and therefore a source term is added to the Boltzmann equation to represent ionization by the beam. Similarly, terms representing ambipolar diffusion along and across the magnetic field are added to allow for particle loss and electrostatic cooling from the ambipolar electric field. This work focuses on the changes introduced by adding a small admixture of nitrogen to an argon background. The model predictions for the electron energy distribution function, electron density and temperature are in good agreement with the experimentally measured data reported in part I, where it was found that the electron and ion energy distributions can be controlled by adjusting the fraction of nitrogen in the gas composition.

  18. Observation of Spin Coulomb Drag in a Two-Dimensional Electron Gas

    SciTech Connect

    Weber, C.P.

    2011-08-19

    An electron propagating through a solid carries spin angular momentum in addition to its mass and charge. Of late there has been considerable interest in developing electronic devices based on the transport of spin, which offer potential advantages in dissipation, size, and speed over charge-based devices. However, these advantages bring with them additional complexity. Because each electron carries a single, fixed value (-e) of charge, the electrical current carried by a gas of electrons is simply proportional to its total momentum. A fundamental consequence is that the charge current is not affected by interactions that conserve total momentum, notably collisions among the electrons themselves. In contrast, the electron's spin along a given spatial direction can take on two values, {+-} {h_bar}/2 (conventionally {up_arrow}, {down_arrow}), so that the spin current and momentum need not be proportional. Although the transport of spin polarization is not protected by momentum conservation, it has been widely assumed that, like the charge current, spin current is unaffected by electron-electron (e-e) interactions. Here we demonstrate experimentally not only that this assumption is invalid, but that over a broad range of temperature and electron density, the flow of spin polarization in a two-dimensional gas of electrons is controlled by the rate of e-e collisions.

  19. Electron bunching in a Penning trap and accelerating process for CO2 gas mixture active medium

    NASA Astrophysics Data System (ADS)

    Tian, Xiu-Fang; Wu, Cong-Feng; Jia, Qi-Ka

    2015-12-01

    In PASER (particle acceleration by stimulated emission of radiation), in the presence of an active medium incorporated in a Penning trap, moving electrons can become bunched, and as they get enough energy, they escape the trap forming an optical injector. These bunched electrons can enter the next PASER section filled with the same active medium to be accelerated. In this paper, electron dynamics in the presence of a gas mixture active medium incorporated in a Penning trap is analyzed by developing an idealized 1D model. We evaluate the energy exchange occurring as the train of electrons traverses into the next PASER section. The results show that the oscillating electrons can be bunched at the resonant frequency of the active medium. The influence of the trapped time and population inversion are analyzed, showing that the longer the electrons are trapped, the more energy from the medium the accelerated electrons get, and with the increase of population inversion, the decelerated electrons are virtually unchanged but the accelerated electrons more than double their peak energy values. The simulation results show that the gas active medium needs a lower population inversion to bunch the electrons compared to a solid active medium, so the experimental conditions can easily be achieved. Supported by National Natural Science Foundation of China (10675116) and Major State Basic Research Development Programme of China (2011CB808301)

  20. Induced superconductivity in high-mobility two-dimensional electron gas in gallium arsenide heterostructures.

    PubMed

    Wan, Zhong; Kazakov, Aleksandr; Manfra, Michael J; Pfeiffer, Loren N; West, Ken W; Rokhinson, Leonid P

    2015-01-01

    Search for Majorana fermions renewed interest in semiconductor-superconductor interfaces, while a quest for higher-order non-Abelian excitations demands formation of superconducting contacts to materials with fractionalized excitations, such as a two-dimensional electron gas in a fractional quantum Hall regime. Here we report induced superconductivity in high-mobility two-dimensional electron gas in gallium arsenide heterostructures and development of highly transparent semiconductor-superconductor ohmic contacts. Supercurrent with characteristic temperature dependence of a ballistic junction has been observed across 0.6 μm, a regime previously achieved only in point contacts but essential to the formation of well separated non-Abelian states. High critical fields (>16 T) in NbN contacts enables investigation of an interplay between superconductivity and strongly correlated states in a two-dimensional electron gas at high magnetic fields. PMID:26067452

  1. Induced superconductivity in high-mobility two-dimensional electron gas in gallium arsenide heterostructures

    NASA Astrophysics Data System (ADS)

    Wan, Zhong; Kazakov, Aleksandr; Manfra, Michael J.; Pfeiffer, Loren N.; West, Ken W.; Rokhinson, Leonid P.

    2015-06-01

    Search for Majorana fermions renewed interest in semiconductor-superconductor interfaces, while a quest for higher-order non-Abelian excitations demands formation of superconducting contacts to materials with fractionalized excitations, such as a two-dimensional electron gas in a fractional quantum Hall regime. Here we report induced superconductivity in high-mobility two-dimensional electron gas in gallium arsenide heterostructures and development of highly transparent semiconductor-superconductor ohmic contacts. Supercurrent with characteristic temperature dependence of a ballistic junction has been observed across 0.6 μm, a regime previously achieved only in point contacts but essential to the formation of well separated non-Abelian states. High critical fields (>16 T) in NbN contacts enables investigation of an interplay between superconductivity and strongly correlated states in a two-dimensional electron gas at high magnetic fields.

  2. Induced superconductivity in high-mobility two-dimensional electron gas in gallium arsenide heterostructures

    PubMed Central

    Wan, Zhong; Kazakov, Aleksandr; Manfra, Michael J.; Pfeiffer, Loren N.; West, Ken W.; Rokhinson, Leonid P.

    2015-01-01

    Search for Majorana fermions renewed interest in semiconductor–superconductor interfaces, while a quest for higher-order non-Abelian excitations demands formation of superconducting contacts to materials with fractionalized excitations, such as a two-dimensional electron gas in a fractional quantum Hall regime. Here we report induced superconductivity in high-mobility two-dimensional electron gas in gallium arsenide heterostructures and development of highly transparent semiconductor–superconductor ohmic contacts. Supercurrent with characteristic temperature dependence of a ballistic junction has been observed across 0.6 μm, a regime previously achieved only in point contacts but essential to the formation of well separated non-Abelian states. High critical fields (>16 T) in NbN contacts enables investigation of an interplay between superconductivity and strongly correlated states in a two-dimensional electron gas at high magnetic fields. PMID:26067452

  3. Induced superconductivity in high mobility two dimensional electron gas in GaAs heterostructures

    NASA Astrophysics Data System (ADS)

    Rokhinson, Leonid P.

    Search for Majorana fermions renewed interest in semiconductor-superconductor interfaces, while a quest for higher order non-Abelian excitations demands formation of superconducting contacts to materials with fractionalized excitations, e.g. a two-dimensional electron gas in a fractional quantum Hall regime. Here we report induced superconductivity in high mobility two-dimensional electron gas in GaAs heterostructures and development of highly transparent semiconductor-superconductor ohmic contacts. Supercurrent with characteristic temperature dependence of a ballistic junction has been observed across 0.6 μm, a regime previously achieved only in point contacts but essential to the formation of well separated non-Abelian states. High critical fields (> 16 Tesla) in NbN contacts enables investigation of an interplay between superconductivity and strongly correlated states in a two dimensional electron gas at high magnetic fields.

  4. Effects of strong magnetic fields on the electron distribution and magnetisability of rare gas atoms

    NASA Astrophysics Data System (ADS)

    Pagola, G. I.; Caputo, M. C.; Ferraro, M. B.; Lazzeretti, P.

    2004-12-01

    Strong uniform static magnetic fields compress the electronic distribution of rare gas atoms and cause a 'spindle effect', which can be illustrated by plotting charge-density functions which depend quadratically on the flux density of the applied field. The fourth rank hypermagnetisabilities of He, Ne, Ar and Kr are predicted to have small positive values. Accordingly, the diamagnetism of rare gas atoms diminishes by a very little amount in the presence of intense magnetic field.

  5. Enhanced electron yield from laser-driven wakefield acceleration in high-Z gas jets

    SciTech Connect

    Mirzaie, Mohammad; Hafz, Nasr A. M. Li, Song; Liu, Feng; Zhang, Jie; He, Fei; Cheng, Ya

    2015-10-15

    An investigation of the electron beam yield (charge) form helium, nitrogen, and neon gas jet plasmas in a typical laser-plasma wakefield acceleration experiment is carried out. The charge measurement is made by imaging the electron beam intensity profile on a fluorescent screen into a charge coupled device which was cross-calibrated with an integrated current transformer. The dependence of electron beam charge on the laser and plasma conditions for the aforementioned gases are studied. We found that laser-driven wakefield acceleration in low Z-gas jet targets usually generates high-quality and well-collimated electron beams with modest yields at the level of 10-100 pC. On the other hand, filamentary electron beams which are observed from high-Z gases at higher densities reached much higher yields. Evidences for cluster formation were clearly observed in the nitrogen gas jet target, where we received the highest electron beam charge of ∼1.7 nC. Those intense electron beams will be beneficial for the applications on the generation of bright X-rays, gamma rays radiations, and energetic positrons via the bremsstrahlung or inverse-scattering processes.

  6. Enhanced electron yield from laser-driven wakefield acceleration in high-Z gas jets.

    PubMed

    Mirzaie, Mohammad; Hafz, Nasr A M; Li, Song; Liu, Feng; He, Fei; Cheng, Ya; Zhang, Jie

    2015-10-01

    An investigation of the electron beam yield (charge) form helium, nitrogen, and neon gas jet plasmas in a typical laser-plasma wakefield acceleration experiment is carried out. The charge measurement is made by imaging the electron beam intensity profile on a fluorescent screen into a charge coupled device which was cross-calibrated with an integrated current transformer. The dependence of electron beam charge on the laser and plasma conditions for the aforementioned gases are studied. We found that laser-driven wakefield acceleration in low Z-gas jet targets usually generates high-quality and well-collimated electron beams with modest yields at the level of 10-100 pC. On the other hand, filamentary electron beams which are observed from high-Z gases at higher densities reached much higher yields. Evidences for cluster formation were clearly observed in the nitrogen gas jet target, where we received the highest electron beam charge of ∼1.7 nC. Those intense electron beams will be beneficial for the applications on the generation of bright X-rays, gamma rays radiations, and energetic positrons via the bremsstrahlung or inverse-scattering processes. PMID:26520950

  7. Enhanced electron yield from laser-driven wakefield acceleration in high-Z gas jets

    NASA Astrophysics Data System (ADS)

    Mirzaie, Mohammad; Hafz, Nasr A. M.; Li, Song; Liu, Feng; He, Fei; Cheng, Ya; Zhang, Jie

    2015-10-01

    An investigation of the electron beam yield (charge) form helium, nitrogen, and neon gas jet plasmas in a typical laser-plasma wakefield acceleration experiment is carried out. The charge measurement is made by imaging the electron beam intensity profile on a fluorescent screen into a charge coupled device which was cross-calibrated with an integrated current transformer. The dependence of electron beam charge on the laser and plasma conditions for the aforementioned gases are studied. We found that laser-driven wakefield acceleration in low Z-gas jet targets usually generates high-quality and well-collimated electron beams with modest yields at the level of 10-100 pC. On the other hand, filamentary electron beams which are observed from high-Z gases at higher densities reached much higher yields. Evidences for cluster formation were clearly observed in the nitrogen gas jet target, where we received the highest electron beam charge of ˜1.7 nC. Those intense electron beams will be beneficial for the applications on the generation of bright X-rays, gamma rays radiations, and energetic positrons via the bremsstrahlung or inverse-scattering processes.

  8. Persistent Photoconductivity in A Magnetic Two Dimensional Electron Gas

    NASA Astrophysics Data System (ADS)

    Ray, O.; Smorchkova, I. P.; Samarth, N.

    1998-03-01

    Magnetic two-dimensional electron gases (2DEGs) based on modulation-doped (Zn,Cd,Mn)Se/ZnSe heterostructures are of current interest because of their novel transport properties (PRL 78, 3571 (1997)). Here, we examine the phenomenon of persistent photoconductivity (PPC) in these structures, with the aim of understanding the nature of defects and their role in limiting the 2DEG mobility. We have observed significant PPC at high temperatures in modulation doped magnetic 2DEGs. The clear presence of a deep trap responsible for the observed PPC is established through temperature-dependent photoconductivity, photoluminescence, deep level transient fourier spectroscopy and photo induced current transient spectroscopy. An analysis of these experiments will be presented, summarizing the specific characteristics and possible origins of this deep level.

  9. Use of nonlocal helium microplasma for gas impurities detection by the collisional electron spectroscopy method

    SciTech Connect

    Kudryavtsev, Anatoly A.; Stefanova, Margarita S.; Pramatarov, Petko M.

    2015-10-15

    The collisional electron spectroscopy (CES) method, which lays the ground for a new field for analytical detection of gas impurities at high pressures, has been verified. The CES method enables the identification of gas impurities in the collisional mode of electron movement, where the advantages of nonlocal formation of the electron energy distribution function (EEDF) are fulfilled. Important features of dc negative glow microplasma and probe method for plasma diagnostics are applied. A new microplasma gas analyzer design is proposed. Admixtures of 0.2% Ar, 0.6% Kr, 0.1% N{sub 2}, and 0.05% CO{sub 2} are used as examples of atomic and molecular impurities to prove the possibility for detecting and identifying their presence in high pressure He plasma (50–250 Torr). The identification of the particles under analysis is made from the measurements of the high energy part of the EEDF, where maxima appear, resulting from the characteristic electrons released in Penning reactions of He metastable atoms with impurity particles. Considerable progress in the development of a novel miniature gas analyzer for chemical sensing in gas phase environments has been made.

  10. Use of nonlocal helium microplasma for gas impurities detection by the collisional electron spectroscopy method

    NASA Astrophysics Data System (ADS)

    Kudryavtsev, Anatoly A.; Stefanova, Margarita S.; Pramatarov, Petko M.

    2015-10-01

    The collisional electron spectroscopy (CES) method, which lays the ground for a new field for analytical detection of gas impurities at high pressures, has been verified. The CES method enables the identification of gas impurities in the collisional mode of electron movement, where the advantages of nonlocal formation of the electron energy distribution function (EEDF) are fulfilled. Important features of dc negative glow microplasma and probe method for plasma diagnostics are applied. A new microplasma gas analyzer design is proposed. Admixtures of 0.2% Ar, 0.6% Kr, 0.1% N2, and 0.05% CO2 are used as examples of atomic and molecular impurities to prove the possibility for detecting and identifying their presence in high pressure He plasma (50-250 Torr). The identification of the particles under analysis is made from the measurements of the high energy part of the EEDF, where maxima appear, resulting from the characteristic electrons released in Penning reactions of He metastable atoms with impurity particles. Considerable progress in the development of a novel miniature gas analyzer for chemical sensing in gas phase environments has been made.

  11. Simulating strongly correlated electrons with a strongly interacting Fermi gas

    SciTech Connect

    Thomas, John E.

    2013-05-28

    The quantum many-body physics of strongly-correlated fermions is studied in a degenerate, strongly- interacting atomic Fermi gas, first realized by our group with DOE support in 2002. This system, which exhibits strong spin pairing, is now widely studied and provides an important paradigm for testing predictions based on state-of-the-art many-body theory in fields ranging from nuclear matter to high temperature superfluidity and superconductivity. As the system is strongly interacting, both the superfluid and the normal fluid are nontrivial and of great interest. A central part of our program on Fermi gases is the connection between the study of thermodynamics, supported by DOE and the study of hydrodynamic transport, supported by NSF. This connection is especially interesting in view of a recent conjecture from the string theory community on the concept of nearly perfect normal fluids, which exhibit a minimum ratio of shear viscosity to entropy density in strongly-interacting, scale-invariant systems.

  12. Shubnikov-de Haas oscillations in a two-dimensional electron gas under subterahertz radiation

    NASA Astrophysics Data System (ADS)

    Shi, Q.; Martin, P. D.; Hatke, A. T.; Zudov, M. A.; Watson, J. D.; Gardner, G. C.; Manfra, M. J.; Pfeiffer, L. N.; West, K. W.

    2015-08-01

    We report on magnetotransport measurements in a two-dimensional (2D) electron gas subject to subterahertz radiation in the regime where Shubnikov-de Haas oscillations (SdHOs) and microwave-induced resistance oscillations (MIROs) coexist over a wide magnetic field range, spanning several harmonics of the cyclotron resonance. Surprisingly, we find that the SdHO amplitude is modified by the radiation in a nontrivial way, owing to the oscillatory correction which has the same period and phase as MIROs. This finding challenges our current understanding of microwave photoresistance in 2D electron gas, calling for future investigations.

  13. Rashba coupling in three-dimensional wurtzite structure electron gas at electric-dipole spin resonance

    NASA Astrophysics Data System (ADS)

    Ungier, W.

    2014-05-01

    Theoretical description of Rashba effects in three-dimensional electron gas at electric-dipole spin resonance conditions is presented in the frame of conductivity tensor formalism. The details due to anisotropy of the effective mass tensor, as well as the Lande factor, are considered. The absorbed power is calculated for arbitrary orientation of the sample with respect to external fields: constant magnetic field and rf electric field. The differences between resonance signals in two- and three-dimensional electron gas are pointed out.

  14. Effects of introducing a gas into the free-electron laser

    NASA Technical Reports Server (NTRS)

    Pantell, R. H.; Fisher, A. S.; Feinstein, J.; Ho, A. H.; Ozcan, M.; Dulman, H. D.; Reid, M. B.

    1989-01-01

    The introduction of a gas into the wiggler section of a free electron laser (FEL) alters the phase velocity of the electromagnetic wave, and so changes the synchronism condition relating wavelength to wiggler parameters and beam energy. This provides a means for tuning the frequency of an oscillator, with the addition of 200 torr of hydrogen gas, the wavelength of a FEL operating in the near infrared without gas was reduced by 0.73 microns. The plasma generated from ionization of the hydrogen molecules by collisions with the electron beam diminished the oscillator gain, but this effect was eliminated by the addition of less than 0.1 percent of an electron attachment gas. Gain is also reduced by multiple scattering of the beam electrons, but this effect is not severe for a 1-m wiggler length. When hydrogen is used, a FEL with fixed wiggler parameters and electron energy can be tuned from the near infrared to about 1200 A, and, with helium, the wavelength can be reduced to 600 A.

  15. Gas mixing system for imaging of nanomaterials under dynamic environments by environmental transmission electron microscopy

    SciTech Connect

    Akatay, M. Cem; Zvinevich, Yury; Ribeiro, Fabio H. E-mail: estach@bnl.gov; Baumann, Philipp; Stach, Eric A. E-mail: estach@bnl.gov

    2014-03-15

    A gas mixing manifold system that is capable of delivering a stable pressure stream of a desired composition of gases into an environmental transmission electron microscope has been developed. The system is designed to provide a stable imaging environment upon changes of either the composition of the gas mixture or upon switching from one gas to another. The design of the system is described and the response of the pressure inside the microscope, the sample temperature, and sample drift in response to flow and composition changes of the system are reported.

  16. Ground state of a hydrogen ion molecule immersed in an inhomogeneous electron gas

    NASA Astrophysics Data System (ADS)

    Diaz-Valdes, J.; Gutierrez, F. A.; Matamala, A. R.; Denton, C. D.; Vargas, P.; Valdes, J. E.

    2007-01-01

    In this work we have calculated the ground state energy of the hydrogen molecule, H2+, immersed in the highly inhomogeneous electron gas around a metallic surface within the local density approximation. The molecule is perturbed by the electron density of a crystalline surface of Au <1 0 0> with the internuclear axis parallel to the surface. The surface spatial electron density is calculated through a linearized band structure method (LMTO-DFT). The ground state of the molecule-ion was calculated using the Born-Oppenheimer approximation for a fixed-ion while the screening effects of the inhomogeneous electron gas are depicted by a Thomas-Fermi like electrostatic potential. We found that within our model the molecular ion dissociates at the critical distance of 2.35 a.u. from the first atomic layer of the solid.

  17. Analysis of the Molecules Structure and Vertical Electron Affinity of Organic Gas Impact on Electric Strength

    NASA Astrophysics Data System (ADS)

    Jiao, Juntao; Xiao, Dengming; Zhao, Xiaoling; Deng, Yunkun

    2016-05-01

    It is necessary to find an efficient selection method to pre-analyze the gas electric strength from the perspective of molecule structure and the properties for finding the alternative gases to sulphur hexafluoride (SF6). As the properties of gas are determined by the gas molecule structure, the research on the relationship between the gas molecule structure and the electric strength can contribute to the gas pre-screening and new gas development. In this paper, we calculated the vertical electron affinity, molecule orbits distribution and orbits energy of gas molecules by the means of density functional theory (DFT) for the typical structures of organic gases and compared their electric strengths. By this method, we find part of the key properties of the molecule which are related to the electric strength, including the vertical electron affinity, the lowest unoccupied molecule orbit (LUMO) energy, molecule orbits distribution and negative-ion system energy. We also listed some molecule groups such as unsaturated carbons double bonds (C=C) and carbonitrile bonds (C≡N) which have high electric strength theoretically by this method. supported by National Natural Science Foundation of China (Nos. 51177101 and 51337006)

  18. On the screening of impurities by a two dimensional electron gas in high magnetic fields

    NASA Astrophysics Data System (ADS)

    Heift, K.; Hajdu, J.

    We consider the effective potential of an impurity charge placed into a two dimensional non-interacting electron gas at zero temperature and in the presence of a perpendicular, quantum limit magnetic field. Restricting ourselves to a one band model and describing the electronic self-energy due to the impurity scattering in the generalized Born approximation (GBA), it is possible to derive a selfconsistency equation for the RPA-dielectric function.

  19. Magnetic properties of a two-dimensional electron gas strongly coupled to light

    NASA Astrophysics Data System (ADS)

    Dini, K.; Kibis, O. V.; Shelykh, I. A.

    2016-06-01

    Considering the quantum dynamics of two-dimensional electron gas (2DEG) exposed to both a stationary magnetic field and an intense high-frequency electromagnetic wave, we found that the wave decreases the scattering-induced broadening of Landau levels. Therefore, various magnetoelectronic properties of two-dimensional nanostructures (density of electronic states at Landau levels, magnetotransport, etc.) are sensitive to irradiation by light. Thus, the elaborated theory paves the way for optically controlling the magnetic properties of 2DEG.

  20. An electron beam polarimeter based on scattering from a windowless, polarized hydrogen gas target

    SciTech Connect

    Bernauer, Jan; Milner, Richard

    2013-11-07

    Here we present the idea to develop a precision polarimeter for low energy, intense polarized electron beams using a windowless polarized hydrogen gas cell fed by an atomic beam source. This technique would use proven technology used successfully in both the electron scattering experiments: HERMES with 27 GeV electron and positron beams at DESY, and BLAST with 850 MeV electron beams at MIT-Bates. At 100 MeV beam energy, both spin-dependent Mo/ller and elastic electron-proton scattering processes have a high cross section and sizable spin asymmetries. The concept is described and estimates for realistic rates for elastic electron-proton scattering and Mo/ller scattering are presented. A number of important issues which affect the ultimate systematic uncertainty are identified.

  1. Method for resurrecting negative electron affinity photocathodes after exposure to an oxidizing gas

    DOEpatents

    Mulhollan, Gregory A; Bierman, John C

    2012-10-30

    A method by which negative electron affinity photocathodes (201), single crystal, amorphous, or otherwise ordered, can be made to recover their quantum yield following exposure to an oxidizing gas has been discovered. Conventional recovery methods employ the use of cesium as a positive acting agent (104). In the improved recovery method, an electron beam (205), sufficiently energetic to generate a secondary electron cloud (207), is applied to the photocathode in need of recovery. The energetic beam, through the high secondary electron yield of the negative electron affinity surface (203), creates sufficient numbers of low energy electrons which act on the reduced-yield surface so as to negate the effects of absorbed oxidizing atoms thereby recovering the quantum yield to a pre-decay value.

  2. The ARM Best Estimate 2-dimensional Gridded Surface

    SciTech Connect

    Xie,Shaocheng; Qi, Tang

    2015-06-15

    The ARM Best Estimate 2-dimensional Gridded Surface (ARMBE2DGRID) data set merges together key surface measurements at the Southern Great Plains (SGP) sites and interpolates the data to a regular 2D grid to facilitate data application. Data from the original site locations can be found in the ARM Best Estimate Station-based Surface (ARMBESTNS) data set.

  3. Electron density and gas density measurements in a millimeter-wave discharge

    NASA Astrophysics Data System (ADS)

    Schaub, S. C.; Hummelt, J. S.; Guss, W. C.; Shapiro, M. A.; Temkin, R. J.

    2016-08-01

    Electron density and neutral gas density have been measured in a non-equilibrium air breakdown plasma using optical emission spectroscopy and two-dimensional laser interferometry, respectively. A plasma was created with a focused high frequency microwave beam in air. Experiments were run with 110 GHz and 124.5 GHz microwaves at powers up to 1.2 MW. Microwave pulses were 3 μs long at 110 GHz and 2.2 μs long at 124.5 GHz. Electron density was measured over a pressure range of 25 to 700 Torr as the input microwave power was varied. Electron density was found to be close to the critical density, where the collisional plasma frequency is equal to the microwave frequency, over the pressure range studied and to vary weakly with input power. Neutral gas density was measured over a pressure range from 150 to 750 Torr at power levels high above the threshold for initiating breakdown. The two-dimensional structure of the neutral gas density was resolved. Intense, localized heating was found to occur hundreds of nanoseconds after visible plasma formed. This heating led to neutral gas density reductions of greater than 80% where peak plasma densities occurred. Spatial structure and temporal dynamics of gas heating at atmospheric pressure were found to agree well with published numerical simulations.

  4. Analysis and design of digital output interface devices for gas turbine electronic controls

    NASA Technical Reports Server (NTRS)

    Newirth, D. M.; Koenig, E. W.

    1976-01-01

    A trade study was performed on twenty-one digital output interface schemes for gas turbine electronic controls to select the most promising scheme based on criteria of reliability, performance, cost, and sampling requirements. The most promising scheme, a digital effector with optical feedback of the fuel metering valve position, was designed.

  5. High-energy electron acceleration in the gas-puff Z-pinch plasma

    SciTech Connect

    Takasugi, Keiichi; Miyazaki, Takanori; Nishio, Mineyuki

    2014-12-15

    The characteristics of hard x-ray generation were examined in the gas-puff z-pinch experiment. The experiment on reversing the voltage was conducted. In both of the positive and negative discharges, the x-ray was generated only from the anode surface, so it was considered that the electrons were accelerated by the induced electromagnetic force at the pinch time.

  6. High energy electrons from interaction with a 10 mm gas-jet at FLAME

    NASA Astrophysics Data System (ADS)

    Grittani, G. M.; Anania, M. P.; Gatti, G.; Giulietti, D.; Kando, M.; Krus, M.; Labate, L.; Levato, T.; Oishi, Y.; Rossi, F.; Gizzi, L. A.

    2013-05-01

    In this paper we discuss the spectra of the electrons produced in the laser-plasma acceleration experiment at FLAME. Here a <30 fs laser pulse is focused via an f/10 parabola in a focal spot of 10 μm diameter into a 1.2 mm by 10 mm rectangular Helium gas-jets at a backing pressure ranging from 5 to 15 bar. The intensity achieved exceeds 1019 Wcm -2. In our experiment the laser is set to propagate in the gas-jet along the longitudinal axis to use the 10 mm gas-jet length and to evaluate the role of density gradients. The propagation of the laser pulse in the gas is monitored by means of a Thomson scattering optical imaging. Accelerated electrons are set to propagate for 47,5 cm before being detected by a scintillating screen to evaluate bunch divergence and pointing. Alternatively, electrons are set to propagate in the field of a magnetic dipole before reaching the scintillating screen in order to evaluate their energy spectrum. Our experimental data show highly collimated bunches (<1 mrad) with a relatively stable pointing direction (<10 mrad). Typical bunch electron energy ranges between 50 and 200 MeV with occasional exceptional events of higher energy up to 1GeV.

  7. Identification and measurement of chlorinated organic pesticides in water by electron-capture gas chromatography

    USGS Publications Warehouse

    Lamar, William L.; Goerlitz, Donald F.; Law, LeRoy M.

    1965-01-01

    Pesticides, in minute quantities, may affect the regimen of streams, and because they may concentrate in sediments, aquatic organisms, and edible aquatic foods, their detection and their measurement in the parts-per-trillion range are considered essential. In 1964 the U.S. Geological Survey at Menlo Park, Calif., began research on methods for monitoring pesticides in water. Two systems were selected--electron-capture gas chromatography and microcoulometric-titration gas chromatography. Studies on these systems are now in progress. This report provides current information on the development and application of an electron-capture gas chromatographic procedure. This method is a convenient and extremely sensitive procedure for the detection and measurement of organic pesticides having high electron affinities, notably the chlorinated organic pesticides. The electron-affinity detector is extremely sensitive to these substances but it is not as sensitive to many other compounds. By this method, the chlorinated organic pesticide may be determined on a sample of convenient size in concentrations as low as the parts-per-trillion range. To insure greater accuracy in the identifications, the pesticides reported were separated and identified by their retention times on two different types of gas chromatographic columns.

  8. The determination of cyclohexylamine in aqueous solutions of sodium cyclamate by electron-capture gas chromatography.

    NASA Technical Reports Server (NTRS)

    Solomon, M. D.; Pereira, W. E.; Duffield, A. M.

    1971-01-01

    A sensitive primary amine assay, capable of detecting 10 to the minus 11th g and utilizing the determination of the amine N-2,4-dinitrophenyl derivative by electron-capture gas chromatography is described. The method is exemplified by the determination of cyclohexylamine in sodium cyclamate.

  9. DETERMINATION OF ACRYLAMIDE IN RAT SERUM AND SCIATIC NERVE BY GAS CHROMATOGRAPHY-ELECTRON-CAPTURE DETECTION

    EPA Science Inventory

    A modified method for the derivatization and analysis of acrylamide as 2-bromopropenamide by gas chromatography/electron capture detection was validated in serum and sciatic nerve from rats. he method was accurate and precise over the concentration range of 2240 to 74700 ppm (w/v...

  10. Supersilyl radicals from the dissociation of superdisilane observed by gas electron diffraction.

    PubMed

    Masters, Sarah L; Grassie, Duncan A; Robertson, Heather E; Hölbling, Margit; Hassler, Karl

    2007-07-01

    The vapour produced upon mild heating of hexa-tert-butyldisilane (superdisilane) has been studied by gas electron diffraction and ab initio molecular orbital calculations; the disilane is not observed in the vapour, and the observed radical structure is not the lowest energy structure predicted ab initio. PMID:17579757

  11. 77 FR 10373 - Greenhouse Gas Reporting Program: Electronics Manufacturing: Revisions to Heat Transfer Fluid...

    Federal Register 2010, 2011, 2012, 2013, 2014

    2012-02-22

    ...The EPA is finalizing technical revisions to the electronics manufacturing source category of the Greenhouse Gas Reporting Rule related to fluorinated heat transfer fluids. More specifically, EPA is finalizing amendments to the definition of fluorinated heat transfer fluids and to the provisions to estimate and report emissions from fluorinated heat transfer fluids. This final rule is narrow......

  12. Generation of electron beams from a laser wakefield acceleration in pure neon gas

    SciTech Connect

    Li, Song; Hafz, Nasr A. M. Mirzaie, Mohammad; Elsied, Ahmed M. M.; Ge, Xulei; Liu, Feng; Sokollik, Thomas; Chen, Min; Sheng, Zhengming; Zhang, Jie; Tao, Mengze; Chen, Liming

    2014-08-15

    We report on the generation of quasimonoenergetic electron beams by the laser wakefield acceleration of 17–50 TW, 30 fs laser pulses in pure neon gas jet. The generated beams have energies in the range 40–120 MeV and up to ∼430 pC of charge. At a relatively high density, we observed multiple electron beamlets which has been interpreted by simulations to be the result of breakup of the laser pulse into multiple filaments in the plasma. Each filament drives its own wakefield and generates its own electron beamlet.

  13. Hose instability and wake generation by an intense electron beam in a self-ionized gas.

    PubMed

    Deng, S; Barnes, C D; Clayton, C E; O'Connell, C; Decker, F J; Fonseca, R A; Huang, C; Hogan, M J; Iverson, R; Johnson, D K; Joshi, C; Katsouleas, T; Krejcik, P; Lu, W; Mori, W B; Muggli, P; Oz, E; Tsung, F; Walz, D; Zhou, M

    2006-02-01

    The propagation of an intense relativistic electron beam through a gas that is self-ionized by the beam's space charge and wakefields is examined analytically and with 3D particle-in-cell simulations. Instability arises from the coupling between a beam and the offset plasma channel it creates when it is perturbed. The traditional electron hose instability in a preformed plasma is replaced with this slower growth instability depending on the radius of the ionization channel compared to the electron blowout radius. A new regime for hose stable plasma wakefield acceleration is suggested. PMID:16486834

  14. Hose Instability and Wake Generation By An Intense Electron Beam in a Self-Ionized Gas

    SciTech Connect

    Deng, S.; Barnes, C.D.; Clayton, C.E.; O'Connell, C.; Decker, F.J.; Fonseca, R.A.; Huang, C.; Hogan, M.J.; Iverson, R.; Johnson, D.K.; Joshi, C.; Katsouleas, T.; Krejcik, P.; Lu, W.; Mori, W.B.; Muggli, P.; Oz, E.; Tsung, F.; Walz, D.; Zhou, M.; /Southern California U. /UCLA /SLAC

    2006-04-12

    The propagation of an intense relativistic electron beam through a gas that is self-ionized by the beam's space charge and wakefields is examined analytically and with 3D particle-in-cell simulations. Instability arises from the coupling between a beam and the offset plasma channel it creates when it is perturbed. The traditional electron hose instability in a preformed plasma is replaced with this slower growth instability depending on the radius of the ionization channel compared to the electron blowout radius. A new regime for hose stable plasma wakefield acceleration is suggested.

  15. Nonlinear effects in the energy loss of a slow dipole in a free-electron gas

    SciTech Connect

    Alducin, M.; Juaristi, J.I.

    2002-11-01

    We analyze beyond linear-response theory the energy loss of a slow dipole moving inside a free-electron gas. The energy loss is obtained from a nonlinear treatment of the scattering of electrons at the dipole-induced potential. This potential and the total electronic density are calculated with density-functional theory. We focus on the interference effects, i.e., the difference between the energy loss of a dipole and that of the isolated charges forming it. Comparison of our results to those obtained in linear-response theory shows that a nonlinear treatment of the screening is required to accurately describe the energy loss of slow dipoles.

  16. Gain Characteristics of a 100 μm thick Gas Electron Multiplier (GEM)

    NASA Astrophysics Data System (ADS)

    Mir, J. A.; Natal da Luz, H.; Carvalho, X.; Azevedo, C. D. R.; dos Santos, J. M. F.; Amaro, F. D.

    2015-12-01

    The standard Gas Electron Multiplier (GEM) invented by F. Sauli [1] consists of high density holes etched in 50 μm thick copper clad Kapton foil. This study, however, investigated the basic charge gain characteristics of a non-standard 100 μm thick Gas Electron Multiplier, fabricated using the same wet chemical etch process at CERN. It was possible to sustain charge gains of 3× 103 and 1× 104 using single and double stage configurations, respectively, operated in an Ar(70%)-CO2(30%) gas mixture. These values are similar to those achieved with standard GEMs. Crucially, we found that the thicker GEM is more robust as it withstood sparking without catastrophic failure. We also measured the gain dependence on ambient variables such as pressure and temperature and found the gain sensitivity to be 4.0 K/mbar, compared with 1.55 K/mbar for the standard GEM.

  17. Electron collection enhancement arising from neutral gas jets on a charged vehicle in the ionosphere

    NASA Technical Reports Server (NTRS)

    Gilchrist, Brian E.; Banks, Peter M.; Neubert, Torsten; Williamson, P. Roger; Myers, Neil B.

    1990-01-01

    Observations of current collection enhancements due to cold nitrogen gas control jet emissions from a highly charged, isolated rocket payload in the ionosphere have been made during the cooperative high altitude rocket gun experiment (CHARGE) 2 using an electrically tethered mother/daughter payload system. The current collection enhancement was observed on a platform (daughter payload) located 100 to 400 m away from the main payload firing an energetic electron beam (mother payload). These results are interpreted in terms of an electrical discharge forming in close proximity to the daughter vehicle during the short periods of gas emission. The results indicate that it is possible to enhance the electron current collection capability of positively charged vehicles by means of deliberate neutral gas releases into an otherwise undisturbed space plasma. The results are also compared with recent laboratory observations of hollow cathode plasma contactors operating in the 'ignited' mode.

  18. Further developments and beam tests of the gas electron multiplier (GEM)

    NASA Astrophysics Data System (ADS)

    Benlloch, J.; Bressan, A.; Capeáns, M.; Gruwé, M.; Hoch, M.; Labbé, J. C.; Placci, A.; Ropelewski, L.; Sauli, F.

    1998-12-01

    We describe the development and operation of the Gas Electron Multiplier (GEM), a thin insulating foil metal-clad on both sides and perforated by a regular pattern of small holes. The mesh can be incorporated into the gas volume of an active detector to provide a first amplification channel for electrons, or used as stand alone. We report on the basic properties of GEMs manufactured with different geometries and operated in several gas mixtures as well as on their long-term stability after accumulation of charge equivalent to several years of operation in high-luminosity experiments. Optimized GEMs reach gains close to 10 000 at safe operating voltages, permitting the detection of ionizing tracks, without other amplifying elements, on a simple Printed Circuit Board (PCB), opening new possibilities for detector design.

  19. Investigation of Sterilization Effect by various Gas Plasmas and Electron Microscopic Observation of Bacteria

    NASA Astrophysics Data System (ADS)

    Sasaki, Yota; Takamatsu, Toshihiro; Uehara, Kodai; Oshita, Takaya; Miyahara, Hidekazu; Okino, Akitoshi; Ikeda, Keiko; Matsumura, Yuriko; Iwasawa, Atsuo; Kohno, Masahiro

    2014-10-01

    Atmospheric non-thermal plasmas have attracted attention as a new sterilization method. It is considered that factor of plasma sterilization are mainly reactive oxygen species (ROS). However, the sterilization mechanism hasn't been investigated in detail because conventional plasma sources have a limitation in usable gas species and lack variety of ROS. So we developed multi-gas plasma jet which can generate various gas plasmas. In this study, investigation of sterilization effect by various gas plasmas and electron microscopic observation of bacteria were performed. Oxygen, nitrogen, carbon dioxide, argon and air were used as plasma gas. To investigate gas-species dependence of sterilization effect, S.aureus was treated. As a result, nitrogen plasma and carbon dioxide plasma were effective for sterilization. To investigate sterilization mechanism, the surface of S.aureus was observed by scanning electron microscope. As a result, dimples were observed on the surface after irradiation of nitrogen plasma, but no change observed in the case of carbon dioxide plasma. These results suggest that bactericidal mechanism of nitrogen and carbon dioxide plasma should be different. In the presentation, Measurement result of ROS will be reported.

  20. Simulation of AlGaN/GaN high-electron-mobility transistor gauge factor based on two-dimensional electron gas density and electron mobility

    NASA Astrophysics Data System (ADS)

    Chu, Min; Koehler, Andrew D.; Gupta, Amit; Nishida, Toshikazu; Thompson, Scott E.

    2010-11-01

    The gauge factor of AlGaN/GaN high-electron-mobility transistor was determined theoretically, considering the effect of stress on the two-dimensional electron gas (2DEG) sheet carrier density and electron mobility. Differences in the spontaneous and piezoelectric polarization between the AlGaN and GaN layers, with and without external mechanical stress, were investigated to calculate the stress-altered 2DEG density. Strain was incorporated into a sp3d5-sp3 empirical tight-binding model to obtain the change in electron effective masses under biaxial and uniaxial stress. The simulated longitudinal gauge factor (-7.9±5.2) is consistent with experimental results (-2.4±0.5) obtained from measurements eliminating parasitic charge trapping effects through continuous subbandgap optical excitation.

  1. Propagation of the pulsed electron beam of nanosecond duration in gas composition of high pressure

    NASA Astrophysics Data System (ADS)

    Kholodnaya, G.; Sazonov, R.; Ponomarev, D.; Remnev, G.

    2015-11-01

    This paper presents the results of the investigation of the propagation of an electron beam in the high-pressure gas compositions (50, 300, and 760 Torr): sulfur hexafluoride and hydrogen, sulfur hexafluoride and nitrogen, sulfur hexafluoride and argon. The experiments have been performed using the TEA-500 laboratory accelerator. The main parameters of the accelerator are as follows: an accelerating voltage of 500 kV; an electron beam current of 10 kA; a pulse width at half maximum of 60 ns; a pulse energy of 200 J; a pulse repetition rate of up to 5 pulses per second, a beam diameter of 5 cm. The pulsed electron beam was injected into a 55 cm metal drift tube. The drift tube is equipped with three reverse-current shunts with simultaneous detecting of signals. The obtained results of the investigation make it possible to conclude that the picture of the processes occurring in the interaction of an electron beam in the high-pressure gas compositions is different from that observed in the propagation of the electron beam in the low-pressure gas compositions (1 Torr).

  2. Monte Carlo Simulation of Electron Swarm Parameters in the SF6/CF4 Gas Mixtures

    NASA Astrophysics Data System (ADS)

    Liu, Xueli; Xiao, Dengming

    2007-04-01

    We use a binary gas mixture Monte Carlo simulation model to calculate the electron transport parameters in SF6/CF4 mixtures in uniform electric fields. Electron collision cross section sets are assembled on the basis of the critical survey of Christophorou et al. [J. Phys. Chem. Ref. Data 25 (1996) 1341] for CF4 and Itoh et al. [J. Phys. D 21 (1988) 922] for SF6. The electron swarm parameters studied here are electron drift velocity, effective ionization coefficient and the ratio of longitudinal diffusion coefficient to mobility for the density-reduced electric field strength (E/N) in the range of 140≤ E/N≤ 600 Td (1 Td = 10-17 V cm2); the SF6 contents in the gas mixtures are 0, 20, 50, and 100%. The differences between the present calculated and measured values of Urquijo et al. [J. Phys. D 36 (2003) 3132] do not exceed the overall measured uncertainties for the parameters. To our knowledge, only Urquijo et al. [J. Phys. D 36 (2003) 3132] have measured the electron swarm parameters in SF6/CF4 gas mixtures by a pulsed Townsend technique; however, simulation results have scarcely been reported.

  3. Hierarchical graphene-polyaniline nanocomposite films for high-performance flexible electronic gas sensors.

    PubMed

    Guo, Yunlong; Wang, Ting; Chen, Fanhong; Sun, Xiaoming; Li, Xiaofeng; Yu, Zhongzhen; Wan, Pengbo; Chen, Xiaodong

    2016-06-01

    A hierarchically nanostructured graphene-polyaniline composite film is developed and assembled for a flexible, transparent electronic gas sensor to be integrated into wearable and foldable electronic devices. The hierarchical nanocomposite film is obtained via aniline polymerization in reduced graphene oxide (rGO) solution and simultaneous deposition on flexible PET substrate. The PANI nanoparticles (PPANI) anchored onto rGO surfaces (PPANI/rGO) and the PANI nanofiber (FPANI) are successfully interconnected and deposited onto flexible PET substrates to form hierarchical nanocomposite (PPANI/rGO-FPANI) network films. The assembled flexible, transparent electronic gas sensor exhibits high sensing performance towards NH3 gas concentrations ranging from 100 ppb to 100 ppm, reliable transparency (90.3% at 550 nm) for the PPANI/rGO-FPANI film (6 h sample), fast response/recovery time (36 s/18 s), and robust flexibility without an obvious performance decrease after 1000 bending/extending cycles. The excellent sensing performance could probably be ascribed to the synergetic effects and the relatively high surface area (47.896 m(2) g(-1)) of the PPANI/rGO-FPANI network films, the efficient artificial neural network sensing channels, and the effectively exposed active surfaces. It is expected to hold great promise for developing flexible, cost-effective, and highly sensitive electronic sensors with real-time analysis to be potentially integrated into wearable flexible electronics. PMID:27249547

  4. Shell structure and phase relations in electronic properties of metal nanowires from an electron-gas model

    NASA Astrophysics Data System (ADS)

    Han, Yong; Liu, Da-Jiang

    2010-09-01

    The electronic and dynamic properties of metal nanowires are analyzed by using a minimal electron-gas model (EGM), in which the nanowire is treated as a close system with variable Fermi energy as a function of nanowire radius. We show that the planar surface energy and the curvature energy from the EGM are reasonably consistent with those from previous stabilized-jellium-model calculations, especially for metals with low electron densities. The EGM shell structure due to the fillings of quantum-well subbands is similar to that from the stabilized jellium model. The crossings between subbands and Fermi energy level for the metal nanowire correspond to cusps on the chemical-potential curve versus nanowire radius, but inflection points on the surface-free-energy curve versus the radius, as in the case of metal nanofilms. We also find an oscillatory variation in electron density versus radius at the nanowire center with a global oscillation period which approximately equals half Fermi wavelength. Wire string tension, average binding energy, and thermodynamic stability from the EGM are in good agreement with the data from previous first-principles density-functional theory calculations. We also compare our model with those from previous reported free-electron models, in which the nanowire is treated as an open system with a constant Fermi energy. We demonstrate that the fundamental thermodynamic properties depend sensitively on the way that the potential wall is constructed in the models.

  5. Electronic transport properties of BN sheet on adsorption of ammonia (NH3) gas.

    PubMed

    Srivastava, Anurag; Bhat, Chetan; Jain, Sumit Kumar; Mishra, Pankaj Kumar; Brajpuriya, Ranjeet

    2015-03-01

    We report the detection of ammonia gas through electronic and transport properties analysis of boron nitride sheet. The density functional theory (DFT) based ab initio approach has been used to calculate the electronic and transport properties of BN sheet in presence of ammonia gas. Analysis confirms that the band gap of the sheet increases due to presence of ammonia. Out of different positions, the bridge site is the most favorable position for adsorption of ammonia and the mechanism of interaction falls between weak electrostatic interaction and chemisorption. On relaxation, change in the bond angles of the ammonia molecule in various configurations has been reported with the distance between NH3 and the sheet. An increase in the transmission of electrons has been observed on increasing the bias voltage and I-V relationship. This confirms that, the current increases on applying the bias when ammonia is introduced while a very small current flows for pure BN sheet. PMID:25666919

  6. Optical Generation of Hot Spin-Polarized Electrons from a Ferromagnetic Two-Dimensional Electron Gas.

    PubMed

    Ellguth, Martin; Tusche, Christian; Kirschner, Jürgen

    2015-12-31

    Linearly polarized light with an energy of 3.1 eV has been used to excite highly spin-polarized electrons in an ultrathin film of face-centered-tetragonal cobalt to majority-spin quantum well states (QWS) derived from an sp band at the border of the Brillouin zone. The spin-selective excitation process has been studied by spin- and momentum-resolved two-photon photoemission. Analyzing the photoemission patterns in two-dimensional momentum planes, we find that the optically driven transition from the valence band to the QWS acts almost exclusively on majority-spin electrons. The mechanism providing the high spin polarization is discussed by the help of a density-functional theory calculation. Additionally, a sizable effect of spin-orbit coupling for the QWS is evidenced. PMID:26765012

  7. An enhancement in the low-field electron mobility associated with a ZnMgO/ZnO heterostructure: The role of a two-dimensional electron gas

    NASA Astrophysics Data System (ADS)

    Baghani, Erfan; O'Leary, Stephen K.

    2013-07-01

    We determine the role that a two-dimensional electron gas, formed at a ZnMgO/ZnO heterojunction, plays in shaping the corresponding temperature dependence of the low-field electron Hall mobility. This analysis is cast within the framework of the model of Shur et al. [M. Shur et al., J. Electron. Mater. 25, 777 (1996)], and the contributions to the mobility related to the ionized impurity, polar optical phonon, piezoelectric, and acoustic deformation potential scattering processes are considered, the overall mobility being determined through the application of Mathiessen's rule. The best fit to the ZnMgO/ZnO experimental results of Makino et al. [T. Makino et al., Appl. Phys. Lett. 87, 022101 (2005)] is obtained by setting the free electron concentration to 3×1018 cm-3 and the ionized impurity concentration to 1017 cm-3, i.e., within the two-dimensional electron gas formed at the heterojunction, the free electron gas concentration is a factor of 30 times the corresponding ionized impurity concentration. How this enhanced free electron concentration influences the contributions to the low-field electron mobility corresponding to these different scattering processes is also examined. It is found that the enhanced free electron concentration found within the two-dimensional electron gas dramatically decreases the ionized impurity and piezoelectric scattering rates and this is found to increase the overall low-field electron Hall mobility.

  8. Gas bremsstrahlung studies for medium energy electron storage rings using FLUKA Monte Carlo code

    NASA Astrophysics Data System (ADS)

    Sahani, Prasanta Kumar; Haridas, G.; Sinha, Anil K.; Hannurkar, P. R.

    2016-02-01

    Gas bremsstrahlung is generated due to the interaction of the stored electron beam with residual gas molecules of the vacuum chamber in a storage ring. As the opening angle of the bremsstrahlung is very small, the scoring area used in Monte Carlo simulation plays a dominant role in evaluating the absorbed dose. In the present work gas bremsstrahlung angular distribution and absorbed dose for the energies ranging from 1 to 5 GeV electron storage rings are studied using the Monte Carlo code, FLUKA. From the study, an empirical formula for gas bremsstrahlung dose estimation was deduced. The results were compared with the data obtained from reported experimental values. The results obtained from simulations are found to be in very good agreement with the reported experimental data. The results obtained are applied in estimating the gas bremsstrahlung dose for 2.5 GeV synchrotron radiation source, Indus-2 at Raja Ramanna Centre for Advanced Technology, India. The paper discusses the details of the simulation and the results obtained.

  9. Integration of 2-Dimensional Materials for Thermoelectric Power Generation

    NASA Astrophysics Data System (ADS)

    Alsaffar, Fadhel; Al Hussain, Abdulrahman; Amer, Moh. R.; Center of Exclence for Green Nanotechnologies Collaboration; Department of Electrical Engineering (UCLA) Collaboration

    Recent developments in nanomaterial research have significantly progressed the performance of thermoelectric devices. Theoretical investigations of the thermoelectic properties of 2-Dimentional monolayers demonstrate a high figure of merit (ZT) .. Here, we investigate the integration of these 2-Dimensional materials for power generation applications using solar heat. We show that using black phosphorus monolayer (phosphorene) as the p-type material, and Molybdenum disulfide (MoS2) monolayers as the n-type material, we get an effective figure of merit (ZT) at least (1.5) with a conversion efficiency of 13% at 280oC. Our results suggest that the integration of various 2-Dimensional materials is a promising approach for commercial thermoelectric power generation applications.

  10. Spin current swapping and Hanle spin Hall effect in a two-dimensional electron gas

    NASA Astrophysics Data System (ADS)

    Shen, Ka; Raimondi, R.; Vignale, G.

    2015-07-01

    We analyze the effect known as "spin current swapping" (SCS) due to electron-impurity scattering in a uniform spin-polarized two-dimensional electron gas. In this effect a primary spin current Jia (lower index for spatial direction, upper index for spin direction) generates a secondary spin current Jai if i ≠a , or Jjj, with j ≠i , if i =a . Contrary to naive expectation, the homogeneous spin current associated with the uniform drift of the spin polarization in the electron gas does not generate a swapped spin current by the SCS mechanism. Nevertheless, a swapped spin current will be generated, if a magnetic field is present, by a completely different mechanism, namely, the precession of the spin Hall spin current in the magnetic field. We refer to this second mechanism as Hanle spin Hall effect, and we notice that it can be observed in an experiment in which a homogeneous drift current is passed through a uniformly magnetized electron gas. In contrast to this, we show that an unambiguous observation of SCS requires inhomogeneous spin currents, such as those that are associated with spin diffusion in a metal, and no magnetic field. An experimental setup for the observation of the SCS is therefore proposed.

  11. Relativistic electron gas: A candidate for nature's left-handed materials

    NASA Astrophysics Data System (ADS)

    de Carvalho, C. A. A.

    2016-05-01

    The electric permittivities and magnetic permeabilities for a relativistic electron gas are calculated from quantum electrodynamics at finite temperature and density as functions of temperature, chemical potential, frequency, and wave vector. The polarization and the magnetization depend linearly on both electric and magnetic fields, and are the sum of a zero-temperature and zero-density vacuum part with a temperature- and chemical-potential-dependent medium part. Analytic calculations lead to generalized expressions that depend on three scalar functions. In the nonrelativistic limit, results reproduce the Lindhard formula. In the relativistic case, and in the long wavelength limit, we obtain the following: (i) for ω =0 , generalized susceptibilities that reduce to known nonrelativistic limits; (ii) for ω ≠0 , Drude-type responses at zero temperature. The latter implies that both the electric permittivity ɛ and the magnetic permeability μ may be simultaneously negative, a behavior characteristic of metamaterials. This unambiguously indicates that the relativistic electron gas is one of nature's candidates for the realization of a negative index of refraction system. Moreover, Maxwell's equations in the medium yield the dispersion relation and the index of refraction of the electron gas. Present results should be relevant for plasma physics, astrophysical observations, synchrotrons, and other environments with fast-moving electrons.

  12. The Gas Electron Multiplier, a Hall B, Region 1 Tracking Upgrade

    SciTech Connect

    Howard Fenker

    1998-06-01

    The Gas Electron Multiplier (GEM) is a novel device which provides gas avalanche multiplication without a reliance on precision mechanical structures or microfabricated surfaces. It is not difficult to imagine using it to build a drift chamber, a cathode strip chamber, or a combination of the two in geometries which would be challenging for more conventional wire chamber techniques. This report provides a description of the device, a draft implementation of a GEM for a Region-1 tracking upgrade in CLAS, and a summary of the properties of such a system.

  13. A Sealed, UHV Compatible, Soft X-ray Detector Utilizing Gas Electron Multipliers

    SciTech Connect

    Schaknowski, N.A.; Smith, G.

    2009-10-25

    An advanced soft X-ray detector has been designed and fabricated for use in synchrotron experiments that utilize X-ray absorption spectroscopy in the study a wide range of materials properties. Fluorescence X-rays, in particular C{sub K} at 277eV, are converted in a low pressure gas medium, and charge multiplication occurs in two gas electron multipliers, fabricated in-house from glass reinforced laminate, to enable single photon counting. The detector satisfies a number of demanding characteristics often required in synchrotron environments, such as UHV compatibility compactness, long-term stability, and energy resolving capability.

  14. On the equation of state for an electron gas in an intense magnetic field

    NASA Technical Reports Server (NTRS)

    Canuto, V.; Tsiang, E.

    1976-01-01

    In this paper we derive the equation of state for a relativistic electron gas imbedded in a static homogeneous magnetic field of arbitrary strength. The derivation is based on the evaluation of the energy-momentum tensor and the use of Dirac's equation for such a problem. Contrary to a derivation presented several years ago, the present derivation is completely gauge-invariant. We also show how to recover, in an exact manner, the perfect gas law for the case of weak magnetic fields.

  15. Fullerene-rare gas mixed plasmas in an electron cyclotron resonance ion source

    SciTech Connect

    Asaji, T. Ohba, T.; Uchida, T.; Yoshida, Y.; Minezaki, H.; Ishihara, S.; Racz, R.; Biri, S.; Kato, Y.

    2014-02-15

    A synthesis technology of endohedral fullerenes such as Fe@C{sub 60} has developed with an electron cyclotron resonance (ECR) ion source. The production of N@C{sub 60} was reported. However, the yield was quite low, since most fullerene molecules were broken in the ECR plasma. We have adopted gas-mixing techniques in order to cool the plasma and then reduce fullerene dissociation. Mass spectra of ion beams extracted from fullerene-He, Ar or Xe mixed plasmas were observed with a Faraday cup. From the results, the He gas mixing technique is effective against fullerene destruction.

  16. Prospects for applications of electron beams in processing of gas and oil hydrocarbons

    NASA Astrophysics Data System (ADS)

    Ponomarev, A. V.; Pershukov, V. A.; Smirnov, V. P.

    2015-12-01

    Waste-free processing of oil and oil gases can be based on electron-beam technologies. Their major advantage is an opportunity of controlled manufacturing of a wide range of products with a higher utility value at moderate temperatures and pressures. The work considers certain key aspects of electron beam technologies applied for the chain cracking of heavy crude oil, for the synthesis of premium gasoline from oil gases, and also for the hydrogenation, alkylation, and isomerization of unsaturated oil products. Electronbeam processing of oil can be embodied via compact mobile modules which are applicable for direct usage at distant oil and gas fields. More cost-effective and reliable electron accelerators should be developed to realize the potential of electron-beam technologies.

  17. Prospects for applications of electron beams in processing of gas and oil hydrocarbons

    SciTech Connect

    Ponomarev, A. V.; Pershukov, V. A.; Smirnov, V. P.

    2015-12-15

    Waste-free processing of oil and oil gases can be based on electron-beam technologies. Their major advantage is an opportunity of controlled manufacturing of a wide range of products with a higher utility value at moderate temperatures and pressures. The work considers certain key aspects of electron beam technologies applied for the chain cracking of heavy crude oil, for the synthesis of premium gasoline from oil gases, and also for the hydrogenation, alkylation, and isomerization of unsaturated oil products. Electronbeam processing of oil can be embodied via compact mobile modules which are applicable for direct usage at distant oil and gas fields. More cost-effective and reliable electron accelerators should be developed to realize the potential of electron-beam technologies.

  18. Surface Chemically Switchable Ultraviolet Luminescence from Interfacial Two-Dimensional Electron Gas.

    PubMed

    Islam, Mohammad A; Saldana-Greco, Diomedes; Gu, Zongquan; Wang, Fenggong; Breckenfeld, Eric; Lei, Qingyu; Xu, Ruijuan; Hawley, Christopher J; Xi, X X; Martin, Lane W; Rappe, Andrew M; Spanier, Jonathan E

    2016-01-13

    We report intense, narrow line-width, surface chemisorption-activated and reversible ultraviolet (UV) photoluminescence from radiative recombination of the two-dimensional electron gas (2DEG) with photoexcited holes at LaAlO3/SrTiO3. The switchable luminescence arises from an electron transfer-driven modification of the electronic structure via H-chemisorption onto the AlO2-terminated surface of LaAlO3, at least 2 nm away from the interface. The control of the onset of emission and its intensity are functionalities that go beyond the luminescence of compound semiconductor quantum wells. Connections between reversible chemisorption, fast electron transfer, and quantum-well luminescence suggest a new model for surface chemically reconfigurable solid-state UV optoelectronics and molecular sensing. PMID:26675987

  19. Electron beam fluorescence system to measure gas density in impulse facilities

    NASA Technical Reports Server (NTRS)

    Hoppe, J. C.

    1974-01-01

    Very rapid measurements, ranging from a few microsecond to milliseconds in duration, characterize studies made in shock regions or behind them. A system to measure gas density under such conditions in a 15.24-cm (6-in.) expansion tube is described. The basic elements are an electron beam of moderate energy and high current capability, an optical detector, and the associated electronics and data readout equipment. A heated-cathode electron gun, capable of pulsed operation and delivering up to 200 milliamperes current, provides the source of electrons. Optics include a simple collector lens, aperture, collimator lens, filters, and a photomultiplier tube. The photomultiplier output signal was recorded by means of photographed oscilloscope traces for pulsed beam operation.

  20. Filling in the Roadmap for Self-Consistent Electron Cloud and Gas Modeling

    SciTech Connect

    Vay, J; Furman, M A; Seidl, P A; Cohen, R H; Friedman, A; Grote, D P; Covo, M K; Molvik, A W; Stoltz, P H; Veitzer, S; Verboncoeur, J

    2005-10-11

    Electron clouds and gas pressure rise limit the performance of many major accelerators. A multi-laboratory effort to understand the underlying physics via the combined application of experiment, theory, and simulation is underway. We present here the status of the simulation capability development, based on a merge of the three-dimensional parallel Particle-In-Cell (PIC) accelerator code WARP and the electron cloud code POSINST, with additional functionalities. The development of the new capability follows a ''roadmap'' describing the different functional modules, and their inter-relationships, that are ultimately needed to reach self-consistency. Newly developed functionalities include a novel particle mover bridging the time scales between electron and ion motion, a module to generate neutrals desorbed by beam ion impacts at the wall, and a module to track impact ionization of the gas by beam ions or electrons. Example applications of the new capability to the modeling of electron effects in the High Current Experiment (HCX) are given.

  1. The Atmospheric Scanning Electron Microscope with open sample space observes dynamic phenomena in liquid or gas.

    PubMed

    Suga, Mitsuo; Nishiyama, Hidetoshi; Konyuba, Yuji; Iwamatsu, Shinnosuke; Watanabe, Yoshiyuki; Yoshiura, Chie; Ueda, Takumi; Sato, Chikara

    2011-12-01

    Although conventional electron microscopy (EM) requires samples to be in vacuum, most chemical and physical reactions occur in liquid or gas. The Atmospheric Scanning Electron Microscope (ASEM) can observe dynamic phenomena in liquid or gas under atmospheric pressure in real time. An electron-permeable window made of pressure-resistant 100 nm-thick silicon nitride (SiN) film, set into the bottom of the open ASEM sample dish, allows an electron beam to be projected from underneath the sample. A detector positioned below captures backscattered electrons. Using the ASEM, we observed the radiation-induced self-organization process of particles, as well as phenomena accompanying volume change, including evaporation-induced crystallization. Using the electrochemical ASEM dish, we observed tree-like electrochemical depositions on the cathode. In silver nitrate solution, we observed silver depositions near the cathode forming incidental internal voids. The heated ASEM dish allowed observation of patterns of contrast in melting and solidifying solder. Finally, to demonstrate its applicability for monitoring and control of industrial processes, silver paste and solder paste were examined at high throughput. High resolution, imaging speed, flexibility, adaptability, and ease of use facilitate the observation of previously difficult-to-image phenomena, and make the ASEM applicable to various fields. PMID:22088441

  2. Miniband Transport in a Two-Dimensional Electron Gas with a Strong Periodic Unidirectional Potential Modulation

    SciTech Connect

    Lyo, Sungkwun K.; Pan, Wei

    2014-08-07

    In this paper, we study the Bloch oscillations of a two-dimensional electron gas with a strong periodic potential-modulation and miniband transport along the field at low temperatures, assuming a free motion in the transverse direction. The dependence of the current on the field, the electron density, and the temperature is investigated by using a relaxation-time approximation for inelastic scattering. Moreover, for a fixed total scattering rate, the field dependence of the current is sensitive to the ratio of the elastic and inelastic scattering rates in contrast with the recent result of a multiband but otherwise similar model with a weak potential modulation.

  3. Amplification and directional emission of surface acoustic waves by a two-dimensional electron gas

    SciTech Connect

    Shao, Lei; Pipe, Kevin P.

    2015-01-12

    Amplification of surface acoustic waves (SAWs) by electron drift in a two-dimensional electron gas (2DEG) is analyzed analytically and confirmed experimentally. Calculations suggest that peak power gain per SAW radian occurs at a more practical carrier density for a 2DEG than for a bulk material. It is also shown that SAW emission with tunable directionality can be achieved by modulating a 2DEG's carrier density (to effect SAW generation) in the presence of an applied DC field that amplifies SAWs propagating in a particular direction while attenuating those propagating in the opposite direction.

  4. Hierarchical graphene-polyaniline nanocomposite films for high-performance flexible electronic gas sensors

    NASA Astrophysics Data System (ADS)

    Guo, Yunlong; Wang, Ting; Chen, Fanhong; Sun, Xiaoming; Li, Xiaofeng; Yu, Zhongzhen; Wan, Pengbo; Chen, Xiaodong

    2016-06-01

    A hierarchically nanostructured graphene-polyaniline composite film is developed and assembled for a flexible, transparent electronic gas sensor to be integrated into wearable and foldable electronic devices. The hierarchical nanocomposite film is obtained via aniline polymerization in reduced graphene oxide (rGO) solution and simultaneous deposition on flexible PET substrate. The PANI nanoparticles (PPANI) anchored onto rGO surfaces (PPANI/rGO) and the PANI nanofiber (FPANI) are successfully interconnected and deposited onto flexible PET substrates to form hierarchical nanocomposite (PPANI/rGO-FPANI) network films. The assembled flexible, transparent electronic gas sensor exhibits high sensing performance towards NH3 gas concentrations ranging from 100 ppb to 100 ppm, reliable transparency (90.3% at 550 nm) for the PPANI/rGO-FPANI film (6 h sample), fast response/recovery time (36 s/18 s), and robust flexibility without an obvious performance decrease after 1000 bending/extending cycles. The excellent sensing performance could probably be ascribed to the synergetic effects and the relatively high surface area (47.896 m2 g-1) of the PPANI/rGO-FPANI network films, the efficient artificial neural network sensing channels, and the effectively exposed active surfaces. It is expected to hold great promise for developing flexible, cost-effective, and highly sensitive electronic sensors with real-time analysis to be potentially integrated into wearable flexible electronics.A hierarchically nanostructured graphene-polyaniline composite film is developed and assembled for a flexible, transparent electronic gas sensor to be integrated into wearable and foldable electronic devices. The hierarchical nanocomposite film is obtained via aniline polymerization in reduced graphene oxide (rGO) solution and simultaneous deposition on flexible PET substrate. The PANI nanoparticles (PPANI) anchored onto rGO surfaces (PPANI/rGO) and the PANI nanofiber (FPANI) are successfully

  5. Stable Laser-Driven Electron Beams from a Steady-State-Flow Gas Cell

    SciTech Connect

    Osterhoff, J.; Popp, A.; Karsch, S.; Major, Zs.; Marx, B.; Fuchs, M.; Hoerlein, R.; Gruener, F.; Habs, D.; Krausz, F.; Rowlands-Rees, T. P.; Hooker, S. M.

    2009-01-22

    Quasi-monoenergetic, laser-driven electron beams of up to {approx}200 MeV in energy have been generated from steady-state-flow gas cells [1]. These beams are emitted within a low-divergence cone of 2.1{+-}0.5 mrad FWHM and feature unparalleled shot-to-shot stability in energy (2.5% rms), pointing direction (1.4 mrad rms) and charge (16% rms) owing to a highly reproducible plasma-density profile within the laser-plasma-interaction volume. Laser-wakefield acceleration (LWFA) in gas cells of this type constitutes a simple and reliable source of relativistic electrons with well defined properties, which should allow for applications such as the production of extreme-ultraviolet undulator radiation in the near future.

  6. High-harmonic generation in a quantum electron gas trapped in a nonparabolic and anisotropic well

    NASA Astrophysics Data System (ADS)

    Hurst, Jérôme; Lévêque-Simon, Kévin; Hervieux, Paul-Antoine; Manfredi, Giovanni; Haas, Fernando

    2016-05-01

    An effective self-consistent model is derived and used to study the dynamics of an electron gas confined in a nonparabolic and anisotropic quantum well. This approach is based on the equations of quantum hydrodynamics, which incorporate quantum and nonlinear effects in an approximate fashion. The effective model consists of a set of six coupled differential equations (dynamical system) for the electric dipole and the size of the electron gas. Using this model we show that: (i) high harmonic generation is related to the appearance of chaos in the phase space, as attested to by related Poincaré sections; (ii) higher order harmonics can be excited efficiently and with relatively weak driving fields by making use of chirped electromagnetic waves.

  7. Many-body effects of a two-dimensional electron gas on trion-polaritons

    NASA Astrophysics Data System (ADS)

    Baeten, Maarten; Wouters, Michiel

    2015-03-01

    We theoretically investigate the trion-polariton and the effects of a two-dimensional electron gas on its single-particle properties. Focusing on the trion and exciton transitions, we set up an effective model and calculate the optical absorption of the quantum well containing the two-dimensional electron gas (2DEG). Including the light-matter coupling, we compute the Rabi splitting and polariton line shapes as a function of 2DEG density. The role of finite temperature is investigated. The spatial extent of the trion-polariton is also calculated. We find a substantial charge buildup at short distances as long as the Rabi frequency does not exceed the trion binding energy. All our calculations take into account the Fermi edge singularity and the Anderson orthogonality catastrophe.

  8. Infrared absorption and electron paramagnetic resonance studies of vinyl radical in noble-gas matrices

    SciTech Connect

    Tanskanen, Hanna; Khriachtchev, Leonid; Raesaenen, Markku; Feldman, Vladimir I.; Sukhov, Fedor F.; Orlov, Aleksei Yu.; Tyurin, Daniil A.

    2005-08-08

    Vinyl radicals produced by annealing-induced reaction of mobilized hydrogen atoms with acetylene molecules in solid noble-gas matrices (Ar, Kr, and Xe) were characterized by Fourier transform infrared and electron paramagnetic resonance (EPR) spectroscopies. The hydrogen atoms were generated from acetylene by UV photolysis or fast electron irradiation. Two vibrational modes of the vinyl radical ({nu}{sub 7} and {nu}{sub 5}) were assigned in IR absorption studies. The assignment is based on data for various isotopic substitutions (D and {sup 13}C) and confirmed by comparison with the EPR measurements and density-functional theory calculations. The data on the {nu}{sub 7} mode is in agreement with previous experimental and theoretical results whereas the {nu}{sub 5} frequency agrees well with the computational data but conflicts with the gas-phase IR emission results.

  9. Efficient gas lasers pumped by run-away electron preionized diffuse discharge

    NASA Astrophysics Data System (ADS)

    Panchenko, Alexei N.; Lomaev, Mikhail I.; Panchenko, Nikolai A.; Tarasenko, Victor F.; Suslov, Alexey I.

    2015-02-01

    It was shown that run-away electron preionized volume (diffuse) discharge (REP DD) can be used as an excitation source of active gas mixtures at elevated pressures and can produce laser emission. We report experimental and calculated results of application of the REP DD for excitation of different active gas mixtures. It was shown that the REP DD allows to obtain efficient lasing stimulated radiation in the IR, visible and UV spectral ranges. Kinetic model of the REP DD in mixtures of nitrogen with SF6 is developed allowing to predict the radiation parameters of nitrogen laser at 337.1 nm. Promising prospects of REP DD employment for exciting a series of gas lasers was demonstrated. Lasing was obtained on molecules N2, HF, and DF with the efficiency close to the limiting value. It was established that the REP DD is most efficient for pumping lasers with the mixtures comprising electro-negative gases.

  10. Ab Initio Study of the Dielectric and Electronic Properties of Multilayer GaS Films.

    PubMed

    Li, Yan; Chen, Hui; Huang, Le; Li, Jingbo

    2015-03-19

    The dielectric properties of multilayer GaS films have been investigated using a Berry phase method and a density functional perturbation theory approach. A linear relationship has been observed between the number of GaS layers and slab polarizability, which can be easily converged at a small supercell size and has a weak correlation with different stacking orders. Moreover, the intercoupling effect of the stacking pattern and applied vertical field on the electronic properties of GaS bilayers has been discussed. The band gaps of different stacking orders show various downward trends with the increasing field, which is interpreted as giant Stark effect. Our study demonstrates that the slab polarizability as the substitution of conventional dielectric constant can act as an independent and reliable parameter to elucidate the dielectric properties of low-dimensional systems and that the applied electric field is an effective method to modulate the electric properties of nanostructures. PMID:26262870

  11. Study of the one dimensional electron gas arrays confined by steps in vicinal GaN/AlGaN heterointerfaces

    NASA Astrophysics Data System (ADS)

    Li, Huijie; Zhao, Guijuan; Liu, Guipeng; Wei, Hongyuan; Jiao, Chunmei; Yang, Shaoyan; Wang, Lianshan; Zhu, Qinsheng

    2014-05-01

    One dimensional electron gas (1DEG) arrays in vicinal GaN/AlGaN heterostructures have been studied. The steps at the interface would lead to the lateral barriers and limit the electron movement perpendicular to such steps. Through a self-consistent Schrödinger-Poisson approach, the electron energy levels and wave functions were calculated. It was found that when the total electron density was increased, the lateral barriers were lowered due to the screening effects by the electrons, and the electron gas became more two-dimension like. The calculated 1DEG densities were compared to the experimental values and good agreements were found. Moreover, we found that a higher doping density is more beneficial to form 1-D like electron gas arrays.

  12. Study of the one dimensional electron gas arrays confined by steps in vicinal GaN/AlGaN heterointerfaces

    SciTech Connect

    Li, Huijie E-mail: sh-yyang@semi.ac.cn; Zhao, Guijuan; Liu, Guipeng; Wei, Hongyuan; Jiao, Chunmei; Yang, Shaoyan E-mail: sh-yyang@semi.ac.cn; Wang, Lianshan; Zhu, Qinsheng

    2014-05-21

    One dimensional electron gas (1DEG) arrays in vicinal GaN/AlGaN heterostructures have been studied. The steps at the interface would lead to the lateral barriers and limit the electron movement perpendicular to such steps. Through a self-consistent Schrödinger-Poisson approach, the electron energy levels and wave functions were calculated. It was found that when the total electron density was increased, the lateral barriers were lowered due to the screening effects by the electrons, and the electron gas became more two-dimension like. The calculated 1DEG densities were compared to the experimental values and good agreements were found. Moreover, we found that a higher doping density is more beneficial to form 1-D like electron gas arrays.

  13. Weak and electromagnetic mechanisms of neutrino-pair photoproduction in a strongly magnetized electron gas

    SciTech Connect

    Borisov, A. V.; Kerimov, B. K.; Sizin, P. E.

    2012-11-15

    Expressions for the power of neutrino radiation from a degenerate electron gas in a strong magnetic field are derived for the case of neutrino-pair photoproduction via the weak and electromagnetic interaction mechanisms (it is assumed that the neutrino possesses electromagnetic form factors). It is shown that the neutrino luminosity of a medium in the electromagnetic reaction channel may exceed substantially the luminosity in the weak channel. Relative upper bounds on the effective neutrino magnetic moment are obtained.

  14. Electron beam method and apparatus for obtaining uniform discharges in electrically pumped gas lasers

    DOEpatents

    Fenstermacher, Charles A.; Boyer, Keith

    1986-01-01

    A method and apparatus for obtaining uniform, high-energy, large-volume electrical discharges in the lasing medium of a gas laser whereby a high-energy electron beam is used as an external ionization source to ionize substantially the entire volume of the lasing medium which is then readily pumped by means of an applied potential less than the breakdown voltage of the medium. The method and apparatus are particularly useful in CO.sub.2 laser systems.

  15. Interaction-induced huge magnetoresistance in a high mobility two-dimensional electron gas

    SciTech Connect

    Bockhorn, L.; Haug, R. J.; Gornyi, I. V.; Schuh, D.; Wegscheider, W.

    2013-12-04

    A strong negative magnetoresistance is observed in a high-mobility two-dimensional electron gas in a GaAs/Al{sub 0.3}Ga{sub 0.7}As quantum well. We discuss that the negative magnetoresistance consists of a small peak induced by a combination of two types of disorder and a huge magnetoresistance explained by the interaction correction to the conductivity for mixed disorder.

  16. Thermal Photon and Residual Gas Scattering of the Electrons in the ILC RTML

    SciTech Connect

    Seletskiy, S.M.; /SLAC

    2006-08-16

    The scattering of the primary beam electrons off of thermal photons and residual gas molecules in the projected International Linear Collider (ILC) is a potential source of beam haloes which must be collimated downstream of the linac. In this report we give the analytic estimations of the individual input that each of the main scattering processes makes in the production of off-energy and large amplitude particles in the Damping Ring to Main Linac region (RTML).

  17. Operational experience of a commercial scale plant of electron beam purification of flue gas

    NASA Astrophysics Data System (ADS)

    Doi, Yoshitaka; Nakanishi, Ikuo; Konno, Yoshihide

    2000-03-01

    A commercial scale plant using electron beam irradiation was constructed to clean the flue gas from a coal fired thermal power plant at Chengdu in China. Operations began in September 1997 and the plant achieved its design performance with the satisfactory recovery of by-product fertilizer for agricultural use. Another commercial plant is now under construction at Nagoya, Japan and the operation will be started in November, 1999.

  18. Renormalization of Fermi Velocity in a Composite Two Dimensional Electron Gas

    NASA Astrophysics Data System (ADS)

    Weger, M.; Burlachkov, L.

    We calculate the self-energy Σ(k, ω) of an electron gas with a Coulomb interaction in a composite 2D system, consisting of metallic layers of thickness d ≳ a0, where a0 = ħ2ɛ1/me2 is the Bohr radius, separated by layers with a dielectric constant ɛ2 and a lattice constant c perpendicular to the planes. The behavior of the electron gas is determined by the dimensionless parameters kFa0 and kFc ɛ2/ɛ1. We find that when ɛ2/ɛ1 is large (≈5 or more), the velocity v(k) becomes strongly k-dependent near kF, and v(kF) is enhanced by a factor of 5-10. This behavior is similar to the one found by Lindhard in 1954 for an unscreened electron gas; however here we take screening into account. The peak in v(k) is very sharp (δk/kF is a few percent) and becomes sharper as ɛ2/ɛ1 increases. This velocity renormalization has dramatic effects on the transport properties; the conductivity at low T increases like the square of the velocity renormalization and the resistivity due to elastic scattering becomes temperature dependent, increasing approximately linearly with T. For scattering by phonons, ρ ∝ T2. Preliminary measurements suggest an increase in vk in YBCO very close to kF.

  19. Precision measurement of timing RPC gas mixtures with laser-beam induced electrons

    NASA Astrophysics Data System (ADS)

    Naumann, L.; Siebold, M.; Kaspar, M.; Kämpfer, B.; Kotte, R.; Laso Garcia, A.; Löser, M.; Schramm, U.; Wüstenfeld, J.

    2014-10-01

    The main goals of a new test facility at Helmholtz-Zentrum Dresden-Rossendorf are precision measurements of the electron drift velocity and the Townsend coefficient of gases at atmospheric pressure in the strongest ever used homogenous electrical fields and the search for new RPC gas mixtures to substitute the climate harmful Freon. Picosecond UV laser pulses were focused into a sub-millimeter gas gap to initialize a defined tiny charge. These gaps are formed by electrodes of low-resistive ceramics or high-resistive float glass. The charge multiplication occurs in a strong homogeneous electric field of up to 100 kV/cm. Electron-ion pairs were generated in a cylindrical micro-volume by multi-photon ionization. The laser-pulse repetition rate ranges from 1 Hz to a few kHz. The RPC time resolution has been measured for different gases. First results of the Townsend coefficient at 100 kV/cm show a strong disagreement between the present measurement and Magboltz simulations for the typical timing RPC gas mixture C2F4H2/SF6/i-C4H10, while the measured electron drift velocities are in a good agreement with the model predictions.

  20. Computational studies of suppression of microwave gas breakdown by crossed dc magnetic field using electron fluid model

    NASA Astrophysics Data System (ADS)

    Zhao, Pengcheng; Guo, Lixin; Shu, Panpan

    2016-08-01

    The gas breakdown induced by a square microwave pulse with a crossed dc magnetic field is investigated using the electron fluid model, in which the accurate electron energy distribution functions are adopted. Simulation results show that at low gas pressures the dc magnetic field of a few tenths of a tesla can prolong the breakdown formation time by reducing the mean electron energy. With the gas pressure increasing, the higher dc magnetic field is required to suppress the microwave breakdown. The electric field along the microwave propagation direction generated due to the motion of electrons obviously increases with the dc magnetic field, but it is much less than the incident electric field. The breakdown predictions of the electron fluid model agree very well with the particle-in-cell-Monte Carlo collision simulations as well as the scaling law for the microwave gas breakdown.

  1. An improved measurement of electron-ion recombination in high-pressure xenon gas

    NASA Astrophysics Data System (ADS)

    Serra, L.; Sorel, M.; Álvarez, V.; Borges, F. I. G.; Camargo, M.; Cárcel, S.; Cebrián, S.; Cervera, A.; Conde, C. A. N.; Dafni, T.; Díaz, J.; Esteve, R.; Fernandes, L. M. P.; Ferrario, P.; Ferreira, A. L.; Freitas, E. D. C.; Gehman, V. M.; Goldschmidt, A.; Gómez-Cadenas, J. J.; González-Díaz, D.; Gutiérrez, R. M.; Hauptman, J.; Hernando Morata, J. A.; Herrera, D. C.; Irastorza, I. G.; Labarga, L.; Laing, A.; Liubarsky, I.; Lopez-March, N.; Lorca, D.; Losada, M.; Luzón, G.; Marí, A.; Martín-Albo, J.; Martínez-Lema, G.; Martínez, A.; Miller, T.; Monrabal, F.; Monserrate, M.; Monteiro, C. M. B.; Mora, F. J.; Moutinho, L. M.; Muñoz Vidal, J.; Nebot-Guinot, M.; Nygren, D.; Oliveira, C. A. B.; Pérez, J.; Pérez Aparicio, J. L.; Querol, M.; Renner, J.; Ripoll, L.; Rodríguez, A.; Rodríguez, J.; Santos, F. P.; dos Santos, J. M. F.; Shuman, D.; Simón, A.; Sofka, C.; Toledo, J. F.; Torrent, J.; Tsamalaidze, Z.; Veloso, J. F. C. A.; Villar, J. A.; Webb, R.; White, J. T.; Yahlali, N.

    2015-03-01

    We report on results obtained with the NEXT-DEMO prototype of the NEXT-100 high-pressure xenon gas time projection chamber (TPC), filled with pure xenon gas at 10 bar pressure and exposed to an alpha decay calibration source. Compared to our previous measurements with alpha particles, an upgraded detector and improved analysis techniques have been used. We measure event-by-event correlated fluctuations between ionization and scintillation due to electron-ion recombination in the gas, with correlation coefficients between -0.80 and -0.56 depending on the drift field conditions. By combining the two signals, we obtain a 2.8% FWHM energy resolution for 5.49 MeV alpha particles and a measurement of the optical gain of the electroluminescent TPC. The improved energy resolution also allows us to measure the specific activity of the radon in the gas due to natural impurities. Finally, we measure the average ratio of excited to ionized atoms produced in the xenon gas by alpha particles to be 0.561± 0.045, translating into an average energy to produce a primary scintillation photon of Wex=(39.2± 3.2) eV.

  2. Scanning Electron Microscopic Investigations on Natural and Synthetic Gas Hydrates: New Insights into the Formation Process

    NASA Astrophysics Data System (ADS)

    Techmer, K. S.; Kuhs, W. F.; Heinrichs, T.; Bohrmann, G.

    2001-12-01

    We present results of field-emission scanning electron microscopic investigations of gas hydrates from shallow marine sediments of Cascadia margin as well as from synthesis experiments. The natural hydrates were taken by TV-grab sampling during the TECFLUX project on RV SONNE cruises, SO143 and SO148 on the southern summit of Hydrate Ridge. The samples are dominantly methane hydrates with a low content of H2S (1.5-3.0 vol%). The hydrates develop as pure white ice-like layers in otherwise soft sediment deposits. The synthetic gas hydrates were prepared from pure CH4 gas at variable pressure and temperature including experimental conditions similar to the natural situation. All synthetic hydrates show a porous microstructure with pore diameters of a few hundred nm (see figure) and grain sizes of a few †m[1]. Samples were transferred to a pre-cooled cryo-stage field-emission scanning electron microscope via an interlock. No decomposition was observed during our work, which was carried out below -165° C in a vacuum of <10-5 mbar by using an electron beam of 1.0-1.5 keV. The microscope is connected with an energy-dispersive X-ray spectrographic analyzer, which can clearly identify methane in the clathrate structure by detecting the carbon peak in the elemental spectrum. The microstructures of the natural gas hydrates vary greatly with the magnification. In general, large pores between a few to hundreds of †m in diameter are observed, and these have been also documented in thin sections. These pores are interpreted to originate from gas bubbles that ascend from deeper in the sediment. The pores develop in the pore water as skins of hydrate around the former gas bubbles. We investigated the inner part of the former bubble walls by FE-SEM and could document tiny filaments that often form a network of honeycomb-like structures. EDX- analyses show that these filaments have Cl-Peaks, and we think the filaments are remnants of pore water salt that cannot be incorporated

  3. Long-lived spin plasmons in a spin-polarized two-dimensional electron gas

    NASA Astrophysics Data System (ADS)

    Agarwal, Amit; Polini, Marco; Vignale, Giovanni; Flatté, Michael E.

    2014-10-01

    Collective charge-density modes (plasmons) of the clean two-dimensional unpolarized electron gas are stable, for momentum conservation prevents them from decaying into single-particle excitations. Collective spin-density modes (spin plasmons) possess no similar protection and rapidly decay by production of electron-hole pairs. Nevertheless, if the electron gas has a sufficiently high degree of spin polarization (P >1/7, where P is the ratio of the equilibrium spin density and the total electron density, for a parabolic single-particle spectrum) we find that a long-lived spin plasmon—a collective mode in which the densities of up and down spins oscillate with opposite phases—can exist within a "pseudogap" of the single-particle excitation spectrum. The ensuing collectivization of the spin excitation spectrum is quite remarkable and should be directly visible in Raman-scattering experiments. The predicted mode could dramatically improve the efficiency of coupling between spin-wave-generating devices, such as spin-torque oscillators.

  4. Flavor characterization of ripened cod roe by gas chromatography, sensory analysis, and electronic nose.

    PubMed

    Jonsdottir, Rosa; Olafsdottir, Gudrun; Martinsdottir, Emilia; Stefansson, Gudmundur

    2004-10-01

    Characterization of the flavors of ripened roe products is of importance to establish a basis for a standardized product. Flavor profiles of commercially processed ripened roe from Iceland and Norway were studied by sensory analysis, gas chromatography-olfactometry (GC-O), gas chromatography-mass spectrometry (GC-MS), and an electronic nose to characterize the headspace of ripened roe. Sensory analysis showed that ripened roe odor and flavor in combination with caviar flavor and whey/caramel-like odor give the overall positive effect of the complex characteristic roe flavor. Analysis of volatiles by GC-MS and electronic nose confirmed the presence of aroma compounds contributing to the typical ripening and spoilage flavors detected by the sensory analysis. Methional, 1-octen-3-ol, and 2,6-nonadienal were the most important compounds contributing to ripened roe odor. Spoilage flavors were partly contributed by 3-methyl-1-butanol and 3-methylbutanal, which can be measured by the electronic nose and are suggested as quality indicators for objectively assessing the ripening of roe. Principal component analysis of the overall data showed that GC-O correlated well with sensory evaluation and the electronic nose measurements. PMID:15453695

  5. Tilted femtosecond pulses for velocity matching in gas-phase ultrafast electron diffraction

    NASA Astrophysics Data System (ADS)

    Zhang, Ping; Yang, Jie; Centurion, Martin

    2014-08-01

    Recent advances in pulsed electron gun technology have resulted in femtosecond electron pulses becoming available for ultrafast electron diffraction experiments. For experiments investigating chemical dynamics in the gas phase, the resolution is still limited to picosecond time scales due to the velocity mismatch between laser and electron pulses. Tilted laser pulses can be used for velocity matching, but thus far this has not been demonstrated over an extended target in a diffraction setting. We demonstrate an optical configuration to deliver high-intensity laser pulses with a tilted pulse front for velocity matching over the typical length of a gas jet. A laser pulse is diffracted from a grating to introduce angular dispersion, and the grating surface is imaged on the target using large demagnification. The laser pulse duration and tilt angle were measured at and near the image plane using two different techniques: second harmonic cross correlation and an interferometric method. We found that a temporal resolution on the order of 100 fs can be achieved over a range of approximately 1 mm around the image plane.

  6. Dynamical correlation effects on structure factor of spin-polarized two-dimensional electron gas

    SciTech Connect

    Singh, Gurvinder; Moudgil, R. K.; Kumar, Krishan; Garg, Vinayak

    2015-06-24

    We report a theoretical study on static density structure factor S(q) of a spin-polarized two-dimensional electron gas over a wide range of electron number density r{sub s}. The electron correlations are treated within the dynamical version of the self-consistent mean-field theory of Singwi, Tosi, Land, and Sjolander, the so-called qSTLS approach. The calculated S(q) exhibits almost perfect agreement with the quantum Monte Carlo simulation data at r{sub s}=1. However, the extent of agreement somewhat diminishes with increasing r{sub s}, particularly for q around 2k{sub F}. Seen in conjunction with the success of qSTLS theory in dealing with correlations in the unpolarized phase, our study suggests that the otherwise celebrated qSTLS theory is not that good in treating the like-spin correlations.

  7. Simplified theory of the acoustic surface plasmons at the two-dimentional electron gas

    NASA Astrophysics Data System (ADS)

    Ahn, Jong-Kwan; Kim, Yon-Il; Kim, Kwang-Hyon; Kang, Chol-Jin; Ri, Myong Chol; Kim, Song-Hyok

    2016-01-01

    In the two-dimensional electron gas (2DEG), the system can be polarized by metal ions on the 2D surface, resulting in screening of Coulomb interaction between electrons. We calculate the 2D screened Coulomb interaction in Thomas-Fermi approximation and find that both electron-hole (e-h) and collective excitations occurring in the 2DEG can be described with the use of effective dielectric function, in the random-phase approximation (RPA). In this paper we show that the mode proportional to in-plane momentum, called acoustic surface plasmon (ASP), can appear in long-wavelength limit. We calculate ASP dispersion and determine the critical wave number and frequency for the ASP decay into e-h pair, and the velocity of ASP. Our result agrees qualitatively with previous ones in tendency.

  8. Brightness measurement of an electron impact gas ion source for proton beam writing applications

    NASA Astrophysics Data System (ADS)

    Liu, N.; Xu, X.; Pang, R.; Santhana Raman, P.; Khursheed, A.; van Kan, J. A.

    2016-02-01

    We are developing a high brightness nano-aperture electron impact gas ion source, which can create ion beams from a miniature ionization chamber with relatively small virtual source sizes, typically around 100 nm. A prototype source of this kind was designed and successively micro-fabricated using integrated circuit technology. Experiments to measure source brightness were performed inside a field emission scanning electron microscope. The total output current was measured to be between 200 and 300 pA. The highest estimated reduced brightness was found to be comparable to the injecting focused electron beam reduced brightness. This translates into an ion reduced brightness that is significantly better than that of conventional radio frequency ion sources, currently used in single-ended MeV accelerators.

  9. Nonlocal energy-optimized kernel: Recovering second-order exchange in the homogeneous electron gas

    NASA Astrophysics Data System (ADS)

    Bates, Jefferson E.; Laricchia, Savio; Ruzsinszky, Adrienn

    2016-01-01

    In order to remedy some of the shortcomings of the random phase approximation (RPA) within adiabatic connection fluctuation-dissipation (ACFD) density functional theory, we introduce a short-ranged, exchange-like kernel that is one-electron self-correlation free and exact for two-electron systems in the high-density limit. By tuning a free parameter in our model to recover an exact limit of the homogeneous electron gas correlation energy, we obtain a nonlocal, energy-optimized kernel that reduces the errors of RPA for both homogeneous and inhomogeneous solids. Using wave-vector symmetrization for the kernel, we also implement RPA renormalized perturbation theory for extended systems, and demonstrate its capability to describe the dominant correlation effects with a low-order expansion in both metallic and nonmetallic systems. The comparison of ACFD structural properties with experiment is also shown to be limited by the choice of norm-conserving pseudopotential.

  10. LaTiO₃/KTaO₃ interfaces: A new two-dimensional electron gas system

    SciTech Connect

    Zou, K.; Ismail-Beigi, Sohrab; Kisslinger, Kim; Shen, Xuan; Su, Dong; Walker, F. J.; Ahn, C. H.

    2015-03-01

    We report a new 2D electron gas (2DEG) system at the interface between a Mott insulator, LaTiO₃, and a band insulator, KTaO₃. For LaTiO₃/KTaO₃ interfaces, we observe metallic conduction from 2 K to 300 K. One serious technological limitation of SrTiO₃-based conducting oxide interfaces for electronics applications is the relatively low carrier mobility (0.5-10 cm²/V s) of SrTiO₃ at room temperature. By using KTaO₃, we achieve mobilities in LaTiO₃/KTaO₃ interfaces as high as 21 cm²/V s at room temperature, over a factor of 3 higher than observed in doped bulk SrTiO₃. By density functional theory, we attribute the higher mobility in KTaO₃ 2DEGs to the smaller effective mass for electrons in KTaO₃.

  11. Peculiarities of the charge transport in the gas discharge electronic device with irradiated porous zeolite

    NASA Astrophysics Data System (ADS)

    Ozturk, Sevgul; Koseoglu, Kivilcim; Ozer, Metin; Salamov, Bahtiyar G.

    2015-11-01

    The influence of pressure and β-radiation (1 kGy β doses) on the charge transport mechanism, charge trapping effects in porous zeolite surfaces and breakdown voltage (UB) are discussed in atmospheric microplasmas for the first time. This is due to exposure the zeolite cathode (ZC) to β-radiation resulting in substantial decreases in the UB, discharge currents and conductivity due to increase in porosity of the material. Results indicated that the enhancement of plasma light intensity and electron emission from the ZC surface with the release of trapped electrons which are captured by the defect centers following β-irradiation. The porosity of the ZC and radiation defect centers has significant influence on the charge transport of the microstructure and optical properties of the devices manufactured on its base. Thus, we confirm that the ZCir is a suitable cathode material for plasma light source, field emission displays, energy storage devices and low power gas discharge electronic devices.

  12. Two-dimensional electron gas in GaAs/SrHfO3 heterostructure

    NASA Astrophysics Data System (ADS)

    Wang, Jianli; Yuan, Mengqi; Tang, Gang; Li, Huichao; Zhang, Junting; Guo, Sandong

    2016-06-01

    The III-V/perovskite-oxide system can potentially create new material properties and new device applications by combining the rich properties of perovskite-oxides together with the superior optical and electronic properties of III-Vs. The structural and electronic properties of the surface and interface are studied using first-principles calculations for the GaAs/SrHfO3 heterostructure. We investigate the specific adsorption sites and the atomic structure at the initial growth stage of GaAs on the SrHfO3 (001) substrate. Ga and As adsorption atoms preferentially adsorb at the top sites of oxygen atoms under different coverage. The energetically favorable interfaces are presented among the atomic arrangements of the GaAs/SrHfO3 interfaces. Our calculations predict the existing of the two-dimensional electron gas in the GaAs/SrHfO3 heterostructure.

  13. Ballistic thermopower of suspended semiconductor Hall bars with two dimensional electron gas

    NASA Astrophysics Data System (ADS)

    Zhdanov, E. Yu; Pogosov, A. G.; Budantsev, M. V.; Pokhabov, D. A.; Bakarov, A. K.; Toropov, A. I.

    2015-11-01

    We study ballistic electron transport in suspended semiconductor nanostructures containing high mobility two dimensional electron gas structured with periodical square lattice of artificial scatters — antidots. Thermopower demonstrates magnetic field commensurability oscillations resulting from geometrical resonances similar to those earlier observed in magnetoresistance, thus indicating the retaining of the ballistic regime in thermopower measurement on suspended structures and the validity of the Mott rule in this case. In spite of peculiarities of the heat transport in suspended structures leading to the observed anomalies in non-linear effects, the amplitude of thermopower oscillations remains unchanged after the suspension. This can be explained by short Thouless time compared to the time of electron- phonon interaction.

  14. Brightness measurement of an electron impact gas ion source for proton beam writing applications.

    PubMed

    Liu, N; Xu, X; Pang, R; Raman, P Santhana; Khursheed, A; van Kan, J A

    2016-02-01

    We are developing a high brightness nano-aperture electron impact gas ion source, which can create ion beams from a miniature ionization chamber with relatively small virtual source sizes, typically around 100 nm. A prototype source of this kind was designed and successively micro-fabricated using integrated circuit technology. Experiments to measure source brightness were performed inside a field emission scanning electron microscope. The total output current was measured to be between 200 and 300 pA. The highest estimated reduced brightness was found to be comparable to the injecting focused electron beam reduced brightness. This translates into an ion reduced brightness that is significantly better than that of conventional radio frequency ion sources, currently used in single-ended MeV accelerators. PMID:26931964

  15. LaTiO₃/KTaO₃ interfaces: A new two-dimensional electron gas system

    DOE PAGESBeta

    Zou, K.; Ismail-Beigi, Sohrab; Kisslinger, Kim; Shen, Xuan; Su, Dong; Walker, F. J.; Ahn, C. H.

    2015-03-01

    We report a new 2D electron gas (2DEG) system at the interface between a Mott insulator, LaTiO₃, and a band insulator, KTaO₃. For LaTiO₃/KTaO₃ interfaces, we observe metallic conduction from 2 K to 300 K. One serious technological limitation of SrTiO₃-based conducting oxide interfaces for electronics applications is the relatively low carrier mobility (0.5-10 cm²/V s) of SrTiO₃ at room temperature. By using KTaO₃, we achieve mobilities in LaTiO₃/KTaO₃ interfaces as high as 21 cm²/V s at room temperature, over a factor of 3 higher than observed in doped bulk SrTiO₃. By density functional theory, we attribute the higher mobilitymore » in KTaO₃ 2DEGs to the smaller effective mass for electrons in KTaO₃.« less

  16. Exchange-correlations in a dilute quasi-two-dimensional electron gas at finite temperature

    NASA Astrophysics Data System (ADS)

    Bhukal, Nisha; Moudgil, R. K.

    2012-06-01

    We have studied the extent to which temperature and finite transversal confinement can influence the exchange-correlations in a dilute two-dimensional electron gas as realized in a narrow GaAs-based single quantum well. The correlations are treated within the self-consistent mean-field theory of Singwi et al. Numerical results are presented for the local-field correction factor at experimentally realized electron densities and temperature, choosing a harmonic confinement model. We find that the local-field correction factor, which is a direct measure of exchange-correlation correction to the bare Coulomb interaction potential, becomes less (at least over the currently accessible wave vector region to experiments) with increasing T/TF and/or decreasing confinement; TF is the Fermi temperature. These findings are expected to be useful in the theoretical understanding of dynamical excitation spectra and transport properties of a two-dimensional electron system.

  17. Superconductivity from long-range interaction: A crossover between the electron gas and the lattice model

    NASA Astrophysics Data System (ADS)

    Onari, Seiichiro; Arita, Ryotaro; Kuroki, Kazuhiko; Aoki, Hideo

    2006-01-01

    We explore how the superconductivity arising from the on-site electron-electron repulsion changes when the repulsion is made long-ranged, 1/r -like interaction by introducing an extended Hubbard model with the repulsion extended to distant (12th) neighbors. With a simplified fluctuation-exchange approximation, we have found for the square lattice that: (i) As the band filling becomes dilute enough, the charge susceptibility becomes comparable with the spin susceptibility, where p - and then s -wave pairings become relatively dominant, in agreement with the result for the electron gas by Takada, while (ii) the d wave, which reflects the lattice structure, dominates well away from the half-filling. All of these can be understood in terms of the spin and charge structures along with the shape and size of the Fermi surface.

  18. Correlation energy for the homogeneous electron gas: Exact Bethe-Salpeter solution and an approximate evaluation

    NASA Astrophysics Data System (ADS)

    Maggio, Emanuele; Kresse, Georg

    2016-06-01

    The correlation energy of the homogeneous electron gas is evaluated by solving the Bethe-Salpeter equation (BSE) beyond the Tamm-Dancoff approximation for the electronic polarization propagator. The BSE is expected to improve on the random-phase approximation, owing to the inclusion of exchange diagrams. For instance, since the BSE reduces in second order to Møller-Plesset perturbation theory, it is self-interaction free in second order. Results for the correlation energy are compared with quantum Monte Carlo benchmarks and excellent agreement is observed. For low densities, however, we find imaginary eigenmodes in the polarization propagator. To avoid the occurrence of imaginary eigenmodes, an approximation to the BSE kernel is proposed that allows us to completely remove this issue in the low-electron-density region. We refer to this approximation as the random-phase approximation with screened exchange (RPAsX). We show that this approximation even slightly improves upon the standard BSE kernel.

  19. Two-dimensional electron gas in AlGaN/GaN heterostructures

    SciTech Connect

    Li, J.Z.; Lin, J.Y.; Jiang, H.X.; Khan, M.A.; Chen, Q.

    1997-07-01

    The formation of a two-dimensional electron gas (2DEG) system by an AlGaN/GaN heterostructure has been further confirmed by measuring its electrical properties. The effect of persistent photoconductivity (PPC) has been observed and its unique features have been utilized to study the properties of 2DEG formed by the AlGaN/GaN heterointerface. Sharp electronic transitions from the first to the second subbands in the 2DEG channel have been observed by monitoring the 2DEG carrier mobility as a function of carrier concentration through the use of PPC. These results are expected to have significant implications on field-effect transistor and high electron mobility transistor applications based on the GaN system. {copyright} {ital 1997 American Vacuum Society.}

  20. Reactive gas plasma specimen processing for use in microanalysis and imaging in analytical electron microscopy

    SciTech Connect

    Zaluzec, N.J.; Kestel, B.J.; Henriks, D.

    1997-01-01

    It has long been the bane of analytical electron microscopy (AEM) that the use of focused probes during microanalysis of specimens increases the local rate of hydrocarbon contamination. This is most succinctly observed by the formation of contamination deposits during focused probe work typical of AEM studies. While serving to indicate the location of the electron probe, the contamination obliterates the area of the specimen being analyzed and adversely affects all quantitative microanalysis methodologies. A variety of methods including: UV, electron beam flooding, heating and/or cooling can decrease the rate of contamination, however, none of these methods directly attack the source of specimen borne contamination. Research has shown that reactive gas plasmas may be used to clean both the specimen and stage for AEM, in this study the authors report on quantitative measurements of the reduction in contamination rates in an AEM as a function of operating conditions and plasma gases.

  1. Determination of phenoxy acid herbicides in water by electron-capture and microcoulometric gas chromatography

    USGS Publications Warehouse

    Goerlitz, D.F.; Lamar, William L.

    1967-01-01

    A sensitive gas chromatographic method using microcoulometric titration and electron-capture detection for the analysis of 2,4-D, silvex, 2,4,5-T, and other phenoxy acid herbicides in water is described. The herbicides are extracted from unfiltered water samples (800-1,000 ml) by use of ethyl ether ; then the herbicides are concentrated and esterilied. To allow the analyst a choice, two esterilication procedures--using either boron trifluoride-methanol or diazomethane--are evaluated. Microcoulometric gas chromatography is specific for the detection of halogenated compounds such as the phenoxy acid herbicides whereas it does not respond to nonhalogenated components. Microcoulometric gas chromatography requires care and patience. It is not convenient for rapid screening of l-liter samples that contain less than 1 microgram of the herbicide. Although electroncapture gas chromatography is less selective and more critically affected by interfering substances, it is, nevertheless, convenient and more sensitive than microcoulometric gas chromatography. Two different liquid phases are used in the gas chromatographic columns--DC-200 silicone in one column and QF-1 silicone in the other. The performance of both columns is improved by the addition of Carbowax 20M. The Gas Chrom Q support is coated with the liquid phases by the 'frontal-analysis' technique. The practical lower limits for measurement of the phenoxy acid herbicides in water primarily depend upon the sample size, interferences present, anal instrumentation used. With l-liter samples of water, the practical lower limits of measurement are 10 ppt (parts per trillion) for 2,4-D and 2 ppt for silvex and 2,4,5-T when electron-capture detection is used, and approximately 20 ppt for each herbicide when analyzed by microcoulometric-titration gas chromatography. Recoveries of the herbicides immediately after addition to unfiltered water samples averaged 92 percent for 2,4-D, 90 percent for silvex, and 98 percent for 2

  2. Inert Gas Enhanced Laser-Assisted Purification of Platinum Electron-Beam-Induced Deposits.

    PubMed

    Stanford, Michael G; Lewis, Brett B; Noh, Joo Hyon; Fowlkes, Jason D; Rack, Philip D

    2015-09-01

    Electron-beam-induced deposition patterns, with composition of PtC5, were purified using a pulsed laser-induced purification reaction to erode the amorphous carbon matrix and form pure platinum deposits. Enhanced mobility of residual H2O molecules via a localized injection of inert Ar-H2 (4%) is attributed to be the reactive gas species for purification of the deposits. Surface purification of deposits was realized at laser exposure times as low as 0.1 s. The ex situ purification reaction in the deposit interior was shown to be rate-limited by reactive gas diffusion into the deposit, and deposit contraction associated with the purification process caused some loss of shape retention. To circumvent the intrinsic flaws of the ex situ anneal process, in situ deposition and purification techniques were explored that resemble a direct write atomic layer deposition (ALD) process. First, we explored a laser-assisted electron-beam-induced deposition (LAEBID) process augmented with reactive gas that resulted in a 75% carbon reduction compared to standard EBID. A sequential deposition plus purification process was also developed and resulted in deposition of pure platinum deposits with high fidelity and shape retention. PMID:26126173

  3. Spacelab 1 experiments on interactions of an energetic electron beam with neutral gas

    NASA Technical Reports Server (NTRS)

    Marshall, J. A.; Lin, C. S.; Burch, J. L.; Obayashi, T.; Beghin, C.

    1988-01-01

    An unusual signature of return current and spacecraft charging potential was observed during the Spacelab 1 mission launched on November 28, 1983. The phenomenon occurred during neutral gas releases from the SEPAC (Space Experiments with Particle Accelerators) magnetoplasma-dynamic arcjet (MPD) concurrent with firings of the PICPAB (Phenomena Induced by Charged Particle Beams) electron gun and was recorded by the instruments of the SEPAC diagnostic package (DGP). Data from the langmuir probe, floating probes, neutral gas pressure gauge, and the plasma wave probes are reported. As the dense neutral gas was released, the return current measured by the langmuir probe changed from positive to negative and a positive potential relative to the spacecraft was measured by the floating probe. The anomalous return current is believed to be attributable to secondary electron fluxes escaping from the spacecraft, and the unusual charging situation is attributed to the formation of a double-layer structure between a hot plasma cloud localized to the MPD and the spacecraft. The charging scenario is supported by a computer simulation.

  4. The nonextensive parameter for nonequilibrium electron gas in an electromagnetic field

    SciTech Connect

    Yu, Haining; Du, Jiulin

    2014-11-15

    The nonextensive parameter for nonequilibrium electron gas of the plasma in an electromagnetic field is studied. We exactly obtained an expression of the q-parameter based on Boltzmann kinetic theories for plasmas, where Coulombian interactions and Lorentz forces play dominant roles. We show that the q-parameter different from unity is related by an equation to temperature gradient, electric field strength, magnetic induction as well as overall bulk velocity of the gas. The effect of the magnetic field on the q-parameter depends on the overall bulk velocity. Thus the q-parameter for the electron gas in an electromagnetic field represents the nonequilibrium nature or nonisothermal configurations of the plasma with electromagnetic interactions. - Highlights: • An expression of the q-parameter is obtained for nonequilibrium plasma with electromagnetic interactions. • The q-parameter is related to temperature gradient, electric field strength, magnetic induction as well as overall bulk velocity of the plasma. • The q-parameter represents the nonequilibrium nature of the complex plasma with electromagnetic interactions.

  5. Inert gas enhanced laser-assisted purification of platinum electron-beam-induced deposits

    SciTech Connect

    Stanford, Michael G.; Lewis, Brett B.; Noh, Joo Hyon; Fowlkes, Jason Davidson; Rack, Philip D.

    2015-06-30

    Electron-beam-induced deposition patterns, with composition of PtC5, were purified using a pulsed laser-induced purification reaction to erode the amorphous carbon matrix and form pure platinum deposits. Enhanced mobility of residual H2O molecules via a localized injection of inert Ar–H2 (4%) is attributed to be the reactive gas species for purification of the deposits. Surface purification of deposits was realized at laser exposure times as low as 0.1 s. The ex situ purification reaction in the deposit interior was shown to be rate-limited by reactive gas diffusion into the deposit, and deposit contraction associated with the purification process caused some loss of shape retention. To circumvent the intrinsic flaws of the ex situ anneal process, in situ deposition and purification techniques were explored that resemble a direct write atomic layer deposition (ALD) process. First, we explored a laser-assisted electron-beam-induced deposition (LAEBID) process augmented with reactive gas that resulted in a 75% carbon reduction compared to standard EBID. Lastly, a sequential deposition plus purification process was also developed and resulted in deposition of pure platinum deposits with high fidelity and shape retention.

  6. Inert gas enhanced laser-assisted purification of platinum electron-beam-induced deposits

    DOE PAGESBeta

    Stanford, Michael G.; Lewis, Brett B.; Noh, Joo Hyon; Fowlkes, Jason Davidson; Rack, Philip D.

    2015-06-30

    Electron-beam-induced deposition patterns, with composition of PtC5, were purified using a pulsed laser-induced purification reaction to erode the amorphous carbon matrix and form pure platinum deposits. Enhanced mobility of residual H2O molecules via a localized injection of inert Ar–H2 (4%) is attributed to be the reactive gas species for purification of the deposits. Surface purification of deposits was realized at laser exposure times as low as 0.1 s. The ex situ purification reaction in the deposit interior was shown to be rate-limited by reactive gas diffusion into the deposit, and deposit contraction associated with the purification process caused some lossmore » of shape retention. To circumvent the intrinsic flaws of the ex situ anneal process, in situ deposition and purification techniques were explored that resemble a direct write atomic layer deposition (ALD) process. First, we explored a laser-assisted electron-beam-induced deposition (LAEBID) process augmented with reactive gas that resulted in a 75% carbon reduction compared to standard EBID. Lastly, a sequential deposition plus purification process was also developed and resulted in deposition of pure platinum deposits with high fidelity and shape retention.« less

  7. Sulfur doping of diamond films: Spectroscopic, electronic, and gas-phase studies

    NASA Astrophysics Data System (ADS)

    Petherbridge, James R.; May, Paul W.; Fuge, Gareth M.; Robertson, Giles F.; Rosser, Keith N.; Ashfold, Michael N. R.

    2002-03-01

    Chemical vapor deposition (CVD) has been used to grow sulfur doped diamond films on undoped Si and single crystal HPHT diamond as substrates, using a 1% CH4/H2 gas mixture with various levels of H2S addition (100-5000 ppm), using both microwave (MW) plasma enhanced CVD and hot filament (HF) CVD. The two deposition techniques yield very different results. HFCVD produces diamond films containing only trace amounts of S (as analyzed by x-ray photoelectron spectroscopy), the film crystallinity is virtually unaffected by gas phase H2S concentration, and the films remain highly resistive. In contrast, MWCVD produces diamond films with S incorporated at levels of up to 0.2%, and the amount of S incorporation is directly proportional to the H2S concentration in the gas phase. Secondary electron microscopy observations show that the crystal quality of these films reduces with increasing S incorporation. Four point probe measurements gave the room temperature resistivities of these S-doped and MW grown films as ˜200 Ω cm, which makes them ˜3 times more conductive than undoped diamond grown under similar conditions. Molecular beam mass spectrometry has been used to measure simultaneously the concentrations of the dominant gas phase species present during growth, for H2S doping levels (1000-10 000 ppm in the gas phase) in 1% CH4/H2 mixtures, and for 1% CS2/H2 gas mixtures, for both MW and HF activation. CS2 and CS have both been detected in significant concentrations in all of the MW plasmas that yield S-doped diamond films, whereas CS was not detected in the gas phase during HF growth. This suggests that CS may be an important intermediary facilitating S incorporation into diamond. Furthermore, deposition of yellow S was observed on the cold chamber walls when using H2S concentrations >5000 ppm in the MW system, but very little S deposition was observed for the HF system under similar conditions. All of these results are rationalized by a model of the important gas phase

  8. A comparison of the physics of Gas Tungsten Arc Welding (GTAW), Electron Beam Welding (EBW), and Laser Beam Welding (LBW)

    NASA Technical Reports Server (NTRS)

    Nunes, A. C., Jr.

    1985-01-01

    The physics governing the applicability and limitations of gas tungsten arc (GTA), electron beam (EB), and laser beam (LB) welding are compared. An appendix on the selection of laser welding systems is included.

  9. Doppler Velocimetry of Current Driven Spin Helices in a Two-Dimensional Electron Gas

    NASA Astrophysics Data System (ADS)

    Yang, Luyi

    Spins in semiconductors provide a pathway towards the development of spin-based electronics. The appeal of spin logic devices lies in the fact that the spin current is even under time reversal symmetry, yielding non-dissipative coupling to the electric field. To exploit the energy-saving potential of spin current it is essential to be able to control it. While recent demonstrations of electrical-gate control in spin-transistor configurations show great promise, operation at room temperature remains elusive. Further progress requires a deeper understanding of the propagation of spin polarization, particularly in the high mobility semiconductors used for devices. This thesis presents the demonstration and application of a powerful new optical technique, Doppler spin velocimetry, for probing the motion of spin polarization at the level of 1 nm on a picosecond time scale. We discuss experiments in which this technique is used to measure the motion of spin helices in high mobility n-GaAs quantum wells as a function of temperature, in-plane electric field, and photoinduced spin polarization amplitude. We find that the spin helix velocity changes sign as a function of wave vector and is zero at the wave vector that yields the largest spin lifetime. This observation is quite striking, but can be explained by the random walk model that we have developed. We discover that coherent spin precession within a propagating spin density wave is lost at temperatures near 150 K. This finding is critical to understanding why room temperature operation of devices based on electrical gate control of spin current has so far remained elusive. We report that, at all temperatures, electron spin polarization co-propagates with the high-mobility electron sea, even when this requires an unusual form of separation of spin density from photoinjected electron density. Furthermore, although the spin packet co-propagates with the two-dimensional electron gas, spin diffusion is strongly suppressed

  10. Fermionic path-integral Monte Carlo results for the uniform electron gas at finite temperature.

    PubMed

    Filinov, V S; Fortov, V E; Bonitz, M; Moldabekov, Zh

    2015-03-01

    The uniform electron gas (UEG) at finite temperature has recently attracted substantial interest due to the experimental progress in the field of warm dense matter. To explain the experimental data, accurate theoretical models for high-density plasmas are needed that depend crucially on the quality of the thermodynamic properties of the quantum degenerate nonideal electrons and of the treatment of their interaction with the positive background. Recent fixed-node path-integral Monte Carlo (RPIMC) data are believed to be the most accurate for the UEG at finite temperature, but they become questionable at high degeneracy when the Brueckner parameter rs=a/aB--the ratio of the mean interparticle distance to the Bohr radius--approaches 1. The validity range of these simulations and their predictive capabilities for the UEG are presently unknown. This is due to the unknown quality of the used fixed nodes and of the finite-size scaling from N=33 simulated particles (per spin projection) to the macroscopic limit. To analyze these questions, we present alternative direct fermionic path integral Monte Carlo (DPIMC) simulations that are independent from RPIMC. Our simulations take into account quantum effects not only in the electron system but also in their interaction with the uniform positive background. Also, we use substantially larger particle numbers (up to three times more) and perform an extrapolation to the macroscopic limit. We observe very good agreement with RPIMC, for the polarized electron gas, up to moderate densities around rs=4, and larger deviations for the unpolarized case, for low temperatures. For higher densities (high electron degeneracy), rs≲1.5, both RPIMC and DPIMC are problematic due to the increased fermion sign problem. PMID:25871225

  11. Fermionic path-integral Monte Carlo results for the uniform electron gas at finite temperature

    NASA Astrophysics Data System (ADS)

    Filinov, V. S.; Fortov, V. E.; Bonitz, M.; Moldabekov, Zh.

    2015-03-01

    The uniform electron gas (UEG) at finite temperature has recently attracted substantial interest due to the experimental progress in the field of warm dense matter. To explain the experimental data, accurate theoretical models for high-density plasmas are needed that depend crucially on the quality of the thermodynamic properties of the quantum degenerate nonideal electrons and of the treatment of their interaction with the positive background. Recent fixed-node path-integral Monte Carlo (RPIMC) data are believed to be the most accurate for the UEG at finite temperature, but they become questionable at high degeneracy when the Brueckner parameter rs=a /aB —the ratio of the mean interparticle distance to the Bohr radius—approaches 1. The validity range of these simulations and their predictive capabilities for the UEG are presently unknown. This is due to the unknown quality of the used fixed nodes and of the finite-size scaling from N =33 simulated particles (per spin projection) to the macroscopic limit. To analyze these questions, we present alternative direct fermionic path integral Monte Carlo (DPIMC) simulations that are independent from RPIMC. Our simulations take into account quantum effects not only in the electron system but also in their interaction with the uniform positive background. Also, we use substantially larger particle numbers (up to three times more) and perform an extrapolation to the macroscopic limit. We observe very good agreement with RPIMC, for the polarized electron gas, up to moderate densities around rs=4 , and larger deviations for the unpolarized case, for low temperatures. For higher densities (high electron degeneracy), rs≲1.5 , both RPIMC and DPIMC are problematic due to the increased fermion sign problem.

  12. Energy loss of ions and ion clusters in a disordered electron gas

    NASA Astrophysics Data System (ADS)

    Nersisyan, Hrachya B.; Das, Amal K.

    2004-04-01

    The various aspects of the correlated stopping power of pointlike and extended ions moving in a disordered degenerate electron gas have been analytically and numerically studied. Within the linear response theory we have made a systematic and comprehensive investigation of correlated stopping power, vicinage function, and related quantities for protons and extended ions, as well as for their clusters. The disorder, which leads to a damping of plasmons and quasiparticles in the electron gas, is taken into account through a relaxation time approximation in the linear response function. The stopping power for an arbitrary extended ion with a single bound electron is calculated in both the low- and high velocity limitsy. Our analytical results show that in a high velocity limit the main logarithmic contribution to the stopping power for an extened ion is significantly modified and for instance, in the case of He+ , Li2+ , and Be3+ ions must behave as ln ( A v5 ) , ln ( A v3.25 ) , and ln ( A v2.77 ) , respectively where v is the ion velocity. This behavior may be contrasted with the usual ln ( v2 ) dependence for a point ion projectile. It is shown that the factor A which depends on the damping can be significantly reduced by increasing the latter. In order to highlight the effects of damping we present a comparison of our analytical and numerical results, in the case of both pointlike and extended ions, obtained for a nonzero damping with those for a vanishing damping.

  13. Unitarily Invariant Self-Interaction Corrections to the Uniform Electron Gas

    NASA Astrophysics Data System (ADS)

    Pederson, Mark; Sun, Jianwei

    2015-03-01

    A new formulation of the self-interaction correction (SIC) to density functional theory (DFT) based upon symmetrically orthogonalized ``Fermi-Löwdin orbitals'' (FLO) is reviewed. This method leads to an energy that is explicitly unitarily invariant and size extensive and allows for implementation of SIC with the same efficient scaling offered by DFT. Initial applications to small molecules provided orbitals that are similar to past results but yielded SIC-LDA cohesive energies that are competitive with GGA results. Investigations on a uniform electron gas (UEG) provide an additional challenging limit to consider. Results from FLO-based SIC calculations on the UEG, enclosed in a finite box, are presented. In accord with Ref., the FLO-based formulation of SIC finds that localized Wannier orbitals lead to lower energies than plane waves in the exchange-only limit We compare total energies of the uniform electron gas, calculated within DFT, FLO-SIC-DFT, and HF, as a function of functional (including MGGAs), electron number, volume, and Fermi-surface shape.

  14. Gas-Monitor Detector for Intense and Pulsed VUV/EUV Free-Electron Laser Radiation

    NASA Astrophysics Data System (ADS)

    Sorokin, A. A.; Bobashev, S. V.; Feldhaus, J.; Gerth, Ch.; Gottwald, A.; Hahn, U.; Kroth, U.; Richter, M.; Shmaenok, L. A.; Steeg, B.; Tiedtke, K.; Treusch, R.

    2004-05-01

    In the framework of current developments of new powerful VUV and EUV radiation sources, like VUV free-electron-lasers or EUV plasma sources for 13-nm lithography, we developed a gas-monitor detector in order to measure the photon flux of highly intense and extremely pulsed VUV and EUV radiation in absolute terms. The device is based on atomic photoionization of a rare gas at low particle density. Therefore, it is free of degradation and almost transparent, which allows the detector to be used as a continuously working beam-intensity monitor. The extended dynamic range of the detector allowed its calibration with relative standard uncertainties of 4% in the Radiometry Laboratory of the Physikalisch-Technische Bundesanstalt at the electron-storage ring BESSY II in Berlin using spectrally dispersed synchrotron radiation at low photon intensities and its utilization for absolute photon flux measurements of high power sources. In the present contribution, we describe the design of the detector and its application for the characterization of VUV free-electron-laser radiation at the TESLA test facility in Hamburg. By first pulse resolved measurements, a peak power of more than 100 MW at a wavelength of 87 nm was detected.

  15. Strongly magnetized cold electron degenerate gas: Mass-radius relation of the collapsed star

    NASA Astrophysics Data System (ADS)

    Das, Upasana; Mukhopadhyay, Banibrata

    2012-07-01

    We consider a relativistic, degenerate electron gas at zero-temperature under the influence of a strong, uniform, static magnetic field, neglecting any form of interactions. Since the density of states for the electrons changes due to the presence of the magnetic field (which gives rise to Landau quantization), the corresponding equation of state also gets modified. In order to investigate the effect of very strong magnetic field, we focus only on systems in which a maximum of either one, two or three Landau level(s) is/are occupied. This is important since, if a very large number of Landau levels are filled, it implies a very low magnetic field strength which yields back Chandrasekhar's celebrated non-magnetic results. The maximum number of Landau levels occupied is fixed by the correct choice of two parameters, namely the magnetic field strength and the maximum Fermi energy of the system. We study the equations of state of these one-level, two-level and three-level systems and compare them by taking three different maximum Fermi energies. We also find the effect of the strong magnetic field on the mass-radius relation of the underlying star composed of the gas stated above. We obtain an interesting theoretical result that, it is possible to have an electron degenerate static star with a mass significantly greater than the Chandrasekhar limit, provided it has an appropriate magnetic field strength and central density.

  16. Investigation of the full configuration interaction quantum Monte Carlo method using homogeneous electron gas models

    NASA Astrophysics Data System (ADS)

    Shepherd, James J.; Booth, George H.; Alavi, Ali

    2012-06-01

    Using the homogeneous electron gas (HEG) as a model, we investigate the sources of error in the "initiator" adaptation to full configuration interaction quantum Monte Carlo (i-FCIQMC), with a view to accelerating convergence. In particular, we find that the fixed-shift phase, where the walker number is allowed to grow slowly, can be used to effectively assess stochastic and initiator error. Using this approach we provide simple explanations for the internal parameters of an i-FCIQMC simulation. We exploit the consistent basis sets and adjustable correlation strength of the HEG to analyze properties of the algorithm, and present finite basis benchmark energies for N = 14 over a range of densities 0.5 ⩽ rs ⩽ 5.0 a.u. A single-point extrapolation scheme is introduced to produce complete basis energies for 14, 38, and 54 electrons. It is empirically found that, in the weakly correlated regime, the computational cost scales linearly with the plane wave basis set size, which is justifiable on physical grounds. We expect the fixed-shift strategy to reduce the computational cost of many i-FCIQMC calculations of weakly correlated systems. In addition, we provide benchmarks for the electron gas, to be used by other quantum chemical methods in exploring periodic solid state systems.

  17. Quenching Plasma Waves in Two Dimensional Electron Gas by a Femtosecond Laser Pulse

    NASA Astrophysics Data System (ADS)

    Shur, Michael; Rudin, Sergey; Greg Rupper Collaboration; Andrey Muraviev Collaboration

    Plasmonic detectors of terahertz (THz) radiation using the plasma wave excitation in 2D electron gas are capable of detecting ultra short THz pulses. To study the plasma wave propagation and decay, we used femtosecond laser pulses to quench the plasma waves excited by a short THz pulse. The femtosecond laser pulse generates a large concentration of the electron-hole pairs effectively shorting the 2D electron gas channel and dramatically increasing the channel conductance. Immediately after the application of the femtosecond laser pulse, the equivalent circuit of the device reduces to the source and drain contact resistances connected by a short. The total response charge is equal to the integral of the current induced by the THz pulse from the moment of the THz pulse application to the moment of the femtosecond laser pulse application. This current is determined by the plasma wave rectification. Registering the charge as a function of the time delay between the THz and laser pulses allowed us to follow the plasmonic wave decay. We observed the decaying oscillations in a sample with a partially gated channel. The decay depends on the gate bias and reflects the interplay between the gated and ungated plasmons in the device channel. Army Research Office.

  18. Validity of power functionals for a homogeneous electron gas in reduced-density-matrix-functional theory

    NASA Astrophysics Data System (ADS)

    Putaja, A.; Eich, F. G.; Baldsiefen, T.; Räsänen, E.

    2016-03-01

    Physically valid and numerically efficient approximations for the exchange and correlation energy are critical for reduced-density-matrix-functional theory to become a widely used method in electronic structure calculations. Here we examine the physical limits of power functionals of the form f (n ,n') =(nn')α for the scaling function in the exchange-correlation energy. To this end we obtain numerically the minimizing momentum distributions for the three- and two-dimensional homogeneous electron gas, respectively. In particular, we examine the limiting values for the power α to yield physically sound solutions that satisfy the Lieb-Oxford lower bound for the exchange-correlation energy and exclude pinned states with the condition n (k )<1 for all wave vectors k . The results refine the constraints previously obtained from trial momentum distributions. We also compute the values for α that yield the exact correlation energy and its kinetic part for both the three- and two-dimensional electron gas. In both systems, narrow regimes of validity and accuracy are found at α ≳0.6 and at rs≳10 for the density parameter, corresponding to relatively low densities.

  19. Development of Electron Tracking Compton Camera using micro pixel gas chamber for medical imaging

    NASA Astrophysics Data System (ADS)

    Kabuki, Shigeto; Hattori, Kaori; Kohara, Ryota; Kunieda, Etsuo; Kubo, Atsushi; Kubo, Hidetoshi; Miuchi, Kentaro; Nakahara, Tadaki; Nagayoshi, Tsutomu; Nishimura, Hironobu; Okada, Yoko; Orito, Reiko; Sekiya, Hiroyuki; Shirahata, Takashi; Takada, Atsushi; Tanimori, Toru; Ueno, Kazuki

    2007-10-01

    We have developed the Electron Tracking Compton Camera (ETCC) with reconstructing the 3-D tracks of the scattered electron in Compton process for both sub-MeV and MeV gamma rays. By measuring both the directions and energies of not only the recoil gamma ray but also the scattered electron, the direction of the incident gamma ray is determined for each individual photon. Furthermore, a residual measured angle between the recoil electron and scattered gamma ray is quite powerful for the kinematical background rejection. For the 3-D tracking of the electrons, the Micro Time Projection Chamber (μ-TPC) was developed using a new type of the micro pattern gas detector. The ETCC consists of this μ-TPC (10×10×8 cm 3) and the 6×6×13 mm 3 GSO crystal pixel arrays with a flat panel photo-multiplier surrounding the μ-TPC for detecting recoil gamma rays. The ETCC provided the angular resolution of 6.6° (FWHM) at 364 keV of 131I. A mobile ETCC for medical imaging, which is fabricated in a 1 m cubic box, has been operated since October 2005. Here, we present the imaging results for the line sources and the phantom of human thyroid gland using 364 keV gamma rays of 131I.

  20. Finite two-dimensional electron gas in a patterned semiconductor system

    NASA Astrophysics Data System (ADS)

    Ciftja, Orion; Livingston, Victoria; Thomas, Elsa; Saganti, Seth

    On various occasions, fabrication of a two-dimensional semiconductor quantum dot leads to a small system of electrons confined in a domain that is not circular and may have a pronounced square (or rectangular) shape. In this work we consider a square-shaped semiconductor quantum dot configuration and treat the system of electrons as a finite two-dimensional electron gas. Within this framework, we adopt a Hartree-Fock approach and study the properties of a small two-dimensional system of electrons confined in a finite square region. We calculate the energy for various finite systems of fully spin-polarized (spinless) electrons interacting with a Coulomb potential. The results give a fairly accurate picture of how the energy of the finite system evolves towards the bulk value as the size of the system increases. The calculations for a square domain are challenging since expressions depend in each component of particle's position and not the radial distance from the center of the square-shaped semiconductor quantum dot. Therefore, we also consider a possible circularly symmetric approximation to the problem. We assess the quality of this approximation and discuss instances where its use is not only desirable, but also accurate. This research was supported in part by U.S. Army Research Office (ARO) Grant No. W911NF-13-1-0139 and National Science Foundation (NSF) Grant No. DMR-1410350.

  1. Ultrafast electron diffraction from laser-aligned molecules in the gas phase

    NASA Astrophysics Data System (ADS)

    Yang, Jie

    Ultrafast electron diffraction has emerged since the end of last century, and has become an increasingly important tool for revealing great details of molecular dynamics. In comparison to spectroscopic techniques, ultrafast electron diffraction directly probes time-resolved structure of target molecules, and therefore can potentially provide "molecular movies" of the reactions being studied. These molecular movies are critical for understanding and ultimately controlling the energy conversion pathways and efficiencies of photochemical processes. In this dissertation, I have focused on ultrafast electron diffraction from gas-phase molecules, and have investigated several long-standing challenges that have been preventing researchers from being able to achieve 3-D molecular movies of photochemical reactions. The first challenge is to resolve the full 3-D structure for molecules in the gas phase. The random orientation of molecules in the gas phase smears out the diffraction signal, which results in only 1-D structural information being accessible. The second challenge lies in temporal resolution. In order to resolve coherent nuclear motions on their natural time scale, a temporal resolution of ˜200 femtosecond or better is required. However, due to experimental limitations the shortest temporal resolution that had been achieved was only a few picoseconds in early 2000, by Zewail group from Caltech. The first challenge is tackled by laser-alignment. In the first half of the dissertation, I approach this method both theoretically and experimentally, and demonstrate that by using a short laser pulse to transiently align target molecules in space, 3-D molecular structure can be reconstructed ab-initio from diffraction patterns. The second half of the dissertation presents two experiments, both of which are important steps toward imaging coherent nuclear motions in real time during photochemical reactions. The first experiment simultaneously resolves molecular alignment

  2. Spin-dependent transport in a magnetic two-dimensional electron gas

    NASA Astrophysics Data System (ADS)

    Smorchkova, I. P.; Kikkawa, J. M.; Samarth, N.; Awschalom, D. D.

    1998-07-01

    Magneto-transport and magneto-optical probes are used to interrogate spin-dependent transport in magnetic heterostructures wherein a two dimensional electron gas (2DEG) is exchange-coupled to local moments. At low temperatures, the significant s-d exchange-enhanced spin splitting in these “magnetic” 2DEGs is responsible for the observation of unusual transport properties such as a complete spin polarization of the gas at large Landau level filling factors and a pronounced, non-monotonic background magneto-resistance. Magneto-transport measurements of gated samples performed in a parallel field geometry are used to systematically study the variation of the magneto-resistance with sheet concentration, yielding new insights into the dependence of spin transport on the Fermi energy of the majority spin carriers.

  3. Energy loss and electron emission during grazing scattering of fast noble gas atoms from an Al(1 1 1) surface

    NASA Astrophysics Data System (ADS)

    Lederer, S.; Winter, H.; Winter, HP.

    2007-05-01

    Electron loss and electron emission for grazing impact of noble gas atoms with energies in the keV domain are investigated via time-of-flight spectra recorded in coincidence with the number of emitted electrons. The data is analyzed in terms of computer simulations concerning the interaction of the fast atoms with the electron gas in the selvedge of the Al(1 1 1) surface. The interaction is approximated by binary collisions of the fast atoms with Fermi electrons of the conduction band and differential cross sections obtained for electron scattering from free atoms. For an effective number of collisions of about 50 the energy loss spectra are fairly well reproduced by our calculations. We show that for our conditions the shift of the energy spectra for the emission of an additional electron from the surface is close to the work function of the target.

  4. Electronic excitation of ground state atoms by collision with heavy gas particles

    NASA Technical Reports Server (NTRS)

    Hansen, C. Frederick

    1993-01-01

    Most of the important chemical reactions which occur in the very high temperature air produced around space vehicles as they enter the atmosphere were investigated both experimentally and theoretically, to some extent at least. One remaining reaction about which little is known, and which could be quite important at the extremely high temperatures that will be produced by the class of space vehicles now contemplated - such as the AOTV - is the excitation of bound electron states due to collisions between heavy gas particles. Rates of electronic excitation due to free electron collisions are known to be very rapid, but because these collisions quickly equilibrate the free and bound electron energy, the approach to full equilibrium with the heavy particle kinetic energy will depend primarily on the much slower process of bound electron excitation in heavy particle collisions and the subsequent rapid transfer to free electron energy. This may be the dominant mechanism leading to full equilibrium in the gas once the dissociation process has depleted the molecular states so the transfer between molecular vibrational energy and free electron energy is no longer available as a channel for equilibration of free electron and heavy particle kinetic energies. Two mechanisms seem probable in electronic excitation by heavy particle impact. One of these is the collision excitation and deexcitation of higher electronic states which are Rydberg like. A report, entitled 'Semi-Classical Theory of Electronic Excitation Rates', was submitted previously. This presented analytic expressions for the transition probabilities, assuming that the interaction potential is an exponential repulsion with a perturbation ripple due to the dipole-induced dipole effect in the case of neutral-neutral collisions, and to the ion-dipole interaction in the case of ion-neutral collisions. However the above may be, there is little doubt that excitation of ground state species by collision occurs at the

  5. Infrared Line Emission from Molecular Gas Heated by X-Rays and Energetic Electrons

    NASA Technical Reports Server (NTRS)

    Maloney, Philip R.

    1997-01-01

    "I propose to carry out a detailed study using infrared observations (and in some cases, optical and ultraviolet observations) of dense interstellar gas exposed to intense fluxes of X-rays and/or energetic electrons. This is undoubtedly the dominant source of line emission for clouds exposed to X-rays from active galactic nuclei, supernova shocks, or embedded X-ray sources (e.g., X-ray binaries), or to high-temperature or relativistic electrons in galaxy clusters, near powerful radio sources, or supernova remnants. Detailed physical and chemical models of such clouds will be used to analyze infrared observations of the Great Annihilator X-ray source in the Galactic Center, cD galaxies in massive cooling flows, and the nuclei of Seyfert galaxies which will be obtained with the Infrared Space Observatory (ISO), UV and optical observations of the Crab Nebula obtained with the Hubble Space Telescope, and ground-based near-infrared observations of Seyfert nuclei. Results from this work will also be of great relevance to observations obtained with the Submillimeter Wave Astronomical Satellite (SWAS). In the first year of funding of this proposal, my chief collaborators (D.J. Hollenbach and A.G.G.M. Tielens, both of NASA Ames Research Center) and I concentrated on completing our models of the physical conditions in, and the resulting line emission from, dense gas irradiated by X-rays. As noted in the original proposal, some important physical processes were not yet thoroughly incorporated into our models at the time of submission. We completed our modeling of the physical conditions and line emission for essentially the entire range of parameter space (five orders of magnitude in X-ray flux to gas density ratio) occupied by typical dense interstellar clouds in which the gas is mostly neutral and X-rays are important for the ionization, chemistry, and thermal balance.

  6. Determination of fluoxetine and norfluoxetine in plasma by gas chromatography with electron-capture detection

    SciTech Connect

    Nash, J.F.; Bopp, R.J.; Carmichael, R.H.; Farid, K.Z.; Lemberger, L.

    1982-10-01

    This gas-chromatographic method for assay of fluoxetine and norfluoxetine in human plasma involves extraction of the drugs and use of a /sup 63/Ni electron-capture detector. The linear range of detection is 25 to 800 micrograms/L for each drug. Overall precision (CV) in the concentration range of 10 to 100 micrograms/L for both drugs was approximately 10%. Accuracy (relative error) in the same concentration range was approximately +10%. None of the commonly prescribed antidepressants or tranquilizers that we tested interfere with the assay.

  7. Radiation-assisted magnetotransport in two-dimensional electron gas systems: appearance of zero resistance states

    NASA Astrophysics Data System (ADS)

    Yar, Abdullah; Sabeeh, Kashif

    2015-11-01

    Zero-resistance states (ZRS) are normally associated with superconducting and quantum Hall phases. Experimental detection of ZRS in two-dimensional electron gas (2DEG) systems irridiated by microwave(MW) radiation in a magnetic field has been quite a surprise. We develop a semiclassical transport formalism to explain the phenomena. We find a sequence of Zero-Resistance States (ZRS) inherited from the suppression of Shubnikov-de Haas (SdH) oscillations under the influence of high-frequency and large amplitude microwave radiation. Furthermore, the ZRS are well pronounced and persist up to broad intervals of magnetic field as observed in experiments on microwave illuminated 2DEG systems.

  8. Non-diffusive spin dynamics in a two-dimensional electron gas

    SciTech Connect

    Weber, C.P.

    2010-04-28

    We describe measurements of spin dynamics in the two-dimensional electron gas in GaAs/GaAlAs quantum wells. Optical techniques, including transient spin-grating spectroscopy, are used to probe the relaxation rates of spin polarization waves in the wavevector range from zero to 6 x 10{sup 4} cm{sup -1}. We find that the spin polarization lifetime is maximal at nonzero wavevector, in contrast with expectation based on ordinary spin diffusion, but in quantitative agreement with recent theories that treat diffusion in the presence of spin-orbit coupling.

  9. Tunable two-dimensional electron gas at the surface of thermoelectric material In4Se3

    NASA Astrophysics Data System (ADS)

    Fukutani, K.; Sato, T.; Galiy, P. V.; Sugawara, K.; Takahashi, T.

    2016-05-01

    We report the discovery of two-dimensional electron gas (2DEG) at the surface of thermoelectric material In4Se3 by angle-resolved photoemission spectroscopy. The observed 2DEG exhibits a nearly isotropic band dispersion with a considerably small effective mass of m*=0.16 m0, and its carrier density shows a significant temperature dependence, leading to unconventional metal-semiconductor transition at the surface. The observed wide-range thermal tunability of 2DEG in In4Se3 gives rise to additional degrees of freedom to better control the surface carriers of semiconductors.

  10. Piezoelectric Electromechanical Coupling in Nanomechanical Resonators with a Two-Dimensional Electron Gas

    NASA Astrophysics Data System (ADS)

    Shevyrin, A. A.; Pogosov, A. G.; Bakarov, A. K.; Shklyaev, A. A.

    2016-07-01

    The electrical response of a two-dimensional electron gas to vibrations of a nanomechanical cantilever containing it is studied. Vibrations of perpendicularly oriented cantilevers are experimentally shown to oppositely change the conductivity near their bases. This indicates the piezoelectric nature of electromechanical coupling. A physical model is developed, which quantitatively explains the experiment. It shows that the main origin of the conductivity change is a rapid change in the mechanical stress on the boundary between suspended and nonsuspended areas, rather than the stress itself.

  11. Piezoelectric Electromechanical Coupling in Nanomechanical Resonators with a Two-Dimensional Electron Gas.

    PubMed

    Shevyrin, A A; Pogosov, A G; Bakarov, A K; Shklyaev, A A

    2016-07-01

    The electrical response of a two-dimensional electron gas to vibrations of a nanomechanical cantilever containing it is studied. Vibrations of perpendicularly oriented cantilevers are experimentally shown to oppositely change the conductivity near their bases. This indicates the piezoelectric nature of electromechanical coupling. A physical model is developed, which quantitatively explains the experiment. It shows that the main origin of the conductivity change is a rapid change in the mechanical stress on the boundary between suspended and nonsuspended areas, rather than the stress itself. PMID:27419592

  12. Symmetric reflection line resonator and its quality factor modulation by a two-dimensional electron gas

    SciTech Connect

    Zhang, Miao-Lei; Deng, Guang-Wei; Li, Shu-Xiao; Li, Hai-Ou; Cao, Gang; Tu, Tao; Xiao, Ming; Guo, Guang-Can; Guo, Guo-Ping; Jiang, Hong-Wen; Siddiqi, Irfan

    2014-02-24

    We have designed and fabricated a half-wavelength reflection line resonator that consists of a pair of coupled microstrip lines on a GaAs/AlGaAs heterostructure. By changing the top gate voltage on a small square with a two-dimensional electron gas under the resonator, the quality factor was tuned over a large range from 2700 to below 600. Apart from being of fundamental interest, this gate modulation technique has the potential for use in on-chip resonator applications.

  13. Spin polarization of two-dimensional electronic gas decoupled from structural asymmetry environment

    NASA Astrophysics Data System (ADS)

    Pieczyrak, B.; Szary, M.; Jurczyszyn, L.; Radny, M. W.

    2016-05-01

    It is shown, using density functional theory, that a 2D electron gas induced in a monolayer of Pb or Tl adatoms on the Si (111 )-1 ×1 surface is insensitive to the structural asymmetry of the system and its spin polarization is governed by the interaction between the adlayer and the substrate. It is demonstrated that this interaction changes the in-plane inversion symmetry of the charge distribution within the monolayer and can either suppress [Pb/Si(111)] or enhance [Tl/Si(111)] the adatom intra-atomic spin-orbit effect on a Rashba-Bychkov-type spin splitting.

  14. From coupled Rashba electron- and hole-gas layers to three-dimensional topological insulators

    NASA Astrophysics Data System (ADS)

    Trifunovic, Luka; Loss, Daniel; Klinovaja, Jelena

    2016-05-01

    We introduce a system of stacked two-dimensional electron- and hole-gas layers with Rashba spin-orbit interaction and show that the tunnel coupling between the layers induces a strong three-dimensional (3D) topological insulator phase. At each of the two-dimensional bulk boundaries we find the spectrum consisting of a single anisotropic Dirac cone, which we show by analytical and numerical calculations. Our setup has a unit cell consisting of four tunnel coupled Rashba layers and presents a synthetic strong 3D topological insulator and is distinguished by its rather high experimental feasibility.

  15. Electron-Impact Excitation Cross Sections for Modeling Non-Equilibrium Gas

    NASA Technical Reports Server (NTRS)

    Huo, Winifred M.; Liu, Yen; Panesi, Marco; Munafo, Alessandro; Wray, Alan; Carbon, Duane F.

    2015-01-01

    In order to provide a database for modeling hypersonic entry in a partially ionized gas under non-equilibrium, the electron-impact excitation cross sections of atoms have been calculated using perturbation theory. The energy levels covered in the calculation are retrieved from the level list in the HyperRad code. The downstream flow-field is determined by solving a set of continuity equations for each component. The individual structure of each energy level is included. These equations are then complemented by the Euler system of equations. Finally, the radiation field is modeled by solving the radiative transfer equation.

  16. Finite temperature holographic duals of 2-dimensional BCFTs

    NASA Astrophysics Data System (ADS)

    Estes, J.

    2015-07-01

    We consider holographic duals of 2-dimensional conformal field theories in the presence of a boundary, interface, defect and/or junction, referred to collectively as BCFTs. In general, the presence of a boundary reduces the SO(2, 2) conformal symmetry to SO(2, 1) and the dual geometry is realized as a warped product of the form , where is not compact. In particular, it will contain points where the warp factor of the AdS 2 space diverges, leading to asymptotically AdS 3 regions. We show that the AdS 2 space-time may always be replaced with an AdS 2-"black-hole" space-time. We argue the resulting geometry describes the BCFT at finite temperature. To motivate this claim, we compute the entanglement entropy holographically for a segment centered around the defect or ending on the boundary and find agreement with a known universal formula.

  17. Devices using ballistic transport of two dimensional electron gas in delta doped gallium arsenide high electron mobility transistor structures

    NASA Astrophysics Data System (ADS)

    Kang, Sungmu

    In this thesis, devices using the ballistic transport of two dimensional electron gas (2DEG) in GaAs High Electron Mobility Transistor(HEMT) structure is fabricated and their dc and ac properties are characterized. This study gives insight on operation and applications of modern submicron devices with ever reduced gate length comparable to electron mean free path. The ballistic transport is achieved using both temporal and spatial limits in this thesis. In temporal limit, when frequency is higher than the scattering frequency (1/(2pitau)), ballistic transport can be achieved. At room temperature, generally the scattering frequency is around 500 GHz but at cryogenic temperature (≤4K) with high mobility GaAs HEMT structure, the frequency is much lower than 2 GHz. On this temporal ballistic transport regime, effect of contact impedance and different dc mobility on device operation is characterized with the ungated 2DEG of HEMT structure. In this ballistic regime, impedance and responsivity of plasma wave detector are investigated using the gated 2DEG of HEMT at different ac boundary conditions. Plasma wave is generated at asymmetric ac boundary conditions of HEMTs, where source is short to ground and drain is open while rf power is applied to gate. The wave velocity can be tuned by gate bias voltage and induced drain to source voltage(Vds ) shows the resonant peak at odd number of fundamental frequency. Quantitative power coupling to plasma wave detector leads to experimental characterization of resonant response of plasma wave detector as a function of frequency. Because plasma wave resonance is not limited by transit time, the physics learned in this study can be directly converted to room temperature terahertz detection by simply reducing gate length(Lgate) to submicron for the terahertz application such as non destructive test, bio medical analysis, homeland security, defense and space. In same HEMT structure, the dc and rf characterization on device is also

  18. Developments in stochastic coupled cluster theory: The initiator approximation and application to the uniform electron gas.

    PubMed

    Spencer, James S; Thom, Alex J W

    2016-02-28

    We describe further details of the stochastic coupled cluster method and a diagnostic of such calculations, the shoulder height, akin to the plateau found in full configuration interaction quantum Monte Carlo. We describe an initiator modification to stochastic coupled cluster theory and show that initiator calculations can at times be extrapolated to the unbiased limit. We apply this method to the 3D 14-electron uniform electron gas and present complete basis set limit values of the coupled cluster singles and doubles (CCSD) and previously unattainable coupled cluster singles and doubles with perturbative triples (CCSDT) correlation energies for up to r(s) = 2, showing a requirement to include triple excitations to accurately calculate energies at high densities. PMID:26931682

  19. Terahertz Radiation Heterodyne Detector Using Two-Dimensional Electron Gas in a GaN Heterostructure

    NASA Technical Reports Server (NTRS)

    Karasik, Boris S.; Gill, John J.; Mehdi, Imran; Crawford, Timothy J.; Sergeev, Andrei V.; Mitin, Vladimir V.

    2012-01-01

    High-resolution submillimeter/terahertz spectroscopy is important for studying atmospheric and interstellar molecular gaseous species. It typically uses heterodyne receivers where an unknown (weak) signal is mixed with a strong signal from the local oscillator (LO) operating at a slightly different frequency. The non-linear mixer devices for this frequency range are unique and are not off-the-shelf commercial products. Three types of THz mixers are commonly used: Schottky diode, superconducting hot-electron bolometer (HEB), and superconductor-insulation-superconductor (SIS) junction. A HEB mixer based on the two-dimensional electron gas (2DEG) formed at the interface of two slightly dissimilar semiconductors was developed. This mixer can operate at temperatures between 100 and 300 K, and thus can be used with just passive radiative cooling available even on small spacecraft.

  20. Dynamical correlation effects on pair-correlation functions of spin polarized two-dimensional electron gas

    NASA Astrophysics Data System (ADS)

    Kumar, Krishan; Garg, Vinayak; Moudgil, R. K.

    2013-06-01

    We report a theoretical study on the spin-resolved pair-correlation functions gσσ'(r) of a two-dimensional electron gas having arbitrary spin polarization ζ by including the dynamics of exchange-correlations within the dynamical self-consistent mean-field theory of Hasegawa and Shimizu. The calculated g↑↑(r), g↓↓(r) and g↑↓(r) exhibit a nice agreement with the recent quantum Monte Carlo simulation data of Gori-Giorgi et al. However, the agreement for the minority spin correlation function g↓↓(r) decreases with increase in ζ and/or decrease in electron density. Nevertheless, the spin-summed correlation function remains close to the simulation data.

  1. Quantitative Detection of Trace Explosive Vapors by Programmed Temperature Desorption Gas Chromatography-Electron Capture Detector

    PubMed Central

    Field, Christopher R.; Lubrano, Adam; Woytowitz, Morgan; Giordano, Braden C.; Rose-Pehrsson, Susan L.

    2014-01-01

    The direct liquid deposition of solution standards onto sorbent-filled thermal desorption tubes is used for the quantitative analysis of trace explosive vapor samples. The direct liquid deposition method yields a higher fidelity between the analysis of vapor samples and the analysis of solution standards than using separate injection methods for vapors and solutions, i.e., samples collected on vapor collection tubes and standards prepared in solution vials. Additionally, the method can account for instrumentation losses, which makes it ideal for minimizing variability and quantitative trace chemical detection. Gas chromatography with an electron capture detector is an instrumentation configuration sensitive to nitro-energetics, such as TNT and RDX, due to their relatively high electron affinity. However, vapor quantitation of these compounds is difficult without viable vapor standards. Thus, we eliminate the requirement for vapor standards by combining the sensitivity of the instrumentation with a direct liquid deposition protocol to analyze trace explosive vapor samples. PMID:25145416

  2. Miniband Transport in a Two-Dimensional Electron Gas with a Strong Periodic Unidirectional Potential Modulation

    DOE PAGESBeta

    Lyo, Sungkwun K.; Pan, Wei

    2014-08-07

    In this paper, we study the Bloch oscillations of a two-dimensional electron gas with a strong periodic potential-modulation and miniband transport along the field at low temperatures, assuming a free motion in the transverse direction. The dependence of the current on the field, the electron density, and the temperature is investigated by using a relaxation-time approximation for inelastic scattering. Moreover, for a fixed total scattering rate, the field dependence of the current is sensitive to the ratio of the elastic and inelastic scattering rates in contrast with the recent result of a multiband but otherwise similar model with a weakmore » potential modulation.« less

  3. Gas-phase electronic transitions of C₁₇H₁₂N⁺ at 15 K.

    PubMed

    Hardy, F-X; Rice, C A; Gause, O; Maier, J P

    2015-03-01

    The electronic spectrum of C17H12N(+), phenanthrene with a side chain, was measured in the gas phase at a vibrational and rotational temperature of ∼15 K in an ion trap using a resonant multiphoton dissociation technique. The C17H12N(+) structure was produced in a chemical ionization source and identified by a comparison with theoretical calculations of stable structures and excitation energies. The (3), (2), (1) (1)A ← X (1)A electronic transitions of this nitrogen-containing aromatic species with 30 atoms have origin band maxima at 23,586 ± 1 cm(-1), 16,120 ± 50 cm(-1), and 14,519 ± 30 cm(-1). Distinct vibrational structure in the (3) (1)A state is observed, and assignments are made. Astronomical aspects are considered. PMID:25264926

  4. Transport through an electrostatically defined quantum dot lattice in a two-dimensional electron gas

    NASA Astrophysics Data System (ADS)

    Goswami, Srijit; Aamir, M. A.; Siegert, Christoph; Pepper, Michael; Farrer, Ian; Ritchie, David A.; Ghosh, Arindam

    2012-02-01

    Quantum dot lattices (QDLs) have the potential to allow for the tailoring of optical, magnetic, and electronic properties of a user-defined artificial solid. We use a dual gated device structure to controllably tune the potential landscape in a GaAs/AlGaAs two-dimensional electron gas, thereby enabling the formation of a periodic QDL. The current-voltage characteristics, I(V), follow a power law, as expected for a QDL. In addition, a systematic study of the scaling behavior of I(V) allows us to probe the effects of background disorder on transport through the QDL. Our results are particularly important for semiconductor-based QDL architectures which aim to probe collective phenomena.

  5. Nonlinear screening effect in an ultrarelativistic degenerate electron-positron gas

    SciTech Connect

    Tsintsadze, N. L.; Rasheed, A.; Shah, H. A.; Murtaza, G.

    2009-11-15

    Nonlinear screening process in an ultrarelativistic degenerate electron-positron gas has been investigated by deriving a generalized nonlinear Poisson equation for the electrostatic potential. In the simple one-dimensional case, the nonlinear Poisson equation leads to Debye-like (Coulomb-like) solutions at distances larger (less) than the characteristic length. When the electrostatic energy is larger than the thermal energy, this nonlinear Poisson equation converts into the relativistic Thomas-Fermi equation whose asymptotic solution in three dimensions shows that the potential field goes to zero at infinity much more slowly than the Debye potential. The possibility of the formation of a bound state in electron-positron plasma is also indicated. Further, it is investigated that the strong spatial fluctuations of the potential field may reduce the screening length and that the root mean square of this spatial fluctuating potential goes to zero for large r rather slowly as compared to the case of the Debye potential.

  6. Analysis of swarm coefficients in a gas for bi-modal electron energy distribution model

    NASA Astrophysics Data System (ADS)

    Govinda-Raju, Gorur

    2015-03-01

    Cross sections for collision between electrons and neutrals in a gas discharge are essential for theoretical and computational developments. They are also required to interpret and analyze the results of experimental studies on swarm parameters namely drift velocity, characteristic energy, and ionization and attachment coefficients. The cross sections and swarm coefficients are interconnected through the most important electron energy distribution function. The traditional method of solving the Boltzmann equation numerically yields the required distribution (EEDF). However there are many situations where a simpler approach is desirable for deriving the energy distribution analytically. Energy distribution in non-uniform electric fields, in crossed electric and magnetic fields, breakdown in mixtures of gases for electrical power or plasma applications, calculation of longitudinal diffusion coefficients are examples. In other studies the swarm parameters are employed to derive the cross sections in an unfolding procedure that also involves the energy distribution function. Application of Boltzmann solution method, though more rigorous, consumes enormous efforts in time and technical expertise. In an attempt to provide a simpler method the present author has previously suggested a bimodal electron energy distribution in gases. In this paper the author has generalized the idea of bi-modal energy distribution by considering a model gas with representative cross sections and adopted numerical methods for greater accuracy. The parameters considered are the nature of the two distributions, their relative ratio, and the dependence of cross sections on electron energy. A new method for determining the combination of distributions has been shown to be adequate for calculation of swarm parameters. The results for argon are shown to yield very good agreement with available experimental and theoretical values.

  7. Low Temperature Force Microscopy on a Deeply Embedded Two Dimensional Electron Gas

    NASA Astrophysics Data System (ADS)

    Hedberg, James Augustin

    2011-12-01

    Experimental physics in the low temperature limit has consistently produced major advances for condensed matter research. Likewise, scanning probe microscopy offers a unique view of the nanometer scale features that populate the quantum landscape. This work discusses the merger of the two disciplines via the development of the Ultra Low Temperature Scanning Probe Microscope, the ULT-SPM. We focus on the novel characterization of an exotic condensed matter system: a deeply buried two dimensional electron gas with a cleaved edge overgrowth geometry. By coupling the dynamics of the force sensing probe microscope to the electrostatics of the electron gas, we can remotely and non-invasively measure charge transport features which are normally only observable using physically contacted electrodes. Focusing on the quantum Hall regime, we can exploit the high sensitivity of the local force sensor to study spatially dependent phenomena associated with electronic potential distributions. The instrument shows promise for many exciting experiments in which low temperatures, high magnetic fields, and local measurements are critical. Designed for operation at 50 mK, in magnetic fields reaching 16 T, many components of the instrument are not commercially available and were therefore designed and constructed in- house. As such, the intricate details of its design, construction and operation are documented thoroughly. This includes: the microscope assembly, the modular components such as the scan head and coarse motors, the electronics developed for controlling the instrument, and the general integration into the low temperature infrastructure. A quartz tuning fork is used as the force sensor in this instrument, enabling a wide selection between different modes of operation, the most relevant being electrostatic force microscopy. Noise limits are investigated and matched sources of experimental noise are identified. Detailed schematics of the instrument are also included.

  8. Pilot-scale test for electron beam purification of flue gas from a municipal waste incinerator with slaked-lime

    NASA Astrophysics Data System (ADS)

    Hirota, Koichi; Tokunaga, Okihiro; Miyata, Teijiro; Sato, Shoichi; Osada, You; Sudo, Masahiro; Doi, Takeshi; Shibuya, Eiichi; Baba, Shigekazu; Hatomi, Toshinori; Komiya, Mikihisa; Miyajima, Kiyonori

    1995-09-01

    The flue gas treatment by electron beam irradiation with the blowing of slaked-lime powder was tested in the pilot plant built at a municipal waste incinerator. The flue gas containing NOx, SO2 and HCl was irradiated by electron beam with slaked-lime powder(Ca(OH)2). Approximately 70 % ofNOx, and 100 % of SO2 and HCl in the flue gas were removed by the irradiation at a dose of 10 kGy at 150°C with two stoichiometric amount of slaked-lime powder. Lower irradiation temperature and increased amounts of the powder resulted in higher removal rates of NOX.

  9. Measurement of brightness temperature of two-dimensional electron gas in channel of a high electron mobility transistor at ultralow dissipation power

    NASA Astrophysics Data System (ADS)

    Korolev, A. M.; Shulga, V. M.; Turutanov, O. G.; Shnyrkov, V. I.

    2016-07-01

    A technically simple and physically clear method is suggested for direct measurement of the brightness temperature of two-dimensional electron gas (2DEG) in the channel of a high electron mobility transistor (HEMT). The usage of the method was demonstrated with the pseudomorphic HEMT as a specimen. The optimal HEMT dc regime, from the point of view of the "back action" problem, was found to belong to the unsaturated area of the static characteristics possibly corresponding to the ballistic electron transport mode. The proposed method is believed to be a convenient tool to explore the ballistic transport, electron diffusion, 2DEG properties and other electrophysical processes in heterostructures.

  10. Test beam results of a low-pressure micro-strip gas chamber with a secondary-electron emitter

    SciTech Connect

    Kwan, S.; Anderson, D.F.; Zimmerman, J.; Sbarra, C.; Salomon, M.

    1994-10-01

    We present recent results, from a beam test, on the angular dependence of the efficiency and the distribution of the signals on the anode strips of a low-pressure microstrip gas chamber with a thick CsI layer as a secondary-electron emitter. New results of CVD diamond films as secondary-electron emitters are discussed.

  11. Electronic and optical properties of hexathiapentacene in the gas and crystal phases

    NASA Astrophysics Data System (ADS)

    Cardia, R.; Malloci, G.; Rignanese, G.-M.; Blase, X.; Molteni, E.; Cappellini, G.

    2016-06-01

    Using density functional theory (DFT) and its time-dependent (TD) extension, the electronic and optical properties of the hexathiapentacene (HTP) molecule, a derivative of pentacene (PNT) obtained by symmetric substitution of the six central H atoms with S atoms, are investigated for its gas and solid phases. For the molecular structure, all-electron calculations are performed using a Gaussian localized orbital basis set in conjunction with the Becke three-parameter Lee-Yang-Parr (B3LYP) hybrid exchange-correlation functional. Electron affinities, ionization energies, quasiparticle energy gaps, optical absorption spectra, and exciton binding energies are calculated and compared with the corresponding results for PNT, as well as with the available experimental data. The DFT and TDDFT results are also validated by performing many-body perturbation theory calculations within the G W and Bethe-Salpeter equation formalisms. The functionalization with S atoms induces an increase of both ionization energies and electron affinities, a sizable reduction of the fundamental electronic gap, and a redshift of the optical absorption onset. Notably, the intensity of the first absorption peak of HTP falling in the visible region is found to be nearly tripled with respect to the pure PNT molecule. For the crystal structures, pseudopotential calculations are adopted using a plane-wave basis set together with the Perdew-Burke-Ernzerhof exchange-correlation functional empirically corrected in order to take dispersive interactions into account. The electronic excitations are also obtained within a perturbative B3LYP scheme. A comparative analysis is carried out between the ground-state and excited-state properties of crystalline HTP and PNT linking to the findings obtained for the isolated molecules.

  12. Controlling the two-dimensional electron gas at complex oxide interfaces

    NASA Astrophysics Data System (ADS)

    Janotti, Anderson

    2014-03-01

    Heterostructures of complex oxides have attracted great interest since the demonstration of a high-density two-dimensional electron gas (2DEG) at the SrTiO3/LaAlO3 (STO/LAO) interface. Still, the density of the 2DEG is only one tenth of what was expected from simple electron counting, i.e., 1/2 electron per unit-cell area. Since then, the origin and amount of the charge, the electrical properties of the 2DEG, the role of native defects, and the abrupt variation of the electron density with the thickness of the LAO top layer have been the subject of numerous theoretical and experimental studies. More recently, a 2DEG with the full density of 1/2 electron per unit cell area has been observed at the interface between the band insulator STO and the Mott insulator GdTiO3 (GTO), shedding additional light on the origin of the 2DEG, and raising important questions on the differences between the STO/LAO and STO/GTO heterostructures. Here we will discuss the similarities of the 2DEG at the STO/LAO and STO/GTO heterostructures from the perspective of first-principles simulations. We will address the differences in band alignments in the STO/LAO and STO/GTO heterostructures, and how the 2DEG is affected by the surface of the LAO top layer in the STO/LAO, but apparently not in the STO/GTO case. Finally, we will also discuss how heterostructures can be used to drastically alter the electronic structure of STO, transforming it from a band insulator into a Mott insulator. This work was performed in collaboration with Lars Bjaalie, Luke Gordon, Burak Himmetoglu, and Chris G. Van de Walle, and supported by ARO and NSF.

  13. Calculation of Ground State Rotational Populations for Kinetic Gas Homonuclear Diatomic Molecules including Electron-Impact Excitation and Wall Collisions

    SciTech Connect

    David R. Farley

    2010-08-19

    A model has been developed to calculate the ground-state rotational populations of homonuclear diatomic molecules in kinetic gases, including the effects of electron-impact excitation, wall collisions, and gas feed rate. The equations are exact within the accuracy of the cross sections used and of the assumed equilibrating effect of wall collisions. It is found that the inflow of feed gas and equilibrating wall collisions can significantly affect the rotational distribution in competition with non-equilibrating electron-impact effects. The resulting steady-state rotational distributions are generally Boltzmann for N≥3, with a rotational temperature between the wall and feed gas temperatures. The N=0,1,2 rotational level populations depend sensitively on the relative rates of electron-impact excitation versus wall collision and gas feed rates.

  14. Electronic and Interfacial Properties of PD/6H-SiC Schottky Diode Gas Sensors

    NASA Technical Reports Server (NTRS)

    Chen, Liang-Yu; Hunter, Gary W.; Neudeck, Philip G.; Bansal, Gaurav; Petit, Jeremy B.; Knight, Dak; Liu, Chung-Chiun; Wu, Qinghai

    1996-01-01

    Pd/SiC Schottky diodes detect hydrogen and hydrocarbons with high sensitivity. Variation of the diode temperature from 100 C to 200 C shows that the diode sensitivity to propylene is temperature dependent. Long-term heat treating at 425 C up to 140 hours is carried out to determine the effect of extended heat treating on the diode properties and gas sensitivity. The heat treating significantly affects the diode's capacitive characteristics, but the diode's current carrying characteristics are much more stable with a large response to hydrogen. Scanning Electron Microscopy and X-ray Spectrometry studies of the Pd surface after the heating show cluster formation and background regions with grain structure observed in both regions. The Pd and Si concentrations vary between grains. Auger Electron Spectroscopy depth profiles revealed that the heat treating promoted interdiffusion and reaction between the Pd and SiC dw broadened the interface region. This work shows that Pd/SiC Schottky diodes have significant potential as high temperature gas sensors, but stabilization of the structure is necessary to insure their repeatability in long-term, high temperature applications.

  15. Tuning the Electron Gas at an Oxide Heterointerface via Free Surface Charges

    SciTech Connect

    Bell, Christopher

    2011-08-11

    Oxide heterointerfaces are emerging as one of the most exciting materials systems in condensed matter science. One remarkable example is the LaAlO{sub 3}/SrTiO{sub 3} (LAO/STO) interface, a model system in which a highly mobile electron gas forms between two band insulators, exhibiting two dimensional superconductivity and unusual magnetotransport properties. An ideal tool to tune such an electron gas is the electrostatic field effect. In principle, the electrostatic field can be generated by bound charges due to polarization (as in the normal and ferroelectric field effects) or by adding excess free charge. In previous studies, a large modulation of the carrier density and mobility of the LAO/STO interface has been achieved using the normal field effect. However, little attention has been paid to the field effect generated by free charges. This issue is scarcely addressed, even in conventional semiconductor devices, since the free charges are typically not stable. Here, we demonstrate an unambiguous tuning of the LAO/STO interface conductivity via free surface charges written using conducting atomic force microscopy (AFM). The modulation of the carrier density was found to be reversible, nonvolatile and surprisingly large, {approx}3 x 10{sup 13} cm{sup -2}, comparable to the maximum modulation by the normal field effect. Our finding reveal the efficiency of free charges in controlling the conductivity of this oxide interface, and suggest that this technique may be extended more generally to other oxide systems.

  16. Industrial Plant for Flue Gas Treatment with High Power Electron Accelerators

    SciTech Connect

    Chmielewski, Andrzej G.; Tyminski, Bogdan; Zimek, Zbigniew; Pawelec, Andrzej; Licki, Janusz

    2003-08-26

    Fossil fuel combustion leads to acidic pollutants, like SO2, NOx, HCl emission. Different control technologies are proposed however, the most popular method is combination of wet FGD (flue gas desulfurization) and SCR (selective catalytic reduction). First, using lime or limestone slurry leads to SO2 capture, and gypsum is a product. The second process where ammonia is used as reagent and nitrogen oxides are reduced over catalyst surface to gaseous nitrogen removes NOx. New advanced method using electron accelerators for simultaneous SO2 and NOx removal has been developed in Japan, the USA, Germany and Poland. Both pollutants are removed with high efficiency and byproduct can be applied as fertilizer. Two industrial plants have been already constructed. One in China and second in Poland, third one is under construction in Japan. Information on the Polish plant is presented in the paper. Plant has been constructed at Power Station Pomorzany, Szczecin (Dolna Odra Electropower Stations Group) and treats flue gases from two Benson boilers 60 MWe and 100 MWth each. Flow rate of the flue gas stream is equal to 270 000 Nm3/h. Four transformer accelerators, 700 keV electron energy and 260 kW beam power each were applied. With its 1.05 MW total beam power installed it is a biggest radiation facility over the world, nowadays. Description of the plant and results obtained has been presented in the paper.

  17. Industrial Plant for Flue Gas Treatment with High Power Electron Accelerators

    NASA Astrophysics Data System (ADS)

    Chmielewski, Andrzej G.; Tyminski, Bogdan; Zimek, Zbigniew; Pawelec, Andrzej; Licki, Janusz

    2003-08-01

    Fossil fuel combustion leads to acidic pollutants, like SO2, NOx, HCl emission. Different control technologies are proposed however, the most popular method is combination of wet FGD (flue gas desulfurization) and SCR (selective catalytic reduction). First, using lime or limestone slurry leads to SO2 capture, and gypsum is a product. The second process where ammonia is used as reagent and nitrogen oxides are reduced over catalyst surface to gaseous nitrogen removes NOx. New advanced method using electron accelerators for simultaneous SO2 and NOx removal has been developed in Japan, the USA, Germany and Poland. Both pollutants are removed with high efficiency and byproduct can be applied as fertilizer. Two industrial plants have been already constructed. One in China and second in Poland, third one is under construction in Japan. Information on the Polish plant is presented in the paper. Plant has been constructed at Power Station Pomorzany, Szczecin (Dolna Odra Electropower Stations Group) and treats flue gases from two Benson boilers 60 MWe and 100 MWth each. Flow rate of the flue gas stream is equal to 270 000 Nm3/h. Four transformer accelerators, 700 keV electron energy and 260 kW beam power each were applied. With its 1.05 MW total beam power installed it is a biggest radiation facility over the world, nowadays. Description of the plant and results obtained has been presented in the paper.

  18. Experimental and numerical study of gas dynamic window for electron beam transport into the space with increased pressure

    NASA Astrophysics Data System (ADS)

    Skovorodko, P. A.; Sharafutdinov, R. G.

    2014-12-01

    The paper is devoted to experimental and numerical study of the gas jet technical device for obtaining axisymmetric flow with low pressure in its near axis region. The studied geometry of the device is typical of that used in the plasma generator consisting of an electron gun with a hollow (plasma) cathode and a double supersonic ring nozzle. The geometry of the nozzles as well as the relation between the gas flow rates through the nozzles providing the electron beam extraction into the region with increased pressure are tested both experimentally and numerically. The maximum external pressure of about 0.25 bar that does not disturb the electron beam is achieved.

  19. Experimental and numerical study of gas dynamic window for electron beam transport into the space with increased pressure

    SciTech Connect

    Skovorodko, P. A.; Sharafutdinov, R. G.

    2014-12-09

    The paper is devoted to experimental and numerical study of the gas jet technical device for obtaining axisymmetric flow with low pressure in its near axis region. The studied geometry of the device is typical of that used in the plasma generator consisting of an electron gun with a hollow (plasma) cathode and a double supersonic ring nozzle. The geometry of the nozzles as well as the relation between the gas flow rates through the nozzles providing the electron beam extraction into the region with increased pressure are tested both experimentally and numerically. The maximum external pressure of about 0.25 bar that does not disturb the electron beam is achieved.

  20. Development of fabric-based chemical gas sensors for use as wearable electronic noses.

    PubMed

    Seesaard, Thara; Lorwongtragool, Panida; Kerdcharoen, Teerakiat

    2015-01-01

    Novel gas sensors embroidered into fabric substrates based on polymers/ SWNT-COOH nanocomposites were proposed in this paper, aiming for their use as a wearable electronic nose (e-nose). The fabric-based chemical gas sensors were fabricated by two main processes: drop coating and embroidery. Four potential polymers (PVC, cumene-PSMA, PSE and PVP)/functionalized-SWCNT sensing materials were deposited onto interdigitated electrodes previously prepared by embroidering conductive thread on a fabric substrate to make an optimal set of sensors. After preliminary trials of the obtained sensors, it was found that the sensors yielded a electrical resistance in the region of a few kilo-Ohms. The sensors were tested with various volatile compounds such as ammonium hydroxide, ethanol, pyridine, triethylamine, methanol and acetone, which are commonly found in the wastes released from the human body. These sensors were used to detect and discriminate between the body odors of different regions and exist in various forms such as the urine, armpit and exhaled breath odor. Based on a simple pattern recognition technique, we have shown that the proposed fabric-based chemical gas sensors can discriminate the human body odor from two persons. PMID:25602265

  1. Development of Fabric-Based Chemical Gas Sensors for Use as Wearable Electronic Noses

    PubMed Central

    Seesaard, Thara; Lorwongtragool, Panida; Kerdcharoen, Teerakiat

    2015-01-01

    Novel gas sensors embroidered into fabric substrates based on polymers/ SWNT-COOH nanocomposites were proposed in this paper, aiming for their use as a wearable electronic nose (e-nose). The fabric-based chemical gas sensors were fabricated by two main processes: drop coating and embroidery. Four potential polymers (PVC, cumene-PSMA, PSE and PVP)/functionalized-SWCNT sensing materials were deposited onto interdigitated electrodes previously prepared by embroidering conductive thread on a fabric substrate to make an optimal set of sensors. After preliminary trials of the obtained sensors, it was found that the sensors yielded a electrical resistance in the region of a few kilo-Ohms. The sensors were tested with various volatile compounds such as ammonium hydroxide, ethanol, pyridine, triethylamine, methanol and acetone, which are commonly found in the wastes released from the human body. These sensors were used to detect and discriminate between the body odors of different regions and exist in various forms such as the urine, armpit and exhaled breath odor. Based on a simple pattern recognition technique, we have shown that the proposed fabric-based chemical gas sensors can discriminate the human body odor from two persons. PMID:25602265

  2. Properties of the Flight Model Gas Electron Multiplier for the GEMS Mission

    NASA Technical Reports Server (NTRS)

    Takeuchi, Yoko; Kitaguchi, Takao; Hayato, Asami; Tamagawa, Toru; Iwakiri, Wataru; Asami, Fumi; Yoshikawa, Akifumi; Kaneko, Kenta; Enoto, Teruaki; Black, Kevin; Hill, Joanne E.; Jahoda, Keith

    2014-01-01

    We present the gain properties of the gas electron multiplier (GEM) foil in pure dimethyl ether (DME) at 190 Torr. The GEM is one of the micro pattern gas detectors and it is adopted as a key part of the X-ray polarimeter for the GEMS mission. The X-ray polarimeter is a time projection chamber operating in pure DME gas at 190 Torr. We describe experimental results of (1) the maximum gain the GEM can achieve without any discharges, (2) the linearity of the energy scale for the GEM operation, and (3) the two-dimensional gain variation of the active area. First, our experiment with 6.4 keV X-ray irradiation of the whole GEM area demonstrates that the maximum effective gain is 2 x 10(exp 4) with the applied voltage of 580 V. Second, the measured energy scale is linear among three energies of 4.5, 6.4, and 8.0 keV. Third, the two-dimensional gain mapping test derives the standard deviation of the gain variability of 7% across the active area.

  3. The detection of single electrons using a Micromegas gas amplification and a MediPix2 CMOS pixel readout

    NASA Astrophysics Data System (ADS)

    Fornaini, A.; Campbell, M.; Chefdeville, M.; Colas, P.; Colijn, A. P.; van der Graaf, H.; Giomataris, Y.; Heijne, E. H. M.; Kluit, P.; Llopart, X.; Schmitz, J.; Timmermans, J.; Visschers, J. L.

    2005-07-01

    By placing a Micromegas gas gain grid on top of a CMOS pixel readout circuit (MediPix2), we developed a device which acts as a pixel-segmented direct anode in gas-filled detectors. With a He/Isobutane 80/20 mixture (capable of achieving gas gain factors up to 20×103) and employing a drift length of 15 mm, signals from radioactive sources and cosmic radiation were measured. Single primary electrons originating from the passage of cosmic muons through the gas volume were detected with an efficiency higher than 90%.

  4. Doppler Velocimetry of Current Driven Spin Helices in a Two-Dimensional Electron Gas

    SciTech Connect

    Yang, Luyi

    2013-05-17

    Spins in semiconductors provide a pathway towards the development of spin-based electronics. The appeal of spin logic devices lies in the fact that the spin current is even under time reversal symmetry, yielding non-dissipative coupling to the electric field. To exploit the energy-saving potential of spin current it is essential to be able to control it. While recent demonstrations of electrical-gate control in spin-transistor configurations show great promise, operation at room temperature remains elusive. Further progress requires a deeper understanding of the propagation of spin polarization, particularly in the high mobility semiconductors used for devices. This dissertation presents the demonstration and application of a powerful new optical technique, Doppler spin velocimetry, for probing the motion of spin polarization at the level of 1 nm on a picosecond time scale. We discuss experiments in which this technique is used to measure the motion of spin helices in high mobility n-GaAs quantum wells as a function of temperature, in-plane electric field, and photoinduced spin polarization amplitude. We find that the spin helix velocity changes sign as a function of wave vector and is zero at the wave vector that yields the largest spin lifetime. This observation is quite striking, but can be explained by the random walk model that we have developed. We discover that coherent spin precession within a propagating spin density wave is lost at temperatures near 150 K. This finding is critical to understanding why room temperature operation of devices based on electrical gate control of spin current has so far remained elusive. We report that, at all temperatures, electron spin polarization co-propagates with the high-mobility electron sea, even when this requires an unusual form of separation of spin density from photoinjected electron density. Furthermore, although the spin packet co-propagates with the two-dimensional electron gas, spin diffusion is strongly

  5. Strongly magnetized cold degenerate electron gas: Mass-radius relation of the magnetized white dwarf

    NASA Astrophysics Data System (ADS)

    Das, Upasana; Mukhopadhyay, Banibrata

    2012-08-01

    We consider a relativistic, degenerate electron gas at zero temperature under the influence of a strong, uniform, static magnetic field, neglecting any form of interactions. Since the density of states for the electrons changes due to the presence of the magnetic field (which gives rise to Landau quantization), the corresponding equation of state also gets modified. In order to investigate the effect of very strong magnetic field, we focus only on systems in which a maximum of either one, two, or three Landau level(s) is/are occupied. This is important since, if a very large number of Landau levels are filled, it implies a very low magnetic field strength which yields back Chandrasekhar’s celebrated nonmagnetic results. The maximum number of occupied Landau levels is fixed by the correct choice of two parameters, namely, the magnetic field strength and the maximum Fermi energy of the system. We study the equations of state of these one-level, two-level, and three-level systems and compare them by taking three different maximum Fermi energies. We also find the effect of the strong magnetic field on the mass-radius relation of the underlying star composed of the gas stated above. We obtain an exciting result that it is possible to have an electron-degenerate static star, namely, magnetized white dwarfs, with a mass significantly greater than the Chandrasekhar limit in the range 2.3-2.6M⊙, provided it has an appropriate magnetic field strength and central density. In fact, recent observations of peculiar type Ia supernovae—SN 2006gz, SN 2007if, SN 2009dc, SN 2003fg—seem to suggest super-Chandrasekhar-mass white dwarfs with masses up to 2.4-2.8M⊙ as their most likely progenitors. Interestingly, our results seem to lie within these observational limits.

  6. THz detectors based on heating of two-dimensional electron gas in disordered nitride heterostructures

    NASA Astrophysics Data System (ADS)

    Mitin, V.; Ramaswamy, R.; Wang, K.; Choi, J. K.; Pakmehr, M.; Muraviev, A.; Shur, M.; Gaska, R.; Pogrebnyak, V.; Sergeev, A.

    2012-05-01

    We present the results of design, fabrication, and characterization of the room-temperature, low electron heat capacity hot-electron THz microbolometers based on two-dimensional electron gas (2DEG) in AlGaN/GaN heterostructures. The 2DEG sensor is integrated with a broadband THz antenna and a coplanar waveguide. Devices with various patterning of 2DEG have been fabricated and tested. Optimizing the material properties, geometrical parameters of the 2DEG, and antenna design, we match the impedances of the sensor and antenna to reach strong coupling of THz radiation to 2DEG via the Drude absorption. Testing the detectors, we found that the THz-induced photocurrent, ΔI, is proportional to the bias current, I, and the temperature derivative of the resistance and inversely proportional to the area of 2DEG sensor, S. The analysis allowed us to identify the mechanism of the 2DEG response to THz radiation as electron heating. The responsivity of our sensors, normalized to the bias current and to unit area of 2DEG, R*= ΔI•S/ (I•P), is ~ 103 W-1 μm2. So, for our typical sensor with an area of 1000 μm2 and bias currents of ~ 10 mA, the responsivity is ~ 0.01 A/W. The measurements of mixing at sub-terahertz frequencies showed that the mixing bandwidth is above 2 GHz, which corresponds to a characteristic electron relaxation time to be shorter than 0.7 ps. Further decrease of the size of 2DEG sensors will increase the responsivity as well as allows for decreasing the local oscillator power in heterodyne applications.

  7. Feasibility study of a gas electron multiplier detector as an X-Ray image sensor

    NASA Astrophysics Data System (ADS)

    Shin, Sukyoung; Jung, Jaehoon; Lee, Soonhyouk

    2015-07-01

    For its ease of manufacture, flexible geometry, and cheap manufacturing cost, the gas electron multiplier (GEM) detector can be used as an X-ray image sensor. For this purpose, we acquired relative detection efficiencies and suggested a method to increase the detection efficiency in order to study the possibility of using a GEM detector as an X-ray image sensor. The GEM detector system is composed of GEM foils, the instrument system, the gas system, and the negative power supply. The instrument system consists of an A225 charge sensitive preamp, an A206 discriminator, and a MCA8000D multichannel analyzer. For the gas system, argon gas was mixed with CO2 in a ratio of 8:2, and for the negative 2,000 volts, a 3106D power supply was used. A CsI-coated GEM foil was used to increase the detection efficiency. Fe-55 was used as an X-ray source, and the relative efficiency was acquired by using the ratio of the efficiency of the GEM detector to that of the CdTe detector. The total count method and the energy spectrum method were used to calculate the relative efficiency. The relative detection efficiency of the GEM detector for Fe-55 by using total count method was 32%, and the relative detection efficiencies were 5, 43, 33, 37, 35, and 36%, respectively, for 2-, 3-, 4-, 5-, 6-, and 7- keV energy spectrum by using the energy spectrum method. In conclusion, we found that the detection efficiency of the two-layered GEM detector is insufficient for use as an X-ray image sensor, so we suggest a CsI-coated GEM foil to increase the efficiency, with resulting value being increased to 41%.

  8. 2-dimensional simulations of electrically asymmetric capacitively coupled RF-discharges

    NASA Astrophysics Data System (ADS)

    Mohr, Sebastian; Schulze, Julian; Schuengel, Edmund; Czarnetzki, Uwe

    2011-10-01

    Capactively coupled RF-discharges are widely used for surface treatment like the deposition of thin films. For industrial applications, the independent control of the ion flux to and the mean energy of the electrons impinging on the surfaces is desired. Experiments and 1D3v-PIC/MCC-simulations have shown that this independent control is possible by applying a fundamental frequency and its second harmonic to the powered electrode. This way, even in geometrically symmetric discharges, as they are often used in industrial reactors, a discharge asymmetry can be induced electrically, hence the name Electrical Asymmetry Effect (EAE). We performed 2D-simulations of electrically asymmetric discharges using HPEM by the group of Mark Kushner, a simulation tool suitable for simulating industrial reactors. First results are presented and compared to previously obtained experimental and simulation data. The comparison shows that for the first time, we succeeded in simulating electrically asymmetric discharges with a 2-dimensional simulation. Capactively coupled RF-discharges are widely used for surface treatment like the deposition of thin films. For industrial applications, the independent control of the ion flux to and the mean energy of the electrons impinging on the surfaces is desired. Experiments and 1D3v-PIC/MCC-simulations have shown that this independent control is possible by applying a fundamental frequency and its second harmonic to the powered electrode. This way, even in geometrically symmetric discharges, as they are often used in industrial reactors, a discharge asymmetry can be induced electrically, hence the name Electrical Asymmetry Effect (EAE). We performed 2D-simulations of electrically asymmetric discharges using HPEM by the group of Mark Kushner, a simulation tool suitable for simulating industrial reactors. First results are presented and compared to previously obtained experimental and simulation data. The comparison shows that for the first time, we

  9. Electric instability in a two-dimensional electron gas system under high magnetic fields

    NASA Astrophysics Data System (ADS)

    Lee, Ching-Ping; Chi, C. C.; Chen, Jeng-Chung

    2015-11-01

    We present a study of electric instability in a two-dimensional electron gas system under high magnetic fields. As the applied dc electric current exceeds a threshold value It h, we find that the longitudinal magnetoresistance Rx x fluctuates and exhibits negative differential resistivity (NDR). The observed instability occurs only in well-separated low-lying Landau levels (LLs) with a filling factor ν ≤2 , and the onset of NDR can be described by the theory of Andreev et al. We find that It h increases with increasing magnetic field B and the lattice temperature TL. In contrast, NDR becomes more pronounced at higher B , but gradually diminishes with increasing TL. Data analysis suggests that NDR is actuated by the suppression of Rx x with increasing electric field, which can be understood in terms of the capability of the spectral diffusion of electrons and of electron transfer to higher levels via inelastic inter-LLs scattering in the limit of one-occupied LL.

  10. Drift and diffusion of spin and charge density waves in a two-dimensional electron gas

    NASA Astrophysics Data System (ADS)

    Yang, Luyi; Koralek, J. D.; Orenstein, J.; Tibbetts, D. R.; Reno, J. L.; Lilly, M. P.

    2011-03-01

    We use transient grating spectroscopy (TGS) to study the persistent spin helix (PSH) state and electron-hole density wave (EHDW) in a 2D electron gas in the presence of an in-plane electric field parallel to the wavevector of the PSH or EHDW. By directly measuring the phase, we can measure the PSH and EHDW displacement with 10 nm spatial and sub-picosecond time resolution. We obtain both the spin diffusion and mobility and ambipolar diffusion and mobility from the TGS measurements of PSH and EHDW, respectively. The spin transresistivity extracted from the spin diffusion is in excellent agreement with the RPA theory of spin Coulomb drag (SCD). The spin mobility data indicate that SCD may also play a role in the spin wave drifting process. From the ambipolar diffusion and mobility, we obtain the transresistivity of electrons and holes in the same layer, which is much stronger than is typically seen in the conventional Coulomb drag experiments on coupled quantum wells.

  11. Electron-ion collision rates in noble gas clusters irradiated by femtosecond laser pulse

    NASA Astrophysics Data System (ADS)

    Dey, R.; Roy, A. C.

    2012-05-01

    We report a theoretical analysis of electron-ion collision rates in xenon gas clusters irradiated by femtosecond laser pulses. The present analysis is based on the eikonal approximation (EA), the first Born approximation (FBA) and the classical (CL) methods. The calculations are performed using the plasma-screened Rogers potential introduced by Moll et al. [J. Phys. B. 43, 135103 (2010)] as well as the Debye potential for a wide range of experimental parameters. We find that the magnitudes of electron-ion collision frequency obtained in the EA do not fall as rapidly with the kinetic energy of electrons as in the FBA and CL methods for higher charge states of xenon ion (Xe8+ and Xe14+). Furthermore, EA shows that the effect of the inner structure of ion is most dominant for the lowest charge state of xenon ion (Xe1+). In the case of the present effective potential, FBA overestimates the CL results for all three different charge states of xenon, whereas for the Debye potential, both the FBA and CL methods predict collision frequencies which are nearly close to each other.

  12. Enhanced thermopower in ZnO two-dimensional electron gas.

    PubMed

    Shimizu, Sunao; Bahramy, Mohammad Saeed; Iizuka, Takahiko; Ono, Shimpei; Miwa, Kazumoto; Tokura, Yoshinori; Iwasa, Yoshihiro

    2016-06-01

    Control of dimensionality has proven to be an effective way to manipulate the electronic properties of materials, thereby enabling exotic quantum phenomena, such as superconductivity, quantum Hall effects, and valleytronic effects. Another example is thermoelectricity, which has been theoretically proposed to be favorably controllable by reducing the dimensionality. Here, we verify this proposal by performing a systematic study on a gate-tuned 2D electron gas (2DEG) system formed at the surface of ZnO. Combining state-of-the-art electric-double-layer transistor experiments and realistic tight-binding calculations, we show that, for a wide range of carrier densities, the 2DEG channel comprises a single subband, and its effective thickness can be reduced to [Formula: see text] 1 nm at sufficiently high gate biases. We also demonstrate that the thermoelectric performance of the 2DEG region is significantly higher than that of bulk ZnO. Our approach opens up a route to exploit the peculiar behavior of 2DEG electronic states and realize thermoelectric devices with advanced functionalities. PMID:27222585

  13. Enhanced thermopower in ZnO two-dimensional electron gas

    NASA Astrophysics Data System (ADS)

    Shimizu, Sunao; Saeed Bahramy, Mohammad; Iizuka, Takahiko; Ono, Shimpei; Miwa, Kazumoto; Tokura, Yoshinori; Iwasa, Yoshihiro

    2016-06-01

    Control of dimensionality has proven to be an effective way to manipulate the electronic properties of materials, thereby enabling exotic quantum phenomena, such as superconductivity, quantum Hall effects, and valleytronic effects. Another example is thermoelectricity, which has been theoretically proposed to be favorably controllable by reducing the dimensionality. Here, we verify this proposal by performing a systematic study on a gate-tuned 2D electron gas (2DEG) system formed at the surface of ZnO. Combining state-of-the-art electric-double-layer transistor experiments and realistic tight-binding calculations, we show that, for a wide range of carrier densities, the 2DEG channel comprises a single subband, and its effective thickness can be reduced to ˜ 1 nm at sufficiently high gate biases. We also demonstrate that the thermoelectric performance of the 2DEG region is significantly higher than that of bulk ZnO. Our approach opens up a route to exploit the peculiar behavior of 2DEG electronic states and realize thermoelectric devices with advanced functionalities.

  14. The gas-liquid chromatograph and the electron capture detection in equine drug testing.

    PubMed Central

    Blake, J. W.; Tobin, T.

    1976-01-01

    Three gas-liquid chromatographic (G.L.C.) procedures discussed have been designed around the four "esses" of detection tests--speed, sensitivity, simplicity, and specificity. These techniques are admirably applicable to the very low plasma drug levels encountered in blood testing under pre-race conditions. The methods are equally applicable to post-race testing procedures, where both blood and urine samples are tested. Drugs can only rarely be detected by the electron capture detector (E.C.D.) without a prior derivatization step, which conveys to the drug(s) high electron affinity. Because of broad applicability, two derivatizing agents, heptafluorobutyric (HFBA) and pentafluorpropionic (PFPA) anhydrides are employed. The three techniques, allowing broad coverage of various drug classes are: 1) direct derivatization of drugs to form strongly electron capturing amides and esters. 2) reductive fragmentation of drugs with lithium aluminum hydride to form alcohols, with conversion to ester derivatives. 3) oxidative fragmentation of drugs with potassium dichromate to form derivatizable groups, followed by direct derivatization. PMID:1000157

  15. Molecular geometry of 2-nitrotoluene from gas phase electron diffraction and quantum chemical study

    NASA Astrophysics Data System (ADS)

    Shishkov, Igor F.; Vilkov, Lev V.; Kovács, Attila; Hargittai, István

    1998-04-01

    The molecular geometry of 2-nitrotoluene has been determined by gas phase electron diffraction and quantum chemical computations at the MP2/6-31G∗ and Becke3-Lee-Yang-Parr (B3-LYP)/6-31G∗ levels of theory. Computed differences in CC bond lengths were utilized as constraints in the electron diffraction structure analysis. The scaled B3-LYP/6-31G∗ force field was used to generate the initial set of vibrational amplitudes. The electron diffraction study yielded the following bond lengths ( rg) and bond angles: C 1C 2, 1.405(8) Å; NO, 1.231(3) Å; C 1C 7, 1.508(8) Å; CN, 1.490(9) Å; C 7C 1C 2, 127.3(7)°; NC 2C 3, 113.8(6)°; C 1C 2C 3, 124.2(9)°; C 6C 1C 2, 114.8(6)°; C 5C 6C 1, 123.1(10)°; O-N-O, 124.9(3)°; ϕ(CN), 38(1)°. The structural features of the molecule point to steric interactions prevailing between the methyl and nitro groups.

  16. Role of temperature on static correlational properties in a spin-polarized electron gas

    NASA Astrophysics Data System (ADS)

    Arora, Priya; Kumar, Krishan; Moudgil, R. K.

    2016-05-01

    We have studied the effect of temperature on the static correlational properties of a spin-polarized three-dimensional electron gas (3DEG) over a wide coupling and temperature regime. This problem has been very recently studied by Brown et al. using the restricted path-integral Monte Carlo (RPIMC) technique in the warm-dense regime. To this endeavor, we have used the finite temperature version of the dynamical mean-field theory of Singwi et al, the so-called quantum STLS (qSTLS) approach. The static density structure factor and the static pair-correlation function are calculated, and compared with the RPIMC simulation data. We find an excellent agreement with the simulation at high temperature over a wide coupling range. However, the agreement is seen to somewhat deteriorate with decreasing temperature. The pair-correlation function is found to become small negative for small electron separation. This may be attributed to the inadequacy of the mean-field theory in dealing with the like spin electron correlations in the strong-coupling domain. A nice agreement with RPIMC data at high temperature seems to arise due to weakening of both the exchange and coulomb correlations with rising temperature.

  17. Long-range density-matrix-functional theory: Application to a modified homogeneous electron gas

    SciTech Connect

    Pernal, Katarzyna

    2010-05-15

    We propose a method that employs functionals of the one-electron reduced density matrix (density matrix) to capture long-range effects of electron correlation. The complementary short-range regime is treated with density functionals. In an effort to find approximations for the long-range density-matrix functional, a modified power functional is applied to the homogeneous electron gas with Coulomb interactions replaced by their corresponding long-range counterparts. For the power {beta}=1/2 and the range-separation parameter {omega}=1/r{sub s}, the functional reproduces the correlation and the kinetic correlation energies with a remarkable accuracy for intermediate and large values of r{sub s}. Analysis of the Euler equation corresponding to this functional reveals correct r{sub s} expansion of the correlation energy in the limit of large r{sub s}. The first expansion coefficient is in very good agreement with that obtained from the modified Wigner-Seitz model.

  18. The Use of Liquid Isopropyl Alcohol and Hydrogen Peroxide Gas Plasma to Biologically Decontaminate Spacecraft Electronics

    NASA Technical Reports Server (NTRS)

    Bonner, J. K.; Tudryn, Carissa D.; Choi, Sun J.; Eulogio, Sebastian E.; Roberts, Timothy J.; Tudryn, Carissa D.

    2006-01-01

    Legitimate concern exists regarding sending spacecraft and their associated hardware to solar system bodies where they could possibly contaminate the body's surface with terrestrial microorganisms. The NASA approved guidelines for sterilization as set forth in NPG 8020.12C, which is consistent with the biological contamination control objectives of the Committee on Space Research (COSPAR), recommends subjecting the spacecraft and its associated hardware to dry heat-a dry heat regimen that could potentially employ a temperature of 110(deg)C for up to 200 hours. Such a temperature exposure could prove detrimental to the spacecraft electronics. The stimulated growth of intermetallic compounds (IMCs) in metallic interconnects and/or thermal degradation of organic materials composing much of the hardware could take place over a prolonged temperature regimen. Such detrimental phenomena would almost certainly compromise the integrity and reliability of the electronics. Investigation of sterilization procedures in the medical field suggests that hydrogen peroxide (H202) gas plasma (HPGP) technology can effectively function as an alternative to heat sterilization, especially for heat-sensitive items. Treatment with isopropyl alcohol (IPA) in liquid form prior to exposure of the hardware to HPGP should also prove beneficial. Although IPA is not a sterilant, it is frequently used as a disinfectant because of its bactericidal properties. The use of IPA in electronics cleaning is widely recognized and has been utilized for many years with no adverse affects reported. In addition, IPA is the principal ingredient of the test fluid used in ionic contamination testers to assess the amount of ionic contamination found on the surfaces of printed wiring assemblies. This paper will set forth experimental data confirming the feasibility of the IPA/H202 approach to reach acceptable microbial reduction (MR) levels of spacecraft electronic hardware. In addition, a proposed process flow in

  19. Electronic Structure and Gas-Phase Behaviour of the Heaviest Elements

    SciTech Connect

    Pershina, V.; Anton, J.; Jacob, T.; Borschevsky, A.

    2010-04-30

    Electronic structures and gas-phase adsorption behaviour of the heaviest elements 112, 113 and 114 and of their lighter homologs Hg, Tl and Pb is studied on the basis of ab initio Dirac-Coulomb atomic and four-component Density Functional Theory molecular and cluster calculations. The heaviest elements were shown to have low adsorption enthalpies on Teflon and should, therefore, be well transported through Teflon capillaries from the target chamber to the chemistry set up. Adsorption enthalpies of these elements on the Au(111) surface are predicted as -44.5 kJ/mol, -158.6 kJ/mol and -68.5 kJ/mol, respectively, giving the following sequence in the adsorption temperatures 113>114>112.

  20. Approximation for discrete Fourier transform and application in study of three-dimensional interacting electron gas

    NASA Astrophysics Data System (ADS)

    Yan, Xin-Zhong

    2011-07-01

    The discrete Fourier transform is approximated by summing over part of the terms with corresponding weights. The approximation reduces significantly the requirement for computer memory storage and enhances the numerical computation efficiency with several orders without losing accuracy. As an example, we apply the algorithm to study the three-dimensional interacting electron gas under the renormalized-ring-diagram approximation where the Green’s function needs to be self-consistently solved. We present the results for the chemical potential, compressibility, free energy, entropy, and specific heat of the system. The ground-state energy obtained by the present calculation is compared with the existing results of Monte Carlo simulation and random-phase approximation.

  1. Dynamical symmetry breaking in a 2D electron gas with a spectral node

    NASA Astrophysics Data System (ADS)

    Ziegler, Klaus

    2013-09-01

    We study a disordered 2D electron gas with a spectral node in a vicinity of the node. After identifying the fundamental dynamical symmetries of this system, the spontaneous breaking of the latter by a Grassmann field is studied within a nonlinear sigma model approach. This allows us to reduce the average two-particle Green's function to a diffusion propagator with a random diffusion coefficient. The latter has non-degenerate saddle points and is treated by the conventional self-consistent Born approximation. This leads to a renormalized chemical potential and a renormalized diffusion coefficient, where the DC conductivity increases linearly with the density of quasiparticles. Applied to the special case of Dirac fermions, our approach provides a comprehensive description of the minimal conductivity at the Dirac node as well as for the V-shape conductivity inside the bands.

  2. GAS-PHASE ELECTRONIC SPECTRA OF POLYACETYLENE CATIONS: RELEVANCE OF HIGHER EXCITED STATES

    SciTech Connect

    Rice, C. A.; Rudnev, V.; Dietsche, R.; Maier, J. P.

    2010-07-15

    Transitions to higher electronic states of polyacetylene cations (HC{sub 2n}H{sup +}, n = 4, 5, 6) have been measured in the gas phase at {approx}20 K. The absorption spectra were obtained using a resonant two-color, two-photon fragmentation technique in an ion trap, allowing a direct comparison between laboratory and astrophysical data. The purpose was to investigate the relevance of such transitions to astronomical observations because the general expectation is that the bands could be too broad due to fast intramolecular processes. It is shown that the origin bands are still narrow enough (1-10 cm{sup -1}) to be considered, especially as the higher-lying transitions often possess large oscillator strengths.

  3. Multiaperture ion beam extraction from gas-dynamic electron cyclotron resonance source of multicharged ions

    SciTech Connect

    Sidorov, A.; Dorf, M.; Zorin, V.; Bokhanov, A.; Izotov, I.; Razin, S.; Skalyga, V.; Rossbach, J.; Spaedtke, P.; Balabaev, A.

    2008-02-15

    Electron cyclotron resonance ion source with quasi-gas-dynamic regime of plasma confinement (ReGIS), constructed at the Institute of Applied Physics, Russia, provides opportunities for extracting intense and high-brightness multicharged ion beams. Despite the short plasma lifetime in a magnetic trap of a ReGIS, the degree of multiple ionization may be significantly enhanced by the increase in power and frequency of the applied microwave radiation. The present work is focused on studying the intense beam quality of this source by the pepper-pot method. A single beamlet emittance measured by the pepper-pot method was found to be {approx}70 {pi} mm mrad, and the total extracted beam current obtained at 14 kV extraction voltage was {approx}25 mA. The results of the numerical simulations of ion beam extraction are found to be in good agreement with experimental data.

  4. Field-effect-induced two-dimensional electron gas utilizing modulation-doped ohmic contacts

    NASA Astrophysics Data System (ADS)

    Mondal, Sumit; Gardner, Geoffrey C.; Watson, John D.; Fallahi, Saeed; Yacoby, Amir; Manfra, Michael J.

    2014-11-01

    Modulation-doped AlGaAs/GaAs heterostructures are utilized extensively in the study of quantum transport in nanostructures, but charge fluctuations associated with remote ionized dopants often produce deleterious effects. Electric field-induced carrier systems offer an attractive alternative if certain challenges can be overcome. We demonstrate a field-effect transistor in which the active channel is locally devoid of modulation-doping, but silicon dopant atoms are retained in the ohmic contact region to facilitate reliable low-resistance contacts. A high quality two-dimensional electron gas is induced by a field-effect and is tunable over a wide range of density. Device design, fabrication, and low temperature (T=0.3 K) transport data are reported.

  5. Accurate exchange-correlation energies for the warm dense electron gas

    NASA Astrophysics Data System (ADS)

    Malone, Fionn; Blunt, Nicholas; Shepherd, James; Lee, Derek; Spencer, James; Foulkes, Matthew

    The accurate treatment of matter at high temperatures and densities is of increasing importance to many fields in physics and chemistry, with applications ranging from planetary physics to inertial confinement fusion and plasmonic catalysis. Faithfully including the effects of temperature in density functional theory simulations of warm dense matter requires accurate results for the uniform electron gas (UEG) across the whole temperature-density plane. While accurate ground state quantum Monte Carlo data have existed for over 30 years, there remains significant disagreement between results obtained using different path integral Monte Carlo methods at finite temperature. To resolve this disagreement, we use the systematically improvable density matrix quantum Monte Carlo method to calculate the exchange-correlation energy of the UEG. We also demonstrate how the evaluation of free energies emerges naturally from our method.

  6. Manipulation and Characterization of Aperiodical Graphene Structures Created in a Two-Dimensional Electron Gas

    NASA Astrophysics Data System (ADS)

    Wang, Shiyong; Tan, Liang Z.; Wang, Weihua; Louie, Steven G.; Lin, Nian

    2014-11-01

    We demonstrate that Dirac fermions can be created and manipulated in a two-dimensional electron gas (2DEG). Using a cryogenic scanning tunneling microscope, we arranged coronene molecules one by one on a Cu(111) surface to construct artificial graphene nanoribbons with perfect zigzag (ZGNRs) or arm-chairedges and confirmed that new states localized along the edges emerge only in the ZGNRs. We further made and studied several typical defects, such as single vacancies, Stone-Wales defects, and dislocation lines, and found that all these defects introduce localized states at or near the Dirac point in the quasiparticle spectra. Our results confirm that artificial systems built on a 2DEG provide rigorous experimental verifications for several long-sought theoretical predications of aperiodic graphene structures.

  7. Theoretical aspects of the Edelstein effect for anisotropic two-dimensional electron gas and topological insulators

    NASA Astrophysics Data System (ADS)

    Johansson, Annika; Henk, Jürgen; Mertig, Ingrid

    2016-05-01

    A charge current driven through a two-dimensional electron gas (2DEG) with Rashba spin-orbit coupling generates a spatially homogeneous spin polarization perpendicular to the applied electric field. This phenomenon is the Aronov-Lyanda-Geller-Edelstein (ALGE) effect. For selected model systems, we consider the ALGE effect within the semiclassical Boltzmann transport theory. Its energy dependence is investigated, in particular the regime below the Dirac point of the 2DEG. In addition to an isotropic 2DEG, we analyze systems with anisotropic Fermi contours. We predict that the current-induced spin polarization vanishes if the Fermi contour passes through a Lifshitz transition. Further, we corroborate that topological insulators (TI) provide a very efficient charge-to-spin conversion.

  8. N2O analysis in the atmosphere via electron capture-gas chromatography

    NASA Technical Reports Server (NTRS)

    Rasmussen, R. A.; Krasnec, J.; Pierotti, D.

    1976-01-01

    The potential of commercially available pulse-modulated electron capture detector (ECD)-equipped gas chromatographs for direct measurement of ambient levels of N2O is assessed. Since the sensitivity of ECD to N2O is directly proportional to the detector operating temperature and detector standing current, it is necessary to use a 'hot' ECD (250-350 C). The method is shown to be very precise with a standard error not exceeding 1% for automated analysis of ambient air samples. The technology is available to permit highly accurate routine direct analysis of N2O in the troposphere and stratosphere. Both captured air samples or direct real-time measurement from research vessels or airborne platforms are possible.

  9. High-frequency electron-gas secondary neutral mass spectrometry: evaluation of transient effects

    NASA Astrophysics Data System (ADS)

    Krimke, Ralf; Urbassek, Herbert M.; Wucher, Andreas

    1997-06-01

    In electron-gas secondary neutral mass spectrometry (SNMS), a low-pressure plasma serves both as an ion source for sputter depth profiling the target and for post-ionizing the sputtered neutrals. In its high-frequency mode, a rectangular RF bias is applied to the target. We investigate by PIC/MC kinetic simulation the processes occurring in the vicinity of the substrate as a consequence of the voltage jumps: sheath expansion and contraction, as well as flux and energy of the ions impinging onto the substrate. In particular, we determine the enhancement of the ion current shortly after negatively charging the substrate; this enhancement is due to the acceleration of the large ion population in the expanding sheath. Our results indicate that already at a switch frequency of only 1 MHz the surface treatment by rectangularly shaped RF potentials is dominated by transient effects.

  10. Pilot-scale test for electron beam purification of flue gas from coal-combustion boiler

    NASA Astrophysics Data System (ADS)

    Namba, Hideki; Tokunaga, Okihiro; Hashimoto, Shoji; Tanaka, Tadashi; Ogura, Yoshimi; Doi, Yoshitaka; Aoki, Shinji; Izutsu, Masahiro

    1995-09-01

    A pilot-scale test for electron beam treatment of flue gas (12,000m3N/hr) from coal-fired boiler was conducted by Japan Atomic Energy Research Institute, Chubu Electric Power Company and Ebara Corporation, in the site of Shin-Nagoya Thermal Power Plant in Nagoya, Japan. During 14 months operation, it was proved that the method is possible to remove SO2 and NOX simultaneously in wide concentration range of SO2 (250-2,000ppm) and NOX (140-240ppm) with higher efficiency than the conventional methods, with appropriate operation conditions (dose, temperature etc.). The pilot plant was easily operated with well controllability and durability, and was operated for long period of time without serious problems. The byproduct, ammonium sulfate and ammonium nitrate, produced by the treatment was proved to be a nitrogenous fertilizer with excellent quality.

  11. Landau level crossing in a spin-orbit coupled two-dimensional electron gas

    SciTech Connect

    Wu, Xing-Jun; Li, Ting-Xin; Zhang, Chi; Du, Rui-Rui

    2015-01-05

    We have studied experimentally the Landau level (LL) spectrum of a two-dimensional electron gas (2DEG) in an In{sub 0.53}Ga{sub 0.47}As/InP quantum well structure by means of low-temperature magneto-transport coincidence measurement in vector magnetic fields. It is well known that LL crossing occurs in tilted magnetic fields due to a competition between cyclotron energy and Zeeman effect. Remarkably, here we observe an additional type of level-crossing resulting from a competition between Rashba and Zeeman splitting in a small magnetic field, consistent with the theoretical prediction for strongly spin-orbit coupled 2DEG.

  12. Electrochemical Testing of Gas Tungsten Arc Welded and Reduced Pressure Electron Beam Welded Alloy 22

    SciTech Connect

    Day, S D; Wong, F M G; Gordon, S R; Wong, L L; Rebak, R B

    2003-09-07

    Alloy 22 (N06022) is the material selected for the fabrication of the outer shell of the nuclear waste containers for the Yucca Mountain high-level nuclear waste repository site. A key technical issue in the Yucca Mountain waste package program has been the integrity of container weld joints. The currently selected welding process for fabricating and sealing the containers is the traditional gas tungsten arc welding (GTAW) or TIG method. An appealing faster alternative technique is reduced pressure electron beam (RPEB) welding. Standard electrochemical tests were carried on GTAW and RPEB welds as well as on base metal to determine their relative corrosion behavior in SCW at 90 C (alkaline), 1 M HCl at 60 C (acidic) and 1 M NaCl at 90 C (neutral) solutions. Results show that for all practical purposes, the three tested materials had the electrochemical behavior in the three tested solutions.

  13. Finite-size scaling in a 2D disordered electron gas with spectral nodes

    NASA Astrophysics Data System (ADS)

    Sinner, Andreas; Ziegler, Klaus

    2016-08-01

    We study the DC conductivity of a weakly disordered 2D electron gas with two bands and spectral nodes, employing the field theoretical version of the Kubo–Greenwood conductivity formula. Disorder scattering is treated within the standard perturbation theory by summing up ladder and maximally crossed diagrams. The emergent gapless (diffusion) modes determine the behavior of the conductivity on large scales. We find a finite conductivity with an intermediate logarithmic finite-size scaling towards smaller conductivities but do not obtain the logarithmic divergence of the weak-localization approach. Our results agree with the experimentally observed logarithmic scaling of the conductivity in graphene with the formation of a plateau near {{e}2}/π h .

  14. Finite-size scaling in a 2D disordered electron gas with spectral nodes.

    PubMed

    Sinner, Andreas; Ziegler, Klaus

    2016-08-01

    We study the DC conductivity of a weakly disordered 2D electron gas with two bands and spectral nodes, employing the field theoretical version of the Kubo-Greenwood conductivity formula. Disorder scattering is treated within the standard perturbation theory by summing up ladder and maximally crossed diagrams. The emergent gapless (diffusion) modes determine the behavior of the conductivity on large scales. We find a finite conductivity with an intermediate logarithmic finite-size scaling towards smaller conductivities but do not obtain the logarithmic divergence of the weak-localization approach. Our results agree with the experimentally observed logarithmic scaling of the conductivity in graphene with the formation of a plateau near [Formula: see text]. PMID:27270084

  15. Fermi Edge Polaritons in a Microcavity Containing a High Density Two-Dimensional Electron Gas

    NASA Astrophysics Data System (ADS)

    Gabbay, A.; Preezant, Yulia; Cohen, E.; Ashkinadze, B. M.; Pfeiffer, L. N.

    2007-10-01

    Sharp, near band gap lines are observed in the reflection and photoluminescence spectra of GaAs/AlGaAs structures consisting of a modulation doped quantum well (MDQW) that contains a high density two-dimensional electron gas (2DEG) and is embedded in a microcavity (MC). The energy dependence of these lines on the MC-confined photon energy shows level anticrossings and Rabi splittings very similar to those observed in systems of undoped QW’s embedded in a MC. The spectra are analyzed by calculating the optical susceptibility of the MDQW in the near band gap spectral range and using it within the transfer matrix method. The calculated reflection spectra indicate that the sharp spectral lines are due to k∥=0 cavity polaritons that are composed of e-h pair excitations just above the 2DEG Fermi edge and are strongly coupled to the MC-confined photons.

  16. The Kondo temperature of a two-dimensional electron gas with Rashba spin-orbit coupling.

    PubMed

    Chen, Liang; Sun, Jinhua; Tang, Ho-Kin; Lin, Hai-Qing

    2016-10-01

    We use the Hirsch-Fye quantum Monte Carlo method to study the single magnetic impurity problem in a two-dimensional electron gas with Rashba spin-orbit coupling. We calculate the spin susceptibility for various values of spin-orbit coupling, Hubbard interaction, and chemical potential. The Kondo temperatures for different parameters are estimated by fitting the universal curves of spin susceptibility. We find that the Kondo temperature is almost a linear function of Rashba spin-orbit energy when the chemical potential is close to the edge of the conduction band. When the chemical potential is far away from the band edge, the Kondo temperature is independent of the spin-orbit coupling. These results demonstrate that, for single impurity problems in this system, the most important reason to change the Kondo temperature is the divergence of density of states near the band edge, and the divergence is induced by the Rashba spin-orbit coupling. PMID:27494800

  17. Control of spin dynamics in a two-dimensional electron gas by electromagnetic dressing

    NASA Astrophysics Data System (ADS)

    Pervishko, A. A.; Kibis, O. V.; Morina, S.; Shelykh, I. A.

    2015-11-01

    We solved the Schrödinger problem for a two-dimensional electron gas (2DEG) with the Rashba spin-orbit interaction in the presence of a strong high-frequency electromagnetic field (dressing field). The found eigenfunctions and eigenenergies of the problem are used to describe the spin dynamics of the dressed 2DEG within the formalism of the density matrix response function. Solving the equations of spin dynamics, we show that the dressing field can switch the spin relaxation in the 2DEG between the cases corresponding to the known Elliott-Yafet and D'yakonov-Perel' regimes. As a result, the spin properties of the 2DEG can be tuned by a high-frequency electromagnetic field. The present effect opens an unexplored way for controlling the spin with light and, therefore, forms the physical prerequisites for creating light-tuned spintronics devices.

  18. Self-injection and acceleration of electrons during ionization of gas atoms by a short laser pulse

    SciTech Connect

    Singh, K.P.

    2006-04-15

    Using a relativistic three-dimensional single-particle code, acceleration of electrons created during the ionization of nitrogen and oxygen gas atoms by a laser pulse has been studied. Barrier suppression ionization model has been used to calculate ionization time of the bound electrons. The energy gained by the electrons peaks for an optimum value of laser spot size. The electrons created near the tail do not gain sufficient energy for a long duration laser pulse. The electrons created at the tail of pulse escape before fully interacting with the trailing part of the pulse for a short duration laser pulse, which causes electrons to retain sufficient energy. If a suitable frequency chirp is introduced then energy of the electrons created at the tail of the pulse further increases.

  19. High-speed digital holography for neutral gas and electron density imaging.

    PubMed

    Granstedt, E M; Thomas, C E; Kaita, R; Majeski, R; Baylor, L R; Meitner, S J; Combs, S K

    2016-05-01

    An instrument was developed using digital holographic reconstruction of the wavefront from a CO2 laser imaged on a high-speed commercial IR camera. An acousto-optic modulator is used to generate 1-25 μs pulses from a continuous-wave CO2 laser, both to limit the average power at the detector and also to freeze motion from sub-interframe time scales. Extensive effort was made to characterize and eliminate noise from vibrations and second-surface reflections. Mismatch of the reference and object beam curvature initially contributed substantially to vibrational noise, but was mitigated through careful positioning of identical imaging lenses. Vibrational mode amplitudes were successfully reduced to ≲1 nm for frequencies ≳50 Hz, and the inter-frame noise across the 128 × 128 pixel window which is typically used is ≲2.5 nm. To demonstrate the capabilities of the system, a piezo-electric valve and a reducing-expanding nozzle were used to generate a super-sonic gas jet which was imaged with high spatial resolution (better than 0.8 lp/mm) at high speed. Abel inversions were performed on the phase images to produce 2-D images of localized gas density. This system could also be used for high spatial and temporal resolution measurements of plasma electron density or surface deformations. PMID:27250423

  20. Flue gas SO 2/NO x control by combination of dry scrubber and electron beam

    NASA Astrophysics Data System (ADS)

    Helfritch, D. J.; Feldman, P. L.

    This study examines the feasibility of adding an electron beam between the spray dryer and the fabric filter of "dry scrubber" flue gas desulfurization (FGD) systems. The beam promises effective removal of nitrogen oxides (NO x) and sulfur dioxide (SO 2), even at higher coal-sulfur levels than usually economic for dry scrubbers. The beam excites gas molecules, promoting reactions that convert SO 2 and NO x to acids that then react with calcium compounds and are removed by the filter. The cost findings are promising for both manufacture and operation. The system uses commercially available components. The relatively low temperatures and high humidity downstream of the spray dryer favor economic beam operation. The beam removes SO 2, so the dryer can be run for economy, not high removal. Pilot scale tests will soon be carried out which are designed to verify earlier bench scale test results and to serve as the next step to full commercialization. It is expected that better than 90% SO 2 and NO x removal will be achieved.

  1. The study of electron beam flue gas treatment for coal-fired thermal plant in Japan

    NASA Astrophysics Data System (ADS)

    Namba, Hideki; Tokunaga, Okihiro; Tanaka, Tadashi; Ogura, Yoshimi; Aoki, Shinji; Suzuki, Ryoji

    1993-10-01

    The fundamental research work with simulated coal-fired flue gas was performed in JAERI to get basic data for electron beam treatment of flue gas from thermal power plants in Japan. The standard condition of the experiments was set to be the same as that of next large scale pilot test in Nagoya. The concentrations of NO x and SO x were 225 ppm and 800 ppm, respectively. The temperature of the system was 65°C. The effect of multiple irradiation was observed for NO x removal. The target SO x and NO x removals (94% and 80%, respectively) with low NH 3 leakage (less than 10 ppm) were achieved at 9 kGy irradiation with 0.9 NH 3 stoichiometry during 7 hours continuous operation. The facility for the pilot plant (12,000 Nm 3/hr) has just built at the site of Shin-Nagoya power plant of Chubu Electric Power Company and will be started in full operation in November 1992.

  2. Planning Electron cloud/Gas desorption activities in the HIF-VNL during FY06

    SciTech Connect

    Molvik, A W

    2005-09-20

    The Heavy-Ion Fusion (HIF) group, under the DOE Office of Fusion Energy Science (OFES) funding, has been carrying out studies of e-cloud and gas primarily for our own needs. During this effort we have developed unique experimental and simulation tools that we believe have broader applications. To a limited degree, as part of OFES' charter, we can pursue basic science for plasma and accelerator research and can also pursue issues of interest in high energy physics and other areas of accelerator research. We would appreciate your suggestions on specific needs that you have for which we might be able to make contributions towards understanding and mitigation. The following list of potential tasks provides a guide to our capabilities, plus some directions that we are considering; they are designed around our facilities, but we are open to collaborating at other sites. We will be firming up our plans after funding is set for the year--we currently expect that to happen in late October. The following list of tasks for FY06 assumes significant restoration of funds by Congress to a similar level as in FY05. Each area would be studied with coordinated experimental and simulation efforts. Most of these tasks deal with electron or gas issues, the last few are more general high-brightness beam issues.

  3. Determination of sulfur dioxide in wine using headspace gas chromatography and electron capture detection.

    PubMed

    Aberl, A; Coelhan, M

    2013-01-01

    Sulfites are routinely added as preservatives and antioxidants in wine production. By law, the total sulfur dioxide content in wine is restricted and therefore must be monitored. Currently, the method of choice for determining the total content of sulfur dioxide in wine is the optimised Monier-Williams method, which is time consuming and laborious. The headspace gas chromatographic method described in this study offers a fast and reliable alternative method for the detection and quantification of the sulfur dioxide content in wine. The analysis was performed using an automatic headspace injection sampler, coupled with a gas chromatograph and an electron capture detector. The method is based on the formation of gaseous sulfur dioxide subsequent to acidification and heating of the sample. In addition to free sulfur dioxide, reversibly bound sulfur dioxide in carbonyl compounds, such as acetaldehyde, was also measured with this method. A total of 20 wine samples produced using diverse grape varieties and vintages of varied provenance were analysed using the new method. For reference and comparison purposes, 10 of the results obtained by the proposed method were compared with those acquired by the optimised Monier-Williams method. Overall, the results from the headspace analysis showed good correlation (R = 0.9985) when compared with the conventional method. This new method requires minimal sample preparation and is simple to perform, and the analysis can also be completed within a short period of time. PMID:23176364

  4. Effects of electron interference on temperature dependent transport properties of two dimensional electron gas at MgZnO/ZnO interfaces

    SciTech Connect

    Das, Amit K. Misra, P.; Ajimsha, R. S.; Joshi, M. P.; Kukreja, L. M.

    2015-09-07

    We report the effects of electron interference on temperature dependent transport properties of two dimensional electron gas (2DEG) confined at the interface in polycrystalline MgZnO/ZnO heterostructures grown by pulsed laser deposition on c-alumina substrates. On increasing Mg concentration in the MgZnO layer, the sheet electron concentration was found to increase and the sheet resistance was found to decrease. In addition, the electron concentration and mobility were almost temperature independent in the range from 4.2 to 300 K, indicating the formation of 2DEG at the interface. The temperature dependent resistivity measurements showed a negative temperature coefficient of resistivity at low temperatures together with negative magnetoresistance. These were found to be caused by electron interference effects, and the experimental data could be explained using the models of quantum corrections to conductivity.

  5. Bremsstrahlung {gamma}-ray generation by electrons from gas jets irradiated by laser pulses for radiographic testing

    SciTech Connect

    Oishi, Yuji; Nayuki, Takuya; Zhidkov, Alexei; Fujii, Takashi; Nemoto, Koshichi

    2012-07-11

    Electron generation from a gas jet irradiated by low energy femtosecond laser pulses is studied experimentally as a promising source of radiation for radioisotope-free {gamma}-ray imaging systems. The calculated yield of {gamma}-rays in the 0.5-2 MeV range, produced by low-average-power lasers and gas targets, exceeds the yields from solid tape targets up to 60 times. In addition, an effect of quasi-mono energetic electrons on {gamma}-ray imaging is also discussed.

  6. Measurements of Electron Beam and Neutral Gas Emissions in a Space Plasma during AN Ionospheric Modification Experiment.

    NASA Astrophysics Data System (ADS)

    Gilchrist, Brian Earl

    The principal objective of this research was to investigate observations of current collection enhancements due to nitrogen gas emissions from a highly charged, isolated rocket payload in the ionosphere. These observations were made during the second Cooperative High Altitude Rocket Gun Experiment (CHARGE-2) which was an electrically tethered dual payload system. The current collection enhancement was observed on a "daughter" payload located 100 to 426 m away from a "mother" payload, approximately perpendicular to the Earth's magnetic field, which was firing a 1 keV electron beam at up to 48 mA. The unambiguous response of emitting neutral gas from a highly charged vehicle located well away from the disturbed region surrounding the electron beam's mother payload was unique to this experiment. These results are interpreted in terms of neutral gas ionization in close proximity to the daughter vehicle during the short periods of gas emission. The gas source was a modified nitrogen gas rate control system (RCS). The ionization source was most likely accelerated ionospheric electrons. The results indicate that it is possible to enhance the electron current collection capability of positively charged vehicles and reduce overall charging potentials by means of deliberate neutral gas release into a space plasma. Calculations also seem to suggest that ion current out of the ionization region was not a dominant factor in net current balance. A secondary research objective was to investigate magnetic field-aligned electron beam ionization of the atmosphere using ground based vhf radar. Only one radar event could be correlated with both electron beam emission and expected range. This occurred during an RCS induced current collection enhancement which was itself unique among all RCS gas releases. During this event a high voltage power supply, connected in series between the mother payload and the tether wire to the daughter payload, drove the electron beam emitting payload

  7. Flow and combustion characteristics of a 2-dimensional spouted bed

    NASA Astrophysics Data System (ADS)

    Sawyer, R. F.; Hart, J. R.; Ohtake, K.

    1982-03-01

    A two dimensional spouted bed laboratory combustor was designed and constructed with the objective of studying the interaction among the gas flow, particle flow, and combustion. The facility, designed for a maximum thermal power of 20 kW, has a quartz front wall providing full optical access to particle flows and combustion processes. The combustor was characterized in terms of pressure, temperature, gas velocity, and particle velocity profiles and operating limits. Initial studies employed premixed propane and air and a fixed bed height, bed material, injector slot width, and combustor geometry. As in previous investigations of axisymmetric spouted beds, the ratio of particle mass circulation rate to jet mass flow rate was observed to be about ten. Combustion increased this ratio by about 10%. A pulsating mode of operation was noted with a characteristic frequency of about 10 Hz, controlled by the interaction of the particle and gas flows.

  8. Towards enhancing two-dimensional electron gas quantum confinement effects in perovskite oxide heterostructures

    SciTech Connect

    Nazir, Safdar; Behtash, Maziar; Yang, Kesong

    2015-03-21

    We explore the possibility of achieving highly confined two-dimensional electron gas (2DEG) within one single atomic layer through a comprehensive comparison study on three prototypical perovskite heterostructures, LaAlO{sub 3}/ATiO{sub 3} (A = Ca, Sr, and Ba), using first-principles electronic structure calculations. We predict that the heterostructure LaAlO{sub 3}/BaTiO{sub 3} has a highly confined 2DEG within a single atomic layer of the substrate BaTiO{sub 3}, and exhibits relatively higher interfacial charge carrier density and larger magnetic moments than the well-known LaAlO{sub 3}/SrTiO{sub 3} system. The long Ti-O bond length in the ab-plane of the LaAlO{sub 3}/BaTiO{sub 3} heterostructure is responsible for the superior charge confinement. We propose BaTiO{sub 3} as an exceptional substrate material for 2DEG systems with potentially superior properties.

  9. Electronic Spectra of Protonated Fluoranthene in a Neon Matrix and Gas Phase at 10 K.

    PubMed

    Chakraborty, A; Rice, C A; Hardy, F-X; Fulara, J; Maier, J P

    2016-07-14

    Four electronic systems with origin bands at 759.5, 559.3, 476.3, and 385.5 nm are detected in a 6 K neon matrix following deposition of mass-selected protonated fluoranthene C16H11(+) produced from a reaction of neutral vapor and ethanol in a hot-cathode ion source. Two cationic isomers are identified as the carriers of these band systems. The 559.3, 476.3, and 385.5 nm absorptions are assigned to 4,3,2 (1)A' ← X (1)A' transitions of isomer E(+) (γ-) and the 2 (1)A' ← X (1)A' system at 759.5 nm is of isomer C(+) (α-) of protonated fluoranthene on the basis of theoretical predictions. The electronic spectrum of E(+) was also recorded in the gas phase using a resonant 1 + 1 two-photon excitation-dissociation technique in an ion trap at vibrational and rotational temperatures of 10 K. The 3,2 (1)A' ← X (1)A' transitions have origin band maxima at 558.28 ± 0.01 and 474.92 ± 0.01 nm. Both the 2 (1)A' and 3 (1)A' excited states have a distinct vibrational pattern with lifetimes on the order of 1 ps. PMID:26837823

  10. Permutation blocking path integral Monte Carlo approach to the uniform electron gas at finite temperature.

    PubMed

    Dornheim, Tobias; Schoof, Tim; Groth, Simon; Filinov, Alexey; Bonitz, Michael

    2015-11-28

    The uniform electron gas (UEG) at finite temperature is of high current interest due to its key relevance for many applications including dense plasmas and laser excited solids. In particular, density functional theory heavily relies on accurate thermodynamic data for the UEG. Until recently, the only existing first-principle results had been obtained for N = 33 electrons with restricted path integral Monte Carlo (RPIMC), for low to moderate density, rs=r¯/aB≳1. These data have been complemented by configuration path integral Monte Carlo (CPIMC) simulations for rs ≤ 1 that substantially deviate from RPIMC towards smaller rs and low temperature. In this work, we present results from an independent third method-the recently developed permutation blocking path integral Monte Carlo (PB-PIMC) approach [T. Dornheim et al., New J. Phys. 17, 073017 (2015)] which we extend to the UEG. Interestingly, PB-PIMC allows us to perform simulations over the entire density range down to half the Fermi temperature (θ = kBT/EF = 0.5) and, therefore, to compare our results to both aforementioned methods. While we find excellent agreement with CPIMC, where results are available, we observe deviations from RPIMC that are beyond the statistical errors and increase with density. PMID:26627944

  11. Ultrafast electron dynamics in rare gas clusters under X-FEL light

    NASA Astrophysics Data System (ADS)

    Rost, Jan Michael; Gnodtke, Christian; Saalmann, Ulf

    2009-05-01

    Time resolved imaging with Angstrom resolution is one of the prime goals to use XFEL light for. Here we investigate in detail the dynamics of electrons and ions of a cluster exposed to a realistic X-FEL pulse. We focus on electron migration phenomena and investigate their role under the aspect of harm and benefit for imaging the cluster structure. Field ionization processes turn out to play an important role where the electric field is generated by quickly formed ions [1]. We also propose an experiment with double pulse of 1 fs duration each, separated by 10-100 fs which can be realized at LCLS in Stanford. With this pump-probe scenario, the dynamics of Auger processes in rare gas clusters (here Ne) can be studied which promises to be interesting since it differs from the isolated atom due to the neighboring ions/atoms [2]. [4pt] [1] Ch. Gnodtke, U. Saalmann, Jan M. Rost, submitted (2009).[0pt] [2] Ulf Saalmann and Jan M. Rost, Phys. Rev. Lett. 89, 143401 (2002).

  12. Coupling gas chromatography and electronic nose detection for detailed cigarette smoke aroma characterization.

    PubMed

    Rambla-Alegre, Maria; Tienpont, Bart; Mitsui, Kazuhisa; Masugi, Eri; Yoshimura, Yuta; Nagata, Hisanori; David, Frank; Sandra, Pat

    2014-10-24

    Aroma characterization of whole cigarette smoke samples using sensory panels or electronic nose (E-nose) devices is difficult due to the masking effect of major constituents and solvent used for the extraction step. On the other hand, GC in combination with olfactometry detection does not allow to study the delicate balance and synergetic effect of aroma solutes. To overcome these limitations a new instrumental set-up consisting of heart-cutting gas chromatography using a capillary flow technology based Deans switch and low thermal mass GC in combination with an electronic nose device is presented as an alternative to GC-olfactometry. This new hyphenated GC-E-nose configuration is used for the characterization of cigarette smoke aroma. The system allows the transfer, combination or omission of selected GC fractions before injection in the E-nose. Principal component analysis (PCA) and discriminant factor analysis (DFA) allowed clear visualizing of the differences among cigarette brands and classifying them independently of their nicotine content. Omission and perceptual interaction tests could also be carried out using this configuration. The results are promising and suggest that the GC-E-nose hyphenation is a good approach to measure the contribution level of individual compounds to the whole cigarette smoke. PMID:25260341

  13. Low-Pressure Gas Effects on the Potency of an Electron Beam Against Ceramic Cloth

    NASA Technical Reports Server (NTRS)

    Nunes, A. C., Jr.; Russell, C. K.; Zimmerman, F. R.; Fragomeni, J. M.

    1999-01-01

    An 8-kv electron beam with a current in the neighborhood of 100 mA from the Ukrainian space welding "Universal Hand Tool" (UHT) burned holes in Nextel AF-62 ceramic cloth designed to withstand temperatures up to 1,427 C. The burnthrough time was on the order of 8 scc at standoff distances between UHT and cloth ranging from 6-24 in. At both closer (2 in.) and farther (48 in.) standoff distances the potency of the beam against the cloth declined and the burnthrough time went up significantly. Prior to the test it had been expected that the beam would lay down a static charge on the cloth and be deflected without damaging the cloth. The burnthrough is thought to be an effect of partial transmission of beam power by a stream of positive ions generated by the high-voltage electron beam from contaminant gas in the "vacuum" chamber. A rough quantitative theoretical computation appears to substantiate this possibility.

  14. Edge spin accumulation in a two-dimensional electron gas with two subbands

    NASA Astrophysics Data System (ADS)

    Khaetskii, Alexander; Egues, J. Carlos

    We have studied the edge spin accumulation in 2D electron gas due to the intrinsic mechanism of spin-orbit interaction for the case of a two-subband structure. This study is strongly motivated by recent experiments which observed the spin accumulation near the edges of a high mobility 2D electron system in a bilayer symmetric GaAs structure in contrast to zero effect in a single-layer configuration. Our theoretical explanation is based on the Rashba-like spin-orbit interaction which arises as a result of the coupling between two subband states of opposite parities in a symmetric quantum well. Following the method developed in, we have calculated the edge spin density in a quasi-ballistic regime, and explained the experimental results, in particular, a large magnitude of the edge spin density. We showed that one can easily proceed from the regime of strong spin accumulation to the regime of weak one. It opens up a possibility to construct an interesting new spintronic device Supported by FAPESP (Brazil).

  15. A method for measuring the local gas pressure within a gas-flow stage in situ in the transmission electron microscope

    SciTech Connect

    Colby, Robert J.; Alsem, Daan H.; Liyu, Andrey V.; Kabius, Bernd C.

    2015-06-01

    The development of environmental transmission electron microscopy (TEM) has enabled in situ experiments in a gaseous environment with high resolution imaging and spectroscopy. Addressing scientific challenges in areas such as catalysis, corrosion, and geochemistry can require pressures much higher than the ~20 mbar achievable with a differentially pumped, dedicated environmental TEM. Gas flow stages, in which the environment is contained between two semi-transparent thin membrane windows, have been demonstrated at pressures of several atmospheres. While this constitutes significant progress towards operando measurements, the design of many current gas flow stages is such that the pressure at the sample cannot necessarily be directly inferred from the pressure differential across the system. Small differences in the setup and design of the gas flow stage can lead to very different sample pressures. We demonstrate a method for measuring the gas pressure directly, using a combination of electron energy loss spectroscopy and TEM imaging. This method requires only two energy filtered TEM images, limiting the measurement time to a few seconds and can be performed during an ongoing experiment at the region of interest. This approach provides a means to ensure reproducibility between different experiments, and even between very differently designed gas flow stages.

  16. Laser Wakefield Structures and Electron Acceleration in Gas Jet and Capillary Discharge Plasmas

    NASA Astrophysics Data System (ADS)

    Maksimchuk, Anatoly

    2007-11-01

    Laser-driven plasma wakefield accelerators have the potential to become the next generation of particle accelerators because of the very high acceleration gradients. The beam quality from such accelerators depends critically on the details plasma wave spatial structures. In experiments at the University of Michigan it was possible in a single shot by frequency domain holography (FDH) to visualize individual plasma waves produced by the 40 TW, 30 fs Hercules laser focused to the intensity of 10^19 W/cm^2 onto a supersonic He gas jet [1]. These holographic ``snapshots'' capture the evolution of multiple wake periods, and resolve wavefront curvature seen previously only in simulations. High-energy quasi-monoenergetic electron beams for plasma density in the specific range 1.5x10^19<=ne<=3.5x10^19 cm-3 were generated [2]. The experiments show that the energy, charge, divergence and pointing stability of the beam can be controlled by changing ne, and that higher electron energies and more stable beams are produced for lower densities. An optimized quasi-monoenergetic beam of over 300 MeV and 10 mrad angular divergence is demonstrated at a plasma density of ne=1.5x10^19 cm-3. The resulted relativistic electron beams have been used to perform gamma-neutron activation of ^12C and ^63Cu and photo-fission of ^238U with a record high reaction yields of ˜5x10^5/Joule [3]. Experiments performed with ablative capillary discharge plasma demonstrate stable guiding for laser power up to 10 TW with the transmission of 50% and guided intensity of ˜10^17 W/cm^2. Study of the staged electron acceleration have been performed which uses ablated plasma in front of the capillary to inject electrons into the wakefield structures. [1] N. H. Matlis et. al., Nature Physics 2, 749 (2006). [2] A. Maksimchuk et. al., Journal de Physique IV 133, 1123 (2006). [3] S. A. Reed et. al., Appl. Phys. Lett. 89, 231107 (2006).

  17. Electron cyclotron resonance near the axis of the gas-dynamic trap

    SciTech Connect

    Bagulov, D. S.; Kotelnikov, I. A.

    2012-08-15

    Propagation of an extraordinary electromagnetic wave in the vicinity of electron cyclotron resonance surface in an open linear trap is studied analytically, taking into account inhomogeneity of the magnetic field in paraxial approximation. Ray trajectories are derived from a reduced dispersion equation that makes it possible to avoid the difficulty associated with a transition from large propagation angles to the case of strictly longitudinal propagation. Our approach is based on the theory, originally developed by Zvonkov and Timofeev [Sov. J. Plasma Phys. 14, 743 (1988)], who used the paraxial approximation for the magnetic field strength, but did not consider the slope of the magnetic field lines, which led to considerable error, as has been recently noted by Gospodchikov and Smolyakova [Plasma Phys. Rep. 37, 768-774 (2011)]. We have found ray trajectories in analytic form and demonstrated that the inhomogeneity of both the magnetic field strength and the field direction can qualitatively change the picture of wave propagation and significantly affect the efficiency of electron cyclotron heating of a plasma in a linear magnetic trap. Analysis of the ray trajectories has revealed a criterion for the resonance point on the axis of the trap to be an attractor for the ray trajectories. It is also shown that a family of ray trajectories can still reach the resonance point on the axis if the latter generally repels the ray trajectories. As an example, results of general theory are applied to the electron cyclotron resonance heating experiment which is under preparation on the gas dynamic trap in the Budker Institute of Nuclear Physics [Shalashov et al., Phys. Plasmas 19, 052503 (2012)].

  18. Quadratic energy-loss straggling and energy widths of the states of slow ions in an electron gas

    SciTech Connect

    Wang, N.

    1997-10-01

    The energy-loss straggling and energy width of states of slow ions interacting with a homogeneous electron gas are evaluated within a quadratic response theory and the random-phase approximation. These results are compared with corresponding results determined from a fully nonlinear scattering theory approach. The quadratic response theory is shown to be a good approximation for high electron densities and small ion charges. {copyright} {ital 1997} {ital The American Physical Society}

  19. Coupled Langmuir oscillations in 2-dimensional quantum plasmas

    SciTech Connect

    Akbari-Moghanjoughi, M.

    2014-03-15

    In this work, we present a hydrodynamic model to study the coupled quantum electron plasma oscillations (QEPO) for two dimensional (2D) degenerate plasmas, which incorporates all the essential quantum ingredients such as the statistical degeneracy pressure, electron-exchange, and electron quantum diffraction effect. Effects of diverse physical aspects like the electronic band-dispersion effect, the electron exchange-correlations and the quantum Bohm-potential as well as other important plasma parameters such as the coupling parameter (plasma separation) and the plasma electron number-densities on the linear response of the coupled system are investigated. By studying three different 2D plasma coupling types, namely, graphene-graphene, graphene-metalfilm, and metalfilm-metalfilm coupling configurations, it is remarked that the collective quantum effects can influence the coupled modes quite differently, depending on the type of the plasma configuration. It is also found that the slow and fast QEPO frequency modes respond very differently to the change in plasma parameters. Current findings can help in understanding of the coupled density oscillations in multilayer graphene, graphene-based heterojunctions, or nanofabricated integrated circuits.

  20. Electronic stopping power calculation method for molecular dynamics simulations using local Firsov and free electron-gas models

    NASA Astrophysics Data System (ADS)

    Peltola, J.; Nordlund, K.; Keinonen, J.

    2006-09-01

    Molecular dynamics simulations have proven to be accurate in predicting depth distributions of low-energy ions implanted in materials. Free parameters adjusted for every ion-target combination are conventionally used to obtain depth profiles in accordance with the experimental ones. We have previously developed a model for predicting depth profiles in crystalline Si without free parameters. The electronic stopping power was calculated using local total electron density. The model underestimated the stopping in the < 1 1 0 > channeling direction. We have now taken a new approach to calculate the electronic stopping power. We use the local valence (3p(2)) electron density to account for the electronic energy loss between collisions and the Firsov model to account for the electronic energy loss during collision. The lowest electron densities are adjusted with a parametrization that is same for all ions in all implanting directions to correct the problems in the < 1 1 0 > channeling direction.

  1. Hydrometeor classification from a 2 dimensional video disdrometer

    NASA Astrophysics Data System (ADS)

    Grazioli, Jacopo; Tuia, Devis; Berne, Alexis

    2014-05-01

    Hydrometeor classification techniques aim at identifying the dominant hydrometeor type in a given observation volume or at a given time step, during precipitation. Such techniques are employed to interpret measurements from polarimetric weather radars, cloud lidars, and airborne particle imagers and their output is applied to risk assessment, air traffic control, and parametrization of numerical weather models. In the present work we develop a hydrometeor classification approach designed for data collected by a ground instrument: the 2 dimensional video disdrometer (2DVD). The 2DVD provides fall velocity and 2D views of each particle falling in its sampling area, by means of two orthogonally oriented line scanning cameras. We summarize this large amount of information over time steps of 60 seconds by characterizing the statistical behavior of a set of shape, size and velocity descriptors calculated for each falling hydrometeor. This summarized information is the input for the classification algorithm, that therefore provides the dominant hydrometeor type during a given time step of precipitation. 8 dominant hydrometeor classes have been identified by visual inspection of data collected in different climatologies (Switzerland, France and Canada), namely: small particles, dendrites, columns, graupel, rimed particles, aggregates, melting snow and rain. 400 representative time steps have been manually selected and classified in one of these classes in order to build a training set for the classification algorithm. The employed classifier is a support vector machine (SVM), a supervised linear classification method trained and evaluated on subsets of the 400 time steps. The algorithm achieves accurate performances, with overall accuracy higher than 90% in global terms and higher than 84% in median for each of the 8 hydrometeor classes available. This is confirmed by the Cohen's Kappa score (or HSS), that takes into account the prediction by chance and is higher than 0

  2. Materials Science and Device Physics of 2-Dimensional Semiconductors

    NASA Astrophysics Data System (ADS)

    Fang, Hui

    Materials and device innovations are the keys to future technology revolution. For MOSFET scaling in particular, semiconductors with ultra-thin thickness on insulator platform is currently of great interest, due to the potential of integrating excellent channel materials with the industrially mature Si processing. Meanwhile, ultra-thin thickness also induces strong quantum confinement which in turn affect most of the material properties of these 2-dimensional (2-D) semiconductors, providing unprecedented opportunities for emerging technologies. In this thesis, multiple novel 2-D material systems are explored. Chapter one introduces the present challenges faced by MOSFET scaling. Chapter two covers the integration of ultrathin III V membranes with Si. Free standing ultrathin III-V is studied to enable high performance III-V on Si MOSFETs with strain engineering and alloying. Chapter three studies the light absorption in 2-D membranes. Experimental results and theoretical analysis reveal that light absorption in the 2-D quantum membranes is quantized into a fundamental physical constant, where we call it the quantum unit of light absorption, irrelevant of most of the material dependent parameters. Chapter four starts to focus on another 2-D system, atomic thin layered chalcogenides. Single and few layered chalcogenides are first explored as channel materials, with focuses in engineering the contacts for high performance MOSFETs. Contact treatment by molecular doping methods reveals that many layered chalcogenides other than MoS2 exhibit good transport properties at single layer limit. Finally, Chapter five investigated 2-D van der Waals heterostructures built from different single layer chalcogenides. The investigation in a WSe2/MoS2 hetero-bilayer shows a large Stokes like shift between photoluminescence peak and lowest absorption peak, as well as strong photoluminescence intensity, consistent with spatially indirect transition in a type II band alignment in this

  3. Noble Gas Isotopic Signatures and X-Ray and Electron Diffraction Characteristics of Tagish Lake Carbonaceous Chondrite

    NASA Technical Reports Server (NTRS)

    Nakamura, T.; Noguchi, T.; Zolensky, M. E.; Takaoka, N.

    2001-01-01

    Noble gas isotopic signatures and X-ray and electron diffraction characteristics of Tagish Lake indicate that it is a unique carbonaceous chondrite rich in saponite, Fe-Mg-Ca carbonate, primordial noble gases, and presolar grains. Additional information is contained in the original extended abstract.

  4. Code System to Calculate Transient 2-Dimensional 2-Phase Flow.

    1999-10-18

    Version: 00 SOLA-DF is a numerical solution algorithm for gas-liquid mixture dynamics in two space dimensions and time. The two-phase system is described by a set of mixture equations plus a relation describing the relative flow of one phase with respect to the other. The algorithm contains models to represent the interphase exchange rates of mass, momentum, and energy for water-steam mixtures.

  5. SF-6 production via excimer-mediated electron attachment to mixed rare gas/SF6 clusters

    NASA Astrophysics Data System (ADS)

    Foltin, M.; Rauth, T.; Märk, T. D.

    1992-08-01

    Electron attachment to mixed rare gas/SF6 clusters -- in contrast to pure SF6 clusters -- shows for the production of SF-6 ions, besides the zero energy resonance, an additional resonance peak at higher electron energies in the attachment cross-section function. The process of SF-6 production via this new resonance channel involves a multiple collision electron scavenging mechanism followed by an excimer-(R2*) induced decay of an intermediate complex ion (Rm·R2*SF-6 plus neutral products.

  6. Investigation of ionization-induced electron injection in a wakefield driven by laser inside a gas cell

    NASA Astrophysics Data System (ADS)

    Audet, T. L.; Hansson, M.; Lee, P.; Desforges, F. G.; Maynard, G.; Dobosz Dufrénoy, S.; Lehe, R.; Vay, J.-L.; Aurand, B.; Persson, A.; Gallardo González, I.; Maitrallain, A.; Monot, P.; Wahlström, C.-G.; Lundh, O.; Cros, B.

    2016-02-01

    Ionization-induced electron injection was investigated experimentally by focusing a driving laser pulse with a maximum normalized potential of 1.2 at different positions along the plasma density profile inside a gas cell, filled with a gas mixture composed of 99 %H2+1 %N2 . Changing the laser focus position relative to the gas cell entrance controls the accelerated electron bunch properties, such as the spectrum width, maximum energy, and accelerated charge. Simulations performed using the 3D particle-in-cell code WARP with a realistic density profile give results that are in good agreement with the experimental ones. The interest of this regime for optimizing the bunch charge in a selected energy window is discussed.

  7. Achievement of Runaway Electron Energy Dissipation by High-Z Gas Injection in DIII-D

    NASA Astrophysics Data System (ADS)

    Hollmann, E. M.

    2014-10-01

    Disruption runaway electron (RE) formation followed by RE beam-wall strikes is a concern for future tokamaks, motivating the study of mitigation techniques to reduce the RE beam energy in a controlled manner. A promising approach for doing this is the injection of high-Z gas into the RE beam. Massive (100 torr-l) injection of high-Z gas into RE beams in DIII-D is shown to significantly dissipate both RE magnetic and kinetic energy. For example, injection of argon into a typical 300 kA current RE beam is observed to cause a drop in kinetic energy from 50 kJ to 10 kJ in 10 ms, thus rapidly reducing the damage-causing capability of the RE beam. Both the RE kinetic energy and pitch angle are important for determining the resulting wall damage, with high energy, high pitch angle electrons typically considered most dangerous. The RE energy distribution is found to be more skewed toward low energies than predicted by avalanche theory. The pitch angle is not found to be constant, as is frequently assumed, but is shown to drop from sin(θ) ~ 1 for energies less than 1 MeV to sin(θ) ~ 0 . 2 for energies greater than 10 MeV. Injection of high-Z impurities does not appear to change the overall shape of the energy or pitch angle distributions dramatically. The enhanced RE energy dissipation appears to be caused primarily via collisions with the cold plasma leading to line radiation. Synchrotron power loss only becomes significant in the absence of high-Z impurities, while radial transport loss of REs is seen to become dominant if the RE beam moves sufficiently close to the vessel walls. The experiments demonstrate that avalanche theory somewhat underestimates collisional dissipation of REs in the presence of high-Z atoms, even in the absence of radial transport losses, meaning that reducing RE wall damage in large tokamaks should be easier than previously expected. Supported by the US Department of Energy under DE-FG02-07ER54917 and DE-FC02-04ER54698.

  8. Molecular structure and nicotinic activity of arecoline. A gas electron diffraction study combined with theoretical calculations

    NASA Astrophysics Data System (ADS)

    Takeshima, Tsuguhide; Takeuchi, Hiroshi; Egawa, Toru; Konaka, Shigehiro

    2005-01-01

    The molecular structure of arecoline (methyl 1,2,5,6-tetrahydro-1-methylnicotinate, ? has been determined by gas electron diffraction. Diffraction patterns were taken at about 370 K. Structural constraints for the data analysis were obtained from MP2/6-31G** calculations. Vibrational mean amplitudes and shrinkage corrections were calculated from the force constants obtained from the gas-phase vibrational frequencies and the B3LYP/6-31G** calculations. The electron diffraction data were well reproduced by assuming the mixture of four conformers. The determined structural parameters ( rg (Å) and ∠ (°)) for the main conformer with 3 σ in parentheses are as follows: < rg(N-C ring)>=1.456(4); rg(N-C methyl)=1.451 (d.p.); rg(C dbnd6 C)=1.339(9); < rg(C-C)>=1.512(3); rg(O-C methyl)=1.434(5); rg(C(O)-O)=1.355 (d.p.); rg(C dbnd6 O)=1.209(4); the out-of-plane angle of the methyl group=50.3(23); ∠C ringN ringC ring=112.8(30); ∠N ringC ringC ring(H 2)=110.5(16); <∠C ringC ringC ring>=118.4(5); ∠C dbnd6 CC(O)=116.8(7); ∠CC dbnd6 O=127.6(9); ∠CC-O=109.8(8), where the angle brackets denote averaged values and d.p. denotes dependent parameters. Fixing the abundances of the minor conformers, Ax-s- cis and Ax-s- trans, at the theoretical values (13% in total), those of the Eq-s- cis and Eq-s- trans conformers were determined to be 46(16) and 41(16)%, respectively. Here Ax and Eq denote the axial and equatorial directions of the N-CH 3 bond and s- cis and s- trans show the orientation of the methoxycarbonyl group expressed by the configuration of the C dbnd6 O and C dbnd6 C bonds. The N⋯O carbonyl distances of the Eq-s- cis and Ax-s- cis conformers are 4.832(13) and 4.874(16) Å, respectively. They are close to the N⋯N distance of the most abundant conformer of nicotine, 4.885(6) Å, suggesting that the Eq-s- cis and Ax-s- cis conformers have nicotinic activity.

  9. Gas-Assisted Annular Microsprayer for Sample Preparation for Time-Resolved Cryo-Electron Microscopy

    PubMed Central

    Lu, Zonghuan; Barnard, David; Shaikh, Tanvir R.; Meng, Xing; Mannella, Carmen A.; Yassin, Aymen; Agrawal, Rajendra; Wagenknecht, Terence; Lu, Toh-Ming

    2014-01-01

    Time-resolved cryo electron microscopy (TRCEM) has emerged as a powerful technique for transient structural characterization of isolated biomacromolecular complexes in their native state within the time scale of seconds to milliseconds. For TRCEM sample preparation, microfluidic device [9] has been demonstrated to be a promising approach to facilitate TRCEM biological sample preparation. It is capable of achieving rapidly aqueous sample mixing, controlled reaction incubation, and sample deposition on electron microscopy (EM) grids for rapid freezing. One of the critical challenges is to transfer samples to cryo-EM grids from the microfluidic device. By using microspraying method, the generated droplet size needs to be controlled to facilitate the thin ice film formation on the grid surface for efficient data collection, while not too thin to be dried out before freezing, i.e., optimized mean droplet size needs to be achieved. In this work, we developed a novel monolithic three dimensional (3D) annular gas-assisted microfluidic sprayer using 3D MEMS (MicroElectroMechanical System) fabrication techniques. The microsprayer demonstrated dense and consistent microsprays with average droplet size between 6-9 μm, which fulfilled the above droplet size requirement for TRCEM sample preparation. With droplet density of around 12-18 per grid window (window size is 58×58 μm), and the data collectible thin ice region of >50% total wetted area, we collected ~800-1000 high quality CCD micrographs in a 6-8 hour period of continuous effort. This level of output is comparable to what were routinely achieved using cryo-grids prepared by conventional blotting and manual data collection. In this case, weeks of data collection process with the previous device [9] has shortened to a day or two. And hundreds of microliter of valuable sample consumption can be reduced to only a small fraction. PMID:25530679

  10. Ab initio quantum Monte Carlo simulations of the uniform electron gas without fixed nodes

    NASA Astrophysics Data System (ADS)

    Groth, S.; Schoof, T.; Dornheim, T.; Bonitz, M.

    2016-02-01

    The uniform electron gas (UEG) at finite temperature is of key relevance for many applications in the warm dense matter regime, e.g., dense plasmas and laser excited solids. Also, the quality of density functional theory calculations crucially relies on the availability of accurate data for the exchange-correlation energy. Recently, results for N =33 spin-polarized electrons at high density, rs=r ¯/aB≲4 , and low temperature have been obtained with the configuration path integral Monte Carlo (CPIMC) method [T. Schoof et al., Phys. Rev. Lett. 115, 130402 (2015), 10.1103/PhysRevLett.115.130402]. To achieve these results, the original CPIMC algorithm [T. Schoof et al., Contrib. Plasma Phys. 51, 687 (2011), 10.1002/ctpp.201100012] had to be further optimized to cope with the fermion sign problem (FSP). It is the purpose of this paper to give detailed information on the manifestation of the FSP in CPIMC simulations of the UEG and to demonstrate how it can be turned into a controllable convergence problem. In addition, we present new thermodynamic results for higher temperatures. Finally, to overcome the limitations of CPIMC towards strong coupling, we invoke an independent method—the recently developed permutation blocking path integral Monte Carlo approach [T. Dornheim et al., J. Chem. Phys. 143, 204101 (2015), 10.1063/1.4936145]. The combination of both approaches is able to yield ab initio data for the UEG over the entire density range, above a temperature of about one half of the Fermi temperature. Comparison with restricted path integral Monte Carlo data [E. W. Brown et al., Phys. Rev. Lett. 110, 146405 (2013), 10.1103/PhysRevLett.110.146405] allows us to quantify the systematic error arising from the free particle nodes.

  11. Correlation Energy of the Homogeneous Electron Gas from Adiabatic Connection Fluctuation-Dissipation Theory including Exact Exchange kernel

    NASA Astrophysics Data System (ADS)

    Colonna, Nicola; de Gironcoli, Stefano

    2014-03-01

    We have developed an expression for the electronic correlation energy via the Adiabatic Connection Fluctuation-Dissipation Theorem (ACFDT) going beyond the Random-Phase Approximation (RPA) by including exact exchange contribution to the kernel (RPAx). Our derivation is valid and efficient for general systems. It is based on an eigenvalue decomposition of the time dependent response function of the Many Body system in the limit of vanishing coupling constant, evaluated by Density Functional Perturbation Theory. We tested the accuracy of this approximation on the homogeneous electron gas. Within RPAx, the correlation energy of the homogeneous electron gas improves significantly with respect to the RPA results up to densities of the order of rs ~ 10 . However, beyond this value, the RPAx response function becomes pathological and the approximation breaks down. We have also evaluated the dependence of the correlation energy on the spin magnetization of the system. Both RPA an RPAx are in excellent agreement with accurate Quantum Monte Carlo results.

  12. Headspace Analysis of Philippine Civet Coffee Beans Using Gas Chromatography-Mass Spectrometry and Electronic Nose

    NASA Astrophysics Data System (ADS)

    Ongo, E.; Sevilla, F.; Antonelli, A.; Sberveglieri, G.; Montevecchi, G.; Sberveglieri, V.; de Paola, E. L.; Concina, I.; Falasconi, M.

    2011-11-01

    Civet coffee, the most expensive and best coffee in the world, is an economically important export product of the Philippines. With a growing threat of food adulteration and counterfeiting, a need for quality authentication is essential to protect the integrity and strong market value of Philippine civet coffee. At present, there is no internationally accepted method of verifying whether a bean is an authentic civet coffee. This study presented a practical and promising approach to identify and establish the headspace qualitative profile of Philippine civet coffee using electronic nose (E-nose) and gas chromatography-mass spectrometry (GC-MS). E-nose analysis revealed that aroma characteristic is one of the most important quality indicators of civet coffee. The findings were supported by GC-MS analysis. Principal component analysis (PCA) exhibited a clearly separated civet coffees from their control beans. The chromatographic fingerprints indicated that civet coffees differed with their control beans in terms of composition and concentration of individual volatile constituents.

  13. Tunable one-dimensional electron gas carrier densities at nanostructured oxide interfaces.

    PubMed

    Zhuang, Houlong L; Zhang, Lipeng; Xu, Haixuan; Kent, P R C; Ganesh, P; Cooper, Valentino R

    2016-01-01

    The emergence of two-dimensional metallic states at the LaAlO3/SrTiO3 (LAO/STO) heterostructure interface is known to occur at a critical thickness of four LAO layers. This insulator to-metal transition can be explained through the "polar catastrophe" mechanism arising from the divergence of the electrostatic potential at the LAO surface. Here, we demonstrate that nanostructuring can be effective in reducing or eliminating this critical thickness. Employing a modified "polar catastrophe" model, we demonstrate that the nanowire heterostructure electrostatic potential diverges more rapidly as a function of layer thickness than in a regular heterostructure. Our first-principles calculations indicate that for nanowire heterostructures a robust one-dimensional electron gas (1DEG) can be induced, consistent with recent experimental observations of 1D conductivity at LAO/STO steps. Similar to LAO/STO 2DEGs, we predict that the 1D charge density decays laterally within a few unit cells away from the nanowire; thus providing a mechanism for tuning the carrier dimensionality between 1D and 2D conductivity. Our work provides insight into the creation and manipulation of charge density at an oxide heterostructure interface and therefore may be beneficial for future nanoelectronic devices and for the engineering of novel quantum phases. PMID:27151049

  14. Fine-pitch and thick-foil gas electron multipliers for cosmic x-ray polarimeters

    NASA Astrophysics Data System (ADS)

    Tamagawa, Toru; Hayato, Asami; Yamaguchi, Yorito; Hamagaki, Hideki; Hashimoto, Shigehira; Inuzuka, Masahide; Miyasaka, Hiromasa; Sakurai, Ikuya; Tokanai, Fuyuki; Makishima, Kazuo

    2006-06-01

    We have produced various gas electron multiplier foils (GEMs) by using laser etching technique for cosmic X-ray polarimeters. The finest structure GEM we have fabricated has 30 μm-diameter holes on a 50 μm-pitch. The effective gain of the GEM reaches around 5000 at the voltage of 570 V between electrodes. The gain is slightly higher than that of the CERN standard GEM with 70 μm-diameter holes on a 140 μm-pitch. We have fabricated GEMs with thickness of 100 μm which has two times thicker than the standard GEM. The effective gain of the thick-foil GEM is 104 at the applied voltage of 350 V per 50 μm of thickness. The gain is about two orders higher than that of the standard GEM. The remarkable characteristic of the thick-foil GEM is that the effective gain at the beginning of micro-discharge is quite improved. For fabricating the thick-foil GEMs, we have employed new material, liquid crystal polymer (LCP) which has little moisture absorption rate, as an insulator layer instead of polyimide. One of the thick-foil GEM we have fabricated has 8 μm copper layer in the middle of the 100 μm-thick insulator layer. The metal layer in the middle of the foil works as a field-shaper in the multiplication channels, though it slightly decreases the effective gain.

  15. Characterization of a thermal neutron beam monitor based on gas electron multiplier technology

    NASA Astrophysics Data System (ADS)

    Croci, Gabriele; Cazzaniga, Carlo; Claps, Gerardo; Tardocchi, Marco; Rebai, Marica; Murtas, Fabrizio; Vassallo, Espedito; Caniello, Roberto; Cippo, Enrico Perelli; Grosso, Giovanni; Rigato, Valentino; Gorini, Giuseppe

    2014-08-01

    Research into valid alternatives to 3He detectors is fundamental to the affordability of new neutron spallation sources like the European Spallation Source (ESS). In the case of ESS it is also essential to develop high-rate detectors that can fully exploit the increase of neutron flux relative to present neutron sources. One of the technologies fulfilling these requirements is the gas electron multiplier (GEM), since it can combine a high rate capability (MHz/mm2), a coverage area up to 1 m2 and a space resolution better than 0.5 mm. Its use as a neutron detector requires conversion of neutrons into charged particles. This paper describes the realization and characterization of a thermal neutron GEM-based beam monitor equipped with a cathode containing ^{10}B for neutron conversion. This device is constituted by a triple GEM detector whose cathode is made of an aluminum sheet covered by a 1 μ m thick ^{{nat}}B4C layer. The method used to realize a long-lasting ^{{nat}}B4C layer is described and the properties of such a layer have been determined. The detector performances (measured on the ISIS-VESUVIO beam line) in terms of beam profile reconstruction, imaging, and measurement of the thermal neutron beam energy spectrum are compatible with those obtained by standard beam monitors.

  16. Tunable one-dimensional electron gas carrier densities at nanostructured oxide interfaces

    PubMed Central

    Zhuang, Houlong L.; Zhang, Lipeng; Xu, Haixuan; Kent, P. R. C.; Ganesh, P.; Cooper, Valentino R.

    2016-01-01

    The emergence of two-dimensional metallic states at the LaAlO3/SrTiO3 (LAO/STO) heterostructure interface is known to occur at a critical thickness of four LAO layers. This insulator to-metal transition can be explained through the “polar catastrophe” mechanism arising from the divergence of the electrostatic potential at the LAO surface. Here, we demonstrate that nanostructuring can be effective in reducing or eliminating this critical thickness. Employing a modified “polar catastrophe” model, we demonstrate that the nanowire heterostructure electrostatic potential diverges more rapidly as a function of layer thickness than in a regular heterostructure. Our first-principles calculations indicate that for nanowire heterostructures a robust one-dimensional electron gas (1DEG) can be induced, consistent with recent experimental observations of 1D conductivity at LAO/STO steps. Similar to LAO/STO 2DEGs, we predict that the 1D charge density decays laterally within a few unit cells away from the nanowire; thus providing a mechanism for tuning the carrier dimensionality between 1D and 2D conductivity. Our work provides insight into the creation and manipulation of charge density at an oxide heterostructure interface and therefore may be beneficial for future nanoelectronic devices and for the engineering of novel quantum phases. PMID:27151049

  17. Large Gas Electron Multiplier Trackers for Super Bigbite Spectrometer at Jefferson lab Hall A

    NASA Astrophysics Data System (ADS)

    Saenboonruang, K.; Gnanvo, K.; Liyanage, N.; Nelyubin, V.; Sacher, S.; Cisbani, E.; Musico, P.; Wojtsekhowski, B.

    2013-04-01

    The 12 GeV upgrade at Jefferson Lab (JLAB) makes many exciting nuclear experiments possible. These experiments also require new high performance instrumentation. The Super Bigbite Spectrometer (SBS) was proposed to perform a series of high precision nucleon form factor experiments at large momentum transfer. The SBS will be capable of operating at a very high luminosity and provide a large solid angle acceptance of 76 msr. SBS will be equipped with a double focal plane polarimeter. Thus, SBS will have three large trackers made of Gas Electron Multiplier (GEM) chambers. The first, second, and third trackers will consist of six, four, and four tracking layers respectively. When completed in 2017, the SBS GEM trackers will form one of the largest sets of GEM chambers in the world. The GEM trackers allow the SBS to operate under high background rates over 500 kHz/cm^2, while providing an excellent spatial resolution of 70 μm. The first tracker will be constructed at the Istituto Nazionale di Fisica Nucleare in Italy, while the second and third trackers will be built at the University of Virginia. In 2012, the first UVa SBS GEM chamber prototype was successfully constructed and tested. The GEM chamber construction details and test results will be presented in this talk.

  18. Gas chromatographic and electron spin resonance investigations of gamma-irradiated frog legs

    NASA Astrophysics Data System (ADS)

    Morehouse, Kim M.; Ku, Yuoh; Albrecht, Heidi L.; George C., Yang

    Several very sensitive techniques to measure radiation-induced products in frog legs were investigated. Presented here are results from the use of electron spin resonance (ESR) spectroscopy and capillary gas chromatography (GC) to measure radiolysis products in γ-irradiated frog legs. When bone is irradiated, a characteristic ESR signal develops and is easily measured. The intensity of the ESR signal is dose-dependent and stable for several months at room temperature. When triglycerides or fatty acids are irradiated, some of the major stable products formed are hydrocarbons with one less carbon than the precursor fatty acids. These hydrocarbons are formed as the result of the loss of CO 2 during various free radical reactions. A capillary GC procedure was developed to monitor the formation of these hydrocarbons in γ-irradiated frog legs. Since frog legs contain large amounts of palmitic, stearic, oleic, and linoleic acids, the formation of the hydrocarbons (pentadecane, heptadecane, 8-heptadecene, and 6,9-heptadecadiene, respectively) from the decarboxylation of these fatty acids was monitored. The yields of these hydrocarbons were found to be linear with applied dose. A sample from a lot of imported frog legs that were believed to have been treated with ionizing radiation was also analyzed. The ESR technique, in conjunction with the GC data on the hydrocarbons, appears to be a useful approach for identifying and monitoring frog legs that have been treated with ionizing radiation.

  19. Tunable one-dimensional electron gas carrier densities at nanostructured oxide interfaces

    NASA Astrophysics Data System (ADS)

    Zhuang, Houlong L.; Zhang, Lipeng; Xu, Haixuan; Kent, P. R. C.; Ganesh, P.; Cooper, Valentino R.

    2016-05-01

    The emergence of two-dimensional metallic states at the LaAlO3/SrTiO3 (LAO/STO) heterostructure interface is known to occur at a critical thickness of four LAO layers. This insulator to-metal transition can be explained through the “polar catastrophe” mechanism arising from the divergence of the electrostatic potential at the LAO surface. Here, we demonstrate that nanostructuring can be effective in reducing or eliminating this critical thickness. Employing a modified “polar catastrophe” model, we demonstrate that the nanowire heterostructure electrostatic potential diverges more rapidly as a function of layer thickness than in a regular heterostructure. Our first-principles calculations indicate that for nanowire heterostructures a robust one-dimensional electron gas (1DEG) can be induced, consistent with recent experimental observations of 1D conductivity at LAO/STO steps. Similar to LAO/STO 2DEGs, we predict that the 1D charge density decays laterally within a few unit cells away from the nanowire; thus providing a mechanism for tuning the carrier dimensionality between 1D and 2D conductivity. Our work provides insight into the creation and manipulation of charge density at an oxide heterostructure interface and therefore may be beneficial for future nanoelectronic devices and for the engineering of novel quantum phases.

  20. Rapid determination of acrylamide contaminant in conventional fried foods by gas chromatography with electron capture detector.

    PubMed

    Zhang, Yu; Dong, Yi; Ren, Yiping; Zhang, Ying

    2006-05-26

    Gas chromatography coupled with electron capture detector (GC-ECD) was successfully developed and applied for the rapid determination of acrylamide in conventional fried foods, such as potato crisps, potato chips, and fried chicken wings. The method included defatting with n-hexane, extraction with aqueous solution of sodium chloride (NaCl), derivatization with potassium bromate (KBrO3) and potassium bromide (KBr), and liquid-liquid extraction with ethyl acetate. The final acrylamide extract was analyzed by GC-ECD for quantification and by GC-MS for confirmation. The chromatographic analysis was performed on the HP-INNOWax capillary column, and good retention and peak response of acrylamide were achieved under the optimal conditions (numbers of theoretical plates N = 83,815). The limit of detection (LOD) was estimated to be 0.1 microg kg(-1) on the basis of ECD technique. Recoveries of acrylamide from conventional samples spiked at levels of 150, 500 and 1000 microg kg(-1) (n = 4 for each level) ranged between 87 and 97% with relative standard deviations (RSD) of less than 4%. Furthermore, the GC-ECD method showed that no clean-up steps of acrylamide derivative would be performed prior to injection and was slightly more sensitive than the MS/MS-based methods. Validation and quantification results demonstrated that this method should be regarded as a new, low-cost, and robust alternative for conventional investigation of acrylamide. PMID:16580677

  1. Methodology to model the energy and greenhouse gas emissions of electronic software distributions.

    PubMed

    Williams, Daniel R; Tang, Yinshan

    2012-01-17

    A new electronic software distribution (ESD) life cycle analysis (LCA) methodology and model structure were constructed to calculate energy consumption and greenhouse gas (GHG) emissions. In order to counteract the use of high level, top-down modeling efforts, and to increase result accuracy, a focus upon device details and data routes was taken. In order to compare ESD to a relevant physical distribution alternative, physical model boundaries and variables were described. The methodology was compiled from the analysis and operational data of a major online store which provides ESD and physical distribution options. The ESD method included the calculation of power consumption of data center server and networking devices. An in-depth method to calculate server efficiency and utilization was also included to account for virtualization and server efficiency features. Internet transfer power consumption was analyzed taking into account the number of data hops and networking devices used. The power consumed by online browsing and downloading was also factored into the model. The embedded CO(2)e of server and networking devices was proportioned to each ESD process. Three U.K.-based ESD scenarios were analyzed using the model which revealed potential CO(2)e savings of 83% when ESD was used over physical distribution. Results also highlighted the importance of server efficiency and utilization methods. PMID:22107078

  2. Momentum distribution of the uniform electron gas: Improved parametrization and exact limits of the cumulant expansion

    NASA Astrophysics Data System (ADS)

    Gori-Giorgi, Paola; Ziesche, Paul

    2002-12-01

    The momentum distribution of the unpolarized uniform electron gas in its Fermi-liquid regime, n(k,rs), with the momenta k measured in units of the Fermi wave number kF and with the density parameter rs, is constructed with the help of the convex Kulik function G(x). It is assumed that n(0,rs),n(1±,rs), the on-top pair density g(0,rs), and the kinetic energy t(rs) are known (respectively, from accurate calculations for rs=1,…,5, from the solution of the Overhauser model, and from quantum Monte Carlo calculations via the virial theorem). Information from the high- and the low-density limit, corresponding to the random-phase approximation and to the Wigner crystal limit, is used. The result is an accurate parametrization of n(k,rs), which fulfills most of the known exact constraints. It is in agreement with the effective-potential calculations of Takada and Yasuhara [Phys. Rev. B 44, 7879 (1991)], is compatible with quantum Monte Carlo data, and is valid in the density range rs≲12. The corresponding cumulant expansions of the pair density and of the static structure factor are discussed, and some exact limits are derived.

  3. Tunable one-dimensional electron gas carrier densities at nanostructured oxide interfaces

    DOE PAGESBeta

    Zhang, Lipeng; Xu, Haixuan; Kent, Paul R. C.; Ganesh, Panchapakesan; Cooper, Valentino R.; Zhuang, Houlong L.

    2016-05-06

    The emergence of two-dimensional metallic states at the LaAlO3/SrTiO3 (LAO/STO) heterostructure interface is known to occur at a critical thickness of four LAO over layers. This insulator-to-metal transition can be explained through the polar catastrophe mechanism arising from the divergence of the electrostatic potential at the LAO surface. Here, we demonstrate that nanostructuring can be effective in reducing or eliminating this critical thickness. Employing a modified polar catastrophe" model, we demonstrate that the nanowire heterostructure electrostatic potential diverges more rapidly as a function of layer thickness than in a regular heterostructure. Our first principles calculations indicate that for nanowire heterostructuremore » geometries a one-dimensional electron gas (1DEG) can be induced, consistent with recent experimental observations of 1D conductivity in LAO/STO steps. Similar to LAO/STO 2DEGs, we predict that the 1D charge density will decay laterally within a few unit cells away from the nanowire; thus providing a mechanism for tuning the carrier behavior between 1D and 2D conductivity. Furthermore, our work provides insight into the creation and manipulation of charge density at an oxide heterostructure interface and therefore may be beneficial for future nanoelectronic devices and for the engineering of novel quantum phases.« less

  4. Gas Electron Multiplier performance under high intensity X-ray radiation

    NASA Astrophysics Data System (ADS)

    di, Danning

    2015-10-01

    Large size Gas Electron Multiplier (GEM) for the Super Bigbite Spectrometer (SBS) in Hall A at Thomas Jefferson National Laboratory (JLab) have been built at Detector Lab of University of Virginia(UVa). The Proton Polarimeter Back Tracker of the SBS consist of 40 GEM modules of size 60 ×50 cm2. We report R&D and quality test of the GEM detectors under high intensity X-ray radiation. Expected background rate in experiment is up to about 500 kHz/cm2. Such high background rate requires GEM detectors to have timing resolution of about a few nano seconds and operate stably with high rate activities going on within. X-ray with high rate up to 50 MHz/cm2 and energy up to 50 keV was used to test the performance of GEM detectors in detector lab at UVa. Issues caused by high intensity background and detailed R&D effort to adapt GEM detectors for use in the SBS are described.

  5. Electrical detection of spin transport in Si two-dimensional electron gas systems.

    PubMed

    Chang, Li-Te; Fischer, Inga Anita; Tang, Jianshi; Wang, Chiu-Yen; Yu, Guoqiang; Fan, Yabin; Murata, Koichi; Nie, Tianxiao; Oehme, Michael; Schulze, Jörg; Wang, Kang L

    2016-09-01

    Spin transport in a semiconductor-based two-dimensional electron gas (2DEG) system has been attractive in spintronics for more than ten years. The inherent advantages of high-mobility channel and enhanced spin-orbital interaction promise a long spin diffusion length and efficient spin manipulation, which are essential for the application of spintronics devices. However, the difficulty of making high-quality ferromagnetic (FM) contacts to the buried 2DEG channel in the heterostructure systems limits the potential developments in functional devices. In this paper, we experimentally demonstrate electrical detection of spin transport in a high-mobility 2DEG system using FM Mn-germanosilicide (Mn(Si0.7Ge0.3)x) end contacts, which is the first report of spin injection and detection in a 2DEG confined in a Si/SiGe modulation doped quantum well structure (MODQW). The extracted spin diffusion length and lifetime are l sf = 4.5 μm and [Formula: see text] at 1.9 K respectively. Our results provide a promising approach for spin injection into 2DEG system in the Si-based MODQW, which may lead to innovative spintronic applications such as spin-based transistor, logic, and memory devices. PMID:27479155

  6. Electrical detection of spin transport in Si two-dimensional electron gas systems

    NASA Astrophysics Data System (ADS)

    Chang, Li-Te; Fischer, Inga Anita; Tang, Jianshi; Wang, Chiu-Yen; Yu, Guoqiang; Fan, Yabin; Murata, Koichi; Nie, Tianxiao; Oehme, Michael; Schulze, Jörg; Wang, Kang L.

    2016-09-01

    Spin transport in a semiconductor-based two-dimensional electron gas (2DEG) system has been attractive in spintronics for more than ten years. The inherent advantages of high-mobility channel and enhanced spin–orbital interaction promise a long spin diffusion length and efficient spin manipulation, which are essential for the application of spintronics devices. However, the difficulty of making high-quality ferromagnetic (FM) contacts to the buried 2DEG channel in the heterostructure systems limits the potential developments in functional devices. In this paper, we experimentally demonstrate electrical detection of spin transport in a high-mobility 2DEG system using FM Mn-germanosilicide (Mn(Si0.7Ge0.3)x) end contacts, which is the first report of spin injection and detection in a 2DEG confined in a Si/SiGe modulation doped quantum well structure (MODQW). The extracted spin diffusion length and lifetime are l sf = 4.5 μm and {τ }{{s}}=16 {{ns}} at 1.9 K respectively. Our results provide a promising approach for spin injection into 2DEG system in the Si-based MODQW, which may lead to innovative spintronic applications such as spin-based transistor, logic, and memory devices.

  7. Electrochemical Testing of Gas Tungsten Arc Welded and Reduced Pressure Electron Beam Welded Alloy 22

    SciTech Connect

    Day, S D; Wong, F G; Gordon, S R; Wong, L L; Rebak, R B

    2006-02-05

    Alloy 22 (N06022) is the material selected for the fabrication of the outer shell of the nuclear waste containers for the Yucca Mountain high-level nuclear waste repository site. A key technical issue in the waste package program has been the integrity of the container weld joints. The currently selected welding process for fabricating and sealing the containers is the traditional gas tungsten arc welding (GTAW) or TIG method. An appealing faster alternative technique is reduced pressure electron beam (RPEB) welding. It was of interest to compare the corrosion properties of specimens prepared using both types of welding techniques. Standard electrochemical tests were carried on GTAW and RPEB welds as well as on base metal (non-welded) to determine their relative corrosion behavior in simulated concentrated water (SCW) at 90 C (alkaline), 1 M HCl at 60 C (acidic) and 1 M NaCl at 90 C (neutral) solutions. Results show that for all practical purposes, the three tested materials had the same electrochemical behavior in the three tested electrolytes.

  8. Electrochemical Testing of Gas Tungsten ARC Welded and Reduced Pressure Electron Beam Welded Alloy 22

    SciTech Connect

    S. Daniel Day; Frank M.G. Wong; Steven R. Gordon; Lana L. Wong; Raul B. Rebak

    2006-05-08

    Alloy 22 (N06022) is the material selected for the fabrication of the outer shell of the nuclear waste containers for the Yucca Mountain high-level nuclear waste repository site. A key technical issue in the waste package program has been the integrity of the container weld joints. The currently selected welding process for fabricating and sealing the containers is the traditional gas tungsten arc welding (GTAW) or TIC method. An appealing faster alternative technique is reduced pressure electron beam (RPEB) welding. It was of interest to compare the corrosion properties of specimens prepared using both types of welding techniques. Standard electrochemical tests were carried on GTAW and RPEB welds as well as on base metal (non-welded) to determine their relative corrosion behavior in simulated concentrated water (SCW) at 90 C (alkaline), 1 M HCI at 60 C (acidic) and 1 M NaCl at 90 C (neutral) solutions. Results show that for all practical purposes, the three tested materials had the same electrochemical behavior in the three tested electrolytes.

  9. Tunable One-Dimensional Electron Gas Carrier Densities at Nanostructured Oxide Interfaces

    SciTech Connect

    Zhang, Lipeng; Xu, Haixuan; Kent, Paul R; Ganesh, Panchapakesan; Cooper, Valentino R

    2016-01-01

    The emergence of two-dimensional metallic states at the LaAlO3/SrTiO3 (LAO/STO) heterostructure interface is known to occur at a critical thickness of four LAO over layers. This insulator-to-metal transition can be explained through the polar catastrophe mechanism arising from the divergence of the electrostatic potential at the LAO surface. Here, we demonstrate that nanostructuring can be effective in reducing or eliminating this critical thickness. Employing a modified polar catastrophe" model, we demonstrate that the nanowire heterostructure electrostatic potential diverges more rapidly as a function of layer thickness than in a regular heterostructure. Our first principles calculations indicate that for nanowire heterostructure geometries a one-dimensional electron gas (1DEG) can be induced, consistent with recent experimental observations of 1D conductivity in LAO/STO steps. Similar to LAO/STO 2DEGs, we predict that the 1D charge density will decay laterally within a few unit cells away from the nanowire; thus providing a mechanism for tuning the carrier behavior between 1D and 2D conductivity. In essence, our work provides insight into the creation and manipulation of charge density at an oxide heterostructure interface and therefore may be beneficial for future nanoelectronic devices and for the engineering of novel quantum phases.

  10. Trace analysis of sulfamethazine in animal feed, human urine, and wastewater by electron capture gas chromatography

    SciTech Connect

    Holder, C.L.; Thompson, H.C. Jr.; Bowman, M.C.

    1981-12-01

    Sulfamethazine, a widely used antibacterial drug additive in feeds for swine, chickens, and cattle, was scheduled for toxicological evaluation because of potential human health hazards associated with its residues in edible animal tissues. Analytical chemical procedures that would ensure proper concentration, homogeneity, and stability of the drug in dosed feed and its safe usage during the animal studies were prerequisites for such toxicological tests. Electron capture gas chromatographic (EC/GC) methods were therefore devised for the analysis of sulfamethazine residues in animal feed, human urine, and wastewater at levels as low as 100, 10, and 10 ppb, respectively. Sample extracts were cleaned up by using liquid/liquid partitioning, and the extracts were subjected to two derivatizations followed by cleanup on a silica gel column. The derivatizations of sulfamethazine consisted of methylation followed by trifluoroacetylation of the primary amine function. Ancillary data concerning stability of the compound in animal feed, water, and as a dry residue on glass, extraction efficiencies, partition values with various solvents, and the analysis of residues in feed by high pressure liquid chromatography (HPLC) at levels as low as 1.0 ppm are presented.

  11. Detecting excitation and magnetization of individual dopants in a semiconductor two-dimensional electron gas

    NASA Astrophysics Data System (ADS)

    Wiebe, Jens

    2011-03-01

    Magnetic atoms doped into a semiconductor are the building blocks for bottom up spintronic and quantum logic devices. They also provide model systems for the investigation of fundamental effects. In order to correlate the dopant's atomic structure with its magnetism magnetically sensitive techniques with atomic resolution are a prerequisite. Here, I show electrical excitation and read-out [ 1 ] of single magnetic dopant associated spins in a two-dimensional electron gas (2DEG) confined to a semiconductor surface [ 2 ] using spin-resolved scanning tunneling spectroscopy [ 3 ] . I will review our real-space study of the quantum Hall transition in the 2DEG [ 2 ] and of the magnetic properties of the dopants [ 1 ] . Finally, I will demonstrate that the dopant serves as an atomic scale probe for local magnetometry of the 2DEG. This work was done in collaboration with A. A. Khajetoorians, B. Chillian, S. Schuwalow, F. Lechermann, K. Hashimoto, C. Sohrmann, T. Inaoka, F. Meier, Y. Hirayama, R. A. Römer, M. Morgenstern, and R. Wiesendanger. [ 1 ] A. A. Khajetoorians et al., Nature 467, 1084 (2010). [ 2 ] K. Hashimoto et al., Phys. Rev. Lett. 101, 256802 (2008). [ 3 ] J. Wiebe et al., Rev. Sci. Instrum. 75, 4871 (2004). We acknowledge financial support from ERC Advanced Grant ``FURORE'', by the DFG via SFB668 and GrK1286, and by the city of Hamburg via the cluster of excellence ``Nanospintronics''.

  12. A method for measuring the local gas pressure within a gas-flow stage in situ in the transmission electron microscope.

    PubMed

    Colby, R; Alsem, D H; Liyu, A; Kabius, B

    2015-06-01

    Environmental transmission electron microscopy (TEM) has enabled in situ experiments in a gaseous environment with high resolution imaging and spectroscopy. Addressing scientific challenges in areas such as catalysis, corrosion, and geochemistry can require pressures much higher than the ∼20 mbar achievable with a differentially pumped environmental TEM. Gas flow stages, in which the environment is contained between two semi-transparent thin membrane windows, have been demonstrated at pressures of several atmospheres. However, the relationship between the pressure at the sample and the pressure drop across the system is not clear for some geometries. We demonstrate a method for measuring the gas pressure at the sample by measuring the ratio of elastic to inelastic scattering and the defocus of the pair of thin windows. This method requires two energy filtered high-resolution TEM images that can be performed during an ongoing experiment, at the region of interest. The approach is demonstrated to measure greater than atmosphere pressures of N2 gas using a commercially available gas-flow stage. This technique provides a means to ensure reproducible sample pressures between different experiments, and even between very differently designed gas-flow stages. PMID:25765435

  13. Two-dimensional electron gas formed on the indium-adsorbed Si(111)3×3-Au surface

    NASA Astrophysics Data System (ADS)

    Kim, J. K.; Kim, K. S.; McChesney, J. L.; Rotenberg, E.; Hwang, H. N.; Hwang, C. C.; Yeom, H. W.

    2009-08-01

    Electronic structure of the In-adsorbed Si(111)3×3-Au surface was investigated by core-level and angle-resolved photoelectron spectroscopy. On the Si(111)3×3-Au surface, In adsorbates were reported to remove the characteristic domain-wall network and produce a very well-ordered 3×3 surface phase. Detailed band dispersions and Fermi surfaces were mapped for the pristine and In-dosed Si(111)3×3-Au surfaces. After the In adsorption, the surface bands shift toward a higher binding energy, increasing substantially the electron filling of the metallic band along with a significant sharpening of the spectral features. The resulting Fermi surface indicates the formation of a perfect isotropic two-dimensional electron-gas system filled with 0.3 electrons. This band structure agrees well with that expected, in a recent density-functional theory calculation, for the conjugate-honeycomb trimer model of the pristine Si(111)3×3-Au surface. Core-level spectra indicate that In adsorbates interact mostly with Si surface atoms. The possible origins of the electronic structure modification by In adsorbates are discussed. The importance of the domain wall and the indirect role of In adsorbates are emphasized. This system provides an interesting playground for the study of two-dimensional electron gas on solid surfaces.

  14. Measurement of runaway electron energy distribution function during high-Z gas injection into runaway electron plateaus in DIII-D

    SciTech Connect

    Hollmann, E. M.; Moyer, R. A.; Rudakov, D. L.; Parks, P. B.; Eidietis, N. W.; Paz-Soldan, C.; Commaux, N.; Shiraki, D.; Austin, M. E.; Lasnier, C. J.

    2015-05-15

    The evolution of the runaway electron (RE) energy distribution function f{sub ε} during massive gas injection into centered post-disruption runaway electron plateaus has been reconstructed. Overall, f{sub ε} is found to be much more skewed toward low energy than predicted by avalanche theory. The reconstructions also indicate that the RE pitch angle θ is not uniform, but tends to be large at low energies and small θ ∼ 0.1–0.2 at high energies. Overall power loss from the RE plateau appears to be dominated by collisions with background free and bound electrons, leading to line radiation. However, the drag on the plasma current appears to be dominated by collisions with impurity ions in most cases. Synchrotron emission appears not to be significant for overall RE energy dissipation but may be important for limiting the peak RE energy.

  15. Measurement of runaway electron energy distribution function during high-Z gas injection into runaway electron plateaus in DIII-Da)

    NASA Astrophysics Data System (ADS)

    Hollmann, E. M.; Parks, P. B.; Commaux, N.; Eidietis, N. W.; Moyer, R. A.; Shiraki, D.; Austin, M. E.; Lasnier, C. J.; Paz-Soldan, C.; Rudakov, D. L.

    2015-05-01

    The evolution of the runaway electron (RE) energy distribution function f ɛ during massive gas injection into centered post-disruption runaway electron plateaus has been reconstructed. Overall, f ɛ is found to be much more skewed toward low energy than predicted by avalanche theory. The reconstructions also indicate that the RE pitch angle θ is not uniform, but tends to be large at low energies and small θ ˜ 0.1-0.2 at high energies. Overall power loss from the RE plateau appears to be dominated by collisions with background free and bound electrons, leading to line radiation. However, the drag on the plasma current appears to be dominated by collisions with impurity ions in most cases. Synchrotron emission appears not to be significant for overall RE energy dissipation but may be important for limiting the peak RE energy.

  16. Portable Electronic Nose System for Identification of Synthesized Gasoline Using Metal Oxide Gas Sensor and Pattern Recognition

    NASA Astrophysics Data System (ADS)

    Kim, Young Wung; Park, Hong Bae; Lee, In Soo; Cho, Jung Hwan

    2011-09-01

    This paper describes a portable electronic nose (e-nose) system for use in the identification of synthesized gasoline, comprised of a single semiconductor type of gas sensor and pattern recognition neural networks. The designed e-nose system consists of a one-chip microcontroller, a pre-concentrator, and a gas sensor. Two different neural networks, a multilayer perceptron (MLP) neural network and a fuzzy ARTMAP neural network were applied to discriminate synthesized gasoline from normal gasoline. The results of the classification showed 100% and 85% recognition rates for the training data set and testing data set, respectively.

  17. Emergence of a Kondo singlet state with Kondo temperature well beyond 1000 K in a proton-embedded electron gas

    NASA Astrophysics Data System (ADS)

    Takada, Yasutami; Maezono, Ryo; Yoshizawa, Kanako

    2015-10-01

    Hydrogen in metals has attracted much attention for a long time from both basic scientific and technological points of view. Its electronic state has been investigated in terms of a proton embedded in the electron gas mostly by the local density approximation (LDA) to the density functional theory. At high electronic densities, it is well described by a bare proton H+ screened by metallic electrons (charge resonance), while at low densities two electrons are localized at the proton site to form a closed-shell negative ion H- protected from surrounding metallic electrons by the Pauli exclusion principle. However, no details are known about the transition from H+ to H- in the intermediate-density region. Here, by accurately determining the ground-state electron distribution n (r ) by the use of LDA and diffusion Monte Carlo simulations with the total electron number up to 170, we obtain a complete picture of the transition, in particular, a sharp transition from short-range H+ screening charge resonance to long-range Kondo-type spin-singlet resonance, the emergence of which is confirmed by the presence of an anomalous Friedel oscillation characteristic to the Kondo singlet state with the Kondo temperature TK well beyond 1000 K. This study not only reveals interesting competition between charge and spin resonances, enriching the century-old paradigm of metallic screening to a point charge, but also discovers a high-TK system long sought in relation to the development of exotic superconductivity in the quantum critical regime.

  18. Electron-electron interaction and spin-orbit coupling in InAs/AlSb heterostructures with a two-dimensional electron gas

    SciTech Connect

    Gavrilenko, V. I.; Krishtopenko, S. S.; Goiran, M.

    2011-01-15

    The effect of electron-electron interaction on the spectrum of two-dimensional electron states in InAs/AlSb (001) heterostructures with a GaSb cap layer with one filled size-quantization subband. The energy spectrum of two-dimensional electrons is calculated in the Hartree and Hartree-Fock approximations. It is shown that the exchange interaction decreasing the electron energy in subbands increases the energy gap between subbands and the spin-orbit splitting of the spectrum in the entire region of electron concentrations, at which only the lower size-quantization band is filled. The nonlinear dependence of the Rashba splitting constant at the Fermi wave vector on the concentration of two-dimensional electrons is demonstrated.

  19. Spectroscopy and Dynamics of a Two-Dimensional Electron Gas on Ultrathin Helium Films on Cu(111).

    PubMed

    Armbrust, N; Güdde, J; Höfer, U; Kossler, S; Feulner, P

    2016-06-24

    Electrons in image-potential states on the surface of bulk helium represent a unique model system of a two-dimensional electron gas. Here, we investigate their properties in the extreme case of reduced film thickness: a monolayer of helium physisorbed on a single-crystalline (111)-oriented Cu surface. For this purpose we have utilized a customized setup for time-resolved two-photon photoemission at very low temperatures under ultrahigh vacuum conditions. We demonstrate that the highly polarizable metal substrate increases the binding energy of the first (n=1) image-potential state by more than 2 orders of magnitude as compared to the surface of liquid helium. An electron in this state is still strongly decoupled from the metal surface due to the large negative electron affinity of helium and we find that even 1 monolayer of helium increases its lifetime by 1 order of magnitude compared to the bare Cu(111) surface. PMID:27391738

  20. Spectroscopy and Dynamics of a Two-Dimensional Electron Gas on Ultrathin Helium Films on Cu(111)

    NASA Astrophysics Data System (ADS)

    Armbrust, N.; Güdde, J.; Höfer, U.; Kossler, S.; Feulner, P.

    2016-06-01

    Electrons in image-potential states on the surface of bulk helium represent a unique model system of a two-dimensional electron gas. Here, we investigate their properties in the extreme case of reduced film thickness: a monolayer of helium physisorbed on a single-crystalline (111)-oriented Cu surface. For this purpose we have utilized a customized setup for time-resolved two-photon photoemission at very low temperatures under ultrahigh vacuum conditions. We demonstrate that the highly polarizable metal substrate increases the binding energy of the first (n =1 ) image-potential state by more than 2 orders of magnitude as compared to the surface of liquid helium. An electron in this state is still strongly decoupled from the metal surface due to the large negative electron affinity of helium and we find that even 1 monolayer of helium increases its lifetime by 1 order of magnitude compared to the bare Cu(111) surface.

  1. Effect of a transverse magnetic field on the generation of electron beams in the gas-filled diode

    NASA Astrophysics Data System (ADS)

    Baksht, E. H.; Burachenko, A. G.; Erofeev, M. V.; Kostyrya, I. D.; Lomaev, M. I.; Rybka, D. V.; Tarasenko, V. F.

    2008-06-01

    The effect of a transverse magnetic field (0.080 and 0.016 T) on generation of an electron beam in the gas-filled diode is experimentally investigated. It is shown that, at voltage U = 25 kV across the diode and a low helium pressure (45 Torr), the transverse magnetic field influences the beam current amplitude behind a foil and its distribution over the foil cross section. At elevated pressures and under the conditions of ultrashort avalanche electron beam formation in helium, nitrogen, and air, the transverse magnetic field (0.080 and 0.016 T) has a minor effect on the amplitude and duration of the beam behind the foil. It is established that, when the voltage of the pulse generator reaches several hundreds of kilovolts, some runaway electrons (including the electrons from the discharge plasma near the cathode) are incident on the side walls of the diode.

  2. Cross-Calibration of Secondary Electron Multiplier in Noble Gas Analysis

    NASA Astrophysics Data System (ADS)

    Santato, Alessandro; Hamilton, Doug; Deerberg, Michael; Wijbrans, Jan; Kuiper, Klaudia; Bouman, Claudia

    2015-04-01

    The latest generation of multi-collector noble gas mass spectrometers has decisively improved the precision in isotopic ratio analysis [1, 2] and helped the scientific community to address new questions [3]. Measuring numerous isotopes simultaneously has two significant advantages: firstly, any fluctuations in signal intensity have no effect on the isotope ratio and secondly, the analysis time is reduced. This particular point becomes very important in static vacuum mass spectrometry where during the analysis, the signal intensity decays and at the same time the background increases. However, when multi-collector analysis is utilized, it is necessary to pay special attention to the cross calibration of the detectors. This is a key point in order to have accurate and reproducible isotopic ratios. In isotope ratio mass spectrometry, with regard to the type of detector (i.e. Faraday or Secondary Electron Multiplier, SEM), analytical technique (TIMS, MC-ICP-MS or IRMS) and isotope system of interest, several techniques are currently applied to cross-calibrate the detectors. Specifically, the gain of the Faraday cups is generally stable and only the associated amplifier must be calibrated. For example, on the Thermo Scientific instrument control systems, the 1011 and 1012 ohm amplifiers can easily be calibrated through a fully software controlled procedure by inputting a constant electric signal to each amplifier sequentially [4]. On the other hand, the yield of the SEMs can drift up to 0.2% / hour and other techniques such as peak hopping, standard-sample bracketing and multi-dynamic measurement must be used. Peak hopping allows the detectors to be calibrated by measuring an ion beam of constant intensity across the detectors whereas standard-sample bracketing corrects the drift of the detectors through the analysis of a reference standard of a known isotopic ratio. If at least one isotopic pair of the sample is known, multi-dynamic measurement can be used; in this

  3. Determination of methyl bromide in foods by headspace capillary gas chromatography with electron capture detection.

    PubMed

    Page, B D; Avon, R J

    1989-01-01

    Methyl bromide (MB, bromomethane) is determined in a variety of foods by headspace capillary gas chromatography with electron capture detection. The comminuted food sample as an aqueous sodium sulfate slurry is equilibrated with stirring for 1 h at room temperature before a 1 mL headspace aliquot is removed and injected using a modified on-column syringe needle. Methyl bromide is cryogenically focussed at -60 degrees C and then eluted by temperature programming. The procedure requires blending of soft samples, e.g. raisins, prunes, or oranges, and ultrasonic homogenization of hard samples, e.g. wheat, cocoa beans, corn, or nuts, with portions of water and ice so the final temperature of the food-water slurry is less than 1 degree C. A 20 g aliquot (4 g food) is then added to a cold headspace vial containing 4 g sodium sulfate. Losses of MB during a 3.5 min ultrasonic homogenization of wheat were 11% at 0.95 ppb and 4.4% at 4.8 ppb. For flour, cocoa, and finely divided spices, which do not require blending, 4 g is added to the cold headspace vial containing 16 mL cold water and 4 g sodium sulfate. Studies show that comminution of wheat or peanuts must be carried out to release MB trapped within the food so the headspace equilibrium can be attained in 1 h as well as to obtain homogeneous samples and representative sampling. No interferences were noted with the above foods or with many grain-based baking mixes analyzed.(ABSTRACT TRUNCATED AT 250 WORDS) PMID:2808244

  4. Internal rotation and equilibrium structure of 2-nitropropane from gas electron diffraction and quantum chemistry

    NASA Astrophysics Data System (ADS)

    Tarasov, Yu. I.; Kochikov, I. V.; Kovtun, D. M.; Ivanov, A. A.

    2009-03-01

    In this paper, the equilibrium structural parameters of the 2-nitropropane molecule and the barrier of internal rotation of the nitrogroup are determined from the gas electron diffraction data, with the use of quantum chemistry calculations and experimental vibrational frequencies, in the framework of the large-amplitude motion model for internal rotation. Quantum chemistry calculations at the MP2 and B3LYP levels of theory with various Pople and Dunning basis sets unambiguously predict the same minimum energy molecular conformation, with relatively close values of internal rotation barrier (375-525 cm -1). The results of present analysis show that the minimum of the potential function of the nitrogroup internal rotation is located in syn-H position when one of the oxygen atoms eclipses hydrogen atom that does not belong to any of CH 3 groups (dihedral angle H-C-N-O is zero). It has also been found that internal rotation is hindered, with the barrier height in the range of 220-560 cm -1 (0.6-1.6 kcal/mol) with the most probable value near 380 cm -1 (1.1 kcal/mol). The main equilibrium structure parameters in syn-H configuration are as follows (values in parentheses correspond to 3 times standard deviations): re(C-C) = 1.516(5) Å, re(C-N) = 1.501(5) Å, re (N dbnd O) = 1.225(4) Å, ∠C-C-N=108.7(1.0)°,∠O dbnd N dbnd O =124.8(0.4)°. We also provide thermally averaged parameters for comparison with the results of previous studies.

  5. Diagrammatic expansion for positive density-response spectra: Application to the electron gas

    NASA Astrophysics Data System (ADS)

    Uimonen, A.-M.; Stefanucci, G.; Pavlyukh, Y.; van Leeuwen, R.

    2015-03-01

    In a recent paper [Phys. Rev. B 90, 115134 (2014), 10.1103/PhysRevB.90.115134] we put forward a diagrammatic expansion for the self-energy which guarantees the positivity of the spectral function. In this work we extend the theory to the density-response function. We write the generic diagram for the density-response spectrum as the sum of "partitions." In a partition the original diagram is evaluated using time-ordered Green's functions on the left half of the diagram, antitime-ordered Green's functions on the right half of the diagram, and lesser or greater Green's function gluing the two halves. As there exists more than one way to cut a diagram in two halves, to every diagram corresponds more than one partition. We recognize that the most convenient diagrammatic objects for constructing a theory of positive spectra are the half-diagrams. Diagrammatic approximations obtained by summing the squares of half-diagrams do indeed correspond to a combination of partitions which, by construction, yield a positive spectrum. We develop the theory using bare Green's functions and subsequently extend it to dressed Green's functions. We further prove a connection between the positivity of the spectral function and the analytic properties of the polarizability. The general theory is illustrated with several examples and then applied to solve the long-standing problem of including vertex corrections without altering the positivity of the spectrum. In fact already the first-order vertex diagram, relevant to the study of gradient expansion, Friedel oscillations, etc., leads to spectra which are negative in certain frequency domain. We find that the simplest approximation to cure this deficiency is given by the sum of the zeroth-order bubble diagram, the first-order vertex diagram, and a partition of the second-order ladder diagram. We evaluate this approximation in the three-dimensional homogeneous electron gas and show the positivity of the spectrum for all frequencies and

  6. Electronic passivation of n- and p-type GaAs using chemical vapor deposited GaS

    NASA Technical Reports Server (NTRS)

    Tabib-Azar, Massood; Kang, Soon; Macinnes, Andrew N.; Power, Michael B.; Barron, Andrew R.; Jenkins, Phillip P.; Hepp, Aloysius F.

    1993-01-01

    We report on the electronic passivation of n- and p-type GaAs using CVD cubic GaS. Au/GaS/GaAs-fabricated metal-insulator-semiconductor (MIS) structures exhibit classical high-frequency capacitor vs voltage (C-V) behavior with well-defined accumulation and inversion regions. Using high- and low-frequency C-V, the interface trap densities of about 10 exp 11/eV per sq cm on both n- and p-type GaAs are determined. The electronic condition of GaS/GaAs interface did not show any deterioration after a six week time period.

  7. Control of a two-dimensional electron gas on SrTiO₃(111) by atomic oxygen.

    PubMed

    Walker, S McKeown; de la Torre, A; Bruno, F Y; Tamai, A; Kim, T K; Hoesch, M; Shi, M; Bahramy, M S; King, P D C; Baumberger, F

    2014-10-24

    We report on the formation of a two-dimensional electron gas (2DEG) at the bare surface of (111) oriented SrTiO3. Angle resolved photoemission experiments reveal highly itinerant carriers with a sixfold symmetric Fermi surface and strongly anisotropic effective masses. The electronic structure of the 2DEG is in good agreement with self-consistent tight-binding supercell calculations that incorporate a confinement potential due to surface band bending. We further demonstrate that alternate exposure of the surface to ultraviolet light and atomic oxygen allows tuning of the carrier density and the complete suppression of the 2DEG. PMID:25379937

  8. Control of a Two-Dimensional Electron Gas on SrTiO3(111) by Atomic Oxygen

    NASA Astrophysics Data System (ADS)

    McKeown Walker, S.; de la Torre, A.; Bruno, F. Y.; Tamai, A.; Kim, T. K.; Hoesch, M.; Shi, M.; Bahramy, M. S.; King, P. D. C.; Baumberger, F.

    2014-10-01

    We report on the formation of a two-dimensional electron gas (2DEG) at the bare surface of (111) oriented SrTiO3. Angle resolved photoemission experiments reveal highly itinerant carriers with a sixfold symmetric Fermi surface and strongly anisotropic effective masses. The electronic structure of the 2DEG is in good agreement with self-consistent tight-binding supercell calculations that incorporate a confinement potential due to surface band bending. We further demonstrate that alternate exposure of the surface to ultraviolet light and atomic oxygen allows tuning of the carrier density and the complete suppression of the 2DEG.

  9. Analysis of tert-butyldimethylsilyl derivatives in heavy gas oil from Brazilian naphthenic acids by gas chromatography coupled to mass spectrometry with electron impact ionization.

    PubMed

    Vaz de Campos, Maria Cecília; Oliveira, Eniz Conceição; Filho, Pedro José Sanches; Piatnicki, Clarisse Maria Sartori; Caramão, Elina Bastos

    2006-02-10

    Naphthenic acids, C(n)H(2n+Z)O(2), are a complex mixture of alkyl-substituted acyclic and cycle-aliphatic carboxylic acids. The content of naphthenic acids and their derivatives in crude oils is very small, which hinders their extraction from matrixes of wide and varied composition. In this work, liquid-liquid extraction, followed by solid phase extraction with an ion exchange resin (Amberlyst A-27) and ultrasound desorption were used to isolate the acid fraction from heavy gas oil of Marlim petroleum (Campos, Rio de Janeiro, Brazil). The analysis was accomplished through gas chromatography coupled to mass spectrometry with electron impact ionization, after derivatization with N-methyl-N-(tert-butyldimethylsilyl)trifluoracetamide (MTBDMSTFA). The results indicate the presence of carboxylic acids belonging to families of alicyclic and naphthenic compounds which contain up to four rings in the molecule. PMID:16439253

  10. Collision integral in the kinetic equation for a rarefied electron gas with allowance for its spin polarization

    SciTech Connect

    Sasorov, P. V.; Fomin, I. V.

    2015-06-15

    The collision integral in the kinetic equation for a rarefied spin-polarized gas of fermions (electrons) is derived. The collisions between these fermions and the collisions with much heavier particles (ions) forming a randomly located stationary background (gas) are taken into account. An important new circumstance is that the particle-particle scattering amplitude is not assumed to be small, which could be obtained, for example, in the first Born approximation. The derived collision integral can be used in the kinetic equation, including that for a relatively cold rarefied spin-polarized plasma with a characteristic electron energy below α{sup 2}m{sub e}c{sup 2}, where α is the fine-structure constant.

  11. Excitonic splitting and coherent electronic energy transfer in the gas-phase benzoic acid dimer

    SciTech Connect

    Ottiger, Philipp; Leutwyler, Samuel

    2012-11-28

    The benzoic acid dimer, (BZA){sub 2}, is a paradigmatic symmetric hydrogen bonded dimer with two strong antiparallel hydrogen bonds. The excitonic S{sub 1}/S{sub 2} state splitting and coherent electronic energy transfer within supersonically cooled (BZA){sub 2} and its {sup 13}C-, d{sub 1}-, d{sub 2}-, and {sup 13}C/d{sub 1}- isotopomers have been investigated by mass-resolved two-color resonant two-photon ionization spectroscopy. The (BZA){sub 2}-(h-h) and (BZA){sub 2}-(d-d) dimers are C{sub 2h} symmetric, hence only the S{sub 2} Leftwards-Arrow S{sub 0} transition can be observed, the S{sub 1} Leftwards-Arrow S{sub 0} transition being strictly electric-dipole forbidden. A single {sup 12}C/{sup 13}C or H/D isotopic substitution reduces the symmetry of the dimer to C{sub s}, so that the isotopic heterodimers (BZA){sub 2}-{sup 13}C, (BZA){sub 2}-(h-d), (BZA){sub 2}-(h{sup 13}C-d), and (BZA){sub 2}-(h-d{sup 13}C) show both S{sub 1} Leftwards-Arrow S{sub 0} and S{sub 2} Leftwards-Arrow S{sub 0} bands. The S{sub 1}/S{sub 2} exciton splitting inferred is {Delta}{sub exc}= 0.94 {+-} 0.1 cm{sup -1}. This is the smallest splitting observed so far for any H-bonded gas-phase dimer. Additional isotope-dependent contributions to the splittings, {Delta}{sub iso}, arise from the change of the zero-point vibrational energy upon electronic excitation and range from {Delta}{sub iso}= 3.3 cm{sup -1} upon {sup 12}C/{sup 13}C substitution to 14.8 cm{sup -1} for carboxy H/D substitution. The degree of excitonic localization/delocalization can be sensitively measured via the relative intensities of the S{sub 1} Leftwards-Arrow S{sub 0} and S{sub 2} Leftwards-Arrow S{sub 0} origin bands; near-complete localization is observed even for a single {sup 12}C/{sup 13}C substitution. The S{sub 1}/ S{sub 2} energy gap of (BZA){sub 2} is {Delta}{sub calc}{sup exc}=11 cm{sup -1} when calculated by the approximate second-order perturbation theory (CC2) method. Upon correction for vibronic

  12. Transport studies of reentrant integer quantum Hall states forming in the two-dimensional electron gas

    NASA Astrophysics Data System (ADS)

    Deng, Nianpei

    The two dimensional electron gas subjected to a magnetic field has been a model system in contemporary condensed matter physics which generated many beautiful experiments as well as novel fundamental concepts. These novel concepts are of broad interests and have benefited other fields of research. For example, the observations of conventional odd-denominator fractional quantum Hall states have enriched many-body physics with important concepts such as fractional statistics and composite fermions. The subsequent discovery of the enigmatic even-denominator nu=5/2 fractional quantum Hall state has led to more interesting concepts such as non-Abelian statistics and pairing of composite fermions which can be intimately connected to the electron pairing in superconductivity. Moreover, the observations of stripe phases and reentrant integer quantum Hall states have stimulated research on exotic electron solids which have more intricate structures than the Wigner Crystal. In contrast to fractional quantum Hall states and stripes phases, the reentrant integer quantum Hall states are very little studied and their ground states are the least understood. There is a lack of basic information such as exact filling factors, temperature dependence and energy scales for the reentrant integer quantum Hall states. A critical experimental condition in acquiring this information is a stable ultra-low temperature environment. In the first part of this dissertation, I will discuss our unique setup of 3He immersion cell in a state-of-art dilution refrigerator which achieves the required stability of ultra-low temperature. With this experimental setup, we are able to observe for the first time very sharp magnetotransport features of reentrant integer quantum Hall states across many Landau levels for the first time. I will firstly present our results in the second Landau level. The temperature dependence measurements reveal a surprisingly sharp peak signature that is unique to the reentrant

  13. Detection of magnetic state in a nanoscale ferromagnetic ring by using ballistic semiconductor two-dimensional electron gas

    NASA Astrophysics Data System (ADS)

    Hara, Masahiro; Shibata, Junya; Kimura, Takashi; Otani, Yoshichika

    2006-02-01

    We have developed a method of measuring magnetization process in a ferromagnetic ring by analyzing a characteristic response of a semiconductor two-dimensional electron gas (2DEG) lying beneath the ring. A 2DEG microcross structure is formed underneath a ferromagnetic ring to detect the position of paired domain walls of the onion state. The variation of the bend resistance due to the rotation of the paired domain walls is quantitatively reproduced by a semiclassical billiard model.

  14. Role of the bound-state wave function in capture-loss rates: Slow proton in an electron gas

    SciTech Connect

    Alducin, M.; Nagy, I.

    2003-07-01

    Capture and loss rates for protons moving in an electron gas are calculated using many-body perturbation theory. The role of the form of the bound-state wave function for weakly bound states around the proton is analyzed. We find significant differences (up to a factor of 2 higher) in the values of Auger capture and loss rates when using Hulthen-type instead of hydrogenic wave functions. Its relevance in stopping power is briefly discussed.

  15. Extraordinary attributes of 2-dimensional MoS2 nanosheets

    NASA Astrophysics Data System (ADS)

    Rao, C. N. R.; Maitra, Urmimala; Waghmare, Umesh V.

    2014-08-01

    The discovery of the amazing properties of graphene has stimulated exploration of single- and few-layer structures of layered inorganic materials. Of all the inorganic 2D nanosheet structures, those of MoS2 have attracted great attention because of their novel properties such as the presence of a direct bandgap, good field-effect transistor characteristics, large spin-orbit splitting, intense photoluminescence, catalytic properties, magnetism, superconductivity, ferroelectricity and several other properties with potential applications in electronics, optoelectronics, energy devices and spintronics. MoS2 nanosheets have been used in lithium batteries, supercapacitors and to generate hydrogen. Highlights of the impressive properties of MoS2 nanosheets, along with their structural and spectroscopic features are presented in this Letter. MoS2 typifies the family of metal dichalcogenides such as MoSe2 and WS2 and there is much to be done on nanosheets of these materials. Linus Pauling would have been pleased to see how molybdenite whose structure he studied in 1923 has become so important today.

  16. Total and correlation energy of the uniform polarized electron gas at finite temperature: Direct path integral simulations

    NASA Astrophysics Data System (ADS)

    Filinov, V. S.; Fortov, V. E.; Bonitz, M.; Moldabekov, Zh

    2015-11-01

    The uniform electron gas (UEG) at finite temperature has recently attracted substantial interest due to the experimental progress in the field of warm dense matter. To explain the experimental data accurate theoretical models for high density plasmas are needed which crucially depend on treatment of quantum effects in electron-electron interaction as well as in the interaction of electrons with uniform positive background. To comply with these requirements we have developed the new quantum path integral model of the UEG and present the results of related direct path integral Monte-Carlo (DPIMC) simulations. Contrary to the known in literature approaches treating the electron-background interaction classically our simulations take into account the quantum effects in this interaction. We have observed very good agreement with known in literature results only up to moderate densities when the ratio of the average interparticle distance to the Bohr radius is of order four (rs ≥ 4) and observe deviations for higher densities. At very high electron density (rs ≈ 1) presented in literature approaches as well as our simulations are problematic due to the strong degeneracy of electrons and increasing fermion sign problem.

  17. Variation in Gas and Volatile Compound Emissions from Human Urine as It Ages, Measured by an Electronic Nose

    PubMed Central

    Esfahani, Siavash; Sagar, Nidhi M.; Kyrou, Ioannis; Mozdiak, Ella; O’Connell, Nicola; Nwokolo, Chuka; Bardhan, Karna D.; Arasaradnam, Ramesh P.; Covington, James A.

    2016-01-01

    The medical profession is becoming ever more interested in the use of gas-phase biomarkers for disease identification and monitoring. This is due in part to its rapid analysis time and low test cost, which makes it attractive for many different clinical arenas. One technology that is showing promise for analyzing these gas-phase biomarkers is the electronic nose—an instrument designed to replicate the biological olfactory system. Of the possible biological media available to “sniff”, urine is becoming ever more important as it is easy to collect and to store for batch testing. However, this raises the question of sample storage shelf-life, even at −80 °C. Here we investigated the effect of storage time (years) on stability and reproducibility of total gas/vapour emissions from urine samples. Urine samples from 87 patients with Type 2 Diabetes Mellitus were collected over a four-year period and stored at −80 °C. These samples were then analyzed using FAIMS (field-asymmetric ion mobility spectrometry—a type of electronic nose). It was discovered that gas emissions (concentration and diversity) reduced over time. However, there was less variation in the initial nine months of storage with greater uniformity and stability of concentrations together with tighter clustering of the total number of chemicals released. This suggests that nine months could be considered a general guide to a sample shelf-life. PMID:26821055

  18. Effect of gas heating on the generation of an ultrashort avalanche electron beam in the pulse-periodic regime

    NASA Astrophysics Data System (ADS)

    Baksht, E. Kh.; Burachenko, A. G.; Lomaev, M. I.; Sorokin, D. A.; Tarasenko, V. F.

    2015-07-01

    The generation of an ultrashort avalanche electron beam (UAEB) in nitrogen in the pulse-periodic regime is investigated. The gas temperature in the discharge gap of the atmospheric-pressure nitrogen is measured from the intensity distribution of unresolved rotational transitions ( C 3Π u , v' = 0) → ( B 3Π g , v″ = 0) in the nitrogen molecule for an excitation pulse repetition rate of 2 kHz. It is shown that an increase in the UAEB current amplitude in the pulse-periodic regime is due to gas heating by a series of previous pulses, which leads to an increase in the reduced electric field strength as a result of a decrease in the gas density in the zone of the discharge formation. It is found that in the pulse-periodic regime and the formation of the diffuse discharge, the number of electrons in the beam increases by several times for a nitrogen pressure of 9 × 103 Pa. The dependences of the number of electrons in the UAEB on the time of operation of the generator are considered.

  19. Emission of Thermally Activated Electrons from Rare Gas Clusters Irradiated with Intense VUV Light Pulses from a Free Electron Laser

    SciTech Connect

    Laarmann, T.; Rusek, M.; Schulz, J.; Castro, A.R.B. de; Guertler, P.; Laasch, W.; Moeller, T.

    2005-08-05

    The ionization dynamics of Ar and Xe clusters irradiated with intense vacuum ultraviolet light from a free-electron laser is investigated using photoelectron spectroscopy. Clusters comprising between 70 and 900 atoms were irradiated with femtosecond pulses at 95 nm wavelength ({approx}13 eV photon energy) and a peak intensity of {approx}4x10{sup 12} W/cm{sup 2}. A broad thermal distribution of emitted electrons from clusters with a maximum kinetic energy up to 30-40 eV is observed. The observation of relatively low-energy photoelectrons is in good agreement with calculations using a time-dependent Thomas-Fermi model and gives experimental evidence of an outer ionization process of the clusters, due to delayed thermoelectronic emission.

  20. Selective MBE growth of nonalloyed ohmic contacts to 2D electron gas in high-electron-mobility transistors based on GaN/AlGaN heterojunctions

    NASA Astrophysics Data System (ADS)

    Maiboroda, I. O.; Andreev, A. A.; Perminov, P. A.; Fedorov, Yu. V.; Zanaveskin, M. L.

    2014-06-01

    Specific features of how nonalloyed ohmic contacts to the 2D conducting channel of high-electron-mobility transistors based on AlGaN/(AlN)/GaN heterostructures are fabricated via deposition of heavily doped n +-GaN through a SiO2 mask by ammonia molecular-beam epitaxy have been studied. The technique developed makes it possible to obtain specific resistances of contacts to the 2D gas as low as 0.11 Ω mm on various types of Ga-face nitride heterostructures, which are several times lower than the resistance of conventional alloyed ohmic contacts.

  1. Scattering due to Schottky barrier height spatial fluctuation on two dimensional electron gas in AlGaN/GaN high electron mobility transistors

    SciTech Connect

    Li, Huijie; Liu, Guipeng Wei, Hongyuan; Jiao, Chunmei; Wang, Jianxia; Zhang, Heng; Dong Jin, Dong; Feng, Yuxia; Yang, Shaoyan Wang, Lianshan; Zhu, Qinsheng; Wang, Zhan-Guo

    2013-12-02

    A scattering mechanism related to the Schottky barrier height (SBH) spatial fluctuation of the two dimensional electron gas (2DEG) in AlGaN/GaN heterostructures is presented. We find that the low field mobility is on the order of 10{sup 4}–10{sup 6} cm{sup 2}/Vs. The 2DEG transport properties are found to be influenced by both the mobility and 2DEG density variations caused by the SBH fluctuation. Our results indicate that a uniform Schottky contact is highly desired to minimize the influence of SBH inhomogeneity on the device performance.

  2. Electron mobility of a two-dimensional electron gas at the interface of SrTiO3 and LaAlO3

    NASA Astrophysics Data System (ADS)

    Faridi, A.; Asgari, Reza; Langari, A.

    2016-06-01

    We calculate the mobility of a two-dimensional electron gas residing at the interface of LaAlO3/SrTiO3 following a three band Boltzmann approach at low temperature, where a carrier-charged impurity scattering process is assumed to be dominant. We explain the anisotropic characteristic of the dielectric function, which is a consequence of elliptical bands close to Fermi surface. The screening effect, which weakens the long-range Coulomb interaction of the electron-impurity, is considered within the random phase approximation. Working at carrier densities high enough to neglect the spin-orbit induced splitting of the bands, we find that the mobility varies inversely with the cubic power of the carrier density (n2D-3) in good agreement with the experimental results. We also investigate the role of variable dielectric constant of SrTiO3, the multiband nature of the system, and interband interactions in exploring this result.

  3. Acceleration of electrons generated during ionization of a gas by a nearly flat profile laser pulse

    SciTech Connect

    Singh, Kunwar Pal

    2009-09-15

    A scheme of acceleration of electrons generated during ionization of krypton by nearly flat radial and nearly flat temporal laser pulse profiles has been suggested. The energy spectrum of the electrons suggests that energy of the electrons is higher for a nearly flat temporal profile than that for a nearly flat radial profile. The suppression of scattering of the electrons is better for a nearly flat radial profile than that for a nearly flat temporal profile. The energy of the electrons increases, scattering decreases, and beam quality improves with an increase in flatness of radial and temporal profiles.

  4. Electrostatic modulation of periodic potentials in a two-dimensional electron gas: From antidot lattice to quantum dot lattice

    SciTech Connect

    Goswami, Srijit; Aamir, Mohammed Ali; Shamim, Saquib; Ghosh, Arindam; Siegert, Christoph; Farrer, Ian; Ritchie, David A.; Pepper, Michael

    2013-12-04

    We use a dual gated device structure to introduce a gate-tuneable periodic potential in a GaAs/AlGaAs two dimensional electron gas (2DEG). Using only a suitable choice of gate voltages we can controllably alter the potential landscape of the bare 2DEG, inducing either a periodic array of antidots or quantum dots. Antidots are artificial scattering centers, and therefore allow for a study of electron dynamics. In particular, we show that the thermovoltage of an antidot lattice is particularly sensitive to the relative positions of the Fermi level and the antidot potential. A quantum dot lattice, on the other hand, provides the opportunity to study correlated electron physics. We find that its current-voltage characteristics display a voltage threshold, as well as a power law scaling, indicative of collective Coulomb blockade in a disordered background.

  5. Artificial Gauge Field and Topological Phase in a Conventional Two-dimensional Electron Gas with Antidot Lattices

    PubMed Central

    Shi, Likun; Lou, Wenkai; Cheng, F.; Zou, Y. L.; Yang, Wen; Chang, Kai

    2015-01-01

    Based on the Born-Oppemheimer approximation, we divide the total electron Hamiltonian in a spin-orbit coupled system into the slow orbital motion and the fast interband transition processes. We find that the fast motion induces a gauge field on the slow orbital motion, perpendicular to the electron momentum, inducing a topological phase. From this general designing principle, we present a theory for generating artificial gauge field and topological phase in a conventional two-dimensional electron gas embedded in parabolically graded GaAs/InxGa1−xAs/GaAs quantum wells with antidot lattices. By tuning the etching depth and period of the antidot lattices, the band folding caused by the antidot potential leads to the formation of minibands and band inversions between neighboring subbands. The intersubband spin-orbit interaction opens considerably large nontrivial minigaps and leads to many pairs of helical edge states in these gaps. PMID:26471126

  6. Liquid-Gated High Mobility and Quantum Oscillation of the Two-Dimensional Electron Gas at an Oxide Interface.

    PubMed

    Zeng, Shengwei; Lü, Weiming; Huang, Zhen; Liu, Zhiqi; Han, Kun; Gopinadhan, Kalon; Li, Changjian; Guo, Rui; Zhou, Wenxiong; Ma, Haijiao Harsan; Jian, Linke; Venkatesan, Thirumalai; Ariando

    2016-04-26

    Electric field effect in electronic double layer transistor (EDLT) configuration with ionic liquids as the dielectric materials is a powerful means of exploring various properties in different materials. Here, we demonstrate the modulation of electrical transport properties and extremely high mobility of two-dimensional electron gas at LaAlO3/SrTiO3 (LAO/STO) interface through ionic liquid-assisted electric field effect. With a change of the gate voltages, the depletion of charge carrier and the resultant enhancement of electron mobility up to 19 380 cm(2)/(V s) are realized, leading to quantum oscillations of the conductivity at the LAO/STO interface. The present results suggest that high-mobility oxide interfaces, which exhibit quantum phenomena, could be obtained by ionic liquid-assisted field effect. PMID:26974812

  7. Artificial Gauge Field and Topological Phase in a Conventional Two-dimensional Electron Gas with Antidot Lattices

    NASA Astrophysics Data System (ADS)

    Shi, Likun; Lou, Wenkai; Cheng, F.; Zou, Y. L.; Yang, Wen; Chang, Kai

    2015-10-01

    Based on the Born-Oppemheimer approximation, we divide the total electron Hamiltonian in a spin-orbit coupled system into the slow orbital motion and the fast interband transition processes. We find that the fast motion induces a gauge field on the slow orbital motion, perpendicular to the electron momentum, inducing a topological phase. From this general designing principle, we present a theory for generating artificial gauge field and topological phase in a conventional two-dimensional electron gas embedded in parabolically graded GaAs/InxGa1-xAs/GaAs quantum wells with antidot lattices. By tuning the etching depth and period of the antidot lattices, the band folding caused by the antidot potential leads to the formation of minibands and band inversions between neighboring subbands. The intersubband spin-orbit interaction opens considerably large nontrivial minigaps and leads to many pairs of helical edge states in these gaps.

  8. Control of a Two-Dimensional Electron Gas on SrTiO3 (111) by Atomic Oxygen

    NASA Astrophysics Data System (ADS)

    McKeown Walker, Siobhan; de la Torre, A.; Bruno, F. Y.; Tamai, A.; Kim, T. K.; Hoesch, M.; Shi, M.; Bahramy, M. S.; King, P. D. C.; Baumberger, F.

    2015-03-01

    We report on the formation of a two-dimensional electron gas (2DEG) at the bare surface of (111) oriented SrTiO3. Angle resolved photoemission experiments reveal highly itinerant carriers with a 6-fold symmetric Fermi surface and strongly anisotropic effective masses. The electronic structure of the 2DEG is in good agreement with self-consistent tight-binding supercell calculations that incorporate a confinement potential due to surface band bending. Our measurements provide insight into the nontrivial consequences of quantum confinement along the [111] direction which is directly relevant to an understanding of electronic structure at (111) orientated interfaces. We further demonstrate that alternate exposure of the surface to ultraviolet light and atomic oxygen allows tuning of the carrier density and the complete suppression of the 2DEG.

  9. Electrostatic modulation of periodic potentials in a two-dimensional electron gas: from antidot lattice to quantum dot lattice

    NASA Astrophysics Data System (ADS)

    Goswami, Srijit; Aamir, Mohammad Ali; Shamim, Saquib; Siegert, Christoph; Pepper, Michael; Farrer, Ian; Ritchie, David; Ghosh, Arindam

    2012-02-01

    We use a dual gated device structure to introduce a gate-tunable periodic potential in a GaAs/AlGaAs two dimensional electron gas (2DEG). Using a suitable choice of gate voltages we can controllably alter the potential landscape in the 2DEG, thereby inducing either a periodic array of antidots or quantum dots. Antidots are artificial scattering centers, and therefore allow for a study of electron dynamics. On the other hand, a quantum dot lattice provides the opportunity to study correlated electron physics. We use a variety of electrical measurements such as magneto-resistance, thermo-voltage and current-voltage characteristics to probe these two contrasting regimes.

  10. Electrostatic modulation of periodic potentials in a two-dimensional electron gas: From antidot lattice to quantum dot lattice

    NASA Astrophysics Data System (ADS)

    Goswami, Srijit; Aamir, Mohammed Ali; Shamim, Saquib; Siegert, Christoph; Pepper, Michael; Farrer, Ian; Ritchie, David A.; Ghosh, Arindam

    2013-12-01

    We use a dual gated device structure to introduce a gate-tuneable periodic potential in a GaAs/AlGaAs two dimensional electron gas (2DEG). Using only a suitable choice of gate voltages we can controllably alter the potential landscape of the bare 2DEG, inducing either a periodic array of antidots or quantum dots. Antidots are artificial scattering centers, and therefore allow for a study of electron dynamics. In particular, we show that the thermovoltage of an antidot lattice is particularly sensitive to the relative positions of the Fermi level and the antidot potential. A quantum dot lattice, on the other hand, provides the opportunity to study correlated electron physics. We find that its current-voltage characteristics display a voltage threshold, as well as a power law scaling, indicative of collective Coulomb blockade in a disordered background.

  11. Tuning the conductivity threshold and carrier density of two-dimensional electron gas at oxide interfaces through interface engineering

    SciTech Connect

    Ma, H. J. Harsan E-mail: ariando@nus.edu.sg; Zeng, S. W.; Annadi, A.; Ariando E-mail: ariando@nus.edu.sg; Huang, Z.; Venkatesan, T.

    2015-08-15

    The two-dimensional electron gas (2DEG) formed at the perovskite oxides heterostructures is of great interest because of its potential applications in oxides electronics and nanoscale multifunctional devices. A canonical example is the 2DEG at the interface between a polar oxide LaAlO{sub 3} (LAO) and non-polar SrTiO{sub 3} (STO). Here, the LAO polar oxide can be regarded as the modulating or doping layer and is expected to define the electronic properties of 2DEG at the LAO/STO interface. However, to practically implement the 2DEG in electronics and device design, desired properties such as tunable 2D carrier density are necessary. Here, we report the tuning of conductivity threshold, carrier density and electronic properties of 2DEG in LAO/STO heterostructures by insertion of a La{sub 0.5}Sr{sub 0.5}TiO{sub 3} (LSTO) layer of varying thicknesses, and thus modulating the amount of polarization of the oxide over layers. Our experimental result shows an enhancement of carrier density up to a value of about five times higher than that observed at the LAO/STO interface. A complete thickness dependent metal-insulator phase diagram is obtained by varying the thickness of LAO and LSTO providing an estimate for the critical thickness needed for the metallic phase. The observations are discussed in terms of electronic reconstruction induced by polar oxides.

  12. Electron Transfer versus Proton Transfer in Gas-Phase Ion/Ion Reactions of Polyprotonated Peptides

    PubMed Central

    Gunawardena, Harsha P.; He, Min; Chrisman, Paul A.; Pitteri, Sharon J.; Hogan, Jason M.; Hodges, Brittany D. M.; McLuckey, Scott A.

    2005-01-01

    The ion/ion reactions of several dozen reagent anions with triply protonated cations of the model peptide KGAILKGAILR have been examined to evaluate predictions of a Landau–Zener-based model for the likelihood for electron transfer. Evidence for electron transfer was provided by the appearance of fragment ions unique to electron transfer or electron capture dissociation. Proton transfer and electron transfer are competitive processes for any combination of anionic and cationic reactants. For reagent anions in reactions with protonated peptides, proton transfer is usually significantly more exothermic than electron transfer. If charge transfer occurs at relatively long distances, electron transfer should, therefore, be favored on kinetic grounds because the reactant and product channels cross at greater distances, provided conditions are favorable for electron transfer at the crossing point. The results are consistent with a model based on Landau–Zener theory that indicates both thermodynamic and geometric criteria apply for electron transfer involving polyatomic anions. Both the model and the data suggest that electron affinities associated with the anionic reagents greater than about 60–70 kcal/mol minimize the likelihood that electron transfer will be observed. Provided the electron affinity is not too high, the Franck–Condon factors associated with the anion and its corresponding neutral must not be too low. When one or the other of these criteria is not met, proton transfer tends to occur essentially exclusively. Experiments involving ion/ion attachment products also suggest that a significant barrier exists to the isomerization between chemical complexes that, if formed, lead to either proton transfer or electron transfer. PMID:16144411

  13. Electron capture gas chromatographic detection of acethylmethylcarbinol produced by neisseria gonorrhoeae.

    PubMed

    Morse, C D; Brooks, J B; Kellogg, D S

    1976-01-01

    Acetylmethylcarbinol (acetoin) production by Neisseria gonorrhoeae and other Neisseria species was established by gas-liquid chromatography and by mass spectrometric data. Sixty-nine isolates of Neisseria were tested by incubating them in a chemically defined fluid medium. The medium was extracted with organic solvents and derivatized with heptafluorobutryic anhydride for gas chromatography and mass spectrometry. Cultures of 58 of the same strains were tested with the conventional Voges-Proskauer reagents, and results were compared with those of gas-liquid chromatography. When glucose was used as an energy source, N. gonorrhoeae, some N. meningitidis, and N. lactamica produced enough acetoin in 16 h to be detectable by either method, whereas other Neisseria species produce amounts detectable only by gas chromatography. The conventional acetylmethylcarbinol test with the chemically defined medium and maltose as an energy source might be used to develop methods that would differentiate certain members of the genus, including the pathogenic species. PMID:815266

  14. Electron dynamics in strong laser pulse illumination of large rare gas clusters

    NASA Astrophysics Data System (ADS)

    Saalmann, U.; Rost, J. M.

    2005-11-01

    We analyze the dynamics of up to 105 electrons resulting from illuminating a xenon cluster with 9093 atoms with intense laser pulses of different length and peak intensity. Interesting details of electron motion are identified which can be probed with a time resolution of 100 attoseconds. Corresponding experiments would shed light on unexplored territory in complex electronic systems such as clusters and they would also permit to critically access the present theoretical description of this dynamics.

  15. Enhancement of injection and acceleration of electrons in a laser wakefield accelerator by using an argon-doped hydrogen gas jet and optically preformed plasma waveguide

    SciTech Connect

    Ho, Y.-C.; Hung, T.-S.; Chen, S.-Y.; Chou, M.-C.; Yen, C.-P.; Wang, J.; Chu, H.-H.; Lin, J.-Y.

    2011-06-15

    A systematic experimental study on injection of electrons in a gas-jet-based laser wakefield accelerator via ionization of dopant was conducted. The pump-pulse threshold energy for producing a quasi-monoenergetic electron beam was significantly reduced by doping the hydrogen gas jet with argon atoms, resulting in a much better spatial contrast of the electron beam. Furthermore, laser wakefield electron acceleration in an optically preformed plasma waveguide based on the axicon-ignitor-heater scheme was achieved. It was found that doping with argon atoms can also lower the pump-pulse threshold energy in this experimental configuration.

  16. Identification of Neisseria by electron capture gas-liquid chromatography of metabolites in a chemically defined growth medium.

    PubMed Central

    Morse, C D; Brooks, J B; Kellogg, D S

    1977-01-01

    A dual-purpose study was carried out in an attempt to develop a rapid, sensitive method to identify Neisseria species by gas chromatography and to learn more about the metabolism of these organisms. Sixty-nine isolates of Neisseria were grown in a chemically defined fluid medium; the spent medium was extracted sequentially at pH 2 with diethyl ether and at pH 10 with chloroform. The pH 10 extracts were derivatized with heptafluorobutyric anhydride and analyzed by electron capture gas-liquid chromatography. The resulting spent culture medium electron capture gas-liquid chromatography profiles showed several qualitative and significant quantitative differences among the Neisseria species potentially useful in separating and identifying these organisms. Putrescine and cadaverine which were present in the spent culture medium of some Neisseria, including N. gonorrhoeae, were tentatively identified. Substituting carbohydrates for the chemically defined medium containing glucose in the base medium produced altered profiles with increased quantitative and qualitative differences. PMID:21889

  17. First-principles calculations on electronic properties of single-walled carbon nanotubes for H2S gas sensor

    NASA Astrophysics Data System (ADS)

    Muliyati, Dewi; Wella, Sasfan A.; Wungu, Triati D. K.; Suprijadi

    2015-09-01

    In this research, we performed first-principles calculations by means of density functional theory (DFT) to investigate the interaction of H2S gas on the surface of single-walled carbon nanotubes (SWNTs). In order to understand the effect of chirality to the electronic structure of SWNTs/H2S, the pristine SWNTs was varied to become SWNTs (5,0), (6,0), (7,0), (8,0), (9,0), and (10,0). From the calculation we found that after H2S adsorbed on surface of SWNTs, the electronic properties of system changes from semiconductor to metal but not vice versa. It was only SWNTs (5,0), (7,0), (8,0), and (10,0) occuring the changing on its electronic properties behavior, others were remain similar with its initial behavior. In the degassing process, metal return to semiconductor behavior, which is an indication that SWNTs is a good gas sensors, responsive and reversible.

  18. Electron random walk and collisional crossover in a gas in presence of electromagnetic waves and magnetostatic fields

    SciTech Connect

    Bhattacharjee, Sudeep; Paul, Samit; Dey, Indranuj

    2013-04-15

    This paper deals with random walk of electrons and collisional crossover in a gas evolving toward a plasma, in presence of electromagnetic (EM) waves and magnetostatic (B) fields, a fundamental subject of importance in areas requiring generation and confinement of wave assisted plasmas. In presence of EM waves and B fields, the number of collisions N suffered by an electron with neutral gas atoms while diffusing out of the volume during the walk is significantly modified when compared to the conventional field free square law diffusion; N=1.5({Lambda}/{lambda}){sup 2}, where {Lambda} is the characteristic diffusion length and {lambda} is the mean free path. There is a distinct crossover and a time scale associated with the transition from the elastic to inelastic collisions dominated regime, which can accurately predict the breakdown time ({tau}{sub c}) and the threshold electric field (E{sub BD}) for plasma initiation. The essential features of cyclotron resonance manifested as a sharp drop in {tau}{sub c}, lowering of E{sub BD} and enhanced electron energy gain is well reproduced in the constrained random walk.

  19. Characterization of aroma compounds of Chinese famous liquors by gas chromatography-mass spectrometry and flash GC electronic-nose.

    PubMed

    Xiao, Zuobing; Yu, Dan; Niu, Yunwei; Chen, Feng; Song, Shiqing; Zhu, Jiancai; Zhu, Guangyong

    2014-01-15

    Aroma composition of five Chinese premium famous liquors with different origins and liquor flavor types was characterized by gas chromatography-mass spectrometry (GC-MS) and flash gas chromatographic electronic nose system. Eighty-six aroma compounds were identified, including 5 acids, 34 esters, 10 alcohols, 9 aldehydes, 4 ketones, 4 phenols, and 10 nitrous and sulfuric compounds. To investigate possible correlation between aroma compounds identified by GC-MS and sensory attributes, multivariate ANOVA-PLSR (APLSR) was performed. It turned out that there were 30 volatile composition, ethyl acetate, ethyl propanoate, ethyl 2-methyl butanoate, ethyl 3-methyl butanoate, ethyl lactate, ethyl benzenacetate, 3-methylbutyl acetate, hexyl acetate, 3-methyl-1-butanol, 1-heptanol, phenylethyl alcohol, acetaldehyde, 1,1-diethoxy-3-methyl butane, furfural, benzaldehyde, 5-methyl-2-furanal, 2-octanone, 2-n-butyl furan, dimethyl trisulfied and 2,6-dimethyl pyrazine, ethyl nonanoate, isopentyl hexanoate, octanoic acid, ethyl 5-methyl hexanoate, 2-phenylethyl acetate,ethyl oleate, propyl hexanoate, butanoic acid and phenol, ethyl benzenepropanoate, which showed good coordination with Chinese liquor characteristics. The multivariate structure of this electronic nose responses was then processed by principal component analysis (PCA) and hierarchical cluster analysis (HCA). According to the obtained results, GC-MS and electronic nose can be used for the differentiation of the liquor origins and flavor types. PMID:24333641

  20. A battery-operated, stabilized, high-energy pulsed electron gun for the production of rare gas excimers.

    PubMed

    Barcellan, L; Berto, E; Carugno, G; Galet, G; Galeazzi, G; Borghesani, A F

    2011-09-01

    We report on the design of a new type of hot-filament electron gun delivering fairly high current (a few hundreds of μ A) at high voltage (up to 100 kV) in continuous or pulsed mode. Its novel features are that the filament is heated by means of a pack of rechargeable batteries floated atop the high-voltage power supply in order to get rid of bulky isolation transformers, and that the filament current and, hence, the electron gun current, is controlled by a feedback circuit including a superluminescent diode decoupled from the high voltage by means of an optical fiber. This electron gun is intended for general purposes, although we have especially developed it to meet the needs of our experiment on the infrared emission spectroscopy of rare gas excimers. Our experiment requires that the charge injection into the sample is pulsed and constant and stable in time. The new electron gun can deliver several tens of nC per pulse of electrons of energy up to 100 keV into the sample cell. The new design also eliminates ripples in the emission current and ensures up to 12 h of stable performance. PMID:21974615

  1. A battery-operated, stabilized, high-energy pulsed electron gun for the production of rare gas excimers

    SciTech Connect

    Barcellan, L.; Carugno, G.; Berto, E.; Galet, G.; Galeazzi, G.; Borghesani, A. F.

    2011-09-15

    We report on the design of a new type of hot-filament electron gun delivering fairly high current (a few hundreds of {mu} A) at high voltage (up to 100 kV) in continuous or pulsed mode. Its novel features are that the filament is heated by means of a pack of rechargeable batteries floated atop the high-voltage power supply in order to get rid of bulky isolation transformers, and that the filament current and, hence, the electron gun current, is controlled by a feedback circuit including a superluminescent diode decoupled from the high voltage by means of an optical fiber. This electron gun is intended for general purposes, although we have especially developed it to meet the needs of our experiment on the infrared emission spectroscopy of rare gas excimers. Our experiment requires that the charge injection into the sample is pulsed and constant and stable in time. The new electron gun can deliver several tens of nC per pulse of electrons of energy up to 100 keV into the sample cell. The new design also eliminates ripples in the emission current and ensures up to 12 h of stable performance.

  2. Native electrospray ionization and electron-capture dissociation for comparison of protein structure in solution and the gas phase

    PubMed Central

    Zhang, Hao; Cui, Weidong

    2013-01-01

    The importance of protein and protein-complex structure motivates improvements in speed and sensitivity of structure determination in the gas phase and comparison with that in solution or solid state. An opportunity for the gas phase measurement is mass spectrometry (MS) combined with native electrospray ionization (ESI), which delivers large proteins and protein complexes in their near-native states to the gas phase. In this communication, we describe the combination of native ESI, electron-capture dissociation (ECD), and top-down MS for exploring the structures of ubiquitin and cytochrome c in the gas phase and their relation to those in the solid-state and solution. We probe structure by comparing the protein's flexible regions, as predicted by the B-factor in X-ray crystallography, with the ECD fragments. The underlying hypothesis is that maintenance of structure gives fragments that can be predicted from B-factors. This strategy may be applicable in general when X-ray structures are available and extendable to the study of intrinsically disordered proteins. PMID:24363606

  3. A Wireless Electronic Nose System Using a Fe2O3 Gas Sensing Array and Least Squares Support Vector Regression

    PubMed Central

    Song, Kai; Wang, Qi; Liu, Qi; Zhang, Hongquan; Cheng, Yingguo

    2011-01-01

    This paper describes the design and implementation of a wireless electronic nose (WEN) system which can online detect the combustible gases methane and hydrogen (CH4/H2) and estimate their concentrations, either singly or in mixtures. The system is composed of two wireless sensor nodes—a slave node and a master node. The former comprises a Fe2O3 gas sensing array for the combustible gas detection, a digital signal processor (DSP) system for real-time sampling and processing the sensor array data and a wireless transceiver unit (WTU) by which the detection results can be transmitted to the master node connected with a computer. A type of Fe2O3 gas sensor insensitive to humidity is developed for resistance to environmental influences. A threshold-based least square support vector regression (LS-SVR)estimator is implemented on a DSP for classification and concentration measurements. Experimental results confirm that LS-SVR produces higher accuracy compared with artificial neural networks (ANNs) and a faster convergence rate than the standard support vector regression (SVR). The designed WEN system effectively achieves gas mixture analysis in a real-time process. PMID:22346587

  4. A wireless electronic nose system using a Fe2O3 gas sensing array and least squares support vector regression.

    PubMed

    Song, Kai; Wang, Qi; Liu, Qi; Zhang, Hongquan; Cheng, Yingguo

    2011-01-01

    This paper describes the design and implementation of a wireless electronic nose (WEN) system which can online detect the combustible gases methane and hydrogen (CH(4)/H(2)) and estimate their concentrations, either singly or in mixtures. The system is composed of two wireless sensor nodes--a slave node and a master node. The former comprises a Fe(2)O(3) gas sensing array for the combustible gas detection, a digital signal processor (DSP) system for real-time sampling and processing the sensor array data and a wireless transceiver unit (WTU) by which the detection results can be transmitted to the master node connected with a computer. A type of Fe(2)O(3) gas sensor insensitive to humidity is developed for resistance to environmental influences. A threshold-based least square support vector regression (LS-SVR)estimator is implemented on a DSP for classification and concentration measurements. Experimental results confirm that LS-SVR produces higher accuracy compared with artificial neural networks (ANNs) and a faster convergence rate than the standard support vector regression (SVR). The designed WEN system effectively achieves gas mixture analysis in a real-time process. PMID:22346587

  5. Transmission electron microscopy characterization of the fission gas bubble superlattice in irradiated U-7wt% Mo dispersion fuels

    SciTech Connect

    B.D. Miller; J. Gan; D.D. Keiser Jr.; A.B. Robinson; J.-F. Jue; J.W. Madden; P.G. Medvedev

    2015-03-01

    Transmission electron microscopy characterization of irradiated U-7wt% Mo dispersion fuel was performed on various samples to understand the effect of irradiation parameters (fission density, fission rate, and temperature) on the self-organized fission-gas-bubble superlattice that forms in the irradiated U-Mo fuel. The bubble superlattice was seen to form a face-centered cubic structure coherent with the host U-7wt% Mo body centered cubic structure. At a fission density between 3.0 and 4.5 x 1021 fiss/cm3, the superlattice bubbles appear to have reached a saturation size with additional fission gas associated with increasing burnup predominately accumulating along grain boundaries. At a fission density of ~4.5x1021 fiss/cm3, the U-7wt% Mo microstructure undergoes grain subdivision and can no longer support the ordered bubble superlattice. The fuel grains are primarily less than 500 nm in diameter with micron-size fission-gas bubbles present on the grain boundaries. Solid fission products decorate the inside surface of the micron-sized fission-gas bubbles. Residual superlattice bubbles are seen in areas where fuel grains remain micron sized. Potential mechanisms of the formation and collapse of the bubble superlattice are discussed.

  6. Molecular structure of cotinine studied by gas electron diffraction combined with theoretical calculations

    NASA Astrophysics Data System (ADS)

    Takeshima, Tsuguhide; Takeuchi, Hiroshi; Egawa, Toru; Konaka, Shigehiro

    2007-09-01

    The molecular structure of cotinine (( S)-1-methyl-5-(3-pyridinyl)-2-pyrrolidinone), the major metabolite of nicotine, has been determined at about 182 °C by gas electron diffraction combined with MP2 and DFT calculations. The diffraction data are consistent with the existence of the (ax, sc), (ax, ap), (eq, sp) and (eq, ap) conformers, where ax and eq indicate the configuration of the pyrrolidinone ring by means of the position (axial and equatorial) of the pyridine ring, and sc, sp and ap distinguish the isomers arising from the internal rotation around the bond connecting the two rings. The (CH 3)NCCC(N) dihedral angles, ϕ, of the (ax, sc) and (eq, sp) conformers were determined independently to be 158(12)° and 129(13)°, respectively, where the numbers in parentheses are three times the standard errors, 3 σ. According to the MP2 calculations, the corresponding dihedral angles for the (ax, ap) and (eq, ap) conformers were assumed to differ by 180° from their syn counterparts. The ratios x(ax, sc)/ x(ax, ap) and x(eq, sp)/ x(eq, ap) were taken from the theoretically estimated free energy differences, Δ G, where x is the abundance of the conformer. The resultant abundances of (ax, sc), (ax, ap), (eq, sp) and (eq, ap) conformers are 34(6)%, 21% (d.p.), 28% (d.p.), and 17% (d.p.), respectively, where d.p. represents dependent parameters. The determined structural parameters ( rg (Å) and ∠ α (°)) of the most abundant conformer, (ax, sc), are as follows: r(N sbnd C) pyrrol = 1.463(5); r(N sbnd C methyl) = 1.457(←); r(N sbnd C( dbnd O)) = 1.384(12); r(C dbnd O) = 1.219(5); < r(C sbnd C) pyrrol> = 1.541(3); r(C pyrrolsbnd C pyrid) = 1.521(←); < r(C sbnd C) pyrid> = 1.396(2); < r(C sbnd N) pyrid> = 1.343(←); ∠(CNC) pyrrol = 113.9(11); ∠CCC pyrrol(-C pyrid) = 103.6(←); ∠NCO = 124.1(13); ∠NC pyrrolC pyrid = 113.1(12); ∠C pyrrolC pyrrolC pyrid = 113.3(←); ∠(CNC) pyrid = 117.1(2); <∠(NCC) pyrid> = 124.4(←); ∠C methylNC( dbnd O) =

  7. Electro-optical properties of porous zeolite cathode in the gas discharge electronic devices for plasma light source applications

    NASA Astrophysics Data System (ADS)

    Koseoglu, Kivilcim; Özer, Metin; Ozturk, Sevgul; Salamov, Bahtiyar G.

    2014-08-01

    The stable dc air cold plasma is investigated experimentally functions of pressure p (8-760 Torr), electrode gaps d (50-250 µm), and diameters (9-22 mm) of the cathode areas in the gas discharge electronic devices (GDED) with nanoporous zeolite cathode (ZC). It is found that the current density and plasma emission (PE) intensity increase if the amplitude of the applied voltage reaches given threshold. Moreover, uniform PE inside the ZCs develops from the surface and can be generated in air up to atmospheric pressure (AP). The effect of various diameter of the ZC area on the gas breakdown is also considered. It is shown that breakdown voltage UB is reduced significantly for the larger diameters of the ZC area. Because of the very small d in our GDED, the behavior of charged particles in the electric field is described with the dc Townsend breakdown theory, depending upon the pressure range.

  8. Molecular structures of vinylarsine, vinyldichloroarsine and arsine studied by gas-phase electron diffraction and quantum chemical calculations

    NASA Astrophysics Data System (ADS)

    Noble-Eddy, Robert; Masters, Sarah L.; Rankin, David W. H.; Robertson, Heather E.; Guillemin, Jean-Claude

    2010-08-01

    The molecular structures of vinylarsine (CH 2dbnd CHAsH 2), vinyldichloroarsine (CH 2dbnd CHAsCl 2) and arsine (AsH 3) have been determined from gas-phase electron diffraction data and, in the case of vinylarsine, rotation constants, employing the SARACEN method. The structure of vinylarsine represents the first complete gas-phase structure of a primary arsine. The experimental geometric parameters generally show good agreement with those obtained using ab initio calculations. Key structural parameters ( rh1) for vinylarsine are rAs-H = 150.5(4) pm, rAs-C = 195.1(1) pm and ∠C-C-As = 119.4(2)°. The bonding and conformational trends in both vinylarsine and vinyldichloroarsine are compared to those found in the analogous amines and phosphines.

  9. Rapid direct analysis to discriminate geographic origin of extra virgin olive oils by flash gas chromatography electronic nose and chemometrics.

    PubMed

    Melucci, Dora; Bendini, Alessandra; Tesini, Federica; Barbieri, Sara; Zappi, Alessandro; Vichi, Stefania; Conte, Lanfranco; Gallina Toschi, Tullia

    2016-08-01

    At present, the geographical origin of extra virgin olive oils can be ensured by documented traceability, although chemical analysis may add information that is useful for possible confirmation. This preliminary study investigated the effectiveness of flash gas chromatography electronic nose and multivariate data analysis to perform rapid screening of commercial extra virgin olive oils characterized by a different geographical origin declared in the label. A comparison with solid phase micro extraction coupled to gas chromatography mass spectrometry was also performed. The new method is suitable to verify the geographic origin of extra virgin olive oils based on principal components analysis and discriminant analysis applied to the volatile profile of the headspace as a fingerprint. The selected variables were suitable in discriminating between "100% Italian" and "non-100% Italian" oils. Partial least squares discriminant analysis also allowed prediction of the degree of membership of unknown samples to the classes examined. PMID:26988501

  10. Simultaneous use of gas chromatography/ion trap mass spectrometry - electron capture detector to improve the analysis of bromodiphenyl ethers in biological and environmental samples

    Technology Transfer Automated Retrieval System (TEKTRAN)

    The mass range limit of some gas chromatograph/mass spectrometers (GC/MS) prohibits the sensitive analysis of higher brominated diphenyl ethers (BDEs). A gas chromatograph/electron capture detector (GC/ECD) can sensitively determine higher BDEs. In this study, a method that GC eluents were split wit...

  11. Statistical analysis on 1-dimensional and 2-dimensional thermal dissipation for nickel metal hydride battery system

    NASA Astrophysics Data System (ADS)

    Hashim, Mohammad Firdaus Abu; Ramakrishnan, Sivakumar; Mohamad, Ahmad Azmin

    2014-06-01

    Due to low environmental impact and rechargeable capability, the Nickel Metal Hydride battery has been considered to be one of the most promising candidate battery for electrical vehicle nowadays. The energy delivered by the Nickel Metal Hydride battery depends heavily on its discharge profile and generally it is intangible to tract the trend of the energydissipation that is stored in the battery for informative analysis. The thermal models were developed in 1-dimensional and 2-dimensional using Matlab and these models are capable of predicting the temperature distributions inside a cell. The simulated results were validated and verified with referred exact sources of experimental data using Minitab software. The result for 1-Dimensional showed that the correlations between experimental and predicted results for the time intervals 60 minutes, 90 minutes, and 114 minutes frompositive to negative electrode thermal dissipationdirection are34%, 83%, and 94% accordingly while for the 2-Dimensional the correlational results for the same above time intervals are44%, 93% and 95%. These correlationalresults between experimental and predicted clearly indicating the thermal behavior under natural convention can be well fitted after around 90 minutes durational time and 2-Dimensional model can predict the results more accurately compared to 1-Dimensional model. Based on the results obtained from simulations, it can be concluded that both 1-Dimensional and 2-Dimensional models can predict nearly similar thermal behavior under natural convention while 2-Dimensional model was used to predict thermal behavior under forced convention for better accuracy.

  12. The measurement of electron number density in helium micro hollow gas discharge using asymmetric He I lines

    NASA Astrophysics Data System (ADS)

    Jovović, J.; Šišović, N. M.

    2015-09-01

    The electron number density N e in helium micro hollow gas discharge (MHGD) is measured by means of optical emission spectroscopy (OES) techniques. The structure of MHGD is a gold-alumina-gold sandwich with 250 μm alumina thickness and 100 μm diameter hole. The electron temperature T e and gas temperature T g in the discharge is determined using the relative intensity of He I lines and {{\\text{N}}2}+≤ft({{\\text{B}}2}Σ\\text{u}+- {{X}2}Σ\\text{g}+\\right) R branch lines in the frame of BP technique, respectively. The simple procedure based on spectral line broadening theory was developed in MATLAB to generate synthetic neutral line asymmetric profiles. The synthetic profiles were compared with an experimental He I 447.1 nm and He I 492.2 nm line to obtain N e from the centre of a micro hollow gas discharge (MHGD) source in helium. The N e results were compared with N e values obtained from the forbidden-to-allowed (F/A) intensity ratio technique. The comparison confirmed higher N e determined using a F/A ratio due to large uncertainty of the method. Applying the fitting formula for a He I 492.2 nm line derived from computer simulation (CS) gives the same N e values as the one determined using the MATLAB procedure in this study. The dependence of N e on gas pressure and electric current is investigated as well.

  13. Structural determination of vanillin, isovanillin and ethylvanillin by means of gas electron diffraction and theoretical calculations

    NASA Astrophysics Data System (ADS)

    Egawa, Toru; Kameyama, Akiyo; Takeuchi, Hiroshi

    2006-08-01

    The molecular structures of vanillin (4-hydroxy-3-methoxybenzaldehyde), isovanillin (3-hydroxy-4-methoxybenzaldehyde) and ethylvanillin (3-ethoxy-4-hydroxybenzaldehyde) were determined by means of gas electron diffraction. Among them, vanillin and ethylvanillin have a vanilla odor but isovanillin smells differently. The nozzle temperatures were 125, 173 and 146 °C, for vanillin, isovanillin and ethylvanillin, respectively. The results of MP2 and B3LYP calculations with the 6-31G** basis set were used as supporting information. The MP2 calculations predicted that vanillin and isovanillin have two stable conformers and ethylvanillin has four stable conformers. The electron diffraction data were found to be consistent with these conformational compositions. The determined structural parameters ( rg and ∠ α) of vanillin are as follows: < r(C-C) ring>=1.397(4) Å; r(C 1-C aldehyde)=1.471(←) Å; r(C 3-O Me)=1.374(9) Å; r(C 4-O H)=1.361(←) Å; r(O-C Me)=1.428(←) Å; r(C dbnd6 O)=1.214(8) Å; < r(C-H)>=1.110(11) Å; r(O-H)=0.991(←) Å; ∠C 6-C 1-C 2=120.6(2)°; ∠C 1-C 2-C 3=118.8(←)°; ∠C 1-C 6-C 5=120.1(←)°; ∠C 2-C 1-C aldehyde=122.7(18)°; ∠C 1-C dbnd6 O=119.4(16)°; ∠C 4-C 3-O Me=112.2(12)°; ∠C 3-C 4-O H=119.1(←)°; ∠C 3-O-C=121.7(29)°. Those of isovanillin are as follows: < r(C-C) ring>=1.402(4) Å; r(C 1-C aldehyde)=1.479(←) Å; r(C 4-O Me)=1.369(9) Å; r(C 3-O H)=1.357(←) Å; r(O-C Me)=1.422(←) Å; r(C dbnd6 O)=1.221(9) Å; < r(C-H)>=1.114(14) Å; r(O-H)=0.995(←) Å; ∠C 6-C 1-C 2=120.2(3)°; ∠C 1-C 2-C 3=119.0(←)°; ∠C 1-C 6-C 5=119.9(←)°; ∠C 2-C 1-C aldehyde=124.6(25)°; ∠C 1-C dbnd6 O=121.3(24)°; ∠C 3-C 4-O Me=114.4(12)°; ∠C 4-C 3-O H=121.2(←)°; ∠C 4-O-C=123.8(26)°. Those of ethylvanillin are as follows: < r(C-C) ring>=1.397(6) Å; r(C 1-C aldehyde)=1.471(←) Å; r(C 3-O Et)=1.365(13) Å; r(C 4-O H)=1.352(←) Å; r(O-C Et)=1.427(←) Å; r(C-C Et)=1.494(21) Å; r(C dbnd6 O)=1.206(9) Å; < r

  14. Two-dimensional electron gas in monolayer InN quantum wells

    DOE PAGESBeta

    Pan, Wei; Dimakis, Emmanouil; Wang, George T.; Moustakas, Theodore D.; Tsui, Daniel C.

    2014-11-24

    We report in this letter experimental results that confirm the two-dimensional nature of the electron systems in monolayer InN quantum wells embedded in GaN barriers. The electron density and mobility of the two-dimensional electron system (2DES) in these InN quantum wells are 5×1015 cm-2 and 420 cm2 /Vs, respectively. Moreover, the diagonal resistance of the 2DES shows virtually no temperature dependence in a wide temperature range, indicating the topological nature of the 2DES.

  15. Two-dimensional electron gas in monolayer InN quantum wells

    SciTech Connect

    Pan, Wei; Dimakis, Emmanouil; Wang, George T.; Moustakas, Theodore D.; Tsui, Daniel C.

    2014-11-24

    We report in this letter experimental results that confirm the two-dimensional nature of the electron systems in monolayer InN quantum wells embedded in GaN barriers. The electron density and mobility of the two-dimensional electron system (2DES) in these InN quantum wells are 5×1015 cm-2 and 420 cm2 /Vs, respectively. Moreover, the diagonal resistance of the 2DES shows virtually no temperature dependence in a wide temperature range, indicating the topological nature of the 2DES.

  16. Ultra-high mobility two-dimensional electron gas in a SiGe/Si/SiGe quantum well

    SciTech Connect

    Melnikov, M. Yu. Shashkin, A. A.; Dolgopolov, V. T.; Huang, S.-H.; Liu, C. W.; Kravchenko, S. V.

    2015-03-02

    We report the observation of an electron gas in a SiGe/Si/SiGe quantum well with maximum mobility up to 240 m{sup 2}/Vs, which is noticeably higher than previously reported results in silicon-based structures. Using SiO, rather than Al{sub 2}O{sub 3}, as an insulator, we obtain strongly reduced threshold voltages close to zero. In addition to the predominantly small-angle scattering well known in the high-mobility heterostructures, the observed linear temperature dependence of the conductivity reveals the presence of a short-range random potential.

  17. Commensurability oscillations in a quasi-two-dimensional electron gas subject to strong in-plane magnetic field

    NASA Astrophysics Data System (ADS)

    Smrčka, L.

    2016-03-01

    We report on a theoretical study of the commensurability oscillations in a quasi-two-dimensional electron gas modulated by a unidirectional periodic potential and subject to tilted magnetic fields with a strong in-plane component. As a result of coupling of the in-plane field component and the confining potential in the finite-width quantum well, the originally circular cyclotron orbits become anisotropic and tilted out of the sample plane. A quasi-classical approach to the theory, that relates the magneto-resistance oscillations to the guiding-center drift, is extended to this case.

  18. The origin of two-dimensional electron gas formed in LaGaO3/SrTiO3

    NASA Astrophysics Data System (ADS)

    Wang, Funing; Li, Jichao; Du, Yanling; Zhang, Xinhua; Liu, Hanzhang; Liu, Jian; Wang, Chunlei; Mei, Liangmo

    2015-11-01

    The first-principles calculations are employed to investigate the electrical properties of (0 0 1) epitaxial LaGaO3/SrTiO3 heterostructure. It is found that the interface remains metallic and the atomic displacements occur mostly in the SrTiO3 side after atomic relaxation. The interface crystal field induces the Ti t2g orbitals to split into the nondegenerate dxy and two-fold degenerate dxz/yz orbitals. The partly filled nondegenerate dxy orbitals are the origin of two-dimensional electron gas at the interface of LaGaO3/SrTiO3 (0 0 1).

  19. Can fractional quantum Hall effect be due to the formation of coherent wave structures in a 2D electron gas?

    NASA Astrophysics Data System (ADS)

    Mirza, Babur M.

    2016-05-01

    A microscopic theory of integer and fractional quantum Hall effects is presented here. In quantum density wave representation of charged particles, it is shown that, in a two-dimensional electron gas coherent structures form under the low temperature and high density conditions. With a sufficiently high applied magnetic field, the combined N particle quantum density wave exhibits collective periodic oscillations. As a result the corresponding quantum Hall voltage function shows a step-wise change in multiples of the ratio h/e2. At lower temperatures further subdivisions emerge in the Hall resistance, exhibiting the fractional quantum Hall effect.

  20. Detection of trace levels of triclopyr using capillary gas chromatography-electron-capture negative-ion chemical ionization mass spectrometry.

    PubMed

    Begley, P; Foulger, B E

    1988-04-01

    Triclopyr, after esterification, is shown to be a suitable candidate for detection by gas chromatography-electron-capture negative-ion chemical ionization mass spectrometry forming a characteristic carboxylate anion which offers a high detection sensitivity. A detection limit of 70 fg reaching the ionizer is indicated. Low backgrounds and an absence of chemical interferences are shown for vegetation extracts, using a simple method of extraction and derivatisation. A similar behaviour is demonstrated for 2,4-D and 2,4,5-T. PMID:3379116

  1. Semiclassical and quantum transport in the two-dimensional electron gas in a hard-wall antidot lattice

    NASA Astrophysics Data System (ADS)

    Kozlov, D. A.; Kvon, Z. D.; Plotnikov, A. E.

    2009-03-01

    Commensurate peaks of magnetoresistance and Shubnikov-de Haas and Aharonov-Bohm oscillations in the two-dimensional electron gas (2DEG) in a lattice of antidots with hard potential walls have been experimentally studied. The behavior of both classical magnetoresistance peaks and quantum oscillations has been shown to fundamentally depend on the lattice period and the antidot size, as well as on the smoothness of the potential at the 2DEG-antidot interface. This result indicates the necessity of revising the interpretation of all numerous experiments with antidot lattices, since this effect has been explicitly or implicitly neglected in them.

  2. Microwave induced zero-conductance state in a Corbino geometry two-dimensional electron gas with capacitive contacts

    SciTech Connect

    Bykov, A. A.; Marchishin, I. V.; Goran, A. V.; Dmitriev, D. V.

    2010-08-23

    Microwave induced photoconductivity of a two-dimensional electron gas in selectively doped GaAs/AlAs heterostructures has been studied using the Corbino geometry with capacitive contacts at a temperature T=1.6 K and magnetic field B up to 0.5 T. Zero-conductance states have been observed in the samples under study subject to microwave radiation, similarly to the samples with Ohmic contacts. It has been shown that Ohmic contacts do not play a significant role for observation of zero-conductance states induced by microwave radiation.

  3. Monte Carlo modeling of electron density in hypersonic rarefied gas flows

    SciTech Connect

    Fan, Jin; Zhang, Yuhuai; Jiang, Jianzheng

    2014-12-09

    The electron density distribution around a vehicle employed in the RAM-C II flight test is calculated with the DSMC method. To resolve the mole fraction of electrons which is several orders lower than those of the primary species in the free stream, an algorithm named as trace species separation (TSS) is utilized. The TSS algorithm solves the primary and trace species separately, which is similar to the DSMC overlay techniques; however it generates new simulated molecules of trace species, such as ions and electrons in each cell, basing on the ionization and recombination rates directly, which differs from the DSMC overlay techniques based on probabilistic models. The electron density distributions computed by TSS agree well with the flight data measured in the RAM-C II test along a decent trajectory at three altitudes 81km, 76km, and 71km.

  4. Giant capacitance of a plane capacitor with a two-dimensional electron gas in a magnetic field

    NASA Astrophysics Data System (ADS)

    Skinner, Brian; Shklovskii, B. I.

    2013-01-01

    If a clean two-dimensional electron gas (2DEG) with a low concentration n comprises one electrode of a plane capacitor, the resulting capacitance C can be higher than the “geometric capacitance” Cg determined by the physical separation d between electrodes. A recent paper [B. Skinner and B. I. Shklovskii, Phys. Rev. BPRBMDO1098-012110.1103/PhysRevB.82.155111 82, 155111 (2010)] argued that when the effective Bohr radius aB of the 2DEG satisfies aB≪d, one can achieve C≫Cg at a low concentration nd2≪1. Here we show that even for devices with aB>d, including graphene, for which aB is effectively infinite, one also arrives at C≫Cg at low electron concentrations if there is a strong perpendicular magnetic field.

  5. Electron swarm parameters in SiH sub 4 -rare gas mixtures and collision cross sections for monosilane molecules

    SciTech Connect

    Kurachi, M.; Nakamura, Y. . Faculty of Science and Technology)

    1991-04-01

    Previously measured drift velocity and longitudinal diffusion coefficient in SiH{sub 4}-Ar mixtures were re-analyzed, and the new vibrational excitation cross sections for monosilane molecules were obtained. Not only were the new cross sections consistent with swarm parameters, but also the ratio of their magnitudes at the resonance peak agreed with recent measurements of the electron beam experiment. Having known the vibrational excitation cross sections, the analysis of the primary ionization coefficient measured in SiH{sub 4}-Kr mixtures led to a consistent inelastic cross section, which possibly corresponds to the total cross section for neutral dissociations for the molecule. In this paper it was confirmed that the derived set of the cross sections also gave good agreement with the electron swarm parameters measured in pure monosilane gas.

  6. A new type of magnetoresistance oscillations: Interaction of a two-dimensional electron gas with leaky interface phonons

    SciTech Connect

    ZUDOV,M.A.; PONOMAREV,I.V.; EFROS,A.L.; DU,R.R.; SIMMONS,JERRY A.; RENO,JOHN L.

    2000-05-11

    The authors report a new type of oscillations in magnetoresistance observed in high-mobility two-dimensional electron gas (2DEG), in GaAs-AIGaAs heterostructures. Being periodic in 1/B these oscillations appear in weak magnetic field (B < 0.3 T) and only in a narrow temperature range (3 K < T < 7 K). Remarkably, these oscillations can be understood in terms of magneto-phonon resonance originating from the interaction of 2DEG and leaky interface-acoustic phonon modes. The existence of such modes on the GaAs:AIGaAs interface is demonstrated theoretically and their velocities are calculated. It is shown that the electron-phonon scattering matrix element exhibits a peak for the phonons carrying momentum q = 2k{sub F} (k{sub F} is the Fermi wave-vector of 2DEG).

  7. Study of solid/gas phase photocatalytic reactions by electron ionization mass spectrometry.

    PubMed

    Nuño, Manuel; Ball, Richard J; Bowen, Chris R

    2014-08-01

    This paper describes a novel methodology for the real-time study of solid-gas phase photocatalytic reactions in situ. A novel reaction chamber has been designed and developed to facilitate the investigation of photoactive materials under different gas compositions. UV irradiation in the wavelength of ranges 376-387 and 381-392 nm was provided using specially designed high efficiency light emitting diode arrays. The experiments used air containing 190 ppm NO2 in a moist environment with a relative humidity of 0.1%. Photocatalytic samples consisting of pressed pellets of rutile and anatase crystalline forms of TiO2 were monitored over a period of 150 min. An ultra-high vacuum right angled bleed valve allowed a controlled flow of gas from the main reaction chamber at atmospheric pressure to a residual gas analyser operating at a vacuum of 10(-5)  mbar. The apparatus and methodology have been demonstrated to provide high sensitivity (ppb). The rate of degradation of NO2 attributed to reaction at the TiO2 surface was sensitive to both crystal structures (anatase or rutile) and wavelength of irradiation. PMID:25044899

  8. Scintillation response of Xe gas studied by gamma-ray absorption and Compton electrons

    NASA Astrophysics Data System (ADS)

    Swiderski, L.; Chandra, R.; Curioni, A.; Davatz, G.; Friederich, H.; Gendotti, A.; Gendotti, U.; Goeltl, L.; Iwanowska-Hanke, J.; Moszyński, M.; Murer, D.; Resnati, F.; Rubbia, A.; Szawlowski, M.

    2015-07-01

    In this study we report on the scintillation response of Xe gas under irradiation of gamma-rays in the energy range between 50 keV and 1.5 MeV. Xe gas was pressurized to 50 bar and tested as a detector for gamma spectroscopy. The gas was confined in a titanium vessel of 200 mm length and 101 mm diameter with 2.5 mm thick walls. The vessel was sealed with two 3 inch diameter UV transparent windows. The inner surface of the vessel was covered with a reflecting wavelength shifter. Two photomultipliers coupled to both windows at the end of the vessel allowed for registration of 3700 photoelectrons/MeV, which resulted in 7.0% energy resolution registered for 662 keV γ-rays from a 137Cs source. The non-proportionality of the photoelectron yield and intrinsic resolution was studied with gamma photoabsorption peaks. Due to the thickness of the detector vessel, the response of the Xe gas as a scintillator in the low energy range was performed by means of a Compton Coincidence Technique and compared with the gamma absorption results. The shape of the non-proportionality characteristics of Xe gaseous scintillator was compared to the results obtained for NaI:Tl, LaBr3:Ce and LYSO:Ce. A correlation between non-proportionality and intrinsic resolution of Xe gaseous scintillator was pointed out.

  9. Optimization of gas utilization efficiency for short-pulsed electron cyclotron resonance ion source.

    PubMed

    Izotov, I V; Skalyga, V A; Zorin, V G

    2012-02-01

    Numerical analysis of (6)He atoms utilizing efficiency in the ion source with powerful gyrotron heating is performed in present work using zero-dimensional balanced model of ECR discharge in a magnetic trap. Two ways of creation of ion source with high gas utilization efficiency (up to 60%-90%) are suggested. PMID:22380189

  10. Optimization of gas utilization efficiency for short-pulsed electron cyclotron resonance ion source

    SciTech Connect

    Izotov, I. V.; Skalyga, V. A.; Zorin, V. G.

    2012-02-15

    Numerical analysis of {sup 6}He atoms utilizing efficiency in the ion source with powerful gyrotron heating is performed in present work using zero-dimensional balanced model of ECR discharge in a magnetic trap. Two ways of creation of ion source with high gas utilization efficiency (up to 60%-90%) are suggested.

  11. Early hot electrons generation and beaming in ICF gas filled hohlraums at the National Ignition Facility

    NASA Astrophysics Data System (ADS)

    Dewald, Eduard; Michel, Pierre; Hartemann, Fred; Milovich, Jose; Hohenberger, Matthias; Divol, Laurent; Landen, Otto; Pak, Arthur; Thomas, Cliff; Doeppner, Tilo; Bachmann, Benjamin; Meezan, Nathan; MacKinnon, Andrew; Hurricane, Omar; Callahan, Debbie; Hinkel, Denise; Edwards, John

    2015-11-01

    In laser driven hohlraum capsule implosions on the National Ignition Facility, supra-thermal hot electrons generated by laser plasma instabilities can preheat the capsule. Time resolved hot electron Bremsstrahlung spectra combined with 30 keV x-ray imaging uncover for the first time the directionality of hot electrons onto a high-Z surrogate capsule located at the hohlraum center. In the most extreme case, we observed a collimated beaming of hot electrons onto the capsule poles, reaching 50x higher localized energy deposition than for isotropic electrons. A collective SRS model where all laser beams in a cone drive a common plasma wave provides a physical interpretation for the observed beaming. Imaging data are used to distinguish between this mechanism and 2ωp instability. The amount of hot electrons generated can be controlled by the laser pulse shape and hohlraum plasma conditions. This work performed under the auspices of the U.S. DOE by LLNL under Contract DE-AC52-07NA27344.

  12. Phase transfer of 1- and 2-dimensional Cd-based nanocrystals

    NASA Astrophysics Data System (ADS)

    Kodanek, Torben; Banbela, Hadeel M.; Naskar, Suraj; Adel, Patrick; Bigall, Nadja C.; Dorfs, Dirk

    2015-11-01

    photoluminescence quantum yield measurements as well as photoluminescence decay measurements have shown that the luminescence properties of the transferred nanostructures are affected by hole traps (induced by the thiol ligands themselves) as well as by spatial insulation and passivation against the environment. The influence of the tips of the nanorods on the luminescence is, however, insignificant. Accordingly, different ligands yield optimum results for different nanoparticle samples, mainly depending on the inorganic passivation of the respective samples. In case of CdSe@CdS nanorods, the highest emission intensities have been obtained by using short-chain ligands for the transfer preserving more than 50% of the pristine quantum yield of the hydrophobic nanorods. As opposed to this, the best possible quantum efficiency for the CdSe@CdS/ZnS nanorods has been achieved via MUA. The gained knowledge could be applied to transfer for the first time 2-dimensional CdSe-CdS core-crown nanoplatelets into water while preserving significant photoluminescence (up to 12% quantum efficiency). Electronic supplementary information (ESI) available: Further TEM images, further extinction spectra, particle size distribution and discussion about optical properties of the hydrophobic nanostructures. See DOI: 10.1039/c5nr06221g

  13. Generation of stable, low-divergence electron beams by laser-wakefield acceleration in a steady-state-flow gas cell.

    PubMed

    Osterhoff, J; Popp, A; Major, Zs; Marx, B; Rowlands-Rees, T P; Fuchs, M; Geissler, M; Hörlein, R; Hidding, B; Becker, S; Peralta, E A; Schramm, U; Grüner, F; Habs, D; Krausz, F; Hooker, S M; Karsch, S

    2008-08-22

    Laser-driven, quasimonoenergetic electron beams of up to approximately 200 MeV in energy have been observed from steady-state-flow gas cells. These beams emitted within a low-divergence cone of 2.1+/-0.5 mrad FWHM display unprecedented shot-to-shot stability in energy (2.5% rms), pointing (1.4 mrad rms), and charge (16% rms) owing to a highly reproducible gas-density profile within the interaction volume. Laser-wakefield acceleration in gas cells of this type provides a simple and reliable source of relativistic electrons suitable for applications such as the production of extreme-ultraviolet undulator radiation. PMID:18764625

  14. Broadband terahertz radiation from a biased two-dimensional electron gas in an AlGaN/GaN heterostructure

    NASA Astrophysics Data System (ADS)

    Zhongxin, Zheng; Jiandong, Sun; Yu, Zhou; Zhipeng, Zhang; Hua, Qin

    2015-10-01

    The broadband terahertz (THz) emission from drifting two-dimensional electron gas (2DEG) in an AlGaN/GaN heterostructure at 6 K is reported. The devices are designed as THz plasmon emitters according to the Smith-Purcell effect and the ‘shallow water’ plasma instability mechanism in 2DEG. Plasmon excitation is excluded since no signature of electron-density dependent plasmon mode is observed. Instead, the observed THz emission is found to come from the heated lattice and/or the hot electrons. Simulated emission spectra of hot electrons taking into account the THz absorption in air and Fabry-Pérot interference agree well with the experiment. It is confirmed that a blackbody-like THz emission will inevitably be encountered in similar devices driven by a strong in-plane electric field. A conclusion is drawn that a more elaborate device design is required to achieve efficient plasmon excitation and THz emission. Project supported by the National Basic Research Program of China (No. G2009CB929303), the National Natural Science Foundation of China (No. 61271157), the China Postdoctoral Science Foundation (No. 2014M551678), and the Jiangsu Planned Projects for Postdoctoral Research Funds (No. 1301054B).

  15. The Low Pressure Gas Effects On The Potency Of An Electron Beam On Ceramic Fabric Materials For Space Welding

    NASA Technical Reports Server (NTRS)

    Nunes, Arthur C., Jr.; Fragomeni, James M.; Munafo, Paul M. (Technical Monitor)

    2001-01-01

    This investigation was undertaken to evaluate if molten metal or electron beam impingement could damage or burn through the fabric of the astronauts Extravehicular Mobility Unit (EMU) during electron beam welding exercises performed in space. An 8 kilovolt electron beam with a current in the neighborhood of 100 milliamps from the Ukrainian space welding "Universal Hand Tool" burned holes in Nextel AF-62 ceramic cloth designed to withstand temperatures up to 1427 C. The burnthrough time was on the order of 8 seconds at standoff distances between UHT and cloth ranging from 6 to 24 inches. At both closer (2") and farther (48") standoff distances the potency of the beam against the cloth declined and the burnthrough time went up significantly. Prior to the test it had been expected that the beam would lay down a static charge on the cloth and be deflected without damaging the cloth. The burnthrough is thought to be an effect of partial transmission of beam power by a stream of positive ions generated by the high voltage electron beam from contaminant gas in the "vacuum" chamber. A rough quantitative theoretical computation appears to substantiate this possibility.

  16. Anisotropic two-dimensional electron gas at the LaAlO3/SrTiO3 (110) interface

    PubMed Central

    Annadi, A.; Zhang, Q.; Renshaw Wang, X.; Tuzla, N.; Gopinadhan, K.; Lü, W. M.; Roy Barman, A.; Liu, Z. Q.; Srivastava, A.; Saha, S.; Zhao, Y. L.; Zeng, S. W.; Dhar, S.; Olsson, E.; Gu, B.; Yunoki, S.; Maekawa, S.; Hilgenkamp, H.; Venkatesan, T.; Ariando

    2013-01-01

    The observation of a high-mobility two-dimensional electron gas between two insulating complex oxides, especially LaAlO3/SrTiO3, has enhanced the potential of oxides for electronics. The occurrence of this conductivity is believed to be driven by polarization discontinuity, leading to an electronic reconstruction. In this scenario, the crystal orientation has an important role and no conductivity would be expected, for example, for the interface between LaAlO3 and (110)-oriented SrTiO3, which should not have a polarization discontinuity. Here we report the observation of unexpected conductivity at the LaAlO3/SrTiO3 interface prepared on (110)-oriented SrTiO3, with a LaAlO3-layer thickness-dependent metal-insulator transition. Density functional theory calculation reveals that electronic reconstruction, and thus conductivity, is still possible at this (110) interface by considering the energetically favourable (110) interface structure, that is, buckled TiO2/LaO, in which the polarization discontinuity is still present. The conductivity was further found to be strongly anisotropic along the different crystallographic directions with potential for anisotropic superconductivity and magnetism, leading to possible new physics and applications. PMID:23673623

  17. The Effect of Gas Ion Bombardment on the Secondary Electron Yield of TiN, TiCN and TiZrV Coatings For Suppressing Collective Electron Effects in Storage Rings

    SciTech Connect

    Le Pimpec, F.; Kirby, R.E.; King, F.K.; Pivi, M.; /SLAC

    2006-01-25

    In many accelerator storage rings running positively charged beams, ionization of residual gas and secondary electron emission (SEE) in the beam pipe will give rise to an electron cloud which can cause beam blow-up or loss of the circulating beam. A preventative measure that suppresses electron cloud formation is to ensure that the vacuum wall has a low secondary emission yield (SEY). The SEY of thin films of TiN, sputter deposited Non-Evaporable Getters and a novel TiCN alloy were measured under a variety of conditions, including the effect of re-contamination from residual gas.

  18. Excitation and ionic fragmentation of gas-phase biomolecules using electrons and synchrotron radiation

    NASA Astrophysics Data System (ADS)

    de Souza, G. G. B.; Coutinho, L. H.; Nunez, C.; Bernini, R.; Castilho, R. B.; Lago, A. F.

    2007-11-01

    An experimental study of the electronic excitation and ionic dissociation of two important classes of biomolecules-natural products (biogenic volatile organic compounds, VOCs, and volatile components of essential oils) and DNA and RNA constituents (aminoacids and bases) is here exemplified with recent results on the fragmentation of thymine and isoprene as induced by synchrotron radiation and fast electrons. Fragmentation of the thymine molecule was seen to dramatically increase as the photon energy increased from 21 to 300 eV and 450 eV. At the highest photon energy, simply and doubly charged N and O atoms were observed. The parent ion (m/z = 126) could be observed at all photon energies. The fragmentation pattern observed in the 1.0 keV electron impact mass spectrum of thymine resembled more closely the fragmentation observed with 21 eV photons. In isoprene, the dominant fragments observed at 21 eV and 310 eV photon energy as well as in the 1.0 keV electron impact mass spectrum were C5H7+(m/z = 67), C4H5+(m/z = 53), C3H3+(m/z = 39) and C2H3+(m/z = 27). Previously unreported fragments, namely H+, C+, CH+, CH2+, and CH3+ were observed at the high photon energies and at the electron impact mass spectrum.

  19. Characterization of the MgO2+ dication in the gas phase: electronic states, spectroscopy and atmospheric implications.

    PubMed

    Linguerri, R; Hochlaf, M; Bacchus-Montabonel, M-C; Desouter-Lecomte, M

    2013-01-21

    Franzreb and Williams at Arizona State University detected recently the MgO(2+) molecular species in the gas phase. Here we report a very detailed theoretical investigation of the low-lying electronic states of this dication including their potentials, spin-orbit, rotational and radial couplings. Our results show that the potential energy curves of the dicationic electronic states have deep potential wells. This confirms that this dication does exist in the gas phase; it is a thermodynamically stable molecule in its ground state, and it has several excited long-lived metastable states. The potential energy curves are used then to predict a set of spectroscopic parameters for the bound states of MgO(2+). We have also incorporated these potentials, rotational and radial couplings in dynamical calculations to derive the cross sections for the charge transfer Mg(2+) + O → Mg(+) + O(+) reaction in the 1-10(3) eV collision energy domain via formation-decomposition of the MgO(2+) dication. Our work shows the role of MgO(2+) in the Earth ionosphere and more generally in atmospheric processes in solar planets, where this reaction efficiently participates in the predominance of Mg(+) cations in these media compared to Mg and Mg(2+). PMID:23202808

  20. NO x and PAHs removal from industrial flue gas by using electron beam technology with alcohol addition

    NASA Astrophysics Data System (ADS)

    Chmielewski, A. G.; Sun, Yong-Xia; Licki, J.; Bułka, S.; Kubica, K.; Zimek, Z.

    2003-06-01

    The removal of NO x and polycyclic aromatic hydrocarbons from flue gas was investigated, as a preliminary test, with alcohol addition by using electron beam irradiation in EPS Kawęczyn. The experimental conditions were the followings: flue gas flow rate 5000 nm 3/h; humidity 4-5%; inlet concentrations of SO 2 and NO x, which were emitted from power station, were 192 and 106 ppm, respectively; ammonia addition was 2.75 m 3/h; alcohol addition was 600 l/h. It was found that below 6 kGy applied doses the NO x removal efficiency increased by 10% in the presence of alcohol as compared to the absence of alcohol; on the other hand, the NO x removal efficiency decreased at doses higher than 10 kGy. In order to understand the behavior of these aromatic hydrocarbons under electron irradiation, unirradiated samples (i.e. as emitted from the coal combustion process, called inlet) and irradiated samples (called outlet) were collected by using a condense bottle connected with an XAD-2 adsorbent and an active carbon adsorbent and were then analyzed by a GC-MS. It was found that using 8 kGy absorbed dose the concentration of aromatic hydrocarbons of small aromatic rings (<3, except acenaphthylene) were reduced, but the concentration of these hydrocarbons of large aromatic rings (⩾4) were increased. A possible mechanism is proposed.

  1. Thermochemistry of the Reaction of SF6 with Gas-Phase Hydrated Electrons: A Benchmark for Nanocalorimetry.

    PubMed

    Akhgarnusch, Amou; Höckendorf, Robert F; Beyer, Martin K

    2015-10-01

    The reaction of sulfur hexafluoride with gas-phase hydrated electrons (H2O)n(-), n ≈ 60-130, is investigated at temperatures T = 140-300 K by Fourier transform ion cyclotron resonance (FT-ICR) mass spectrometry. SF6 reacts with a temperature-independent rate of 3.0 ± 1.0 × 10(-10) cm(3) s(-1) via exclusive formation of the hydrated F(-) anion and the SF5(•) radical, which evaporates from the cluster. Nanocalorimetry yields a reaction enthalpy of ΔHR,298K = 234 ± 24 kJ mol(-1). Combined with literature thermochemical data from bulk aqueous solution, these result in an F5S-F bond dissociation enthalpy of ΔH298K = 455 ± 24 kJ mol(-1), in excellent agreement with all high-level quantum chemical calculations in the literature. A combination with gas-phase literature thermochemistry also yields an experimental value for the electron affinity of SF5(•), EA(SF5(•)) = 4.27 ± 0.25 eV. PMID:26356833

  2. Electron density measurement in gas discharge plasmas by optical and acoustic methods

    NASA Astrophysics Data System (ADS)

    Biagioni, A.; Anania, M. P.; Bellaveglia, M.; Chiadroni, E.; Cianchi, A.; Di Giovenale, D.; Di Pirro, G.; Ferrario, M.; Filippi, F.; Mostacci, A.; Pompili, R.; Shpakov, V.; Vaccarezza, C.; Villa, F.; Zigler, A.

    2016-08-01

    Plasma density represents a very important parameter for both laser wakefield and plasma wakefield acceleration, which use a gas-filled capillary plasma source. Several techniques can be used to measure the plasma density within a capillary discharge, which are mainly based on optical diagnostic methods, as for example the well-known spectroscopic method using the Stark broadening effect. In this work, we introduce a preliminary study on an alternative way to detect the plasma density, based on the shock waves produced by gas discharge in a capillary. Firstly, the measurements of the acoustic spectral content relative to the laser-induced plasmas by a solid target allowed us to understand the main properties of the acoustic waves produced during this kind of plasma generation; afterwards, we have extended such acoustic technique to the capillary plasma source in order to calibrate it by comparison with the stark broadening method.

  3. Gas-phase acidities of tetrahedral oxyacids from ab initio electronic structure theory

    SciTech Connect

    Rustad, J.R.; Dixon, D.A.; Kubicki, J.D.; Felmy, A.R.

    2000-05-04

    Density functional calculations have been performed on several protonation states of the oxyacids of Si, P, V, As, Cr, and S. Structures and vibrational frequencies are in good agreement with experimental values where these are available. A reasonably well-defined correlation between the calculated gas-phase acidities and the measured pK{sub a} in aqueous solution has been found. The pK{sub a}/gas-phase acidity slopes are consistent with those derived from previous molecular mechanics calculations on ferric hydrolysis and the first two acidity constants for orthosilicic acid. The successive deprotonation of other H{sub n}TO{sub 4} species, for a given tetrahedral anion T are roughly consistent with this slope, but not to the extent that there is a universal correlation among all species.

  4. Anisotropic two-dimensional electron gas at SrTiO3(110)

    PubMed Central

    Wang, Zhiming; Zhong, Zhicheng; Hao, Xianfeng; Gerhold, Stefan; Stöger, Bernhard; Schmid, Michael; Sánchez-Barriga, Jaime; Varykhalov, Andrei; Franchini, Cesare; Held, Karsten; Diebold, Ulrike

    2014-01-01

    Two-dimensional electron gases (2DEGs) at oxide heterostructures are attracting considerable attention, as these might one day substitute conventional semiconductors at least for some functionalities. Here we present a minimal setup for such a 2DEG––the SrTiO3(110)-(4 × 1) surface, natively terminated with one monolayer of tetrahedrally coordinated titania. Oxygen vacancies induced by synchrotron radiation migrate underneath this overlayer; this leads to a confining potential and electron doping such that a 2DEG develops. Our angle-resolved photoemission spectroscopy and theoretical results show that confinement along (110) is strikingly different from the (001) crystal orientation. In particular, the quantized subbands show a surprising “semiheavy” band, in contrast with the analog in the bulk, and a high electronic anisotropy. This anisotropy and even the effective mass of the (110) 2DEG is tunable by doping, offering a high flexibility to engineer the properties of this system. PMID:24591596

  5. Two-dimensional electron gas in monolayer InN quantum wells

    SciTech Connect

    Pan, W. E-mail: e.dimakis@hzdr.de; Wang, G. T.; Dimakis, E. E-mail: e.dimakis@hzdr.de; Moustakas, T. D.; Tsui, D. C.

    2014-11-24

    We report in this letter experimental results that confirm the two-dimensional nature of the electron systems in a superlattice structure of 40 InN quantum wells consisting of one monolayer of InN embedded between 10 nm GaN barriers. The electron density and mobility of the two-dimensional electron system (2DES) in these InN quantum wells are 5 × 10{sup 15 }cm{sup −2} (or 1.25 × 10{sup 14 }cm{sup −2} per InN quantum well, assuming all the quantum wells are connected by diffused indium contacts) and 420 cm{sup 2}/Vs, respectively. Moreover, the diagonal resistance of the 2DES shows virtually no temperature dependence in a wide temperature range, indicating the topological nature of the 2DES.

  6. Exploring Salt Bridge Structures of Gas-Phase Protein Ions using Multiple Stages of Electron Transfer and Collision Induced Dissociation

    NASA Astrophysics Data System (ADS)

    Zhang, Zhe; Browne, Shaynah J.; Vachet, Richard W.

    2014-04-01

    The gas-phase structures of protein ions have been studied by electron transfer dissociation (ETD) and collision-induced dissociation (CID) after electrospraying these proteins from native-like solutions into a quadrupole ion trap mass spectrometer. Because ETD can break covalent bonds while minimally disrupting noncovalent interactions, we have investigated the ability of this dissociation technique together with CID to probe the sites of electrostatic interactions in gas-phase protein ions. By comparing spectra from ETD with spectra from ETD followed by CID, we find that several proteins, including ubiquitin, CRABP I, azurin, and β-2-microglobulin, appear to maintain many of the salt bridge contacts known to exist in solution. To support this conclusion, we also performed calculations to consider all possible salt bridge patterns for each protein, and we find that the native salt bridge pattern explains the experimental ETD data better than nearly all other possible salt bridge patterns. Overall, our data suggest that ETD and ETD/CID of native protein ions can provide some insight into approximate location of salt bridges in the gas phase.

  7. Exploring Salt Bridge Structures of Gas-Phase Protein Ions using Multiple Stages of Electron Transfer and Collision Induced Dissociation

    PubMed Central

    Zhang, Zhe; Browne, Shaynah J.; Vachet, Richard W.

    2014-01-01

    The gas-phase structures of protein ions have been studied by electron transfer dissociation (ETD) and collision-induced dissociation (CID) after electrospraying these proteins from native-like solutions into a quadrupole ion trap mass spectrometer. Because ETD can break covalent bonds while minimally disrupting non-covalent interactions, we have investigated the ability of this dissociation technique together with CID to probe the sites of electrostatic interactions in gas phase protein ions. By comparing spectra from ETD with spectra from ETD followed by CID, we find that several proteins, including ubiquitin, CRABP I, azurin, and β-2-microglobulin, appear to maintain many of the salt bridge contacts known to exist in solution. To support this conclusion, we also performed calculations to consider all possible salt bridge patterns for each protein, and we find that the native salt bridge pattern explains the experimental ETD data better than nearly all other possible salt bridge patterns. Overall, our data suggest that ETD and ETD/CID of native protein ions can provide some insight into approximate location of salt bridges in the gas phase. PMID:24496600

  8. Quantum-relativistic hydrodynamic model for a spin-polarized electron gas interacting with light.

    PubMed

    Morandi, Omar; Zamanian, Jens; Manfredi, Giovanni; Hervieux, Paul-Antoine

    2014-07-01

    We develop a semirelativistic quantum fluid theory based on the expansion of the Dirac Hamiltonian to second order in 1/c. By making use of the Madelung representation of the wave function, we derive a set of hydrodynamic equations that comprises a continuity equation, an Euler equation for the mean velocity, and an evolution equation for the electron spin density. This hydrodynamic model is then applied to study the dynamics of a dense and weakly relativistic electron plasma. In particular, we investigate the impact of the quantum-relativistic spin effects on the Faraday rotation in a one-dimensional plasma slab irradiated by an x-ray laser source. PMID:25122397

  9. Inert gas jets for growth control in electron beam induced deposition

    SciTech Connect

    Henry, M. R.; Kim, S.; Rykaczewski, K.; Fedorov, A. G.

    2011-06-27

    An inert, precursor free, argon jet is used to control the growth rate of electron beam induced deposition. Adjustment of the jet kinetic energy/inlet temperature can selectively increase surface diffusion to greatly enhance the deposition rate or deplete the surface precursor due to impact-stimulated desorption to minimize the deposition or completely clean the surface. Physical mechanisms for this process are described. While the electron beam is also observed to generate plasma upon interaction with an argon jet, our results indicate that plasma does not substantially contribute to the enhanced deposition rate.

  10. Mechanism of Interaction between Hydrogen and the Two-dimensional Electron Gas in AlGaN/GaN High Electron Mobility Transistors

    NASA Astrophysics Data System (ADS)

    Gu, Jason; Khandelwal, Mahak; Melby, Jacob; Steeves, Michael; Wu, Yuh-Renn; Lad, Robert; Davis, Robert F.

    2009-03-01

    The large polarization difference between AlGaN and GaN causes a two-dimensional electron gas (2DEG) to form at the interface between the two semiconductors. Capacitance-voltage (CV) measurements revealed a charge density of 4.71x10^12 electrons/cm^2 in our 60 nm Al0.2Ga0.8N on 1.5 microns of GaN heterostructure. Exposure to hydrogen in the presence of a catalyst (Pt) resulted in a marked increase in the conductivity through the 2DEG. An interface state passivation mechanism is proposed as the most probable cause of this phenomenon. This mechanism was modeled using a self-consistent Schr"odinger-Poisson solver, which showed that the passivation of interface states causes the shift of the Fermi level towards the conduction band, thereby increasing the carrier density of the 2DEG by 9%. In-situ CV measurements showed a 16% increase in the carrier density and a non-parallel shift in the CV curve when hydrogen was introduced, indicating in a change in the number of available states. This supports interface state passivation as a cause of the increase in the conductivity through the 2DEG.

  11. Sheath structure transition controlled by secondary electron emission at low gas pressure

    NASA Astrophysics Data System (ADS)

    Schweigert, Irina; Langendorf, Samuel J.; Keidar, Michael; Walker, Mitchell L. R.

    2014-10-01

    Previously the experiments demonstrated that the growth of the electron temperature with power in the Hall thruster is restricted by plasma-wall interaction if the wall has an enhanced secondary electron emission (SEE) yield. It is known that the plasma and wall is separated by the sheath potential drop to provide the condition of zero-current on the surface with floating potential. The rearrangement of the sheath structure near the plate with enhanced SEE is the subject of our experimental and theoretical study. The experiment was carried out in multidipole plasma device, where plasma is maintained by the negatively-biased emissive filament. The plate with sapphire surface is placed 50 cm apart from the filament. The plasma parameters were measured for different negative biases Ub and discharge currents J at P = 10-4 Torr. In our PIC simulations the plasma was calculated for the experimental conditions. We solved self-consistently the Boltzmann equations for the electron and ion distribution functions and Poisson equation for electrical field. Both in the experiment and simulation we found non-monotonic change in sheath structure near the plate depending on Ub and J. The kinetic simulations allowed us to describe the sheath rearrangement in terms of the electron energy distribution function.

  12. Darboux transformations for (1+2)-dimensional Fokker-Planck equations with constant diffusion matrix

    SciTech Connect

    Schulze-Halberg, Axel

    2012-10-15

    We construct a Darboux transformation for (1+2)-dimensional Fokker-Planck equations with constant diffusion matrix. Our transformation is based on the two-dimensional supersymmetry formalism for the Schroedinger equation. The transformed Fokker-Planck equation and its solutions are obtained in explicit form.

  13. Metallic state of the free-electron gas within the self-interaction-corrected local-spin-density approximation

    NASA Astrophysics Data System (ADS)

    Pederson, Mark R.; Heaton, Richard A.; Harrison, Joseph G.

    1989-01-01

    The uniform-density electron gas is studied within the framework of the Wannier-function (WF) formulation of the self-interaction-corrected local-spin-density approximation (SIC-LSD). While the results of the present work follow rigorously from a variational formulation, they may also be qualitatively understood in terms of the local-bonding-site concept introduced by Mott in his theory of the metal-insulator transition. SIC-LSD admits metallic-state solutions at ordinary electron densities just as in traditional LSD theory. The result of introducing SIC to the metallic state is an overall downward shift of the LSD eigenvalues. This shift is largest for states near k=0 and vanishes for states near the Fermi energy ɛF. As such, the orbital energies at ɛF are found to be in exact agreement with both the exchange-only version of LSD and Hartree-Fock (HF). Beyond metallic-state solutions, this formulation of SIC-LSD also admits insulator solutions at very low electron densities and may thus have important application to the problem of Wigner crystallization.

  14. LaTiO{sub 3}/KTaO{sub 3} interfaces: A new two-dimensional electron gas system

    SciTech Connect

    Zou, K.; Ismail-Beigi, Sohrab; Walker, F. J.; Ahn, C. H.; Kisslinger, Kim; Su, Dong; Shen, Xuan

    2015-03-01

    We report a new 2D electron gas (2DEG) system at the interface between a Mott insulator, LaTiO{sub 3}, and a band insulator, KTaO{sub 3}. For LaTiO{sub 3}/KTaO{sub 3} interfaces, we observe metallic conduction from 2 K to 300 K. One serious technological limitation of SrTiO{sub 3}-based conducting oxide interfaces for electronics applications is the relatively low carrier mobility (0.5-10 cm{sup 2}/V s) of SrTiO{sub 3} at room temperature. By using KTaO{sub 3}, we achieve mobilities in LaTiO{sub 3}/KTaO{sub 3} interfaces as high as 21 cm{sup 2}/V s at room temperature, over a factor of 3 higher than observed in doped bulk SrTiO{sub 3}. By density functional theory, we attribute the higher mobility in KTaO{sub 3} 2DEGs to the smaller effective mass for electrons in KTaO{sub 3}.

  15. A perfect spin filtering device through Mach-Zehnder interferometry in a GaAs/AlGaAs electron gas.

    PubMed

    López, Alexander; Medina, Ernesto; Bolívar, Nelson; Berche, Bertrand

    2010-03-24

    A spin filtering device based on quantum spin interference is addressed, for use with a two-dimensional GaAs/AlGaAs electron gas that has both Rashba and Dresselhaus spin-orbit (SO) couplings and an applied external magnetic field. We propose an experimentally feasible electronic Mach-Zehnder interferometer and derive a map, in parameter space, that determines perfect spin filtering conditions. We find two broad spin filtering regimes: one where filtering is achieved in the original incoming quantization basis, that takes advantage of the purely non-Abelian nature of the spin rotations; and another where one needs a tilted preferential axis in order to observe the polarized output spinor. Both solutions apply for arbitrary incoming electron polarization and energy, and are only limited in output amplitude by the randomness of the incoming spinor state. Including a full account of the beam splitter and mirror effects on spin yields solutions only for the tilted basis, but encompasses a broad range of filtering conditions. PMID:21389461

  16. Quantum-size effects in the energy loss of charged particles interacting with a confined two-dimensional electron gas

    SciTech Connect

    Borisov, A. G.; Juaristi, J. I.

    2006-01-15

    Time-dependent density-functional theory is used to calculate quantum-size effects in the energy loss of antiprotons interacting with a confined two-dimensional electron gas. The antiprotons follow a trajectory normal to jellium circular clusters of variable size, crossing every cluster at its geometrical center. Analysis of the characteristic time scales that define the process is made. For high-enough velocities, the interaction time between the projectile and the target electrons is shorter than the time needed for the density excitation to travel along the cluster. The finite-size object then behaves as an infinite system, and no quantum-size effects appear in the energy loss. For small velocities, the discretization of levels in the cluster plays a role and the energy loss does depend on the system size. A comparison to results obtained using linear theory of screening is made, and the relative contributions of electron-hole pair and plasmon excitations to the total energy loss are analyzed. This comparison also allows us to show the importance of a nonlinear treatment of the screening in the interaction process.

  17. Hysteresis phenomena of the two dimensional electron gas density in lattice-matched InAlN/GaN heterostructures

    SciTech Connect

    Sang, Ling; Yang, Xuelin Cheng, Jianpeng; Guo, Lei; Hu, Anqi; Xiang, Yong; Yu, Tongjun; Xu, Fujun; Tang, Ning; Jia, Lifang; He, Zhi; Wang, Maojun; Wang, Xinqiang; Shen, Bo; Ge, Weikun

    2015-08-03

    High-temperature transport properties in high-mobility lattice-matched InAlN/GaN heterostructures have been investigated. An interesting hysteresis phenomenon of the two dimensional electron gas (2DEG) density is observed in the temperature-dependent Hall measurements. After high-temperature thermal cycles treatment, the reduction of the 2DEG density is observed, which is more serious in thinner InAlN barrier samples. This reduction can then be recovered by light illumination. We attribute these behaviors to the shallow trap states with energy level above the Fermi level in the GaN buffer layer. The electrons in the 2DEG are thermal-excited when temperature is increased and then trapped by these shallow trap states in the buffer layer, resulting in the reduction and hysteresis phenomenon of their density. Three trap states are observed in the GaN buffer layer and C{sub Ga} may be one of the candidates responsible for the observed behaviors. Our results provide an alternative approach to assess the quality of InAlN/GaN heterostructures for applications in high-temperature electronic devices.

  18. Magnetoresistance quantum oscillations in a magnetic two-dimensional electron gas

    NASA Astrophysics Data System (ADS)

    Kunc, J.; Piot, B. A.; Maude, D. K.; Potemski, M.; Grill, R.; Betthausen, C.; Weiss, D.; Kolkovsky, V.; Karczewski, G.; Wojtowicz, T.

    2015-08-01

    Magnetotransport measurements of Shubnikov-de Haas (SdH) oscillations have been performed on two-dimensional electron gases (2DEGs) confined in CdTe and CdMnTe quantum wells. The quantum oscillations in CdMnTe, where the 2DEG interacts with magnetic Mn ions, can be described by incorporating the electron-Mn exchange interaction into the traditional Lifshitz-Kosevich formalism. The modified spin splitting leads to characteristic beating pattern in the SdH oscillations, the study of which indicates the formation of Mn clusters resulting in direct anti-ferromagnetic Mn-Mn interaction. The Landau-level broadening in this system shows a peculiar decrease with increasing temperature, which could be related to statistical fluctuations of the Mn concentration.

  19. Bound states in optical absorption of semiconductor quantum wells containing a two-dimensional electron Gas

    PubMed

    Huard; Cox; Saminadayar; Arnoult; Tatarenko

    2000-01-01

    The dependence of the optical absorption spectrum of a semiconductor quantum well on two-dimensional electron concentration n(e) is studied using CdTe samples. The trion peak (X-) seen at low n(e) evolves smoothly into the Fermi edge singularity at high n(e). The exciton peak (X) moves off to high energy, weakens, and disappears. The X,X- splitting is linear in n(e) and closely equal to the Fermi energy plus the trion binding energy. For Cd0.998Mn0.002Te quantum wells in a magnetic field, the X,X- splitting reflects unequal Fermi energies for M = +/-1/2 electrons. The data are explained by Hawrylak's theory of the many-body optical response including spin effects. PMID:11015866

  20. Optically pumped gas laser using electronic transitions in the NaRb molecule

    SciTech Connect

    Kaslin, V.M.; Yakushev, O.F.

    1983-12-01

    Laser superradiance was achieved for the first time as a result of an electronic transition in a diatomic heteronuclear molecule as a result of direct optical pumping. This superradiance was observed in the region of 670 nm due to a transition to the ground state X/sup 1/..sigma../sup +/ of the intermetallic alkali molecule NaRb pumped by radiation from a pulsed copper vapor laser (lambda = 510.6 nm).

  1. Interaction induced staggered spin-orbit order in two-dimensional electron gas

    SciTech Connect

    Das, Tanmoy

    2012-06-05

    Decoupling spin and charge transports in solids is among the many prerequisites for realizing spin electronics, spin caloritronics, and spin-Hall effect. Beyond the conventional method of generating and manipulating spin current via magnetic knob, recent advances have expanded the possibility to optical and electrical method which are controllable both internally and externally. Yet, due to the inevitable presence of charge excitations and electrical polarizibility in these methods, the separation between spin and charge degrees of freedom of electrons remains a challenge. Here we propose and formulate an interaction induced staggered spin-orbit order as a new emergent phase of matter. We show that when some form of inherent spin-splitting via Rashba-type spin-orbit coupling renders two helical Fermi surfaces to become significantly nested, a Fermi surface instability arises. To lift this degeneracy, a spontaneous symmetry breaking spin-orbit density wave develops, causing a surprisingly large quasiparticle gapping with chiral electronic states, with no active charge excitations. Since the staggered spin-orbit order is associated with a condensation energy, quantified by the gap value, destroying such spin-orbit interaction costs sufficiently large perturbation field or temperature or de-phasing time. BiAg2 surface state is shown to be a representative system for realizing such novel spin-orbit interaction with tunable and large strength, and the spin-splitting is decoupled from charge excitations.

  2. High speed photodetectors based on a two-dimensional electron/hole gas heterostructure

    NASA Astrophysics Data System (ADS)

    Gallo, Eric M.; Cola, Adriano; Quaranta, Fabio; Spanier, Jonathan E.

    2013-04-01

    We report on high-speed metal-semiconductor-metal (MSM) resonant cavity enhanced photodetectors based on Schottky-contacted (Al,In)GaAs heterostructures containing both electron and hole quantum wells. Interdigitated detectors were fabricated and characterized with and without an underlying Distributed Bragg Reflector (DBR). All detectors had very low dark currents and high linear responsivities. The fastest measured temporal response with a 16 ps full-width at half-maximum and a 29 ps fall time was demonstrated on a device with 1 μm gap between electrodes and an underlying DBR. Single quantum well detectors have previously demonstrated increased responsivity and speed but were limited by a slow decaying tail in the high speed photoresponse, attributed to the long collection path of minority carriers. The use of an electron and hole well, separated by a 110 nm absorption region as well as an underlying DBR, eliminates the slow tail by providing an enhanced collection path for both optically generated electrons and holes. Here, we present the fabricated device structure along with the DC and high speed photoresponse under varying incident powers. We briefly compare these results to those of the previous single well devices and attribute improvements in the time response tail to enhanced diffusion created by the presence of the separated dual well structure.

  3. Focal plane arrays for submillimeter waves using two-dimensional electron gas elements: A grant under the Innovative Research Program

    NASA Technical Reports Server (NTRS)

    Yngvesson, K. Sigfrid; Lau, Kei-May

    1992-01-01

    This final report describes a three-year research effort, aimed at developing new types of THz low noise receivers, based on bulk effect ('hot electron') nonlinearities in the Two-Dimensional Electron Gas (2DEG) Medium, and the inclusion of such receivers in focal plane arrays. 2DEG hot electron mixers have been demonstrated at 35 and 94 GHz with three orders of magnitude wider bandwidth than previous hot electron mixers, which use bulk InSb. The 2DEG mixers employ a new mode of operation, which was invented during this program. Only moderate cooling is required for this mode, to temperatures in the range 20-77 K. Based on the results of this research, it is now possible to design a hot electron mixer focal plane array for the THz range, which is anticipated to have a DSB receiver noise temperature of 500-1000K. In our work on this grant, we have found similar results the the Cronin group (resident at the University of Bath, UK). Neither group has so far demonstrated heterodyne detection in this mode, however. We discovered and explored some new effects in the magnetic field mode, and these are described in the report. In particular, detection of 94 GHz and 238 GHz, respectively, by a new effect, 'Shubnikov de Haas detection', was found to be considerably stronger in our materials than the cyclotron resonance detection. All experiments utilized devices with an active 2DEG region of size of the order of 10-40 micrometers long, and 20-200 micrometers wide, formed at the heterojunction between AlGaAs and GaAs. All device fabrication was performed in-house. The materials for the devices were also grown in-house, utilizing OMCVD (Organo Metallic Chemical Vapor Deposition). In the course of this grant, we developed new techniques for growing AlGaAs/GaAs with mobilities equalling the highest values published by any laboratory. We believe that the field of hot electron mixers and detectors will grow substantially in importance in the next few years, partly as a result of

  4. PIC code modeling of spacecraft charging potential during electron beam injection into a background of neutral gas and plasma, part 1

    NASA Technical Reports Server (NTRS)

    Koga, J. K.; Lin, C. S.; Winglee, R. M.

    1989-01-01

    Injections of nonrelativistic electron beams from an isolated equipotential conductor into a uniform background of plasma and neutral gas were simulated using a 2-D electrostatic particle code. The ionization effects on spacecraft charging are examined by including interactions of electrons with neutral gas. The simulations show that the conductor charging potential decreases with increasing neutral background density due to the production of secondary electrons near the conductor surface. In the spacecraft wake, the background electrons accelerated towards the charged spacecraft produce an enhancement of secondary electrons and ions. Simulations run for longer times indicate that the spacecraft potential is further reduced and short wavelength beam-plasma oscillations appear. The results are applied to explain the spacecraft charging potential measured during the SEPAC experiments from Spacelab 1.

  5. Pulsed electron-beam-sustained discharge in oxygen-containing gas mixtures: electrical characteristics, spectroscopy,and singlet oxygen yield

    SciTech Connect

    Vagin, Nikolai P; Ionin, Andrei A; Klimachev, Yu M; Kotkov, A A; Podmar'kov, Yu P; Seleznev, L V; Sinitsyn, D V; Frolov, M P; Yuryshev, Nikolai N; Kochetov, Igor' V; Napartovich, A P; Hager, G D

    2004-09-30

    The electrical and spectroscopic characteristics of electron-beam-sustained discharge (EBSD) in oxygen and oxygen-containing gas mixtures are studied experimentally under gas pressures up to 100 Torr in a large excitation volume ({approx}18 L). It is shown that the EBSD in pure oxygen and its mixtures with inert gases is unstable and is characterised by a small specific energy contribution. The addition of small amounts ({approx}1%-10%) of carbon monoxide or hydrogen to oxygen or its mixtures with inert gases considerably improves the stability of the discharge, while the specific energy contribution W increases by more then an order of magnitude, achieving {approx}6.5 kJ L{sup -1} atm{sup -1} per molecular component of the gas mixture. A part of the energy supplied to the EBSD is spent to excite vibrational levels of molecular additives. This was demonstrated experimentally by the initiation of a CO laser based on the O{sub 2} : Ar : CO = 1 : 1 : 0.1 mixture. Experimental results on spectroscopy of the excited electronic states O{sub 2}(a{sup 1{Delta}}{sub g}) and O{sub 2}(b{sup 1{Sigma}}{sub g}{sup +}), of oxygen formed in the EBSD are presented. A technique was worked out for measuring the concentration of singlet oxygen in the O{sub 2}(a{sup 1{Delta}}{sub g}) state in the afterglow of the pulsed EBSD by comparing with the radiation intensity of singlet oxygen of a given concentration produced in a chemical generator. Preliminary measurements of the singlet-oxygen yield in the EBSD show that its value {approx}3% for W {approx} 1.0 kJ L{sup -1} atm{sup -1} is in agreement with the theoretical estimate. Theoretical calculations performed for W {approx} 6.5 kJ L{sup -1} atm{sup -1} at a fixed temperature show that the singlet-oxygen yield may be {approx}20%, which is higher than the value required to achieve the lasing threshold in an oxygen-iodine laser at room temperature. (laser applications and other topics in quantum electronics)

  6. Real-time electronic monitoring of a pitted and leaking gas gathering pipeline

    SciTech Connect

    Asperger, R.G.; Hewitt, P.G.

    1986-08-01

    Hydrogen patch, flush electrical resistance, and flush linear polarization proves wre used with flush coupons to monitor corrosion rates in a pitted and leaking sour gas gathering line. Four inhibitors were evaluated in stopping the leaks. Inhibitor residuals and the amount and ratio of water and condensate in the lines were measured at five locations along the line. The best inhibitor reduced reduced the pit-leak frequency by over a factor of 10. Inhibitor usage rate was optimized using the hydrogen patch current as a measure of the instantaneous corrosion rate. Improper pigging was identified as a cause of corrosion transients. This problem is discussed in relation to the pigging of pipelines in stratified flow where moving fluids are the carriers for continuously injected corrosion inhibitors.

  7. Studies of high-current relativistic electron beam interaction with gas and plasma in Novosibirsk

    NASA Astrophysics Data System (ADS)

    Sinitsky, S. L.; Arzhannikov, A. V.; Burdakov, A. V.

    2016-03-01

    This paper presents an overview of the studies on the interaction of a high-power relativistic electron beam (REB) with dense plasma confined in a long open magnetic trap. The main goal of this research is to achieve plasma parameters close to those required for thermonuclear fusion burning. The experimental studies were carried over the course of four decades on various devices: INAR, GOL, INAR-2, GOL-M, and GOL-3 (Budker Institute of Nuclear Physics) for a wide range of beam and plasma parameters.

  8. Effects of neutral gas releases on electron beam injection from electrically tethered spacecraft

    NASA Technical Reports Server (NTRS)

    Winglee, R. M.

    1990-01-01

    The presence of high neutral densities at low altitudes and/or during thruster firings is known to modify the spacecraft potential during active electron beam injection. Two-dimensional (three velocity) particle simulations are used to investigate the ionization processes including the neutral density required, the modification of the spacecraft potential, beam profile and spatial distribution of the return current into the spacecraft. Three processes are identified: (1) beam-induced ionization, (2) vehicle-induced ionization, and (3) beam plasma discharge. Only in the first two cases does the beam propagate away with little distortion.

  9. Phonon blocking by two dimensional electron gas in polar CdTe/PbTe heterojunctions

    SciTech Connect

    Zhang, Bingpo; Cai, Chunfeng; Zhu, He; Wu, Feifei; Ye, Zhenyu; Chen, Yongyue; Li, Ruifeng; Kong, Weiguang; Wu, Huizhen

    2014-04-21

    Narrow-gap lead telluride crystal is an important thermoelectric and mid-infrared material in which phonon functionality is a critical issue to be explored. In this Letter, efficient phonon blockage by forming a polar CdTe/PbTe heterojunction is explicitly observed by Raman scattering. The unique phonon screening effect can be interpreted by recent discovery of high-density two dimensional electrons at the polar CdTe/PbTe(111) interface which paves a way for design and fabrication of thermoelectric devices.

  10. How well do static electronic dipole polarizabilities from gas-phase experiments compare with density functional and MP2 computations?

    SciTech Connect

    Thakkar, Ajit J. Wu, Taozhe

    2015-10-14

    Static electronic dipole polarizabilities for 135 molecules are calculated using second-order Møller-Plesset perturbation theory and six density functionals recently recommended for polarizabilities. Comparison is made with the best gas-phase experimental data. The lowest mean absolute percent deviations from the best experimental values for all 135 molecules are 3.03% and 3.08% for the LC-τHCTH and M11 functionals, respectively. Excluding the eight extreme outliers for which the experimental values are almost certainly in error, the mean absolute percent deviation for the remaining 127 molecules drops to 2.42% and 2.48% for the LC-τHCTH and M11 functionals, respectively. Detailed comparison enables us to identify 32 molecules for which the discrepancy between the calculated and experimental values warrants further investigation.

  11. Multitip scanning gate microscopy for ballistic transport studies in systems with a two-dimensional electron gas

    NASA Astrophysics Data System (ADS)

    Kolasiński, K.; Szafran, B.; Hackens, B.

    2015-05-01

    We consider conductance mapping of systems based on the two-dimensional electron gas with scanning gate microscopy using two or more tips of an atomic force microscope. The paper contains the results of numerical simulations for a model tip potential. In addition, a few procedures are proposed for the extraction and manipulation of ballistic transport properties. In particular, we demonstrate that the multitip techniques can be used to obtain a readout of the Fermi wavelength, to detect potential defects, to filter specific transverse modes, and to tune the system into resonant conditions under which a stable map of the local density of states can be extracted from conductance maps using a third tip.

  12. Suris tetrons: possible spectroscopic evidence for four-particle optical excitations of a two-dimensional electron gas.

    PubMed

    Koudinov, A V; Kehl, C; Rodina, A V; Geurts, J; Wolverson, D; Karczewski, G

    2014-04-11

    The excitations of a two-dimensional electron gas in quantum wells with intermediate carrier density (ne∼1011  cm-2), i.e., between the exciton-trion and the Fermi-sea range, are so far poorly understood. We report on an approach to bridge this gap by a magnetophotoluminescence study of modulation-doped (Cd,Mn)Te quantum well structures. Employing their enhanced spin splitting, we analyzed the characteristic magnetic-field behavior of the individual photoluminescence features. Based on these results and earlier findings by other authors, we present a new approach for understanding the optical transitions at intermediate densities in terms of four-particle excitations, the Suris tetrons, which were up to now only predicted theoretically. All characteristic photoluminescence features are attributed to emission from these quasiparticles when attaining different final states. PMID:24766011

  13. Suris Tetrons: Possible Spectroscopic Evidence for Four-Particle Optical Excitations of a Two-Dimensional Electron Gas

    NASA Astrophysics Data System (ADS)

    Koudinov, A. V.; Kehl, C.; Rodina, A. V.; Geurts, J.; Wolverson, D.; Karczewski, G.

    2014-04-01

    The excitations of a two-dimensional electron gas in quantum wells with intermediate carrier density (ne˜1011 cm-2), i.e., between the exciton-trion and the Fermi-sea range, are so far poorly understood. We report on an approach to bridge this gap by a magnetophotoluminescence study of modulation-doped (Cd,Mn)Te quantum well structures. Employing their enhanced spin splitting, we analyzed the characteristic magnetic-field behavior of the individual photoluminescence features. Based on these results and earlier findings by other authors, we present a new approach for understanding the optical transitions at intermediate densities in terms of four-particle excitations, the Suris tetrons, which were up to now only predicted theoretically. All characteristic photoluminescence features are attributed to emission from these quasiparticles when attaining different final states.

  14. Acid-Base Electronic Properties in the Gas Phase: Permanent Electric Dipole Moments of a Photoacidic Substrate.

    NASA Astrophysics Data System (ADS)

    Fleisher, Adam J.; Morgan, Philip J.; Pratt, David W.

    2009-06-01

    The permanent electric dipole moments of two conformers of 2-naphthol (2HN) in their ground and electronically excited states have been experimentally determined by Stark-effect measurements in a molecular beam. When in solution, 2HN is a weak base in the S{_0} state and a strong acid in the S{_1} state. Using sequential solvation of the cis-2HN photoacid with the base ammonia, we have begun to approach condensed phase acid-base interactions with gas phase rotational resolution. Our study, void of bulk solvent perturbations, is of importance to the larger community currently describing aromatic biomolecule and "super" photoacid behavior via theoretical modeling and condensed phase solvatochromism. [2] A. Weller. Prog. React. Kinet. 5, 273 (1970). [3] D. F. Plusquellic, X. -Q. Tan, and D. W. Pratt. J. Chem. Phys. 96, 8026 (1992).

  15. The Pole Term in Linear Response Theory: An Example From the Transverse Response of the Electron Gas

    PubMed Central

    Levine, Zachary H.; Cockayne, Eric

    2008-01-01

    In linear response theory, the dielectric response at zero frequency sometimes appears to violate the f-sum rule, which has apparent implications for causality. Here, we study the origin of this apparent discrepancy, focusing on Lindhard’s formula for the transverse response of the electron gas. At non-zero frequency, first-order poles contribute to the imaginary part of the dielectric function in the usual way. At zero frequency, second-order poles contribute in a way which forces a careful consideration of the notation of summation and integration to avoid an error. A compact formula for the contribution of the second-order poles is presented. The sense in which the f-sum rule is satisfied is discussed. PMID:27096129

  16. Bias Dependence of Gallium Nitride Micro-Electro-Mechanical Systems Actuation Using a Two-Dimensional Electron Gas

    NASA Astrophysics Data System (ADS)

    Amar, Achraf Ben; Faucher, Marc; Grimbert, Bertrand; Cordier, Yvon; Fran\\{c}ois, Marc; Tilmant, Pascal; Werquin, Matthieu; Zhang, Victor; Ducatteau, Damien; Gaquière, Christophe; Buchaillot, Lionel; Théron, Didier

    2012-06-01

    The piezoelectric actuation of a micro-electro-mechanical system (MEMS) resonator based on an AlGaN/GaN heterostructure is studied under various bias conditions. Using an actuator electrode that is also a transistor gate, we correlate the mechanical behaviour to the two-dimensional electron gas (2DEG) presence. The measured amplitude of the actuated resonator is maximum at moderate negative biases and drops near the pinch-off voltage in concordance with the 2DEG becoming depleted. Below the pinch-off voltage, residual actuation is still present, which is attributed to a more complex electric field pattern supported by quantitative modelling. The results confirm that epitaxial AlGaN barriers are fully adapted to the piezoelectric actuation of MEMS.

  17. Limiting field strength and electron swarm coefficients of the CF3I-SF6 gas mixture

    NASA Astrophysics Data System (ADS)

    de Urquijo, J.; Mitrani, A.; Ruíz-Vargas, G.; Basurto, E.

    2011-08-01

    We have measured the electron drift velocity, longitudinal diffusion, and the effective ionization coefficients in the gaseous mixture of CF3I-SF6 over the density-normalized electric field intensity E/N, from 375 to 500 Td (1 Td = 10-17 V cm2). A pulsed Townsend technique was used. Overall, the gas mixture compositions were varied from 50 to 90% CF3I. We have found that the limiting field strength E/Nlim of the CF3I-SF6 mixture is superior to that of CF3I-N2, and always higher than that of SF6. Moreover, over the whole mixture range, the range of the limiting field strength for the CF3I-SF6 mixture is 360-437 Td, these limits corresponding for pure SF6 and CF3I, respectively.

  18. High frequency transformerless electronics ballast using double inductor-capacitor resonant power conversion for gas discharge lamps

    SciTech Connect

    Lai, J.S.

    1995-06-20

    A novel high frequency LCLC double resonant electronic ballast has been developed for gas discharge lamp applications. The ballast consists of a half-bridge inverter which switches at zero voltage crossing and an LCLC resonant circuit which converts a low ac voltage to a high ac voltage. The LCLC resonant circuit has two LC stages. The first LC stage produces a high voltage before the lamp is ignited. The second LC stage limits lamp current with the circuit inductance after the lamp is ignited. In another embodiment a filament power supply is provided for soft start up and for dimming the lamp. The filament power supply is a secondary of the second resonant inductor. 27 figs.

  19. Sensing Performance of Precisely Ordered TiO2 Nanowire Gas Sensors Fabricated by Electron-Beam Lithography

    PubMed Central

    Tian, Wei-Cheng; Ho, Yu-Hsuan; Chen, Chao-Hao; Kuo, Chun-Yen

    2013-01-01

    In this study, electron beam lithography, rather than the most popular method, chemical synthesis, is used to construct periodical TiO2 nanowires for a gas sensor with both robust and rapid performance. The effects of temperature on the sensing response and reaction time are analyzed at various operation temperatures ranging from 200 to 350 °C. At the optimized temperature of 300 °C, the proposed sensor repeatedly obtained a rise/recovery time (ΔR: 0.9 R0 to 0.1 R0) of 3.2/17.5 s and a corresponding sensor response (ΔR/R0) of 21.7% at an ethanol injection mass quantity of 0.2 μg. PMID:23344381

  20. Screening of an impurity in a two-dimensional electron gas within the Hartree and the Hartree-Fock approximation in the quantum Hall regime

    SciTech Connect

    Gudmundsson, V.; Palsson, G. )

    1994-05-15

    We investigate the static nonlinear screening of a single point charge (Coulombic impurity) by a two-dimensional electron gas (2DEG) in a strong perpendicular magnetic field at low temperature. The electron-electron interactions are treated in the Hartree-Fock approximation (HFA). The results are compared to earlier results for Hartree interacting electrons showing quite different screening properties due to the enhancement of the spin splitting of the Landau levels within the HFA. The possibility of different occupation of the spin levels of the impurity and the surrounding 2DEG is discussed in light of experiments.